
Normaliz 2.12

Winfried Bruns, Bogdan Ichim, Tim Römer and Christof Söger

http://www.math.uos.de/normaliz

mailto:normaliz@uos.de

Contents

1. Introduction 5
1.1. The objectives of Normaliz . 5
1.2. Platforms and access from other systems . 6
1.3. Major changes relative to version 2.11 . 6
1.4. Future extensions . 6

2. Getting started 6

3. The input file 7
3.1. Generators of cones and lattices . 8

3.1.1. Type integral_closure . 9
3.1.2. Type normalization . 9
3.1.3. Type polytope . 10
3.1.4. Rational polytopes . 10
3.1.5. Type rees_algebra . 11
3.1.6. Preparation of the generators . 11

3.2. Homogeneous Constraints . 11
3.2.1. Type inequalities (formerly hyperplanes) 11
3.2.2. Sign inequalities: signs . 12
3.2.3. Polytopes by inequalities . 12
3.2.4. Type equations . 13
3.2.5. Type congruences . 13
3.2.6. Type excluded_faces . 14
3.2.7. The constraints combined . 15

3.3. Relations . 15
3.3.1. Type lattice_ideal . 15

1

http://www.math.uos.de/normaliz
mailto:normaliz@uos.de

3.4. Generators of polyhedra . 16
3.4.1. Type polyhedron . 16

3.5. Inhomogeneous constraints . 16
3.5.1. Type inhom_inequalities . 17
3.5.2. Type strict_inequalities . 17
3.5.3. Type strict_signs . 18
3.5.4. Type inhom_equations . 18
3.5.5. Type inhom_congruences . 19
3.5.6. Mixing homogeneous and inhomogeneous constraints 19

3.6. Grading . 19
3.6.1. polytope . 20
3.6.2. rees_algebra . 20
3.6.3. lattice_ideal . 21
3.6.4. Inhomogeneous input . 21

3.7. Dehomogenization . 21
3.8. Pointedness . 22
3.9. The zero cone . 22
3.10. Additional input file for NmzIntegrate . 23
3.11. Number codes for input types . 23

4. Running Normaliz 23
4.1. Full syntax and basic rules . 24
4.2. Computation modes: homogeneous input 25

4.2.1. Basic modes . 25
4.2.2. Combined modes . 25
4.2.3. The dual algorithm . 26
4.2.4. Approximation of rational polytopes 26
4.2.5. What option do I use . 26
4.2.6. Modes calling NmzIntegrate . 27
4.2.7. Triangulation and Stanley decomposition 27

4.3. Computation modes: inhomogeneous input 27
4.3.1. Basic modes . 28
4.3.2. Combination modes . 28
4.3.3. The dual algorithm . 28
4.3.4. What option do I use . 28

4.4. Control of output files . 28
4.5. Control of execution . 29
4.6. Numerical limitations . 29
4.7. Obsolete options . 29

5. The output file 30
5.1. The homogeneous case . 30
5.2. The inhomogeneous case . 31

2

6. Examples 32
6.1. Generators of cones and lattices . 32

6.1.1. Type integral_closure . 32
6.1.2. Type polytope . 35
6.1.3. A rational polytope . 37
6.1.4. Type rees_algebra . 39

6.2. Homogeneous constraints . 40
6.2.1. Type inequalities . 40
6.2.2. Type equations . 40
6.2.3. Type congruences . 43

6.3. Relations . 45
6.3.1. Type lattice_ideal . 45

6.4. Type excluded_faces . 46
6.5. Generators of polyhedra . 47

6.5.1. Type polyhedron . 47
6.6. Inhomogeneous constraints . 49

6.6.1. Type inhom_inequalities . 49
6.6.2. Type strict_inequalities . 50
6.6.3. Type inhom_equations . 51
6.6.4. Type inhom_congruences . 51

7. Optional output files 52
7.1. The homogeneous case . 52
7.2. Triangulation and Stanley decomposition 53
7.3. Modifications in the inhomogeneous case 55

8. Advanced topics 55
8.1. Primal vs. dual . 55
8.2. Polytope vs. polyhedron . 55
8.3. Lattice points in polytopes . 56
8.4. Semiopen vs. inhomogeneous . 56
8.5. Ordering the generators . 56
8.6. Performance and parallelization . 57
8.7. Running large computations . 58

9. Distribution and installation 59

10.Compilation 60
10.1. GCC . 60
10.2. Visual Studio project . 60

11.Copyright and how to cite 61

3

A. Mathematical background and terminology 62
A.1. Polyhedra, polytopes and cones . 62
A.2. Cones . 63
A.3. Polyhedra . 63
A.4. Affine monoids . 65
A.5. Affine monoids from binomial ideals . 66
A.6. Lattice points in polyhedra . 66
A.7. Hilbert series . 67

B. Changes relative to version 2.5 68

4

1. Introduction

1.1. The objectives of Normaliz

The program Normaliz, version 2.11, is a tool for computing the Hilbert bases and enumerative
data of rational cones, and more generally, sets of lattice points in rational polyhedra. The
mathematical background and the terminology of this manual are explained in Appendix A.
For a thorough treatment of the mathematics involved we refer the reader to [2] and [4]. The
terminology follows [2]. For algorithms of Normaliz see [3], [5], [6] and [7].

A rational cone or a rational polyhedron can be given by

(1) a system of generators G in a lattice Zn;
(2) constraints: an (in)homogeneous linear system of equations and inequalities.

Affine monoids can also be defined by generators and binomial relations.

The Hilbert basis of a rational pointed cone C in Rn is defined with respect to a lattice L⊂ Zn:
it is the unique minimal system of generators of the monoid C∩L. In the case of polyhedra
Normaliz computes a system of generators of the set of lattice points in P over the Hilbert
basis of the recession monoid.

The standard choice for L is Zn itself, but for Normaliz this choice can be modified in two
ways:

(1) L can be chosen to be the sublattice of Zn generated by G ;
(2) L can be chosen to be the lattice of solutions of an (in)homogeneous system of congru-

ences if the cone or the polyhedron is specified by equations and inequalities.

In particular, Normaliz solves combined systems of diophantine linear equations, inequalities
and congruences. Conversely, Normaliz computes a system of constraints defining the cone
or polyhedron and the lattice for which the Hilbert basis and system of generators have been
computed.

Normaliz has special input types for lattice polytopes (represented by their vertices) and mono-
mial ideals (represented by the exponent vectors of their generators). Via the specification of
a grading, one can easily apply Normaliz also to rational polytopes.

The enumerative data computed by Normaliz depend on a grading of the monoid under con-
sideration (see Section 3.6): if asked to do so, Normaliz computes the Hilbert series and the
Hilbert quasipolynomial of the monoid or set of lattice points in a polyhedron. In polytopal ter-
minology: Normaliz computes Ehrhart series and quasipolynomials of rational polyhedra. Via
its offspring NmzIntegrate [8], Normaliz computes generalized Ehrhart series and Lebesgue
integrals of polynomials over rational polytopes.

The computations can be restricted in several ways, for example to the support hyperplanes or
the lattice points of a rational polytope.

Acknowledgement. The development of Normaliz is currently supported by the DFG SPP
1489 “Experimentelle Methoden in Algebra, Geometrie und Zahlentheorie”.

5

1.2. Platforms and access from other systems

Executables for Normaliz are provided for Mac OS, Linux and MS Windows. Normaliz is
written in C++, and should be compilable on every system that has a GCC compatible com-
piler. It uses the standard packages Boost and GMP (see Section 10).

Normaliz can be accessed from the following systems:

• SINGULAR via the library normaliz.lib,
• MACAULAY 2 via the package Normaliz.m2,
• COCOA via an external library,
• GAP via the GAP package NORMALIZINTERFACE [10] which uses libnormaliz,
• POLYMAKE (thanks to the POLYMAKE team),
• SAGE via an optional package by A. Novoseltsev.

The Singular and Macaulay 2 interfaces are contained in the Normaliz distribution. At present,
their functionality is limited to Normaliz 2.10.

Furthermore, Normaliz is used by the B. Burton’s system REGINA.

1.3. Major changes relative to version 2.11

(1) Complete revision of the dual algorithm towards better performance in arithmetically
complex situations.

(2) Additional internal parallelization of simplicial cones with large determinants.
(3) Linear algebra accelerated.
(4) Overflow checks improved.

There are no changes in the user interface.

1.4. Future extensions

(1) Redesign of input and output.
(2) Automatic choice of integer type.
(3) A programming interface (using the already existing library).
(4) Exploitation of symmetries.
(5) Access from further systems.

2. Getting started

Download

• the zip file with the Normaliz source, documentation, examples and further platform
independent components, and
• the zip file containing the executable(s) for your system

6

from the Normaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it, a directory Normaliz2.12 (called
Normaliz directory in the following) is created with several subdirectories. (Some versions of
the Windows executables may need the installation of a runtime library; see our website.)

In the Normaliz directory open jNormaliz by clicking jNormaliz.jar in the appropriate way.
(We assume that Java is installed on your machine.) In the jNormaliz file dialogue choose one

Figure 1: jNormaliz

of the input files in the subdirectory example, say small.in, and press Run. In the console
window you can watch Normaliz at work. Finally inspect the output window for the results.

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the
documentation [1] via the help menu.

If the executables prepared cannot be run on your system, then you can compile Normaliz
yourself (see Section 10).

Moreover, one can, and often will, run Normaliz from the command line. This is explained in
Section 4.

If 64 bit integer precision is not sufficient, then one can switch jNormaliz to infinite precision
(or use the option -B from the command line). Then Normaliz has no restrictions on the integer
precision. See Section 4.6. (The integer precision has nothing to do with the address width
(32 bit or 64 bit) of your operating system.)

3. The input �le

The input file <project>.in consists of one or several matrices. Each matrix is built as fol-
lows:

7

http://www.math.uos.de/normaliz

(1) The first line contains the number of rows m.
(2) The second contains the number of columns n.
(3) The next m lines of n integers each contain the rows.
(4) The last line contains a single number or word specifying the type of input the matrix

presents.

The line structure is irrelevant for the interpretation of the input, and only meant as a sug-
gestion for a transparent structure of the file. The examples below are often typeset in two
columns. It should always be obvious how to read them properly.

At the moment there are three major classes of input matrices, namely generators, constraints,
and relations.

Generators and constraints themselves fall into two subclasses:

(1) homogeneous, defining cones and lattices,
(2) inhomogeneous, defining polyhedra and affine lattices.

Additional classes are grading and dehomogenization.

Remark. Normaliz 2.12 (like Normaliz 2.11) allows inhomogeneous input types. While poly-
topes are defined by inhomogeneous data, one usually wants to compute the cone over the
polytope, its Hilbert basis and the Ehrhart series. These computations require homogeneous
input types, and their application to polytopes is explained below. Also see Section 8.2.

Rules for the combination of input types:

(1) The order of the matrices does not matter.
(2) Matrices of the same type will be concatenated (and must have the same number of

columns).
(3) The three classes generators, constraints and relations exclude each other (at present),

with one exception: excluded_faces are allowed with homogeneous generators.
(4) There can be at most one type of generators.
(5) Homogeneous and inhomogeneous constraints can be mixed. As soon as an inhomoge-

neous type is present, Normaliz treats the input as being inhomogeneous, transforming
the homogeneous types appropriately.
Exception: excluded_faces are forbidden in combination with inhomogeneous con-
straints for which they are replaced by strict_inequalities.

For each input type we specify two lattices: the ambient lattice A to which the input data refer
and the essential lattice E⊂ A with respect to which all data are computed.

In this section we assume that Normaliz is run in a computation mode in which the Hilbert
basis or the system of generators, respectively, is actually computed. (See Section 4 for com-
putation modes.)

3.1. Generators of cones and lattices

These generator types are integral_closure, normalization, polytope and rees_algebra.

8

3.1.1. Type integral_closure

The rows of an m× n matrix of this type represent m vectors in the ambient lattice A = Zn.
The essential lattice E is the smallest direct summand of Zn that contains the vectors in the
matrix.

The vectors are considered as a system of generators G of a cone C, and Normaliz computes
the Hilbert basis of C with respect to E (or, equivalently, Zn).

The nomenclature integral_closure is explained by the fact that the Hilbert basis generates
the integral closure of the monoid Z+G in Zn.

A simple example:

Input Hilbert basis

3 1 0

2 0 1

2 0

1 1

0 2

integral_closure

In this example, the three input vectors clearly generate the positive orthant R2
+ in R2, and the

two unit vectors clearly are the Hilbert basis of R2
+∩Z2.

Example input files: rproj2.in, small.in.

3.1.2. Type normalization

The matrix is interpreted as as one of type integral_closure, however E is chosen as the
sublattice of Zn generated by G .

The choice of the name normalization indicates that Normaliz computes the normalization of
the monoid Z+G . (The computation of such normalizations was the original goal of Normaliz,
hence the name.)

We choose the same input vectors as above, but change the type to normalization:

Input Hilbert basis

3 2 0

2 1 1

2 0 0 2

1 1

0 2

normalization

The cone has not changed, but the lattice has: E is now the sublattice of Z2 of all (z1,z2) with
z1 + z2 ≡ 0 mod 2.

Example input files: rafa2416.in, A443.in.

9

3.1.3. Type polytope

The rows of the matrix are interpreted as integral points of a lattice polytope in Rn, which is
their convex hull.

The cone C is the cone over the polytope, i.e. the cone with apex 0 in Rn+1 generated by the
vectors (x,1) where x represents a row of the input matrix. We want to compute the Ehrhart
monoid C∩Zn+1.

The lattice A is Zn+1, and E is the smallest direct summand of A containing the generators of
C.

Type polytope is only a variant of type integral_closure. One obtains the same results as
in type integral_closure with the extended vectors (x,1) as input.

Example input files: polytop.in, FortuneCookie.in, lo6.in.

3.1.4. Rational polytopes

Normaliz has no special input type for rational polytopes. In order to process them one uses
type integral_closure together with a grading. Suppose the polytope is given by vertices

vi = (ri1, . . . ,rin), i = 1, . . . ,m, ri j ∈Q.

Then we write vi with a common denominator:

vi =

(
pi1

qi
, . . . ,

pin

qi

)
, pi j,qi ∈ Z, qi > 0.

The generator matrix is given by the rows

ṽi = (pi1, . . . , pin,qi), i = 1, . . . ,m.

We must add a grading since Normaliz cannot recognize it without help (unless all the qi
are equal). The grading linear form has coordinates (0, . . . ,0,1). See 3.6 below for general
information on gradings.

