The Canonical Csound Reference
Manual

Version 5.18.0

Barry Vercoe, MIT Media Lab
et. al.

The Canonical Csound Reference Manual: Version 5.18.0
by Barry Vercoe and et. al.

Table of Contents

PrE a0 . e XXXi
Prefacetothe Csound Manualccooiiiiiiiiiiiii e XXXI
History of the Canonical Csound Reference Manualccoviiiiiiiiiiiiniiinneeenn. XXXl
(00177 o o101 [1 o= XXXili
Getting Started With CSOUNGcoouniiiici e XXXV
What's new in CSoUNA 5.18.0cevuiiiiiieii e e e e e XXXVil

L OVEIVIBIW ..ottt et e e e e e e e e e e e et e et a e aans 1
g1 oo (8 o 1 o o PP 4
ReCENt DEVEIOPIMENES ...t e e e e e eaa e eaes 5

Features Of CSOUNA Soviiiei e 5
Features of CSOUNTACoiiiiii e e e e e aaas 6

The Csound COMMANGoiiiiiiis e e e e e e e e e e e anes 8
Order Of PreCaOENCE . .oviiiii e 8
Description of the CoOmmand SYNEAXceerruieieiiieeieiir e 8
Csound commMEaNA liNEieniiie e 10
Command-line Flags (DY Category)oovuiiiiiiiei e 19
Csound Environment VariableScc.viiiiiiiiiiicii e 29
Unified File Format for Orchestrasand SCOreSoovvvvveviieviieeiiiiceiieeeaeeeenn 32
DESCIIPLION .ttt 32

EXBIMPIE .o 33

Command Line Parameter File (.CSOUNAIC)uvievniiiiiiiiiieeiii e 34
SCOre File PreproCESSINGvvueiiei et e e e 34

The EXtract FEAUI®cvvvn i e 34
Independent Pre-Processing with SCSOrtcoovvviviiiiiiiii e, 35

USING CSOUNG ...ttt et ettt e ettt e e e e et e e e e et e e e eabe e eeees 36
CsoUN'S CONSOIE OULPULceeveieeeeiiise ettt et e e e eenens 36

HOW CSOUNAS WOTKSceeiiii e e e aas 37
Amplitude values in CSoUNoveniiiiie e 38
REA-TIMEAUAIO ...ieiiii e e e e 40
ReAtiME 1/O ON LINUX .evuiiiiicii e e e e e e e e 40

WINGOWS oot e e eans 46

VLB ittt ettt e e a e e aa e aaa 47

Optimizing AUiO /O LAENCY ...nieniiiiieeei e 47

Lo 011101 1 1 s [49
Syntax of the OrChESIIaovii e 50
OrchestraHeader StatemeNtScc.uvivveiiiei e e e e e 51
Instrument and Opcode BIOCK SEAEEMENESvviiiviiiiiiiiiiieecci e, 51
Ordinary SEALEMENESuuueeeiiie ettt ettt e e e e eeaens 52
Types, Constants and Variables ..o 52
Variable INitializationccooooniiiiii e 53

(0155 o 53
DirectorieSand FilES .. ccvuiiii i 54
NOMENCIALUIE ... e e e e 54
= 0 PPt 55
Named INSEIUMENLSouiiiie e e e e e e e eanaas 55

User Defined Opcodes (UDQO)coviiiiiii i e e e e 58
K-REIE VECIOIS ...t anas 58

The Standard NUMEIC SCOMEivue i e e ea e e e 59
Preprocessing of Standard SCOMESveviiiiiiiiiiiiie e 59
ATy et 59

LIL= 10] oo T PP 60

S0 PSP 60

S o0 (S = 1= 0 = 61

The Canonical Csound Reference Manual

Next-P and Previous-P SymbolScccuiiiiiiciii e 61
1210 o 62
o0 (1Y = 0 P 63
MUIIPIE FIlE SCOME ... e 65
Evaluation Of EXPrESSIONSieeiiiie it e e et eees 66
SNGSIN P-FIEIAS ..o 67

[0] 0100 = 0 o = PPN 68
L0 o 11 o LY PR 69
L5010 1Y 71

LI 102 11 o PP 73
The Tcl interpreter: CSECISNoeeni e 73
Cswish: thewindowing shell ..., 73

E N O 1o = o= PP 74

A SCripting ENVIFONMENTouiiiiiii e e e e e e e e e e 75
TclCsound @s alanguage WIBPPENveeeie et 76
TclCsound Command REFErENCEccuuiiviiiiiiiii e 76
BUITAING CSOUNG ...ttt ettt e e e e e e e ean e 79
CSOUND LINKS .ttt e e e e e et e eaa e eees 84
[1. OPCOUES OVEIVIEW ...civieiiieiii et e et e e e e e e e e e e e e e e et e e e e et e e et e e et e e et e eennaeeees 85
S 7= I 1= 1 (£ 89
Additive Synthesis/RESYNtNESISiiiiiiiiece e 89
BaSiC OSCHIALOIS .. .oeeieeiie e eaes 89
Dynamic SPectrum OSCHTELOISuuiiiiieiie e 89

FM SYNENESIS ..o 90
Granular SYNNESISccvniii e 90
Hyper Vectorial SYyNthesiSccuiviiiiiiii e 91
Linear and Exponential GENEratorscoeuuuieiiiiiiieeiiiie e 91
ENVEIOPE GENEIEIONS ... ceietie ettt et e e et eeeene e eees 92
Models and EMUILIONSc..uiiieiiiiiie e 92
PRESOIS ..o 93
RaNdom (NOISE) GENEYBIOISvvvueveieeeiieei e e ee e e e e e e e e e e e e e ean e eaes 9
SaMPIE PIaYbaCKv.ieee e 95

S0 1101 | 1] £ 95

SCANNEA SYNENESIS ...ttt et 97
TADIE ACCESS ..ot 98
Wave Terrain SYNtNESISvuiiie e e e e 99
Waveguide Physical MOEiNGcovuiiiiiiiiii e e e 99
Signal INPUt aNd OULPULeiieeei e e e e e e e e e e eaeas 100
File INput @and OULPULccuuniiiiiiee e 100
SIGNEAL TNPUL e 100
SN OULPUL .ttt e et e e et e e e e ean e eeees 100
SOfEWAIE BUS ...ttt e eees 101
Printing and Displayuvvvveiiiiiciie e 101
SOUNA FilE QUENIES ...t e e e eaas 101
SIgNal MOAITIEIS ..ooeeee e 103
Amplitude Modifiers and DynamiC ProCeSSINGveeerrurererrinneeeniinaeeennnnnns 103
Convolution and MOFPhINGc.ueeeniiie e 103
DAY it 103
Panning and SpatialiZationcc.ovvviiiiiiiic e 104
REVEIDEIELION ..ui e 106
SaMPlE LeVEl OPEIEIOrSceiiiiieiiiii e 106
SIgNal LIMITEIS ..ot e e 107
SPECIAl EFfECIS .. eiiitiiiee it 107
Standard FTErSo.eeee 107
SPECIAliZEA FIlTEr'S ovviiee e 109
WaVEGUIAESoieeiieii et e e e e e 109
Waveshaping and Phase DiStortionccoeuuiiiiiiiiieiiiiiieeeie e 109
INSErUMENE CONLIOL ...eee e e e e e e e eees 111

The Canonical Csound Reference Manual

ClOCK CONEIOL ...t e e et eeeeba e eaees 111
ConditioNal VEIUESccevviieiiiii e 111
Duration Control StatemMeNtScc.uivieeieiiieei e e e e 111
FLTK Widgets and GUI CONtrollerscooeuuiiiiiiiieeiiii e 111
FLTK CONTAINEIS ..oivviiieieeieeee e e e e e e e e et e e e et e e e et eeaenen s 114

FLTK VAUBLOIS ...t e e e 114

Other FLTK WIAQELS ...cvvvvieiiiiiieeee e 115

Modifying FLTK Widget APPearanCecoeveuvvieiieeineeineeeieeeeeennn 115

General FLTK Widget-related OpCodesocvvvvenieieiiiieiiiiieeeeeiineeees 116

INSErUMENE INVOCATIONoveiiiiee e e 116
Program FIOW CONtroloieeiiiiii e 117
Real-time Performance CONLrolcc.oviiuiiiiiiiic e 118
Initialization and ReINItIAiZatioNovvviiiiiiiii e 118
Sensing and CONLIOLuuiieeiiii e e e e e e e e e eees 119

S 0 120
SUD-INSEFUMENt CONLIOLeeeeiie e e 120
TIMEREAAING ...t 121
Function Table Controloooueiiii e 122
TabIE QUENIES ...uieiieei e 122
R o AN) (T @] 1= - (o 122
Table Reading with Dynamic SEleCtionccovviiiiiiiiiiiincc e, 123
MathematiCal OPEIiONScccuuuiieiiii et 124
AMPLITUIE CONVEITE'S .. .ot 124
Arithmetic and LogiC OPEratioNSceeuniieiniiiiieeeiee e e 124
Comparators and ACCUMUIALONScevviviieeii e e e e e e 124
Mathematical FUNCHIONSoooiiiiiiiii e 125
Opcode Equivalents of FUNCLIONScoouviiiiiiiiiieiiiie e 125
RaNOM FUNCHIONS ...t 126
TrigonOMELFiC FUNCLIONScouuiiiii e 126
Linear AIQeDraOpCOUEScoeuiiiiie e 127

PIECN CONVEITEIS .. e e 137
FUNCEIONS L. e e e e e 137
TUNING OPCOAES ...ttt ettt e et eeaans 137
Real-time MIDI SUPPOIT ...ttt e e 138
Virtual MIDI Keyboardoovvvueiiiiiiii s e e 139
MIDEINPUE et e et e e et e e e e e s 142

MIDI MESSAJE OULPUL ...vvieeieieieii e e e e e e e e e e e e e e e e e e eaeenns 142
Generic INPUt and OULPULeeveeiiece e e e e e e e e e e eees 143
(0010177 (= £ 143
EVENE EXEENTEIS ... ettt e e et e e e e eaa e 143
Note-0n/NOte-Off OQULPULiieeiiiiie e 143
MIDI/Score Interoperability OPCOAESccvuiiiiiiiiiiiiieee e 143
System RealtiME MESSAGESvvvueiiiieiii e e e e e e e e eees 145
SHAEN BANKS ... 145
SPECLIAl PIrOCESSING ... ceeetteee ettt ettt ettt e et e e et e e e aaa e e e 146
Short-time Fourier Transform (STFT) Resynthesis ..., 146
Linear Predictive Coding (LPC) Resynthesiscooveiiiiiiiiiiiiiiicciieeei 147
Non-standard Spectral ProCESSINGccevuieiniiiiieiiieei et e e 147
Tools for Real-time Spectral Processing (pvS 0pcodes)ccvvvevvnvevinierennennnnn. 147

ATS SPECral PrOCESSING ...uveveieei i e e e e e r e aas 148

L OIS OPCOUES ... ittt e e e e 149

S {110 TP UPP PP UPPPTPRUPPIN 153
String Manipulation OPCOOESceuiiitiiiieei e 154
String CONVErSioN OPCOESc.uueuneiiieeii et eees 154
VA= v (0 = @ oo o L= 156
Tables Of VECIOIrS OPEIaLOrSuiveeeieiiieeii e ee e e e e e e eas 156
Operations Between a Vectorial and aScalar Signalcoovvviiiiiiiiieiiiinnenes 156
Operations Between two Vectorial SIgnalsc..vveieiiiieiiiiiiieiieceiieees 157

Vi

The Canonical Csound Reference Manual

Vectorial ENVElOPE GENEratOrSccuuveiiueiiiieiiiee e e e 157
Limiting and wrapping of vectorial control Signalsccooveviveiiiiiiiieeinns 158
Vectorial Control-rate Delay Pathsccoouiiiiiiiiiiiiic e, 158
Vectorial Random Signal GENEIatorsScceevvuieieiiieeieiine e eeeii e eenens 158

W (o RS V£ (= o 160
L 0o] T 01 o 161
DSSI and LADSPA fOr CSOUNoeviiiiieeiiiiie et 161

VST FOF CSOUNM ...t e e e 161

105 @3- To J A\ 111 g 163
L0 S USSP 163
= A1 S SPP 163
REMOE OPCOES ...t 163
Dt E] o 1eo o === 164
Signal FIow Graph OPCOOESuivieieiii e e e e e 165
JACKO OPCOUES ...ttt et 168
LUB OPCOUES ...ttt ettt e et ettt e e et e e e 171
PYthon OPCOOESceeeiete e e e e e e e 176
INEFOTUCTION ...ee et et aaae 176
OFChESLIA SYNEAX ..evvveeeieeee et e e e e e e e e eeees 176
IMage ProCeSSING OPCOUESuuiveeniierieeeieeeit e e e et e e et e e et e e et e e e e e e e e et e eeanaeeees 178
MiSCElANEOUS OPCOTESvuieieiii et et 179
T = = o PP 180
Orchestra Opcodes anNd OPEIaLOrSuieruieiieeii et e e e e eaaaeeennns 205
PSP 206
FAEFINE .o 208

T 0o 11 o L= PP 212
BUNAES e 214
FTAED L 215

BT NOEE 217

BN AIME e 218
PP 221
PP PP 223
D 224
D UPPRPN 226
S UPPRT PN 228

G PSP 230
S PSPPSR 232
PRSPPI 234

5 et et e eeeeeeeeeeeeteeeeeeteeeeeetteeeeeteaeeeett e eeeeta e eeett e eaeat e earataaaaas 236
S 238
PSPPSR 240
OO OO OO PO PPTPRTPPPPRS 242
LS T 244

| PSPPSR 246

00 o SPPRTORPN 248
PP 251
DU UPPRTPN 253
PP 254
PSP 256
TSP SRR SPPN 257

2 P TR 258
USSP 259
BDELArANG ...eeee e 261
BDEXPINA . 262

B e ae 263
07 11 0 265
0 1 Y 266

0 PSP 270

Vii

The Canonical Csound Reference Manual

=015V T 273
2015V | 275
BOSYNEZ e e 278
BEXPIANG ...ttt 281
= (00 (o o T 282
BUJALISS L.ttt 284
=T (00 0] o1 285
= 1= 2o 286
Bl PSS . e 287
BIWEAYSON ...t 289
010 | o TSP 292
AMPADTS . 294
0] o]0 1o 296
AMPMIAIA oeeee 298
BPCALUCKY ..t 300
BIDOISSON ...ttt ettt ettt ettt e e e e et e e e ee e aee 301
=100 1 TP 302
S (=S o | PP 303
o TS 0] G 305
= (0] = 307
= (0] 1< QPP 309
= 0] < G 311
= 1 =)o [T 313
N IS = (o [314
N IS = [0 N 317
F LIS 01U =" N 319
F AN S (01N 321
F N S 1 1 {0 T 324
ATSINEEIPrEAA ...eeieie et e e e aaaas 327
F N IS == (o [329
F N IS (== o [N 331
ATSPAIEITAD ..neeveeeeie e 334
PN S S 1 Lo T 336
=10 1] = 1o T 338
F= V= 1o 10 || T 339
072 0o T 340
DAl ANCE . eeieiii e 344
DAMDO0O ..o 346
DAIMIOTE] . o.eeee e s 348
o] 0101111 1 1 350
o] o To1 1| =T 355
DELArANG .. oooeei e 358
DEXPINA ..o 361
o]0 1.0 012N 363
o] 0] 11112 T T 365
0] 6] 1116 [o 367
0] 0] 1116 [T 369
o1 A 371
DIUAH ... 373
DIQUAOA ... e 377
o111 1o [T 378
BOrEZ . 380
UL e 382
o101 o N 383
UL e 384
01011 385
BULLEIDD . e 386
010110 o S 388

The Canonical Csound Reference Manual

01011 =1 o P 390
01011 = 1 1o T 392
DU ON e 394
DUZZ ..o 395
(07 072 - RSP UPPRTPN 397
CALICNY e 399
(o 1 o V7 401
(00 USRS 403
CEIl 405
(0 | PPt 408
(o0 0110 o IO PP 410
(000 [0 [0 TSN PRSPPI 412
ChANCEIT .o e e e 414
ChaNQE ... e 416
AN e 418
CRANO .. 419
CheDYShEVPOLY ... 420
ChECKIIOX ... 423
0 00 U UPPRTSPN 425
CHNCIEAN ... e 427
CHNEXPOIT ..t e e e 429
CHNGEL ..o et 431
CRINMIX e e ees 434
ChNPAIEMS ..o e 436
ChNIBOV e et e et e e e 437
CHNSENG ... e e 439
NN L. 441
CHUBID .t e 444
(ol [0 (o PP 448
(05740 0 (o 1 450
Ol e e 452
o SR UPPRTPN 454
Ol e e 457
(oo Tox QT 460
ClOCKOTT .o 461
ClOCKON oo 463
o0 0o 1 465
COMID it aae 467
(60 010 = J 469
(00 10T o PPt 471
(o] 111 (o) I PP 474
CONVIE <. et 475
(o001 01Y/0 YU UPPRTPN 476
(010] 01724 1 - | 480
COPY 2B ...t 481
00 PPt 482
(0015 o TP 434
(00155 | o 4386
(0015 <o [PP 488
0101 o PP UPPRTPPN 490
(001 T 0 1Y ST SPTSPP 492
CPSZ2PICN e 494
(0101 20 1o [P 498
CPSMIAID . 500
ot 01 2101 1 o] o 502
0 015 ot 506
CPSICN e e 509
CPSEMIT ettt e e e e 512

The Canonical Csound Reference Manual

(0f 015 L1 PP PP PPRP 515
ot 011 518
CPSXPCN Lo 521
(01 010 1 11C (. PP 525
(00 o 18 o] (o R TP 527
(0001557 U 530
o015 3 PSPPI 532
(o1 0 o o USRS 535
Ol L e e 537
1 220 USSP 539
1 PSPPSR 541
(o1 (1 110 11 PSPPI 544
(o= 1 o USSP 545
0= 0 USRS 548
Al e 551
01 =SSP 553
0 o TSP 555
ODAMP < 557
(015572011 T 559
ACDIOCK .o 561
0 (o o] o 022 563
(o 070 0|V 565
JE Y oo e 567
ElAYL et 569
EIAYK e 571
01 1/ 573
GEIBYW .o 575
(01 - o PSSP 577
(01 = 2 TSP 580
01 = o S SPPTN 583
(011 -0 0 586
(01 -0) 588
EITADXW e 590
(01 070 1 1 T 593
0 PSPPSR 595
AiSKOraiN ..o 597
(01 ES (1 o [P UPPRTPN 600
GISKINZ e 603
(01 ES o i 1 SO TUPPRTTRPPIN 607
ISPIAY et 609
0 S (] o 611
(011 (o g o KPP 613
IVZ oo 615
(007 o] o] 1= 617
OWNSBIMP <.ttt e ettt e et e e e et eeeeba e eees 619
A PWELET ...ttt et e et e ettt e e e e e e eee 621
OSSIACHIVEALEeeieeee et ettt et e e e e e e e e e eees 623
(0T 8 o Lo T PP 625
ASSICHS et 627
(015 T4 PSPPSR 629
(015 1T PSPPSR 631
UMK et e e 633
(018 0T o) o2 PP 636
JUMIPKS e e ettt eaes 639
0 L1 070 642
(011 = 1 o [SRS 645
JUSE e e 647
011 2PN 649

The Canonical Csound Reference Manual

Bl OB i e 651
Bl BT e 653
BNAIT oot 655
L= 1o [o T 657
< 070 (o] o J P UPT U P PP 659
< 01771 o) G PP 662
< 017710 665
0] 7= o 667
L= 11 PSPPSR 668
(=YL 0 | PPt 670
L= V7= 11 673
EXITNMOWY ..ttt ettt ettt et et e e e 675
2 677
L2 0oL 679
LS4 07 T 681
EXPIANG ..ttt et et e aee 683
EXPPANAT ..t et e e 685
[0S <o TP 687
L2 0= = 689
o 0150 | T 691
EXPSEOIA ...t 693
LS8 < | PP 695
FAIEYIEN .. 697
FAEYIONI e 699
1 o= PP 701
111 1= o PSPPI 703
B N e 705
FIHENCNNIS .o e 707
111 o= PP 709
11 1= PP 711
FHEVAIIT .. 713
1] 0= 22 SR 715
I s 717
PP 719
L] PP 721
IO e e 722
L2 1= 724
FLASNEXE .« 726
FLDOX et 728
I o011 = PSP 733
[I 10 1 o RPN 736
FLCIOSEBULION ...ttt et e e 741
L L0l O ettt 744
FLCOIOIZ et 746
o0 | 747
FLEXECBULION ...t e e e eans 750
FLGEISNAD -ttt eans 753
[o o U o RPN 754
L I 01U o = o 756
L I o 11 o T = 0o [757
FLINIOE o e 758
FLRVSBOX «.cveiiiic e 759
FLAVSBOXSEIVAIUE ..vuiiiiiiiiiceeie et e s 760
L Oy ettt 761
L IV o PP 764
FLKNOD e 766
FLIADE] e 771
FLIOBOSNED ..ot 773

Xi

The Canonical Csound Reference Manual

L I 000 U 774
L1100 = 776
FIOOPEIZ ..o 778
L1 P 780
L PACK et 782
FLPACKENG ...ttt et et 785
L I 07 o o 786
L 0 7= 11 787
FLPANEIENG ...ooeniii e 790
FLPANEL_ENO ..ot 791
FLPIINEK et e et e e e et e e e e 792
FLPINEKZ ot e e e ea e 793
I o = OSSPSR 794
L o PP TPPTRPPRRP 797
FLSAVESNAD ...eeeeieeee e 798
L o o | PP 803
FLSCIOIENG ...t 806
L = o | = oo 807
L IR AN [o o PP 808
FLSEIBOX ..ttt ettt ettt ettt e na e 809
[IR (o] o 811
[IS (0o Lo 2 PR 813
I | o] | PSP 814
FLSEIPOSITION vttt et e e e 816
FLSEISIZE ..t 817
L I = o 818
FLSEESNBPGIOUD ...ttt ettt ettt e e e e e e e 820
I I PSP 821
FLSEITEXICOIOr ...ttt et e e e e 823
FLSEITEXISIZE .vvneiiiiii ettt et e et e et e e e s 824
L IS =T 3/ = 825
FLSBEV AL i ettt 828
FLSEEV Al oot 829
LSO et a e 830
[I [| o PSP 831
FLSIHABNKZ ...ttt e e et e e e e e s 835
FLSIABNKGEIHANIEcceviiieeiiii et 838
FLSIABNKSEL ... ittt e e 839
FLSIABNKSELKciiiiiieeiiii e e e e e e e e 840
FLSIHABNK2SEL ... ccivviiieiiiiie e e e e e e et e e e e aan s 842
FLSIHABNK2SELKcvvviieiiiiie e e 843
I T L= PSP 846
L tAS et 852
FLEADSEND ... 857
FLEADS BN ..t 858
= PSP 859
FLUPELE ...ttt et ettt e e e e ean e 862
11T LA 1 1 | PP 863
10 T [PP 865
FIUIACCK .t eaans 867
L1 7o (@ g1 4 o) 869
FIUIAENGING ..ot enens 872
1110 T | o = o PP 875
FIUIANOLE ... et 877
18T [1 PP 879
fIUIAProgramSEIECtv e 882
fluidSEtINtErPMEtOdcooeeiie e 885
FLVAIUE ..o et 887

Xii

The Canonical Csound Reference Manual

FLVKEYDA .. 889
FLVSHABIK ...ttt e et e e e 890
FLVSHOABIKZ . .oeneniei e e e e eaas 894
XY e 896
TN e 899
FMBELL oo 901
FMMELAL ... 904
L0011 (v 907
FMENOOE .o 909
FIMVOICE . 912
TMWUITIE e e 914
)PP 917
) 72 PSP 920
110111 = S S PPP 926
O ettt e 928
)0 PP 931
FOHOW e e 933
FOHOWZ e e 935
110 ol PP 937
1107 ol PP 939
FOUL et e 941
FOULE et e 945
018111 G PP 947
FOULK . e 949
L1 01111 951
L1911 957
L= o PP PPPPR 959
FraCtalNOISE ..oveiie i 961
FrEBVEID .. 963
FECNIS e 965
LNV e 967
L1 0 970
T 0 i 972
1100 = o PSP PP PPPPT 974
FEBNONCE ... e 977
L0 (= 01110] o PP 979
11 PP 981
FHOBH e 983
110 o | PP 984
110 oL (] IO PUPPPTRPPPPT 985
L8210 ST 987
L2 Y= PP 989
FESAVEK e 991
15 PP 992
0= T o OO UPPRTTRPPPN 994
072 05 1o L= TP TP TPPPRTPRPPPIN 996
(0= 1S U RPTP 998
0= 1S [1000
(072 0SS [o R 1002
0] 010 .74 1005
OENAY ettt 1007
GENAYC ettt et 1011
(015010 |7 QPP TUPTTPPRR 1014
0T (o o 1018
(007 [0 o= X 1020
00 1022
015" o PP 1024
OFBINZ ettt 1026

The Canonical Csound Reference Manual

0] =11 1030
000 = 1035
0 [o PP 1038
RAINION e e 1040
REIMONZ ... e 1042
RITDEIT <. e 1044
1= PSP 1048
= Y 1050
R MIOVE e 1054
RIFMOVED ..o 1057
RIFrEVEID . 1060
1 - PR 1062
NSDOSCI . 1065
PV S e 1068
VS e 1072
0175 TSP 1078
PP 1081
IDBLAraNG ..o 1082
TDEXPINA ..o 1083
7= 11 o) 1084
Tt (g 1 PSSP 1085
o0 2 P 1086
T 01 P 1087
1= o] = o E TSP PTRPPT 1088
S 1089
0= T 1094
oo, PP 1095
] 7o o PP 1097
HINIrANd ..o e 1099
L T=Te = o (== (S 1100
L= 1= = 1102
IMBGEJELPIXEL ...eeeiiei e 1104
IMAGEIOBA ...t 1106
IMAJESAVE ... ettt ettt ettt ettt e 1108
IMBGESELPIXE] ...ttt e 1110
=0 =S T 1112
0T Lo PP 1114
01T LT o722 PSP 1115
112 To (1ol PRSPPI 1116
1 TSP 1117
101722 1119
TNCN e 1120
100 PSP 1122
1 L PRSP 1123
) (ot PSPPI 1126
gL (o722 P 1127
1L (oS 1128
0L v U PT PP 1130
TNTEEK e 1133
11 (o PSPPSR 1135
1= PP 1136
] Lo TP 1137
Lo [T 1138
o PR 1140
PP 1141
10 = 10e S PSPPSR 1143
INSTIODEL ... 1145
NSHIMIEK e 1146

Xiv

The Canonical Csound Reference Manual

L1 001 1147
1 1148
] 1151
1= TP 1153
1= 1 o TP 1155
10177z 11 1158
) 1159
72 1160
[0 P 1161
[0 o 1162
[0 1o L5 1163
[0 1o L2 1164
(L0 = 1165
0T | o 1166
[0 |3 1167
L0 1011 o= PP 1168
o011 o RPN 1169
o011 o oS PTRPPT 1170
] oo 1 o Y/ 1171
] 0015 o 1172
TPOW ettt ettt e s 1173
1] o X PP 1174
G724 o X TR 1175
1S N0 L= g TR 1176
1S 0 L=, 72 1177
1S 0 L= 57 S 1178
110 (= ¢ S SR PRRPRPR 1179
TEADIECOPY ettt 1180
TEADIEOPW .. 1181
172101 <: 1 0 1182
1= o] 1< 1183
L1 r= o 1184
(LU g 1T =0 (o [P 1185
LAY =1 o1 | 1186
=0 (oY AN (o (1o] 1 o 1187
JACKOAUIOINCONNECEvieiieieiiieiee et e ens 1188
0 0 YA 0o (1010 T | 1189
JACKOAUAIOOULCONNECTuevieeieieeeeee e e e e e e e e e 1190
JACKOFTEEWNEE] ...t 1191
JACKOINTO e e 1192
20 o] o TP 1194
JACKOMIAIINCONNECEeeieiei e ens 1196
JACKOMIIOULCONNECTvvieiiiie e e e e 1197
0 0 1Y T [1 1198
= Te 0]\ (0], [| TP 1199
JACKOOIN ..o 1200
JACKOTIANSPOIT ... e ea e eans 1201
[= 0 o PP UPTPT 1202
L 1204
L 22 1206
JOYSHICK ettt et 1208
JOPIINE e 1211
TR 1213
(0TS €= 7= 1010 1214
KDEXPINA .o 1215
0 1 [Y 1216
KAUMD et 1217
KAUIMPZ ..ttt 1218

XV

The Canonical Csound Reference Manual

............................ 1219
T 22
KOLMPA oo 1220
B -
KIEMZ oo 1222
KEUISS oo 122
N 1o
KITBN oo 12
O o
KOUBL oo 12
e 1229
KOUIGLE oo 1230
KOUIPEL ovsvvsnns s s s I
KOUPD) covvvsers s 1
KOUIE oo 123
KPOAUCRY ..osscvs oo 1o
KPOISSN v 2
KPOW vvmsnssans s s s 13
T o
K 1238
KIQBIZ o 1239
KIOBY oo 120
kread4 T
T e 1o
KIS vrsserssensssssmss s o
UMD oo 1o
KUNHBIKL oo o
RVBDUIL v 1
10 et I
I e 129
T e
BN e 1253
B o 1
D v 128
linrand s
HIISED versrsan e o
B corsvvssmrssans s o
B et o0
locsend 1208
1000 e e
108 st I
10070 ensrssmns s s I
J0G2 s cvssmrsnrs s o
1OBEINO v 1280
[OTEUIVE oo e
JOOPE oo 108
JOOPDE coscrsars s 1280
i 1288
JOOBIL covsvssmns s e
JOOREB e 1293
OB oo e
JOOPISED oo oo
JOODXSED et 1299
JOTEIMIZ e =
OB oo s
OUSIONBI ccrsvs oo =
T =
O o
07 ox 1 1 P

XVi

The Canonical Csound Reference Manual

01 ot 1318
0 0= 1319
0T =P 1321
0T = 1323
o)1 TP 1325
[PEFESON .. 1327
0] 7= o 1329
011 o T 1331
[POSCIL <.t 1332
[POSCIIB e 1334
[POSCHA ... 1336
[POSCHISA ...t 1338
0 T0 1S 1= 2 1340
0] == 1342
Fol =o)L UPPRT 1345
[PSNOI .. 1348
[PSNOIAD e 1350
01 Lo TSP 1351
L= == 1352
[UB OPES .. 1353
TUBL OPCAIL .. 1358
127 1361
1170 = 1363
0710 (S 1364
17=1010 [1368
7= 1070) 1371
0002 1 10107 NP 1373
107275 o o RSP UPPRTRN 1376
1172 TP 1378
072 €= 01 1380
QT 01 oot | 1 [1382
072 = @1 | 0 T 1384
00020 | Lo 1386
0= G PP 1388
0172002 o BT 1390
1100 0T 1392
0101 1394
(01750 (=" o 1396
00020 =10 | 1398
117 (0 1400
MIAGIODEL ... 1402
0011 [0 I T 1403
01T [o2 1405
0011 [o2 1407
MIidichanNEIEFtEITOUCKHcvieiee e e 1409
0010 [Tt o] o 1411
MIdiCONIIOICNANGE ...t 1414
0T [o 1416
0011 [0 <t it= 1 1418
0011 [1420
00110 [310) (=0) i AP 1423
MIAINOIEOMNCIIS ... eeet ettt ettt ettt et e e e e e e e ra e 1425
MIINOLEONKEY ... ettt e e e e ean s 1427
0T 1 10 (=0] (0o S 1429
00T [T 0] =100 o [1431
01T [o g Y2 1433
(0010 [T o] o P 1435
0010 [0 | 1438

The Canonical Csound Reference Manual

MIdIPITChDENoeieee e 1440
MIdiPOlYaftertoUCcoveii e 1442
MIdiProgrameChangeuuiiiiii e 1444
MIAITEIMPO ettt e s 1446
0010 (=210) A 1448
211 1451
01T =)o 1453
QLT T=! 1 ot U o o T 1455
001 gT="olet U 1 0 P 1457
0011 1< 1459
0011 91! o T 1461
001 () 1463
MIXEISEILEVE] ..ooieieii i 1465
MIXEFSELEVEL | oonieicei e 1468
MIXEIGEILEVEL ...eieieiei e et 1469
Y DS 1S < 11 PP 1471
MIXEIRECEIVE ... e 1473
Y DS O <= TR 1475
700 1477
0100 0= 1 R 1480
[01000] 81 (o) ST 1485
01100 PPN 1487
(p00T0To | F=To (o (< SRR 1489
170700 X 1491
101070 1Yo 2 1493
707 o 1 1495
10102571 o T PSP UPPRT 1497
1010151 = o EO TSP UPPRTRN 1499
IMIPUISE ettt et aa s 1501
011 01 o PP 1503
(15T 1504
(0 15T = 1= 1, 1506
OO SNA ..ot 1510
0001 17! o T 1512
00 TU) = o TP 1514
110 1516
)€1 = 1518
70 0101 1521
NCONIS T e e e 1523
NESLEOAD .. eeet ettt 1525
0] 11 TR 1528
1015 1531
§10)= o i 1534
1011 1 1 1535
[910]1050] 10 0 2 1536
1011030 10 1 | 1538
100111 o 1540
L T(=.YL=: 1 1 1542
3]0 0 PP 1545
(0152 1] o PP PPPR 1547
151 1549
L1 0T TSP PTUPPR TR 1550
(0701 1= Y/ TP 1552
(00 (o3 0/ TP 1554
(o7 {1 2o 1557
OCEMIIAID e 1559
(oot 1010 o 1 2o P 1561
[0 0! ool o RO T PP UPPRTRN 1564

The Canonical Csound Reference Manual

(0]0/w/0 o [NN
OPCOE ..o 1567
OB oo 1572
T 1577
O o 1579
OSCIS v 1581
OO CIL v 1583
OO v 1585
g 1587
OSCIID. oo 1589
OSCIIKIS .o 1591
OO o 1593
OFCIS v 1595
OO 1597
OUIBZ .o 1598
QUL 1599
QUG - 1601
OUITH .o 1603
QU 1606
OUIBL oo 1607
OUICLA oo 1609
fiped T 1611
QR 1613
g 1614
OUIPE oo 1616
OUIKEL - 1618
OUIKCLA oo 1620
g 1621
R 1623
g 1624
QUKD oo 1626
QU - 1629
QUIEH oo 1631
QUK v 1632
OUIBIL .o 1634
o 1635
7 1636
T 1638
e T 1640
QU o 1642
Ly 1644
QUG 1646
OUISL 1647
OUISD o 1649
OUIS 1651
OUIVBIU oo 1653
QU 1654
T 1655
B o 1656
POGUALA v 1658
D 1660
D 1662
eree B, 1664
e 1666
Py 1669
B sy 1671
AT o 1678
By 1682
... 1684

XiX

The Canonical Csound Reference Manual

pchbendccoceeneennn.
By 1686
el 1688
iy T 1690
gt 1692
B ociye 1695
Ve 1698
B 1701
Py 1704
U o 1707
PO Y 1710
B 1713
Gy 1715
DO 1716
e 1720
B 1723
oo 1727
g K o 1729
B 1731
B o 1735
a1 1738
Do T 1741
ety 1743
Doy 1746
gy 1748
B 1750
olyaft B 1752
B 1755
POWMOMIEL v 1757
POP 1760
POPT o 1762
B 1763
B 1765
Bl 1767
POSKI o 1770
powershape........,.,.,_,_,___:::: ... 1772
D 1774
B £ 1776
By 1778
POIEND v 1780
B 1783
s 1785
B 1787
g 1789
B 1791
B e 1794
POt 1796
. 1798
DR 1800
DR 1802
ey T 1805
B 1807
Pk 1810
B 1812
o] 1814
s 1815
 bufred B 1816
B 1820
... 1822

XX

The Canonical Csound Reference Manual

PVINtErP .ovvevveeiieeeeee,
U ETP o 1825
e B 1828
i 1830
By 1832
el 1834
By 1 1837
o, 1840
el 1842
ey 1844
ebufer B 1846
gl | 1848
ey T 1849
et o2 v 1852
P vapent B 1854
D 1856
e 1858
e 1860
B 1862
D, 1864
ety 1866
B remme | 1869
e 1871
e 1873
it T 1875
e aILE 1877
By 1879
B 1881
e 1883
e 1885
I 1887
e 1888
oty 1889
TS v 1891
vamorgh B 1893
ol 1895
YO s 1898
By T 1900
vepiteh B 1901
o T 1904
o] 1907
e 1909
D 1911
gy 1913
et R 1915
pyaSSignOpcod&..________________:: ... 1917
D b 1918
D iy 1919
D e, 1 1923
D o 1924
 n Opoodes B 1927
YR OPOOES v 1928
Pl s 1930
T 1932
MBI o 1934
A e 1936
il B 1938
UL 1940
... 1942

XXi

The Canonical Csound Reference Manual

(=100 (o) 11| o T 1944
(=100 (o) 1/ X 1947
[0]1= o PSP UPPRTN 1950
(<70 [0 [0 1o 1953
(== o | IR TP 1955
(<72 o | 1 TR 1957
(7= 0 |G 1959
(7= 0 | 02 1962
FEAAK S .o 1965
(5720 |/ NPT 1968
(<11 0T 1971
(S 127 S S 1973
1= 10707 oo 1974
(= 0107 1975
FEPIUCK et 1976
(1550 1978
(= 00| 1980
(=50 | S 1982
1SS o)N 1985
(1555 0])4 < 1987
1SS 0| PP 1989
(1550 72 1991
155/ o PP 1994
[(SY/< 1 o T 1996
FEVEI et 1998
(=YL= 1 0= 1999
LTV 0[S oo <Y 2001
FEZZY et 2002
1o 0] (o VTP 2004
(=0 T 2005
N 2007
11270 2009
010 1 P 2011
(010 o R 2016
5o 1T L= TP 2018
o 2020
SLBDIA oo 2022
£ Y24 o) 172 2024
SAMPNOIA <. 2026
2 00 072 o< TSSO UPPPPTRUPPPPN 2028
(= orz [P 2030
(= or= < 2032
[o7 0] 070011 0= G 2034
LS o= 1 2035
Lo 01 o] [T 2038
LS o2 [N 2040
SCNEOKWINEN . e e e et e e e e et eeaaens 2042
SChEKWHENNAMEA ... oot ens 2045
[ol 01< o (U] 1 2047
SCHEAWNEN .o 2050
L= o0 (= 11 0 ST 2052
LS o (= [T 0= PP 2054
(=20 I 2056
1SS G (=T 2058
LS ST () 2060
LSS 1157 2062
SENSEKEY .ttt 2063
SEITAIBEGIN et 2067

