relax

Version 2.1.0

A program for NMR relaxation

data analysis

July 12, 2012



Contents

1 Introduction 1
1.1  Program features. . . . . . . . . . ... 2
1.1.1 Literature . . . . . . . .. 2

1.1.2 Supported NMR theories . . . ... .. ... ... ......... 2

1.1.3 Data analysis tools . . . . . . . . ... ... L o 3

1.14 Data visualisation . . . . .. ... ... ... ... .. ... ... 3

1.1.5 Interfacing with other programs . . . . . . ... ... ... .... 4

1.1.6 The user interfaces (UI) . . . .. .. ... ... ... ... ..... 4

1.2 Howtouserelax . . . . . . . . . . . e 4
1.2.1 The prompt . . . . . . . ... 4

1.2.2 Python . . . . . . . . . )

1.2.3 User functions . . . . . . . . . .. 7

1.2.4 The help system . . . . . . ... ... o 7

1.2.5 Tab completion . . . . . . . ... ... 7

1.2.6 The data pipe . . . . . . . . . 9

1.2.7 The spin and interatomic data containers . . . . . ... ... ... 9

1.2.8 Scripting . . . . ... 10

1.2.9 Sample scripts . . . . .. L 11
1.2.10  Thetest suite . . . . . . . . . . .. 12
1.2.11  The GUIL . . . . . . . . e 12
1.2.12  Access to the internals of relax . . . . . ... ... ... ... ... 15

1.3  The multi-processor framework . . . . . . . . ... ... ... 16
1.3.1 Introduction . . . . . . . ... 16

1.3.2 Usage . . . . o o e 16

1.3.3 Further details . . . . . . . .. .. ... 16

1.4 Usage of thenamerelax . . . . . . . . . . . ... oL 17
2 Installation instructions 19
2.1 Dependencies . . . . . . . ..o 19
2.2 Imstallation . . . . . . . .. 19
2.2.1 The source releases . . . . . . . . . ..o 19
222 Installation on GNU/Linux . . . . . ... ... ... ... ..... 20
2.2.3 Installation on MS Windows . . . . . .. ... ... .. ...... 20
2.2.4 Installation on Mac OS X . . . . . . . . ... ... .. .. .. ... 21
2.2.5 Installation on your OS . . . . . .. .. .. ... L. 22
2.2.6 Running a non-compiled version . . . . .. .. ... ... .. ... 22

2.3  Optional programs . . . . . . . . . . .. 22
2.3.1 Grace . . . . . e e 22
2.3.2 OpenDX . . . . . 22
2.3.3 Molmol . . . . . . . 23

ii



CONTENTS

2.3.4 PyMOL . . . . . .
2.3.5 Dasha . . . . . . . .
2.3.6 Modelfreed . . . . . . . . e
3 Open source infrastructure
3.1 Therelax web sites . . . . . . . . ..
3.2 Themailing lists . . . . . . . ... L
3.2.1 relax-announce . . . . ... ... e
3.2.2 relax-users . . . ... ..
3.2.3 relax-devel . . . . . ..
3.2.4 relax-commits . . . . . ... L.
3.2.5 Replying toamessage . . . . .. .. .. . Lo
3.3 Reporting bugs . . . . . . ..
3.4 Latest sources — the relax repositories . . . . . . .. ... .. L.
3.5 News . . . o e
3.6 The relax distribution archives . . . . . . . . . ... ... ... ...
4 Calculating the NOE
4.1 Introduction . . . . . . . . ..
4.2 The sample script . . . . . . . .. e
4.3 Initialisation of the data pipe . . . . . . . . . . . . ... ... L.
4.4 Loading thedata . . . . . . . . . . .. .
4.5  Setting the errors . . . . . . .. L
4.6  Unresolved residues . . . . . . . . . . . ..
4.7 The NOE . . . . . . . e
4.8 Viewing theresults . . . .. . ... . L oo
4.9 The GUI auto-analysis . . . . . . . . . . . . .. .. e
5 Relaxation curve-fitting
5.1 Introduction . . . . . . . . . ..
5.2  Thesample script . . . . . . . . .
5.3 Initialisation of the data pipe and loading of the data . . . . . .. ... ..
54 Therest of thesetup . . . . . . . . ... ...
5.5 Optimisation . . . . . . . . ..
5.6 FError analysis . . . . .. Lo
5.7 Finishing off . . . . . .. oo
5.8 The GUI auto-analysis . . . . . . . . . . . . . . ... ... ..
6 Model-free analysis
6.1 Theory . . . . . . .
6.1.1 The chi-squared function — x2(6) . . . . . .. ... ... ... ...
6.1.2 The relaxation equations — Rj(0) . . . . . .. ... ... ... ...
6.1.3 The spectral density functions — J(w) . . . . ... ... ... ...
6.1.4 Brownian rotational diffusion . . . . . .. ... .. ... ..
6.1.5 The model-free models . . . . . . ... ... ... ... ... ...
6.1.6 Model-free optimisation theory . . . . . . ... .. ... ... ...
6.2 Optimisation of a single model-free model . . . . . . . ... .. ... ....
6.2.1 The sample script . . . . . . ... oo
6.2.2 Explanation . . . . ... ...
6.3 Optimisation of all model-free models . . . . . . . .. ... ... ... ...

iii

23
23
23

25
25
25
25
26
26
26
26
26
27
27
27

29
29
29
30
30
31
31
32
32
34

35
35
35
36
37
38
38
39
39



CONTENTS

6.3.1 The sample script . . . . . . . . ..o 60
6.3.2 Explanation . . . . ... oo 62
6.4 Model-free model selection . . . . . .. . ... ... L. 62
6.4.1 The sample script . . . . . . ... o 62
6.4.2 Explanation . . . . ... ... 63
6.5 The methodology of Mandel et al., 1995 . . . . . . . . ... ... ... ... 63
6.6  The diffusion seeded paradigm . . . . . ... .. ... ... 65
6.7 The new model-free optimisation protocol . . . . . . . . .. ... ... ... 65
6.7.1 The model-free models . . . . . .. .. ... ... 0oL 65
6.7.2 The diffusion tensor . . . . . . . . ... ... ... ... ... 65
6.7.3 The universal solution &L . . . . .. .. .. Lo Lo 68
6.7.4 Model-free analysis in reverse . . . . . . . . ... ... 68
6.7.5 The sample script . . . . . . . ... 71
6.7.6 Explanation . . . . ... ... 76
6.8 The GUI auto-analysis . . . . . . . . . . . ... ... 7
Reduced spectral density mapping 79
Values, gradients, and Hessians 81
8.1 Introduction . . . . . . . . . ... 81
8.2  Minimisation concepts . . . . . . ... Lo 81
8.2.1 The function value . . . . . . . .. . . ... 81
8.2.2 The gradient . . . . . . . . ..o 81
8.2.3 The Hessian . . . . . .. .. .. . o 82
8.3  The four parameter combinations . . . . . ... ... ... ... ... ... 82
8.3.1 Optimisation of the model-free models . . . . . . . . ... ... .. 82
8.3.2 Optimisation of the local 7,,, models . . . . . .. .. ... ..... 83
8.3.3 Optimisation of the diffusion tensor parameters. . . . . . . .. .. 83
8.3.4 Optimisation of the global model . . . . . . . .. .. .. ... ... 83
8.4  Construction of the values, gradients, and Hessians . . . . . .. ... ... 84
8.4.1 The sum of chi-squared values . . . . ... ... ... .. ..... 84
8.4.2 Construction of the gradient . . . . . . ... ... .. ... .... 84
8.4.3 Construction of the Hessian . . . . . . . ... ... ... ... ... 86
8.5  The value, gradient, and Hessian dependency chain . . . . ... ... ... 86
8.6 The x? value, gradient, and Hessian . . . . . . .. ... ... ... ..... 86
8.6.1 The x2 value . . . . . . . . ... 86
8.6.2 The x? gradient . . . . . . ... .. ... ... 88
8.6.3 The x2 Hessian . . . . . . . . . . o i 88
8.7 The R;(#) values, gradients, and Hessians . . . . . .. ... .. ... .... 89
8.7.1 The R;(0) values . . . . . . ... ... 89
8.7.2 The R;(0) gradients . . . . . .. .. ... ... ..o L. 89
8.7.3 The R;(0) Hessians . . . . . . . .. . ... . . 89
8.8 R[(0) values, gradients, and Hessians . . . . .. ... . ... ... ..... 90
8.8.1 Components of the R,(6) equations . . . .. ... ... .. ..., 90
8.8.2 RI(O) values . . . . .. 93
8.8.3 RL(0) gradients . . . . . . ..o 93
8.8.4 RI(O) Hessians . . . . . . . ... oo 94
8.9 Model-free analysis . . . . . . ... L 98

8.9.1 The model-free equations . . . . . . . ... ... ... .. ..... 98



CONTENTS v

8.9.2 The original model-free gradient . . . . . ... .. .. ... .... 99
8.9.3 The original model-free Hessian . . . . . . . ... ... ...... 100
8.9.4 The extended model-free gradient . . . . . . ... .. ... .... 103
8.9.5 The extended model-free Hessian . . . . . . .. .. ... ... ... 105

8.10 Ellipsoidal diffusion tensor . . . . . . . . . ... ... ... .. ... ..., 110
8.10.1  The diffusion equation of the ellipsoid . . . . . ... ... ... .. 110
8.10.2  The weights of the ellipsoid . . . . . ... ... ... ... ..... 110
8.10.3  The weight gradients of the ellipsoid . . . . . . ... ... .. ... 111
8.10.4  The weight Hessians of the ellipsoid . . . .. ... .. ... .... 113
8.10.5  The correlation times of the ellipsoid . . . . ... ... ... ... 119
8.10.6  The correlation time gradients of the ellipsoid . . . ... ... .. 119
8.10.7  The correlation time Hessians of the ellipsoid . . . . . . .. .. .. 121

8.11 Spheroidal diffusion tensor . . . . . . . . . ... ... L 123
8.11.1  The diffusion equation of the spheroid . . . . . .. ... ... ... 123
8.11.2  The weights of the spheroid . . . . . . . ... ... .. ... .... 123
8.11.3  The weight gradients of the spheroid . . . . . .. ... ... .... 124
8.11.4  The weight Hessians of the spheroid . . . . . . ... ... ... .. 124
8.11.5  The correlation times of the spheroid . . . . ... ... ... ... 125
8.11.6  The correlation time gradients of the spheroid . . . ... ... .. 125
8.11.7  The correlation time Hessians of the spheroid . . . . . .. ... .. 125

8.12 Spherical diffusion tensor . . . . . . ... 127
8.12.1  The diffusion equation of the sphere . . . . . . .. ... ... ... 127
8.12.2  The weight of the sphere . . . . . ... ... ... ... ...... 127
8.12.3  The weight gradient of the sphere . . . . . .. ... ... .. ... 127
8.12.4  The weight Hessian of the sphere . . . . . . . . ... ... ... .. 128
8.12.5  The correlation time of the sphere . . . . . . . ... ... .. ... 128
8.12.6  The correlation time gradient of the sphere . . . . . . . . ... .. 128
8.12.7  The correlation time Hessian of the sphere . . . . . . .. ... .. 128

8.13 Ellipsoidal dot product derivatives . . . . . . . . . .. ... ... ... ... 129
8.13.1  The dot product of the ellipsoid . . . .. .. ... ... .. .... 129
8.13.2  The dot product gradient of the ellipsoid . . . .. ... ... ... 129
8.13.3  The dot product Hessian of the ellipsoid . . . . .. ... ... ... 131

8.14 Spheroidal dot product derivatives . . . . . . . . ... ..o 133
8.14.1  The dot product of the spheroid . . . .. .. ... ... .. .... 133
8.14.2  The dot product gradient of the spheroid . . . .. ... ... ... 133
8.14.3  The dot product Hessian of the spheroid . . ... ... ... ... 133

9 relax development 135
9.1 Version control using Subversion . . . . . . ... ... ... L. 135
9.2  Coding conventions . . . . . . . .. . L Lo 136
9.2.1 Indentation . . . . . . . ... 136
9.2.2 Doc strings . . . . . . . .. 136
9.2.3 Variable, function, and class names . . . . . . ... ... ... .. 137
9.24 Whitespace . . . . . . .. 139
9.2.5 Comments . . . . . . . . . . . . e 140

9.3 Submitting changes to the relax project . . . . . . .. .. ... ... 140
9.3.1 Submitting changes as apatch . . . . . ... ... .. .. ..... 140
9.3.2 Modification of official releases — creating patches with diff . . . . 141

9.3.3 Modification of the latest sources — creating patches with Subversion141



vi CONTENTS
9.4  Committers . . . . . . . . . L 141
9.4.1 Becoming a committer . . . .. ... ..o 141
9.4.2 Joining Gnal . . . .. ..o Lo 142
9.4.3 Joining the relax project . . . . .. ... oo 0oL 142
9.4.4 Format of the commit logs . . . .. .. .. ... ... .. ..... 142
9.4.5 Discussing major changes . . . . . . . . .. ... ... ... 144

9.5 Branches . . . . . .. e 144
9.5.1 Branch creation . . . . ... ... oo 144
9.5.2 Keeping the branch up to date using svomerge.py . . . . . . . .. 144
9.5.3 Merging the branch back into the main line . . . . . . .. ... .. 145

9.6 The SCons build system . . . . . . . .. ... L 146
9.6.1 SCons help . . . . . . .. 146
9.6.2 C module compilation . . . . . . ... ... Lo 146
9.6.3 Compilation of the user manual (PDF version) . . . ... ... .. 146
9.6.4 Compilation of the user manual (HTML version) . . . . . ... .. 146
9.6.5 Compilation of the API documentation (HTML version) . . . .. 147
9.6.6 Making distribution archives . . . . .. .. ... ... .00 147
9.6.7 Cleaning up . . . . . . . . . 147

9.7 The core design of relax . . . . . . ... oL Lo 148
9.7.1 The divisions of relax’s source code . . . . . ... ... ... ... 148
9.7.2 The major components of relax . . . . . ... ... ... ... ... 148

9.8 Themailing lists . . . . . . . . .. 151
9.8.1 Private vs. public messages . . . . . .. .. .. ... .. 151

9.9 The bug, task, and support request trackers . . . . . ... ... ... ... 151
9.9.1 Submitting a bug report . . . .. ... oo 151
9.9.2 Assigning an issue to yourself . . . . . ... 152
9.9.3 Closing an issue . . . . . . . . . . . o i 152

9.10 Links, links, and more links . . . . . . .. ... ... o0 152
9.10.1  Navigation . . . . . .. .. . 152
9.10.2  Search engine indexing . . . . . . .. . ... L. 153

10 Alphabetical listing of user functions 155
10.1 A warning about the formatting . . . . . .. .. ... ... L. 155
10.2 The list of functions . . . . . . .. ... o 155
10.2.1  The synopsis . . . . . . . . o oo 155
10.2.2  Defaults . . . . . . .. 155
10.2.3  Docstring sectioning . . . . . . . . ..o 156
10.2.4  align_tensor.copy . . . . . . . ..o oo 157
10.2.5  align_tensor.delete . . . . . . . . .. . ... ... ... 157
10.2.6  align_tensor.display . . . . . . . . ... ... L. 157
10.2.7 align_tensor.fix . . . . . . . ... 158
10.2.8  align_tensor.init . . . . . . ... ... o o oo 158
10.2.9  align_tensor.matrix_angles . . . . . . . . ... ... 159
10.2.10 align_tensor.reduction . . . . . . .. . . ... ... ... .. 159
10.2.11 align_tensor.set_domain . . . . . . . . . .. ... .. ... ... .. 159
10.2.12 align_tensor.svd . . . . . . ... oL 160
10.2.13 angles.diff frame . . . . . . ... oo 160
10.2.14  bmrb.citation . . . . . . ..o o 160

10.2.15 bmrb.display . . . . . .. 161



CONTENTS

10.2.16
10.2.17
10.2.18
10.2.19
10.2.20
10.2.21
10.2.22
10.2.23
10.2.24
10.2.25
10.2.26
10.2.27
10.2.28
10.2.29
10.2.30
10.2.31
10.2.32
10.2.33
10.2.34
10.2.35
10.2.36
10.2.37
10.2.38
10.2.39
10.2.40
10.2.41
10.2.42
10.2.43
10.2.44
10.2.45
10.2.46
10.2.47
10.2.48
10.2.49
10.2.50
10.2.51
10.2.52
10.2.53
10.2.54
10.2.55
10.2.56
10.2.57
10.2.58
10.2.59
10.2.60
10.2.61
10.2.62
10.2.63
10.2.64

vii
bmrbread . .. ... 162
bmrb.script . . . . ..o 162
bmrb.software . . . . .. ... 163
bmrb.software_select . . . . . ... ..o 163
bmrb.thiol_state . . . . . . . ... ... .. ... .00 164
bmrb.write . . . . . ... 164
brukerread . . . . . . ... 165
cale . .o 165
consistency_tests.set_frq . . . .. ..o oo oo 165
dasha.create . . . . . . . . . .. ... 166
dasha.execute . . . . . . . . . ... 166
dasha.extract . . . . . . . . . . ... 166
deselect.all . . . . . . . . ... 166
deselect.interatom . . . . . . .. ... 167
deselect.read . . . . . . . ... 167
deselect.reverse . . . . . . . . .. 168
deselect.spin . . . . . . ..o 169
diffusion_tensor.copy . . . . . .. ..o 169
diffusion_tensor.delete . . . . . . . .. ... ... ... ... ... 169
diffusion_tensor.display . . . . . . .. .. ... 170
diffusion_tensor.init . . . . . . . . .. ... 170
dipole_pair.define . . . . . . . ... ... ... 173
dipole_pair.read_dist . . . . . . . ... .. 173
dipole_pair.set_dist . . . . . . .. ... oL 174
dipole_pair.unit_vectors . . . . . . .. ... ... 174
dx.execute . . . . .. e 174
dx.map . . ... e 175
eliminate . . . . . . . . ... 176
0X . e 177
frame_order.cone_pdb . . . . ... .. 178
frame_order.domain_to_pdb . . . . ... ..o 178
frame_order.pivot . . . . . ... 179
frame_order.ref domain . . . .. . ... ... ... ... 179
frame_order.select_model . . . . . . ... ... ... .. ... 179
fra.set . . . . 180
Grace.VIEW . . . . . ..o e e 180
grace.write . . . . . ... 181
gridesearch . . . . . . .. L 182
jw_omapping.set_frq . . . . . ..o Lo 184
minimise . . . . . . . L. e e e e 184
model_free.create_model . . . . .. ... 188
model_free.delete . . . . . . ... Lo o 189
model_free.remove_tm . . . ... Lo 189
model_free.select_model . . . . . . ... oo 189
model_selection . . . . . ... ... 191
molecule.copy . . . ... L 192
molecule.create . . . . . ... 192
molecule.delete . . . . ..o 193

moleculedisplay . . . . . ... Lo 193



viii

10.2.65
10.2.66
10.2.67
10.2.68
10.2.69
10.2.70
10.2.71
10.2.72
10.2.73
10.2.74
10.2.75
10.2.76
10.2.77
10.2.78
10.2.79
10.2.80
10.2.81
10.2.82
10.2.83
10.2.84
10.2.85
10.2.86
10.2.87
10.2.88
10.2.89
10.2.90
10.2.91
10.2.92
10.2.93
10.2.94
10.2.95
10.2.96
10.2.97
10.2.98
10.2.99
10.2.100
10.2.101
10.2.102
10.2.103
10.2.104
10.2.105
10.2.106
10.2.107
10.2.108
10.2.109
10.2.110
10.2.111
10.2.112
10.2.113

CONTENTS

moleculename . . . . .. ... 194
molecule.type . . . . ..o 194
molmol.clear_history . . . . . . . . ... L L 195
molmol.command . . . . ... ... o 195
molmol.macro_apply . . . . . . . . ... 195
molmol.macro_run . . . . . . . . ... 208
molmol.macro_write . . . . . . .. ... ... 208
molmol.ribbon . . . . . ... 209
molmol.tensor_pdb . . . . . .. ... 209
molmol.view . . . . . .. 210
monte_carlo.create_data . . . . . ... ... L. 210
monte_carlo.error_analysis . . . . . . .. ... Lo 0L 211
monte_carlo.initial_values . . . . . . ... ... ... ... ... .. 212
monte_carlo.off . . . . ... 213
monte_carlo.on . . . . . . ... 214
monte_carlo.setup . . . . . ... 215
n_state_model.CoM . . . . . . ... ... 215
n_state_model.cone.pdb . . . . ... o000 216
n_state_model.elim_no_prob . . . . . ... ..o oL 217
n_state_model.number_of states . . . . . . ... ... ... 217
n_state_model.ref domain . . . . . . .. ... ... L. 217
n_state_model.select_model . . . . . ... ... 217
noe.read_restraints . . . . . . . ... L. L 218
noe.spectrum-_type . . . . . ... 218
palmer.create . . . . . . . ..o 219
palmer.execute . . . . . ... Lo 219
palmer.extract . . . . . . . .. ... 220
paramag.centre . . . . . . . ... Lo oL 220
pes.back_cale . . ... 221
pes.calc_qfactors . . . . . . ... 221
pes.corr_plot . ... 221
pesdelete . . . Lo Lo 222
pesdisplay . . .. Lo 222
pesread . .. ..o 222
pes.weight . . o L L Lo 223
pes.write ... oL L 223
pipebundle . . . . ..o 223
PIDE.CODY « « v v v v e e 224
pipe.create . . . . . ... Lo 224
pipe.current . . ... ..o oo 225
pipedelete . . . ..o 225
pipedisplay . . . . . ... 225
pipe.hybridise . . . . .. ... 225
pipe.switch . . . . . . .. 226
pymol.cartoon . . . .. ... Lo 226
pymol.clear_history . . . .. ... .o o 226
pymol.command . . . . . .. ... L L 227
pymol.cone_pdb . . .. ..o 227
pymol.macro_apply . . . . . . ... ... 227



CONTENTS

10.2.114
10.2.115
10.2.116
10.2.117
10.2.118
10.2.119
10.2.120
10.2.121
10.2.122
10.2.123
10.2.124
10.2.125
10.2.126
10.2.127
10.2.128
10.2.129
10.2.130
10.2.131
10.2.132
10.2.133
10.2.134
10.2.135
10.2.136
10.2.137
10.2.138
10.2.139
10.2.140
10.2.141
10.2.142
10.2.143
10.2.144
10.2.145
10.2.146
10.2.147
10.2.148
10.2.149
10.2.150
10.2.151
10.2.152
10.2.153
10.2.154
10.2.155
10.2.156
10.2.157
10.2.158
10.2.159
10.2.160
10.2.161
10.2.162

ix
pymol.macrorun . . . . . . ... oL 228
pymol.macro_write . . . . . . ... ..o 229
pymol.tensor_pdb . . . . ..o 230
pymol.vector_dist . . . . . .. ... Lo 230
pymol.view . . . ... 230
rde.backcalc . . ... Lo 231
rdc.calc_q_factors . . . . . ... 231
rdec.corrplot . . .. 231
rdedelete . . . . .o 232
rdedisplay . . . ..o Lo 232
rderead . . ... L L 232
rde.weight . . . . . oL 233
rdewrite . ... .. 233
relax_data.back_calc . . . . . ... ... 234
relax_ data.copy . . . . . . ..o 234
relax_data.delete . . . . . . .. ... L 234
relax_data.display . . . . .. ... ..o o 235
relax data.frq . . . . ..o Lo 235
relax_data.peak_intensity_type . . . .. . .. ... oo 235
relax_dataread . . . . . . ... 235
relax_data.temp_calibration . . . . . .. ... ... L. 236
relax_data.temp_control . . . . . . . ... ... 237
relax_ data.type . . . . . ..o 237
relax_data.write . . . . . ... Lo 238
relax_fit.relax_time . . . . . . . .. ... 238
relax_fit.select_model . . . . . . .. Lo 238
Teseb . . ... 239
residue.copy . . . ... Lo 239
residue.create . . . . . . . .. L. 239
residue.delete . . . . . . . ... 240
residue.display . . . . . . ... oo 240
residue.name . . . ... ... L e 241
residue.number . . . ... L L. 241
results.display . . . . .. oL 242
resultsread . . . ... Lo 242
results.write . . . ... L 242
SCTipt . . . 243
select.all . . . . .. 243
select.interatom . . . . . . ... o 243
select.read . . . . .. 244
select.reverse . . . . . . .. L 245
select.spin. . . . . . . .. 245
sequence.attach_protons . . . . . . . ... ... L. 245
SEQUENCE.COPY  « o v v v v e e e e e e e e e e e e e 246
sequence.display . . . . . ... Lo 246
sequence.read . . . ... L. Lo 246
sequence.write . . .. ... Lo Lo 247
spectrum.baseplane.rmsd . . . . . .. ..o 248

spectrum.delete . . . . . ... 248



X CONTENTS

10.2.163 spectrum.error_analysis . . . . . . . . ... ... L. 248
10.2.164 spectrum.integration_points . . . . . . . .. ..o Lo 250
10.2.165 spectrum.read_intensities . . . . . . . . ... . oL 250
10.2.166 spectrum.replicated . . . . . . . ... Lo 251
10.2.167 SPIN.COPY -« « v v v v e e e e e e e e e e 252
10.2.168 spin.create . . . . . . . ..o 252
10.2.169 spin.create_pseudo . . . . . . .. ... 252
10.2.170 spin.delete . . . . . ..o Lo 253
10.2.171 spindisplay . . . . . . ..o 253
10.2.172 spin.element . . . . . . ... L 254
10.2.173 spin.dsotope . . . . . .. Lo 254
10.2.174 spin.name . . . . . . . ..o e e e e e e 255
10.2.175 spin.number . . . . ..o Lo 256
10.2.176 statedoad . . . . . . . ... 256
10.2.177 state.save . . . . . . ... 257
10.2.178 structure.add_atom . . . . ... ... 257
10.2.179 structure.connect_atom . . . . . ... ..o 258
10.2.180 structure.create_diff tensor.pdb . . . . . . . ... ... 258
10.2.181 structure.create_vector_dist . . . . . . . .. ... .00 259
10.2.182 structure.delete . . . . . . . . ... 259
10.2.183 structure.displacement . . . . . . . . .. ... 260
10.2.184 structure.find_pivot . . . . . . ... Lo 260
10.2.185 structure.get_pos . . . . . . . ..o 261
10.2.186 structure.load_spins . . . . . . . ... .o 261
10.2.187 structure.read_pdb . . . . . . ..o 262
10.2.188 structure.read xyz . . . . . . ..o Lo 263
10.2.189 structure.rotate . . . . . . . ..o 264
10.2.190 structure.superimpose . . . . . . . . . . ..o o 264
10.2.191 structure.translate . . . . . . . . . ... .. L 265
10.2.192 structure.writepdb . . ..o 265
10.2.193 sysiinfo . . . ..o 265
10.2.194 temperature . . . . . . . ..o 266
10.2.195 wvalue.copy . . . . . ..o 266
10.2.196 value.display . . . . . . . ... .o 267
10.2.197 valueread . . . . . . . .. 268
10.2.198 wvalue.set . . . . ... 270
10.2.199 value.write . . . . . . .. . 274
10.2.200 vid.view . . ..o 276
11 Licence 277
11.1 Copying, modification, sublicencing, and distribution of relax . . . . . . . . 277

11.2 The GPL . . . . . . o 277



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4

8.1
8.2
8.3

9.1

Prompt screenshot . . . . . ... . 5
Scripting screenshot . . . . . .. ..o 6
GUI screenshot . . . . . . . . . . . . 8
GUI screenshot — Analysis wizard screenshot . . . . . . . ... ... ... 10
relax controller screenshot . . . . . . . . . . ... ... 13
Spin viewer window screenshot . . . . . . .. . ... .. ... ... 13
Results viewer window screenshot . . . . . . . . . ... ... ... ... .. 14
Pipe editor window screenshot . . . . . . .. .. ... ... L. 14
Prompt window screenshot . . . . . .. ... oL 15
NOE plot . . . . . e 33
GUI screenshot — NOE analysis . . . . . . ... ... ... ... ...... 34
GUI screenshot — Ry analysis . . . . . . .. ... oL 40
GUI screenshot — Ro analysis . . . . . . . ... ... ... ... .. 41
A schematic of the model-free optimisation protocol of Mandel et al., 1995 64
Model-free analysis using the diffusion seeded paradigm . . ... ... .. 66
A schematic of the new model-free optimisation protocol . . . . . . . . .. 69
GUI screenshot — Model-free analysis . . . . . . . ... ... ... ..... 77
The construction of the model-free gradient. . . . . . . .. ... ... ... 85
The model-free Hessian kite. . . . . . .. . ... ... ... .. ...... 87
x? dependencies of the values, gradients, and Hessians. . . . . . . . .. .. 88
The core design of relax. . . . . . . . . . . . ... ... ... 149

xi



List of Tables

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30

Boolean operators and their effects on selections . . . . . ... ... ... 168
OpenDx mapping types. . . . . . . . . . .o 176
Diffusion tensor parameter string matching patterns. . . . . . . . . .. .. 176
Model-free data type string matching patterns. . . . . . .. ... ... .. 177
Minimisation statistic data type string matching patterns. . . . . . . . .. 182
NOE data type string matching patterns. . . . . . ... .. ... ... .. 183
Relaxation curve fitting data type string matching patterns. . . . . . . . . 183
Reduced spectral density mapping data type string matching patterns. . . 183
Consistency testing data type string matching patterns. . . . . . .. . .. 183
Minimisation algorithms — unconstrained line search methods. . . . . . . . 186
Minimisation algorithms — unconstrained trust-region methods. . . . . . . 186
Minimisation algorithms — unconstrained conjugate gradient methods. . . 186
Minimisation algorithms — miscellaneous unconstrained methods. . . . . . 186
Minimisation algorithms — global minimisation methods. . . . . . . . . .. 186
Minimisation sub-algorithms — line search algorithms. . . . .. ... . .. 187
Minimisation sub-algorithms — Hessian modifications. . . . . . ... . .. 187
Minimisation sub-algorithms — Hessian type. . . . . . . . ... ... ... 187
The model-free classic style for PyMOL and Molmol data mapping. . . . 197
Molmol colour names and corresponding RGB colour values (from 0 to 1) 198
X11 colour names and corresponding RGB colour values . . . . . ... .. 199
X11 colour names and corresponding RGB colour values . . . . . ... .. 200
X11 colour names and corresponding RGB colour values . . . . . ... .. 201
X11 colour names and corresponding RGB colour values . . . . . ... .. 202
X11 colour names and corresponding RGB colour values . . . . . ... .. 203
X11 colour names and corresponding RGB colour values . . . . . ... .. 204
X11 colour names and corresponding RGB colour values . . . . . . .. .. 205
X11 colour names and corresponding RGB colour values . . . . . ... .. 206
X11 colour names and corresponding RGB colour values . . . . . . .. .. 207
The six peak intensity error analysis types. . . . . . .. .. ... ... .. 249
Diffusion tensor PDB scaling. . . . . . .. ... ... ... ... ...... 259
N-state model data type string matching patterns. . . . . . ... ... .. 268
The value and parameter combinations for the value.set user function. . . 271
Model-free default values. . . . . . .. ... ... L 272
Diffusion tensor parameter default values. . . . . . ... ... ... .... 273
Reduced spectral density mapping default values. . . . . . . ... ... .. 273
Consistency testing default values. . . . . . .. ... ... ... ... ... 273
Relaxation curve fitting default values. . . . . . . . ... .. ... .. ... 275
N-state model default values. . . . . . .. .. .. .. ... L. 275

xii



Abbreviations

AIC: Akaike’s Information Criteria
AICc: small sample size corrected AIC
BIC: Bayesian Information Criteria
C(7): correlation function

x?%: chi-squared function

CSA: chemical shift anisotropy

©: the set of diffusion tensor parameters

D,: the eigenvalue of the spheroid diffusion tensor corresponding to the unique axis of the
tensor

©,: the eigenvalue of the spheroid diffusion tensor corresponding to the two axes perpen-
dicular to the unique axis

9,: the anisotropic component of the Brownian rotational diffusion tensor
D;s0: the isotropic component of the Brownian rotational diffusion tensor
©,: the rhombic component of the Brownian rotational diffusion tensor
Dratio: the ratio of D to D,

©,: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the x-axis of the tensor

D,: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the y-axis of the tensor

®.: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the z-axis of the tensor

€;: elimination value

J(w): spectral density function
NOE: nuclear Overhauser effect
pdf: probability distribution function

r: bond length

xiii



Xiv

Ri: spin-lattice relaxation rate

Ro: spin-spin relaxation rate

R., chemical exchange relaxation rate

52, S2, and Sg: model-free generalised order parameters

Tes Tty and 74 model-free effective internal correlation times

Tm¢ global rotational correlation time

LIST OF TABLES



Chapter 1

Introduction

The program relax is designed for the study of molecular dynamics through the analysis
of experimental NMR data. Organic molecules, proteins, RNA, DNA, sugars, and other
biomolecules are all supported. It was originally written for the model-free analysis of
protein dynamics, though its scope has been significantly expanded. It is a community
driven project created by NMR spectroscopists for NMR spectroscopists. It supports many
analysis types including:

Model-free analysis - the Lipari and Szabo model-free analysis of NMR relaxation data.

R;1 and Ry - the exponential curve fitting for the calculation of the Rx NMR relaxation
rates.

NOE - the calculation of the steady-state NOE NMR relaxation data.
Data consistency - the consistency testing of multiple field NMR relaxation data.
RSDM - Reduced Spectral Density Mapping.

Frame order and N-state model - study of domain motions via the N-state model and

frame order dynamics theories using anisotropic NMR parameters such as RDCs and
PCSs.

Stereochemistry - investigations of absolute stereochemistry of flexible molecules.

The aim of relax is to provide a seamless and extremely flexible environment able to accept
input in any format produced by other NMR software, able to faultlessly create input files,
control, and read output from various programs including Modelfree and Dasha, output
results in many formats, and visualise the data by controlling programs such as Grace,
OpenDX, MOLMOL, and PyMOL. All data analysis tools from optimisation to model
selection to Monte Carlo simulations are inbuilt into relax. Therefore the use of additional
programs is optional.

The flexibility of relax arises from the choice of relax’s scripting capabilities, its Python
prompt interface, or its graphical user interface (GUI). Extremely complex scripts can be
created from simple building blocks to fully automate data analysis. A number of sample



2 CHAPTER 1. INTRODUCTION

scripts have been provided to help understand script construction. In addition, any of
Python’s powerful features or functions can be incorporated as the script is executed as
an arbitrary Python source file within relax’s environment. The modules of relax can also
used as a vast library of dynamics related functions by your own software.

relax is free software (free as in freedom) which is licenced under the GNU General Public
Licence (GPL). You are free to copy, modify, or redistribute relax under the terms of the
GPL.

1.1 Program features

1.1.1 Literature

The primary references for the program relax are d’Auvergne and Gooley (2008a) and
d’Auvergne and Gooley (2008b). The graphical user interface reference is Bieri et al.
(2011).

Other literature related to the improved model-free analysis used within relax include
model-free model selection (d’Auvergne and Gooley, 2003; Chen et al., 2004), model-free
model elimination (d’Auvergne and Gooley, 2006), the theory (d’Auvergne and Gooley,
2007) behind the new model-free optimisation protocol (d’Auvergne and Gooley, 2008b),
and the hybridisation of different models (Horne et al., 2007; d’Auvergne and Gooley,
2008b). Most of these details can be found in the PhD thesis of d’Auvergne (2006).

1.1.2 Supported NMR theories

The following relaxation data analysis techniques are currently supported by relax:

e Model-free analysis (Lipari and Szabo, 1982a,b; Clore et al., 1990).

e Reduced spectral density mapping (Farrow et al., 1995; Lefevre et al., 1996).
e Exponential curve fitting (to find the Ry and Ry relaxation rates).

e Steady-state NOE calculation.

e Determination of absolute stereochemistry of flexible molecules using isotropic and
anisotropic NMR parameters such as NOE, ROE, and RDC combined with MD
simulation or simulated annealing, and ORD (see Sun et al. (2011)).

e The N-state model for investigating domain motions.
e The frame order theory.

e Conformational analysis of paramagnetically tagged molecules (see Erdelyi et al.
(2011)).

e Analysis of RDCs and PCSs using ensemble of structures (the N-state model of
dynamics).



1.1. PROGRAM FEATURES 3

The future

At some time in the future the following techniques are planned to be implemented within
relax:

e Relaxation dispersion.

e All other dynamics analyses.

Because relax is free software, if you would like to contribute addition features, functions,
or modules which you have written for your own publications for the benefit of the field,
almost anything relating to molecular dynamics may be accepted. Please see the Open
Source chapter for more details.

1.1.3 Data analysis tools

The following tools are implemented as modular components to be used by any data
analysis technique:

e Numerous high-precision optimisation algorithms.
e Model selection (d’Auvergne and Gooley, 2003; Chen et al., 2004):

— Akaike’s Information Criteria (AIC).
— Small sample size corrected AIC (AICc).

— Bayesian or Schwarz Information Criteria (BIC).

Bootstrap model selection.

Single-item-out cross-validation (CV).

Hypothesis testing ANOVA model selection (only the model-free specific tech-
nique of Mandel et al. (1995) is supported).

e Monte Carlo simulations (error analysis for all data analysis techniques).

e Model elimination — the removal of failed models prior to model selection (d’Auvergne and Gooley,
2006).

1.1.4 Data visualisation

The results of an analysis, or any data input into relax, can be visualised using a number
of programs:

MOLMOL 1D data can be mapped onto a structure either by the creation of MOLMOL
macros or by direct control of the program.

PyMOL 3D objects such as the diffusion tensor representation can be displayed with the
structure.



4 CHAPTER 1. INTRODUCTION

Grace any 2D data can be plotted.

OpenDX The chi-squared space of models with three parameters can be mapped and 3D
images of the space produced.

1.1.5 Interfacing with other programs

relax can create the input files, execute in-line, and then read the output of the following
programs. These programs can be used as optimisation engines replacing the minimisation
algorithms built into relax:

e Dasha (model-free analysis).

e Modelfree (model-free analysis).

1.1.6 The user interfaces (UI)

relax can be used through the following Uls:

The prompt this is the primary interface of relax. Rather than reinventing a new com-
mand language, relax’s interface is the powerful Python prompt. This gives the
power user full access to a proven programming language. See Figure 1.1 for a
screenshot.

Scripting this provides a more powerful and flexible framework for controlling the pro-
gram. The script will be executed as Python code enabling advanced programming
for automating data analysis. All the features available within the prompt environ-
ment are accessible to the script. See Figure 1.2 for a screenshot.

GUI the graphical user interface provides a sub-set of relax’s features - the automatic R;
and Ry relaxation rate curve-fitting, the NOE calculations, and the automatic model-
free analysis provided by the dauvergne protocol module (d’Auvergne and Gooley,
2008b). See Figure 1.3 for a screenshot.

1.2 How to use relax

1.2.1 The prompt

The primary interface of relax is the prompt. After typing ‘relax’ within a terminal you
will be presented with

relax>
This is the Python prompt which has been tailored specifically for relax. You will hence

have full access, if desired, to the power of the Python programing language to manipulate
your data. You can for instance type



1.2. HOW TO USE RELAX 5

= 1.3.8: python - x
File Edit Wiew Scrollback Beookmarks Settings Help

= edward : bash = relax-1.3 : bash = 1.3.8 : python x

Figure 1.1: A screenshot of relax being run in the primary prompt mode.

relax> print "Hello World"
the result being

relax> print "Hello World"
Hello World

relax>
Or using relax as a calculator

relax> (1.0 + (2 * 3))/10
0.69999999999999996

relax>

1.2.2 Python

relax has been designed such that knowledge about Python is not required to be able to
fully use the program. A few basics though will aid in understanding relax.

A number of simple programming axioms includes that of strings, integers, floating point
numbers, and lists. A string is text and within Python (as well as relax) this is delimited
by either single or double quotes. An integer is a number with no decimal point whereas
a float is a number with a decimal point. A list in Python (called an array in other
languages) is a list of anything separated by commas and delimited by square brackets,
an example is [0, 1, 2, ‘a’, 1.2143235].

Probably the most important detail is that functions in Python require brackets around
their arguments. For example



6 CHAPTER 1. INTRODUCTION

=] 1.3.15: python =8 X
File Edit view Bookmarks Settings Help
relax simp

angle_un

L @135 : python %

Figure 1.2: A screenshot of relax being run in scripting mode.

relax> minimise()

will commence minimisation however

relax> minimise

will do nothing.

The arguments to a function are simply a comma separated list within the brackets of the
function. For example to save the program’s current state type

relax> state.save(‘save’, force=True)

Two types of arguments exist in Python — standard arguments and keyword arguments.
The majority of arguments you will encounter within relax are keyword arguments however
you may, in rare cases, encounter a non-keyword argument. For these standard arguments
just type the values in, although they must be in the correct order. Keyword arguments
consist of two parts — the key and the value. For example the key may be file and
the value you would like to supply is ‘R1l.out’. Various methods exist for supplying
this argument. Firstly you could simply type ‘R1.out’ into the correct position in the
argument list. Secondly you can type file=‘R1.out’. The power of this second option
is that argument order is unimportant. Therefore if you would like to change the default
value of the very last argument, you don’t have to supply values for all other arguments.
The only catch is that standard arguments must come before the keyword arguments.



1.2. HOW TO USE RELAX 7

1.2.3 User functions

For standard data analysis a large number of specially tailored functions called ‘user func-
tions’ have been implemented. These are accessible from the relax prompt by simply
typing the name of the function. An example is ‘help()’. An alphabetical listing of all
accessible user functions together with full descriptions is presented later in this manual.

A few special objects which are available within the prompt are not actually functions.
These objects do not require brackets at their end for them to function. For example to
exit relax type

relax> exit

Another special object is that of the function class. This object is simply a container
which holds a number of user functions. You can access the user function within the class
by typing the name of the class, then a dot ‘., followed by the name of the user function.
An example is the user function for reading relaxation data out of a file and loading the

data into relax. The function is called ‘read’ and the class is called ‘relax_data’. To
execute the function, type something like

relax_data.read(ri_id=’R1.600°, ri_type=’R1’, frq=600.0%*1e6, file=’r1.600.out’,

res_num_col=1, data_col=3, error_col=4)

On first usage the relax prompt can be quite daunting. T'wo features exist to increase the
usability of the prompt — the help system and tab completion.

1.2.4 The help system

For assistance in using a function simply type

help(function)

In addition to functions if
help(object)
is typed the help for the python object is returned. This system is similar to the help

function built into the python interpreter, which has been renamed to help_python, with
the interactive component removed. For the standard interactive python help system type

help_python()

1.2.5 Tab completion

Tab completion is implemented to prevent insanity as the function names can be quite
long — a deliberate feature to improve usability. The behaviour of the tab completion is
very similar to that of the bash prompt.

Not only is tab completion useful for preventing RSI but it can also be used for listing all
available functions. To begin with if you hit the [TAB] key without typing any text all
available functions will be listed (along with function classes and other python objects).



CHAPTER 1. INTRODUCTION

relax1.3.14 -3 X

File View Userfunctions Tools Help

ﬂﬂe

HEHE 7 ¢l =

(C) 2001-2011 the relax development team Current data pipe:

Figure 1.3: Screenshot of the relax GUI interface — the starting interface. To start one
of the automated analyses, either the menu ‘File->New analysis’ or the new analysis
button in the toolbar should be selected.

This extends to the exploration of user functions within a function class. For example to
list the user functions within the function class ‘model_free’ type

relax> model_free.

The dot character at the end is essential. After hitting the [TAB] key you should see
something like

relax> model_free.

model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.

model_free.

__class__
__doc__
__init__
_module__
__relax__
_relax_help__
create_model
delete
remove_tm

select_model

relax> model_free.

All the objects beginning with an underscore are “hidden”, they contain information
about the function class and should be ignored. From the listing the user functions
‘copy’, ‘createmodel’, ‘delete’, ‘remove_tm’, and ‘select_model’ contained within
‘model free’ are all visible.



1.2. HOW TO USE RELAX 9

1.2.6 The data pipe

Within relax all user functions operate on data stored within the current data pipe. This
pipe stores data is input, processed, or output as user functions are called. There are
different types of data pipe for different analyses, e.g. a reduced spectral density mapping
pipe, a model-free pipe, an exponential curve-fitting pipe, etc. Multiple data pipes can be
created within relax and various operations performed in sequence on these pipes. This is
useful for operations such as model selection whereby the function ‘model_selection’ can
operate on a number of pipes corresponding to different models and then assign the results
to a newly created pipe. When running relax you choose which pipe you are currently in
by using the ‘pipe.switch’ user function to jump between pipes.

The flow of data through relax can be thought of as travelling through these pipes. User
functions exist to transfer data between these pipes and other functions combine data
from multiple pipes into one or vice versa. The simplest invocation of relax would be the
creation of a single data pipe and with the data being processed as it is passing through
this pipe.

The primary method for creating a data pipe is through the user function ‘pipe.create’.
For example
relax> pipe.create(‘ml’, ‘mf’)

will create a model-free data pipe labelled ‘m1’. The following is a table of all the types
which can be assigned to a data pipe.

Data pipe type  Description

‘ct’ Consistency testing of relaxation data

‘frame order’ The Frame Order analyses of domain motions
“jw’ Reduced spectral density mapping

‘hybrid’ A special hybridised data pipe

‘mf’ Model-free data analysis

‘N-state’ N-state model of domain motions

‘noe’ Steady state NOE calculation

‘relax fit’ Relaxation curve-fitting

1.2.7 The spin and interatomic data containers

Any data which is not considered global for the molecule, such as diffusion tensors, align-
ment tensors, global minimisation statistics, etc., are stored within two special structures
of the data pipes. Any NMR data or information which is specific to an isolated spin
system is stored within special spin containers. This includes for example relaxation data,
CSA information, nuclear isotope type, chemical element type, model-free parameters, re-
duced spectral density mapping values, spin specific minimisation statistics and PCS data.
NMR data or information which is defined as being between two spin systems, such as
the magnetic dipole-dipole interaction involved in both NMR relaxation and RDC data,
interatomic vectors and NOESY data, is stored within the interatomic data containers.
The spin and interatomic data containers and their associated data can be manipulated
using a multitude of the relax user functions.



10

CHAPTER 1. INTRODUCTION

Analysis selection wizard

Start a new analysis

A number of automatic analyses to be preformed using relax in GUI mode. Although not as
flexible or powerful as the prompt/scripting modes, this provides a quick and easy setup and

4

execution for a number of analysis types. These currently include the calculation of the
steady-state NOE, the exponential curve-fitting for the R1 and R2 relaxation rates, and for a

full and autematic model-free analysis using the d'Auvergne and Gooley, 2008b protocal. All
analyses perform error propagation using the gold standard Monte Calro simulations.
Please select from one of the following analysis types:

The name of the new analysis:

e Cancel

Figure 1.4: Screenshot of the relax GUI interface — the analysis selection wizard. From
here, the steady-state NOE analysis, the R; and Ro relaxation rates via exponential curve-
fitting, and the automated model-free analysis can be selected.

1.2.8 Scripting

What ever is done within the prompt is also accessible through scripting (Figure 1.2). Just
type your commands into a text file ending in ‘*.py’ and then at the terminal type

$ relax your_script.py

An example of a simple script which will minimise the model-free model ‘m4’ after loading

six relaxation data sets is

# Create the data pipe.
name = ‘m4’

pipe.create(name, ‘mf’)

# Load the PDB file.
structure.read_pdb(‘1£3y.pdb’)

# Set up the 15N and 1H spins.
structure.load_spins(‘@N’, ave_pos=True)
structure.load_spins(‘@H’, ave_pos=True)
spin.isotope(¢15N’, spin_id=‘@N’)
spin.isotope(‘1H’, spin_id=‘@H’)

# Load the relaxation data.

relax_data.read(ri_id=‘R1.600°, ri_type=‘R1’, frq=600.0%*1e6, file=‘r1.600.out’,

res_num_col=1, data_col=3, error_col=4)



1.2. HOW TO USE RELAX 11

relax_data.read(ri_id=‘R2.600’, ri_type=‘R2’, frq=600.0%*1e6, file=‘r2.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_600’, ri_type=‘NOE’, frq=600.0%1le6, file=‘noe.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R1.500’, ri_type=‘R1’, frq=500.0%*1e6, file=‘r1.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.500’, ri_type=‘R2’, frq=500.0%*1e6, file=‘r2.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_500’, ri_type=‘NOE’, frq=500.0%1le6, file=‘noe.500.out’,

res_num_col=1, data_col=3, error_col=4)

# Initialise the diffusion tensor.
diffusion_tensor.init((2e-8, 1.3, 60, 290), param_types=1, axial_type=‘prolate’,

fixed=True)

# Create all attached protons.

sequence.attach_protons()

# Define the magnetic dipole-dipole relaxation interaction.
dipole_pair.define(spin_id1=‘@N’, spin_id2=‘QH’, direct_bond=True)
dipole_pair.set_dist(spin_id1=‘@N’, spin_id2=‘@H’, ave_dist=1.02 * le-10)

dipole_pair.unit_vectors()

# Define the CSA relaxation interaction.

value.set(-172 * le-6, ‘csa’)

# Select a preset model-free model.

model_free.select_model (model=name)

# Grid search.

grid_search(inc=11)

# Minimise.

minimise(‘newton’)
# Finish.

results.write(file=‘results’, force=True)

state.save(‘save’, force=True)

Scripting is much more powerful than the prompt as advanced Python programming can be
employed (see the file ‘relax_curve_diff.py’ in the ‘sample_scripts’ directory for an example).

1.2.9 Sample scripts

A few sample scripts have been provided in the directory ‘sample_scripts’. These can be
copied and modified for different types of data analysis.



12 CHAPTER 1. INTRODUCTION

1.2.10 The test suite

To test that the program functions correctly, relax possesses an inbuilt test suite. The
suite is a collection of simple tests which execute or probe different parts of the program
checking that the software runs without problem. The test suite is executed by running
relax using the command

$ relax --test-suite

Alternatively the three components of the test suite — system tests, unit tests, and GUI
tests — can be run separately with

$ relax --system-tests
$ relax --unit-tests

$ relax --gui-tests

1.2.11 The GUI

If the wx Python module is installed on your system, you will have access to the GUI
interface of relax. To launch relax in GUI mode, type either

$ relax -g

or

$ relax --gui

The GUI is still in development, so many of the features of the prompt/scripting user
interfaces are not available (however the prompt and script modes can be accessed through
the menus if needed). Currently the GUI is an interface to the automatic analyses. This
provides an easy way for the user to perform quick analyses. The interface consists of a
tab for each analysis. By clicking on the ‘File->New analysis’ menu entry, the analysis
wizard will appear (see Figure 1.4). The following analyses can be set up using this wizard:

Steady-state NOE: this provides access to the steady-state NOE calculation with
pseudo Monte Carlo simulations for error analysis (this falls back to bootstrapping
as this is a calculation rather than optimisation). See Figure 4.2 on page 34.

R; and Ry : these provide easy access to optimisations and error analysis for the R; and
Rs relaxation rates via exponential curve-fitting (see Figures 5.1 and 5.2 on pages 40
and 41).

Model-free analysis : A fully automatic model-free protocol is provided in another tab.
This operates via the dauvergne _protocol module which implements the protocol
of d’Auvergne and Gooley (2008b) (see Figure 6.4 on page 77).

A number of windows in the GUI provide user feedback or allow for the viewing and editing
of data. These include:



1.2. HOW TO USE RELAX 13

roller -3 X

3

The relax co

4

Ccurrent GUI analysis: Model-free
Current data pipe: final
Global model: final

Incremental progress:

Monte Carlo simulations

Execution progress:

relax> nolnol .macro_write(data_type='tine_fast', style='classic’, colour_start=None, colour_end=None, colour_list=None, file=None, dir='/data/relax/gui/qui_testing/nf/final/molnel ", force=True) =
Opening the file '/data/relax/gui/qui_testing/nf/final/nolnol ftime_fast.mac' for writing

relax> nolnol .macro_write(data_type='tine_slow', style='classic', colour_start=None, colour_end=None, colour_List=None, file=None, dir='/data/relax/gui/qui_testing/nf/final/molnol*, force=Truel
Opening the file '/data/relax/gui/gui_testing/nf/final/molmol/tine_slow.mac' for writing,

relax> nolnol .macro_writeldata_type='rex', style='classic'. colour_start=None, colour_end=None, colour_List=None, file=None, dir='/data/relax/quiqui_testing/nf/final/nolmol'. force=Truel
Opening the file */datasrelax/gui/aui_testing/nf/final/molnol/rex.mac’ for writing,

relax> structure create_diff_tensor_pdb(scale=1.8¢-06, file='tensor.pdb', dir='/data/relax/qui/gui_testing/nf/final ', force=True
Chain A
Calculating the centre of mass

Total mass: M = 270, 2635199909999

Centre of mass: R = array(l -1,481 . 3
8.215855581435163e-19] |

Generating the geonetric object.
Creating the uniform vector distribution

Generating the PDB file.
Opening the file '/data/relax/gui/qui_testing/nf/final/tensor.pdb® for writing

Creating the PDB records
REMARK

HET

HETNAN

FORMUL

ATOM, HETATH, TER
conEcT

MASTER
END

Figure 1.5: Screenshot of the relax GUI interface — the relax controller window. The
purpose of the controller is for feedback. It shows the current analysis and current data
pipe, a number of progress gauges, and the relax text output.

The spi N e
User functions
ﬂ e current data pipe: [final =
= Spin system information
< i Molecule: sphere_mol1 Spln Contal‘ner
= @ Residue: 1 GLY
@& spini 1N
< @ Residue: 2 GLY Molecule sphere_moll
& spinian Residue number. 5
~ @ Residue; 3 GLY Residue name: GLY
@ spinsn Spin number. 9
= @ Residue: 4 GLY Spin name: N
g' spin: 7 N Spin ID string. ‘#sphere_moll:5& GLY@9&@N'
~ ® Residue: 5 GLY
# Spin container contents
= @ Residue: 6 GLY
@ spin: 11 n Variable value e
v 3@ Residue: 7 GLY attached_atom H str
& Spini 13N attached_proton NoneType [ |
~ @ Residue: & GLY chiz NoneType
& spini 15N chiz_sim [3.36252733148, list
R yon g Lrisasrase,
A o274 i 5.38464830103,

1.90790847667,
6.04146920204,

288296656099,

650364998981,

285861028353,

397212044816,

1.3834288393,

338955331178,

5.11966497449,

1.88613218254,

787212757443,

250721937924,

0876623236708,

0577897879683,

562587882214,

104778933722,

1.63077445953,

1.74192384394,

595936949156, +

Figure 1.6: Screenshot of the relax GUI interface — the spin viewer window. This viewer is
designed for easy addition and manipulation of spin systems within the relax data store.



14

Data pipe selection final

File type

Grace
Grace
Grace
Text
Text
Text

PyMOL
PyMOL
PyMoL
PyMoL
PyMOL
PyMOL
PyMOL
PyMOL
Molmol
Molmol
Molmol
Molmol
Molmol
Molmol
Molrmol
Melmol
Melmol
Molmol
Malmol

Diffusion tensor PDB

CHAPTER 1. INTRODUCTION

Results viewer -3 X

4

File path
Idatajrelaxfgui/gui_testing/mffinaligrace/s2.agr
datajrelaxfgui/gui_testing/mfifinaligracejte.agr
Jdatajrelaxfgui/gui_testing/mfffinaligrace/s2_vs_te.agr
Idatajrelaxfgui/gui_testing/mfffinal/s2 bt
Jdatajrelaxfgui/gui_testing/mfffinaljs2ftxt
Jdatajrelaxfquijgui_testing/mfffinal/s2s txt
Jdatajrelaxfqui/gui_testing/mfffinalte.txt
Idatajrelaxfgui/gui_testing/mfffinalff bt
Jdatajrelaxfgui/gui_testing/mfffinaljts.txt
Jdatafrelaxfgui/qui_testing/mfffinalirex.txt
Idatajrelaxfgui/gui_testing/mfifinallocal_trm txt
Idatajrelax/gui/gui_testing/mffinalipymol/s2. pml
datajrelaxsgui/gui_testing/mffinalipymol/s2f.pml
Jdatajrelaxfgui/gui_testing/mfffinalipymol/s2s.pml
Idatajrelaxfgui/gui_testing/mfffinalipymel/amp_fast.pml
Idatajrelaxfgui/gui_testing/mfffinalipymel/amp_slow.pml
Idatajrelaxfgui/gui_testing/mfffinalipymelte.prml
Idatajrelaxfgui/gui_testing/mffinalipymelfpml

Idatajrelax/guijqui_t gjmffinaljpymolfts.pml
Idatajrelax/guijqui_t a/mfffinaljpymolftime_fast prl
lifgui_testing P . slowpml

lijgui_testing P pml
Jdatajrelaxfguijgui_testing/mffinaljmolmol/s2.mac
Jdatajrelax/gui/gui_testing/mffinalimolmolfszf.mac
Idatajrelax/gui/gui_testing/mffinalimolmol/szs.mac
Idatajrelax/gui/gui_testing/mffinalimolmol/amp_fast.mac
Idatajrelaxfgui/gui_testing/mffinal/molmolramp_slow.mac
Idatajrelaxfgui/gui_testing/mffinalimolmolite.mac
Idatajrelaxigui/gui_testing/mfffinalimolmolthmac
Jdatajrelaxfgui/gui_testing/mffinalimolmolfts mac
Jdatajrelaxfgui/gui_testing/mffinalimolmolftime_fast.mac

Jdatajrelaxfgui/qui_testingfmfffinaljmolmoljtime_slow.mac

/datajrel Jifgui_t g/rfffinaljmolmoljrex.mac

Jdatajrelaxfgui/gui_testing/mffinaltensor.pdb

13 open

Figure 1.7: Screenshot of the relax GUI interface — the results viewer window. At the
end of one of the automated analyses, a number of results files will be created. This
can include text files containing the results, 2D Grace plots of the results, PyMOL and
MOLMOL macros plotting the results onto the structure, diffusion tensor objects for
viewing in PyMOL, etc. This window allows for easy opening of these results files.

-

=T - I N = I I Y BV I ¥

Data pipe editor N -0 X
4‘5 Create -Ji"a Copy == Delete == Hybridise E Switch
Data pipe Type Current Analysis tab
ellipsoid mf
noe (Mon Sep 18 11:36:23 2011) noe Steady-state NOE
mf (Mon Sep 19 16:06:24 2011)  mf Model-free
rl (Mon Sep 18 11:46:55 2011)  relax_fit R1 relaxation
local_tm mf
sphere mf
oblate mf
final mf cdp
prolate mf

T

Figure 1.8: Screenshot of the relax GUI interface — the pipe editor window. One analysis
may consist of one or more data pipes. And each analysis has its own unique set of data
pipes. This editor allows for the easy manipulation of data pipes for advanced users.



1.2. HOW TO USE RELAX 15

The relax prompt N =0 X

relax 1.3.14
Molecular dynamics by NMR data analysis

Copyright (C) 2001-2006 Edward d'Auvergne
Copyright (C) 2006-2012 the relax development team

This 1s free software which you are welcome to modify and redistribute under the conditions of the
GNU General Public License (GPL). This program, including all modules, is licensed under the GPL
and comes with absolutely no warranty. For details type 'GPL' within the relax prompt.

Assistance in using the relax prompt and scripting interface can be accessed by typing 'help' within
the prompt.

Processor fabric: Uni-processor.

Startup script executed: /etc/pythonrc.py
relax> pipe.display()

Data pipe name Data pipe type Current
rellipsoid’ mf

‘noe (Mon Sep 19 11:36:23 2011)'noe

tmf (Mon Sep 1S 16:06:24 2011)'mf

'r1 (Mon Sep 18 11:46:55 2011) 'relax_fit
*local_tm' mf

tsphere’ mf

‘oblate’ mf

tfinal' mf *
‘prolate’ mf

relax> |

Figure 1.9: Screenshot of the relax GUI interface — the prompt window. This window
mimics relax in the prompt user interface mode, and provides the full power of the
prompt/script Ul modes within the GUIL.

The relax controller : This window shows the progress of relax’s execution and displays
relax’s text output for checking if the analysis has been performed correctly and has
completed successfully (see Figure 1.5).

Spin viewer window : This is used to load spins system information into the relax data
store and to see the contents of the spin containers (see Figure 1.6).

Results viewer window : This presents a list of the results files which can be opened
by double clicking for visualisation using a text editor, Grace, PyMOL, MOLMOL,
etc (see Figure 1.7).

Data pipe editor : This window allows for easy manipulation of the data pipes of the
relax data store (see Figure 1.8).

The relax prompt : This window gives access to the relax prompt (see Figure 1.9).

1.2.12 Access to the internals of relax

To enable advanced Python scripting and control many parts of relax have been designed
in an object oriented fashion. If you would like to play with internals of the program the
entirety of relax is accessible by importation. For example all data is contained within
the object called the relax data store which, to be able to access it, needs be imported by
typing:

relax> from data import Relax_data_store; ds = Relax_data_store()
The ‘ds’ object is a dictionary type which contains the multiple data pipes. All of relax’s

packages, modules, functions, and classes are also accessible by import statements. For
example to create a rotation matrix from three Euler angles in the z-y-z notation, type:



16 CHAPTER 1. INTRODUCTION

relax> alpha = 0.1342

relax> beta = 1.0134

relax> gamma = 2.4747

relax> from maths_fns.rotation matrix import R_euler_zyz
relax> from numpy import float64, zeros

relax> R = zeros((3,3), float64)

relax> R_euler_zyz(R, alpha, beta, gamma)

relax> R

1.3 The multi-processor framework

1.3.1 Introduction

Thanks to Gary Thompson’s multi-processor framework, relax can be run on multi-
core/multi-CPU systems or on clusters to speed up calculations. As most analyses are
relatively quick and would not benefit from the multi-processor framework, only the model-
free and frame order analyses have currently been parallelised to run within this framework.
To use the multi-processor framework, the following should be installed:

OpenMPI: This is the most commonly used Message Passing Interface (MPI) protocol
software. The rest of this manual will assume that this is the implementation in use.
If another implementation is used, please see the specific documentation for that
software for how to set up a program to run via MPIL.

mpidpy: This dependency is essential for running in MPI mode in relax. If you would like
to use another Python implementation to access the MPI protocol, please consider
becoming a relax developer.

1.3.2 Usage

If you have access to a 256 node cluster and can run calculations on all nodes, assuming
that the ‘dauvergne protocol.py’ automated model-free analysis sample script will be
used (after modification for the system under study), relax can be executed by typing:

$ mpirun -np 257 /usr/local/bin/relax --multi=‘mpidpy’ dauvergne_protocol.py

Note that the argument ‘-np’ value is one more than the number of slaves you would like
to run. You should then see the following text in the initial relax printout:

Processor fabric: MPI 2.1 running via mpidpy with 256 slave processors & 1 master. Using
Open MPI 1.4.3.

1.3.3 Further details

For a full description of the multi-processor framework and how to use it, please see Gary
Thompson’s official announcement on the relax-devel mailing list.


http://www.open-mpi.org/
http://mpi4py.scipy.org/
https://mail.gna.org/public/relax-devel/2007-05/msg00000.html

1.4. USAGE OF THE NAME RELAX

1.4 Usage of the name relax

The program relax is so relaxed that the first letter should always be in lower case!

17



18

CHAPTER 1. INTRODUCTION



Chapter 2

Installation instructions

2.1 Dependencies
The following packages need to be installed before using relax:

Python: Version 2.5 or higher.

NumPy: Version 1.0.4 or higher. This package is used for most of the numerical calcu-
lations within relax.

SciPy: Version 0.7.1 or higher. This package is also optional. It is required only for the
frame order theory analyses.

wxPython: Version 2.8 or higher. This package is optional. It is required for the opera-
tion of the graphical user interface (GUI).

mpidpy: Version 1.2 or higher. This optional dependency is essential for running relax
in MPI mode.

Older versions of these packages may work, use them at your own risk. If, for older
dependency versions, errors do occur please submit a bug report to the bug tracker at
https://gna.org/bugs/?group=relax. That way a solution may be created for the next
relax release.

2.2 Installation

2.2.1 The source releases

Two types of software packages are available for download — the precompiled and source
distribution. Currently only relaxation curve-fitting requires compilation to function and
all other features of relax will be fully functional without compilation. If relaxation curve-
fitting is required but no precompiled version of relax exists for your operating system or
architecture then, if a C compiler is present, the C code can be compiled into the shared

19


http://python.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://mpi4py.scipy.org/
https://gna.org/bugs/?group=relax

20 CHAPTER 2. INSTALLATION INSTRUCTIONS

objects files *.s0, *.pyd or *.dylib which are loaded as modules into relax. To build
these modules the Scons system from http://scons.org/ is required. This software requires
the Python and numpy header files. Once Scons is installed type

$ scomns

in the base directory where relax has been installed and the C modules should, hopefully,
compile without any problems. Otherwise please submit a bug report to the bug tracker
at https://gna.org/bugs/?group=relax.

2.2.2 Installation on GNU /Linux

To install the program relax on a GNU/Linux system download either the precompiled
distribution labelled relax-x.x.x.GNU-Linux. arch.tar.bz2 matching your machine ar-
chitecture or the source distribution relax-x.x.x.src.tar.bz2. A number of installation
methods are possible. The simplest way is to switch to the user ‘root’, unpack and de-
compress the archive within the /usr/local directory by typing, for instance

$ tar jxvf relax-x.x.x.GNU-Linux.i686.tar.bz2

then create a symbolic link in /usr/local/bin by moving to that directory and typing

$ 1n -s ../relax/relax .

and finally possibly creating the byte-compiled Python *.pyc files to speed up the start
time of relax by typing

$ python -m compileall .

in the relax base directory. Alternatively if the Scons system is installed, by typing as the
root user

$ scons install

in the relax base directory, a directory in /usr/local/ called relax will be created,
all the uncompressed and untarred files will be copied into this directory, a symbolic
link in /usr/local/bin to the file /usr/local/relax/relax will be created, and then
finally the Python *.pyc files will be byte-compiled. To change the installation path to a
non-standard location the Scons script sconstruct in the base relax directory should be
modified by changing the variable INSTALL_PATH to point to the desired location.

2.2.3 Installation on MS Windows

In addition to the above dependencies, running relax on MS Windows requires a number
of additional programs. These include:

pyreadline: Version 1.3 or higher.

ctypes: The pyreadline package requires ctypes.


http://scons.org/
https://gna.org/bugs/?group=relax
http://projects.scipy.org/ipython/ipython/wiki/PyReadline/Intro
http://starship.python.net/crew/theller/ctypes/

2.2. INSTALLATION 21

To install, simply download the pre-compiled binary distribution relax-x.x.x.Win32.zip
or the source distribution relax-x.x.x.src.zip and extract the files to C:\Program
Files\relax-x.x.x. Then add this directory to the system environment path (in Win-
dows XP, right click on ‘My Computer’, go to ‘Properties’, click on the ‘Advanced’ tab,
and click on the ‘Envirnment Variables’ button. Then double click on the ‘Path’ system
variable and add the text “;C:\Program Files\relax-x.x.x” to the end of variable value field.
The Python installation must also be located on the path (add the text “;C:\Python27”,
changing the text to point to the correct directory, to the field). To run the program from
any directory inside the Windows command prompt (or dos prompt) type:

C:\> relax

Note that the pre-compiled binary distribution was built using a specific Python version
and that that version may need to be installed for the modules to be loaded. More details
are given on the download webpage.

2.2.4 Installation on Mac OS X

There are three ways of installing relax on a Mac. These are described at
http://www.nmr-relax.com/download.html and are the pre-compiled relax application,
the Fink or the source releases.

The relax application

The stand-alone relax application requires none of the dependencies listed above to be
installed. It is a universal binary compiled for the i386, x86-64 and PPC CPU architectures
(fat3) using the Mac OS X 10.5 framework. It should therefore run on Leopard, Snow
Leopard, and Lion. This very large bundle does not require system administrator access
to run.

Fink

Certain relax versions are available for Mac OS X within the Fink project. These can be
installed for Python 2.7 with the command:

> fink install relax-py27

The relax  releases  packaged  within Fink can  been  browsed at
http://pdb.finkproject.org/pdb/browse.php?name=relax. If the desired version is
not available, please download the relevant source package below or contact the fink
project using the ‘Maintainer’ email address given in the relax fink pages.

Note that when installing via fink, all the dependencies will be automatically selected and
installed as well. Although automatic, when starting from scratch that there could be well
over 250 source packages that need to be compiled (to set up the full GNU compilation
chain and other libraries which are then required to build Python, numpy, scipy, etc.).
This may take anywhere between 2 days to over a week (don’t forget to mention this fact
to your poor sys-admin).


http://www.nmr-relax.com/download.html
http://www.nmr-relax.com/download.html
http://pdb.finkproject.org/pdb/browse.php?name=relax

22 CHAPTER 2. INSTALLATION INSTRUCTIONS

The fink relax packages for different Python versions are relax-py27, relax-py26, relax-py25
and relax-py24.

Source release

See Section 2.2.1 on page 19.

2.2.5 Installation on your OS

For all others systems, please use the source distribution files and the Scons software to
build the C modules.

2.2.6 Running a non-compiled version

Compilation of the C code is not essential for running relax, however certain features of
the program will be disabled. Currently only the exponential curve-fitting for determining
the Ry and Ro relaxation rates requires compilation. To run relax without compilation
install the dependencies detailed above, download the source distribution which should be
named relax-x.x.x.src.tar.bz2, extract the files, and then run the file called relax in
the base directory.

2.3 Optional programs

The following is a list of programs which can be used by relax although they are not
essential for normal use.

2.3.1 Grace

Grace is a program for plotting two dimensional data sets in a professional look-
ing manner. It is used to visualise parameter values. It can be downloaded from
http://plasma-gate.weizmann.ac.il/Grace/ .

2.3.2 OpenDX

Version 4.1.3 or compatible. OpenDX is used for viewing the output of the space mapping
function and is executed by passing the command dx to the command line with various
options. The program is designed for visualising multidimensional data and can be found
at http://www.opendx.org/.


http://pdb.finkproject.org/pdb/package.php/relax-py27
http://pdb.finkproject.org/pdb/package.php/relax-py26
http://pdb.finkproject.org/pdb/package.php/relax-py25
http://pdb.finkproject.org/pdb/package.php/relax-py24
http://plasma-gate.weizmann.ac.il/Grace/
http://www.opendx.org/

2.3. OPTIONAL PROGRAMS 23

2.3.3 Molmol

Molmol is used for viewing the PDB structures loaded into the program and to display
parameter values mapped onto the structure.

2.3.4 PyMOL

PDB structures can also be viewed using PyMOL. This program can also be used to
display geometric objects generated by relax for representing physical concepts such as
the diffusion tensor and certain cone diffusion models.

2.3.5 Dasha

Dasha is a program used for model-free analysis of NMR relaxation data. It can be used as
an optimisation engine to replace the minimisation algorithms implemented within relax.