Let us look at a concrete example (contained in rational.in), the triangle P with vertices

(1/2,1/2), (−1/3,−1/3), (1/4,−1/2).

In order to apply Normaliz to it one uses the following input:

3 1

3 3

1 1 2 0 0 1

-1 -1 3 grading

1 -2 4

integral_closure

The output will be discussed in 6.1.3.

10

3.1.5. Type rees_algebra

In this type the input vectors are considered as exponent vectors of the generators of a mono-
mial ideal I in the polynomial ring K[X1, . . . ,Xn]. Normaliz computes the normalization of
the Rees algebra of the ideal I (see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ring K[X1, . . . ,Xn,T] with an auxiliary variable T . Nor-
maliz computes the exponent vectors in Zn+1 of the system of generators. For an example, see
Section 6.

In type rees_algebra one has A= E= Zn+1.

Example input file: rees.in.

3.1.6. Preparation of the generators

After the coordinate transformation to the lattice E, Normaliz divides each generator by the
greatest common divisor of its components. For example, the extreme rays listed will always
be such E-primitive vectors (re-transformed to A where they may not be primitive).

If a grading is present, the generators will be sorted by degree in ascending order. If no grading
is available, they will be sorted by their 1-norm in the lattice E. Those of the same degree will
remain sorted as in the input file (or the result of a previous computation).

This preparation is also performed if the generators result from a system of constraints.

3.2. Homogeneous Constraints

Homogeneous inequalities, equations, and congruences defining the cone and the lattice are
called homogeneous constraints. Matrices representing them are of types equations, inequa-
lities, signs, congruences and excluded_faces.

In previous versions inequalities were called hyperplanes. The name is still allowed, but
no longer recommended.

The numbers of columns must of course match: for the ambient lattice A= Zn the matrices of
equations and inequalities must have n columns, and matrices of congruences must have n+1
columns. The essential lattice E is the smallest sublattice of A containing the solutions of the
combined systems of constraints.

If there is no matrix of inequalities, then it is assumed that the user wants to compute the
nonnegative solutions of the system represented by the equations and congruences.

3.2.1. Type inequalities (formerly hyperplanes)

A row (ξ1, . . . ,ξn) of the input matrix of this type represents an inequality

ξ1x1 + · · ·+ξnxn ≥ 0

for the vectors (x1, . . . ,xn) of Rn.

11

Example:

Input Hilbert basis

2 0 -1

2 1 1

1 0

1 -1

inequalities

Normaliz has computed the Hilbert basis of the cone defined by the inequalities x1 ≥ 0 and
x1− x2 ≥ 0 with respect to the lattice Z2.

Example input file: Condorcet.in.

Remark: In previous versions this type was called hyperplanes, a name that can still be used.

3.2.2. Sign inequalities: signs

There is a shortcut for the input of inequalities xi ≥ 0 or xi ≤ 0. The input matrix of type signs
has format 1×n and the entries of its single row are in {−1,0,1}:
−1 stands for xi ≤ 0,

1 stands for xi ≥ 0,
0 indicates that the sign of xi is not restricted.

Example:

1

4

1 -1 0 1

signs

In this example we require that x1,x4 ≥ 0 and x2 ≤ 0.

Example input file: Condorcet.in.

3.2.3. Polytopes by inequalities

Normaliz has no special input type for polytopes defined by inequalities since they can easily
be specified via type inequalities. Suppose the polytope is given by inequalities

αi1x1 + · · ·+αinxn ≥ βi, i = 1, . . . ,m, αi j,βi ∈ Z.

Then we homogenize the inequalities in the form

αi1x1 + · · ·+αinxn−βixn+1 ≥ 0,

and use type inequalities for them in connection with the grading (0, . . . ,0,1).

The file poly_ineq.in contains

12

3

3 1

2 7 3 3

-8 2 3 0 0 1

1 -1 0 grading

hyperplanes

It reproduces the triangle that we have discussed in 3.1.4.

3.2.4. Type equations

A row (ξ1, . . . ,ξn) of the input matrix of this type represents an equation

ξ1x1 + · · ·+ξnxn = 0

for the vectors (x1, . . . ,xn) of Rn.

Example:

Input Hilbert basis

1 2 0 1

3 0 2 1

1 1 -2 1 1 1

equations

If the input file contains no further matrices, Normaliz has computed the Hilbert basis of the
subcone of R3

+ defined by the equation x1 + x1−2x3 = 0.

Example input files: 4x4.in, 5x5.in.

3.2.5. Type congruences

We consider the rows of a matrix of this type to have length n+ 1. Each row (ξ1, . . . ,ξn,c)
represents a congruence

ξ1z1 + · · ·+ξnzn ≡ 0 mod c

for the elements (z1, . . . ,zn) ∈ Zn.

Example:

Input Hilbert basis

1 2 0

3 1 1

1 1 2 0 2

congruences

13

If no other matrix is in the input file, then Normaliz computes the Hilbert basis of the positive
orthant intersected with the lattice of all integral vectors (z1,z2) such that z1 + z2 ≡ 0 mod 2
and the result is the same as in 3.1.2 above.

Example input file: 3x3magiceven.in.

3.2.6. Type excluded_faces

This type is useful for the computation of Hilbert series of semiopen cones. It is interpreted as
follows:

(1) If used with input of type generators, the faces defined by excluded_faces are simply
excluded. They do not restrict the cone.

(2) Otherwise excluded_faces has a twofold meaning: (a) they are additional inequalities
defining the cone; (b) the faces they define are excluded from the Hilbert series compu-
tation.

The twofold interpretation in case (b) saves the user from including the excluded_faces twice.

An example of type (a):

4 1

2 3

0 0 1 1 0

0 1 excluded_faces

1 1

1 0

polytope

defines the unit square in R2, but (0,0) excluded from the Hilbert series computation (See
Section 6.4 for the discussion of the output.)

An example that combines excluded_faces with other constraints:

1 24

1 1

signs

3 24

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

excluded_faces

The semiopen cone described by this input is the intersection of the positive orthant in R24

with 3 halfspaces that are defined by the linear forms given as excluded_faces, and the facets
defined by these linear forms are then excluded.

Note that excluded_faces only affect the Hilbert series. They are ignored for all other com-
putations.

Example input file: SquareMinusVertex.in, CondParSemi.in.

14

3.2.7. The constraints combined

Let L be the sublattice of Zn that consists of the solutions of the system of congruences defined
by the input matrix of type congruences. (L = Zn if there is no such matrix.) Moreover, let A
be the matrix of type inequalities (combined with the matrix representing the signs) and B
be the matrix of type equations. Then the cone C is given by

C = {x ∈ Rn : Ax≥ 0, Bx = 0},

and the Hilbert basis of C∩L is computed.

The ambient lattice A is Zn, and the essential lattice is E= L∩RC.

If there is no matrix of type equations, then the system of equations is empty, satisfied by all
vectors of Rn.

If the input is of type constraints and there are no explicit inequalities contained in it, then
Normaliz adds the n×n unit matrix of inequalities to restrict all computations to the non-
negative orthant.

See Section 6.2.3 for an example combining types equations and congruences.

Example input file: 3x3magiceven.in.

3.3. Relations

Relations do not select a sublattice of Zn or a subcone of Rn, but define a monoid as a quotient
of Zn

+ modulo a system of congruences (in the semigroup sense!).

The rows of the input matrix of this type are interpreted as generators of a subgroup U ⊂ Zn,
and Normaliz computes an affine monoid and its normalization as explained in Section A.5.

Set G = Zn/U and L = G/torsion(G). Then the ambient lattice is A= Zr, r = rankU , and the
essential lattice is L, realized as a sublattice of A. Normaliz computes the image of Zn

+ in L
and its normalization.

3.3.1. Type lattice_ideal

As an example we consider the binomials X1X3−X2
2 , X1X4−X2X3:

Input Hilbert basis

2 3 0

4 2 1

1 -2 1 0 1 2

1 -1 -1 1 0 3

lattice_ideal

In this example Z4/U is torsionfree, but we can replace each of the vectors in the input matrix
by a nonzero integral multiple without changing the result.

15

The type lattice_ideal cannot be combined with any other input type (except grading)—
such a combination would not make sense. (See Section 3.6.3 for the use of a grading in this
case.)

Example input file: lattice_ideal.in.

3.4. Generators of polyhedra

3.4.1. Type polyhedron

A matrix of type polyhedron contains both the generators of the recession cone C and (a
superset of) the vertices of the polyhedron. For a polyhedron in Rn the vectors have n+ 1
entries in Z. The last component must be nonnegative. It is interpreted as follows:

(1) If it is 0, the vector is part of the system of generators of C.
(2) If it is a positive integer, it is considered as the denominator for the first n entries, which

together define a (potential) vertex of P in Qn.

The order of the input vectors is irrelevant.

4 3

1 0 0

0 1 0

3 2 2

2 3 2

polyhedron

defines the polyhedron
P = conv((3/2,1), (1,3/2))+R2

+

in R2.

Presently there is no possibility to restrict the lattice. If a polyhedron P ⊂ Rn is defined by
a matrix of type polyhedron, then all lattice related computations will refer to the standard
lattice Zn. Therefore A= E= Zn for this input type.

Example input file: polyhedron.in

Remark: For computations of (rational) polytopes (i.e., bounded polyhedra) you almost al-
ways want to use the input types polytope or integral_closure (in conjunction with a grad-
ing). We discuss this point in Section 8.2.

3.5. Inhomogeneous constraints

What has been said about homogeneous constraints holds analogously for inhomogeneous
ones. Note that we must accommodate a right hand side in inhomogeneous constraints, and
therefore inhomogeneous constraints are one component longer than their homogeneous coun-
terparts (with the exception of strict_inequalities and strict_signs).

16

If there are no explicit inequalities in the input, then, as in the homogeneous case, it is assumed
that nonnegative solutions are to be computed.

The lattice E for the computation of the recession module is the sublattice of solutions of the
homogeneous constraints associated to the given inhomogeneous constraints. (So it is defined
even if the polyhedron is empty.) The affine lattice for the computation of lattice points in the
polyhedron is the set of solutions of the given system of constraints.

3.5.1. Type inhom_inequalities

We consider inequalities

ξ1x1 + · · ·+ξnxn ≥ η , ξi,η ∈ Z,

rewritten as
ξ1x1 + · · ·+ξnxn +(−η)≥ 0

and then represented by the input vector

(ξ1, . . . ,ξn,−η).

2

3

1 0 -1

0 1 -2

inhom_inequalities

describes the polyhedron
P = {x ∈ R2 : x1 ≥ 1,x2 ≥ 2}.

Remark: For computations of (rational) polytopes (i.e., bounded polyhedra) you almost al-
ways want to use the input type inequalities. We discuss this point in Section 8.2.

Example input file: SquareMinusVertexInhom.in, NonCMDivisor.in.

3.5.2. Type strict_inequalities

These are shortcuts for inequalities of type

ξ1x1 + · · ·+ξnxn ≥ 1.

2

2

1 0

0 1

strict_inequalities

describes the polyhedron
P = {x ∈ R2 : x1 ≥ 1,x2 ≥ 1}.

Example input file: CondorcetInt.in.

17

3.5.3. Type strict_signs

The components of a (one rowed) matrix of this type are interpreted as follows:

−1 stands for xi ≤−1,
1 stands for xi ≥ 1,
0 indicates that xi is not restricted.

1

3

1 -1 1

strict_signs

represents the inequalities
x1 ≥ 1, x2 ≤−1, x3 ≥ 1.

Example input file: CondorcetInt.in.

3.5.4. Type inhom_equations

We consider equations
ξ1x1 + · · ·+ξnxn = η , ξi,η ∈ Z,

rewritten as
ξ1x1 + · · ·+ξnxn +(−η) = 0

and then represented by the input vector

ξ1, . . . ,ξn,−η .

The input

2

4

1 2 3 -2

3 2 -2 5

inhom_equations

represents the system

x1 +2x2 +3x3 = 2,
3x1 +2x2−2x3 =−5.

Example input file: InhomIneq.in.

18

3.5.5. Type inhom_congruences

We consider the rows of a matrix of type inhom_congrueneces to have length n+2. Each row
(ξ1, . . . ,ξn,−η ,c) represents a congruence

ξ1z1 + · · ·+ξnzn ≡ η mod c

for the elements (z1, . . . ,zn) ∈ Zn.

2

4

1 2 -3 7

2 2 -4 13

inhom_congrueneces

represents the system

x1 +2x2 ≡ 3 (7),
2x2 + x2 ≡ 4 (13)

of simultaneous congruences.

Example file: ChineseRemainder.in.

3.5.6. Mixing homogeneous and inhomogeneous constraints

Homogeneous and inhomogeneous constraints can appear in the same input file. Note that
there must be at least one inhomogeneous type in order to indicate to Normaliz that the input
is inhomogeneous.

The homogeneous constraints will simply be considered as inhomogeneous constraints with
right hand side 0. An example:

2 1

4 3

0 1 0 -1 1 0 0

0 0 1 -1 inequalities

inhom_inequalities

defines the polyhedron
P = {x ∈ R3 : x1 ≥ 0,x2 ≥ 1,x3 ≥ 1}.

3.6. Grading

Z-valued grading can be specified in two ways:

(1) explicitly by including a grading in the input, or

19

(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the
monoid lie in an (affine) hyperplane A. If so, then the (unique) primitive Z-linear form
λ that affords an equation λ (x) = b for A is used as the grading.

Note: In previous versions we used height as a synonym for degree.

A grading is explicitly specified by an 1×n matrix for cones embedded in Rn, and its type is
fixed by the attribute grading, for example

1

2

3 2

grading

Normaliz checks whether all generators of the monoid have positive degree.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor d > 1. Then d is extracted from the degrees, and it
will appear as denominator in the output file.

Special rules apply to some input types that we explain in the following.

3.6.1. polytope

Cones defined by lattice polytopes always have an implicit grading in which the lattice points
in the polytope have degree 1 (roughly speaking). Therefore it is not possible to use an explicit
grading together with this input type.

If it should be necessary to apply a different grading, then one converts the input of type
polytope to integral_closure by appending 1 to each row of the input matrix and adds the
grading to be used.

3.6.2. rees_algebra

Suppose that the rows of the input matrix specify vectors of length n. Then these are embedded
into Rn+1, and therefore the grading must have n+1 components. Example:

3 1

3 4

0 1 2 1 1 1 -1

2 0 2 grading

1 1 1

rees_algebra

Note that the Rees algebra has an implicit grading if and only if all the monomials have the
same total degree, say g. Then the grading vector chosen automatically is (1, . . . ,1,−(g−1)).

