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ABSTRACT. we describe an algorithm for the computation of generalized (or weighted)
Ehrhart series based on Stanley decompositions as implemented in the offspring NmzIn-
tegrate of Normaliz. The algorithmic approach includes elementary proofs of the basic
results. We illustrate the computations by examples from combinatorial voting theory.

Let M ⊂ Zn be an affine monoid endowed with a positiveZ-grading deg. Then the
Ehrhart or Hilbert seriesis the generating function

EM(t) = ∑
x∈M

tdegx =
∞

∑
k=0

#{x∈ M : degx= k}tk,

andE(M,k) = #{x∈ M : degx = k} is the Ehrhart or Hilbert function ofM (see [4] for
terminology and basic theory). It is a classical theorem that EM(t) is the power series
expansion of a rational function of negative degree att0 = 0 and thatE(M,k) is given
by a quasipolynomial of degree rankM−1 with constant leading coefficient equal to the
(suitably normed) volume of the rational polytope

P= cone(M)∩A1

where cone(M) ⊂ Rn is the cone generated byM andA1 is the hyperplane of degree 1
points. In the following we assume that

M = cone(M)∩L

for a sublatticeL of Zn. ThenE(M,k) counts theL-points in the multiplekP, and is
therefore the Ehrhart function ofP (with respect toL).

Monoids of the type just introduced are important for applications, and in some of
them, like those discussed in Section 3, one is naturally ledto considergeneralized(or
weighted)Ehrhart series

EM, f (t) = ∑
x∈M

f (x)tdegx

where f is a polynomial inn indeterminates. It is well-known that also the generalized
Ehrhart series is the power series expansion of a rational function; see [1], [2].

In the last months we have implemented an offspring of Normaliz [6] called NmzInte-
grate1 that computes generalized Ehrhart series. The input polynomials of NmzIntegrate
must have rational coefficients, and we assume thatf is of this type although it is math-
ematically irrelevant. This note describes the computation of generalized Ehrhart series

2010Mathematics Subject Classification.52B20, 13F20, 14M25, 91B12.
1NmzIntegrate will be uploaded to [6] together with Normaliz2.9 by February 2013.
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2 W. BRUNS AND C. S̈OGER

based on Stanley decompositions [13]. Apart from taking theexistence of Stanley de-
compositions as granted, we give complete and very elementary proofs of the basic facts.
They follow exactly the implementation in NmzIntegrate (orvice versa).

The generalized Ehrhart function is given by a quasipolynomial q(k) of degree≤
degf + rankM−1, and the coefficient ofkdegf+rankM−1 in q(k) can easily be described as
the integral of the highest homogeneous component off over the polytopeP. Therefore
we have also included (and implemented) an approach to the computation of integrals of
polynomials over rational polytopes in the spirit of the Ehrhart series computation. See
[2] and [8] for more sophisticated approaches.

Acknowledgement.We gratefully acknowledge the support we received from JohnAb-
bott and Anna Bigatti in using CoCoALib [3], on which the multivariate polynomial al-
gebra in NmzIntegrate is based.

1. THE COMPUTATION OF GENERALIZEDEHRHART SERIES

Via a Stanley decomposition and substitution the computation of generalized Ehrhart
series can be reduced to the case in whichM is a free monoid, and for free monoids one
can split off the variables off successively so that one ends at the classical caseM = Z+.
We take the opposite direction, starting fromZ+.

1.1. The monoidZ+. Let M =Z+. By linearity it is enough to consider the polynomials
f (k) = km, k∈ Z+, for which the generalized Ehrhart series is given by

∞

∑
k=0

kmtum, u= deg1,

and if necessary we can assumeu= 1, substitutingt 7→ tu in the final result.
The rising factorials

(k+1)m= (k+1) · · ·(k+m)

form aZ-basis of the polynomial ringZ[k]. Therefore we can write

km =
m

∑
j=0

sm, j(k+1) j (1.1)

and use that
∞

∑
k=0

(k+1)r tk =
∞

∑
j=r

(t j)(r) =
∞

∑
j=0

(t j)(r) =

(
1

1− t

)(r)

=
r!