2.3.6 Modelfree4

Art Palmer’s Modelfree4 program is also designed for model-free analysis and can be used
as an optimisation engine to replace relax’s high precision minimisation algorithms.



24

CHAPTER 2. INSTALLATION INSTRUCTIONS



Chapter 3

Open source infrastructure

3.1 The relax web sites

The main web site for relax is http://www.nmr-relax.com. From these pages general
information about the program, links to the latest documentation, links to the most current
software releases, and information about the mailing lists are available. There are also
Google search capabilities built into the pages for searching both the HTML version of the
manual and the archives of the mailing lists.

The relax web site is hosted by the Gnal project (https://gna.org/) which is described as
“a central point for development, distribution and maintenance of Libre Software (Free
Software) projects”. relax is a registered Gna! project and its primary Gnal! web site is
https://gna.org/projects/relax. This site contains many more technical details than the
main web site.

3.2 The mailing lists

A number of mailing lists have been created covering different aspects of relax. These
include the announcement list, the relax users list, the relax development list, and the
relax committers list.

3.2.1 relax-announce

The relax announcement list “relax-announce at gna.org” is reserved for important an-
nouncements about the program including the release of new program versions. The
amount of traffic on this list is relatively low. If you would like to receive infor-
mation about relax you can subscribe to the list by vising the information page at
https://mail.gna.org/listinfo/relax-announce/. Previous announcements can be viewed
at https://mail.gna.org/public/relax-announce/ .

25


http://www.nmr-relax.com
https://gna.org/
https://gna.org/projects/relax
https://mail.gna.org/listinfo/relax-announce/
https://mail.gna.org/public/relax-announce/

26 CHAPTER 3. OPEN SOURCE INFRASTRUCTURE

3.2.2 relax-users

If you would like to ask questions about relax, discuss certain features, receive help, or to
communicate on any other subject related to relax the mailing list “relax-users at gna.org”
is the place to post your message. To subscribe to the list go to the relax-users information
page at https://mail.gna.org/listinfo/relax-users/. You can also browse the mailing list
archives at https://mail.gna.org/public/relax-users/.

3.2.3 relax-devel

A second mailing list exists for posts relating to the development of relax. The list
is “relax-devel at gna.org” and to subscribe go to the relax-devel information page at
https://mail.gna.org/listinfo/relax-devel /. Feature requests, program design, or any other
posts relating to relax’s structure or code should be sent to this list instead. The mailing
list archives can be browsed at https://mail.gna.org/public/relax-devel/.

3.2.4 relax-commits

One last mailing list is the relax commits list. This list is reserved for automatically
generated posts created by the version control software which looks after the relax source
code and these web pages. If you would like to become a developer you can subscribe to
the list at relax-commits information page https://mail.gna.org/listinfo/relax-commits/.
The list can also be browsed at https://mail.gna.org/public/relax-commits/ .

3.2.5 Replying to a message

When replying to a message on these lists remember to hit ‘respond to all’ so that the
mailing list is included in the CC field. Otherwise your message will only be sent to the
original poster and not return back to the list. Only messages to relax-users and relax-
devel will be accepted. If you are using Gmail’s web based interface, please do not click
on ‘Edit Subject’ as this currently mangles the email headers, creates a new thread on the
mailing list, and makes it difficult to follow the thread.

3.3 Reporting bugs

One of the philosophies in the construction of relax is that if there is something which
is not immediately obvious then that is considered a design bug. If any flaws in re-
lax are uncovered including general design flaws, bugs in the code, or documentation
issues these can be reported within relax’s bug tracker system. The link to submit
a bug is https://gna.org/bugs/?group=relax&func=additem while the main page for
browsing, submitting, viewing the statistics, or searching through the database is at
https://gna.org/bugs/?group=relax. Please do not report bugs to personal email ad-
dresses or to the mailing lists.


https://mail.gna.org/listinfo/relax-users/
https://mail.gna.org/public/relax-users/
https://mail.gna.org/listinfo/relax-devel/
https://mail.gna.org/public/relax-devel/
https://mail.gna.oactuallyrg/listinfo/relax-commits/
https://mail.gna.org/public/relax-commits/
https://gna.org/bugs/?group=relax&func=additem
https://gna.org/bugs/?group=relax

3.4. LATEST SOURCES — THE RELAX REPOSITORIES 27

When reporting a bug please include as much information as possible so that the problem
can be reproduced. Include information such as the release version or the revision number
if the repository sources are being used. Also include all the steps performed in order to
trigger the bug. Attachment of files is allowed so scripts and subsets of the input data
can be included. However please do not attach large files to the report. Prior to reporting
the bug try to make sure that the problem is indeed a bug and if you have any doubts
please feel free to ask on the relax-users mailing list. To avoid duplicates be sure that the
bug has not already been submitted to the bug tracker. You can search the bugs from the
page https://gna.org/project /search.php?group=relax.

Once the bug has been confirmed by one of the relax developers you may speed up the
resolution of the problem by trying to fixing the bug yourself. If you do wish to play with
the source code and try to fix the issue see the relax development chapter of this manual
on how to check out the latest sources, how to generate a patch (which is just the output
of diff in the ‘unified’ format), and the guidelines for the format of the code.

3.4 Latest sources — the relax repositories

relax’s source code is kept within a version control system called Subversion
(http://subversion.tigris.org/). Subversion or SVN allows fine control over the develop-
ment of the program. The repository contains all information about every change ever
made to the program. To learn more about the system the Subversion book located at
http://svnbook.red-bean.com/ is a good place to start. The contents of the relax repos-
itory can be viewed on-line at http://svn.gna.org/viewcvs/relax/. The current sources,
assuming that the most recent minor version number is 1.3, can be downloaded using the
SVN protocol by typing

$ svn co svn://svn.gna.org/svn/relax/1.3 relax

however if this does not work, try the command

$ svn co http://svn.gna.org/svn/relax/1.3 relax

to download using the HTTP protocol. The entire relax repository is backed up daily to
http://svn.gna.org/daily /relax.dump.gz.

3.5 News

Summaries of the latest news on relax can be found on the relax web site
https://gna.org/projects/relax. However more information can be found at the dedicated
news page https://gna.org/news/?group=relax.

3.6 The relax distribution archives

The relax distribution archives, the files to download to install relax, can be found at
http://download.gna.org/relax/. If a compiled binary distribution for your architecture


https://gna.org/project/search.php?group=relax
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svn.gna.org/viewcvs/relax/
http://svn.gna.org/daily/relax.dump.gz
https://gna.org/projects/relax
https://gna.org/news/?group=relax
http://download.gna.org/relax/

28 CHAPTER 3. OPEN SOURCE INFRASTRUCTURE

does not exist you are welcome to create this distribution yourself and submit it for in-
clusion in the relax project. To do this a number of steps are required. Firstly, the code
to each relax release or version resides in the ‘tags’ directory of the relax repository. To
check out version 1.3.15 for example type

$ svn co svn://svn.gna.org/svn/relax/tags/1.3.15 relax

Again the sources are available through HTTP by typing

$ svn co http://svn.gna.org/svn/relax/tags/1.3.15 relax

The binary distribution can then be created for your architecture by shifting to the main
directory of the checked out sources and typing

$ cd relax

$ scons binary_dist

At the end SCons will attempt to make a GPG signature for the newly created archive.
However this will fail as the current relax private GPG key is not available for secu-
rity reasons. If the SCons command fails, excluding the GPG signing, please submit
a bug report with as much information possible including the details described next to
https://gna.org/bugs/?group=relax&func=additem (the python and SCons version num-
bers may also be useful). Once the file has been created post a message to the relax
development mailing list describing the compilation and the creation of the archive, the
relax version number, the machine architecture, operating system, and the name of the
new file. Do not attach the file though. You will then receive a response explaining where
to send the file to. For security the archive will be thoroughly checked and if the source
code is identical to that in the repository and the C modules are okay, the file will be GPG
signed and uploaded to http://download.gna.org/relax/.


https://gna.org/bugs/?group=relax&func=additem
http://download.gna.org/relax/

Chapter 4

Calculating the NOE

4.1 Introduction

The calculation of NOE values is a straight forward and quick procedure which involves
two components — the calculation of the value itself and the calculation of the errors. To
understand the steps involved the execution of a sample NOE calculation script will be
followed in detail.

4.2 The sample script

# Script for calculating NOEs.

# Create the data pipe.

pipe.create(‘NOE’, ‘noe’)

# Load the sequence from a PDB file.

structure.read_pdb(name, ‘Ap4Aase_new_3.pdb’)
structure.load_spins(spin_id=‘@N’)

# Load the reference spectrum and saturated spectrum peak intensities.
noe.read(file=‘ref.list’, spectrum_type=‘ref’)

noe.read(file=‘sat.list’, spectrum_type=‘sat’)

# Set the errors.
noe.error (error=3600, spectrum_type=‘ref’)

noe.error (error=3000, spectrum_type=‘sat’)
# Individual residue errors.
noe.error (error=122000, spectrum_type=‘ref’, res_num=114)

noe.error (error=8500, spectrum_type=‘sat’, res_num=114)

# Deselect unresolved residues.

deselect.read(file=‘unresolved’)

29



30 CHAPTER 4. CALCULATING THE NOE

# Calculate the NOEs.
calc()

# Save the NOEs.

value.write(param=‘noe’, file=‘noe.out’, force=True)

# Create grace files.
grace.write(y_data_type=‘ref’, file=‘ref.agr’, force=True)
grace.write(y_data_type=‘sat’, file=‘sat.agr’, force=True)

grace.write(y_data_type=‘noe’, file=‘noe.agr’, force=True)

# View the grace files.
grace.view(file=‘ref.agr’)
grace.view(file=‘sat.agr’)

grace.view(file=‘noe.agr’)

# Write the results.

results.write(file=‘results’, dir=None, force=True)

# Save the program state.

state.save(‘save’, force=True)

4.3 Initialisation of the data pipe

The data pipe is simply created by the command

pipe.create(‘NOE’, ‘noe’)

This user function will then create a NOE calculation specific data pipe labelled ‘NOE’.
The second argument sets the pipe type to that of the NOE calculation. Setting the pipe
type is important so that the program knows which user functions are compatible with

the data pipe, for example the function minimise () is meaningless in this sample script
as the NOE values are directly calculated rather than optimised.

4.4 Loading the data

The first thing which need to be completed prior to any residue specific command is to
generate the sequence from a PDB file. In this case the command

structure.read_pdb(name, ‘Ap4Aase_new_3.pdb’)

will load the PDB file ‘Ap4Aase_new_3.pdb’ into relax. Then

structure.load_spins(spin_id=‘@N’)

will generate the molecule, residue, and spin sequence for the current data pipe. In this
situation there will be a single spin system per residue generated corresponding to the
backbone amide nitrogens. Although the PDB coordinates have been loaded into the
program, the structural information serves no purpose when calculating NOE values.



4.5. SETTING THE ERRORS 31

The next two commands

noe.read(file=‘ref.list’, spectrum_type=‘ref’)

noe.read(file=‘sat.list’, spectrum_type=‘sat’)

load the peak heights of the reference and saturated NOE experiments (although the
volume could be used instead). The keyword argument format has not been specified
hence the default format of a Sparky peak list (saved after typing ‘1t’) is assumed. If
the program XFEasy was used to analyse the spectra the argument format=‘xeasy’ is
necessary. The first column of the file should be the Sparky assignment string and it is
assumed that the 4'" column contains either the peak height or peak volume. For example:

Assignment wl w2 Data Height
LEU3N-HN 122.454 8.397 129722
GLY4N-HN 111.999 8.719 422375
SERSN-HN 115.085 8.176 384180
MET6N-HN 120.934 8.812 272100
ASP7N-HN 122.394 8.750 174970
SERSN-HN 113.916 7.836 218762

GLU11N-HN 122.194 8.604 30412
GLY12N-HN 110.525 9.028 90144

If you have any other format you would like read by relax please send an email to the relax
development mailing list detailing the software used, the format of the file (specifically
where the residue number and peak intensity are located), and possibly attaching an
example of the file itself.

4.5 Setting the errors

In this example the errors where measured from the base plain noise. The Sparky RMSD
function was used to estimate the maximal noise levels across the spectrum in regions
containing no peaks. For the reference spectrum the RMSD was approximately 3600
whereas in the saturated spectrum the RMSD was 3000. These errors are set by the
commands

noe.error (error=3600, spectrum_type=‘ref’)

noe.error (error=3000, spectrum_type=‘sat’)

For the residue G114, the noise levels are significantly increased compared to the rest of
the protein as the peak is located close to the water signal. The higher errors for this
residue are specified by the commands

noe.error (error=122000, spectrum_type=‘ref’, res_num=114)

noe.error (error=8500, spectrum_type=‘sat’, res_num=114)

4.6 Unresolved residues

As the peaks of certain residues overlap to such an extent that the heights cannot be
resolved, a simple text file was created called unresolved in which each line consists of a



32 CHAPTER 4. CALCULATING THE NOE

single residue number. By using the command

deselect.read(name, file=‘unresolved’)

all residues in the file unresolved are excluded from the analysis.

4.7 The NOE

At this point the NOE can be calculated. The user function

calc()

will calculate both the NOE and the errors. The NOE value will be calculated using the

formula

where I is the intensity of the peak in the saturated spectrum and I,.s is that of the

NOE =

Isat
Iref

)

reference spectrum. The error is calculated by

where 04, and o,y are the peak intensity errors in the saturated and reference spectra

ONOE =

(Usat : Iref)2 + (Uref : Isat)2

Iref

respectively. To create a file of the NOEs the command

value.write(param=‘noe’, file=‘noe.out’, force=True)

will create a file called noe.out with the NOE values and errors. The force flag will cause
any file with the same name to be overwritten. An example of the format of noe.out is

Num Name Value Error

1 GLY None None

2 PRO None None

3 LEU None None

4 GLY 0.12479588727508535 0.020551827436105764
5 SER 0.42240815792914105 0.02016346825976852
6 MET 0.45281703194372114 0.026272719841642134
7 ASP 0.60727570079478255 0.032369427242382849
8 SER 0.63871921623680161 0.024695665815261791
9 PRO None None

10 PRO None None

11 GLU None None

12 GLY 0.92927160307645906 0.059569089743604184
13 TYR 0.88832516377296256 0.044119641308479306
14 ARG 0.84945042565860407 0.060533543601110441

4.8 Viewing the results

Any two dimensional data set can be plotted in relax in conjunction with the program
Grace. The program is also known as Xmgrace and was previously known as ACE/gr or


http://plasma-gate.weizmann.ac.il/Grace/

4.8. VIEWING THE RESULTS 33

T
!

03 n

0.2 -

0.1 -

0 IERTRRTETE FRRTRRATA RURTNRRRTe IYRTRRTRTA AN NN NRURT ARURTRTRTE AN RUNUURURRI FURUNRTRNY AR NRURUNRE AURRTRUTNL KN NTNRUN NNURTRRTRI NRTRTRNUNL NNVRUNRARE SRTRURRNRI EURRTRRN

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Residue number

Figure 4.1: A Grace plot of the NOE value and error against the residue number. This is
an example of the output of the user function grace.write().

Xmgr. The highly flexible relax user function grace.write is capable of producing 2D
plots of any x-y data sets. The three commands

grace.write(y_data_type=‘ref’, file=‘ref.agr’, force=True)
grace.write(y_data_type=‘sat’, file=‘sat.agr’, force=True)

grace.write(y_data_type=‘noe’, file=‘noe.agr’, force=True)

create three separate plots of the peak intensity of the reference and saturated spectra as
well as the NOE. The x-axis in all three defaults to the residue number. As the x and
y-axes can be any parameter the command

grace.write(x_data_type=‘ref’, y._data_type=‘sat’, file=‘ref_vs_sat.agr’, force=True)

would create a plot of the reference verses the saturated intensity with one point per
residue. Returning to the sample script three Grace data files are created ref.agr,
sat.agr, and noe.agr and placed in the default directory ./grace. These can be vi-
sualised by opening the file within Grace. However relax will do that for you with the
commands

grace.view(file=‘ref.agr’)
grace.view(file=‘sat.agr’)

grace.view(file=‘noe.agr’)

An example of the output after modifying the axes is shown in figure 4.1.



34 CHAPTER 4. CALCULATING THE NOE

relax 1.3.14 -3 X

File Wiew Userfunctions Tools Help

°°Q BHHEA 7 #ule=

Steady-state NOE | R1 relaxation | Model-free

Setup for steady-state NOE analysis

The data pipe: noe (Mon Sep 19 11:36:23 2011)
Onn NMR frequency label [MHz] 500

. Results directory fdatafrelaxfguifgui_testing/nos 3 Change
y Spin systems 4 spins loaded and selected # Spin editor
N
Spectra list

g add == Delete

Spectrum ID string NOE spectrurm type
ref Reference
sat Saturated
A Execute relax
(c) 2001-2011 the relax development team Current data pipe noe (Mon Sep 19 11:36:23 2011)

Figure 4.2: Screenshot of the relax GUI interface — the steady-state NOE analysis.
4.9 The GUI auto-analysis

The relax graphical user interface provides access to an automated steady-state NOE
analysis (Figure 4.2). This can be selected through the analysis selection wizard, see
Figure 1.4 on page 10. This auto-analysis operates in the same way as the sample script
described in this chapter. The 2D Grace visualisation will also be created as part of the
analysis and presented in the results viewer window (Figure 1.7 on page 14).



Chapter 5

The R; and Ry relaxation rates —
relaxation curve-fitting

5.1 Introduction

Relaxation curve-fitting involves a number of steps including the loading of data, the
calculation of both the average peak intensity across replicated spectra and the standard
deviations of those peak intensities, selection of the experiment type, optimisation of the
parameters of the fit, Monte Carlo simulations to find the parameter errors, and saving
and viewing the results. To simplify the process a sample script will be followed step by
step as was done with the NOE calculation.

5.2 The sample script

# Script for relaxation curve-fitting.

# Create the ‘rx’ data pipe.

pipe.create(‘rx’, ‘relax_fit’)

# Load the backbone amide 15N spins from a PDB file.
structure.read_pdb(‘Ap4Aase_new_3.pdb’)

structure.load_spins(spin_id=‘@N’)

# Load the peak intensities.
relax_fit.read(file=‘T2_ncycl.list’, relax_time=0.0176)
relax fit.read(file=‘T2_ncyclb.list’, relax_time=0.0176)
relax_fit.read(file=‘T2_ncyc2.list’, relax_time=0.0352)
relax fit.read(file=‘T2_ncyc4.list’, relax_time=0.0704)
relax_fit.read(file=‘T2_ncyc4b.list’, relax_time=0.0704)
relax fit.read(file=‘T2_ncyc6.list’, relax_time=0.1056)
relax_fit.read(file=‘T2_ncyc9.list’, relax_time=0.1584)
relax fit.read(file=‘T2_ncyc9b.list’, relax_time=0.1584)

35



36 CHAPTER 5. RELAXATION CURVE-FITTING

relax fit.read(file=‘T2_ncycll.list’, relax_time=0.1936)
relax_fit.read(file=‘T2_ncycllb.list’, relax_time=0.1936)

# Calculate the peak intensity averages and the standard deviation of all spectra.

relax_fit.mean_and_error ()

# Deselect unresolved residues.

deselect.read(file=‘unresolved’)

# Set the relaxation curve type.

relax fit.select_-model(‘exp’)

# Grid search.

grid_search(inc=11)

# Minimise.

minimise(‘simplex’, scaling=False, constraints=False)

# Monte Carlo simulations.

monte_carlo.setup (number=500)
monte_carlo.create_data()

monte_carlo.initial_values()

minimise(‘simplex’, scaling=False, constraints=False)

monte_carlo.error_analysis()

# Save the relaxation rates.

value.write(param=‘rx’, file=‘rx.out’, force=True)

# Grace plots of the relaxation rate.
grace.write(y_data_type=‘rx’, file=‘rx.agr’, force=True)

grace.view(file=‘rx.agr’)

# Save the program state.

state.save(file=‘rx.save’, force=True)

5.3 Initialisation of the data pipe and loading of the data

The start of this sample script is very similar to that of the NOE calculation on page 30.
The command

pipe.create(‘rx’, ‘relax_fit’)

initialises the data pipe labelled ‘rx’. The data pipe type is set to relaxation curve-fitting
by the argument ‘relax_fit’. The backbone amide nitrogen sequence is extracted from
a PDB file using the same commands as the NOE calculation script

structure.read_pdb(name, ‘Ap4Aase_new_3.pdb’)

structure.load_spins(spin_id=‘@N’)



5.4. THE REST OF THE SETUP 37

To load the peak intensities into relax the user function relax_fit.read is executed. Two
important keyword arguments to this command are the file name and the relaxation time
period of the experiment in seconds. It is assumed that the file format is that of a Sparky
peak list. Using the format argument, this can be changed to XEasy text window output
format. To be able to import any other type of format please send an email to the relax
development mailing list with the details of the format. Adding support for new formats
is trivial. The following series of commands will load peak intensities from six different
relaxation periods, four of which have been duplicated

relax_fit.read(file=‘T2_ncycl.list’, relax_time=0.0176)
relax fit.read(file=‘T2_ncyclb.list’, relax_time=0.0176)
relax_fit.read(file=‘T2_ncyc2.list’, relax_time=0.0352)
relax fit.read(file=‘T2_ncyc4.list’, relax_time=0.0704)
relax_fit.read(file=‘T2_ncyc4b.list’, relax_time=0.0704)
relax_fit.read(file=‘T2_ncyc6.list’, relax_time=0.1056)
relax fit.read(file=‘T2_ncyc9.list’, relax_time=0.1584)
relax_fit.read(file=‘T2_ncyc9b.list’, relax_time=0.1584)
relax fit.read(file=‘T2_ncycll.list’, relax_time=0.1936)
relax_fit.read(file=‘T2_ncycllb.list’, relax_time=0.1936)

The format for the Sparky peak list is assumed to have the intensity value in the 4"

column, e.g.:

Assignment wil w2 Data Height
LEU3N-HN 122.454 8.397 129722
GLY4N-HN 111.999 8.719 422375
SERSN-HN 115.085 8.176 384180
MET6N-HN 120.934 8.812 272100
ASP7N-HN 122.394 8.750 174970
SER8SN-HN 113.916 7.836 218762

GLU11N-HN 122.194 8.604 30412
GLY12N-HN 110.525 9.028 90144

5.4 The rest of the setup

Once all the peak intensity data has been loaded a few calculations are required prior
to optimisation. Firstly the peak intensities for individual residues needs to be averaged
across replicated spectra. The peak intensity errors also have to be calculated using the
standard deviation formula. These two operations are executed by the user function

relax_fit.mean_and_error()

Any residues which cannot be resolved due to peak overlap were included in a file called
‘unresolved’. This file consists solely of one residue number per line. These residues are
excluded from the analysis by the user function

deselect.read(file=‘unresolved’)

Finally the experiment type is specified by the command

relax fit.select_model(‘exp’)



38 CHAPTER 5. RELAXATION CURVE-FITTING

The argument ‘exp’ sets the relaxation curve to a two parameter {R,, Iy} exponential
which decays to zero. The formula of this function is

I(t) = Iye R, (5.1)

where I(t) is the peak intensity at any time point ¢, Ij is the initial intensity, and R, is
the relaxation rate (either the R; or Rg). Changing the user function argument to ‘inv’
will select the inversion recovery experiment. This curve consists of three paremeters {Rj,
Iy, I} and does not decay to zero. The formula is

I(t) = I, — Iye R, (5.2)

5.5 Optimisation

Now that everything has been setup minimision can be used to optimise the parameter
values. Firstly a grid search is applied to find a rough starting position for the subsequent
optimisation algorithm. Eleven increments per dimension of the model (in this case the
two dimensions {Ry, Iy}) is sufficient. The user function for executing the grid search is

grid_search(inc=11)

The next step is to select one of the minimisation algorithms to optimise the model pa-
rameters. Currently for relaxation curve-fitting only simplex minimisation is supported.
This is because the relaxation curve-fitting C module is incomplete only implementing the
chi-squared function. The chi-squared gradient (the vector of first partial derivatives) and
chi-squared Hessian (the matrix of second partial derivatives) are not yet implemented in
the C modules and hence optimisation algorithms which only employ function calls are
supported. Simplex minimisation is the only technique in relax which fits this criteron. In
addition constraints cannot be used as the constraint algorithm is dependent on gradient
calls. Therefore the minimisation command for relaxation curve-fitting is forced to be

minimise(‘simplex’, constraints=False)

5.6 Error analysis

Only one technique adequately estimates parameter errors when the parameter values
where found by optimisation — Monte Carlo simulations. In relax this can be implemented
by using a series of functions from the monte_carlo user function class. Firstly the number
of simulations needs to be set

monte_carlo.setup (number=500)

For each simulation, randomised relaxation curves will be fit using exactly the same
methodology as the original exponential curves. These randomised curves are created
by back calculation from the fitted model parameter values and then each point on the
curve randomised using the error values set earlier in the script

monte_carlo.create_data()



5.7. FINISHING OFF 39

As a grid search for each simulation would be too computationally expensive, the starting
point for optimisation for each simulation can be set to the position of the optimised
parameter values of the model

monte_carlo.initial_values()

Then exactly the same optimisation as was used for the model can be performed
minimise(‘simplex’, constraints=False)

The parameter errors are then determined as the standard deviation of the optimised
parameter values of the simulations

monte_carlo.error_analysis()

5.7 Finishing off

To finish off, the script first saves the relaxation rates together with their errors in a simple
text file

value.write(param=‘rx’, file=‘rx.out’, force=True)

Grace plots are created and viewed
grace.write(y_data_type=‘rx’, file=‘rx.agr’, force=True)

grace.view(file=‘rx.agr’)

and finally the program state is saved for future reference

state.save(file=‘rx.save’, force=True)

5.8 The GUI auto-analysis

The R; and Ry relaxation rates can be calculated using the relax GUI (see Figures 5.1
and 5.1). These auto-analyses can be selected using the analysis selection wizard (Fig-
ure 1.4 on page 10). Just as with the steady-state NOE, these auto-analyses are very
similar in spirit to the sample script described in this chapter, though the Grace 2D vi-
sualisation is more advanced. If you have read this chapter, the usage of these analyses
should be self explanatory.



40 CHAPTER 5. RELAXATION CURVE-FITTING

relax1.3.14 N =5 X
File Wiew Userfunctions Tools Help
°°0 BHHE 7 #ule=
Steady-state NOE R1 relaxation | Model-free
Setup for R1 relaxation analysis
The data pipe: r1 (Mon Sep 19 11:46:55 2011)
NMR frequency label [MHz] 600
Results directory fdatarelaxguifgui_testing/rl 1 Change
Spin systems 8 spins loaded and selected # Spin editor:
Spectra list
o Add == Delete
B & Spectrum ID string Delay times Replicate IDs
1 0.172 1b
1b 0172 1
2 0.344
4 0.688 4b
ab 0.688 4
6 1.032
9 1548 9b
9b 1.548 9
1 1.892 11b

e

Grid search increments: 21 :
Monte Carlo simulation number: 200 =
A Execute relax
(c) 2001-2011 the relax development team Current data pipe r1 (Mon Sep 18 11:46:55 2011)

Figure 5.1: Screenshot of the relax GUI interface — the R; analysis.



5.8. THE GUI AUTO-ANALYSIS 41

File Wiew Userfunctions Tools Help

°°0 BHEA 7 #ul=

Steady-state NOE | R1 relaxation | Model-free R2 relaxation

The data pipe:
NMR frequency label [MHz]
Results directory

Spin systerns

Spectra list

o Add == Delete

Speetrum ID string

~N
~N

Grid search increments:

(C) 2001-2011 the relax development team

Monte Carlo simulation number:

relax 1.3.14 -3 X

Setup for R2 relaxation analysis

r2 (Fri Mar 16 17:44:48 2012)

[1000

fdatafrelaxiguifgui_testing 1 Change
0 spins loaded and selected # Spin editor:
21 :

500 =

A Execute relax

Current data pipe r2 (Fri Mar 16 17:44.:48 2012)

Figure 5.2: Screenshot of the relax GUI interface — the Ry analysis.



42

CHAPTER 5. RELAXATION CURVE-FITTING



Chapter 6

Model-free analysis

6.1 Theory

6.1.1 The chi-squared function — x?(f)

The chi-squared equation is itself dependent on the relaxation equations through the back-
calculated relaxation data R(6). Letting the relaxation values of the set R(#) be the
R1(0), Ra(0), and NOE(#) an additional layer of abstraction can be used to simplify the
calculation of the gradients and Hessians. This involves decomposing the NOE equation
into the cross relaxation rate constant oyxog(f) and the auto relaxation rate R;(6). Taking
equation (6.5) below the transformed relaxation equations are

Ri(6) = R} (0), 1)

R (0) = Ry(0), 6.1b
- Yu O-NOE(H)

NOE(#) = 1+ 200, (6.1c)

whereas the relaxation equations are the Ry(0), Ra(f), onor(f).

6.1.2 The relaxation equations — R (6)

The relaxation values of the set R’(f) include the spin-lattice, spin-spin, and cross-
relaxation rates at all field strengths. These rates are respectively (Abragam, 1961)

R () = d(J(wH —wy) + 3J(wx) + 6. (wi + wx)) +ed(wy), (6.22)
Ro(0) = g(u(m b J(wr — wx) + 37 (wx) + 6. (wr)
6 (w + wX)) + g (4J(0) + 3J(wX)) + Rea, (6.2)

onon(6) = d<6J(wH Fwy) — J(wn — wX)), (6.2¢)

43



44 CHAPTER 6. MODEL-FREE ANALYSIS

where J(w) is the power spectral density function and R, is the relaxation due to chemical
exchange. The dipolar and CSA constants are defined in SI units as

1 /po\? ('YH'YXh)2
=7 (%) I (6:3)
c= @, (6.4)

where 1 is the permeability of free space, 75 and vy are the gyromagnetic ratios of the
H and X spins respectively, h is Plank’s constant divided by 27, r is the bond length, and
Ao is the chemical shift anisotropy measured in ppm. The cross-relaxation rate oyog is
related to the steady state NOE by the equation

YH O'NOE(H)
NOE(#) =1+ ’Y_X Ry (0) (6.5)

6.1.3 The spectral density functions — J(w)

The relaxation equations are themselves dependent on the calculation of the spectral
density values J(w). Within model-free analysis these are modelled by the original model-
free formula (Lipari and Szabo, 1982a,b)

25 52 (1 - S%)(re + 7)7e
Jw) = 5 Z:z_:k am (1 + (wTi)? * (Te + 1) + (WTeTi)2)7 (6.6)

where S? is the square of the Lipari and Szabo generalised order parameter and 7. is
the effective correlation time. The order parameter reflects the amplitude of the motion
and the correlation time in an indication of the time scale of that motion. The theory
was extended by Clore et al. (1990) by the modelling of two independent internal motions
using the equation

k 2
2 2 1—-8S9(r¢ +1)7T
J(w):_zci'n S +( f)(f )f
5= 1+ (wn)?  (1f +7)% + (wrpmi)?

(82 — S?)(7s + T3)Ts
(T5f+ ;)% + (WTsTi)2> (6.7)

where SJ% and 7 are the amplitude and timescale of the faster of the two motions whereas
S2 and 7, are those of the slower motion. SJ% and S? are related by the formula S? = S]%-S?.
6.1.4 Brownian rotational diffusion

In equations (6.6) and (6.7) the generic Brownian diffusion NMR correlation function
presented in d’Auvergne (2006) has been used. This function is

k
1
Clr =5 Yo e, (6.8)
i=—k

where the summation index i ranges over the number of exponential terms within the
correlation function. This equation is generic in that it can describe the diffusion of an
ellipsoid, a spheroid, or a sphere.



6.1. THEORY 45

Diffusion as an ellipsoid

For the ellipsoid defined by the parameter set {D;s0, D4, Dy, o, B, v} the variable k
is equal to two and therefore the index i € {—2,—1,0,1,2}. The geometric parameters
{Disos Da, Dy} are defined as

Diso = 5(Dz + Dy + D), (6.92)
Do=9.— 3D, +D,), (6.9b)

Dy -9,
D, = S (6.9¢)

and are constrained by

0 < Djso < 00, (6.10a)

Qiso
0<D,< 5 < 3Bis0, (6.10b)

3T 0r

The orientational parameters {«, (, v} are the Euler angles using the z-y-z rotation
notation.

The five weights ¢; are defined as

c_o=1(d—e), (6.11a)
c_1 = 306,62, (6.11Db)
co = 36262, (6.11c)
1 = 38207, (6.11d)
e =1(d+e), (6.11e)
where
d=3(6y+0,+67)—1, (6.12)
e= (14 3D,) (63 +20,67) + (1 —3D,) (6, + 26262) — 2 (67 +20267) |, (6.13)
and where
R =+/1+3D2 (6.14)
The five correlation times 7; are
1/7_5 = 6Dis0 — 20,4, (6.15a)
/71 = 60450 — Do(1 +3D,), (6.15b)
1/70 = 6950 — Da(1 — 39,), (6.15¢)
1/71 = 6950 + 20, (6.15d)
1/7’2 = 69,50 + 2D NR. (6.156)



46 CHAPTER 6. MODEL-FREE ANALYSIS

Diffusion as a spheroid

The variable k is equal to one in the case of the spheroid defined by the parameter set
{Disos Da, 0, ¢}, hence i € {—1,0,1}. The geometric parameters {D;s,, D,} are defined

as
Diso = 3(D +29,), (6.16a)
@a :CD“ _QJ_. (616b)

and are constrained by
0 < Djgo < 00, (6.17a)
3450 < Dy < 3Djs0- (6.17b)

The orientational parameters {0, ¢} are the spherical angles defining the orientation of
the major axis of the diffusion frame within the lab frame.

The three weights ¢; are

e = 1(362 - 1)%, (6.18a)
= 30%(1 — 62), (6.18b)
=3(62 - 1)% (6.18¢)

The five correlation times 7; are
1/721 = 6450 — 290, (6.19a)
1/7—0 = 6Dj50 — Do, (619b)
1/7’1 = 06D;s0 + 29,. (619C)

Diffusion as a sphere

In the situation of a molecule diffusing as a sphere either described by the single parameter
Tm OF Djs, the variable k is equal to zero. Therefore i € {0}. The single weight c¢q is
equal to one and the single correlation time 73 is equivalent to the global tumbling time
Tm given by

1/7m = 6D;s0- (6.20)

This is diffusion equation presented in Bloembergen et al. (1948).

6.1.5 The model-free models

Extending the list of models given in Mandel et al. (1995); Fushman et al. (1997);
Orekhov et al. (1999a); Korzhnev et al. (2001); Zhuravleva et al. (2004), the models built



6.1. THEORY 47

into relax include

m0 = {}, 6.21.0
ml = {S?}, 6.21.1
m2 = {S% 7.}, 6.21.2
m3 = {52, Re, }, 6.21.3

m4 = {S% 7., Rex},

mb = {52,5?,7'3},

m6 = {32,Tf,sj2c,7'3},

m7 = {S° 57,75, Rex},
m8 = {52,Tf,S]2¢,Ts,Rex},
m9 = {Re,}.

The parameter R., is scaled quadratically with field strength in these models as it is
assumed to be fast. In the set theory notation, the model-free model for the spin system
1 is represented by the symbol §;. Through the addition of the local 7, to each of these
models, only the component of Brownian rotational diffusion experienced by the spin
system is probed. These models, represented in set notation by the symbol T;, are

tm0 = {7},

tml = {7,,,, 5%},

tm2 = {7, S%, 7.},

tm3 = {7, S%, Rex},

tm4 = {7, 8% 7o, Rex },

tmb = {Tm,S2,SJ%,7'S},

tm6 = {Tm,S2,Tf,SJ2c,TS},
tm7 = {7m, S, 57, 75, Rex},
tm8 = {7, S, 77, S]%,Ts, Re.},
tm9 = {7, Rex }-

6.1.6 Model-free optimisation theory
The model-free space

The optimisation of the parameters of an arbitrary model is dependent on a function f
which takes the current parameter values § € R™ and returns a single real value f(6) € R
corresponding to position 6 in the n-dimensional space. For it is that single value which
is minimised as

0 = arg m@in f£(6), (6.23)

where 0 is the parameter vector which is equal to the argument which minimises the



48 CHAPTER 6. MODEL-FREE ANALYSIS

function f(#). In model-free analysis f(0) is the chi-squared equation

n

X0)=> (Ri = Ra(6)) (6.24)

where ¢ is the summation index, R; is the experimental relaxation data which belongs to
the data set R and includes the Rj, Rg, and NOE values at all field strengths, R;(0) is the
back calculated relaxation data belonging to the set R(#), and o; is the experimental error.
For the optimisation of the model-free parameters while the diffusion tensor is held fixed,
the summation index ranges over the relaxation data of an individual spin. If the diffusion
parameters are optimised simultaneously with the model-free parameters the summation
index ranges over all relaxation data of all selected spins of the macromolecule.

Given the current parameter values the model-free function provided to the algorithm will
calculate the value of the model-free spectral density function J(w) at the five frequencies
which induce NMR relaxation by using Equations (6.6) and (6.7). The theoretical Ry, Ra,
and NOE values are then back-calculated using Equations (6.2a), (6.2b), (6.2c), and (6.5).
Finally, the chi-squared value is calculated using Equation (6.24).

Topology of the space

The problem of finding the minimum is complicated by the fact that optimisation algo-
rithms are blind to the curvature of the complete space. Instead they rely on topological
information about the current and, sometimes, the previous parameter positions in the
space. The techniques use this information to walk iteratively downhill to the minimum.
Very few optimisation algorithms rely solely on the function value, conceptually the height
of the space, at the current position. Most techniques also utilise the gradient at the current
position. Although symbolically complex in the case of model-free analysis, the gradient
can simply be calculated as the vector of first partial derivatives of the chi-squared equa-
tion with respect to each model-free parameter. The gradient is supplied as a second
function to the algorithm which is then utilised in diverse ways by different optimisation
techniques. The function value together with the gradient can be combined to construct
a linear or planar description of the space at the current parameter position by first-order
Taylor series approximation

fO +x) = fi. + 2"V fi, (6.25)

where fj is the function value at the current parameter position 0, V f is the gradient at
the same position, and x is an arbitrary vector. By accumulating information from previous
parameter positions a more comprehensive geometric description of the curvature of the
space can be exploited by the algorithm for more efficient optimisation.

The best and most comprehensive description of the space is given by the quadratic ap-
proximation of the topology which is generated from the combination of the function
value, the gradient, and the Hessian. From the second-order Taylor series expansion the
quadratic model of the space is

fOr+2) = fr, + 2V i + 12TV fro, (6.26)



6.1. THEORY 49

where V2fj, is the Hessian, which is the symmetric matrix of second partial derivatives of
the function, at the position ;. As the Hessian is computationally expensive a number of
optimisation algorithms try to approximate it.

To produce the gradient and Hessian required for model-free optimisation a large chain of
first and second partial derivatives needs to be calculated. Firstly the partial derivatives
of the spectral density functions (6.6) and (6.7) are necessary. Then the partial derivatives
of the relaxation equations (6.2a) to (6.2c) followed by the NOE equation (6.5) are needed.
Finally the partial derivative of the chi-squared formula (6.24) is required. These first and
second partial derivatives, as well as those of the components of the Brownian diffusion
correlation function for non-isotropic tumbling, are presented in Chapter 8.

Optimisation algorithms

Prior to minimisation, all optimisation algorithms investigated require a starting position
within the model-free space. This initial parameter vector is found by employing a coarse
grid search — chi-squared values at regular positions spanning the space are calculated
and the grid point with the lowest value becomes the starting position. The grid search
itself is an optimisation technique. As it is computationally expensive the number of grid
points needs to be kept to a minimum. Hence the initial parameter values are a rough and
imprecise approximation of the local minimum. Due to the complexity of the curvature of
the model-free space, the grid point with the lowest chi-squared value may in fact be on
the opposite side of the space to the local minimum.

Once the starting position has been determined by the grid search the optimisation al-
gorithm can be executed. The number of algorithms developed within the mathematical
field of optimisation is considerable. They can nevertheless be grouped into one of a small
number of major categories based on the fundamental principles of the technique. These
include the line search methods, the trust region methods, and the conjugate gradient
methods. For more details on the algorithms described below see Nocedal and Wright
(1999).

Line search methods

The defining characteristic of a line search algorithm is to choose a search direction py
and then to find the minimum along that vector starting from 6 (Nocedal and Wright,
1999). The distance travelled along py is the step length «aj and the parameter values for
the next iteration are

Ok11 = 0 + arpg. (627)

The line search algorithm determines the search direction p, whereas the value of ay, is
found using an auxiliary step-length selection algorithm.

One of the simplest line search methods is the steepest descent algorithm. The search
direction is simply the negative gradient, p = —V fi, and hence the direction of maximal
descent is always followed. This method is inefficient — the linear rate of convergence
requires many iterations of the algorithm to reach the minimum and it is susceptible to
being trapped on saddle points within the space.



50 CHAPTER 6. MODEL-FREE ANALYSIS

The coordinate descent algorithms are a simplistic group of line search methods whereby
the search directions alternate between vectors parallel to the parameter axes. For
the back-and-forth coordinate descent the search directions cycle in one direction and
then back again. For example for a three parameter model the search directions cycle
01,05,03,05,01,0-, ..., which means that each parameter of the model is optimised one by
one. The method becomes less efficient when approaching the minimum as the step length
oy, continually decreases (ibid.).

The quasi-Newton methods begin with an initial guess of the Hessian and update it at
each iteration using the function value and gradient. Therefore the benefits of using the
quadratic model of (6.26) are obtained without calculating the computationally expensive
Hessian. The Hessian approximation By is updated using various formulae, the most
common being the BFGS formula (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). The search direction is given by the equation p, = —B, 'V fi. The quasi-Newton
algorithms can attain a superlinear rate of convergence, being superior to the steepest
descent or coordinate descent methods.

The most powerful line search method when close to the minimum is the Newton search
direction

pe=—Vf 'V i (6.28)

This direction is obtained from the derivative of (6.26) which is assumed to be zero at
the minimum of the quadratic model. The vector p; points from the current position
to the exact minimum of the quadratic model of the space. The rate of convergence is
quadratic, being superior to both linear and superlinear convergence. The technique is
computationally expensive due to the calculation of the Hessian. It is also susceptible to
failure when optimisation commences from distant positions in the space as the Hessian
may not be positive definite and hence not convex, a condition required for the search
direction both to point downhill and to be reasonably oriented. In these cases the quadratic
model is a poor description of the space.

A practical Newton algorithm which is robust for distant starting points is the Newton
conjugate gradient method (Newton-CG). This line search method, which is also called the
truncated Newton algorithm, finds an approximate solution to Equation (6.28) by using
a conjugate gradient (CG) sub-algorithm. Retaining the performance of the pure Newton
algorithm, the CG sub-algorithm guarantees that the search direction is always downhill as
the method terminates when negative curvature is encountered. This algorithm is similar
to the Newton-Raphson-CG algorithm implemented within Dasha. Newton optimisation
is sometimes also known as the Newton-Raphson algorithm and, as documented in the
source code, the Newton algorithm in Dasha is coupled to a conjugate gradient algorithm.
The auxiliary step-length selection algorithm in Dasha is undocumented and may not be
employed.

Once the search direction has been determined by the above algorithms the minimum
along that direction needs to be determined. Not to be confused with the methodology
for determining the search direction pyg, the line search itself is performed by an auxiliary
step-length selection algorithm to find the value aj. A number of step-length selection
methods can be used to find a minimum along the line 0 + agpg, although only two will
be investigated. The first is the backtracking line search of Nocedal and Wright (1999).
This method is inexact — it takes a starting step length aj and decreases the value until



6.1. THEORY 51

a sufficient decrease in the function is found. The second is the line search method of
Moré and Thuente (1994). Designed to be robust, the MT algorithm finds the exact
minimum along the search direction and guarantees sufficient decrease.

Trust region methods

In the trust region class of algorithms the curvature of the space is modelled quadratically
by (6.26). This model is assumed to be reliable only within a region of trust defined by
the inequality ||p|| < Ax where p is the step taken by the algorithm and Ay is the radius
of the n-dimensional sphere of trust (Nocedal and Wright, 1999). The solution sought for
each iteration of the algorithm is

min my(p) = fi +p Vi + 50" Bep, st [pll < Ag, (6.29)

where my(p) is the quadratic model, By is a positive definite matrix which can be the true
Hessian as in the Newton model or an approximation such as the BFGS matrix, and ||p||
is the Euclidean norm of p. The trust region radius Ay is modified dynamically during
optimisation — if the quadratic model is found to be a poor representation of the space the
radius is decreased whereas if the quadratic model is found to be reasonable the radius is
increased to allow larger, more efficient steps to be taken.

The Cauchy point algorithm is similar in concept to the steepest descent line search algo-
rithm. The Cauchy point is the point lying on the gradient which minimises the quadratic
model subject to the step being within the trust region. By iteratively finding the Cauchy
point the local minimum can be found. The convergence of the technique is inefficient,
being similar to that of the steepest descent algorithm.

In changing the trust region radius the exact solutions to (6.29) map out a curved trajectory
which starts parallel to the gradient for small radii. The end of the trajectory, which occurs
for radii greater than the step length, is the bottom of the quadratic model. The dogleg
algorithm attempts to follow a similar path by first finding the minimum along the gradient
and then finding the minimum along a trajectory from the current point to the bottom
of the quadratic model. The minimum along the second path is either the trust region
boundary or the quadratic solution. The matrix By of (6.29) can be the BFGS matrix,
the unmodified Hessian, or a Hessian modified to be positive definite.

Another trust region algorithm is Steihaug’s modified conjugate gradient approach
(Steihaug, 1983). For each step k an iterative technique is used which is almost iden-
tical to the standard conjugate gradient procedure except for two additional termination
conditions. The first is if the next step is outside the trust region, the second is if a
direction of zero or negative curvature is encountered.

An almost exact solution to (6.29) can be found using an algorithm described in
Nocedal and Wright (1999). This exact trust region algorithm aims to precisely find the
minimum of the quadratic model my of the space within the trust region Ax. Any matrix
By, can be used to construct the quadratic model. However, the technique is computation-
ally expensive.



52 CHAPTER 6. MODEL-FREE ANALYSIS

Conjugate gradient methods

The conjugate gradient algorithm (CG) was originally designed as a mathematical tech-
nique for solving a large system of linear equations Hestenes and Stiefel (1952), but was
later adapted to solving nonlinear optimisation problems (Fletcher and Reeves, 1964). The
technique loops over a set of directions pg, p1, ..., p, Which are all conjugate to the Hessian
(Nocedal and Wright, 1999), a property defined as

piVifipj =0,  foralli# j. (6.30)

By performing line searches over all directions p; the solution to the quadratic model
(6.26) of the position 0 will be found in n or less iterations of the CG algorithm where
n is the total number of parameters in the model. The technique performs well on
large problems with many parameters as no matrices are calculated or stored. The al-
gorithms perform better than the steepest descent method and preconditioning of the
system is used to improve optimisation. A number of preconditioned techniques will be
investigated including the Fletcher-Reeves algorithm which was the original conjugate
gradient optimisation technique (Fletcher and Reeves, 1964), the Polak-Ribiere method
(Polak and Ribiere, 1969), a modified Polak-Ribiéere method called the Polak-Ribiere +
method (Nocedal and Wright, 1999), and the Hestenes-Stiefel algorithm which originates
from a formula in Hestenes and Stiefel (1952). As a line search is performed to find the
minimum along each conjugate direction both the backtracking and Moré and Thuente
auxiliary step-length selection algorithms will be tested with the CG algorithms.

Hessian modifications

The Newton search direction, used in both the line search and trust region methods, is
dependent on the Hessian being positive definite for the quadratic model to be convex so
that the search direction points sufficiently downhill. This is not always the case as saddle
points and other non-quadratic features of the space can be problematic. Two classes of
algorithms can be used to handle this situation. The first involves using the conjugate
gradient method as a sub-algorithm for solving the Newton problem for the step k. The
Newton-CG line search algorithm described above is one such example. The second class
involves modifying the Hessian prior to, or at the same time as, finding the Newton step
to guarantee that the replacement matrix B} is positive definite. The convexity of By is
ensured by its eigenvalues all being positive. The performance of two of these methods
within the model-free space will be investigated.

The first modification uses the Cholesky factorisation of the matrix By, initialised to the
true Hessian, to test for convexity (Algorithm 6.3 of Nocedal and Wright (1999)). If fac-
torisation fails the matrix is not positive definite and a constant 7, times the identity
matrix [ is then added to By. The constant originates from the Robbins norm of the Hes-
sian | V2 x| and is steadily increased until the factorisation is successful. The resultant
Cholesky lower triangular matrix L can then be used to find the approximate Newton
direction. If 75 is too large the convergence of this technique can approach that of the
steepest descent algorithm.

The second method is the Gill, Murray, and Wright (GMW) algorithm (Gill et al., 1981)
which modifies the Hessian during the execution of the Cholesky factorisation V2f;, =



6.1. THEORY 53

LILT, where L is a lower triangular matrix and D is a diagonal matrix. Only a single
factorisation is required. As rows and columns are interchanged during the algorithm
the technique may be slow for large problems such as the optimisation of the model-
free parameters of all spins together with the diffusion tensor parameters. The rate of
convergence of the technique is quadratic.

Other methods

Two other optimisation algorithms which cannot be classified within line search, trust
region, or conjugate gradient categories will also be investigated. The first is the well
known simplex optimisation algorithm. The technique is often used as the only the function
value is employed and hence the derivation of the gradient and Hessian can be avoided.
The simplex is created as an n-dimensional geometric object with n+ 1 vertices. The first
vertex is the starting position. Each of the other n vertices are created by shifting the
starting position by a small amount parallel to one of unit vectors defining the coordinate
system of the space. Four simple rules are used to move the simplex through the space:
reflection, extension, contraction, and a shrinkage of the entire simplex. The result of these
movements is that the simplex moves in an ameoboid-like fashion downhill, shrinking to
pass through tight gaps and expanding to quickly move through non-convoluted space,
eventually finding the minimum.

Key to these four movements is the pivot point, the centre of the face created by the n
vertices with the lowest function values. The first movement is a reflection — the vertex
with the greatest function value is reflected through the pivot point on the opposite face
of the simplex. If the function value at this new position is less than all others the simplex
is allowed to extend — the point is moved along the line to twice the distance between the
current position and the pivot point. Otherwise if the function value is greater than the
second highest value but less than the highest value, the reflected simplex is contracted.
The reflected point is moved to be closer to the simplex, its position being half way between
the reflected position and the pivot point. Otherwise if the function value at the reflected
point is greater than all other vertices, then the original simplex is contracted — the highest
vertex is moved to a position half way between the current position and the pivot point.
Finally if none of these four movements yield an improvement, then the simplex is shrunk
halfway towards the vertex with the lowest function value.

The other algorithm is the commonly used Levenberg-Marquardt algorithm (Levenberg,
1944; Marquardt, 1963) which is implemented in Modelfree4, Dasha, and Tensor2. This
technique is designed for least-squares problems to which the chi-squared equation (6.24)
belongs. The key to the algorithm is the replacement of the Hessian with the Levenberg-
Marquardt matrix J7.J 4+ A, where J is the Jacobian of the system calculated as the
matrix of partial derivatives of the residuals, A > 0 is a factor related to the trust-region
radius, and I is the identity matrix. The algorithm is conceptually allied to the trust
region methods and its performance varies finely between that of the steepest descent and
the pure Newton step. When far from the minimum A is large and the algorithm takes
steps close to the gradient; when in vicinity of the minimum A heads towards zero and the
steps taken approximate the Newton direction. Hence the algorithm avoids the problems
of the Newton algorithm when non-convex curvature is encountered and approximates the
Newton step in convex regions of the space.



54 CHAPTER 6. MODEL-FREE ANALYSIS

Constraint algorithms

To guarantee that the minimum will still be reached the implementation of constraints
limiting the parameter values together with optimisation algorithms is not a triviality.
For this to occur the space and its boundaries must remain smooth thereby allowing the
algorithm to move along the boundary to either find the minimum along the limit or to
slide along the limit and then move back into the centre of the constrained space once the
curvature allows it. One of the most powerful approaches is the Method of Multipliers
(Nocedal and Wright, 1999), also known as the Augmented Lagrangian. Instead of a single
optimisation the algorithm is iterative with each iteration consisting of an independent
unconstrained minimisation on a sequentially modified space. When inside the limits the
function value is unchanged but when outside a penalty, which is proportional to the
distance outside the limit, is added to the function value. This penalty, which is based on
the Lagrange multipliers, is smooth and hence the gradient and Hessian are continuous at
and beyond the constraints. For each iteration of the Method of Multipliers the penalty
is increased until it becomes impossible for the parameter vector to be in violation of the
limits. This approach allows the parameter vector 6 outside the limits yet the successive
iterations ensure that the final results will not be in violation of the constraint.

For inequality constraints, each iteration of the Method of Multipliers attempts to solve
the quadratic sub-problem

min £4(0, X5 ) < F0) + 7 W(ei(0), Al ), (6.31)
1€J

where the function ¥ is defined as
—Nee;(0) + ic?(@) if ¢;(0) — upA* <0,

6.32
—l (\F)2 otherwise. (6.32)

U(es(0), A px) = {

In (6.31), 0 is the parameter vector; £4 is the Augmented Lagrangian function; k is the
current iteration of the Method of Multipliers; \* are the Lagrange multipliers which are
positive factors such that, at the minimum 6, Vf (é) = )\Z-Vci(é); i > 0 is the penalty
parameter which decreases to zero as k — oo; J is the set of inequality constraints; and
¢i(0) is an individual constraint value. The Lagrange multipliers are updated using the
formula

AL — max(AF — ¢;(0) /ur,0),  forall i€ 3. (6.33)

The gradient of the Augmented Lagrangian is

veao k) =vio - Y (M- vew. o

i€3]c: (0) < AF Hie

and the Hessian is

1 (0
Ve =0+ Y [ Lvee - (- 2D) v, 63
iealcs @<t HE Hie



6.1. THEORY 55

The Augmented Lagrangian algorithm can accept any set of three arbitrary constraint
functions c(6), Ve(), and V2¢(#). When given the current parameter values ¢(f) returns
a vector of constraint values whereby each position corresponds to one of the model pa-
rameters. The constraint is defined as ¢; > 0. The function Ve(f) returns the matrix of
constraint gradients and V2¢(6) is the constraint Hessian function which should return the
3D matrix of constraint Hessians.

A more specific set of constraints accepted by the Method of Multipliers are bound con-
straints. These are defined by the function

1<0<u, (6.36)

where [ and u are the vectors of lower and upper bounds respectively and 0 is the parameter
vector. For example for model-free model m4 to place lower and upper bounds on the order
parameter and lower bounds on the correlation time and chemical exchange parameters,
the vectors are

0 5?2 1
0l < 7= | <oo]. (6.37)
0 R, 00

The default setting in the program relax is to use linear constraints which are defined as

A-0>0, (6.38)

where A is an m X n matrix where the rows are the transposed vectors a; of length
n; the elements of a; are the coefficients of the model parameters; 6 is the vector of
model parameters of dimension n; b is the vector of scalars of dimension m; m is the
number of constraints; and n is the number of model parameters. For model-free analysis,
linear constraints are the most useful type of constraint as the correlation time 7; can be
restricted to being less than 7, by using the inequality 7, — 77 > 0.

In rearranging (6.38) the linear constraint function ¢(#) returns the vector A-6—b. Because
of the linearity of the constraints the gradient and Hessian are greatly simplified. The
gradient Ve(6) is simply the matrix A and the Hessian V2¢(6) is zero. For the parameters



o6 CHAPTER 6. MODEL-FREE ANALYSIS

specific to individual spins the linear constraints in the notation of (6.38) are

1 0 0 0 0 0O 0O © 0
1 0 0 0 0 00O 0O © -1
01 0 0 0 00 0 O 0
0 -1 0 0 0 00 0 O -1
0O 0 1.0 0 00 0 O S? 0
00 -10 0 00 0 0 S7 ~1
1 1.0 0 0 00 0 O S? 0
1 0 1 0 0 00 0 O To 0
0O 0 01 0 00 0 O | > 0 (6.39)
0O 0 00 1 00 0 O e 0
0O 0 00 0 10 0 O Res 0
0O 0 00 -110 0 0 r 0
0O 0 00 0 01 0 O CSA 0
0O 0 0 0 0 0O 1 O 0.9¢10
0O 0 0 0 0 0O0 -1 0 2¢~10
0O 0 00 0 0O0 0 1 300e6
0o 0 0 0 0 00 0 -1 0

Through the isolation of each individual element, the constraints can be see to be equivalent
to

0<5%<1, (6.40a)
0<5F<1, (6.40b)

0< 82«1, (6.40c)

5% < 5%, (6.40d)

5% < 82, (6.40¢)

Te 2 0, (6.40f)

T 20, (6.40g)

7 = 0, (6.40h)

7 = 0, (6.401)

TF < T, (6.40j)

Rez > 0, (6.40k)
0.9¢ 19 <r <2710, (6.401)
—300e 5 < CSA<0 (6.40m)

To prevent the computationally expensive optimisation of failed models in which the inter-
nal correlation times minimise to infinity (d’Auvergne and Gooley, 2006), the constraint
Tes Tfy Ts < 27, was implemented. When the global correlation time is fixed the constraints
in the matrix notation of (6.38) are

-1 0 0 Te —2Tm
0 =1 0 -7 |=|-2mm|- (6.41)
0 0 -1 Ts —27Tm



6.1. THEORY 57

However when the global correlation time 7, is one of the parameters being optimised the
constraints become

2 -1 0 0 m 0
2 0 -1 0/|-]]=1o (6.42)
2 0 0 -1) |V 0
Ts
For the parameters of the diffusion tensor the constraints utilised are
0 < 7 < 200.0e79, (6.43a)
D, 20, (6.43b)
0<®, <1, (6.43c)
which in the matrix notation of (6.38) become
1 0 0 0
-1 0 0 Tm —200.0e~?
0 1 0 Dy | 2 0 . (6.44)
0 0 1 D, 0
0 0 —1 -1

The upper limit of 200 ns on 7,, prevents the parameter from heading towards infinity
when model failure occurs (see d’Auvergne and Gooley (2006)). This can significantly
decrease the computation time. To isolate the prolate spheroid the constraint

(1) - (D) = (0). (6.45)

is used whereas to isolate the oblate spheroid the constraint used is

(=1) - (®a) = (0). (6.46)

Dependent on the model optimised, the matrix A and vector b are constructed from
combinations of the above linear constraints.

Diagonal scaling

Model scaling can have a significant effect on the optimisation algorithm — a poorly scaled
model can cause certain techniques to fail. When two parameters of the model lie on very
different numeric scales the model is said to be poorly scaled. For example in model-free
analysis the order of magnitude of the order parameters is one whereas for the internal
correlation times the order of magnitude is between le™'2 to le~®. Most effected are the
trust region algorithms — the multidimensional sphere of trust will either be completely
ineffective against the correlation time parameters or severely restrict optimisation in the
order parameter dimensions. In model-free analysis the significant scaling disparity can
even cause failure of optimisation due to amplified effects of machine precision. Therefore
the model parameters need to be scaled.



o8 CHAPTER 6. MODEL-FREE ANALYSIS

This can be done by supplying the optimisation algorithm with the scaled rather than
unscaled parameters. When the chi-squared function, gradient, and Hessian are called the
vector is then premultiplied with a diagonal matrix in which the diagonal elements are
the scaling factors. For the model-free analysis the scaling factor of one was used for the
order parameter and a scaling factor of le~!? was used for the correlation times. The R,
parameter was scaled to be the chemical exchange rate of the first field strength. The
scaling matrix for the parameters {52, S]%, S2 1o, T¢, Tsy Rew, 7, CSA} of individual spins
is

1 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0
0 01 0 0 0 0 0 0
00 0 le'? 0 0 0 0 0
000 0 1le'2 0 0 0 0 (6.47)
0 0 0 0 0 le 12 0 0 0
000 O 0 0 (2rwg)™? 0 0
0 0 0 0 0 0 0 le710 0
000 O 0 0 0 0 le?
For the ellipsoidal diffusion parameters {7,,, D4, ©,, «, 3, 7} the scaling matrix is
le7 0 0 0 0 0
0 le" 0 0 0 0
0 0O 1 0 00
0 0O 01 00 (6.48)
0 0 00 10
0 0 0 0 01
For the spheroidal diffusion parameters {7,,, Dq, 0, ¢} the scaling matrix is
le 12 0 0
0 1lef 0 0
0 0 1 0 (6.49)
0 0 0 1

6.2 Optimisation of a single model-free model

6.2.1 The sample script

The sample script which demonstrates the optimisation of model-free model m4 which
consists of the parameters {S?, 7., Re;} is ‘model_free/single model.py’. The text of
the script is:

# Script for model-free analysis.

# Create the data pipe.
name = ‘m4’

pipe.create(name, ‘mf’)



6.2. OPTIMISATION OF A SINGLE MODEL-FREE MODEL

# Set up the 15N spins.

sequence.read(‘noe.500.0ut’, res_num_col=1, res_name_col=2)
spin.name(‘N’)

spin.element (element=‘N’, spin_id=‘@N’)

spin.isotope(‘15N’, spin_id=‘@ON’)

# Load the relaxation data.

relax_data.read(ri_id=‘R1.600°, ri_type=‘R1’, frq=600.0%*1e6, file=‘r1.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.600’, ri_type=‘R2’, frq=600.0%*1e6, file=‘r2.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_600’, ri_type=°‘NOE’, frq=600.0%1le6, file=‘noe.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R1.500’, ri_type=‘R1’, frq=500.0%*1e6, file=‘r1.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.500’, ri_type=‘R2’, frq=500.0%*1e6, file=‘r2.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_500’, ri_type=°‘NOE’, frq=500.0%1le6, file=‘noe.500.out’,

res_num_col=1, data_col=3, error_col=4)

# Initialise the diffusion tensor.

diffusion_tensor.init(10e-9, fixed=True)

# Create all attached protons.

sequence.attach_protons()

# Define the magnetic dipole-dipole relaxation interaction.
dipole_pair.define(spin_id1=‘@N’, spin_id2=‘@H’, direct_bond=True)
dipole_pair.set_dist(spin_id1=‘@N’, spin_id2=‘@H’, ave_dist=1.02 * le-10)

#dipole_pair.unit_vectors()

# Define the CSA relaxation interaction.

value.set(-172 * le-6, ‘csa’)

# Select the model-free model.

model_free.select_model (model=name)

# Grid search.

grid_search(inc=11)

# Minimise.

minimise(‘newton’)

# Monte Carlo simulatioms.
monte_carlo.setup (number=100)
monte_carlo.create_data()
monte_carlo.initial_values()
minimise(‘newton’)

eliminate()

59



60 CHAPTER 6. MODEL-FREE ANALYSIS

monte_carlo.error_analysis()

# Finish.
results.write(file=‘results’, force=True)

state.save(‘save’, force=True)

6.2.2 Explanation

The above script consists of three major sections:

Loading of data Firstly a data pipe called ‘m4’ is created to hold all of the analysis data.
Then the '°N spin system data consisting of molecule, residue, and spin information
is loaded into relax from the columns of the ‘noe.500.out’ file, assuming that only
residue numbers and names are present and are in the first and second columns
respectively. The options of this sequence.read user function allow the molecule
name, residue number, residue name, spin number, or spin name columns to be
specified if desired. The N spin is then set up using the ‘spin’ user functions. The
next part is to load all of the relaxation data, to set up the initial diffusion tensor,
create the 'H spins required for the magnetic dipole-dipole interaction, and to set up
the magnetic dipole-dipole and CSA relaxation mechanisms. Finally the model-free
model ‘m4’ is chosen.

Optimisation The optimisation of model-free models requires an initial grid search
to find a position close to the minimum, followed by the high precision New-
ton optimisation together with the Method of Multipliers constraint algorithm
(d’Auvergne and Gooley, 2008a). Errors are propagated from the relaxation data
to the model-free parameters via Monte Carlo simulations which is a multi-step pro-
cess in relax (designed for flexibility and to teach how the simulations are constructed
and carried out).

Data output The last stage consists of writing out the XML formatted results file which
contains all of the data in the current data pipe, as well as the XML formatted save
file which contains not only the current data pipe data but all of the relax data store
data. Both files can be loaded back into relax later on.

6.3 Optimisation of all model-free models

6.3.1 The sample script

The sample script which demonstrates the optimisation of all model-free models from m0
to m9 of individual spins is ‘model free/mf multimodel.py’. The important parts of
the script are:

# Set the data pipe names (also the names of preset model-free models).

pipes = [‘m0’, ‘ml’, ‘m2’, ‘m3’, ‘m4’, ‘mb’, ‘m6’, ‘m7’, ‘m8’, ‘m9’]

# Loop over the pipes.



6.3. OPTIMISATION OF ALL MODEL-FREE MODELS

for name in pipes:
# Create the data pipe.

pipe.create(name, ‘mf’)

# Set up the 15N spins.
sequence.read(‘noe.500.0ut’, res_num_col=1)
spin.name (‘N’)

spin.element (element=‘N’, spin_id=‘@N’)

spin.isotope(‘15N’, spin_id=‘@ON’)

# Load a PDB file.
structure.read_pdb(‘example.pdb’)

# Load the relaxation data.

relax_data.read(ri_id=‘R1.600°, ri_type=‘R1’, frq=600.0%*1e6, file=‘r1.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R2_.600°, ri_type=‘R2’, frq=600.0%*1e6, file=‘r2.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_600’, ri_type=‘NOE’, frq=600.0%*1e6, file=‘noe.600.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R1.500’, ri_type=‘R1’, frq=500.0%*1e6, file=‘r1.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.500’, ri_type=‘R2’, frq=500.0%*1e6, file=‘r2.500.out’,
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_500’, ri_type=°‘NOE’, frq=500.0%1le6, file=‘noe.500.out’,

res_num_col=1, data_col=3, error_col=4)

# Set up the diffusion temsor.

diffusion_tensor.init(1le-8, fixed=True)

# Generate the 1H spins for the magnetic dipole-dipole relaxation interaction.

sequence.attach_protons()

# Define the magnetic dipole-dipole relaxation interaction.
dipole_pair.define(spin_id1=‘@N’, spin_id2=‘@H’, direct_bond=True)
dipole_pair.set_dist(spin_id1=‘@N’, spin_id2=‘@H’, ave_dist=1.02 * le-10)
structure.get_pos(‘@N’)

structure.get_pos(‘QH’)

dipole_pair.unit_vectors()

# Define the chemical shift relaxation interaction.

value.set(-172 * le-6, ‘csa’, spin_id=°‘@N’)

# Select the model-free model.

model_free.select_model (model=name)

# Minimise.
grid_search(inc=11)

minimise(‘newton’)



62 CHAPTER 6. MODEL-FREE ANALYSIS

# Write the results.

results.write(file=‘results’, force=True)

# Save the program state.

state.save(‘save’, force=True)

6.3.2 Explanation

The above script is very similar in spirit to the previous single model script in section 6.2
on page 58. The major difference is that this script loops over all of the model-free models,
saving all of the results in the ‘save.bz2’ file.

6.4 Model-free model selection

6.4.1 The sample script

The sample script which demonstrates both model-free model elimination and model-free
model selection between models from m0 to m9 is ‘model_free/modsel.py’. The text of
the script is:

# Set the data pipe names.

pipes = [‘m0’, ‘ml1’, ‘m2’, ‘m3’, ‘m4’, ‘mb’, ‘m6’, ‘m7’, ‘m8’, ‘m9’]

# Loop over the data pipe names.
for name in pipes:

print ‘‘\n\n# ’’ + name + ‘¢ #’’

# Create the data pipe.

pipe.create(name, ‘mf’)

# Reload precalculated results from the file ‘ml/results’, etc.

results.read(file=‘results’, dir=name)

# Model elimination.

eliminate()

# Model selection.

model_selection(method=‘AIC’, modsel_pipe=‘aic’)

# Write the results.
state.save(‘save’, force=True)

results.write(file=‘results’, force=True)



6.5. THE METHODOLOGY OF MANDEL ET AL., 1995 63

6.4.2 Explanation

This  script is  designed to be used in  conjunction  with  the
‘model _free/mf multimodel.py’ script in the previous section. It will load all of
the results files from the previous script and then perform the following:

Model-free model elimination The optimisation of model-free models performed by
the previous script will fail for certain data sets together with certain models. To
ensure that these models are never selected, they are removed from the analysis (see
d’Auvergne and Gooley (2006)).

Model-free model selection The AIC model selection as  described in
d’Auvergne and Gooley (2003) will be used to determine which model-free
model best describes the relaxation data.

Data output Finally both a save state and result file will be created.

These three sample scripts describe the basic components of model-free analysis. However
a full analysis requires the construction of a much more complex iterative procedure. The
following sections will describe both the original diffusion seeded approaches as well as the
new model-free protocol built into relax.

6.5 The methodology of Mandel et al., 1995

By presenting a systematic methodology for obtaining a consistent model-free description
of the dynamics of the system, the manuscript of Mandel et al. (1995) revolutionised the
application of model-free analysis. The full protocol is presented in Figure 6.1.

All of the data analysis techniques required for this protocol can be implemented within
relax. The chi-squared distributions required for the chi-squared tests are constructed
by Modelfree4 from the Monte Carlo simulations. If the optimisation algorithms and
Monte Carlo simulations built into relax are utilised, then the relax script will need to
construct the chi-squared distributions from the results as this is not yet coded into relax.
The specific step-up hypothesis testing model selection of Mandel et al. (1995) is available
through the model selection user function. Coding the rest of the protocol into a script
should be straightforward.

To implement this analysis, a number of scripts would need to be written. There is no sam-
ple script in relax for performing this analysis. The simple sample scripts from above would
need to be extended. For example a starting script for determining the initial diffusion
tensor estimates based on the R1/R2 ratio of Kay et al. (1989) would have to be written.
The tensor from this script could then be feed into the ‘model_free/mf multimodel.py’
script, followed by the ‘model free/modsel.py’ script, and then a third script written
to optimise the diffusion tensor. A master script could be written first run the initial
diffusion tensor script, then to iteratively execute the last three scripts until convergence,
and finally to select the best diffusion model (see Figure 6.1). Alternatively, these could
all be combined into one super script.



64 CHAPTER 6. MODEL-FREE ANALYSIS

Final model
Si

‘m Convergence?

Yes

[ Sphere ] [Spheroid]

Figure 6.1: A schematic of the model-free optimisation protocol of Mandel et al. (1995).
This specific protocol is for single field strength data. The initial diffusion tensor estimate
is calculated using the Ry /R ratio. The diffusion parameters of © are held constant while
model-free models m1 to m5 (6.21.1-6.21.5) of the set §; for each spin i are optimised and
500 Monte Carlo simulations executed. Using a web of ANOVA statistical tests, specifically
x? and F-tests, a step-up hypothesis testing model selection procedure is used to choose
the best model-free model. These steps are repeated for all spins of the molecule. The
global model &, the union of © and all §;, is then optimised. These steps are repeated
until convergence of the global model. The iterative process is repeated for both isotropic
diffusion (sphere) and anisotropic diffusion (spheroid).