The Canonical Csound Reference Manual

SEITAIENG e 2068
SEITAIFIUSN .o 2069
LS = 1 1| TP 2070
SEITAIREA . ..o e 2071
SEHAIWIITE 1 oeiiniii e 2072
LS S VAT 1 (= 2073
LSS0 (1] 1.7 2074
LSS0 (1] .1 2077
L=< (o1 1 IR 2080
SEEKSIMIDS ettt 2082
SEESCOMEIIOS .. evienieu et e et et et et e ettt et et e e et et e e e e et e et e e e e e e e e e aaas 2084
£ 2085
LS 0 T 2087
LS 0 2090
LS 1S TP 2093
LS T 1S 1 0 T 2096
L= =" [P 2098
SFIOOPEY .. 2101
LS 072555 o | 2104
SE LY B e 2107
SEPIAYBIM e 2110
S A et 2113
SEPLYIM e e 2115
LS o)L PPN 2118
LS =S 2120
ST . 2122
£ 2124
£ T o T 2126
LS 10\ 2 2128
LS 05/ 2130
SEGhDEIIS oo 2132
£ [T [1 T 2134
L= [T (S 1) TP 2136
FIdErIBtADIE ...ceviieieii e 2138
L= [T (S 1) = o 1< TP 2140
L= [T [¥ 2142
[[T [74 2144
SHAEI32LADIE ..oneeieie e 2146
Fider32tablEfoeeie 2148
LS [T (S0 PP 2150
L= [T (SIS TP 2152
SHABIBALADIE .. oeoeeiei s 2154
SHAErBAADIETeeeieie 2156
£ [T (< < 7 2158
(= [T [Sig < TR 2160
SHABIBLADIE . ..eeieie i 2162
SHAEIBLADIES ... e 2164
IS L0 (< = VLY7o 2166
SNAIOAA ... 2167
1S | oo o T 2169
S 01011 o TSP UPPPRTRSPPRN 2171
SNOWEBIPISE ettt ettt e et een 2175
LS 010 (= oY A 2179
LS 010 =< (o [2181
L= 01U 1o 1 2183
£ 01110 [0 11 | 2186
L= 01010 (01U TP 2188
SPBCE ..t 2190

The Canonical Csound Reference Manual

LS 7= 11 o [PSPPSR 2195
LS 7= 1o PSPPSRI 2203
LS 07z 11 o | PSPPSR 2207
S0 = PSPPSR 2212
LS 07c o= [0 [o PP 2216
SPECAITT e e 2217
LS 0= o0 = o T 2218
0= o 1 2219
SPECRISE <. 2220
SPECPITK ettt e 2221
SPECSCAL ..ttt ettt e e e e 2223
SPECSUIMI ettt ettt ettt et et et et et et et e et e e e et et et e e e e e s 2224
S0 1 0 2225
S 0L o 2227
LS o L1 PSP UPPPRTRSPPRN 2229
SPIINETK e 2231
LS 015 = 0o PSPPSR 2233
o | 1 PP UP TP 2235
S TP UPPTPPT 2237
LS = o UPPPTSPPRN 2239
S = 1=,V 2241
S) PSPPSR 2243
STKBANAEAWG ..ot a e 2245
STKBEETIIEE ...ttt 2247
STKBIOWBOL ... 2249
STKBIOWHOIE ... 2251
STKBOWE .. vt 2253
Y 11 2] = 2255
] 1N T 111 = S 2257
STKDIUMIMES o e e e eens 2259
STKFIULE e e 2261
STKFEMVYVOICES ...ttt 2263
STKHEVYMEL ... 2265
STKMANAOIIN ...ee e e e e eas 2267
STKMOUAIBAccvviieiiiie et e e 2269
S 11541 Lo o PP 2271
STKPEICFIUL e e 2273
STKPIUCKE ... 2275
S I G55 0] = = 2277
STKRNOUEY ...vieiiiii e 2279
Y 16 = (e 0] 1 P 2281
S 116 1= G £ U PR 2283
ST SIMPIE e e 2285
] 16] PSP 2287
Y 16 111 TSP 2289
STKTUDEBEI ... 2291
STKVOICFOMM <t e e e e 2293
STKWHISHE e 2295
Y I L0 [L= 2297
LS 7= | PSPPSRI 2299
SIECNAIK et 2300
ST CPY it 2301
SEPCPYK et e aaas 2302
S (o= | PP TP UPT PP 2304
SEFCALK .t 2306
S o1] 0 2307
SEFCIMIPK et e 2308
S =0 o PP 2309

The Canonical Csound Reference Manual

S 0 T 2311
LS] 0T L= PSPPSR 2313
SIINAEXK vt e 2314
LS (1= o PSSP 2316
LS 1= 0] UPPPRTPPRN 2317
SITOWEY . 2318
SETOWETK .t 2319
LS 100 (= PSPPSR 2320
SITNOEXK eeieie e 2321
LS S SRR 2322
SESUD .t 2324
SIESUDK .o 2326
S 15 (0 PSPPSR 2327
SEEOOK e 2328
LS [(o PSPPSR 2329
SOOI et 2330
S (U o] 01 ST UP TP 2331
SETUPPEIK e e 2332
LS T o] PSPPSR 2333
ST o] 0 1T PSPPSR 2336
S 2337
LS 001= |« T PRSP 2339
LSV {11 PSPPSR 2341
LS Y110 = o 2344
LS Y000 2347
LS Y0 o] 7= o 2349
S Y= 1 PP 2353
11 PSPPSR 2355
12! o S SPPPRSPPRN 2358
TBIMEC .. 2360
12210 =SSP 2361
BB B e e 2363
TBDIECOPY ettt 2364
1= o L= {1 PSPPSR 2365
TADIEFIITENT ooeve e 2367
€20 1=o 1 PP 2369
12210 = PSPPSR 2370
12210 1= o{ oY 2373
TBDIEIGDW <. 2374
TBIEIKE L. 2375
TDIBIMIX et e 2377
BB BIW Lo 2379
BBIEKE L. e 2382
TBDIEIMIX e 2384
BBDIENG .. 2386
16210 1= - R PTPPP 2388
€20 =S <o PP 2391
taADIESNUTTIE L.eeee e 2393
BN BV e 2395
FBDIBIWA .. 2398
TAIEWKE oot 2401
TBDIEXKE . 2404
€20 =S o [PPSR 2407
TADMOIPN <. 2409
tADMOIPNA ... 2411
taDMOrPhaKcoeeee e 2413
TBDMOIPNI e 2415
BBOPIAY ..t 2417

XXV

The Canonical Csound Reference Manual

16210 U 3 2418
L2210 224 01V £ 2419
16101010 U1 01T 2420
1220 JOUT TP 2422
152101 [P 2424
L]0 11 V2N 2426
1622110172722 2428
1101V 2430
LS 1010 PP 2433
TOIMPO et 2436
(= 00] 070 o= PP 2438
TEMPOVEL .o e 2440
L1 0o 2442
L0 1= 0 5 o [2444
LU0 1S (TP 2447
LU 1S 1S T 2449
111101 <GP 2451
L0100 2453
L] .01 | 2456
107 2458
L1180 (o TP 2460
0] < 2462
106] 1 1< G 2464
L0] 1N 2466
L(17=11 [0 S 2468
L0 Y/ o 2470
LU= 1S o [PP 2472
ErANSEOD ittt 2474
LU= 1 o TP UP TP TPPR 2476
L0 (01T 2478
L0 1= 2480
EIgNESE ..o 2482
(4]0 o L= TSP UPPPRTRSPPRN 2484
(L] = o [PPSO UPPPPTRUPPPPN 2486
LU AT = 0o [2489
LU 10T 2491
L0111 2493
LU or= 1< 2495
106 01 i APPSR 2497
LU o1 PSPPSR UPPPPTRUPPPPN 2499
L0010 i 2501
L0 1110 i 72 2503
L0110 o T 2504
(001 2505
0011 P 2507
0107 0] L TP 2509
§117=1010 (0] 1 o AP 2511
0o IR 2514
L7 o o 2516
L2 (o 2519
AVZ= o [0 VT 2521
VAOAV 1 e 2524
1 o L= ST 2526
VAIPDESS ..t 2528
ATz = < 2531
107 o 2533
VBBPMOVE ..o 2536
VDBDG - 2539

The Canonical Csound Reference Manual

VDBDLO ..o 2542
[V 0 =0 1 T 30 Y 2544
VDBDA .. 2546
VDBDAMOVE ... 2549
VDBD8 ... 2552
VDEPBMOVE ..o 2554
VBBPISINIT e 2557
VBBZ e 2559
VDBDZIMOVE ... 2561
(0oL 1 - PP 2563
Lol o T PP UP T PTPPRPPRPN 2566
L0l 0 2 PP UPT PP PPPRPTRP 2569
1o 2 PP 2573
1o 24 | PP 2575
1L Y221 1 S 2577
L0102 1] o TP 2580
(Vo0 o VPP UPT PR PPRPPRPN 2583
(Voo o)V PP 2586
VOBIY i 2588
L L= 2590
VOBIGYX et 2592
(0 L= = (o [T PP P PP TPPPPP 2594
VABIAYXS ettt et e a e 2596
AT (= = Y24 PP 2598
(0L L= = 2 AL o 2600
VABIAYXWS ..eetiieie e e e e e e e e e e e e e e e 2602
VIV e 2604
VAIVV T e 2607
1 L= = 1Y T 2609
A= oo L= PP 2610
VEIOC ittt 2611
L= T 2613
LTS 4 o T PP PPRPR 2616
LTS0S <o VPPN 2618
VEXIIV ettt ettt ettt et et et ettt et e eh e aa et e a et et e ea e e e e e eaaeaae 2620
VEXPV I ettt ettt ettt ettt e e e e e aans 2623
VDB e 2625
VIO 2627
VIBMAO o 2629
1o PP 2631
VM e e 2634
AT TSP 2635
VIOWIES .ottt e e et 2637
12017 T 2639
1482 o 2641
170 210 PP 2642
1722010 PPN 2646
VIMUITY Lot e e et et e e e eans 2648
1748 010 Y 2651
1 o PP 2653
L7011 1 TP 2656
VPNBSESEY ..ttt 2661
17/ o PP TP UPRPPRPPRPN 2663
AV o T PP VPP PTPPPRPPRPN 2664
177101 PP 2667
L7710 2669
VPOWV T ettt ettt ettt et aans 2672
VPVOC ..ottt ettt ettt e e e e e e et e e e e a e e 2674

The Canonical Csound Reference Manual

VEANON Lot 2677
V2= 0o | PR PRPRPPRN 2680
L VA =00 [T Y =0T [oo 2683
VSEDANKIOB ... oot 2685
AV (<o [TP 2686
LV 11 S 2688
(V2 111 (o PRSP 2690
(VS 10 1T Lo | PSRRI 2692
RV 25110 2694
VStParamSe!,VSIParamMOELooeuiieiiiiii i 2696
(TS 1000 PP TP UPRPPRPPRPN 2698
AVZS U oY 2699
LT 0 2702
(V2710 11 1 PR PRPRPPRN 2704
VBB e 2706
VEADIEK oot 2708
VEADIEA .. e 2710
VEBDIEWI e 2712
VEADIEIWK e 2713
(V2= o] 1= Y7 PR PRPRPPRN 2715
12710 IR 2717
(2= o PR 2719
(1= o 7= TP 2721
A2 2= 0 2723
VAWK e 2724
VEBIWA L.t 2725
A4 L= PP PR 2726
(AT E= V< 2727
WEIDUIL .o et e e e e e e e e aaeaas 2729
WODOW e 2732
WODOWEADEN ... 2734
1T 0= 5\ 2736
1T (o = PP UPPPP 2738
WOFTULE e 2740
WOPIUCK <. 2742
WOPIUCKZ ..o e 2745
10 8 o L= 2747
1T 8 10 L= 2749
ATV oo g1 1= o AT 2752
VYL o =1 = R 2754
L EL = L= PP 2757
(VLT LE < o 2758
1o 2760
(= 1 o PR SRPRPPRN 2762
D= (0 = (TP 2764
(1 2766
Do 1 | 2768
b o 0117 o R PP TP TPP 2770
D 0 010 2772
DS 0= 11 2773
DS o7 |1 2777
D1 = 11 1 2781
D4 PP 2784
22 o: 2786
2= 21 2788
.2 11100 E PP 2791
4| S 2793
2o PP 2795

XXVill

The Canonical Csound Reference Manual

. 2797
.1 0 2799
ZE 2 2802
| S PP 2804
41 2806
4 1LY/ 0 PP 2808
ZK Ol e 2810
.41 110 o 2812
ZKE 2814
KW e 2816
X7/ 1 1P 2818
Score Statements and GEN ROULINESccuuiiiiiiici e 2821
SCOME SEALEMENTS ... eeeee e e e e e e e e e e eens 2821
a Statement (Or Advance StAEMENE)vveviveiiii e 2822
D S EMENT ..o 2823
LSS = = 1. | 2824
f Statement (or Function Table Statement)cooveiiiiiiiiiii e, 2825
i Statement (Instrument or Note Statement)ccoeeveiiieiiei e, 2827
m Statement (Mark StaEEMENE)oovviiiii e 2831
TSP 0= 0 2833
O SEAEEIMENT ...ttt et 2835
r Statement (Repeat StAEMENE)ovveveieieii e 2836
LSS = 1< 0 | P 2838
t Statement (TempPo SEAEEMENL)ieeniiiie e 2839
RS = (0= 0| 2840
DS = (=1 11| 2842
{ SEAEMENT .o e 2843
F SEAEMENT .o e 2846
GEN ROULINES ...ttt e et e e e e e e e b 2846
GENOL oo e 2850
GENDZ oo 2853
GEN DS 2855
GEND oo 2858
GENDD oo 2861
GENDB ...t 2863
GEN T e 2865
GENDB e 2867
GENDD oo 2869
GENLD oo 2872
GEN L oo 2874
GENLZ oo 2876
GEN L o e 2879
GEN LA o 2883
GEN D o 2886
GENLG oo 2891
GEN LT e 2894
GENLS oo 2896
GENLD oo 2899
GENZ0 e 2901
GEN 2L o 2904
GEN 22 oo 2907
GEN 23 oo 2908
GEN24 oo 2910
GEN 2D oo 2912
GEN 27 e 2914
GEN 28 e 2916
GENBD oo 2919
GEN L oo 2920

The Canonical Csound Reference Manual

GEN B2 e 2921
GEN B e 2923
GEN B o 2926
GENAD oo 2929
GENAL oo 2931
GENAZ oo 2933
GEN S o 2935
GENAD o 2936
GEN DL oo 2938
GEN D2 oo 2941
GENLNN L. 2944
GEN XD ettt 2946
GENSONE ...ttt et et ee 2948
L1\ 7= 2950
L] N 7= Y 2953
The ULHItY PrOgramsoooeeiieiiii ettt et e et e e e 2956
DITECIOMTES. ittt et e e e e e ean s 2956
SOUNAFIlE FOMMELS.eeenciitie e 2956
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL)
.. 2957
File QUErieS (SNDINFO)oiiiiiiiieii e 2968
File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT,
PV_IMPORT, SDIF2AD, SRCONV)iiiiiiiiiieiiiiiieeeiiiieeeeiin e e 2969
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR, MAKEC-
SD, MIXER, SCALE, MKDB) ..ottt 2985
L0 o0 £ PRSPPI 3000
Events, Lists, and OperationSovveunieiiiieiiieee e e 3000
Writing @ Cscore Control Programoveeeeuiieieiiieeeeiie e 3003
Compiling @ CSCOre PrOgramccuu it ea e 3007
More Advanced EXaMPIEScouniiiiiiiiie e 3010
L0 o= £SO 3013
(= 10 [o [2 o o [3018
Adding UNit GENEIaLOrSuuiiiiiiieeiii et 3018
Creating aBuiltin Unit GENEratorccouviieeiiiiiiieiiiieece e 3018
Adding aPlugin Unit GEeNEratoroveeuuieiiiiiiiiiaieieeeie e eiees 3021
OENTRY REFEIBINCEuiiieieie e 3022
V. Opcode QUICK REFEIENCEccvueiiii e et e e e e et e e e eaens 3025
Opcode QUICK REFEIENCEu.ivieeiii e et e e e e e aans 3027
AL LISt Of @XEMPIES ..o 3077
B. PItCh CONVEISION ... e e e e 3114
C. SOUNd INEENSIY VEIUBS ... ettt et e e e et e et e aeanaaees 3118
D. FOrmMant VaIUBScouiiiiiiiii et et 3119
E. Modal FrequenCy RaiOSuuiiiiiiiiii e e e et e e e e e e s 3124
F. WINAOW FUNCLIONS ...ttt et e e 3126
G. SOUNAFONE2 FilE FOMMEEoeeeeei e e e e e e e e eanaeees 3131
H. Csound Double (64-bit) vs. Float (32-DIt)c.euiiiiiiiiiiiii e 3132
(€110 o PP PRRPIN 3133

XXX

Preface

Table of Contents

Preface to the Csound ManUalcooviieiiiiiiiie e XXXi
History of the Canonical Csound Reference Manualc.ooveviiiiiiiiiiiinieii e, XXXii
COPYHIGNE NOLICE ..veeieei ettt et e e e XXXl
Getting Started With CSOUNGcoiiiiiieiiii e XXXV
What'snew in CSoUNA 5.18.0ccouviiiiiiiiiie e XXXVii

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different
manner of control. Direct synthesis generates waveforms by sampling a stored function representing a
single cycle; additive synthesis generates the many partials of a complex tone, each with its own loud-
ness envelope; subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses
frequency modulation and waveshaping to give simple signals complex characteristics, while sampling
and storage of anatural sound alowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is
really a computer program that can produce sound, while a score is a body of data which that program
can react to. Whether arise-time characteristic is afixed constant in an instrument, or a variable of each
note in the score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a simple syntax that
invokes complex audio processing routines. A score (see The Sandard Numeric Score) passed to this or-
chestra contains numerically coded pitch and control information, in standard numeric score format. Al-
though many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have a long history of development, beginning with the
Music 4 program written at Bell Telephone Laboratories in the early 1960's by Max Mathews. That initi-
ated the stored table concept and much of the terminology that has since enabled computer music re-
searchers to communicate. Valuable additions were made at Princeton by the late Godfrey Winham in
Music 4B; my own Music 360 (1968) was very indebted to hiswork. With Music 11 (1973) | took a dif-
ferent tack: the two distinct networks of control and audio signal processing stemmed from my intensive
involvement in the preceding years in hardware synthesizer concepts and design. This division has been
retained in Csound.

Because it iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT
it runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI's under 5.0, on IBM PC's un-
der DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single lan-
guage for defining the audio signal processing, and portable audio formats like AIFF and WAV, users
can move easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI converter and
control units, enabling Csound to be run from MIDI score-files and externa keyboards. In 1994 the
sound analysis programs (Ipc, pvoc) were integrated into the main load module, enabling al Csound
processing to be run from a single executable, and Cscore could pass scores directly to the orchestra for

XXXI

Preface

iterative performance. The 1995 release introduced an expanded MIDI set with MIDI-based linseg, but-
terworth filters, granular synthesis, and an improved spectral-based pitch tracker. Of special importance
was the addition of run-time event generating tools (Cscore and MIDI) allowing run-time sensing and
response setups that enable interactive composition and experiment. It appeared that real-time software
synthesis was now showing some real promise.

History of the Canonical Csound Reference
Manual

Thisinitial version of this manual for early versions of Csound was started at MIT by Barry L. Vercoe
and maintained there during the 1980's and start of the 1990's. Some of the manual comes from docu-
ments for programs like Music11 from the 1970's. This original manual was improved and worked on by
Richard Boulanger, John ffitch, Jean Piché and Rasmus Ekman.

This manual led to the Officid Csound Reference Manual, dill located at: ht-
tp:/imww.l akewoodsound.com/csound [http://www.lakewoodsound.com/csound/hypertext/manual .htm],
for Csound version 4.16, November, 1999, which was maintained by David M. Boothe.

A pardlel version of the manual called the Alternative Csound Reference Manual, was developed by
Kevin Conder using DocBook/SGML [http://www.docbook.org/]. This version later became the Canon-
ical version.

When Csound was licenced as LGPL by MIT in 2003, the manua was licenced GFDL and placed on
Sourceforge along with the sources of Csound.

In the winter of 2004, the Canonical Manual was converted to DocBook/XML by Steven Yi to alow for
more people to be able to compile and maintain the manual.

The manual is currently maintained by Andrés Cabrera with continuous contributions from the Csound
Community.

The manua continues to be a community run project that depends on the contributions of developers
and usersto help refine the coverage and accuracy of its contents. All contributions are welcome and ap-
preciated.

Table 1. Other Contributors

Mike Berry

Eli Breder
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Richard Dobson
Mark Dolson
Dan Ellis

Tom Erbe

Bill Gardner
Michael Gogins
Matt Ingalls

XXXil

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.docbook.org/
http://www.docbook.org/

Preface

Richard Karpen
Anthony Kozar
Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubacker
Peter Nix

Ville Pulkki
Maurizio Umberto Puxeddu
John Ramsdell
Marc Resibois

Rob Shaw

Paris Smaragdis
Greg Sullivan
Istvan Varga

Bill Verplank
Robin Whittle
Steven Yi

Francois Pinot
Andrés Cabrera
Gareth Edwards
Joachim Heintz
John ffitch

Oeyvind Brandtsegg
Menno Knevel
Felipe Sateler

And many others.

This list is by no means complete. More information can be gathered from the Changelog file in the
manual's sources repository.

Copyright Notice

This version of the Csound Manual ("The Canonical Csound Manual") is released under the GNU Free
Documentation Licence [http://www.gnu.org/licenses/fdl.txt]. Below are listed, for historical purposes,
previous copyrights and requests for credit from previous authors.

Previous copyright notices

Copyright (c) 1986, 1992 by the Massachusetts I nstitute of Technology. All rights reserved.

XXX

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cam-
bridge, Massachusetts, with partial support from the System Development Foundation and from Nation-
al Science Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of this license is
available in the examples sub-directory [examples/fdl.ixt] or at: www.gnu.org/licenses/fdl.txt [ht-
tp://www.gnu.org/licenses/fdl.txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference
Manual.

This legal notice is from the Public Csound Reference Manual: “The original Hypertext Edition of the
MIT Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music
at the University of Leeds and Jean Piché of the Faculté de musique de I'Université de Montréal. A Print
Edition, in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknow-
ledge the rights of the authors of the original documentation and programs, as set out above, and further
request that this notice appear wherever this material is held.”

The Public Csound Reference Manud's last known network location was ht-
tp://www.lakewoodsound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundAC Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundAC

Csound is copyright 1991-2008 by Barry Vercoe, John ffitch and others.
CsoundAC is copyright 2001-2008 by Michael Gogins.

Csound and CsoundAC (formerly CsoundVST) are free software; you can redistribute them and/or
modify them under the terms of the GNU Lesser General Public License as published by the Free Soft-
ware Foundation; either version 2.1 of the License, or (at your option) any later version.

Csound and CsoundAC are distributed in the hope that they will be useful, but WITHOUT ANY WAR-
RANTY: ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and

CsoundAC; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Virtual Synthesis Technology

Virtual Synthesis Technology (VST) Plugin interface technology by Steinberg Soft- und Hardware
GmbH.

XXXIV

examples/fdl.txt
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound

Preface

Getting Started with Csound

Downloading

In case you don't already have Csound (or have an older version) download the appropriate Csound ver-
son for your plaform from the Sourceforge Csound Download Page [ht-
tp://sourceforge.net/projects/csound/files/]. Installers for Windows have '.exe' extension and for Mac
".dmg'. If the installer's filename ends in '-d' it means the installer has been built with double precision
(64-bit) which provides higher quality output than the ordinary float precision (32-bit). The float ver-
sions provide quicker output, which may be important if you're using Csound in a real-time setting. You
can also download the sources and build them, but this requires more expertise (See the section Building
Csound).

It may also be useful to download the most recent version of this manual, which you will also find there.

Running

Csound can be run in different ways. Since Csound is a command line program (DOS in Windows
terms), just clicking on the csound executable will have no effect. Csound must be called either from the
computer's command line or from a front end. To use Csound from the command line, you must open a
Terminal (Command Prompt or DOS Prompt on Windows, or Terminal on MacOS). Using Csound from
the command line can be difficult if you've never used a terminal, so you may want to try to use one of
the front ends, either QuteCsound, which is included with the latest distributions, or another front end. A
front end is a window-based (not necessarily Windows-based) program that assists running Csound.
Most front ends include text editors with which you can edit csound files, and many include other useful
features.

Whether being run from a front end or being executed from the command line, Csound needs two
things:

» A Csoundfile (".csd' or possibly an.orc' and a'.sco' file)

» A list of command line flags (or configuration options) that configure execution. They determine
things like output filename and format, whether real-time audio and MIDI are enabled, which audio
output to use for real-time audio, the buffer size, the types of messages printed, etc. These options can
be included in the ".csd' file itself, so for the examples included in this manual you shouldn't need to
worry about them. Front end programs often have dialog boxes in which the command line flags can
be set. The complete and very long list of available command flags can be found here, but you might
want to have alook there later...

See the section Configuring if Csound is giving you trouble.

This documentation includes many '.csd' files which you can try out, and which should work directly
from the command line or from any front end. A simple example is oscil.csd [examples/oscil.csd],
which can be found in the examples folder of this documentation. Y our front end should alow you to
load the file, and the front end should have a 'play’ or ‘render’ button that will allow you to hear the file.
If you want to experiment with the file, you're well advised to use the front end's 'Save As..." command
to copy it to some other directory on your hard drive, such as a'csound scores' directory that you create.

Note for MacCsound users

You might need to remove al the lines from the command options slot in order for the
manual examplesto work.

You can aso try the manual examples from the command line. To do this, navigate to the examples dir-

XXXV

http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
examples/oscil.csd
examples/oscil.csd

Preface

ectory of the manua using something like this on Windows (assuming the manual is located at
c:\Program Files\Csound\manual\):

cd "c:\Program Fil es\ Csound\ doc\ manual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux Terminal. Then type:

csound oscil.csd

The example files are configured to run in real time by default, so with this command you should hear a
two-second sine wave.

Writing your own .csd files

A .csd file looks like this (thisfile is oscils.csd [examples/oscils.csd]):

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtime audio input is needed too
For Non-realtine ouput |eave only the line bel ow
-0 oscils.wav -W;;; for file output any platform

Q/Cscptions>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1

iflg = p4

asig oscils .7, 220, 0, iflg
outs asig, asig

endin
</ Csl nstrunent s>
<CsScor e>

i 1020

i 132 2 ;double precision
e

</ CsScor e>

</ CsoundSynt hesi zer >

Csound's .csd files have three main sections between the <CsSynthesizer> and </CsSynthesizer> tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can also
be set using the .csoundrc file, which you can edit in a text editor, or directly in the command line.
Some front ends also provide ways to specify global or local options.

» Cslnstruments - Contains the instruments or processes available in the file. Instruments are defined
using the instr and endin opcodes. The Cslnstruments section also contains the Orchestra Header,
which defines things like sample rate, the number of samples in a control period, and the number of
output channels.

» CsScore - Contains the 'notes' to be played, and optionally the definition of f-tables. Notes are created

XXXVi

examples/oscils.csd
examples/oscils.csd

Preface

using the i statement, and f-tables are created using the f statement. Several other score statements are
available.

Anything after asemicolon (;) until the end of the line is acomment, and isignored by Csound.

You can write .csd files in any plain text editor, such as Notepad or Textedit. If you use a word pro-
cessor (not recommended), be sure to save the file as plain text (not rich text). Many front ends include
advanced editing capabilities, such as syntax highlighting and auto-completion of code.

You can find an in-depth tutorial on getting started with Csound written by Michael Gogins here [ht-
tp://michael-gogins.com/archives/tutorial .pdf].

What's new in Csound 5.18.0
New in Version 5.18 (2012 August 29)

Thisis mainly abug-fixing release but with a number of new opcodes and enhanced features.

» New opcodes:

centroid opcode like pvscent but acting on audio signals

cosseg like linseg but with cosine interpolation

cossegb like linsegb but with cosine interpolation

cossegr like linsegr but with cosine interpolation

joystick to read input values from an external joystick (Linux only)
log2 function for logarithms base 2

platerev opcode to model areverberating square plate

pwd opcode to determine the current working directory

readf opcode to read strings from afile

readfi opcode to read strings from afile on initialisation

vbap opcode like other vbap family but flexible about number of speakers and choice of layouts.

vbapg opcode like vbap but only calculate the gains on the channels.

* New functionality

L]

Changes to <CsOptions> to allow spaces between words, and escaped characters.
fout and fin use a better buffering strategy, and so are faster

It is possible to specify just an orchestra with the --orc flag. This is useful when a score is not
needed.

A new command-line flag --ogg flag has been added for easy use of ogg/vorbis output.
Added alsaseq real-time midi

XXXVil

Preface

» Bug fixes and improvements:

dates opcode could crash on 64bit architecture; thisis fixed

Some multicore interlocks were wrong. It is believed that this was not actually a problem, but
would bein the future.

There were cases when afile was double closed, leading to a crash on exit.

Two new features added in partikkel. Panning law for channelmasks can now be set using a func-
tion table (second optional argument to partikkel) and new support opcodes partikkelget and
partikkel set, to access and modify the internal mask indices of partikkel.

follow2 was reworked do the i-rate and k-rate calcul ations are the same.

pvscent is corrected asit returned half the correct value.

vbaplsinit can create more than one speaker layout which vbap/vbapg can use. Also much better
diagnostics on incorrect layouts.

* Internal Changes:

L]

L]

Code changed so bison 2.6 can be used.
It is assumed that libsndfile version 1.0.19 or later is available.

If the score is omitted a near-infinite wait is generated.

New in Version 5.17 (March 2012)

Thisis mainly a bug-fixing release with no major changes, but the number of fixes warrants arelease.

» New opcodes:

cell opcode, for cellular automata

Modified Opcodes and Gens:

active now will report total number of active or alocated instrumentsif argument in zero
stsend and strecv the TCP socket opcodes reworked to alogical design
DSSI system now will take up to 9 channels

FL savesnap works with other widgets where imin > imax

Utilities:

csbeats better documented and built by default; also more note lengths available

Some security holesin utilities fixed

* Bugfixes:

unirand opcode at a-rate fixed

XXXViii

Preface

Localefix for floating point literalsin orchestra

transegr fixed

» System Changes:

Score can now last longer (change to size of time variable)
An empty score gives avery long performance time (years and years)
Android code released

Changes to use of tmp files; now al are deleted at end of run (previously some were left) and the
environment variable TMPDIR is used.

interaction between Comments, end of line and end of file fixed

Hexadecimal numbers now allowed in orchestra

Empty orchestra now not a crash

change to macro expansion inside a string

avoid infinite loop when eof in malformed score macro

fixed macroname-with-args diagnostics and memory leak

change to preprocessor: {{ }} inside"..." and better diagnostics

fix windows installer so it removes full $INSTDIR\bin from PATH during uninstall: this cleans up
the PATH environment variable when uninstalling on Windows. Previously, it was leaving a trail-
ing "\bin" on the PATH.

CsoundAC MusicModel class more usable by C++ programs

ftcps had been missed as afunction

* Internal Changes:

Many! Some messages quietened, code improvements etc

New in Version 5.16 (February 2012)

The mgjor change is that the new parser is now the default. The old parser is till available in case of dif-
ficulty but the new has been given extensive testing since the start of the year, including complete re-
structuring of macro expansion. A side effect is that the runtime of most orchestras is faster, although
parsing is slower. There are a few optimisations implemented like constant folding in simple cases. Line
numbers and file names are traced better than before.

Some memory leaks also fixed.

» New opcodes:

Opcodes adapted from SuperCollider by Tito Latini: dust, dust2, gausstrig, gendy, gendyc, and
gendyx.

XXXIX

Preface

Fractal noise generator by Tito Latini: fractalnoise.

Opcodes for accessing table values by direct indexing, by John ffitch: ptable, ptablei, ptable3, and
ptablew. These opcodes are respectively like table, tablei, table3, and tablew, but they do not re-
quire a power-of-2 table size.

» Modified Opcodes and Gens.

There was a fence post problem in tab opcode that could falsely report a reference out of range.

GEN15 mis-called gens 13 and 14 internally, using uninitialised values voice amplitude. Problem
fixed.

fmbell now takes an optional argument to control the sustain time.
Change to pvshasic for tab to table conversions.

poscil is now polymorphic, allowing k- or a-rate amplitude and frequency.
p() and i() changed when argument at k-rate.

gend9 deferred now works.

gen23 now available deferred.

* Utilities:

Checked for use with the new parser in memory files.

* Frontends:

Table access added to csoundapi~ via new get/set methods.

» Bug fixes and improvements:

Many in new parser related to precedence and multicore.
Better diagnostics when orchestrafile/csd is missing.
cdd file: fix CsFileB and CsSampleB.

Fixed score statement 'n'.

Fixed bug in diskin2 leading to infinite loop.

Fixed bug causing crossfade noise in hrtfmove.

Fixed unlikely buffer overflowsin some utilities.

Avoid segfault in midicN.

Bug in mp3in in skip=0 case fixed.

'r' score statement fixed with respect to macros.

sndwarp could segfault.

» System Changes:

xl

Preface

Preprocessor #if #else #endin working.

#includes depth now limited rather than infinite recursion.

Really turn off al displays if --nodisplays or -d is used; fixes bug where using -d or --nodisplays
would still cause the winFLTK.c csoundM odul el nit to setup display callbacks; bug caused with py-
thon TK apps and CsoundYield FLTK being called.

Memory leak in mp3in and mp3len fixed.

* Internal Changes:

Very, very, very many! And the new parser...

New in Version 5.15 (December 2011)

» New opcodes:

L]

L]

L]

ftab2tab opcode.

tab2pvs opcode.

pvs2tab opcode.

cpumeter opcode, (not really new but now available in OSX)
minmax opcode.

(EXPERIMENTAL) ftresize opcode.

(EXPERIMENTAL) ftresizei opcode.

hrtfearly opcode.

hrtfreverb opcode.

New Gen and Macros

L]

Codeto allow GENA49 to be deferred [NB does not seem to work]

» Modified Opcodes and Gens

L]

socksend and sockrecv no longer uses MTFU check and work on Windows
mpulse changed so if next event is at negative time use the absolute value
serial opcode now runs on Windows as will as Un*x

out, out2, outg, outh, outo outx and out32 are now identical opcodes and will take up to as many ar-
guments as nchnls. This replaces the current remapping of opcodes

turnoff2 now polymorphic wrt S and k types (ie accepts instrumnet names)

* Bugsfixed:

xli

Preface

GENA42 fixed

jacko: fixed a segfault removing the unused JackSessionl D option
doppler memory leak fixed

transegr fixed in release mode when skipping most of envelope
FL Pack now agrees with manual

max_k now agrees with manual

hrtfreverb fixed

atsa code now works on Windows in more cases

tabmorph bug fixed

fixed problem with user-defined opcodes having no outputs

Variousfixesto* ... */ comments

System Changes:

Various licence issues sorted

Lorisisno longer part of the Csound tree

Memory leaks fixed

If no scoreis given adummy that runs for over 100 yearsis created
All score processing takes place in memory without temporary files
String memory now expandable and no size limitation

#if #else #end now in new parser

Adjustmentsto MIDI file precision in output

On OSX move from Coreaudio to AUHAL

Multicore now safe for ZAK, Channels and modifying tables

New coremidi module

Virtual Keyboard improved: 1) Dropdown for choosing base octave (the one that starts with the vir-
tual key mapped to physical key Z). Default value is 5 which is backwards compatible. 2) Shift-X
mappings which add two octaves to X mappings for a total of 4 octaves playable from the physical
keyboard (starting from selected base octave). 3) Control-N / Control-Shift-N mappings to incre-
ment / decrement slider for control N. 4) Mouse wheel now controls sliders.

tsig type for vectors
tsigs and fsigs allowed as argumentsin UDOs

API: Minor version upped

Internal Changes:

xlii

Preface

e Very, very, very many!

New in Version 5.14 (October 2011)

» New opcodes:
* mp3len opcode.
< gnan opcode.
« qinf opcode.
« exprandi opcode.
 cauchyi opcode.
e gaussi opcode.
e cpumeter opcode.
« linsegb opcode.
* expsegb opcode.
« transegb opcode.
* expsegba opcode.
 pvsgain opcode.
* pvsbufread? opcode.
 serial opcodes.
* lua opcodes opcodes.
« plustab opcode.
« multtab opcode.
« maxtab opcode.
¢ mintab opcode.
e sumtab opcode.
 scalet opcode.

» New functionality

* beats processor renamed to csbeats and distributed

< mkdb utility to provide a catalogue of plugin libraries/opcodes

xliii

Preface

« ladspalibrary build in default system

* macros are now expanded inside string in the score

 thereinanuntil .. do .. od looping syntax (in the new parser only)

« SIGPIPE signas are ignored rather than causing Csound to exit

 Itis possible to use vectors of k-rate values, named t-variable. They are initialised to a fixed sizw
with init adncan be read with a simple [] syntax. assignment to elements is only via =. There are
also afew new opcodes that provide wider functionality.

Bug fixes and improvements:

« reading valuesto fill tables was broken with respect to comments

 interna error in wii_datafixed

* pvsshift fixed

* jacko fixed

e gen23 minor fixes

» wiimote fixed

* atsaadd fixed

» compress fixed to work with Odbfs

 pvsbufread corrected with respect to position counting

* tempo opcode fixed

e CsFileB section in .csd files had a bug, now fixed

* deferred gen01 tables could have wrong size

» vbap_ zak made to work(!)

« fixed memory issuein ATSsinoi

* various fixesto cscore

* various fixesto partials and tradsyn

« transegr could crash in some cases

* loris opcodes updated to latest version

« date opcode has new base in some platformsto avoid overflow

 pvsblur now works over reinit

« diskin, diskin2 and soundin now can read up to 40 channels

* prints behaves better with rounding

» fmpercfl now has working vibrato

xliv

Preface

* atreson now has gain parameter at k-rate
< comb opcode made safe if in and out arguments the same
* better accuracy in line and expon
« OSCsend recovers space previously lost
¢ OSCsend can send atable asablob with the T tag -- experimental and untested.
« |pf18 now has an optional iskip argument
 i() will also accept an i-rate value in which caseit isano-op
« makecsd revised and extended to have options for MIDI and score processing and licenses
* Ipanal reworked to remove bugs and oddities
e anissuewith noisein asafixed and aclick in portaudio fixed
 portaudio driver changed to be more robust on stop/exit
* Internal Changes:
* Many many changesto the new parser so it is now operational, but should be used with care

e The multicore system is distributed in an experimental mode and should be used with great care.

New in Version 5.13 (January 2011)

» New opcodes:
< median opcode.
« filevalid opcode.
 pvstanal, pvswarp, temposcal, pvslock spectral processing opcodes.
e mincer opcode
« fareylen sequence opcodes.
* New functionality
¢ Rea random number generators using /dev/random (Linux only).
* INF macro added to orchestras; z read asinfinity in scores
« init changed to allow multiple initsin on statement
* GEN for support of farey sequences

« maxalloc,cpuprc, active now accept named instruments.

xlv

Preface

« If normalisation in pow opcodesis zero treat as 1
« inch can take upto 20 inputs and outputs.

