Package PyML :: Package containers :: Module baseDatasets :: Class WrapperDataSet
[frames] | no frames]

Class WrapperDataSet

source code

 object --+    
          |    
BaseDataSet --+
              |
             WrapperDataSet

Instance Methods
 
__len__(self)
the number of patterns in the dataset
source code
 
getX(self) source code
 
setX(self, value) source code
 
get_kernel(self) source code
 
set_kernel(self, value) source code
 
attachLabels(self, labels) source code
 
attachKernel(data, kernel='linear', **args) source code

Inherited from object: __delattr__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __str__

    Inherited from BaseDataSet
 
__init__(self)
x.__init__(...) initializes x; see x.__class__.__doc__ for signature
source code
 
copy(self, other, patterns, deepcopy)
Each class that wants to use the generic copy constructor needs to define this function for doing class-specific copying
source code
 
copyConstruct(self, other, **args) source code
 
getKernelMatrix(self)
returns the kernel matrix as a numpy array
source code
 
getTestingFunc(self) source code
 
getTrainingFunc(self) source code
 
registerAttribute(self, attributeName, attributeValue=None, action=None) source code
 
setTestingFunc(self, func) source code
 
setTrainingFunc(self, func) source code
 
test(self, trainingData, **args) source code
 
train(self, **args) source code
Class Variables
  isWrapper = True
  X = property(getX, setX, None, 'X')
  kernel = property(get_kernel, set_kernel, None, 'kernel')
    Inherited from BaseDataSet
  isVector = False
  testingFunc = property(getTestingFunc, setTestingFunc, None, '...
  trainingFunc = property(getTrainingFunc, setTrainingFunc, None...
  type = 'dataset'
Properties

Inherited from object: __class__

Method Details

attachLabels(self, labels)

source code 
Overrides: BaseDataSet.attachLabels

attachKernel(data, kernel='linear', **args)

source code 
Overrides: BaseDataSet.attachKernel