GNU Compiler Collection Internals

For ccc version 4.4.1

(’cs2009q3-67-soft-sb3’)

Richard M. Stallman and the Gcc Developer Community

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e 1
1 Contributing to GCC Development 3
2 GCC and Portability i i 5
3 Interfacing to GCC Outputo .. 7
4 The GCC low-level runtime library 9
5 Language Front Ends in GCC.......................... 59
6 Source Tree Structure and Build System.................. 61
7 Option specification files 89
8 Passes and Files of the Compiler........................ 93
9 Trees: The intermediate representation used by the C and C++
frontends ... 107
10 RTL Representation 147
11 GENERIC. ... e 199
12 GIMPLE . .. 201
13 Analysis and Optimization of GIMPLE tuples............ 235
14 Analysis and Representation of Loops................... 249
15 Control Flow Graph 259
16 Machine Descriptions, 269
17 Target Description Macros and Functions................ 369
18 Host Configuration 5925
19 Makefile Fragments. 529
20 collect2. . it 533
21 Standard Header File Directories....................... 535
22 Memory Management and Type Information 537
Funding Free Software i 543
The GNU Project and GNU/Linux. 545
GNU General Public License. i, 547
GNU Free Documentation License 559
Contributors to GCC 567
Option Indexo 583

Concept Index 585

Table of Contents

Introduction 1
1 Contributing to GCC Development........... 3
2 GCC and Portability 5
3 Interfacing to GCC Output.................... 7
4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic........... 9
4.1.1 Arithmetic functions i 9

4.1.2 Comparison functions ..., 10

4.1.3 Trapping arithmetic functions 11

4.1.4 Bit operations.t 11

4.2 Routines for floating point emulation.......................... 12
4.2.1 Arithmetic functions i 12

4.2.2 Conversion functionso, 13

4.2.3 Comparison functions, 15

4.2.4 Other floating-point functions 16

4.3 Routines for decimal floating point emulation.................. 16
4.3.1 Arithmetic functions i 17

4.3.2 Conversion functions, 17

4.3.3 Comparison functions ..., 20

4.4 Routines for fixed-point fractional emulation................ ... 22
4.4.1 Arithmetic functions i i 22

4.4.2 Comparison functions ..., 30

4.4.3 Conversion functions, 30

4.5 Language-independent routines for exception handling......... 57
4.6 Miscellaneous runtime library routines......................... 57
4.6.1 Cache control functions................coiiiiii... 57

5 Language Front Ends in GCC................ 59
6 Source Tree Structure and Build System.... 61
6.1 Configure Terms and History.......... i 61
6.2 Top Level Source Directory. ... 61
6.3 The ‘gecc’ Subdirectory. ... 63
6.3.1 Subdirectories of ‘gcc’. 63

6.3.2 Configuration in the ‘gcc’ Directory 63

6.3.2.1 Scripts Used by ‘configure’......................... 63

iii

iv GNU Compiler Collection (GCC) Internals
6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files . oo 64
6.3.2.3 Files Created by configure......................... 64
6.3.3 Build System in the ‘gcc’ Directory 65
6.3.4 Makefile Targets ... 65
6.3.5 Library Source Files and Headers under the ‘gcc’ Directory
.. 68
6.3.6 Headers Installed by GCC........... 68
6.3.7 Building Documentation.............o i 68
6.3.7.1 Texinfo Manuals............o i 69
6.3.7.2 Man Page Generationccooiiiini.... 69
6.3.7.3 Miscellaneous Documentation........................ 70
6.3.8 Anatomy of a Language Front End 71
6.3.8.1 The Front End ‘language’ Directory 72
6.3.8.2 The Front End ‘config-lang.in’ File............... 74
6.3.9 Anatomy of a Target Back End........................... 75
6.4 Testsuites.o 76
6.4.1 Idioms Used in Testsuite Code............. ...t 76
6.4.2 Directives used within DejaGnu tests..................... 7
6.4.3 Ada Language Testsuites.................ciiiiiiii... 82
6.4.4 C Language Testsuites 82
6.4.5 The Java library testsuites............ L. 84
6.4.6 Support for testing gcov 84
6.4.7 Support for testing profile-directed optimizations 85
6.4.8 Support for testing binary compatibility 86
6.4.9 Support for torture testing using multiple options......... 87
7 Option specification files...................... 89
7.1 Option file format......... .. 89
7.2 Option propertiesooou i 90
8 Passes and Files of the Compiler............. 93
8.1 Parsing passui 93
8.2 GImplification Pass.c.uieiit e 94
8.3 Pass manager...........o i 94
8.4 Tree SSA PaSSES - ..ttt 95
8.0 RTIL PaASSES « 101

9 'Trees: The intermediate representation used by

the C and C++ frontends................. 107

9.1 Deficiencies 107
0.2 OVEIVIEW .« .ttt ettt 107
9.2.1 TT@eS ettt 108
9.2.2 Identifiers......... ..o 109
9.2.3 Contalnersoutieeeeii e 109
9.3 Y PES oot 109
0.4 SCOPES - ettt 115
9.4.1 NamMESPACES . « ¢ vttt ettt e 115
9.4.2 ClaSSES .« ettt ettt 116
9.5 Declarationsc.oo i 118
9.5.1 Working with declarations................. 118
9.5.2 Internal structure............ i 120
9.5.2.1 Current structure hierarchy......................... 121
9.5.2.2 Adding new DECL node types...................... 122

9.6 Functions........... oo 123
9.6.1 Function Basics.......... ... 124
9.6.2 Function Bodies....... 127
0.6.2.1 Statements............ooiiiiiiiiiii 127