» pvscale, pvsvoc and pvsmix now have very good spectral envelope preservation modes (1 = filtered
cepstrum, 2 = true envel ope).

* 0scill could be static if the duration was long; now there is a positive minimum increment.
* GEN49 now uses search paths.

Bug fixes and improvements:

e Count of linesfixed in orchestras, and \ inside strings

 Fast tab opcodes made safe from crashes

* % informated printing could crash

* Double freein fgen fixed

« sndwarp quietened (gave too many messages)

« gendl deals with positive probabilities

 adsynt reworked removing many bugs

* adsynt2 phase error fixed

¢ Bug in max number of gensfixed

* Better checking in graind

« Better checking in adsyn

¢ modulus was wrong in new parser

 atonex/tonex did wrong operation

* mp3in could repeat sound at end of file

 changed opcode initialised to zero

* Serious bug in tabmorpha fixed

* GENA49 has serious bug removed, so no longer incorrect silences.
 partikkel opcode: fixed bug in sub-sample grain placement when using grain rate FM
Internal Changes:

 Inthe new parser only there are operator @ and @@ to round up the next integer to a power of 2 or
powerof2+1

 Score sorting made much faster
* lineto improved

» Named gens allowed

xIvi

Preface

« Various printing include instrument name if available

e Command option to omit loading alibrary

« Number of out channels no longer constrained to be number of in

« Many fixesto new parser

* More use of Warnings than Messages (allows for them to be switched off)

 csoundSetM essageCallback reset if callback set to null

New in Version 5.12 (January 2010)

» New opcodes:

* transegr isaversion of the transeg opcode which has a release section which is triggered by midi, a
turnoff2 opcode or a negative instrument number i score event.

« ftgenonce generates a function table from within an instrument definition, without duplication of
data.

e passign allows quick initiaization of i-rate variables from p-fields

* crossfmimplements crossed fm synthesis.

» loopxseg islike loopseg but with exponential envelope.

« looptseg is like loopseg but with a flexible envelope like transeg
» Bug fixes and improvements:

* pvshift would overwrite in double mode.

¢ pan2 case 3 fixed.

« clockon and clockoff now work again.

e cross2 and interp could have divided by zero

* linecount for error messages no longer includes text from .csoundrc

* p5gconnect changed to use a separate thread to avoid timeout problem.

« transeg checks argument count.

« sfload used to be limited to 10 sound fonts and was not policed. Now open-ended.
* Internal Changes:

« \" alowed as an escape in orchestral strings

« New parser fixed on optional arguments

« Better checking of f statement with negative number

xlvii

Preface

Soundfonts only initialise pitches array once, in the soundfont opcodes.

Usual collection of gratuitous minor changes, layout and comments

New in Version 5.11 (June 2009)

» New opcodes:

mp3in allows reading of mp3 files directly in the orchestra.

wiiconnect, wiidata, wiisend, wiirange opcodes by john ffitch to recieve and send data to a wiimote
controller.

New opcodes to receive data directly from a p5glove by john ffitch pSgdata
tabsum sums sections of ftables

Mixer SetLevel i an init-time only version of Mixer SetLevel

doppler implements a simulation of the doppler effect.

filebit reports the file depth of afile.

The new Sgnal Flow opcodes enable the usage of signal flow graphsin Csound.

* New functionality

New panning type for pan2 opcode

New csd score tag <CsExScore>.

New -Maoption for ALSA RT MIDI module which listensto all devices.
Thereisagen49 to read mp3 files

Added rounding bin code to pvscale

Added non-power-of-2 table support for ftload and ftsave

GENZ23 totally rewritten to be more consistent in what constitutes a separator and comments. (Still
no /* */ comments)

» Bug fixes and improvements:

New examples for pvs opcodes by Joachim Heintz: pvsarp, pvscent, pvsbandp, pvsbandr, pvsbu-
fread, pvsadsyn, pvsynth, pvsblur, pvscale, pvscross, pvsfilter, pvsfreeze, pvshift, pvsmaska, pvs-
morph

Use of automatic numbering of ftables reuses table numbers

seed with positive argument was wrong

sprintf with an empty string printed wrong data

mute now works with both numeric and named instruments

xIviii

Preface

Small fixesin diskin, and in tablexkt

* Internal Changes:

SConstruct now builds completely independent shared libraries for Python, Lua, and Java wrap-
pers.

New Parser amost usable
Redrawing of graphs fixed so that only selected ones get redrawn.
RT-alsamore forgiving on near sample rates

It is possible to have the score generated by an external program rather than using standard score
format using <CScore hin="translater"> to call the program trandater on the score data

Ipc_export fixed
Removed limit on macro names length

PMAX, the number of arguments to a score event has been reduced by 2, and an overflow system
introduced so GENSs can have arbitrary numbers of arguments.

Increased APl versionto 2.1.

New API function pointer Idmemfile2withCB() which is a version of Idmemfile() allowing a call-
back to be set and called exactly once to process the MEMFIL buffer after it isloaded.

csound->floatsize set; zero in earlier versions

GetChannel Lock added

New in Version 5.10 (December 2008)

* New functionality

L]

New option to listen to al MIDI devices using the portmidi realtime module. To enable listening to
all devicesuse "-+rtmidi=portmidi -Ma".

Dither on output implemented; rectangular and triangular dither available in some cases

GENZ20 type 6 now has option to set variance

» Bug fixes and improvements:

L]

L]

Locale set to C numeric to avoid , versus . problems.
diskin fixed

outo was broken regarding channel 6

pitchamdf fixed

Zilter2 intialization fixed

xlix

Preface

* sS32b14 fixed

Fixed other bugs fixed that have not been reported publicly.

* Internal Changes:

The major version of the Csound APl is increased to 2; affected csound.so as well. This means that
Csound 5.10 is incompatible with applications ("front ends’, "clients', or "hosts") that were built
for Csound 5.08 and earlier and that use API version 1.x. These applications will need to be rebuilt
to work with the current and future versions of Csound. Csound front ends written in interpreted
languages such as Python or Java may continue to work without modification. It may also be pos-
sible to keep both an earlier version of the Csound library and an API 2.0 version on the same ma-
chine together so that new and old Csound-based applications can run side-by-side. These changes
do not in any way affect the compatibility of Csound orchestras and scores: all old documents
should continue to work as before.

Time now counted internally in samples, overcoming a longstanding bug with rounding of time to
k-rate.

Many internal changes related to branch prediction. Some opcodes are substantially quicker.

New in Version 5.09 (October 2008)

* New opcodes:

New vosim opcode by Rasmus Ekman which recreates the historic VOSIM (VOcal SIMulator)
technique.

New dcblock2 opcode by Victor Lazzarini.

New Chua's oscillator model: chuap by Michael Gogins.

New Linear Algebra opcodes by Michael Gogins. Standard Linear algebra over real and complex
vectors and matrices: elementwise arithmetic, norms, transpose and conjugate, inner products, mat-
rix inverse, LU decomposition, QR decomposition, and QR-based eigenvalue decomposition. In-
cludes copying vectors to and from a-rate signals, function tables, and f-signals.

New ambisonic opcodes: bformdecl and bformencl. These opcodes deprecate the older bformdec
and bformenc.

New Score control opcodes by Victor Lazzarini: rewindscore and setscorepos.

» New functionality:

The vbap family of opcodes (vbap4, vbap8, vbapl6 and vbapz) now accept k-rate variables for all
their input arguments.

New pulseaudio 1/0O module on Linux.

New optional ienv parameter to generate envelopes for the soundfont opcodes: sfplay, sfplay3, sf-
playm and sfplay3m.

Added 'skip normalisation argument' to “tanh" named GEN routine. (See Named GEN Routines)

Preface

Added scheduler priority option on asa.

» Bug fixes and improvements:

Allow scientific notation (as was in csound4!) in GEN23.

Fixed bug in FLTK initialization. Should make FLTK usage more stable.
Error on /* */ comments in orchestra fixed.

poscil no longer overwrites frequency if variable is shared.

printk and printks check that opcode isinitialised.

Deprecate soundout and soundouts in favour of fout.

Fixed space opcode to accept non-pow-2 (deferred) tables.

Fixed pvsmorph bug.

* Internal Changes:

New parser has #include and argumentless macros.

L ess casting between floats and doublesin float version.
Includes experimental multicore support.

buzz opcode rewritten.

Many other internal changes and small bug fixes.

New in Version 5.08 (February 2008)

» New opcodes:

imagecreate, imagesize, imagegetpixel, imagesetpixel, imagesave, imageload and imagefree: New
image file processing opcodes by Cesare Marilungo to read/write png images from Csound.

pvsbandp and pvsbandr by John ffitch, which perform band-pass and band-reject filtering in the
spectral domain on apvssignal.

New HRTF opcodes by Brian Carty:hrtfmove, hrtfmove2 and hrtfstat.

New waveshaping opcodes. powershape, polynomial, chebyshevpoly, pdclip, pdhalf, pdhalfy, and
syncphasor

New jack transport control opcode: jacktransport

* New functionality

Added --csd-line-nums= command line option to select mode for error line reporting.

New "no-carry" operator (!) for score language that prevents implicit carrying of p-fields in i-
Statements.

Preface

Added --syntax-check-only commandline flag (exclusive with --i-only)

<Cslicence> tag for CSDs. <CsLicense> is accepted as an dternative to <CsLicence>.

» Bug fixes and improvements:

Changed order of outputs for hilbert. This change breaks compatibility with previous versions, but
fixes the opcode and now works as documented.

M essages about |oading opcode plugins modified so can be suppressed with message level flag.

Major changes to score error reporting; now accurately reports the line numbers for the chain of in-
puts for most errors.

Corrected pan2 so it agrees with documentation.
<CsVersion> tag works again according to the manual .

Fixed the{ and } score looping statements. Added missing documentation for them and ~, &, |, and
operators in score expressions.

hilbert had its outputs reversed, now correct. Manual example updated.

* Internal Changes:

L]

Change to gettext localisation; French and Columbian-Spanish translations available.

Internal changes to partikkel, interpolation of waveform read and windowing, alowing more pre-
cise pitch synchronous granular synthesis. Updated examples for partikkel.

pvscale: Improved algorithm for SDFT case so no ampltitude variation.

New in Version 5.07 (October 2007)

» New opcodes:

pan2: a stereo panning opcode

cpsmidinn, pchmidinn, octmidinn: converters for MIDI note numbers
fluidSetinterpMethod: interpolation in fluid sound fonts

sflooper: a soundfont version of flooper2

pvsbuffer and pvsbufread: buffering/reading of fsigs for delays/timescale changes.

* New functionality

SDFT - the Sliding Discrete Fourier Transform -- added seamlessly to pvsanal, etc opcodes if the
overlap is less than the ksmps or less than 10. Some pvsX XX opcodes extended to take a-rate para-
meters when dliding.

New feature (-O null / --logfile=null) that disables all messages and printing to the console.

* Bug fixes and improvements:

Preface

 partikkel -- particle synthesis had an inadvertent bug, now fixed.
¢ Closing of MIDI input on Windows(MM) failed; now fixed

« fluidEngine opcode now takes optional number of channels (range 16-256, default to 256) and
polyphony (range 16-4096, default to 4096) to use.

* atsa utility safer when given silence.
¢ ATSaddnz improved checking.
< Ambisonics (bformdec, bformenc) has more options for controlled opposites.
e Bug in turnoff2 fixed.
 het_export: invalid check caused export to fail.
* Internal Changes:
* Improved Windows installer.
¢ CsoundV ST replaced by CsoundAC, that does not depend on the VST SDK headers.
¢ Less messages in Windows(MM) startup.

« Pargument type added (k-rate defaults to 1) for opcodein and out types.

New in Version 5.06 (June 2007)

* New granular opcodes: partikkel, partikkelsync and diskgrain.

» New opcode for event dispatch: scoreline.

* Many new opcodes from Gabriel Madonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, lposcilsa, Iposcilsa2, tabmorph, tabmorpha, tabmorphi, tabmorphak, trandom, vtablelk,
dlider8table, diderl6table, slider32table, slider64table, slider8tablef, slider16tablef, dider32tablef,
slider64tablef, sliderKawai and the a-rate version of ctrl7.

* Also from CsoundAV, many new FLTK widget opcodes: FLkeyln, FLslidBnk2, FLvdlidBnk,
FLvdidBnk2, FLmouse, FLxyin, FLhvsBox, FLdidBnkSet, FLslidBnkSetk, FLslidBnk2St,
FLdidBnk2Setk, FLslidBnkGetHandle,

» New pvs opcodes: pvsdiskin, pvsmorph,

o eqfil

» New command line options (--m-warnings)to control messages

 cdadspa: aCSD to LADSPA plugin kit.

» And many bug fixes including (but not limited to): fixed k-rate version of system; fixed scaling prob-
lems of vrandh and vrandi; fixed ocasional failure of turnoff; fixed OS X bug; fixed ATScross and
fixed mod.

Csound5GUI now works properly on al platforms and csoundapi~ (pd object) has been updated.

Preface

liv

Part |. Overview

Table of Contents

Fp (oo (8 7ol o H PP 4
RECENt DEVEIOPMENESeiiie ettt ettt e e e e na e e eaaas 5
Features Of CSOUNA Soeeiiiii e 5
Features Of CSOUNTAC ... 6
The CsoUNA COMMIBNG ...ttt e et e et e e et e e e eaenes 8
Order Of PreCEUBNCE .. .oovviiiiiii e 8
Description of the command SYNEAXcoeuvuiiieiiiieiiiiir e 8
Csound commMaNd liNEcouniiiii e 10
Command-line Flags (DY Category)ooeeu i 19
Csound Environment Variablesc..ooiiuiiiiiiie e 29
Unified File Format for Orchestras and SCOMESovevivviieiiiiiiieeiiinneeeeineeeens 32
[1=STox 11010 o 32
EXBIMPIE .o 33
Command Line Parameter File (.CSOUNIC)cccuvuiiiiiiiiiiiiiieeeei e 34
SCOrE File PrefrOCESSING .. .cevuieii ettt e e e e eaas 34
The EXIract FEALUIEeee et 34
Independent Pre-Processing With SCSOrtooovvviiiiiiiiii e 35
L0 LS 0T o 11 o 36
CsoUN'S CONSOIE OULPULceeevieeeiiiiie et e ettt e eeaans 36
HOW CSOUNAS WOTKSeiiiici e e e 37
Amplitude valuesin CSOUNGooiuuiiiiiiii e 38
REAI-TIMEAUAIO ... e 40
ReAIIME 1/O ON LINUX .ceiiiiiee et e e e 40
WINAOWS ettt e et e e et eeaan s 46
o 47
Optimizing AUAIO 1/O LEENCYceeviieeiiiiee et 47
(001110 847 oo R 49
Syntax Of the OFCNESIIAeeiee e e 50
OrchestraHeader StatemeNtSooevviiiiiiii e 51
Instrument and Opcode BIOCK StAEMENESovvveieiii i ee e 51
Ordinary SEALEMENEScevenieiiiie ettt ettt e eeaans 52
Types, Constants and Variablescoouuiiiiiiiiiiiii e 52
Variable INitialiZationc.oiiiiii e 53
1= o P 53
DireCtorieS and FIlES ... oiiiiii e 54
NOMENCIBEUIE ...t e et e e e et e e eeaa e eees 54
Y 1= 01 55
Named INSEIUMENTSoeuiiiii e e e e e e aaas 55
User Defined Opcodes (UDO)ieeiiiiiiieiiie e 58
K-REE VECIONS ...t ettt e e 58
The Standard NUMENC SCOMEoveeueiiiiii ettt e e e e aa s 59
Preprocessing of Standard SCOMEScvvvviiiiiiiiiiiiie e 59
ATy et 59
TOIMPO et 60
S0 1 60
SCOME SEALEMENTS ...ttt e e e ees 61
Next-P and Previous-P SymbolScccuiiiiiicii e 61
1210 1o 62
o0 1= 1Y = 01PN 63
MUIIPIE FIlE SCOME ... 65
Evaluation Of EXPrESSIONSieeiiiieiiiee e e e et eea e eees 66
SNGSINP-FIElAS ..o 67
0] 0100 = o = PP UPPPSPN 68

Overview

LO:S'a 11 o /AN PR 69
L0 o110 |V PSP 71
I 2= 11 o 73
The Tclinterpreter: CSICISh ...ovunniii e 73
Cswish: thewindowing Shell ... 73
A CSOUND SEIVED .ottt ettt e et e et e e et e et e e eb e eean e 74
A SCripting ENVIFONMENTouiiiiii e e e e e e e e e e 75
TclCsound as alangUage WIaDPErveeeeeeieeieeee e e e e e e e e e eeaeeeenaees 76
TclCsound Command REFEIENCEccuuvviiiiiiiieii e 76
BUITAING CSOUND ...ttt e et e e e et e e e eabanaeeees 79
(05010 [0To [I o1 PP 84

Introduction

Csound is a unit generator-based, user-programmable computer music system. It was origin-
ally written by Barry Vercoe at the Massachusetts Institute of Technology in 1984 as the
first C language version of this type of software. Since then Csound has received numerous
contributions from researchers, programmers, and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many
varieties of UNIX and Linux, Microsoft DOS and Windows, al versions of the Macintosh
operating system including Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/M SP,
PD, jMax, or Open Sound World), or that use more advanced techniques of software engin-
eering (e.g. Nyquist or SuperCollider). Yet Csound still has the largest and most varied set
of unit generators, is the best documented, runs on the most platforms, and is the easiest to
extend. It is possible to compile Csound using double-precision arithmetic throughout for
superior sound quality. In short, Csound must be considered one of the most powerful mu-
sical instruments ever created.

In addition to this "canonical" version of Csound and CsoundAC, there are other versions of
Csound and other front ends for Csound, many of which can be found at http://csounds.com.

http://csounds.com

Recent Developments

In the time since Barry Vercoe wrote the original Preface to this manual, printed above,
many further contributions have been made to Csound. CsoundAC is an extended version of
Csound 5.

Features of Csound 5

Csound 5 begins a new major version of Csound that includes the following new features:

» Now licensed under the GNU Lesser General Public License, an open source license.

» A new, easier to manage build system using SCons.

» The use of widely--accepted open source libraries:

L]

libsndfile for soundfile input and output.
PortAudio with ASIO drivers for low-latency, real-time audio input and output.
FLTK for graphical widgets that can be programmed in orchestra code.

PortMidi for real-time MIDI input and output.

In addition, Istvan Varga has contributed native MIDI and audio drivers for Windows and
Linux.

» Simplified audio buffering system.

» Statusreturnsfrom all internal functions, including opcode functions.

« MIDI interop opcodes, that enable the same instrument definitions to be used interchange-
ably for either live MIDI performance or off-line, score-driven performance.

» Plugin opcodes are working and becoming more widely accepted. Many opcodes have
been moved to plugins. Maost new opcodes are plugins, including:

L]

The FluidSynth-based SoundFont opcodes.

Python opcodes alowing Python code to execute in the orchestra header or in instru-
ment code, at i -rate or k-rate.

Loris opcodes for time/frequency analysis and resynthesis.
Control bus opcodes.

Audio mixer opcodes.

String conversion opcodes.

Improved Open Sound Control (OSC) opcodes.

Vectoria opcodes.

The pvs opcodes for real-time spectral processing, a port of Mark Dolson's phase vo-
coder code.

Recent Devel opments

* The ATS opcodes for spectral Analysis, Transformation, and Synthesis of sound based on a sinus-
oidal plus critical-band noise model. A sound in ATS is a symbolic object representing a spectral
model that can be sculpted using a variety of transformation functions. These opcodes can read,
transform and resynthesize ATS analysis files. Please note that you need the ATS application to
produce analysisfiles.

* The STK opcodes, consisting of Perry Cook's original Synthesis Toolkit in C++ instruments, in
C++, adapted as opcodes.

e DSSI and LADSPA adapter opcodes for hosting DSSI and LADSPA plugins in Csound.

 vstdcs VST adapter opcodes for hosting VST plugins in Csound. (Distributed in source form only
due to the VST SDK licence restrictions.)

» The opcodeBase. hpp header file for writing plugin opcodesin C++. This is based on the technique of
static polymorphism via template inheritance.

* Istvan Varga's csound5gui frontend for Csound, simplifying the editing of Csound, the use of Csound
especially for live performance, and the monitoring of performances.

» Victor Lazzarini's Tcl/Tk frontends for Csound, cstclsh and cswish.

» The Csound API is becoming more standardized and more widely used. There are interfaces or wrap-
persto the API in the following languages:

e C(include csound. h).
e C++ (include csound. hpp)). This API includes Csound score and orchestra file container functions.
e Python (i nport csnd).
e Java(inport csnd.*;).
e Lua(require "csnd";).
¢ Lisp (usethe CFFI filecsounds. I i sp).
e Csound is now truly re-entrant, meaning that multiple instances of Csound can run at the same time,

in the same process.

John ffitch plans to replace the handwritten parser with one written using a parser generator, which
should make it more bug-free and perhaps more efficient.

Features of CsoundAC

CsoundAC is a Python extension module for writing music by programming in Python. CsoundAC is
based on Michael Gogins' concept of music graphs, in which a score is represented as hierarchical tree
of nodes, which can contain notes, score generators, score transforms, and other nodes.

CsoundAC aso provides a Python interface to the Csound API. This makes it very easy to use Csound
to render CsoundAC compositions. Using Python's triple quotes, it is even possible to embed the format-
ted Csound orchestra code for a piece directly into the Python code for that piece, so that all program-
ming for a composition can be maintained in asinglefile.

The coordinate system in CsoundAC is based on a Euclidean music space with dimensions {time, dura-
tion, event type, instrument number, pitch as MIDI key, loudness as MIDI velocity, phase, spatial X co-

Recent Devel opments

ordinate, spatial Y coordinate, spatial Z coordinate, pitch-class set, 1}. A point in music space can be a
note, an inflection of anote, or even agrain of sound.

A music graph is adirected acyclical graph, or tree, of nodes in music space. These nodes are associated

with local transformations of coordinate system. There are nodes for containing scores or fragments of

scores, for generating scores, and for transforming scores. In addition, any node may contain child nodes

that inherit the parent's coordinate system.

Thus, it is possible to compose a musical score by containing or generating notes in lower level nodes,

assembling them into a score using higher level nodes, and finally rendering the score with Csound. The

processis strictly analogous to the construction of a 3-dimensional scenein computer graphics by gener-

ating primitive objects such as spheres, cones, and cubes and moving them around in space to assemble

ascene.

Some of the node classesincluded in CsoundAC are:

» ScoreNode: Simply contains a sequence of notes or other points in music space, perhaps imported
fromaMIDI file.

» Rescale: Rescales child pointsto fit a desired range in time, duration, pitch, and/or other dimensions.

 Ceéll: Repeats child points in a sequence at regular intervals; the interval can be shorter or longer than
the actual duration of the child points.

» Hocket: Hockets points produced by child nodes.

» Lindenmayer: Generates scores using O-L Lindenmayer systems.

» StrangeAttractor: Generates scores from avariety of tunable chaotic dynamical systems.
» MCRM: Generates scores using the Multiple Copy Reducing Machine algorithm.

» ImageToScore: Generates scores by translating image files into points in music space.

» Random: Randomizes child points on any dimension or dimensions of music space, using a variety of
random variables.

 VoiceleadingNode: Generates chord progressions and voice-leadings for child notes, using operations
based on the mathematical music theory of Dmitri Tymoczko.

Finally, isis possible to derive a new Node class in Python from any existing Node, in order to create
new score generators and transforms as part of the composing process.

The Csound Command

Csound is a command to generate a sound output from an orchestra file and a score file (or
a unified csd file). It is designed to be called from a terminal or DOS window, but can be
caled from an easier-to-use front-end. The score file can be in one of many different
formats, according to user preference. Tranglation, sorting, and formatting into orchestra-
readable numeric text is handled by various preprocessors; al or part of the score is then
sent on to the orchestra. Orchestra performance is influenced by command flags, which set
the level of displays and console reports, specify 1/0 filenames and sample formats, and de-
clare the nature of real-time sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed
in the following order:
1. Csound's own defaults

2. File defined by the CSOUNDRC environment variable, or .csoundrc file in the HOME
directory

3. A .csoundrc filein the current directory

4. <CsOptions>tagin a.csd file

5. Passed on the Csound command line

The later options in the list will override any earlier ones. As of version 5.01 of Csound,

sample and control rate override flags (-r and -k) specified anywhere override sr, kr, and ks-
mps defined in the orchestra header.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the or-
chestra (.orc) and score (.sco) files or the Unified csd file (containing both orchestra and
score) to process. Command Line Flags to control input and output configuration may ap-
pear anywhere in the command line, either separately or bundled together. A flag taking a
Name or Number will find it in that argument, or in the immediately subsegquent one. The
following are thus equivalent commands:

csound -nn8 orchnane - Sxxfilenane scorename
csound -n -m 3 orchnanme -x xfilenane -S scorenane

All flags and names are optional. The default values are:

csound -s -otest -bl024 -B1024 -n¥ -P128 orchnane scorenane

where orchname is a file containing Csound orchestra code, and scorename is afile of score

8

The Csound Command

data in standard numeric score format, optionally presorted and time-warped. If scorename is omitted,
there are two default options:

1. if real-timeinput is expected (e.g. -L, -M, -iadc or -F), a dummy score file is substituted consisting of
the single statement 'f 0 3600 (i.e. listen for RT input for one hour)

2. else Csound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it executes, performing vari-
ous syntax and error checks along the way. Once the actual performance has begun, any error messages
will derive from either the instrument loader or the unit generators themselves. A CSound command
may include any rational combination of flag arguments.

Running the examples in this manual from the command

line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag, so you only need to type something
like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

The Csound Command

Csound command line

csound — Csound command.

Description

The csound command executes Csound.
Syntax

csound [flags] [orchname] [scorenang]

csound [flags] [csdfilenane]

Csound command line flags

Listed below are the command line flags available in Csound5 in alphabetical order. Various platform
implementations may not react the same way to different flags! Y ou can view the command line flags
organized by category in Command-line Flags (by Category).

The command line arguments are of 2 types: flags arguments (beginning with a “-”,“--" or “-+"), and

name arguments (such as filenames). Certain flag arguments take a following name or numeric argu-
ment. Flags that start with “--” and “-+” usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE”

-3, --format=24bit Use 24-hit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, MPC, nist, ogg, paf, pvf, raw, sd2, sds, svx, voc,
w64, W64, wav, wavex, WVE, xi. Can aso be used as -
-format=type:format or --format=format:type to set both the file
type (wav, aiff, etc.) and sample format (short, long, float, etc.) at

the same time.
-A, --aiff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -I, or -f flags.
-a, --format=alaw Use a-law audio samples.
-B NUM, - Number of audio sample-frames held in the DAC hardware buf-
-hardwarebufsamps=NUM fer. Thisis athreshold on which software audio 1/O (above) will

wait before returning. A small number reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024

10

The Csound Command

-b NUM, --iobufsamps=NUM

-C, --cscore
-c, --format=schar

--csd-line-nums=NUM

-D, --defer-genl
-d, --nodisplays
--displays
--default-paths

--env:NAME=VALUE

--env:NAME+=VALUE

--expression-opt

on Linux, 4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/O0 on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps* -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

Use Cscore processing of the scorefile.
Use 8-hit signed character audio samples.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Defer GENOL soundfile loads until performance time.
Suppress all displays. See -O if you want to save the log to afile.
Enables displays, reverting the effect of any previous-d flag.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Set environment variable NAME to VALUE. Note: not al envir-
onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and SS
DIR are known to work.

Append VALUE to ;' separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS
DIR). If afile is found in multiple directories, the last will be
used.

Since Csound 5. Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode

11

The Csound Command

calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control
rate is (see aso below), etc.; thus, the difference may be less,
but al'so much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of less temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and alow control
rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifi-
€r names

e index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
time is unsafe.

-F FILE, --midifile=FILE Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

-f, --format=float Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

12

The Csound Command

-G, --postscriptdisplay
-g, --asciidisplay
-H#, --heartbeat=NUM

-h, --noheader

--help

-l, --i-only

-i FILE, --input=FILE

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_date=string

-+id_software=string

-+id_title=string

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

« NUM =1, arotating bar.

e NUM =2, adot ()

* NUM = 3, filesize in seconds.

* NUM =4, sound a bell.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Display on-line help message.

i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In the first case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The audio coming in using -i can be received using opcodes like
inch.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile
(no spaces)

(max. length = 200 characters) Title tag in output soundfile (no

13

The Csound Command

spaces)

-+ignore_csopts=integer If set to 1, Csound will ignore all options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

-+input_stream=string Pulseaudio input stream name.

-J, --ircam, --format=ircam Write an IRCAM format soundfile.

-+jack_client=[client_name] The client name used by Csound, defaults to ‘'csoundS'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac

OS X only)
-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actual port name is the channel humber

+jack_outportname=[output port appended to the name prefix. (Linux and Mac OS X only)

name prefix]
Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nputl (record left)
csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)
-K, --nopeaks Do not generate any PEAK chunks.
-k NUM, --control-rate=NUM Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only vaid on *NIX systems which
have pipes. It doesn't work on Windows.

-1, --format=long Use long integer audio samples.
-M DEVICE, - Read MIDI events from device DEVICE. If using ALSA MIDI
-midi-device=DEVICE (-+rtmidi=alsa), devices are selected by name and not number. So,

you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed.When using PortMidi, you can use '-
Ma to enable al devices. Thisis also convenient when you don't

14

The Csound Command

-m NUM, --messagelevel=NUM

--m-amps=NUM

--m-range=NUM

--m-warnings=NUM

--m-dB=NUM

--m-colours=sNUM

have devices as it will not generate an error.

Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1 = note amplitude messages
« 2 =samples out of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours
e 32=dB, nocolors

* 64 =dB, out of range highlighted with red

96 = dB, dl colors

« 256 = raw, out of range highlighted with red

e 512 =raw, al colours

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04.

Message level for amplitudes on standard (terminal) output.

* 0= no note amplitude messages

¢ 1 = note amplitude messages

Message level for out of range messages on standard (terminal)
output.

* 0= no samples out of range message

« 1 =samples out of range message

Message level for warnings on standard (terminal) output.

* 0= no warning messages

¢ 1 =warning messages

Message level for amplitude format on standard (terminal) output.
¢ 0 = absolute amplitude messages

¢ 1=dB amplitude messages

Message level for amplitude format on standard (terminal) output.
« 0=no colouring of amplitude messages

¢ 1= colouring of amplitude messages

15

The Csound Command

--m-benchmarks=NUM

-+max_str_len=integer

--midi-key=N

--midi-key-cps=N

--midi-key-oct=N

--midi-key-pch=N

--midi-velocity=N

--midi-velocity-amp=N

--midioutfile=FILENAME

-+msg_color=boolean

-+mute_tracks=string

-N, --notify

-n, --nosound

--no-default-paths
--No-expression-opt

-O FILE, --logfile=FILE

-0 FILE, --output=FILE

Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1= print benchnark numbers

(min: 10, max: 10000) Maximum length of string variables + 1;
defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

Route MIDI note on message key number to pfield N as MIDI
value [0-127].

Route MIDI note on message key number to pfield N as cycles
per second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as
MIDI value[0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFSg].

Save MIDI output to afile (Csound 5.00 and later only).

Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Notify (ring the bell) when score or MIDI track is done.

No sound. Do all processing, but bypass writing of sound to disk.
This flag does not change the execution in any other way.

Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.

Log output to file FILE. If FILE is null (i.,e. -O null or -
-logfile=null) all printing of messages to the console is disabled.

Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable S--
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

16

The Csound Command

--0g9
--omacro:XXX=YYY

--opcode-lib=LIBNAME

--0rc orchame

-+output_stream=string

-QDEVICE

-R, --rewrite
-r NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

-+rtaudio=string

-+rtmidi=string

The name devaudio or dac (you can use -odac or -0 dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

Set output file format to ogg. (csound 5.18 and later)
Set orchestramacro XXX tovalue YYY
Load plugin library LIBNAME.

Set the argument as the orchestrra file. Used when not scoreis re-
quired>. (Csound 5.18 and later).

Pulseaudio output stream name.

Enables MIDI OUT operations to device id DEVICE. Thisflag al-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of al the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options: Linux: alsa, jack; Windows: mme; Mac OS X: Cor-
eAudio. In addition, null can be used on al platforms, to disable
the use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: alsa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

ALSA MIDI devices are selected by name and not humber. So,
you need to use an option like -M hw:CARD,DEVICE where

17

The Csound Command

CARD and DEVICE are the card and device numbers (e.g. -M

hw:1,0).

-s, --format=short Use short integer audio samples.

--sched Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

--sched=N Linux only. Same as --sched, but alows specifying a priority

value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

-+server=string Pulseaudio server name.

-+skip_seconds=float (min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

--Smacro:XXX=YYY Set score macro XXX tovalueYYY

--strset Csound 5. The --strset option allows setting strset string values

from the command line, in the format '--strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).

--syntax-check-only Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and later).

-T, --terminate-on-midi Terminate the performance when the end of MIDI fileis reached.

-t0, --keep-sorted-score Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

-t NUM, --tempo=NUM Use the uninterpreted beats of score.srt for this performance, and

set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

-U UTILITY, --utility=UTILITY Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

-u, --format=ulaw Use u-law audio samples.

-v, --verbose Verbose trandlate and run. Prints details of orch translation and
performance, enabling errors to be more clearly located.

-W, --wave, --format=wave WriteaWAYV format soundfile.

-X FILE, --extract-score=FILE Extract a portion of the sorted score, score.sit, using the extract
file FILE (see Extract).

18

The Csound Command

-Z, --dither Switch on dithering of audio conversion from interna floating
point to 32, 16 and 8-bit formats. The default form of the dither is
triangular.

-Z, --dither--triangular, - Switch on dithering of audio conversion from interna floating

-dither--uniform point to 32, 16 and 8-bit formats. In the case of -Z the next digit

should be a1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

-z NUM, --list-opcodesNUM List opcodesin thisversion:
¢ no NUM, just show names
« NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Alphabetically).
The format of acommand is either:

csound [f 1 ags] [orchname] [scorename]
or

csound [f1 ags] [csdfilename]
where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-

ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags
that start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput

-3, --format=24bit Use 24-bit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

-A, --aff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
-a, --format=alaw Use a-law audio samples.

-c, --format=schar Use 8-bit signed character audio samples.

-f, --format=float Use single-format float audio samples (not playable on some sys-

tems, but can be read by -i, soundin and GENO1

--format=type Set the audio file output format to one of the formats available in
libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mats, nis, paf, pvf, raw, sd2, sds, svx, voc, w64, wav,
wavex and xi. Can aso be used as --format=type:format or -

19

The Csound Command

-h, --noheader

-i FILE, --input=FILE

-J, --ircam, --format=ircam

-K, --nopeaks
-|, --format=long
-n, --nosound

-0 FILE, --output=FILE

--0g99

-R, --rewrite

-s, --format=short
-u, --format=ulaw
-W, --wave, --format=wave

-Z, --dither

-format=format:type to set both the file type (wav, aff, etc.) and
sample format (short, long, float, etc.) at the same time.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character. It depends on the host audio interface wheth-
er a device number or a name should be used. In the first case, an
out of range number usually resultsin an error and listing the val-
id device numbers.

The audio coming in using -i can be received using opcodes like
inch.

Write an IRCAM format soundfile.
Do not generate any PEAK chunks.
Use long integer audio samples.

No sound. Do all processing, but bypass writing of sound to disk.
This flag does not change the execution in any other way.

Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable S--
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name dac or devaudio (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range O to 1023, or a device name separated by a : character. It
depends on the host audio interface whether a device number or a
name should be used. In the first case, an out of range number
usualy resultsin an error and listing the valid device numbers.

Set output file format to ogg. (Csound 5.18 and later).

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Use short integer audio samples.
Use u-law audio samples.
WriteaWAYV format soundfile.

Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. The default form of the dither is

20

The Csound Command

-Z, --dither--triangular, -
-dither--uniform

Output Fileld tags

-+id_artist=string
-+id_comment=string
-+id_copyright=string
-+id_date=string
-+id_software=string

-+id_title=string

triangular.

Switch on dithering of audio conversion from interna floating
point to 32, 16 and 8-bit formats. In the case of -Z the next digit
should be a 1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile (no
spaces)

(max. length = 200 characters) Copyright tag in output soundfile (no
spaces)

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile (no
spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

Realtime Audio I nput/Output

-i adc[DEVICE], -
-input=adc[DEVICE]

-0 dac[DEVICE], -
-output=dac[DEVICE]

-+rtaudio=string

-+server=string

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device nhame separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In thefirst case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The name dac or devaudio (you can use -odac or -0 dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options: Linux: asa, jack; Windows. mme;
Mac OS X: CoreAudio. In addition, null can be used on all plat-
forms, to disable the use of any real time audio plugin.

Pulseaudio server name.

21

The Csound Command

-+output_stream=string
-+input_stream=string

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

MIDI File Input/Ouput

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float

-T, --terminate-on-midi

MIDI Realtime Input/OQuput

-M DEVICE, -
-midi-device=DEVICE

Pulseaudio output stream name.
Pulseaudio input stream name.

The client name used by Csound, defaults to 'csoundS'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel number
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1
csound5: i nput 2
csound5: out put 1
csound5: out put 2

(record left)
(record right)
(pl ayback left)
(pl ayback right)

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of all the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

Read MIDI events from device DEVICE. If using ALSA MIDI (-
+rtmidi=alsa), devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed. When using PortMidi, you can use '-
Ma to enable all devices. Thisis also convenient when you don't

22

The Csound Command

--midi-key=N
--midi-key-cps=N
--midi-key-oct=N
--midi-key-pch=N
--midi-velocity=N
--midi-velocity-amp=N

--midioutfile=FILENAME

-+rtmidi=string

-Q DEVICE

Display

--csd-line-nums=NUM

have devices as it will not generate an error.

Route MIDI note on message key number to pfield N as MIDI
value [0-127].

Route MIDI note on message key number to pfield N as cycles
per second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as
MIDI value [0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: alsa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

ALSA MIDI devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Enables MIDI OUT operations to deviceid DEVICE. Thisflag a-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (eg. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

23

The Csound Command

« 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

-d, --nodisplays Suppress all displays. See -O if you want to save the log to afile.
--displays Enables displays, reverting the effect of any previous-d flag.

-G, --postscriptdisplay Suppress graphics, use PostScript displays instead.

-g, --asciidisplay Suppress graphics, use ASCII displays instead.

-H#, --heartbeat=NUM Print a heartbeat after each soundfile buffer write:

¢ no NUM, arotating bar.

« NUM =1, arotating bar.

e NUM =2, adot ()

* NUM = 3, filesize in seconds.
* NUM =4, sound abell.