6.6. THE DIFFUSION SEEDED PARADIGM 65

6.6 The diffusion seeded paradigm

Ever since the original Lipari and Szabo papers (Lipari and Szabo, 1982a,b), the question
of how to obtain the model-free description of the system has followed the route in which
the diffusion tensor is initially estimated. Using this rough estimate, the model-free models
are optimised for each spin system i, the best model selected, and then the global model
G of the diffusion model ® with each model-free model §; is optimised. This procedure
is then repeated using the diffusion tensor parameters of & as the initial input. Finally
the global model is selected. The full protocol, when combined with AIC model selection
(d’Auvergne and Gooley, 2003), is illustrated in Figure 6.2.

Again this protocol is not implemented in the relax sample scripts. This would have to be
implemented in exactly the same manner as described in the previous section, but using
the AIC model selection build into relax. Constructing this set of scripts, or a single
master script, would be much easier than the Mandel et al. (1995) protocol as Modelfree4
would not need to be used, and the handling of F-tests and chi-squared tests is avoided.

6.7 The new model-free optimisation protocol

6.7.1 The model-free models

The study of the dynamics of a macromolecule using model-free analysis to interpret the
R1 and Ry relaxation rates together with the steady-state heteronuclear NOE brings two
distinct, yet linked physical theories into play. The Brownian rotational diffusion of the
molecule is the major contributor to relaxation. Although having less of an influence on
relaxation the internal dynamics of individual nuclei within the molecule is nevertheless
significant. The model-free description of the internal motion and the global diffusion of
the entire molecule are theories which are linked due to their dependence on the same relax-
ation data. The model-free models for individual spin system constructed from the original
and extended model-free theories (Lipari and Szabo, 1982a,b; Clore et al., 1990) are as-
sembled using parametric restrictions, the dropping of insignificant parameters, and the
addition of the chemical exchange parameter R.,. Labelled as m0 to m9 (Models 6.21.0—
6.21.9 on page 47) these models are an extended list of those in (Fushman et al., 1997;
Orekhov et al., 1999a; Korzhnev et al., 2001; Zhuravleva et al., 2004).

6.7.2 The diffusion tensor
The ellipsoid

The most general form of Brownian rotational diffusion of macromolecules is the diffusion
of an ellipsoid, a diffusion also labelled as asymmetric or fully anisotropic. This diffusion
tensor can be fully specified by the geometric parameters ©,, ©,, and D, the eigenvalues
of the tensor, as well as three orientational parameters, the Euler angles o, 3, and ~. The
diffusion equation for an ellipsoid was derived using the reasoning of Einstein (1905) in
the two papers of Perrin (1934) and Perrin (1936). Following this, Favro (1960) unknow-
ingly derived the same equations as presented in Perrin (1936) using a pseudo quantum



66 CHAPTER 6. MODEL-FREE ANALYSIS

(R:)

Failure? Failure? Failure? Failure? Failure?

AIC model
selection

m Convergence?
Yes

EENEN e

selection

&)
Figure 6.2: A schematic of model-free analysis using the diffusion seeded paradigm — the
initial diffusion tensor estimate — together with AIC model selection and model elimination.
The initial estimates of the parameters of ® are held constant while model-free models m0
to m9 (6.21.0-6.21.9) of the set §; for each spin system 7 are optimised, model elimination
applied to remove failed models, and AIC model selection used to determine the best
model. The global model &, the union of ® and all §;, is then optimised. These steps are
repeated until convergence of the global model. The entire iterative process is repeated for
each of the Brownian diffusion models. Finally AIC model selection is used to determine
the best description of the dynamics of the molecule by selecting between the global models

G including the sphere, oblate spheroid, prolate spheroid, and ellipsoid. Once the solution
has been found, Monte Carlo simulations can be utilised for error analysis.




6.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 67

mechanical approach. Borrowing heavily from Perrin (1936), Woessner (1962) derived the
correlation function relevant for NMR relaxation of a bond vector rigidly attached to an
ellipsoid. However these equations are not fully simplified and the parameter set {®,,
Dy, D2, a, 5, v}, the eigenvalues and Euler angles defining the tensor, is not optimally
constructed for minimisation. A parameter shift to the set {Dis0, Dgo, Dr, @, 5, 7},
whereby the three geometric parameters are respectively the isotropic, anisotropic, and
rhombic components of the diffusion tensor, drastically simplifies optimisation and is how
the diffusion tensor is implemented within relax.

The spheroid

When two of the eigenvalues of the diffusion tensor are equal the molecule diffuses as a
spheroid. This is also called axially symmetric anisotropic diffusion and can be described by
the two geometric parameters 9,5, and ®, together with the polar angle 8 and azimuthal
angle ¢ which define the unique axis of the diffusion tensor. Two classes of spheroid can be
distinguished dependent on the relative values of the eigenvalues — the prolate and oblate
spheroids. By using parametric constraints, both tensor types can be optimised within
relax.

The sphere

The simplest form of diffusion occurs when all three eigenvalues are equal and the molecule
diffuses as a sphere. This isotropic rotation can be characterised by the single parame-
ter ©;5, which is related to the global correlation time by the formula 1/7,, = 69,5,
(Bloembergen et al., 1948).

The local 7,,, model-free models

Not only can the diffusion tensor be optimised as a global model affecting all spins of
the molecule but a set of model-free models can be constructed in which each spin is
assumed to diffuse independently. In these models a single local 7,,, parameter approxi-
mates the true, multiexponential description of the Brownian rotational diffusion of the
molecule. Each spin of the macromolecule is treated independently. Another set of model-
free models which include the local 7,,, parameter can be created and include tm0 to tm9
(Models 6.22.0-6.22.9 on page 47). These are simply models m0 to m9 with the local 7,
parameter added. These models are an extension of the ideas introduced in Barbato et al.
(1992) and Schurr et al. (1994) whereby the model tm2, the original Lipari and Szabo
model-free equation with a local 7,,, parameter, is optimised to avoid issues with inaccu-
rate diffusion tensor approximations.

Determination of the diffusion tensor from the local 7,,, parameter

In Briischweiler et al. (1995) and further investigated in Lee et al. (1997), a methodology
for determining the diffusion tensor from the local 7,,, parameter together with the orien-
tation of the XH bond represented by the unit vector p; was presented. A local 7, value



68 CHAPTER 6. MODEL-FREE ANALYSIS

was obtained for each spin ¢ by optimising model tm2. The 7, ; values were approximated
using the quadric model

(67mi) " = p Qui, (6.50)

where the eigenvalues of the matrix @ are defined as Q, = (D4 +9.)/2, Qy = (9,+9.)/2,
and Q; = (9, +9,)/2. The diffusion tensor is then found by linear least-squares fitting.

6.7.3 The universal solution

The complex model-free problem, in which the motions of each spin are both mathemat-
ically and statistically dependent on the diffusion tensor and vice versa, was formulated
using set theory in d’Auvergne and Gooley (2007). This paper is important for under-
standing the entire concept of the new protocol in relax and for truly grasping the com-
plexity of the model-free problem. The solution 4 to the model-free problem was derived
as an element of the universal set 4, the union of the diverse model-free parameter spaces
G. Each set G was constructed from the union of the model-free models § for all spins and
the diffusion parameter set ®. A single parameter loss on a single spin shifts optimisation
to a different space &. Ever since the seminal work of Kay et al. (1989) the model-free
problem has been tackled by first finding an initial estimate of the diffusion tensor and then
determining the model-free dynamics of the system (see Sections 6.5 on page 63 and 6.6
on page 65). This diffusion seeded paradigm is now highly evolved and much theory has
emerged to improve this path to the solution 4. The technique can, at times, suffer from
a number of issues including the two minima problem of the spheroid diffusion tensor pa-
rameter space, the appearance of artificial chemical exchange (Tjandra et al., 1996), the
appearance of artificial nanosecond motions (Schurr et al., 1994), and the hiding of inter-
nal nanosecond motions caused by the violation of the rigidity assumption (Orekhov et al.,
1995, 1999a,b).

6.7.4 Model-free analysis in reverse

A different approach was proposed in d’Auvergne and Gooley (2008b) for finding the uni-
versal solution U of the extremely complex, convoluted model-free optimisation and mod-
elling problem (d’Auvergne and Gooley, 2007), defined as

U=40¢e {6 : IpiHAK_L(é)} , s.t. 0 =argmin {XQ(H) 10 €6}, (6.51)
oesl

This notation says that the minimised parameter vector within the space & which min-
imises the common Kullback-Leibler discrepancy A1 is selected from the universal set 4
as the universal solution Y. The discrepancy of Kullback and Leibler (1951) is a measure
of how well the model fits the data, in this case how well the global model & of the diffusion
tensor together with the model-free models of all residues fits the relaxation data. This
selection is subject to the condition that 0 is the argument or specific parameter vector
which minimises the chi-squared function x?(6) such that 6 is an element of the space &.
Whereas the minimisation of the continuous chi-squared function within the single space
S belongs to the mathematical field of optimisation (Nocedal and Wright, 1999), the se-
lection of the universe & which minimises the discrepancy belongs to the statistical field of
model selection (Akaike, 1973; Schwarz, 1978; Linhart and Zucchini, 1986; Zucchini, 2000;
d’Auvergne and Gooley, 2003).



6.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 69

Failure? Failure? Failure? Failure? Failure?

Remove tm,

(R)

Failure? Failure? Failure? Failure?

? ilure?
(No) (No) (No) (No) (No)

(No - Convergence?

Oblate Prolate . f Hybrid global
[Iocal tmj [Sphere] [spheroidj [spheroid] [ElllpSOId] [ models ]

v

Figure 6.3: A schematic of the new model-free optimisation protocol. Initially models
tm0 to tm9 (6.22.0-6.22.9) of the set T; for each spin system i are optimised, model
elimination used to remove failed models, and AIC model selection used to pick the best
model. Once all the T; have been determined for the system the the local 7, parameter is
removed, the model-free parameters are held fixed, and the global diffusion parameters of
® are optimised. These parameters are used as input for the central part of the schematic
which follows the same procedure as that of Figure 6.2. Convergence is however precisely
defined as identical models &, identical x? values, and identical parameters  between two
iterations. The universal solution ﬁ, the best description of the dynamics of the molecule,
is determined using AIC model selection to select between the local 7, models for all
spins, the sphere, oblate spheroid, prolate spheroid, ellipsoid, and possibly hybrid models
whereby multiple diffusion tensors have been applied to different parts of the molecule.




70 CHAPTER 6. MODEL-FREE ANALYSIS

This new model-free optimisation protocol incorporates the ideas of the local 7, model-
free model (Barbato et al., 1992; Schurr et al., 1994) and the optimisation of the diffusion
tensor using information from these models, analogously to the linear least-squares fitting
of the quadric model (Briischweiler et al., 1995; Lee et al., 1997). The protocol also follows
the lead of the model-free optimisation protocol presented in Butterwick et al. (2004)
whereby the diffusion seeded paradigm was reversed. Rather than starting with an initial
estimation of the global diffusion tensor from the set ® the protocol starts with the model-
free parameters from §.

The first step of the Butterwick et al. (2004) protocol is the reduced spectral density map-
ping of Farrow et al. (1995). As R, has been eliminated from the analysis, three model-
free models corresponding to tml, tm2, and tm5 (Models 6.22.1, 6.22.2, and 6.22.5 on
page 47) are employed. The model-free parameters are optimised using the reduced spec-
tral density values and the best model is selected using F-tests. The spherical, spheroidal,
and ellipsoidal diffusion tensors are obtained by linear least-squares fitting of the quadric
model of Equation (6.50) using the local 7, values (Briischweiler et al., 1995; Lee et al.,
1997). The best diffusion model is selected via F-tests and refined by iterative elimination
of spins systems with high chi-squared values. This tensor is used to calculate local 7,
values for each spin system, approximating the multiexponential sum of the Brownian ro-
tational diffusion correlation function with a single exponential, using the quadric model
of Equation (6.50). In the final step of the protocol these 7, values are fixed and ml,
m2, and m5 (Models 6.21.1, 6.21.2, and 6.21.5 on page 47) are optimised and the best
model-free model selected using F-tests.

The new model-free protocol built into relax utilises the core foundation of the
Butterwick et al. (2004) protocol yet its divergent implementation is designed to solve
the universal equation of d’Auvergne and Gooley (2007) to find 4 (Equation 6.51). Mod-
els tm0 to tm9 (6.22.0-6.22.9 on page 47) in which no global diffusion parameters exist are
employed to significantly collapse the complexity of the problem. Model-free minimisation
(d’Auvergne and Gooley, 2008a), model elimination (d’Auvergne and Gooley, 2006), and
then AIC model selection (Akaike, 1973; d’Auvergne and Gooley, 2003) can be carried out
in the absence of the influence of global parameters. By removing the local 7, parameter
and holding the model-free parameter values constant these models can then be used to
optimise the diffusion parameters of ©. Model-free optimisation, model elimination, AIC
model selection, and optimisation of the global model & is iterated until convergence. The
iterations allow for sliding between different universes & to enable the collapse of model
complexity, to refine the diffusion tensor, and to find the solution within the universal set
i, The last step is the AIC model selection between the different diffusion models. Because
the AIC criterion approximates the Kullback-Leibler discrepancy (Kullback and Leibler,
1951), central to the universal solution of Equation (6.51), it was chosen for all three
model selection steps over BIC model selection (Schwarz, 1978; d’Auvergne and Gooley,
2003; Chen et al., 2004). The new protocol avoids the problem of under-fitting whereby
artificial motions appear, avoids the problems involved in finding the initial diffusion tensor
within ©, and avoids the problem of hidden internal nanosecond motions and the inability
to slide between universes to get to 4 (see d’Auvergne and Gooley (2007) for more details).
The full protocol is summarised in Figure 6.3.



6.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 71

6.7.5 The sample script

The sample script for performing this new analysis is
‘model_free/dauvergne protocol.py’. The full script is given below as the doc-
string at the start explains the practical implementation of the protocol:

"""Script for black-box model-free analysis.

This script is designed for those who appreciate black-boxes or those who appreciate
complex code. Importantly data at multiple magnetic field strengths is essential for
this analysis. The script will need to be heavily tailored to the molecule in question
by changing the variables just below this documentation. If you would like to change how
model-free analysis is performed, the code in the class Main can be changed as needed.
For a description of object-oriented coding in python using classes, functions/methods,

self, etc., see the python tutorial.

If you have obtained this script without the program relax, please visit

http://www.nmr-relax.com.

References

The model-free optimisation methodology herein is that of:

d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic models II. A
new methodology for the dual optimisation of the model-free parameters and the Brownian
rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133

Other references for features of this script include model-free model selection using

Akaike’s Information Criterion:

d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in the model-free
analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.

The elimination of failed model-free models and Monte Carlo simulations:

d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step in
the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR, 35(2), 117-135.

Significant model-free optimisation improvements:

d’Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models I.
Minimisation algorithms and their performance within the model-free and Brownian

rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-109.

Rather than searching for the lowest chi-squared value, this script searches for the model
with the lowest AIC criterion. This complex multi-universe, multi-dimensional search is

formulated using set theory as the universal solution:



72 CHAPTER 6. MODEL-FREE ANALYSIS

d’Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. 3(7), 483-494.

The basic three references for the original and extended model-free theories are:

Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J. Am.
Chem. Soc., 104(17), 4546-4559.

Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules II. Analysis of experimental results. J.
Am. Chem. Soc., 104(17), 4559-4570.

Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A.M.

(1990) . Deviations from the simple 2-parameter model-free approach to the interpretation
of N-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc., 112(12), 4989-4991.

How to use this script

The value of the variable DIFF_MODEL will determine the behaviour of this script. The

five diffusion models used in this script are:

Model I (MI) - Local tm.

Model II (MII) - Sphere.

Model III (MIII) - Prolate spheroid.
Model IV (MIV) - Oblate spheroid.
Model V (MV) - Ellipsoid.

Model I must be optimised prior to any of the other diffusion models, while the Models
IT to V can be optimised in any order. To select the various models, set the variable

DIFF_MODEL to the following strings:

MI - ‘local_tm’
MII - ‘sphere’
MIII - ‘prolate’
MIV - ‘oblate’
MV - ‘ellipsoid’

This approach has the advantage of eliminating the need for an initial estimate of
a global diffusion tensor and removing all the problems associated with the initial

estimate.

It is important that the number of parameters in a model does not exceed the number
of relaxation data sets for that spin. If this is the case, the list of models in the
MF_MODELS and LOCAL_TM_MODELS variables will need to be trimmed.



6.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 73

Model I - Local tm

This will optimise the diffusion model whereby all spin of the molecule have a local tm
value, i.e. there is no global diffusion tensor. This model needs to be optimised prior
to optimising any of the other diffusion models. Each spin is fitted to the multiple

model-free models separately, where the parameter tm is included in each model.

AIC model selection is used to select the models for each spin.

Model II - Sphere

This will optimise the isotropic diffusion model. Multiple steps are required, an
initial optimisation of the diffusion temsor, followed by a repetitive optimisation
until convergence of the diffusion tensor. Each of these steps requires this script
to be rerun. For the initial optimisation, which will be placed in the directory

¢./sphere/init/’, the following steps are used:

The model-free models and parameter values for each spin are set to those of diffusion

model MI.

The local tm parameter is removed from the models.

The model-free parameters are fixed and a global spherical diffusion tensor is minimised.
For the repetitive optimisation, each minimisation is named from ‘round_1’ onwards. The
initial ‘round_1’ optimisation will extract the diffusion tensor from the results file in
¢./sphere/init/’, and the results will be placed in the directory ¢./sphere/round_1/’.
Each successive round will take the diffusion tensor from the previous round. The

following steps are used:

The global diffusion tensor is fixed and the multiple model-free models are fitted to

each spin.

AIC model selection is used to select the models for each spin.

A1l model-free and diffusion parameters are allowed to vary and a global optimisation

of all parameters is carried out.

Model III - Prolate spheroid

The methods used are identical to those of diffusion model MII, except that an axially

symmetric diffusion tensor with Da >= 0 is used. The base directory containing all the



74 CHAPTER 6. MODEL-FREE ANALYSIS

results is ¢./prolate/’.

Model IV - Oblate spheroid

The methods used are identical to those of diffusion model MII, except that an axially
symmetric diffusion tensor with Da <= 0 is used. The base directory containing all the

results is ¢./oblate/’.

Model V - Ellipsoid

The methods used are identical to those of diffusion model MII, except that a fully
anisotropic diffusion tensor is used (also known as rhombic or asymmetric diffusion).

The base directory is ¢./ellipsoid/’.

Final run

Once all the diffusion models have converged, the final run can be executed. This is
done by setting the variable DIFF_MODEL to ‘final’. This consists of two steps, diffusion
tensor model selection, and Monte Carlo simulations. Firstly AIC model selection is

used to select between the diffusion tensor models. Monte Carlo simulations are then run
solely on this selected diffusion model. Minimisation of the model is bypassed as it is
assumed that the model is already fully optimised (if this is not the case the final run

is not yet appropriate).

The final black-box model-free results will be placed in the file ‘final/results’.

# Python module imports.

from time import asctime, localtime

# relax module imports.

from auto_analyses.dauvergne_protocol import dAuvergne_protocol
# Analysis variables.

IS4 4444 4

# The diffusion model.
DIFF_MODEL = ‘local_tm’

# The model-free models. Do not change these unless absolutely necessary, the protocol is

likely to fail if these are changed.



6.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 75

MF_MODELS = [‘m0’, ‘ml’, ‘m2’, ‘m3’, ‘m4’, ‘mb5’, ‘m6’, ‘m7’, ‘m8’, ‘m9’]
LOCAL_TM_MODELS = [‘tm0O’, ‘tml’, ‘tm2’, ‘tm3’, ‘tm4’, ‘tm5’, ‘tm6’, ‘tm7’, ‘tm8’, ‘tm9’]

# The grid search size (the number of increments per dimension).
GRID_INC = 11

# The optimisation technique.
MIN_ALGOR = ‘newton’

# The number of Monte Carlo simulations to be used for error analysis at the end of the
analysis.
MC_NUM = 500

# Automatic looping over all rounds until convergence (must be a boolean value of True
or False).
CONV_LOOP = True

# Set up the data pipe.
B e e S P

# The following sequence of user function calls can be changed as needed.

# Create the data pipe.
name = ‘‘mf (%s)’’ % asctime(localtime())

pipe.create(name, ‘mf’)

# Load the PDB file.
structure.read_pdb(‘1£3y.pdb’)

# Set up the 15N and 1H spins.
structure.load_spins(‘@N’, ave_pos=True)
structure.load_spins(‘@H’, ave_pos=True)
spin.isotope(¢15N’, spin_id=‘@N’)
spin.isotope(‘1H’, spin_id=‘@H’)

# Set up the 15N spins (alternative to the structure-based approach).
#sequence.read(file=‘noe.500.0ut’, dir=None, mol_name_col=None, res_num col=1,
res_name_col=2, spin_num_col=None, spin_name_col=None)

#spin.name (‘N’)

#spin.element (element=‘N’, spin_id=‘@N’)

#spin.isotope(‘15N’, spin_id=‘@ON’)
# Generate the 1H spins for the magnetic dipole-dipole relaxation interaction (alternative
to the structure-based approach).

#sequence.attach_protons()

# Load the relaxation data.



76 CHAPTER 6. MODEL-FREE ANALYSIS

relax data.read(ri_id=‘R1.600’, ri_type=‘R1’, frq=599.719%1e6, file=‘r1.600.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin num_col=None, spin_name_col=None,
data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.600°, ri_type=‘R2’, frq=599.719%1le6, file=‘r2.600.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin_num_col=None, spin_name_col=None,
data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_600’, ri_type=‘NOE’, frq=599.719%1e6, file=‘noe.600.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin num_col=None, spin_name_col=None,
data_col=3, error_col=4)

relax_data.read(ri_id=‘R1.500’, ri_type=‘R1’, frq=500.208+*1e6, file=‘r1.500.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin num_col=None, spin_name_col=None,
data_col=3, error_col=4)

relax_data.read(ri_id=‘R2.500°, ri_type=‘R2’, frq=500.208%1e6, file=‘r2.500.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin_num_col=None, spin_name_col=None,
data_col=3, error_col=4)

relax_data.read(ri_id=‘NOE_500’, ri_type=‘NOE’, frq=500.208*1e6, file=‘noe.500.out’,
mol_name_col=None, res_num_col=1, res_name_col=2, spin num_col=None, spin_name_col=None,

data_col=3, error_col=4)

# Deselect spins to be excluded (including unresolved and specifically excluded spins).
deselect.read(file=‘unresolved’, dir=None, spin_id_col=None, mol_name_col=None,
res_num_col=1, res_name_col=None, spin_num col=None, spin_name_col=None, sep=None,
spin_id=None, boolean=‘AND’, change_all=False)

deselect.read(file=‘exclude’, spin_id_col=1)

# Define the magnetic dipole-dipole relaxation interaction.
dipole_pair.define(spin_id1=‘@N’, spin_id2=‘@H’, direct_bond=True)
dipole_pair.set_dist(spin_id1=‘@N’, spin_id2=‘@H’, ave_dist=1.02 * 1le-10)

dipole_pair.unit_vectors()

# Define the chemical shift relaxation interaction.

value.set(-172 * le-6, ‘csa’, spin_id=°‘@N’)

# Execution.
HESHH

# Do not change!

dAuvergne_protocol(pipe_name=name, diff model=DIFF_MODEL, mf_models=MF_MODELS,

local_tm models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=MIN_ALGOR, mc_sim_num=MC_NUM,
conv_loop=CONV_LOOP)

6.7.6 Explanation

The initialisation of data in this script is almost identical to that of the sample script
for a single model free model in section 6.2 on page 58. Once the data is set up,



relax repository checkout =5 X
File View Userfunctions (a-m) Userfunctions (n-z) Tools Help
°°0 BHA 7 Ful=a
Model-free
Setup for model-free analysis
The data pipe bundle: mf (Mon Jul 25 14:53:18 2011)
Results directery fdatafrelaxfbranches/gui_testing/mf B3 Change
Spin systems 9 spins loaded and selected # Spin editor
Relaxation data list
o Add Fa add = Delete @ view metadata

Relaxation data ID Data type Frequency (Hz)

noe_500 NOE 500000000.0

r1_500 RL 500000000.0

r2_500 R2 500000000.0

noe_900 NOE 900000000.0

r1_900 R1 500000000.0

r2_900 R2 900000000.0

j Dipolar relaxation s CSA relaxation @ X isotope @ Hisotope
Local Tm models: ['tm0", 'tm1', tm2', tm3", tm4’, 'tms", 'tm6', tm7", 'tme", 'tm9'] P Modify
Model-free models: ['M0", "ML, ‘M2’ M3 M, 'mS, 'me', 'm7', 'me', 'met] P Modify
Grid search increments: 3 =
Monte Carlo simulation number: 2
Maximum interations 25
Protocol mode: Fully automated o Change
fo s A Execute relax

(c) 2001-2012 the relax development team Current data pipe final

Figure 6.4: Screenshot of the relax GUI interface — the automated model-free analysis.
The analysis is fully automated via a new model-free protocol as described in detail in
Chapter 6. Clicking on the ‘About’ button in the bottom left hand corner will give a
full description of the protocol. For using this interface or any of the modern-day model-
free protocols, data from at least two magnetic field strengths must be without question
collected.

then the data pipe as well as a number of user defined variables are passed into the
‘dAuvergne protocol’ class. This script needs to be executed multiple times for each of
the diffusion models.

For a full analysis of a protein system, the analysis may require between one to two
weeks to complete. The analysis is performed as described in the previous sections and
summarised in Figure 6.3. If you are curious, the implementation is within a very large
relax script found at ‘auto_analyses/dauvergne protocol.py’ (which must never be
changed). This auto-analyses script hides all of the complexity of the analysis from the
sample script.

6.8 The GUI auto-analysis

From the analysis wizard (Figure 1.4 on page 10), the automated model-free analy-
sis can be selected. This analysis will use the new model-free protocol described in
Section 6.7 on page 65. Once the analysis is initialised, the screen should look like
Figure 6.4. The ‘About’ button in the bottom left will bring up a window with the



78 CHAPTER 6. MODEL-FREE ANALYSIS

same description as given in the sample script. After reading this chapter, the use
of this GUI analysis should be self explanatory (if not, then please consider filing a
bug report at https://gna.org/bugs/?func=additem&group=relax or a support request
at https://gna.org/support/?func=additem&group=relax). The GUI is designed to be
robust — you should be able to set up all the input data and parameters in any order,
with relax giving warning is something is missing. The analysis will only execute once
everything is correctly set up. If this is not the case, rather than starting the analysis,
clicking on the ‘Execute relax’ button will warn about the incorrect set up, describing
what the problem is.

If the ‘Protocol mode’ field is left to the ‘Fully automated’ setting then, after clicking on
‘Execute relax’, the calculation can be left for one to two weeks to complete. It is highly
recommended to check the log messages in the relax controller window, at least at the
start of the analysis, to make sure that all the data is being read correctly and everything
is set up as desired. All warnings should be carefully checked as these can indicate a fatal
problem. If you would like to log all the messages into a file, relax can be run with:

$ relax -g --log my.log

Note that the size of this log file could end up being in the gigabyte range for a model-free
analysis. To speed up the calculations, if you have access to multiple cores and/or hyper-
threading, the GUI can be run using Gary Thompson’s multi-processor framework. For
example on a dual-CPU with dual-core system, four calculations can be run simultaneously.
In this case, the GUI can be launched with:

$ mpirun -np 5 /usr/local/bin/relax --multi=‘mpidpy’ --gui

This assumes that OpenMPI and the Python mpidpy module have been installed on your
system. If this is successful, you should only see a single relax GUI window (and not five
windows) and in the relax controller, you should see text similar to:

Processor fabric: MPI 2.1 running via mpidpy with 4 slave processors & 1 master. Using
Open MPI 1.4.3.

If you are using a different MPI implementation, please see the documentation of that
implementation to see how to launch a program in MPI mode.

Upon completion of the analysis, the save and results files for the final result will be located
in the ‘final’ directory within the selected results directory. The results files will consist
of text files for each of the spin specific model-free parameters, 2D Grace plots of the
model-free parameters, PyMOL and MOLMOL macros for superimposing the model-free
parameter values onto the 3D structure of the molecule, and a PDB representation of
the final diffusion tensor. Further visualisations of the results are possible via the ‘User
functions’ menu entry. For example to generate a 2D plot of order parameters for one of
the other diffusion tensor results, the pipe editor window can be used to switch data pipes
to the other diffusion models and then the ‘User functions->grace->write’ menu item
can be selected to create the plot.


https://gna.org/bugs/?func=additem&group=relax
https://gna.org/support/?func=additem&group=relax

Chapter 7

Reduced spectral density mapping

Please write me!

Until this chapter is written please look at the sample script ¢ jw_mapping.py’.

79



80

CHAPTER 7. REDUCED SPECTRAL DENSITY MAPPING



Chapter 8

Values, gradients, and Hessians

8.1 Introduction

A word of warning before reading this chapter, the topics covered here are quite advanced
and are not necessary for understanding how to either use relax or to implement any of the
data analysis techniques present within relax. The material of this chapter is intended as an
in-depth explanation of the mathematics involved in the optimisation of the parameters of
the model-free models. As such it contains the chi-squared equation, relaxation equations,
spectral density functions, and diffusion tensor equations as well as their gradients (the
vector of first partial derivatives) and Hessians (the matrix of second partial derivatives).
All these equations are used in the optimisation of models m0 to m9; models tm0 to
tm9; the ellipsoidal, spheroidal, and spherical diffusion tensors; and the combination of
the diffusion tensor and the model-free models.

8.2 Minimisation concepts

8.2.1 The function value

At the simplest level all minimisation techniques require at least a function which will
supply a single value for different parameter values 6. For the modelling of NMR relaxation
data this function is the chi-squared equation (8.15) on page 86. For certain algorithms,
such a simplex minimisation, this single value suffices.

8.2.2 The gradient

The majority of minimisation algorithms also require the gradient at the point in the space
represented by the parameter values 6. The gradient is a vector of partial derivatives and

81



82 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

is defined as

where n is the total number of parameters in the model.

An example of a powerful algorithm which requires both the value and gradient at current
parameter values is the BFGS quasi-Newton minimisation. The gradient is also essen-
tial for the use of the Method of Multipliers constraints algorithm (also known as the
Augmented Lagrangian algorithm).

8.2.3 The Hessian

A few optimisation algorithms, which are among the most reliable for model-free analysis,
additionally require the Hessian at current parameter values 6. The Hessian is the matrix
of second partial derivatives and is defined as

0?2 9? 0?2
80,2 001-002 " 001-00,
c’?é 9?2 92
005-00 2 o 065-00,
v2 _ 2' 1 89'2 2' (8.2)
5? o R
90,-:001  90,-00, 90,2

As the order in which the partial derivatives are calculated is inconsequential the Hessian
is symmetric.

The most powerful minimisation algorithm for model-free analysis — Newton optimisation
— requires the value, gradient, and Hessian at the current parameter values.

8.3 The four parameter combinations

In model-free analysis four different combinations of parameters can be optimised, each of
which requires a different approach to the construction of the chi-squared value, gradient,
and Hessian. These categories depend on whether the model-free parameter set §, the
diffusion tensor parameter set ©, or both sets are simultaneously optimised. The addition
of the local 7,,, parameter to the model-free set § creates a fourth parameter combination.

8.3.1 Optimisation of the model-free models

This is the simplest category as it involves solely the optimisation of the model-free pa-
rameters of an individual residue while the diffusion tensor parameters are held constant.
The model-free parameters belong to the set §; of the residue 7. The models include m0
to m9 and the dimensionality is low with

dimg; =k <5 (8.3)



8.3. THE FOUR PARAMETER COMBINATIONS 83

for the most complex model m8 = {52,7'f, SJ%,TS, Re.}. The relaxation data of a single
residue is used to build the chi-squared value, gradient, and Hessian.

8.3.2 Optimisation of the local 7,,, models

The addition of the local 7, parameter to the set §; creates a new set of models which will
be labelled ;. These include models tm0 to tm9. The local 7,, parameter is the single
member of the set ©; and in set notation

T =9, US;. (8.4)

Although the Brownian rotational diffusion parameter local 7, is optimised, this category
is residue specific. As such the complexity of the optimisation is lower than the next two
categories. It is slightly greater than the optimisation of the set §; as

dimT; =1+ k <6, (8.5)

where k is the number of model-free parameters.

8.3.3 Optimisation of the diffusion tensor parameters

The parameters of the Brownian rotational diffusion tensor belong to the set ©. This
set is the union of the geometric parameters & = {D;5,,D,,D,} and the orientational
parameters O,

D=06UD. (8.6)

When diffusion is spherical solely the geometric parameter ©;,, is optimised. When the
molecule diffuses as a spheroid the geometric parameters 2,4, and ®, and the orientational
parameters 6 (the polar angle) and ¢ (the azimuthal angle) are optimised. If the molecule
diffuses as an ellipsoid the geometric parameters ®;,,, D, and D, are optimised together
with the Euler angles «, 3, and .

This category is defined as the optimisation of solely the parameters of ©. The model-
free parameters of § are held constant. As all selected residues of the macromolecule are
involved in the optimisation, this category is global and can be more complex than the
optimisation of §; or ¥;. The dimensionality of the problem nevertheless low with

dm® =1, dim® =4, dimD =6, (8.7)

for the diffusion as a sphere, spheroid, and ellipsoid respectively.

8.3.4 Optimisation of the global model

The global model is defined as

l
6:@U<U&>, (8.8)



84 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

where ¢ is the residue index and [ is the total number of residues used in the analysis. This
is the most complex of the four categories as both diffusion tensor parameters and model-
free parameters of all selected residues are optimised simultaneously. The dimensionality
of the model & is much greater than the other categories and is equal to

l
dim & = dim®D + Y _k; <6+ 51, (8.9)
=1

where k; is the number of model-free parameters for the residue ¢ and is equal to dim §;,
the number six corresponds to the maximum dimensionality of ®, and the number five
corresponds to the maximum dimensionality of §;.

8.4 Construction of the values, gradients, and Hessians

8.4.1 The sum of chi-squared values

For the single residue models of §; and ¥; the chi-squared value X? which is optimised
is simply Equation (8.15) on page 86 in which the relaxation data is that of residue i.
However for the global models ® and & in which all selected residues are involved the
optimised chi-squared value is the sum of those for each residue,

l
X=X, (8.10)
=1

where ¢ is the residue index and [ is the total number of residues used in the analysis. This
is equivalent to Equation (8.15) when the index i ranges over the relaxation data of all
selected residues.

8.4.2 Construction of the gradient

The construction of the gradient is significantly different for the models §;, T;, ©, and &.
In Figure 8.1 the construction of the chi-squared gradient Vy? for the global model & is
demonstrated. In this case

!
V=D Vil (8.11)

i=1

where VX? is the vector of partial derivatives of the chi-squared equation X? for the residue
1. The length of this vector is
IVxF [ = dim &, (8.12)

Oy 2 .
ai;% where each 0; is a parameter of the model.
J

with each position of the vector j equal to

The construction of the gradient Vy? for the model ® is simply a subset of that of &.
This is demonstrated in Figure 8.1 by simply taking the component of the gradient Vy?



8.4. CONSTRUCTION OF THE VALUES, GRADIENTS, AND HESSIANS 85

XY 0% 0% 0%  OF oS o5,

_I__

9y 0% O% 0% OF o o3,

_I__

(XY %, 0% 0% IF oS o,

_I__

kY 0%, 0% 0% O% oS o3,

_l__

I9quUINU INPISY

D 3% 9% 9% 3% 3% 3% .

I || || I I | l
D 3% 9% 9% 3% 3% 3%

I || [ I I | n
D 3% 9% 9% 9% 3% 3%

Figure 8.1: The construction of the model-free gradient Vy? for the global model &.
For each residue i a different vector fo is constructed. The first element of the vector
represented by the symbol 09 (the orange block) is the sub-vector of chi-squared partial
derivatives with respect to each of the diffusion tensor parameters ©;. The rest of the
elements, grouped into blocks for each residue denoted by the symbol 93F;, are the sub-
vectors of chi-squared partial derivatives with respect to each of the model-free parameters
§7. For the residue dependent vector VX? the partial derivatives with respect to the model-
free parameters of §; where 7 # j are zero. These blocks are left uncoloured. The complete
gradient of & is the sum of the vectors Vy?.




86 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

denoted by the symbol 9® (the orange blocks) and summing these for all residues. This
sum is given by (8.11) and
IVXZ]| = dim . (8.13)

For the parameter set ¥;, which consists of the local 7,,, parameter and the model-free
parameters of a single residue, the gradient VXZZ for the residue 7 is simply the combination
of the single orange block and single yellow block of the index i (Figure 8.1).

The model-free parameter set §; is even simpler. In Figure 8.1 the gradient VXZZ is simply
the vector denoted by the single yellow block for the residue i.

8.4.3 Construction of the Hessian

The construction of the Hessian for the models §;, %;, ©, and & is very similar to the
procedure used for the gradient. The chi-squared Hessian for the global models ® and &

1S
l

Vi =) Vi (8.14)

i=1

Figure 8.2 demonstrates the construction of the full Hessian for the model &. The Hessian
for the model © is the sum of all the red blocks. The Hessian for the model T; is the
combination of the single red block for residue ¢, the two orange blocks representing the sub-
matrices of chi-squared second partial derivatives with respect to the diffusion parameter
D; and the model-free parameter Sf, and the single yellow block for that residue. The
Hessian for the model-free model §; is simply the sub-matrix for the residue i coloured
yellow.

8.5 The value, gradient, and Hessian dependency chain

The dependency chain which was outlined in the model-free chapter — that the chi-squared
function is dependent on the transformed relaxation equations which are dependent on the
relaxation equations which themselves are dependent on the spectral density functions —
combine with the values, gradients, and Hessians to create a complex web of dependencies.
The relationship between all the values, gradients, and Hessians are outlined in Figure 8.3.

8.6 The x? value, gradient, and Hessian

8.6.1 The y? value

The x? value is defined as

where the summation index i ranges over all the relaxation data of all residues used in the
analysis.



8.6. THE x? VALUE, GRADIENT, AND HESSIAN 87

Y JF OF% 9% I e 3%,

3D
3%
%
3%
%
3%
3%
5D 3D 3D 3D 3D D
3D a&a@ 3D B&ax D a@‘a@ 3D a&as 3D a@’a@ D a@‘a@
%, oF 5 oF oF 9%
3% 9% 9% 9% 9% 9%
9 3% .
3% FEARN REAN REARNG AN 3 Q&
% 9% % % ; 3
T % a&. % % %
3% % % %
3% ¥ 3
3% 3 3 3

1 2 3 4 i n
Residue number

Figure 8.2: The model-free Hessian kite — a demonstration of the construction of the
model-free Hessian V2x? for the global model &. For each residue i a different matrix
V2X22 is constructed. The first element of the matrix represented by the two symbols 09
(the red block) is the sub-matrix of chi-squared second partial derivatives with respect to
the diffusion tensor parameters ©; and ©j. The orange blocks are the sub-matrices of
chi-squared second partial derivatives with respect to the diffusion parameter ©; and the
model-free parameter 35“ The yellow blocks are the sub-matrices of chi-squared second
partial derivatives with respect to the model-free parameters Sf and Sf . For the residue
dependent matrix V2XZ2 the second partial derivatives with respect to the model-free pa-
rameters 3{ and Sf where i # [ are zero. In addition, the second partial derivatives with
respect to the model-free parameters Sz and Sf where i # [ are also zero. These blocks of

sub-matrices are left uncoloured. The complete Hessian of & is the sum of the matrices
VX2



88 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

Figure 8.3: Dependencies between the y?, transformed relaxation, relaxation, and spectral
density equations, gradients, and Hessians.

8.6.2 The y\? gradient

The x? gradient in vector notation is

VA 2(0) = 2 Z R = RO G () (8.16)

8.6.3 The \? Hessian

The x? Hessian in vector notation is

VA (0) =2 i % (VRi(0) - VRi(0)" — (R; — Ri(0))VZRi(0)) - (8.17)



8.7. THE R;(0#) VALUES, GRADIENTS, AND HESSIANS

8.7 The R;(0)

values, gradients, and Hessians

8.7.1 The R;(¢) values

The R;(0) values are given by

Ri(0) = Ry(0),

Ro(0) = R5(0),
N ’Y_HUNOE(H)
NOE(§) = 1+ 7 et

8.7.2 The R;(A) gradients

The R;(#) gradients in vector notation are

VR (0) = VR)
VR (0) = VR,(0

VNOE(6)

(9),
)

_ w1

B vx R1(0)?

(Rl(Q)VUNOE(Q) _ aNOE(H)VR1(9)>.

8.7.3 The R;(¢) Hessians

The R;(#) Hessians in

V2R, () =
V2Ry(0) =

V2NOE(f) =

vector notation are
V2R (0),
VZR(6),

a1
Tx R1(9)3

“Ry(6) (vaNOE(e) VR (0)T — Rl(e)v%NOE(e))] .

[aNOE(e) <2VR1(9) VR ()T — R1(0)V2R1(0))

89

(8.18a)
(8.18b)

(8.18¢)

(8.19a)
(8.19b)

(8.19¢)

(8.20a)
(8.20b)

(8.20c)



90 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.8 RJ(#) values, gradients, and Hessians

The partial and second partial derivatives of the relaxation equations of the set R/(#) are
different for each parameter of the vector 6. The vector representation of the gradient
VR(#) and the matrix representation of the Hessian V2R(#) can be reconstructed from
the individual elements presented in the next section.

8.8.1 Components of the R}(f) equations

To simplify the calculations of the gradients and Hessians the R}(6) equations have been
broken down into a number of components. These include the dipolar and CSA constants
as well as the dipolar and CSA spectral density terms for each of the three transformed
relaxation data types {R1, Ra, onor}. The segregation of these components simplifies the
maths as many partial derivatives of the components are zero.

Dipolar constant

The dipolar constant is defined as

d=

1 (@)2 (vyxh)® (8.21)

4 \4r <7ré>

This component of the relaxation equations is independent of the parameter of the spectral
density function 6;, the chemical exchange parameter pc;, and the CSA parameter Ao.
Therefore the partial and second partial derivatives with respect to these parameters is
zero. Only the derivative with respect to the bond length 7 is non-zero being

dd _ 3 p0\2 (yych)’
d=T = () 22
dr 2 \4m <r’> (8:22)
The second derivative with respect to the bond length is
d?d 21 (o2 (vuych)?
== () 8.23
drz2 2 \4x <r8> (8:23)
CSA constant
The CSA constant is defined as )
-A
c— w' (8.24)

The partial derivative of this component with respect to all parameters but the CSA
parameter Ao is zero. This derivative is
,_ de 2w% - Ao

_ _ 2
= 1Ao 3 (8.25)

The CSA constant second derivative with respect to Ao is

d%¢ 2w
" X
= —=, 8.26
dAo? 3 ( )

C



8.8. R/ (0) VALUES, GRADIENTS, AND HESSIANS 91

R., constant

The R.; constant is defined as
R, = pew(waH)2. (8.27)

The partial derivative of this component with respect to all parameters but the chemical
exchange parameter p., is zero. This derivative is

, _ dRe
T dpea

= (2nwi)?. (8.28)

The R, constant second derivative with respect to pe; is

, _ ARy,
w0,

= 0. (8.29)

Spectral density terms of the R; dipolar component

For the dipolar component of the R; equation (6.2a) on page 43 the spectral density terms
are
TN = J(wg — wx) + 3J(wx) + 6J (Wi + wx). (8.30)

The partial derivative of these terms with respect to the spectral density function param-
eter 0; is
R/ &]};{1 0J(wpg — wx) 0J(wx) 0J(wh + wx)
Jat = = +3 +6
00; 00; 00; 00;

. (8.31)

The second partial derivative with respect to the spectral density function parameters 0;
and 6y, is
O*T P (wn —wx) | 0PI (wx) | 0*T(wy +wy)

R = . 8.32
TiT = g 06, ~ 00,-90, ' 06,-06, O 06,06, (8.32)

Spectral density terms of the Ry CSA component

For the CSA component of the Ry equation (6.2a) on page 43 the spectral density terms

are
JR = J(wx). (8.33)

The partial derivative of these terms with respect to the spectral density function param-
eter 0; is
8J§1 _oJ (wx)

Ra' = — 8.34
e = "0, 20, (8:34)

The second partial derivative with respect to the spectral density function parameters 0,
and 0, is

JR" 82J§1 _ 82J(WX)‘

0 00;.00,  00;- 00

(8.35)



92 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

Spectral density terms of the Ry dipolar component

For the dipolar component of the Ry equation (6.2b) on page 43 the spectral density terms
are
JX2 = 4J(0) + J(wh — wx) + 3J(wx) + 6J(wir) + 6J (wir + wx). (8.36)

The partial derivative of these terms with respect to the spectral density function param-
eter 0; is

R

J(?Q/ _ 0J,;* _ 48J(0) n 0J(wy — wx) +38J(WX) +68J(WH) +68J(WH + wx)
00; 00; 00, 00; 00; 00;

. (8.37)

The second partial derivative with respect to the spectral density function parameters 0;
and 6y, is

i~ 2T ., 9%2J(0) +82J(wH—wX) N 382J(wx)
90, - 06, 00 - 96, 90, - 06, 90 - 06,
82J(WH) 82J(wH+wX)
+689j'89k+6 20, - 00 (8.38)

Spectral density terms of the Ry CSA component

For the CSA component of the Ry equation (6.2b) on page 43 the spectral density terms
are

JR2 = 4.7(0) + 3J(wx). (8.39)

The partial derivative of these terms with respect to the spectral density function param-
eter 0; is
JRa! _ o.JR _ 4(‘3J(O) +38J(wx)‘

= 4
¢ 00, 00, 06, (8.40)

The second partial derivative with respect to the spectral density function parameters 0;
and 6y, is
JR _ 82J§2 4 02.J(0) +382J(WX)

= = . 41
¢ T 00,-06, 06, 00, 00,006 (8.41)

Spectral density terms of the oy dipolar component

For the dipolar component of the oxop equation (6.2c) on page 43 the spectral density
terms are
JgNOE =6J(wy +wx) — J(wyg —wx). (8.42)

The partial derivative of these terms with respect to the spectral density function param-
eter 0; is
O JNOE oJ(wy +wx) 0J(wyg —wx)
Jovorl = Z5d — ¢ - : 8.43
d 00; 00; 00; ( )




8.8. R/ (0) VALUES, GRADIENTS, AND HESSIANS 93

The second partial derivative with respect to the spectral density function parameters 0;
and 6y, is
PINE P wy +wx) 0%J(wg —wx)
4 T 090;,-90,  060;-00,  00;- 06

JUNOE” —

(8.44)

8.8.2 Rj(#) values

Using the components of the relaxation equations defined above the three relaxation equa-
tions can be re-expressed as

Ri(0) = dJ} + cJB, (8.45a)

d
Ra(6) = 53 + %JEQ, (8.45D)
UNOE(G) = ngNOE. (8.456)

8.8.3 R}(#) gradients

A different partial derivative exists for the spectral density function parameter ¢;, the
chemical exchange parameter p.,, CSA parameter Ao, and bond length parameter r. In
model-free analysis the spectral density parameters include both the parameters of the
diffusion tensor and the parameters of the various model-free models.

0; partial derivative

The partial derivatives of the relaxation equations with respect to the spectral density
function parameter 0; are

OR4 (9) = dJ;ll + cJEll, (8.46a)
20,
8R2(9) d Ro/ & Ro/
= — - 4
T R Y (8.46D)
aJNOE(e) oNOR/
A . 4
29, dJy (8.46¢)

pes Partial derivative

The partial derivatives of the relaxation equations with respect to the chemical exchange
parameter p., are

OR1(0)

82{;(0) — (2rwn)?, (8.47D)
doxosl®) _ (8.47c)

Opex



94 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

Ao partial derivative

The partial derivatives of the relaxation equations with respect to the CSA parameter Ao
are

8R’1(6) _ I 7R1

A € J, (8.48a)

8R2(9) Cl Ro

Ae gl (8.48b)
Jonor(0)

ng = (8.48c)

r partial derivative

The partial derivatives of the relaxation equations with respect to the bond length param-
eter r are

OR1(0)

5 — d/Jlg{l, (8493)

/
8%;0) ~ L, (8.49b)
80'%;(9) — d,JgNOE- (849C)

8.8.4 R/(f) Hessians

Again different second partial derivatives with respect to the spectral density function
parameters 0; and 0, the chemical exchange parameter p.;, CSA parameter Ao, and
bond length parameter r. These second partial derivatives are the components of the
R/ (6) Hessian matrices.

0; — 0; partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameters ¢; and 0}, are

82]_3{1(9) R,/ R,

95, g, =i+l (8.50a)

82R2(9) d Ro | C iR,/

5o, -0, 2 T 0]
Povos0) _  jawoer (8.50)

06, - 06y



8.8. R/ (0) VALUES, GRADIENTS, AND HESSIANS 95

0; — per partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter ¢; and the chemical exchange parameter p., are

7R ()
MV .01
5, ope =" (8.51a)
57Ro(6)
W = O, (851b)
D?onox(0)
W =0. (8516)

0; — Ao partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter ¢; and the CSA parameter Ao are

82R]_ (9) / Rll
R .52
30, 080 dJ, (8.52a)
82R2(0) C, Ro/
A .52
90, -0As 67 (8.52b)
0?onor(0)

0; — r partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter 6; and the bond length parameter r are

9%R1 (6)

o = dh (8.53)
J
0’Ry (0 d /
820NOE(0) /
— 7 — ' JINor’, .
26, - Or J; (8.53c)

Pex — Per Partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter p., twice are

2
aaRl (29 ) _ 0, (8.54a)
Pea
2
aaRz(f ) _ 0, (8.54b)
Pea
2
Fowos(¥) _ . (8.54c)

Opes”



96 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

pex — Ao partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter p., and the CSA parameter Ao are

9’R1(0)
SO0 0, (8.55a)
0’Ra(0)
S .5bb
5o 9a =" (8.55b)
820NOE(0) o
T (8.55¢)

pew — 7 partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter p., and the bond length parameter r are

0’Rq(0) B
Py 0, (8.56)
92Rs(0)
oy =0 (8.56D)
820NOE(0) o
Bper - OF (8.56¢)

Ao — Ao partial derivative

The second partial derivatives of the relaxation equations with respect to the CSA param-
eter Ao twice are

82R1 (6)

V- d gk (8.57a)
0’Ra(0) " »
= __J'2 8.57b
ING? 6°¢ "’ ( )
D?onox(0)
— " =0. 8.57
dAc? ( c)

Ao — r partial derivative

The second partial derivatives of the relaxation equations with respect to the CSA param-
eter Ao and the bond length parameter r are

0’R4(0)
O’Ra(0)
OAc - Or 0 (8.58b)
2
Fonoe(®) _ (8.58¢)

O0Ao - Or



8.8. R/ (0) VALUES, GRADIENTS, AND HESSIANS 97

r — r partial derivative

The second partial derivatives of the relaxation equations with respect to the bond length
parameter r twice are

0?Rq(0) R
ar2 — d//Jd 1’ (859&)
82R2(9) d’ Ro
Rall) &' jm (8.50D)
Powopl0) _ g joxor. (8.59¢)

or?



98 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.9 Model-free analysis

8.9.1 The model-free equations

In the original model-free analysis of Lipari and Szabo (1982a) the correlation function
C(7) of the XH bond vector is approximated by decoupling the internal fluctuations of
the bond vector Ci(7) from the correlation function of the overall Brownian rotational
diffusion Co(7) by the equation

C(1) = Co(r) - Ci(1). (8.60)

The overall correlation functions of the diffusion of a sphere, spheroid, and ellipsoid are
presented respectively in section 8.10.1 on page 110, section 8.11.1 on page 123, and
section 8.12.1 on page 127. These three different equations can be combined into one
generic correlation function which is independent of the type of diffusion. This generic
correlation function is

k
Co(r) = % Z ¢i-e T/ (8.61)
i=—k

where ¢; are the weights and 7; are correlation times of the exponential terms. In the orig-
inal model-free analysis of Lipari and Szabo (1982a,b) the internal motions are modelled
by the correlation function

Cr(r) = 82+ (1 — §%)e™ 7/, (8.62)

where S? is the generalised Lipari and Szabo order parameter which is related to the
amplitude of the motion and 7. is the effective correlation time which is an indicator of
the timescale of the motion, albeit being dependent on the value of the order parameter.
The order parameter ranges from one for complete rigidity to zero for unrestricted motions.
Model-free theory was extended by Clore et al. (1990) to include motions on two timescales
by the correlation function

Ci(r) = 8*+ (1 —SP)e ™/ + (57— S%)e /™, (8.63)

where the faster of the motions is defined by the order parameter SJ% and the correlation

time 7, the slower by the parameters S? and 7, and the two order parameter are related
by the equation S% = S]% - 82,

The relaxation equations of Abragam (1961) are composed of a sum of power spectral
density functions J(w) at five frequencies. The spectral density function is related to the
correlation function as the two are a Fourier pair. Applying the Fourier transform to the
correlation function composed of the generic diffusion equation and the original model-free
correlation function results in the equation

2y $2 (-8t
Jw) =% ;k ¢ T (1 gy e A o (Wem2>. (8.64)




8.9. MODEL-FREE ANALYSIS 99

The Fourier transform using the extended model-free correlation function is

2 52 (1= S2)(rp+m)rp (S —S%)(7s +T)7s
Jw) = 5 Z_Z_:k G (1 + (wm)?2  (rp+ 1)+ (wrpr)? (15 + 1) + (wrsmi)? ) (8.65)

8.9.2 The original model-free gradient

The model-free gradient of the original spectral density function (8.64) is the vector of
partial derivatives of the function with respect to the geometric parameter &;, the orien-
tational parameter 9;, the order parameter S2, and the internal correlation time 7.. The
positions in the vector correspond to the model parameters which are being optimised.

&; partial derivative

The partial derivative of (8.64) with respect to the geometric parameter &; is

OJ(w) _ 2 y . ot [ o 1—(wr)? _g2),2 (Te + 7)? — (WTe;)?
P ( ‘ae, (5 v wrr? T e <wen>2>2>

Oc¢; 52 (1 = 52)(7e + 7i)Te
(e ). s

(wr3)?2  (Te + 71)2 + (WTeT;)?

1=—

9, partial derivative

The partial derivative of (8.64) with respect to the orientational parameter O; is

oJ(w) 2 " de ( S? n (1—52)(7'@-1-7'2')7}).

80]' a 3 i 853] Ti 1 + (W’TZ’)2 (Te + Tz‘)2 + (WTeTi)Q

(8.67)

S? partial derivative

The partial derivative of (8.64) with respect to the order parameter S? is

0J(w) 2 o 1 (Te + 7i)7e
9s2 5 Z;k ciTi (1 + (wT;)? B (Te + 1) + (wTei)2 | (8.68)

T. partial derivative

The partial derivative of (8.64) with respect to the correlation time 7 is

k
8J((,U) — 2(1 o 52) Z C'T-2 (Te + Ti)2 — (UJTeTZ')2 '
I7e 5 Py} v ((Te + )2 + (WTeTZ’)2)2

(8.69)



100 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.9.3 The original model-free Hessian

The model-free Hessian of the original spectral density function (8.64) is the matrix of
second partial derivatives. The matrix coordinates correspond to the model parameters
which are being optimised.

&; — 6, partial derivative
The second partial derivative of (8.64) with respect to the geometric parameters ®; and
& is
k

PIw) 2 S (e 2 O §2,2 3= (wn)?

08,06, b~ ‘06, 06, (14 (wr)?)?
(Te + 1) 4+ 30273 7i(Te + 1) — (WTe)7P

((Te + 73)? + (wrer;)?)?

+ aTi ) 802- + aTi ) 8cl- +e 82Ti S2 1—(&)7})2
8(’5j 06y, 06y, 8(’5j 28®j-8e5k (1_|_(w7-2.)2)2

+ (1 — 8?)72

gy 2 (et ) — (wrem)”
+ (1= ((Te +73)% + (WTeTi)2)2>

Pei . 52 (1= 8%)(7e + Ti)7e
’ <a®j 06, (1 + (wr;)? " (Te + )% + (wren)2)))- (8.70)

&; — O, partial derivative

The second partial derivative of (8.64) with respect to the geometric parameter &; and
the orientational parameter Oy, is

2 k 9 — (wr)2 N2 _ 2
0°J(w) _ 2 Z ot 0c; 2 1 — (wm) (-8 (Te +7)" — (WTeTy) i
08; 00 5 08; 09K\ (1+ (wn)?) (e + 70)% + (wreTi)?)

9%¢; ( 52 . (1— 8%)(re + 7)1 )) 571)

i=—k

98, 00, '\ T+ @) Tt m)? + (wreri)?

6; — S? partial derivative

The second partial derivative of (8.64) with respect to the geometric parameter &; and
the order parameter S? is

PJw) 2§ ( a( L= @n)’ L, (et 7)’ — (wrers)? >

L = — C; e
08;-052 5 = \ 98, \ (14 (wm)2)? (e +7)? + (wrem)?)?

867: 1 (Te + 7'7;)7'6
+ 8@] Ti (1 + (WTi)Q - (Te + Ti)2 + (WTeTZ’)2>>. (872)



8.9. MODEL-FREE ANALYSIS 101

®; — 7. partial derivative

The second partial derivative of (8.64) with respect to the geometric parameter &; and
the correlation time 7, is

k

0?J(w) 2 9 or; (Te + 7)* — 3(wTe)?
- - L = = 1 — S 2 7 eli\le + 7
56 o, 5 )i:z_:k g, e T T )2

. N2 2
N oc; 2 (Te +75) (WTeT;) > (8.73)

06; ' ((Te + 1)2 + (WTeTi)2)2

9, — Oy, partial derivative

The second partial derivative of (8.64) with respect to the orientational parameters O
and Oy, is

92 ( 52 (1 - 8%)(re + 7)1 ) (874

853 8Dk Z 853 8Dk (1 + (wT;)? + (Te + 7)? + (wTeT;)?

9O, — 5? partial derivative

The second partial derivative of (8.64) with respect to the orientational parameter O; and
the order parameter S2 is

PJ(w) 2 b e . 1 B (Te + 7)Te (8.75)
09 - 08% 5 i=—Fk 99 1+ (WTi)Q (Te + Ti)2 + (WTeTi)Q ' .

9; — 7. partial derivative

The second partial derivative of (8.64) with respect to the orientational parameter O; and
the correlation time 7, is

PJ(w) 2
0001 5

Oc; o (Te + )2 — (wTer;)?
L= 09 (e +70)? + (wre)2)?

(8.76)

S? — S? partial derivative

The second partial derivative of (8.64) with respect to the order parameter S? twice is

02 J(w)

5y =0 (8.77)



102 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

S? — 1, partial derivative

The second partial derivative of (8.64) with respect to the order parameter S? and corre-
lation time 7, is

82J(w) 9 & 9 (Te+ 7'i)2 — (OJTETZ')2
=7 iTi . 8.78
952 - 07, 5 i_z_:kc K ((Te + 7)2 + (wre;)2)? (8.78)

T. — T. partial derivative

The second partial derivative of (8.64) with respect to the correlation time 7, twice is
k
0% J(w) 4 Z or? (Te + 71)3 + 32737 (e + 1) — (wry)*72 (8.79)

T T - 82 T
1.2 5( ) ((Te + 7)? + (wrer;)2)?

i=—k



8.9. MODEL-FREE ANALYSIS 103

8.9.4 The extended model-free gradient

The model-free gradient of the extended spectral density function (8.65) is the vector
of partial derivatives of the function with respect to the geometric parameter &;, the
orientational parameter 9;, the order parameters S? and S]%, and the internal correlation
times 7y and 7. The positions in the vector correspond to the model parameters which
are being optimised.

&; partial derivative

The partial derivative of (8.65) with respect to the geometric parameter &; is
0J(w) 2 z’“: ( or; (5,2 1— (wr;)?

08; 5 4~ \ 08 \" (14 (wn)?)’

(17 + 1)* = (wrpmi)?
(7 +70)% + (wrpms)?)?

+(1- S]%)T]%

2 g2).2 (15 +73)* — (wTsi)?
B AR T (wsnﬁ)?)
dc; 52 (1= S (rp+m)75 (87— S%)(7s + )7
N 26 T (1 + (wr)?2  (rp+ 1)+ (wrpr)? (s +7)2 + (wrsm)? ) ) (8.:80)

9, partial derivative

The partial derivative of (8.65) with respect to the orientational parameter O; is

J(w) _ 2 L Be _ S2 N (1= S (rp+7)mp (87— 5%)(7s + 7i)7s
o9, 5 = 09; "\ 1+ (wr)?  (rp4+7)2 + (wrpm)? - (15 +70)2 + (wrsmi)?
(8.81)

S? partial derivative

The partial derivative of (8.65) with respect to the order parameter S? is

(7 + 7i)Ts
882 a Z an (1 +(wm)? (et T+ (WSTi)z)- (8.82)

z——k

SJ% partial derivative

The partial derivative of (8.65) with respect to the order parameter S]% is

0J(w) (1f +13)78 (s + 7i)Ts
852 B Z ari ( (tp + 1) + (wrpmi)? (75 +70)2 + (wTsmi)? ) (8.83)



104 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

77 partial derivative

The partial derivative of (8.65) with respect to the correlation time 7y is

k
WO a5y Y e 0T )~ (wrym)” (8.84)

114

Oty (4 )%+ ()

T, partial derivative

The partial derivative of (8.65) with respect to the correlation time 7 is

2
0J(w ) Sf ) Z eir? (1s + 1) — (wTs) N (8.85)
0T = (15 + 70)? + (wTs7)?)




8.9. MODEL-FREE ANALYSIS 105

8.9.5 The extended model-free Hessian

The model-free Hessian of the extended spectral density function (8.65) is the matrix of
second partial derivatives. The matrix coordinates correspond to the model parameters
which are being optimised.

&; — &, partial derivative

The second partial derivative of (8.65) with respect to the geometric parameters ®; and
& is

82J(w) 2 y or, 07 9 93— (WTi)2
I _z — 2 Rl S S L
0B - 08 5 Z “o8; 0w, \7 YT (1+ (wr)?)?
o SJ%)T]% (r+7)% + 3w27'?7'i(7'f +7i) —3(w7'f)47'i3
(77 + 1) + (w7yTi)?)
(15 +71)3 + 32731 (1s + 1) — (wT8)4TZ-3)

2 _ g2),2
+(5F = 5975 ((7s + 70)2 + (wrsm)2)°

. ( ot O n ot O e 0%, ) <S2 1 — (wr)?
06, 06, 06, 06,  56; 06, |7 (1% (wn)?)?
(rf +7)° = (wrymi)
(75 + 7% + (wrpmi)2)?
+ (SJ% — 5?)72 (7s +73)* — (wrs7;)? 2)
((1s + 7)? + (wrsm)?)

d%¢; S? (1= S3)(rp +m)7p (87— 5°)(7s + 7i)7s
- 06 - 08y, Ty ()2 (rf+ 1)+ (wrpm)? (15 + 7)2 + (wTemi)? ’

2

+(1- S]%)T]%

(8.86)

&, — Oy, partial derivative
The second partial derivative of (8.65) with respect to the geometric parameter &; and
the orientational parameter Oy, is

k

02 J(w) 2 O dci [ o 1= (wm)?
I 2 Z S 3
96,99, 5 = 06, 00y, (1+ (wm)?)

(r7 + 73)* = (wrym)?
(75 +7)% + (wrpm)?)?
2 _ g2).2 (75 + 1) — (wTsm3)?
M A ((rs +7:)2 + (wrsn)2)2>
d%c; S2 (1 =S}y +m)ry (SF— ) (7s + 1)
* 08; - 29y, " (1 + (wr)?  (rp+ 1)+ (wrpr)? (e +1)2 + (wrem)? ) ) (8.87)

+(1- SJ%)TJ%




106 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

6; — 52 partial derivative

The second partial derivative of (8.65) with respect to the geometric parameter &; and
the order parameter S? is

- e (1+ (wr)2)?  ° (15 +71)% + (wremi)2)?

0?J(w) _ 2 zk: o or [ 1—(wr)? 2 (7s + 73)? — (wrsi)?
08;-05% 5 =

Oc; 1 (Ts + Ti)Ts
+ 86] Ti (1 + (WTi)2 a (7-8 + Ti)2 + (WTSTZ')2>>‘ (888)

6; — SJ% partial derivative

The second partial derivative of (8.65) with respect to the geometric parameter &; and
the order parameter SJ% is

9?J(w _ 2 Zk: 87'1 2 (1f +7:)% — (wrsm;)? 2 (15 + 71)% — (wrs;)?
9%; 852 5 N+ 4+ wrm)®? 7 (4 7)? + (wnm)?)?

Oc; (Tf + Ti)Tf B (7'5 + Ti)Ts

* 06 T ((Tf +7)? + (wrpm)? (1 + 1)+ (WTsTi)2)). (8.89)

&; — 77 partial derivative

The second partial derivative of (8.65) with respect to the geometric parameter &; and
the correlation time 7y is

k

0?J(w) 2 9 ot
e A = 1_ 2 (3 1 2
56, -or; — 5 51 2 | 2igg, il + )

(1 + )2 — 3(w7'f7'l-)2
((rp + 732 + (wrpm)2)°

i=—k

. N2 )2
Y AN

8(’5]‘ ! ((Tf + Ti)2 + (waTi)2)2

®; — 7, partial derivative

The second partial derivative of (8.65) with respect to the geometric parameter &; and
the correlation time 75 is

k

P : or
QZ st S (2
9®; - or, = 5558 )i:z_:k i, (T + 7

(15 + 71)% — 3(wre;)?
(s + 73)% + (wrsmi)?)°

+

dci o (1o4 1) — (wrem)?
08, TZ? ((ts +1)% + (wTsTi)2)2>. 590



8.9. MODEL-FREE ANALYSIS 107

9; — O;, partial derivative

The second partial derivative of (8.65) with respect to the orientational parameters O;
and Oy, is

02.J( 52 (1= S7) (15 +7i)7y
99, - 09y, aok Z ao aok 1+ (wr;)? * (1 +7i)% + (wrpmi)?

2 _ S%)(r, Ti)T.
(52 s><s+z)s> 592)

(s + 71)% + (wTsm;)?

9O, — 5? partial derivative

The second partial derivative of (8.65) with respect to the orientational parameter O; and
the order parameter S2 is

k

PI(w) 2 de; 1 B (Ts + 73)Ts (8.93)
99, 057 5 2 90; '\ 1T+ (@n)? (et )P+ wrnn)? ) '

0 — S]% partial derivative

The second partial derivative of (8.65) with respect to the orientational parameter O; and
the order parameter SJ% is

2 2 o i i s+ Ti)Ts
0 J(w)2 _ 2 dc - (17 +13)78 (Ts + Ti)T,  (8.04)
99,057 5 2= 99,

(1p +73)% + (wrpmi)? (75 + 7)) + (wTsT3)?

9; — 7y partial derivative

The second partial derivative of (8.65) with respect to the orientational parameter O; and
the correlation time 7y is

0% J(w) 2(1 _s?) " e 2 (15 + 1) — (wrymi)?
99,9ty 5 f = 005 (g + )% + (wrpm)2)?

(8.95)

9, — 75 partial derivative

The second partial derivative of (8.65) with respect to the orientational parameter O; and
the correlation time 75 is

82J( ) (S $2) y dci o (15 + 71)% — (wreT;)?
09;-0r, 5 17 L 99,7 ((ry +1)? + (wrem))

(8.96)



108 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

S? — S? partial derivative

The second partial derivative of (8.65) with respect to the order parameter S? twice is

PJ(w)
@592 = 0. (8.97)

52 — SJ% partial derivative

The second partial derivative of (8.65) with respect to the order parameters S? and SJ% is

92 (w)

52 — 77 partial derivative

The second partial derivative of (8.65) with respect to the order parameter S? and corre-
lation time 7y is
02 J (w)

S? — 1, partial derivative

The second partial derivative of (8.65) with respect to the order parameter S? and corre-
lation time 75 is

02J(w) 2 z’“: 2 (1t Ti)? — (i)

- (e + )2 + (wrem)?)?

1=—

SJ% — SJ% partial derivative

The second partial derivative of (8.65) with respect to the order parameter SJ% twice is

0?J(w)

= 0. (8.101)

SJ% — 77 partial derivative

The second partial derivative of (8.65) with respect to the order parameter SJ% and corre-
lation time 7y is

2 )
= T . (8.102)



8.9. MODEL-FREE ANALYSIS 109

SJ% — 7, partial derivative

The second partial derivative of (8.65) with respect to the order parameter SJ% and corre-

lation time 75 is
k
0?J(w) 2 Z o2 (s + 73)2 — (wTsTi)?

987 0r b A= N (1 4 )2 + (wrem)?)?

(8.103)

7f — 7 partial derivative

The second partial derivative of (8.64) with respect to the correlation time 7y twice is

G TR e 7 ) B T
5 v

. ; (8.104)
otf = (15 + 1) + (wrpmi)?)

Tf — T, partial derivative

The second partial derivative of (8.64) with respect to the correlation times 7y and 7y is

02 J(w)
— 7 0. 1
Oty - Oy 0 (8.105)

Ts — Ts partial derivative

The second partial derivative of (8.64) with respect to the correlation time 75 twice is
k
0% J(w) 4, 5 52) Z o (Ts + 7)3 + 3wrdrs(1s + i) — (wri)4r3

_ - 8.106
14> 5 (s + )% + ((UTSTi)Q)S ( )




110 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.10 Ellipsoidal diffusion tensor

8.10.1 The diffusion equation of the ellipsoid

The correlation function of the Brownian rotational diffusion of an ellipsoid is

2
1 _T
Oo(T):g E cie Ti. (8.107)
i=—2

where ¢; are the weights of the five exponential terms which are dependent on the ori-
entation of the XH bond vector and 7; are the correlation times of the five exponential
terms.