9.7 Attributes In trees . ..o 131
9.8 B XPIeSSIONS . o\ttt ettt e 131
10 RTL Representation........................ 147
10.1 RTL Object TyPes. .. .vuuti e 147
10.2 RTL Classes and Formats. ..., 148
10.3 Access to Operands.oiiiii i 150
10.4 Access to Special Operands ..., 151
10.5 Flags in an RTL Expression..............cooooiiiiiiiia.. 153
10.6 Machine Modes. 159
10.7 Constant Expression Types ..., 164
10.8 Registers and Memory, 166
10.9 RTL Expressions for Arithmetic............................. 172
10.10 Comparison Operations.ooueieiiiieenineeenn.. 176
10.11 Bit-Fieldso e 177
10.12 Vector Operationsouuiiiiii .. 178
10.13 CONVEISIONS .. vttt ettt ettt e e e 178
10.14 Declarationsouuieein it 180
10.15 Side Effect Expressions ..., 180
10.16 Embedded Side-Effects on Addresses....................... 185
10.17 Assembler Instructions as Expressions...................... 187
10,18 IMSIIS .ottt 187
10.19 RTL Representation of Function-Call Insns................. 195
10.20 Structure Sharing Assumptions 196

10.21 Reading RTL 197

vi GNU Compiler Collection (GCC) Internals

11 GENERIC.......... 199
11,1 Statements e 199
11,11 BlockS .o oo 199
11.1.2 Statement Sequences..............c.cooiiiiiiiiiiii... 200
11.1.3 Empty Statements.......... ..., 200
11,14 JUMPS « oottt 200
11,15 Cleanups. .« oot et et et 200
12 GIMPLE 201
12.1 Tuple representation........... ..o 202
12.1.1 gimple_statement_base (gsbase)...................... 202
12.1.2 gimple_statement_with_ops.......................... 203
12.1.3 gimple_statement_with_memory_ops.................. 204
12.2 GIMPLE instruction set ... 205
12.3 Exception Handling.........o i 205
12,4 TempPOTariest 206
12.5 Operands. 206
12.5.1 Compound Expressionscooiiiiiiiiii.. 207
12.5.2 Compound Lvalues.......... ..., 207
12.5.3 Conditional Expressions.............cooiiiiiiiiiiiinnn. 207
12.5.4 Logical Operators...........coouiiiiiiiiiiiiinan.. 207
12.5.5 Manipulating operands............ ... 208
12.5.6 Operand vector allocation.............................. 208
12.5.7 Operand validationo L. 209
12.5.8 Statement validation............. i 209
12.6 Manipulating GIMPLE statements.......................... 210
12.6.1 COomIMON ACCESSOTS . . .« vttt e et e e e e e 210
12.7 Tuple specific accessorsooii i 212
12,71 GIMPLE _ASM. ...t e 212
12.7.2 GIMPLE_ASSIGN ...ttt 213
12.7.3 GIMPLE_BINDttt it 215
12.7.4 GIMPLE_CALL ...ttt e 215
12.7.5 GIMPLE _CATCH ...\ttt 217
12.7.6 GIMPLE_CHANGE_DYNAMIC_TYPE.............cvirunnnn.. 218
12,77 GIMPLE_COND ...ttt ettt e e 218
12.7.8 GIMPLE_EH_FILTER.........cciuuiiiiiieiaeaenn. 219
12.7.9 GIMPLE_LABELttt 220
12710 GIMPLE_NOP. ..ottt ettt e 220
12.7.11 GIMPLE_OMP_ATOMIC_LOAD ..ottt 220
12.7.12 GIMPLE_OMP_ATOMIC_STOREcoiiiiiiinnnnnnn. 221
12.7.13 GIMPLE_OMP_CONTINUE...... ..ttt 221
12.7.14 GIMPLE_OMP_CRITICAL...... .00ttt 221
12.7.15 GIMPLE_OMP_FOR.. ...ttt 222
12.7.16 GIMPLE_OMP_MASTER ...ttt 223
12.7.17 GIMPLE_OMP_ORDEREDciiiiiiineeninnnnnnn, 223
12.7.18 GIMPLE_OMP_PARALLELttt 223
12.7.19 GIMPLE_OMP_RETURN ...ttt 224

12.7.20 GIMPLE_OMP_SECTIONcutitieeeeaennnnnnnn 225

vii

12.7.21 GIMPLE_OMP_SECTIONSottt 225
12.7.22 GIMPLE_OMP_SINGLEttt 225
12.7.23 GIMPLE _PHI. ...\ttt 226
12.7.24 GIMPLE _RESXK ..\ttt i 226
12.7.25 GIMPLE_RETURNttt 227
12.7.26 GIMPLE_SWITCH.........iiiiiiiiieeeennn, 227
12.7.27 GIMPLE _TRY . ..\ttt 228
12.7.28 GIMPLE_WITH_CLEANUP_EXPR...........cciiiiinnnn.... 228
12.8 GIMPLE Sequencesouuuuuiiiiiiiiiiiiiiean 229
12.9 Sequence iterators 230
12.10 Adding a new GIMPLE statement code.................... 233
12.11 Statement and operand traversals.......................... 233

13 Analysis and Optimization of GIMPLE tuples

... 235
13.1 Annotationsoeiin i 235
13.2 SSA Operands.o 235

13.2.1 Operand Iterators And Access Routines................ 237
13.2.2 Immediate Uses........cooiiiiiiiiiii i, 239
13.3 Static Single Assignment........... i, 241
13.3.1 Preserving the SSA form............. 242
13.3.2 Preserving the virtual SSA form............... 243
13.3.3 Examining SSA_NAME nodescoviiiieiiea . 244
13.3.4 Walking use-def chains.............. 244
13.3.5 Walking the dominator tree............................ 244
13.4 Alias analysis.o 245