-m NUM, --messagelevel=NUM Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 = warning messages

128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours
¢ 32=dB, no colors
e 64 =dB, out of range highlighted with red
¢ 96 =dB, dl colors
e 256 = raw, out of range highlighted with red
e 512 =raw, al colours
The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04
--m-amps=NUM Message level for amplitudes on standard (terminal) output.
< 0= no note amplitude messages

¢ 1= note amplitude messages

--m-range=NUM Message level for out of range messages on standard (terminal)
output.

24

The Csound Command

* 0= no samples out of range message
e 1=samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
¢ 0= no warning messages
¢ 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1=dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
« 0=no colouring of amplitude messages
¢ 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
1 = print benchnark numbers

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-v, --verbose Verbose trandate and run. Prints details of orch translation and
performance, enabling errorsto be more clearly located.

-z NUM, --list-opcodesNUM List opcodesin thisversion:
¢ no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

Performance Configuration and Control

-B NUM, - Number of audio sample-frames held in the DAC hardware buf-

-hardwarebuf samps=NUM fer. Thisis a threshold on which software audio 1/0 (above) will
wait before returning. A small humber reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024
on Linux, 4096 on Mac OS X and 16384 on Windows.

25

The Csound Command

-b NUM, --iobufsamps=NUM

-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

--omacro:XXX=YYY
-r NUM, --sample-rate=NUM
--sched

--sched=N

--smacro: XXX=YYY

--strset

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio 1/0 delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/0 on NUM
boundaries. It aso processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps * -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only vaid on *NIX systems which
have pipes. It doesn't work on Windows.

Set orchestramacro XXX to value YYY
Override the sampling rate (SR) supplied by the orchestra.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Set score macro XXX tovaueYYY
Csound 5. The --strset option allows setting strset string values

from the command line, in the format '--strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).

26

The Csound Command

-+skip_seconds=float (min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

-t NUM, --tempo=NUM Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

Miscellaneous

-@FILE Provide an extended command-linein file“FILE"

-C, --cscore Use Cscore processing of the scorefile.

--default-paths Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

-D, --defer-genl Defer GENOL soundfile loads until performance time.

--env:NAME=VALUE Set environment variable NAME to VALUE. Note: not al envir-

onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and SS
DIR are known to work.

--env:NAME+=VALUE Append VALUE to '} separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS&
DIR). If a file is found in multiple directories, the last will be
used.

--expression-opt Snce Csound 5. Turns on some optimizations in expressions:

* Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control
rate is (see also below), etc.; thus, the difference may be less,
but also much more).

¢ number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

27

The Csound Command

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are;

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and alow control
rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifi-
er names

¢ index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
timeis unsafe.

--help Display on-line help message.

-I, --i-only i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides afast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

-+ignore_csopts=integer If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1,

defaults to 256 allowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

-N, --notify Notify (ring the bell) when score or MIDI track is done.
--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--no-expression-opt Disables expression optimization.

-O FILE, --logfile=FILE Log output to file FILE. If FILE is null (i.e. -O null or -

-logfile=null) al printing of messages to the console is disabled.
--opcode-lib=LIBNAME Load plugin library LIBNAME.

28

The Csound Command

--Qrc orcname Set the argument as the orchestra file. Used when not score is re-
quired>. (Csound 5.18 and later).

--syntax-check-only Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and | ater).

-t0, --keep-sorted-score Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

-U UTILITY, --utility=UTILITY Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

-X FILE, --extract-score=FILE Extract a portion of the sorted score, score.srt, using the extract
file FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

» SFDIR: Default directory for sound files. Used if no full path is given for sound files.

» SSDIR: Default directory for input (source) audio and MIDI files. Used if no full path is given for
sound files. May be used in conjunction with SFDIR to set separate input and output directories.
Please note that MIDI files aswell as audio files are also sought inside SSDIR.

» SADIR: Default directory for analysisfiles. Used if no full path is given for analysisfiles.

» SFOUTYP: Sets the default output file type. Currently only 'WAV', 'AlFF and 'IRCAM' are valid.
Thisflag is checked by the csound executable and the utilities and is used if no file output type is spe-
cified.

* INCDIR: Include directory. Specifies the location of files used by #include statements.

» OPCODEDIR: Defines the location of csound opcode plugins for the single precision float (32-bit)
version.

» OPCODEDIR®64: Defines the location of csound opcode plugins for the double precision float (64-bit)
version.

» SNAPDIR: Isused by the FLTK widget opcodes when loading and saving snapshots.

* CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename containing
csound flags must be specified. This variable defaults to .csoundrc if not present.

e CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS pointsto a
directory containing .xmg files.

* CS LANG: Selects alanguage for csound messages.

* RAWWAVE_PATH: Isused by the STK opcodes to find the raw wave files. Only relevant if you are
using STK wrapper opcodes like STKBowed or STKBrass.

e CSNOSTOP: If this environment variable is set to "yes', then any graph displays are closed automat-

29

The Csound Command

icaly at the end of performance (meaning that you possibly will not see much of them in the case of a
short non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to exit,
alowing for viewing the graphs even after the end of score is reached.

* MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note that
MIDI files are sought in SSDIR and SFDIR aswell.

* CS OMIT_LIBS: Allows defining alist of plugin libraries that should be skipped. Libraries can be
separated with commas, and don't require the "lib" prefix.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODEDIR and OPCODEDIR64. It is very important
to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 5.01.0 beta (float samples) Mar 23 2006. This
text refersto the single precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely
trandlated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are:

» PATH: The directory containing csound executables should be listed in this variable.

* PYTHONPATH: If you intend to use CsoundVST and python, the directory containing the
_CsoundV ST shared library and the CsoundV ST .py file must be in your PYTHONPATH environment
variable (or the default path python searches in), so that the Python runtime knows how to load these
files.

» LADSPA PATH and DSS_PATH: These environment variables are required if you are using the
dssi4dcs (LADSPA and DSSI host) plug-in opcodes.

* CDOCDIR: Specifies the directory where the html help files are located. Though not used by
Csound directly, this environment variable can help front-ends and editors (which implement it) to
find the csound manual.

Setting environment variables

On the command line

Y ou can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env:.NAME+=VALUE, where NAME is the environ-
ment variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEDIR,
OPCODEDIR64, CSSTRINGS, and CS_LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

30

The Csound Command

Windows

Linux

Mac

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other versions of Windows earlier than Windows XP
and Windows 2000 you set environment variables in the autoexec.bat file. Go to 'My Computer', select
C: drive, right click on autoexec.bat, and select 'Edit’. The statement format is: SET NAME=VALUE .

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profilefile.

If the user has a Mac that shipped with an OS X version prior to 10.3 (includes 10.2 and 10.1) then it is
possible that the default shell isthe Tenex C-shell (tcsh). If thisisthe case, then you either have to type:

~% set env OPCCDEDI R "/ User s/ you/ your/ Csound5/ bui | d"

or change your /etc/profile and or edit your .tcshrc file.

If the user has a Mac that shipped with OS X 10.3 or 10.4 then it likely has the "Bourne-again" C-shell
(bash) asthe default shell. If thisis the case, then the user must type something like:

~$ export OPCODEDI R=/ User s/ you/ your/ Csound5/ bui | d

in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Note that if users choose one of the above methods, ie editing the .bashrc file then the environment vari-
ables are executed when anew shell is created. This can be problematic if your application implements a
Quartz or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application uses the csound-
APl and sets the environ variables directly) is to create an XML property list file (called a .plist file by
the OS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solu-
tion specifically for the [csoundapi~] object for Pd on OS X. Since Pd uses an OS X native .app style
packaging, and runs off of the Aquainterface, the standard means of supplying environment variables to
Csound do not work. The solution isto set Csound's environment variables for the Aqua environment.

Likely, most users will not have the hidden folder .MacOSX located in their $HOME directory (aka ~/)
This folder must first be created and the Environment.plist added to this folder. The contents of the En-
vironment.plist file should be something like:

<?xm version="1.0" encodi ng=" UTF- 8" ?>

<! DOCTYPE plist PUBLIC "-//Apple Conputer//DTD PLIST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCODEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCODEDI R64</ key>

<string>/ Vol unes/ Ext er nal HDY devel / csound5/ | i b64</ string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ st ri ng>

<key>SFDl R</ key>

<string>/ Vol umes/ Ext er nal HIY i Tunes/ csoundaudi o</ stri ng>

</dict>

</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>

31

The Csound Command

tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michael Goginsin AXCsound.

Thefileisastructured data file which uses markup language, similar to any SGML such asHTML. Start
tags (<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text
file.

Structured Data File Format

Mandatory Elements

The first tag in the file must be the start tag <CsoundSynthesizer>. The last tag in the file must be the
end tag </CsoundSynthesizer>. This element is used to alert the csound compiler to the .csd format. All
text before the start tag and after the end tag is ignored by Csound. The tag may also be spelled
<CsoundSynthesiser>.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same regquirements, including the
header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)

Csound score statements are put in the Score Element. The statements and syntax in this section are
identical to the Csound score file, and have the same requirements. The Score Element is delimited by
the start tag <CsScore> and the end tag </CsScore>.

As an aternative Csound score statements can also be generated by an external program using the
CsScore scheme with an attribute bin. The lines upto the closing tag </CsScore> are copied to afile and

the external program named is called with that file name and the destination score file. The external pro-
gram should create a standard Csound score.

Optional Elements
Included Base64 Files (<CsFileB>)

Base64-encoded files may be included with the tag <CsFileB filename=filename>, where filename is
the name of the file to be included. The Base64-encoded data should be terminated with a </CsFileB>

32

The Csound Command

tag. For encoding files, the csh64enc and makecsd utilities (included with Csound 5.00 and newer) can
be used. The file will be extracted to the current directory, and deleted at end of performance. If thereis
an aready existing file with the same name, it is not overwritten, but an error will occur instead.

Base64-encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where file-
name is the name of the file containing the MIDI information. There is no matching end tag. This was
added in Csound version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Base64-encoded sample files may be included with the tag <CsSampleB filename=filename>, where fi-

lename is the name of the file containing the sample. There is ho matching end tag. This was added in
Csound version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #. #

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as:
#. #

Thiswas added in Csound version 4.09.

Licence Information (<CsLicence> or <CsLicense>)

Licencing details can be included in between the start tag <CsLicence> and the end tag </CsLicence>.
Thereis no format for this information, any text is acceptable. This text will be printed by Csound to the
console when the CSD is run.

Example

Below isasamplefile, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second
of a 1 kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and
tone.sco, with the addition of command line flags.

<CsoundSynt hesi zer >
; test.csd - a Csound structured data file

<CsOpti ons>
-W-d -0 tone.wav
</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenents check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nstrument s>
; originally tone.orc

sr = 44100
kr = 4410
ksnps = 10

33

The Csound Command

nchnls = 1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endin
</ Csl nstrunent s>

<CsScor e>
; originally tone.sco
f1 0 8192 10 1
il 0 1 20000 1000 ; play one second of one kHz tone
e
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options
in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:

-+rtaudio=portaudio -odac2 -iadc? -+rtmidi=winmme -M1 -Q1 -m0

In this case, csound will generate real-time output and take realtime input from device 2, using the
portaudio driver interface. It will input and output realtime MIDI on interface 1. It will print very few
messages (-m0). These options will be used by default when other options are not given inside the
<CsOptions> of the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated asi, f and t. The time points denote the beginning and end of
the extract in terms of:

[section no.] : [beat no.].

Each of the three parts of the argument is optional. The default values for missing i, f or t are:

all instrunents, beginning of score, end of score

34

The Csound Command

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these
phases independently. The command

scot fil enane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in out-
file.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an aready sorted score. An unsorted score should first be sent through Scsort
then piped to the extract program:

scsort < scorefile | extract xfile > score.extract

35

Using Csound

Csound can be operated in a variety of modes and configurations. The original method for
running Csound was as a console program (DOS prompt for Windows, Terminal for Mac
OS X). This, of course, still works. Running csound without any arguments prints out a list
of command-line options, which are more fully explained in the Command Line Flags (by
Category) section. Normally, the user executes something like:

csound nyfile.csd
or separate orchestra (orc) and score (sco) files can be used:
csound mnyorchestra. orc nmyscore.sco

Y ou can find many .csd files in the examples folder. Most opcode entries in this manual also
include smple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is agraphic-
al program that eases the process of running csound, and sometimes provides editing and
composing functions.

Csound also has several ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an
output filename.

» Read and write digital audio using a sound card (real-time rendering) - Using the -odac
and -iadc flags

* Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

» Read and write MIDI using aMIDI interface and controller (real-time control) - Using the
-M and -Q flags.

Csound's Console Output

When Csound runs, it prints atext output to the console, which shows data about the Csound
run. A Console output looks something like this:

time resolution is 0.455 ns
PortMDI real time MDl plugin for Csound
virtual _keyboard real time MD plugin for Csound
Port Audi o real -tine audi o nodul e for Csound
0dBFS | evel = 32768.0
Csound version 5.10 beta (float sanples) Apr 19 2009
libsndfile-1.0.17
Readi ng options from $HOVE/ . csoundrc
Uni fiedCSD: oscil.csd
STARTI NG FI LE
Creating options
Creating orchestra
Creating score
orchnane: /tnp/ csound- XYACV6. or ¢
scorenane: /tnp/csound-1YtLAJ. sco
rtaudi o: ALSA nodul e enabl ed
rtmdi: PortM DI nodul e enabl ed
orch conpiler
17 lines read

instr 1
El apsed tine at end of orchestra conpile: real: 0.129s, CPU. 0.020s
sorting scorg ..

. done

36

How

Using Csound

El apsed tine at end of score sort: real: 0.130s, CPU. 0.020s
Csound version 5.10 beta (float sanples) Apr 19 2009

di spl ays suppressed

0dBFS | evel = 32768.0

orch now | oaded

audi o buffered in 256 sanpl e-frame bl ocks

ALSA input: total buffer size: 1024, period size: 256
readi ng 1024-byte bl ks of shorts from adc (RAW

ALSA output: total buffer size: 1024, period size: 256
writing 1024-byte bl ks of shorts to dac

SECTION 1

ftable 1

new alloc for instr 1

B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Score finished in csoundPerforn()

inactive allocs returned to freespace

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

0 errors in performance

El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

345 1024-byte soundbl ks of shorts witten to dac

Renmovi ng tenmporary file /tnp/csound- CoVcrm srt

Renoving tenporary file /tnp/csound-1YtLAJ.sco ...

Renoving tenporary file /tnp/csound-XYACV6.orc ...

The console output of Csound is quite verbose, particularly before the actual performance (like version,
plugins loaded, etc.). Performance actually started when the console printed:

SECTI ON 1:
In this particular run, the lines:

new alloc for instr 1
B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Show that a single note for instrument 1, that lasted 2 seconds starting at time 0.000, was produced with
an amplitude of 10000 for both channel 1 and 2. An important section of the console output is:

end of score. overall anps: 10000.0 10000.0
overall sanples out of range: 0 0

Which shows the overall amplitude and the number of samples which were clipped because they were
out of range.

Theline:
El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

Shows the clock time and the CPU time it takes for the processor to complete the task. If CPU time is
lower than clock time it means the csd can run in realtime (unless it has some sections which are ex-
tremely CPU intensive). The "real time" figure is the total running time and it is larger because it
acounts for disk access. module loading, etc. (CPU time is strictly number-crunching time). If you have
a sound that lasts for 100s and it takes 5s to generate it offline, it means that you are taking around 5%
of CPU, and that it runs on 0.05 of realtime.

Csound5 works

Csound processes and generates output using "unit generators" (ugens) called opcodes. These opcodes
are used to define instruments in the orchestra. When you run Csound, the engine loads the base Op-
codes, and the opcodes contained in separate |oadable "opcode libraries’ . It then interprets the orchestra
(through the orchestra reader). The engine sets up an instrument processing chain, which then receives
events from the score or in real-time. The processing chain uses the input/output modules to generate
output. There are modules that can write to file, or generate real-time audio output.

37

Using Csound

[Orchestra reader]

[Input/Output] N : J
" S SO
External libraries

*i Engine] ~Base upcudes]

L T -
=]_| Y Messages |

i

Loadble Ilbraries]dl'

o

The Csound5 Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound's innermost software buffer, contains ksmps sample frames. Csound processes real-
time control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be (but
does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps sample
frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copies the -b buffer
to the -B "hardware” buffer.

3. -B = The sound card's interna buffer (the "hardware" buffer), in sample frames. Should be (and may
need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b sample
framesin -b are still there for the sound card to keep playing while Csound catches up. But they can
be the same size if you're willing to bet Csound can always keep up with the sound card.

Amplitude values in Csound

Amplitude values in Csound are always relative to a "0dbfs"' value representing the peak available amp-
litude before clipping, in either an AD/DA codec, or in a soundfile with a defined range (which both
WAVE and AIFF are). In the origina Csound, this value was always 32767, corresponding to the bi-
polar range of a 16bit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This
remains the default peak amplitude for Csound, for backward compatibility and you will find most of
this manual's examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled values to whatever output format is be-
ing used, whether 24bit integer, 32bit floats, or even 32bit integers. Put another way, the literal amp-

38

Using Csound

litude values you write in a Csound instrument only match those written literally to the file if the Odbfs
value in Csound corresponds exactly to that of the output sample format. The consequence of this ap-
proach is that you can write a piece with a certain amplitude and have it render correctly and identically
(setting aside of course the better dynamic range of the high-res formats) whether written to an integer
or floats file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with OdBFS always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are a linear scale which show the actual oscillation around 0, so they can
be positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most op-
codes as well. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and
dbfsamp functions. This way, Csound enables the programmer to express al amplitudes in dB - lower
amplitudes will then be represented by negative dB values. This reflects industry practice (e.g. in level
meters in mixers, etc).

For example the same dB level of -6dB (half the amplitude) or -20dB are actually a different linear amp-
litude according to Odbfs like this:

Table 2. dBFSin relation to amplitude

dB_, 0dbfs = 32767 (default) [Odbfs= 1 0dbfs = 1000 (unusual)
0dB 32767 1 1000

-6dB 16384 05 500

-20dB 3276.7 0.1 100

Some Csound users might therefore be minded to express all levelsin dB_., and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express a really quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

The reason for using Odbfs is very ssimple: digital peak equates to maximum level regardless of sample
resolution. If you then define asignal at -110dB you will lose it if rendering to a 16bit file, but retain it
(audibly or not) if rendering to 24bit or better. In other words, there is a fixed ceiling, but a moveable
floor - you can define sounds as quietly as you like (e.g. envelope tails), in a predictable way,and pre-
serve them or not (without changing the orch code at all), depending on the resolution (file or audio i/0)
you render to.

A note on digital amplitude, decibels and dynamic range

A convenient aproximation of dynamic range for a certain digital precision isto calculate
the decibel interval between the minimum value and the maximum value for a sample. As
arule of thumb, 1 bit (doubling of level) is 6dB, so 16bits = 96dB.

39

Using Csound

This is not entirely accurate since audio sample values are represented on a bipolar scale
with positive and negative values, and 1 bit is used for the sign. Therefore, for 16bit integer
samples actually use 1 bit for the sign and 15 hits for the values, so the actual dynamic
range is 90dB.

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-
ends implement these featuresin different ways, but knowledge of them is necessary in some of them.

The -i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file out-
put. You should use - o dac for reatime output and -i adc for realtime input. Naturally, you can use
either one or both if your hardware supports it. You can also specify the hardware you want to use by
appending a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to
use ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version
of Portaudio has been compiled with ASIO support.

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reveal if you have ASIO available if you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizes are -b and -B, respectively. Buffer size is hardware dependant, and some experimenta-
tion may be necessary to find the optimal balance between low latency performance and uninterrupted
audio output. The values given to -b and -B should be powers of two, and the value of -B should be at
least one power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for each platform.
Realtime I/O on Linux

Under Linux, the default PortAudio/PortMidi settings will result in higher latency than that which can be
achieved using ALSA and/or JACK. The PortMusic plugins are audio and MIDI servers, which provide

40

Using Csound

an interface to the ALSA drivers, in a manner which is in some respects similar but fundamentally dif-
ferent from that provided by JACK. For amore detailed comparison please refer to:

http://jackaudio.org/faq
Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards"
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the

possible configurations, use the command line utilities "aplay", "arecord" and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.alsa-project.org/pub/utils/
Audio Output

Running the following command:
aplay -1

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[....
****% | ist of PLAYBACK Hardware Devices ****
card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]

[..]

If you have more than one card on your system, or if there is more than one device on your card, the list
will of course be more complicated, however in all cases the information that is pertinent is the number/
name of the card/device. In order to use the above soundcard for audio output, the following flag would
be added to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of au-
dio streams, special care is needed in setting up of software (-b) and hardware (-B) buffers. If you get a
message from Csound's ALSA driver that looks like the following:

ALSA: -B 8192 not allowed on this device; use 7526 instead

there is a good chance that you may be using dmix. If you are using dmix, the -b and -B settings of
Csound must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for
the Csound project to the sample rate that dmix is set up to. The following formula will determine what
settings to use for Csound given the settings of dmix:

(csound_sr/dm x_sanpl e_rate) * dm x_period_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

-b
-B

41

http://jackaudio.org/faq
ftp://ftp.alsa-project.org/pub/utils/

Using Csound

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding er-
rors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample_rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {

type dm x

i pc_key 50557

sl ave {
pcm "hw 0, O"
period_time O
#peri od_si ze 1024
#buf f er _si ze 8192
period_size 1536
buffer_size 12288

route ALSA software through pcm am x
pcm !default {

type plug

sl ave. pcm "am x"

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the
dmix sample rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 =
4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing ex-
ample, the flag:

-i adc:hw 0,0

would be added for audio input from Card 0 Device 0. To use the default card employ one of the follow-
ing flags, with the forementioned warning that thiswill not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -1

42

Using Csound

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudi o=al sa -i adc:hw 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudio=alsa -i adc:hw. 0,0 -0 dac:hw 1,1

MIDI Input

Csound does not automatically create its own ALSA sequencer port. It creates an ALSA raw midi port
each timeit runs. In order to enable your orchestrato receive MIDI input you can use VirMIDI or MIDI-
Thru, whichever you prefer. Setting up these virtual MIDI portsis a topic that has been covered extens-
ively elsewhere, see The Linux MIDI how-to [http://www.midi-howto.com/] or browse your distro's
documentation or the ALSA documentation for instructions on how to install and configure either Vir-
MIDI or MIDIThru (segdummy). Once you have done so run:

amdi -1
for alist of available devices. Typically thiswill look something like the following:

[....]
Device Name
hw:1,0 Virtual Raw MIDI (16 subdevices)
hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)
hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI
hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li
for alist of available input devices, and:
aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

43

http://www.midi-howto.com/
http://www.midi-howto.com/

Using Csound

client O: 'System' [type=kernel]
0 'Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirMmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR2 '

#aconnect -1o

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'virMIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'virMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'vVirMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which is listening on the first VirMIDI port. The keyboard has three output ports.
The first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard
and controller messages, and the third (24:2) transmits system exclusive messages. The following com-
mand connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

Remember that Csound acts as araw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect,
SO0 you must connect to avirtual device (like 'virtual raw MIDI' or 'MIDI through') for persistent connec-
tions, or conect directly to the destination using command line flags.

MIDI Output

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports, ob-
tained by "amidi -I" as above. In order to connect a Csound synthesizer to the MIDI out port of the key-
board listed above, the following flag would be used:

-Chw 2,0, 0

Scheduling

Using Csound

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve real-
time performance, when using ALSA, however you may hang your system if you do something stupid.
DO NOT use "--sched" if you are using JACK for audio output. JACK controls scheduling for the audio
applications connected to it, and also tries to run at the highest possible priority. If the "--sched” flag is
used, Csound and JACK will be competing rather than cooperating, resulting in extremely poor perform-
ance.

Using JACK
The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -o dac

Additionally, there are some command line options specific to JACK:
JACK Command-line Flags
-+jack_client=[client_name] The client name used by Csound, defaults to 'csound5'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actua port name is the channel humber
+jack_outportname=[output port appended to the name prefix. Example: with the above default set-
name prefix] tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound5: i nput 1 (record left)

csound5: i nput 2 (record right)

csound5: out put 1 (pl ayback left)

csound5: out put 2 (pl ayback right)

-+jack_dleep time=[dleeptimein As of Csound version 5.01, this option is deprecated and ignored.
microseconds]

Connecting Csound to other JACK clients

By default, no connections are made (you need to use jack_connect, gjackctl, or a similar utility);
however, the plugin can connect to ports specified as -iadc:portname_prefix' or '-odac:portname_prefix’,
where portname_prefix is the full name of a port without a channel number, such as 'alsa_pcm:capture '
(for -i adc), or ‘asa_pcm:playback ' (for -o dac).

Notes on buffer sizes

Audio dataisreceived from and sent to the JACK server by Csound using aring buffer that is controlled
by the -b and -B flags. -B is the total size of the buffer, while -b is the size of a single period. These val-
ues are rounded so that the total size is an integer multiple of, and greater than the period size. The dif-
ference of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the same time, the -b option should be set to an integer multiple of ks-
mps.

An example of buffer settings for low latency on afast system:

jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &

45

Using Csound

csound -+rtaudio=jack -b 64 -B 256 [...]

with real time scheduling (as root):

jackd -R -P 90 -d alsa -P -r 48000 -p 64 -n 2 -zt &
csound --sched=80, 90,10 -d -+rtaudio=jack -b 64 -B 192 [...]

To improve performance, use ksmps values like 32 and 64.

The sample rate of the orchestra must be the same as that of the JACK server.

Using Pulseaudio

Support for Pulseaudio [http://www.pulseaudio.org/] was added in Csound 5.09. You can specify the
following settings:

1. Sink names: it's possible to use a number instead of the full name, so -odac:1 would select your
second device (count starts at 0).

2. Server name: it's possible to connect to a specific server by using -+server=<server_string> where
server_string is a name of a server or a more complex server selection string (see pulseaudio.org [ht-
tp://www.pulseaudio.org/] on server strings). This should be network transparent and should allow
connections to remote machines.

3. Stream names. it is possible to label the streams generated by csound, by using -
+output_stream=<stream-name> and -+input_stream=<stream-name>

Here's an example command line:

csound -odac:1 examples/trapped.csd -+rtaudi o=pul se -+server=unix:/tmp/pul se-victor/native -+output_stream=trapped

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows modul e which provides great stability, but latency will
usualy be too high for realtime interaction. To activate a realtime module, you can use the -+rtaudio
flag with value of portaudio or winmme. The default value is portaudio, which is activated by default
without specifying it.

You also need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -o dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac2), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and csound will report an error,
and list available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since
Portaudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO
driver emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once
for each driver interface. ASIO will give you the best latency on your system, so if available it should be
your choice for realtime audio output.

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio out-

46

http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.asio4all.com
http://www.asio4all.com

Using Csound

puts. You can again select the device by its number, and check for available devices using an out of
range number. Note that for input you use 'adc’ instead of 'dac’. Make sure you have the appropriate in-
put selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for
MIDI output. You might need to specify the device number after the flag (e.g. -M2), and again, you can
find the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme

A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Mac

Coming Soon...

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final values will be platform and system dependent, and will also depend on the complex-
ity of the audio calculations performed. You need to adjust ksmps in the orchestra, as well as the soft-
ware (-b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmps to a value with a good tradeoff between quality and performance, without adjusting -B at
all.

2. Set -b to anegative power of two of thisvalue.

To get the optimal values, start with something you think is going to be too low, ie -1, and then con-
tinue "upwards", -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b will be
the absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS X,
16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then take it
back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be
3/2, or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas
most soundcards are 16 or 24-hit integer. -b is the internal buffer, so it's dealing with the 32 or 64-bit
side of things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-bit side. The csound
default for floatsis-B = 4 * -b. Thisis a sane value for a 16 bit card. Y ou can usualy get away with -B

47

Using Csound

= 2 * -b, but thisis the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you
that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte blocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be:

e 16-bit: 1:2
o 24-hit: 2:3

e 32-bit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer has to fill the hardware buffer before returning. If the ratio is high, it will take a long
time, defeating the purpose of setting a small value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it is to decide how long the release on your envelopes
might need to be at maximum (for desired effect), set the release on all envelopes to maximum, give
yourself a generous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then
bring the value of -b down as far as possible.

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll
know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

48

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will
need to configure Csound so that it will run properly on your system. Installers usually per-
form these steps for you automatically.

On all platforms, make sure the directory or directories containing Csound's plugin libraries
are in an OPCODEDI R Or OPCCDEDI R64 environment variable depending on the precision of the
compiled binary.

The Python opcodes currently require at least Python 2.4, which can be downloaded from
www.python.org [http://www.python.org] if it is not already on your system. Y ou can check
if itisavailable by typing 'python’ on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the C:\Program
Fi | es\ Csound directory) containing the Csound executables directory are in your PATH vari-
able, or else copy all the executable files to your Windows syst en82 directory. Depending
on your installation method, you might also need to set the OPCODEDI R and OPCODEDI R64 en-
vironment variables. Assuming that Csound is installed to the default location of
C:\ Program Fi | es\ Csound you can use (otherwise set the paths accordingly):

set OPCODEDI R=C: \ Program Fi | es\ Csound\ pl ugi ns

set OPCODEDI R64=C: \ Program Fi | es\ Csound\ pl ugi ns64
set PATH=%PATHY% C: \ Program Fi | es\ Csound\ bi n

Missing python24.dll or python25.dll

If you get a pop-up about the missing Python library (python24.dIl or py-
thon25.dll) and don't need the python opcodes, just delete C:\Program

Fi | es\ Csound\ pl ugi ns\ py. dl | and C:.\ Program
Fi | es\ Csound\ pl ugi ns64\ py. dl | , and the pop-up about the missing Python
library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories,
typically /usr/1ocal /bin, and the Csound and plugin shared libraries in places like /
usr/local /1ib/csound/ plugins OF /usr/local/lib/csound/ pluginsé4 and make sure
that oPCODEDI R and OPCODEDI R64 environment variable are set correctly.

CsoundAC

CsoundAC requires some additional configuration. On all platforms, CsoundAC requires
that you have Python installed on your computer. The directory containing the _csoundAC
shared library and the CsoundAC. py file must be in your PYTHONPATH environment variable,
so that the Python runtime knows how to load these files.

49

http://www.python.org
http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

» A header section, which specifies global options for instrument performance

* A list of User defined opcodes and instrument blocks containing UDO and instrument
definitions.

The orchestra header, instrument blocks, and UDOs contain Orchestra statements. An or-
chestra statement in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;conments

The label is optional and identifies the basic statement that follows as the potential target of
a go-to operation (see Program Flow Control). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value.
Others take no arguments and only produce a resullt.

Every orchestra statement must be on a single line, however long lines can be wrapped to a
new line using the '\' character. This character indicates that the next line is part of the cur-
rent one, thisway you can split aline for easier reading, like this:

a2 oscbnk kcps, 1.0, kfnmdl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
o, 00 0, 0, O, 0, -1, \
kfnum 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra
code. Comments begin with a semicolon (;) and extend to the end of the line. Comments can
optionally bein C-style, spanning multiple lines like this:

/* Anything in here --------
is a comrent which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. This also is option-
al, i.e. aline may have only alabel or comment or be entirely blank. If present, the basic
statement must be complete on one line, and is terminated by a carriage return and line feed.
The opcode determines the operation to be performed; it usually takes some number of input
values (or arguments, with a maximum value of about 800); and it usually has a result field
variable to which it sends output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

. once at the beginning of each note (at initialization (init) time: i-rate)

. once every performance-time control loop (perf-time control rate, or k-rate)

A W DN

. once each sound sample of every control loop (perf-time audio rate, or a-rate)

50

Syntax of the Orchestra

Orchestra Header Statements

The Orchestra Header contains global information that applies to all instruments and defines aspects of
Csound output. It is sometimes referred to asinstr 0, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an as-
signment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements
belong to a pseudo instrument 0O, an init pass of which is run prior to all other instruments at score time
0. Any ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09)
provided it is an init-time only operation. Statements that are normally placed in an orchestra header are:
 Odbfs

e ctrlinit

* ftgen

o kr

* ksmps

* massign

* nchnls

* pgmassign

. p$t

o seed

o I

e strset

For example, a Csound header may look like:

Sr 44100
kr 4410
ksnmps = 10
nchnls = 2
Odbfs =1

massign 1, 10

Instrument and Opcode Block Statements

An instrument block is comprised of ordinary statements that set values, control the logical flow, or in-
voke the various signal processing subroutines that lead to audio output. Statements that define an in-
strument block are:

e instr

* endin

51

Syntax of the Orchestra

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O
out aout

endi n

Statements that define a user defined opcode (UDO) block are

» opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and arate results), with the sole exception of the init opcode. Most generators and modifiers,
however, produce signals that depend not only on the instantaneous value of their arguments but also on
some preserved internal state. These performance-time units therefore have an implicit init-time com-
ponent to set up that state. The run time of an operation which produces no result is apparent in the op-
code.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Types, Constants and Variables

Constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

Variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. a-rate variables, on the other hand, are arrays or vectors of information.
Though renewed on the same perf-time control pass as k-rate variables, these array cells represent a
finer resolution of time by dividing the control period into sample periods (see ksmps). a-rate variables
are used to store and recall data changing at the audio sampling rate (e.g. output signals of oscillators,
filters, etc.).

Some types of variables can be thought of as signals. For example a-rate and k-rate variables are signals
that have a constant update frequency (see kr and sr). This abstraction is generally quite useful, but be
aware that a-rate signals are actually vectors which are processed at k-rate, i.e. Csound works at k-rate
internally but processes ksmps number samples for each a-rate variable on every control pass.

There are other types of signals that require rates that don't match kr or sr. f-rate and w-rate signals are
used for spectral processing and their rate is determined by the window size and overlap factor.

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from pass to pass (e.g. from initiaization time to performance time)

52

Syntax of the Orchestra

within a single instrument. Local variable names begin with the letter p, i, k, or a. The same local vari-
able name may appear in two or more different instrument blocks without conflict.

Global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are specia reserved symbols. Global variables are used for broadcasting gen-
eral values, for communicating between instruments (semaphores), or for sending sound from one in-
strument to another (e.g. mixing prior to reverberation).

Given these distinctions, there are nine forms of local and global variables:

Table 3. Typesof Variables

Type When Renewable L ocal Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral data|k-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

vector variables k-rate t name

Where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to the init pass through an instrument, while
MIDI controllers are variables which can be updated asynchronously from a MIDI file or MIDI device.

Variable Initialization
Opcodes that let oneinitialize variables are:
e assign
e divz
e init

 tival

Predefined Math Constant Macros

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

53

Syntax of the Orchestra

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper
rate. For instance, if the terms within a sub-expression al change at the control rate or slower, the sub-
expression will be evaluated only at the control rate; that result might then be used in an audio-rate eval-
uation. For example, in

k1l + abs(int(p5) + frac(p5) * 100/12 + sqgrt(kl))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the re-
mainder of the expression evaluated every k-period. The whole might occur in a unit generator argument
position, or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
are optionally full pathnames, whose target directory is fully specified. When not a full path, filenames
are sought in several directories in order, depending on their type and on the setting of certain environ-
ment variables. The latter are optional, but they can serve to partition and organize the directories so that
source files can be shared rather than duplicated in several user directories. The environment variables
can define directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include
filesfor orchestraand score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the first one has the highest precedence.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfiles for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and then
SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not disabled,
files will next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SAD-
IR.

4. MIDI files for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in MFDIR, SSDIR
and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then in the same directory as the orchestra or score file (as appropriate), then finally IN-
CDIR.

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qualifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; res-

54

Syntax of the Orchestra

ults are created at their listed times, then remain available for use as inputs elsewhere. With few excep-
tions, argument rates may not exceed the rate of the result. The validity of inputs is defined by the fol-
lowing:

» arguments with prefix i must be valid at init time;

» arguments with prefix k can be either control or init values (which remain valid);

» arguments with prefix a must be vector inputs;

» arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most op-
codes (such as linen and oscil) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate a command that usually produces an &, k-,

or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators.”

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

o #define

* SNAME

o fHifdef

o #Hifndef

* #end

o #else

 #include

o #undef

Orchestra macros can also be defined using the command line flag --omacro:.
More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros; for score macros, refer to Score Macros.

Named Instruments

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax

55

Syntax of the Orchestra

A named instrument is declared as shown below:

instr Name[, Name2[, Name3[, ...]]]
[...]

endin

A single instrument can have any number of names, and any of these names can be used to call the in-
strument. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument,
so the following declaration is also valid:

instr 100, Nanel, 99, Nane2, 1, 2, 3

An instrument name may consist of any number of letters, digits, and the underscore () character,
however, the first character must not be a digit. Optionally, the instrument name may be prefixed with
the '+' character (see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

 any unused instrument numbers are taken up in ascending order, starting from 1

* the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have ahigher number (except if the '+ modifier is used)

« if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments, the
numbering of these will follow the order of definition, according to the above rule.

Using '+ is mainly useful for global output or effect instruments, that must be performed after the oth-
er instruments.

An example for instrument numbers:
instr 1, 2
endi n

instr Instrl
endi n

instr +Effectl, Instr2
endin

instr 100, Instr3, +Effect2, Instr4, 5
endin

In this example, the instrument numbers are assigned as follows:

Instrl. 3
Effectl: 101
Instr2: 4
Instr3:. 6
Effect2: 102
Instrd4. 7

56

Syntax of the Orchestra

Using Named Instruments

Named instruments can be called by using the name in double quotes as the instrument number (note:
the '+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported

by:
* 'i"and g score events

Notes

1. in score files, unmatched quotes, and spaces or other invalid characters in the strings
should be avoided, otherwise (at least with current version) unpredictable behavior
may occur (this problem does not exist for -L line events). However, there is check-
ing for undefined instruments, and in such cases, the event is simply ignored with a
warning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It is
till possible to sort such scores by using the -t0 option of the main Csound execut-
able)

* real-timeline events (-L)

* event, schedkwhen, subinstr, and subinstrinit opcodes

* massign, pgmassign, prealloc, and mute opcodes
Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:
i nsno nstrnum "nane"

With the above example, nstrnum "Effectl” would return 101. If an instrument with the specified name
does not exist, an init error occurs, and -1 is returned.

Example
- orchestra ----
Sr = 44100
ksmps = 10
nchnls = 1
preal | oc "Si neWave", 20
prealloc "M Dl Si neWave", 20
massign 1, "M DI Si neWave"
gaCQut Send init O
instr +Qutputlnstr
out gaCut Send
cl ear gaQut Send
endi n
instr SineWave
al oscils p4, p5, 0

vincr gaQut Send, al

endi n

57

Syntax of the Orchestra

instr M DI Si neWave

i amp vel oc
inote not num
i cps = cpsoct(inote / 12 + 3)
al oscils ianp * 100, icps, O
vincr gaQut Send, al
endin
- score ----

i "SineWave" 0 2 12000 440
i "Qutputlnstr" 0 3
e

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and en-
dop. The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO looks likethis:

opcode Lowpass, a, akk

setksnmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init 0 ; initialize output
aout = ain*kal + aout*ka2 ; sinmple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers 1
arrate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kval uel, kval ue2

See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) a Csounds.com [ht-
tp://www.csounds.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

K-Rate Vectors

Csound allows the declaration and deployment of one-dimensional vectors or tables. They arelocal to an
instrument, and need to be declared for size (with the init opcode. Individual elements are read as part of
any expression with square brackets to give an index at k-rate. Individual elements can be assigned, and
there are a number of opcodes to query and modify tables.

