
λ
→

∀
=Is

ab
el
le

β

α

Old Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

12 February 2013

i

Note: this document is part of the earlier Isabelle documentation and is
mostly outdated. Fully obsolete parts of the original text have already been
removed. The remaining material covers some aspects that did not make it
into the newer manuals yet.

Acknowledgements

Tobias Nipkow, of T. U. Munich, wrote most of Chapters ?? and ??. Markus
Wenzel contributed to Chapter 2. Jeremy Dawson, Sara Kalvala, Martin
Simons and others suggested changes and corrections. The research has
been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381,
GR/K77051, GR/M75440) and by ESPRIT (projects 3245: Logical Frame-
works, and 6453: Types), and by the DFG Schwerpunktprogramm Deduktion.

Contents

1 Theorems and Forward Proof 1
1.1 *Sort hypotheses . 1
1.2 Proof terms . 2

1.2.1 Reconstructing and checking proof terms 4
1.2.2 Parsing and printing proof terms 4

2 Syntax Transformations 7
2.1 Transforming parse trees to ASTs 7
2.2 Transforming ASTs to terms 8
2.3 Printing of terms . 9

ii

Chapter 1

Theorems and Forward Proof

1.1 *Sort hypotheses

strip_shyps : thm -> thm

strip_shyps_warning : thm -> thm

Isabelle’s type variables are decorated with sorts, constraining them to
certain ranges of types. This has little impact when sorts only serve for
syntactic classification of types — for example, FOL distinguishes between
terms and other types. But when type classes are introduced through axioms,
this may result in some sorts becoming empty : where one cannot exhibit a
type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort,
then that theorem has no instances. It is basically an instance of ex falso
quodlibet. But what if it is used to prove another theorem that no longer
involves that sort? The latter theorem holds only if under an additional
non-emptiness assumption.

Therefore, Isabelle’s theorems carry around sort hypotheses. The shyps

field is a list of sorts occurring in type variables in the current prop and hyps

fields. It may also includes sorts used in the theorem’s proof that no longer
appear in the prop or hyps fields — so-called dangling sort constraints. These
are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at
the end of a proof, provided that non-emptiness can be established by looking
at the theorem’s signature: from the classes and arities information. This
operation is performed by strip_shyps and strip_shyps_warning.

strip_shyps thm removes any extraneous sort hypotheses that can be wit-
nessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of
any pending sort hypotheses that do not have a (syntactic) witness.

1

CHAPTER 1. THEOREMS AND FORWARD PROOF 2

1.2 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term
contains all logical inferences in detail. Resolution and rewriting steps are
broken down to primitive rules of the meta-logic. The proof term can be
inspected by a separate proof-checker, for example.

According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a λ-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §??.

infix 8 % %%;

datatype proof =

PBound of int

| Abst of string * typ option * proof

| AbsP of string * term option * proof

| op % of proof * term option

| op %% of proof * proof

| Hyp of term

| PThm of (string * (string * string list) list) *

proof * term * typ list option

| PAxm of string * term * typ list option

| Oracle of string * term * typ list option

| MinProof of proof list;

Abst (a, τ, prf) is the abstraction over a term variable of type τ in the
body prf . Logically, this corresponds to

∧
introduction. The name a

is used only for parsing and printing.

AbsP (a, ϕ, prf) is the abstraction over a proof variable standing for a
proof of proposition ϕ in the body prf . This corresponds to =⇒ intro-
duction.

prf % t is the application of proof prf to term t which corresponds to
∧

elimination.

prf1 %% prf2 is the application of proof prf1 to proof prf2 which corresponds
to =⇒ elimination.

PBound i is a proof variable with de Bruijn [2] index i .

Hyp ϕ corresponds to the use of a meta level hypothesis ϕ.

PThm ((name, tags), prf , ϕ, τ) stands for a pre-proved theorem, where
name is the name of the theorem, prf is its actual proof, ϕ is the proven
proposition, and τ is a type assignment for the type variables occurring
in the proposition.

CHAPTER 1. THEOREMS AND FORWARD PROOF 3

PAxm (name, ϕ, τ) corresponds to the use of an axiom with name name
and proposition ϕ, where τ is a type assignment for the type variables
occurring in the proposition.

Oracle (name, ϕ, τ) denotes the invocation of an oracle with name name
which produced a proposition ϕ, where τ is a type assignment for the
type variables occurring in the proposition.

MinProof prfs represents a minimal proof where prfs is a list of theorems,
axioms or oracles.