14 Analysis and Representation of Loops 249

14.1 Loop representation............ ..., 249
14.2 LOOD qUETYING . . oo ottt e 251
14.3 Loop manipulation.................oiii i 252
14.4 Loop-closed SSA form ... 252
14.5 Scalar evolutions. 253
14.6 IV analysison RTL...... ..o 254
14.7 Number of iterations analysist 254
14.8 Data Dependency Analysis. ..., 255
14.9 Linear loop transformations framework...................... 257
14.10 Omega a solver for linear programming problems........... 257
15 Control Flow Graph........................ 259
15.1 Basic Blocks. ... 259
152 BEdges . oo 260
15.3 Profile information.......... i i 263
15.4 Maintaining the CFG i 264

15.5 Liveness information....... ..., 266

viii GNU Compiler Collection (GCC) Internals

16 Machine Descriptions....................... 269
16.1 Overview of How the Machine Description is Used........... 269
16.2 Everything about Instruction Patterns 269
16.3 Example of define_insnciiiiiiiiiiii.. 270
16.4 RTL Template. ... 271
16.5 Output Templates and Operand Substitution................ 275
16.6 C Statements for Assembler Output......................... 276
16.7 Predicateso 277

16.7.1 Machine-Independent Predicates 278
16.7.2 Defining Machine-Specific Predicates 280
16.8 Operand Constraints. ..o 282
16.8.1 Simple Constraints.oiiiiiiiiienn.. 282
16.8.2 Multiple Alternative Constraints 286
16.8.3 Register Class Preferences............. 287
16.8.4 Constraint Modifier Characters......................... 287
16.8.5 Constraints for Particular Machines 288
16.8.6 Disable insn alternatives using the enabled attribute... 305
16.8.7 Defining Machine-Specific Constraints.................. 306
16.8.8 Testing constraints from C............................. 308
16.9 Standard Pattern Names For Generation.................... 309
16.10 When the Order of Patterns Matters....................... 333
16.11 Interdependence of Patterns, 333
16.12 Defining Jump Instruction Patterns........................ 334
16.13 Defining Looping Instruction Patterns................... ... 336
16.14 Canonicalization of Instructions............................ 338
16.15 Defining RTL Sequences for Code Generation 339
16.16 Defining How to Split Instructions 342
16.17 Including Patterns in Machine Descriptions................. 345
16.17.1 RTL Generation Tool Options for Directory Search.... 346
16.18 Machine-Specific Peephole Optimizers...................... 346
16.18.1 RTL to Text Peephole Optimizers..................... 346
16.18.2 RTL to RTL Peephole Optimizers..................... 348
16.19 Instruction Attributes L. 350
16.19.1 Defining Attributes and their Values 350
16.19.2 Attribute Expressions. ..., 351
16.19.3 Assigning Attribute Values to Insns................... 353
16.19.4 Example of Attribute Specifications................... 354
16.19.5 Computing the Length of an Insn..................... 355
16.19.6 Constant Attributes L. 356
16.19.7 Delay Slot Scheduling............... 357
16.19.8 Specifying processor pipeline description 358
16.20 Conditional Execution............. ... i, 363
16.21 Constant Definitions. ... 364
16.22 THerators. 365
16.22.1 Mode Tterators. ..o 365
16.22.1.1 Defining Mode Iterators.......................... 365
16.22.1.2 Substitution in Mode Iterators................... 366

16.22.1.3 Mode Iterator Examples 367

16.22.2 Code Iterators 367

17 Target Description Macros and Functions

... 369
17.1 The Global targetm Variable............. 369
17.2 Controlling the Compilation Driver, ‘gcc’ 369
17.3 Run-time Target Specification..........., 378
17.4 Defining data structures for per-function information. 380
17.5 Storage Layouto 381
17.6 Layout of Source Language Data Types..................... 390
17.7 Register Usage. ..ot 394

17.7.1 Basic Characteristics of Registers....................... 394
17.7.2 Order of Allocation of Registers........................ 396
17.7.3 How Values Fit in Registers............., 397
17.7.4 Handling Leaf Functions 399
17.7.5 Registers That Form a Stack........................... 400
17.8 Register Classesouiiii e 400
17.9 Obsolete Macros for Defining Constraints 409
17.10 Stack Layout and Calling Conventions 411
17.10.1 Basic Stack Layout i 411
17.10.2 Exception Handling Support 415
17.10.3 Specifying How Stack Checking is Done 417
17.10.4 Registers That Address the Stack Frame 418
17.10.5 Eliminating Frame Pointer and Arg Pointer 420
17.10.6 Passing Function Arguments on the Stack............. 422
17.10.7 Passing Arguments in Registers....................... 424
17.10.8 How Scalar Function Values Are Returned 429
17.10.9 How Large Values Are Returned 430
17.10.10 Caller-Saves Register Allocation...................... 432
17.10.11 Function Entry and Exit............. 432
17.10.12 Generating Code for Profiling........................ 436
17.10.13 Permitting tail calls...........o L 436
17.10.14 Stack smashing protection 437
17.11 Implementing the Varargs Macros.......................... 437
17.12 Trampolines for Nested Functions.......................... 439
17.13 Implicit Calls to Library Routines.......................... 442
17.14 Addressing Modesoiiiiii 443
17.15 Anchored Addressesoviiiii i 448
17.16 Condition Code Status............coiiiiiiiiiiiiiiiia.. 449
17.17 Describing Relative Costs of Operations.................... 452
17.18 Adjusting the Instruction Scheduler........................ 456
17.19 Dividing the Output into Sections (Texts, Data, ...)....... 462
17.20 Position Independent Code, 466
17.21 Defining the Output Assembler Language 467
17.21.1 The Overall Framework of an Assembler File.......... 467
17.21.2 Output of Data ... 470
17.21.3 Output of Uninitialized Variables 472