(1− t)r+1 . (1.2)

Equations (1.1) and (1.2) solve our problem forM = Z+ and f (k) = km:
∞

∑
k=0

kmtuk =
Am,u(t)

(1− tu)m+1 , Am,u(t) ∈ Z[t]. (1.3)

It is enough to computeAm,1(t) becauseAm,u(t) = Am,1(tu). One should note thatAm,u is
a polynomial of degreem. Therefore the rational function in (1.3) has negative degree.

Since the coefficientsm,m of (k+1)m in the representation ofkm is evidently equal to 1,
we have

∞

∑
k=0

kmtum=
m!

(1− t)m+1 + terms of smaller pole order att = 1 (1.4)
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Remark 1. The coefficientssm, j in (1.1) and the coefficients of the polynomialsAm,1 are
well-known combinatorial numbers.

(a) sm, j = (−1)m− jS(m+1, j +1) whereS(p,q) is the Stirling number of the second
kind that counts the number of partitions of ap-set intoq blocks. This follows imme-
diately from the classical identitykm+1 = ∑m+1

j=1 (−1)m+1− jS(m+1, j)(k) j (for example,
see Stanley [14, 4.3,c]).

(b) Form= 0 we haveA0,1 = 1 andAm,1 = ∑m
j=1A(m, j)t j for m> 0 whereA(m, j) is

the Eulerian number [14, 4.3,d].

1.2. The monoid Zd
+. Next we considerM = Zd

+. The crucial observation is that the
problem is multiplicative for products of polynomials in disjoint variables. Suppose that
f (x) = g(y)h(z), y= (x1, . . . ,xr), z= (xr+1, . . . ,xd). Then

EM, f (t) = ∑
x∈Zd

+

f (x)tdegx =

(
∑

y∈Zr
+

g(y)tdegy
)(

∑
z∈Zd−r

+

h(z)tdegz
)

(1.5)

by multiplication of power series.
In order to exploit (1.5) we split the last variable off,

f (x) = ∑
i

fi(x1, . . . ,xd−1)x
i
d,

and obtain

EM, f (t) = ∑
i



(

∑
x′∈Zd−1

+

fi(x
′)tdegx′

)( ∞

∑
k=0

kitui
)


= ∑
i


 Ai,u(t)
(1− tu)i+1 ∑

x′∈Zd−1
+

fi(x
′)tdegx′


 (1.6)

with u= deged.
Applying this formula inductively allows us to eliminate all variablesxi and to end with

the desired representation ofEZd
+, f

(t).

Generalizing (1.4), let us consider the case in whichf is a monomial,f (x1, . . . ,xd) =
xm1

1 · · ·xmd
d , andZd

+ is endowed with itsstandard degree, deg(x) = x1+ · · ·+ xd. Then
equations (1.5) and (1.4) imply that

EM, f (t) =
m1! · · ·md!

(1− t)m1+···+md+d + terms of smaller pole order att = 1. (1.7)

1.3. Using the Stanley decomposition.We now turn to generalM ⊂Zn. Normaliz com-
putes a triangulationΣ of cone(M) into simplicial subconesσ . Moreover, it computes a
disjoint decomposition

cone(M) =
⋃

σ∈Σ
σ \Sσ

whereSσ is a union of facets ofσ . The existence of such a decomposition is a nontrivial
fact. Classically it is derived from the Brugesser-Mani theorem on the existence of line
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shellings (see Stanley [13]). Instead of a line shelling, Normaliz (now) uses a method of
Köppe and Verdoolaege: see [10] and [7, Section 4].

