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ABSTRACT. we describe an algorithm for the computation of generdl{pe weighted)
Ehrhart series based on Stanley decompositions as impteth&nthe offspring Nmzin-
tegrate of Normaliz. The algorithmic approach includesna&ptary proofs of the basic
results. We illustrate the computations by examples fromlgoatorial voting theory.

Let M C Z" be an affine monoid endowed with a positi¥iegrading deg. Then the
Ehrhartor Hilbert seriesis the generating function

Em(t) = Y t9¥ = § #{xe M : degx = k}tK,
XGZM kZO

andE(M, k) = #{x € M : degx = k} is the Ehrhart or Hilbert function d¥1 (see [4] for
terminology and basic theory). It is a classical theorent Ea(t) is the power series
expansion of a rational function of negative degreg&at 0 and thate(M, k) is given
by a quasipolynomial of degree ralik— 1 with constant leading coefficient equal to the
(suitably normed) volume of the rational polytope

P =condM)NA;

where conéM) C R" is the cone generated iy andA; is the hyperplane of degree 1
points. In the following we assume that

M =congM)NL

for a sublatticeL of Z". ThenE(M,k) counts theL-points in the multiplekP, and is
therefore the Ehrhart function & (with respect td.).

Monoids of the type just introduced are important for apgdiens, and in some of
them, like those discussed in Sectidn 3, one is naturallydezbnsidergeneralizedor
weighted)Ehrhart series

Em.f(t) = va f (x)tde%

wheref is a polynomial inn indeterminates. It is well-known that also the generalized
Ehrhart series is the power series expansion of a rationatifun; see![1],[12].

In the last months we have implemented an offspring of Nojé] called Nmzinte-
gratﬁ that computes generalized Ehrhart series. The input polyade of Nmzintegrate
must have rational coefficients, and we assume thatof this type although it is math-
ematically irrelevant. This note describes the computatibgeneralized Ehrhart series

2010Mathematics Subject ClassificatioB2B20, 13F20, 14M25, 91B12.

1Nmzlntegrate will be uploaded tbl[6] together with Norm&i8 by February 2013.
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2 W. BRUNS AND C. OGER

based on Stanley decompositions|[13]. Apart from takingetistence of Stanley de-
compositions as granted, we give complete and very elemygptaofs of the basic facts.
They follow exactly the implementation in Nmzintegrate Yare versa).

The generalized Ehrhart function is given by a quasipolyabmyk) of degree<
degf +rankM — 1, and the coefficient dee9f+rankM—1in q(k) can easily be described as
the integral of the highest homogeneous componetitafer the polytopd®. Therefore
we have also included (and implemented) an approach to thewiation of integrals of
polynomials over rational polytopes in the spirit of the Edmt series computation. See
[2] and [E] for more sophisticated approaches.

AcknowledgementWe gratefully acknowledge the support we received from Jdbmn
bott and Anna Bigatti in using CoCoALib[3], on which the mu#triate polynomial al-
gebra in Nmzintegrate is based.

1. THE COMPUTATION OF GENERALIZEDEHRHART SERIES

Via a Stanley decomposition and substitution the compartadi generalized Ehrhart
series can be reduced to the case in wiNtls a free monoid, and for free monoids one
can split off the variables of successively so that one ends at the classicalMaseZ . .
We take the opposite direction, starting fr@n.

1.1. The monoidZ... LetM =Z... By linearity it is enough to consider the polynomials
f(k) = k™ k € Z., for which the generalized Ehrhart series is given by

Z Kmgum u=degl

and if necessary we can assume 1, substituting — t" in the final result.
The rising factorials
(K+Dm= (k+1)---(k+m)
form aZ-basis of the polynomial ring [k]. Therefore we can write

m
Z Smj(k+1)j (1.1)
j=0

and use that

0 (%) (o] (r) |
O R S L
kZO (K+ 1), Z ; - <1_t) = g (1.2)

Equations[(1]1) and (1.2) solve our problemKbe= Z . and f (k) = k™
Z)kmt”k titjrzﬂ Amul(t) € ZI[t]. (1.3)

It is enough to computéy, 1(t) becausé\m (t) = Am1(t"). One should note thay , is
a polynomial of degreen. Therefore the rational function ih (1.3) has negative degr

Since the coefficiersmm of (k4 1)m in the representation &" is evidently equal to 1,
we have

ml
Z Kmpum _ (L +terms of smaller pole order ait= 1 (1.4)
k=0 -
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Remark 1. The coefficientsy, j in (1.1) and the coefficients of the polynomidls , are
well-known combinatorial numbers.