17.21.4 Output and Generation of Labels 474

ix

X GNU Compiler Collection (GCC) Internals

17.21.5 How Initialization Functions Are Handled 481
17.21.6 Macros Controlling Initialization Routines............. 483
17.21.7 Output of Assembler Instructions 485
17.21.8 Output of Dispatch Tables.................., 488
17.21.9 Assembler Commands for Exception Regions.......... 489
17.21.10 Assembler Commands for Alignment................. 491
17.22 Controlling Debugging Information Format................. 493
17.22.1 Macros Affecting All Debugging Formats.............. 493
17.22.2 Specific Options for DBX Output 494
17.22.3 Open-Ended Hooks for DBX Format 496
17.22.4 File Names in DBX Format........................... 496
17.22.5 Macros for SDB and DWARF Output................. 497
17.22.6 Macros for VMS Debug Format 499
17.23 Cross Compilation and Floating Point...................... 499
17.24 Mode Switching Instructions............... 501
17.25 Defining target-specific uses of __attribute__............. 502
17.26 Emulating TLS 504
17.27 Defining coprocessor specifics for MIPS targets. 505
17.28 Parameters for Precompiled Header Validity Checking. 506
17.29 CH+ ABI parameters.oouriiiiiie e, 506
17.30 Miscellaneous Parameters................... i, 508
18 Host Configuration 525
18.1 Host Commonovuu e 525
18.2 Host Filesystem. ... i 526
18.3 Host MiSC .. e 527
19 Makefile Fragments......................... 529
19.1 Target Makefile Fragments........... ... i 529
19.2 Host Makefile Fragments......... ... it 531
20 collect2 ... o 533
21 Standard Header File Directories.......... 535
22 Memory Management and Type Information
... 537
22.1 The Inside of a GTY(()) . onvririii e 537
22.2 Marking Roots for the Garbage Collector.................... 541
22.3 Source Files Containing Type Information................... 542
22.4 How to invoke the garbage collector......................... 542
Funding Free Software........................... 543

The GNU Project and GNU/Linux............ 545

GNU General Public License 547
GNU Free Documentation License 559

ADDENDUM: How to use this License for your documents........ 565
Contributors to GCC............................ 567
Option Index, 583

Concept Index............. 585

X1

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers (’cs2009q3-67-soft-sb3’) version 4.4.1. The use of the GNU
compilers is documented in a separate manual. See Section “Introduction” in Using the

GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 59). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for F'TP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

Chapter 2: GCC and Portability 5)

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 17 [Target Macros|, page 369).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET _STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. 1ibgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 10.6 [Machine Modes], page 159, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi3 (unsigned long a, unsigned long [Runtime Function]
b, unsigned long *c)
unsigned long long __udivti3 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]

long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]
The functions return the product of a and b; that is a * b.

int __negvsi2 (int a) [Runtime Function]

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __subvsi3 (int a, int b) [Runtime Function]

long __subvdi3 (long a, long b) [Runtime Function]

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int
int
int

int
int
int

int
int

int
int
int

__clzsi2 (int a) [Runtime Function]
__clzdi2 (long a) [Runtime Function]
__clzti2 (long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

__Cctzsi2 (int a) [Runtime Function]
__ctzdi2 (long a) [Runtime Function]
__ctzti2 (long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

__ffsdi2 (long a) [Runtime Function]
__ffsti2 (long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

__paritysi2 (int a) [Runtime Function]
__paritydi2 (long a) [Runtime Function]
__parityti2 (long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (int a) [Runtime Function]
int __popcountdi2 (long a) [Runtime Function]
int __popcountti2 (long long a) [Runtime Function]

These functions return the number of bits set in a.

int32_t __bswapsi2 (int32_t a) [Runtime Function]
int64_t __bswapdi2 (int64-t a) [Runtime Function]
These functions return the a byteswapped.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 17.13 [Library Calls|,
page 442). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __addsf3 (float a, float b)

float __subsf3 (float a, float b) [Runtime Function
double __subdf3 (double a, double b) [Runtime Function
long double __subtf3 (long double a, long double b) [Runtime Function
long double __subxf3 (long double a, long double b) [Runtime Function

These functions return the difference between b and a; that is, a — b.

]
]
]
]

- [Runtime Function
double __muldf3 (double a, double b) [Runtime Function
long double __multf3 (long double a, long double b) [Runtime Function
long double __mulxf3 (long double a, long double b) [Runtime Function

These functions return the product of a and b.

float __mulsf3 (float a, float b)

]
]
]
]

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

float __negsf2 (float a) [Runtime Function]
double __negdf2 (double a) [Runtime Function]

long double _negtf2 (long double a) [Runtime Function]

Chapter 4: The GCC low-level runtime library 13

long double __negxf2 (long double a) [Runtime Function]
These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.2.2 Conversion functions

- Runtime Function
long double __extendsftf2 (float a) Runtime Function

double __extendsfdf2 (float a) []
[]
_extendsfxf2 (foat a) [Runtime Function]
[]
[]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) [Runtime Function]
double __trunctfdf2 (long double a) [Runtime Function]
float __truncxfsf2 (long double a) [Runtime Function]
[]

|

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
zero.

int __fixsfsi (float a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

long __fixsfdi (float a) [Runtime Function]

long __fixdfdi (double a) [Runtime Function]

long __fixtfdi (long double a) [Runtime Function]

long __fixxfdi (long double a) [Runtime Function]
These functions convert a to a signed long, rounding toward zero.