8.10.2 The weights of the ellipsoid
Definitions

The three direction cosines defining the XH bond vector within the diffusion frame are

5, = XH -D,, (8.108a)
5, = XH-9D,, (8.108b)
5.=XH-9D.. (8.108¢)

Let the set of geometric parameters be

6 = {Dis0, D4, Dr}, (8.109)
and the set of orientational parameters be the Euler angles

O =A{a,p,7} (8.110)

The weights

The five weights ¢; in the correlation function of the Brownian rotational diffusion of an
ellipsoid (8.107) are

o =1(d-e), (8.111a)
c_1 = 35,02, (8.111b)
co = 30262, (8.111c)
c1 = 30207, (8.111d)
e =1(d+e), (8.111e)



8.10. ELLIPSOIDAL DIFFUSION TENSOR 111

where
d=3(6+0,+6;) —1, (8.112)
1
e= 5 |(1+3D,) (0 +26702) + (1 — 3D,) (6, +25207) —2(62 +2626,) |- (8.113)

The factor R is defined as

R =+/1+ 392 (8.114)

8.10.3 The weight gradients of the ellipsoid

9, partial derivative

The partial derivatives with respect to the orientational parameter O; are

aac—;;j (53(?;; 53353 5§§g ) - 88;{ (8.115a)
aacoj = 00,0 <5y% + 9 ggy> (8.115b)
ggol 6020 <5x%+5z%>7 (8.115¢)
gg@ = 60,0y <5 gg 5y%> (8.115d)
gzcji =3 (53 gf; + 4, gg +67 gg > + 8851’ (8.115¢)

where

de 1 3 005 06, 09,
0 - ® (1+39,) (5 "9, + 8,0 <5y802‘+5280i>>

06, 96 00,
+(1 - 3©r) <52 853 xVz <5x% + 52%))

96, dé D6
<53 295, + 620y (5958—931 + 5y8—9i>>] . (8.116)




112 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

T, partial derivative

The partial derivatives with respect to the 7,,, geometric parameter are

86_2 -

or. 0, (8.117a)
86_1__

ar. 0, (8.117b)
860 -

ey, (8.117d)
OTm

de2 (8.117¢)
OTm

9, partial derivative

The partial derivatives with respect to the ®, geometric parameter are

86_2

. =0, (8.118a)
g;‘: — 0, (8.118b)
gg’a — 0, (8.118¢)
g;la — 0, (8.118d)
88;2& — 0. (8.118¢)

9, partial derivative

The partial derivatives with respect to the ®, geometric parameter are

g%f - —2%, (8.119a)
g(;j —0, (8.119b)
ggor —0, (8.119¢)
ggr —0, (8.119d)
g;i - z ;@i, (8.119)

where

Oe 1
0. = 7 (1-D,) (67 +20262) — (1+D,) (0, + 26202) + 2D, (62 +20267) |. (8.120)




8.10. ELLIPSOIDAL DIFFUSION TENSOR 113

8.10.4 The weight Hessians of the ellipsoid
9; — O; partial derivative

The second partial derivatives with respect to the orientational parameters O; and O; are

82c_y :3<52<5 025, +385$'85m>

99, - 99, T99;-00; ' T99; 09;
+9 (59 ao(?z‘-aayoj i 33553@2 ' ggﬁ)
+62 (52 3 9?2'55 5y - 33& : ggzj >> — #ggj’ (8.121a)
2 2
ag%éloj = 60, <5Z ao? -5553]- + ggzi ' gg)
w120 (G 55+ 5, 90
+ 66 <5y 85:)?2.5553]- * ggi ' ggi)  (8.121b)
2 2
ﬁ = 60; <5Z ao? -5553]- * ggi ' gg)
#1250 (52 50+ 55 3
+ 602 (530 89?2.5593» + ggmi : ggf; > . (8.121c)

0%, B <5 0%, 0, aay>

99, 09, 9D, 00, 9D, 0D,
05, 95, 95, 05,
12029, <aoi 90, "0, aoj>
02 05, 96
2 T z T
+ 662 <5xaoi.aoj+aoi 89), (8.121d)
2 2
Por Mo (s 06 o8 on,
99, 09, 90, 00, 9D, 99,

026 26, 06
2 y y 9%
oy <5yaoi 00, T 99, aoj>

9% 00 00 92e
2 z z 5 PP




114 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

where
_Pe 1l so (a2 (5,20 52 O
90, 00, ® I\ %% 50,00, T 90, o,
026 a5, 6
2 z z z
0y <5zaoi-aoj T30, 99,
926 a6, 96
2 y y 9%
o (5‘1’802--60]- 39, 9,
o5, 5. 05, 05,
2040 (aoi "0, T 90, 99, )

9% a6,

S5
>
<

+(1 -39,) (55 <5yaoi-§53j +3853i .

025, 09

Q
A

2 .
0 <5Z 90, 00; 99,

020, 00,

83
=7
~|w

QJ
§”

2 .
o <5“"f 90, 09; 99,

00, 00, 00,

QJ
SR
8 (R

+20,6, <

20, 99, T a0,

N———

QJ
S
N [

200, -00; | 09,

2
—2(53(5 070: 500

0%, 05,

Q» D
é)) k:.b

2 .
s <5y 90, 00; 99,

020, 00,

QJ
S
8 (R

+

2 .
0y <5“"f 90, 09; 99,

25, 95, 05,

QJ
S
8 (R

+26,0, (

9; — 7., partial derivative

20, 90, T a0,

QD
G
A A A A - D A e e e e O

Q
A

N——
| I

(8.122)

The second partial derivatives with respect to the orientational parameter O; and the

geometric parameter 7, are

826_2 0
00; -0t

826_1 _ O,
ODZ . aTm

8260 _ 0’
ODZ . aTm

8261 _ 0’

(8.123a)
(8.123b)
(8.123c¢)

(8.123d)



8.10. ELLIPSOIDAL DIFFUSION TENSOR 115

8262

9; — 9, partial derivative

The second partial derivatives with respect to the orientational parameter O; and the
geometric parameter ®, are

~ 52_052 -—0, (8.124a)
. gzcgga —0, (8.124b)
898265’@ =0, (8.124c)
5 98265@ —0, (8.124d)
% = 0. (8.124e)

O; — D, partial derivative

The second partial derivatives with respect to the orientational parameter O; and the
geometric parameter ©, are
D%c_s d%e
=-3 , 8.12ba
09, - 09, 09; - 09, ( )
820_1
09; - 09,

=0, (8.125D)
=0, (8.125¢)

=0, (8.125d)

(8.125¢)

where

B2 1 5 06, 5. 05,
5o, 00, v |17 )<5 v 5, T o0 <5ya_oi+52a_oi>>

0, 00 00,
— 3 _= _r
(1+©7«)<5y89 zz(éxagi—l—ézagi))

006, o) 00
+29, <53 D, (5 8Dy- + 511%))]. (8.126)




116 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

Tm — Tm partial derivative

The second partial derivatives with respect to the geometric parameter 7, twice are

82 C_9
O
0%c_q
0T
82 Co
O
8261
or?
82 (&)

AT ?

Tm — 3, partial derivative

(8.127a)
(8.127b)
(8.127¢)
(8.127d)

(8.127e)

The second partial derivatives with respect to the geometric parameters 7, and D, are

826_2

or 0D,

826_1

0T, - 09,

8260

0T, - 09,

8261

0T - 09,

82 (&)

0T - 09,

Tm — 3, partial derivative

(8.128a)
(8.128D)
(8.128¢)
(8.128d)

(8.128e)

The second partial derivatives with respect to the geometric parameters 7,,, and O, are

826_2

O - 0D,

826_1
0Ty, - 09,
8260
0T, - 09,
0%y
0T, - 09D,
8262
0T, - 09,

(8.129a)
(8.129h)
(8.129¢)
(8.129d)

(8.129€)



8.10. ELLIPSOIDAL DIFFUSION TENSOR

D, — 9, partial derivative

117

The second partial derivatives with respect to the geometric parameter ©, twice are

D, — 9, partial derivative

820_2
Ay
820_1
Ay
8260 .
09,2 0
8261
0,7
8262
9.7 = 0.

(8.130a)
(8.130D)
(8.130c)
(8.130d)

(8.130e)

The second partial derivatives with respect to the geometric parameters ©, and ®, are

9, — D, partial derivative

820_2 —0
09, - 09, '
0%c_q _0
09, - 09, '
8260 —0
09,09,
8261 —0
09, - 09, ’
8262 —0
09, - 09, '

(8.131a)
(8.131D)
(8.131c)
(8.131d)

(8.131e)

The second partial derivatives with respect to the geometric parameter 2, twice are

D%c_s 3 9%

09,2 4092
820_1 .

09,2 0

8200 .

09,% 0

8201

90,2~

9% co 3 d%e

09,2 4092

(8.132a)

(8.132D)

(8.132c)

(8.132d)

(8.132¢)



118 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

where

d%e 1 2 4 )
907 ~ 3w (697 =99, — 1) (0, + 26,57)

+(6D2 + 9D, — 1) (5, + 26207)

—2(692 — 1) (02 +2620,) |- (8.133)



8.10. ELLIPSOIDAL DIFFUSION TENSOR

8.10.5 The correlation times of the ellipsoid

119

The five correlation times 7; in the correlation function of the Brownian rotational diffusion

of an ellipsoid (8.107) on page 110 are

= (6Dj50 — 2D,R) 7,
= (6Diso — Da(1 +3D,)) 7",
70 = (6050 — Da(1 —39,)) 7L,
(
(

where R is defined in Equation (8.114) on page 111.

8.10.6 The correlation time gradients of the ellipsoid

T, partial derivative

The partial derivatives with respect to the geometric parameter 7, are

Zj = T (6Diso — 2DaR) 7,

Tl (6D~ Dull+30,)) 2,
STT; = T 2(6Diso — Da(1 - 3D,)) 7,
STT; = T (6D 50 + 204) 2,

88% = Tm 2(6Diso + 2D,R) 2.

9, partial derivative

The partial derivatives with respect to the geometric parameter ®©, are

or )
09,
or_ 1
09,
loan)
09,
87’1
09,
0719
09,

= 2R(6D50 — 2D,R) 2,

= (14 3D,) (6950 — Da(l +3D,)) 2,

= (1 —39,)(6Dj50 — Da(1 —3D,)) 72,

= —2(6Djs0 + 2D,) 2,

= —2R(6Ds0 + 20, R) 2.

(8.134a)
(8.134b)
(8.134c)
(8.134d)
(8.134e)

(8.135a)
(8.135D)
(8.135¢)
(8.135d)

(8.135¢)

(8.136a)
(8.136b)
(8.136¢)
(8.136d)

(8.136e)



120 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

©, partial derivative

The partial derivatives with respect to the geometric parameter 2, are

87__2 - QIZ@T ) _ -2
.~ % (6450 — 2D,R) 2, (8.137a)
6;;_1 = 3D,(6Di50 — D1 + 3D,)) 2, (8.137b)
87’0 —2

= —3D,(6Di50 — Du(1 — 3D,)) 2, (8.137¢)
09,
87’1

= .137d
o~ O (8.1374d)
87—2 @agr _9

= — 150 2 a . 1
- (6950 + 2D, R) (8.137¢)



8.10. ELLIPSOIDAL DIFFUSION TENSOR 121

8.10.7 The correlation time Hessians of the ellipsoid
Tm — Tm partial derivative

The second partial derivatives with respect to the geometric parameter 7, twice are

0?7

e 27 (650 — 20,M) 7 — 2773 (6D 50 — 2D,R) 7, (8.1382)
({;:21 = 27, H(6Diso — Da(1+39,)) 73 — 27, 3 (6Dis0 — Du(1 +39,)) 72, (8.138D)
%ZOQ = 27, (6050 — Da(1 —39,)) 2 — 27, 3(6Dis0 — Da(1 —3D,)) 72, (8.138¢)
% = 270 (6Dis0 + 2D4) 7 — 27, 3 (6Dis0 + 2D,) 2, (8.138d)
%:2 =27 H(6Dis0 + 2D,R) % — 27,3 (6450 + 2D,R) 2. (8.138e)

Tm — 3, partial derivative

The second partial derivatives with respect to the geometric parameters 7, and », are

O?r_

m = 4R7 2(6Di50 — 2D,R) 7, (8.139)
O _ 2(1 + 39,) 7 2(6D 450 — Da(1 + 3D,)) 73 (8.139b)
aTm . 8:Da T m 180 a T ) .
O _ 2(1 — 3D,)7m 2(6D 50 — Da(l — 3D,)) 3 (8.139¢)
aTm . 8:Da T m 180 a T ) .
2
% = —47,, 2 (6050 + 2D,) 2, (8.139d)
A “2(6D 50 + 20,:%) (8.139)
O - 0Dy " iso T SFaT '

Tm — 3, partial derivative

The second partial derivatives with respect to the geometric parameters 7,,, and 9, are

0?7 0.9,

_ -2 o -3
o 0D, 12 Tm (6050 — 2D,R) 77, (8.140a)
O 6DaTm 2(6Di50 — Da(1 +39,)) 73 (8.140b)
8’7’m . a@T - a'm 180 a T b)) .
T 0m (601 — Da(l - 3D1)) (8.140¢)
o1 - 0D, = aTm is0 a r 5 . C
827'1
— - —0 8.140d
0T + 09, ’ ( )
827—2 ©a©7” _9 -3
=12 m iso + 294 . 14
o 0D, T (6Diso + 29,R) (8.140e)



122 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

D, — 9, partial derivative

The second partial derivatives with respect to the geometric parameter ©, twice are

82’7'_2 2 _3

o7 = SR (0Dis0 — 209, (8.141a)
82’7'_1 2 _3

.2 = 201+ 39:)%(6Diso — Du(1 +39,)) 7, (8.141b)
827'0 2 _3

502 = 2(1 = 39:)7(6Diso — Da(1 - 3D:))77, (8.141c)

2

88;2 = 8(6Dis0 +2D4) ", (8.141d)
0%y 9 4

o2 = SW(6Diso +2D,7) 7", (8.141¢)

D, — 9, partial derivative

The second partial derivatives with respect to the geometric parameters ©, and 2,. are

827'_2 _3 ©r .
9. 0D, 50 a e 150 — a ; 142
09, - 0D, 24©a©r(6®zso 29 %) +6 R (6@ 29 %) (8 a)
827'_1 5 B
— a r iso — ~a 1 r iso — D 1 , ,
T o0, ~ 0Pa(l+3D:)(6Diso = Da(L+3D,)) ™" 4 3(6Diso — Du(l +3D,)
(8.142D)
827'0 5 .
= — a 1— r 180 a 1— r — iso — a 1— . ’
70, o, 0Dl =39:)(6Dis = Da(1 = 39,)) 7" = 3(6Dis0 = Da(l — 39,))
(8.142c)
827'1
9D, 0D, .142d
90, 00, (8.142d)
T e (69100 + 2D,7) % — 620 (6D 100 + 20,3) (8.142€)
a@a . 8@7. - a T 180 a m 180 a . .

9, — 9, partial derivative

The second partial derivatives with respect to the geometric parameter ®, twice are

2 2
—25‘3 =12 (Q‘f’) (6Dis0 — 20,R) +6%(6®i80 —2D,:) 72, (8.143a)
827'_1 . 2 ‘ B _3
2
;)@TOQ = 1893 (6950 — Da(1 - 39,)) 77, (8.143¢)
827'1
90,2 " (8.143d)
2 2
88@7'22 =72 <®(£r> (6®iso — anfﬁ)_?’ _ 6%(6@2.80 + 2©a9{)_2. (81436)



8.11. SPHEROIDAL DIFFUSION TENSOR 123

8.11 Spheroidal diffusion tensor

8.11.1 The diffusion equation of the spheroid

The correlation function of the Brownian rotational diffusion of a spheroid is

Co(r) = & 3 e (8.144)

where ¢; are the weights of the three exponential terms which are dependent on the ori-
entation of the XH bond vector and 7; are the correlation times of the three exponential
terms.

8.11.2 The weights of the spheroid
Definitions
The direction cosine defining the XH bond vector within the spheroidal diffusion frame is

5, =XH-D.. (8.145)

Let the set of geometric parameters be

6 = {Dis0, D0}, (8.146)

and the set of orientational parameters be the spherical angles

O ={0,6). (8.147)

The weights

The three spheroid weights ¢; in the correlation function of the Brownian rotational diffu-
sion of a spheroid (8.144) are

co1 = 3(362 — 1)%, (8.148a)
co = 362(1 — %), (8.148b)
o = 3(82 - 1)% (8.148c¢)



124 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.11.3 The weight gradients of the spheroid
), partial derivative

The partial derivatives with respect to the orientational parameter ; are

86_1 a5z

— 2 _
. = 30:(302 — 1) o (8.149a)
aCQ o 2 852
D 60.(1—20%) 5 o (8.149b)
801 o 2 857;
D, = 30:(02 = 1) o (8.149¢)

8.11.4 The weight Hessians of the spheroid
9; — O; partial derivative

The second partial derivatives with respect to the orientational parameters O; and O; are

0%c_, N ) 925,

09,00, 3 <(95z - 1)8& 99, +02(307 — 1)m> ; (8.150a)
¢ 5. 00, 6. L. 0%,

50, 90, (( 602) 50, o0, O (1 =205) 557 85:)]-) (8.150D)
o , 05, 05, ) 925,

09, -00; 3 ((352 - 1)802- : a0, +0:(07 — 1)m> . (8.150¢)



8.11. SPHEROIDAL DIFFUSION TENSOR

8.11.5 The correlation times of the spheroid

125

The three spheroid correlation times 7; in the correlation function of the Brownian rota-

tional diffusion of a spheroid (8.144) are

T—1 = (6©iso - an)_17
To = (6©iso - Qa)_la
1 = (6050 +20,) 1.

8.11.6 The correlation time gradients of the spheroid

T, partial derivative

The partial derivatives with respect to the geometric parameter 7, are

011 -2 -2
= Tm iso 2 a )
o Tm (6D D)
87—0 o -2 ) —92
aTm = Tm (6®zso CDa) 5
24 N P —2
o Tm (6050 +20,) "~

9, partial derivative

The partial derivatives with respect to the geometric parameter ©, are

87—_]_ _2
=2 iso 2 a )
5o = 2(6Dis0 — 20,)
ory )
8©a = (6©zso ga) ’
87—1 _2
=-2 180 2 a .
55 = 26D+ 20,)

8.11.7 The correlation time Hessians of the spheroid

Tm — Tm partial derivative

(8.151a)
(8.151b)
(8.151c¢)

(8.152a)
(8.152b)

(8.152¢)

(8.153a)
(8.153b)

(8.153c¢)

The second partial derivatives with respect to the geometric parameter 7, twice are

827'_1 —4 -3 -3 -2
S = 21 (6Dis0 — 2D0) " — 27 (60100 —~ 200)
82
8—7—02 = 27—m_4(6©iso - Qa)_3 - 27—m_3(6©iso - Qa)_2>
Tm
827'1 4 -3 -3 —2
m = 2Tm (6@7;50 + 2@a) - 2Tm (6@7;50 + 2@a) .

(8.154a)
(8.154b)

(8.154c)



126 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

Tm — 3, partial derivative

The second partial derivatives with respect to the geometric parameters 7,, and ©, are

— =47 (6@ — 29 ) 3 (8 155&)
9 5 m is0 a s .
—— =27 (6@'90 — Qa) (8 155b)
87m : 8@(1 ‘ ’ '
S - = —47 (6@ + 29 ) (8 155C)
) . D m 150 a . .

D, — 9, partial derivative

The second partial derivatives with respect to the geometric parameter », twice are

827'_1 —3

o7 = 8(6Dis0 —20,) ™, (8.156a)
82

a;)? = 2(6D150 — Do) 73, (8.156b)
82

89712 = 8(6Dis0 + 204) . (8.156¢)



8.12. SPHERICAL DIFFUSION TENSOR 127

8.12 Spherical diffusion tensor

8.12.1 The diffusion equation of the sphere

The correlation function of the Brownian rotational diffusion of a sphere is

Co(r) = ze ™, (8.157)
1 -
== Y e T (8.158)
=0

where ¢; is the weight of the single exponential term and 7; is the correlation time of the
single exponential term.

8.12.2 The weight of the sphere
Definitions

The entire diffusion parameter set consists of a single geometric parameter and is

D = {r}. (8.159)

Summation terms

The summation indices of the correlation function of the Brownian rotational diffusion of
a sphere (8.144) range from k£ = 0 to k = 0 therefore

i € {0}. (8.160)

The weights

The single weight ¢; in the correlation function of the Brownian rotational diffusion of a
sphere (8.144) is
co = 1. (8.161)

8.12.3 The weight gradient of the sphere
T, partial derivative

The partial derivative with respect to the geometric parameter 7, is

e
OTm

— 0. (8.162)



128 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

8.12.4 The weight Hessian of the sphere
Tm — Tm partial derivative

The second partial derivatives with respect to the geometric parameter 7, twice is

82 Co

53 =0 (8.163)

8.12.5 The correlation time of the sphere

The single correlation time 7; of the correlation function of the Brownian rotational diffu-
sion of a sphere (8.144) is
70 = Tm- (8164)

8.12.6 The correlation time gradient of the sphere
T, partial derivative

The partial derivative with respect to the geometric parameter 7, is

K]
OTm

= 1. (8.165)

8.12.7 The correlation time Hessian of the sphere
Tm — Tm partial derivative

The second partial derivative with respect to the geometric parameter 7, twice is

9%y
2
OTm

= 0. (8.166)



8.13. ELLIPSOIDAL DOT PRODUCT DERIVATIVES 129

8.13 Ellipsoidal dot product derivatives

8.13.1 The dot product of the ellipsoid

The dot product is defined as

—

5 = XH-D;, (8.167)

where i is one of {z, y, z}, X H is a unit vector parallel to the XH bond vector, and C‘/D\Z is
one of the unit vectors defining the diffusion frame. The three diffusion frame unit vectors
can be expressed using the Euler angles «, 3, and v as

—sin asiny + cos « cos 5 cos y

”}5; = | —sinacosy — cosacos Ssiny |, (8.168a)
cos asin 3
- cos a:sin -y + sin « cos B cos y
Dy = | cosacosy —sinacos Bsiny |, (8.168b)
sin asin 8
- —sin 5 cos
D,=| sinfsiny |. (8.168c¢c)
cos 3

8.13.2 The dot product gradient of the ellipsoid

The partial derivative of the dot product §; with respect to the orientational parameter
Dj is
096; 0

a 00,  0XH
90; ~ 99;

09, 09,

(X'TJ@A) — XH .. (8.169)
Because X H is constant and not dependent on the Euler angles its derivative is zero.
Therefore e
09;
29;’

P

55, (8.170)

The ®©, gradient

The partial derivatives of the unit vector @\x with respect to the Euler angles are

o) — cos asiny — sin « cos 5 cos 7y
Z = | —cosacosy +sinacosBsiny |, (8.171a)
e . i
—sin arsin 8
Py — cos asin 3 cos
T = | cosasinfBsiny |, (8.171b)
op
cos acos 3
—~ —sin v cosy — cos a cos 3 sin
09, . .
5, — | sinasiny —cosacos Beosy | . (8.171c¢)
N

0



130

The D, gradient

CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

The partial derivatives of the unit vector Cé\y with respect to the Euler angles are

09,
O

03,
B

09,

R

The ®, gradient

—sin asiny + cos acos 5 cos y

—sinacosy —cosacos Bsiny |, (8.172a)
cos asin 3
—sin asin 3 cos 7y
sinasinsiny |, (8.172b)
sin « cos 3
cos acosy — sina cos [3siny
— cos asiny — sin v cos f cos 7y (8.172c)

0

The partial derivatives of the unit vector ”)5; with respect to the Euler angles are

~ 0
9 _ [ : (8.173a)
Oa
0
—~ — cos 3 cosy
88:9'2 = | cosfBsiny |, (8.173b)
s —sin
~ sin 3 sin 7y
9. = | sin B cos~y (8.173c¢)
O

0



8.13. ELLIPSOIDAL DOT PRODUCT DERIVATIVES

131

8.13.3 The dot product Hessian of the ellipsoid

The second partial derivative of the dot product d; with respect to the orientational pa-

rameters O; and Oy, is

0%5;

929,

—

=XH

09,09, 09; - 00y

The ©, Hessian

s ()?FI - @A) .55, (8.174)

The second partial derivatives of the unit vector 6; with respect to the Euler angles are

9D,
da?

9D,
da - 0

2D,
da - O

92D,
032

92D,
95 - 0y

9D,
02

The ©, Hessian

sin o sin -y — cos « cos 3 cos y
sin qcosy + cosacos Bsiny | ,
— cos asin f3

(8.175a)

sin a:sin (8 cos 7y
—sinasin Ssin7y |,
—sinacos 3

(8.175b)

— €Os ( coS Y + sin a cos B siny
cosasiny 4+ sinacos fcosy |,
0

— coS . cos 3 cosy
cosacosfBsiny |,
— cos asin 3

(8.175¢)

(8.175d)

cos o sin 3 sin y
cosasinfcosy |,
0

sin o sin -y — cos « cos 3 cos y
sin v cos v + cos a cos B sin 7y
0

(8.175¢)

(8.175f)

The second partial derivatives of the unit vector Cé\y with respect to the Euler angles are

09,
a2
029,

da - 0

029,
do -0y

— cos a:siny — sin « cos 3 cos 7y

—cosacosy +sinacos fsiny |, (8.176a)
—sinasin 8
— cos asin 5 cos 7y
cosasinfsiny |, (8.176b)
cos acos f3
— sin acosy — cos a cos 3 sin
sinasiny — cosacos fcosy |, (8.176¢)

0



132

0D,
932

029,
98- 0y

02D,

The ©, Hessian

CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

— sin v cos B cos y
sinacos Bsiny |, (8.176d)
—sinasin 8
sin o sin 3 sin y
sinasin fcosy |, (8.176e)
0

— cos asiny — sin « cos 5 cos 7y

— Cos acos Y + sin «v cos B siny

0

(8.176f)

The second partial derivatives of the unit vector ”)5; with respect to the Euler angles are

Ea)
Oa?
9%,

do - O

02D,
Oa - Oy

9%,
032
9%,

9B - Oy

92D

02

O OO OO o O oo

sin (3 cos 7y
—sin Ssin~y |,
—cos 3
cos 3 sin
cos fcosy |,
0

sin (8 cos 7y
—sin Bsin~y
0

(8.177a)

(8.177b)

(8.177c¢)

(8.177d)

(8.177e)

(8.177f)



8.14. SPHEROIDAL DOT PRODUCT DERIVATIVES 133

8.14 Spheroidal dot product derivatives

8.14.1 The dot product of the spheroid

The single dot product of the spheroid is defined as

5.=XH D, (8.178)

where X H is a unit vector parallel to the XH vector. ”}/D] is a unit vector parallel to the
unique axis of the diffusion tensor and can be expressed using the spherical angles where
0 is the polar angle and ¢ is the azimuthal angle as

sin 6 cos ¢

D, = | sinfsing | . (8.179)
cos

8.14.2 The dot product gradient of the spheroid

The partial derivative of the dot product with respect to the orientational parameter 9;
is

., 0 [ew —~\ =09, OXH~

- XH-D ) = XH D, 8.180
ODZ ODZ ( ! 802 * aDz H ( )
Because the XH bond vector is constant and not dependent on the spherical angles its
derivative is zero. Therefore

ggz' = ﬁ%. (8.181)

The ©, gradient

The partial derivatives of the unit vector ”}/3] with respect to the spherical angles are

P cos 0 cos ¢
oDy = | cosfsing |, (8.182a)
00 .
—sinf
P —sinfsin ¢
oDy = | sinfcos¢ |. (8.182b)
0¢ 0

8.14.3 The dot product Hessian of the spheroid

The second partial derivative of the single spheroidal dot product ¢, with respect to the
orientational parameters O; and 9O is

925, P2\ D,
09,00, 09,09, ( 9”) 99,09, (8.183)



134 CHAPTER 8. VALUES, GRADIENTS, AND HESSIANS

The ©| Hessian

The second partial derivatives of the unit vector ”}/3] with respect to the spherical angles
are

0= — sin  cos ¢
88;32” — sin @ sin ¢ (8.184a)
—cos
e —cosfsing
889 '9845 cos 90605 ) (8.184b)
0= —sin 6 cos ¢
8852 = | —sinfsing (8.184c)

0




Chapter 9

relax development

This chapter is for developers or those who would like to extend the functionality of
relax. It is not required for using relax. If you would like to make modifications to
the relax source code please subscribe to all the relax mailing lists (see the open source
infrastructure chapter for more details). Announcements are sent to “relax-announce at
gna.org” whereas “relax-users at gna.org” is the list where discussions about the usage
of relax should be posted. “relax-devel at gna.org” is where all discussions about the
development of relax including feature requests, program design, or any other discussions
relating to relax’s structure or code should be posted. Finally, “relax-commits at gna.org”
is where all changes to relax’s code and documentation, as well as changes to the web pages,
are automatically sent to. Anyone interested in joining the project should subscribe to all
four lists.

9.1 Version control using Subversion

The development of relax requires the use of the Subversion (SVN) version control software
downloadable from http://subversion.tigris.org/. The source code to relax is stored in an
SVN repository located at http://svn.gna.org/svn/relax/. Every single change which has
ever made to the program is recorded within this repository. For more information see
the open source infrastructure chapter.

Although the downloadable distribution archives can be modified it is best that the most
current and up to date revision (the head revision) is modified instead. More information
about the basics of version control and how this is implemented in Subversion can be found
in the Subversion book located at http://svnbook.red-bean.com/.

If you are not currently a relax developer you can check out the head revision, assuming
that 1.2 is the current major version number, by typing

$ svn co svn://svn.gna.org/svn/relax/1.2 relax

Otherwise if you are a developer type

$ svn co svn+ssh://xxxxx@svn.gna.org/svn/relax/1.2 relax

135


http://subversion.tigris.org/
http://svn.gna.org/svn/relax/
http://svnbook.red-bean.com/

136 CHAPTER 9. RELAX DEVELOPMENT

replacing xxxxx with your Gnal! login name. If your version is out of date it can be updated
to the latest revision by typing

$ svn up

Modifications can be made to these sources.

9.2 Coding conventions

The following conventions should be followed at all times for any code to be accepted into
the relax repository. A Python script which tests if code meets relax’s coding conventions
is distributed with relax and is located at ‘scripts/code_validator’. The main reason
for these conventions is for readability. By using a consistent coding style and a high
comment ratio, the code becomes much easier to read for non-coders and those new to
Python. It significantly decreases the barrier of entry into the relax source code for NMR
spectroscopists.

9.2.1 Indentation

Indentation should be set to four spaces rather than a tab character.
This is the recommendation given in the Python style guide found at
http://www.python.org/doc/essays/styleguide.html. Emacs should automatically
set the tabstop correctly. For vi add the following lines to the vimrc file:

set tabstop=4
set shiftwidth=4
set expandtab

For UNIX systems, including Linux and Mac OS X, the vimrc file is ‘~/.vimrc’
whereas in MS Windows the file is ‘$VIM/_vimrc’ which is usually ‘C:\Program
Files\vim\_vimrc’. Certain versions of vim, those within the 6.2 series, contain a bug
where the tabstop value cannot be changed using the vimrc file (although typing ¢:set
tabstop=4’ in vim will fix it). One solution is to edit the file ‘python.vim’ which on
GNU/Linux systems is located in the path ‘/usr/share/vim/ftplugin/’. It contains
the two lines

" Python always uses a ‘tabstop’ of 8.
setlocal ts=8

If these lines are deleted the bug will be removed. Another way to fix the problem is to
install newer versions of the run-time files (which will do the same thing).

9.2.2 Doc strings

The following are relax’s conventions for docstrings. Many of these are Python conventions.

e The standard Python convention of a one line description separated from a detailed
description by an empty line should be adhered to. This line must start with a


http://www.python.org/doc/essays/styleguide.html

9.2. CODING CONVENTIONS 137

capital letter and end in a period. This convention is required for certain docstring
parsers (see the Python docs).

e All functions should have a docstring describing in detail the function, structure,
and organisation of the code.

e A docstring should be followed by an empty line.

e Indentation of the docstring should be the same as that of the first line of code,
excluding indented lists, etc.

An example of a single line docstring is:

def delete(self):
"""Function for deleting all model-free data."""

An example of a multiline docstring is:
def aic(chi2, k, n):
"""Akaike’s Information Criteria (AIC).

The formula is::

AIC = chi2 + 2k

@param chi2: The minimised chi-squared value.

Q@type chi2: float

Oparam k: The number of parameters in the model.
@type k: int

Oparam n: The dimension of the relaxation data set.
Otype n: int

Qreturn: The AIC value.

Ortype: float

return chi2 + 2.0%k

In addition to the text descriptions, the docstrings use the Epydoc markup language
to describe arguments, return values, and other information about the code. See
http://epydoc.sourceforge.net/fields.html for a listing of all the epydoc fields allowed. This
mark up language is important for the creation of the API documentation and to help de-
velopers understand the purpose and operation of the code.

9.2.3 Variable, function, and class names

In relax a mixture of both camel case (eg. CamelCase) and lower case with underscores
is used. Despite the variability there are fixed rules which should be adhered to. These
naming conventions should be observed at all times.


http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/fields.html
http://www.nmr-relax.com/api/

138 CHAPTER 9. RELAX DEVELOPMENT

Variables and functions

For both variables and functions lower case with underscores between words is always used.
This is for readability as the convention is much more fluent than camel case. A few rare
exceptions exist, an example is the Brownian diffusion tensor parameter of anisotropy ©,
which is referenced as cdp.diff tensor.Da. As a rule though all new variable or function
names should be kept as lower case. An example of this convention for both the variable
name and function name is:

def assemble_param_vector(self, spin=None, spin_id=None, sim_index=None, model_type=None):
"""Assemble the model-free parameter vector (as numpy array).

If the spin argument is supplied, then the spin_id argument will be ignored.

Q@keyword spin: The spin data container.

Q@type spin: SpinContainer instance

Qkeyword spin_id: The spin identification string.

Otype spin_id: str

Q@keyword sim_index: The optional MC simulation index.

Otype sim_index: int

Q@keyword model_type: The optional parameter set, one of ’all’, ’diff’, ’mf’, or
’local_tm’.

Otype model_type: str or None

O@return: An array of the parameter values of the model-free model.

Ortype: numpy array

# Initialise.
param_vector = []

# Determine the model type.
if not model_type:
model_type = self.determine_param_set_type ()

# Diffusion tensor parameters.

if model_type == ’diff’ or model_type == ’all’:
# Normal parameters.
if sim_index == None:
# Spherical diffusion.
if cdp.diff_tensor.type == ’sphere’:

param_vector.append(cdp.diff_tensor.tm)

Classes

For classes relax uses a mix of camel case (for example all the RelaxError objects) and
underscores (for example Model_free). The first letter in all cases is always capitalised.
Generally the camel case is reserved for very low level classes which are involved in the
program’s infrastructure. Examples include the RelaxError code, the threading code, and
the relax data store code. All the data analysis specific code, generic code, interface
code, etc. uses underscores between the words with only the first letter capitalised. One
exception is the space mapping class OpenDX, the reason being that the program is called
‘OpenDX’. An example is:

class Model_free_main:



9.2. CODING CONVENTIONS 139

"""Class containing functions specific to model-free analysis."""

def are_mf_params_set(self, spin):
"""Test if the model-free parameter values are set.

Q@param spin: The spin container object.
Q@type spin: SpinContainer instance
Q@return: The name of the first parameter in the parameter list in which the

corresponding parameter value is None. If all parameters are set, then None
is returned.

Q@rtype: str or None
nnn

# Deselected residue.
if spin.select ==
return

Long names

If you have a look at a few relax source files, you will notice that the variable,
function, and class names can be quite long. For example the model-free func-
tion ‘disassemble_param_vector ()’ and the RelaxError class ‘RelaxNoSequenceError’.
While this is not normal for coding, it is an important component of relax as it facilitates
the reading of the source code by a non-coder or someone not familiar with the codebase.
Iteration counters can be single letter variables such as ‘i’, ‘j’, ‘k’, etc., however for all
other variables, functions, and classes please attempt to use descriptive names which are
instantly identifiable. Please minimise the amount of abbreviations used and only use those
which are obvious. For example naming the parameter vector ‘self.param_vector’, the
relaxation data ‘relax_data’, the model selection class ‘class Model_selection’, the
type of spheroidal diffusion ‘spheroid_type’, etc.

9.2.4 Whitespace

The following conventions are for general code cleanliness and readability:

e Trailing whitespace should be avoided, although this is not very important.

e All functions should be preceded by two empty lines. The only exception is the first
function of the class definition.

e Function arguments should be separated by a comma followed by a single space.

e The assignment operator should be surrounded by spaces, for example
‘tm = 1e-8". The exception is function arguments where for example
‘self.classic_colour (res_num=None, width=0.3)’.

e The comparison operators should also be surrounded by spaces, e.g. ‘L <, ‘L>0,

[ | ¢ - ) [ bl ¢ ) ¢ ] [4 : ) [4 : )
u==0, u<=l, L=, o], fut=y, fudsy’, and fuing

An example which shows most of these conventions is:



140 CHAPTER 9. RELAX DEVELOPMENT

class_ Scientific_data(Base_struct_API):
uuuu"""TheScientific Python specific data object."""

uuuu#Identification string.
uuuuid = ’scientific’

uuuudef__find_bonded_atom(self, attached_atom, mol_type, res):
Luuuouon" " "Find the ,atom named attached_atom directly bonded to the desired atom.

uuuuuuuu@param jattached_atom: y  The name of ,the attached atom jto return.
Luuuuuuu@typeattached_atom: | ustr

vuuuuuuu@param mol_type: uuuuuuuThetypeyof the molecule. ,This ,can be one 0f ’protein’, ,’nucleicyacid’,
L | o \Oru’Other’ .

uuuuuuuu@typeum01_type3uuuuuuuuu5tr
uuuuuuuu@paramgres : uuuuuuuuuuuuThe Scientific Python residue object.

Luuuouuu@typenres tunLLuLLLLLLLLScientific Python residueinstance

vuuuuuuu@return: | uuuuuuuuuuuuuALtupleof information jabout, ;the bonded atom.

Luuuuuuu@rtype  LLuuuuuuLLLLLLLULUtUple ,consisting ,of the atom number ,(int) , ,atom name (str), ,element

TN I 0 O O 0 O 0 O I O O [ (O O [ \na-meu(Str) ,uanduatomiCuPOSitionu (NumeriCuarrayuofulenuS)

nnn
I

vuouoouo#oInit.
Luuuuuuubonded_found, = False

Louououo#uTheattached atomis in the residue.
Luuououuif attached_atom in res.atoms:
vuuuuuuuuuuu# The jbonded jatom ,object .
Luuuuuuuuuuubonded, = res[attached_atom]

9.2.5 Comments

Comments are a very important component within relax. In the current source code the
percentage of comment lines relative to lines of code ranges from 15% to over 30% for
different files. The average comment density would be close to 25%. The purpose of
having so many comment lines, much more than you would expect from source code, is so
that the relax’s code is fully self documented. It allows someone who is not familiar with
the codebase to read the code and quickly understand what is happening. It simplifies the
process of learning and allows NMR spectroscopists who are not coders to dive into the
code. If writing code for relax, please attempt to maintain the tradition by aiming towards
a 25% comment ratio. The comment should be descriptive of what the code below it is
supposed to do. Most importantly the comment explains why that code exists. The script
‘scripts/code_validator’ can be used to check the comment density.

9.3 Submitting changes to the relax project

9.3.1 Submitting changes as a patch

The preferred method for submitting fixes and improvements to the relax source code is
by the creation of a patch. If your changes are a fix make sure you have submitted a
bug report to the bug tracker located at https://gna.org/bugs/?group=relax first. See
section 3.3 on page 26 for more details. Two methods can be used to generate the patch


https://gna.org/bugs/?group=relax

9.4. COMMITTERS 141

— the Unix command diff or the Subversion program. The resultant file patch of either
the diff or svn command described below can be posted to the “relax-devel at gna.org”
mailing list. Please label within your post which version of relax you modified or which
revision the patch is for. Also try to create a commit log message according to the format
described in section 9.4.4 on page 142 for one of the relax committers to use as a template
for committing the change.

9.3.2 Modification of official releases — creating patches with diff

If your modifications have been made to the source code of one of the official relax releases
(for example 1.2.2) then the Unix command diff can be used to create a patch. A patch
file is simply the output of the diff command run with the recursive flag and presented in
the ‘unified’ format. Therefore two directories need to be compared. If the original sources
are located in the directory relax orig and the modified sources in relax mod then the
patch can be created by typing

$ diff -ur relax_orig relax.mod > patch

9.3.3 Modification of the latest sources — creating patches with Subver-
sion

If possible changes to the latest sources is preferred. Using the most up to date sources
from the relax SVN repository will significantly aid the relax developers to incorporate
your changes back into the main development line. To check out the current development
line see section 9.1 on page 135 for details. Prior to submitting a patch to the mailing list
your sources should be updated to include the most recent changes. To do this type

$ svn up
and note the revision number to include in your post. The update may cause a conflict
if changes added to the repository clash with your modifications. If this occurs see the

Subversion book at http://svnbook.red-bean.com/ for details on how to resolve the conflict
or submit a message to the relax-devel list.

Once the sources are up to date your changes can be can be converted into the patch text
file. Using SVN creating a patch is easy. Just type

$ svn diff > patch

in the base relax directory.

9.4 Committers

9.4.1 Becoming a committer

Anyone can become a relax developer and obtain commit access to the relax repository.
The main criteria for selection by the relax developers is to show good judgement, compe-
tence in producing good patches, compliance with the coding and commit log conventions,


http://svnbook.red-bean.com/

142 CHAPTER 9. RELAX DEVELOPMENT

comportment on the mailing lists, not producing too many bugs, only taking on challenges
which can be handled, and the skill in judging your own abilities. You will also need to
have an understanding of the concepts of version control specifically those relating to Sub-
version. The SVN book at http://svnbook.red-bean.com/ contains all the version control
information you will need. After a number of patches have been submitted and accepted
any of the relax developers can propose that you receive commit access. If a number of
developers agree while no one says no then commit access will be offered.

One area where coding ability can be demonstrated is within the relax test suite. The
addition of tests, especially those where the relax internal data structures of the relax data
store are scrutinised, can be a good starting point for learning the structure of relax. This
is because the introduction of bugs has no effect on normal program execution. The relax
test suite is an ideal proving ground.

If skills in only certain areas of relax development, for example in creation of the docu-
mentation, an understanding of C but not python, an understanding of solely the code
of the user interface, or an understanding of the code specific to a certain type of data
analysis methodology, then partial commit access may be granted. Although you will have
the ability to make modifications to any part of the repository please make modifications
only those areas for which you have permission.

9.4.2 Joining Gna!

The first step in becoming a committer is to create a Gnal! account. Go to
https://gna.org/account /register.php and type in a login name, password, real name, and
the email address you would like to use. You will then get an automatic email from Gnal
which will contain a link to activate your registration.

9.4.3 Joining the relax project

The second step in becoming a committer is to register to become a member of the relax
project. Go to the Gna! website (https://gna.org/) and login. Click on ‘My Groups’ to go
to https://gna.org/my/groups.php. In the section ‘Request for inclusion’ type ‘relax’ and
hit enter. Select relax and write something in the comments. If you have been approved
(see section 9.4.1) you will be added to the project committers list.

9.4.4 Format of the commit logs

If you are a relax developer and you have commit access to the repository the following
conventions should be followed for all commit messages.

e The length of all lines in the commit log should never exceed 100 characters. This is
so that the log message viewed in either emails or by the command prompt command
svn log is legible.


http://svnbook.red-bean.com/
https://gna.org/account/register.php
https://gna.org/
https://gna.org/my/groups.php

9.4. COMMITTERS 143

e The first line of the commit log should be a short description or synopsis of the
changes. If the change relates to a bug or a task, include the bug and task number
using the notation type #num where type is either bug, task or support and num is
the id number (for example bug #6503). This terminology is important because the
Gna! infrastructure knows how to translate this into a link to the issue. Also include
a link to the issue.

e The second line should be blank.

e If the commit is a bug fix reported by a non-committer or if the commit originates
from a patch posted by a non-committer the next lines should be reserved for credit-
ing. The name of the person and their obfuscated email address (for example edward
—at_ nmr-relax _dot_ com) should be included in the message.

e Next should be another blank line.

e If the commit relates to an entry in the bug tracker or to a discussion on the mailing
lists then the web address of either the bug report or the mailing list archive message
should be cited in the next section (separated from the synopsis or credit section
by a blank line). All relevant links should be included to allow easy navigation
between the repository, mailing lists, bug tracker, etc. An example is bug #5559
which is located at https://gna.org/bugs/?func=detailitemé&item_id=5559 and the
post to “relax-devel at gna.org” describing the fix to that bug which is located at
https://mail.gna.org/public/relax-devel /2006-03 /msg00013.html.

e A full description with all the details can follow. This description should follow a
blank line, can itself be sectioned using blank lines, and finally the log is terminated
by one blank line at the end of the message.

An example of a commit message for the closure of a bug is:

Fixing the rest of bug #7241 (https://gna.org/bugs/77241).

Bug #7241 was thought to be fixed in in r2591 and r2593, the commit messages describing

the solution being located at https://mail.gna.org/public/relax-commits/2006-09/msg00064.html
(Message-id: <E1GTgBi-0000R6-4h@subversion.gna.org>) for r2591 and

https://mail.gna.org/public/relax-commits/2006-10/msg00001.html (Message-id:
<E1GTt6C-0005rk-8q@subversion.gna.org>) for r2593.

However this was not the only place that the Scientific Python PDB data structure
peptide_chains was being accessed. The chains were being accessed in the file
’generic_fns/sequence.py’ when the sequence was being read out of the PDB file. This

has now been modified with changes similar to r2591 and r2593.
An example of a commit message for changes relating to a task is:

This change implements half of task #3630 (https://gna.org/task/?3630).

The docstring in the generic optimisation function has been modified to clear up the

ambiguity cased by supplying the option ’None’ together with Newton optimisation.

One last commit message example is:

Added the API documentation creation (using Epydoc) to the Scons scripts.


https://gna.org/bugs/?func=detailitem&item_id=5559
https://mail.gna.org/public/relax-devel/2006-03/msg00013.html
https://gna.org/bugs/?7241
https://mail.gna.org/public/relax-commits/2006-09/msg00064.html
https://mail.gna.org/public/relax-commits/2006-10/msg00001.html
https://gna.org/task/?3630

144 CHAPTER 9. RELAX DEVELOPMENT

The Scons target to create the HTML API documentation is called ’api_manual_html’. The
documentation can be created by typing: $ scons api_manual_ html

The function ’compile_api manual_html()’ was added to the ’scons/manuals.py’ file.
This function runs the ’epydoc’ command. All the Epydoc options are specified in that

function.

9.4.5 Discussing major changes

If you are contemplating major changes, either for a bug fix, to add a completely new fea-
ture or user function for your own work, to improve the behaviour of part the program, or
any other potentially disruptive modifications, please discuss these ideas on the relax-devel
mailing list. If the planned changes have the potential to introduce problems the creation
of a private branch may be suggested.

9.5 Branches

9.5.1 Branch creation

If a change is likely to be disruptive or cause breakages in the program, the use of your
own temporary branch is recommended. This private branch is a complete copy of one of
the main development lines wherein you can make changes without disrupting the other
developers. Although called a private branch every change is visible to all other developers
and each commit will result in an automatic email to the relax-commits mailing list. Other
developers are even able to check out your branch and make modifications to it. Private
branches can also be used for testing ideas. If the idea does not work the branch can be
deleted from the repository (in reality the branch will always exist between the revision
numbers of its creation and deletion and can always be resurrected). For example to create
a branch from the main 1.3 development line called molmol macros whereby new Molmol
macros are to be written, type

$ svn cp svn+ssh://xxxxx@svn.gna.org/svn/relax/1.3 \

svn+ssh://xxxxx@svn.gna.org/svn/relax/branches/molmol_macros

replacing xxxxx with your login name. You can then check out your private branch by
typing

$ svn co svnt+ssh://xxxxx@svn.gna.org/svn/relax/branches/molmol_macros

which will create a directory called molmol_macros containing all the relax source files. To
have the files placed into a different directory, type the name of that directory at the end

of the last command. Modifications can be made to this copy while normal development
continues on the main line.

9.5.2 Keeping the branch up to date using svnmerge.py

As you develop your branch, changes will be occurring simultaneously within the main
line. These changes should be merged into your branch on a regular basis to avoid large



9.5. BRANCHES 145

incompatible changes from forming between the two branches. To simplify this process,
the svnmerge . py script located at http://www.orcaware.com/svn/wiki/Svnmerge.py can
be used. It is best to download the trunk version from that page, unless that version is
non-functional. Once you have this script, the merging from the main line to your private
branch must be initialised by typing, from within the checked out copy of your branch,

$ svnmerge.py init

This then needs to be committed using the automatically generated log
$ svn ci -F svnmerge-commit-message.txt

To keep up to date, simply type

$ svnmerge.py merge

If conflicts have occurred please refer to the Subversion book at
http://svnbook.red-bean.com/ for information on how to resolve the problem. Otherwise,
or once fixed, the main line revisions merged into your branch can be committed using
the automatically generated log file:

$ svn ci -F svnmerge-commit-message.txt

9.5.3 Merging the branch back into the main line

Once you have completed the modifications desired for your branch, all changes which have
occurred in the main line have been merged using svnmerge . py, and the changes have been
approved for merging back into the main line — then your branch can be merged. First
check out a copy of the main line,

$ svn co svnt+ssh://xxxxx@svn.gna.org/svn/relax/1.3 relax-1.3

or update a previously checked out version,

$ svn up

Then svnmerge.py can be utilised again. First initialise the merging process by typing,
from within the checked out copy of the main line,

$ svnmerge.py init svn+ssh://xxxxx@svn.gna.org/svn/relax/branches/molmol_macros

Then commit the change

$ svn ci -F svnmerge-commit-message.txt

To merge the branch and commit the changes, type
$ svnmerge.py merge --bidirectional

$ svn ci -F svnmerge-commit-message.txt

Finally the merge properties need to be removed

$ svnmerge.py uninit -S svn+ssh://xxxxx@svn.gna.org/svn/relax/branches/molmol_macros

the changes commited

$ svn ci -F svnmerge-commit-message.txt


http://www.orcaware.com/svn/wiki/Svnmerge.py
http://svnbook.red-bean.com/

146 CHAPTER 9. RELAX DEVELOPMENT

and your private branch deleted

$ svn rm svn+ssh://xxxxx@svn.gna.org/svn/relax/branches/molmol_macros

9.6 The SCons build system

The SCons build system was chosen over other build systems including ‘make’ as it is
a cross-platform build system which can be used in Unix, GNU/Linux, Mac OS X, and
even MS Windows (the correct compilers are nevertheless required). Various components
of the program relax can be created using the SCons utility. This includes C module
compilation, manual creation, distribution creation, and cleaning up and removing certain
files. The file ‘sconstruct’ in the base relax directory, which consists of python code, directs
the operation of SCons for the various functions.

9.6.1 SCons help

Multiple functions have been built into the ‘sconstruct’ script and the modules of the
‘scons’ directory. Each of these can be selected by specifying different ‘targets’ when
running SCons. A description of each target is given by the SCons help system which is
accessible by typing ‘scons --help’ in the base relax directory.

9.6.2 C module compilation

As described in the installation chapter, typing ‘scons’ in the base directory will create
the shared objects or dll files which are imported into Python as modules.

9.6.3 Compilation of the user manual (PDF version)

To create the PDF version of the relax user manual type

$ scons user_manual_pdf

in the base directory. SCons will then run a series of shell commands to create the manual
from the INTEX sources located in the ‘docs/latex’ directory. This is dependent on
the programs ‘latex’, ‘makeindex’, ‘dvips’, and ‘ps2pdf’ being located within the
environment’s path.

9.6.4 Compilation of the user manual (HTML version)

The HTML version of the relax user manual is made by typing

$ scons user_manual_html

in the base directory. One command calling the program ‘latex2html’ will be executed
which will create HTML pages from the IXTEX sources.


http://www.scons.org/

9.6. THE SCONS BUILD SYSTEM 147

9.6.5 Compilation of the API documentation (HTML version)

The HTML version of the relax API documentation is made by typing
$ scons api_manual_ html
in the base directory. The programs Epydoc and Graphviz are required for creat-

ing this documentation. The resultant HTML pages will be located in the director
‘docs/api/index.html’.

9.6.6 Making distribution archives

Two types of distribution archive can be created from the currently checked out sources —
the source and binary distributions. To create the source distribution type

$ scons source_dist

whereas to create the binary distribution, whereby the C modules are compiled and the
resultant shared objects are included in the bzipped tar file, type

$ scons binary._dist

If a binary distribution does not exist for your architecture feel free to create it yourself
and contribute the archive to be included on the download pages. To do this you will need

to check out the appropriate tagged branch from the relax subversion repository. If the
current stable release is called 1.2.3 check out that branch by typing

$ svn co svn+ssh://bugman@svn.gna.org/svn/relax/tags/1.2.3 relax

replacing ‘bugman’ with your user name if you are a relax developer, otherwise typing

$ svn co svn://svn.gna.org/svn/relax/tags/1.2.3 relax

Then build the binary distribution and send a message to the relax development mail-
ing list. If compilation does not work please submit a bug to the bug tracker system
at https://gna.org/bugs/?group=relax detailing the relax version, operation system, ar-
chitecture, and any other information you believe will help to solve the problem. More

information about donating binary distributions to the relax project is given in the open
source infrastructure chapter.

9.6.7 Cleaning up

If the command

$ scons clean

is run in the base directory all Python byte compiled files ‘*.pyc’, all C object files
“*.0’ and ‘*.0s’, and any backup files with the extension ‘*.bak’ are removed from all
sub-directories. In addition any temporary IATEX compilation files are removed from the
‘docs/latex’ directory.

The more powerful command

$ scons clean_all


https://gna.org/bugs/?group=relax

148 CHAPTER 9. RELAX DEVELOPMENT

will, in addition to all the files removed by the ‘clean’ target, remove all compiled C
shared object files (‘*.s0’, ‘*.dylib’, ‘*.pyd’) and the ‘build’ and ‘dist’ directories
created when building the Mac OS X application.

9.7 The core design of relax

To enable flexibility the internal structure of relax is modular. By construction the large
collection of independent data analysis tools can be used individually and relatively easily
by any new code implementing other forms of relaxation data analysis or even by other
programs. The core modular design of the program is shown in Figure 9.1.

9.7.1 The divisions of relax’s source code

relax’s source code can be divided into five major areas: the initialisation code, the user
interface (UI) code, the functional code, the number crunching code, and the code storing
the program state.

Initialisation: The code belonging to this section initialises the program, processes the
command-line arguments, and determines what mode the program will be run in
including the choice of the Ul

UI: The current Ul modes in relax include the prompt, the script and the GUI modes.
These consist of separate code paths, all sitting on top of the underlying functional
code. In the future, a web-based interface may be added.

Functional code: This code is the main part of the program. It includes anything which
does not fit into the other sections and comprises the generic code, the specific code,
and the specific setup code used as an interface between the two.

Number crunching: The computationally expensive code belongs in this section.

Program state: The state of the program is contained within the relax data store which
is accessible from all parts of the program as a singleton object.

9.7.2 The major components of relax
Each of the boxes in Figure 9.1 represents a different grouping of code.

relax: The top level module. This initialises the entire program, tests the dependencies,
sets up the multi-processor framework and specific processor fabric, and prints the
program’s introduction message.

Command line arguments: This code processes the arguments supplied to the program
and decides whether to print the help message, initialise the prompt, execute a script,
initialise a different UI, run the program in test mode, or run the program as a slave
thread.



9.7. THE CORE DESIGN OF RELAX 149

Initialisation

l relax l

N

y
[Command line

arguments

Uls / \
[ Prompt J [ Script J [ GUI ] {Ot?:;ti::ij::jes}

Generic code

Specific
setup

Specific code

relax data

store

Program state

Mathematical
functions
(Python or C)

Figure 9.1: The core design of relax.



150 CHAPTER 9. RELAX DEVELOPMENT

Prompt: The main user interface consisting of a Python prompt. The namespace of the
interpreter contains the various user functions which are front ends to the generic
code. The user functions are simply Python functions which test the supplied argu-
ments to make sure they are of the correct type (string, integer, list, or any other
type) before sending the values to the generic code. The code for the prompt is
located in the directory prompt/.

Script: If a script is supplied on the command line or executed within another user
interface it will be run in the same namespace as that of the prompt. Hence the
script has access to all the user functions available at the relax prompt. This allows
commands which are typed at the prompt to be pasted directly and unmodified into
a text file to be run as a script.

GUI: The graphical user interface code base is located in the gui directory.

Other interfaces: Any number of interfaces (for example a web-based interface or an
ncurses interface) could be added to relax without modification of the current sources.
This must be, without question, developed within the relax source code repository
otherwise the code will not be maintainable in the future and will be almost impos-
sible back into relax later on.

Generic code: This code includes classes and functions which are independent of the
Ul and not specific to a certain data pipe type, for example not being involved
in model-free analysis, relaxation curve-fitting, the NOE calculation, and reduced
spectral density mapping. All this code is located in the directory generic_fns/.

Specific setup: This code implements the internal interface between the generic and
specific code. The generic code calls the specific setup asking for a specific function
for the given data pipe type. For example by asking for the minimise function when
the data pipe type is model-free analysis the model-free specific minimise () method
is returned. Although the generic code accesses the specific code solely through this
interface the specific code can access the generic code directly. The code is located
in the file specific_fns/specific_setup.py.

Specific code: This is the code which is specific to the data pipe type — model-free
analysis, relaxation curve-fitting, reduced spectral density mapping, and the NOE
calculation. Each type is located in a separate file in the directory specific fns/.

Mathematical functions: This is reserved for CPU intensive code involved in calcula-
tions. The code may be written in Python however C code can be used to significantly
increase the speed of the calculations. For optimisation the code can include function
evaluations, calculation of gradients, and calculation of Hessians. These functions
are located in the directory maths_fns/.

Data: The program state stored in the relax data store singleton object. This class
contains all the program data and is accessed by the generic and specific code. The
mathematical functions may also access this data but this is not recommended. The
structure is initialised by the file data/__init__.py.



9.8. THE MAILING LISTS 151

9.8 The mailing lists

9.8.1 Private vs. public messages

If you would like to start a private discussion, please label your email as such. Private
messages are however strongly discouraged, only start a private conversation if you really
must.

If you receive a reply to a message you have sent, a bug report you have filed, etc. which
has not been sent to the mailing list and has not been labelled as private, then the most
likely explanation is that ‘reply-to-all’ has not been used and hence the mailing list has
not been included on the CC list. If this occurs, please ask the person if the message was
meant to be private and refrain from discussing any of the comments within the post. Save
these comments until after the person responds by saying that the message was private or
re-sends the message to the mailing list. Try to encourage public messages if you think
that the post need not be private and if you think that it would be useful for the mailing
list archives.

For thread consistency, if you send a message which accidentally misses the mailing list,
please do not then forward the previously sent message to the list. For better readability
of the mailing list archives, it is best that you create an entirely new message responding
to the original post. Just cut and paste your miss-directed message into your new message.
That way the thread will be continuous — there will not be any messages missing from the
middle of the thread in between the original post and your forwarded message.

To simplify the process of checking if the message was supposed to be private, you could
cut and paste the following message (modifying it as you see fit):

Sorry in advance, but the following is the standard pre-composed response to a post not
sent to the relax mailing lists and not labelled as private. If you would like to start
a private conversation about relax, please label your message as such. If you really
must start a private exchange, please respond to this message saying so. If your message
was meant to be sent to the relax mailing list, please send the message again. For this,
please copy-and-paste your message, replying to the original (i.e. no forwarding), and

making sure that the mailing list is in the CC field by clicking on ‘reply-to-all’.

9.9 The bug, task, and support request trackers

relax’s infrastructure includes three different issue trackers. These are the bug tracker, the
task tracker, and the support request tracker.

9.9.1 Submitting a bug report

If someone reports a bug to one of the relax mailing lists, ask that person if they would like
to create a bug report for that problem, pointing them to the submission web page. This
is a good starting point to allow the person to become more involved in the relax project.
If they do not respond or say that they would prefer not to, then you can create bug


https://gna.org/bugs/?group=relax
https://gna.org/task/?group=relax
https://gna.org/support/?group=relax

152 CHAPTER 9. RELAX DEVELOPMENT

report for the issue linking to the original message and crediting the person for reporting
the issue.

9.9.2 Assigning an issue to yourself

If you are a relax committer and see an issue which you would like to solve, please assign
that issue to yourself before you start work on it. The assignment will prevent duplicated
efforts. If you can see an area where relax needs work, feel free to create a report within
task tracker and then assign the task to yourself.

9.9.3 Closing an issue

When closing an issue (whether a bug report, a task, or a support request) a number of
steps need to be taken. The tracker status should be changed to ‘Done’ and the issue
‘Closed’. In addition, a message should be included which states the repository revision
and the relax-commits mailing list archive link (with the message-id) in which the issue was
solved. If multiple commits were required, then include all the revisions and as many links
as possible (if a task required many commits, the relax-commits links could be skipped).
An example is bug #7402 where the closing comment was:

This documentation bug was fixed in r2641. The commit message is located at
https://mail.gna.org/public/relax-commits/2006-10/msg00073.html (Message-id:
<E1GYG41-0002kK-Jx@subversion.gna.org>) .

9.10 Links, links, and more links

Creating links throughout the relax infrastructure is important for two major reasons —
navigation and search engine indexing. When including a link to a post within the mailing
list archives, please include the message-id email header. This enables subscribers to the
mailing lists to search for the specific message within their local copy of the email messages.

9.10.1 Navigation

To be able to easily navigate between the relax infrastructure components — the bug
tracker, the task tracker, the support request tracker, the relax-devel mailing list, the
commit logs, and the SVN and CVS repositories — try to include as many links as possible.

For example a bug may first be reported on the relax-users mailing list, then placed within
the bug tracker, discussed on relax-devel, a fix committed to the repository, and finally
the bug report closed. To be able to follow this chain, links are very important (email
message-ids are also important). When the bug is first added to the bug tracker, a link
to the relax-users mailing list archive message and the message-id should be included. If
you start a discussion on relax-devel, try to include links to the bug tracker entry and the
relax-users message. When committing a fix to the repository, include links to the bug
report, to the start of the thread in the mailing list archive, and the original message to


https://gna.org/bugs/?7402
https://mail.gna.org/public/relax-commits/2006-10/msg00073.html

9.10. LINKS, LINKS, AND MORE LINKS 153

relax-users. Then when the bug report is closed, include the revision number of the fix
and a link to the relax-commits archive message (and message-id). By having all these
links, it is then very easy for someone else to jump between the systems and follow the
progression of the bug fix.

If you send a message referring to an old post which was sent the relax mailing lists, an old
bug report, or any other archived information, please take the time to find that original
information in the archives and include a link to it (including the message-id if relevant).
It is much more efficient for a single person to hunt down that message than for the many
recipients of your post to search for the message themselves. By including the link, you
decrease the overhead of following the mailing list.

9.10.2 Search engine indexing

Having a large web of links across relax’s infrastructure aids in the search engine indexing
of the mailing list archives and the http://www.nmr-relax.com web site. The web of links
is useful for catching those Google bots. That way the Google searching of the mailing
list archives located on the communication web page will be more up to date. However
to increase the search engine ranking of the web site, links to http://www.nmr-relax.com
from external sites is required. This is one reason why relax can be found at a number of
sites across the web:

Freecode: New relax releases are announced not only on the relax-announce mailing list
and on the relax news pages, but also on Freecode. This used to be called Freshmeat.

The mail archive: This site archives all of the relax mailing lists, including
relax-announce, relax-users, relax-devel, and relax-commits.

Gmane: Pronounced as ‘main’, the relax mailing lists are also archived at Gmane in
numerous formats. The archived relax mailing lists include relax-announce (thread,
blog, NNTP, RSS), relax-users (thread, blog, NNTP, RSS), relax-devel (thread,
blog, NNTP, RSS), and relax-commits (thread, blog, NNTP, RSS).

CIA.vc: This is the open source version control informant. CIA tracks open source
projects in real-time.  The relax real-time open source activity stats page
is http://cia.vc/stats/project /relax.  This website also has pages for each of
the relax developers (in alphabetical order): Edward d’Auvergne, Michael Bieri,
Chris MacRaild, Sébastien Morin, Andrew Perry, Han Sun, Gary Thompson.

LinuxLinks.com: LinuxLinks.com, the Linux portal, is a website listing many Linux
software projects. relax can be found on the Software:Scientific:Biology:Proteins

page.

Softpedia: This is the encyclopedia of free software downloads. The relax page on Soft-
pedia is http://linux.softpedia.com/get/Science/relax-22351.shtml. The relax devel-
opers pages are: Edward d’Auvergne.

Pro-Linux: Diese ist eine der grofiten deutschsprachi-
gen Seiten zum Thema Linux. The relax page is
http://www.pro-linux.de/cgi-bin/DBApp/check.cgi?ShowApp..17723.100.


http://www.nmr-relax.com
http://www.nmr-relax.com/\discretionary {-}{}{}communication.html
http://www.nmr-relax.com
https://mail.gna.org/public/relax-announce/
https://gna.org/news/?group=relax
http://freecode.com/projects/nmr-relax
http://mail-archive.com/relax-announce@gna.org/"
http://mail-archive.com/relax-users@gna.org/"
http://mail-archive.com/relax-devel@gna.org/"
http://mail-archive.com/relax-commits@gna.org/"
http://news.gmane.org/gmane.science.nmr.relax.announce"
http://blog.gmane.org/gmane.science.nmr.relax.announce"
nntp://news.gmane.org/gmane.science.nmr.relax.announce"
http://rss.gmane.org/messages/excerpts/gmane.science.nmr.relax.announce"
http://news.gmane.org/gmane.science.nmr.relax.user"
http://blog.gmane.org/gmane.science.nmr.relax.user"
nntp://news.gmane.org/gmane.science.nmr.relax.user"
http://rss.gmane.org/messages/excerpts/gmane.science.nmr.relax.user"
http://news.gmane.org/gmane.science.nmr.relax.devel"
http://blog.gmane.org/gmane.science.nmr.relax.devel"
nntp://news.gmane.org/gmane.science.nmr.relax.devel"
http://rss.gmane.org/messages/excerpts/gmane.science.nmr.relax.devel"
http://news.gmane.org/gmane.science.nmr.relax.scm"
http://blog.gmane.org/gmane.science.nmr.relax.scm"
nntp://news.gmane.org/gmane.science.nmr.relax.scm"
http://rss.gmane.org/messages/excerpts/gmane.science.nmr.relax.scm"
http://cia.vc/stats/project/relax"
http://cia.vc/stats/author/bugman"
http://cia.vc/stats/author/michaelbieri"
http://cia.vc/stats/author/macraild"
http://cia.vc/stats/author/semor"
http://cia.vc/stats/author/pansapiens"
http://cia.vc/stats/author/han87"
http://cia.vc/stats/author/varioustoxins"
http://linuxlinks.com/Software/Scientific/Biology/Proteins/"
http://linux.softpedia.com/get/Science/relax-22351.shtml"
http://linux.softpedia.com/developer/Edward-d-039-Auvergne-5136.html"
http://www.pro-linux.de/cgi-bin/DBApp/check.cgi?ShowApp..17723.100"

154 CHAPTER 9. RELAX DEVELOPMENT



Chapter 10

Alphabetical listing of user
functions

The following is a listing with descriptions of all the user functions available within the
relax prompt and scripting environments. These are simply an alphabetical list of the
docstrings which can normally be viewed in prompt mode by typing ‘help(function)’.

10.1 A warning about the formatting

The following documentation of the user functions has been automatically generated by a
script which extracts and formats the docstring associated with each function. There may
therefore be instances where the formatting has failed or where there are inconsistencies.

10.2 The list of functions

Each user function is presented within it’s own subsection with the documentation bro-
ken into multiple parts: the synopsis, the default arguments, and the sections from the
function’s docstring.

10.2.1 The synopsis

The synopsis presents a brief description of the function. It is taken as the first line of the
docstring when browsing the help system.

10.2.2 Defaults

This section lists all the arguments taken by the function and their default values. To
invoke the function type the function name then in brackets type a comma separated list
of arguments.

155



156 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

The first argument printed is always ‘self” but you can safely ignore it. ‘self’ is part of
the object oriented programming within Python and is automatically prefixed to the list
of arguments you supply. Therefore you can’t provide ‘self’ as the first argument even if
you do try.

10.2.3 Docstring sectioning

All other sections are created from the sectioning of the user function docstring.



10.2. THE LIST OF FUNCTIONS

10.2.4 align_tensor.copy

Synposis

Copy alignment tensor data.

Defaults

align_tensor.copy(tensor_from=None, pipe_from=None,
tensor_to=None, pipe_to=None)

Keyword arguments

tensor_from: The identification string of the alignment
tensor to copy the data from.

pipe_from: The name of the data pipe to copy the align-
ment tensor data from.

tensor_to: The identification string of the alignment
tensor to copy the data to.

pipe_to: The name of the data pipe to copy the align-
ment tensor data to.

Description

This will copy the alignment tensor data to a new tensor
or a new data pipe. The destination data pipe must not
contain any alignment tensor data corresponding to the
tensor_to label. If the source or destination data pipes
are not supplied, then both will default to the current
data pipe. Both the source and destination tensor IDs
must be supplied.

Prompt examples

To copy the alignment tensor data corresponding to ‘Pf1’
from the data pipe ‘0ld’ to the current data pipe, type
one of:

relax> align_tensor.copy(‘Pf1’, ‘old’)
relax> align_tensor.copy(tensor_from=‘Pf1’,
pipe_from=‘0ld’)

To copy the alignment tensor data corresponding to
‘Otting’ from the current data pipe to the data pipe new,
type one of:

relax> align_tensor.copy(‘Otting’, pipe_to=‘new’)

relax> align_tensor.copy(tensor_from=‘0Otting’,
pipe_to=‘new’)

To copy the alignment tensor data of ‘Otting’ to that of
‘Otting new’, type one of:

relax> align_tensor.copy(‘Otting’, tensor_to=
‘Otting new’)

157

relax> align_tensor.copy(tensor_from=‘Pf1’,
tensor_to=‘0Otting new’)

10.2.5 align_tensor.delete

Synposis

Delete alignment tensor data from the relax data store.

Defaults

align_tensor.delete(tensor=None)

Keyword arguments

tensor: The alignment tensor identification string.

Description

This will delete the specified alignment tensor data from
the current data pipe. If no tensor is specified, all tensors
will be deleted.

10.2.6 align_tensor.display

Synposis

Display the alignment tensor information in full detail.

Defaults

align_tensor.display(tensor=None)

Keyword arguments

tensor: The alignment tensor identification string.

Description

This will show all information relating to the alignment
tensor, including the different tensor forms:

Probability tensor.
Saupe order matrix.

Alignment tensor.



158

Magnetic susceptibility tensor.

All possible tensor parameters and information will also
be shown (Eigensystem, GDO, Aa, Ar, R, eta, chi_ax,
chi_rh, etc). The printout will be extensive.

If no tensor is specified, all tensors will be displayed.

10.2.7 align_tensor.fix

Synposis

Fix all alignment tensors so that they do not change dur-
ing optimisation.

Defaults

align_tensor.fix(id=None, fixed=True)

Keyword arguments

id: The alignment tensor identification string.

fixed: The flag specifying if the tensors should be fixed
or variable.

Description

If the ID string is left unset, then all alignment tensors
will be fixed.