Every simplicial subcone (of full dimension) is generated by linearly independent vec-
torsv1, . . . ,vd ∈ M, d = rankM. They generate a free submonoidMσ of M. For everyσ
Normaliz computes the set

Eσ =
{

x∈ gp(M) : x= α1v1+ · · ·+αdvd, αi ∈ [0,1)
}
.

For x∈ Eσ we letε(x) be the sum of thosevi for which (i) αi = 0 and (ii) the facet ofσ
opposite tovi lies in the excluded setSσ (so thatx lies in the excluded set). Then it is not
hard to see that we have a disjoint decomposition

M =
⋃

σ∈Σ

⋃

x∈Eσ

x+ ε(x)+Mσ .

It is called aStanley decompositionsince its existence is originally due to Stanley [13].
In the following we set̃x= x+ ε(x) and

Nσ ,x = x̃+Mσ .

Then

EM, f (t) = ∑
σ

∑
x∈Eσ

ENσ ,x, f (t).

Setd = rankM, and for givenσ consider the linear map

ασ : Zd
+ → Zn, ασ (y1, . . . ,yd) = y1v1+ · · ·+ · · ·+ydvd,

wherev1, . . . ,vd is the generating set ofMσ as above. With

degσ y= degασ (y),

gσ ,x(y) = f
(
ασ (y)+ x̃

)
, (1.8)

we have

ENσ ,x, f (t) = tdeg̃x ∑
y∈Zd

+

gσ ,x(y)t
degσ y.

This equation transforms the summation overNσ ,x into a summation overZd
+. Then we

can apply (1.6) inductively to

Ẽσ , f (t) = ∑
x∈Eσ

ENσ ,x, f (t). (1.9)

Finally, we sum the rational functions̃Eσ , f (t) over the triangulationΣ.

Remark 2. (a) Instead of applying (1.6) to everyσ , we accumulate the polynomialsgσ ,x

over all σ that induce the same degree degσ on Zd (the classes formed in this way are
calleddenominator classes).

(b) The time critical steps in the algorithm are

(1) the coordinate transformation (1.8), and
(2) the inductive application of (1.6).
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In order to speed up (1), we factor the polynomialf , transform the factors separately,
and multiply the transformed factors. Iff happens to decompose into linear factors, then
multiplication of linear polynomials becomes a time critical step. In order to speed up (2)
we have introduced the denominator classes.

(c) Note that∑y∈Zd
+

gσ ,x(y)tdegσ y is invariant under permutations of variablesyi that
preserve the degrees degσ ei . Therefore one can go overgσ ,x monomial by monomial and
reorder the exponent vectors in such a way that the exponentsof variables corresponding
to the same degree become decreasing. The reordering significantly reduces the number
of monomials in the polynomials to which (1.6) must be applied, saves memory and also
speeds up (1.6).

(d) We want to point out that (1.6) isnot applied recursively. Instead the right hand
side is expanded after the elimination ofxd, andxd−1 is then eliminated from the resulting
polynomial whose coefficients are rational functions int. This procedure is repeated until
all xi have been eliminated.

2. THE QUASIPOLYNOMIAL, ITS VIRTUAL LEADING COEFFICIENT, AND

INTEGRATION

2.1. The quasipolynomial. All rational functions int that come up in (1.9) can be writ-
ten over the denominator

(1− tℓ)degf+rankM

whereℓ is the least common multiple of the numbers degx for the generatorsx of M that
appear in the triangulation. This follows from (1.6) if one observes that 1− tu divides
1− tℓ. Moreover, all summands have negative degree as rational functions int. Therefore
[14, 4.4.1] implies the following proposition.

Proposition 3.

EM, f (t) =
∞

∑
k=0

q(k)tk

where q is a rational quasipolynomial of periodπ dividing ℓ and of degree≤ degf +
rankM−1.