(@) smj=(—-1)M™ISm+1,j+1) whereS(p,q) is the Stirling number of the second
kind that counts the number of partitions ofpeset intoq blocks. This follows imme-
diately from the classical identity™* = 5™ (—1)™1-Ig(m+ 1, j)(k); (for example,
see Stanley [14, 4.3,c]). _

(b) Form= 0 we haveAg; = 1 andAm1 = ¥4 A(m, j)t) for m> 0 whereA(m, j) is
the Eulerian number [14, 4.3,d].

1.2. The monoid Z$. Next we consideM = Z4. The crucial observation is that the
problem is multiplicative for products of polynomials irsghint variables. Suppose that

f(x) =9(y)h(2),y= (X1,---:%), Z= (Xr+1,-..,X4). Then
Z h(z)tdegz> (1.5)
z5 "

d
XEZY ze

by multiplication of power series.
In order to exploitl(1.b) we split the last variable off,

Zf X1y, Xd—1 Xd7
and obtain
Em (1) = tdegx) ( k't”')
M7f( ) IZ (X/e%jir 1 Z
_ Ai,u(t) : degd
— .Z 7(1_tu)i+1 X/E%“ fi (Xt (1.6)
with u = degey.

Applying this formula inductively allows us to eliminatd aariablesx and to end with
the desired representation®fq ((t).
Generalizing[(114), let us consider the case in whide a monomial,f(xy,...,Xq) =
1---x3", andz4 is endowed with itstandard degreedegx) = Xq + -+ +Xg. Then
equations[(1]5) and (1. 4) imply that

!
Em f(t) = T mfmd+d +terms of smaller pole order ait= 1. (1.7)

(1—t)

1.3. Using the Stanley decompositionWe now turn to general ¢ Z". Normaliz com-
putes a triangulatiok of congM) into simplicial subcones. Moreover, it computes a
disjointdecomposition
congM) = | J 0\ S
ogex
whereS; is a union of facets of. The existence of such a decomposition is a nontrivial
fact. Classically it is derived from the Brugesser-Manidten on the existence of line
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shellings (see Stanley [13]). Instead of a line shellingimiliz (now) uses a method of
Koppe and Verdoolaege: see[[10] and [7, Section 4].

Every simplicial subcone (of full dimension) is generatgdibearly independent vec-
torsvy,...,vqg € M, d =rankM. They generate a free submondig of M. For everyo
Normaliz computes the set

Eo = {xegp(M):x=0avi+---+aqgvg, 0 € [0,1)}.

Forx € Eg we lete(x) be the sum of those for which (i) ai = 0 and (ii) the facet obr
opposite toy; lies in the excluded s&; (so thatx lies in the excluded set). Then it is not
hard to see that we have a disjoint decomposition

M= ] U x+&(x)+Mo.
ocX X€Eg

It is called aStanley decompositicsince its existence is originally due to Stanley/[13].
In the following we sek = x+ £(x) and

NO',X:i—i_ MO'.
Then
EM,f(t> - Z Z ENUA,ny(t)'
0 Xekg

Setd = rankM, and for giveno consider the linear map
CXUZZ?»%Z”, aa(Y17-~-,Yd)ZY1V1+"'+"'+YdVd,
wherevy, ..., Vq is the generating set &, as above. With

deg, y = degas(y),
Jox(y) = f (aa(y) + SZ)? (1.8)

we have
ENU,XJ(t) = e Z ga,x(y)tde%y~
yezd
This equation transforms the summation olgry into a summation oveZi. Then we
can apply[(1.6) inductively to
Eof(t)= S Engyf(t). (1.9)

XekEg
Finally, we sum the rational functiori&, ¢ (t) over the triangulatiol.