10.2.8 align_tensor.init
Synposis

Initialise an alignment tensor.

Defaults

align_tensor.init(tensor=None, params=None, scale=1.0,
angle_units='deg’, param_types=2, errors=False)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

tensor: The alignment tensor identification string.
params: The alignment tensor data.

scale: The alignment tensor eigenvalue scaling value.
angle_units: The units for the angle parameters.

param_types: A flag to select different parameter com-
binations.

errors: A flag which determines if the alignment tensor
data or its errors are being input.

Description

Using this function, the alignment tensor data can be set
up. The alignment tensor parameters should be a tuple
of floating point numbers (a list surrounded by round
brakets). These correspond to the parameters of the
tensor which can be specified by the parameter types
whereby the values correspond to:

0 — {Sxx, Syy, Sxy, Sxz, Syz} (unitless),

1 — {Szz, Sxx-yy, Sxy, Sxz, Syz} (Pales default format),
2 — {Axx, Ayy, Axy, Axz, Ayz} (unitless),

3 — {Azz, Axx-yy, Axy, Axz, Ayz} (unitless),

4 — {Axx, Ayy, Axy, Axz, Ayz} (units of Hertz),

5 — {Azz, Axx-yy, Axy, Axz, Ayz} (units of Hertz),

6 — {Pxx, Pyy, Pxy, Pxz, Pyz} (unitless),

7 — {Pzz, Pxx-yy, Pxy, Pxz, Pyz} (unitless).

Other formats may be added later. The relationship be-
tween the Saupe order matrix S and the alignment tensor
Ais

S =3/2A.

The probability matrix P is related to the alignment ten-
sor A by

A=P-1/31,

where I is the identity matrix. For the alignment tensor
to be supplied in Hertz, the bond vectors must all be of
equal length.



10.2. THE LIST OF FUNCTIONS

Prompt examples

To set a rhombic tensor to the run ‘CaM’; type one of:

relax> align tensor.init(‘super media’, (
-8.6322e-05, -5.5786e-04, -3.1732e-05,
2.2927e-05, 2.8599e-04), param_types=1)

relax> align_tensor.init(tensor=‘super media’,
params=(-8.6322e-05, -5.5786e-04, -3.1732e-05,
2.2927e-05, 2.8599e-04), param_types=1)

10.2.9 align_tensor.matrix_angles

Synposis

Calculate the 5D angles between all alignment tensors.

Defaults

align_tensor.matrix_angles(basis_set=0, tensors=None)

Keyword arguments

basis_set: The basis set to operate with.

tensors: A list of the tensors to apply the calculation
to. If None, all tensors are used.

Description

This will calculate the angles between all loaded align-
ment tensors for the current data pipe. The matrices are
first converted to a 5D vector form and then then angles
are calculated. The angles are dependent on the basis
set. If the basis set is set to the default of 0, the vectors
{Sxx, Syy, Sxy, Sxz, Syz} are used. If the basis set is
set to 1, the vectors {Szz, Sxxyy, Sxy, Sxz, Syz} are used
instead.

10.2.10 align_tensor.reduction
Synposis

Specify that one tensor is a reduction of another.

Defaults

align_tensor.reduction(full _tensor=None, red_tensor=
None)

159

Keyword arguments

full_tensor: The full alignment tensor.

red_tensor: The reduced alignment tensor.

Description

Prior to optimisation of the N-state model and Frame
Order theories using alignment tensors, which tensor is a
reduction of which other tensor must be specified through
this user function.

Prompt examples

To state that the alignment tensor loaded as ‘chi3 C-dom’
is a reduction of ‘chi3 N-dom’, type:

relax> align_tensor.reduction(full_tensor=‘chi3
N-dom’, red_tensor=‘chi3 C-dom’)

10.2.11 align_tensor.set_domain

Synposis

Set the domain label for the alignment tensor.

Defaults

align_tensor.set_domain(tensor=None, domain=None)

Keyword arguments

tensor: The alignment tensor to assign the domain la-
bel to.

domain: The domain label.

Description

Prior to optimisation of the N-state model or Frame Or-
der theories, the domain to which each alignment tensor
belongs must be specified.

Prompt examples

To link the alignment tensor loaded as ‘chi3 C-dom’ to
the C-terminal domain ‘C’, type:

relax> align_tensor.set_domain(tensor=°‘chi3
C-dom’, domain=°C’)



160

10.2.12 align_tensor.svd

Synposis

Calculate the singular values and condition number for
all alignment tensors.

Defaults

align_tensor.svd(basis_set=0, tensors=None)

Keyword arguments

basis_set: The basis set to operate with.

tensors: A list of the tensors to apply the calculation
to. If None, all tensors are used.

Description

This will perform a singular value decomposition of all
tensors loaded for the current data pipe. If the basis set
is set to the default of 0, the matrix on which SVD will
be performed is composed of the unitary basis set {Sxx,
Syy, Sxy, Sxz, Syz} layed out as:

Sxx1 Syyl Sxyl Sxzl Syzl
Sxx2 Syy2 Sxy2 S8Sxz2 Syz2
Sxx3 Syy3 Sxy3 Sxz3 Syz3

SxxN SyyN SxyN SxzN SyzN

If basis_set is set to 1, the geometric basis set consisting
of the stretching and skewing parameters Szz and Sxx-
yy respectively {Szz, Sxxyy, Sxy, Sxz, Syz} will be used
instead. The matrix is:

Szz1 Sxxyyl Sxyl Sxzl Syzl
Szz2 Sxxyy2 Sxy2 Sxz2 Syz2
Szz3 Sxxyy3 Sxy3 Sxz3 Syz3

SzzN SxxyyN SxyN SxzN SyzN

The relationships between the geometric and unitary ba-
sis sets are:

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Szz = - Sxx - Syy,
Sxxyy = Sxx - Syy,

The SVD values and condition number are dependent
upon the basis set chosen.

10.2.13 angles.diff_frame

Synposis

Calculate the angles defining the XH bond vector within
the diffusion frame.

Defaults

angles.diff_frame()

Description

If the diffusion tensor is isotropic, then nothing will be
done.

If the diffusion tensor is axially symmetric, then the angle
a will be calculated for each XH bond vector.

If the diffusion tensor is asymmetric, then the three an-
gles will be calculated.

10.2.14 bmrb.citation

Synposis

Specify a citation to be added the BMRB data file.

Defaults

bmrb.citation(cite_id=None, authors=None, doi=None,
pubmed_id=None, full_citation=None, title=None,
status="published’, type="'journal’, journal_abbrev=None,
journal_full=None, volume=None, issue=None,
page_first=None, page_last=None, year=None)



10.2. THE LIST OF FUNCTIONS

Keyword arguments

cite_id: The citation ID string.

authors: The list of authors. Each author element is
a list of four elements (the first name, last name, first
initial, and middle initials).

doi: The DOI number, e.g. ‘10.1000/182’.

pubmed_id: The identification code assigned to the
publication by PubMed.

full _citation: The full citation as given in a reference
list.

title: The title of the publication.

status: The status of the publication. This can be a
value such as ‘published’, ‘submitted’, etc.

type: The type of publication, for example ‘journal’.
journal_abbrev: The standard journal abbreviation.
journal_full: The full journal name.

volume: The volume number.

issue: The issue number.

page_first: The first page number.

page_last: The last page number.

year: The publication year.

Description

The full_citation should be in a format similar to that
used in a journal article by either cutting and pasting
from another document or by typing. Please include au-
thor names, title, journal, page numbers, and year or
equivalent information for the type of publication given.

The journal status can only be one of:

‘preparation’,
‘in press’,
‘published’,
‘retracted’,

‘submitted’.

The citation type can only be one of:

‘abstract’,
‘BMRB only’,

‘book’,

161

‘book chapter’,
‘internet’,

‘journal’,

‘personal communication’,

‘thesis’.

The standard journal abbreviation is that defined by the
Chemical Abstract Services for the journal where the
data are or will be published. If the data in the deposi-
tion are related to a J. Biomol. NMR paper, the value
must be ‘J. Biomol. NMR’ to alert the BMRB annota-
tors so that the deposition is properly processed. If the
depositor truly does not know the journal, a value of ‘not
known’ or ‘na’ is acceptable.

Prompt examples

To add the citation "d’Auvergne E. J., Gooley P. A.
(2007). Set theory formulation of the model-free prob-
lem and the diffusion seeded model-free paradigm. Mol.
Biosyst., 3(7), 483-494.”, type:

relax> bmrb.citation(authors=[["Edward",
"d’Auvergne", "E.", "J."], ["Paul", "Gooley",
"P.", "R."]], doi="10.1039/b702202f", pubmed_id=
"17579774", full_citation="d’Auvergne E. J.,
Gooley P. R. (2007). Set theory formulation

of the model-free problem and the diffusion
seeded model-free paradigm. Mol. Biosyst.,
3(7), 483-494.", title="Set theory formulation
of the model-free problem and the diffusion
seeded model-free paradigm.", status="published",
type="journal", journal_abbrev="Mol. Biosyst.",
journal_full="Molecular Biosystems", volume=3,
issue=7, page_first=483, page_last=498, year=
2007)

10.2.15 bmrb.display
Synposis

Display the BMRB data in NMR-STAR format.

Defaults

bmrb.display(version="'3.1")

Keyword arguments

version: The version of the BMRB NMR-STAR format
to display.



162

Description

This will print the BMRB NMR-STAR formatted data
to STDOUT.

10.2.16 bmrb.read

Synposis

Read BMRB files in the NMR-STAR format.

Defaults

bmrb.read(file=None, dir=None, version=None,
sample_conditions=None)

Keyword arguments

file: The name of the BMRB NMR-STAR formatted
file to read.

dir: The directory where the file is located.

version: The version of the BMRB NMR-STAR format
to read. This is not necessary as the version is normally
auto-detected.

sample_conditions: The sample conditions label in the
NMR-STAR file to restrict loading to.

Description

This will allow most of the data from a BMRB NMR-
STAR formatted file to be loaded into the relax data
store. Note that a data pipe should be created for storing
the data, and that currently only model-free data pipes
can be used. Also, only one sample condition can be
read per relax data pipe. Therefore if one of the sample
conditions is not specified and multiple conditions exist
in the NMR-STAR file, an error will be raised.

10.2.17 bmrb.script

Synposis

Specify the scripts used in the analysis.

Defaults

bmrb.script(file=None, dir=None, analysis_type=None,
model_selection=None, engine='relax’, model_elim=False,
universal_solution=False)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

file: The name of the script file.
dir: The directory where the file is located.
analysis_type: The type of analysis performed.

model_selection: The model selection technique used,
if relevant. For example ‘AIC’ model selection.

engine: The software engine used in the analysis.

model_elim: A model-free specific flag specifying if
model elimination was performed.

universal_solution: A model-free specific flag specifying
if the universal solution was sought after.

Description

This user function allows scripts used in the analysis to
be included in the BMRB deposition. The following addi-
tion information may need to be specified with the script.

The analysis type must be set. Allowable values include
all the data pipe types used in relax, ie:

‘frame order’ — The Frame Order theories,
‘jw’ — Reduced spectral density mapping,

‘mf’ — Model-free analysis,

‘N-state’ — N-state model of domain motions,
‘noe’ — Steady state NOE calculation,

‘relax_fit’ — Relaxation curve fitting,

The model selection technique only needs to be set if
the script selects between different mathematical mod-
els. This can be anything, but the following are recom-
mended:

‘AIC’ — Akaike’s Information Criteria.

‘AICc” — Small sample size corrected AIC.

‘BIC’ — Bayesian or Schwarz Information Criteria.
‘Bootstrap’ — Bootstrap model selection.

‘CV’ — Single-item-out cross-validation.

‘Expect’ — The expected overall discrepancy (the true
values of the parameters are required).

‘Farrow’ — Old model-free method by Farrow et al.,
1994.

‘Palmer’ — Old model-free method by Mandel et al.,
1995.

‘Overall’ — The realised overall discrepancy (the true
values of the parameters are required).



10.2. THE LIST OF FUNCTIONS

The engine is the software used in the calculation, opti-
misation, etc. This can be anything, but those recognised
by relax (automatic program info, citations, etc. added)
include:

‘relax’ — hence relax was used for the full analysis.

‘modelfreed’ — Art Palmer’s Modelfreed program was
used for optimising the model-free parameter val-
ues.

‘dasha’ — The Dasha program was used for optimising
the model-free parameter values.

‘curvefit’ — Art Palmer’s curvefit program was used to
determine the Ry or Ro values.

The model_elim flag is model-free specific and should be
set if the methods from ”d’Auvergne, E. J. and Gooley,
P. M. (2006). Model-free model elimination: A new step
in the model-free dynamic analysis of NMR relaxation
data. J. Biomol. NMR, 35(2), 117-135.” were used. This
should be set to True for the full_analysis.py script.

The universal_solution flag is model-free specific and
should be set if the methods from ”d’Auvergne E. J.,
Gooley P. . (2007). Set theory formulation of the
model-free problem and the diffusion seeded model-free
paradigm. Mol. Biosyst., 3(7), 483-494.” were used.
This should be set to True for the full_analysis.py script.

Prompt examples

For BMRB deposition, to specify that the full_analysis.py
script was used, type one of:

relax> bmrb.script(‘full_analysis.py’,
‘model-free’, ‘AIC’, ‘relax’, True, True)

relax> bmrb.script(file=‘full_analysis.
py’, dir=None, analysis_type=‘model-free’,
model_selection=‘AIC’, engine=‘relax’,
model_elim=True, universal_solution=True)

10.2.18 bmrb.software
Synposis

Specify the software used in the analysis.

Defaults

bmrb.software(name=None, version=None, url=None,
vendor_name=None, cite_ids=None, tasks=None)

163

Keyword arguments

name: The name of the software program utilised.
version: The version of the software, if applicable.
url: The web address of the software.

vendor_name: The name of the company or person be-
hind the program.

cite_ids: A list of the BMRB citation ID numbers.

tasks: A list of all the tasks performed by the software.

Description

This user function allows the software used in the analysis
to be specified in full detail.

For the tasks list, this should be a python list of strings
(eg. [‘spectral processing’]). Although not restricted
to these, the values suggested by the BMRB are:

‘chemical shift assignment’,
‘chemical shift calculation’,
‘collection’,

‘data analysis’,

‘geometry optimization’,
‘peak picking’,

‘processing’,

‘refinement’,

‘structure solution’

Prompt examples

For BMRB deposition, to say that Sparky was used in
the analysis, type:

relax> cite_id = bmrb.citation(authors=[["Tom",
llGoddardll . IIT' n s ||D' ll] s [||D|| s llKnellerll . IID' n s
"G."]], title="Goddard, T. D. and Kneller, D.
G., SPARKY 3, University of California, San
Francisco."

relax> bmrb.software("Sparky", version="3.110",
url="http://www.cgl.ucsf.edu/home/sparky/",
vendor_name="Goddard, T. D.", cite_ids=[cite_id],
tasks=["spectral analysis"])

10.2.19 bmrb.software_select

Synposis

Select the software used in the analysis.



164

Defaults

bmrb.software_select(name=None, version=None)

Keyword arguments

name: The name of the software program utilised.

version: The version of the software, if applicable.

Description

Rather than specifying all the information directly, this
user function allows the software packaged used in the
analysis to be selected by name. The programs currently
supported are:

‘NMRPipe’ — http://spin.niddk.nih.gov/NMRPipe/

‘Sparky’ — http://www.cgl.ucsf.edu/home/sparky/

More can be added if all relevant information (program
name, description, website, original citation, purpose,
etc.) is emailed to relax-users@gna.org.

Note that relax is automatically added to the BMRB file.

Prompt examples

For BMRB deposition, to say that both NMRPipe and
Sparky were used prior to relax, type:

relax> bmrb.software_select (‘NMRPipe’)

relax> bmrb.software_select(‘Sparky’, version=
€3.1137)

10.2.20 bmrb.thiol_state

Synposis

Select the thiol state of the system.

Defaults

bmrb.thiol_state(state=None)

Keyword arguments

state: The thiol state.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

The thiol state can be any text, thought the BMRB sug-
gests the following:

‘all disulfide bound’,

‘all free’,

‘all other bound’,

‘disulfide and other bound’,

‘free and disulfide bound’,

‘free and other bound’,

‘free disulfide and other bound’,
‘not available’,
‘not present’,
‘not reported’,

‘unknown’.

Alternatively the pure states ‘reduced’ or ‘oxidised’

could be specified.

Prompt examples

For BMRB deposition, to say that the protein studied is
in the oxidised state, tyype one of:

relax> bmrb.thiol_state(‘oxidised’)

relax> bmrb.thiol_state(state=‘oxidised’)

10.2.21 bmrb.write

Synposis

Write the results to a BMRB NMR-STAR formatted file.

Defaults

bmrb.write(file=None, dir="'pipe_name’, version="'3.1",
force=False)

Keyword arguments

file: The name of the BMRB file to output results to.
Optionally this can be a file object, or any object with a
write() method.

dir: The directory name.

version: The NMR-STAR dictionary format version to
create.

force: A flag which if True will cause the any pre-
existing file to be overwritten.



10.2. THE LIST OF FUNCTIONS

Description

This will create a NMR-STAR formatted file of the data
in the current data pipe for BMRB deposition.

In the prompt/script UI modes, to place the BMRB file
in the current working directory, set dir to None. If dir
is set to the special name ‘pipe_name’, then the results
file will be placed into a directory with the same name
as the current data pipe.

10.2.22 bruker.read

Synposis

Read a Bruker Dynamics Center (DC) relaxation data
file.

Defaults

bruker.read(ri_-id=None, file=None, dir=None)

Keyword arguments

ri_id: The relaxation data ID string. This must be a
unique identifier.

file: The name of the Bruker Dynamics Center file con-
taining the relaxation data.

dir: The directory where the file is located.

Description

This user function is used to load all of the data out
of a Bruker Dynamics Center (DC) relaxation data file
for subsequent analysis within relax. Currently the Ri
and Rg relaxation rates and steady-state NOE data is
supported.

10.2.23 calc

Synposis

Calculate the function value.

Defaults

calc(verbosity=1)

165

Keyword arguments

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

Description

This will call the target function for the analysis type
associated with the current data pipe using the current
parameter values. This can be used to find, for example,
the chi-squared value for different parameter values.

10.2.24 consistency_tests.set_frq

Synposis

Select which relaxation data to use in the consistency
tests by NMR spectrometer frequency.

Defaults

consistency_tests.set_frq(frq=None)

Keyword arguments

frq: The spectrometer frequency in Hz. This must
match the currently loaded data to the last decimal point.
See the ‘sfrq’ parameter in the Varian procpar file or the
‘SF01’ parameter in the Bruker acqus file.

Description

This will select the relaxation data to use in the consis-
tency tests corresponding to the given frequencies. The
data is selected by the spectrometer frequency in Hertz,
which should be set to the exact value (see the ‘sfrq’
parameter in the Varian procpar file or the ‘SF01’ pa-
rameter in the Bruker acqus file). Note thought that
the R1, Ra and NOE are all expected to have the exact
same frequency in the J(w) mapping analysis (to the last
decimal point).

Prompt examples

relax> consistency_tests.set_frq(600.0 * 1e6)

relax> consistency_tests.set_frq(frq=600.0 * 1e6)




166

10.2.25 dasha.create

Synposis

Create the Dasha script.

Defaults

dasha.create(algor='LM’, dir=None, force=False)

Keyword arguments

algor: The minimisation algorithm.
dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

Description

The script file created is called ‘dir/dasha_script’.

Optimisation algorithms

The two minimisation algorithms within Dasha are ac-
cessible through the algorithm which can be set to:

‘LM’ — The Levenberg-Marquardt algorithm,

‘NR’ — Newton-Raphson algorithm.

For Levenberg-Marquardt minimisation, the function
‘Imin’ will be called, while for Newton-Raphson, the
function ‘min’ will be executed.

10.2.26 dasha.execute
Synposis

Perform a model-free optimisation using Dasha.

Defaults

dasha.execute(dir=None, force=False, binary="'dasha’)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Dasha program
file.

Description

Dasha will be executed as

$ dasha < dasha_script | tee dasha_results

If you would like to use a different Dasha executable file,
change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

10.2.27 dasha.extract

Synposis

Extract data from the Dasha results file.

Defaults

dasha.extract(dir=None)

Keyword arguments

dir:
found.

The directory where the file ‘dasha_results’ is

Description

The model-free results will be extracted from the Dasha
results file ‘dasha_results’ located in the given directory.

10.2.28 deselect.all
Synposis

Deselect all spins in the current data pipe.

Defaults

deselect.all()



10.2. THE LIST OF FUNCTIONS

Description

This will deselect all spins, irregardless of their current
state.

Prompt examples

To deselect all spins, simply type:

relax> deselect.all()

10.2.29 deselect.interatom

Synposis

Deselect specific interatomic data containers.

Defaults

deselect.interatom(spin_id1=None, spin_id2=None,
boolean='AND’, change_all=False)

Keyword arguments

spin_idl: The spin ID string of the first spin of the
interatomic data container.

spin_id2: The spin ID string of the second spin of the
interatomic data container.

boolean: The boolean operator specifying how inter-
atomic data containers should be selected.

change_all: A flag specifying if all other interatomic
data containers should be changed.

Description

This is used to deselect specific interatomic data con-
tainers which store information about spin pairs such as
RDCs, NOEs, dipole-dipole pairs involved in relaxation,
etc. The ‘change all’ flag default is False meaning that
all interatomic data containers currently either selected
or deselected will remain that way. Setting this to True
will cause all interatomic data containers not specified by
the spin ID strings to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.

167

Prompt examples

To deselect, all N-H backbone bond vectors of a protein,
assuming these interatomic data containers have been
already set up, type one of:

relax> deselect.interatom(‘@N’, ‘@H’)

relax> deselect.interatom(spin_idl=‘@N’,
spin_id2=‘@H’)

To deselect all H-H interatomic vectors of a small organic
molecule, type one of:

relax> deselect.interatom(‘@H*’, ‘@H*’)

relax> deselect.interatom(spin_idl=‘@H*’,
spin_id2=‘@Hx*’)

10.2.30 deselect.read

Synposis

Deselect the spins contained in a file.

Defaults

deselect.read(file=None, dir=None, spin_id_col=None,
mol_name_col=None, res_.num_col=None, res_name_col=
None, spin_num_col=None, spin_name_col=None, sep=
None, spin_id=None, boolean='AND’, change_all=False)

Keyword arguments

file: The name of the file containing the list of spins to
deselect.

dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).

spin_name_col: The spin name column (alternative to
the spin_id_col).

sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.



168

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.1: Boolean operators and their effects on selections

Spin system or interatomic data container

[\
ot
-~
©o

Original selection
New selection
OR

NOR

AND

NAND

XOR

XNOR

H OO, ORFRF|w
_H OO, ORF KK | &
O FHFOOKFFO [=>]
HOoORFROFOOO oo

1
0
0
0
1
0
1
0
1

= O O = O = =
= O O = O = =
O rHr OO+ O+
O OO+ O+

boolean: The boolean operator specifying how spins
should be selected.

change_all: A flag specifying if all other spins should
be changed.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Empty lines and lines beginning with a hash are ignored.

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified in the file to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.

Prompt examples

To deselect all overlapped residues listed with residue
numbers in the first column of the file ‘unresolved’, type
one of:

relax> deselect.read(‘unresolved’, res_num_col=1)

relax> deselect.read(file=‘unresolved’,
res_num_col=1)

To deselect the spins in the second column of the relax-
ation data file ‘r1.600’ while selecting all other spins, for
example type:

relax> deselect.read(‘r1.600°, spin_num_col=2,
change_all=True)

relax> deselect.read(file=‘r1.600°,
2, change_all=True)

spin_num_col=

10.2.31 deselect.reverse

Synposis

Reversal of the spin selection for the given spins.

Defaults

deselect.reverse(spin_id=None)

Keyword arguments

spin_id: The spin ID string.

Description

By supplying the spin ID string, a subset of spins can
have their selection status reversed.

Description

To deselect all currently selected spins and select those
which are deselected type:

relax> deselect.reverse()




10.2. THE LIST OF FUNCTIONS

10.2.32 deselect.spin

Synposis

Deselect specific spins.

Defaults

deselect.spin(spin_id=None, boolean='AND’, change_all=
False)

Keyword arguments

spin_id: The spin ID string.

boolean: The boolean operator specifying how spins
should be deselected.

change_all: A flag specifying if all other spins should
be changed.

Description

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified by the spin ID string to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.

Prompt examples

To deselect all glycines and alanines, type:
relax> deselect.spin(spin_id=‘:GLY|:ALA’)
To deselect residue 12 MET type:

relax> deselect.spin(‘:12’)

relax> deselect.spin(spin_id=‘:12")

relax> deselect.spin(spin_id=‘:12&:MET’)

10.2.33 diffusion_tensor.copy

Synposis

Copy diffusion tensor data from one data pipe to another.

169

Defaults

diffusion_tensor.copy(pipe_from=None, pipe_to=None)

Keyword arguments

pipe_-from: The name of the data pipe to copy the dif-
fusion tensor data from.

pipe_-to: The name of the data pipe to copy the diffu-
sion tensor data to.

Description

This will copy the diffusion tensor data between data
pipes. The destination data pipe must not contain any
diffusion tensor data. If the source or destination data
pipes are not supplied, then both will default to the cur-
rent data pipe (hence specifying at least one is essential).

Prompt examples

To copy the diffusion tensor from the data pipe ‘ml’ to
the current data pipe, type:

relax> diffusion_tensor.copy(‘mi’)

relax> diffusion_tensor.copy(pipe_from=‘m1i’)

To copy the diffusion tensor from the current data pipe
to the data pipe ‘m9’, type:

relax> diffusion_tensor.copy(pipe_to=‘m9’)

To copy the diffusion tensor from the data pipe ‘ml’ to
‘m2’, type:
relax> diffusion_tensor.copy(‘mi’, ‘m2’)

relax> diffusion_tensor.copy(pipe_from=‘mi’,
pipe_to=‘m2’)

10.2.34 diffusion_tensor.delete

Synposis

Delete the diffusion tensor data from the relax data store.

Defaults

diffusion_tensor.delete()



170

Description

This will delete all diffusion tensor data from the current
data pipe.

10.2.35 diffusion_tensor.display
Synposis

Display the diffusion tensor information.

Defaults

diffusion_tensor.display()

Description

This will display all of the diffusion tensor information
of the current data pipe.

10.2.36 diffusion_tensor.init

Synposis

Initialise the diffusion tensor.

Defaults

diffusion_tensor.init(params=None, time_scale=1.0,
d_scale=1.0, angle_units="'deg’, param_types=0,
spheroid_type=None, fixed=True)

Keyword arguments

params: The diffusion tensor data.

time_scale: The correlation time scaling value.
d_scale: The diffusion tensor eigenvalue scaling value.
angle_units: The units for the angle parameters.

param_types: A flag to select different parameter com-
binations.

spheroid_type: A string which, if supplied together with
spheroid parameters, will restrict the tensor to either be-
ing ‘oblate’ or ‘prolate’.

fixed: A flag specifying whether the diffusion tensor is
fixed or can be optimised.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

The sphere (isotropic diffusion)

When the molecule diffuses as a sphere, all three eigen-
values of the diffusion tensor are equal, D, = D, =
9 ,. In this case, the orientation of the XH bond vec-
tor within the diffusion frame is inconsequential to relax-
ation, hence, the spherical or Euler angles are undefined.
Therefore solely a single geometric parameter, either 7,
or ®;s0, can fully and sufficiently parameterise the dif-
fusion tensor. The correlation function for the global
rotational diffusion is

1 - tau / tm
C(tau) = - e s

To select isotropic diffusion, the parameter should be a
single floating point number. The number is the value
of the isotropic global correlation time, 7,, in seconds.
To specify the time in nanoseconds, set the time scale to
le-9. Alternative parameters can be used by changing
the ‘param_types’ flag to the following integers

0 — {tm} (Default),

1 — {Diso},
where

1/ 7m = 6Dis0.

The spheroid (axially symmetric diffu-
sion)

When two of the three eigenvalues of the diffusion ten-
sor are equal, the molecule diffuses as a spheroid. Four
pieces of information are required to specify this tensor,
the two geometric parameters, ©;s, and ®,, and the two
orientational parameters, the polar angle 6 and the az-
imuthal angle ¢ describing the orientation of the axis of
symmetry. The correlation function of the global diffu-
sion is

- tau / tau_i
C(tau) = - > ci . e s
5 /__
i=-1

where

c1=1/4(36."2-1)2,



10.2. THE LIST OF FUNCTIONS

c0=36."2(1-6."2),
el =3/4(5.°2-1)"2,

and

1/7-1=6D;50 - 294,
1/70=069i5 - Da,
1/71=69i50 + 2D4.
The direction cosine ¢, is defined as the cosine of the

angle a between the XH bond vector and the unique
axis of the diffusion tensor.

To select axially symmetric anisotropic diffusion, the pa-
rameters should be a tuple of floating point numbers of
length four. A tuple is a type of data structure enclosed
in round brackets, the elements of which are separated by
commas. Alternative sets of parameters, ‘param_types’,
are

0 — {7m, Da, 0, ¢} (Default),
1 - {Diso, Da, 0, ¢},

2 — {7m, Dratio, 0, ¢},

3— {9),9.,0, ¢},

4 — {Qisoy Qratioy 07 ¢}7

where

Tm =1/ 6Diso,

Diso = 1/3 (D) + 2D1),
De =9 -9,

Dratio =Dy / Do.

The spherical angles {6, ¢} orienting the unique axis of
the diffusion tensor within the PDB frame are defined
between

0<60<m,

0<¢<2m,

while the angle o which is the angle between this axis
and the given XH bond vector is defined between

0< a< 2.

The spheroid type should be ‘oblate’, ‘prolate’, or
None. This will be ignored if the diffusion tensor is not
axially symmetric. If ‘oblate’ is given, then the con-
straint ©, < 0 is used while if ‘prolate’ is given, then
the constraint ®, > 0 is used. If nothing is supplied,
then ©, will be allowed to have any values. To prevent
minimisation of diffusion tensor parameters in a space
with two minima, it is recommended to specify which
tensor is to be minimised, thereby partitioning the two
minima into the two subspaces along the boundary D,
=0.

171

The ellipsoid (rhombic diffusion)

When all three eigenvalues of the diffusion tensor are
different, the molecule diffuses as an ellipsoid. This dif-
fusion is also known as fully anisotropic, asymmetric, or
rhombic. The full tensor is specified by six pieces of in-
formation, the three geometric parameters ©;s,, Dq, and
9, representing the isotropic, anisotropic, and rhombic
components of the tensor, and the three Euler angles «,
B, and ~y orienting the tensor within the PDB frame. The
correlation function is

- tau / tau_i
C(tau) = - > ci . e s
5 /__
i=-2

where the weights on the exponentials are

c-2

1/4 (d + e),
c1=36,"26."2,
€0 =136,"20."2,

cl

36:°2 68,2,

c2

1/4 (d + e).

Let

R = sqrt(1 4+ 3D,),

then

d=3 5.4+ 6,4 +6.°4) - 1,
e=-1/R((1 +3D.)(6:"4 + 26,72 6.°2) +

(1-39D,)(8, "4 + 26,°2 6.°2) - 2(5.°4 + 26,°2
5,°2)).

The correlation times are

1/7-2=6D40- 20, . R,
1/7-1=6Dis0-Dqa (1 4+ 39.),
1/70=6Dis0-Da (1-30,),
1/71=69i50 + 294,

1/71=06Di0 + 204 . R



172

The three direction cosines 0., dy, and §, are the coor-
dinates of a unit vector parallel to the XH bond vector.
Hence the unit vector is [0z, 0y, 0-].

To select fully anisotropic diffusion, the parameters
should be a tuple of length six. A tuple is a type of
data structure enclosed in round brackets, the elements

of which are separated by commas. Alternative sets of
parameters, ‘param_types’, are

0 - {Tm7 Da, Dr, a, B, '7} (Defalﬂt)v
1- {Dismgaygmav B, '7}7
2_ {9179117@270‘7 67 7}7

3 — {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz},

where

Tm = 1 / 691'507
Qiso = 1/3 (Dz + @y + Dz):
Do =D - (D4 + Dy)/2,

Dr = (Dy - D2)/294.

The angles «, 3, and « are the Euler angles describing
the diffusion tensor within the PDB frame. These angles
are defined using the z-y-z axis rotation notation where
« is the initial rotation angle around the z-axis, (3 is
the rotation angle around the y-axis, and + is the final
rotation around the z-axis again. The angles are defined
between

=}
A
R

A

— 2ﬂ-7

=}

A
=
IN

T,

=}
A

)

IN

2.

Within the PDB frame, the XH bond vector is described
using the spherical angles § and ¢ where 0 is the polar
angle and ¢ is the azimuthal angle defined between

0<60<m,

0< ¢ <2m.

When param_types is set to 3, then the elements of the
diffusion tensor matrix defined within the PDB frame
can be supplied.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Units

The correlation time scaling value should be a floating
point number. The only parameter affected by this value
is Tm.

The diffusion tensor eigenvalue scaling value should also
be a floating point number. Parameters affected by this
value are Dis0, D, D1, Da, Dz, Dy, and D.. Signifi-
cantly, ©, is not affected.

The units for the angle parameters should be either ‘deg’
or ‘rad’. Parameters affected are 0, ¢, o, 3, and ~.

Prompt examples

To set an isotropic diffusion tensor with a correlation
time of 10 ns, type:

relax> diffusion_tensor.init(10e-9)

relax> diffusion_tensor.init(params=10e-9)

relax> diffusion_tensor.init(10.0, 1e-9)

relax> diffusion_tensor.init(params=10.0,
time_scale=1e-9, fixed=True)

To select axially symmetric diffusion with a 7, value of
8.5 ns, Dyqtio of 1.1, 0 value of 20 degrees, and ¢ value
of 20 degrees, type:

relax> diffusion_tensor.init((8.5e-9,
20.0), param_types=2)

1.1, 20.0,

To select a spheroid diffusion tensor with a ®| value of
1.698e7, ©, value of 1.417e7, 6 value of 67.174 degrees,
and ¢ value of -83.718 degrees, type one of:

relax> diffusion_tensor.init((1.698e7,
67.174, -83.718), param_types=3)

1.417e7,

relax> diffusion_tensor.init(params=(1.698e7,
1.417e7, 67.174, -83.718), param_types=3)

relax> diffusion_tensor.init((1.698e-1, 1.417e-1,
67.174, -83.718), param_types=3, d_scale=1e8)

relax> diffusion_tensor.init(params=(1.698e-1,
1.417e-1, 67.174, -83.718), param_types=3,
d_scale=1e8)

relax> diffusion_tensor.init((1.698e-1, 1.417e-1,
1.1724, -1.4612), param types=3, d_scale=1e8,
angle_units=‘rad’)

relax> diffusion_tensor.init(params=(1.698e-1,
1.417e-1, 1.1724, -1.4612), param_types=3,
d_scale=1e8, angle_units=‘rad’, fixed=True)

To select ellipsoidal diffusion, type:

relax> diffusion_tensor.init((1.340e7, 1.516e7,
1.691e7, -82.027, -80.573, 65.568), param_types=
2)




10.2. THE LIST OF FUNCTIONS

10.2.37 dipole_pair.define

Synposis

Define the pairs of spins involved in magnetic dipole-
dipole interactions.

Defaults

dipole_pair.define(spin_id1='@N’, spin_id2='@H’,
direct_bond=True)

Keyword arguments

spin_idl: The spin identification string for the first spin
of the dipole pair.

spin_id2: The spin identification string for the second
spin of the dipole pair.

direct_bond: This is a flag which if True means that
the two spins are directly bonded. This flag is useful to
simply the set up of the main heteronuclear relaxation
mechanism or one-bond residual dipolar couplings.

Description

To analyse relaxation or residual dipolar coupling (RDC)
data, pairs of spins which are coupled via the magnetic
dipole-dipole interaction need to be specified. This must
proceed the use of the other user functions in this class.
An interatomic data object will be created, if not already
present, and this will be used to store all subsequently
loaded dipole-dipole interaction information.

For analyses which use relaxation data, specifying the
dipole-dipole interaction will indicate that there is a
dipolar relaxation mechanism operating between the two
spins. Note that for model-free analyses or reduced spec-
tral density mapping, only a single relaxation mechanism
can be handled. For RDC dependent analyses, this indi-
cates that a residual dipolar coupling is expected between
the two spins.

Prompt examples

To define the protein 15N heteronuclear relaxation mech-

anism for a model-free analysis, type one of the following;:
relax> dipole_pair.define(‘@N’, ‘@H’, True)

relax> dipole_pair.define(spin_id1=‘@N’,
spin_id2=‘@H’, direct_bond=True)

173

10.2.38 dipole_pair.read_dist

Synposis

Load the -3 averaged distances for the magnetic dipole-
dipole interactions from a file.

Defaults

dipole_pair.read_dist(file=None, dir=None, spin_id1_col=
1, spin_id2_col=2, data_col=3, sep=None)

Keyword arguments

file: The name of the file containing the averaged dis-
tance data.

dir: The directory where the file is located.

spin_idl_col: The spin ID string column for the first
spin.

spin_id2_col: The spin ID string column for the second
spin.

data_col: The averaged distance data column.

sep: The column separator (the default is white space).

Description

As the magnetic dipole-dipole interaction is averaged in
NMR over the interatomic distance to the inverse third
power, the interatomic distances within a 3D structural
file are of no use for defining the interaction. Therefore
these average distances must be explicitly defined.

This user function allows these r"-3 averaged interatomic
distances to be read from a file. This is useful in the case
when the dipole-dipole distances vary, replacing the need
to call the dipole_pair.set_dist user function many times.
The format of the file should be columnar, with the two
spin ID strings in two separate columns and the averaged
distances in any other.

Prompt examples

To load the distances from the fifth column of the
‘distances’ file, and where the spin IDs are in the first
and second columns, type one of the following:

relax> dipole_pair.read_dist(‘distances’, 1, 2,
5)

relax> dipole_pair.read_dist(file=‘distances’,
spin_idl_col=1, spin_id2_col=2, data_col=5)




174

10.2.39 dipole_pair.set_dist

Synposis

Set the r”-3 averaged distances for the magnetic dipole-
dipole interactions.

Defaults

dipole_pair.set_dist(spin_id1="@N’, spin_id2="QH’,
ave_dist=1.0200000000000001e-10)

Keyword arguments

spin_idl: The spin identification string for the first spin
of the dipole pair.

spin_id2: The spin identification string for the second
spin of the dipole pair.

ave_dist: The r"-3 averaged distance between the two
spins to be used in the magnetic dipole constant.

Description

As the magnetic dipole-dipole interaction is averaged in
NMR over the interatomic distance to the inverse third
power, the interatomic distances within a 3D structural
file are of no use for defining the interaction. Therefore
these average distances must be explicitly supplied. This
user function allows these distances to be set up.

Prompt examples

To set the N-H distance for protein the 15N heteronu-
clear relaxation mechanism to 1.02 A, type one of the
following;:

relax> dipole_pair.set_dist(‘@N’, ‘@H’, 1.02 *
1e-10)

relax> dipole_pair.set_dist(spin_id1=‘@N’,
spin_id2=‘@H’, ave_dist=1.02 * 1e-10)

10.2.40 dipole_pair.unit_vectors

Synposis

Calculate the unit vectors between the magnetic dipole-
dipole interactions.

Defaults

dipole_pair.unit_vectors(ave=True)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

ave: A flag which if True will cause the bond vectors
from all models to be averaged. If vectors from only one
model is extracted, this will have no effect.

Description

For an orientational dependent analysis, such as model-
free analysis with the spheroidal and ellipsoidal global
diffusion tensors or any analysis using RDCs, the unit
vectors between the two dipoles must be calculated prior
to starting the analysis. For the unit vector extrac-
tion, the two interacting spins should already possess
positional information and the dipole-dipole interaction
should already be defined via the dipole_pair.define user
function. This information will be used to calculate unit
vectors between the two spins. Without positional infor-
mation, no vectors can be calculated and an orientational
dependent analysis will not be possible.

The number of unit vectors per interaction will be defined
by the number of positions each spin possesses together
with the averaging flag. If both spins have N and M
positions loaded, the number of positions for both must
match (N=M). In this case, as well as when one spin has
N positions and the other a single position, then N unit
vectors will be calculated. This is unless the averaging
flag is set in which case an averaged vector of unit length
will be calculated.

Prompt examples

To calculate the unit vectors prior to a model-free anal-
ysis, type one of the following;:

relax> dipole_pair.unit_vectors(True)

relax> dipole_pair.unit_vectors(ave=True)

10.2.41 dx.execute

Synposis

Execute an OpenDX program.

Defaults

dx.execute(file_prefix="map’, dir="dx’, dx_exe="dx’,
vp_exec=True)

Keyword arguments

file_prefix: The file name prefix. For example if file is
set to ‘temp’, then the OpenDX program temp.net will
be loaded.



10.2. THE LIST OF FUNCTIONS

dir: The directory to change to for running OpenDX.
If this is set to None, OpenDX will be run in the current
directory.

dx_exe: The OpenDX executable file.
vp_exec: A flag specifying whether to execute the visual

program automatically at start-up. The default of True
causes the program to be executed.

Description

This will execute OpenDX to display the space maps
created previously by the dp.map user function. This
will work for any type of OpenDX map.

10.2.42 dx.map

Synposis

Create a map of the given space in OpenDX format.

Defaults

dx.map(params=None, map_type="'lso3D’, spin_id=None,
inc=20, lower=None, upper=None, axis_incs=5,
file_prefix="map’, dir="dx’, point=None, point_file=
‘point’, remap=None)

Keyword arguments

params: The parameters to be mapped. This should be
an array of strings, the meanings of which are described
below.

map_type: The type of map to create. For example the
default, a 3D isosurface, the type is ‘Iso3D’. See below
for more details.

spin_id: The spin ID string.

inc: The number of increments to map in each dimen-
sion. This value controls the resolution of the map.

lower: The lower bounds of the space. If you wish to
change the lower bounds of the map then supply an array
of length equal to the number of parameters in the model.
A lower bound for each parameter must be supplied. If
nothing is supplied then the defaults will be used.

upper: The upper bounds of the space. If you wish
to change the upper bounds of the map then supply an
array of length equal to the number of parameters in
the model. A upper bound for each parameter must be
supplied. If nothing is supplied then the defaults will be
used.

axis_incs: The number of increments or ticks displaying
parameter values along the axes of the OpenDX plot.

175

file_prefix: The file name. All the output files are pre-
fixed with this name. The main file containing the data
points will be called the value of ‘file’. The OpenDX
program will be called ‘file.net’ and the OpenDX im-
port file will be called ‘file.general’.

dir: The directory to output files to. Set this to ‘None’
if you do not want the files to be placed in subdirectory.
If the directory does not exist, it will be created.

point: An array of parameter values where a point in
the map, shown as a red sphere, will be placed. The
length must be equal to the number of parameters.

point_file: The name of that the point output files will
be prefixed with.

remap: A user supplied remapping function. This func-
tion will receive the parameter array and must return an
array of equal length.

Description

This will map the space corresponding to the spin iden-
tifier and create the OpenDX files. The map type can be
changed to one of the following supported map types:

Please see Table 10.2 on page 176.

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2” and ‘s2’.

¢~? — Match the start of the string.

‘¢’ — Match the end of the string. For example,
‘~[Ss]12$’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.
¢.” — Match any character.

‘x*¥”> — Match the character ‘x’ any number of times, for

example ‘x’ will match, as will ‘xxxxx’.

¢.¥> — Match any sequence of characters of any length.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.



176 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.2: OpenDx mapping types.

Surface type Name

3D isosurface  ’Iso3D’

Table 10.3: Diffusion tensor parameter string matching patterns.

Data type Object name  Patterns
Global correlation time - 7, tm’ “tm$’
Isotropic component of the diffusion tensor - ©;g, 'Diso’ '[Dd]iso’
Anisotropic component of the diffusion tensor - Dq 'Da’ '[Dd]a
Rhombic component of the diffusion tensor - D, 'Dr’ '[Dd]r$’
Eigenvalue associated with the x-axis of the diffusion tensor - D, 'Dx’ '[Dd]x’
Eigenvalue associated with the y-axis of the diffusion tensor - D, Dy’ '[Dd]y’
Eigenvalue associated with the z-axis of the diffusion tensor - ©. ‘Dz’ '[Dd]z’
Diffusion coefficient parallel to the major axis of the spheroid diffusion tensor - D "Dpar’ '[Dd]par’
Diffusion coefficient perpendicular to the major axis of the spheroid diffusion tensor - © | "Dper’ '[Dd]per’
Ratio of the parallel and perpendicular components of the spheroid diffusion tensor - ©,4t;o  'Dratio’ '[Dd]ratio’
The first Euler angle of the ellipsoid diffusion tensor - « "alpha’ “a$’ or ’alpha’
The second Euler angle of the ellipsoid diffusion tensor - "beta’ "b$’ or 'beta’
The third Euler angle of the ellipsoid diffusion tensor - v ‘gamma’ "g$’ or ‘gamma’
The polar angle defining the major axis of the spheroid diffusion tensor - 6 ‘theta’ ‘theta’

The azimuthal angle defining the major axis of the spheroid diffusion tensor - ¢ 'phi’ 'phi’

Diffusion tensor parameter string To map the model-free space ‘m4’ for residue 2, spin N6

matching patterns

use one of the following commands:
Please see Table 10.3 on page 176.

relax> dx.map([‘s2’, ‘te’, ‘rex’], spin_id=
€:20N6°, file_prefix=‘test’, dir=None)

Model-free data type string matching relax> dx.map(params=[‘s2’, ‘te’,
spin_id=‘:2@N6°, inc=100, file prefix=‘test’,

‘rex’],

defined by the parameters {52, Te, Rex}, name the re-
sults ‘test’, and to place the files in the current directory,

patterns dir=None)
Please see Table 10.4 on page 177.
Prompt examples 10.2.43 eliminate

The following commands will generate a map of the ex- Synposis
tended model-free space for model ‘m5’ consisting of the
parameters {S2, 5?7 7s}. Files will be output into the
directory ‘dx’ and will be prefixed by ‘map’. In this case,
the system is a protein and residue number 6 will be
mapped.

Elimination or rejection of models.

Defaults

relax> dx.map([‘s2’, ‘s2f’, ‘ts’], spin_id=‘:6’)

relax> dx.map([¢s2’, ‘s2f’, ‘ts’], spin_id=‘:6’,
file prefix=‘map’, dir=‘dx’)

relax> dx.map(params=[‘s2’, ‘s2f’, ‘ts’],

spin_id=¢:6’, inc=20, file_prefix=‘map’, dir=

‘dx?) Keyword arguments
relax> dx.map(params=[‘s2’, ‘s2f’, ‘ts’],

spin_id=¢:6’, map_type=‘Iso3D’, inc=20,

file prefix=‘map’, dir=‘dx’) elimination.

eliminate(function=None, args=None)

function: An optional user supplied function for model



10.2. THE LIST OF FUNCTIONS

177

Table 10.4: Model-free data type string matching patterns.

Data type Object name
Local 7, ’local_tm’
Order parameter S2  ’s2’

Order parameter S2  ’s2f’

Order parameter Sé ’s2s’
Correlation time Te te’
Correlation time 7y tf?
Correlation time 75 ts’
Chemical exchange rex’

CSA ‘csa’

args: A tuple of arguments used by the optional func-
tion for model elimination.

Description

This is used for model validation to eliminate or reject
models prior to model selection. Model validation is a
part of mathematical modelling whereby models are ei-
ther accepted or rejected.

Empirical rules are used for model rejection and are listed
below. However these can be overridden by supplying a
function in the prompt and scripting modes. The func-
tion should accept five arguments, a string defining a cer-
tain parameter, the value of the parameter, the minimisa-
tion instance (ie the residue index if the model is residue
specific), and the function arguments. If the model is
rejected, the function should return True, otherwise it
should return False. The function will be executed mul-
tiple times, once for each parameter of the model.

The function arguments should be a tuple, a list enclosed
in round brackets, and will be passed to the user supplied
function or the inbuilt function. For a description of the
arguments accepted by the inbuilt functions, see below.

Once a model is rejected, the select flag corresponding to
that model will be set to False so that model selection,
or any other function, will then skip the model.

Local tm model elimination rule

The local 7p,, in some cases, may exceed the value ex-
pected for a global correlation time. Generally the 7,
value will be stuck at the upper limit defined for the pa-
rameter. These models are eliminated using the rule:

tm >= ¢

The default value of ¢ is 50 ns, although this can be
overridden by supplying the value (in seconds) as the
first element of the args tuple.

Internal correlation times te, tf, ts
model elimination rules

These parameters may experience the same problem as
the local 7, in that the model fails and the parameter
value is stuck at the upper limit. These parameters are
constrained using the formula (7e, 75, 7s < 27 ). These
failed models are eliminated using the rule:

te, tf, ts >= ¢ tm.

The default value of c is 1.5. Because of round-off errors
and the constraint algorithm, setting ¢ to 2 will result in
no models being eliminated as the minimised parameters
will always be less than 27,,. The value can be changed
by supplying the value as the second element of the tuple.

Arguments

The ‘args’ argument must be a tuple of length 2, the
elements of which must be numbers. For example, to
eliminate models which have a local 7, value greater
than 25 ns and models with internal correlation times
greater than 1.5 times 7, set ‘args’ to (25 * 1e-9, 1.5).

10.2.44 fix

Synposis

Fix or allow parameter values to change during optimi-
sation.

Defaults

fix(element=None, fixed=True)



178

Keyword arguments

element: Which element to fix.

fixed: A flag specifying if the parameters should be
fixed or allowed to change.

Description

The element can be any of the following:

‘diff’ — The diffusion tensor parameters. This will al-
low all diffusion tensor parameters to be toggled.

‘all_spins’ — Using this keyword, all parameters from
all spins will be toggled.

‘all’ — All parameters will be toggled. This is equiva-
lent to combining both ‘diff’ and ‘all_spins’.

The flag ‘fixed’, if set to True, will fix parameters during
optimisation whereas a value of False will allow parame-
ters to vary.

10.2.45 frame_order.cone_pdb

Synposis

Create a PDB file representing the Frame Order cone
models.

Defaults

frame_order.cone_pdb(size=30.0, inc=40, file="'cone.pdb’,
dir=None, force=False)

Keyword arguments

size: The size of the geometric object in A.

inc: The number of increments used to create the geo-
metric object.

file: The name of the PDB file to create.
dir: The directory where the file is to be located.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This function creates a PDB file containing an artificial
geometric structure representing the Frame Order cone
models.

There are four different types of residue within the PDB.
The pivot point is represented as as a single carbon
atom of the residue ‘PIV’. The cone consists of numer-
ous H atoms of the residue ‘CON’. The cone axis vector
is presented as the residue ‘AXE’ with one carbon atom
positioned at the pivot and the other z Aaway on the
cone axis (set by the geometric object size). Finally, if
Monte Carlo have been performed, there will be multiple
‘MCC’ residues representing the cone for each simulation,
and multiple ‘MCA’ residues representing the multiple cone
axes.

To create the diffusion in a cone PDB representation, a
uniform distribution of vectors on a sphere is generated
using spherical coordinates with the polar angle defined
by the cone axis. By incrementing the polar angle using
an arccos distribution, a radial array of vectors represent-
ing latitude are created while incrementing the azimuthal
angle evenly creates the longitudinal vectors. These are
all placed into the PDB file as H atoms and are all con-
nected using PDB CONECT records. Each H atom is
connected to its two neighbours on the both the longi-
tude and latitude. This creates a geometric PDB object
with longitudinal and latitudinal lines representing the
filled cone.

10.2.46 frame_order.domain_to-
_pdb

Synposis

Match the domains to PDB files.

Defaults

frame_order.domain_to_pdb(domain=None, pdb=None)

Keyword arguments

domain: The domain to associate the PDB file to.

pdb: The PDB file to associate the domain to.

Description

To display the frame order cone models within Pymol,
the two domains need to be associated with PDB files.
Then the reference domain will be fixed in the PDB
frame, and the moving domain will be rotated to its av-
erage position.



10.2. THE LIST OF FUNCTIONS

Prompt examples

To set the ‘N’ domain to file

‘bax_N_1J70-1%%.pdb’, type one of:

the PDB

relax> frame_order.domain_to_pdb(‘N’,
‘bax_N_1J70_1st.pdb’ )

relax> frame_order.domain_to_pdb(domain=‘N’, pdb=
‘bax_N_1J70_1st.pdb’)

10.2.47 frame_order.pivot

Synposis

Set the pivot point for the two body motion in the struc-
tural coordinate system.

Defaults

frame_order.pivot(pivot=None)

Keyword arguments

pivot: The pivot point for the motion (e.g. the position
between the 2 domains in PDB coordinates).

Description

This will set the pivot point for the two domain system
within the PDB coordinate system. This is required for
interpreting PCS data as well as for the generation of
cone or other PDB representations of the domain mo-
tions.

Prompt examples

To set the pivot point, type one of:

relax> frame_order.pivot([12.067, 14.313,
-3.2675])

relax> frame_order.pivot(pivot=[12.067, 14.313,
-3.2675]1)

10.2.48 frame_order.ref_ domain

Synposis

Set the reference domain for the ‘2-domain’ Frame Order
theories.

179

Defaults

frame_order.ref_domain(ref=None)

Keyword arguments

ref: The domain which will act as the frame of refer-
ence. This is only valid for the ‘2-domain’ Frame Order
theories.

Description

Prior to optimisation of the ‘2-domain’ Frame Order the-
ories, which of the two domains will act as the frame of
reference must be specified. This is important for the
attachment of cones to domains, etc.

Prompt examples

To set up the isotropic cone frame order model with
‘centre’ domain being the frame of reference, type:

relax> frame order.ref_domain(ref=‘centre’)

10.2.49 frame_order.select_model

Synposis

Select and set up the Frame Order model.

Defaults

frame_order.select_model(model=None)

Keyword arguments

model: The name of the preset Frame Order model.

Description

Prior to optimisation, the Frame Order model should
be selected. These models consist of three parameter
categories:

The average domain position. This includes
the parameters ave_pos_alpha, ave_pos_beta, and
ave_pos_gamma. These Euler angles rotate the
tensors from the arbitrary PDB frame of the mov-
ing domain to the average domain position.



180 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

The frame order eigenframe. This includes ‘rigid’ — No domain motions.

the parameters eigen_alpha, eigen_beta, and

eigen_gamma. These Euler angles define the ma- ‘free rotor’ — The only motion is free rotation about
jor modes of motion. The cone central axis is the cone axis.

defined as the z-axis. The pseudo-elliptic cone x
and y-axes are defined as the x and y-axes of the

eigenframe. Prompt examples

The cone parameters. These are defined as

the tilt-torsion angles cone_theta_x, cone_theta_y, To select the isotropic cone model, type:
and cone_sigma_max. The cone_theta_x and
cone_theta_y parameters define the two cone
opening angles of the pseudo-ellipse. The amount
of domain torsion is defined as the average do-
main position, plus and minus cone_sigma_max.
The isotropic cones are defined by setting
cone_theta_x = cone_theta_y and converting the 10.2.50 fI‘q.Set
single parameter into a 29 rank order parame-

ter.

relax> frame_order.select_model (model=‘iso cone’)

Synposis

The list of available models are: Set the spectrometer frequency of the experiment.

‘ . 5 c .
pseudo-ellipse’ — The pseudo-elliptic cone model.
This is the full model consisting of the Defaults

parameters ave_pos_alpha, ave_pos_beta,
ave_pos_gamma, eigen_alpha, eigen_beta, frq.set(id=None, frq=None)
eigen_gamma, cone_theta_x, cone_theta_y,

and cone_sigma_max.

Keyword arguments

‘pseudo-ellipse, torsionless’ — The pseudo-elliptic

cone with the torsion angle cone_sigma_max set

to zero. id: The experiment identification string.
‘pseudo-ellipse, free rotor’ — The pseudo-elliptic frq: The spectrometer frequency in Hertz.

cone with no torsion angle restriction.

‘iso cone’ — The isotropic cone model. The cone is ..
defined by a single order parameter sl which DeSCI‘lptIOIl
is related to the single cone opening angle
cone_theta_x = cone_theta_y. Due to rotational  Thjs allows the spectrometer frequency of a given exper-
symmetry about the cone axis, the average po- jment to be set.
sition a Euler angle ave_pos_alpha is dropped
from the model. The symmetry also collapses
the eigenframe to a single z-axis defined by the
parameters axis_theta and axis_phi.

‘iso cone, torsionless’ — The isotropic cone model 10251 grace.view

with the torsion angle cone_sigma_max set to

Zero. .

Synposis

‘iso cone, free rotor’ — The isotropic cone model

with no torsion angle restriction. Visualise the file within Grace.
‘line’ — The line cone model. This is the pseudo-elliptic

cone with one of the cone angles, cone_theta_y, as-

sumed to be statistically negligible. I.e. the cone Defaults

angle is so small that it cannot be distinguished

from noise. . ) - , : )
grace.view(file=None, dir="grace’, grace_exe='xmgrace’)
‘line, torsionless’ — The line cone model with the

torsion angle cone_sigma_max set to zero.

Keyword arguments

‘line, free rotor’ — The line cone model with no tor-
sion angle restriction. file: The name of the file.
‘rotor’ — The only motion is a rotation about the

cone axis restricted by the torsion angle

cone_sigma_max.

dir: The directory name.

grace_exe: The Grace executable file.



10.2. THE LIST OF FUNCTIONS

Description

This can be used to view the specified Grace ‘*.agr’ file
by opening it with the Grace program.

Prompt examples

To view the file ‘s2.agr’ in the directory ‘grace’, type:
relax> grace.view(file=‘s2.agr’)

relax> grace.view(file=‘s2.agr’, dir=‘grace’)

10.2.52 grace.write

Synposis

Create a grace ‘.agr’ file to visualise the 2D data.

Defaults

grace.write(x_data_type='spin’, y_data_type=None,
spin_id=None, plot_data='value’, file=None, dir="grace’,
force=False, norm=False)

Keyword arguments

x_data_type: The data type for the X-axis (no regular
expression is allowed).

y-data_type: The data type for the Y-axis (no regular
expression is allowed).

spin_id: The spin identification string.
plot_data: The data to use for the plot.
file: The name of the file.

dir: The directory name.

force: A flag which, if set to True, will cause the file to
be overwritten.

norm: A flag which, if set to True, will cause all graphs
to be normalised to a starting value of 1. This is for the
normalisation of series type data.

Description

This is designed to be as flexible as possible so that any
combination of data can be plotted. The output is in the
format of a Grace plot (also known as ACE/gr, Xmgr,
and xmgrace) which only supports two dimensional plots.
Three types of information can be used to create various
types of plot. These include the x-axis and y-axis data

181

types, the spin identification string, and the type of data
plot.

The x-axis and y-axis data types should be plain strings,
regular expression is not allowed. If the x-axis data type
is not given, the plot will default to having the spin se-
quence along the x-axis. The two axes of the Grace plot
can be absolutely any of the data types listed in the ta-
bles below. The only limitation, currently anyway, is that
the data must belong to the same data pipe.

The spin identification string can be used to limit which
spins are used in the plot. The default is that all spins
will be used, however, the ID string can be used to select
a subset of all spins, or a single spin for plots of Monte
Carlo simulations, etc.

The property which is actually plotted can be controlled
by the plot data setting. This can be one of the following;:

‘value’ — Plot values (with errors if they exist).
‘error’ — Plot errors.

‘sims’ — Plot the simulation values.

Normalisation is only allowed for series type data, for
example the Ra exponential curves, and will be ignored
for all other data types. If the norm flag is set to True
then the y-value of the first point of the series will be set
to 1. This normalisation is useful for highlighting errors
in the data sets.

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2’ and ‘s2’.

¢~? — Match the start of the string.

‘¢’ — Match the end of the string. For example,
‘~[Ss]2$’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.

¢.” — Match any character.

‘x> — Match the character ‘x’ any number of times, for
example ‘x” will match, as will ‘xxxxx’.

¢.¥> — Match any sequence of characters of any length.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.



182

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.5: Minimisation statistic data type string matching patterns.

Data type Object name  Patterns

Chi-squared statistic ~ ’chi2’ ’"[Cc]hi28$’ or **[Cclhi[-- ][Ss]quare’
Iteration count Yiter’ " [Ti]ter’

Function call count 'f_count’ " [Ff].*] -] [Cclount’

Gradient call count 'g_count’ " [Ggl.*[ -][Cclount’

Hessian call count h_count’ ’“[Hh].*[ -_][Cc]ount’

Minimisation statistic data type string
matching patterns

Please see Table 10.5 on page 182.

NOE calculation data type string
matching patterns

Please see Table 10.6 on page 183.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.

Reduced spectral density mapping
data type string matching patterns
Please see Table 10.8 on page 183.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Prompt examples

To write the NOE values for all spins to the Grace file

‘noe.agr’, type one of:
relax> grace.write(‘spin’, ‘noe’, file=‘noe.agr’)

relax> grace.write(y_data_type=‘noe’, file=‘mnoe.
agr’)

relax> grace.write(x_data_type=‘spin’,
y-data_type=‘noe’, file=‘noe.agr’)

relax> grace.write(y_data_type=‘noe’, file=‘mnoe.
agr’, force=True)

To create a Grace file of ‘s2’ vs. ‘te’ for all spins, type
one of:

relax> grace.write(‘s2’, ‘te’, file=‘s2_te.agr’)

relax> grace.write(x_data_type=‘s2’, y_data_type=
‘te’, file=‘s2_te.agr’)

relax> grace.write(x_data_type=‘s2’, y_data_type=
‘te’, file=‘s2_te.agr’, force=True)

To create a Grace file of the Monte Carlo simulation val-
ues of ‘rex’ vs. ‘te’ for residue 123, type one of:

relax> grace.write(‘rex’, ‘te’, spin_id=‘:123’,
plot_data=‘sims’, file=‘s2_te.agr’)

relax> grace.write(x_data_type=‘rex’, y_data_type=
‘te’, spin_id=‘:123’, plot_data=‘sims’, file=
‘s2_te.agr’)

By plotting the peak intensities, the integrity of expo-
nential relaxation curves can be checked and anomalies
searched for prior to model-free analysis or reduced spec-
tral density mapping. For example the normalised aver-
age peak intensities can be plotted verses the relaxation
time periods for the relaxation curves of all residues of
a protein. The normalisation, whereby the initial peak
intensity of each residue I(0) is set to 1, emphasises any
problems. To produce this Grace file, type:

relax> grace.write(x_data_type=‘relax_times’,
y-data_type=‘ave_int’, file=‘intensities_norm.
agr’, force=True, norm=True)

10.2.53 grid_search
Synposis

Perform a grid search.

Defaults

grid_search(lower=None, upper=None, inc=21,
constraints=True, verbosity=1)



10.2. THE LIST OF FUNCTIONS 183

Table 10.6: NOE data type string matching patterns.

Data type Object name
Reference intensity  ’ref’
Saturated intensity ’sat’
NOE ‘noe’

Table 10.7: Relaxation curve fitting data type string matching patterns.

Data type

Object name

Relaxation rate

rx’

Peak intensities (series) ‘intensities’
Initial intensity 107
Intensity at infinity ’iinf’

Relaxation period times (series) ’relax_times’

Table 10.8: Reduced spectral density mapping data type string matching patterns.

Data type  Object name

J(0) ’j0°

J(wx) jwx’
J(wn) jwh’
CSA ‘csa’

Table 10.9: Consistency testing data type string matching patterns.

Data type Object name
J(0) ’j0°

F_eta feta’

F_R2 fr2’

Bond length r’

CSA ‘csa

Heteronucleus type  ’'heteronuc_type’
Proton type ‘proton_type’
Angle 0 ’orientation’
Correlation time tc’




184

Keyword arguments

lower: An array of the lower bound parameter values
for the grid search. The length of the array should be
equal to the number of parameters in the model.

upper: An array of the upper bound parameter values
for the grid search. The length of the array should be
equal to the number of parameters in the model.

inc: The number of increments to search over. If a sin-
gle integer is given then the number of increments will be
equal in all dimensions. Different numbers of increments
in each direction can be set if ‘inc’ is set to an array of
integers of length equal to the number of parameters.

constraints: A boolean flag specifying whether the pa-
rameters should be constrained. The default is to turn
constraints on (constraints=True).

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

Description

This will perform a grid search across the parameter
space.

10.2.54 jw_mapping.set_frq

Synposis

Select which relaxation data to use in the J(w) mapping
by NMR spectrometer frequency.

Defaults

jw_mapping.set_frq(frq=None)

Keyword arguments

frq: The spectrometer frequency in Hz. This must
match the currently loaded data to the last decimal point.
See the ‘sfrq’ parameter in the Varian procpar file or the
‘SF01’ parameter in the Bruker acqus file.

Description

This will select the relaxation data to use in the reduced
spectral density mapping corresponding to the given fre-
quency. The data is selected by the spectrometer fre-
quency in Hertz, which should be set to the exact value
(see the ‘sfrq’ parameter in the Varian procpar file or the
‘SF01’ parameter in the Bruker acqus file). Note thought

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

that the R1, Ra and NOE are all expected to have the
exact same frequency in the J(w) mapping analysis (to
the last decimal point).

Prompt examples

relax> jw_mapping.set_frq(600.0 * 1le6)

relax> jw_mapping.set_frq(frq=600.0 * 1e6)

10.2.55 minimise

Synposis

Perform an optimisation.

Defaults

minimise(min_algor="newton’, line_search=None,
hessian_mod=None, hessian_type=None, func_tol=1e-25,
grad_tol=None, max_iter=10000000, constraints=True,
scaling=True, verbosity=1)

Keyword arguments

min_algor: The optimisation algorithm to use.

line_search: The line search algorithm which will only
be used in combination with the line search and conju-
gate gradient methods. This will default to the More and
Thuente line search.

hessian_mod: The Hessian modification. This will only
be used in the algorithms which use the Hessian, and
defaults to Gill, Murray, and Wright modified Cholesky
algorithm.

hessian_type: The Hessian type. This will only be used
in a few trust region algorithms, and defaults to BFGS.

func_tol: The function tolerance. This is used to ter-
minate minimisation once the function value between it-
erations is less than the tolerance. The default value is
le-25.

grad_tol: The gradient tolerance. Minimisation is ter-
minated if the current gradient value is less than the
tolerance. The default value is None.

max_iter: The maximum number of iterations. The
default value is le7.

constraints: A boolean flag specifying whether the pa-
rameters should be constrained. The default is to turn
constraints on (constraints=True).

scaling: The diagonal scaling boolean flag. The default
that scaling is on (scaling=True).



10.2. THE LIST OF FUNCTIONS

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

Description

This will perform an optimisation starting from the cur-
rent parameter values. This is only suitable for data pipe
types which have target functions and hence support op-
timisation.

Diagonal scaling

Diagonal scaling is the transformation of parameter val-
ues such that each value has a similar order of magnitude.
Certain minimisation techniques, for example the trust
region methods, perform extremely poorly with badly
scaled problems. In addition, methods which are insen-
sitive to scaling such as Newton minimisation may still
benefit due to the minimisation of round off errors.

In Model-free analysis for example, if S2 = 0.5, 7« =
200 ps, and Rez = 15 1/s at 600 MHz, the unscaled pa-
rameter vector would be [0.5, 2.0e-10, 1.055e-18]. Reqs
is divided by (2 * 7 * 600,000,000)**2 to make it field
strength independent. The scaling vector for this model
may be something like [1.0, 1e-9, 1/(2 * 7 * 6e8)**2].
By dividing the unscaled parameter vector by the scal-
ing vector the scaled parameter vector is [0.5, 0.2, 15.0].
To revert to the original unscaled parameter vector, the
scaled parameter vector and scaling vector are multiplied.

Minimisation algorithms

A minimisation function is selected if the minimisation
algorithm matches a certain pattern. Because the python
regular expression ‘match’ statement is used, various
strings can be supplied to select the same minimisation
algorithm. Below is a list of the minimisation algorithms
available together with the corresponding patterns.

This is a short description of python regular expression,
for more information, see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[Nn]ewton’ will
match both ‘Newton’ and ‘newton’.

¢~? — Match the start of the string.
‘¢’ — Match the end of the string. For example,
¢~ [L1] [Mm]$’ will match ‘1m’ and ‘LM’ but will not

match if characters are placed either before or af-
ter these strings.

To select a minimisation algorithm, use a string which
matches one of the following patterns given in the tables.

Unconstrained line search methods:

185

Please see Table 10.10 on page 186.
Unconstrained trust-region methods:
Please see Table 10.11 on page 186.
Unconstrained conjugate gradient methods:
Please see Table 10.12 on page 186.
Miscellaneous unconstrained methods:
Please see Table 10.13 on page 186.

Global minimisation methods:

Please see Table 10.14 on page 186.

Minimisation options

The minimisation options can be given in any order.

Line search algorithms. These are used in the line search
methods and the conjugate gradient methods. The de-
fault is the Backtracking line search. The algorithms are:

Please see Table 10.15 on page 187.

Hessian modifications. These are used in the Newton,
Dogleg, and Exact trust region algorithms:

Please see Table 10.16 on page 187.

Hessian type, these are used in a few of the trust region
methods including the Dogleg and Exact trust region al-
gorithms. In these cases, when the Hessian type is set
to Newton, a Hessian modification can also be supplied
as above. The default Hessian type is Newton, and the
default Hessian modification when Newton is selected is
the GMW algorithm:

Please see Table 10.17 on page 187.

For Newton minimisation, the default line search algo-
rithm is the More and Thuente line search, while the
default Hessian modification is the GMW algorithm.

Prompt examples

To apply Newton minimisation together with the
GMWS81 Hessian modification algorithm, the More and
Thuente line search algorithm, a function tolerance of
le-25, no gradient tolerance, a maximum of 10,000,000
iterations, constraints turned on to limit parameter val-
ues, and have normal printout, type any combination of:

relax> minimise(‘newton’)
relax> minimise(‘Newton’)

relax> minimise(‘newton’, ‘gmw’)

relax> minimise(‘newton’, ‘mt’)

relax> minimise(‘newton’, ¢ ‘mt?)

gmw’,
relax> minimise(‘newton’, ‘mt’, ‘gmw’)

relax> minimise(‘newton’, func_tol=1e-25)



186

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.10: Minimisation algorithms — unconstrained line search methods.

Minimisation algorithm

Patterns

Back-and-forth coordinate descent

Steepest, descent
Quasi-Newton BFGS
Newton

Newton-CG

"“[Cc]|Dd]$’ or **[Ccloordinate| -|[Dd]escent$’
" [Ss][Dd]$’ or *[Ss|teepest[ -|[Dd]escent$’
*[Bb] [F][Gg] (558"

’"[Nn]ewton$’

"*[Nn]ewton| _-][Cc|[Gg]$’ or *"[Nn][Cc|[Gg]$’

Table 10.11: Minimisation algorithms — unconstrained trust-region methods.