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (float a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]
unsigned int __fixunsxfsi (long double a) [Runtime Function]

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]

14 GNU Compiler Collection (GCC) Internals

unsigned long __fixunsxfdi (long double a) [Runtime Function]
These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative

values all become zero.
float __floatsisf (int 1) [Runtime Function]
double __floatsidf (int 1) [Runtime Function]
long double __floatsitf (int i) [Runtime Function]
long double __floatsixf (int i) [Runtime Function]
These functions convert i, a signed integer, to floating point.

float __floatdisf (long 1) [Runtime Function]

double __floatdidf (long i) [Runtime Function]

long double __floatditf (long 1) [Runtime Function]

long double __floatdixf (long i) [Runtime Function]
These functions convert i, a signed long, to floating point.

float __floattisf (long long 1) [Runtime Function]

double __floattidf (long long i) [Runtime Function]

long double __floattitf (long long i) [Runtime Function]

long double __floattixf (long long i) [Runtime Function]
These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int i) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]

double __floatundidf (unsigned long i) [Runtime Function]

long double __floatunditf (unsigned long i) [Runtime Function]

long double __floatundixf (unsigned long i) [Runtime Function]
These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long i) [Runtime Function]
double __floatuntidf (unsigned long long i) [Runtime Function]
long double __floatuntitf (unsigned long long 1) [Runtime Function]

]

long double __floatuntixf (unsigned long long i) [Runtime Function
These functions convert i, an unsigned long long, to floating point.

Chapter 4: The GCC low-level runtime library 15

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]
int __cmptf2 (long double a, long double b) [Runtime Function]

These functions calculate a <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);
where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NalN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

16 GNU Compiler Collection (GCC) Internals

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NalN,
and a is less than or equal to b.

int __gtsf2 (float a, float b) [Runtime Function]
int __gtdf2 (double a, double b) [Runtime Function]
int __gttf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other floating-point functions

float __powisf2 (float a, int b) [Runtime Function]

double __powidf2 (double a, int b) [Runtime Function]

long double __powitf2 (long double a, int b) [Runtime Function]

long double __powixf2 (long double a, int b) [Runtime Function]
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d) [Runtime Function]

complex double __muldc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __multc3 (long double a, long double [Runtime Function]

b, long double c, long double d)

complex long double __mulxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the product of a 4+ ib and ¢ + id, following the rules of C99

Annex G.
complex float __divsc3 (float a, float b, float c, float d) [Runtime Function]
complex double __divdc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __divtc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

complex long double __divxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the quotient of a + ib and ¢ + id (i.e., (a+ ib)/(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.

Chapter 4: The GCC low-level runtime library

4.3.1 Arithmetic functions

_Decimal32 __ (-Decimal32 a, _Decimal32 b)
_Decimal32 __bid_addsd3 (_Decimal32 a, Decimal32 b)
_Decimal64 __dpd_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal64 __bid_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimall128 __dpd_addtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_addtd3 (_Decimall28 a, _Decimall28 b)

These functions return the sum of a and b.

dpd_addsd3

_Decimal32 __dpd_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_subsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __dpd_subdd3 (_Decimal64 a, Decimal64 b)
_Decimal64 __bid_subdd3 (_Decimal64 a, _Decimal64 b)
_Decimal128 __dpd_subtd3 (_Decimall28 a, -Decimall28 b)
_Decimall128 __bid_subtd3 (_Decimall28 a, _Decimall28 b)

17

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

These functions return the difference between b and a; that is, a — b.

_Decimal32 __dpd_mulsd3

_Decimal32 __bid_mulsd3

_Decimal64 __dpd_muldd3

_Decimal64 __bid_muldd3 (_Decimal64 a, Decimal64 b)

_Decimal128 __dpd_multd3 (_Decimall28 a, -Decimall28 b)

_Decimall128 __bid_multd3 (_Decimall28 a, -Decimall28 b)
These functions return the product of a and b.

-Decimal32 a, _Decimal32 b)
_Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)

A~ N S~

_Decimal32 __dpd_divsd3 (_Decimal32 a, _Decimal32 b)
_Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __dpd_divdd3 (_Decimal64 a, Decimal64 b)
_Decimal64 __bid_divdd3 (-Decimal64 a, -Decimal64 b)
_Decimall28 __dpd_divtd3 (_Decimall28 a, -Decimall28 b)
_Decimall128 __bid_divtd3 (_Decimall28 a, -Decimall28 b)
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __dpd_negsd2 (_Decimal32 a)
_Decimal32 __bid_negsd2 (_Decimal32 a)
_Decimal64 __dpd_negdd2 (_Decimal64 a)
_Decimal64 __bid_negdd2 (-Decimal64 a)
_Decimall28 __dpd_negtd2 (_Decimall28 a)
_Decimall28 __bid_negtd2 (_Decimall28 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can

produce negative zero and negative NaN.
4.3.2 Conversion functions

_Decimal64 __dpd_extendsddd2 (_Decimal32 a)
_Decimal64 __bid_extendsddd2 (_Decimal32 a)
_Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
_Decimall128 __bid_extendsdtd2 (_Decimal32 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

GNU Compiler Collection (GCC) Internals

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function]
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
[Runtime Function