Note that there are no separate constructors for abstraction and application
on the level of types, since instantiation of type variables is accomplished via
the type assignments attached to Thm, Axm and Oracle.

Each theorem’s derivation is stored as the der field of its internal record:

#2 (#der (rep_thm conjI));

PThm (("HOL.conjI", []),

AbsP ("H", None, AbsP ("H", None, ...)), ..., None) %

None % None : Proofterm.proof

This proof term identifies a labelled theorem, conjI of theory HOL, whose
underlying proof is AbsP ("H", None, AbsP ("H", None, . . .)). The the-
orem is applied to two (implicit) term arguments, which correspond to the
two variables occurring in its proposition.

Isabelle’s inference kernel can produce proof objects with different levels
of detail. This is controlled via the global reference variable proofs:

proofs := 0; only record uses of oracles

proofs := 1; record uses of oracles as well as dependencies on other theo-
rems and axioms

proofs := 2; record inferences in full detail

Reconstruction and checking of proofs as described in §1.2.1 will not work for
proofs constructed with proofs set to 0 or 1. Theorems involving oracles will
be printed with a suffixed [!] to point out the different quality of confidence
achieved.

The dependencies of theorems can be viewed using the function thm_deps:

thm_deps [thm1, . . ., thmn];

generates the dependency graph of the theorems thm1, . . ., thmn and displays
it using Isabelle’s graph browser. For this to work properly, the theorems in
question have to be proved with proofs set to a value greater than 0. You
can use

CHAPTER 1. THEOREMS AND FORWARD PROOF 4

ThmDeps.enable : unit -> unit

ThmDeps.disable : unit -> unit

to set proofs appropriately.

1.2.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that
some arguments of constructors are optional. The reason for this is that
keeping a full proof term for each theorem would result in enormous memory
requirements. Fortunately, typical proof terms usually contain quite a lot of
redundant information that can be reconstructed from the context. There-
fore, Isabelle’s inference kernel creates only partial (or implicit) proof terms,
in which all typing information in terms, all term and type labels of abstrac-
tions AbsP and Abst, and (if possible) some argument terms of % are omitted.
The following functions are available for reconstructing and checking proof
terms:

Reconstruct.reconstruct_proof :

Sign.sg -> term -> Proofterm.proof -> Proofterm.proof

Reconstruct.expand_proof :

Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof

ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf
into a full proof of the proposition denoted by t , with respect to signa-
ture sg . Reconstruction will fail with an error message if prf is not a
proof of t , is ill-formed, or does not contain sufficient information for
reconstruction by higher order pattern unification [3, 1]. The latter may
only happen for proofs built up “by hand” but not for those produced
automatically by Isabelle’s inference kernel.

Reconstruct.expand_proof sg [name1, . . ., namen] prf expands and
reconstructs the proofs of all theorems with names name1, . . ., namen
in the (full) proof prf .

ProofChecker.thm_of_proof thy prf turns the (full) proof prf into a the-
orem with respect to theory thy by replaying it using only primitive
rules from Isabelle’s inference kernel.

1.2.2 Parsing and printing proof terms

Isabelle offers several functions for parsing and printing proof terms. The
concrete syntax for proof terms is described in Fig. 1.1. Implicit term argu-
ments in partial proofs are indicated by “_”. Type arguments for theorems

CHAPTER 1. THEOREMS AND FORWARD PROOF 5

proof = Lam params. proof | Λparams. proof
| proof % any | proof · any
| proof %% proof | proof · proof
| id | longid

param = idt | idt : prop | (param)

params = param | param params

Figure 1.1: Proof term syntax

and axioms may be specified using % or “·” with an argument of the form
TYPE(type) (see §??). They must appear before any other term argument of
a theorem or axiom. In contrast to term arguments, type arguments may be
completely omitted.

ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof

ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T

ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T

ProofSyntax.print_proof_of : bool -> thm -> unit

The function read_proof reads in a proof term with respect to a given
theory. The boolean flag indicates whether the proof term to be parsed
contains explicit typing information to be taken into account. Usually, typing
information is left implicit and is inferred during proof reconstruction. The
pretty printing functions operating on theorems take a boolean flag as an
argument which indicates whether the proof term should be reconstructed
before printing.