58

http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/udo/
http://www.csounds.com/udo/

The Standard Numeric Score

The score section contains events that instatiate instruments from the orchestra. There are
various score statements that enable complex score building within the csound language.

Currently, the maximum length of the score is 2°L.1 control periods. For example, with
kr=1500, you can run a score for a maximum of about 16.5 days before problems occur due
to overflowing signed 32-bit integer variables.

Note also that when using single precision floats (i.e. the 'f' installers rather than the 'd'
ones), the accuracy of timing becomes worse after performing for along time.

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s
statement. Before being read by the orchestra, a score is preprocessed one section at atime.
Each section is normally processed by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose p1 whole numbers correspond, any pfield
left empty will take its value from the same pfield of the preceding statement. An empty
pfield can be denoted by a single point (.) delimited by spaces. No point is required after the
last nonempty pfield. The output of Carry preprocessing will show the carried values expli-
citly. The Carry Feature is not affected by intervening comments or blank lines; it is turned
off only by anon- i statement or by ani statement with unlike p1 whole number.

Three additional features are available for p2 alone: +, *+x, and *-x. The symbol + in p2 will
be given the value of p2 + p3 from the preceding i statement. This enables note action times
to be automatically determined from the sum of preceding durations. The + symbol can itself
be carried. It islegal only in p2. E.g.: the statements

i1 o .5 100
i +

|

will result in

i1 o0 5 100
i1 .5 5 100
i1 1 5 100

The symbols ~+x and ~-x determine the current p2 by adding or subtracting, respectively, the
value of x from the preceding p2. These may be used in p2 only and are not carried like the
+ symbol. Note also that there should be no spaces following the », the +, or the - parts of
these symbols -- the number must come directly after asin ~+2.3. If the example above had

been

il 0 .5 100
i A+l

i A+l

59

The Standard Numeric Score

the result would instead be

il 0 5 100
il 1 5 100
il 2 5 100

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input
typing and will simplify later changes.

There can sometimes be circumstances where you do not want "missing” pfields after the last one
entered to be implicitly carried. An example would be an instrument that is designed to take a variable
number of pfields. Beginning with Csound 5.08, you can prevent the implicit carrying of pfields at the
end of an i statement by using the symbol ! (called the "no-carry symbol™"). The ! must appear at the end
of ani statement and it cannot be used in pl, p2, or p3, since these pfields are required. Here is an ex-
ample:

1 0 .5 100

This score would be interpreted as

100
100

N A
PR O
coaa;

; no p4
; only pl to p3 are carried here

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the
units required by the orchestra. After time warping, score files will be seen to have orchestra-readable
format demonstrated by the following:

i pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting implies that
score statements may appear in any order within a section.

Note

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score
file, to produce a new file in orchestra-readable format (see the Tempo example). Pro-
cessing can be invoked either explicitly by the Scsort command, or implicitly by Csound
which processes the score before calling the orchestra. Source-format files and orchestra-

60

The Standard Numeric Score

readable files are both in ASCII character form, and may be either perused or further modi-
fied by standard text editors. User-written routines can be used to modify score files before
or after the above processes, provided the final orchestra-readable statement format is not
violated. Sections of different formats can be sequentially batched; and sections of like
format can be merged for automatic sorting.

Score Statements

The statements used in scores are:

» a- Advance score time by a specified amount

* b - Resetsthe clock

* e- Marksthe end of the last section of the score

 f- Causes a GEN subroutineto place valuesin a stored function table
* i - Makesan instrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

* n- Repeats a section

* (- Used to quiet an instrument

* r - Starts arepeated section

* s- Marksthe end of asection

* t- Setsthetempo

» v- Providesfor locally variable time warping of score events

» X - Skip the rest of the current section

» { - Begins anon-sectional, nestable loop.

} - Ends anon-sectional, nestable loop.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are inter-
preted during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played
by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which
can reference others, etc. References must eventually terminate in a real number or a ramp symbol.
Closed loop references should be avoided. np and pp symbols areillegal in pl1, p2 and p3 (although they
may reference these). np and pp symbols may be Carried. np and pp references cannot cross a Section
boundary. Any forward or backward reference to a non-existent note-statement will be given the value
zero.

61

The Standard Numeric Score

E.g.: the statements

il 0 1 10 np4 pp5
il 1 1 20

il 1 1 30

will result in

il 0 1 10 20 0
il 1 1 20 30 20
i1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsor-
ted statements, the operation that interprets these symbols is acting on a time-warped and fully sorted
version of the score.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

100
<

<
400
<
0

RPRRRRE
ORWNRO
RPRRRRE

will result in

100
200
300
400
200

RPRRRRE
OhWNRO
RPRRRRE

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although
they may be referenced by these). Ramp symbols are illegal in pl, p2 and p3. Ramp symbols may be
Carried. Note, however, that while the Carry feature will propagate ramp symbols through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted ver-
sion of the score. In fact, time-based linear interpolation is based on warped score-time, so that a ramp
which spans a group of accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation
ramp, similar to expon. Using the symbol ~ (atilde) will result in uniform, random distribution between
the first and last values of the ramp. Use of these functions must follow the same rules as the linear ramp
function.

62

The Standard Numeric Score

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can allow for simpler score writing, and provide an elementary alternative to full score genera-
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a ssmple macro. The name of the macro must begin with aletter and can con-
sist of any combination of letters and numbers. Case is significant. This form islimiting, in that the vari-
able names are fixed. More flexibility can be obtained by using a macro with arguments, described be-
low.

#define NAME(@' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with a letter and can consist of any combination of letters and num-
bers. Within the replacement text, the arguments can be substituted by the form: $A. In fact, the imple-
mentation defines the arguments as simple macros. There may be up to 5 arguments, and the names may
be any choice of |etters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The nameis
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not
to terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax
#define NAME # repl acenent text #
#define NAME(a' b' c') # replacenent text #
$NAME.

#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend
over mutliple lines. The replacement text is enclosed within the # characters, which ensure that addition-
al characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They
take no notice of any meaning, so spaces are significant. This is why, unlike the C programming lan-
guage, the definition has the replacement text surrounded by # characters. Used carefully, this simple
macro system is a powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

63

The Standard Numeric Score

#define Flute #il#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 1. Smple Macro

A note-event has a set of p-fields which are repeated:

e ARGS # 1.01 2.33 138#
8.00 1000 $ARGS
8.01 1500 $ARGS
8.02 1200 $ARGS
8.03 1000 $ARGS

Thiswill get expanded before sorting into:

0 1000 1.01 2.33 138
1 1500 1.01 2.33 138
2 1200 1.01 2.33 138
3 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
i .00 1000 $ARGS1

i .01 1500 $ARGS2

i .02 1200 $ARGS1

i 03 1000 $ARGS2

Example 2. Macroswith arguments

efine ARGA) # 2.345 1
1 8.00 1000 $ARE 2.0)
18)

.01 1200 $ARG(3.0

defi .03 $A 234.9#
i10
il +

which expandsto

00 1000 2. 345 1.03
01 1200 2. 345 1.03

234.9
234.9

[
© ©
wn

The Standard Numeric Score

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i nclude "fil enane”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#i nclude "fil enane”

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. Thereis cur-
rently alimit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repeated sections.

s
#i ncl ude :sectionl:
;, Repeat that

s
#i ncl ude :sectionl:

Alternative methods of doing repesats, use the r statement, m statement, and n statement.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

65

The Standard Numeric Score

Bath, UK
April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist
in this area the syntax of arithmetic expressions within square brackets [] has been introduced. Expres-
sions built from the operations +, -, *, /, % ("modulo"), and ~ ("power of") are allowed, together with
grouping with (). Unary minus and plus are also supported. The expressions can include numbers, and
naturally macros whose values are numeric or arithmetic strings. All calculations are made in floating
point numbers. The usual precedence rules are followed when evauating: expressions within par-
antheses () are evaluated first and ” is evaluated before *, /, and % which are evaluated before + and -.

In addition to arithmetic operations, the following bitwise logical operators are also available: & (AND),
| (OR), and # (XOR, exclusive-OR). These operators round their operands to the nearest (long) integer
before evaluating. The logical operators have the same precedence as the *, /, and % arithmetic operat-
ors.

Finally, the tilde symbol ~ can be used in an expression wherever a number is permissible to use. Each ™
will evaluate to a random value between zero (0) and one (1).

Example
r3 CNT
il 0 [0.3*$CNT.]
il + [($CNT./3)%+0.2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this ex-
pands to

.3
3 0.533333

6
0. 866667

PR R RR
©
©

oo oo oo
o

9 1.2

O——wn——un——0n

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are
subtly different.

Here are some simple examples of each operator:

+ O

1 [110 + 220] ; evaluates to 330
[330 - 55] ; 275

P

66

The Standard Numeric Score

44 * 10] ; 440

i1+

i1+ 1100 / 2] ; 550

i1 + 57" 4] ; 625

il + 5660 % 1000] ; 660

i1+ 110 & 220] ; 76

i1+ 110 | 220] ; 254

i1 o+ 110 # 220] ; 178

i1 + ~] ; random between 0-1
i1 + ~* 4 + 1] ; random between 1-5
i1 + ~ * 95 + 5] ; random bet ween 5-100
i1+ 8/ 2* 3] ;12

il + 4 +3-2+1] ;6

il + 4 +3*2+1] ; 11

i1+ (4 +3)*(2 +1)] : 21

i1+ 2 * 2 &3] ;4

i1 + 3&2* 2] ;0

i1 + 4| 3* 3] ; 13

The @ operator
New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@x (next

power-of-two-plus-one greater than or equal to x).

[@11] will evaluate to 16
[@11] to 17

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)
Strings in p-fields
Y ou can pass astring as a p-field instead of a number, like this:

i 10 10 "A4"

The string can be received by the instrument and further processed using the string opcodes.

Note

Currently only one p-field can contain a string (i.e. no more tha one string per line is al-
lowed). Y ou can overcome this using strset and strget.

67

Front Ends

Front ends are programs that provide some form of user interface for Csound. Within these
programs, Csound is used to generate sound, and familiarity with Csound code is required in
order to use them. Front ends typically add helpful features, such as syntax coloring, graphic
widgets, or tools for algorithmic score generation, that are not part of Csound itself. Most of
these programs were created by a single person, so some of them are not being maintained.
Below is alist (certainly not complete, and perhaps not up to date) of front ends available
for Csound.

Most often, you'll want to download and install Csound itself before downloading and in-
stalling a front end. Some front ends require particular versions of Csound, so if you plan to
use afront end, it's recommended that you verify its compatibility before installing Csound.

QuteCsound

QuteCsound is a versatile, cross-platform GUI (graphical user interface) which is bundled
with the standard Csound distribution. Created and maintained by Andres Cabrera, QuteC-
sound provides a multi-tabbed editor, graphic widgets for real-time sound control, and an
opcode help system that links to this manual. At this writing (2011) QuteCsound is in active
development, so the version installed in your system when you install Csound may not be
the most current. The most recent version can be found at http://qutecsound.sourceforge.net/.

Blue

A cross-platform composition-oriented front end written by Steven Yi in Java. The user in-
terface provides a timeline structured somewhat like a digital multitrack, but differsin that
timelines can be embedded within timelines (polyObjects). This allows for a compositional
organization in time that many users will find intuitive, informative, and flexible. Each in-
strument and score section in a blue project has its own editing window, which makes or-
ganizing large projects easier. Blue can be downloaded a Blue Home Page [ht-
tp://csounds.com/stevenyi/blue].

Cecilia

Uses Csound, and also incorporates its own score generation language. Not updated since
2004, but should run in Mac OSX and Linux. Avalable from ht-
tp://www.jeanpiche.com/software.htm.

MacCsound

A front end for the Macintosh, MacCsound provides a text editor, graphic editing of control
signals, and other features. Avalable a the MacCsound Page [ht-
tp://www.csounds.com/matt/MacCsound/]. MacCsound requires the Universal version of
Csound, not the Intel version, and with OS 10.6 also requires Rosetta, which is located in the
OSX installer DVD for 10.6 but is not installed by default.

WinXound

A convenient front-end for Windows with syntax highlighting. You can get it at the
WinXsound Front Page [http://winxound.codeplex.com/].

68

http://qutecsound.sourceforge.net/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://www.jeanpiche.com/software.htm
http://www.jeanpiche.com/software.htm
http://www.csounds.com/matt/MacCsound/
http://www.csounds.com/matt/MacCsound/
http://www.csounds.com/matt/MacCsound/
http://winxound.codeplex.com/
http://winxound.codeplex.com/

Front Ends

Cabel

Cabel is a graphical user interface for building Csound instruments by patching modules, similar to the
approach used in modular synthesizers and graphical programming environments such as Pd. Cross-
platform, written in Python. While Cabel seems (as of 2011) not to have been updated in four years, it
still works with current versions of Csound. Available from http://cabel .sourceforge.net/.

Csound5GUI

Csound5GUI is a cross-platform GUI. Formerly part of the standard Csound distribution, it is now avail-
able as source code and possibly as a downloadable .exe for Windows. It implements most configuration
features of Csound.

CSDplayer

Thisis asimple Java program to play csd files. It isincluded in the standard distribution, and will be of
interest mainly to Java programmers.

Winsound

Like Csound5GUI, Winsound was formerly part of the main Csound tree. It is now available only as
source code. Winsound is a cross-platform FLTK port of Barry Vercoe's origina front-end for csound.
Some partially sighted or unsighted users report success using Winsound with text-to-speech software.

Csound Editor

Csound Editor is no longer being maintained, but it's still available from Flavio Tordini's Home Page
[http://flavio.tordini.org/csound-editor/]. For Windows systems, includes syntax highlighting.

In addition to the main front ends listed above, here are some other programs that may qualify as front
ends, depending on your definition:

GeoMaestro: http://www.zogotounga.net/GM/eGM 0.html
Csound-x: http://www.zogotounga.net/comp/csoundx.html
AthenaCL : http://www.flexatone.net/athena.html
GRACE/Common Music: http://commonmusi c.sourceforge.net/
AlgoScore: http://kymatica.com/Software/AlgoScore
nGen: http://mustec.bgsu.edu/~mkuehn/ngen/
ImproSculpt: ht-

ﬁ)r;//i mproscul pt.sourceforge.net/pmwiki/pmwiki.p

CsoundAC
Python Scripting

Y ou can use CsoundAC as a Python extension module. Y ou can do thisin a standard Python interpreter,
such as Python command line or the Idle Python GUI.

To use CsoundAC in a standard Python interpreter, import CsoundAC.

69

http://cabel.sourceforge.net/
http://flavio.tordini.org/csound-editor/
http://flavio.tordini.org/csound-editor/
http://www.zogotounga.net/GM/eGM0.html
http://www.zogotounga.net/comp/csoundx.html
http://www.flexatone.net/athena.html
http://commonmusic.sourceforge.net/
http://kymatica.com/Software/AlgoScore
http://mustec.bgsu.edu/~mkuehn/ngen/
http://improsculpt.sourceforge.net/pmwiki/pmwiki.php
http://improsculpt.sourceforge.net/pmwiki/pmwiki.php
http://improsculpt.sourceforge.net/pmwiki/pmwiki.php

Front Ends

i mport CsoundAC

The CsoundAC module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C:.\ Docunents and Settings\nkg>python

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore information

>>> jnport CsoundAC

>>> csound. | oad("c:/ proj ect s/ csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perforn()

BEGAN CppSound: : perform(5, 988ee0)...
BEGAN CppSound: : conpi |l e(5, 988ee0). ..
Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
I'i bsndfile-1.0.10pre6

orchname: tenp.orc

scor enane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004
di spl ays suppressed

0dBFS | evel = 32767.0

orch now | oaded

audi o buffered in 16384 sanpl e-frane bl ocks

SFDI R undefined. using current directory

witing 131072-byte bl ks of shorts to test.wav

WAV

SECTI ON 1

ENDED CppSound: : conpil e

ftabl e
ftable
ftable
ftable
ftable
ftable
ftable
ftabl e
ftabl e
ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15

ftabl e 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1

B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0

CRNOORWNE

70

Front Ends

new alloc for instr 1

B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1
B 93.940 .. 94.418 T 98.799 TT281.799 M 477.6 85.0
B 94.418 ..100. 000 T107.172 TT290.172 M 118.9 11.5
end of section 4 sect peak anps: 25950.8 26877.4
inactive allocs returned to freespace

end of score. overall anps: 32204.8 31469.6
overall sanples out of range: 0 0

0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed time = 13.469000 seconds

ENDED CppSound: : perform

1

>>>

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use
Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. set Orchestra('''sr = 44100

kr = 441

ksmps = 100
nchnls = 2
0dbfs = .1

instr 1,2,3,4,5 ; FluidSynth General MD
I'; | NITI ALI ZATI ON
Channel , bank, and program determine the preset, that is, the actual sound

i channel pl

i program = p6

i key = p4

ivelocity = p5 + 12

i j unk6 = p6

ijunk?7 = p7

; AUDI O

i status = 144

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/projects/ csound5/ sanpl es/ Vi nt ageDr eansVaves-v2. sf 2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''")

csound. set Command(" csound --opcode-Ilib=c:/projects/csound5/fluid.dlIl \\
-RwWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform)

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, and it also runs as a VST instrument or effect plugin in
VST hosts such as Cubase with the same user interface. CsoundV ST is part of the main csound source
tree, but is not included in standard distributions, due to licensing limitations of Steinberg's VST SDK.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with a row of buttons along the top. Click on the Open...
button to load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the scorefile
in the respective tabs of the user interface. When all is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Stop button.

VST Plugin

71

Front Ends

The following instructions are for Cubase 4.0. Y ou would follow roughly similar procedures in other
hosts.

Use the Devices menu, Plug-In Information dialog, VST Plug-Ins tab, VST 2.x Plug-in Paths dialog, Add
button to add your csound/ bi n directory to Cubase's plugin path. Y ou can have multiple directories sep-
arated by semicolons. Then select the CsoundV ST path and click on the Set as Shared Folder button.
Quit Cubase, and start it again.

Use the File menu, New Project dialog to create a new song.

Use the Project menu, Add Track submenu, to add a new MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select CsoundVST from the list that pops up.
Click on the e (for edit) button to open the CsoundVST dialog.

On the Settings page, check the Instrument box in the VST Plugin group, and the Classic box in the
Csound performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a
Csound csd file suitable for MIDI performance, such as csound/ exanpl es/ CsoundVST. c¢sd. Click on the
OK button to load the file. You can also open and import a suitable . orc and . sco file as described
above.

In any event, the command line in the Classic Csound command line text box must specify -
+rtmidi=nul | -M, and should read something like this:

csound -f -h -+rtmdi=null -M) -d -n -n¥ --mdi-key-oct=4 --nidi-velocity=5 tenp.orc tenp.sco

Click on the VST Instruments dialog's on/off button to turn it on. This should compile the Csound or-
chestra.

In the Cubase Track Inspector, click on the out: Not Assigned label and select CsoundVST from the list
that pops up.

On the ruler at the top of the Arrangement window, select the loop end point and drag it to the end of
your part, then click on the loop button to enable looping.

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.
Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

Y ou can assign up to 16 channels to a single CsoundV ST plugin.

72

TclCsound

TclCsound was introduced to provide a simple scripting interface to Csound. Tcl isasimple
language that is easy to extend and provide nice facilities such as easy file access and TCP
networking. With its Tk component, it can also handle a graphic and event interface. TclC-
sound provides three ‘ points of contact' with Tcl:

1. acsound-aware tcl interpreter (cstclsh)
2. acsound-aware windowing shell (cswish)

3. acsound commands module for Tcl/Tk (tclcsound dynamic lib)

The Tcl interpreter: cstclsh

With cstclsh, it is possible to have interactive control over a csound performance. The com-
mand starts an interactive shell, which holds an instance of Csound. A number of commands
can then be used to control it. For instance, the following command can compile csound
code and load it in memory ready for performance:

csConpi |l e -odac orchestra score -nD

Once this is done, performance can be started in two ways. using csPlay or csPerform . The
command

csPl ay

will start the Csound performance in a separate thread and return to the cstclsh prompt. A
number of commands can then be used to control Csound. For instance,

csPause

will pause performance; and

csRewi nd

will rewind to the beginning of the note-list. The csNote, csTable and csEvent commands
can be used to add Csound score events to the performance, on-the-fly. The csPerform com-
mand, as opposed to csPlay , will not launch a separate thread, but will run Csound in the
same thread, returning only when the performance is finished. A variety of other commands
exist, providing full control of Csound.

Cswish: the windowing shell

With Cswish, Tk widgets and commands can be used to provide graphical interface and
event handling. As with cstclsh, running the cswish command also opens an interactive
shell. For instance, the following commands can be used to create a transport control panel
for Csound:

frame .fr

button .fr.play -text play -comand csPl ay
button .fr.pause -text pause -comrand csPause
button .fr.rew -text rew -comrand csRew nd
pack .fr .fr.play .fr.pause .fr.rew

73

TclCsound

Similarly, it is possible to bind keys to commands so that the computer keyboard can be used to play
Csound.

Particularly useful are the control channel commands that TclCsound provides. For instance, named 1O
channels can be registered with TclCsound and these can be used with the invalue, outvalue opcodes. In
addition, the Csound API also provides a complete software bus for audio, control and string channels. It
is possible in TclCsound to access control and string bus channels (the audio bus is not implemented, as
Tcl is not able to handle such data). With these TclCsound commands, Tk widgets can be easily connec-
ted to synthesis parameters.

A Csound server

In Tcl, setting up TCP network connections is very simple. With afew lines of code a csound server can
be built. This can accept connections from the local machine or from remote clients. Not only Tcl/Tk
clients can send commands to it, but TCP connections can be made from other sofware, such as, for in-
stance, Pure Data (PD). A Tcl script that can be run under the standard tclsh interpreter is shown below.
It uses the Tclcsound module, adynamic library that adds the Csound API commandsto Tcl.

1 oad tclcsound. so

#(OSX: tclcsound. dylib, Wndows: tclcsound.dll)
| oad tclcsound. so Tcl csound

set forever 0O

This arranges for commands to be eval uated

proc ChanEval { chan client } {

I1f { [catch { set rtn [eval [gets $chan]]} err] } {
puts "Error: S$err"

} else {

puts $client $rtn

flush $client

}
}
this arranges for connections to be nade

proc NewChan { chan host port } {
puts "Csound server: connected to $host on port $port ($chan)"”
fileevent $chan readable [list ChanEval $chan $host]

this sets up a server to listen for
connections

set server [socket -server NewChan 40001]

set sinfo [fconfigure $server -socknane]

puts "Csound server: ready for connections on port [lindex $sinfo 2]'
vwai t forever

With the server running, it is then possible to set up clients to control the Csound server. Such clients
can be run from standard Tcl/Tk interpreters, as they do not evaluate the Csound commands themselves.
Here is an example of client connections to a Csound server, using Tcl:

connect to server
set sock [socket |ocal host 40001]

conpil e Csound code
puts $sock "csConpile -odac orchestra score"
flush $sock

74

TclCsound

start perfornmance
puts $sock "csPl ay"
flush $sock

stop perfornmance
puts $sock "csStop"
flush $sock

As mentioned before, it is possible to set up clients using other software systems, such as PD. Such cli-
ents need only to connect to the server (using a netsend object) and send messages to it. The first item of
each message is taken to be a command. Further items can optionally be added to it as arguments to that
command.

A Scripting Environment

With TclCsound, it is possible to transform the popular text editor e-macs into a Csound scripting/per-
forming environment. When in Tcl mode, the editor allows for Tcl expressions to be evaluated by selec-
tion and use of a simple escape sequence (Ctrl-C Ctrl-X). This facility allows the integrated editing and
performance of Csound and Tcl/Tk code.

In Tcl it is possible to write score and orchestra files that can be saved, compiled and run by the same
script, under the e-macs environment. The following example shows a Tcl script that builds a csound in-
strument and then proceeds to run a csound performance. It creates 10 slightly detuned parallel oscillat-
ors, generating sounds similar to those found in Risset's Inharmonique.

| oad tclcsound. so Tcl csound

set up sone internediary files

set orcfile "tcl.orc"
set scofile "tcl.sco"
set orc [open $orcfile w
set sco [open $scofile w

This Tcl procedure builds an instrument
proc Makelns { no code } {

gl obal orc sco

puts $orc "instr $no"

puts $orc $code

puts $orc "endin"

Here is the instrunent code
append ins "asuminit 0 \n"
append ins "ifreq = p5 \n"
append ins "ianp = p4 \n"

for { set i 0} { $i <210} { incr i } {
append ins "a$l oscili ianp,
ifreg+ifreq*[expr $i * 0.002], 1\n"

}

for { se; } 0} {$i <10} { incr i } {

if { &

append ins " + a$i"

} else {

append ins "asum = a$
}

75

TclCsound

append ins "\nkl linen 1, 0.01, p3, 0.1 \n"
append ins "out asuntkl"

build the instrument and a dummy score

Makel ns 1 $ins
puts $sco "f0 10"
cl ose $orc

cl ose $sco

conpile
csConpile $orcfile $scofile -odac -d -nD

set a wavetable
csTable 1 0 16384 10 1 .5 .25 .2 .17 .15 .12 .1

send in a sequence of events and performit
for {set i 0} { $i <60} { incr i } {

csNote 1 [expr $i * 0.1] .5\

[expr ($i * 10) + 500] [expr 100 + $i * 10]

csPerform

it is possible torun it interactively as
wel |

csNote 1 0 10 1000 200

csPl ay

The use of such facilities as provided by e-macs can emulate an environment not unlike the one found
under the so-called ‘ modern synthesis systems, such as SuperCollider (SC). In fact, it is possible to run
Csound in a client-server set-up, which is one of the features of SC3. A major advantage is that Csound
provides about three or four times the number of unit generators found in that language (as well as
providing alower-level approach to signal processing, in fact these are but afew advantages of Csound).

TclCsound as a language wrapper

It is possible to use TclCsound at a dightly lower level, as many of the C API functions have been
wrapped as Tcl commands. For instance it is possible to create a ‘classic' Csound command-line fron-
tend completely written in Tcl. The following script demonstrates this:

#!/usr/1ocal /bin/cstclsh

set result 1
csConpi | eLi st $argv

while { $result !'=0 1} {
set result csPerfornKsnps
}

TclCsound Command Reference

Performance control commands:

76

TclCsound

csCompile [csound command-ling] : compiles an orc/sco/csd + any options

csCompileList arglist : compiles an orc/sco/csd + options given asa Tcl list ‘arglist’

csPerform : plays the score, returning when finished

csPerformKsmps : performs one ksmps block of audio samples, returning when finished
csPerformBuffer : performs one buffersize block of audio samples, returning when finished

csPlay : starts asynchronous performance in a separate thread, returning immediately

csPause : pauses playback

csStop : stops performance and resets csound

csRewind : rewinds the score

csOffset secs: offsets score playback by secs

csGetoffset : returns the score offset in secs

csGetScoreTime : returns the score time in secs

Event commands:

csNote [p-fields] : sendsin ai-statement event

csTable[p-fields] : sendsin af-statement event

csEvent opcode [p-fields] : sendsin a score event defined by ‘opcode’ plus p-fields

csNotelist arglist : sendsin ai-statement event with p-fieldsasaTcl list ‘arglist’

csTableList arglist : sendsin af-statement event with p-fieldsasaTcl list 'arglist'

csEventList arglist : sendsin a score event defined by 'opcode’ plus p-fieldsasaTcl list 'arglist’
Invalue, outvalue, pvsin, pvsout control and string channel commands:

cslnChannel name: registers a csound inval ue channel

csOutChannel name : registers a csound outvalue channel and creates tcl global variable 'name
cslnValue channel value : setsthe value of a csound invalue channel

csOutValue channel : returns the value of a csound outval ue channel

csPvsin number [size olaps wsize wtype]: registers a pvs in bus channel, optionaly initialising fsig
values for fftsize to 'size' (default:1024), overlaps to 'olaps (def.: size/4), window size to 'wsize' (def.:
size) and window type to ‘wtype' (def.: 1, Hanning window, see manual page for pvsanal). Works with
pvsin opcade (PVS_AMP_FREQ format only).

csPvsOut number [size olaps wsize wtype]: registers a pvs out bus channel. Works with opcode pvsout
(PVS_AMP_FREQ format only).

csPvslnSet channel bin amp freq: setsthe amp and freq of abin of the pvsin channel number.

csPvsOutGet channel bin [isFreq]: returns the amp or freq of a bin of the pvs out channel number. The
optional argument 'isFreq’ (default: 0) controls whether the returned value is the bin amp (0) or freq (1).

77

TclCsound

csSetControlChannel channel value : sets the value of control channel 'channel’, creating it if it does
not exist

csGetControlChannel channd : returns the value of control channel 'channel; creates the channel it if
it does not exist

csSetStringChannel channel string : setsthe string channel ‘channel’, creating it if it does not exist

csGetStringChannel channel : returns the string in channel 'channel’; creates the channel it if it does
not exist

M essage commands.

csM essageOutput var: appends all csound messages to the tcl variable var.

Table commands:

csGetTableSize ftn : returns the size of function table ftn (-1 if non-existent)
csSetTableftn index value : setsthe value of position 'index’ to 'value' in function table 'ftn’
csGetTable ftn index : returns the value of position 'index' in function table 'ftn'
Environment variable commands:

csOpcodedir opcodedir : sets the opcode directory

csSetenv envvar value : sets any environment variable (eg. SFDIR, SADIR)

78

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are
a Csound developer or need to develop Csound plugins, you should try to use one of the pre-
compiled distributions from http://www.sourceforge.net/projects/csound. However, building
from source is probably the best option on GNU/Linux.

This section focuses on the main Csound 5 build system, which uses SCons [ht-
tp://www.scons.org], a Python program that replaces make for cross-platform configuration
and building.

When building Csound from source instead of using a precompiled package, you first need
to obtain the sources for a release of Csound at http://www.sourceforge.net/projects/csound.
The source packages have either a zip or tar.gz extension.

The latest (possibly unstable) Csound source code is aso available through GIT. The
Csound GIT front page is located at: http://csound.git.sourceforge.net/git/gitweb-index.cgi.
Using git for just checking out and compiling is pretty easy. Install GIT for your platform
and use this command to clone the Csound5 git repository:

git clone git://csound.git.sourceforge. net/gitroot/csound/ csound5

Thiswill checkout aread-only (meaning, you can not commit back to the central git reposit-
ory) version of the Csound5 repo. To update with the latest from the master repo, use:

git pul

The same processiis used for the Csound manual. Use this command to clone:

git clone git://csound. git.sourceforge. net/gitroot/csound/ manua

Basic requirements to build Csound 5 on any plat-
form

e Instal libdsndfile version 1.0.13 or later from www.mega-nerd.com/libsndfile [ht-
tp://www.mega-nerd.com/libsndfile].

* Instal Python from www.python.org [http://www.python.org]. In most cases it is best to
install the most recent stable version. Python is needed for SCons to run.

* Install the SCons build system from www.scons.org [http://www.scons.org].

These are the minimum requirements for a build, but csound has many optional components
which enhance functionality and add opcodes which may require additional libraries.

Optional configurations (ALL platforms)

In most casesit is best to install the most recent stable versions of the optional libraries.

» Real-time audio can use the cross-platform PortAudio library (trunk version or devel-19
branch) from www.portaudio.com/usingcvs.html [ht-
tp://www.portaudio.com/usingcvs.html]. Please note that stable version 18 will not work.

79

http://www.sourceforge.net/projects/csound
http://www.scons.org
http://www.scons.org
http://www.scons.org
http://www.sourceforge.net/projects/csound
http://csound.git.sourceforge.net/git/gitweb-index.cgi
http://www.mega-nerd.com/libsndfile
http://www.mega-nerd.com/libsndfile
http://www.mega-nerd.com/libsndfile
http://www.python.org
http://www.python.org
http://www.scons.org
http://www.scons.org
http://www.portaudio.com/usingcvs.html
http://www.portaudio.com/usingcvs.html
http://www.portaudio.com/usingcvs.html

Building Csound

Csound can also use severa platform specific audio APIs like ALSA, JACK, CoreAudio and the
Windows multimedia library, see each platform notes for details.

e Real-time MIDI can use the cross-platform PortMidi library from www.cs.cmu.edu/~music/portmusic
[http://www.cs.cmu.edu/~music/portmusic]

» For GUI widgets, install FLTK 1.1 or 1.3 from www.fltk.org [http://www.fltk.org]. Y ou must config-
ure and build FLTK with - - enabl e- shared - -enabl e-t hr eads.

» For generating Python and Java interfaces, install the Software Interface and Wrapper Generator
(SWIG) from http://www.swig.org.

e CsoundAC requires FLTK and the boost C++ template libraries for random numbers and linear al-
gebra, from http://www.boost.org. CsoundAC requires at least version 1.32.1.

» Thefluid opcodes require the Fluidsynth library from http://savannah.nongnu.org/downl oad/fluid.

» The OSC opcodes require the latest version of the liblo library from http://plugin.org.uk/liblo. On
Windows, liblo requires a Windows version of the POSIX thread library (pthreads) which is available
from http://sourceware.org/pthreads-win32; copy libpthreadGC2.ato libpthread.a. Y ou may also need
the latest version of autoconf from MinGW.

e The STK opcodes require STK source code from http://ccrma.stanford.edu/software/stk, copied into
csound5/ Opcodes/ st k.

» The Loris opcodes requires Loris 1.8 to be installed: http://sourceforge.net/projects/loris/files. It will
create the Csound Loris opcodes (along with Loris itself). When you run Csound use an additional
command line flag: --opcode-lib. For example in Linux: --opcode-lib=/usr/local/lib/libloris.so

Windows

The following is needed to build on Windows (more complete build instructions for Windows may be
found in the csound-build.tex document (csound-build.pdf)):

 Instal a compiler like gcc or Microsoft Visual Studio (there is aso support for the Intel C++ com-
piler). If using MinGW (gcc), install all of the current release of MinGW using the Automated
MinGW Ingtaller from www.mingw.org [http://www.mingw.org], for example into c: / mi ngw. This
should install gcc, g++, GNU binutils, the MinGW runtime, and the win32 API. Then install the cur-
rent release of MSys.

On Windows you can use Microsoft Visual C++ (except for CsoundAC). The free Express Edition,
from http://www.microsoft.com/expressivc/ works fine. You will need to obtain a copy of the
dirent. h header file for Windows, e.g. from http://www.softagalleria.net/dirent.php. You may also
need to obtain the buf f eroverfl owu. I'i b library from Microsoft and put it into the Visual C++ [i b
directory. Then open a shell in which to compile Csound, (usually called Visua Studio Command
Prompt command, within the Visual C++ program menu).

Optional configurations for Windows include the following:
* Real-time audio and MIDI can use the Windows multimedia library. This module will be built auto-

matically if the headers are found.
» The VST Host opcodes require both the Steinberg VST headers.

80

http://www.cs.cmu.edu/~music/portmusic
http://www.cs.cmu.edu/~music/portmusic
http://www.fltk.org
http://www.fltk.org
http://www.swig.org
http://www.boost.org
http://savannah.nongnu.org/download/fluid
http://plugin.org.uk/liblo
http://sourceware.org/pthreads-win32
http://ccrma.stanford.edu/software/stk
http://sourceforge.net/projects/loris/files
http://www.mingw.org
http://www.mingw.org
http://www.microsoft.com/express/vc/
http://www.softagalleria.net/dirent.php

Building Csound

Linux

Optional configurations for Linux include the following:

* Real-time audio on Linux can use ALSA (www.a sa-project.org [http://www.a sa-project.org]) and
JACK (www.jackaudio.org/ [http://www.jackaudio.org/]) in addition to PortAudio. Distributions usu-
aly provide the appropriate dev packages for these systems through their repositories.

e The DSSI Host opcodes require both the LADSPA and DSSI headers.

Mac OS X

Optional configurations for Mac OS X include the following:
* Real-time audio can use CoreAudio (OSX builtin native audio system) and Jack, appart from PortAu-
dio.

» The DSSI Host opcodes require both the LADSPA and DSSI headers.

Building Csound 5 with SCons

When you have al the necessary packages and their sources (or -dev packages) to support your particu-
lar requirements on your hardware platform, execute "scons -h" to discover the current configuration op-
tions.

Building is made considerably easier if, when installing, the downloaded headers and libraries are in-
stalled in their default locations. To modify the default build, in particular to handle non-standard op-
tions for third-party dependencies, such as where headers and libraries are to be found:

» On Windows, when building with Microsoft Visual C++, modify custom-msvc.py.

» On Windows, when building with MinGW/M Sys, modify custom-mingw.py

* On Mac OSX edit custom-osx.py and rename it to custom.py

* OnLinux edit custom-linux-jpff.py or custom-linux-mkg.py and rename it to custom.py

Avoid modifying the SConstruct file.

Execute scons with the optional custom variables you desire. For example:
scons bui | dOSC=1 bui | dCsound5GUl =1 bui | dPyt honOpcodes=1 useOSC=1 bui | Beat s=1

Note

It isimportant that you set the environment variable oPCODEDI R to the directory where plu-
gin libraries are installed; in the case of a double precision build, oPcobEDI R64 should be
set instead. Installers usualy take care of this, but it is necessary when building from
source so Csound can find its plugin libraries.

81

http://www.alsa-project.org
http://www.alsa-project.org
http://www.jackaudio.org/
http://www.jackaudio.org/

Building Csound

Current build options

Table 4. Current SCons Build Options

Custom Variable

Effect if setto 1

buildCsoundV ST

Build CsoundVST. Needs CsoundAC, FLTK,
boost, Python, SWIG.

buildCsoundAC

Build CsoundAC. Needs FLTK, boost, Python,
SWIG.

buildCsound5GUI

Build FLTK GUI frontend. Requires FLTK 1.1.7
or later.

buildCSEditor Build the Csound syntax highlighting text editor.
Requires FLTK headers and libs.
buildDSS Build DSSI/LADSPA host opcodes.

buildlmageOpcodes

Build image opcodes. 1 by default. Set to O to
avoid.

buildInterfaces

Build interface library for Python, JAVA, Lua,
C++, and other languages.

buildJavawrapper

Build Java wrapper for the interface library.

buildNewParser

Enable building new parser. Requires Flex/Bison.

buildOSXGUI

Build the basic GUI frontend. OSX only.

buildPDClass

Build csoundapi~ PD class. Needs m_pd.h in the
standard places.

buildPythonOpcodes

Build Python opcodes

buildRelease

Build for release. Implies noDebug.

buildSDFT

Build SDFT code. 1 by default. Set to 0 to avoid.

buildStkOpcodes

build Stk Opcodes. Requires STK source code.

buildTclcsound

Build Tclesound frontend (cstclsh, cswish and tclc-
sound dynamic module). Requires Tcl/Tk headers
and libs.

buildUtilities Build stand-alone executables for utilities that can
also be used with -U.

buildVirtual Build Virtual MIDI keyboard. Requires FLTK
1.1.7 or later headers and libs.

buildvst4cs Build vstdcs plugins. Requires Steinberg VST
headers.

buildWinsound Build Winsound frontend. Requires FLTK headers
and libs.

buildBeats Build csbeats score processor.

dynamicCsoundLibrary

Build dynamic Csound library instead of libc-
sound.a.

gec3opt Enable gcc 3.3.x or later optimizations for the spe-
cified CPU architecture (e.g. pentium3); implies
noDebug.

gccdopt Enable gcc 4.0 or later optimizations for the spe-

cified CPU architecture (e.g. pentium3); implies
noDebug.