[
[]
[]
[]
[]
[]
[]
[]
[Runtime Function]
[Runtime Function]
[]
[]
[]
[]
[]
[]
[]
]

These functions convert the value of a from a binary floating type to a decimal floating

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

18
_Decimall28 __dpd_extendddtd2 (_Decimal64 a)
_Decimall128 __bid_extendddtd2 (_Decimal64 a)
_Decimal32 __dpd_truncddsd2 (-Decimal64 a)
_Decimal32 __bid_truncddsd2 (-Decimal64 a)
_Decimal32 __dpd_trunctdsd2 (_-Decimall28 a)
_Decimal32 __bid_trunctdsd2 (_Decimall28 a)
_Decimal64 __dpd_trunctddd2 (_Decimall28 a)
_Decimal64 __bid_trunctddd2 (_Decimall28 a)
These functions convert the value a from one decimal floating type to another.
_Decimal64 __dpd_extendsfdd (float a)
_Decimal64 __bid_extendsfdd (float a)
_Decimall128 __dpd_extendsftd (float a)
_Decimall28 __bid_extendsftd (float a)
_Decimall28 __dpd_extenddftd (double a)
_Decimall128 __bid_extenddftd (double a)
_Decimall128 __dpd_extendxftd (long double a)
_Decimall128 __bid_extendxftd (long double a)
_Decimal32 __dpd_truncdfsd (double a)
_Decimal32 __bid_truncdfsd (double a)
_Decimal32 __dpd_truncxfsd (long double a)
_Decimal32 __bid_truncxfsd (long double a)
_Decimal32 __dpd_trunctfsd (long double a)
_Decimal32 __bid_trunctfsd (long double a)
_Decimal64 __dpd_truncxfdd (long double a)
_Decimal64 __bid_truncxfdd (long double a)
_Decimal64 __dpd_trunctfdd (long double a)
_Decimal64 __bid_trunctfdd (long double a)
type of a different size.
float __dpd_truncddsf (_Decimal64 a)
float __bid_truncddsf (_Decimal64 a)
float __dpd_trunctdsf (_Decimall28 a)
float __bid_trunctdsf (_Decimall28 a)
double __dpd_extendsddf (_Decimal32 a)
double __bid_extendsddf (.Decimal32 a)
double __dpd_trunctddf (_Decimall28 a)
double __bid_trunctddf (_Decimall28 a)

long double

long double
long double
long double
long double
long double
long double
long double
long double

(-
__dpd_extendddxf (-Decimal64
(-

__bid_extendddxf (_Decimal64 a
dpd_trunctdxf (_Decimall28 a

__bid_trunctdxf (_Decimall28 a

__dpd_extendsdtf (_Decimal32 a
__bid_extendsdtf (_Decimal32 a
__dpd_extendddtf (_Decimal64 a

__dpd_extendsdxf (-Decimal32 a)

__bid_extendsdxf (_Decimal32 a)

a)
)
)
a)
)
)
)

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[Runtime Function]
[]
[]
[]
[]
[]
[]
[]
[]

Chapter 4: The GCC low-level runtime library

long double __bid_extendddtf (_Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

_Decimal32 __dpd_extendsfsd (float a)

_Decimal64 __dpd_extenddfdd (double a)

(
_Decimal32 __bid_extendsfsd (float a)

(

(

_Decimal64 __bid_extenddfdd (double a)

_Decimall28 __dpd_extendtftd (long double a)

_Decimall128 __bid_extendtftd (long double a)

float __dpd_truncsdsf (_Decimal32 a)

float __bid_truncsdsf (_Decimal32 a)

double __dpd_truncdddf (-Decimal64 a)

double __bid_truncdddf (-Decimal64 a)

long double __dpd_trunctdtf (_Decimall28 a)

long double __bid_trunctdtf (_Decimall28 a)
These functions convert the value of a between decimal and binary floating types of
the same size.

int __dpd_fixsdsi (
int __bid_fixsdsi (
int __dpd_fixddsi (
int __bid_fixddsi (
int __dpd_fixtdsi (
int __bid_fixtdsi

-Decimal32 a)
_Decimal32 a)
_Decimal64 a)
-Decimal64 a)
-Decimall28 a
(-Decimall28 a

)
)

These functions convert a to a signed integer.

long __dpd_fixsddi (
long __bid_fixsddi (
long __dpd_fixdddi (_Decimal64 a
long __bid_fixdddi (
long __dpd_fixtddi (
long __bid_fixtddi

-Decimal32 a)
-Decimal32 a)

)

_Decimal64 a)
_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed long.

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned long __dpd_fixunssddi
unsigned long __bid_fixunssddi
unsigned long __dpd_fixunsdddi
unsigned long __bid_fixunsdddi
unsigned long __dpd_fixunstddi

int
int
int
int
int
int

__dpd_fixunssdsi (-Decimal32 a)
(_Decimal32 a)
(-Decimal64 a)
(-Decimal64 a)
(-Decimall28 a)
(_Decimall28 a)
These functions convert a to an unsigned integer. Negative values all become zero.