The following example (based on Isabelle/HOL) illustrates how to parse
and check proof terms. We start by parsing a partial proof term

val prf = ProofSyntax.read_proof Main.thy false

"impI % _ % _ %% (Lam H : _. conjE % _ % _ % _ %% H %%

(Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";

val prf = PThm (("HOL.impI", []), ..., ..., None) % None % None %%

AbsP ("H", None, PThm (("HOL.conjE", []), ..., ..., None) %

None % None % None %% PBound 0 %%

AbsP ("H1", None, AbsP ("H2", None, ...))) : Proofterm.proof

The statement to be established by this proof is

CHAPTER 1. THEOREMS AND FORWARD PROOF 6

val t = term_of

(read_cterm (sign_of Main.thy) ("A & B --> B & A", propT));

val t = Const ("Trueprop", "bool => prop") $

(Const ("op -->", "[bool, bool] => bool") $

... $... : Term.term

Using t we can reconstruct the full proof

val prf’ = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;

val prf’ = PThm (("HOL.impI", []), ..., ..., Some []) %

Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) %

Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) %%

AbsP ("H", Some (Const ("Trueprop", ...) $...), ...)

: Proofterm.proof

This proof can finally be turned into a theorem

val thm = ProofChecker.thm_of_proof Main.thy prf’;

val thm = "A & B --> B & A" : Thm.thm

Chapter 2

Syntax Transformations

2.1 Transforming parse trees to ASTs

The parse tree is the raw output of the parser. Translation functions, called
parse AST translations, transform the parse tree into an abstract syntax
tree.

The parse tree is constructed by nesting the right-hand sides of the pro-
ductions used to recognize the input. Such parse trees are simply lists of
tokens and constituent parse trees, the latter representing the nonterminals
of the productions. Let us refer to the actual productions in the form dis-
played by print_syntax (see §?? for an example).

Ignoring parse ast translations, parse trees are transformed to asts by
stripping out delimiters and copy productions. More precisely, the mapping
[[−]] is derived from the productions as follows:

• Name tokens: [[t]] = Variable s , where t is an id, var, tid, tvar, num,
xnum or xstr token, and s its associated string. Note that for xstr

this does not include the quotes.

• Copy productions: [[. . .P . . .]] = [[P]]. Here . . . stands for strings of
delimiters, which are discarded. P stands for the single constituent
that is not a delimiter; it is either a nonterminal symbol or a name
token.

• 0-ary productions: [[. . . =>c]] = Constant c. Here there are no con-
stituents other than delimiters, which are discarded.

• n-ary productions, where n ≥ 1: delimiters are discarded and the
remaining constituents P1, . . . , Pn are built into an application whose
head constant is c:

[[. . .P1 . . .Pn . . . =>c]] = Appl [Constant c, [[P1]], . . . , [[Pn]]]

Figure 2.1 presents some simple examples, where ==, _appl, _args, and so
forth name productions of the Pure syntax. These examples illustrate the

7

CHAPTER 2. SYNTAX TRANSFORMATIONS 8

input string ast
"f" f

"’a" ’a

"t == u" ("==" t u)

"f(x)" ("_appl" f x)

"f(x, y)" ("_appl" f ("_args" x y))

"f(x, y, z)" ("_appl" f ("_args" x ("_args" y z)))

"%x y. t" ("_lambda" ("_idts" x y) t)

Figure 2.1: Parsing examples using the Pure syntax

input string ast
"f(x, y, z)" (f x y z)

"’a ty" (ty ’a)

"(’a, ’b) ty" (ty ’a ’b)

"%x y z. t" ("_abs" x ("_abs" y ("_abs" z t)))

"%x :: ’a. t" ("_abs" ("_constrain" x ’a) t)

"[| P; Q; R |] => S" ("==>" P ("==>" Q ("==>" R S)))

"[’a, ’b, ’c] => ’d" ("fun" ’a ("fun" ’b ("fun" ’c ’d)))

Figure 2.2: Built-in parse ast translations

need for further translations to make asts closer to the typed λ-calculus.
The Pure syntax provides predefined parse ast translations for ordinary
applications, type applications, nested abstractions, meta implications and
function types. Figure 2.2 shows their effect on some representative input
strings.

The names of constant heads in the ast control the translation process.
The list of constants invoking parse ast translations appears in the output
of print_syntax under parse_ast_translation.

2.2 Transforming ASTs to terms

The ast, after application of macros (see §??), is transformed into a term.
This term is probably ill-typed since type inference has not occurred yet.
The term may contain type constraints consisting of applications with head
"_constrain"; the second argument is a type encoded as a term. Type
inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect

CHAPTER 2. SYNTAX TRANSFORMATIONS 9

this process. If we ignore parse translations for the time being, then asts are
transformed to terms by mapping ast constants to constants, ast variables
to schematic or free variables and ast applications to applications.