82

Building Csound

Custom Variable Effect if setto 1

generateTags Generate TAGS.

generatePdf Generate PDF documentation.

install Enables the Install targets.

Lib64 Build for lib64 rather than lib.

noDebug Build without debugging information.

noFLTK Threads Disable use of a separate thread for FLTK widgets.

useAltivec On OSX use the gecc AltiVec optmisation flags.

useALSA ALSA for rea-time audio and MIDI input and out-
put.

useCoreAudio use CoreAudio for real-time audio input and out-
put.

useDouble Use double-precision floating point for audio
samples.

useFLTK Use FLTK for graphs and widget opcodes.

useGettext Use the GNU internationalisation/localisation
scheme

useGprof Build with profiling information (-pg).

usePortAudio Use PortAudio for real-time audio input and out-
put.

usePortMIDI Build PortMidi plugin for rea time MIDI input
and output.

useJack Used if you compiled PortAudio to use Jack; also
builds Jack plugin.

uselLrint Use Irint() and Irintf() for converting floating point
values to integers.

useOSC For OSC support.

useUDP For UDP support. 1 by default. Set to 0 to avoid.

withlCL Build with the Intel C++ Compiler (also requires
Microsoft Visua C++), Set to 0 to build with
MinGW. Windows only.

withMSVC Build with Microsoft Visual C++, or set to O to
build with MinGW. Windows only.

Word64 Build for 64bit computer.

pythonVersion Set to the Python version to be used.

83

Csound Links

Csound's "home page" is maintained by Richard Boulanger at http://csounds.com.

The Csound source code is mantained by John ffitch and others a ht-
tp://www.sourceforge.net/projects/csound. The most recent versions and precompiled pack-
ages for most plaforms aso can be downloaded here [ht-
tp://sourceforge.net/proj ect/showfiles.php?group_id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch of Bath University,
UK. To have your name put on the mailing list send an empty message to: csound-sub-
scribe@lists.bath.ac.uk [mailto:csound-subscribe@lists.bath.ac.uk]. You can also subscribe
to the digest (1 message per day) by sending an empty email to: csound-di-
gest-subscribe@lists.bath.ac.uk [mailto:csound-digest-subscribe@lists.bath.ac.uk]. Posts
sent to csound@lists.bath.ac.uk [mailto:csound@lists.bath.ac.uk] go to all subscribed mem-
bers of the list. You can browse the csound mailing list archives here [ht-
tp://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php]

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more
information on this list, go to http:/lists.sourceforge.net/lists/listinfo/csound-devel. Posts
sent to csound-devel @lists.sourceforge.net [mailto:csound-devel @lists.sourceforge.net] go
to all subscribed members of the list.

http://csounds.com
http://www.sourceforge.net/projects/csound
http://www.sourceforge.net/projects/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound@lists.bath.ac.uk
mailto:csound@lists.bath.ac.uk
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://lists.sourceforge.net/lists/listinfo/csound-devel
mailto:csound-devel@lists.sourceforge.net
mailto:csound-devel@lists.sourceforge.net

Part Il. Opcodes Overview

Table of Contents

S o g TS 1 - o] £ T PP TUPPR 89
Additive SyntheSiS/RESYNtNESISiiiiii e 89
BaSiC OSCHIALOS .. .cceieeiie e 89
Dynamic Spectrum OSCIHIatorsovuiii e 89
S04 1= 90
Granular SYNNESISccuniie e e 90
Hyper Vectorial SYNtheSIScoouuiiiiiiiic e 91
Linear and Exponential GENEIratorscceuuurieiiiiiiieeeiiie et e e e 91
ENVEIOPE GENEIALONS ... ettt e e e e e e eaes 92
Models and EMUIBLIONSoiieniiiiiiii e 92
PRIASOIS ettt 93
RaNdom (NOISE) GENEYBIOISvvvueveiieei e e e e e e e e e e e e e e e e ean e eeees 9
Sample Playbackccooueiiii 95
SOUNAFONES ...ttt e e e e e et e e e e aeas 95
SCANNEA SYNENESIS ...t aaas 97
TADIE ACCESS ..o 98
Wave Terrain SYNthESISuuiii e e e e e e 99
Waveguide Physical MOEiNgccouuiiiiiiiiiiicci e e e 99

Signal INPUL N OULPUL ...ttt e et e e eeeaba e eees 100
File INput @and OULPULcuuneiiiii e 100
SIGNAL TNPUL .ttt aes 100
IS T = I 1 o1 | 100
SOFIWAIE BUS ...ttt e e et e e e et e e e eeba e e aees 101
Printing and Displayvvveeiiiiicie e 101
SOUNd Fil@ QUENTES ... et eees 101

SIgNal MOGITIEIS ..oeeeee ettt e e e e e e e 103
Amplitude Modifiers and DynamiC ProCeSSINGcevueerrnrieinaaeiaaeiiaeeaiaeennns 103
Convolution and MOrphingccoeeiiiiii e 103
5= - P 103
Panning and SpatialiZationcc.viiiiiiiiiie e 104
RS 1= - 1o o 106
SaMpPle LeVEl OPEIEIOISceieveieiiiiii et 106
SIgNAl LIMITEIS .ot e e e 107
SPECIAl EffECtS ..o 107
Standard FIIEErS ...oovviiiii e 107
SPECIAliZEA FilTEr'S .vvieee e 109
WEVEGUITES ...ttt et e 109
Waveshaping and Phase DiStOrtioncceuuieiiiiiiieiiiiineeen e 109

INSEFUMENT CONEIOL ...t e e e e e e e e eaas 111
ClOCK CONLIOL ... et 111
ConditioNal VEIUEScoveviieiiii e e 111
Duration Control StAatEMENESuiiiiiiiiieeeiii e 111
FLTK Widgetsand GUI CONtrollerscooouuiiiiiiiiieiiiii e 111
FLTK CONAINELS ...ietieeeieeeii ettt e e e et e et e et eeeaeeean e 114
FLTK VAIUBLOS ..ottt e e et e e e et eeeaaan e 114
Other FLTK WIAGELS ...oevvvieeiiiiie et et eeeeii e e e 115
Modifying FLTK Widget APPEAranCeccuuvevviieiiiieeiiieeeiieeeiieeeiaeeeieeaaaees 115
General FLTK Widget-related OpCOTEScvvvniveiiieiii v e 116
INSErUMENt INVOCATION ...veeieie e e 116
Program FIOW CONrOlooiiiiiiiiii e 117
Real-time Performance CONtrolviiuiiiiiiiiee e 118
Initialization and REINItializationc..oiiiiiiiiiii e, 118
Sensing and CONLIOLiiieiiii e e e e e e e e eaes 119

Opcodes Overview

SEACKS ettt 120
SUB-iNStrumMEeNnt CONErOlveeiii e 120
TIMEREAAING ...oeeii e e 121
FUNCtion Table CONIOlo.u.iiee e e e 122
TaDIE QUENTES ..eeiei e 122
Read/WIte OPEralioNSccuuueiiiiiii et ea s 122
Table Reading with Dynamic SEleCtionccccuiviiiiiiiiiiicc e, 123
MathematiCal OPEIELIONScveuuieeiiiet et e e e e e e e e e e e e e et e e e e e e eeaeeaenaees 124
AMPLITUAE CONVEITEIS ...ttt 124
Arithmetic and LOgiC OPEratioNSc.uuuivieiiieeiiiie e 124
Comparators and ACCUMUIALONSiiuuniiii it 124
Mathematical FUNCLIONScoouiiiiiii e 125
Opcode Equivalents of FUNCLIONSocevuiiiiiiiiii e e 125
RANAOM FUNCLIONSviiiicciiecieiee e 126
TrigoONOMELNIC FUNCLIONScovviiiiiiiiie e 126
Linear AlgebraOpCodesccouuuiiiiiiiie e 127
PIECN CONVEITEIS ..ttt e e e e e 137
FUNCEIONS ...t 137
LI 101100 @ 0o o L= 137
Real-tiME MIDI SUPPOIT ... ceieeee e e e e e e e e e e e e et e e e e e e an e e e e eaenaees 138
Virtual MIDI Keyboardooeeuuiiiiiiiec e 139
MIDTINPUE ettt e e e e e 142
MIDI MESSAgE OULPULeeiiiiiiiiiiie e e e e ettt ettt e e e e e e e e e 142
Generic INPUE @and OULPULoevnieeii e 143
1000411/ 1 (= £ PR 143
EVENT EXIENOENS ...eevvveiiie et 143
NOte-ON/NOE-OFf OULPUL ... eeeieieeeeei e 143
MIDI/Score Interoperability OPCOUEScocvuuiiiiiiiiieeiiii e 143
System Realtime MESSAJES ... ccvuiiii it 145
SHAEN BANKS ...t 145
S o Tc ot = 0o o 146
Short-time Fourier Transform (STFT) Resynthesiscccoovvvieviiiiiiiinccineee, 146
Linear Predictive Coding (LPC) ReSynthesisovviiiiiiiiiiiiieii e, 147
Non-standard Spectral PrOCESSINGccvvueeiiriiieeiiie et 147
Tools for Real-time Spectral Processing (pvS Opcodes)ccuuveevnveiiieeenneennnn. 147
ATS SPECral PrOCESSINGievieiiiiiii et 148
[0 1Y @ o o7 [P 149
S 101 153
String Manipulation OPCOUESccevunieiiiiiiieieii e 154
String ConVersion OPCOUESeieeiiieeiiii ettt e ettt e e eees 154
VECLONTAl OPCOOES ... ettt et et e et et e et e e et e e et e e e e eennns 156
Tables Of VECIOIS OPEIaLOrScieuueiieiei e 156
Operations Between aVectorial and aScalar Signalcooevvvveviiiiiiiincinnen, 156
Operations Between two Vectorial SIgnalsovvvvveiiiiiiiiieiiiieee e 157
Vectorial ENVEIOPE GENEIELOISveeeiieeeiii e eeei et 157
Limiting and wrapping of vectorial control Signalsoooveviieeiiiiineeiinnnnnn. 158
Vectorial Control-rate Delay Pathscocooiiiiiiiiiii e, 158
Vectorial Random Signal GENEratorsc.veevieiiieiiieii e e e e 158
W = (o TR = o 0 160
L T T 01 T 161
DSSl and LADSPA fOr CSOUNGveuuieeiiieiieee e e e e e e e eeaaes 161
Y25 I (2 o 0 oo [161
OSC AN NEIWOTK ...ttt e e ettt e e e e e e e e ee bbb e e e e eaeeeenes 163
L0 TSP PUOPPPPPRTPN 163
INEEWOTK e e e 163
R 10101 (=T @) o0 o === 163
IMIIXEN OPCOUES ...ttt ettt e ettt e e et e e ettt e e e e aaa s 164
Signal FIOW Graph OPCOOESciiiiieeiiii ettt et e et e e et e e eariaeeees 165

Opcodes Overview

= o0 1 o000 =30 168
[T = 1 oo o[171
PYINON OPCOUES ...ttt ettt e e e e s 176

T gLt oo 1 1o o P TPR 176

OFCNESLIA SYNEAX ...ttt e e e e eees 176
IMage ProCeSSING OPCOESuuieieiii ettt ettt e e e e e e e e eannas 178
MiSCEIlANEOUS OPCOUESevii et e e e e e e e e e e e et e e e e e aanaees 179

88

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;

e adsyn
* adsynt
 adsynt2
* hsboscil

See the section Spectral processing for more information and further additive/resynthesis
opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with ‘i* implement linear inter-
polation and those that end with '3' implement cubic interpol ation)

* Ogcillator Banks: oscbhnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

* Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

Oscillators can also be constructed from generic table read opcodes. See the Table Read/
Write operations section.

LFOs

* |fo
e Vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators.
Also see the section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:

89

Signal Generators

* Harmonic spectra: buzz and gbuzz

* Impulse generator: mpulse

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-
cillators:

* vco2init

* vCo2ft

» vco2ift

FM Synthesis

The FM synthesis opcodes are:

 foscil
» foscili

e crossfm, crossfmi, crosspm, crosspmi, crossfmpm, and crossfmpmi.

FM instrument models

o fmb3
o fmbell
o fmmetal
o fmpercfl
 frmrhode
» fmvoice

e fmwurlie

Granular Synthesis

The granular synthesis opcodes are:

 diskgrain
* fof

90

Signal Generators

» fof2

» fog

e grain

e grain2

e grain3

e granule
* partikkel
* partikkelsync
e sndwarp
 sndwarpst
* syncgrain
* syncloop

e vosim

Hyper Vectorial Synthesis
* vphaseseg

* hvsl
e hvs2

* hvs3

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:

* expon
* expcurve
* expseg
* expsega
* expsegr

91

Signal Generators

» gaindider
* jspline
* line

* linseg

* linsegr
 logcurve
* loopseg
* loopsegp
¢ Ipshold
* |psholdp
* rspline
» scale

* transeg

Envelope Generators

The following envel ope generators are available:

e adsr

e madsr
e Mxadsr
o xadsr
* linen
* linenr
e envipx
o envipxr

Consult the Linear and exponential generators section for additional methods to create envelopes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK
toolkit by Perry Cook):

* bamboo

92

Signal Generators

* barmodel
» cabasa
 crunch

o dripwater
 gogobel

e guiro

* mandol

* marimba
* moog

* sandpaper
* sekere

* shaker

» deighbells
o stix
 tambourine
* vibes

* voice

Other models and emulations

* lorenz

» planet

e prepiano

 Fractal Number (Mandelbrot set) generator: mandel
 chuap

* gendy

* gendyc

* gendyx

Phasors

The opcodes that generate a moving phase value:

93

Signal Generators

* phasor
* phasorbnk

* syncphasor

These opcodes are useful in combination with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:

* betarnd
 bexprnd
 cauchy
+ cuserrnd
* duserrnd
* dust

* dust2

» exprand
* fractalnoise
* gauss

* gausstrig
* linrand
* noise
 pcauchy
» pinkish
* poisson
* rand

+ randh

* randi

* rnd31

* random
 randomh

» randomi

94

Signal Generators

* trirand

* unirand

e urd

* weibull

o jitter

o jitter2

 trandom

See seed which sets the global seed value for al x-class noise generators, as well as other opcodes that
use arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See al so functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:

* bbcutm
* bbcuts
* flooper
* flooper2
* loscil

* loscil3
* loscilx
* |phasor
* |poscil

* |poscil3
* |poscila
* |poscilsa
* |poscilsa2
 sndloop
* waveset

See also the Signal Input section for other ways to input sound.

Soundfonts

95

Signal Generators

Fluid Opcodes

The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidSetinterpMethod for setting interpolation method for a channel in a
FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning presets from a
SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a FluidSynth engine's
MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth engine's MIDI chan-
nel, fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI channel. fluid-
Control for playing and controlling loaded Soundfonts (using 'raw' MIDI messages), fluidOut for receiv-
ing audio from a single FluidSynth engine, and fluidAllOut for receiving audio from all FluidSynth en-
gines.

fluidAllOut

+ fluidCCi

o fluidCCk

* fluidControl

* fluidEngine

* fluidLoad

+ fluidNote

* fluidOut

* fluidProgramSelect

« fluidSetinterpMethod

"Old" Soundfont opcodes
These opcodes can aso use soundfonts to generate sound. sfplay etc. were created for one purpose -- to
use the samples in SoundFonts. The fluid opcodes were created for another purpose -- to use Sound-
Fonts more or less the way they were designed to be used, i.e. using keyboard mappings, layers, internal
processing, etc.
o dfilist
o sfinstr
* Sfinstr3
o sfinstr3m
* sfinstrm
* Sfload
» dfpassign
o dfplay

» sfplay3

96

Signal Generators

» sfplay3m
» sfplaym
* sflooper
o Sfplist

» Sfpreset

Scanned Synthesis

Scanned synthesisis a variant of physical modeling, where a network of masses connected by springsis
used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and setsit in
motion. The opcode scans follows a predefined path (trajectory) around the network and outputs the de-
tected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentialy, this offers the pos-
sibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the ef-
fect of “molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

A W|IN| P

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then
the point they define is 0. For example, a unidirectiona string has the following connections: (1,2),
(2,3), (3,4). If it is bidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix

appears:

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCII file using GEN23. The actual ASCII fileis cre-
ated from the table model row by row. Therefore the ASCII file for the example table shown above be-
comes:

97

Signal Generators

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example

in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, center-
ing, and damping can cause the system to “blow up” and the most interesting sounds to emerge from

your loudspeakers!

The supplement to this manual contains atutorial on scanned synthesis. The tutorial, examples, and oth-
er information on scanned synthesisis available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research

between 1998 and 2000.

Opcodes that implement scanned synthesis are:

scanhammer
scans
scantable
scanu

xscanmap

Xscans

Xscansmap

Xscanu

Table Access

The opcodes that access tables are:

Opcodes ending in 'i* implement linear interpolation and opcodes ending in ‘3" implement cubic interpol-

oscill
oscil1i
osciln
0sCilx
table

table3
tablel

98

Signal Generators

ation.

The following opcodes implement fast table reading/writing without boundary checks:

 tab

o tab i
* tabw
o tabw i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

Note

Although tables with a size which is not a power of two can be created using a negative
size (see f score statement), some opcodes will not accept them.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisis wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:

* pluck

* repluck

* wgbow

» wgbowedbar
» wgbrass

* wgclar

* wgflute

» wgpluck

» wgpluck2

* wguidel

* wguide2

99

Signal Input and Output
File Input and Output

The opcodes for file input and output are;

* File open/close: fiopen and ficlose.

* File output: dumpk, dumpk?2, dumpk3, dumpk4, fout, fouti, foutir and foutk
 Fileinput: readk, readk2, readk3, readk4, fin, fini and fink

« Utilities for use with the fout opcodes: clear, vincr

 Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronousinput: in, in32, inch, inh, ino, ing, inrg, ins and inx
* File streaming: diskin, diskin2 and soundin

» User defined channel input: invalue

 Streaming input: soundin

* Direct to zak input: inz

See the section Software Bus for input and output through the API.

The mp3in alows reading of mp3 files, which are currently not supported by ordinary read-
ing methods inside Csound.

Signal Output

The opcodes that write audio signals are:

» Synchronous output: out, out32, outc, outch, outh, outo, outrg, outq, outql, outq2, outq3,
outgd, outs,outsl, outs2 and outx

 Streaming output: soundout and soundouts

 User defined channel output: outvalue

 Direct from zak output: outz

The opcode monitor can be used for monitoring the complete output of csound (the output

100

Signal Input and Output

spout frame).

See the section Software Bus for input and output through the API.

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the
Csound API.

The opcodes to use the software bus are:

e chn k

e chn a

e chn S

* chnclear
 chnexport
* chnmix

» chnparams

Printing and Display

Opcodes for printing and displaying values are:

o dispfft
« display
o flashtxt
e print
o printf
e printf_i
o printk
e printk2
* printks

e prints

Sound File Queries

The opcodes that query information about files are:

101

Signal Input and Output

filelen
filenchnls
filepeak

filesr

102

Signal Modifiers

Amplitude Modifiers and Dynamic pro-
cessing

The opcodes that modify amplitude are:

 balance
s compress
* clip
» dam
e gain

The opcode 0dbfs facilitates the use of amplitude by removing the need to use of explicit
sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:

» convolve also caled convie
* Cross2
* dconv
* ftconv
 ftmorf

* pconvolve

Delay
Fixed delays

» delay
e delayl
o delayk

103

Signal Modifiers

Delay Lines

o delayr
e delayw
» deltap
 deltap3
* deltapi
 deltapn
 deltapx

 deltapxw

Variable delays

* vdelay

» vdelay3

* vdelayx

» vdelayxs
» vdelayxq
» vdelayxw
* vdelayxwq
 vdelayxws

Multitap delays

» multitap

Panning and Spatialization

Amplitude spatialization

* locsend
* locsig

.pan

104

Signal Modifiers

* pan2
¢ space
» spdist
* spsend

3D spatialization with simulation of room acoustics

» gpat3d
 gpat3di
* gpat3dt

Vector Base Amplitude Panning

* vbapl6

* vbapl6move
* vbap4

* vbapdmove
* vbap8

* vbap8move
* vbaplsinit

* Vbapz

* vbapzmove

Binaural spatialization

e hrtfer
e hrtfmove
e hrtfmove2

e hrtfstat

Ambisonics

» bformdec

105

Signal Modifiers

» bformenc

Reverberation

The opcodes one can use for reverberation are:

» alpass

» babo

+ comb

* freeverb

* nestedap

» nreverb (also called reverb?)
* reverb

* reverbsc

* valpass

* vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

o ak)

* denorm
o diff

e downsamp
+ fold

* (k)

* integ

* interp
k(i)
 ntrpol

» samphold

* upsamp

106

Signal Modifiers

* vaget

* vaset

Signal Limiters

Opcodes that can be used to limit signals are:

o limit
e mirror

cWrap

Special Effects

Opcodes that generate special effects are:

* distort
* distortl
* flanger
* harmon
* phaserl

e phaser2

Standard Filters

Resonant Low-pass filters

e areson
* lowpass2
* lowres

* lowresx

o |pfl8

» moogvcf

» moogladder

* reson

107

Signal Modifiers

e resonr
e resonx
* resony
e resonz
. rezzy

* Statevar
o sfilter
* thvcf

* viowres

* barez

Standard filters

Hi-passfilters: atone, atonex
» Low-passfilters: tone, tonex
» Biquad filters: biquad and biquada.

» Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are also called butbp, butbr, buthp,
butlp)

» Generd filters: clfilt

Control signal filters

» aresonk
 atonek
* lineto
* port
 portk

* resonk
* resonxk
* tlineto

o tonek

108

Signal Modifiers

Specialized Filters
High pass filters

» dcblock
» dcblock2

Parametric EQ

* pareq
* rbjeq
o edfil

Other filters

* nlfilt

o filter2

fofilter

* hilbert

filter2

Waveguides

The opcodes that use waveguides to modify asignal are:

* streson
* wguidel

* wguide2

Waveshaping and Phase Distortion

These opcodes can perform dynamic waveshaping or phaseshaping (ak.a. phase distortion). They differ
from traditional table-based methods of waveshaping by directly calculating the transfer function with
one or more variable parameters for affecting the amount or results of the shaping. Most of these op-
codes could be used on either an audio signal (for waveshaping) or a phasor (for phaseshaping) but tend
to work best for one of these applications.

These opcodes are good for waveshaping:

109

Signal Modifiers

* chebyshevpoly
* clip

* distort
 distortl
 polynomial

* powershape

These opcodes are good for phaseshaping:

* pdclip
 pdhalf
» pdhalfy

110

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:

* clockoff
» clockon
These clocks count CPU time. There are 32 independent clocks available. You can use the

opcode readclock to read current values of a clock. See Time Reading for other timing op-
codes.

Conditional Values

The opcodes for conditiona valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:

* ihold

* turnoff
* turnoff2
e turnon

For other realtime instrument control see Real-time Performance Control and Instrument In-
vocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestra
in real-time. They are derived from the open-source library FLTK (Fast Light Tool Kit).
Thislibrary is one of the fastest graphic libraries available, supports OpenGL and should be
source compatible with different platforms (Windows, Linux, Unix and Mac OS). The sub-
set of FLTK implemented in Csound provides the following types of objects:

Containers FLTK Containers are widgets that contain other widgets such as pan-
els, windows, etc. Csound provides the following container objects:
e Panels
e Scroll areas

* Pack

111

Instrument Control

Tabs

Groups

Valuators The most useful objects are named FLTK Valuators. These objects alow the user
to vary synthesis parameter values in real-time. Csound provides the following
valuator objects:

Sliders
Knobs
Rollers
Text fields
Joysticks

Counters

Other widgets There are other FTLK widgets that are not valuators nor containers:

Buttons
Button banks
Labels

Keyboard and Mouse sensing

Also there are some other opcodes useful to modify the widget appearance:

» Updating widget value.

 Setting primary and selection colors of awidget.

 Setting font type, size and color of widgets.

* Resizing awidget.

 Hiding and showing awidget.

There are also these general opcodes that allow the following actions:

* Running the widget thread: FLrun

» Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.

* Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap

Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section of

112

Instrument Control

an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must
not be crossed. After defining al containers, a widget thread must be run by using the special FLrun op-
code that takes no arguments.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform
; Audi 0 out Audio in No messages
- odac -iadc -d ;3 RT audio 1/0
; For Non-realtinme ouput |eave only the line bel ow
; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nstrunent s>
chkkhkkkkhkhkhk Ak kA kA hkhkhkhkhkkkk ok ok ok k
sr=48000

kr =480

ksnps=100

nchnl s=1

;*** |t is recommended to put alnpst all GU code in the
;*** header section of an orchestra

FLpanel "Panel 1", 450, 550 ;***** start of contal ner
; some wi dgets shoul d contained here
FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required
instr 1
; put sone synthesis code here
endin
rhkkkkkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk
</ Csl nst runent s>
<CsScor e>
f 0 3600 ;dummy table for realtine input
e

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a dider inside each of them:

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/midi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc ; -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the line bel ow
-0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

Pkkkkkhkkhkkhkhkhhkhhkhhkhhkhkhkkkk ok kK

Sr=48000
kr =480
ksmps=100
nchnl s=1
FLpanel "Panel 1", 450, 550, 100, 100 ; ***** start of contail ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;****x end of container
FLpanel "Panel 2", 450, 550, 100, 100 ; ***** start of contal ner
gk2,i hb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50

113

Instrument Control

FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required

instr 1

gkl and gk2 variables that contain the output of val uator
; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl
printk2 gk2 ;print the values of the valuators whenever they change
endi n

Pkkkkkkkhkkhkkkhhkhhkhhkhhkhkhkkkk ok kK

</ Csl nst runent s>

<CsScor e>

f 0 3600 ;dummy table for realtinme input
e

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since there is no need of polling. (This differs from other MIDI based controller opcodes.) So you can
use any number of windows and valuators without degrading the real-time performance.

FLTK Containers

The opcodes for FLTK containers are:

* FLgroup

» FLgroupEnd
* FLpack

» FLpackend
* FLpand

* FLpanelEnd
* FLscrall

* FLscrollEnd
» FLtabs

» FLtabsEnd
FLTK Valuators
The opcodes for FLTK valuators are:

* FLcount
* FLjoy
* FLknob

114

Instrument Control

e FLroller
» FLdlider

* FLtext

Other FLTK Widgets

Other FLTK widget opcodes are:

* FLbox

» FLbutBank

* FLbutton

» FLexecButton

* FLkeyln

» FLhvsBox

» FLhvsBoxSetValue
* FLmouse

* FLprintk

e FLprintk2

e FLdidBnk

» FLdidBnk2

* FLdidBnkGetHandle
» FLdlidBnkSet

e FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvkeybd

* FLvdlidBnk

» FLvslidBnk2

* FlLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:

115

Instrument Control

* FLcolor

* FLcolor2

* FLhide

* FLlabel

* FLsetAlign

* FLsetBox

* FLsetColor

* FLsetColor2
* FLsetFont

* FLsetPosition
* FlLsetSze

* FlLsetText

* FLsetTextColor
* FlLsetTextSze
* FlLsetTextType
o Flsetval_j

» FlLsetVval

e FLshow

General FLTK Widget-related Opcodes

The general FLTK widget-related opcodes are:

e FLgetsnap
» FLloadsnap
* FLrun
 FLsavesnap
e FLsetsnap
* FLupdate

e FLsetShapGroup

Instrument Invocation

116

Instrument Control

The opcodes one can use to create score events from within a orchestra are:

* event

e event |

e scoreline i

» scoreline

* schedule

¢ schedwhen

* schedkwhen

* schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Instruments definitions can be removed using the remove opcode.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:

* cggoto
* cigoto
* ckgoto
* cngoto
» esaf
* ese

* endif
+ goto
o if

* igoto
» kgoto
* tigoto

o timout

Opcodes to create looping constructions are:

117

Instrument Control

» loop_ge
* loop_gt
* loop_le
* loop_It

e until

. Warning

Some of these opcodes work at i-rate even if they contain k- or a rate comparisons. See
the Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are:

* active
e cpuprc
» maxalloc
 prealloc

* jacktransport

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:

e init
* tival
* passign

. pggt
The opcodes that can generate another initialization pass are:

e reinit

* rigoto

118

Instrument Control

e rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for anamed instrument.

Sensing and Control
TCL/TK widgets

 button
» checkbox
e control

o setctrl

Keyboard and mouse sensing

* sensekey (also called sense)

'Xyln

Envelope followers

» follow
» follow2
e peak

e I'ms

Tempo and Pitch estimation

» ptrack
 pitch
e pitchamdf

. tempest

119

Instrument Control

Tempo and Sequencing

* tempo

» miditempo
* tempoval
* seqgtime

* segtime2
o trigger

* trigseq
* timedseq

 changed

System

* getcfg

Score control

* rewindscore

* setscorepos

Stacks

Csound implements a global stack that can be accessed with the following opcodes:

o stack

* pop
e push

* pop_f
e push f

Sub-instrument Control

120

Instrument Control

These opcodes | et one define and use a sub-instrument:

 subinstr

e subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are;

* readclock
* rtclock
 timeinstk
* timeinsts
o times

o timek
Y ou can obtain the system date using:

« date - Returns the number seconds since 1 January 1970.

* dates- Returns as a string the date and time specified.

Y ou can also set up counters using clockoff and clockon.

121

Function Table Control

Refer to the f score statement, ftgen, ftgentmp, ftgenonce and the GEN Routines section for
information on creating tables.

Tables can be removed from memory using the ftfree opcode.

Tables by default, require a size which is a power of two. However tables with any size can
be generated by specifying the size as a hegative number (see f score statement).

Note

Not all opcodes accept tables whose size is not a power of two, as this may be
arequirement for internal processing.
For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:

» For tables|loaded from a sound file (using GENO1): ftchnls, ftcps,ftlen, ftiptimand ftsr

 For any table: nsamp, ftlen, tableng

The opcode tabsum cal culates the sum of valuesin atable.

Read/Write Operations

Opcodes that read and write to atable are:

« ftloadk

* ftload

* ftsavek

* ftsave

* tablecopy
* tablegpw

* tableicopy
* tableigpw
* tableimix

o tableiw

122

Function Table Control

* tablemix
* tablera

* tablew

* tablewa

* tablewkt

* tabmorph
* tabmorpha
* tabmorphak
* tabmorphi
* tabrec

* tabplay

o ftmorf

Table values can be accessed within expressions using the tb family of opcodes.

Many oscillators are in fact specialized table readers. See the Basic oscillators section.

Table Reading with Dynamic Selection

Opcodes that let one dynamically (at k-rate) select tables are:
* tableikt

* tablekt
* tablexkt

123

Mathematical Operations
Amplitude Converters

Opcodes to convert between different amplitude measurements are:

e ampdb
o ampdbfs
o db

» dbamp
 dbfsamp

Use rms to find the rms value of a signal. See also Odbfs for another way to handle amp-
litudes in csound.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operationsare -, +, &&, ||, *, /, *, and %.

See the Conditional Values section and the if family of opcodes for usage of logical operat-
ors.

Comparators and Accumulators

The following opcodes perform comparisons between signals at a-rate or k-rate, find max-
ima or minima, or accumulate the results of several computations or comparisons:
* max

o max_k

* maxabs

* maxabsaccum

* maxaccum

* min

e minabs

* minabsaccum

e minaccum

* vincr

e clear

124

Mathematical Operations

Mathematical Functions

Opcodes that perform mathematical functions are:

+ abs

» cell

o exp

* floor

» frac

e int

* log

* logl0

* logbtwo
* pow

» powershape
* powoftwo

e round

* gort

Opcode Equivalents of Functions

Opcodes that perform the equivalent of mathematical functions are:

* chebyshevpoly
o divz

e mac

* maca
 polynomial

* pow
 product

s sum

e taninv2

125

Mathematical Operations

Random Functions

Opcodes that perform random functions are:

e birnd

e rnd

See the section Random (Noise) Generators for opcodes that generate random signals.

Trigonometric Functions

Opcodes that perform trigonometric functions are:

* cos, cosh and cosinv
* sin, sinh and sininv

 tan, tanh, taninv, and taninv2.

126

Mathematical Operations

Linear Algebra Opcodes

Linear Algebra Opcodes — Scalar, vector, and matrix arithmetic on real and complex values.

Description

These opcodes implement many linear algebra operations, from scalar, vector, and matrix arithmetic up
to and including QR based eigenvalue decompositions. The opcodes are designed for digital signal pro-
cessing, and of course other mathematical operations, in the Csound orchestra language.

The numerical implementation uses the gmm++ library from home.gna.org/getfenygmm intro [ht-
tp://home.gna.org/getfem/gmm_intro].

. Warning

For applications with f-sig variables, array arithmetic must be performed only when the f-
sig is "current," because f-rate is some fraction of k-rate; currency can be determined with
thela k_current_f opcode.

For applications using assignments between real vectors and a-rate variables, array arith-
metic must be performed only when the vectors are "current”, because the size of the vec-
tor may be some integral multiple of ksmps; currency can be determined by means of the
la_k_current_vr opcode.

Tableb. Linear Algebra Data Types

Mathematical Type Code Corresponding Csound Type or
Types

real scalar r i-rate or k-rate variable

complex scalar C pair of i-rate or k-rate variables,
e.g. "kr, ki"

real vector vr i-rate variable holding address of
array

real vector a arate variable

real vector t function table number

complex vector vC i-rate variable holding address of
array

complex vector f fsig variable

real matrix mr i-rate variable holding address of
array

complex matrix mc i-rate variable holding address of
array

All arrays are O-based; the first index iterates rows to give columns, the second index iterates columns to
give elements.

All arrays are general and dense; banded, Hermitian, symmetric and sparse routines are not implemen-
ted.

127

http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro

Mathematical Operations

An array can be of type code vr, vc, mr, or mc and is stored in an i-rate object. In orchestra code, an ar-
ray is passed asa MYFLT i-rate variable that contains the address of the array object, which is actually
stored in the allocator opcode instance. Although array variables are i-rate, of course their values and
even shapes may change at i-rate or k-rate.

All operands must be pre-allocated; except for the creation opcodes, no opcode ever alocates any ar-
rays. Thisistrue even if the array appears on the | eft-hand side of an opcode! However, some operations
may reshape arrays to hold results.

Arrays are automatically deallocated when their instrument is deallocated.

Not only for more efficient performance, but also to make it easier to remember opcode names, the per-
formance rate, output value types, operation names, and input value types are deterministically encoded
into the opcode name:

1. "Ia" for "linear algebra opcode family".

2. "i" or "k" for performance rate.

3. Type code(s) (see above table) for output value(s), but only if the type is not implicit from the input
values.

4. Operation name: common mathematical name (preferred) or abbreviation.

5. Type code(s) for input values, if not implicit.

For additional details, see the gmm-++ documentation a ht-
tp://downl oad.gna.org/getfem/doc/gmmuser.pdf.

Syntax

Array Creation

ivr la_i_vr_create irows

Create areal vector with irows rows.

ive la_i_vc_create irows

Create a complex vector with irows rows.

i la_i_nr_create irows, icolums [, odiagonal]

Create areal matrix with irows rows and icolumns columns, with an optional value on the diagonal.

imc la_i_nt_create irows, icolums [, odiagonal _r, odiagonal _i]

Create a complex matrix with irows rows and icolumns columns, with an optional complex value on the
diagonal.

Array Introspection

i rows la_i_size_vr ivr

Return the number of rowsin real vector ivr.

128

Mathematical Operations

i rows la_i_size_vc ive

Return the number of rows in complex vector ivc.

irows, icolums la_i_size_nr i

Return the number of rows and columnsin real matrix imr.

irows, icolumms la_i_size_nt inmc

Return the number of rows and columns in complex matrix imc.

kfiscurrent la_k_current _f fsig

Return 1if fsig is current, that is, if the value of fsig will change on the next kperiod.

kvri scurrent la_k_current _vr ivr

Return 1 if the real vector ivr is current, that is, if Csound's current audio sample frame stands at index 0
of the vector.

la_i_print_vr ivr

Print the value of real vector ivr.

la_i_print_vc ive

Print the value of complex vector ivc.

la_i_print_nr i

Print the value of real matrix imr.

la_i _print_nt inc

Print the value of complex matrix imc.

Array Assignment and Conversion

ivr la_i _assign_vr ivr

Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at i-rate.

ivr la_k_assign_vr ivr

Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at k-

rate.

ive la_i _assign_vc ive
ive la_k_assign_vc ivr
inr la_i _assign_nr inr
i la_k_assign_nr i

129

Mathematical Operations

ivr

ivr

ivr

ive

asig

i tabl enum

i tabl enum

fsig

la_i_assign_nt inmc

la_k_assign_nt inr

Warning
Assignments to vectors from tables or fsigs may resize the vectors.