The statement about the quasipolynomial means that there exist polynomialsq( j), j =
0, . . . ,π −1, of degree≤ degf + rankM−1 such that

q(k) = q( j)(k), j ≡ k (π),

and

q( j)(k) = q( j)
0 +q( j)

1 k+ · · ·+q( j)
degf+rankM−1kdegf+rankM−1

with coefficientsq( j)
i ∈Q. As we will see below, it is justified to call

ed(M, f ) = degf + rankM−1

theexpected degreeof q.
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2.2. The virtual leading coefficient and Lebuesge integration.Letm=degf and write
f = fm+g where fm is the degreem homogeneous component ofm. Then degg < m,

and it follows from Proposition 3 thatg does not contribute to the coefficientq( j)
ed(M, f ).

Moreover, this coefficient is independent ofj and given by an integral, as we will see in
Proposition 4 below.

For the representation as an integral we must norm the measure in such a way that it is
compatible with the lattice structure. We will integrate over the polytope

P= cone(M)∩A1, A1 = {x∈ Rn : degx= 1}.

Let L0 = L∩RM ∩A0 whereA0 = {x∈ Rn : degx= 0} is the linear subspace of degree
0 elements. ThenL0 is a (saturated) sublattice ofL of rank d− 1 (d = rankM), and
we choose a basisu1, . . . ,ud−1 of L0. Note thatH = RM ∩A1 has dimensiond−1 and
contains a pointz∈ L since we have required that deg takes the value 1 on gp(M), and
we can consider thebasic L0-simplexδ = conv(z,z+ u1, . . . ,z+ ud−1) in H. Now we
norm the Lebuesge measureλ onH by giving volume 1/(d−1)! to the basicL0-simplex.
(The measure is independent of the choice ofδ since two basicL0-simplices differ by an
affine-integral automorphism ofH.) We callλ theL-Lebuesge measureon H.

Proposition 4. For all j = 0, . . . ,π −1 one has

q( j)
ed(M, f ) =

∫

P
fmdλ . (2.1)

Proof. We may assume thatf is homogeneous of degreem. Let

Lc =
1
c

L.

Then ∫

P
fmdλ = lim

c→∞ ∑
x∈P∩Lc

1
cd−1 f (x)

by elementary integration theory.
Note that

f (x) =
1
cm f (cx)

by homogeneity and thatx∈ P∩Lc if and onlycx∈ L∩cP. Thus
∫

P
fmdλ = lim

c→∞ ∑
y∈cP∩L

1
cm+d−1 f (y).

On the other hand, we obtainq( j)
ed(M, f ) as the limit over the subsequence(bπ + j)b∈Z+:

q( j)
ed(M, f ) = lim

b→∞ ∑
y∈(bπ+ j)P∩L

1
(bπ + j)m+d−1 f (y)

by Proposition 3. This concludes the proof. �

In view of Proposition 4 it is justified to callqed(M, f ) = q( j)
ed(M, f ) the virtual leading

coefficient, and the proposition justifies the term “expected degree” for degf + rankM−1
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the. In analogy with the definition of multiplicity in commutative algebra (for example,
see [5]), we call

vmult(M, f ) = ed(M, f )!qed(M, f )

the virtual multiplicity of (M, f ). It is an integer ifP is a lattice polytope andfm has
integral coefficients, as we will see below.

2.3. Computing the integral. It is natural to compute the integral by summation over
the triangulation: the triangulation of cone(M) into simplicial subconesσ induces a tri-
angulation of the polytopeP into simplicesδ = σ ∩P. As usual letv1, . . . ,vd ∈ M be the
generators ofσ . Thenδ is spanned by the degree 1 vectorsvi/deg(vi), i = 1, . . . ,n. Let
e1, . . . ,ed be the unit vectors inRd. Then the substitutionei 7→ vi/deg(vi) induces a linear
mapRd → RM that in its turn restricts to an affine mapα from the standard degree 1
hyperplane inRd spanned bye1, . . . ,ed to the hyperplaneH = A1∩RM, and the image of
the unit simplex∆ is justδ .