20

3.6.3. lattice_ideal

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition. Example:

1 4 1 4

1 1 -1 -1 1 2 1 2

lattice_ideal grading

3.6.4. Inhomogeneous input

Recall that inhomogeneous data defining a polyhedron in Rn have length n+1 (or even n+2
in the case of inhomogeneous congruences). The grading assigns a degree to each of the n
canonical basis elements of Zn, and therefore has length n:

2 3 1 2

1 1 5 1 1

1 -1 4 grading

inhom_inequalities

is an example of consistent input.

3.7. Dehomogenization

Inhomogeneous input for objects in Rd is homogenized by an additional coordinate and then
computed in Rd+1, but with the additional condition xd+1 ≥ 0, and then dehomogenizing all
results: the substitution xd+1 = 1 acts as the dehomogenization, and the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization explicitly as in the following example:

2 3 1 3

-1 1 0 1 0 0

-1 0 1 dehomogenization

inequalities

This input is equivalent to

2

3

1 0 -1

0 1 -1

inhom_inequalities

21

But the dehomogenization can be any linear form δ satisfying the condition δ (x) ≥ 0 on the
cone that is truncated. (In combination with constraints, the condition δ (x) ≥ 0 is automati-
cally satisfied since δ is added to the constraints.)

Since inhomogeneous input defines a dehomogenization implicitly, the type dehomogenization
cannot be combined with any of the inhomogeneous input types. It is also forbidden for

normalization, polytope, rees_algebra and lattice_ideal.

(Note that polytope defines its own homogenization via the grading by the last coordinate.)

The input type dehomogenization makes the computation inhomogeneous, resulting in inho-
mogeneous output. The polyhedron computed is the intersection of the cone C (and the lattice
L) defined by the remaining components of the input with the hyperplane given by δ (x) = 1,
and the recession cone is C∩{x : δ (x) = 0}.
A potential application is the adaptation of other input formats like that of polymake to Nor-
maliz. For example, if the first coordinate is used as the homogenizing variable, then the
system of inequalities above is given as

2 1

3 3

-1 1 0 1 0 0

-1 0 1 dehomogenization

inequalities

Example input file: dehomogenization.in.

3.8. Pointedness

For Hilbert basis computations and triangulations Normaliz requires the (recession) cone to
be pointed (x,−x ∈C =⇒ x = 0). Whenever the condition of pointedness is violated at a step
where it is crucial, Normaliz will stop computations.

Pointedness is checked by testing whether the dual cone of C is full dimensional, and if not,
then the constructor of the cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in

the constructor of the object Full_Cone. Probable reason: Cone

not full dimensional(<=> dual cone not pointed)!

3.9. The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

22

3.10. Additional input �le for NmzIntegrate

NmzIntegrate, whether called by Normaliz or from the command line, needs an input file
<project>.pnm that contains the polynomial for which the generalized Ehrhart series or the
integral is to be computed. See [8].

3.11. Number codes for input types

For historical reasons some of the input types can be represented by numbers instead of names.
We strongly advise the user to avoid them now despite that they can still be used. These codes
are

0: integral closure

1: normalization

2: polytope

3: rees_algebra

4: inequalties (or hyperplanes)

5: equations

6: congruences

10: lattice_ideal

4. Running Normaliz

The simplest way to call Normaliz from the command line is

normaliz <project>

for example

normaliz rafa2416

The project name is rafa2416. Normaliz reads the input file rafa2416.in (hopefully existing),
computes everything it can compute, and writes the output to rafa2416.out. (We assume that
the executable normaliz or normaliz.exe is in the search path. Otherwise you have to prefix
it with a suitable relative or absolute path.)

In the following we explain the various options of Normaliz. The full text names given appear
in the help screen as well as in the menus of jNormaliz which allows you to choose options
interactively.

In the default computation mode Normaliz will try to compute all data accessible to it,
using the triangulation based primal algorithm. All options that can be activated are
switched off by default.

23

The default mode is broken by any option that asks for a specific computation. These are all
except

ceBfax.

4.1. Full syntax and basic rules

The full syntax for calling Normaliz from the command line is

normaliz [-sN1vq] [-nph] [-dr] [-tTy] [-ceB] [-fa] [-ELI] [-x=<T>] [<project>]

where the options and <project> are optional.

A help screen can be displayed by normaliz -?.

Basic rules for the use of options:

1. If no <project> is given, the program will ask you for it or display a help screen.

2. The option -x differs from the other ones: <T> represents a positive number assigned to
-x; see Section 4.5.

3. Normaliz will look for <project>.in as input file.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first
look for rafa2416.in.in as the input file. If this file doesn’t exist, rafa2416.in will be
loaded.

4. Adding a pure output option, namely -f or -a, or an option controlling execution does
not change the computation mode. In particular, it does not change the default compu-
tation mode.

5. The options can be given in arbitrary order. All options are accumulated, and there is no
mutual exclusion.

6. However, not all options are allowed for inhomogeneous input data; see Section 4.3.

7. If Normaliz cannot perform a computation explicitly asked for by the user, it will termi-
nate. Typically this happens if no grading is given although it is necessary.

8. In the default mode Normaliz does not complain about missing data (anymore). It will
simply omit those computations that are impossible.

9. If a certain type of computation is not asked for explicitly, but can painlessly be produced
as a side effect, Normaliz will compute it. For example, as soon as a grading is present
and the Hilbert basis is computed, the degree 1 elements of the Hilbert basis are selected
from it.

For example, if you input the command

normaliz -c -p -a rafa2416 -T -y or normaliz -cpaTy rafa2416

24

then the program will take the file rafa2416.in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulation, the multiplicity, the Hilbert series
and the Hilbert (quasi)polynomial will be computed and all the possible output files will be
produced.

4.2. Computation modes: homogeneous input

4.2.1. Basic modes

The least that Normaliz can do is

-s support hyperplanes: only the constraints of the cone and the lattice under consider-
ation and the extreme rays are computed.

All computation modes include -s.

For Hilbert basis computations one uses

-N Hilbert basis: computes the Hilbert basis.

The degree 1 elements of the Hilbert basis are computed by

-1 degree 1 elements: only degree 1 elements are computed.

Enumerative data are chosen by

-v volume: Normaliz computes the multiplicity (or normalized volume);
-q Hilbert series.

Remarks: (1) The Hilbert basis can also be computed by the dual algorithm; see Section 4.2.3.
In the presence of a grading, -N includes the computation of the degree 1 elements.

(2) For degree 1 elements the dual algorithm can be applied as well. Moreover, the approxi-
mation of rational polytopes is available for this purpose; see Section 4.2.4.

(3) The options -1vq require the presence of a grading (implicit or explicit).

(4) -N and -1 only need a partial triangulation, whereas the options -vq require a full triangu-
lation.

4.2.2. Combined modes

For convenience, Normaliz provides shortcut modes that combine basic modes:

-n Hilbert basis volume: combines -N and -v;
-p Hilbert series degree 1 elements.This mode combines -q and -1;
-h Hilbert basis series: combines -N and -q. This computation mode yields the maxi-

mum information Normaliz can produce.

Remarks: (1) There is no mode combining -v and -1. Simply use -v1.

(2) The effect of -h is also reached by the default mode. However, -h will result in termination
if a grading cannot be found.

25

4.2.3. The dual algorithm

If a cone is defined by constraints, it is often (but not always) faster to use a Hilbert basis
algorithm originally due to Pottier [12] that we call the dual algorithm, in contrast to the primal
(triangulation based) algorithm of Normaliz. (See [5] for our version of the dual algorithm.)
The dual algorithm is invoked by

-d dual Hilbert basis: computes the Hilbert basis using the dual algorithm;
-d1 dual degree 1: computes only the degree 1 elements.

Remarks: (1) The dual algorithm can be used with all input types. See Section 8.6 for a
comparison of performance on various examples.

(2) -d1 is optimized for the computation of degree 1 elements.

(3) The dual algorithm can be combined with the primal algorithm. For example, -d1v or -dq
make perfect sense, and are often useful.

(4) If -d is set, the dual algorithm has priority in the computation of Hilbert bases, but not
necessarily in the computation of degree 1 elements. For example, -d1q will bypass the dual
algorithm, since the degree 1 elements can be gotten as a byproduct of -q.

4.2.4. Approximation of rational polytopes

Even the computation of degree 1 elements can be an extremely difficult problem in the primal
as well as in the dual approach. A major obstruction in the primal algorithm is the occurrence
of gigantic determinants of the simplicial cones in the triangulation. In this case the approxi-
mation of a rational polytope by a lattice polytope offers a way out:

-r approximate rat polytope: computes the lattice points in the degree 1 cross-section
by approximation.

It makes no sense to combine -r with the computation of a Hilbert basis or Hilbert series or
with the dual mode. In such case -r is bypassed. However, -rv makes sense.

4.2.5. What option do I use . . .

The following table gives an overview of the computation options introduced so far.

No enumera- Hilbert
tive data multiplicity series

only extreme
rays -s -v -q

degree 1 -1 -v1

elements -d1, -r -d1v, -rv -p

Hilbert -d -dv default,
basis -N -n -h, -dq

26

4.2.6. Modes calling NmzIntegrate

NmzIntegrate is an independent executable, but it can be called by Normaliz. The options are
exactly those that would be used for a command line call of NmzIntegrate:

-E Generalized Ehrhart series: computation of generalized Ehrhart series,
-L Leading coefficient: computation of leading coefficient of generalized Ehrhart quasi-

polynomial,
-I Integral: computation of Lebesgue integrals.

See [8] for the details of NmzIntegrate. The options -c and -x=<T> are forwarded to NmzIn-
tegrate.

The option -E contains -y, and -I and -L both contain -T. See Section 4.2.7 for -T and -y.

Note: the option -F of NmzIntegrate cannot be accessed via Normaliz.

4.2.7. Triangulation and Stanley decomposition

In some applications it may be useful to base further computations on the triangulation or
even the Stanley decomposition computed by Normaliz. As already mentioned, NmzIntegrate
needs these data:

-T computes the triangulation and writes it to the file <project>.tri.
-y computes the Stanley decomposition and writes it to the file <project>.dec.

Both modes generate further output files, namely <project.>inv and <project>.tgn. The
format of these files will be explained in Section 7.

There is a further mode computing the triangulation, but producing no output:

-t Computes the triangulation.

Why this option is sometimes useful will be explained in Section 8.7.

4.3. Computation modes: inhomogeneous input

The following options are not allowed for inhomogeneous input:

1prTyELI

The other modes are completely analogous to those for cones when one replaces “Hilbert
basis” by “system of generators and Hilbert basis of recession monoid” (see Section A.6).
Whether Normaliz computes a cone or a polyhedron does only depend on the input file and
not on the command line options. In order to keep jNormaliz simple, the same full text names
of the options are used for polyhedra.

27

4.3.1. Basic modes

-s support hyperplanes: only the constraints of the polyhedron and its vertices are com-
puted.

All computation modes include -s.

-N Hilbert basis: computes the system of generators, namely the Hilbert basis of the
recession cone and the minimal system of module generators.

-v volume: Normaliz computes the multiplicity.
-q Hilbert series: what it says.

Remarks: (1) Systems of generators can also be computed by the dual algorithm; see Section
4.2.3.

(2) The options -vq require the presence of a grading.

(3) -N only needs a partial triangulation, whereas the options -vq require a full triangulation.

4.3.2. Combination modes

-n Hilbert basis volume: combines -N and -v;
-h Hilbert basis series: combines -N and -q. This computation mode yields the maxi-

mum information Normaliz can produce.

The effect of -h is also reached by the default mode. However, -h will result in termination if
a grading cannot be found.

4.3.3. The dual algorithm

-d dual Hilbert basis: computes the system of generators using the dual algorithm.

4.3.4. What option do I use . . .

The following table gives an overview of the computation options introduced so far.

No enumera- Hilbert
tive data multiplicity series

only vertices -s -v -q

Hilbert -d -dv default,
basis -N -n -h, -dq

4.4. Control of output �les

In the default setting Normaliz writes only the output file <project>.out (and the files pro-
duced by -T and -y). The amount of output files can be increased as follows:

28

-f Normaliz writes the additional output files with suffixes gen, cst, and inv, provided the
data of these files have been computed.

-a includes -f, Normaliz writes all available output files except the triangulation or the
Stanley decomposition.

In order to see all available output files one uses -aTy.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.

For the list of potential output files and their interpretation see Section 7.

4.5. Control of execution

The options that control the execution are:

-c activates the verbose (“console”) behavior of Normaliz in which Normaliz writes addi-
tional information about its current activities to the standard output.

-e activates the overflow error check of Normaliz. Ignored if used with -B.
-B switches Normaliz to infinite precision.

-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is set by the operating system. If you
want to run Normaliz in a strictly serial mode, choose -x=1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section 8.6 for further discussion.

4.6. Numerical limitations

Even in low dimensions, the range of 64 bit integers may not be sufficient for the computations
of Normaliz. Therefore normaliz can be switched to infinite precision by the option -B.

Computations with -B typically run about 5 times slower than those without it. In examples
that look critical, it may be useful first to try normaliz without -B, but with the error check
option activated. This costs time, too, but hardly more than 50% extra.

The user should run the example critical64.in in the subdirectory examples with normaliz

-e in order to see the failure of 64 bit arithmetic. (Running it with -B takes a while and requires
much memory.)

4.7. Obsolete options

The options -i and -m of version 2.2 have become obsolete. They will be ignored if present.

The options -SVHP of versions 2.5 and 2.7 are now synonymous with-svhp and can still be
used.

29

5. The output �le

The data you will find in the output file <project>.out depend on the input type and on the
computation mode. The output file starts with an “abstract” that collects various numerical
and qualitative data, for example the number of elements in the Hilbert basis. The lists of
vectors, equations etc. follow the abstract.

Note that the values of results computed by Normaliz depend only on the input file, except
that the order of vectors in lists like the Hilbert basis can vary, for example because of the
unpredictability of the parallelization. The command line parameters only determine which
results are computed and what algorithm is used.

5.1. The homogeneous case

The output file will contain the following data as far as computed:

• only for type lattice_ideal: the original system of generators (see below);
• the Hilbert basis H computed;
• the extreme rays of the cone C generated by H;
• the rank of the lattice E;
• the embedding dimension (the rank of A);
• the index of the lattice generated by the original input vectors in E;
• the support hyperplanes of C;
• a system of equations defining the vector space generated by C;
• a system of congruences defining E as a sublattice of A (together with the equations);
• the number of simplicial cones in the triangulation and the sum of the absolute values

of their determinants.