__bid_fixunssdsi
__dpd_fixunsddsi
__bid_fixunsddsi
__dpd_fixunstdsi
__bid_fixunstdsi

(
(
(
(
(

-Decimal32 a)
_Decimal32 a)
_Decimal64 a)
_Decimal64 a)
-Decimall28 a)

19
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

20

GNU Compiler Collection (GCC) Internals

unsigned long __bid_fixunstddi (_Decimall28 a)
These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __dpd_floatsisd
_Decimal32 __bid_floatsisd
_Decimal64 __dpd_floatsidd
_Decimal64 __bid_floatsidd

int 1)
int 1)
int 1)
int 1)

.~ A~~~

_Decimall28 __dpd_floatsitd (int i)
_Decimall28 __bid_floatsitd (int i)
These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __dpd_floatdisd (long i)
_Decimal32 __bid_floatdisd (long i)
_Decimal64 __dpd_floatdidd (long i)
_Decimal64 __bid_floatdidd (long i)

_Decimall28

dpd_floatditd (long i)

_Decimall28 __bid_floatditd (long i)
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __dpd_floatunssisd

_Decimal64 __dpd_floatunssidd

unsigned int i

unsigned int i

()

_Decimal32 __bid_floatunssisd (unsigned int i)
()
(

_Decimal64 __bid_floatunssidd

nsigned int 1)

u
_Decimall28 __dpd_floatunssitd (unsigned int i)
_Decimall128 __bid_floatunssitd (unsigned int i)
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __dpd_floatunsdisd
_Decimal32 __bid_floatunsdisd

unsigned long 1)
unsigned long 1)
)

(
(

_Decimal64 __dpd_floatunsdidd (unsigned long i
(

_Decimal64 __bid_floatunsdidd (u
_Decimall128 __dpd_floatunsditd (unsigned long i)
_Decimall28 __bid_floatunsditd (unsigned long i)

nsigned long 1)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int
int
int
int
int
int

__dpd_unordsd2
__bid_unordsd2
__dpd_unorddd2
__bid_unorddd2
dpd_unordtd2

(
(
(
(
(

-Decimal32 a, _Decimal32 b)
-Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)
_Decimal64 a, _Decimal64 b)
_Decimall28 a, _Decimall28 b)

__bid_unordtd2 (_Decimall28 a, -Decimall28 b)
These functions return a nonzero value if either argument is NaN, otherwise 0.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 21

if (__bid_unordXd2 (a, b))
return E;
return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
int __bid_eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return zero if neither argument is NalN, and a and b are equal.

Runtime Function
Runtime Function

int __dpd_nesd2 (_Decimal32 a, _Decimal32 b []
[]
[Runtime Function]
[]
[]

]

(-D)
int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
int __dpd_netd2 (_Decimall28 a, _Decimall28 b)

Runtime Function
Runtime Function

int __bid_netd2 (_Decimall28 a, -Decimall28 b) [Runtime Function
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __dpd_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_gedd2 (-Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
int __bid_getd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is

NaN, and a is greater than or equal to b.

int __dpd_1tsd2 (_Decimal32 a, _Decimal32 b)
int __bid_1tsd2 (_Decimal32 a, _Decimal32 b)
)
)

(Runtime Function
(
int __dpd_1tdd2 (_Decimal64 a, -Decimal64 b
(
(

Runtime Function
Runtime Function
int __bid_1tdd2 (_Decimal64 a, _Decimal64 b Runtime Function
int __dpd_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function

These functions return a value less than zero if neither argument is NaN, and a is

strictly less than b.

]
]
]
]
]
]

int __dpd_lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_lesd2 (-Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_letd2 (_-Decimall28 a, _Decimall28 b) [Runtime Function]

22 GNU Compiler Collection (GCC) Internals

int __bid_letd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]
These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b
_Decimal32 a, _Decimal32 b

) Runtime Function
int __bid_gtsd2)
_Decimal64 a, _Decimal64 b)
)

Runtime Function
Runtime Function

[]
[]
int __dpd_gtdd2 []
[Runtime Function]
[]
[]

(
(
int __bid_gtdd2 (_Decimal64 a, _Decimal64 b
int __dpd_gttd2 (_Decimall28 a, _Decimall28 b) Runtime Function
int __bid_gttd2 (_Decimall28 a, _Decimall28 b) Runtime Function
These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract
to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;
long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

short fract __addqq3 (short fract a, short fract b) Runtime Function
fract __addhq3 (fract a, fract b) Runtime Function

[]
[]
_addsq3 (long fract a, long fract b) [Runtime Function]
[]

long fract _

long long fract __adddq3 (long long fract a, long long fract Runtime Function
b)

unsigned short fract __adduqq3 (unsigned short fract a, [Runtime Function]
unsigned short fract b)

unsigned fract __adduhq3 (unsigned fract a, unsigned fract [Runtime Function]
b)

unsigned long fract __addusq3 (unsigned long fract a, [Runtime Function]

unsigned long fract b)
unsigned long long fract __addudq3 (unsigned long long [Runtime Function]
fract a, unsigned long long fract b)
short accum __addha3 (short accum a, short accum b)
accum __addsa3 (accum a, accum b)
long accum __addda3 (long accum a, long accum b)
long long accum __addta3 (long long accum a, long long

accum b)

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

Chapter 4: The GCC low-level runtime library

unsigned short accum __adduha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __addusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __adduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __adduta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the sum of a and b.

short fract __ssaddqq3 (short fract a, short fract b)

fract __ssaddhq3 (fract a, fract b)

long fract __ssaddsqg3 (long fract a, long fract b)

long long fract __ssadddq3 (long long fract a, long long
fract b)

short accum __ssaddha3 (short accum a, short accum b)

accum __ssaddsa3 (accum a, accum b)

long accum __ssaddda3 (long accum a, long accum b)
long long accum __ssaddta3 (long long accum a, long long
accum b)

23

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the sum of a and b with signed saturation.

unsigned short fract __usadduqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usadduhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usaddusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usadduha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usaddusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usadduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the sum of a and b with unsigned saturation.