Remark 2. (a) Instead of applyind (11.6) to eveoy, we accumulate the polynomiadg x
over all o that induce the same degree demn Z¢ (the classes formed in this way are
calleddenominator classes

(b) The time critical steps in the algorithm are

(1) the coordinate transformatidn (IL.8), and
(2) the inductive application of (1.6).
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In order to speed up (1), we factor the polynomialtransform the factors separately,
and multiply the transformed factors. ifhappens to decompose into linear factors, then
multiplication of linear polynomials becomes a time calistep. In order to speed up (2)
we have introduced the denominator classes.

(c) Note thatzyezi Jox(Y)t9%Y is invariant under permutations of variabigsthat
preserve the degrees ¢eg. Therefore one can go ovgs x monomial by monomial and
reorder the exponent vectors in such a way that the exponéussiables corresponding
to the same degree become decreasing. The reordering camilfi reduces the number
of monomials in the polynomials to which (1.6) must be aphl&aves memory and also
speeds up (116).

(d) We want to point out thaf (11.6) isot applied recursively. Instead the right hand
side is expanded after the eliminatiorxgf andxy_; is then eliminated from the resulting
polynomial whose coefficients are rational functions.ifhis procedure is repeated until
all x; have been eliminated.

2. THE QUASIPOLYNOMIAL, ITS VIRTUAL LEADING COEFFICIENT, AND
INTEGRATION

2.1. The quasipolynomial. All rational functions int that come up in[(1]9) can be writ-
ten over the denominator
(1 _ tﬁ)degfﬂankM

where/ is the least common multiple of the numbers dégr the generators of M that
appear in the triangulation. This follows from (IL.6) if onkserves that 1 t" divides
1—t’. Moreover, all summands have negative degree as rationaidns int. Therefore
[14, 4.4.1] implies the following proposition.

Proposition 3.
Em ()= Y q(kt*
2

where q is a rational quasipolynomial of perioddividing ¢ and of degree< degf +
rankM — 1.

The statement about the quasipolynomial means that thesepstynomialsgl), j =
0,...,m—1, of degree< degf +rankM — 1 such that

ak)=aqV(k), j=k (m),
and
q(j)(k) _ qéi) +q(1j)k+ o +q((]lje)gfHankMilkdegf+rankM71
with coefficientsqi(j) € Q. As we will see below, it is justified to call
ed M, f) = degf +rankM — 1

theexpected degreef q.
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2.2. The virtual leading coefficient and Lebuesge integration.Letm= degf and write
f = fm+ g where f, is the degreen homogeneous componentimf Then deg < m,

and it follows from Propositionl3 thag does not contribute to the coefﬁmeqﬁd(M f)-

Moreover, this coefficient is independent jodnd given by an integral, as we will see in
Proposition 4 below.

For the representation as an integral we must norm the nmeeassuch a way that it is
compatible with the lattice structure. We will integrateeothe polytope

P= COHG{M)QAl, Alz{XERn:degX: ]_}

Let Lo = LNRM N Ay whereAy = {x € R" : degx = 0} is the linear subspace of degree
0 elements. Thelhg is a (saturated) sublattice &f of rankd — 1 (d = rankM), and
we choose a basig, ..., uq_1 of Lg. Note thatH = RM N A; has dimensiom — 1 and
contains a poink € L since we have required that deg takes the value 1 ¢gNgpand
we can consider thbasic Lg-simplexd = conVz,z+ uy,...,Z+Ug_1) in H. Now we
norm the Lebuesge measurenH by giving volume ¥ (d — 1)! to the basid_p-simplex.
(The measure is independent of the choicé since two basitg-simplices differ by an
affine-integral automorphism &f.) We callA theL-Lebuesge measumn H.