In the presence of a grading the following extra data may be printed:

• the linear form defining the degree;
• the degree 1 elements of the Hilbert basis;
• the multiplicity;
• the Hilbert series and the coefficients of the Hilbert (quasi)polynomial;
• the excluded faces (if any).

The degrees of the extreme rays are listed in the abstract. If the whole Hilbert basis is of
degree 1, this fact is indicated. Moreover, Normaliz tells you whether the original system of
generators contains the Hilbert basis by indicating whether the original monoid is integrally
closed.

Please note:

(1) The equations and support hyperplanes together define the cone C. While support
hyperplanes will always be present (except for the zero cone), equations will only be
printed if necessary, namely when dimC < rankA.

30

Similarly, congruences will only be printed if the lattice E is not given by RC∩A. This
can only happen with input matrices of types normalization or congruences.
Even if the cone and the lattice are defined by constraints, the inequalities, equations
and congruences of the input will in general not be reproduced, but replaced by an
equivalent system.

(2) The extreme rays are given by the first points in E on them (the extreme integral gener-
ators with respect to E).

(3) In order to lift the grading from E to A it may be necessary to replace it by a multiple (in
order to avoid fractions as coefficients). The necessary factor appears as “denominator”.
The Hilbert series and the Hilbert (quasi)polynomial do always refer to the degree in E.

(4) Input matrices of type generators contain an explicit system of generators. For the other
types different from lattice_ideal the extreme rays computed by Normaliz take their
place. For type lattice_ideal Normaliz first computes the monoid M generated by
the residue classes of the canonical basis of Zn (compare Section 3.3), and they are
considered as the original system of generators.

In type rees_algebra, the data in the output file refer to the integral closure R of the Rees
algebra. In addition to what has been mentioned already, the following data are computed:

• the generators of the integral closure of the ideal;
• if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal (not

to be confused with the multiplicity of the monoid).

5.2. The inhomogeneous case

Note: All data are presented in homogenized coordinates. For inhomogeneous input types
with implicit dehomogenization this means that all vectors with last component 0 belong to the
recession cone, and those with last component > 0 represent a rational point in the polyhedron
with denominator given by the last coordinate. In constraints the last coordinate represents the
negative of the right hand side, as in the input.

If the dehomogenization is another coordinate, the interpretation is analogous. If the deho-
mogenization δ is not a coordinate, one must compute it by applying the truncating linear
form to the vectors given: the denominator is δ (x) for the points of the polyhedron. Solving
the linear equation δ (x) = 1 for one coordinate and substituting the result into the constraints,
one obtains inhomogeneous versions of the constraints if they should be needed.

In the inhomogeneous case we compute a polyhedron P. We can find the following lists of
vectors in the output file describing the solution monoid:

• the dehomogenization,
• the generators of the solution module,
• the Hilbert basis of the solution module.

The convex-geometric data of the polyhedron are given by:

• the vertices of the polyhedron (with denominator δ (x)),
• the extreme rays of the recession cone.

31

The support hyperplanes, equations and congruences have the same meaning as in the homo-
geneous case: they describe the polyhedron and the affine lattice with respect to which the
solution monoid is computed.

The module rank and the rank of the recession monoid are always computed, as well as the
affine dimension of the polyhedron P.

If a grading is given, then one can also compute

• the multiplicity of the solution monoid (the suitably normed leading coefficient of the
Hilbert (quasi)polynomial),
• the Hilbert series given as a rational function with numerator and denominator as in the

homogeneous case, however modified by
• a shift, and
• the Hilbert (quasi)polynomial, provided the period is not too large.

The shift corrects the Hilbert series as follows:

Htrue(t) = t−shiftHcomputed(t).

The Hilbert (quasi)polynomial must be shifted correspondingly:

qtrue(k) = qcomputed(k+ shift).

At the end we find the system of constraints that defines the polyhedron P and the set of lattice
points in it.

The remarks in the homogeneous case apply accordingly.

6. Examples

Note that the output you get by running the examples may differ from the one given below in
the order of the vectors in lists like the Hilbert basis.

6.1. Generators of cones and lattices

6.1.1. Type integral_closure

The file rproj2.in contains the following:

16 7

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1

0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1

0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1

integral_closure

32

This means that we wish to compute the cone C generated by the 16 vectors

(1,0,0,0,0,0,0) , (0,1,0,0,0,0,0) , . . . , (0,0,1,1,0,1,1)

in R7 with respect to the full lattice Z7, as indicated by the type integral_closure. (Actually,
the vectors generate the full lattice so that a replacement of type integral_closure by type
normalization would not change anything.)

Running normaliz with no option (or option -h, Hilbert basis series) produces the file
rproj2.out which has the following content (partially typeset in 2 or 3 columns):

17 Hilbert basis elements multiplicity = 72

16 Hilbert basis elements of degree 1

16 extreme rays Hilbert series:

24 support hyperplanes 1 9 31 25 6

denominator with 7 factors:

embedding dimension = 7 1: 7

rank = 7 (maximal)

index = 1 Hilbert polynomial:

original monoid is not integrally closed 60 194 284 245 130 41 6

with common denominator = 60

size of triangulation = 67

resulting sum of |det|s = 72

grading:

1 1 1 1 1 1 -2

degrees of extreme rays:

1: 16

Hilbert basis elements are not of degree 1

17 Hilbert basis elements: 24 support hyperplanes:

0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 0 1 1 0 0 1 0 0 0 0

0 0 1 1 1 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 1 -1

0 1 0 0 1 1 1 0 1 0 0 1 1 -1

0 1 0 1 1 0 1 0 1 0 1 1 0 -1

0 1 1 0 0 1 1 0 0 1 1 0 1 -1

1 0 0 0 0 0 0 0 1 1 1 1 1 -2

1 0 0 0 1 1 1 0 0 1 1 1 0 -1

1 0 0 1 0 1 1 1 0 0 0 0 0 0

33

1 0 1 0 1 0 1 1 1 1 1 1 1 -3

1 1 0 1 0 0 1 1 0 0 0 1 1 -1

1 1 1 0 0 0 1 1 0 0 1 0 1 -1

1 1 1 1 1 1 2 1 0 1 0 1 0 -1

1 0 1 1 1 1 -2

16 extreme rays: 1 1 1 0 0 0 -1

1 0 0 0 0 0 0 1 1 1 1 0 1 -2

0 1 0 0 0 0 0 1 1 0 1 0 0 -1

0 0 1 0 0 0 0 1 1 1 0 1 1 -2

0 0 0 1 0 0 0 1 1 1 1 1 0 -2

0 0 0 0 1 0 0 1 1 0 1 1 1 -2

0 0 0 0 0 1 0

1 1 1 0 0 0 1 16 degree 1 Hilbert basis elements:

1 1 0 1 0 0 1 0 0 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1

1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1

0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1

0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1

0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1

From this, we see that there are 17 elements in the Hilbert basis, of which 16 are of degree
1, and 16 extreme rays, that the sublattice generated by the input vectors has index 1 in Z7,
and that the corresponding support hyperplanes are given by the linear forms (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0), . . . , (1,1,0,1,1,1,−2).

We are also given the information that there is a grading (defined implicitly) and what it is.
The multiplicity with respect to this grading is 72. By definition, the multiplicity is the E-
normalized volume of the polytope obtained by intersecting the cone with the hyperplane at
degree 1.

The degrees of the extreme rays are given in multiset notation:

1: 16

indicates that 16 extreme rays have degree 1. (The input file contains no explicit grading. The
implicitly defined grading requires that all extreme rays have the same degree, but it need not
be 1 as in this case.)

Since there is a grading, the degree 1 elements of the Hilbert basis, the Hilbert series and
Hilbert polynomial of the monoid generated by the Hilbert basis are also computed. The
Hilbert series is given as a rational function. Its numerator polynomial is

1+9t +31t2 +25t3 +6t4

as we can see from the vector below the heading Hilbert series. The denominator is given
in multiset notation: 1: 7 specifies the denominator

(1− t1)7.

34

More general cases will be discussed in 6.1.3 and 6.2.3 below.

The Hilbert polynomial is given by

P(k) =
60
60

+
194
60

k+
284
60

k2 +
245
60

k3 +
130
60

k4 +
41
60

k5 +
6

60
k6 .

The Hilbert polynomial gives the number of elements of degree k, starting from degree 0, as
is always the case for normal monoids. Note that the multiplicity m can also be read from the
leading coefficient c of the Hilbert polynomial:

c =
m

(r−1)!
, r = rank, (1)

in our case
c =

1
10

=
72

720
.

The lines

size of triangulation = 67

resulting sum of |det|s = 72

give some information about Normaliz’ (not so hard) work: It produced a triangulation of 67
simplicial cones, and the sum of the absolute values of the determinants of their generator
matrices is 72. It is not surprising that this number equals the multiplicity. This is always the
case if only degree 1 vectors appear in the generator matrix.

We omit an example of type normalization since it does not add anything new.

6.1.2. Type polytope

The file polytop.incontains

4

3

0 0 0

2 0 0

0 3 0

0 0 5

polytope

The Ehrhart monoid of the integral polytope with the 4 vertices

(0,0,0) , (2,0,0) , (0,3,0) and (0,0,5)

in R3 is to be computed. (Note the last line, indicating the polytope type.)

Running normaliz without an option (or option -h) produces the file polytop.out:

35

19 Hilbert basis elements multiplicity = 30

18 Hilbert basis elements of degree 1

4 extreme rays Hilbert series:

4 support hyperplanes 1 14 15

denominator with 4 factors:

embedding dimension = 4 1: 4

rank = 4 (maximal)

index = 30 Hilbert polynomial:

original monoid is not integrally closed 1 4 8 5

with common denominator = 1

size of triangulation = 1

resulting sum of |det|s = 30

grading:

0 0 0 1

degrees of extreme rays:

1: 4

Hilbert basis elements are not of degree 1

19 Hilbert basis elements: 18 Hilbert basis elements of degree 1:

0 0 5 1 0 0 5 1

0 3 0 1 0 3 0 1

... ...

1 0 2 1 1 0 2 1

1 1 0 1 1 1 0 1

1 2 4 2

4 extreme rays: 4 support hyperplanes:

0 0 0 1 -15 -10 -6 30

2 0 0 1 1 0 0 0

0 3 0 1 0 1 0 0

0 0 5 1 0 0 1 0

For the polytopal interpretation one must observe that all data are in homogenized coordinates
for which Normaliz has appended 1 to the input vectors that (in this case) are the vertices of the
polytope. In the cone produced, the lattice points of the polytope are of degree 1. Therefore
the 18 Hilbert basis elements of degree 1 represent the lattice points of the polytope, starting
from (0,0,5) and ending with (1,1,0). The extreme rays represent the 4 vertices.

From the fact that there are 19 Hilbert basis elements, but only 18 of degree 1, we see that the
lattice points in the polytope do not yield the Hilbert basis of the Ehrhart monoid (or the cone
over the polytope).

36

That there is only one simplicial cone in the triangulation is not surprising since our polytope
is a simplex.

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 .

The dimension of the polytope is 3 since the cone over it has dimension 4. The polytope has
Z3-normalized volume 30 as indicated by the multiplicity.

The Ehrhart series (we use the more general term Hilbert series) is

1+14t +15t2

(1− t)4

and its Ehrhart polynomial (again we use a more general term in the output file) of the polytope
is

p(k) = 1+4k+8k2 +5k3 .

6.1.3. A rational polytope

We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (−1/3,−1/3), (1/4,−1/2).

The input file is rational.in. Running Normaliz yields the following output:

8 Hilbert basis elements H...t s...s cycl... denom...:

1 Hilbert basis elements of degree 1 -1 -1 -1 -3 -4 -3 -2

3 extreme rays cyclotomic denominator:

3 support hyperplanes 1: 3 2: 2 3: 1 4: 1

embedding dimension = 3 H...t quasi-pol...l of period 12:

rank = 3 (maximal) 0: 48 28 15

index = 15 1: 11 22 15

original monoid is not integrally closed 2: -20 28 15

3: 39 22 15

size of triangulation = 1 4: 32 28 15

resulting sum of |det|s = 15 5: -5 22 15

6: 12 28 15

grading: 7: 23 22 15

0 0 1 8: 16 28 15

9: 27 22 15

degrees of extreme rays: 10: -4 28 15

2: 1 3: 1 4: 1 11: 7 22 15

with common denominator = 48

multiplicity = 5/8

37

Hilbert series:

1 0 0 3 2 -1 2 2 1 1 1 1 2

denominator with 3 factors:

1: 1 2: 1 12: 1

8 Hilbert basis elements: 3 extreme rays:

1 -2 4 1 1 2

-1 -1 3 -1 -1 3

1 1 2 1 -2 4

0 0 1

0 -1 3 3 support hyperplanes:

1 0 3 2 7 3

1 -1 4 -8 2 3

0 -2 5 1 -1 0

1 Hilbert basis elements of degree 1:

0 0 1

The 3 extreme rays have reproduced the vertices (don’t forget that the last coordinate can
be interpreted as a denominator), and the 3 support hyperplanes represent the 3 inequalities
that define the polytope as an intersection of affine halfspaces like in 6.1.2. The Hilbert basis
element of degree 1 shows that there is a single lattice point in the polytope, namely the origin
(0,0). Except that P has non-integral vertices now, these data are completely analogous to
those of the lattice polytope in 6.1.2.

The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.

The Hilbert (or Ehrhart) function counts the lattice points in kP, k ∈ Z+. The corresponding
generating function is a rational function H(t) with numerator

1+3t3 +2t4− t5 +2t6 +2t7 + t8 + t9 + t10 + t11 +2t12

and denominator
(1− t)(1− t2)(1− t12).

As a rational function, H(t) has degree −3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denom-
inator factored into cyclotomic polynomials. The multiset notation lists the orders of the
cyclotomic polynomials and their multiplicities. In this case we have

H(t) =−1+ t + t2 + t3 +4t4 +3t5 +2t6

ζ 3
1 ζ 2

2 ζ3ζ4

38

where ζi is the i-th cyclotomic polynomial (ζ1 = t−1, ζ2 = t +1, ζ3 = t2+ t +1, ζ4 = t2+1).

Normaliz transforms the representation with cyclotomic denominator into one with denomi-
nator of type (1− te1) · · ·(1− ter), r = rank, by choosing er as the least common multiple of
all the orders of the cyclotomic polynomials appearing, er−1 as the lcm of those orders that
have multiplicity ≥ 2 etc.

