Trees | Indices | Help |
|
---|
|
Classes | |
SVM An SVM classifier class. |
|
SVR A class for SVM regression (libsvm wrapper). |
|
OneClassSVM wrapper for the libsvm one-class SVM |
|
SVC | |
SVModel | |
LinearSVModel |
Functions | |||
|
|||
|
|||
|
|||
|
Variables | |
containersNotSupported = ['PySparseDataSet', 'PyVectorDataSet']
|
Function Details |
returns a trained SVM object constructed from a saved SVM model. The saved SVM model stores the support vectors in sparse vector format. When creating the model it then represents the support vectors in some dataset container. The type of the container needs to agree with the type of dataset of your test data. By default the support vectors are represented using the SparseDataSet container. You can set this using the 'datasetClass' keyword argument e.g. datasetClass = SparseDataSet |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Fri May 2 12:39:26 2008 | http://epydoc.sourceforge.net |