Proposition 5. One has
∫

δ
f dλ =

|det(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)

∫

∆
( f ◦α)dµ (2.2)

whereµ is theZd-Lebuesge measure on the hyperplaneH̃ of standard degree1 in Rd.

Proof. This is just the substitution rule if one observes that the absolute value of the
functional determinant ofα|H̃ is given by the factor in front of the integral. For an affine
map the functional determinant is constant. So we can assumef = 1 and it remains to
relate the volumes ofδ and∆. But ∆ has volume 1/(d−1)! with respect toµ andδ has
volume

1
(d−1)!

|det(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)
;

with respect toλ ; see [7, Section 4]. �

After the substitution it remains to evaluate the integral over ∆, and this can be done
monomial by monomial:

Proposition 6. ∫

∆
ym1

1 · · ·ymd
d dµ =

m1! · · ·md!
(m1+ · · ·+md+d−1)!

. (2.3)

Proof. Let g= ym1
1 · · ·ymd

d andM = Z+
d . Then

EM,g(t) =
m1! · · ·md!

(1− t)(m1+···+md+d)
+ terms of smaller pole order att = 1,

as stated in (1.7).
The quasipolynomial is a true polynomial in this case, and the (virtual) multiplicity is

given by the value of the numerator polynomial att = 1, namelym1! · · ·md! (for example,
see [5, 4.1.9]). Now Proposition 4 gives the integral. �
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3. COMPUTATIONAL EXAMPLES

We illustrate the use of NmzIntegrate by three related examples coming from combi-
natorial voting theory that are discussed in [12]. We refer the reader to [11], [12] or [15]
for a more extensive treatment.

Consider an election in which each of thek voters fixes a linear preference order ofn
candidates. In other words, voteri chooses a linear order of the candidates 1, . . . ,n. Each
such order represents a permutation of 1, . . . ,n. SetN = n!. The result of the election is an
N-tuple(x1, . . . ,xN) in which xp is the number of voters that have chosen the preference
order labeledp. Thenx1+ · · ·+ xN = k, and(x1, . . . ,xN) can be considered as a lattice
point in the positive orthant ofRN

+, or, more precisely, as a lattice point in the simplex

U (n)
k = RN

+∩Ak = k
(
RN
+∩A1

)
= kU(n)

whereAk is the hyperplane defined byx1 + · · ·+ xN = k, andU (n) = U (n)
1 is the unit

simplex of dimensionN−1 naturally embedded inN-space. We assume that all lattice

points in the simplexU (n)
k have equal probability of being the outcome of the election.

The following three problems have been considered in [12] for 4 candidatesA,B,C,D:

(1) the Condorcet paradox,
(2) the Condorcet efficiency of plurality voting,
(3) plurality voting versus cutoff.

Forn= 4 one hasN = 24, and the dimension of the polytopeU (4) is already quite large.
Let us say that candidateA beatscandidateB if the number of voters that prefer can-

didateA to candidateB is larger than the number of voters with the opposite preference.
CandidateA is theCondorcet winnerif A beats all other candidates. As the Marquis de
Condorcet noticed, the relation “beats” is nontransitive for some outcomes of the election,
and there may be no Condorcet winner. This phenomenon is called theCondorcet para-
dox. Problem (1) asks for its asymptotic probability as the number k of voters goes to∞,
or even for the precise number of election results without a Condorcet winner, depending
on the numberk of voters.