There are other ways to form a suitable denominator with 3 factors 1− te, for example g(t) =
(1− t2)(1− t3)(1− t4) = −ζ 3

1 ζ 2
2 ζ3ζ4. Of course, g(t) is the optimal choice in this case.

However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:

p(k) = p0(k)+ p1(k)k+ · · ·+ pr−1(k)kr−1,

where the coefficients depend on k, but only to the extent that they are periodic of a certain
period π ∈ N. In our case π = 12 (the lcm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as follows: The first column denotes the
residue class j modulo the period and the corresponding line lists the coefficients pi(j) in
ascending order of i, multiplied by the common denominator. So

p(k) = 1+
7

12
k+

5
16

k2, k ≡ 0 (12),

etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume
as in equation (1).

Our choice of denominator for the Hilbert series is motivated by the following fact: ei is the
common period of the coefficients pr−i, . . . , pr−1. The user should prove this fact or at least
verify it by several examples.

6.1.4. Type rees_algebra

Next, let us discuss the example rees.in:

10

6 0 1 1 0 0 1

1 1 1 0 0 0 0 1 0 1 1 0

1 1 0 1 0 0 0 1 0 0 1 1

1 0 1 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 0 0 1 1 0 1

1 0 0 0 1 1 rees_algebra

A comparison with the data in rproj2.in shows that rees is the origin of rproj2.

Here we want to compute the integral closure of the Rees algebra of the ideal generated by the
monomials corresponding to the above 10 exponent vectors. The output in rees.out coincides
with that in rproj2.out, up to terminology and the supplementary information on the integral
closure of the ideal:

39

10 generators of integral closure of the ideal:

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 1 1 1 0 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 1 0 1 0 0

1 0 0 0 1 1 1 1 1 0 0 0

A brief look at rproj2.out shows that exactly the generators with the last coordinate 1 have
been extracted. (So the ideal is integrally closed. This is not surprising because we have
chosen squarefree monomials.)

6.2. Homogeneous constraints

6.2.1. Type inequalities

The file dual.in is

24

7

0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 1 1 1 1 -3

... ...

0 0 1 1 0 1 -1 1 1 1 1 1 0 -2

0 1 1 1 1 1 -2 1 1 0 1 1 1 -2

inequalities

This means that we wish to compute the Hilbert basis of the cone cut out from R7 by the
24 inequalities. (It is the dual of the cone spanned by the 24 linear forms in (R7)∗.) The
inequalities represent exactly the support hyperplanes from the file rproj2.out. The output
in dual.out coincides with that in rproj2.out.

6.2.2. Type equations

Suppose that you have the following “square”

x1 x2 x3
x4 x5 x6
x7 x8 x9

and the problem is to find nonnegative values for x1, . . . ,x9 such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same constant M . Sometimes such squares are

40

called magic and M is the magic constant. This leads to a linear system of equations

x1 + x2 + x3 = x4 + x5 + x6;
x1 + x2 + x3 = x7 + x8 + x9;
x1 + x2 + x3 = x1 + x4 + x7;
x1 + x2 + x3 = x2 + x5 + x8;
x1 + x2 + x3 = x3 + x6 + x9;
x1 + x2 + x3 = x1 + x5 + x9;
x1 + x2 + x3 = x3 + x5 + x7.

This system of equations is contained in the file 3x3magic.in. It has input type equations.
(Don’t forget that the sign conditions xi ≥ 0 are automatically included if there are no explicit
inequalities.)

The magic constant is a natural choice for the grading, and therefore

1

9

1 1 1 0 0 0 0 0 0

grading

follows the equations.

The output file contains the following:

5 Hilbert basis elements multiplicity = 4

5 Hilbert basis elements of degree 1

4 extreme rays Hilbert series:

4 support hyperplanes 1 2 1

denominator with 3 factors:

embedding dimension = 9 1: 3

rank = 3

index = 2 Hilbert polynomial:

original monoid is not integrally closed 1 2 2

with common denominator = 1

size of triangulation = 2

resulting sum of |det|s = 4

grading:

1 1 1 0 0 0 0 0 0

with denominator = 3

degrees of extreme rays:

1: 4

Hilbert basis elements are of degree 1

41

5 Hilbert basis elements: 6 equations:

1 0 2 2 1 0 0 2 1 -2 1 4 -3 0 0 0 0 0

0 2 1 2 1 0 1 0 2 -1 0 1 -1 1 0 0 0 0

2 0 1 0 1 2 1 2 0 -2 0 2 -1 0 1 0 0 0

1 2 0 0 1 2 2 0 1 -2 0 3 -2 0 0 1 0 0

1 1 1 1 1 1 1 1 1 0 0 -2 1 0 0 0 1 0

-1 0 2 -2 0 0 0 0 1

4 extreme rays:

1 2 0 0 1 2 2 0 1 5 Hilbert basis elements of degree 1:

2 0 1 0 1 2 1 2 0 1 0 2 2 1 0 0 2 1

0 2 1 2 1 0 1 0 2 0 2 1 2 1 0 1 0 2

1 0 2 2 1 0 0 2 1 2 0 1 0 1 2 1 2 0

1 2 0 0 1 2 2 0 1

4 support hyperplanes: 1 1 1 1 1 1 1 1 1

0 -1 0 0 2 0 0 0 0

0 1 2 0 -2 0 0 0 0

0 -1 -2 0 4 0 0 0 0

0 1 0 0 0 0 0 0 0

The 5 elements of the Hilbert basis represent the magic squares

2 0 1
0 1 2
1 2 0

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

1 2 0
0 1 2
2 0 1

0 2 1
2 1 0
1 0 2

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients.

Normaliz tells us that the cone generated by the magic squares can be described by 4 inequal-
ities and 6 linear relations. The number of equations becomes clear when we look at the rank.

The input degree is the magic constant. However, as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is M /3. This degree is
used for the multiplicity and the Hilbert series.

The Hilbert series is
1+2t + t2

(1− t)3 .

The Hilbert polynomial is
P(k) = 1+2k+2k2,

and after substituting M /3 for k we obtain the number of magic squares of magic constant
M .

42

6.2.3. Type congruences

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file as follows (3x3magiceven.in):

7 4

9 10

1 1 1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 2

1 1 1 0 0 0 -1 -1 -1 0 0 1 0 0 0 0 0 0 2

0 1 1 -1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 2

1 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 2

1 1 0 0 0 -1 0 0 -1 congruences

0 1 1 0 -1 0 0 0 -1 1

1 1 0 0 -1 0 -1 0 0 9

equations 1 1 1 0 0 0 0 0 0

grading

The output changes accordingly:

9 Hilbert basis elements multiplicity = 1

0 Hilbert basis elements of degree 1

4 extreme rays Hilbert series:

4 support hyperplanes 1 -1 3 1

denominator with 3 factors:

embedding dimension = 9 1: 1 2: 2

rank = 3

index = 4 H...t s...s cycl... denom...:

original monoid is not integrally closed -1 1 -3 -1

cyclotomic denominator:

size of triangulation = 2 1: 3 2: 2

resulting sum of |det|s = 8

H...t quasi-pol...l of period 2:

grading: 0: 2 2 1

1 1 1 0 0 0 0 0 0 1: -1 0 1

with denominator = 3 with common denominator = 2

degrees of extreme rays:

2: 4

9 Hilbert basis elements: 4 support hyperplanes:

2 0 4 4 2 0 0 4 2 1 0 1 0 -1 0 0 0 0

0 4 2 4 2 0 2 0 4 -1 0 1 0 1 0 0 0 0

4 0 2 0 2 4 2 4 0 1 0 -1 0 1 0 0 0 0

2 4 0 0 2 4 4 0 2 -1 0 -1 0 3 0 0 0 0

2 2 2 2 2 2 2 2 2

43

4 3 2 1 3 5 4 3 2 6 equations:

2 5 2 3 3 3 4 1 4 -2 1 4 -3 0 0 0 0 0

2 3 4 5 3 1 2 3 4 -1 0 1 -1 1 0 0 0 0

4 1 4 3 3 3 2 5 2 -2 0 2 -1 0 1 0 0 0

-2 0 3 -2 0 0 1 0 0

4 extreme rays: 0 0 -2 1 0 0 0 1 0

2 4 0 0 2 4 4 0 2 -1 0 2 -2 0 0 0 0 1

4 0 2 0 2 4 2 4 0

0 4 2 4 2 0 2 0 4 2 congruences:

2 0 4 4 2 0 0 4 2 0 0 1 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 2

0 Hilbert basis elements of degree 1:

It is not surprising that the support hyperplanes have not changed after the introduction of the
congruences, since the latter only modify the lattice E. Similarly the number of extreme rays
is the same, but the vectors are multiplied by the factor 2 since Normaliz chooses them in E,
and therefore these vectors must satisfy the congruences.

Its first representation tells us that the Hilbert series is

1− t +3t2 + t3

(1− t)(1− t2)2 .

As in 6.1.3, the second representation gives coprime numerator and denominator polynomials
in which the denominator is a product of cyclotomic polynomials:

−1+ t−3t2− t3

ζ 3
1 ζ 2

2
, ζ1 = t−1,ζ2 = t +1.

In this case, the two denominators differ by the factor −1. In general, the first representation
is not coprime, as we have seen in 6.1.3.

The lattice point enumerator is a quasipolynomial of period 2:

|{x : degx = k}|=

{
1+ k+ k2/2, k ≡ 0 (2)
−1/2+ k2/2, k ≡ 1 (2).

In general one must expect a non-integral multiplicity if the period is > 1. That the multiplicity
is integral, namely 1, in this case must be considered an exception.

As you can see, the equations make two of the input congruences superfluous: it is enough to
require the two corners in the first row to be even. The first congruence is to be read as x1 ≡ 0
mod 2, the second as x3 ≡ 0 mod 2.

Another good example for Hilbert series and gradings is given by Condorcet.in. The reader
should run it or have a look at the corresponding output file.

44

6.3. Relations

6.3.1. Type lattice_ideal

As an example, we consider the binomial ideal generated by

X2
1 X2−X4X5X6, X1X2

4 −X3X5X6, X1X2X3−X2
5 X6.

We want to find an embedding of the toric ring it defines and the normalization of the toric
ring.

The input ideal lattice_ideal.in is

3

6

2 1 0 -1 -1 -1

1 0 -1 2 -1 -1

1 1 1 0 -2 -1

lattice_ideal

It yields the output

6 original generators of the toric ring multiplicity = 10

9 Hilbert basis elements

9 Hilbert basis elements of degree 1 Hilbert series:

5 extreme rays 1 6 3

5 support hyperplanes denominator with 3 factors:

1: 3

embedding dimension = 3

rank = 3 (maximal) Hilbert polynomial:

index = 1 1 3 5

original monoid is not integrally closed with common denominator = 1

size of triangulation = 3

resulting sum of |det|s = 10

grading:

1 -1 1

degrees of extreme rays:

1: 5

Hilbert basis elements are of degree 1

6 original generators: 5 support hyperplanes:

0 1 2 1 0 0

45

3 2 0 0 1 0

0 0 1 0 0 1

1 1 1 3 -2 1

1 0 0 6 -9 7

1 3 3

10 Hilbert basis elements of degree 1:

10 Hilbert basis elements: 1 3 3

1 3 3 1 0 0

... ...

2 2 1 1 1 1

1 1 1

5 extreme rays:

0 1 2

...

1 3 3

The 6 original generators correspond to the indeterminates X1, . . . ,X6 in the binomial equa-
tions. They represent an embedding of the affine monoid defined by the binomial equations.

6.4. Type excluded_faces

We choose the input file SquareMinusVertex.in:

4 1

2 3

0 0 1 1 0

0 1 excluded_faces

1 1

1 0

polytope

This defines the unit square Q in R2, and we want to compute the Hilbert function of the cone
over Q minus the ray through the point (0,0,1) which represents the left lower corner of the
square.

Let us restrict ourselves to the part of the output file that differs from the one obtained without
excluded_faces (4 Hilbert basis elements, all of degree 1 etc.):

1 excluded faces

...

Hilbert series: Hilbert polynomial:

0 3 -1 0 2 1

denominator with 3 factors: with common denominator = 1

1: 3

...

46

1 excluded faces:

1 1 0

So the Hilbert series is
3t− t2

(1− t)3 =
1+ t

(1− t)3 −
1

1− t

what we could have computed by hand.

6.5. Generators of polyhedra

6.5.1. Type polyhedron

Let us realize the example of Section 6.4 via the type polyhedron. There are of course several
solutions. We choose SquareMinusVertexPolyh.in:

7 4

0 0 1 0 1 3

1 0 1 0 0 0 1

1 1 1 0 grading

0 1 1 0

1 1 1 2

0 1 1 2

1 0 1 2

polyhedron

This input defines a polyhedron in R3 with three vertices, namely (1/2,1/2,1/2), (0,1/2,1/2),
(1/2,0,1/2), as given by the last 3 rows of the input matrix. (This choice of vertices has purely
didactical reasons.) The recession cone is simply the cone over the unit square, and its four
rays are determined by the first 4 rows of the input matrix. This yields the output

3 module generators module rank = 1

4 Hilbert basis elements of recession monoid multiplicity = 2

3 vertices of polyhedron

4 extreme rays of recession cone Hilbert series:

6 support hyperplanes of polyhedron 0 3 -1

denominator with 3 factors:

embedding dimension = 4 1: 3

affine dimension of the polyhedron = 3 (maximal)

rank of recession monoid = 3 shift = 0

size of triangulation = 5 Hilbert polynomial:

resulting sum of |det|s = 4 0 2 1

with common denominator = 1

dehomogenization:

0 0 0 1

47

grading:

0 0 1 0

3 module generators: 4 extreme rays of recession cone:

0 1 1 1 0 0 1 0

1 0 1 1 1 0 1 0

1 1 1 1 1 1 1 0

0 1 1 0

4 Hilbert basis elements of recession monoid:

0 0 1 0

0 1 1 0

1 0 1 0 6 support hyperplanes of polyhedron:

1 1 1 0 -2 0 2 1

0 -2 2 1

3 vertices of polyhedron: 1 0 0 0

1 1 0 2 2 2 0 -1

0 1 0 2 0 1 0 0

1 0 0 2 0 0 1 0

We see that the vertices of P, and the extreme rays and the Hilbert basis of the recession
cone are as expected. The only comment they need is that they are given in homogenized
coordinates with last component 0, although they are vectors in R3.

The vertices of the polyhedron are exactly as expected. (A priori it may not be clear whether
each of the points in the input is a vertex of the polyhedron.)