Minimisation algorithm  Patterns

Cauchy point ’*[Cclauchy’

Dogleg *[Dd]ogleg’

CG-Steihaug 7 [Cc][Gg][-- ][Ss]teihaug’ or " [Ss]teihaug’
Exact trust region " [Ee]xact’

Table 10.12: Minimisation algorithms — unconstrained conjugate gradient methods.

Minimisation algorithm

Patterns

Fletcher-Reeves
Polak-Ribiere

Polak-Ribiere +
Hestenes-Stiefel

" [Ff][Rr]$ or '"[Ff]letcher[-_ |[Rr]eeves$’

" [Pp][Rr]$ or ’"[Pplolak[-_ |[Rr]|ibiere$’

" [Pp][Rr]\+$ or *"[Pplolak[-_ ][Rr]ibiere\+$’
’"[Hh][Ss]$’ or *"[Hh]estenes|-_ |[Ss]tiefel$’

Table 10.13: Minimisation algorithms — miscellaneous unconstrained methods.

Minimisation algorithm  Patterns

Simplex
Levenberg-Marquardt

>"[Sslimplex$’
’*[L1][Mm]$’ or *"[Ll]evenburg-[Mm]arquardt$’

Table 10.14: Minimisation algorithms — global minimisation methods.

Minimisation algorithm  Patterns

" [Ss][Aa]$’

Simulated Annealing or ’"[Ss]imulated [Aajnnealing$’




10.2. THE LIST OF FUNCTIONS 187

Table 10.15: Minimisation sub-algorithms — line search algorithms.

Line search algorithm Patterns

Backtracking line search ’*[Bblack’

Nocedal and Wright interpolation based line search *[Nn][Ww][Ii]” or *"[Nn]ocedal| _|[Ww]right[ _][Iijnt’
Nocedal and Wright line search for the Wolfe conditions " [Nn][Ww]|[Ww]’ or " [Nn]ocedal[ _|][Ww]right[ _][Ww]olfe’
More and Thuente line search > [Mm][Tt]” or >"[Mm]ore| _][Tt]huente$’

No line search ’*[NnJo [Ll]ine [Ss|earch$’

Table 10.16: Minimisation sub-algorithms — Hessian modifications.

Hessian modification Patterns

Unmodified Hessian "*[Nn]o [Hh]essian [Mm]od’
Eigenvalue modification " [Eeligen’

Cholesky with added multiple of the identity "*[Cclhol’

The Gill, Murray, and Wright modified Cholesky algorithm **[Gg][Mm]|[Ww]$’

The Schnabel and Eskow 1999 algorithm " [Ss][Ee] 99’

Table 10.17: Minimisation sub-algorithms — Hessian type.

Hessian type Patterns

Quasi-Newton BFGS " [Bb][Ff][Gg][Ss]$’
Newton " [NnJewton$’




188

relax> minimise(‘newton’, func_tol=1e-25,

grad_tol=None)

relax> minimise(‘newton’, max_iter=1e7)

relax> minimise(‘newton’, constraints=True,

max_iter=1e7)

relax> minimise(‘newton’, verbosity=1)

To use constrained Simplex minimisation with a maxi-
mum of 5000 iterations, type:

relax> minimise(‘simplex’, constraints=True,
max_iter=5000)

10.2.56 model_free.create_model

Synposis

Create a model-free model.

Defaults

model_free.create_model(model=None, equation=None,
params=None, spin_id=None)

Keyword arguments

model: The new name of the model-free model.
equation: The model-free equation.
params: The array of parameter names of the model.

spin_id: The spin identification string.

Description

This user function should almost never be used. It is pro-
vided for academic reasons for the study of old analyses
and published results. If you are looking for a normal
model-free model, use the model_free.select_model user
function instead.

Model-free equation

The model-free equation can be one of the following:

‘mf_orig’ selects the original model-free equations
with parameters {S2, 7. }.

‘mf _ext’ selects the extended model-free equations
with parameters {SJ%7 Tf, S2 74}

‘mf _ext2’ selects the extended model-free equa-
tions with parameters {S?, T¢, S2, s}

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Model-free parameters

The following parameters are accepted for the original
model-free equation:

¢s2’ — The square of the generalised order parameter.

‘te’ — The effective correlation time.

The following parameters are accepted for the extended
model-free equation:

¢s2f’ — The square of the generalised order parameter
of the faster motion.

‘tf’ — The effective correlation time of the faster mo-
tion.

¢s2’ — The square of the generalised order parameter S2
— S2 * 52
=57 2.

‘ts’ — The effective correlation time of the slower mo-
tion.

The following parameters are accepted for the extended
2 model-free equation:

¢s2f’ — The square of the generalised order parameter
of the faster motion.

‘tf’ — The effective correlation time of the faster mo-
tion.
¢s2s” — The square of the generalised order parameter

of the slower motion.

‘ts’ — The effective correlation time of the slower mo-
tion.

The following parameters are accepted for all equations:

‘rex” — The chemical exchange relaxation.
‘r> — The average bond length <r>.

‘csa’ — The chemical shift anisotropy.

Spin identification string

If ‘spin_id’ is supplied then the model will only be cre-
ated for the corresponding spins. Otherwise the model
will be created for all spins.



10.2. THE LIST OF FUNCTIONS

Prompt examples

The following commands will create the model-free model
‘m1’ which is based on the original model-free equation
and contains the single parameter ‘s2’.

relax> model_free.create_model(‘ml’,

[s2°])

‘mf_orig’,

relax> model_free.create_model (model=‘ml’,
params=[‘s2’], equation=‘mf_orig’)

The following commands will create the model-free model
‘large_model’ which is based on the extended model-free
equation and contains the seven parameters ‘s2f’, ‘tf’,
‘s2’) ‘ts’, ‘rex’, ‘csa’, ‘r’.

relax> model_free.create_model(‘large_model’,
‘mf_ext’, [‘s2f’, ‘tf’, ‘s2’, ‘ts’, ‘rex’, ‘csa’,
(r)] )

relax> model_free.create_model (model=
‘large_model’, params=[‘s2f’, ‘tf’, ‘s2’, ‘ts’,
‘rex’, ‘csa’, ‘r’], equation=‘mf_ext’)

10.2.57 model_free.delete

Synposis

Delete all model-free data from the current data pipe.

Defaults

model_free.delete()

Description

This will delete all of the model-free data - parameters,
model, etc. - from the current data pipe.

Prompt examples

To delete all model-free data, type:

relax> model_free.delete()

10.2.58 model_free.remove_tm

Synposis

Remove the local 7, parameter from a model.

189

Defaults

model_free.remove_tm(spin_id=None)

Keyword arguments

spin_id: The spin identification string.

Description

This function will remove the local 7,, parameter from
the model-free parameter set. If there is no local 7,
parameter within the set nothing will happen.

If no spin identification string is given, then the function
will apply to all spins.

Prompt examples

The following command will remove the parameter ‘tm’:

relax> model_free.remove_tm()

10.2.59 model_free.select_model

Synposis

Select a preset model-free model.

Defaults

model_free.select_model(model=None, spin_id=None)

Keyword arguments

model: The name of the preset model.

spin_id: The spin identification string.

Description

This allows a standard model-free model to be selected
from a long list of models.



190 CHAPTER 10.

The preset models

The standard preset model-free models are

‘mo’ — {},

‘m1’ — {S2},

‘m2’ — {527 Tet,

‘m3’ — {S?, Res},

‘md’ — {52, ¢, Rez},

‘m5’ — {SJ%7 S2, 75},

‘m6’ — {52, Tf, S2, 75},

‘m7’ — {S2, S2, 75, Rex},
‘m8’ — {SJ%, Tf, S2, 7, Rez},
‘m9’ — {Rex}.

The preset model-free models with optimisation of the
CSA value are

‘m10° — {CSA},

‘m11’ — {CSA, $2},

‘m12’ — {CSA, S2, 7},

‘m13’ — {CSA, S?, Res},

‘m14’ — {CSA, S2, T¢, Rex},

‘m15’ — {CSA, S2, 52, 74},

‘m16’ — {CSA, 5%, 74, §2, 7},
‘m17’ — {CSA, S2, S?, 75, Rex },
‘w18’ — {CSA, §%, 74, 5%, 75, Rea},
‘m19’ — {CSA, Res}.

The preset model-free models with optimisation of the
bond length are

‘m20° — {r},

‘m21’ — {r, S?},

‘m22’ — {r, S?, 7},
‘m23’ — {r, S2, Res},
‘m24> — {r, S?, 7e, Rex},

‘m25° — {r, S?, S2) 75},

‘m26> — {r, S?, Tf, S2, 15},

ALPHABETICAL LISTING OF USER FUNCTIONS

‘w27’ — {r, 5?7 S2, 7s, Rex},
‘m28° — {T7 5?7 Tf, 527 Ts, Rem}v
‘m29’ — {r, CSA, Rez}.

The preset model-free models with both optimisation of
the bond length and CSA are

‘m30’ — {r, CSA},

‘m31” — {r, CSA, S2},

‘m32’ — {r, CSA, S2, 7.},

‘m33’ — {r, CSA, S?, Res},

‘m34’ — {r, CSA, S2, 7¢, Res},

‘m35’ — {r, CSA, SJ%, S2, 7},

‘m36’ — {r, CSA, S}, 75, 5%, 75},
‘m37” — {r, CSA, 52,82 7, Rez},
‘m38” — {r, CSA, S?, Tf, S2, 14, Rex}s
‘m39” — {r, CSA, Rex}.

Warning: The models in the thirties range fail when us-
ing standard Rj, R2, and NOE relaxation data. This
is due to the extreme flexibly of these models where a
change in the parameter ‘r’ is compensated by a corre-
sponding change in the parameter ‘csa’ and vice versa.

The preset local tm models

Additional preset model-free models, which are simply
extensions of the above models with the addition of a
local 7,, parameter are:

‘tm0’ — {tm},

“em1’ — {7, S?},

“em2’ — {Tm, S2, e},

“tm3’ — {7m, S?, Rex},

“tmd’ — {7m, S?, Te, Rex},

‘“tm5’ — {7m, S?, S2, 75},

‘tm6’ — {7m, S?, 75, 82, 75},
‘“em7’ — {7m, 5?7 S2, 75, Rea},
‘“tm8’ — {7m, SJ%, 75, 52, Ts, Rex },
‘“tm9’ — {7m, Rex}-

The preset model-free models with optimisation of the
CSA value are



10.2. THE LIST OF FUNCTIONS

“m10’ — {7, CSA},

“em11’ — {7, CSA, S2},

“m12” — {7m, CSA, S2, 7.},

“tm13” — {7m, CSA, S, Rez},

“tm14> — {7m, CSA, S2, ¢, Rex},

“tm15’ — {7m, CSA, 5%, 5%, s},

“tm16’ — {rm, CSA, 5%, 77, 52, 75},
“m17’ — {7m, CSA, 5%, S2, 75, Rea},
“tm18’ — {7, CSA, 57, 77, S2, 75, Rex},
“tm19’ — {7m, CSA, Res}.

The preset model-free models with optimisation of the
bond length are

“4m20’ — {7m, r},

“m21’ — {7m, 7, S?},

“m22’ — {7m, 7, S?, T},

“m23’ — {7m, r, S%, Res},

“tm24’> — {7m, r, S%, Te, Res},

“m25’ — {7m, 1, 3?7 52, 75},

“em26’ — {7, T, 3?7 75, 82, 75},
“am27’ — {Tm, 1, S% S2, 75, Rea},
“tm28’ — {7m, 1, S% 75, 52, s, Rea},
“tm29’ — {7, r, CSA, Res}.

The preset model-free models with both optimisation of
the bond length and CSA are

“¢m30° — {7m, 7, CSA},

“tm31> — {7, r, CSA, 52},

“tm32’ — {7m, 7, CSA, S2, 7},

“tm33> — {Tm, r, CSA, S2, Res},

“tm34’ — {7m, 7, CSA, S2, 7¢, Rez },

“tm35’ — {7m, r, CSA, 5%, 52, 75},

“tm36” — {7m, v, CSA, 5%, 74, 5%, 7},
w37 — {7, r, CSA, 5%, 5%, 75, Rea},
“tn38’ — {7, r, CSA, S%, 74, 5%, 75, Rea},
“tm39’ — {7m, 7, CSA, Res}.

191

Spin identification string

If ‘spin_id’ is supplied then the model will only be se-
lected for the corresponding spins. Otherwise the model
will be selected for all spins.

Prompt examples

To pick model ‘m1’ for all selected spins, type:
relax> model_free.select_model(‘m1’)

relax> model_free.select_model (model=‘m1’)

10.2.60 model_selection

Synposis

Select the best model from a set of optimised models.

Defaults

model_selection(method="'AIC’, modsel_pipe=None,
bundle=None, pipes=None)

Keyword arguments

method: The model selection technique (see below).

modsel_pipe: The name of the new data pipe which
will be created by this user function by the copying of
the selected data pipe.

bundle: The optional pipe bundle is a special grouping
or clustering of data pipes. If this is specified, the newly
created data pipe will be added to this bundle.

pipes: An array containing the names of all data pipes
to include in model selection.

Description

The following model selection methods are supported:

AIC — Akaike’s Information Criteria.

AICc — Small sample size corrected AIC.

BIC — Bayesian or Schwarz Information Criteria.
Bootstrap — Bootstrap model selection.

CV — Single-item-out cross-validation.

Expect — The expected overall discrepancy (the true
values of the parameters are required).



192

Farrow — Old model-free method by Farrow et al.,
1994.

Palmer — Old model-free method by Mandel et al.,
1995.

Overall — The realised overall discrepancy (the true
values of the parameters are required).

For the methods ‘Bootstrap’, ‘Expect’, and ‘Overall’,
the Monte Carlo simulations should have previously been
executed with the monte_carlo.create_data method set to
Bootstrapping to modify its behaviour.

If the data pipes have not been specified, then all data
pipes will be used for model selection.

Prompt examples

For model-free analysis, if the preset models 1 to 5 are
minimised and loaded into the program, the following
commands will carry out AIC model selection and to
place the selected results into the ‘mixed’ data pipe, type
one of:

relax> model_selection(‘AIC’, ‘mixed’)

relax> model_selection(method=‘AIC’, modsel_pipe=
‘mixed’)

relax> model_selection(‘AIC’, ‘mixed’, [‘ml’,

‘m2’, ‘m3’, ‘m4’, ‘m5’])

relax> model_selection(method=‘AIC’, modsel_pipe=
‘mixed’, pipes=[‘ml’, ‘m2’, ‘m3’, ‘m4’, ‘mb5’])

10.2.61 molecule.copy

Synposis

Copy all data associated with a molecule.

Defaults

molecule.copy(pipe_from=None, mol_from=None,
pipe_-to=None, mol_to=None)

Keyword arguments

pipe_from: The data pipe containing the molecule from
which the data will be copied. This defaults to the cur-
rent data pipe.

mol_from: The name of the molecule from which to
copy data from.

pipe_-to: The data pipe to copy the data to. This de-
faults to the current data pipe.

mol_to: The name of the new molecule. If left blank,
the new molecule will have the same name as the old.
This needs to be a molecule ID string, starting with ‘#’.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This will copy all the data associated with a molecule
to a second molecule. This includes all residue and spin
system information. The new molecule name must be
unique in the destination data pipe.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@ character. Each token can be composed
of multiple elements separated by the ‘,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] G@<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘HO8’.

Prompt examples

To copy the molecule data from the molecule ‘GST’ to the
new molecule ‘wt-GST’, type:

relax> molecule.copy(‘#GST’>, ‘#wt-GST’)

relax> molecule.copy(mol_from=‘#GST’, mol_to=
‘#wt-GST?)

To copy the molecule data of the molecule ‘Ap4Aase’ from
the data pipe ‘m1’ to ‘m2’, assuming the current data pipe
is ‘m1’, type:

relax> molecule.copy(mol_from=‘#ApAase’, pipe_to=
tm2 b )

relax> molecule.copy(pipe_from=‘ml’, mol_from=
‘#ApAase’, pipe_to=‘m2’, mol_to=‘#ApAase’)

10.2.62 molecule.create

Synposis

Create a new molecule.



10.2. THE LIST OF FUNCTIONS

Defaults

molecule.create(mol_name=None, mol_type=None)

Keyword arguments

mol_name: The name of the new molecule.

mol_type: The type of molecule.

Description

This adds a new molecule data container to the relax data
storage object. The same molecule name cannot be used
more than once. The molecule type need not be specified.
However, if given, it should be one of ‘protein’, ‘DNA’,
‘RNA’, ‘organic molecule’, or ‘inorganic molecule’.

Prompt examples

To create the molecules ‘Ap4Aase’, ‘ATP’, and ‘MgF4’, type:
relax> molecule.create(‘Ap4Aase’)
relax> molecule.create(‘ATP’)

relax> molecule.create(‘MgF4’)

10.2.63 molecule.delete

Synposis

Deleting molecules from the relax data store.

Defaults

molecule.delete(mol_id=None)

Keyword arguments

mol_id: The molecule ID string.

Description

This can be used to delete a single or sets of molecules
from the relax data store. The molecule will be deleted
from the current data pipe.

193

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#" character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

10.2.64 molecule.display

Synposis

Display the molecule information.

Defaults

molecule.display(mol_id=None)

Keyword arguments

mol_id: The molecule ID string.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of



194

the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

10.2.65 molecule.name

Synposis

Name a molecule.

Defaults

molecule.name(mol_id=None, name=None, force=False)

Keyword arguments

mol_id: The molecule ID string corresponding to one
or more molecules.

name: The new molecule name.

force: A flag which if True will cause the molecule to
be renamed.

Description

This simply allows molecules to be named (or renamed).

Prompt examples

To rename the molecule ‘Ap4Aase’ to ‘Inhib Ap4Aase’,
type one of:

relax> molecule.name( ‘#Ap4Aase’,
True)

‘Inhib Ap4Aase’,

relax> molecule.name(mol_id=‘#Ap4Aase’, name=
‘Inhib Ap4Aase’, force=True)

This assumes the molecule ‘Ap4Aase’ already exists.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@ character. Each token can be composed
of multiple elements separated by the ‘,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...1] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

10.2.66 molecule.type

Synposis

Set the molecule type.

Defaults

molecule.type(mol_id=None, type=None, force=False)

Keyword arguments

mol_id: The molecule ID string corresponding to one
or more molecules.

type: The molecule type.

force: A flag which if True will cause the molecule to
type to be overwritten.

Description

This allows the type of the molecule to be specified. It
can be one of:

3 5 )
protein’,

‘DNA’,



10.2. THE LIST OF FUNCTIONS

‘RNA’,
‘organic molecule’,

‘inorganic molecule’.

Prompt examples

To set the molecule ‘Ap4Aase’ to the ‘protein’ type, type
one of:

relax> molecule.type(‘#Ap4Aase’, ‘protein’, True)

relax> molecule.type(mol_id=‘#Ap4Aase’, type=
‘protein’, force=True)

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] @<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

10.2.67 molmol.clear_history
Synposis

Clear the Molmol command history.

Defaults

molmol.clear_history()

195

Description

This will clear the Molmol history from memory.

10.2.68 molmol.command

Synposis

Execute a user supplied Molmol command.

Defaults

molmol.command(command=None)

Keyword arguments

command: The Molmol command to execute.

Description

This allows Molmol commands to be passed to the pro-
gram. This can be useful for automation or scripting.

Prompt examples

To reinitialise the Molmol instance, type:

relax> molmol.command("InitAll yes")

10.2.69 molmol.macro_apply

Synposis

Execute Molmol macros.

Defaults

molmol.macro_apply(data_type=None, style='classic’,
colour_start_-name=None, colour_start_rgb=None,
colour_end_name=None, colour_end_rgb=None,
colour_list=None)



196

Keyword arguments

data_type: The data type to map to the structure.
style: The style of the macro.

colour_start_name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour_start_rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from O to 1. If this is set, then the starting
colour name cannot be given.

colour_end_name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour_end_rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour_list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

Description

This allows spin specific values to be mapped to a
structure through Molmol macros. Currently only the
‘classic’ style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 10.18 on page 197.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 10.19 on page 198.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 10.20 on page 199.



10.2. THE LIST OF FUNCTIONS

197

Table 10.18: The model-free classic style for mapping model spin specific data onto 3D
molecular structures using either PyMOL or Molmol.

Data type

String

Description

S2.

S2.

Amplitude of fast motions.

Amplitude of slow motions.

Te-

Tf.
Ts.

Timescale of fast motions

Timescale of slow motions

Chemical exchange

52’

's2f’

s2s

’amp_fast’

’amp_slow’

time_fast’

time_slow’

rex

The standard model-free order parameter, equal to S2.S2s for the
two timescale models. The default colour gradient starts at "yellow’
and ends at 'red’.

The order parameter of the faster of two internal motions. Residues
which are described by model-free models m1 to m4, the single
timescale models, are illustrated as white neon bonds. The default
colour gradient is the same as that for the S? data type.

The order parameter of the slower of two internal motions. This
functions exactly as S? except that S2 is plotted instead.

Model independent display of the amplite of fast motions. For
residues described by model-free models m5 to m8, the value plotted
is that of S?. However, for residues described by models m1 to m4,
what is shown is dependent on the timescale of the motions. This
is because these single timescale models can, at times, be perfect
approximations to the more complex two timescale models. Hence
if 7, is less than 200 ps, S? is plotted. Otherwise the peptide bond
is coloured white. The default colour gradient is the same as that
for S2.

Model independent display of the amplite of slow motions, arbitrar-
ily defined as motions slower than 200 ps. For residues described
by model-free models m5 to m8, the order parameter S2 is plotted
if 75 > 200 ps. For models m1 to m4, S2 is plotted if 7. > 200 ps.
The default colour gradient is the same as that for S2.

The correlation time, 7.. The default colour gradient starts at
‘turquoise’ and ends at 'blue’.

The correlation time, 7;. The default colour gradient is the same
as that of 7e.

The correlation time, 75. The default colour gradient starts at ’blue’
and ends at ’black’.

Model independent display of the timescale of fast motions. For
models m5 to m8, only the parameter 7 is plotted. For models m2
and m4, the parameter 7. is plotted only if it is less than 200 ps.
All other residues are assumed to have a correlation time of zero.
The default colour gradient is the same as that of 7.

Model independent display of the timescale of slow motions. For
models m5 to m8, only the parameter 75 is plotted. For models m2
and m4, the parameter 7. is plotted only if it is greater than 200 ps.
All other residues are coloured white. The default colour gradient
is the same as that of 7s.

The chemical exchange, Re¢z. Residues which experience no chemi-
cal exchange are coloured white. The default colour gradient starts
at ’yellow’ and finishes at ’red’.




198 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.19: Molmol colour names and corresponding RGB colour values (from 0 to 1)

Name Red Green  Blue
"black’ 0.000  0.000 0.000
‘navy’ 0.000  0.000 0.502
"blue’ 0.000  0.000 1.000
"dark green’ 0.000 0.392 0.000
‘green’ 0.000  1.000 0.000
‘cyan’ 0.000  1.000 1.000
turquoise’ 0.251 0.878 0.816
‘royal blue’ 0.255 0.412 0.882
’aquamarine’  0.498  1.000 0.831
’sky green’ 0.529  0.808 0.922

"dark violet’ 0.580  0.000 0.827
‘pale green’ 0.596  0.984 0.596

‘purple’ 0.627 0.125 0.941
"brown’ 0.647  0.165 0.165
"light blue’ 0.678  0.847 0.902
‘grey’ 0.745  0.745 0.745
‘light grey’ 0.827  0.827 0.827
'violet’ 0.933 0.510 0.933
’light coral’ 0.941  0.502 0.502
"khaki’ 0.941  0.902 0.549
"beige’ 0.961 0.961 0.863
red’ 1.000  0.000 0.000
‘magenta’ 1.000  0.000 1.000
"deep pink’ 1.000 0.078 0.576
orange red’ 1.000 0.271 0.000
"hot pink’ 1.000 0.412 0.706
"coral’ 1.000 0.498 0.314
‘dark orange’ 1.000  0.549 0.000
orange’ 1.000 0.647 0.000
"pink’ 1.000 0.753 0.796
"gold’ 1.000 0.843 0.000
‘yellow’ 1.000 1.000 0.000
"light yellow’ 1.000 1.000 0.878
"ivory’ 1.000 1.000 0.941

"white’ 1.000  1.000 1.000




10.2. THE LIST OF FUNCTIONS 199

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
SNOW 255 250 250
ghost white 248 248 255
white smoke 245 245 245
gainsboro 220 220 220
floral white 255 250 240
old lace 253 245 230
linen 250 240 230
antique white 250 235 215
papaya whip 255 239 213
blanched almond 255 235 205
bisque 255 228 196
peach puff 255 218 185
navajo white 255 222 173
moccasin 255 228 181
cornsilk 255 248 220
ivory 255 255 240
lemon chiffon 255 250 205
seashell 255 245 238
honeydew 240 255 240
mint cream 245 255 250
azure 240 255 255
alice blue 240 248 255
lavender 230 230 250
lavender blush 255 240 245
misty rose 255 228 225
white 255 255 255
black 0 0 0
dark slate grey 47 79 79
dim grey 105 105 105
slate grey 112 128 144
light slate grey 119 136 153
grey 190 190 190
light grey 211 211 211
midnight blue 25 25 112
navy 0 0 128
cornflower blue 100 149 237
dark slate blue 72 61 139
slate blue 106 90 205
medium slate blue 123 104 238
light slate blue 132 112 255
medium blue 0 0 205
royal blue 65 105 225
blue 0 0 255
dodger blue 30 144 255
deep sky blue 0 191 255
sky blue 135 206 235
light sky blue 135 206 250
steel blue 70 130 180
light steel blue 176 196 222
light blue 173 216 230
powder blue 176 224 230
pale turquoise 175 238 238
dark turquoise 0 206 209
medium turquoise 72 209 204
turquoise 64 224 208
cyan 0 255 255
light cyan 224 255 255
cadet blue 95 158 160
medium aquamarine 102 205 170
aquamarine 127 255 212
dark green 0 100 0
dark olive green 85 107 47
dark sea green 143 188 143
sea green 46 139 87
medium sea green 60 179 113

light sea green 32 178 170




200 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
pale green 152 251 152
spring green 0 255 127
lawn green 124 252 0
green 0 255 0
chartreuse 127 255 0
medium spring green 0 250 154
green yellow 173 255 47
lime green 50 205 50
yellow green 154 205 50
forest green 34 139 34
olive drab 107 142 35
dark khaki 189 183 107
khaki 240 230 140
pale goldenrod 238 232 170
light goldenrod yellow 250 250 210
light yellow 255 255 224
yellow 255 255 0
gold 255 215 0
light goldenrod 238 221 130
goldenrod 218 165 32
dark goldenrod 184 134 11
rosy brown 188 143 143
indian red 205 92 92
saddle brown 139 69 19
sienna 160 82 45
peru 205 133 63
burlywood 222 184 135
beige 245 245 220
wheat 245 222 179
sandy brown 244 164 96
tan 210 180 140
chocolate 210 105 30
firebrick 178 34 34
brown 165 42 42
dark salmon 233 150 122
salmon 250 128 114
light salmon 255 160 122
orange 255 165 0
dark orange 255 140 0
coral 255 127 80
light coral 240 128 128
tomato 255 99 71
orange red 255 69 0
red 255 0 0
hot pink 255 105 180
deep pink 255 20 147
pink 255 192 203
light pink 255 182 193
pale violet red 219 112 147
maroon 176 48 96
medium violet red 199 21 133
violet red 208 32 144
magenta 255 0 255
violet 238 130 238
plum 221 160 221
orchid 218 112 214
medium orchid 186 85 211
dark orchid 153 50 204
dark violet 148 0 211
blue violet 138 43 226
purple 160 32 240
medium purple 147 112 219
thistle 216 191 216
snow 1 255 250 250
snow 2 238 233 233

snow 3 205 201 201




10.2. THE LIST OF FUNCTIONS 201

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
snow 4 139 137 137
seashell 1 255 245 238
seashell 2 238 229 222
seashell 3 205 197 191
seashell 4 139 134 130
antique white 1 255 239 219
antique white 2 238 223 204
antique white 3 205 192 176
antique white 4 139 131 120
bisque 1 255 228 196
bisque 2 238 213 183
bisque 3 205 183 158
bisque 4 139 125 107
peach puff 1 255 218 185
peach puft 2 238 203 173
peach puft 3 205 175 149
peach puff 4 139 119 101
navajo white 1 255 222 173
navajo white 2 238 207 161
navajo white 3 205 179 139
navajo white 4 139 121 94
lemon chiffon 1 255 250 205
lemon chiffon 2 238 233 191
lemon chiffon 3 205 201 165
lemon chiffon 4 139 137 112
cornsilk 1 255 248 220
cornsilk 2 238 232 205
cornsilk 3 205 200 177
cornsilk 4 139 136 120
ivory 1 255 255 240
ivory 2 238 238 224
ivory 3 205 205 193
ivory 4 139 139 131
honeydew 1 240 255 240
honeydew 2 224 238 224
honeydew 3 193 205 193
honeydew 4 131 139 131
lavender blush 1 255 240 245
lavender blush 2 238 224 229
lavender blush 3 205 193 197
lavender blush 4 139 131 134
misty rose 1 255 228 225
misty rose 2 238 213 210
misty rose 3 205 183 181
misty rose 4 139 125 123
azure 1 240 255 255
azure 2 224 238 238
azure 3 193 205 205
azure 4 131 139 139
slate blue 1 131 111 255
slate blue 2 122 103 238
slate blue 3 105 89 205
slate blue 4 71 60 139
royal blue 1 72 118 255
royal blue 2 67 110 238
royal blue 3 58 95 205
royal blue 4 39 64 139
blue 1 0 0 255
blue 2 0 0 238
blue 3 0 0 205
blue 4 0 0 139
dodger blue 1 30 144 255
dodger blue 2 28 134 238
dodger blue 3 24 116 205
dodger blue 4 16 78 139

steel blue 1 99 184 255




202 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
steel blue 2 92 172 238
steel blue 3 79 148 205
steel blue 4 54 100 139
deep sky blue 1 0 191 255
deep sky blue 2 0 178 238
deep sky blue 3 0 154 205
deep sky blue 4 0 104 139
sky blue 1 135 206 255
sky blue 2 126 192 238
sky blue 3 108 166 205
sky blue 4 74 112 139
light sky blue 1 176 226 255
light sky blue 2 164 211 238
light sky blue 3 141 182 205
light sky blue 4 96 123 139
slate grey 1 198 226 255
slate grey 2 185 211 238
slate grey 3 159 182 205
slate grey 4 108 123 139
light steel blue 1 202 225 255
light steel blue 2 188 210 238
light steel blue 3 162 181 205
light steel blue 4 110 123 139
light blue 1 191 239 255
light blue 2 178 223 238
light blue 3 154 192 205
light blue 4 104 131 139
light cyan 1 224 255 255
light cyan 2 209 238 238
light cyan 3 180 205 205
light cyan 4 122 139 139
pale turquoise 1 187 255 255
pale turquoise 2 174 238 238
pale turquoise 3 150 205 205
pale turquoise 4 102 139 139
cadet blue 1 152 245 255
cadet blue 2 142 229 238
cadet blue 3 122 197 205
cadet blue 4 83 134 139
turquoise 1 0 245 255
turquoise 2 0 229 238
turquoise 3 0 197 205
turquoise 4 0 134 139
cyan 1 0 255 255
cyan 2 0 238 238
cyan 3 0 205 205
cyan 4 0 139 139
dark slate grey 1 151 255 255
dark slate grey 2 141 238 238
dark slate grey 3 121 205 205
dark slate grey 4 82 139 139
aquamarine 1 127 255 212
aquamarine 2 118 238 198
aquamarine 3 102 205 170
aquamarine 4 69 139 116
dark sea green 1 193 255 193
dark sea green 2 180 238 180
dark sea green 3 155 205 155
dark sea green 4 105 139 105
sea green 1 84 255 159
sea green 2 78 238 148
sea green 3 67 205 128
sea green 4 46 139 87
pale green 1 154 255 154
pale green 2 144 238 144

pale green 3 124 205 124




10.2. THE LIST OF FUNCTIONS 203

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
pale green 4 84 139 84
spring green 1 0 255 127
spring green 2 0 238 118
spring green 3 0 205 102
spring green 4 0 139 69
green 1 0 255 0
green 2 0 238 0
green 3 0 205 0
green 4 0 139 0
chartreuse 1 127 255 0
chartreuse 2 118 238 0
chartreuse 3 102 205 0
chartreuse 4 69 139 0
olive drab 1 192 255 62
olive drab 2 179 238 58
olive drab 3 154 205 50
olive drab 4 105 139 34
dark olive green 1 202 255 112
dark olive green 2 188 238 104
dark olive green 3 162 205 90
dark olive green 4 110 139 61
khaki 1 255 246 143
khaki 2 238 230 133
khaki 3 205 198 115
khaki 4 139 134 78
light goldenrod 1 255 236 139
light goldenrod 2 238 220 130
light goldenrod 3 205 190 112
light goldenrod 4 139 129 76
light yellow 1 255 255 224
light yellow 2 238 238 209
light yellow 3 205 205 180
light yellow 4 139 139 122
yellow 1 255 255 0
yellow 2 238 238 0
yellow 3 205 205 0
yellow 4 139 139 0
gold 1 255 215 0
gold 2 238 201 0
gold 3 205 173 0
gold 4 139 117 0
goldenrod 1 255 193 37
goldenrod 2 238 180 34
goldenrod 3 205 155 29
goldenrod 4 139 105 20
dark goldenrod 1 255 185 15
dark goldenrod 2 238 173 14
dark goldenrod 3 205 149 12
dark goldenrod 4 139 101 8
rosy brown 1 255 193 193
rosy brown 2 238 180 180
rosy brown 3 205 155 155
rosy brown 4 139 105 105
indian red 1 255 106 106
indian red 2 238 99 99
indian red 3 205 85 85
indian red 4 139 58 58
sienna 1 255 130 71
sienna 2 238 121 66
sienna 3 205 104 57
sienna 4 139 71 38
burlywood 1 255 211 155
burlywood 2 238 197 145
burlywood 3 205 170 125
burlywood 4 139 115 85

wheat 1 255 231 186




204 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
wheat 2 238 216 174
wheat 3 205 186 150
wheat 4 139 126 102
tan 1 255 165 79
tan 2 238 154 73
tan 3 205 133 63
tan 4 139 90 43
chocolate 1 255 127 36
chocolate 2 238 118 33
chocolate 3 205 102 29
chocolate 4 139 69 19
firebrick 1 255 48 48
firebrick 2 238 44 44
firebrick 3 205 38 38
firebrick 4 139 26 26
brown 1 255 64 64
brown 2 238 59 59
brown 3 205 51 51
brown 4 139 35 35
salmon 1 255 140 105
salmon 2 238 130 98
salmon 3 205 112 84
salmon 4 139 76 57
light salmon 1 255 160 122
light salmon 2 238 149 114
light salmon 3 205 129 98
light salmon 4 139 87 66
orange 1 255 165 0
orange 2 238 154 0
orange 3 205 133 0
orange 4 139 90 0
dark orange 1 255 127 0
dark orange 2 238 118 0
dark orange 3 205 102 0
dark orange 4 139 69 0
coral 1 255 114 86
coral 2 238 106 80
coral 3 205 91 69
coral 4 139 62 47
tomato 1 255 99 71
tomato 2 238 92 66
tomato 3 205 79 57
tomato 4 139 54 38
orange red 1 255 69 0
orange red 2 238 64 0
orange red 3 205 55 0
orange red 4 139 37 0
red 1 255 0 0
red 2 238 0 0
red 3 205 0 0
red 4 139 0 0
deep pink 1 255 20 147
deep pink 2 238 18 137
deep pink 3 205 16 118
deep pink 4 139 10 80
hot pink 1 255 110 180
hot pink 2 238 106 167
hot pink 3 205 96 144
hot pink 4 139 58 98
pink 1 255 181 197
pink 2 238 169 184
pink 3 205 145 158
pink 4 139 99 108
light pink 1 255 174 185
light pink 2 238 162 173

light pink 3 205 140 149




10.2. THE LIST OF FUNCTIONS 205

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
light pink 4 139 95 101
pale violet red 1 255 130 171
pale violet red 2 238 121 159
pale violet red 3 205 104 137
pale violet red 4 139 71 93
maroon 1 255 52 179
maroon 2 238 48 167
maroon 3 205 41 144
maroon 4 139 28 98
violet red 1 255 62 150
violet red 2 238 58 140
violet red 3 205 50 120
violet red 4 139 34 82
magenta 1 255 0 255
magenta 2 238 0 238
magenta 3 205 0 205
magenta 4 139 0 139
orchid 1 255 131 250
orchid 2 238 122 233
orchid 3 205 105 201
orchid 4 139 71 137
plum 1 255 187 255
plum 2 238 174 238
plum 3 205 150 205
plum 4 139 102 139
medium orchid 1 224 102 255
medium orchid 2 209 95 238
medium orchid 3 180 82 205
medium orchid 4 122 55 139
dark orchid 1 191 62 255
dark orchid 2 178 58 238
dark orchid 3 154 50 205
dark orchid 4 104 34 139
purple 1 155 48 255
purple 2 145 44 238
purple 3 125 38 205
purple 4 85 26 139
medium purple 1 171 130 255
medium purple 2 159 121 238
medium purple 3 137 104 205
medium purple 4 93 71 139
thistle 1 255 225 255
thistle 2 238 210 238
thistle 3 205 181 205
thistle 4 139 123 139
grey 0 0 0 0
grey 1 3 3 3
grey 2 5 5 5
grey 3 8 8 8
grey 4 10 10 10
grey b 13 13 13
grey 6 15 15 15
grey 7 18 18 18
grey 8 20 20 20
grey 9 23 23 23
grey 10 26 26 26
grey 11 28 28 28
grey 12 31 31 31
grey 13 33 33 33
grey 14 36 36 36
grey 15 38 38 38
grey 16 41 41 41
grey 17 43 43 43
grey 18 46 46 46
grey 19 48 48 48

grey 20 51 51 51




206 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
grey 21 54 54 54
grey 22 56 56 56
grey 23 59 59 59
grey 24 61 61 61
grey 25 64 64 64
grey 26 66 66 66
grey 27 69 69 69
grey 28 71 71 71
grey 29 74 74 74
grey 30 7 i i
grey 31 79 79 79
grey 32 82 82 82
grey 33 84 84 84
grey 34 87 87 87
grey 35 89 89 89
grey 36 92 92 92
grey 37 94 94 94
grey 38 97 97 97
grey 39 99 99 99
grey 40 102 102 102
grey 41 105 105 105
grey 42 107 107 107
grey 43 110 110 110
grey 44 112 112 112
grey 45 115 115 115
grey 46 117 117 117
grey 47 120 120 120
grey 48 122 122 122
grey 49 125 125 125
grey 50 127 127 127
grey 51 130 130 130
grey 52 133 133 133
grey 53 135 135 135
grey 54 138 138 138
grey 55 140 140 140
grey 56 143 143 143
grey 57 145 145 145
grey 58 148 148 148
grey 59 150 150 150
grey 60 153 153 153
grey 61 156 156 156
grey 62 158 158 158
grey 63 161 161 161
grey 64 163 163 163
grey 65 166 166 166
grey 66 168 168 168
grey 67 171 171 171
grey 68 173 173 173
grey 69 176 176 176
grey 70 179 179 179
grey 71 181 181 181
grey 72 184 184 184
grey 73 186 186 186
grey 74 189 189 189
grey 75 191 191 191
grey 76 194 194 194
grey 77 196 196 196
grey 78 199 199 199
grey 79 201 201 201
grey 80 204 204 204
grey 81 207 207 207
grey 82 209 209 209
grey 83 212 212 212
grey 84 214 214 214
grey 85 217 217 217

grey 86 219 219 219




10.2. THE LIST OF FUNCTIONS

Table 10.20: X11 colour names and corresponding RGB colour values

Name Red Green Blue
grey 87 222 222 222
grey 88 224 224 224
grey 89 227 227 227
grey 90 229 229 229
grey 91 232 232 232
grey 92 235 235 235
grey 93 237 237 237
grey 94 240 240 240
grey 95 242 242 242
grey 96 245 245 245
grey 97 247 247 247
grey 98 250 250 250
grey 99 252 252 252
grey 100 255 255 255
dark grey 169 169 169
dark blue 0 0 139
dark cyan 0 139 139
dark magenta 139 0 139
dark red 139 0 0
light green 144 238 144

207



208

Prompt examples

To map the order parameter values, S2, onto the struc-
ture using the classic style, type:

relax> molmol.macro_apply(‘s2’)
relax> molmol.macro_apply(data_type=¢s2’)

relax> molmol.macro_apply(data_type=‘s2’, style=
"classic")

10.2.70 molmol.macro_run

Synposis

Open and execute the Molmol macro file.

Defaults

molmol.macro_run(file=None, dir="molmol’)

Keyword arguments

file: The name of the Molmol macro file.

dir: The directory name.

Description

This user function is for opening and running a Molmol
macro located within a text file.

Prompt examples

To execute the macro file ‘s2.mac’ located in the direc-
tory ‘molmol’, type:

relax> molmol.macro_run(file=‘s2.mac’)

relax> molmol.macro_run(file=‘s2.mac’, dir=

‘molmol’)

10.2.71 molmol.macro_write

Synposis

Create Molmol macros.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Defaults

molmol.macro_write(data_type=None, style="'classic’,
colour_start_name=None, colour_start_rgb=None,
colour_end_name=None, colour_end_rgb=None,
colour_list=None, file=None, dir="molmol’, force=False)

Keyword arguments

data_type: The data type to map to the structure.
style: The style of the macro.

colour_start_name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour_start_rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from 0 to 1. If this is set, then the starting
colour name cannot be given.

colour_end_name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour_end_rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from O to 1. If this is set, then the ending colour
name cannot be given.

colour_list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

file: The optional name of the file.
dir: The optional directory to save the file to.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

This allows residues specific values to be mapped to a
structure through the creation of a Molmol ‘*.mac’ macro
which can be executed in Molmol by clicking on ‘File,
Macro, Execute User...’. Currently only the ‘classic’
style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.



10.2. THE LIST OF FUNCTIONS

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne
Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 10.18 on page 197.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 10.19 on page 198.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 10.20 on page 199.

Prompt examples

To create a Molmol macro mapping the order parame-
ter values, S2, onto the structure using the classic style,
type:

relax> molmol.macro_write(‘s2’)

relax> molmol.macro_write(data_type=‘s2’)

relax> molmol.macro_write(data_type=¢s2’, style=
"classic", file=‘s2.mac’, dir=‘molmol’)

10.2.72 molmol.ribbon

Synposis

Apply the Molmol ribbon style.

209

Defaults

molmol.ribbon()

Description

This applies the Molmol ribbon style which is equivalent
to clicking on ‘ribbon’ in the Molmol side menu. To do
this, the following commands are executed:

CalcAtom ‘H’
CalcAtom ‘HN’
CalcSecondary

XMacStand ribbon.mac

Prompt examples

To apply the ribbon style to the PDB file loaded, type:

relax> molmol.ribbon()

10.2.73 molmol.tensor_pdb

Synposis

Display the diffusion tensor PDB geometric object over
the loaded PDB.

Defaults

molmol.tensor_pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the tensor
geometric object.

Description

In executing this user function, a PDB file must have
previously been loaded , a geometric object or poly-
gon representing the Brownian rotational diffusion tensor
will be overlain with the loaded PDB file and displayed
within Molmol. The PDB file containing the geometric
object must be created using the complementary struc-
ture.create_diff_tensor_pdb user function.

To display the diffusion tensor, the multiple commands
will be executed. To overlay the structure with the dif-
fusion tensor, everything will be selected and reoriented
and moved to their original PDB frame positions:



210

SelectAtom *’
SelectBond ¢’
SelectAngle
SelectDist

SelectPrim ¢

Rotatelnit

Movelnit

Next the tensor PDB file is read in, selected, and the
covalent bonds of the PDB CONECT records calculated:

ReadPdb file
SelectMol ‘@file’

CalcBond 111

Then only the atoms and bonds of the geometric object
are selected and the ‘ball/stick’ style applied:

SelectAtom ‘0’
SelectBond ‘0’
SelectAtom *:TNS’
SelectBond ‘:TNS’

XMacStand ball_stick.mac

The appearance is finally touched up:

RadiusAtom 1
SelectAtom ‘:TNS@C*’

RadiusAtom 1.5

10.2.74 molmol.view

Synposis

View the collection of molecules from the loaded PDB
file.

Defaults

molmol.view()

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This will simply launch Molmol.

Prompt examples

relax> molmol.view()

10.2.75 monte_carlo.create_data

Synposis

Create the Monte Carlo simulation data.

Defaults

monte_carlo.create_data(method="'back_calc’)

Keyword arguments

method: The simulation method.

Description

The method can either be set to back calculation (Monte
Carlo) or direct (bootstrapping), the choice of which de-
termines the simulation type. If the values or param-
eters are calculated rather than minimised, this option
will have no effect. Errors should only be propagated via
Monte Carlo simulations if errors have been measured.

For error analysis, the method should be set to back cal-
culation which will result in proper Monte Carlo simula-
tions. The data used for each simulation is back calcu-
lated from the minimised model parameters and is ran-
domised using Gaussian noise where the standard devi-
ation is from the original error set. When the method
is set to back calculation, this function should only be
called after the model is fully minimised.

The simulation type can be changed by setting the
method to direct. This will result in bootstrapping simu-
lations which cannot be used in error analysis (and which
are no longer Monte Carlo simulations). However, these
simulations are required for certain model selection tech-
niques (see the documentation for the model selection
user function for details), and can be used for other pur-
poses. Rather than the data being back calculated from
the fitted model parameters, the data is generated by
taking the original data and randomising using Gaussian
noise with the standard deviations set to the original er-
ror set.



10.2. THE LIST OF FUNCTIONS

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

211

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax> eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:
relax> calc() # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

relax> monte_carlo.error_analysis() # Step 8.

10.2.76 monte_carlo.error_analysis

Synposis

Calculate parameter errors from the Monte Carlo simu-
lations.

Defaults

monte_carlo.error_analysis()

Description

Parameter errors are calculated as the standard deviation
of the distribution of parameter values. This function
should never be used if parameter values are obtained
by minimisation and the simulation data are generated
using the method ‘direct’. The reason is because only
true Monte Carlo simulations can give the true parameter
errors.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.



212

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt Ul
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax>

eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:
relax> calc() # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> monte_carlo.error_analysis() # Step 8.

10.2.77 monte_carlo.initial_values

Synposis

Set the initial simulation parameter values.

Defaults

monte_carlo.initial_values()

Description

This only effects where minimisation occurs and can
therefore be skipped if the values or parameters are cal-
culated rather than minimised. However, if accidentally
run in this case, the results will be unaffected. It should
only be called after the model or run is fully minimised.
Once called, the functions ‘grid_search’ and ‘minimise’
will only effect the simulations and not the model param-
eters.

The initial values of the parameters for each simulation
is set to the minimised parameters of the model. A grid
search can be undertaken for each simulation instead,
although this is computationally expensive and unneces-
sary. The minimisation function should be executed for
a second time after running this function.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.



10.2. THE LIST OF FUNCTIONS

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt Ul
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax> eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:
relax> calc() # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

relax> monte_carlo.error_analysis() # Step 8.

10.2.78 monte_carlo.off

Synposis

Turn the Monte Carlo simulations off.

213

Defaults

monte_carlo.off()

Description

This will turn off the Monte Carlo simulations so that
subsequent optimisation will operate directly on the
model parameters and not on the simulations.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently



214

turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax>

eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:
relax> calc() # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

relax> monte_carlo.error_analysis() # Step 8.

10.2.79 monte_carlo.on

Synposis

Turn the Monte Carlo simulations on.

Defaults

monte_carlo.on()

Description

This will turn on the Monte Carlo simulations so that
subsequent optimisation will operate on the simulations
rather than on the real model parameters.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt Ul
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax> eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:

relax> calc() # Step 2.



10.2. THE LIST OF FUNCTIONS

relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

relax> monte_carlo.error_analysis() # Step 8.

10.2.80 monte_carlo.setup

Synposis

Set up the Monte Carlo simulations.

Defaults

monte_carlo.setup(number=500)

Keyword arguments

number: The number of Monte Carlo simulations.

Description

This must be called prior to any of the other Monte Carlo
functions. The effect is that the number of simulations
will be set and that simulations will be turned on.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 — The measured data set together with the corre-
sponding error set should be loaded into relax.

2 — Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 — To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 — The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

215

5 — Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 — Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 — Failed simulations are removed using the techniques
of model elimination.

8 — The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> grid_search(inc=11) # Step 2.
relax> minimise(‘newton’) # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> monte_carlo.initial_values() # Step 5.
relax> minimise(‘newton’) # Step 6.
relax> eliminate() # Step 7.

relax> monte_carlo.error_analysis() # Step 8.

An example for reduced spectral density mapping is:
relax> calc() # Step 2.
relax> monte_carlo.setup(number=500) # Step 3.

relax> monte_carlo.create_data(method=
‘back_calc’) # Step 4.

relax> calc() # Step 6.

relax> monte_carlo.error_analysis() # Step 8.

10.2.81 n_state_model.CoM

Synposis

The defunct centre of mass (CoM) analysis.



216

Defaults

n_state_model.CoM(pivot_point=[0.0, 0.0, 0.0], centre=
None)

Keyword arguments

pivot_point: The pivot point of the motions between
the two domains.

centre: Manually specify the CoM of the initial posi-
tion prior to the N rotations to the positions of the N
states. This is optional.

Description

WARNING: This analysis is now defunct!

This is used for analysing the domain motion informa-
tion content of the N states from the N-state model. The
states do not correspond to physical states, hence noth-
ing can be extracted from the individual states. This
analysis involves the calculation of the pivot to centre of
mass (pivot-CoM) order parameter and subsequent cone
of motions.

For the analysis, both the pivot point and centre of mass
must be specified. The supplied pivot point must be a
vector of floating point numbers of length 3. If the centre
of mass is supplied, it must also be a vector of floating
point numbers (of length 3). If the centre of mass is
not supplied, then the CoM will be calculated from the
selected parts of a previously loaded structure.

Prompt examples

To perform an analysis where the pivot is at the origin
and the CoM is set to the N-terminal domain of a previ-
ously loaded PDB file (the C-terminal domain has been
deselected), type:

relax> n_state_model.CoM()

To perform an analysis where the pivot is at the origin
(because the real pivot has been shifted to this position)
and the CoM is at the position [0, 0, 1], type one of:

relax> n_state_model.CoM(centre=[0, 0, 1])
relax> n_state_model.CoM(centre=[0.0, 0.0, 1.0])

relax> n_state_model.CoM(pivot_point=[0.0, 0.0,
0.0], centre=[0.0, 0.0, 1.0])

10.2.82 n_state_model.cone_pdb

Synposis

Create a PDB file representing the cone models from the
centre of mass (CoM) analysis.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Defaults

n_state_model.cone_pdb(cone_type=None, scale=1.0,
file="'cone.pdb’, dir=None, force=False)

Keyword arguments

cone_type: The type of cone model to represent.

scale: Value for scaling the pivot-CoM distance which
the size of the cone defaults to.

file: The name of the PDB file.
dir: The directory where the file is located.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

WARNING: This analysis is now defunct!

This creates a PDB file containing an artificial geometric
structure to represent the various cone models. These
models include:

‘diff in cone’

‘diff on cone’

The model can be selected by setting the cone type to one
of these values. The cone is represented as an isotropic
cone with its axis parallel to the average pivot-CoM vec-
tor, the vertex placed at the pivot point of the domain
motions, and the length of the edge of the cone equal to
the pivot-CoM distance multiplied by the scaling factor.
The resultant PDB file can subsequently read into any
molecular viewer.

There are four different types of residue within the PDB.
The pivot point is represented as as a single carbon atom
of the residue ‘PIV’. The cone consists of numerous H
atoms of the residue ‘CON’. The average pivot-CoM vec-
tor is presented as the residue ‘AVE’ with one carbon atom
positioned at the pivot and the other at the head of the
vector (after scaling by the scaling factor). Finally, if
Monte Carlo have been performed, there will be multiple
‘MCC’ residues representing the cone for each simulation,
and multiple ‘MCA’ residues representing the varying av-
erage pivot-CoM vector for each simulation.

To create the diffusion in a cone PDB representation, a
uniform distribution of vectors on a sphere is generated
using spherical coordinates with the polar angle defined
from the average pivot-CoM vector. By incrementing the
polar angle using an arccos distribution, a radial array
of vectors representing latitude are created while incre-
menting the azimuthal angle evenly creates the longitu-
dinal vectors. These are all placed into the PDB file
as H atoms and are all connected using PDB CONECT
records. Each H atom is connected to its two neighbours
on the both the longitude and latitude. This creates a



10.2. THE LIST OF FUNCTIONS

geometric PDB object with longitudinal and latitudinal
lines representing the filled cone.

10.2.83 n_state_model.elim_no-

_prob

Synposis

Eliminate the structures or states with no probability.

Defaults

n_state_model.elim_no_prob()

Description

This will simply remove the structures from the N-state
analysis which have an optimised probability of zero.

Prompt examples

Simply type:

relax> n_state_model.elim no_prob(N=8)

10.2.84 n_state_model.number_of-
_states

Synposis

Set the number of states in the N-state model.

Defaults

n_state_model.number_of_states(N=1)

Keyword arguments

N: The number of states.

Description

Prior to optimisation, the number of states in the N-state
model can be specified. If the number of states is not set,
then this parameter will be equal to the number of loaded
structures - the ensemble size.

217

Prompt examples

To set up an 8-state model, type:

relax> n_state_model.number_of_states(N=8)

10.2.85 n_state_model.ref_domain
Synposis

Set the reference domain for the ‘2-domain’ N-state
model.

Defaults

n_state_model.ref_domain(ref=None)

Keyword arguments

ref: The domain which will act as the frame of refer-
ence. This is only valid for the ‘2-domain’ N-state model.

Description

Prior to optimisation of the ‘2-domain’ N-state model,
which of the two domains will act as the frame of refer-
ence must be specified. The N-states will be rotations of
the other domain, so to switch the frame of reference to
the other domain simply transpose the rotation matrices.

Prompt examples

To set up a 5-state model with ‘C’ domain being the frame
of reference, type:

relax> n_state_model.ref_domain(ref=‘C’)

10.2.86 n_state_model.select-
_model

Synposis

Select the N-state model type and set up the model.

Defaults

n_state_model.select_model(model="population’)



218

Keyword arguments

model: The name of the preset N-state model.

Description

Prior to optimisation, the N-state model type should be
selected. The preset models are:

‘population’ — The N-state model whereby only popu-
lations are optimised. The structures loaded into
relax are assumed to be fixed, i.e. the orienta-
tions are not optimised, or if two domains are
present the Euler angles for each state are fixed.
The parameters of the model include the weight
or probability for each state and the alignment
tensors - {p0, pl, ..., pN, Axx, Ayy, Axy, Axz,
Ayz, ...}.

‘fixed’” — The N-state model whereby all motions are
fixed and all populations are fixed to the set prob-
abilities. The parameters of the model are simply
the parameters of each alignment tensor {Axx,
Ayy, Axy, Axz, Ayz, ...}.

‘2-domain’ — The N-state model for a system of two do-
mains, where one domain experiences a reduced
tensor.

Prompt examples

To analyse populations of states, type:

relax> n_state_model.select_model (model=
‘populations’)

10.2.87 noe.read_restraints

Synposis

Read NOESY or ROESY restraints from a file.

Defaults

noe.read_restraints(file=None, dir=None, protonl_col=
None, proton2_col=None, lower_col=None, upper_col=
None, sep=None)

Keyword arguments

file: The name of the file containing the restraint data.
dir: The directory where the file is located.

protonl_col: The column containing the first proton of
the NOE or ROE cross peak.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

proton2_col: The column containing the second proton
of the NOE or ROE cross peak.

lower_col: The column containing the lower NOE
bound.

upper_col: The column containing the upper NOE
bound.

sep: The column separator (the default is white space).

Description

The format of the file will be automatically determined,
for example Xplor formatted restraint files. A generically
formatted file is also supported if it contains minimally
four columns with the two proton names and the upper
and lower bounds, as specified by the column numbers.
The proton names need to be in the spin ID string format.

Prompt examples

To read the Xplor formatted restraint file ‘NOE.xpl’, type
one of:

relax> noe.read_restraints(‘NOE.xpl’)

relax> noe.read_restraints(file=‘NOE.xpl’)

To read the generic formatted file ‘noes’, type one of:

relax> noe.read_restraints(file=‘NOE.xpl’,
protonl_col=0, proton2_col=1, lower_col=2,
upper_col=3)

10.2.88 noe.spectrum_type

Synposis

Set the steady-state NOE spectrum type for pre-loaded
peak intensities.

Defaults

noe.spectrum_type(spectrum_type=None, spectrum_id=
None)

Keyword arguments

spectrum_type: The type of steady-state NOE spec-
trum, one of ‘ref’ for the reference spectrum or ‘sat’ for
the saturated spectrum.

spectrum_id: The spectrum ID string.



10.2. THE LIST OF FUNCTIONS

Description

The spectrum type can be one of the following:

The steady-state NOE reference spectrum.

The steady-state NOE spectrum with proton sat-
uration turned on.

Peak intensities should be loaded before this user func-
tion via the spectrum.read-intensities user function. The
intensity values will then be associated with a spectrum
ID string which can be used here.

10.2.89 palmer.create

Synposis

Create the Modelfree4 input files.

Defaults

palmer.create(dir=None, force=False, binary=
‘modelfreed’, diff_search="none’, sims=0, sim_type="pred’,
trim=0, steps=20, constraints=True, heteronuc_type=
‘15N’, atom1="'N’, atom2="'H’, spin_id=None)

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Modelfree program
file.

diff_search: See
‘diffusion_search’.

the Modelfree4 manual for

sims: The number of Monte Carlo simulations.

sim_type: See the Modelfree4 manual.

trim: See the Modelfree4 manual.

steps: See the Modelfree4 manual.

constraints: A flag specifying whether the parameters
should be constrained. The default is to turn constraints

on (constraints=True).

heteronuc_type: A three letter string describing the het-
eronucleus type, ie ‘15N’; ‘13C’, etc.

atom1l: The symbol of the X heteronucleus in the PDB
file.

atom?2: The symbol of the H nucleus in the PDB file.

spin_id: The spin identification string.

219

Description

The following files are created

‘dir/mfin’
‘dir/mfdata’
‘dir/mfpar’
‘dir/mfmodel’

‘dir/run.sh’

The file ‘dir/run.sh’ contains the single command,

‘modelfree4 -i mfin -d mfdata -p mfpar -m
mfmodel -o mfout -e out’,

which can be used to execute modelfreed.

If you would like to use a different Modelfree executable
file, change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

10.2.90 palmer.execute

Synposis

Perform a model-free optimisation using Modelfree4.

Defaults

palmer.execute(dir=None, force=False, binary=
‘modelfree4’)

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Modelfree program
file.



220

Description

Modelfree 4 will be executed as

$ modelfree4 -i mfin -d mfdata -p mfpar -m
mfmodel -o mfout -e out

If a PDB file is loaded and non-isotropic diffusion is se-
lected, then the file name will be placed on the command
line as ‘-s pdb_file_name’.

If you would like to use a different Modelfree executable
file, change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

10.2.91 palmer.extract

Synposis

Extract data from the Modelfreed ‘mfout’ star formatted
file.

Defaults

palmer.extract(dir=None)

Keyword arguments

dir: The directory where the file ‘mfout’ is found.

Description

The model-free results will be extracted from the Mod-
elfree4 results file ‘mfout’ located in the given directory.

10.2.92 paramag.centre
Synposis

Specify which atom is the paramagnetic centre.

Defaults

paramag.centre(pos=None, atom_id=None, pipe=None,
verbosity=1, fix=True, ave_pos=True, force=False)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

pos: The atomic position of the paramagnetic centre.
atom_id: The atom ID string.

pipe: The data pipe containing the structures to ex-
tract the centre from.

verbosity: The amount of information to print out.

fix: A flag specifying if the paramagnetic centre should
be fixed during optimisation.

ave_pos: A flag specifying if the position of the atom
is to be averaged across all models.

force: A flag which if True will cause the current para-
magnetic centre to be overwritten.

Description

This is required for specifying where the paramagnetic
centre is located in the loaded structure file. If no struc-
ture number is given, then the average atom position will
be calculated if multiple structures are loaded.

A different set of structures than those loaded into the
current data pipe can also be used to determine the posi-
tion, or its average. This can be achieved by loading the
alternative structures into another data pipe, and then
specifying that pipe.

If the average position flag is set to True, the average
position from all models will be used as the position of
the paramagnetic centre. If False, then the positions from
all structures will be used. If multiple positions are used,
then a fast paramagnetic centre motion will be assumed
so that PCSs for a single tensor will be calculated for
each position, and the PCS values linearly averaged.

Prompt examples

If the paramagnetic centre is the lanthanide Dysprosium
which is labelled as ©, in a loaded PDB file, then type
one of:

relax> paramag.centre(‘Dy’)

relax> paramag.centre(atom_id=‘Dy’)

If the carbon atom ‘C1’ of residue ‘4’ in the PDB file is
to be used as the paramagnetic centre, then type:

relax> paramag.centre(‘:40C1’)

To state that the Dy3+ atomic position is [0.136, 12.543,
4.356], type one of:

relax> paramag.centre([0.136, 12.543, 4.356])

relax> paramag.centre(pos=[0.136, 12.543, 4.356])

To find an unknown paramagnetic centre, type:

relax> paramag.centre(fix=False)



10.2. THE LIST OF FUNCTIONS

10.2.93 pcs.back_calc

Synposis

Back calculate the pseudo-contact shifts.

Defaults

pcs.back_calc(align_id=None)

Keyword arguments

align_id: The alignment ID string.

Description

This will back calculate the pseudo-contact shifts if the
paramagnetic centre, temperature and magnetic field
strength has been specified, an alignment tensor is
present, and atomic positions have been loaded into the
relax data store.

10.2.94 pcs.calc_q_factors

Synposis

Calculate the PCS Q factor for the selected spins.

Defaults

pcs.calc_q_factors(spin_id=None)

Keyword arguments

spin_id: The spin ID string for restricting to subset of
all selected spins.

Description

For this to work, the back-calculated PCS data must first
be generated by the analysis specific code. Otherwise a
warning will be given.

221

Prompt examples

To calculate the PCS Q factor for only the spins ‘@H26’,
‘@H27’, and ‘@H28’, type one of:

relax> pcs.calc_q_factors(‘@H26 & @H27 & @H28’)

relax> pcs.calc_q_factors(spin_id=‘@H26 & QH27 &
QH28’)

10.2.95 pcs.corr_plot

Synposis

Generate a correlation plot of the measured vs. the back-
calculated PCSs.

Defaults

pcs.corr_plot(format=‘grace’, file="'pcs_corr_plot.agr’,
dir=None, force=False)

Keyword arguments

format: The format of the plot data.
file: The name of the Grace file to create.
dir: The directory name.

force: A flag which if True will cause the file to be
overwritten.

Description

Two formats are currently supported. If format is set
to ‘grace’, then a Grace plot file will be created. If the
format is not set then a plain text list of the measured
and back-calculated data will be created.

Prompt examples

To create a Grace plot of the data, type:

relax> pcs.corr_plot()

To create a plain text list of the measured and back-
calculated data, type one of:

relax> pcs.corr_plot(None)

relax> pcs.corr_plot(format=None)




222

10.2.96 pcs.delete

Synposis

Delete the PCS data corresponding to the alignment ID.

Defaults

pcs.delete(align_id=None)

Keyword arguments

align_id: The alignment ID string of the data to delete.

Description

This will delete all PCS data associated with the align-
ment ID in the current data pipe.

Prompt examples

To delete the PCS
align_id=‘PH_gel’, type:

data  corresponding  to

relax> pcs.delete(‘PH_gel’)

10.2.97 pcs.display

Synposis

Display the PCS data corresponding to the alignment ID.

Defaults

pcs.display(align_id=None, bc=False)

Keyword arguments

align_id: The alignment ID string.

bc: A flag which if set will display the back-calculated
rather than measured RDCs.

Description

This will display all of the PCS data associated with the
alignment ID in the current data pipe.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

To display the ‘phage’ PCS data, type:

relax> pcs.display(‘phage’)

10.2.98 pcs.read

Synposis

Read the PCS data from file.

Defaults

pcs.read(align_id=None, file=None, dir=None,
spin_id_col=None, mol_name_col=None, res_num_col=
None, res_name_col=None, spin_num_col=None,
spin_name_col=None, data_col=None, error_col=None,
sep=None, spin_id=None)

Keyword arguments

align_id: The alignment ID string.
file: The name of the file containing the PCS data.
dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).

spin_name_col: The spin name column (alternative to
the spin_id_col).

data_col: The PCS data column.
error_col: The experimental error column.
sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.



10.2. THE LIST OF FUNCTIONS

Description

This will read PCS data from a file and associate it with
an alignment ID, either a new ID or a preexisting one
with no PCS data.

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number and name, and
spin number and name columns can be supplied allow-
ing this information to be in separate columns. Note that
the numbering of columns starts at one. The spin ID can
be used to restrict the reading to certain spin types, for
example only 15N spins when only residue information
is in the file.

Prompt examples

The following commands will read the PCS data out of
the file ‘Tb.txt’ where the columns are separated by the
symbol ‘,’, and store the PCSs under the ID ‘Tb’.

relax> pcs.read(‘Tb’, ‘Tb.txt’, sep=‘,’)

To read the 15N and 1H PCSs from the file ‘Eu.txt’,
where the 15N values are in the 4t column and the 1H
in the 9" type both the following:

relax> pcs.read(‘Tb’, ‘Tb.txt’, spin_id=‘@N’,
res_num_col=1, data_col=4)

relax> pcs.read(‘Tb’, ‘Tb.txt’, spin_id=‘@H’,
res_num_col=1, data_col=9)

10.2.99 pcs.weight

Synposis

Set optimisation weights on the PCS data.

Defaults

pcs.weight(align_id=None, spin_id=None, weight=1.0)

Keyword arguments
align_id: The alignment ID string.
spin_id: The spin ID string.

weight: The weighting value.

223

Description

This can be used to force the PCS to contribute more or
less to the chi-squared optimisation statistic. The higher
the value, the more importance the PCS will have.

10.2.100 pcs.write

Synposis

Write the PCS data to file.

Defaults

pcs.write(align_id=None, file=None, dir=None, bc=False,
force=False)

Keyword arguments

align_id: The alignment ID string.
file: The name of the file.
dir: The directory name.

bc: A flag which if set will write out the back-
calculated rather than measured RDCs.

force: A flag which if True will cause the file to be
overwritten.

Description

If no directory name is given, the file will be placed in the
current working directory. The alignment ID is required
for selecting which PCS data set will be written to file.

10.2.101 pipe.bundle

Synposis

The grouping of data pipes into a bundle.

Defaults

pipe.bundle(bundle=None, pipe=None)



224

Keyword arguments

bundle: The pipe bundle is a special grouping or clus-
tering of data pipes.

pipe: The name of the data pipe to add to the bundle.

Description

Data pipes can be grouped or clustered together through
special structures known as pipe bundles. If the speci-
fied data pipe bundle does not currently exist, it will be
created.

Prompt examples

To add the data pipes ‘test 1’, ‘test 2’, and ‘test 3’
to the bundle ‘first analysis’, type the following:

relax> pipe.bundle(‘first analysis 1’, ‘test 1’)
relax> pipe.bundle(‘first analysis 1’, ‘test 2’)

relax> pipe.bundle(‘first analysis 1’, ‘test 37)

10.2.102 pipe.copy

Synposis

Copy a data pipe.

Defaults

pipe.copy(pipe_-from=None, pipe_to=None, bundle_to=
None)

Keyword arguments

pipe_-from: The name of the source data pipe to copy
the data from.

pipe_-to: The name of the target data pipe to copy the
data to.

bundle_to: If given, the new data pipe will be grouped
into this bundle.

Description

This allows the contents of a data pipe to be copied. If
the source data pipe is not set, the current data pipe will
be assumed. The target data pipe must not yet exist.

The optional bundling allows the newly created data pipe
to be placed into either a new or existing data pipe bun-
dle. If not specified, then the copied data pipe will not
be associated with a bundle.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

To copy the contents of the ‘m1’ data pipe to the ‘m2’ data

pipe, type:
relax> pipe.copy(‘ml’, ‘m2’)

relax> pipe.copy(pipe_from=‘ml’, pipe_to=‘m2’)

If the current data pipe is ‘m1’, then the following com-
mand can be used:

relax> pipe.copy(pipe_to=‘m2’)

10.2.103 pipe.create

Synposis

Add a new data pipe to the relax data store.

Defaults

pipe.create(pipe_name=None, pipe_type=None, bundle=
None)

Keyword arguments

pipe_name: The name of the data pipe.
pipe_type: The type of data pipe.
bundle: The optional pipe bundle is a special grouping

or clustering of data pipes. If this is specified, the newly
created data pipe will be added to this bundle.

Description

The data pipe name can be any string however the data
pipe type can only be one of the following:

‘ct’ — Consistency testing,

‘frame order’ — The Frame Order theories,

‘jw’ — Reduced spectral density mapping,

‘hybrid’ — A special hybrid pipe,

‘mf’ — Model-free analysis,

‘N-state’ — N-state model of domain motions,

‘noe’ — Steady state NOE calculation,

‘relax_fit’> — Relaxation curve fitting,

The pipe bundling concept is simply a way of grouping

data pipes together. This is useful for a number of pur-
poses:



10.2. THE LIST OF FUNCTIONS

The grouping or categorisation of data pipes, for
example when multiple related analyses are per-
formed.

In the auto-analyses, as all the data pipes that
they spawn are bound together within the original
bundle.

In the graphical user interface mode as analysis
tabs are linked to specific pipe bundles.

Prompt examples

To set up a model-free analysis data pipe with the name
‘mb’, type:

relax> pipe.create(‘m5’, ‘mf’)

10.2.104 pipe.current
Synposis

Print the name of the current data pipe.

Defaults

pipe.current()

Prompt examples

To run the user function, type:

relax> pipe.current()

10.2.105 pipe.delete

Synposis

Delete a data pipe from the relax data store.

Defaults

pipe.delete(pipe_name=None)

Keyword arguments

pipe_name: The name of the data pipe to delete.

225

Description

This will permanently remove the data pipe and all of its
contents from the relax data store. If the pipe name is
not given, then all data pipes will be deleted.

10.2.106 pipe.display

Synposis

Print a list of all the data pipes.

Defaults

pipe.display()

Prompt examples

To run the user function, type:

relax> pipe.display()

10.2.107 pipe.hybridise

Synposis

Create a hybrid data pipe by fusing a number of other
data pipes.

Defaults

pipe.hybridise(hybrid=None, pipes=None)

Keyword arguments

hybrid: The name of the hybrid data pipe to create.

pipes: An array containing the names of all data pipes
to hybridise.