It is not hard to see that the outcomes that haveA is the Condorcet winner can be
described by three homogeneous linear inequalitiesλi(x)> 0 whose coefficients are given
in Table 1 (relative to the lexicographic order of the permutations ofA,B,C,D). They

λ1: 1 1 1 1 1 1−1−1−1−1−1−1 1 1−1−1 1−1 1 1−1−1 1−1
λ2: 1 1 1 1 1 1 1 1−1−1 1−1−1−1−1−1−1−1 1 1 1−1−1−1
λ3: 1 1 1 1 1 1 1 1 1−1−1−1 1 1 1−1−1−1−1−1−1−1−1−1

TABLE 1. Inequalities expressing thatA beats the other 3 candidates

cut out a rational polytope fromU (n), and the probability of Condorcet’s paradox can
be computed from the volume of the polytope. Finding the precise number of election
results without (or with) a Condorcet winner requires the computation of the Ehrhart
function of the semi-open polytope. Neither Normaliz nor NmzIntegrate can yet compute
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Ehrhart series for semi-open polytopes directly, but it is always possible to fall back on
inclusion/exclusion.

We refer the reader to [7] for a description of problems (2) and (3) and for the systems
of linear inequalities to be solved in each case. Normaliz 2.8 can indeed compute the
volumes and the Ehrhart series in dimension 24 that arise from tasks (1), (2) and (3)
despite the fact that the triangulations to be evaluated for(2) and (3) are formidable (see
Table 3 or [7]).

As Schürmann [12] observed, the computations can be considerably simplified by ex-
ploiting the symmetries in the inequalities: some variables share the same coefficients
in each inequality, for example the first 6 variables in Table1. Therefore they can be
replaced by their sum, and the replacement constitutes a projection of the original poly-
topes, monoids or cones onto objects of smaller dimension. For the Condorcet paradox
the system of inequalities reduces to Table 2. However, instead of simply counting lattice

1 -1 1 1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1

TABLE 2. Inequalities exploiting the symmetries in Table 1

points, one must now count them with their numbers of preimages. These are given by
polynomials, namely products of binomial coefficients. In our example the polynomial is

(
y1+5

5

)
(y2+1)(y3+1)(y4+1)(y5+1)(y6+1)(y7+1)

(
y8+5

5

)

wherey1 = x1+ · · ·+ x6 etc. In other words, the Ehrhart function (or the volume) of a
high dimensional polytope is replaced by a generalized Ehrhart function of a polytope of
much lower dimension (or the virtual leading coefficient of the quasipolynomial).

A priori it may not be clear that the replacement of combinatorial complexity in high
dimension by multivariate polynomial arithmetic in low dimension pays dividends, but
this is indeed the case. Tables 3 and 4 compare both approaches. The computations were
run on a SUN xFire 4450 with 20 parallel threads. If the computations in Table 3 are
restricted to volumes, they become faster by a factor of approximately 3.

computation triangulation size real time

Condorcet paradox 1,473,107 00:00:30 h

Condorcet efficiency 347,225,775,338 218:13:55 h

plurality vs. cutoff 257,744,341,008 175:11:26 h

TABLE 3. Computation times (real) for Ehrhart series in dimension24

A welcome side effect of the computations of the generalizedEhrhart functions is that
they have confirmed the results reported on in [7].
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computation rank degf triangula- Normaliz gen Ehrhart lead coeff

tion size time series time time

Condorcet paradox 8 16 17 0.01 sec 2.6 sec 0.04 sec

Condorcet efficiency 13 11 17,953 0.37 sec 3:44 h 26 min

plurality vs. cutoff 6 18 3 0.01 sec 10.9 sec 0.12 sec

TABLE 4. Computation times (real) for symmetrized data
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[7] W. Bruns, B. Ichim and C. Söger,The power of pyramid decomposition in Normaliz. Preprint
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BRÜCK, GERMANY

E-mail address: csoeger@uos.de

http://cocoa.dima.unige.it/cocoalib/
http://www.math.uos.de/normaliz
http://www.math.ucdavis.edu/~latte/

	1. The computation of generalized Ehrhart series
	1.1. The monoid Z+
	1.2. The monoid Z+d
	1.3. Using the Stanley decomposition

	2. The quasipolynomial, its virtual leading coefficient, and integration
	2.1. The quasipolynomial
	2.2. The virtual leading coefficient and Lebuesge integration
	2.3. Computing the integral

	3. Computational examples
	References