Also the interpretation of the support hyperplanes should be obvious. For example, 2 2 0 -1

represents the inequality
2ξ1 +2ξ2−1≥ 0.

(Which of the support hyperplanes define(s) a compact face?)

As a new type of data we see a shift. We cannot avoid using it since negative degrees are
not excluded, and we want to avoid true Laurent polynomials in the numerator of the Hilbert
series. We know already that

3t− t2

(1− t)3

is the Hilbert series, whereas the raw result just computed is

3− t
(1− t)3 .

So the correction is
Htrue(t) = t−shiftHcomputed(t).

48

The Hilbert (quasi)polynomial must be shifted accordingly:

qtrue(k) = qcomputed(k+ shift).

The module rank is 1, and the multiplicity is the same as that of the recession monoid since
the leading terms in the Hilbert polynomial agree.

6.6. Inhomogeneous constraints

6.6.1. Type inhom_inequalities

Let x = (−2,−1/2), y = (0,3/2) and let Q be the line segment joining x and y. We want to
model the polyhedron Q+R+(1,0) by inequalities. These are

ξ2 ≥ −1/2,
ξ2 ≤ 3/2,
ξ2 ≤ ξ1 +3/2

and yield the input InhomIneq.in:

3 1

3 2

0 2 1 1 0

0 -2 3 grading

2 -2 3

inhom_inequalities

It yields the output

2 module generators

1 Hilbert basis elements of recession monoid

2 vertices of polyhedron

1 extreme rays of recession cone

3 support hyperplanes of polyhedron module rank = 2

multiplicity = 2

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal) Hilbert series:

rank of recession monoid = 1 0 1 1

denominator with 1 factors:

size of triangulation = 1 1: 1

resulting sum of |det|s = 8

shift = 2

dehomogenization:

0 0 1 Hilbert polynomial:

2

grading: with common denominator = 1

1 0 0

49

2 module generators: 1 extreme rays of recession cone:

-1 0 1 1 0 0

0 1 1

1 Hilbert basis elements of recession monoid:

1 0 0

2 vertices of polyhedron: 3 support hyperplanes of polyhedron:

-4 -1 2 0 2 1

0 3 2 0 -2 3

2 -2 3

The module rank is 2 in this case since we have two “layers” in the solution module that are
parallel to the recession monoid. The Hilbert series is

t−2 t + t2

1− t
=

t−1 +1
1− t

It reflects the disjoint decomposition ((−1,0)+Z+(1,0))∪ ((0,1)+Z+(1,0)) of the solution
module: (−1,0) has degree −1, (0,1) has degree 0.

6.6.2. Type strict_inequalities

Once more we choose the example of Section 6.4, this time realized with a strict inequality
(SquareMinusVertexStrict.in):

4 1

3 3

0 -1 1 1 1 0

1 0 0 strict_inequalities

-1 0 1 1

0 1 0 3

inequalities 0 0 1

grading

There is nothing to comment on the output since it is identical to that of Section 6.5.1. The
strict inequality is only a shortcut for

1

4

1 1 0 -1

inhom_inequalities

The two inequalities represented by 1 0 0 and 0 1 0 could also be given by

50

1 3

1 1 0

signs

6.6.3. Type inhom_equations

We want to compute the nonnegative solutions of the system

ξ1 +2ξ2 +3ξ3−4ξ4−5ξ5−6ξ6−7ξ7 =−3,
−3ξ2−2ξ3− ξ4− ξ5 +2ξ6 +13x7 =−7.

A suitable input is InhomEq.in:

2 8

1 2 3 -4 -5 -6 -7 3

0 -3 -2 -1 1 2 13 7

inhom_equations

This is only to demonstrate the use of this type. We restrict ourselves to the abstract of the
output file (default computation mode):

69 module generators

236 Hilbert basis elements of recession monoid

7 vertices of polyhedron size of triangulation = 46

13 extreme rays of recession cone r...g sum of |det|s = 10790791

7 support hyperplanes of polyhedron

dehomogenization:

embedding dimension = 8 0 0 0 0 0 0 0 1

affine dimension of the polyhedron = 5

rank of recession monoid = 5 module rank = 1

size of triangulation = 46

resulting sum of |det|s = 10790791

The example shows that the determinants of the simplicial cones in the triangulation can be
quite large for seemingly harmless examples. It is then no surprise that the computation in the
dual mode is significantly faster, yielding the same information.

6.6.4. Type inhom_congruences

The input file ChineseRemainder.in shows that Normaliz can even be used for elementary
number theory:

51

3

3

2 1 5

1 -1 7

-1 5 11

inhom_congruences

This means that we want to solve the simultaneous congruences

2x≡−1 (5),
x≡ 1 (7),
−x≡−5 (11).

The condition x≥ 0 is implicit, but it doesn’t harm.

The solution is x≡ 302 (385):

1 module generators:

302 1

1 Hilbert basis elements of recession monoid:

385

7. Optional output �les

When one of the options -f, -a, -T, -y or an option calling NmzIntegrate is activated, Normaliz
writes additional output files whose names are of type <project>.<type>. The format of
most files is completely analogous to that of the input file, except that there is usually no
last line denoting the type. The main purpose of these files is to give the other systems easy
access to the results of Normaliz without complicated parsing. The packages for Singular and
Macaulay 2 use the extra output files to retrieve the results of Normaliz. Furthermore they
provide additional information not contained in the standard output file.

7.1. The homogeneous case

The option -f makes Normaliz write the following files:

gen contains the Hilbert basis.
cst contains the constraints defining the cone and the lattice in the same format as they

would appear in the input: matrices of types constraints following each other. Each
matrix is concluded by the type of the constraints. Empty matrices are indicated by 0 as
the number of rows. Therefore there will always be at least 3 matrices.

52

If a grading is defined, it will be appended. Therefore this file (with suffix in) as input
for Normaliz will reproduce the Hilbert basis and all the other data computed, at least
in principle.

inv contains all the information from the file out that is not contained in any of the other
files.

If -a is activated, then the following files are written additionally:

typ This is the product of the matrices corresponding to egn and esp. In other words, the
linear forms representing the support hyperplanes of the cone C are evaluated on the
Hilbert basis. The resulting matrix, with the generators corresponding to the rows and
the support hyperplanes corresponding to the columns, is written to this file.
The suffix typ is motivated by the fact that the matrix in this file depends only on the
isomorphism type of monoid generated by the Hilbert basis (up to row and column
permutations). In the language of [2] it contains the standard embedding.

ext contains the extreme rays of the cone.
ht1 contains the degree 1 elements of the Hilbert basis if a grading is defined.

egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-
spect to a basis of E. egn contains the grading in the coordinates of E if one exists. Note
that no equations for C∩E or congruences for E are necessary.

7.2. Triangulation and Stanley decomposition

The option -T (independently from -f or -a) writes inv and the triangulation data:

tgn, tri These files together describe the triangulation computed by Normaliz.
The file tri lists the simplicial subcones as follows: The first line contains the number
of simplicial cones in the triangulation, and the next line contains the number m+ 1
where m = rankE. Each of the following lines specifies a simplicial cone ∆: the first
m numbers are the indices (with respect to the order in the file tgn) of those generators
that span ∆, and the last entry is the multiplicity of ∆ in E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elements of E).
If -t is combined with -T, then the determinants have not been computed, and the last
entry of each row is 0 (a forbidden value for the determinant).
The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.

The following example is the 2-dimensional cross polytope with one excluded face (cross2.in)

4 2 1 3

1 0 1 1 -1

0 1 excluded_faces

-1 0

0 -1

polytope

Its tgn and tri files are

53

tgn tri

4 2

3 4

1 0 1 1 2 3 2

0 1 1 1 3 4 2

-1 0 1

0 -1 1

We see the 4 vertices v1, . . . ,v4 in homogenized coordinates in tgn and the 2 simplices (or the
simplicial cones over them) in tri: both have multiplicity 2.

The option -y (independently from -f or -a) writes inv, tgn and the Stanley decomposition:

dec This file contains two types of data: (a) the information resulting from the excluded
faces in connection with the sieve formula for inclusion/exclusion, (b) the Stanley de-
composition.
(a) If there are any excluded faces, the file starts with the word in_ex_data. The next
line contains the number of such data that follow. Each of these lines contains the data
of a face and the coefficient with which the face is to be counted: the first number lists
the number of generators that are contained in the face, followed by the indices of the
generators relative to the tgn file and the last number is the coefficient.
(b) The second block (the first if there are no excluded faces) starts with the word
Stanley_dec, followed by the number of simplicial cones in the triangulation.
For each simplicial cone ∆ in the triangulation this file contains a block of data:
(i) a line listing the indices i1, . . . , im of the generators vi1 , . . . ,vim relative to the order in
tgn (as in tri, m = rankE);
(ii) a µ×m matrix where µ the multiplicity of ∆ (see above).
In the notation of [6], each line lists an “offset” x+ ε(x) by its coordinates with respect
to vi1, . . . ,vim as follows: if (a1, . . . ,am) is the line of the matrix, then

x+ ε(x) =
1
µ
(a1vi1 + · · ·+amvim).

The dec file of the example above is

in_ex_data

1

2 1 2 -1

Stanley_dec

2

1 3 4 1 2 3

2 2

3 3

0 0 2 0 0 0

1 1 2 1 0 1

54

There is 1 face in in_ex_data (namely the excluded one), it contains the 2 generators v1 and
v2 and appears with multiplicity −1. The Stanley decomposition consists of 4 components of
which each of the simplicial cone contains 2. The second offset in the second simplicial cone
is

1
2
(1v1 +0v2 +1v3) = (0,0,1).

The file 3x3magiceven.in has been processed with the option -ahTy activated. We recom-
mend you to inspect all the output files in the subdirectory example of the distribution.

7.3. Modi�cations in the inhomogeneous case

The types are a subset of the types that can be produced in the homogeneous case. The main
difference is that the generators of the solution module and the Hilbert basis of the recession
monoid appear together in the file gen. They can be distinguished by the last component, as
discussed already, and the same applies to the vertices of the polyhedron and extreme rays
of the recession cone. The file cst contains the constraints defining the polyhedron and the
recession module in conjunction with the dehomogenization which is also contained in the
cst file, following the constraints.

With -a the files typ, egn and esp are produced, but typ has no meaning. The other two files
contain gen in the coordinates of the efficient homogenized lattice and the support hyperplanes
of the homogenized cone in the coordinates of E.

8. Advanced topics

8.1. Primal vs. dual

It has been pointed out several times above that the dual algorithm can be much faster if the
number of support hyperplanes is small relative to the dimension. This is in particular true
for (in)homogeneous linear systems of equations where the number of support hyperplanes is
bounded above by the number of indeterminates (+1 in the inhomogeneous case).

The paper [6] contains computation times for many examples that can help the user to choose
the right algorithm.

Note that the dual algorithm is arithmetically much more stable than the primal algorithm
since it basically only requires addition of vectors.

8.2. Polytope vs. polyhedron

Every polytope is a polyhedron, and therefore the input type polyhedron or inhomogeneous
constraints seems to be a reasonable choice in order to compute polytopes. In general it is
not since in homogenized coordinates all computations are truncated at degree 1, and the
information hidden in the cone over the polytope cannot be obtained.

55

If a polytope is defined via inhomogeneous data, the computations are essentially limited to
the lattice points in the polytope, and the multiplicity computed this way is their number.

8.3. Lattice points in polytopes

If only the lattice points in a rational polytope are to be computed, there are essentially three
options:

-1 Use the primal algorithm on the original polytope.
-r Use the primal algorithm on an integral approximation.

-d1 Use the dual algorithm on the original polytope.

For lattice polytopes -1 and -r are identical. The choice between the primal and the dual
algorithm has been discussed above. Note that -d1 is not a Hilbert basis computation via
-d with a subsequent selection of degree 1 elements. On the contrary, all computations are
truncated in degree 1.

In order to compare the approaches the user should try to compute the degree 1 points for the
example hickerson-18.in (taken from the LattE distribution [9]): with -rB it is a matter of
minutes, with -d1 it is doable with some patience, and -1B seems to be out of reach presently.
(Note that -r needs the inclusion of B. On a powerful machine -d is doable.)

8.4. Semiopen vs. inhomogeneous

The user may have noticed that the type excluded_faces is in principle superfluous since
the Hilbert series of semiopen cones can also be computed via inhomogeneous input using
strict_inequalities. However, the two types represent different algorithmic approaches:

(1) The computation with excluded faces are done in the “original” cone without the in-
troduction of an additional coordinate: the Stanley decomposition is restricted to the
excluded faces and all faces that arise from them as intersections. The result is then
obtained by the sieve formula for inclusion/exclusion.

(2) For inhomogeneous input we introduce a homogenizing coordinate, and the Stanley
decomposition of the homogenized monoid is restricted to the hyperplane δ (x) = 1 (δ
is the dehomogenization).

As a rule of thumb, excluded_faces should be preferred if only few faces are excluded.
Moreover, at present they present the only way for applying NmzIntegrate to semiopen cones.

8.5. Ordering the generators

The computation time of Normaliz for input of type generators depends often on the order of
the generators. The following discussion may help to deal with this problem.

In computations with partial or full triangulation the crucial measure of complexity is the sum
of the determinants of the simplicial cones in the (partial) triangulation.

56

If a grading is defined and all extreme rays have the same degree, then the determinant sum
of a full triangulation is independent of the order of the generators. The typical example is a
lattice polytope given by (a superset of) its vertices. In such a case the order can only influence
the combinatorial complexity of the triangulation. But the latter is impossible to predict, and
since it plays no essential role, Normaliz processes the generators in the input order.

If the extreme rays have different degrees, then it is desirable to cover as much ground as
possible by the generators of low degree, and Normaliz therefore orders the generators by
ascending degree, for full triangulations as well as for partial ones. (In the absence of a
grading, the L1-norm is used.) This strategy has proved very useful. In addition to keeping the
determinants small, it also helps to find a small partial triangulation.

In mode -s Normaliz does not sort the generators in any way. Especially in combinatorial
situations the user may have found a clever order of the generators, and it would be foolish to
destroy it.

It can be helpful to order the generators lexicographically if no better order is a priori available.
Lexicographic ordering can easily be done by a text editor. In particular for -s one may not
have a better choice. The following bidualization strategy often makes sense:

(1) Compute the dual of the input cone using option -s.
(2) If the number of support hyperplanes is not too large, use the constraints found in step

(1) as input and compute the Hilbert basis with -N.

Many examples support our view that the order of the generators in step (2) is rather “regular”,
even if it is not always optimal.