Description

This user function can be used to construct hybrid mod-
els. An example of the use of a hybrid model could be if
the protein consists of two independent domains. These
two domains could be analysed separately, each having
their own optimised diffusion tensors. The N-terminal
domain data pipe could be called ‘N_sphere’ while the
C-terminal domain could be called ‘C_ellipsoid’. These



226

two data pipes could then be hybridised into a single data
pipe. This hybrid data pipe can then be compared via
model selection to a data pipe whereby the entire protein
is assumed to have a single diffusion tensor.

The requirements for data pipes to be hybridised is that
the molecules, sequences, and spin systems for all the
data pipes is the same, and that no spin system is al-
lowed to be selected in two or more data pipes. The se-
lections must not overlap to allow for rigorous statistical
comparisons.

Prompt examples

The two data pipes ‘N_sphere’ and ‘C_ellipsoid’ could
be hybridised into a single data pipe called ‘mixed model’

by typing:

relax> pipe.hybridise(‘mixed model’, [‘N_sphere’,
‘C_ellipsoid’])

relax> pipe.hybridise(hybrid=‘mixed model’,
pipes=[‘N_sphere’, ‘C_ellipsoid’])

10.2.108 pipe.switch

Synposis

Switch between the data pipes of the relax data store.

Defaults

pipe.switch(pipe_name=None)

Keyword arguments

pipe_name: The name of the data pipe.

Description

This will switch between the various data pipes within
the relax data store.

Prompt examples

To switch to the ‘ellipsoid’ data pipe, type:
relax> pipe.switch(‘ellipsoid’)

relax> pipe.switch(pipe_name=‘ellipsoid’)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

10.2.109 pymol.cartoon

Synposis

Apply the PyMOL cartoon style and colour by secondary
structure.

Defaults

pymol.cartoon()

Description

This applies the PyMOL cartoon style which is equiva-
lent to hiding everything and clicking on show cartoon. It
also colours the cartoon with red helices, yellow strands,
and green loops. The following commands are executed:

cmd.hide(‘everything’, file)
cmd.show(‘cartoon’, file)

util.cbss(file, ‘red’, ‘yellow’, ‘green’)

¢

where file is the file name without the ‘.pdb’ extension.

Prompt examples

To apply this user function, type:

relax> pymol.cartoon()

10.2.110 pymol.clear_history
Synposis

Clear the PyMOL command history.

Defaults

pymol.clear_history()

Description

This will clear the Pymol history from memory.




10.2. THE LIST OF FUNCTIONS

10.2.111 pymol.command

Synposis

Execute a user supplied PyMOL command.

Defaults

pymol.command(command=None)

Keyword arguments

command: The PyMOL command to execute.

Description

This allows PyMOL commands to be passed to the pro-
gram. This can be useful for automation or scripting.

Prompt examples

To reinitialise the PyMOL instance, type:

relax> pymol.command("reinitialise")

10.2.112 pymol.cone_pdb

Synposis

Display the cone PDB geometric object.

Defaults

pymol.cone_pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the cone
geometric object.

Description

The PDB file containing the geometric object must be
created using the complementary frame_order.cone_pdb
or n_state_model.cone_pdb user functions.

The cone PDB file is read in using the command:

load file

227

The average CoM-pivot point vector, the residue ‘AVE’ is
displayed using the commands:

select resn AVE
show sticks, ‘sele’

color blue, ‘sele’

The cone object, the residue ‘CON’, is displayed using the
commands:

select resn CON
hide (‘sele’)
show sticks, ‘sele’

color white, ‘sele’

10.2.113 pymol.macro_apply

Synposis

Execute PyMOL macros.

Defaults

pymol.macro_apply(data_type=None, style='classic’,
colour_start_name=None, colour_start_rgb=None,
colour_end_name=None, colour_end_rgb=None,
colour_list=None)

Keyword arguments

data_type: The data type to map to the structure.
style: The style of the macro.

colour_start_name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour_start_rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from O to 1. If this is set, then the starting
colour name cannot be given.

colour_end_name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.



228

colour_end_rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour_list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

Description

This allows spin specific values to be mapped to a
structure through PyMOL macros. Currently only the
‘classic’ style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 10.18 on page 197.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 10.19 on page 198.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 10.20 on page 199.

Prompt examples

To map the order parameter values, S2, onto the struc-
ture using the classic style, type:

relax> pymol.macro_apply(‘s2’)
relax> pymol.macro_apply(data_type=‘s2’)

relax> pymol.macro_apply(data_type=‘s2’, style=
"classic")

10.2.114 pymol.macro_run

Synposis

Open and execute the PyMOL macro file.

Defaults

pymol.macro_run(file=None, dir="pymol’)

Keyword arguments

file: The name of the PyMOL macro file.

dir: The directory name.

Description

This user function is for opening and running a PyMOL
macro located within a text file.

Prompt examples

To execute the macro file ‘s2.pml’ located in the direc-
tory ‘pymol’, type:

relax> pymol.macro_run(file=‘s2.pml’)

relax> pymol.macro_run(file=‘s2.pml’, dir=
‘pymol’)




10.2. THE LIST OF FUNCTIONS

10.2.115 pymol.macro_write

Synposis

Create PyMOL macros.

Defaults

pymol.macro_write(data_type=None, style="'classic’,
colour_start_-name=None, colour_start_rgb=None,
colour_end_name=None, colour_end_rgb=None,
colour_list=None, file=None, dir="pymol’, force=False)

Keyword arguments

data_type: The data type to map to the structure.
style: The style of the macro.

colour_start_name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour_start_rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from O to 1. If this is set, then the starting
colour name cannot be given.

colour_end_name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour_end_rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from O to 1. If this is set, then the ending colour
name cannot be given.

colour_list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

file: The optional name of the file.
dir: The optional directory to save the file to.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

This allows residues specific values to be mapped to a
structure through the creation of a PyMOL macro which
can be executed in PyMOL by clicking on ‘File, Macro,
Execute User...’. Currently only the ‘classic’ style,

which is described below, is available.

229

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 10.18 on page 197.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 10.19 on page 198.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 10.20 on page 199.

Prompt examples

To create a PyMOL macro mapping the order parame-
ter values, S2, onto the structure using the classic style,

type:

relax> pymol.macro_write(‘s2’)



230

relax> pymol.macro_write(data_type=‘s2’)

relax> pymol.macro_write(data_type=‘s2’, style=
"classic", file=‘s2.pml’, dir=‘pymol’)

10.2.116 pymol.tensor_pdb

Synposis

Display the diffusion tensor PDB geometric object over
the loaded PDB.

Defaults

pymol.tensor_pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the tensor
geometric object.

Description

In executing this user function, a PDB file must have
previously been loaded into this data pipe a geometric
object or polygon representing the Brownian rotational
diffusion tensor will be overlain with the loaded PDB file
and displayed within PyMOL. The PDB file containing
the geometric object must be created using the comple-
mentary structure.create_diff_tensor_pdb user function.

The tensor PDB file is read in using the command:
load file

The centre of mass residue ‘COM’ is displayed using the
commands:

select resn COM
show dots, ‘sele’

color blue, ‘sele’

The axes of the diffusion tensor, the residue ‘AXS’, is dis-
played using the commands:

select resn AXS
hide (‘sele’)
show sticks, ‘sele’

color cyan, ‘sele’

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

label ‘sele’, name

The simulation axes, the residues ‘SIM’, are displayed us-
ing the commands:

select resn SIM

colour cyan, ‘sele’

10.2.117 pymol.vector_dist

Synposis
Display the PDB file representation of the XH vector

distribution.

Defaults

pymol.vector_dist(file="XH_dist.pdb")

Keyword arguments

file: The name of the PDB file containing the vector
distribution.

Description

A PDB file of the macromolecule must have previously
been loaded as the vector distribution will be overlain
with the macromolecule within PyMOL. The PDB file
containing the vector distribution must be created us-
ing the complementary structure.create_vector_dist user
function.

The vector distribution PDB file is read in using the com-
mand:

load file

10.2.118 pymol.view

Synposis

View the collection of molecules from the loaded PDB
file.



10.2. THE LIST OF FUNCTIONS

Defaults

pymol.view()

Description

This will simply launch Pymol.

Prompt examples

relax> pymol.view()

10.2.119 rdc.back_calc

Synposis

Back calculate the residual dipolar couplings.

Defaults

rdc.back_calc(align_id=None)

Keyword arguments

align_id: The alignment ID string.

Description

This will back calculate the residual dipolar couplings
(RDQCs) if an alignment tensor is present and inter-dipole
vectors have been loaded into the relax data store.

10.2.120 rdc.calc_q_factors

Synposis

Calculate the RDC Q factor for the selected spins.

Defaults

rdc.calc_q_factors(spin_id=None)

Keyword arguments

spin_id: The spin ID string for restricting to subset of
all selected spins.

231

Description

For this to work, the back-calculated RDC data must first
be generated by the analysis specific code. Otherwise a
warning will be given.

Prompt examples

To calculate the RDC Q factor for only the spins ‘@H26’,
‘@H27’, and ‘@H28’, type one of:

relax> rdc.calc_q_factors(‘@H26 & @H27 & @H28’)

relax> rdc.calc_q_factors(spin_id=‘@H26 & @H27 &
Q@H28’)

10.2.121 rdc.corr_plot

Synposis

Generate a correlation plot of the measured vs. the back-
calculated RDCs.

Defaults

rdc.corr_plot(format="grace’, file="rdc_corr_plot.agr’, dir=
None, force=False)

Keyword arguments

format: The format of the plot data.
file: The name of the Grace file to create.
dir: The directory name.

force: A flag which if True will cause the file to be
overwritten.

Description

Two formats are currently supported. If format is set
to ‘grace’, then a Grace plot file will be created. If the
format is not set then a plain text list of the measured
and back-calculated data will be created.

Prompt examples

To create a Grace plot of the data, type:

relax> rdc.corr_plot()

To create a plain text list of the measured and back-
calculated data, type one of:

relax> rdc.corr_plot(None)



232

relax> rdc.corr_plot(format=None)

10.2.122 rdc.delete

Synposis

Delete the RDC data corresponding to the alignment ID.

Defaults

rdc.delete(align_id=None)

Keyword arguments

align_id: The alignment ID string of the data to delete.

Description

This will delete all RDC data associated with the align-
ment ID in the current data pipe.

Prompt examples

To delete the RDC
align_id=‘PH_gel’, type:

data  corresponding  to

relax> rdc.delete(‘PH_gel’)

10.2.123 rdc.display

Synposis

Display the RDC data corresponding to the alignment
ID.

Defaults

rdc.display(align_id=None, bc=False)

Keyword arguments

align_id: The alignment ID string.

bc: A flag which if set will display the back-calculated
rather than measured RDCs.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This will display all of the RDC data associated with the
alignment ID in the current data pipe.

Prompt examples

To display the ‘phage’ RDC data, type:

relax> rdc.display(‘phage’)

10.2.124 rdc.read

Synposis

Read the RDC data from file.

Defaults

rdc.read(align_id=None, file=None, dir=None,
data_type='D’, spin_id1_col=1, spin_id2_col=2, data_col=
None, error_col=None, sep=None, neg_g_corr=False,
absolute=False)

Keyword arguments

align_id: The alignment ID string.
file: The name of the file containing the RDC data.
dir: The directory where the file is located.

data_type: Specify if the RDC data is in the D or 2D
format.

spin_idl_col: The spin ID string column for the first
spin.

spin_id2_col: The spin ID string column for the second
spin.

data_col: The RDC data column.

error_col: The experimental error column.

sep: The column separator (the default is white space).

neg_g-_corr: A flag which is used to correct for the neg-
ative gyromagnetic ratio of 15N. If set to True, all RDC
values will be inverted prior to being stored in the relax

data store.

absolute: A flag which indicates that the loaded RDCs
are are signless.



10.2. THE LIST OF FUNCTIONS

Description

This will read RDC data from a file and associate it with
an alignment ID, either a new ID or a preexisting one
with no RDC data.

The data type is used to specify how the RDC is defined.
It can be set to two values:

‘D’ means that the splitting in the aligned sample
was taken as J + D.

‘2D’ means that the splitting in the aligned sample
was assumed to be J 4 2D.

Internally, relax uses the D notation. Therefore if set to
2D’, the values will be doubled when read in.

If the negative gyromagnetic ratio correction flag is set,
a sign inversion will be applied to all RDC values to be
loaded. This is sometimes needed for 15N if the data is
not compensated for the negative gyromagnetic ratio.

The absolute RDCs flag is used for RDCs in which the
sign is unknown. All absolute RDCs loaded will be con-
verted to positive values.

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number and name, and
spin number and name columns can be supplied allow-
ing this information to be in separate columns. Note that
the numbering of columns starts at one. The spin ID can
be used to restrict the reading to certain spin types, for
example only 15N spins when only residue information
is in the file.

Prompt examples

The following commands will read the RDC data out of
the file ‘Tb.txt’ where the columns are separated by the
symbol ¢,’, and store the RDCs under the ID ‘Tb’:

relax> rdc.read(‘Tb’, ‘Tb.txt’, sep=°,’)

If the individual spin RDC errors are located in the file
‘rdc_err.txt’ in column number 5, then to read these
values into relax, assuming J + D was measured, type
one of:

relax> rdc.read(‘phage’, ‘rdc_err.txt’,
data_type=‘D’, error_col=5)

relax> rdc.read(align_id=‘phage’, file=‘rdc_err.

txt’, data_type=‘D’, error_col=b)

If the RDCs correspond to the ‘N’ spin and other spin
types such as 1H, 13C, etc. are loaded into relax, then

type:

relax> rdc.read(‘Tb’, ‘Tb.txt’, spin_id=‘@N’)

233

10.2.125 rdc.weight

Synposis

Set optimisation weights on the RDC data.

Defaults

rdc.weight(align_id=None, spin_id=None, weight=1.0)

Keyword arguments

align_id: The alignment ID string.
spin_id: The spin ID string.

weight: The weighting value.

Description

This can be used to force the RDC to contribute more or
less to the chi-squared optimisation statistic. The higher
the value, the more importance the RDC will have.

10.2.126 rdc.write

Synposis

Write the RDC data to file.

Defaults

rdc.write(align_id=None, file=None, dir=None, bc=False,
force=False)

Keyword arguments

align_id: The alignment ID string.
file: The name of the file.
dir: The directory name.

bc: A flag which if set will write out the back-
calculated rather than measured RDCs.

force: A flag which if True will cause the file to be
overwritten.



234

Description

If no directory name is given, the file will be placed in the
current working directory. The alignment ID is required
for selecting which RDC data set will be written to file.

10.2.127 relax_data.back_calc

Synposis

Back calculate the relaxation data at the given frequency.

Defaults

relax_data.back_calc(ri_-id=None, ri_type=None, frq=
None)

Keyword arguments

ri_id: The relaxation data ID string.
ri_type: The relaxation data type, ie ‘R1’, ‘R2’, or ‘NOE’.

frq: The spectrometer frequency in Hz.

Description

This allows relaxation data of the given type and fre-
quency to be back calculated from the model parameter
values. If the relaxation data ID, type and frequency are
not given, then relaxation data matching that currently
loaded in the relax data store will be back-calculated.

10.2.128 relax_data.copy

Synposis

Copy relaxation data from one pipe to another.

Defaults

relax_data.copy(pipe_from=None, pipe_to=None, ri_id=
None)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

pipe_from: The name of the pipe to copy the relaxation
data from.

pipe_to: The name of the pipe to copy the relaxation
data to.

ri_id: The relaxation data ID string.

Description

This will copy relaxation data from one data pipe to an-
other. If the relaxation ID data string is not given then
all relaxation data will be copied, otherwise only a spe-
cific data set will be copied.

Prompt examples

To copy all relaxation data from pipe ‘m1’ to pipe ‘m9’,

type one of:
relax> relax_data.copy(‘ml’, ‘m9°’)

relax> relax_data.copy(pipe_from=‘m1’,
‘m9’)

pipe_to=

relax> relax_data.copy(‘ml’, ‘m9’, None)

relax> relax_data.copy(pipe_from=‘m1’,
‘m9’, ri_id=None)

pipe_to=

To copy only the NOE relaxation data with the ID string
of ‘NOE_800’ from ‘m3’ to ‘m6’, type one of:

relax> relax_data.copy(‘m3’, ‘m6’, ‘NOE_800’)

relax> relax_data.copy(pipe_from=‘m3’, pipe_to=
‘m6’, ri_id=‘NOE_800°)

10.2.129 relax_data.delete

Synposis

Delete the data corresponding to the relaxation data ID
string.

Defaults

relax_data.delete(ri_id=None)

Keyword arguments

ri_id: The relaxation data ID string.



10.2. THE LIST OF FUNCTIONS

Description

The relaxation data corresponding to the given relax-
ation data ID string will be removed from the current
data pipe.

Prompt examples

To delete the relaxation data corresponding to the ID
‘NOE_600’, type:

relax> relax_data.delete(‘NOE_600’)

10.2.130 relax_data.display

Synposis

Display the data corresponding to the relaxation data ID
string.

Defaults

relax_data.display(ri_id=None)

Keyword arguments

ri_id: The relaxation data ID string.

Description

This will display the relaxation data corresponding to the
given ID.

Prompt examples

To display the NOE relaxation data at 600 MHz with the
ID string ‘NOE_600’, type:

relax> relax_data.display(‘NOE_600’)

10.2.131 relax_data.frq

Synposis

Set the spectrometer proton frequency of the relaxation
data in Hz.

235

Defaults

relax_data.frq(ri-id=None, frq=None)

Keyword arguments

ri_id: The relaxation data ID string of the data to set
the frequency of.

frq: The exact proton frequency of the spectrometer
in Hertz. See the ‘sfrq’ parameter in the Varian procpar
file or the ‘SFO1’ parameter in the Bruker acqus file.

Description

This allows the relaxation data type to be either set or
reset. The frequency must be the that of the proton in
Hertz. This value must be exact and match that of the
‘sfrq’ parameter in the Varian procpar file or the ‘SF01’
parameter in the Bruker acqus file.

10.2.132 relax_data.peak-

_intensity_type

Synposis

Specify if heights or volumes were used to measure the
peak intensities.

Defaults

relax_data.peak_intensity_type(ri_-id=None, type="height’)

Keyword arguments

ri_id: The relaxation data ID string.

type: The peak intensity type.

Description

This is essential for BMRB data deposition. It is used
to specify whether peak heights or peak volumes were
measured. The two currently allowed values for the peak
intensity type are ‘height’ and ‘volume’.

10.2.133 relax_data.read

Synposis

Read R, Ra, or NOE relaxation data from a file.



236

Defaults

relax_data.read(ri_id=None, ri_type=None, frq=None,
file=None, dir=None, spin_id_col=None, mol_name_col=
None, res_.num_col=None, res_name_col=None,
spin_num_col=None, spin_name_col=None, data_col=
None, error_col=None, sep=None, spin_id=None)

Keyword arguments

ri_id: The relaxation data ID string. This must be a
unique identifier.

ri_type: The relaxation data type, i.e.
‘NOE’.

‘R1’, ‘R2’, or

frq: The exact proton frequency of the spectrometer
in Hertz. See the ‘sfrq’ parameter in the Varian procpar
file or the ‘SFO1’ parameter in the Bruker acqus file.

file:
data.

The name of the file containing the relaxation

dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).

spin_-name_col: The spin name column (alternative to
the spin_id_col).

data_col: The relaxation data column.
error_col: The experimental error column.
sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

This will load the relaxation data into the relax data
store. The data is associated with the spectrometer fre-
quency in Hertz. For subsequent analysis, this frequency
must be set to the exact field strength. This value is
stored in the ‘sfrq’ parameter in the Varian procpar file
or the ‘SFO1’ parameter in the Bruker acqus file.

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Prompt examples

The following commands will read the protein NOE re-
laxation data collected at 600 MHz out of a file called
‘noe.600.out’ where the residue numbers, residue names,
data, errors are in the first, second, third, and forth
columns respectively.

relax> relax_data.read(‘NOE_600’, ‘NOE’, 599.7 =*
1le6, ‘noe.600.out’, res_num_col=1, res_name_col=2,
data_col=3, error_col=4)

relax> relax_data.read(ri_id=‘NOE_600’, ri_type=
‘NOE’, frq=600.0 * le6, file=‘noe.600.out’,
res_num_col=1, res_name_col=2, data_col=3,
error_col=4)

The following commands will read the Ra data out of the
file ‘r2.out’ where the residue numbers, residue names,
data, errors are in the second, third, fifth, and sixth
columns respectively. The columns are separated by
commas.

relax> relax_data.read(‘R2.800°, ‘R2’, 8.0 * 1e8,
‘r2.out’, res_num_col=2, res_name_col=3, data_col=
5, error_col=6, sep=‘,’)

relax> relax_data.read(ri_id=‘R2.800°, ri_type=
‘R2’, frq=8.0%1e8, file=‘r2.out’, res_num_col=2,
res_name_col=3, data_col=5, error_col=6, sep=°,’)

The following commands will read the R; data out of
the file ‘r1.out’ where the columns are separated by the
symbol ‘%’

relax> relax_data.read(‘R1.300°,
le6, ‘rl.out’, sep=‘%’)

‘R1°, 300.1 *

10.2.134 relax_data.temp-

_calibration

Synposis

Specify the per-experiment temperature calibration
method used.

Defaults

relax_data.temp_calibration(ri_id=None, method=None)



10.2. THE LIST OF FUNCTIONS

Keyword arguments

ri_id: The relaxation data ID string.

method: The per-experiment temperature calibration
method.

Description

For the proper measurement of relaxation data,
per-experiment temperature calibration is essential.
This wuser function is not for inputting standard
MeOH /ethylene glycol/etc. calibration of a spectrom-
eter - this temperature setting is of no use when you
are running experiments which pump in large amounts
of power into the probe head.

The R; experiment should be about the same temper-
ature as a HSQC and hence be close to the standard
MeOH /ethylene glycol sepectrometer calibration. How-
ever the Ro CPMG or spin lock and, to a lesser extent,
the NOE pre-saturation pump a lot more power into the
probe head. The power differences can either cause the
temperature in the sample to be too high or too low.
This is unpredictable as the thermometer used by the
VT unit is next to the coils in the probe head and not
inside the NMR sample. So the VT unit tries to con-
trol the temperature inside the probe head rather than
in the NMR sample. However between the thermome-
ter and the sample is the water of the sample, the glass
of the NMR tube, the air gap where the VT unit con-
trols air flow and the outside components of the probe
head protecting the electronics. If the sample, the probe
head or the VT unit is changed, this will have a differ-
ent affect on the per-experiment temperature. The VT
unit responds differently under different conditions and
may sometimes over or under compensate by a couple
of degrees. Therefore each relaxation data set from each
spectrometer requires a per-experiment calibration.

Specifying the per-experiment calibration method is

needed for BMRB data deposition. The currently al-
lowed methods are:

‘methanol’,
‘monoethylene glycol’,

‘no calibration applied’.

Other methods will be accepted if supplied.

10.2.135 relax_data.temp_control

Synposis

Specify the temperature control method used.

237

Defaults

relax_data.temp_control(ri_id=None, method=None)

Keyword arguments

ri_id: The relaxation data ID string.

method: The control method.

Description

For the proper measurement of relaxation data, explicit
temperature control techniques are essential. A number
of factors can cause significant temperature fluctuations
between individual relaxation experiments. This includes
the daily temperature cycle of the room housing the spec-
trometer, different amounts of power for the individual
experiments, . The best methods for eliminating such
problems are single scan interleaving and the application
of off-resonance temperature compensation

The best methods for eliminating such problems are
single scan interleaving and temperature compensation
block. Single scan interleaving is the most powerful tech-
nique for averaging the temperature fluctuations not only
across different experiments, but also across the entire
measurement time. The application of off-resonance tem-
perature compensation blocks at the start of the experi-
ment is useful for the Ry and will normalise the tempera-
ture between the individual experiments, but single scan
or single fid interleaving is nevertheless required for nor-
malising the temperature across the entire measurement.

Specifying the temperature control method is needed for

BMRB data deposition. The currently allowed methods
are:

‘single scan interleaving’,
‘temperature compensation block’,

‘single scan interleaving and temperature
compensation block’,

‘single fid interleaving’,
‘single experiment interleaving’,

‘no temperature control applied’.

10.2.136 relax_data.type

Synposis

Set the type of relaxation data.



238

Defaults

relax_data.type(ri_-id=None, ri_type=None)

Keyword arguments

ri_id: The relaxation data ID string of the data to set
the frequency of.

ri_type: The relaxation data type, i.e. ‘R1’, ‘R2’, or
‘NOE’.
Description

This allows the type associated with the relaxation data
to be either set or reset. This type must be one of ‘R1’,
‘R2’, or ‘NOE’.

10.2.137 relax_data.write

Synposis

Write relaxation data to a file.

Defaults

relax_data.write(ri_id=None, file=None, dir=None, bc=
False, force=False)

Keyword arguments

ri_id: The relaxation data ID string.
file: The name of the file.
dir: The directory name.

bc: A flag which if True will cause the back-calculated
data to be written to the file.

force: A flag which if True will cause the file to be
overwritten.

Description

If no directory name is given, the file will be placed in
the current working directory. The relaxation data ID
string is required for selecting which relaxation data to
write to file.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

10.2.138 relax_fit.relax_time

Synposis

Set the relaxation delay time associated with each spec-
trum.

Defaults

relax_fit.relax_time(time=0.0, spectrum_id=None)

Keyword arguments

time: The time, in seconds, of the relaxation period.

spectrum_id: The spectrum identification string.

Description

Peak intensities should be loaded before calling this user
function via the spectrum.read_intensities user function.
The intensity values will then be associated with a spec-
trum identifier. To associate each spectrum identifier
with a time point in the relaxation curve prior to opti-
misation, this user function should be called.

10.2.139 relax_fit.select_model

Synposis

Select the relaxation curve type.

Defaults

relax_fit.select_model(model="exp’)

Keyword arguments

model: The type of relaxation curve to fit.

Description

The supported relaxation experiments include the de-
fault two parameter exponential fit, selected by setting
the model type to ‘exp’, and the three parameter in-
version recovery experiment in which the peak intensity
limit is a non-zero value, selected by setting the model
to ‘inv’.

The parameters of these two models are



10.2. THE LIST OF FUNCTIONS

‘exp’ — [Rx, 10],

‘“inv’ — [Rx, 10, Iinf].

10.2.140 reset

Synposis

Reinitialise the relax data storage object.

Defaults

reset()

Description

All of the data of the relax data storage object will be
erased and hence relax will return to its initial state.

10.2.141 residue.copy

Synposis

Copy all data associated with a residue.

Defaults

residue.copy(pipe_from=None, res_from=None, pipe_to=
None, res_to=None)

Keyword arguments

pipe_-from: The data pipe containing the residue from
which the data will be copied. This defaults to the cur-
rent data pipe.

res_from: The residue ID string of the residue to copy
the data from.

pipe_to: The data pipe to copy the data to. This de-
faults to the current data pipe.

res_to: The residue ID string of the residue to copy the
data to. If left blank, the new residue will have the same
name as the old.

Description

This will copy all the data associated with the identified
residue to the new, non-existent residue. The new residue
cannot currently exist.

239

Prompt examples

To copy the residue data from residue 1 to the new
residue 2, type:

relax> residue.copy(res_from=‘:1’, res_to=‘:2’)

To copy residue 1 of the molecule ‘01d mol’ to residue 5
of the molecule ‘New mol’, type:

relax> residue.copy(res_from=‘#01d mol:1’,
res_to=‘#New mol:5’)

To copy the residue data of residue 1 from the data pipe
‘ml’ to ‘m2’, assuming the current data pipe is ‘m1’, type:

relax> residue.copy(res_from=‘:1’, pipe_to=‘m2’)

relax> residue.copy(pipe_from=‘ml’, res_from=
€:1’, pipe_to=‘m2’, res_to=‘:1’)

10.2.142 residue.create

Synposis

Create a new residue.

Defaults

residue.create(res_num=None, res_name=None,
mol_name=None)

Keyword arguments

res_.num: The residue number.

res_name: The name of the residue.

mol_name: The name of the molecule to add the
residue to.
Description

Using this, a new sequence can be generated without us-
ing the sequence user functions. However if the sequence
already exists, the new residue will be added to the end
of the residue list (the residue numbers of this list need
not be sequential). The same residue number cannot be
used more than once. A corresponding single spin system
will be created for this residue. The spin system number
and name or additional spin systems can be added later
if desired.



240

Prompt examples

The following sequence of commands will generate the
sequence 1 ALA, 2 GLY, 3 LYS:

relax> residue.create(l, ¢ALA’)
relax> residue.create(2, ‘GLY’)
relax> residue.create(3, ‘LYS’)
10.2.143 residue.delete

Synposis

Delete residues from the current data pipe.

Defaults

residue.delete(res_id=None)

Keyword arguments

res_id: The residue ID string.

Description

This can be used to delete a single or sets of residues.
See the ID string documentation for more information.
If spin system/atom ids are included a RelaxError will
be raised.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] @<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘HO8’.

10.2.144 residue.display

Synposis

Display information about the residue(s).

Defaults

residue.display(res_id=None)

Keyword arguments

res_id: The residue ID string.

Description

This will display the residue data loaded into the current
data pipe.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@ character. Each token can be composed
of multiple elements separated by the ‘,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...1] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘HO8’.




10.2. THE LIST OF FUNCTIONS

10.2.145 residue.name

Synposis

Name the residues.

Defaults

residue.name(res_id=None, name=None, force=False)

Keyword arguments

res_id: The residue ID string corresponding to one or
more residues.

name: The new name.

force: A flag which if True will cause the residue to be
renamed.

Description

This simply allows residues to be named (or renamed).

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] G@<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will rename the se-
quence {1 ALA, 2 GLY, 3 LYS} to {1 XXX, 2 XXX, 3
XXX}

241

relax> residue.name(‘:1’, ‘XXX’, force=True)

relax> residue.name(‘:2’, ‘XXX’, force=True)

relax> residue.name(‘:3’, ‘XXX’, force=True)

Alternatively:
relax> residue.name(‘:1,2,3’, ‘XXX’, force=True)
10.2.146 residue.number

Synposis

Number the residues.

Defaults

residue.number(res_id=None, number=None, force=
False)

Keyword arguments

res_id: The residue ID string corresponding to a single
residue.

number: The new residue number.

force: A flag which if True will cause the residue to be
renumbered.

Description

This simply allows residues to be numbered. The new
number cannot correspond to an existing residue.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] @<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not



242

contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will renumber the
sequence {1 ALA, 2 GLY, 3 LYS} to {101 ALA, 102

GLY, 103 LYS}:
relax> residue.number(¢:1’, 101, force=True)
relax> residue.number(‘:2’, 102, force=True)

relax> residue.number(¢:3’, 103, force=True)

10.2.147 results.display

Synposis

Display the results.

Defaults

results.display()

Description

This will print to screen (STDOUT) the results contained
within the current data pipe.

10.2.148 results.read

Synposis

Read the contents of a relax results file into the relax
data store.

Defaults

results.read(file="results’, dir=None)

Keyword arguments

file: The name of the file to read results from.

dir: The directory where the file is located.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found the file with ‘.bz2’ appended
followed by the file name with ‘.gz’ appended will be
searched for.

10.2.149 results.write

Synposis

Write the results to a file.

Defaults

results.write(file="results’, dir="pipe_name’,
compress_type=1, force=False)

Keyword arguments

file: The name of the file to output results to. The
default is ‘results’. Optionally this can be a file object,
or any object with a write() method.

dir: The directory name.

compress_type: The type of compression to use when
creating the file.

force: A flag which if True will cause the results file to
be overwritten.

Description

This will write the entire contents of the current data
pipe into an XML formatted file. This results file can
then be read back into relax at a later point in time, or
transfered to another machine. This is in contrast to the
state.save user function whereby the entire data store,
including all data pipes, are saved into a similarly XML
formatted file.

To place the results file in the current working direc-
tory in the prompt and scripting modes, leave the direc-
tory unset. If the directory is set to the special name
‘pipe_name’, then the results file will be placed into a
directory with the same name as the current data pipe.

The default behaviour of this function is to compress
the file using bzip2 compression. If the extension ‘.bz2’
is not included in the file name, it will be added. The
compression can, however, be changed to either no com-
pression or gzip compression. This is controlled by the
compression type which can be set to

0 — No compression (no file extension),



10.2. THE LIST OF FUNCTIONS

1 — bzip2 compression (‘.bz2’ file extension),

2 — gzip compression (‘.gz’ file extension).

The complementary read function will automatically
handle the compressed files.

10.2.150 script

Synposis

Execute a relax script.

Defaults

script(file=None, dir=None)

Keyword arguments

file:
data.

The name of the file containing the relaxation

dir: The directory where the file is located.

Description

This will execute a relax or any ordinary Python script.

10.2.151 select.all

Synposis

Select all spins in the current data pipe.

Defaults

select.all()

Description

This will select all spins, irregardless of their current
state.

243

Prompt examples

To select all spins, simply type:

relax> select.all()

10.2.152 select.interatom

Synposis

Select specific interatomic data containers.

Defaults

select.interatom(spin_id1=None, spin_id2=None,
boolean='OR’, change_all=False)

Keyword arguments

spin_idl: The spin ID string of the first spin of the
interatomic data container.

spin_id2: The spin ID string of the second spin of the
interatomic data container.

boolean: The boolean operator specifying how inter-
atomic data containers should be selected.

change_all: A flag specifying if all other interatomic
data containers should be changed.

Description

This is used to select specific interatomic data containers
which store information about spin pairs such as RDCs,
NOEs, dipole-dipole pairs involved in relaxation, etc.
The ‘change all’ flag default is False meaning that all
interatomic data containers currently either selected or
deselected will remain that way. Setting this to True will
cause all interatomic data containers not specified by the
spin ID strings to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.



244

Prompt examples

To select all N-H backbone bond vectors of a protein,
assuming these interatomic data containers have been
already set up, type one of:
relax> select.interatom(‘@N’, ‘@H’)

relax> select.interatom(spin_id1=‘@N’, spin_id2=
‘@H’)

To select all H-H interatomic vectors of a small organic
molecule, type one of:

relax> select.interatom(‘@H*’, ‘@Hx*’)

relax> select.interatom(spin_id1=‘@H*’, spin_id2=
€@H*’)

10.2.153 select.read

Synposis

Select the spins contained in a file.

Defaults

select.read(file=None, dir=None, spin_id_col=None,
mol_name_col=None, res_.num_col=None, res_name_col=
None, spin_num_col=None, spin_name_col=None, sep=
None, spin_id=None, boolean='0OR’, change_all=False)

Keyword arguments

file: The name of the file containing the list of spins to
select.

dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).

spin_name_col: The spin name column (alternative to
the spin_id_col).

sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

boolean: The boolean operator specifying how spins
should be selected.

change_all: A flag specifying if all other spins should
be changed.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Empty lines and lines beginning with a hash are ignored.

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified in the file to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.

Prompt examples

To select all residues listed with residue numbers in the
first column of the file ‘isolated_peaks’, type one of:

relax> select.read(‘isolated_peaks’, res_num_col=
1)

relax> select.read(file=‘isolated_peaks’,
res_num_col=1)

To select the spins in the second column of the relaxation
data file ‘r1.600’ while deselecting all other spins, for
example type:

relax> select.read(‘r1.600’, spin_num col=2,
change_all=True)

relax> select.read(file=‘r1.600’, spin_num_col=2,
change_all=True)




10.2. THE LIST OF FUNCTIONS

10.2.154 select.reverse

Synposis

Reversal of the spin selection for the given spins.

Defaults

select.reverse(spin_id=None)

Keyword arguments

spin_id: The spin ID string.

Description

By supplying the spin ID string, a subset of spins can
have their selection status reversed.

Prompt examples

To select all currently deselected spins and deselect those
which are selected type:

relax> select.reverse()

10.2.155 select.spin

Synposis

Select specific spins.

Defaults

select.spin(spin_id=None, boolean="OR’, change_all=
False)

Keyword arguments

spin_id: The spin ID string.

boolean: The boolean operator specifying how spins
should be selected.

change_all: A flag specifying if all other spins should
be changed.

245

Description

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified by the spin ID string to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 10.1 on page 168.

Prompt examples

To select only glycines and alanines, assuming they have
been loaded with the names GLY and ALA, type one of:

relax> select.spin(spin_id=‘:GLY|:ALA’)

To select residue 5 CYS in addition to the currently se-
lected residues, type one of:

relax> select.spin(‘:5’)
relax> select.spin(‘:5&:CYS?)

relax> select.spin(spin_id=‘:5&:CYS’)

10.2.156 sequence.attach_protons

Synposis

Attach protons to all heteronuclei.

Defaults

sequence.attach_protons()

Description

This can be used to attach protons to all the heteronu-
clei in the current data pipe. For each proton, a spin
container will be created.

Prompt examples

To attach protons, simply type:

relax> sequence.attach_protons()




246

10.2.157 sequence.copy

Synposis

Copy the molecule, residue, and spin sequence data from
one data pipe to another.

Defaults

sequence.copy(pipe_from=None, pipe_-to=None)

Keyword arguments

pipe_from: The name of the data pipe to copy the se-
quence data from.

pipe_to: The name of the data pipe to copy the se-
quence data to.

Description

This will copy the sequence data between data pipes.
The destination data pipe must not contain any sequence
data. If the source and destination pipes are not spec-
ified, then both will default to the current data pipe
(hence providing one is essential).

Prompt examples

To copy the sequence from the data pipe ‘m1’ to the cur-
rent data pipe, type:

relax> sequence.copy(‘mi’)

relax> sequence.copy(pipe_from=‘mi’)

To copy the sequence from the current data pipe to the
data pipe ‘m9’, type:

relax> sequence.copy(pipe_to=‘m9’)

To copy the sequence from the data pipe ‘m1’ to ‘m2’,
type:

relax> sequence.copy(‘ml’, ‘m2’)

relax> sequence.copy(pipe_from=‘mi’, pipe_to=
‘m2’)

10.2.158 sequence.display

Synposis

Display sequences of molecules, residues, and/or spins.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Defaults

sequence.display(sep=None, mol_name_flag=True,
res_num_flag=True, res_name_flag=True, spin_num_flag=
True, spin_name_flag=True)

Keyword arguments

sep: The column separator (the default of None corre-
sponds to white space).

mol_name_flag: A flag which if True will cause the
molecule name column to be shown.

res_num_flag: A flag which if True will cause the residue
number column to be shown.

res_name_flag: A flag which if True will cause the
residue name column to be shown.

spin_num_flag: A flag which if True will cause the spin
number column to be shown.

spin_name_flag: A flag which if True will cause the spin
name column to be shown.

Description

This will print out the sequence information of all loaded
spins in the current data pipe.

10.2.159 sequence.read

Synposis

Read the molecule, residue, and spin sequence from a file.

Defaults

sequence.read(file=None, dir=None, spin_id_col=None,

mol_name_col=None, res_num_col=None, res_name_col=
None, spin_num_col=None, spin_name_col=None, sep=

None, spin_id=None)

Keyword arguments

file: The name of the file containing the sequence data.
dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).



10.2. THE LIST OF FUNCTIONS

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).

spin_name_col: The spin name column (alternative to
the spin_id_col).

sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Prompt examples

The following commands will read protein backbone 15N
sequence data out of a file called ‘seq’ where the residue
numbers and names are in the first and second columns
respectively:

relax> sequence.read(‘seq’)

relax> sequence.read(‘seq’, res_num_col=1,
res_name_col=2)

relax> sequence.read(file=‘seq’, res_num_col=1,
res_name_col=2, sep=None)

The following commands will read the residue sequence
out of the file ‘noe.out’ which also contains the NOE
values:

relax> sequence.read(‘noe.out’)

relax> sequence.read(‘noe.out’, res_num_col=1,
res_name_col=2)

relax> sequence.read(file=‘noe.out’, res_num_col=
1, res_name_col=2)

The following commands will read the sequence out of
the file ‘noe.600.0out’ where the residue numbers are in
the second column, the names are in the sixth column
and the columns are separated by commas:

relax> sequence.read(‘noe.600.out’, res_num_col=
2, res_name_col=6, sep=°,’)

relax> sequence.read(file=‘noe.600.out’,
res_num_col=2, res_name_col=6, sep=°,’)

247

The following commands will read the RNA residues and
atoms (including C2, C5, C6, C8, N1, and N3) from the
file ‘600.NOE’, where the residue number, residue name,
spin number, and spin name are in the first to fourth
columns respectively:

relax> sequence.read(‘500.NOE’, res_num_col=1,
res_name_col=2, spin num col=3, spin_name_col=4)

relax> sequence.read(file=‘500.NOE’, res_num_col=
1, res_name_col=2, spin_num_col=3, spin_name_col=
4)

10.2.160 sequence.write

Synposis

Write the molecule, residue, and spin sequence to a file.

Defaults

sequence.write(file=None, dir=None, sep=None,
mol_name_flag=True, res_num_flag=True, res_name_flag=
True, spin_num_flag=True, spin_name_flag=True, force=
False)

Keyword arguments

file: The name of the file.
dir: The directory name.

sep: The column separator (the default of None corre-
sponds to white space).

mol_name_flag: A flag which if True will cause the
molecule name column to be shown.

res_num_flag: A flag which if True will cause the residue
number column to be shown.

res_.name_flag: A flag which if True will cause the
residue name column to be shown.

spin_num_flag: A flag which if True will cause the spin
number column to be shown.

spin_name_flag: A flag which if True will cause the spin
name column to be shown.

force: A flag which if True will cause the file to be
overwritten.

Description

Write the sequence data to file. If no directory name
is given, the file will be placed in the current working
directory.



248

10.2.161 spectrum.baseplane-

_rmsd

Synposis

Set the baseplane RMSD of a given spin in a spectrum
for error analysis.

Defaults

spectrum.baseplane_rmsd(error=0.0, spectrum_id=None,
spin_id=None)

Keyword arguments

error: The baseplane RMSD error value.
spectrum_id: The spectrum ID string.

spin_id: The spin ID string.

Description

The spectrum ID identifies the spectrum associated with
the error and must correspond to a previously loaded set
of intensities. If the spin ID is unset, then the error value
for all spins will be set to the supplied value.

10.2.162 spectrum.delete

Synposis

Delete the spectral data corresponding to the spectrum
ID string.

Defaults

spectrum.delete(spectrum_id=None)

Keyword arguments

spectrum_id: The unique spectrum ID string.

Description

The spectral data corresponding to the given spectrum
ID string will be removed from the current data pipe.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

To delete the peak height data corresponding to the ID
‘R1 ncycb’, type:

relax> spectrum.delete(‘R1 ncyc5’)

10.2.163 spectrum.error_analysis

Synposis

Perform an error analysis for peak intensities.

Defaults

spectrum.error_analysis()

Description

This user function must only be called after all peak in-
tensities have been loaded and all other necessary spec-
tral information set. This includes the baseplane RMSD
and the number of points used in volume integration,
both of which are only used if spectra have not been
replicated.

Six different types of error analysis are supported de-
pending on whether peak heights or volumes are sup-
plied, whether noise is determined from replicated spec-
tra or the RMSD of the baseplane noise, and whether
all spectra or only a subset have been duplicated. These
are:

Please see Table 10.21 on page 249.

Peak heights with baseplane noise
RMSD

When none of the spectra have been replicated, then the
peak height errors are calculated using the RMSD of the
baseplane noise, the value of which is set by the spec-
trum.baseplane_rmsd() user function. This results in a
different error per peak per spectrum. The standard de-
viation error measure for the peak height, sigma_I, is set
to the RMSD value.

Peak heights with partially replicated
spectra

When spectra are replicated, the variance for a single
spin at a single replicated spectra set is calculated by
the formula

sigma”2 = sum({li - Tav}"2) / (n - 1),



10.2. THE LIST OF FUNCTIONS

249

Table 10.21: The six peak intensity error analysis types.

Int type  Noise source

Error scope

Heights RMSD baseplane

One sigma per peak per spectrum

Heights Partial duplicate + variance averaging  One sigma for all peaks, all spectra
Heights All replicated + variance averaging One sigma per replicated spectra set

Volumes  RMSD baseplane

One sigma per peak per spectrum

Volumes  Partial duplicate + variance averaging  One sigma for all peaks, all spectra
Volumes  All replicated + variance averaging One sigma per replicated spectra set

where sigma”2 is the variance, sigma is the standard de-
viation, n is the size of the replicated spectra set with
i being the corresponding index, Ii is the peak intensity
for spectrum 4, and Tav is the mean over all spectra i.e.
the sum of all peak intensities divided by n.

As the value of n in the above equation is always very low
since normally only a couple of spectra are collected per
replicated spectra set, the variance of all spins is averaged
for a single replicated spectra set. Although this results
in all spins having the same error, the accuracy of the
error estimate is significantly improved.

If there are in addition to the replicated spectra loaded
peak intensities which only consist of a single spectrum,
i.e. not all spectra are replicated, then the variances of
replicated replicated spectra sets will be averaged. This
will be used for the entire experiment so that there will be
only a single error value for all spins and for all spectra.

Peak heights with all spectra repli-
cated

If all spectra are collected in duplicate (triplicate or
higher number of spectra are supported), the each repli-
cated spectra set will have its own error estimate. The
error for a single peak is calculated as when partially
replicated spectra are collected, and these are again av-
eraged to give a single error per replicated spectra set.
However as all replicated spectra sets will have their own
error estimate, variance averaging across all spectra sets
will not be performed.

Peak volumes with baseplane noise
RMSD

The method of error analysis when no spectra have been
replicated and peak volumes are used is highly dependent
on the integration method. Many methods simply sum
the number of points within a fixed region, either a box
or oval object. The number of points used, N, must be
specified by another user function in this class. Then the
error is simply given by the sum of variances:

sigma_vol "2 = sigma_i"2 * N,

where sigma_vol is the standard deviation of the volume,
sigma_i is the standard deviation of a single point as-
sumed to be equal to the RMSD of the baseplane noise,

and N is the total number of points used in the summa-
tion integration method. For a box integration method,
this converts to the Nicholson, Kay, Baldisseri, Arango,
Young, Bax, and Torchia (1992) Biochemistry, 31: 5253-
5263 equation:

sigma_vol = sigma-i * sqrt(n*m),

where n and m are the dimensions of the box.

Note that a number of programs, for example peakint
(http://hugin.ethz.ch/wuthrich /software/xeasy /xeasy_m15.html)
does not use all points within the box. And if the num-

ber N can not be determined, this category of error
analysis is not possible.

Also note that non-point summation methods, for
example when line shape fitting is used to deter-
mine peak volumes, the equations above cannot
be used. Hence again this category of error anal-
ysis cannot be used. This is the case for one
of the three integration methods used by Sparky
(http://www.cgl.ucsf.edu/home/sparky/manual /peaks.html#Integration).
And if fancy techniques are used, for example
as Cara does to deconvolute overlapping peaks
(http://www.cara.ethz.ch/Wiki/Integration), this
again makes this error analysis impossible.

Peak volumes with partially replicated
spectra

When peak volumes are measured by any integra-
tion method and a few of the spectra are repli-
cated, then the intensity errors are calculated identi-
cally as described in the ‘Peak heights with partially
replicated spectra’ section above.

Peak volumes with all spectra repli-
cated

With all spectra replicated and again using any integra-
tion methodology, the intensity errors can be calculated
as described in the ‘Peak heights with all spectra
replicated’ section above.




250

10.2.164 spectrum.integration-

_points

Synposis

Set the number of summed points used in volume inte-
gration of a given spin in a spectrum.

Defaults

spectrum.integration_points(N=None, spectrum_id=
None, spin_id=None)

Keyword arguments

N: The number of points used by the summation vol-
ume integration method.

spectrum_id: The spectrum ID string.

spin_id: Restrict setting the number to certain spins.

Description

For a complete description of which integration methods
and how many points N are used for different integration
techniques, please see the spectrum.error_analysis user
function documentation.

The spectrum ID identifies the spectrum associated with
the value of N and must correspond to a previously
loaded set of intensities. If the spin ID is unset, then
the number of summed points for all spins will be set to
the supplied value.

10.2.165 spectrum.read-

_intensities

Synposis

Read peak intensities from a file.

Defaults

spectrum.read_intensities(file=None, dir=None,
spectrum_id=None, heteronuc='N’, proton="HN’,
int_method="height’, int_col=None, spin_id_col=None,
mol_name_col=None, res_.num_col=None, res_name_col=
None, spin_num_col=None, spin_name_col=None, sep=
None, spin_id=None, ncproc=None)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

file: The name of the file containing the intensity data.
dir: The directory where the file is located.

spectrum_id: The unique spectrum ID string to asso-
ciate with the peak intensity values.

heteronuc: The name of the heteronucleus as specified
in the peak intensity file.

proton: The name of the proton as specified in the peak
intensity file.

int_method: The method by which peaks were inte-
grated.

int_col: The optional column containing the peak in-
tensity data (used by the generic intensity file format, or
if the intensities are in a non-standard column).

spin_id_col: The spin ID string column used by the
generic intensity file format (an alternative to the mol,
res, and spin name and number columns).

mol_name_col: The molecule name column used by the
generic intensity file format (alternative to the spin ID
column).

res_.num_col: The residue number column used by the
generic intensity file format (alternative to the spin ID
column).

res_name_col: The residue name column used by the
generic intensity file format (alternative to the spin ID
column).

spin_num_col: The spin number column used by the
generic intensity file format (alternative to the spin ID
column).

spin_name_col: The spin name column used by the
generic intensity file format (alternative to the spin ID
column).

sep: The column separator used by the generic inten-
sity format (the default is white space).

spin_id: The spin ID string used by the generic inten-
sity file format to restrict the loading of data to certain
spin subsets.

ncproc: The Bruker specific FID intensity scaling fac-
tor.

Description

The peak intensity can either be from peak heights or
peak volumes.

The spectrum ID is a label which is subsequently utilised
by other user functions. If this identifier matches that of
a previously loaded set of intensities, then this indicates
a replicated spectrum.

The heteronucleus and proton should be set respectively
to the name of the heteronucleus and proton in the file.
Only those lines which match these labels will be used.



10.2. THE LIST OF FUNCTIONS

The integration method is required for the subsequent
error analysis. When peak heights are measured, this
should be set to ‘height’. Volume integration methods
are a bit varied and hence two values are accepted. If the
volume integration involves pure point summation, with
no deconvolution algorithms or other methods affecting
peak heights, then the value should be set to ‘point sum’.
All other volume integration methods, e.g. line shape
fitting, the value should be set to ‘other’.

If a series of intensities extracted from Bruker FID files
processed in Topspin or XWinNMR are to be compared,
the ncproc parameter may need to be supplied. This is
because this FID is stored using integer representation
and is scaled using ncproc to avoid numerical truncation
artifacts. If two spectra have significantly different max-
imal intensities, then ncproc will be different for both.
The intensity scaling is binary, i.e. 2**ncproc. There-
fore if spectrum A has an ncproc of 6 and and spectrum
B a value of 7, then a reference intensity in B will be
double that of A. Internally, relax stores the intensities
scaled by 2**ncproc.

File formats

The peak list or intensity file will be automatically de-
termined.

Sparky peak list: The file should be a Sparky peak list
saved after typing the command ‘1t’. The default is to
assume that columns 0, 1, 2, and 3 (15, ond - 3rd - and
4“‘) contain the Sparky assignment, wl, w2, and peak
intensity data respectively. The frequency data w1l and
w2 are ignored while the peak intensity data can either
be the peak height or volume displayed by changing the
window options. If the peak intensity data is not within
column 3, set the integration column to the appropriate
number (column numbering starts from 0 rather than 1).

XEasy peak list: The file should be the saved XEasy
text window output of the list peak entries command,
‘tw’ followed by ‘le’. As the columns are fixed, the peak
intensity column is hardwired to number 10 (the 11*P
column) which contains either the peak height or peak
volume data. Because the columns are fixed, the integra-
tion column number will be ignored.

NMRView: The file should be a NMRView peak list.
The default is to use column 16 (which contains peak
heights) for peak intensities. To use use peak volumes
(or evolumes), int_col must be set to 15.

Generic intensity file: This is a generic format which
can be created by scripting to support non-supported
peak lists. It should contain in the first few columns
enough information to identify the spin. This can in-
clude columns for the molecule name, residue number,
residue name, spin number, and spin name. Alterna-
tively a spin ID string column can be used. The peak
intensities can be placed in another column specified by
the integration column number. Intensities from mul-
tiple spectra can be placed into different columns, and
these can then be specified simultaneously by setting the
integration column value to a list of columns. This list
must be matched by setting the spectrum ID to a list of
the same length. If columns are delimited by a charac-
ter other than whitespace, this can be specified with the
column separator. The spin ID can be used to restrict
the loading to specific spin subsets.

251

Prompt examples

To read the reference and saturated spectra peak
heights from the Sparky formatted files ‘ref.list’ and
‘sat.list’, type:

relax> spectrum.read_intensities(file=‘ref.list’,
spectrum_id=‘ref’)

relax> spectrum.read_intensities(file=‘sat.list’,
spectrum_id=‘sat’)

To read the reference and saturated spectra peak
heights from the XEasy formatted files ‘ref.text’ and
‘sat.text’, type:

relax> spectrum.read_intensities(file=‘ref.text’,
spectrum_id=‘ref’)

relax> spectrum.read_intensities(file=‘sat.text’,
spectrum_id=‘sat’)

10.2.166 spectrum.replicated

Synposis

Specify which spectra are replicates of each other.

Defaults

spectrum.replicated(spectrum_ids=None)

Keyword arguments

spectrum_ids: The list of replicated spectra ID strings.

Description

This is used to identify which of the loaded spectra are
replicates of each other. Specifying the replicates is es-
sential for error analysis if the baseplane RMSD has not
been supplied.

Prompt examples

To specify that the NOE spectra labelled ‘ref1’, ‘ref2’,
and ‘ref3’ are the same spectrum replicated, type one
of:

relax> spectrum.replicated([‘refl’, ‘ref2’,

‘ref3’])

relax> spectrum.replicated(spectrum_ids=[‘refl’,
‘ref2’, ‘ref3’])

To specify that the two Ra spectra *
are the same time point, type:

ncyc2’ and ‘ncyc2b’

relax> spectrum.replicated([‘ncyc2’, ‘ncyc2b’])



252

10.2.167 spin.copy

Synposis

Copy all data associated with a spin.

Defaults

spin.copy(pipe_from=None, spin_from=None, pipe_to=
None, spin_to=None)

Keyword arguments

pipe_from: The data pipe containing the spin from
which the data will be copied. This defaults to the cur-
rent data pipe.

spin_from: The spin identifier string of the spin to copy
the data from.

pipe_to: The data pipe to copy the data to. This de-
faults to the current data pipe.

spin_to: The spin identifier string of the spin to copy
the data to. If left blank, the new spin will have the same
name as the old.

Description

This will copy all the data associated with the identified
spin to the new, non-existent spin. The new spin must
not already exist.

Prompt examples

To copy the spin data from spin 1 to the new spin 2,
type:

relax> spin.copy(spin_from=‘@1’, spin_to=‘02’)

To copy spin 1 of the molecule ‘01d mol’ to spin 5 of the
molecule ‘New mol’, type:

relax> spin.copy(spin_from=‘#01d mol@1l’, spin_to=
‘#New mol@5’)

To copy the spin data of spin 1 from the data pipe ‘m1’
to ‘m2’, assuming the current data pipe is ‘m1’, type:
relax> spin.copy(spin_from=‘@1’, pipe_to=‘m2’)

relax> spin.copy(pipe_from=‘ml’, spin_from=‘Q1’,
pipe_to=‘m2’, spin_to=‘@1’)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

10.2.168 spin.create

Synposis

Create a new spin.

Defaults

spin.create(spin_-name=None, spin_num=None,
res_name=None, res_num=None, mol_name=None)

Keyword arguments

spin_name: The name of the spin.
spin_num: The spin number.
res_.name: The name of the residue to add the spin to.

res_.num: The number of the residue to add the spin
to.

mol_name: The name of the molecule to add the spin
to.

Description

This will add a new spin data container to the relax data
storage object. The same spin number cannot be used
more than once.

Prompt examples

The following sequence of commands will generate the
sequence 1 C4, 2 C9, 3 C15:

relax> spin.create(l, ‘C4’)
relax> spin.create(2, ‘C9’)
relax> spin.create(3, ‘C15’)

10.2.169 spin.create_pseudo

Synposis

Create a spin system representing a pseudo-atom.

Defaults

spin.create_pseudo(spin_name=None, spin_num=None,
res_.id=None, members=None, averaging='linear’)



10.2. THE LIST OF FUNCTIONS

Keyword arguments

spin_name: The name of the pseudo-atom spin.
spin_num: The spin number.

res_id: The molecule and residue ID string identifying
the position to add the pseudo-spin to.

members: A list of the atoms (as spin ID strings) that
the pseudo-atom is composed of.

averaging: The positional averaging technique.

Description

This will create a spin data container representing a num-
ber of pre-existing spin containers as a pseudo-atom. The
optional spin number must not already exist.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘=’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] e<atom_id>[, <atom_id>[, <atom_id>, ...]]1’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘HO8’.

Prompt examples

The following will create the pseudo-atom named ‘Q9’
consisting of the protons ‘@H16’, ‘@H17’, ‘@H18’:

relax> spin.create_pseudo(‘Q9’, members=[‘@H16’,
‘@H17’, ‘@H18’])

253

10.2.170 spin.delete

Synposis

Delete spins.

Defaults

spin.delete(spin_id=None)

Keyword arguments

spin_id: The spin identifier string.

Description

This can be used to delete a single or sets of spins. See
the identification string documentation below for more
information.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘=’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] ©<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’; ‘H2’,
‘H98’.

10.2.171 spin.display
Synposis

Display information about the spin(s).



254

Defaults

spin.display(spin_id=None)

Keyword arguments

spin_id: The spin identification string.

Description

This will display the spin data loaded into the current
data pipe.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ‘,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

10.2.172 spin.element

Synposis

Set the element type of the spin.

Defaults

spin.element(element=None, spin_id=None, force=False)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

element: The ITUPAC element name.

spin_id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the element to be
changed.

Description

This allows the element type of the spins to be set.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ‘,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...1] e<atom_id>[, <atom_id>[, <atom_id>, ...]]1’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘HO8’.

Prompt examples

The set all spins of residue 1 to be carbons, type one of:
relax> spin.element(‘@1’, ‘C’, force=True)

relax> spin.element(spin_id=‘@1’, element=°‘C’,
force=True)

10.2.173 spin.isotope
Synposis

Set the spins’ nuclear isotope type.



10.2. THE LIST OF FUNCTIONS

Defaults

spin.isotope(isotope=None, spin_id=None, force=False)

Keyword arguments

isotope: The nuclear isotope name in the AE notation -
the atomic mass number followed by the element symbol.

spin_id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the nuclear iso-
tope to be changed.

Description

This allows the nuclear isotope type of the spins to be
set.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ¢,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘=’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] @<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’; ‘H2’,
‘H98’.

Prompt examples

The set all spins of residue 1 to the ‘13C’ nuclear isotope,

type one of:
relax> spin.isotope(‘@1’, “13C’, force=True)

relax> spin.isotope(spin_id=‘@1’, isotope=°‘13C’,
force=True)

255

10.2.174 spin.name

Synposis

Name the spins.

Defaults

spin.name(name=None, spin_id=None, force=False)

Keyword arguments

name: The new name.

spin_id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the spin to be
renamed.

Description

This simply allows spins to be named (or renamed).
Spin naming often essential. For example when reading
Sparky peak list files, then the spin name must match
that in the file.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] e<atom_id>[, <atom_id>[, <atom_id>, ...]]’,

where the token elements are ‘<mol_name>’; the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘# character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.



256

Prompt examples

The following sequence of commands will rename the se-
quence {1 C1, 2 C2, 3 C3} to {1 C11, 2 C12, 3 C13}:

relax> spin.name(‘@1’, ‘C11’, force=True)
relax> spin.name(‘@2’, ¢C12’, force=True)

relax> spin.name(‘@3’, ‘C13’, force=True)

10.2.175 spin.number

Synposis

Number the spins.

Defaults

spin.number(spin_id=None, number=None, force=False)

Keyword arguments

spin_id: The spin identification string corresponding to
a single spin.

number: The new spin number.

force: A flag which if True will cause the spin to be
renumbered.

Description

This simply allows spins to be numbered. The new num-
ber cannot correspond to an existing spin number.

Spin ID string documentation

The identification string is composed of three compo-
nents: the molecule id token beginning with the ‘#’
character, the residue id token beginning with the ‘:’
character, and the atom or spin system id token begin-
ning with the ‘@’ character. Each token can be composed
of multiple elements separated by the ,’ character and
each individual element can either be a number (which
must be an integer, in string format), a name, or a range
of numbers separated by the ‘-’ character. Negative
numbers are supported. The full id string specification
is ‘#<mol_name> :<res_id>[, <res_id>[, <res_id>,
...]] @<atom_id>[, <atom_id>[, <atom_id>, ...]1]1’,

where the token elements are ‘<mol_name>’, the name of
the molecule, ‘<res_id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom_id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

contain the ‘#’ character then all molecules will match
the string.

Regular expression can be used to select spins. For ex-

ample the string ‘@Hx’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will renumber the
sequence {1 C1, 2 C2, 3 C3} to {-1 C1, -2 C2, -3 C3}:

relax> spin.number(‘@1’, -1, force=True)
relax> spin.number(‘@2’, -2, force=True)
relax> spin.number(‘@3’, -3, force=True)

10.2.176 state.load

Synposis

Load a saved program state.

Defaults

state.load(state="state.bz2’, dir=None, force=False)

Keyword arguments

state: The file name, which can be a string or a file
descriptor object, of a saved program state.

dir:
found.

The name of the directory in which the file is

force: A boolean flag which if True will cause the cur-
rent program state to be overwritten.

Description

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found, this function will search for the
file name with ‘.bz2’ appended followed by the file name
with ‘.gz’ appended.

Both the XML and pickled saved state formats are sup-
ported and automatically determined. For more ad-
vanced users, file descriptor objects are also supported.
If the force flag is set to True, then the relax data store
will be reset prior to the loading of the saved state.



10.2. THE LIST OF FUNCTIONS

Prompt examples

The following commands will load the state saved in the
file ‘save’.

relax> state.load(‘save’)

relax> state.load(state=‘save’)

Use one of the following commands to load the state
saved in the bzip2 compressed file ‘save.bz2’:

relax> state.load(‘save’)

relax> state.load(state=‘save’)

relax> state.load(‘save.bz2’)

relax> state.load(state=‘save.bz2’, force=True)

10.2.177 state.save

Synposis

Save the program state.

Defaults

state.save(state="'state.bz2’, dir=None, compress_type=1,
force=False, pickle=False)

Keyword arguments

state: The file name, which can be a string or a file
descriptor object, to save the current program state in.

dir: The name of the directory in which to place the
file.

compress_type: The type of compression to use when
creating the file.

force: A boolean flag which if set to True will cause
the file to be overwritten.

pickle: A flag which if true will cause the state file to
be a pickled object rather than the default XML format.

Description

This will place the program state - the relax data store
- into a file for later reloading or reference. The default
format is an XML formatted file, but this can be changed
to a Python pickled object through the pickle flag. Note,
the pickle format is not human readable and often is not
compatible with newer relax versions.

The default behaviour of this function is to compress
the file using bzip2 compression. If the extension ‘.bz2’
is not included in the file name, it will be added. The
compression can, however, be changed to either no com-
pression or gzip compression. This is controlled by the
compression type which can be set to

257

0 — No compression (no file extension).
1 — bzip2 compression (‘.bz2’ file extension).

2 — gzip compression (‘.gz’ file extension).

Prompt examples

The following commands will save the current program
state, uncompressed, into the file ‘save’:

relax> state.save(‘save’, compress_type=0)

relax> state.save(state=‘save’, compress_type=0)

The following commands will save the current program
state into the bzip2 compressed file ‘save.bz2’:

relax> state.save(‘save’)
relax> state.save(state=‘save’)
relax> state.save(‘save.bz2’)

relax> state.save(state=‘save.bz2’)

If the file ‘save’ already exists, the following commands
will save the current program state by overwriting the
file.

relax> state.save(‘save’, force=True)

relax> state.save(state=‘save’, force=True)

10.2.178 structure.add_atom

Synposis

Add an atom.

Defaults

structure.add_atom(atom_name=None, res_name=None,
res_-num=None, pos=[None, None, None], element=None,
atom_num=None, chain_id=None, segment_id=None,
pdb_record=None)

Keyword arguments

atom_name: The atom name.

res_.name: The residue name.

res_.num: The residue number.

pos: The atomic coordinates.

element: The element name.
atom_num: The optional atom number.

chain_id: The optional chain ID string.



258

segment_id: The optional segment ID string.

pdb_record: The optional PDB record name, e.g. ‘ATOM’
or ‘HETATM'.

Description

This allows atoms to be added to the internal structural
object.

10.2.179 structure.connect_atom

Synposis

Connect two atoms.

Defaults

structure.connect_atom(index1=None, index2=None)

Keyword arguments

index1: The global index of the first atom.

index2: The global index of the second atom.

Description

This allows atoms to be connected in the internal struc-
tural object. The global index is normally equal to the
PDB atom number minus 1.

10.2.180 structure.create_diff-

_tensor_pdb
Synposis

Create a PDB file to represent the diffusion tensor.

Defaults

structure.create_diff_tensor_pdb(scale=1.8e-06, file=
‘tensor.pdb’, dir=None, force=False)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Keyword arguments

scale: Value for scaling the diffusion rates.
file: The name of the PDB file.
dir: The directory to place the file into.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

This creates a PDB file containing an artificial geometric
structure to represent the diffusion tensor. A structure
must have previously been read into relax. The diffu-
sion tensor is represented by an ellipsoidal, spheroidal,
or spherical geometric object with its origin located at
the centre of mass (of the selected residues). This dif-
fusion tensor PDB file can subsequently read into any
molecular viewer.

There are four different types of residue within the PDB.
The centre of mass of the selected residues is represented
as a single carbon atom of the residue ‘COM’. The ellip-
soidal geometric shape consists of numerous H atoms of
the residue ‘TNS’. The axes of the tensor, when defined,
are presented as the residue ‘AXS’ and consist of carbon
atoms: one at the centre of mass and one at the end
of each eigenvector. Finally, if Monte Carlo simulations
were run and the diffusion tensor parameters were al-
lowed to vary then there will be multiple ‘SIM’ residues,
one for each simulation. These are essentially the same as
the ‘AXS’ residue, representing the axes of the simulated
tensors, and they will appear as a distribution.

As the Brownian rotational diffusion tensor is a measure
of the rate of rotation about different axes - the larger the
geometric object, the faster the diffusion of a molecule.
For example the diffusion tensor of a water molecule is
much larger than that of a macromolecule.

The effective global correlation time experienced by an
XH bond vector, not to be confused with the Lipari and
Szabo parameter 7_e, will be approximately proportional
to the component of the diffusion tensor parallel to it.
The approximation is not exact due to the multiexpo-
nential form of the correlation function of Brownian ro-
tational diffusion. If an XH bond vector is parallel to the
longest axis of the tensor, it will be unaffected by rota-
tions about that axis, which are the fastest rotations of
the molecule, and therefore its effective global correlation
time will be maximal.

To set the size of the diffusion tensor within the PDB
frame the unit vectors used to generate the geometric ob-
ject are first multiplied by the diffusion tensor (which has
the units of inverse seconds) then by the scaling factor
(which has the units of second Aand has the default value
of 1.8e-6 s.Angstrom). Therefore the rotational diffusion
rate per Ais equal the inverse of the scale value (which
defaults to 5.56e5 s”-1.Angstrom”-1). Using the default
scaling value for spherical diffusion, the correspondence
between global correlation time, ©;5, diffusion rate, and
the radius of the sphere for a number of discrete cases
will be:

Please see Table 10.22 on page 259.



10.2. THE LIST OF FUNCTIONS

259

Table 10.22: Diffusion tensor PDB representation sizes using the default scaling for differ-

ent diffusion tensors

Tm (n8)  ®iso (s°-1)  Radius (A)
1 1.67e8 300
5.56e7 100
10 1.67e7 30
30 5.56e6 10

The scaling value has been fixed to facilitate comparisons
within or between publications, but can be changed to
vary the size of the tensor geometric object if necessary.
Reporting the rotational diffusion rate per Awithin figure
legends would be useful.

To create the tensor PDB representation, a number of
algorithms are utilised. Firstly the centre of mass is cal-
culated for the selected residues and is represented in the
PDB by a C atom. Then the axes of the diffusion are cal-
culated, as unit vectors scaled to the appropriate length
(multiplied by the eigenvalue Dz, Dy, ., D), D1, or
Diso as well as the scale value), and a C atom placed at
the position of this vector plus the centre of mass. Finally
a uniform distribution of vectors on a sphere is generated
using spherical coordinates. By incrementing the polar
angle using an arccos distribution, a radial array of vec-
tors representing latitude are created while incrementing
the azimuthal angle evenly creates the longitudinal vec-
tors. These unit vectors, which are distributed within the
PDB frame and are of 1 Ain length, are first rotated into
the diffusion frame using a rotation matrix (the spherical
diffusion tensor is not rotated). Then they are multiplied
by the diffusion tensor matrix to extend the vector out
to the correct length, and finally multiplied by the scale
value so that the vectors reasonably superimpose onto
the macromolecular structure. The last set of algorithms
place all this information into a PDB file. The distribu-
tion of vectors are represented by H atoms and are all
connected using PDB CONECT records. Each H atom
is connected to its two neighbours on the both the longi-
tude and latitude. This creates a geometric PDB object
with longitudinal and latitudinal lines.

10.2.181 structure.create_vector-

_dist

Synposis

Create a PDB file representation of the distribution of
XH bond vectors.

Defaults

structure.create_vector_dist(length=2e-09, file="XH_dist.
pdb’, dir=None, symmetry=True, force=False)

Keyword arguments

length: The length of the vectors in the PDB represen-
tation (meters).

file: The name of the PDB file.
dir: The directory to place the file into.

symmetry: A flag which if True will create a second
chain with reversed XH bond orientations.

force: A flag which if True will overwrite the file if it
already exists.

Description

This creates a PDB file containing an artificial vectors,
the length of which default to 20 A. A structure must
have previously been read into relax. The origin of the
vector distribution is located at the centre of mass (of
the selected residues). This vector distribution PDB file
can subsequently be read into any molecular viewer.

Because of the symmetry of the diffusion tensor revers-
ing the orientation of the XH bond vector has no effect.
Therefore by setting the symmetry flag two chains ‘A’
and ‘B’ will be added to the PDB file whereby chain ‘B’
is chain ‘A’ with the XH bonds reversed.

10.2.182 structure.delete

Synposis

Delete all structural information.

Defaults

structure.delete()



260

Description

This will delete all the structural information from the
current data pipe. All spin and sequence information
loaded from these structures will be preserved - this only
affects the structural data.