Proposition 4. Forall j =0,...,m1— 1 0ne has

(1) _
Q1) = [, fmd2. (2.1)
Proof. We may assume thdtis homogeneous of degree Let
1
LC — EL

Then

xePnLc

by elementary integration theory.
Note that

1
f(x) = o f(cx)
by homogeneity and thate PN L. if and onlycxe LNcP. Thus

1
/fmd/\_llm 3 W)

On the other hand, we obtaqéd(M 1) as the limit over the subsequen@sT+ j)pez, :
(i) 1

q = lim ————f(y
D 050 prfyppry (BTTH )™ W
by Propositio B. This concludes the proof. O

In view of Propositiori # it is justified to calfeqm, 1) = qé{}(M.f) the virtual leading
coefficientand the proposition justifies the term “expected degreedégf + rankM — 1
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the. In analogy with the definition of multiplicity in commative algebra (for example,
see|[5]), we call

vmult(M, f) = edM, f)!geqm, 1)

the virtual multiplicity of (M, f). It is an integer ifP is a lattice polytope andy, has
integral coefficients, as we will see below.

2.3. Computing the integral. It is natural to compute the integral by summation over
the triangulation: the triangulation of cofM) into simplicial subcones induces a tri-
angulation of the polytopP into simplicesd = o NP. As usual let,...,vq € M be the
generators obr. Thend is spanned by the degree 1 vectarsdeqvi), i =1,...,n. Let
el,...,e4 be the unit vectors iiR9. Then the substitutiog — vi/dedV;) induces a linear
mapRY — RM that in its turn restricts to an affine mapfrom the standard degree 1
hyperplane iR spanned by, ..., g4 to the hyperplanél = A;NRM, and the image of
the unit simplexX is justd.

Proposition 5. One has

_|def(vy,...,vq)| .
/6fd)\ = Sogun) e /A(f a)du 2.2)

wherey is theZ9-Lebuesge measure on the hyperpl&hef standard degreé in RY.

Proof. This is just the substitution rule if one observes that theollie value of the
functional determinant orﬁr|l—~| is given by the factor in front of the integral. For an affine
map the functional determinant is constant. So we can assumé and it remains to
relate the volumes ad andA. ButA has volume 1(d — 1)! with respect tou andd has
volume
1 |del(v1,...,vd)| .
(d—21)! degvy)---dedvqg)’

with respect to\ ; seel7, Section 4]. O

After the substitution it remains to evaluate the integradrd\, and this can be done
monomial by monomial:

Proposition 6.

l-.- — ml!'.'rTH!
R4 Yo I = (o e (2.3)

Proof. Letg=yj*---yq¥ andM = Z;. Then

my!---my!
EM7g(t> = (1 _ t)(ml+"'+md+d)

as stated i (117).

The quasipolynomial is a true polynomial in this case, amd(trtual) multiplicity is
given by the value of the numerator polynomiat at 1, namelymy! - - - my! (for example,
seel5, 4.1.9]). Now Propositidn 4 gives the integral. O

+terms of smaller pole order &= 1,
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3. COMPUTATIONAL EXAMPLES

We illustrate the use of Nmzintegrate by three related exasngming from combi-
natorial voting theory that are discussed.in/[12]. We referreader ta [11],[12] of [15]
for a more extensive treatment.

Consider an election in which each of tkeoters fixes a linear preference ordenmof
candidates. In other words, voterhooses a linear order of the candidates.1n. Each
such order represents a permutation of 1 n. SetN = n!l. The result of the election is an
N-tuple (X1, ...,%n) in which x, is the number of voters that have chosen the preference
order labeledp. Thenx; +---+xny =k, and(xy,...,Xy) can be considered as a lattice
point in the positive orthant a&'Y, or, more precisely, as a lattice point in the simplex

U™ =RY nA = k(RN NA;) = kU™

where A is the hyperplane defined by + --- + xy = k, andU® = U" is the unit

simplex of dimensiorN — 1 naturally embedded iN-space. We assume that all lattice

points in the simpleidlfn) have equal probability of being the outcome of the election.
The following three problems have been considered ih [124fcandidate#\, B,C, D:

(1) the Condorcet paradox,
(2) the Condorcet efficiency of plurality voting,
(3) plurality voting versus cutoff.