As a case study, the user may compute the examples

cut_poly_7.in, cut_poly_7_lex.in, cut_poly_7_bidual.in, cut_poly_7_mysort.in.

with -s and -N. Start with cut_poly_7_bidual.in.

After step (1) above, one can of course also consider the dual algorithm for the computation
of the Hilbert basis. It is instructive to apply -d to one of the input files above and compare
computation times.

8.6. Performance and parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

• It is not a good idea to use parallelization for very small problems.
• On multi-user systems with many processors it may be wise to limit the number of

threads for Normaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normaliz option -x (see Section 4.5) or
by the commands

57

export OMP_NUM_THREADS=<T> (Linux/Mac)

or

set OMP_NUM_THREADS=<T> (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. For example,
we often use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.

Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

The paper [6] contains extensive data on the effect of parallelization. On the whole Normaliz
scales very well. However, the dual algorithm often performs best with mild parallelization,
say with 4 or 6 threads.

8.7. Running large computations

Normaliz can cope with very large examples, but it is usually difficult to decide a priori
whether an example is very large, but nevertheless doable, or simply impossible. Therefore
some exploration makes sense.

See [6] for some very large computations. The following hints reflect the authors’ experience
with them.

(1) Run Normaliz with the option -cs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplanes of the intermediate cones are
useful data.

(2) In many cases the most critical size parameter is the number of simplicial cones in the
triangulation. It makes sense to determine it as the next step. Even with the fastest potential
evaluation (option -v), finding the triangulation takes less time, say by a factor between 3 and
10. Thus it makes sense to run the example with -t in order to explore the size.

As you can see from [6], Normaliz has successfully evaluated triangulations of size ≈ 5 ·1011

in dimension 24.

(3) Another critical parameter are the determinants of the generator matrices of the simplicial
cones. To get some feeling for their sizes, one can restrict the input to a subset (of the extreme
rays computed in (1)) and use the option -v.

The output file contains the number of simplicial cones as well as the sum of the absolute
values of the determinants. The latter is the number of vectors to be processed by Normaliz in
triangulation based calculations.

The number includes the zero vector for every simplicial cone in the triangulation. The zero
vector does not enter the Hilbert basis calculation, but cannot be neglected for the Hilbert
series.

58

Normaliz has mastered calculations with > 1015 vectors.

(4) If the triangulation is small, we can add the option -T in order to actually see the triangu-
lation in a file. Then the individual determinants become visible.

(5) If a cone is defined by inequalities and/or equations consider the dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the determinants are not dangerous for memory
by themselves (unless -T or -y are set). Critical magnitudes can be the number of support
hyperplanes, Hilbert basis candidates, or degree 1 elements.

9. Distribution and installation

In order to install Normaliz you should first download the basic package containing the doc-
umentation, examples, source code, jNormaliz, NmzIntegrate and the packages for Singular
and Macaulay2. Then unzip the downloaded file Normaliz2.12.zip in a directory of your
choice. (Any other downloaded zip file for Normaliz should be unzipped in this directory,
too.)

This process will create a directory Normaliz2.12 (called Normaliz directory) and several
subdirectories in Normaliz2.12. The names of the subdirectories created are self-explanatory.
Nevertheless we give an overview:

• In the main directory Normaliz2.12 you should find jNormaliz.jar, Copying and sub-
directories.
• The subdirectory source contains the source files and a Makefile for compilation with

GCC. The subdirectory genEhrhart contains the NmzIntegrate source.
• The subdirectory doc contains the file you are reading and further documentation.
• In the subdirectory example are the input and output files for some examples. It contains

all input files of examples of this documentation, except the toy examples of Section
3. Some very large output files are contained in an extra zip file accessible from the
Normaliz home page.
• The subdirectory singular contains the SINGULAR library normaliz.lib and a PDF

file with documentation.
• The subdirectory macaulay2 contains the MACAULAY2 package Normaliz.m2.
• The subdirectory lib contains libraries for jNormaliz.

We provide executables for Windows, Linux (each in a 32 bit and a 64 bit version) and Mac.
Download the archive file corresponding to your system Normaliz2.12<systemname>.zip and
unzip it. This process will store the executables of Normaliz and NmzIntegrate in the directory
Normaliz2.12. In case you want to run Normaliz from the command line or use it from other
systems, you may have to copy the executables to a directory in the search path for executables.

Please remove old versions of normaliz, norm64 and normbig from your search path.

Running NmzIntegrate requires the additional download of its executable for your system.

59

10. Compilation

We only describe the compilation of Normaliz. See the documentation of NmzIntegrate for its
compilation.

10.1. GCC

Produce the executables by calling make in the subdirectory source. You may have to trans-
port the executables to a directory in your search path. jNormaliz expects them in its own
directory.
Note that normaliz needs GMP (including the C++ wrapper) and the Boost collection. There-
fore you must install them first.

We are using OpenMP 3.0. Please make sure that your GCC version is compatible with it
(version ≥ 4.4).

Note the following exceptions:
1. One can compile Windows executables with the Cygwin port of GCC. Unfortunately it

is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makes it impossible to use OpenMP.

In any case, or if you want to avoid parallelization, you can call make OPENMP=no.

10.2. Visual Studio project

The Windows executables provided by us have been compiled with MS Visual Studio and
Intel C++ Composer XE. (Visual C++ itself can only be used without OpenMP.)

If you want to compile Normaliz yourself in this way, please unzip the corresponding zip file
on the Normaliz home page. This will create a subdirectory Visual Studio of the Normaliz
directory. This directory contains the predefined project. We have provided

1. two configurations: Release (with OpenMP) and ReleaseSerial (without OpenMP),
and

2. two platforms, Win32 and x64.

Instead of GMP we use the MPIR library for the Windows version of normaliz. For con-
venience, the MPIR files have been included in the distribution (in the subdirectory MPIR of
Visual Studio). Please

• copy the library files for Win32 into the lib subdirectory of the Visual C++ compiler,
• the library files for x64 to the subdirectory amd64 (or x64) of lib, and
• the two header files to the include subdirectory of the compiler.

Moreover, you must install the Boost collection available from http://www.boost.org/. We only
use Boost libraries that are entirely implemented in their headers. So the only preparation
beyond downloading and unzipping is to add the Boost root directory to the list of include

60

paths. In the Visual Studio C++ IDE, click “Tools | Options... | Projects | VC++ directories”.
Then, in “Show Directories for”, select “Include files” and add the path to the Boost root
directory.

After the compilation with the Intel compiler you must copy the executable to the directories
where they are expected (the Normaliz directory or a directory in the search path).

The source files for Visual Studio are identical to those for GCC.

11. Copyright and how to cite

Normaliz 2.12 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used:

W. Bruns, B. Ichim, T. Römer and C. Söger: Normaliz. Algorithms for rational cones and
affine monoids. Available from http://www.math.uos.de/normaliz.

It is now customary to evaluate mathematicians by such data as numbers of publications,
citations and impact factors. The data bases on which such dubious evaluations are based do
not list mathematical software. Therefore we ask you to cite the article [6] in addition. This is
very helpful for the younger members of the team.

61

A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematical background we refer the reader to
[2].

A.1. Polyhedra, polytopes and cones

An affine halfspace of Rd is a subset given as

H+
λ
= {x : λ (x)≥ 0},

where λ is an affine form, i.e., a non-constant map λ : Rd→R, λ (x) = α1x1+ · · ·+αdxd +β

with α1, . . . ,αd,β ∈ R. If β = 0 and λ is therefore linear, then the halfspace is called linear.
The halfspace is rational if λ is rational, i.e., has rational coordinates. If λ is rational, we
can assume that it is even integral, i.e., has integral coordinates, and, moreover, that these are
coprime. Then λ is uniquely determined by H+

λ
. Such integral forms are called primitive, and

the same terminology applies to vectors.

Definition 1. A (rational) polyhedron P is the intersection of finitely many (rational) halfs-
paces. If it is bounded, then it is called a polytope. If all the halfspaces are linear, then P is a
cone.

The dimension of P is the dimension of the smallest affine subspace aff(P) containing P.

A support hyperplane of P is an affine hyperplane H that intersects P, but only in such a way
that H is contained in one of the two halfspaces determined by H. The intersection H ∩P is
called a face of P. It is a polyhedron (polytope, cone) itself. Faces of dimension 0 are called
vertices, those of dimension 1 are called edges (in the case of cones extreme rays), and those
of dimension dim(P)−1 are facets.

When we speak of the support hyperplanes of P, then we mean those intersecting P in a facet.
Their halfspaces containing P cut out P from aff(P). If dim(P) = d, then they are uniquely
determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

(1) linear equations for aff(P) and
(2) linear inequalities (simply called support hyperplanes) cutting out P from aff(P).

In other words, the constraints are given by a linear system of equations and inequalities,
and a polyhedron is nothing else than the solution set of a linear system of inequalities and
equations. It can always be represented in the form

Ax≥ b, A ∈ Rm×d,b ∈ Rm,

if we replace an equation by two inequalities.

62

A.2. Cones

The definition describes a cone by constraints. One can equivalently describe it by generators:

Theorem 2 (Minkowski-Weyl). The following are equivalent for C ⊂ Rd;

1. C is a (rational) cone;

2. there exist finitely many (rational) vectors x1, . . . ,xn such that

C = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ R+}.

By R+ we denote the set of nonnegative real numbers; Q+ and Z+ are defined in the same
way.

The conversion between the description by constraints and that by generators is one of the
basic tasks of Normaliz. It uses the Fourier-Motzkin elimination.

A cone is pointed if x∈C and−x∈C is only possible with x = 0. If a rational cone is pointed,
then it has uniquely determined extreme integral generators. These are the primitive integral
vectors spanning the extreme rays. These can also be defined with respect to a sublattice L of
Zd , provided C is contained in RL.

The dual cone C∗ is given by

C∗ = {λ ∈ (Rd)∗ : λ (x)≥ 0 for all x ∈C}.

Under the identification Rd = (Rd)∗∗ one has C∗∗ = C. Let C0 be the set of those x ∈ C for
which −x ∈C as well. It is the largest vector subspace contained in C. Then one has

dimC0 +dimC∗ = d.

In particular, C is pointed if and only if C∗ is full dimensional, and this is the criterion for
pointedness used by Normaliz. Linear forms λ1, . . . ,λn generate C∗ if and only if C is the
intersection of the halfspaces H+

λi
. Therefore the conversion from constraints to generators

and its converse are the same task, except for the exchange of Rd and its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyhedra it is useful to homogenize
coordinates by embedding Rd as a hyperplane in Rd+1, namely via

κ : Rd → Rd+1, κ(x) = (x,1).

If P is a (rational) polyhedron, then the closure of the union of the rays from 0 through the
points of κ(P) is a (rational) cone C(P), called the cone over P. The intersection C(P)∩(Rd×
{0}) can be identified with the recession (or tail) cone

rec(P) = {x ∈ Rd : y+ x ∈ P for all y ∈ P}.

63

It is the cone of unbounded directions in P. The recession cone is pointed if and only if P has
at least one bounded face, and this is the case if and only if it has a vertex.

The theorem of Minkowski-Weyl can then be generalized as follows:

Theorem 3 (Motzkin). The following are equivalent for a subset P 6= /0 of Rd:

1. P is a (rational) polyhedron;

2. P = Q+C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices, and C = rec(P)
is uniquely determined.

The convex hull of a subset X ∈ Rd is

conv(X) = {a1x1 + · · ·+anxn : n≥ 1,x1, . . . ,xn ∈ X ,a1, . . . ,an ∈ R+,a1 + · · ·+an = 1}.

Clearly, P is a polytope if and only if rec(P) = {0}, and the specialization to this case one
obtains Minkowski’s theorem: a subset P of Rd is a polytope if and only if it is the convex
hull of a finite set. A lattice polytope is distinguished by having integral points as vertices.

Normaliz computes the recession cone and the polytope Q if P is defined by constraints.
Conversely it finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system

Ax≥ b, A ∈ Rm×d, b ∈ Rm,

of linear inequalities (equations are replaced by two inequalities). Then C(P) is defined by the
homogenized system

Ax− xd+1b≥ 0

whereas the rec(P) is given by the associated homogeneous system

Ax≥ 0.

It is of course possible that P is empty if it is given by constraints since inhomogeneous
systems of linear equations and inequalities may be unsolvable. By abuse of language we call
the solution set of the associated homogeneous system the recession cone of the system.

Via the concept of dehomogenization, Normaliz allows for a more general approach. The
dehomogenization is a linear form δ on Rd+1. For a cone C̃ in Rd+1 and a dehomogenization
δ , Normaliz computes the polyhedron P = {x∈ C̃ : δ (x) = 1} and the recession cone C = {x∈
C̃ : δ (x) = 0}. In particular, this allows other choices of the homogenizing coordinate. (Often
one chooses x0, the first coordinate then.)

In the language of projective geometry, δ (x) = 0 defines the hyperplane at infinity.

64

A.4. A�ne monoids

An affine monoid M is a finitely generated submonoid of Zd for some d ≥ 0. This means:
0 ∈M, M+M ⊂M, and there exist x1, . . . ,xn such that

M = {a1x1 + · · ·+anxn : a1, . . . ,an ∈ Z+}.

We say that x1, . . . ,xn is a system of generators of M. A monoid M is positive if x ∈ M and
−x ∈M implies x = 0. An element x in a positive monoid M is called irreducible if it has no
decomposition x = y+ z with y,z ∈ M, y,z 6= 0. The rank of M is the rank of the subgroup
gp(M) of Zd generated by M. (Subgroups of Zd are also called sublattices.)

Theorem 4 (van der Corput). Every positive affine monoid M has a unique minimal system of
generators, given by its irreducible elements.

We call the minimal system of generators the Hilbert basis of M. Normaliz computes Hilbert
bases of a special type of affine monoid:

Theorem 5 (Gordan’s lemma). Let C ⊂ Rd be a (pointed) rational cone and let L ⊂ Zd be a
sublattice. Then C∩L is a (positive) affine monoid.

Let M ⊂ Zd be an affine monoid, and let N ⊃M be an overmonoid (not necessarily affine), for
example a sublattice L of Zd containing M.

Definition 6. The integral closure (or saturation) of M in N is the set

M̂N = {x ∈ N : kx ∈M for some k ∈ Z,k > 0}.

If M̂N = M, one calls M integrally closed in N.

The integral closure M of M in gp(M) is its normalization. M is normal if M = M.

The integral closure has a geometric description:

Theorem 7.
M̂N = cone(M)∩N.