Prompt examples

Simply type:

relax> structure.delete()

10.2.183 structure.displacement

Synposis

Determine the rotational and translational displacement
between a set of models.

Defaults

structure.displacement(model_from=None, model_to=
None, atom_id=None, centroid=None)

Keyword arguments

model_from: The optional model number for the start-
ing position of the displacement.

model_to: The optional model number for the ending
position of the displacement.

atom_id: The atom identification string.

centroid: The alternative position of the centroid.

Description

This user function allows the rotational and translational
displacement between two models of the same structure
to be calculated. The information will be printed out in
various formats and held in the relax data store. This
is directional, so there is a starting and ending position
for each displacement. If the starting and ending models
are not specified, then the displacements in all directions
between all models will be calculated.

The atom ID, which uses the same notation as the spin
ID strings, can be used to restrict the displacement cal-
culation to certain molecules, residues, or atoms. This is
useful if studying domain motions, secondary structure
rearrangements, amino acid side chain rotations, etc.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the motion. The allows, for example, a

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

pivot of a rotational domain motion to be specified. This
is not a formally correct algorithm, all translations will
be zero, but does give an indication to the amplitude of
the pivoting angle.

Prompt examples

To determine the rotational and translational displace-
ments between all sets of models, type:

relax> structure.displacement ()

To determine the displacement from model 5 to all other
models, type:

relax> structure.displacement (model_from=5)

To determine the displacement of all models to model 5,
type:

relax> structure.displacement (model_to=5)

To determine the displacement of model 2 to model 3,
type one of:

relax> structure.displacement(2, 3)

relax> structure.displacement (model_from=2,
model_to=3)

10.2.184 structure.find_pivot

Synposis

Find the pivot point of the motion of a set of structures.

Defaults

structure.find_pivot(models=None, atom_id=None,
init_pos=None)

Keyword arguments

models: The list of models to use.
atom_id: The atom identification string.

init_pos: The initial position of the pivot.

Description

This is used to find pivot point of motion between a set
of structural models. If the list of models is not supplied,
then all models will be used.

The atom ID, which uses the same notation as the spin
ID strings, can be used to restrict the search to certain
molecules, residues, or atoms. For example to only use
backbone heavy atoms in a protein, use the atom ID of



10.2. THE LIST OF FUNCTIONS

‘@N,C,CA,0’, assuming those are the names of the atoms
from the structural file.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the superimposition. The allows, for
example, the superimposition about a pivot point.

10.2.185 structure.get_pos

Synposis

Extract the atomic positions from the loaded structures
for the given spins.

Defaults

structure.get_pos(spin_id=None, ave_pos=True)

Keyword arguments

spin_id: The spin identification string.

ave_pos: A flag specifying if the position of the atom
is to be averaged across models.

Description

This allows the atomic positions of the spins to be ex-
tracted from the loaded structures. This is automati-
cally performed by the structure.load_spins() user func-
tion, but if the sequence information is generated in other
ways, this user function allows the structural information
to be obtained.

If averaging the atomic positions, then average position
of all models will be loaded into the spin container. Oth-
erwise the positions from all models will be loaded sepa-
rately.

Prompt examples

For a model-free backbone amide nitrogen analysis
whereby the N spins have already been created, to obtain
the backbone N positions from the file ‘1F3Y.pdb’ (which
is a single protein), type the following two user functions:

relax> structure.read_pdb(‘1F3Y.pdb’)

relax> structure.get_pos(spin_id=‘@N’)

261

10.2.186 structure.load_spins

Synposis

Load spins from the structure into the relax data store.

Defaults

structure.load_spins(spin_id=None, ave_pos=True)

Keyword arguments

spin_id: The spin identification string for the selective
loading of certain spins into the relax data store.

ave_pos: A flag specifying if the position of the atom
is to be averaged across models.

Description

This allows a sequence to be generated within the re-
lax data store using the atomic information from the
structure already associated with this data pipe. The
spin ID string is used to select which molecules, which
residues, and which atoms will be recognised as spin sys-
tems within relax. If the spin ID is left unspecified, then
all molecules, residues, and atoms will be placed within
the data store (and all atoms will be treated as spins).

If averaging the atomic positions, then average position
of all models will be loaded into the spin container. Oth-
erwise the positions from all models will be loaded sepa-
rately.

Prompt examples

For a model-free backbone amide nitrogen analysis,
to load just the backbone N sequence from the file
‘1F3Y.pdb’ (which is a single protein), type the follow-
ing two user functions:

relax> structure.read_pdb(‘1F3Y.pdb’)

relax> structure.load_spins(spin_id=‘@N’)

For an RNA analysis of adenine C8 and C2, guanine C8
and N1, cytidine C5 and C6, and uracil N3, C5, and C6,

type the following series of commands (assuming that the
PDB file with this atom naming has already been read):

relax> structure.load_spins(spin_id=":A@C8")

relax> structure.load_spins(spin_id=":AQ@C2")
relax> structure.load_spins(spin_id=":G@C8")
relax> structure.load_spins(spin_id=":GON1")
relax> structure.load_spins(spin_id=":C@C5")
relax> structure.load_spins(spin_id=":C@C6")
relax> structure.load_spins(spin_id=":UGN3")



262

relax> structure.load_spins(spin_id=":U@C5")

relax> structure.load_spins(spin_id=":U@C6")

Alternatively using some Python programming:

relax> for id in [":A@C8", ":A@C2", ":G@C8",
":GeN1", ":CeCs", ":CeCe", ":U@N3", ":Ue@C5"
":UQC6"] :

relax> structure.load_spins(spin_id=id)

10.2.187 structure.read_pdb

Synposis

Reading structures from PDB files.

Defaults

structure.read_pdb(file=None, dir=None, read_mol=
None, set_mol_name=None, read_model=None,
set_model_num=None, parser='‘internal’)

Keyword arguments

file: The name of the PDB file.
dir: The directory where the file is located.

read_mol: If set, only the given molecule(s) will be read.
The molecules are determined differently by the different
parsers, but are numbered consecutively from 1. If unset,
then all molecules will be loaded. By providing a list of
numbers such as [1, 2], multiple molecules will be read.

set_mol_name: Set the names of the read molecules. If
unset, then the molecules will be automatically labelled
based on the file name or other information. This can
either be a single name or a list of names.

read_model: If set, only the given model number(s)
from the PDB file will be read. This can be a single
number or list of numbers.

set_model_num: Set the model numbers of the loaded
molecules. If unset, then the PDB model numbers will
be preserved if they exist. This can be a single number
or list of numbers.

parser: The PDB parser used to read the file.

Description

The reading of PDB files into relax is quite a flexible pro-
cedure allowing for both models, defined as an ensemble
of the same molecule but with different atomic positions,
and different molecules within the same model. One of
more molecules can exist in one or more models. The

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

flexibility allows PDB models to be converted into differ-
ent molecules and different PDB files loaded as the same
molecule but as different models.

A few different PDB parsers can be used to read the
structural data. The choice of which to use depends on
whether your PDB file is supported by that reader. These
are selected by setting the parser to one of:

‘internal’ — A fast PDB parser built into relax.

‘scientific’ — The Scientific Python PDB parser.

In a PDB file, the models are specified by the MODEL
PDB record. All the supported PDB readers in relax
recognise this. The molecule level is quite different be-
tween the Scientific Python and internal readers. For
how Scientific Python defines molecules, please see its
documentation. The internal reader is far simpler as it
defines molecules using the TER PDB record. In both
cases, the molecules will be numbered consecutively from
1.

Setting the molecule name allows the molecule within
the PDB (within one model) to have a custom name. If
not set, then the molecules will be named after the file
name, with the molecule number appended if more than
one exists.

Note that relax will complain if it cannot work out what
to do.

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found, this function will search for the
file name with ‘.bz2’" appended followed by the file name
with ‘.gz’ appended.

Prompt examples

To load all structures from the PDB file ‘test.pdb’ in the
directory ‘~/pdb’, including all models and all molecules,
type one of:

relax> structure.read_pdb(‘test.pdb’, ‘~/pdb’)

relax> structure.read_pdb(file=‘test.pdb’, dir=
‘pdb’)

To load the 10*" model from the file ‘test.pdb’ using
the Scientific Python PDB parser and naming it ‘CaM’,
use one of:

relax> structure.read_pdb(‘test.pdb’, read model=
10, set_mol name=‘CaM’, parser=‘scientific’)

relax> structure.read_pdb(file=‘test.pdb’,
read_model=10, set_mol_name=‘CaM’, parser=
‘scientific’)

To load models 1 and 5 from the file ‘test.pdb’ as two
different structures of the same model, type one of:

relax> structure.read_pdb(‘test.pdb’, read model=
[1, 5], set_model_num=[1, 1])



10.2. THE LIST OF FUNCTIONS

relax> structure.read_pdb(‘test.pdb’,
set_mol_name=[‘CaM_1’, ‘CaM_2’], read_model=[1,
5], set_model_num=[1, 1])

To load the files
‘lactose_MCMM4_S1_2.pdb’,
and ‘lactose_MCMM4_S1_4.pdb’

following sequence of commands:

‘lactose_MCMM4_S1_1.pdb’,
‘lactose_MCMM4_S1_3.pdb’
as models, type the

relax> structure.read_pdb(‘lactose_MCMM4_S1_1.
pdb’, set_mol name=‘lactose_MCMM4_S1’,
set_model_num=1)

relax> structure.read_pdb(‘lactose_MCMM4_S1_2.
pdb’, set_mol name=‘lactose_MCMM4_S1’,
set_model_num=2)

relax> structure.read_pdb(‘lactose_MCMM4_S1_3.
pdb’, set_mol_name=‘lactose_MCMM4_S1’,
set_model_num=3)

relax> structure.read_pdb(‘lactose_MCMM4_S1_4.
pdb’, set_mol_name=‘lactose_MCMM4_S1’,
set_model_num=4)

10.2.188 structure.read xyz

Synposis

Reading structures from XYZ files.

Defaults

structure.read_xyz(file=None, dir=None, read_mol=None,

set_mol_name=None, read_model=None, set_model_num=
None)

Keyword arguments

file: The name of the XYZ file.
dir: The directory where the file is located.

read_mol: If set, only the given molecule(s) will be read.
The molecules are determined differently by the different
parsers, but are numbered consecutively from 1. If unset,
then all molecules will be loaded. By providing a list of
numbers such as [1, 2], multiple molecules will be read.

set_mol_name: Set the names of the read molecules. If
unset, then the molecules will be automatically labelled
based on the file name or other information. This can
either be a single name or a list of names.

read_model: If set, only the given model number(s)
from the PDB file will be read. This can be a single
number or list of numbers.

set_model_num: Set the model numbers of the loaded
molecules. If unset, then the PDB model numbers will
be preserved if they exist. This can be a single number
or list of numbers.

263

Description

The XY7Z files with different models, which defined as an
ensemble of the same molecule but with different atomic
positions, can be read into relax. If there are several
molecules in one xyz file, please separate them into differ-
ent files and then load them individually. Loading differ-
ent models and different molecules is controlled by spec-
ifying the molecule number read, setting the molecule
names, specifying which model to read, and setting the
model numbers.

The setting of molecule names is used to name the
molecules within the XYZ (within one model). If not set,
then the molecules will be named after the file name, with
the molecule number appended if more than one exists.

Note that relax will complain if it cannot work out what
to do.

Prompt examples

To load all structures from the XYZ file ‘test.xyz’ in the
directory ‘~/xyz’, including all models and all molecules,
type one of:

relax> structure.read_xyz(‘test.xyz’, ‘"/xyz’)

relax> structure.read_xyz(file=‘test.xyz’, dir=
[3 XyZ b )

To load the 10*" model from the file ‘test.xyz’ and nam-
ing it ‘CaM’, use one of:

relax> structure.read_xyz(‘test.xyz’, readmodel=
10, set_mol_name=‘CaM’)

relax> structure.read_xyz(file=‘test.xyz’,
read_model=10, set_mol_name=‘CaM’)

To load models 1 and 5 from the file ‘test.xyz’ as two
different structures of the same model, type one of:

relax> structure.read_xyz(‘test.xyz’, readmodel=
[1, 5], set_model num=[1, 1])

relax> structure.read_xyz(‘test.xyz’,
set_mol_name=[‘CaM_1’, ‘CaM_2’], read_model=[1,
5], set_model_num=[1, 1])

To load the files ‘test_1.xyz’, ‘test_2.xyz’, ‘test_3.xyz’
and ‘test_4.xyz’ as models, type the following sequence
of commands:

relax> structure.read_xyz(‘test_l.xyz’,
set_mol_name=‘test_1’, set_model_num=1)

relax> structure.read_xyz(‘test_2.xyz’,
set_mol_name=‘test_2’, set_model_num=2)

relax> structure.read_xyz(‘test_3.xyz’,
set_mol_name=‘test_3’, set_model_num=3)

relax> structure.read_xyz(‘test_4.xyz’,
set_mol_name=‘test_4’, set_model_num=4)




264

10.2.189 structure.rotate

Synposis

Rotate the internal structural object about the given ori-
gin by the rotation matrix.

Defaults

structure.rotate(R=array([[ 1., 0., 0.], [ 0., 1., 0.], [ O, O.,
1.]]), origin=None, model=None, atom_id=None)

Keyword arguments

R: The rotation matrix in forwards rotation notation.
origin: The origin or pivot of the rotation.

model: The model to rotate (which if not set will cause
all models to be rotated).

atom_id: The atom identification string.

Description

This is used to rotate the internal structural data by
the given rotation matrix. If the origin is supplied, then
this will act as the pivot of the rotation. Otherwise, all
structural data will be rotated about the point [0, 0, 0].
The rotation can be restricted to one specific model.

10.2.190 structure.superimpose

Synposis

Superimpose a set of models of the same structure.

Defaults

structure.superimpose(models=None, method="'fit to
mean’, atom_id=None, centroid=None)

Keyword arguments

models: The list of models to superimpose.
method: The superimposition method.
atom_id: The atom identification string.

centroid: The alternative position of the centroid.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This allows a set of models of the same structure to be
superimposed to each other. Two superimposition meth-
ods are currently supported:

‘fit to mean’ — All models are fit to the mean struc-
ture. This is the default and most accurate
method for an ensemble description. It is an iter-
ative method which first calculates a mean struc-
ture and then fits each model to the mean struc-
ture using the Kabsch algorithm. This is repeated
until convergence.

‘fit to first’ — This is quicker but is not as accurate
for an ensemble description. The Kabsch algo-
rithm is used to rotate and translate each model
to be superimposed onto the first model.

If the list of models is not supplied, then all models will
be superimposed.

The atom ID, which uses the same notation as the spin
ID strings, can be used to restrict the superimpose cal-
culation to certain molecules, residues, or atoms. For
example to only superimpose backbone heavy atoms in a
protein, use the atom ID of ‘@N,C,CA,Q’, assuming those
are the names of the atoms from the structural file.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the superimposition. The allows, for
example, the superimposition about a pivot point.

Prompt examples

To superimpose all sets of models, type one of:
relax> structure.superimpose()

relax> structure.superimpose(method=‘fit to
mean’)

To superimpose the models 1, 2, 3, 5 onto model 4, type:

relax> structure.superimpose(models=[4, 1, 2, 3,
5], method=‘fit to first’)

To superimpose an ensemble of protein structures using
only the backbone heavy atoms, type one of:

relax> structure.superimpose(atom_id=‘@N,C,CA,0’)

relax> structure.superimpose(method=‘fit to
mean’, atom_id=‘@N,C,CA,0’)

To superimpose model 2 onto model 3 using backbone
heavy atoms, type one of:

relax> structure.superimpose([3, 2], ‘fit to
first’, ‘@N,C,CA,0’%)

relax> structure.superimpose(models=[3, 2],
method=‘fit to first’, atom_id=‘@N,C,CA,0’)




10.2. THE LIST OF FUNCTIONS

10.2.191 structure.translate

Synposis

Laterally displace the internal structural object by the
translation vector.

Defaults

structure.translate(T=None, model=None, atom_id=
None)

Keyword arguments

T: The translation vector.

model: The model to translate (which if not set will
cause all models to be translate).

atom_id: The atom identification string.

Description

This is used to translate the internal structural data by
the given translation vector. The translation can be re-
stricted to one specific model.

10.2.192 structure.write_pdb

Synposis

Writing structures to a PDB file.

Defaults

structure.write_pdb(file=None, dir=None, model_num=
None, compress_type=0, force=False)

Keyword arguments

file: The name of the PDB file.
dir: The directory where the file is located.

model_num: Restrict the writing of structural data to
a single model in the PDB file.

compress_type: The type of compression to use when
creating the file.

force: A flag which if set to True will cause any pre-
existing files to be overwritten.

265

Description

This will write all of the structural data loaded in the
current data pipe to be converted to the PDB format
and written to file. Specifying the model number allows
single models to be output.

The default behaviour of this function is to not compress
the file. The compression can, however, be changed to
either bzip2 or gzip compression. If the ‘.bz2’ or ‘.gz’
extension is not included in the file name, it will be
added. This behaviour is controlled by the compression
type which can be set to

0 — No compression (no file extension).
1 — bzip2 compression (‘.bz2’ file extension).

2 — gzip compression (‘.gz’ file extension).

Prompt examples

To write all models and molecules to the PDB file
‘ensemble.pdb’ within the directory ‘~/pdb’, type one of:

relax> structure.write_pdb(‘ensemble.pdb’,
‘~/pdb’)

relax> structure.write_pdb(file=‘ensemble.pdb’,
dir=‘pdb’)

To write model number 3 into the new file ‘test.pdb’,

use one of:

relax> structure.write_pdb(‘test.pdb’, model_num=
3)

relax> structure.write_pdb(file=‘test.pdb’,
model num=3)

10.2.193 sys_info

Synposis

Display all system information relating to this version of
relax.

Defaults

sys_info()

Description

This will display all of the relax, Python, python package
and hardware information currently being used by relax.
This is useful for seeing if all packages are up to date and
if the correct software versions are being used. It is also
very useful information for reporting relax bugs.



266

10.2.194 temperature

Synposis

Specify the temperature of an experiment.

Defaults

temperature(id=None, temp=None)

Keyword arguments

id: The experiment identification string.

temp: The temperature of the experiment in Kalvin.

Description

This allows the temperature of an experiment to be set.
This value should be in Kalvin. In certain analyses,
for example those which use pseudocontact shift data,
knowledge of the temperature is essential. For the pseu-
docontact shift, the experiment ID string should match
one of the alignment IDs.

10.2.195 wvalue.copy

Synposis
Copy spin specific data values from one data pipe to an-

other.

Defaults

value.copy(pipe_from=None, pipe_.to=None, param=
None)

Keyword arguments

pipe_from: The name of the pipe to copy from.
pipe_to: The name of the pipe to copy to.

param: The parameter to copy. Only one parameter
may be selected.

Description

If this is used to change values of previously minimised
parameters, then the minimisation statistics (chi-squared
value, iteration count, function count, gradient count,
and Hessian count) will be reset.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2” and ‘s2’.

¢~? — Match the start of the string.

‘¢> — Match the end of the string. For example,
‘~[Ss]2$’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.

¢.” — Match any character.

‘x*’> — Match the character ‘x’ any number of times, for
example ‘x’ will match, as will ‘xxxxx’.

¢.*’ — Match any sequence of characters of any length.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.

Model-free set details

Setting a parameter value may have no effect depending
on which model-free model is chosen, for example if S?
values and S? values are set but the run corresponds to
model-free model ‘m4’ then, because these data values are
not parameters of the model, they will have no effect.

Note that the Re; values are scaled quadratically with
field strength and should be supplied as a field strength

independent value. Use the following formula to get the
correct value:

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

7 is in the namespace of relax, ie just type ‘z’.

frequency is the proton frequency corresponding
to the data.



10.2. THE LIST OF FUNCTIONS

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Reduced spectral density mapping set
detalils

In reduced spectral density mapping, three values must
be set prior to the calculation of spectral density values:
the bond length, CSA, and heteronucleus type.

Reduced spectral density mapping
data type string matching patterns

Please see Table 10.8 on page 183.

Consistency testing set details

In consistency testing, only four values can be set, the
bond length, CSA, angle Theta (‘orientation’) and cor-
relation time values. These must be set prior to the cal-
culation of consistency functions.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.

Relaxation curve fitting set details

Only three parameters can be set, the relaxation rate
(Rx), the initial intensity (I0), and the intensity at in-
finity (Iinf). Setting the parameter Iinf has no effect if
the chosen model is that of the exponential curve which
decays to zero.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.

N-state model set details

Setting parameters for the N-state model is a little dif-
ferent from the other type of analyses as each state has
a set of parameters with the same names as the other
states. To set the parameters for a specific state ¢ (rang-
ing from O for the first to N-1 for the last, the number c
should be added to the end of the parameter name. So
the Euler angle « of the third state is specified using the
string ‘gamma2’.

267

N-state model data type string match-
ing patterns

Please see Table 10.23 on page 268.

The objects corresponding to the object names are lists
(or arrays) with each element corrsponding to each state.

Prompt examples

To copy the CSA values from the data pipe ‘m1’ to ‘m2’,
type:

relax> value.copy(‘ml’, ‘m2’, ‘csa’)

10.2.196 value.display

Synposis

Display spin specific data values.

Defaults

value.display(param=None)

Keyword arguments

param: The parameter to display. Only one parameter
may be selected.

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2” and ‘s2’.

¢~? — Match the start of the string.

‘¢’ — Match the end of the string. For example,
‘~[Ss]2$’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.

¢.” — Match any character.

3 b

x*” — Match the character ‘x” any number of times, for

example ‘x’ will match, as will ‘xxxxx’.



268 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS
Table 10.23: N-state model data type string matching patterns.
Data type Object name Patterns
Probabilities 'probs’ p0’, 'pl’, 'p2’, ..., 'pN’
Euler angle « ’alpha’ ’alpha0’, ’alphal’, ...
Euler angle "beta’ ’betal’, ’betal’, ...
Euler angle ~ ‘gamma’ ‘'gammal’, ‘gammal’, ...
Bond length r’ ’*r$’ or ’[Bblond[ -_|[Ll]ength’
Heteronucleus type  ’heteronuc_type’ ’"[Hh]eteronucleus$’
Proton type ’proton_type’ " [Pp|roton$’
‘. — Match any sequence of characters of any length. Prompt examples

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Reduced spectral density mapping
data type string matching patterns
Please see Table 10.8 on page 183.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.

NOE calculation data type string
matching patterns

Please see Table 10.6 on page 183.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.

N-state model data type string match-
ing patterns

Please see Table 10.23 on page 268.

The objects corresponding to the object names are lists
(or arrays) with each element corrsponding to each state.

To show all CSA values, type:

relax> value.display(‘csa’)

10.2.197 wvalue.read

Synposis

Read spin specific data values from a file.

Defaults

value.read(param=None, scaling=1.0, file=None, dir=
None, spin_id_col=None, mol_name_col=None,
res_num_col=None, res_name_col=None, spin_num_col=
None, spin_name_col=None, data_col=None, error_col=
None, sep=None, spin_id=None)

Keyword arguments

param: The parameter. Only one parameter may be
selected.

scaling: The factor to scale parameters by.
file: The name of the file containing the values.
dir: The directory where the file is located.

spin_id_col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol_name_col: The molecule name column (alternative
to the spin_id_col).

res_num_col: The residue number column (alternative
to the spin_id_col).

res_name_col: The residue name column (alternative to
the spin_id_col).

spin_num_col: The spin number column (alternative to
the spin_id_col).



10.2. THE LIST OF FUNCTIONS

spin_name_col: The spin name column (alternative to
the spin_id_col).

data_col: The RDC data column.
error_col: The experimental error column.
sep: The column separator (the default is white space).

spin_id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

If this is used to change values of previously minimised
parameters, then the minimisation statistics (chi-squared
value, iteration count, function count, gradient count,
and Hessian count) will be reset.

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘52’ and ‘s2’.

¢~? — Match the start of the string.

‘¢$> — Match the end of the string. For example,
‘= [8s]12%’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.
3 . 9

— Match any character.

3 ’

x*” — Match the character ‘x’ any number of times, for
example ‘x” will match, as will ‘xxxxx’.
¢.¥”> — Match any sequence of characters of any length.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.

269

Model-free set details

Setting a parameter value may have no effect depending
on which model-free model is chosen, for example if S?

values and S2 values are set but the run corresponds to
model-free model ‘m4’ then, because these data values are
not parameters of the model, they will have no effect.

Note that the Rey, values are scaled quadratically with
field strength and should be supplied as a field strength

independent value. Use the following formula to get the
correct value:

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

7 is in the namespace of relax, ie just type ‘m’.

frequency is the proton frequency corresponding
to the data.

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Reduced spectral density mapping set
detalils

In reduced spectral density mapping, three values must
be set prior to the calculation of spectral density values:
the bond length, CSA, and heteronucleus type.

Reduced spectral density mapping
data type string matching patterns

Please see Table 10.8 on page 183.

Consistency testing set details

In consistency testing, only four values can be set, the
bond length, CSA, angle Theta (‘orientation’) and cor-
relation time values. These must be set prior to the cal-
culation of consistency functions.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.



270

Relaxation curve fitting set details

Only three parameters can be set, the relaxation rate
(Rx), the initial intensity (I0), and the intensity at in-
finity (Iinf). Setting the parameter Iinf has no effect if
the chosen model is that of the exponential curve which
decays to zero.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.

N-state model set details

Setting parameters for the N-state model is a little dif-
ferent from the other type of analyses as each state has
a set of parameters with the same names as the other
states. To set the parameters for a specific state ¢ (rang-
ing from O for the first to N-1 for the last, the number ¢
should be added to the end of the parameter name. So
the Euler angle « of the third state is specified using the
string ‘gamma2’.

N-state model data type string match-
ing patterns

Please see Table 10.23 on page 268.

The objects corresponding to the object names are lists
(or arrays) with each element corrsponding to each state.

Prompt examples

To load 15N CSA values from the file ‘csa_values’ in
the directory ‘data’, where spins are only identified by
residue name and number, type one of the following:

relax> value.read(‘csa’, ‘data/csa_value’,

spin_id=‘@N’)

relax> value.read(‘csa’, ‘csa_value’, dir=‘data’,

spin_id=‘@N’)

relax> value.read(param=‘csa’, file=‘csa_value’,
dir=‘data’, res_num_col=1, res_name_col=2,
data_col=3, error_col=4, spin_id=‘@N’)

10.2.198 wvalue.set

Synposis

Set spin specific data values.

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Defaults

value.set(val=None, param=None, spin_id=None)

Keyword arguments

val: The value(s).
param: The parameter(s).

spin_id: The spin ID string to restrict value setting to.

Description

If this function is used to change values of previously
minimised results, then the minimisation statistics (chi-
squared value, iteration count, function count, gradient
count, and Hessian count) will be reset to None.

The value can be None, a single value, or an array of val-
ues while the parameter can be None, a string, or array
of strings. The choice of which combination determines
the behaviour of this function. The following table de-
scribes what occurs in each instance. In these columns,
‘None’ corresponds to None, ‘1’ corresponds to either a
single value or single string, and ‘n’ corresponds to either
an array of values or an array of strings.

Please see Table 10.24 on page 271.

Spin identification

If the spin ID is left unset, then this will be applied to all
spins. If the data is global non-spin specific data, such as
diffusion tensor parameters, supplying the spin identifier
will terminate the program with an error.

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2” and ‘s2’.

¢~? — Match the start of the string.

‘¢> — Match the end of the string. For example,
¢~ [8s]12%’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.

¢.” — Match any character.



10.2. THE LIST OF FUNCTIONS

271

Table 10.24: The value and parameter combination options for the value.set user function.

Value Param  Description

None  None This case is used to set the model parameters prior to minimisation or calculation. The model
parameters are set to the default values.

1 None Invalid combination.

n None This case is used to set the model parameters prior to minimisation or calculation. The length
of the val array must be equal to the number of model parameters. The parameters will be
set to the corresponding number.

None 1 The parameter matching the string will be set to the default value.

1 1 The parameter matching the string will be set to the supplied number.

n 1 Invalid combination.

None n Each parameter matching the strings will be set to the default values.

1 n Each parameter matching the strings will be set to the supplied number.

n n Each parameter matching the strings will be set to the corresponding number. Both arrays
must be of equal length.

‘x*¥”> — Match the character ‘x’ any number of times, for Model-free default values
example ‘x’ will match, as will ‘xxxxx’.
¢.¥”> — Match any sequence of characters of any length. Please see Table 10.25 on page 272.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.

Model-free set details

Setting a parameter value may have no effect depending
on which model-free model is chosen, for example if SJ%

values and S? values are set but the run corresponds to
model-free model ‘m4’ then, because these data values are
not parameters of the model, they will have no effect.

Note that the Re, values are scaled quadratically with
field strength and should be supplied as a field strength

independent value. Use the following formula to get the
correct value:

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

7 is in the namespace of relax, ie just type ‘m’.

frequency is the proton frequency corresponding
to the data.

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Diffusion tensor set details

If the diffusion tensor has not been setup, use the more
powerful function ‘diffusion_tensor.init’ to initialise
the tensor parameters. This function cannot be used to
initialise a diffusion tensor.

The units of the parameters are:

Inverse seconds for 7y,.
Seconds for D0, Da, Dz, Dy, Dz, D), D1
Unitless for D,.4ti0 and D,..

Radians for all angles (o, 3, v, 0, ¢).

When setting a diffusion tensor parameter, the residue
number has no effect. As the internal parameters of
spherical diffusion are {tm}, spheroidal diffusion are {7,
Da, 0, ¢}, and ellipsoidal diffusion are {7m, Da, Dr, a, B,
~}, supplying geometric parameters must be done in the
following way. If a single geometric parameter is sup-
plied, it must be one of 7, Diso, Da, Dr, OF Drgtio-
For the parameters D, D1, Dy, Dy, and Dy, it is not
possible to determine how to use the currently set val-
ues together with the supplied value to calculate the new
internal parameters. For spheroidal diffusion, when sup-
plying multiple geometric parameters, the set must be-
long to one of

{Tm; Da},
{Disoy Qa},
{Tmy 97'atio}7

D, 2.},



272

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 10.25: Model-free default values.

Data type Object name Value

Local 7m, ’local_tm’ 10 * 1e-9
Order parameters S2, 3?7 and SS2 ’s27, 7827, ’s2s” 0.8
Correlation time 7e te’ 100 * le-12
Correlation time 7 tf’ 10 * le-12
Correlation time 75 ts’ 1000 * le-12
Chemical exchange relaxation rex’ 0.0

CSA ‘csa’ -172 * 1le-6

{©i507 Qratio}7

where either 6, ¢, or both orientational parameters can
be additionally supplied. For ellipsoidal diffusion, again
when supplying multiple geometric parameters, the set
must belong to one of

{Tmy 9117 97‘}7
{Disoy Day QT}7

{917 ®y7 92}7

where any number of the orientational parameters, «, 3,
or v can be additionally supplied.

Diffusion tensor
matching patterns

parameter string

Please see Table 10.3 on page 176.

Diffusion tensor parameter default
values

Please see Table 10.26 on page 273.

Reduced spectral density mapping set

details

In reduced spectral density mapping, three values must
be set prior to the calculation of spectral density values:
the bond length, CSA, and heteronucleus type.

Reduced spectral density mapping
data type string matching patterns

Please see Table 10.8 on page 183.

Reduced spectral density mapping de-
fault values

These default
‘physical_constants.py’.

values are found in the file

Please see Table 10.27 on page 273.

Consistency testing set details

In consistency testing, only four values can be set, the
bond length, CSA, angle Theta (‘orientation’) and cor-
relation time values. These must be set prior to the cal-
culation of consistency functions.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.

Consistency testing default values

These default
‘physical_constants.py’.

values are found in the file

Please see Table 10.28 on page 273.

Relaxation curve fitting set details

Only three parameters can be set, the relaxation rate
(Rx), the initial intensity (I0), and the intensity at in-
finity (Iinf). Setting the parameter Iinf has no effect if
the chosen model is that of the exponential curve which
decays to zero.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.



10.2. THE LIST OF FUNCTIONS

273

Table 10.26: Diffusion tensor parameter default values.

Data type

Object name

Value

tm
Diso
Da

Dr

Dx

Dy

Dz
Dpar
Dper
Dratio
alpha
beta
gamma
theta
phi

7tm7
'Diso’
7Da1
7Dr7
7DX1

7D b
7DZ7
"Dpar’
"Dper’
"Dratio’
"alpha’
"beta’
‘'gamma’
"theta’
7phi7

10 * 1e-9
1.666 * le7
0.0

0.0

1.666 * le7
1.666 * le7
1.666 * le7
1.666 * le7
1.666 * le7
1.0

0.0

0.0

0.0

0.0

0.0

Table 10.27: Reduced spectral density mapping default values.

Data type

Object name

Value

CSA

‘csa’

-172 * 1e-6

Table 10.28: Consistency testing default values.

Data type

Object name

Value

Bond length

CSA
Heteronucleus type
Angle 0

Proton type
Correlation time

)

‘csa’

1.02 * 1e-10
-172 * 1le-6

’heteronuc_type’  ’15N’

’proton_type’
’orientation’
e

TH
15.7
13 * 1e-9




274

Relaxation curve fitting default values

These values are completely arbitrary as peak heights
(or volumes) are extremely variable and the Rx value is
a compensation for both the R; and Rg values.

Please see Table 10.29 on page 275.

N-state model set details

Setting parameters for the N-state model is a little dif-
ferent from the other type of analyses as each state has
a set of parameters with the same names as the other
states. To set the parameters for a specific state ¢ (rang-
ing from O for the first to N-1 for the last, the number ¢
should be added to the end of the parameter name. So
the Euler angle « of the third state is specified using the
string ‘gamma?2’.

N-state model data type string match-
ing patterns

Please see Table 10.23 on page 268.

The objects corresponding to the object names are lists
(or arrays) with each element corrsponding to each state.

N-state model default values

Please see Table 10.30 on page 275.

In this table, N is the total number of states and c is
the index of a given state ranging from 0 to N-1. The
default probabilities are all set to be equal whereas the
angles are given a range of values so that no 2 states are
equal at the start of optimisation.

Note that setting the probability for state N will do noth-
ing as it is equal to one minus all the other probabilities.

Prompt examples

To set the parameter values for the current data pipe to
the default values, for all spins, type:

relax> value.set()
To set the parameter values of residue 10, which is in the
current model-free data pipe ‘m4’ and has the parameters

{5'2, Te, Rea}, the following can be used. Req term is
the value for the first given field strength.

relax> value.set([0.97, 2.048*1e-9, 0.149],
spin_id=¢:10")

relax> value.set(val=[0.97, 2.048*1e-9, 0.149],
spin_id=°:10")

To set the CSA value of all spins to the default value,
type:

relax> value.set(param=‘csa’)

CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

To set the CSA value of all spins to -172 ppm, type:
relax> value.set(-172 * le-6, ‘csa’)

relax> value.set(val=-172 * le-6, param=‘csa’)

To set the NH bond length of all spins to 1.02 A, type:

relax> value.set(1.02 * 1le-10, ‘r’)

relax> value.set(val=1.02 * 1e-10, param=°‘r’)

To set both the bond length and the CSA value to the
default values, type:

relax> value.set(param=[‘r’, ‘csa’])

To set both 7y and 75 to 100 ps, type:

relax> value.set(100e-12, [‘tf’, ‘ts’])

relax> value.set(val=100e-12, param=[‘tf’, ‘ts’])

To set the S2 and 7o parameter values of residue 126, Ca
spins to 0.56 and 13 ps, type:

relax> value.set([0.56, 13e-12], [‘s2’, ‘te’],

€:1260Ca’)

relax> value.set(val=[0.56, 13e-12], param=[‘s2’,
‘te’], spin_id=‘:126@Ca’)

relax> value.set(val=[0.56, 13e-12], param=[‘s2’,
‘te’], spin_id=‘:1260Ca’)

10.2.199 value.write

Synposis

Write spin specific data values to a file.

Defaults

value.write(param=None, file=None, dir=None, bc=
False, force=False)

Keyword arguments

param: The parameter.
file: The name of the file.
dir: The directory name.

bc: A flag which if True will cause the back calculated
values to be written to file rather than the actual data.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

The values corresponding to the given parameter will be
written to file.



10.2. THE LIST OF FUNCTIONS

275

Table 10.29: Relaxation curve fitting default values.

Data type Object name  Value
Relaxation rate rx’ 8.0
Initial intensity 10’ 10000.0
Intensity at infinity  ’iinf’ 0.0

Table 10.30: N-state model default values.

Data type Object name

Value

Probabilities
Euler angle «
Euler angle
Euler angle

7p07’ 71)177 7p27’ . 7pN7
’alpha0’, ’alphal’, ...
'betal’, 'betal’, ...
‘'gammal’, ’'gammal’, ...

1/N

(c+1) * 7 / (N+1)
(c+1) * 7 / (N+1)
(c+1) * 7 / (N+1)

Regular expression

The python function ‘match’, which uses regular expres-
sion, is used to determine which data type to set values
to, therefore various data_type strings can be used to se-
lect the same data type. Patterns used for matching for
specific data types are listed below.

This is a short description of python regular expression,
for more information see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[1° — A sequence or set of characters to match to a
single character. For example, ‘[sS]2’ will match
both ‘S2” and ‘s2’.

¢~? — Match the start of the string.

‘¢$> — Match the end of the string. For example,
‘= [8s]12%’ will match ‘s2’ but not ‘S2f’ or ‘s2s’.
3 . 9

— Match any character.

3 ’

x*” — Match the character ‘x’ any number of times, for
example ‘x” will match, as will ‘xxxxx’.
¢.¥> — Match any sequence of characters of any length.

Importantly, do not supply a string for the data type
containing regular expression. The regular expression
is implemented so that various strings can be supplied
which all match the same data type.

Model-free data type string matching
patterns

Please see Table 10.4 on page 177.

Reduced spectral density mapping
data type string matching patterns

Please see Table 10.8 on page 183.

Consistency testing data type string
matching patterns

Please see Table 10.9 on page 183.

NOE calculation data type string
matching patterns

Please see Table 10.6 on page 183.

Relaxation curve fitting data type
string matching patterns

Please see Table 10.7 on page 183.

N-state model data type string match-
ing patterns

Please see Table 10.23 on page 268.

The objects corresponding to the object names are lists
(or arrays) with each element corrsponding to each state.

Prompt examples

To write the CSA values to the file ‘csa.txt’, type one
of:



276 CHAPTER 10. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> value.write(‘csa’, ‘csa.txt’)

relax> value.write(param=‘csa’, file=‘csa.txt’)

To write the NOE values to the file ‘noe’, type one of:
relax> value.write(‘noe’, ‘noe.out’)

relax> value.write(param=‘noe’, file=‘noe.out’)
relax> value.write(param=‘noe’, file=‘noe.out’)

relax> value.write(param=‘noe’, file=‘noe.out’,
force=True)

10.2.200 vmd.view

Synposis

View the structures loaded into the relax data store using
VMD.

Defaults

vmd.view()

Description

This will launch VMD with all of the structures loaded
into the relax data store.

Prompt examples

relax> vmd.view()



Chapter 11

Licence

11.1 Copying, modification, sublicencing, and distribution
of relax

To ensure that the program relax, including all future versions, will remain legally available
for perpetuity to anyone who wishes to use the program the code has been released under
the GNU General Public Licence. The freedom of relax is guaranteed by the GPL. This
is a licence which has been very carefully crafted to protect both the developers of the
program as well as the users by means of copyright law. If the licence is violated by
improper copying, modification, sublicencing, or distribution then the licence terminates —
hence the violator is copying, modifying, sublicencing, or distributing the program illegally
in full violation of copyright law. For a better understanding of the protections afforded
by the GPL the licence is reprinted in whole within the next section.

11.2 The GPL

The following is a verbatim copy of the GNU General Public Licence. A text version is
available in the relax ‘docs’ directory within the file ‘COPYING'.

277



278 CHAPTER 11. LICENCE

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program—to
make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any other
work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such problems arise substantially



11.2. THE GPL 279

in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such
as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact copy. The
resulting work is called a “modified version” of the earlier work or a work “based
on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the
Program.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright
law, except executing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer network,
with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent
that it includes a convenient and prominently visible feature that (1) displays an
appropriate copyright notice, and (2) tells the user that there is no warranty for the
work (except to the extent that warranties are provided), that licensees may convey
the work under this License, and how to view a copy of this License. If the interface
presents a list of user commands or options, such as a menu, a prominent item in
the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular



280

CHAPTER 11. LICENCE

programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use
of the work with that Major Component, or to implement a Standard Interface for
which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source
code needed to generate, install, and (for an executable work) run the object code
and to modify the work, including scripts to control those activities. However, it
does not include the work’s System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code
for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate au-
tomatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License
explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License acknowledges your rights
of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must
do so exclusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty



11.2. THE GPL 281

adopted on 20 December 1996, or similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention
of technological measures to the extent such circumvention is effected by exercising
rights under this License with respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice; keep intact all notices stating that this License
and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it
from the Program, in the form of source code under the terms of section 4, provided
that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.

(b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies
the requirement in section 4 to “keep intact all notices”.

(¢) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.



282 CHAPTER 11. LICENCE

You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the software in the product that
is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

(¢) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an
offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it
is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the
object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible
personal property which is normally used for personal, family, or household purposes,
or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses,
unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, au-
thorization keys, or other information required to install and execute modified ver-



11.2. THE GPL 283

sions of a covered work in that User Product from a modified version of its Corre-
sponding Source. The information must suffice to ensure that the continued func-
tioning of the modified object code is in no case prevented or interfered with solely
because modification has been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network or violates the
rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord
with this section must be in a format that is publicly documented (and with an
implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that
are applicable to the entire Program shall be treated as though they were included
in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License
without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attribu-
tions in that material or in the Appropriate Legal Notices displayed by works
containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different
from the original version; or



284

CHAPTER 11. LICENCE

(d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

(e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by any-
one who conveys the material (or modified versions of it) with contractual as-
sumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it,
contains a notice stating that it is governed by this License along with a term that
is a further restriction, you may remove that term. If a license document contains a
further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in
the relevant source files, a statement of the additional terms that apply to those files,
or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements apply
either way.

Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void, and
will automatically terminate your rights under this License (including any patent
licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this
is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your rights
have been terminated and not permanently reinstated, you do not qualify to receive
new licenses for the same material under section 10.

Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence
of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate



11.2. THE GPL 285

10.

11.

or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate
your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organiza-
tions. If propagation of a covered work results from an entity transaction, each party
to that transaction who receives a copy of the work also receives whatever licenses
to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty,
or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled
by the contributor, whether already acquired or hereafter acquired, that would be
infringed by some manner, permitted by this License, of making, using, or selling
its contributor version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version.

In the following three paragraphs, a “patent license” is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Cor-
responding Source of the work is not available for anyone to copy, free of charge
and under the terms of this License, through a publicly available network server or



286

12.

13.

14.

CHAPTER 11. LICENCE

other readily accessible means, then you must either (1) cause the Corresponding
Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with
the requirements of this License, to extend the patent license to downstream recipi-
ents. “Knowingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you
grant is automatically extended to all recipients of the covered work and works based
on it.

A patent license is “discriminatory” if it does not include within the scope of its
coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or
more of the rights that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement with a third party that
is in the business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted,
prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license
or other defenses to infringement that may otherwise be available to you under
applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obliga-
tions, then as a consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying from those to
whom you convey the Program, the only way you could satisfy both those terms and
this License would be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.



11.2. THE GPL 287

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of
your choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be
given local legal effect according to their terms, reviewing courts shall apply local law
that most closely approximates an absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption of liability accompanies a copy
of the Program in return for a fee.

END OF TERMS AND CONDITIONS



288

CHAPTER 11. LICENCE

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively state the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when
it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c¢’ for details.

The hypothetical commands show w and show c¢ should show the appropriate parts
of the General Public License. Of course, your program’s commands might be dif-
ferent; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/why-not-1lgpl.html.



Bibliography

Abragam, A. (1961). The Principles of Nuclear Magnetism. Clarendon Press, Oxford.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood prin-
ciple. In: Petrov, B. N. and Csaki, F. (eds.): Proceedings of the Second International
Symposium on Information Theory. Budapest, pages 267-281, Akademia Kiado.

Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W., and Bax, A. (1992). Backbone dynamics
of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR
spectroscopy: the central helix is flexible. Biochemistry, 31(23), 5269-5278.

Bieri, M., dAuvergne, E., and Gooley, P. (2011). relaxgui: a new software for fast and
simple nmr relaxation data analysis and calculation of ps-ns and s motion of proteins.
J. Biomol. NMR, 50, 147-155. 10.1007/s10858-011-9509-1.

Bloembergen, N., Purcell, E. M., and Pound, R. V. (1948). Relaxation effects in nuclear
magnetic resonance absorption. Phys. Rev., 73(7), 679-712.

Broyden, C. G. (1970). The Convergence of a Class of Double-rank Minimization Algo-
rithms 1. General Considerations. J. Inst. Maths. Applics., 6(1), 76-90.

Briischweiler, R., Liao, X., and Wright, P. E. (1995). Long-range motional restrictions
in a multidomain zinc-finger protein from anisotropic tumbling. Science, 268(5212),
886-889.

Butterwick, J. A., Loria, P. J., Astrof, N. S., Kroenke, C. D., Cole, R., Rance, M., and
Palmer, 3rd, A. G. (2004). Multiple time scale backbone dynamics of homologous
thermophilic and mesophilic ribonuclease HI enzymes. J. Mol. Biol., 339(4), 855-871.

Chen, J., Brooks, 3rd, C. L., and Wright, P. E. (2004). Model-free analysis of protein
dynamics: assessment of accuracy and model selection protocols based on molecular
dynamics simulation. J. Biomol. NMR, 29(3), 243-257.

Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A. M. (1990).
Deviations from the simple 2-parameter model-free approach to the interpretation of N-
15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc., 112(12), 4989-4991.

d’Auvergne, E. J. (2006). Protein dynamics: a study of the model-free analysis of NMR
relaxation data. PhD thesis, Biochemistry and Molecular Biology, University of Mel-
bourne. http://eprints.infodiv.unimelb.edu.au/archive/00002799/.

d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in the model-free
analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.

289



290 BIBLIOGRAPHY

d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step
in the model-free dynamic analysis of NMR relaxation data. .J. Biomol. NMR, 35(2),
117-135.

d’Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. 3(7), 483-494.

d’Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models I.
Minimisation algorithms and their performance within the model-free and Brownian
rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-119.

d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic models II.
A new methodology for the dual optimisation of the model-free parameters and the
Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133.

Einstein, A. (1905). iiber die von der molekularkinetischen theorie der warme geforderte
bewegung von in ruhenden fliissigkeiten suspendierten teilchen (the motion of elements
suspended in static liquids as claimed in the molecular kinetic theory of heat). Ann.
Physik, 17(8), 549-560.

Erdelyi, M., d’Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C. (2011).
Dynamics of the Glycosidic Bond: Conformational Space of Lactose. Chemistry-A
European Journal, 17(34), 9368-9376.

Farrow, N. A., Zhang, O. W., Szabo, A., Torchia, D. A., and Kay, L. E. (1995). Spectral
density-function mapping using N-15 relaxation data exclusively. J. Biomol. NMR, 6(2),
153-162.

Favro, L. D. (1960). Theory of the rotational brownian motion of a free rigid body. Phys.
Rev., 119(1), 53-62.

Fletcher, R. (1970). A new approach to variable metric algorithms. 13(3), 317-322.

Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients.
7(2), 149-154.

Fushman, D., Cahill, S., and Cowburn, D. (1997). The main-chain dynamics of the dy-
namin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with
monomer /dimer equilibration. J. Mol. Biol., 266(1), 173-194.

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Optimization. Academic
Press.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.
Math. Comp., 24(109), 23-26.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems. J. Res. Natn. Bur. Stand., 49(6), 409-436.

Horne, J., d’Auvergne, E., Coles, M., Velkov, T., Chin, Y., Charman, W., Prankerd, R.,
Gooley, P., and Scanlon, M. (2007). Probing the flexibility of the DsbA oxidoreductase
from Vibrio cholerae—a 15N - 1H heteronuclear NMR relaxation analysis of oxidized and
reduced forms of DsbA. J. Mol. Biol., 371(3), 703-716.



BIBLIOGRAPHY 291

Kay, L. E., Torchia, D. A., and Bax, A. (1989). Backbone dynamics of proteins as studied
by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal
nuclease. Biochemistry, 28(23), 8972-8979.

Korzhnev, D. M., Billeter, M., Arseniev, A. S., and Orekhov, V. Y. (2001). NMR studies
of Brownian tumbling and internal motions in proteins. Prog. NMR Spectrosc., 38(3),
197-266.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Stat.,
22(1), 79-86.

Lee, L. K., Rance, M., Chazin, W. J., and Palmer, A. G. (1997). Rotational diffusion
anisotropy of proteins from simultaneous analysis of N-15 and C-13(alpha) nuclear spin
relaxation. J. Biomol. NMR, 9(3), 287-298.

Lefevre, J., Dayie, K., Peng, J., and Wagner, G. (1996). Internal mobility in the partially
folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H
spectral density functions. Biochemistry, 35(8), 2674-2686.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2, 164—168.

Linhart, H. and Zucchini, W. (1986). Model Selection. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, Inc., New York, NY, USA.

Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules 1. Theory and range of validity. J.
Am. Chem. Soc., 104(17), 4546-4559.

Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules I1. Analysis of experimental results.

J. Am. Chem. Soc., 104(17), 4559-4570.

Mandel, A. M., Akke, M., and Palmer, 3rd, A. G. (1995). Backbone dynamics of es-
cherichia coli ribonuclease HI: correlations with structure and function in an active
enzyme. J. Mol. Biol., 246(1), 144-163.

Marquardt, D. W. (1963). An algorithm for least squares estimation of non-linear param-
eters. SIAM J., 11, 431-441.

Moré, J. J. and Thuente, D. J. (1994). Line search algorithms with guaranteed sufficient
decrease. ACM Trans. Maths. Softw., 20(3), 286-307.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer Series in Opera-
tions Research. Springer-Verlag, New York.

Orekhov, V. Y., Korzhnev, D. M., Diercks, T., Kessler, H., and Arseniev, A. S. (1999a).
H-1-N-15 NMR dynamic study of an isolated alpha-helical peptide (1-36)- bacteri-
orhodopsin reveals the equilibrium helix-coil transitions. J. Biomol. NMR, 14(4), 345-
356.

Orekhov, V. Y., Korzhnev, D. M., Pervushin, K. V., Hoffmann, E., and Arseniev, A. S.
(1999b). Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation
and self-diffusion measurements. J. Biomol. Struct. Dyn., 17(1), 157-174.



292 BIBLIOGRAPHY

Orekhov, V. Y., Pervushin, K. V., Korzhnev, D. M., and Arseniev, A. S. (1995). Backbone
dynamics of (1-71)bacterioopsin and (1-36)bacterioopsin studied by 2-dimensional H-1-
N-15 NMR-spectroscopy. J. Biomol. NMR, 6(2), 113-122.

Perrin, F. (1934). Mouvement Brownien d’un ellipsoide (I). Dispersion diéletrique pour
des molécules ellipsoidales. J. Phys. Radium, 5, 497-511.

Perrin, F. (1936). Mouvement Brownien d'un ellipsoide (II). Rotation libre et
dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J.
Phys. Radium, 7, 1-11.

Polak, E. and Ribiere, G. (1969). Note sur la convergence de méthodes de directions
conjuguées. Revue Francaise d’Informatique et de Recherche Opérationnelle, 16, 35—43.

Schurr, J. M., Babcock, H. P., and Fujimoto, B. S. (1994). A test of the model-free
formulas. Effects of anisotropic rotational diffusion and dimerization. J. Magn. Reson.
B, 105(3), 211-224.

Schwarz, G. (1978). Estimating dimension of a model. Ann. Stat., 6(2), 461-464.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization.
Math. Comp., 24(111), 647-656.

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale
optimization. SIAM J. Numer. Anal., 20(3), 626-637.

Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z., Rocha,
R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unexpected stereoselectivity
in a michael addition. Chemistry-A European Journal, 17(6), 1811-1817.

Tjandra, N., Wingfield, P., Stahl, S., and Bax, A. (1996). Anisotropic rotational diffusion of
perdeuterated HIV protease from N-15 NMR relaxation measurements at two magnetic.
J. Biomol. NMR, 8(3), 273-284.

Woessner, D. E. (1962). Nuclear spin relaxation in ellipsoids undergoing rotational brow-
nian motion. J. Chem. Phys., 37(3), 647-654.

Zhuravleva, A. V., Korzhnev, D. M., Kupce, E., Arseniev, A. S., Billeter, M., and Orekhov,
V. Y. (2004). Gated electron transfers and electron pathways in azurin: a NMR dynamic
study at multiple fields and temperatures. J. Mol. Biol., 342(5), 1599-1611.

Zucchini, W. (2000). An Introduction to Model Selection. J. Math. Psychol., 44(1), 41-61.



Index

angles, 156, 157, 158, 158, 168-170, 176—
178, 214, 216, 257, 258, 265, 267—
270, 272
API documentation, 135, 145
argument, 6
keyword, 6

bond length, 186, 188, 189, 265, 267, 270,
272
branches, 142
bug, 24, 149
design, 24
search, 25
bug report, 138
bug tracker, 17, 18, 24-26, 138, 141, 145

C module compilation, 18, 144
camel case, 135
chemical exchange, 186, 264, 267, 269
chi-squared, 46, 46, 47, 51, 55, 66, 163, 221,
231
chi-squared gradient, 55
chi-squared Hessian, 55
clean up, 145
commit access, 139
commit log, 139, 140
compression, 240, 241, 255, 263
bzip2, 240, 241, 254, 255, 260, 263
gzip, 240, 241, 254, 255, 260, 263
uncompressed, 240, 254, 255, 260
constraint, 169, 175, 182, 183, 217
copy, 155, 167, 189, 190, 222, 232, 237, 244,
250, 264, 265
correlation time, 168-170, 175, 186, 256, 265,
267, 270
ctypes, 18

data pipe, 8

delete, 155, 167, 168, 187, 191, 220, 223, 230,
232, 233, 238, 246, 251, 257, 258

diff, 25

diffusion, 42

anisotropic, 169, 170
Brownian, 42, 207, 228, 256
ellipsoid (asymmetric), 43, 56, 64, 108,
158, 169, 170, 172, 256, 269, 270
sphere (isotropic), 44, 65, 125, 158, 168—
170, 173, 176-178, 214, 256, 257
spheroid (axially symmetric), 44, 55, 56,
64, 121, 158, 168-170, 172, 256,
269
tensor, 158, 167170, 172, 176, 207, 223,
224, 228, 256, 257, 268, 269
direction cosine, 108, 121
discrepancy, 66
Kullback-Leibler, 66
display, 155, 156, 159, 168, 173, 176, 191,
207, 220, 225, 228, 230, 233, 238,
240, 244, 249, 251, 252, 263, 265
distribution archive, 18, 25, 133, 145
doc string, 134

eigenvalues, 156, 168-170, 257

epydoc, 135

Euler angles, 64, 108, 168-170, 177, 178,
216, 265, 268, 272

exponential curve fitting, 2

floating point number, 5, 156, 168170, 214
function class, 7, 8

Gna, 23, 140
GNU/Linux, 18, 144
Google, 23
GPG
key, 26
signature, 26
GPL, 2, 275
GUI, 1, 12, 17, 148

help system, 6, 7, 153

indentation, 134
installation, 17
integer, 5, 148

293



294

interatomic data container, 9
keyword argument, 6

licence, 275
linking, 150
list, 5, 148

Mac OS X, 19, 144
mailing list, 23, 23, 133, 141, 149
archive, 23
archives, 23, 24
relax-announce, 23, 133
relax-commits, 23, 24, 133, 142
relax-devel, 23, 24, 26, 29, 35, 133, 139,
141, 142, 145
relax-users, 23-25, 133
make, 144
manual
HTML, 23
map, 160, 163, 171, 173, 174, 180, 182, 194,

206, 207, 209-213, 222, 225227, 265,

267, 270
minimisation, 5, 79, 164, 169, 175, 182, 182,
183, 186, 190, 208-213, 264, 267,
268
minimisation algorithm
BFGS, 48, 49
Cauchy point, 49
CG-Steihaug, 49
coordinate descent, 48
dogleg, 49
exact trust region, 49
Fletcher-Reeves, 50
Hestenes-Stiefel, 50
Levenberg-Marquardt, 51
Newton, 48, 51
Newton-CG, 48, 50
Polak-Ribiere, 50
Polak-Ribiere +, 50
simplex, 51
steepest descent, 47, 49, 50
minimisation techniques
BFGS, 80, 182
conjugate gradient, 182, 183
dogleg, 183
exact trust region, 183
Levenberg-Marquardt, 164
Newton, 80, 164, 183
simplex, 79, 186

INDEX

minisation, 3
model elimination, 2, 3, 160, 161, 174, 175,
209-213
model selection, 2, 3
AIC, 3, 68, 160, 189, 190
AlCc, 3, 189
ANOVA, 3
BIC, 3, 189
bootstrap, 3, 160, 189, 190, 208
cross-validation, 3, 160, 189
hypothesis testing, 3
model-free analysis, 41
modelling, 175
molecule, 165, 166, 168, 169, 190, 190, 191,
191, 192, 192, 193, 208, 220, 221,
224, 228, 231, 234, 237-240, 242,
244, 245, 248-254, 256, 258263, 266,
267
Monte Carlo simulation, 3, 33, 36
MPI, 16
mpidpy, 16, 17
MS Windows, 18, 144
multi-processor framework, 16

news, 25

NMR, 159-163, 171, 172, 182, 235, 249
NOE, 2, 27

NumPy, 17

OpenMPI, 16

optimise, 168, 189, 209-213, 215, 216, 223

order parameter, 178, 186, 206, 207, 214,
226, 227

parameter
bounds, 162, 169, 173, 182, 216, 223
limit, 175, 179, 183, 236
patch, 138
diff, 139
Subversion, 139
PDB, 28, 34, 169, 170, 176, 177, 207, 208,
214, 215, 217, 218, 225, 228, 256,
257, 259-261, 263
peak
height, 29
intensity, 29, 33, 35
volume, 29
plot, 173, 179, 180, 219, 229
prompt, 4, 148
pyreadline, 18



INDEX

Python, 1, 4, 5, 6, 11, 15, 17, 148, 161,
173, 179, 183, 241, 255, 260, 263—
265, 267, 268, 273

read, 160, 163, 166, 171, 208, 214, 216, 220,
221, 225, 228, 230, 231, 233, 234,
240-242, 244, 245, 248, 249, 253,
255-257, 259-261, 266, 267

reduced spectral density mapping, 2, 77

regular expression, 173, 179, 183, 190-193,
238-240, 251-254, 264269, 273

relaxation, 160, 161, 163, 165, 166, 168, 171,
172, 180, 182, 186, 188, 222, 232—
236, 241, 242, 265, 268, 270

relaxation curve-fitting, 33

relaxation dispersion, 3

relaxation rate

cross rate, 41
cross-relaxation, 42
spin-lattice, 41
spin-spin, 41

repository, 25, 133, 141

back up, 25

branch creation, 142
branches, 142

keeping up to date, 142
merging branch back, 143
svnmerge.py, 142

RMSD, 29

rotation, 168, 170, 178, 207, 214, 215, 228,
256-258, 262

SciPy, 17

SCons, 26, 144
API documentation, 145
binary distribution, 26, 145
C module compilation, 144
clean up, 145
help, 144
source distribution, 145
user manual (HTML version), 144
user manual (PDF version), 144
Scons, 18
scons, 18
script, 148
scripting, 9, 175, 193, 225, 240, 249
sample scripts, 11
script file, 160, 161, 164, 175, 193, 225,
240, 241, 241, 249

295

sequence, 173, 179, 183, 209-213, 224, 237—
240, 243, 244, 244, 245, 245, 250,
254, 258, 259, 261, 264269, 273
software
Dasha, 4, 21, 48, 51, 161, 164, 164
Grace, 1, 3, 20, 30, 31, 178, 178, 179,
179, 180, 219, 229
Modelfree, 4, 21, 51, 161, 217, 218
MOLMOL, 1, 3, 21, 193, 193, 194, 206,
206, 207, 207, 208, 208, 225227
OpenDX, 1, 3, 20, 172, 173
PyMOL, 1, 3, 21
relax, 53
Sparky, 29, 35, 161, 162, 247, 249, 253
Tensor, 51
XEasy, 29, 35, 249
spherical angles, 121
spin container, 9
standard deviation, 33
string, 5, 148
Subversion, 25, 133, 140
book, 25
check out, 25, 26, 143, 145
commit, 143
conflict, 143
merge, 143
patch, 139
remove, 144
svnmerge.py init, 143
svnmerge.py merge, 143
svnmerge.py uninit, 143
update, 143
support request, 149
SVN, 25, 133
svnmerge.py, 142
symbolic link, 18

tab completion, 7
tar, 18, 163, 183, 222
task, 149
terminal, 4
test suite, 11, 140
tracker
bug, 149
support request, 149
task, 149

under-fitting, 68
Unix, 144
user functions, 6, 7-9, 153



296 INDEX

user manual
HTML compilation, 144
PDF compilation, 144

web site, 23

write, 162, 180, 221, 231, 236, 240, 245, 263,
272-274

wxPython, 17



	Introduction
	Program features
	Literature
	Supported NMR theories
	Data analysis tools
	Data visualisation
	Interfacing with other programs
	The user interfaces (UI)

	How to use relax
	The prompt
	Python
	User functions
	The help system
	Tab completion
	The data pipe
	The spin and interatomic data containers
	Scripting
	Sample scripts
	The test suite
	The GUI
	Access to the internals of relax

	The multi-processor framework
	Introduction
	Usage
	Further details

	Usage of the name relax

	Installation instructions
	Dependencies
	Installation
	The source releases
	Installation on GNU/Linux
	Installation on MS Windows
	Installation on Mac OS X
	Installation on your OS
	Running a non-compiled version

	Optional programs
	Grace
	OpenDX
	Molmol
	PyMOL
	Dasha
	Modelfree4


	Open source infrastructure
	The relax web sites
	The mailing lists
	relax-announce
	relax-users
	relax-devel
	relax-commits
	Replying to a message

	Reporting bugs
	Latest sources – the relax repositories
	News
	The relax distribution archives

	Calculating the NOE
	Introduction
	The sample script
	Initialisation of the data pipe
	Loading the data
	Setting the errors
	Unresolved residues
	The NOE
	Viewing the results
	The GUI auto-analysis

	Relaxation curve-fitting
	Introduction
	The sample script
	Initialisation of the data pipe and loading of the data
	The rest of the setup
	Optimisation
	Error analysis
	Finishing off
	The GUI auto-analysis

	Model-free analysis
	Theory
	The chi-squared function – 2()
	The relaxation equations – Ri'()
	The spectral density functions – J()
	Brownian rotational diffusion
	The model-free models
	Model-free optimisation theory

	Optimisation of a single model-free model
	The sample script
	Explanation

	Optimisation of all model-free models
	The sample script
	Explanation

	Model-free model selection
	The sample script
	Explanation

	The methodology of Mandel et al., 1995
	The diffusion seeded paradigm
	The new model-free optimisation protocol
	The model-free models
	The diffusion tensor
	The universal solution U
	Model-free analysis in reverse
	The sample script
	Explanation

	The GUI auto-analysis

	Reduced spectral density mapping
	Values, gradients, and Hessians
	Introduction
	Minimisation concepts
	The function value
	The gradient
	The Hessian

	The four parameter combinations
	Optimisation of the model-free models
	Optimisation of the local m models
	Optimisation of the diffusion tensor parameters
	Optimisation of the global model

	Construction of the values, gradients, and Hessians
	The sum of chi-squared values
	Construction of the gradient
	Construction of the Hessian

	The value, gradient, and Hessian dependency chain
	The 2 value, gradient, and Hessian
	The 2 value
	The 2 gradient
	The 2 Hessian

	The Ri() values, gradients, and Hessians
	The Ri() values
	The Ri() gradients
	The Ri() Hessians

	Ri'() values, gradients, and Hessians
	Components of the Ri'() equations
	Ri'() values
	Ri'() gradients
	Ri'() Hessians

	Model-free analysis
	The model-free equations
	The original model-free gradient
	The original model-free Hessian
	The extended model-free gradient
	The extended model-free Hessian

	Ellipsoidal diffusion tensor
	The diffusion equation of the ellipsoid
	The weights of the ellipsoid
	The weight gradients of the ellipsoid
	The weight Hessians of the ellipsoid
	The correlation times of the ellipsoid
	The correlation time gradients of the ellipsoid
	The correlation time Hessians of the ellipsoid

	Spheroidal diffusion tensor
	The diffusion equation of the spheroid
	The weights of the spheroid
	The weight gradients of the spheroid
	The weight Hessians of the spheroid
	The correlation times of the spheroid
	The correlation time gradients of the spheroid
	The correlation time Hessians of the spheroid

	Spherical diffusion tensor
	The diffusion equation of the sphere
	The weight of the sphere
	The weight gradient of the sphere
	The weight Hessian of the sphere
	The correlation time of the sphere
	The correlation time gradient of the sphere
	The correlation time Hessian of the sphere

	Ellipsoidal dot product derivatives
	The dot product of the ellipsoid
	The dot product gradient of the ellipsoid
	The dot product Hessian of the ellipsoid

	Spheroidal dot product derivatives
	The dot product of the spheroid
	The dot product gradient of the spheroid
	The dot product Hessian of the spheroid


	relax development
	Version control using Subversion
	Coding conventions
	Indentation
	Doc strings
	Variable, function, and class names
	Whitespace
	Comments

	Submitting changes to the relax project
	Submitting changes as a patch
	Modification of official releases – creating patches with diff
	Modification of the latest sources – creating patches with Subversion

	Committers
	Becoming a committer
	Joining Gna!
	Joining the relax project
	Format of the commit logs
	Discussing major changes

	Branches
	Branch creation
	Keeping the branch up to date using svnmerge.py
	Merging the branch back into the main line

	The SCons build system
	SCons help
	C module compilation
	Compilation of the user manual (PDF version)
	Compilation of the user manual (HTML version)
	Compilation of the API documentation (HTML version)
	Making distribution archives
	Cleaning up

	The core design of relax
	The divisions of relax's source code
	The major components of relax

	The mailing lists
	Private vs. public messages

	The bug, task, and support request trackers
	Submitting a bug report
	Assigning an issue to yourself
	Closing an issue

	Links, links, and more links
	Navigation
	Search engine indexing


	Alphabetical listing of user functions
	A warning about the formatting
	The list of functions
	The synopsis
	Defaults
	Docstring sectioning
	align_tensor.copy
	align_tensor.delete
	align_tensor.display
	align_tensor.fix
	align_tensor.init
	align_tensor.matrix_angles
	align_tensor.reduction
	align_tensor.set_domain
	align_tensor.svd
	angles.diff_frame
	bmrb.citation
	bmrb.display
	bmrb.read
	bmrb.script
	bmrb.software
	bmrb.software_select
	bmrb.thiol_state
	bmrb.write
	bruker.read
	calc
	consistency_tests.set_frq
	dasha.create
	dasha.execute
	dasha.extract
	deselect.all
	deselect.interatom
	deselect.read
	deselect.reverse
	deselect.spin
	diffusion_tensor.copy
	diffusion_tensor.delete
	diffusion_tensor.display
	diffusion_tensor.init
	dipole_pair.define
	dipole_pair.read_dist
	dipole_pair.set_dist
	dipole_pair.unit_vectors
	dx.execute
	dx.map
	eliminate
	fix
	frame_order.cone_pdb
	frame_order.domain_to_pdb
	frame_order.pivot
	frame_order.ref_domain
	frame_order.select_model
	frq.set
	grace.view
	grace.write
	grid_search
	jw_mapping.set_frq
	minimise
	model_free.create_model
	model_free.delete
	model_free.remove_tm
	model_free.select_model
	model_selection
	molecule.copy
	molecule.create
	molecule.delete
	molecule.display
	molecule.name
	molecule.type
	molmol.clear_history
	molmol.command
	molmol.macro_apply
	molmol.macro_run
	molmol.macro_write
	molmol.ribbon
	molmol.tensor_pdb
	molmol.view
	monte_carlo.create_data
	monte_carlo.error_analysis
	monte_carlo.initial_values
	monte_carlo.off
	monte_carlo.on
	monte_carlo.setup
	n_state_model.CoM
	n_state_model.cone_pdb
	n_state_model.elim_no_prob
	n_state_model.number_of_states
	n_state_model.ref_domain
	n_state_model.select_model
	noe.read_restraints
	noe.spectrum_type
	palmer.create
	palmer.execute
	palmer.extract
	paramag.centre
	pcs.back_calc
	pcs.calc_q_factors
	pcs.corr_plot
	pcs.delete
	pcs.display
	pcs.read
	pcs.weight
	pcs.write
	pipe.bundle
	pipe.copy
	pipe.create
	pipe.current
	pipe.delete
	pipe.display
	pipe.hybridise
	pipe.switch
	pymol.cartoon
	pymol.clear_history
	pymol.command
	pymol.cone_pdb
	pymol.macro_apply
	pymol.macro_run
	pymol.macro_write
	pymol.tensor_pdb
	pymol.vector_dist
	pymol.view
	rdc.back_calc
	rdc.calc_q_factors
	rdc.corr_plot
	rdc.delete
	rdc.display
	rdc.read
	rdc.weight
	rdc.write
	relax_data.back_calc
	relax_data.copy
	relax_data.delete
	relax_data.display
	relax_data.frq
	relax_data.peak_intensity_type
	relax_data.read
	relax_data.temp_calibration
	relax_data.temp_control
	relax_data.type
	relax_data.write
	relax_fit.relax_time
	relax_fit.select_model
	reset
	residue.copy
	residue.create
	residue.delete
	residue.display
	residue.name
	residue.number
	results.display
	results.read
	results.write
	script
	select.all
	select.interatom
	select.read
	select.reverse
	select.spin
	sequence.attach_protons
	sequence.copy
	sequence.display
	sequence.read
	sequence.write
	spectrum.baseplane_rmsd
	spectrum.delete
	spectrum.error_analysis
	spectrum.integration_points
	spectrum.read_intensities
	spectrum.replicated
	spin.copy
	spin.create
	spin.create_pseudo
	spin.delete
	spin.display
	spin.element
	spin.isotope
	spin.name
	spin.number
	state.load
	state.save
	structure.add_atom
	structure.connect_atom
	structure.create_diff_tensor_pdb
	structure.create_vector_dist
	structure.delete
	structure.displacement
	structure.find_pivot
	structure.get_pos
	structure.load_spins
	structure.read_pdb
	structure.read_xyz
	structure.rotate
	structure.superimpose
	structure.translate
	structure.write_pdb
	sys_info
	temperature
	value.copy
	value.display
	value.read
	value.set
	value.write
	vmd.view


	Licence
	Copying, modification, sublicencing, and distribution of relax
	The GPL