Forn =4 one has\ = 24, and the dimension of the polytopé? is already quite large.
Let us say that candidate beatscandidateB if the number of voters that prefer can-
didateA to candidateB is larger than the number of voters with the opposite prefae
CandidateA is the Condorcet winneif A beats all other candidates. As the Marquis de
Condorcet noticed, the relation “beats” is nontransitoresome outcomes of the election,
and there may be no Condorcet winner. This phenomenon edcddeCondorcet para-
dox Problem (1) asks for its asymptotic probability as the nankiof voters goes teo,
or even for the precise number of election results withoubadorcet winner, depending
on the numbek of voters.
It is not hard to see that the outcomes that hAvis the Condorcet winner can be
described by three homogeneous linear inequaliies > 0 whose coefficients are given
in Table[1 (relative to the lexicographic order of the peratioins ofA B,C,D). They

A11112121-1-1-1-1-1-1 1 1-1-1 1-1 1 1-1-1 1-1
0111212211 2-1-11-1-1-12-1-1-1-1 1 1 1-1-1-1
301112122111 %+1-1-12 11 1-1-1-1-1-1-1-1-1-1

TABLE 1. Inequalities expressing thatbeats the other 3 candidates

cut out a rational polytope frod (", and the probability of Condorcet’s paradox can
be computed from the volume of the polytope. Finding the iseeaumber of election
results without (or with) a Condorcet winner requires thenpatation of the Ehrhart
function of the semi-open polytope. Neither Normaliz nor Nimtegrate can yet compute
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Ehrhart series for semi-open polytopes directly, but itivgags possible to fall back on
inclusion/exclusion.

We refer the reader t0[[7] for a description of problems (2) €8) and for the systems
of linear inequalities to be solved in each case. Normaklcan indeed compute the
volumes and the Ehrhart series in dimension 24 that arige fesks (1), (2) and (3)
despite the fact that the triangulations to be evaluate@jpand (3) are formidable (see
Tablel3 or[7]).

As Schirmann[12] observed, the computations can be cenadity simplified by ex-
ploiting the symmetries in the inequalities: some varialdbhare the same coefficients
in each inequality, for example the first 6 variables in TdhleTherefore they can be
replaced by their sum, and the replacement constitutesjagbiam of the original poly-
topes, monoids or cones onto objects of smaller dimensiontife Condorcet paradox
the system of inequalities reduces to Tdble 2. Howeverausbf simply counting lattice

TABLE 2. Inequalities exploiting the symmetries in Tahble 1

points, one must now count them with their numbers of preesagd hese are given by
polynomials, namely products of binomial coefficients. ur example the polynomial is

(yl ; 5) (Y2+ 1) (Ya+ 1) (Ya+ 1) (Vs + 1) (ys + 1) (y7+ 1) (yg 5+ 5)

wherey; = X1 + --- + Xg etc. In other words, the Ehrhart function (or the volume) of a
high dimensional polytope is replaced by a generalized &thftinction of a polytope of
much lower dimension (or the virtual leading coefficientlod fjluasipolynomial).

A priori it may not be clear that the replacement of combinat@omplexity in high
dimension by multivariate polynomial arithmetic in low demsion pays dividends, but
this is indeed the case. Tablés 3 anhd 4 compare both appsoakiine computations were
run on a SUN xFire 4450 with 20 parallel threads. If the corapahs in Tablé 3 are
restricted to volumes, they become faster by a factor of@pprately 3.

computation triangulation size  real time
Condorcet paradox 1,473,107 00:00:30 h
Condorcet efficiency 347,225 775,338 | 218:13:55 h
plurality vs. cutoff | 257,744,341,008 175:11:26 h

TABLE 3. Computation times (real) for Ehrhart series in dimen&én

A welcome side effect of the computations of the general&erdhart functions is that
they have confirmed the results reported on in [7].
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computation rank | degf | triangula-| Normaliz| gen Ehrhart lead coeff
tion size time| series time time
Condorcet paradox 8 16 17| 0.01 sec 2.6sec 0.04 seg
Condorcet efficiency 13 11 17,953 0.37 seg 3:44h| 26 min
plurality vs. cutoff 6 18 3| 0.01seq 10.9seq 0.12seg

TABLE 4. Computation times (real) for symmetrized data
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