Assignments to vectors from a-rate variables, or to a-rate variables from vectors, will be
performed incrementally, one chunk of ksmps elements per kperiod. Therefore, array arith-
metic on such vectors should only be performed when the vectors are current, as determ-
ined by thela k_currrent_vr opcode.

la_k_assign_a asi g
la_i_assign_t i t abl enunber
la_k_assign_t i t abl enunber
la_k_assign_f fsig
la_k_a_assign ivr
la_i_t_assign ivr
la_k_t_assign ivr
la_k_f_assign ive

Fill Arrays with Random Elements

ivr

ivr

ive

ive

Array Element Access

ivr

kvr

la_i _randomvr [ifill _fraction]
la_k_randomvr [kfill _fraction]
la_i _randomvc [ifill_fraction]
la_k_random vc [kfill _fraction]
la_i _random nr [ifill_fraction]
la_k_random nr [kfill _fraction]
la_i _randomnt [ifill _fraction]
| a_k_random nt [kfill _fraction]
la_i_vr_set irow, ivalue

la_k_vr_set krow, kval ue

130

Mathematical Operations

ive

kve

ke

i val ue
kval ue
ivalue_r, ivalue_i
kval ue_r, kval ue_i
i val ue
kval ue
ivalue_r,

ival ue_i

kval ue_r, kval ue_i

Single Array Operations

inr

la_i_vc_set

la_k_vc_set

la_i nr_set

la_k nr_set

la_i _nt_set

la_k_nt_set

la_i_get_vr

la_k_get _vr

la_i _get_vc

la_k_get_vc

la_i_get_m

la_k_get_nmr

la_i_get_nt

la_k_get_nt

la_i _transpose_nr

la_k_transpose_nr

la_i _transpose_nt

la_k_transpose_nt

la_i _conjugate_vr

| a_k_conjugate_vr

la_i _conjugate_vc

| a_k_conjugate_vc

la_i _conjugate_nr

la_k_conjugate_nr

la_i _conjugate_nt

I a_k_conjugate_nt

irow,

kr ow,

irow,

kr ow,

irow,

kr ow,

ivr,

ivr,

ivc,

ivalue_r, ivalue_i
kval ue_r, kval ue_i
i colum, ival ue
kcol um, ival ue
i colum, ivalue_r,
kcol um, kval ue_r,
irow

kr ow

irow

kr ow

irow, icolum

krow, kcol um

irow, icolum

krow, kcol um

ival ue_i

kval ue_i

131

Mathematical Operations

Scalar Operations

kr

kr

la_i _nornl_vr

la_k_norml_vr

la_i _norml_vc

la_k_norml_vc

la_i _norml_nr

la_k_norml_nr

la_i _norml_nt

la_k_norml_nt

la_i _norm euclid_vr

la_k_norm euclid_vr

la_i_normeuclid_vc

la_k_normeuclid_vc

la_i _norm euclid_nr

la_k_normeuclid_nr

la_i_normeuclid_nt

la_k_normeuclid_nt

la_i _distance_vr

la_k_di stance_vr

la_i _distance_vc

| a_k_di stance_vc

I a_i _norm max

I a_k_nor m nmax

I a_i _norm max

I a_k_nor m nmax

la_i _norm.inf_vr

la_k_norm.inf_vr

ive

nmr

mr

nmc

nmvc

ivr

132

Mathematical Operations

kr

la_i _norm.inf_vc

la_k_norm.inf_vc

la_i_norminf_nr

la_k_norm.inf_nr

la_i_norm.inf_nt

la_k_norm.inf_nc

la_i_trace_nr

la_k_trace_nr

la_i_trace_nt

la_k _trace_nt

la_i _lu_det
la_k_lu_det
la_i _lu_det
la_k_lu_det

Elementwise Array-Array Operations

ivr

ive

ivr

ive

ivr

ive

la_i_add_vr

la_k_add_vc

la_i_add_nr

la_k_add_nt

la_i _subtract_vr

la_k_subtract_vc

la_i_subtract_nr

la_k_subtract _nc

la_i_multiply_vr

la_k_multiply_vc

la_i _multiply_nr

la_k_multiply_nc

ive

ive

ivr_b

ivc_b

133

Mathematical Operations

ivr la_i_divide_vr ivr_a, ivr_b
ive la_k_divide_vc ivc_a, ivc_b
i la_i _divide_nr inr_a, inr_b
imc la_k_divide_nt inmc_a, inc_b

ir la_i _dot _vr ivr_a, ivr_b
kr la_k_dot _vr ivr_a, ivr_b
ir, ii la_i _dot_vc ivc_a, ivc_b
kr, Ki la_k_dot _vc ivc_a, ivc_b
i la_i_dot_nmr inr_a, inr_b
i la_k_dot_nr inr_a, inr_b
inc la_i_dot_nt inc_a, inc_b
inmc la_k_dot_nt inc_a, inc_b
ivr la_i_dot_nr _vr inr_a, ivr_b
ivr la_k_dot_nr_vr im_a, ivr_b
ive la_i_dot_nt_vc inmc_a, ivc_b
ive la_k_dot _nt_vc inc_a, ivc_b

Matrix Inversion

inr, icondition la_i_invert_nr i
inr, kcondition la_k_invert_nr i
inmc, icondition la_i_invert_nt inmc
imc, kcondition la_k_invert_nt imc

Matrix Decompositions and Solvers

ivr I a_i _upper_sol ve_nr inr [, j_1_diagonal]
ivr | a_k_upper_sol ve_nr inr [, j_1 diagonal]
ive la_i _upper_sol ve_nt imc [, j_1_diagonal]
ive | a_k_upper_solve_nt imc [, j_1 diagonal]

134

Mathematical Operations

ivr la_i _| oner_sol ve_nr inr [, j_1_ diagonal]
ivr la_k_I ower _sol ve_nr inr [, j_1_diagonal]
ive la_i _| oner_solve_nt inmc [, j_1 diagonal]
ive la_k_| oner_solve_nt imc [, j_1 diagonal]
inr, ivr_pivot, isize la_i _lu_factor_nr inr
inr, ivr_pivot, ksize la_k_lu_factor_nmr inm
imc, ivr_pivot, isize la_i _lu_factor_nt imc
inmc, ivr_pivot, ksize la_k _lu_factor_nt imc
ivr_x la_i _lu_solve_nr inr, ivr_b
ivr_x la_k lu_solve_ nmr inr, ivr_b
ive_x la_i _lu_solve_nt imc, ivec_b
ivec_x la_k_lu_solve_nt inmc, ive_b
inr_q, im_r la_i_qr_factor_m i
inr_qg, inr_r la_k_qgr_factor_nr inr
imc_q, inmc_r la_i_qgr_factor_nt imc
inc_qg, inc_r la_k_qgr_factor_nt inmc
ivr_eig_vals la_i_qr_eigen_nr inr, i_tolerance
ivr_eig_vals la_k_qgr_eigen_nr inr, k_tolerance
ivr_eig_vals la_i_qr_eigen_nt inmc, i_tolerance
ivr_eig_vals la_k_qr_eigen_nc inc, k_tol erance
. Warning

Matrix must be Hermitian in order to compute eigenvectors.
ivr_eig_vals, inr_eig_ vecs la_i_qgr_symeigen_nr inr, i_tolerance

ivr_eig_vals, im_eig_vecs la_k gr_symeigen_nr inr, k_tolerance

ivc_eig_vals, inc_eig vecs la_i_qgr_symeigen_nc int, i_tolerance

ivc_eig_vals, inc_eig_vecs la_k gr_symeigen_nc int, k_tolerance

135

Mathematical Operations

Credits

Michael Gogins

New in Csound version 5.09

136

Pitch Converters

Functions

Opcodes that provide common pitch functions are:

 cent

e cpsmidinn
¢ cpsoct

* cpspch

* octave

* octcps

+ octmidinn
 octpch

e pchmidinn
* pchoct

* semitone

Tuning Opcodes

Opcodes that provide tuning functions are:

* cps2pch
» cpsxpch
* cpstun

* cpstuni

137

Real-time MIDI Support

Csound supports realtime MIDI input and output, as well asinput from MIDI files. Realtime
MIDI input is activated using the -M (or --midi-device=DEVICE) command line flag. You
must specify the device number or name after the -M. For example to use device number 2,
you would use something like:

csound -M2 myrtmidi.csd

Y ou can find out the available devices by using an out of range device:

csound -M99 myrtmidi.csd

Note

This will only work if the MIDI module can be accessed by device number.
For alsa, you must first find the device name using:

cat /proc/asound/cards

Y ou must then use something like:

csound -+rtmidi=alsa-M hw:3 myrtmidi.csd

Realtime MIDI output is activated using -Q, using device number or names as shown above.

You can aso load aMIDI file using the -F or --midifile=FILE command line flag. The MIDI
fileisread in realtime, and behaves as if it was being performed or recieved in realtime. So
the csound program is not aware if MIDI input comes from a MIDI file or directly from a
MIDI interface.

Once redltime MIDI input and/or output has been activated, opcodes like MIDI Input and
MIDI Output will have effect.

When MIDI input is enabled (with -M or -F), each incoming noteon message will generate a
note event for an instrument which has the same number as the channel of the event (see
massign and pgmassign to change this behavior). This means that MIDI controlled instru-
ments are polyphonic by default, since each note will generate a new instance of the instru-
ment.

See the MIDI/Score Interoperability opcodes for information on designing instruments
which can be used from the score or driven by MIDI.

There are several redtime MIDI modules available, you must use the -+rtmidi flag (See -
+rtmidi), to specify the module. The default module is portmidi which provides adecuate

MIDI 1/O on all platforms, however for improved performance and reliablity some platform
specific modules are also provided.

Currently the midi modules available are:

» alsa- Tousethe ALSA midi system (Linux only)

138

Real-time MIDI Support

* winmme - To use the windows MME system (Windows only)
 portmidi - To use the portmidi system (all platforms). Thisis the default setting.

* virtual - To use avirtual graphical keyboard (See below) as MIDI input (all platforms)

Tip

When csound runs, it will process the score and then quit. If there are no events in the
score, Csound will exit immediately. If you want to use only MIDI events instead of score
events, you need to tell Csound to run for a certain amount of time. This can be done with
a dummy f-statement like "f 0 3600".

Virtual MIDI Keyboard

T 40 [[&[0
2 S 7 4ol
- T B 4ol
[+ &[] o 4ol
5 = lieny 1o & [e [
Channel[l &Bank[Bank 1 w|Program | Acoustic Grand |

All Motes Off

Virtual MIDI keyboard.

The virtual MIDI keyboard module (activated using -+rtmidi=virtual on the command line flags)
provides away of sending realtime MIDI information to Csound without the need of a MIDI device. It
can send note information, control changes, bank and program changes on a specified channel. The
MIDI information from the virtual keyboard is processed by Csound in exactly the same way as MIDI
information that comes from the other MIDI drivers, so if your Csound orchestra is designed to work
with hardware MIDI devices, thiswill aso work.

For the device flag (-M), the virtual keyboard uses this to take in the name of a keyboard mapping files.
Like al MIDI drivers, a device must be given to activate the driver. If you would like to just use the de-
fault settings of the keyboard, smply passing in O (i.e. -M0) and the virtual keyboard will use its default
settings. If instead of the 0 a name of afileis given, the keyboard will attempt to load the file as a key-
board mapping. If the file could not be opened or read correctly, the default settings will be used.

Keyboard Mapping files allow the user to customize the name and number of banks as well as the name
and number of programs per bank. The following example keyboard mapping (named keyboard.map)
has inline comments on the file format. Thisfile is also available with the Csound source distribution in
the InOut/virtual_keyboard folder.

Cust om Keyboard Map for Virtual Keyboard
Steven Yi
#

139

Real-time MIDI Support

USACE

When using the Virtual Keyboard, you can supply a filenanme for a napping
of banks and programs via the -Mflag, for exanple:

csound -+rtmdi=virtual -Meyboard.map nmy_project.csd
| NFORVATI ON ON THE FORVAT

-lines that start with '# are comrents

-lines that have [] start new bank definitions,

the contents are bankNumrbankNanme, w th bankNun¥[1, 16384]
-lines foll ow ng bank statenents are program definitions

in the format programNun¥progranName, w th progranmNum=[1, 128]
- bankNumber s and programNunbers are defined in this file
starting with 1, but are converted to mdi values (starting
with 0) when read

NOTES

-if an invalid bank definition is found, all program
defintions that follow will be ignored until a new

val id bank definition is found

-if a valid bank is defined by no valid progranms found
for that bank, it will default to General M DI program
definitions
-if an invalid programdefinition is found, it will be

i gnored

HHBHHFHHFHFHFEHFHFHFHF TR

=My Bank]
Test Patch 1
Test Patch 2
Test Patch 30

Test Patch 1(bank2)
Test Patch 2(bank2)

My
M
=M
=My Bank2]
My
My
=My Test Patch 30(bank3)

The ten dliders up top are by default set to MIDI Controller number 1-10 though they can be changed to
whatever one wishes to use. The controller numbers and values of each slider are set per channel, so one
may use different settings and values for each channel.

By default there are 128 banks and for each bank 128 patches defaulting to General Midi names. The
MIDI bank standard uses 14-bit resolution to support 16384 possible banks, but the bank numbers by
default are 0-127. To use values higher than 127, one should use a custom keyboard map and set the de-
sired bank number value for the bank name. The virtual keyboard will correctly transmit the bank num-
ber as MSB and L SB with controller numbers 0 and 32.

Beyond the input available from interacting with the GUI via mouse, one may also trigger off MIDI
notes by using the ASCII keyboard when the virtual keyboard window is focused. The layout is done
much like a tracker and offers two octaves and a major third to trigger, starting from Middle-C (MIDI
note 60). The ASCII keyboard MIDI note values are given in the following table.

Table6. ASCII Keyboard MIDI Note Values

Keyboard Key MIDI Value
60
61
62
63
64
65
66

Q| <|[O0|Q|X|n|N

140

Real-time MIDI Support

Keyboard Key MIDI Value
b 67
h 68
n 69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

o|lwls[N[a]3[—

ClIN<|O| |01

T|O|l0|©

Here's an example of usage of the virtual MIDI keyboard. It uses the file virtual.csd [examples/virtu-
al.csd).

<CsoundSynt hesi zer >

<CsOpti ons>

Sel ect audio/m di flags here according to platform

Audi o out Audio in Virtual M DI -M) is needed anyway
- odac -iadc -+rtmdi=virtual -M
</ CsOpti ons>

<Csl nstrunent s>
; By Mark Janerson 2007

sr=44100
ksmps=10
nchnl s=2

massign 1,1
prealloc 1,10

instr 1 ;Mdi FMsynth

inote cpsmd
ivel oc anmpmi di 10000
idur = 2

xtratim1

kgate oscil 1,10,2

anoi se noi se 100*i note, .99
acps sanphol d anoi se, kgate
aosc oscili 1000, acps, 1
aout = aosc

; Use controller 7 to control vol une

141

examples/virtual.csd
examples/virtual.csd
examples/virtual.csd

MIDI

MIDI

Real-time MIDI Support

kvol ctrl7 1, 7, 0.2, 1

outs kvol * aout, kvol * aout
endi n

</ Csl nstrunment s>

<CsScor e>

f0 3600

f1 0 1024 10 1

f2 016 7 1808
f3 01024 101 .5 .6 .3 .2 .5

e
</ CsScor e>
</ CsoundSynt hesi zer >

Input

The following opcodes can recieve MIDI information:

MIDI information for any instruments: aftouch, chanctrl and polyaft, pchbend.

MIDI information for MIDI-triggered instruments: veloc , midictrl and notnum. See also Converters.

MIDI Controller input for any instrument: ctrl7, ctrl14 and ctrl21.

MIDI Controller input for MIDI-triggered instruments only: midic7, midic14 and midic21.

MIDI controller value initialization: initc7, initc14, initc21 and ctrlinit.

massign can be used to specify the csound instrument to be triggered by a particular MIDI channel. pg-
massign can be use to assign a csound instrument to a specific MIDI program.

Message Output

Opcodes that produce MIDI output are:

* mdelay
e nrpn

* outiat
* outic
* outicl4
 outipat
e outipb
e outipc
* outkat
» outkc

» outkcl4

142

Real-time MIDI Support

* outkpat
* outkpb

 outkpc

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Converters

The following opcodes can convert MIDI information from a MIDI-triggered instrument instance:

* MIDI note number to frequency converters. cpsmidi, cpsmidib, cpstmid, octmidi, octmidib, pchmidi
and pchmidib.

* MIDI velocity to amplitude converters: ampmidi and ampmidid.

Event Extenders

Opcodes that let one extend the duration of an event are:

* release

e xtratim

Note-on/Note-off Output

Opcodes to output MIDI note on or off messages are:

* midion

* midion2
* moscil

* noteoff

* noteon

* noteondur

» noteondur?2

MIDI/Score Interoperability opcodes

The following opcodes can be used to design instruments that work interchangably for real-time MIDI

143

Real-time MIDI Support

and score events;

+ midichannelaftertouch
* midichn

» midicontrolchange
 mididefault

* midinoteoff

» midinoteoncps

» midinoteonkey

» midinoteonoct

» midinoteonpch

« midipitchbend

» midipolyaftertouch

» midiprogramchange.

Adapting a scor e-activated Csound instrument.

To adapt an ordinary Csound instrument designed for score activation for score/MIDI in-
teroperability:

» Change al linen, linseg, and expseg opcodes to linenr, linsegr, and expsegr, respect-
ively, except for a de-clicking or damping envelope. This will not materially change
score-driven performance.

» Add thefollowing lines at the beginning of the instrument definition:

; Ensures that a MDI-activated instrunent

; will have a positive p3 field.

m di default 60, p3

; Puts M DI key translated to cycles per

; second into p4, and MDI velocity into p5
m di not eoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other op-
tions, and the choice of p-fieldsis arbitrary.

MIDI Realtime Input/Ouput command line options

New MIDI 1/0O flagsin Csound 5.02, can replace most uses of these MIDI interop opcodes,
and make usage easier.

144

Real-time MIDI Support

System Realtime Messages

Opcodes for System Realtime MIDI messages are: mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are:

+ dlider8
* dider8f
+ dliderl6
* dider16f
* dlider32
* dider32f
+ dlideré4
* dider64f
+ sl6bl4
» S32bl14

» dliderKawali
Opcodes for storing slider banks of MIDI controls to tables are:

+ dlider8table

+ dlider8tablef

+ dliderl6table
« dlider16tablef
+ dlider32table
* dlider32tablef
+ dlider64table
* dlider64tablef

145

Spectral Processing

See the section Additive Synthesis/Resynthesis for the basic resynthesis opcodes.

Short-time Fourier Transform (STFT) Re-

synthesis

Use of PVOC-EX files with the old Csound pvoc
opcodes

All the original pvoc opcodes can now read a PVOC-EX file, as well as the
native non-portable file format. As the PVOC-EX file uses a double-size ana
lysis window, users may find that this gives a useful improvement in quality,
for some sounds and processes, despite the fact that the resynthesis does not
use the same window size.

Apart from the window size parameter, the main difference between the origin-
al .pv format and PVOC-EX is in the amplitude range of anaysis frames.
While rescaling is applied, so that no significant difference in output level is
experienced, whichever file format is used, some dight loss of amplitude can
gtill arise, as the double window usage itself modifies frame amplitudes, of
which the resynthesis code is unaware. Note that all the original pvoc opcodes

expect a mono analysis file, and multi-channel PVOC-EX files will accord-
ingly be rejected.

Opcodes the implement STFT resynthesis are;

* mincer

* temposcal
* tableseg
e pvadd

* pvbufread
* pvCross
* pvinterp
¢ pvoc

* pvread

* tableseg
* tablexseg

 vpvoc

Use the utility PVANAL to generate pv analysisfiles.

146

Spectral Processing

Linear Predictive Coding (LPC) Resynthesis

Thelinear predictive coding resynthesis opcodes are:

* |pfreson
* Ipinterp
* |pread

* |preson

* |pslot

LPC analysisfiles can be created using the LPANAL utility.

Non-standard Spectral Processing

These units generate and process non-standard signal data types, such as down-sampled time-domain
control signals and audio signals, and their frequency-domain (spectral) representations. The data types
(d-, w-) are self-defining, and the contents are not processable by any other Csound units. These unit
generators are experimental, and subject to change between releases, they will also be joined by others
later.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing (pvs
opcodes)

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality,
and fast performance, enabling high-quality analysis and resynthesis (together with transformations) to
be applied in real-time to live signals. The original Csound phase vocoder remains unaltered; the new
opcodes use an entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by
Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) aso use this pvoc engine. CARL
pvoc is also the basis for the phase vocoder included in the Composer's Desktop Project. A few small
but important modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVYOC-EX analysisfile format. Thisisafully portable (cross-platform) open file
format, supporting three analysis formats, and multi-channel signals. Currently only the standard
amplitude+frequency format has been implemented in the opcodes, but the file format itself supports
amplitude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original
Csound pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases)
to read PVOC-EX files aswell asthe original (non-portable) format.

Full details of the structure of a PVOC-EX file are avalable via the website: ht-
tp://lwww.cs.bath.ac.uk/~jpff/INOS-DREAM/researchdev/pvocex/pvocex.html. This site also gives
details of the freely available console programs pvocex and pvocex2 which can be used to create
PVOC-EX filesin all supported formats.

147

http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html

ATS

Spectral Processing

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this docu-
ment it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes
pvsana and pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthes-
is, independently of the orchestra control-rate. The only requirement is that the control-rate kr be
higher than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <=
overlap, where overlap is the distance in samples between analysis frames, as specified for pvsanal.
As overlap istypicaly at least 128, and more usualy 256, this is not an onerous restriction in prac-
tice. The opcode pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase vo-
coder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthet-
ic fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental.
Thus the fsig enables the creation of a true streaming plugin framework for frequency domain sig-
nals. With the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities
such as pitch scaling are duplicated in each opcode; and in many cases the opcodes are parameter-
rich. The separation of analysis and synthesis stages by means of the fsig encourages the develop-
ment of a wide range of simple building-block opcodes implementing one or two functions, with
which more elaborate processes can be constructed.

Thisisvery much apreliminary and experimental release, and it is possible that the precise definition of
the opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes
are opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. Thisis at least
in part in order to keep the opcodes simple at this stage, and also because they highlight important
design issues on which no decision has yet been made, and on which opinions from users are sought.

One important point about the new signal type is that because the analysis rate is typically much lower
than kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and
also maintain a frame counter, so that frames are read and written at the correct times; this process is
generaly transparent to the user. However, it means that k-rate signals only act on an fsig at the analysis
rate, not at each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig dataisvalid.

Because of the nature of the overlap-add system, the use of these opcodes incurs a small but significant
delay, or latency, determined by the window size (max(ifftsizejiwinsize)). This is typically around
23msecs. In this first release, the delay is dightly in excess of the theoretical minimum, and it is hoped
that it can be reduced, as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, pvsftr, pvsftw,
pvsinfo, pvsmaska, and pvsynth.

In addition there are a number of opcodes available as plugins in Csound5. These are pvstanal,
pvsdiskin, pvscent, pvsdemix, pvsfreeze, pvsbuffer, pvsbufread, pvsbufread?2, pvscale, pvshift, pvsifd,
pvsinit, pvsin, pvsout, pvsosc, pvshin, pvsdisp, pvsfwrite, pvdock, pvsmix, pvsmooth, pvsfilter, pvsblur,
pvstencil, pvsarp, pvsvoc, pvsmor ph, pvsbandp, pvsbandr, pvswarp, pvsgain, pvs2tab, tab2pvs.

A number of opcodes are designed to generate and process streaming partials tracks data. these are par-
tials, treross, trfilter, trsplit, trmix, trscale, trshift, trlowest, trhighest tradsyn, sinsyn, resyn, binit

See the Stacks section for information on the stack opcodes which can stack f-signals.

Spectral Processing

These opcodes can read, transform and resynthesize ATS analysis files. Please note that you need the
ATS application to produce analysis files. From the ATS Reference Manual:

148

Spectral Processing

"ATS is a software library of functions for spectral Analysis, Transformation, and Synthesis of sound
based on a sinusoidal plus critical-band noise model. A sound in ATSis a symbolic object representing
a spectral model that can be sculpted using a variety of transformation functions.”

For more information on ATS visit: http://www-ccrma.stanford.edu/~juan/AT S.html.
ATS analysisfiles can be produced using the ATS software or the csound utility ATSA.

The opcodes for ATS processing are:

» ATSinfo: reads data out of the header of an ATSfile.

» ATSread, ATSreadnz, ATSbufread, ATSnterpread, ATSpartialtap: read data from an ATS file or buf-
fer.

e ATSadd, ATSaddnz, ATScross, ATSsinnoi: Resynthesize sound.

Credits

Author: Alex Norman
Seattle,Washington
2004

Loris Opcodes
Note

These opcodes are an optional component of Csound5. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The Loris family of opcodes wraps: lorisread which imports a set of bandwidth-enhanced partials from
a SDIF-format data file, applying control-rate frequency, amplitude, and bandwidth scaling envelopes,
and stores the modified partials in memory; lorismorph, which morphs two stored sets of bandwidth-en-
hanced partials and stores a new set of partials representing the morphed sound. The morph is performed
by linearly interpolating the parameter envelopes (frequency, amplitude, and bandwidth, or noisiness) of
the bandwidth-enhanced partials according to control-rate frequency, amplitude, and bandwidth morph-
ing functions, and lorisplay, which renders a stored set of bandwidth-enhanced partials using the method
of Bandwidth-Enhanced Additive Synthesis implemented in the Loris software, applying control-rate
frequency, amplitude, and bandwidth scaling envelopes.

For more information about sound morphing and manipulation using Loris and the Reassigned Band-
width-Enhanced Additive Model, visit the Loris web site at www.cerlsoundgroup.org/Loris [ht-
tp://www.cerlsoundgroup.org/Loris].

Examples

Example 3. Play the partials wihtout modification

Play the partials in clarinet.sdif
: fromO to 3 sec with 1 ns fadetine

149

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris

Spectral Processing

; and no frequency , anplitude, or
bandwi dt h nodi fication

instr 1

ktime linseg 0, p3, 3.0 ; linear time function fromO to 3 seconds
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001
asig | orispl ay 1, 1, 1, 1
out asig
endin

Example 4. Add tuning and vibrato

Play the partials in clarinet.sdif

fromO to 3 sec with 1 ns fadetine

addi ng tuning and vibrato, increasing the
"breat hi ness"” (noi siness) and overal
anpl i tude, and adding a highpass filter.

nstr 2
ktime linseg 0, p3, 3.0 ; linear time function fromO to 3 seconds

; conpute frequency scale for tuning
; (original pitch was G#4)

ifscale = cpspch(p4)/ cpspch(8.08)

; make a vibrato envel ope

kvenv l'inseg 0, p3/6, 0, p3/6, .02, p3/3, .02, p3/6, O, p3/6, O

kvi b osci | kvenv, 4, 1 ; table 1, sinusoid

kbwenv linseg 1, p3/6, 1, p3/6, 2, 2*p3/3, 2
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001

al | orispl ay 1, ifscal etkvib, 2, kbwenv

a2 at one al, 1000 ; highpass filter, cutoff 1000 Hz
out a2

endin

The instrument in the first example synthesizes a clarinet tone from beginning to end using partials de-
rived from reassigned bandwidth-enhanced analysis of athree-second clarinet tone, stored in afile, cl a-

rinet. sdi f. Theinstrument in Example 2 adds tuning and vibrato to the clarinet tone synthesized by in-
str 1, boosts its amplitde and noisiness, and applies a highpass filter to the result. The following score
can be used to test both of the instruments described above.

; make sinusoid in table 1
f 1 0 4096 10 1

play instr 1

; strt dur

i1 0 3

i1 + 1

i1 + 6

s

; play instr 2

; strt dur ptch
i 2 1 3 8. 08
i 2 3.5 1 8. 04
i 2 4 6 8. 00
i 2 4 6 8. 07

Example 5. Morph partials

Morph the partials in clarinet.sdif into the

150

Spectral Processing

partials in flute.sdif over the duration of

the sustained portion of the two tones (from

.2 to 2.0 seconds in the clarinet, and from

.5 to 2.1 seconds in the flute). The onset

and decay portions in the norphed sound are
specified by paraneters p4 and p5, respectively.
The morphing time is the time between the

onset and the decay. The clarinet partials are
shfited in pitch to match the pitch of the flute
tone (D above nmiddle C).

instr 1

i onset = p4
i decay = p5
itmorph = p3 - (ionset + idecay)
ipshift = cpspch(8.02)/cpspch(8.08)
; clarinet tine function, norph from.2 to 2.0 seconds
kt cl linseg 0, ionset, .2, itnorph, 2.0, idecay, 2.1
; flute time function, morph from.5 to 2.1 seconds
ktfl l'inseg 0, ionset, .5, itmorph, 2.1, idecay, 2.3
krur ph linseg 0, ionset, 0, itnorph, 1, idecay, 1
| ori sread ktcl, "clarinet.sdif", 1, ipshift, 2, 1, .001
| ori sread ktfl, "flute.sdif", 2, 1, 1, 1, .001
lorisnorph 1, 2, 3, knurph, knurph, kmurph
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Example 6. M ore morphing

; Morph the partials in tronbone.sdif into the

; partials in neow. sdif. The start and end tines

; for the norph are specified by paraneters p4
and p5, respectively. The norph occurs over the
second of four pitches in each of the sounds

; from.75 to 1.2 seconds in the flutter-tongued

; tronbone tone, and from1l.7 to 2.2 seconds in

the cat's nmeow. Different norphing functions are

; used for the frequency and anplitude envel opes

; so that the partial anplitudes nake a faster
transition fromtronbone to cat than the frequencies
(The bandwi dt h envel opes use the sanme norphing
function as the anplitudes.)

instr 2

i onset = p4
i mor ph = p5 - p4
irel ease = p3 - p5
kttbn l'inseg 0, ionset, .75, inmorph, 1.2, irelease, 2.4
kt meow |inseg 0, ionset, 1.7, inmorph, 2.2, irelease, 3.4
knfreq l'inseg 0, ionset, 0, .75*i nmorph, .25, .25%i nmorph, 1, irelease, 1
kmanp l'inseg 0, ionset, 0, .75*inmorph, .9, .25% nmorph, 1, irelease, 1
| orisread kttbn, "trombone.sdif", 1, 1, 1, 1, .001
| orisread kt meow, "meow sdif", 2, 1, 1, 1, .001
lorisnorph 1, 2, 3, knfreq, kmanp, kmanp
asig | ori spl ay 3, 1, 1, 1
out asi g
endi n

The instrument in the first morphing example performs a sound morph between a clarinet tone and a
flute tone using reassigned bandwidth-enhanced partials stored incl arinet. sdi f and fl ute. sdi f.

The morph is performed over the sustain portions of the tones, 2. seconds to 2.0 seconds in the case of
the clarinet tone and .5 seconds to 2.1 seconds in the case of the flute tone. The time index functions,
ktcl and ktfl, align the onset and decay portions of the tones with the specified onset and decay times for
the morphed sound, specified by parameters p4 and p5, respectively. The onset in the morphed soundsis

151

Spectral Processing

purely clarinet partial data, and the decay is purely flute data. The clarinet partials are shifted in pitch to
match the pitch of the flute tone (D above middle C).

The instrument in the second morphing example performs a sound morph between a flutter-tongued
trombone tone and a cat's meow using reassigned bandwidth-enhanced partials stored in t r onbone. sdi f
and neow. sdi f . The datain these SDIF files have been channelized and distilled to establish correspond-
ences between partials.

The two sets of partials are imported and stored in memory locations labeled 1 and 2, respectively. Both
of the original sounds have four notes, and the morph is performed over the second note in each sound
(from .75 to 1.2 seconds in the flutter-tongued trombone tone, and from 1.7 to 2.2 seconds in the cat's
meow). The different time index functions, kttbn and ktmeow, align those segments of the source and
target partial sets with the specified morph start, morph end, and overall duration parameters. Two dif-
ferent morphing functions are used, so that the partial ammplitudes and bandwidth coefficients morph
quickly from the trombone values to the cat'ssmeow values, and the frequencies make a more gradual
transition. The morphed partials are stored in a memory location labeled 3 and rendered by the sub-
sequent lorisplay instruction. They could also have been used as a source for another morph in a three-
way morphing instrument. The following score can be used to test both of the instruments described
above.

play instr 1
strt dur onset decay

1 0 3 .25 .15
1 + 1 .10 .10
1 + 6 1. 1.

B ==

; play instr 2
; strt dur norph_start nmor ph_end
i 2 0 4 .75 2.75

e

Credits

This implementation of the Loris unit generators was written by Kelly Fitz (loris@cerlsoundgroup.org
[mailto:loris@cerlsoundgroup.org]).

It is patterned after a prototype implementation of the lorisplay unit generator written by Corbin Cham-
pion, and based on the method of Bandwidth-Enhanced Additive Synthesis and on the sound morphing
algorithms implemented in the Loris library for sound modeling and manipulation. The opcodes were
further adapted as a plugin for Csound 5 by Michael Gogins.

152

mailto:loris@cerlsoundgroup.org
mailto:loris@cerlsoundgroup.org

Strings

String variables are variables with a name starting with S or gS (for alocal or global string
variable, respectively), and can store any string with a maximum length defined by the -
+max_str_len command line flag (255 characters by default). These variables can be used as
input argument to any opcode that exepcts a quoted string constant, and can be manipul ated
at initialization or performance time with the opcodes listed below.

It isaso possible to use string p-fields. The string p-field can be used by many orchestra op-
codes directly, or it can be copied to a string variable first:

al di skin2 p5, 1

Sname strget p5
al di skin2 Snanme, 1

Strings within Csound can be expressed using traditional double quotes (" "), an aso using
{{ }}. The second method is useful to alow ';' and '$ characters within the string without
having to used ASCII codes.

Note

String variables and related opcodes are not available in Csound versions older
than 5.00.
Strings can aso be linked to a number using strset and strget.
Csound 5 also has improvements in parsing string constants. It is possible to specify a multi-
line string by enclosing it within {{ and }} instead of the usual double quote characters (note
that the length of string constantsis not limited, and is not affected by the -+max_str_len op-
tion), and the following escape sequences are automatically converted:
» \adert bell
* \b backspace
* \nnew line
 \r carriage return
o \ttab
» \asingle'\' character
« \nnn the character of which the ASCII code (in octal) is nnn

It can be useful together with the system opcode:

instr 1
; csound5 lets you nake a string with [ine returns inside double brackets
system {{ ps
date
cd ~/ Deskt op
pwd
Is -1

153

Strings

whoi s csounds. com

H}

endi n

And the python opcodes, among others:

pyruni {{
I mport random

pool = [(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber_from pool (n, p):
I f randomrandom() < p:
i = int(randomrandonm() * |en(pool))
pool [i] =n
return random choi ce(pool)

H}

String Manipulation Opcodes

These opcodes perform operations on string variables (note: most of the opcodes run at init time only,
and have a version with a "k" suffix that runs at both init and performance time; exceptions to this rule
include puts and strget):

* strepy and strepyk - Assignsto astring variable.

* dtrcat and strcatk - Concatenates strings, and stores the result in avariable.

* stremp and strempk - Compares strings.

» strget - Assignsto astring variable, from strset table at the specified index, or string score p-field.

* strlen and strlenk - Returns the length of a string.

* sprintf - printf-style formatted output conversion, storing the result in a string variable.

 sprintfk - printf-style formatted output conversion, storing the result in a string variable at k-rate.

* puts- Prints astring constant or variable.

* strindex and strindexk - Returns the first occurence of a string in another string.

* strrindex and strrindexk - Returns the last occurence of a string in another string.

* strsub and strsubk - Returns a substring of the input string.

String Conversion Opcodes

These opcodes convert string variables (note: most of the opcodes run at init time only, and have a ver-
sion with a "k" suffix that runs at both init and performance time; exceptions to this rule include puts
and strget):

« strtod and strtodk - Converts string value to a floating point value at i-rate.

* dtrtol and strtolk - Converts string value to signed integer at i-rate.

 strchar and strchark - Returns the ASCII code of a character in a string.

154

Strings

* strlower and strlowerk - Converts a string to lower case.

* strupper and strupperk - Converts a string to upper case.

155

Vectorial Opcodes

The vectorial opcode family is designed to allow sections of f-tables to be treated as vectors
for diverse operations on them.

Tables of vectors operators

The following Vectoria opocodes support read/write access to arrays of vectors (or arrays of
arrays):

* vtablel
 vtablelk
* vtablek
* vtablea
* vtablewi
o vtablewk
* vtablewa
* vtabi

* vtabk

*+ vtaba
 vtabwi
 vtabwk

» vtabwa

Operations Between a Vectorial and a
Scalar Signal

These opcodes perform numeric operations between a vectorial control signal (hosted inside
afunction table), and a scalar signal. Result is a new vector that overrides old values of the
table. There are k-rate and i-rate versions of the opcodes.

All these operators are designed to be used together with other opcodes that operate with
vectorial signals such as bmscan, vcella, adsynt, adsynt2 etc.

Operations Between a Vectoria and a Scalar Signal:

» vadd

o vmult

156

Vectoria Opcodes

* Vpow
* vexp

e vadd i
o vmult_i
* VpPOW_i

o vexp i

Operations Between two Vectorial Signals

These opcodes perform operations between two vectors, that is, each element of the first vector is pro-
cessed with the corresponding element of the other vector. The result is a new vector that overrides the
old values of the source vector.

Operations Between two Vectorial Signals:

* vaddv
* vsubv
o vmultv
o vdiw

* Vpowv
* vexpv
* vcopy
* vmap

e vadadv i
e vaubv i
o vmultv_i
o vdiw_i
* VPOWV_i
e vexpv_i
* vcopy_i

All these operators are designed to be used together with other opcodes that operate with vectorial sig-
nals such as veella, adsynt, adsynt2, etc.

Vectorial Envelope Generators

157

Vectoria Opcodes

The opcodes to generate vectors containing envelopes are vliinseg and vexpseg.

These opcodes are similar to linseg and expseg, but operate with vectorial signals instead of with scalar
signals.

Output is a vector hosted by an f-table (that must be previously allocated), while each break-point of the

envelope is actually a vector of values. All break-points must contain the same number of elements
(ielements).

These operators are designed to be used together with other opcodes that operate with vectorial signals
such as vcella, adsynt, adsynt2, etc.

Limiting and wrapping of vectorial control sig-
nals

The opcodes to perform limiting and wrapping of elements within a vector are:

o vlimit

e vwrap

e vmirror

These opcodes are similar to limit, wrap and mirror, but operate on a vector instead of a scalar signal.
The old values of the vector contained in an f-table are over-written if they are out of min/max interval.
If you want to keep the original values of the input vector, use the vcopy opcode to copy it in another ta-
ble.

All these opcodes work at k-rate.

All these operators are designed to be used together with other opcodes that operate with vectorial sig-
nals such as vcella, adsynt, adsynt2 etc.

Vectorial Control-rate Delay Paths

Vectoria Control-rate Delay Paths:

» vdelayk
* vport

 vecdelay

Vectorial Random Signal Generators

These opcodes generate vectors of random numbers to be stored in tables. They generate a sort of 'vec-
torial band-limited noise'. All these opcodes work at k-rate.

Vectorial random signal generators: vrandh and vrandi.

158

Vectoria Opcodes

Cellular automata vectors can be generated using: vcella.

159

Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak sys-
tem can be thought of as a global array of variables. These opcodes are useful for perform-
ing flexible patching or routing from one instrument to another. The system is similar to a
patching matrix on a mixing console or to a modulation matrix on a synthesizer. It is also
useful whenever an array of variablesis required.

The zak system isinitialized by the zakinit opcode, which is usually placed just after the oth-
er global initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of
memory, one area for i- and k-rate patching, and the other area for a-rate patching. The za-
kinit opcode may only be called once. Once the zak space is initialized, other zak opcodes
can be used to read from, and write to the zak memory space, as well as perform various
other tasks.

Zak channels count from 0, so if you define 1 channel, the only valid channel is channel 0.

Opcodes for the zak patch system are:

 Audio Rate: zacl, zakinit, zamod, zar, zarg, zaw and zawm.
» Control Rate: zkcl, zZkmod, zkr, zkw, and zkwm.

» Atinitialization: zir, ziw and zZiwm

160

Plugin Hosting

Csound currently hosts external plugins using dssi4cs (for LADSPA plugins) on Linux and
vst4cs (for VST plugins) on Windows and Mac OS X.