Combining the theorems, we can say that Normaliz computes integral closures of affine
monoids in lattices, and the integral closures are themselves affine monoids as well. (More
generally, M̂N is affine if M and N are affine.)

In order to specify the intersection C∩ L by constraints we need a system of homogeneous
inequalities for C. Every sublattice of Zd can be written as the solution set of a combined sys-
tem of homogeneous linear diophantine equations and a homogeneous system of congruences
(this follows from the elementary divisor theorem). Thus C∩ L is the solution set of a ho-
mogeneous linear diophantine system of inequalities, equations and congruences. Conversely,
the solution set of every such system is a monoid of type C∩L.

65

A.5. A�ne monoids from binomial ideals

Let U be a subgroup of Zn. Then the natural image M of Zn
+ ⊂ Zn in the abelian group

G = Zn/U is a submonoid of G. In general, G is not torsionfree, and therefore M may not
be an affine monoid. However, the image N of M in the lattice L = G/torsion(G) is an affine
monoid. Given U , Normaliz chooses an embedding L ↪→ Zr, r = n− rankU , such that N
becomes a submonoid of Zr

+. In general there is no canonical choice for such an embedding,
but one can always find one, provided N has no invertible element except 0.

The typical starting point is an ideal J ⊂ K[X1, . . . ,Xn] generated by binomials

Xa1
1 · · ·X

an
n −Xb1

1 · · ·X
bn
n .

The image of K[X1, . . . ,Xn] in the residue class ring of the Laurent polynomial ring S =
K[X±1

1 , . . . ,X±1
n] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M

above if we let U be the subgroup of Zn generated by the differences

(a1, . . . ,an)− (b1, . . . ,bn).

Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion(G), it replaces JS by the smallest lattice ideal containing it.

A.6. Lattice points in polyhedra

Let P ⊂ Rd be a rational polyhedron and L ⊂ Zd be an affine sublattice, i.e., a subset w+L0
where w ∈ Zd and L0 ⊂ Zd is a sublattice. In order to investigate (and compute) P∩L one
again uses homogenization: P is extended to C(P) and L is extended to L = L0 +Z(w,1).
Then one computes C(P)∩L . Via this “bridge” one obtains the following inhomogeneous
version of Gordan’s lemma:

Theorem 8. Let P be a rational polyhedron with vertices and L = w+L0 an affine lattice as
above. Set recL(P) = rec(P)∩L0. Then there exist x1, . . . ,xm ∈ P∩L such that

P∩L = {(x1 + recL(P))∩·· ·∩ (xm + recL(P))}.

If the union is irredundant, then x1, . . . ,xm are uniquely determined.

The Hilbert basis of recL(P) is given by {x : (x,0)∈Hilb(C(P)∩L)} and the minimal system
of generators can also be read off the Hilbert basis of C(P)∩L : it is given by those x for which
(x,1) belongs to Hilb(C(P)∩L). (Normaliz computes the Hilbert basis of C(P)∩L only at
“levels” 0 and 1.)

We call recL(P) the recession monoid of P with respect to L (or L0). It is justified to call P∩L
a module over recL(P). In the light of the theorem, it is a finitely generated module, and it has
a unique minimal system of generators.

After the introduction of coefficients from a field K, recL(P) is turned into an affine monoid
algebra, and N = P∩L into a finitely generated torsionfree module over it. As such it has a

66

well-defined module rank mrank(N), which is computed by Normaliz via the following com-
binatorial description: Let x1, . . . ,xm be a system of generators of N as above; then mrank(N)
is the cardinality of the set of residue classes of x1, . . . ,xm modulo recL(P).

Clearly, to model P∩ L we need linear diophantine systems of inequalities, equations and
congruences which now will be inhomogeneous in general. Conversely, the set of solutions of
such a system is of type P∩L.

A.7. Hilbert series

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid.
A grading of a monoid M is simply a homomorphism deg : M→ Zg where Zg contains the
degrees. The Hilbert series of M with respect to the grading is the formal Laurent series

H(t) = ∑
u∈Zg

#{x ∈M : degx = u}tu1
1 · · · t

ug
g = ∑

x∈M
tdegx,

provided all sets {x ∈ M : degx = u} are finite. At the moment, Normaliz can only handle
the case g = 1, and therefore we restrict ourselves to this case. We assume in the following
that degx > 0 for all nonzero x ∈ M and that there exists an x ∈ gp(M) such that degx = 1.
(Normaliz always rescales the grading accordingly.)

The basic fact about H(t) in the Z-graded case is that it is the Laurent expansion of a rational
function at the origin:

Theorem 9 (Hilbert, Serre; Ehrhart). Suppose that M is a normal affine monoid. Then

H(t) =
R(t)

(1− te)r , R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of the extreme
integral generators of cone(M). As a rational function, H(t) has negative degree.

The statement about the rationality of H(t) holds under much more general hypotheses.

Usually one can find denominators for H(t) of much lower degree than that in the theorem,
and Normaliz tries to give a more economical presentation of H(t) as a quotient of two poly-
nomials. One should note that it is not clear what the most natural presentation of H(t) is in
general (when e > 1). We discuss this problem in [6, Section 4] and in 6.1.3. The examples in
Section 6, especially 6.1.3 and 6.2.3, may serve as an illustration.

A rational cone C and a grading together define the rational polytope Q =C∩A1 where A1 =
{x : degx = 1}. In this sense the Hilbert series is nothing but the Ehrhart series of Q. The
following description of the Hilbert function H(M,k) = #{x ∈M : degx = k} is equivalent to
the previous theorem:

Theorem 10. There exists a quasipolynomial q with rational coefficients, degree rankM− 1
and period π dividing e such that H(M,k) = q(k) for all q≥ 0.

67

The statement about the quasipolynomial means that there exist polynomials q(j), j = 0, . . . ,π−
1, of degree rankM−1 such that

q(k) = q(j)(k), j ≡ k (π),

and
q(j)(k) = q(j)

0 +q(j)
1 k+ · · ·+q(j)

r−1kr−1, r = rankM,

with coefficients q(j)
i ∈Q. It is not hard to show that in the case of affine monoids all compo-

nents have the same degree r−1 and the same leading coefficient:

qr−1 =
vol(Q)

(r−1)!
,

where vol is the lattice normalized volume of Q (a lattice simplex of smallest possible volume
has volume 1). It is called the multiplicity of M.

Suppose now that P is a rational polyhedron in Rd , L⊂Zd is an affine lattice, and we consider
N = P∩L as a module over M = recL(P). If Zd is endowed with a grading whose restriction
to M satisfies our conditions, then the Hilbert series

HN(t) = ∑
x∈N

tdegx

is well-defined, and the qualitative statement above about rationality remain valid. However,
in general the quasipolynomial gives the correct value of the Hilbert function only for k� 0.
The leading coefficient is still constant and given by

qr−1 = mrank(N)
vol(Q)

(r−1)!
, Q = rec(P)∩A1.

The multiplicity of N is mrank(N)vol(Q).

Since N may have generators in negative degrees, Normaliz shifts the degrees into Z+ by
adding a constant, called the shift. (The shift may also be negative.)

B. Changes relative to version 2.5

For the history of changes starting from 2.0 see the manual of version 2.7 (still accessible on
the web site). Note that some changes have become obsolete later on.
Changes in version 2.7:
User control, input and output:

1. Only one executable normaliz. Precision controlled by option -B.

2. Slight changes in the wording of the main output file.

3. Introduction of options for large problems. (Obsolete.)

68

Algorithms and implementation:

1. Separation of front end and kernel (implemented as a library).

2. Pyramid based algorithms for large problems (see [6]).

3. New algorithm for h-vector. No computation of line shellings in this version.

4. Dual mode accessible from all input types.

5. General improvement of memory use (and speed) by more efficient data types.

Changes in version 2.8:
User control, input and output:

1. Use of arbitrary Z-gradings which make rational polytopes accessible.

2. Implied changes in the output files.

3. Simplification of the command line options. (“Large” modes now superfluous.)

Algorithms and implementation:

1. Handling of arbitrary Z-gradings.

2. Substantial improvement of parallelization, based on thorough use of pyramid decompositions
(see [6]).

3. Faster evaluation of simplicial cones (see [6]).

4. General overhaul of the code.

Changes in version 2.9:
User control, input and output:

1. Introduction of type signs.

2. Options for calling NmzIntegrate.

3. Corresponding output options and output files.

Algorithms and implementation:

1. Introduction of NmzIntegrate (independent executable).

2. Faster volume computation by using the heights of simplicial cones attached to unimodular ones.

3. Parallelization of pyramid decomposition also for support hyperplane computation.

Changes in version 2.10:
User control, input and output:

1. Corrections in the output forwarded to NmzIntegrate.

Algorithms and implementation:

1. Normaliz now avoids the production of duplicates of candidates for the Hilbert basis. At the
expense of some computation time, this strategy saves much memory.

Version 2.10.1 is only a bug fix.

Changes in version 2.11:
User control, input and output:

69

1. Addition of inhomogeneous input types.

2. Hilbert series of semiopen cones.

Algorithms and implementation:

1. Corresponding extension of algorithms.

2. Integral approximation of rational polytopes.

3. Lattice points in polytopes via the dual algorithm.

4. Improvement in Fourier-Motzkin elimination by better use of pyramid decomposition.

5. Substantial improvement in computing “large” simplicial cones.

Versions 2.11.1 and 2.11.2 are mainly bug fixes.

Changes in version 2.12:
Algorithms and implementation:

1. Dual algorithm thoroughly revised.

2. Internal parallelization of simplicial cones with large determinants.

3. Improvement of linear algebra.

References

[1] V. Almendra and B. Ichim. jNormaliz 1.5. Available from
http://www.mathematik.uni-osnabrueck.de/normaliz/Normaliz2.11/jNormaliz1.

5Documentation.pdf

[2] W. Bruns and J. Gubeladze. Polytopes, rings, and K-theory. Springer 2009.

[3] W. Bruns, R. Hemmecke, B. Ichim, M. Köppe and C. Söger. Challenging computations of
Hilbert bases of cones associated with algebraic statistics . Exp. Math.20 (2011), 25–33.

[4] W. Bruns and J. Herzog. Cohen-Macaulay rings. Rev. ed. Cambridge University Press 1998.

[5] W. Bruns and B. Ichim. Normaliz: algorithms for rational cones and affine monoids. J. Algebra
324 (2010) 1098–1113.

[6] W. Bruns, B. Ichim and C. Söger. The power of pyramid decompositions in Normaliz. Preprint
arXiv:1206.1916.

[7] W .Bruns and R. Koch. Computing the integral closure of an affine semigroup. Univ. Iagell. Acta
Math. 39 (2001), 59–70.

[8] W. Bruns and C. Söger. NmzIntegrate 1.2. Available from
http://www.mathematik.uni-osnabrueck.de/normaliz/Normaliz2.11/NmzIntegrate_1.2.pdf

[9] J.A. De Loera, M. Köppe et al., LattE integrale. Available at
http://www.math.ucdavis.edu/~latte/

[10] S. Gutsche, M. Horn, C. Söger, NormalizInterface for GAP. Available at https://github.com/
fingolfin/NormalizInterface.

[11] M. Köppe and S. Verdoolaege. Computing parametric rational generating functions with a pri-
mal Barvinok algorithm. Electron. J. Comb. 15, No. 1, Research Paper R16, 19 p. (2008).

70

http://www.mathematik.uni-osnabrueck.de/normaliz/Normaliz2.11/jNormaliz1.5Documentation.pdf
http://www.mathematik.uni-osnabrueck.de/normaliz/Normaliz2.11/jNormaliz1.5Documentation.pdf
http://www.mathematik.uni-osnabrueck.de/normaliz/Normaliz2.11/NmzIntegrate_1.2.pdf
http://www.math.ucdavis.edu/~latte/
https://github.com/fingolfin/NormalizInterface
https://github.com/fingolfin/NormalizInterface

[12] L. Pottier. The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM Press 1996.

71

	Introduction
	The objectives of Normaliz
	Platforms and access from other systems
	Major changes relative to version 2.11
	Future extensions

	Getting started
	The input file
	Generators of cones and lattices
	Type integral_closure
	Type normalization
	Type polytope
	Rational polytopes
	Type rees_algebra
	Preparation of the generators

	Homogeneous Constraints
	Type inequalities (formerly hyperplanes)
	Sign inequalities: signs
	Polytopes by inequalities
	Type equations
	Type congruences
	Type excluded_faces
	The constraints combined

	Relations
	Type lattice_ideal

	Generators of polyhedra
	Type polyhedron

	Inhomogeneous constraints
	Type inhom_inequalities
	Type strict_inequalities
	Type strict_signs
	Type inhom_equations
	Type inhom_congruences
	Mixing homogeneous and inhomogeneous constraints

	Grading
	polytope
	rees_algebra
	lattice_ideal
	Inhomogeneous input

	Dehomogenization
	Pointedness
	The zero cone
	Additional input file for NmzIntegrate
	Number codes for input types

	Running Normaliz
	Full syntax and basic rules
	Computation modes: homogeneous input
	Basic modes
	Combined modes
	The dual algorithm
	Approximation of rational polytopes
	What option do I use …
	Modes calling NmzIntegrate
	Triangulation and Stanley decomposition

	Computation modes: inhomogeneous input
	Basic modes
	Combination modes
	The dual algorithm
	What option do I use …

	Control of output files
	Control of execution
	Numerical limitations
	Obsolete options

	The output file
	The homogeneous case
	The inhomogeneous case

	Examples
	Generators of cones and lattices
	Type integral_closure
	Type polytope
	A rational polytope
	Type rees_algebra

	Homogeneous constraints
	Type inequalities
	Type equations
	Type congruences

	Relations
	Type lattice_ideal

	Type excluded_faces
	Generators of polyhedra
	Type polyhedron

	Inhomogeneous constraints
	Type inhom_inequalities
	Type strict_inequalities
	Type inhom_equations
	Type inhom_congruences

	Optional output files
	The homogeneous case
	Triangulation and Stanley decomposition
	Modifications in the inhomogeneous case

	Advanced topics
	Primal vs. dual
	Polytope vs. polyhedron
	Lattice points in polytopes
	Semiopen vs. inhomogeneous
	Ordering the generators
	Performance and parallelization
	Running large computations

	Distribution and installation
	Compilation
	GCC
	Visual Studio project

	Copyright and how to cite
	Mathematical background and terminology
	Polyhedra, polytopes and cones
	Cones
	Polyhedra
	Affine monoids
	Affine monoids from binomial ideals
	Lattice points in polyhedra
	Hilbert series

	Changes relative to version 2.5