More precisely, the mapping [[−]] is defined by

• Constants: [[Constant x]] = Const(x , dummyT).

• Schematic variables: [[Variable "?xi"]] = Var((x , i), dummyT), where x
is the base name and i the index extracted from xi .

• Free variables: [[Variable x]] = Free(x , dummyT).

• Function applications with n arguments:

[[Appl [f , x1, . . . , xn]]] = [[f]] $ [[x1]] $. . . $ [[xn]]

Here Const, Var, Free and $ are constructors of the datatype term, while
dummyT stands for some dummy type that is ignored during type inference.

So far the outcome is still a first-order term. Abstractions and bound
variables (constructors Abs and Bound) are introduced by parse translations.
Such translations are attached to "_abs", "!!" and user-defined binders.

2.3 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into strings. Finally the strings are
pretty printed.

Print translations (§??) may affect the transformation of terms into asts.
Ignoring those, the transformation maps term constants, variables and appli-
cations to the corresponding constructs on asts. Abstractions are mapped
to applications of the special constant _abs.

More precisely, the mapping [[−]] is defined as follows:

• [[Const(x , τ)]] = Constant x .

• [[Free(x , τ)]] = constrain(Variable x , τ).

• [[Var((x , i), τ)]] = constrain(Variable "?xi", τ), where ?xi is the string
representation of the indexname (x , i).

• For the abstraction λx :: τ . t , let x ′ be a variant of x renamed to
differ from all names occurring in t , and let t ′ be obtained from t
by replacing all bound occurrences of x by the free variable x ′. This

CHAPTER 2. SYNTAX TRANSFORMATIONS 10

replaces corresponding occurrences of the constructor Bound by the
term Free(x ′, dummyT):

[[Abs(x , τ, t)]] = Appl [Constant "_abs", constrain(Variable x ′, τ), [[t ′]]]

• [[Bound i]] = Variable "B.i". The occurrence of constructor Bound

should never happen when printing well-typed terms; it indicates a de
Bruijn index with no matching abstraction.

• Where f is not an application,

[[f $ x1 $. . . $ xn]] = Appl [[[f]], [[x1]], . . . , [[xn]]]

Type constraints are inserted to allow the printing of types. This is governed
by the boolean variable show_types:

• constrain(x , τ) = x if τ = dummyT or show_types is set to false.

• constrain(x , τ) = Appl [Constant "_constrain", x , [[τ]]] otherwise.

Here, [[τ]] is the ast encoding of τ : type constructors go to Constants;
type identifiers go to Variables; type applications go to Appls with
the type constructor as the first element. If show_sorts is set to true,
some type variables are decorated with an ast encoding of their sort.

The ast, after application of macros (see §??), is transformed into the final
output string. The built-in print AST translations reverse the parse ast
translations of Fig. 2.2.

For the actual printing process, the names attached to productions of
the form . . .A

(p1)
1 . . .A(pn)

n . . . =>c play a vital role. Each ast with constant
head c, namely "c" or ("c" x1 . . . xn), is printed according to the production
for c. Each argument xi is converted to a string, and put in parentheses if
its priority (pi) requires this. The resulting strings and their syntactic sugar
(denoted by . . . above) are joined to make a single string.

If an application ("c" x1 . . . xm) has more arguments than the correspond-
ing production, it is first split into (("c" x1 . . . xn) xn+1 . . . xm). Applications
with too few arguments or with non-constant head or without a correspond-
ing production are printed as f (x1, . . . , xl) or (α1, . . . , αl)ty . Multiple pro-
ductions associated with some name c are tried in order of appearance. An
occurrence of Variable x is simply printed as x .

Blanks are not inserted automatically. If blanks are required to sepa-
rate tokens, specify them in the mixfix declaration, possibly preceded by a
slash (/) to allow a line break.

Bibliography

[1] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in
Higher Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 38–52. Springer-Verlag, 2000.

[2] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381–392, 1972.

[3] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
64–74. IEEE Computer Society Press, 1993.

11

	Theorems and Forward Proof
	*Sort hypotheses
	Proof terms
	Reconstructing and checking proof terms
	Parsing and printing proof terms

	Syntax Transformations
	Transforming parse trees to ASTs
	Transforming ASTs to terms
	Printing of terms