DSSI and LADSPA for Csound

dssi4cs enables the use of DSSI and LADSPA plugin effects and synthesizers within Csound
on Linux. The following opcodes are available:

* dssiinit - Loads a plugin.

* dssiactivate - Activates or deactivates a plugin if it has this facility

 dssilist - Lists al available plugins found in the LADSPA_PATH and DSSI_PATH global
variables.

* dssiaudio - Process audio using a Plugin.

e dssictls- Send control information to a plugin's control port.

Seethe entry for dssiinit for a usage example.

Note

Currently only LADSPA plugins are supported, but DSSI support is planned.

VST for Csound

vst4cs enables the use of VST plugin effects and synthesizers within Csound. The following
opcodes are available:

* vdtinit - Loads a plugin.

* vstaudio, vstaudiog - Returns a plugin's output.

 vstmidiout - Sends MIDI datato a plugin.

* vstparamset, vstparamget - Sends and receives automation data to and from the plugin.

* vstnote - Sends a MIDI note with definite duration.

* vstinfo - Outputs the Parameter and Program names for a plugin.

* vstbankload - Loads an . f xb Bank.

» vstprogset - SetsaProgramin an . f xb Bank.

* vstedit - Opens the GUI editor for the plugin, when available.

161

Plugin Hosting

Credits

By: Andres Cabreraand Michael Gogins
Uses code from Hermann Seib's VSTHost and Thomas Grill's vst~ object.

VST isatrademark of Steinberg Media Technologies GmbH. VST Plug-In Technology by Steinberg.

162

OSC and Network
OSC

OSC enables interaction between different audio processes, and in particular between
Csound and other synthesis engines. The following opcodes are available:

* OSCinit - Start an OSC listener thread.
» OClisten - Receive OSC messages.
» OSCsend - Send an OSC message.

Credits

By: John ffitch with the liblo library as inspiration and support.

Network

The following opcodes can stream or receive audio through UDP:;

» sockrecv

» socksend

Remote Opcodes

The Remote opcodes enable transmission of score or MIDI events through a network, so re-
mote instances (or a different local instance) can process them. The following opcodes are
available:

* insglobal - Used to implement a remote orchestra.

* insremot - Used to implement aremote orchestra.

» midiglobal - Used to implement aremote MIDI orchestra

e midiremot - Used to implement a remote MIDI orchestra.

» remoteport - Defines the port for use with the remote system.

163

Mixer Opcodes

The Mixer family of opcodes provides a global mixer for Csound. The Mixer opcodes in-
clude MixerSend for sending (that is, mixing in) an arate signal from any instrument to a
channel of a mixer buss, MixerReceive for receiving an arate signa from a channel of any
mixer buss in any instrument, MixerSetLevel (krate) and MixerSetLevel i (irate) for con-
trolling the level of the signal sent from a particular send to a particular buss, Mixer GetLevel
for reading (at krate) the level for sending a signal from a particular send to a particular
buss, and MixerClear for resetting the busses to zero before the next kperiod of a perform-
ance.

164

Signal Flow Graph Opcodes

These opcodes enable the use of signal flow graphs (AKA asynchronous data flow graphs)
in Csound orchestras. Signals flow from the outlets of source instruments and are summed in
the inlets of sink instruments. Signals may be krate, arate, or frate. Any number of outlets
may be connected to any number of inlets. When a new instance of an instrument is instanti-
ated during performance, the declared connections also are automatically instantiated.

Signal flow graphs simplify the construction of complex mixers, signal processing chains,
and the like. They also simplify the re-use of "plug and play" instrument definitions and
even entire sub-orchestras, which can simply be #included and then "plugged in" to existing
orchestras.

Note that inlets and outlets are defined in instruments without reference to how they are con-
nected. Connections are defined in the orchestra header. It is this separation that enables
plug-in instruments.

Inlets must be named. Instruments may be named or numbered, but in either case each
source instrument must be defined in the orchestra before any of its sinks. Naming instru-
ments makes it easier to connect outlets and inlets in any higher-level orchestra to inlets and
outletsin any lower-level #included orchestra.

The signal flow graph opcodes include: outleta, for sending an arate signal from any instru-
ment out a named port. outletk, for sending a krate signal from any instrument out a named
port. outletkid, similar to outletk, but receiving a krate signal only from an identified in-
stance of a port. outletf, for sending an frate signal from any instrument out a named port. in-
leta, for receiving an arate signal through a named port. inletk, for receiving a krate signal
through a named port. inletkid, similiar to inletk, but transmitting asignal only between inlet
and outlet opcodes . inletf, for receiving an frate signal through a named port. connect, for
routing the signal from a named outlet in a source instrument to a named inlet in a sink in-
strument. alwayson for permanently activating an instrument from the orchestra header,
without need of a score statement, e.g. for use as an effect processor receiving inputs from a
number of sources. ftgenonce for instantiating function tables from within instrument defini-
tions, without need for f-statements in the score or ftgen opcodes in the orchestra header.

A typical scenario for the use of these opcodes would be something like this. A set of instru-
ments would be defined, each in its own orchestra file, and each instrument would define in-
let ports, outlet ports, and function tables within itself. Such instruments are completely self-
contained. Then, a set of effects processors, such as equalizers, reverbs, compressors, and so
on, would also be defined, each in its own file. Then, a customized master orchestra would
#include the instruments and effects to be used, route the outputs of some instruments into
one equalizer and the outputs of other effects into another equalizer, then route the outputs
of both equalizersinto areverb, the output of the reverb into a compressor, and the output of
the compressor into a stereo output soundfile.

Example

Here is an example of the signa flow graph opcodes. It uses the file signalflowgraph.csd
[examples/signal flowgraph.csd].

Example 7. Example of the signal flow graph opcodes.

<CsoundSynt hesi zer >
<CsOpti ons>

165

examples/signalflowgraph.csd
examples/signalflowgraph.csd

Signal Flow Graph Opcodes

; Select audio/mdi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc -d ;5 RT audio 1/0

; For Non-realtime ouput |eave only the Iine bel ow
;-0 nmadsr.wav -W;;; for file output any platform
</ CsOpti ons>

<Csl nstrunent s>

/* Witten by M chael CGogins */

; Initialize the global variables
sr = 44100

ksmps = 100

nchnls = 2

; Connect up the instrunents to create a signal flow graph

connect "Si npl eSi ne", "leftout", "Reverberator", "leftin"
connect "Si npl eSi ne", "rightout", "Reverberator", "rightin"
connect " Mogy", "leftout”, "Reverberator", "leftin"
connect "Mbogy", "rightout", "Reverberator", "rightin"
connect "Reverberator", "leftout", " Conpr essor", "leftin"
connect "Reverberator", "rightout", " Conpr essor", "rightin"
connect "Conpressor", "leftout", " Soundfil e", "leftin"

connect "Conpressor", "rightout", " Soundfil e", "rightin"

; Turn on the "effect” units in the signal flow graph

al wayson "Reverberator", 0.91, 12000
al wayson " Conpressor"
al wayson "Soundfile"

instr SinpleSine
i hz = cpsm di nn(p4)
i ampl i tude = anpdb(p5)
print ihz, ianplitude
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i sine ftgenonce 0, 0, 4096, 10

al oscili ianplitude, ihz, isine
aenv madsr 0.05, 0.1, 0.5, 0.2
asignal = al * aenv

; Stereo audio outlet to be routed in the orchestra header
outleta "leftout", asignal * 0.25
outleta "rightout", asignal * 0.75

endin

instr Moogy
i hz = cpsm di nn(p4)
i anpl i tude = anpdb(p5)
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i sine ftgenonce 0, 0, 4096, 10
asignal vco ianplitude, ihz, 1, 0.5, isine
kfco I'ine 200, p3, 2000
krez init 0.9
asi gnal noogvcf asignal, kfco, krez, 100000
; Stereo audio outlet to be routed in the orchestra header
outleta "leftout", asignal * 0.75
outleta "rightout", asignal * 0.25
endi n

instr Reverberator
; Stereo input.
aleftin inleta "leftin"
arightin inleta "rightin"
idelay = p4
icutoff = p5
al eftout, arightout reverbsc aleftin, arightin, idelay, icutoff
; Stereo output
outleta "leftout", aleftout
outleta "rightout", arightout
endin

instr Conpressor
; Stereo input
aleftin inleta "leftin"
arightin inleta "rightin"
kt hreshol d = 25000
icompl = 0.5
icomp2 = 0.763

166

Signal Flow Graph Opcodes

irtime = 0.1

iftime = 0.1

al eftout damaleftin, kthreshold, iconmpl, iconp2, irtine, iftine
ari ghtout dam arightin, kthreshold, iconpl, iconp2, irtime, iftime

9
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout", arightout
endin

instr Soundfile
; Stereo input.
aleftin inleta "leftin"
arightin inleta "rightin"
outs aleftin, arightin
endi n

</ Csl nst runent s>

<CsScor e>

; Not necessary to activate "effects" or create f-tables in the score!
; Overlapping notes to create new i nstances of instrunents.
i "SinpleSine" 1 5 60 85

i "SinpleSine" 2 5 64 80

i "Mogy" 3 5 67 75

i "Mogy" 4 5 71 70

el

</ CsScor e>

</ CsoundSynt hesi zer >

167

Jacko Opcodes

These opcodes enable the use of Jack ports from within Csound orchestras and instruments.
Ports can receive or send audio or MIDI data, and send note data.

The Jacko opcodes do not replace the Jack driver and Jack command-line options for
Csound, nor do the Jacko opcodes work with them (hence the name "Jacko" instead of
"Jack"). The Jacko opcodes are an independent facility that offers greater flexibility in signal
routing.

In addition, the Jacko opcodes can work with the Jack system in "freewheeling” mode,
which enables the use of Jack-enabled external synthesizers, such as Aeolus or Pianoteqg, to
render Csound pieces either faster or, even more importantly, slower than real time. Thisis
extremely useful for rendering complex pieces without dropouts using instruments, such as
Aeolus, that may not be available except through Jack.

The Jacko opcodes include: Jackolnit, for initializing the current instance of Csound as a
Jack client. Jackolnfo, for printing information about the Jack daemon, its clients, their
ports, and their connections. JackoFreewhedl, for turning Jack's freewheeling mode on or
off. JackoAudiolnConnect, for creating a connection from an external Jack audio output port
to a Jack port in Csound. JackoAudioOutConnect, for creating a connection from a Jack port
in Csound to an external Jack audio input port. JackoMidilnConnect, for creating a connec-
tion from an external Jack MIDI port. MIDI events from Jack are received by Csound's reg-
ular MIDI opcodes and MIDI interop system. JackoMidiOutConnect, for creating a connec-
tion from a Jack port in Csound to an externa Jack MIDI input port. JackoOn, for turning
Jack ports in Csound on or off. JackoAudioln, for receiving audio from a Jack input port in
Csound, which in turn has received the audio from its connected external port. JackoAudi-
oOut, for sending audio to a Jack output port in Csound, which in turn will send the audio on
to its connected external port. JackoMidiOut, for sending MIDI channel messages to a Jack
output port in Csound, which in turn will send the MIDI on to its connected external port.
JackoNoteOut, for sending a note (with duration) to a Jack output port in Csound, which in
turn will send the note on to its connected external port. JackoTransport, for controlling the
Jack transport.

A typical scenario for the use of the Jacko opcodes would be something like this.

Example

Here is an example of the Jacko opcodes. It uses the file jacko.csd [examples/jacko.csd].

Example 8. Example of the Jacko opcodes.

<CsoundSynt hesi zer >

<CsOpti ons>

csound -nR55 -MD -+rtmidi=null -RW --mdi-key=4 --mdi-velocity=5 -0 jacko_test.wav
</ CsOpti ons>

<Csl nstrunent s>

NOTE: this csd nust be run after starting "aeolus -t".

Sr = 48000
; The control rate nust be BOTH a power of 2 (for Jack)
; AND go evenly into sr. This is about the only one that works

ksnps = 128
nchnl s =2
Odbfs =1

168

examples/jacko.csd
examples/jacko.csd

Jacko Opcodes

Jackol ni t "default", "csound"

; To use ALSA nmidi ports, use "jackd -Xseq"

; and use "jack_Isp -A -c" or aliases from Jackl nfo,

; probably together with information fromthe sequencer,
; to figure out the damm port nanes.

; JackoM di I nConnect "al sa_pcmin-131-0-Master", "mdiin"
JackoAudi ol nConnect "aeolus:out.L", "leftin"
JackoAudi ol nConnect "aeol us:out.R', "rightin"
JackoM di Qut Connect "mdiout", "aeolus:Mdi/in"

; Note that Jack enabl es audio to be output to a regul ar
; Csound soundfile and, at the sane tine, to a sound
; card inreal tine to the systemclient via Jack.

JackoAudi oQut Connect "l eftout”, "system playback_1"
JackoAudi oQut Connect "rightout", "system playback_2"
Jackol nfo

; Turning freewheeling on seens automatically
to turn system pl ayback off. This is good!

JackoFreewheel 1

JackoOn
al wayson "jackin"
instr 1
i channel ;,,,,,,,,,,,,,,,,,bi,i,,,,,,,,,,,,
itime = p2
iduration = p3
i key = p4
ivelocity = p5
JackoNot eQut "mdiout", ichannel, ikey, ivelocity
print itime, iduration, ichannel, ikey, 1velocity
endi n
instr jackin
JackoTransport 3, 1.0 T
al ef t JackoAudi ol n "leftin"
ari ght JackoAudi ol n "rightin"

Aeol us uses M Dl controller 98 to control stops.

Only 1 data value byte is used, not the 2 data

bytes often used wth NRPNs.

The format for control node is 01mDggg:

mm 10 to set stops, O, ggg group (or Division, 0 based).
The format for stop selection is 000bbbbb:

bbbbb for button nunber (0 based).

Mbde to enable stops for Divison |I: bl1100010 (98
[this controller VALUE is a pure coincidence]).

JackoM di Qut "mdiout", 176, 0, 98, 98

; Stops: Principal 8 (0), Principal 4 (1) , Flote 8 (8) , Flote 2 (10)

JackoM di Qut "mdiout", 176, 0, 98, 0
JackoM di Qut "mdiout", 176, 0, 98, 1
JackoM di Qut "mdiout", 176, 0, 98, 8
JackoM di Qut "mdiout", 176, 0, 98, 10

; Sends audio com ng in from Aeol us out
; not only to the Jack system out (sound card),
; but also to the output soundfile.
Note that in freewheeling node, "leftout"
and "rightout" sinply go silent.

JackoAudi oQut "leftout", aleft

JackoAudi oQut "rightout", aright
outs aright, aleft
endin

</ Csl nstrunent s>

<CsScor e>

f 0 30

i 11 30 60 60

169

Jacko Opcodes

i 12 30 64 60

i 1330 71 60

e 2

</ CsScor e>

</ CsoundSynt hesi zer >
Credits

By: Michael Gogins 2010

170

Lua Opcodes

The purposes of the Lua opcodes are:

1. Make it possible to write Csound code in a user-friendly, high-level language with full
lexical scoping, structures and classes, and support for functional programming, using
LuallT (the Lua programming language, implemented with a just-in-time compiler and
foreign function interface).

2. Require the installation of no third party software packages, or at least a minimum install-
ation; also, require no build system or external compilation.

3. Runreally fast; typically, amost as fast as compiled C code, and several times faster than
user-defined opcodes.

Using the Lua opcode family, you can interact with the Luainterpreter and just-in-time com-
piler (luajit) embedded in Csound as follows:

1. Execute any arbitrary block of Lua code (the lua_exec opcode),

2. Define an opcode in Lua taking any number or type of parameters, and returning any
number or type of parameters (the lua_opdef opcode),

3. Call aLuaopcode at i-rate (the lua_iopcall opcode),
4. Call aLuaopcode at i-rate and k-rate (the lua_ikopcall opcods), or

5. Call aLuaopcode at i-rate and a-rate (the lua_iaopcall opcode).

Luais Portuguese for "moon." And Lua (http://www.lua.org) is a lightweight, efficient dy-
namic programming language, designed for embedding in C/C++ and extending with C/
C++. Lua has a stack-based calling mechanism and provides a toolkit of features (tables,
metatables, anonymous functions, and closures) with which many styles of object-oriented
and functional programming may be implemented. Luas syntax is only slightly harder than
Python's.

Lua is dready one of the fastest dynamic languages; yet LuallT by Mike Pal (ht-
tp://lugjit.org) goes much further, giving Lua a just-in-time optimizing trace compiler for In-
tel architectures. LuaJlT includes an efficient foreign function interface (FFI) with the abil-
ity to define C arrays, structures, and other types in Lua. The speed of Luall T/FFI ranges
from several times asfast as Lua, to faster (in some contexts) than optimized C.

Example

Here is an example of a Lua opcode, implementing a Moog ladder filter. For purposes of
comparison, a user-defined opcode and the native Csound opcode that compute the same
sound using the same algorithm also are shown, and timed.. The example uses the file
luamoog.csd [examples/luamoog.csd].

Example 9. Example of a L ua opcode.

171

http://www.lua.org
http://luajit.org
http://luajit.org
examples/luamoog.csd
examples/luamoog.csd

Lua Opcodes

<CsoundSynt hesi zer >
<Csl nstrunment s>

sr = 48000
ksmps = 100
nchnls = 1
gi began rtclock
| ua_opdef "moogl adder", {{
local ffi = require("ffi")

local math = require("math")
local string = require("string"
I ocal csoundApi = ffi.load(' csound64.dll.5.2")
ffi.cdef[[
int csoundGet Ksnps(void *)
doubl e csoundGet Sr(void *)
struct noogl adder _t {
doubl e *out;
doubl e *inp
doubl e *freq
doubl e *res
doubl e *istor
doubl e sr;
doubl e ksnps>
doubl e t her mal
doubl e f;
doubl e fc;
doubl e fc2
doubl e fc3
doubl e fcr
doubl e acr
doubl e tune
doubl e res4
doubl e i nput;
doubl e i;
doubl e j;
doubl e k
doubl e kk
doubl e stg[6];
doubl e del ay[6] ;
doubl e tanhstg[6] ;

11

| ocal noogl adder _ct = ffi.typeof (' struct noogl adder_t *')

functi on noogl adder _i ni t (csound, opcode, cargunents)
local p = ffi.cast(npogl adder_ct, cargunents)
p. sr = csoundApi . csoundCet Sr (csound)
p. ksnps = csoundApi . csoundGet Ksnps(csound)
I1f p.istor[0] == 0 then
for i =0, 5 do
p.delay[i] = 0.0
en
for i =0, 3 do
p.tanhstg[i] = 0.0
end
end
return O
end

function noogl adder _kontrol (csound, opcode, cargunents)
local p = ffi.cast(noogl adder_ct, cargunents)
-- transistor thermal voltage
p.thermal = 1.0 / 40000.0
I1f p.res[0] < 0.0 then
p.res[0] = 0.0

en
-- sr is half the actual filter sanpling rate
p.fc = p.freq[0] / p.sr

p.f =p.fc/ 2.0

p.fc2 = p.fc * p.fc

p.fc3 = p.fc2 * p.fc

p.fer = 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
p.acr = -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968

-- filter tuning

p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4 = 4.0 * p.res[0] * p.acr

172

Lua Opcodes

-- Nested 'for' loops crash, not sure why.
-- Local loop variables also are problematic
-- Lomer-level | oop constructs don't crash

p.i =0
while p.i < p.ksnps do
p.j] =0
while p.j < 2 do
p.k =0
while p.k < 4 do
if p.k == 0 then
p.input = p.inp[p.i] - p.resd4 * p.delay[5]
p.stg[p.k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.thermal) - p.tanhstg[p
e
p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)
If p.k <3 then
p. kk = p.tanhstg[p. k]
el se
p. kk = math.tanh(p.del ay[p.k] * p.thermal)
end
J p.stg[p. k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)
en
p. del ay[p k] = p.stg[p. k]
p.k = p. k 1
end
-- 1/ 2-sanpl e delay for phase conpensation
p. delay[5] = (p. stg[3] + p.delay[4]) * 0.5
p.delay[4] = p tg[3]
p-J =p.J *
end
p.out[p.i] = p.delay[5]
p.i =p.i +1
end
return O
end
1}
/*

Mbogl adder - An inproved inplenmentation of the Mbog | adder filter

DESCRI PTI ON

This is an new digital inplenentation of the Mog |adder filter based on the work of Antti Huovil ai nen
described in the paper \"Non-Linear Digital |nplenentation of the Mog Ladder Filter\" (Proceedings of
This inplenentation is probably a nore accurate digital representation of the original analogue filter
This is version 2 (revised 14/ DEC/04), with inproved anplitude/resonance scaling and frequency correct

SYNTAX
ar Mogl adder asig, kcf, kres

PERFORMANCE

asig - input signa

kcf - cutoff frequency (Hz)
kres - resonance (0 - 1).

CREDI TS
Victor Lazzarin
*/
opcode noogl adderu, a, akk
asig, kcf, kres Xin
set ksnps 1
i pi = 4 * taninv(1)
/* filter delays */
azl init 0
az2 init 0
az3 init 0
az4 init 0
azb init 0
ay4 init 0
anf init 0
if kres > 1 then
kres = 1
el seif kres < 0 then
kres = 0
endi f
/* twice the \' thernal vol tage of a transistor\' */
i 2v 40000
/* sr is half the actum filter sanpling rate */
kfc = kef/sr
kf = kcf/ (sr*2)

/* frequency & anplltude correction */

173

Lua Opcodes

kfcr
kacr

/* filter tuning
k2vg
/* cascade of 4 1st order sections

*/

1.8730 * (kfch3) + 0.4955 * (kfch2) -
©3.9364 * (kfch2) + 1.8409 * kfc + 0.9968

i2v * (1 - exp(-2 * ipi * kfcr * kf))
*/

ayl = azl + k2vg * (tanh((asig - 4 * kres * anf
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 /
az2 = ay2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 /
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 /
az4 = ay4
/* 1/ 2-sanpl e delay for phase conpensation */
anf = (ay4 + azb) *0.5
azb = ay4
/* oversanmpling */
ayl = azl + k2vg * (tanh((asig - 4 * kres * anf
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 /
az2 = ay2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 /
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 /
az4 = ay4
anf = (ay4 + azb) * 0.5
az5 = ay4
xout anf
endop
instr 1
prints "No filter.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
;oafil nmoogl adder asig, kfe, 1
out asig
endi n
instr 2
prints "Nati ve noogl adder.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'i nen 10000, 0.05, p3, 0.05
asi g buzz kenv, 100, sr/(200), 1
afil noogl adder asig, kfe, 1
out afil
endi n
instr 3
prints " UDO noogl adder .\ n"
kf e expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv l'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil nmoogl adderu asig, kfe, 1
out afil
endi n
instr 4
prints "Lua noogl adder.\n"
kres init 1
i stor init 0
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv i nen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil init 0
I ua_i kopcal | "moogl adder", afil, asig, kfe, kres, istor
out afil
endi n
instr 5
gi ended rtcl ock
i el apsed = gi ended - gi began
print I el apsed
gi began rtclock
endi n
</ Csl nst runent s>
<CsScor e>
f1l 0 65536 10 1
i 51 0 1
i 4 1 20

* kacr) /
i2v))
i2v))

i 2v))

* kacr) /
i2v))
i2v))
i2v))

i 2v)

i2v)

174

0.6490 * kfc + 0.9988

- tanh(azl /

- tanh(azl /

Lua Opcodes

20

106 20
126 1
127 20

© 00 N o g b~ w N
[oe)
[65]

1
148 20
1
169 20

170 20
171 20

BRRUORURIRARANGNGAO

e
</ CsScor e>
</ CsoundSynt hesi zer >

Credits

Copyright (c) 2011 by Michael Gogins. All rights reserved.

175

Python Opcodes

Introduction

Using the Python opcode family, you can interact with a Python interpreter embedded in
Csound in five ways:

1. Initialize the Python interpreter (the pyinit opcodes),

. Run a statement (the pyrun opcodes),

. Execute a script (the pyexec opcodes),

A WD

. Invoke a callable and pass arguments (the pycall opcodes),

(631

. Evaluate an expression (the pyeval opcodes), or

6. Change the value of a Python object, possibly creating a new Python object (the pyassign
opcodes);

and you can do any of these things:

1. Ati-timeor at k-time,

2. Inthe global Python namespace, or in a namespace specific to an individual instance of a
Csound instrument (local or "I" context),

3. And can you can retrieve from O to 8 return values from callables that accept N paramet-
ers.

...this means that there are many Python-related opcodes. But all of these opcodes share the
same py prefix, and have aregular naming scheme:

"py" + [optional context prefix] + [action nane] + [optional x-time suffix]

Orchestra Syntax

Blocks of Python code, and indeed entire scripts, can be embedded in Csound orchestras us-
ing the {{ and }} directivesto enclose the script, as follows:

sr=44100

kr=4410

ksnmps=10

nchnl s=1

pyi nit

gi Sinusoid ftgen 0, 0, 8192, 10, 1

pyruni {{

I mport random
pool = [(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber_from pool (n, p)

176

Python Opcodes

if randonwrandon() < p:
i = |nt(randon1randon() * | en(pool))
pool[i] =n

return random choi ce(pool)

1}
instr 1
k1l oscil 1, 3, giSinusoid
k2 pycalll "get _nunber_from pool", k1 + 2, p4
printk 0.01, k2
endi n
Credits

Copyright (c) 2002 by Maurizio Umberto Puxeddu. All rights reserved.

Portions copyright (c) 2004 and 2005 by Michagl Gogins.

177

Image processing opcodes

Hereisalist of opcodes that read/write image files:

e imagecreate
» imagesize
 imagegetpixel
* imagesetpixel
e imagesave

» imageload

» imagefree

178

Miscellaneous opcodes

Hereisalist of opcodes that don't fall in any category:

» system- Call an external program viathe system call.

» modmatrix - modulation matrix opcode with optimizations for sparse matrices.

179

Part lll. Reference

Table of Contents

Orchestra Opcodes aNd OPEIEIOISuueieiiie ettt ettt e et e et eeeaie e eees 205
LSS 206
FHEFINE .o 208
FNCIUAE <. 212
BUNGET s 214
FTAEE 215
FTNOES o 217
BN AIME .o 218
PP 221
B e 223
DU UPPRTPN 224
DU SRR 226
ST UPPRTPRPN 228
S TSP 230
SR 232
PSPPSR 234
USSP 236
L e 238
PSPPSR 240
TSP 242
PP 244

.. 246
00 USRS 248
DSOS 251
D 253
PP 254
PSP 256
TSP 257
B e e 258
= PSPPI 259
0 o 261
BDEXPINA . 262
BB e aaa 263
BCALICKY .. 265
BOLIVE ettt aae 266
0 PSPPI 270
BOSYIN e 273
BOSYNE e e 275
BOSYNEZ oo e aaa 278
BEXPIANA . oe e 281
BFEOUCK ... e e 282
= 1 284
BOOGODED . e 285
BlINTANG ... 286
o 0SSP 287
TV 2o 289
AMPAD <o 292
AMPADTS L. 294
BMPIMIAT .« et 296
AMPMITIA .o 298
2 o Tor= 1 (0! 0|V PP 300
=010 S o 301
00 302

Reference

=TS o) [303
Fo TS 0] G 305
= 0] 1= 307
= (0] 1< <GP 309
= (0] 1 P 311
= 1= 1o [313
AN IS = (o [N 314
NN IS = [0 [317
PN S U1 1= o P 319
F AN I 10153 321
F AN S 1 01 {0 T 324
ATSINEEIPrEAA .. et et 327
N IS (== o [N 329
YN IS (== 0 | N 331
ATSPATTEITAD . evveieeeii e 334
F N S S 1 Lo 336
=10 1] = (o T 338
= LY=L LU | 339
072 oo S 340
DAL ANCE .eiieiee e 344
07201 070 o TP 346
DAIMOTEL ...o.eei e 348
o] 0101111 1T 350
DBCULS .. e 355
DELAIANG ...eeieieiee e 358
0724 0o 361
o] 6] 11110 o 363
o] 0] 1112 [365
0] 0] 1116 [o2 367
o] 071 1110 [t X 369
o] S 371
o]0 1o 373
DIQUBHA ... e 377
o1 1 1o [378
BOMEZ e 380
UL e 382
o111 o (S 383
01111 o T 384
UL e 385
BULLEIDD . 386
010110 o S 388
BULLEINP e e 390
UL NI e 392
01110 TN 394
DUZZ oo 395
(05 1= - NN 397
(o= 1 o |V PP 399
Lo Lo 0 401
(0| 403
(0 | 405
07 11 408
(015 011 10 [0 [T 410
(000 0 (o TP 412
(02 7= 1 o 414
ChaNQE ... oo 416
(02 170 418
(01 1710 [0 J TP 419
ChEDYSNEVPOIY ...t 420

Reference

(6107 o 4 00) U UPPRTPN 423
O e e 425
CHNCIEA . 427
CHNEXPOIT ..ttt ettt e et e et e e 429
CRNGEL <. e 431
CRINMIX e 434
ChNPAIEMS .o e 436
CHNIECV e e et e e 437
CHNSEN .o 439
CNNSEL L. 441
CRUBD - 444
oo o 448
0t (00 450
Ol e e 452
Ol e 454
(ol T o TP PP TPPPRTPRPPPPN 457
ok oo G 460
ClOCKOTT e e 461
ClOCKON Lo 463
o070 0o 1 465
COMD o 467
(60] 01 0] 1= J PP 469
(000] 0= ol AT 471
(o] 111 {0 I PO 474
(070 01V] = PSPPI 475
COMVOIVE ..ttt e et e et e et e e et et e e e e et e e e eebe e eeees 476
COPY2MLAD .o 480
COPY 2B ...t 481
(001 PP 482
(00155 <o [PPSR 484
(0001350 | o T 486
001553 | 438
(o0 1= o IO PP 490
(001 T 1Y 492
(00015721 ool o HO PSPPI 494
(01015 1 01T [P PTUPTPPTP 498
CPSMIAID .o 500
ot 01 2101 1 o] o 502
0101 o P 506
CPSICN e e 509
(0101511 01T PP 512
(00015 [0 LT 515
ot 0111 518
ot 015174 0o 521
(01 010 111 PP 525
(61 010 o) (o2 PP 527
(08 1015557 PP 530
(o0 101 1 1 PSPPI 532
(o1 o o OSSP 535
o 1 ST UPPRTTPN 537
o 1 20 PSP 539
1 USSP 541
11 o PSPPI 544
(o0 < 1 40 To [PP 545
0= 0 USRS 548
aEE .t 551
JalES e 553
0 o USSP 555

Reference

(07 1 1o T 557
(0185720 0] 559
0 (o o] o G 561
0 [0 o] o o2 563
0 (oo VPP 565
JE Y oo 567
ElAY L e 569
EIAYK e e 571
B AT e e 573
E AW oo 575
01 = o TSP 577
01 7= TSP 580
01 7= o U UPPRTPN 583
(01 -0 0 586
EITADX e 588
EITADXW et 590
(015 2700 o ¢ TR PP 593
0 PSPPI 595
(0TS 1o | = 1 597
GISKIN e 600
ISKIN2 .oeeiiiie e e e e e aaa 603
(011 o i TP TP PTTTPPPRTPRPPPPN 607
iSPIAY et 609
(011 (o APPSR 611
(01 o] o 1 O UPPRTPN 613
IVZ e 615
(0 [0] T 1= SR OO TUPPRTTRPPN 617
OWNSAIMP .ttt e et ettt e ettt e e e e et eeeeba e aees 619
(0[] Y7 (= ST PUPPT 621
ASSIBCHVALE ..vviieeiiiiie et e e e e et e e e et e e e b e aae 623
ASSIBUAIO ...ieiteeeiie e aae 625
ASSICHS et 627
0SS T T 629
(0155 T USSP 631
(0 [8 T 0T o) G PP 633
UMIPKZ .ot e et e e et e e 636
0 11 0T 0] G 639
011 0T 0] 642
0115 1 o 645
01 P 647
011 2 PSPPSR 649
Bl OB e 651
Bl BT e e 653
BN e 655
< 70 657
< 0700 o IO TP PTTTPPPRTPUPPPIN 659
< 01771 o) G PP 662
< 01771 o) S PP 665
< 0] 17 o 667
<o |11 USRS 668
LY | PP UP TP 670
LS YL 0| P 673
EXITNMOWY ettt ettt ettt e et et et e e e e e e e e e eaes 675
L2 o TP 677
L2 0oL < 679
24 00 0 681
EXPIANG ..ttt a e 683
EXPIANGI ...t 685

Reference

L2 0= 687
LS 0= = 689
EXPSEOD . 691
EXPSEOIA ...ttt 693
(S0 <o | PP 695
FA Y N e 697
FArEYIONI .o 699
Il OB et 701
1111 o PP 703
B N e 705
FHENCHNIS ..o e 707
1= o= PP 709
111 PP 711
FHEVEII . 713
1L = 2P PPPPN 715
I e 717
0 PPN 719
I e e 721
L] o= R 722
L2 1= 724
11 S 50 PP 726
L I o o) P 728
FLBUEBANK ..eiviieiiiie e e e e e e e e e e 733
FLDUIEON .ottt ettt e e 736
FLCIOSEBULLON ..ttt e e 741
L OO0 et 744
FLCOIOZ oo e 746
I o011 | PPN 747
FLEXECBULION ...ttt e e e e 750
FLGEISNAD ..ttt 753
L gl OUD ettt e 754
L I 0110 = o 756
FLOMOUD_ BN ..ot et 757
0T L= PSP 758
[I 01V 2o PSP 759
FLAVSBOXSEIVAIUE ...uiiiiiiieecii et e e 760
L Oy ettt 761
L IV o 764
FLKNOD e 766
FLIADED e 771
FLIOAOSNED .. .eeet ettt e ea 773
FLIMOUSE ...ttt ettt et e e e e e e eans 774
1100 = 776
L1100 = 2 778
L0 o | SR PP PPPPRN 780
FLPBCK et 782
I o= o 1o PSP 785
FLPACK BN ..o 786
L 07 11 787
L I 7= 11 1 oo 790
FLPANEL_ENA ..ot 791
FLPIINTK oot 792
o o) T 112U 793
L]| = TP TUPTRPPTRN 794
L o LU TPPTPPTRPN 797
L IS - 7= 798
FLSCIOIl e e 803
L IS o | o 806

Reference

L o o) = oo 807
L IR 1A [o o 808
[I 1= 10)N 809
[= <. (O] o] S 811
[IS (O] (o] 02 R 813
[1 o | AN 814
[IS 1 0 1 1) o [N 816
[S £ (= TN 817
FLSEISNGPD -.oeneeeeei e 818
FLSEESNBPGIOUD ...ievieetie ettt ettt eea e 820
[IS i = AR 821
FLSEITEXICOION ..viieieiii e e e 823
[I S < S 824
L IS = 3/ 0= 825
FLSEEV @Al i cieiiiiii et 828
[IS AV IR 829
[I 0 1Y RN 830
[IS 0 5| 831
[RS 0 = 0|2 S 835
FLIIABNKGEIHANAIEviieieeieeeeeee e 838
FLIIOBNKSEL ..o 839
FLIIOBNKSEIK ..ot et e e 840
FLIOBNK2SELeeieiiiieieeee et e et e e e e e e e e 842
FLITABNK2SELKceiieieieei et e e e e e e 843
[T T < S 846
[T 701N 852
L I = 0= 1o [T 857
FLEEIS ENA ..oeeie e 858
[R (= RN 859
FLUPELE ...ttt e eea s 862
L Uo7 1 L | T 863
i 101 [865
FIUIACCK .o e 867
L 1010 (O] 11 (o] 869
FIUIAENQGING ... e e aan s 872
L LU o[o= TR 875
L LU o[\ o) =T 877
L 10 o (@ T 879
FIUIAPrOgramSEIECEooveieei e 882
fluidSetiNterpMEthodcooveiii e 885
FLVAIUE ... e e e 887
FLVKEYD ..o 889
[VS [0 2 S 890
[VS [0 |2]S 894
XY e 896
110010 2C TR 899
1100107 | TP 901
LH 0010100 =! 904
L8011 (S 907
L0 01 270 o [909
L1 001Y10 &< 912
L0007 10 1 L 914
0 [P TRT 917
02T 920
1011 (< T 926
0o R 928
B0 e 931
L0 L o 7Y 933

Reference

FOIOWZ . e 935
1107 ol RPN 937
{015 v 1 | R PP PP U PPSPPN 939
FOUL et e 941
FOUL e e 945
L0181 11 (PRSPPI 947
FOULK vt 949
PN et 951
FPITNES e e 957
L= o PPN 959
FraCLAlNOISE ... e 961
TrEBVEID .. e 963
FECNNIS Lo e 965
LNV e 967
10 L PSPPI 970
LA = PPN 972
170 = PP 974
L1001 0] 1= T 977
L0 (=111 0 T 979
11 PP 981
100 o PP 983
1110 = o | PP 984
0] L1 . PP 985
LU 110 o ST 987
L1652 Y SR 989
LGBV K e 991
155 PP 992
0= T o R TP PP TUPPRTPRPPPIN 994
AINSTAEY <. e 996
(0= 105 PSPPI 998
072 115 1000
072 105 [o R 1002
0] 011 722U 1005
GENAY ettt 1007
(015010 YU UPTTUPPRN 1011
01 070 1Y G 1014
01 (ot o 1018
(007 0] o= X 1020
6o PP 1022
0125 o TP 1024
0] =11 0 1P UPTTPPRRN 1026
0 1= T 1030
0] =010 = 1035
0 1 o 1038
PAIMION e 1040
7= 100 12T 1042
RITDEIT ..o e 1044
041 = PP PPT 1048
0= Y 1050
RITFMOVE .o 1054
RAFMOVED ..o 1057
R rEVErD e 1060
0415 - P 1062
NSDOSCIL .. 1065
PV S e 1068
PV S 1072
0175 TSP 1078
PP 1081

Reference

TDELAIANG ... 1082
TDEXPINA ..o 1083
FCBLICHY e 1084
o0 6 1085
04 2 P 1086
o1 TSP TUPT RPN 1087
=25 o = 1o 1088
PSPPSR 1089
0= 11 T PP 1094
TOOO L.t 1095
127] o P 1097
HINrANd ..o 1099
g =T 1= (= (= T 1100
=T T = 1102
IMAGEOELPIXE] ... et 1104
IMAGEIOBA ...t 1106
IMBOESAVE ...ttt et e et e ettt e et e et e e et e e e e e an e e e ean s 1108
IMBGESELPIXE] ...ttt 1110
IMIBOESIZE ..eveeeei e e et e e e e e e e e 1112
IMIAICLA oo e e 1114
2 To (o222 R PSPPI 1115
2o (1o P 1116
1 TP 1117
11772 1119
107 PSP 1120
1 PSPPSR 1122
] S PP SPTPI 1123
gL (o 1126
1L (o722 P 1127
1L (o AU UPTP 1128
101 = PP 1130
TNTEEK e 1133
1 = o PP 1135
L= S 1136
1o TSP 1137
Lo [TP 1138
] o 1140
ID1S ettt e 114