short fract __subqq3 (short fract a, short fract b)

fract __subhq3 (fract a, fract b)

long fract __subsq3 (long fract a, long fract b)

long long fract __subdq3 (long long fract a, long long fract
b)

unsigned short fract __subuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

24 GNU Compiler Collection (GCC) Internals

unsigned fract __subuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __subusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __subudq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __subha3 (short accum a, short accum b)

accum __subsa3 (accum a, accum b)

long accum __subda3 (long accum a, long accum b)

long long accum __subta3 (long long accum a, long long
accum b)

unsigned short accum __subuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __subusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __subuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __subuta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the difference of a and b; that is, a - b.

short fract

sssubqq3 (short fract a, short fract b)

fract __sssubhq3 (fract a, fract b)

long fract __sssubsq3 (long fract a, long fract b)

long long fract __sssubdq3 (long long fract a, long long
fract b)

short accum __sssubha3 (short accum a, short accum b)

accum __sssubsa3 (accum a, accum b)

long accum __sssubda3 (long accum a, long accum b)
long long accum __sssubta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference of a and b with signed saturation; that is, a -

b.

unsigned short fract __ussubuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __ussubuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __ussubusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __ussubuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __ussubusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __ussubuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

25

[Runtime Function]

These functions return the difference of a and b with unsigned saturation; that is, a

- b.

short fract __mulqq3 (short fract a, short fract b)

fract __mulhq3 (fract a, fract b)

long fract __mulsq3 (long fract a, long fract b)

long long fract __muldq3 (long long fract a, long long fract
b)

unsigned short fract __muluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __muluhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __mulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __muludq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __mulha3 (short accum a, short accum b)

accum __mulsa3 (accum a, accum b)

long accum __mulda3 (long accum a, long accum b)

long long accum __multa3 (long long accum a, long long
accum b)

unsigned short accum __muluha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __mulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __muluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __muluta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the product of a and b.

short fract __ssmulqq3 (short fract a, short fract b)

fract __ssmulhq3 (fract a, fract b)

long fract __ssmulsq3 (long fract a, long fract b)

long long fract __ssmuldq3 (long long fract a, long long
fract b)

short accum __ssmulha3 (short accum a, short accum b)

accum __ssmulsa3 (accum a, accum b)

long accum __ssmulda3 (long accum a, long accum b)
long long accum __ssmulta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the product of a and b with signed saturation.

26 GNU Compiler Collection (GCC) Internals

unsigned short fract __usmuluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usmuluhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usmulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usmuluha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usmulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usmuluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the product of a and b with unsigned saturation.

short fract __divqq3 (short fract a, short fract b)

fract __divhq3 (fract a, fract b)

long fract __divsq3 (long fract a, long fract b)

long long fract __divdq3 (long long fract a, long long fract
b)

short accum __divha3 (short accum a, short accum b)

accum __divsa3 (accum a, accum b)

long accum __divda3 (long accum a, long accum b)

long long accum __divta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b.

unsigned short fract __udivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __udivuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __udivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __udivudq3 (unsigned long long
fract a, unsigned long long fract b)

unsigned short accum __udivuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __udivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __udivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __udivuta3 (unsigned long long
accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b.

Chapter 4: The GCC low-level runtime library

short fract __ssdivqq3 (short fract a, short fract b)

fract __ssdivhq3 (fract a, fract b)

long fract __ssdivsq3 (long fract a, long fract b)

long long fract __ssdivdq3 (long long fract a, long long
fract b)

short accum __ssdivha3 (short accum a, short accum b)

accum __ssdivsa3 (accum a, accum b)

long accum __ssdivda3 (long accum a, long accum b)
long long accum __ssdivta3 (long long accum a, long long
accum b)

27

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b with signed

saturation.

unsigned short fract __usdivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usdivuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usdivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usdivuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usdivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usdivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b with unsigned

saturation.

short fract __negqq2 (short fract a)

fract __neghq2 (fract a)

long fract __negsq2 (long fract a)

long long fract __negdq2 (long long fract a)

unsigned short fract __neguqq2 (unsigned short fract a)

unsigned fract __neguhq2 (unsigned fract a)

unsigned long fract __negusq2 (unsigned long fract a)

unsigned long long fract __negudq2 (unsigned long long
fract a)

short accum __negha?2 (short accum a)

accum __negsa2 (accum a)

long accum __negda2 (long accum a)

long long accum __negta2 (long long accum a)

unsigned short accum __neguha2 (unsigned short accum a)

unsigned accum __negusa?2 (unsigned accum a)

unsigned long accum __neguda2 (unsigned long accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

28 GNU Compiler Collection (GCC) Internals

unsigned long long accum __neguta2 (unsigned long long
accum a)

These functions return the negation of a.

short fract __ssnegqq2 (short fract a)

fract __ssneghq2 (fract a)

long fract __ssnegsq2 (long fract a)

long long fract __ssnegdq2 (long long fract a)
short accum __ssnegha?2 (short accum a)

accum __ssnegsa2 (accum a)

long accum __ssnegda2 (long accum a)

long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

unsigned short fract __usneguqq2 (unsigned short fract a)

unsigned fract __usneguhq2 (unsigned fract a)

unsigned long fract __usnegusq2 (unsigned long fract a)

unsigned long long fract __usnegudq2 (unsigned long
long fract a)

unsigned short accum
a)

unsigned accum __usnegusa2 (unsigned accum a)

unsigned long accum __usneguda2 (unsigned long accum a)

unsigned long long accum __usneguta2 (unsigned long
long accum a)

__usneguha?2 (unsigned short accum

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

These functions return the negation of a with unsigned saturation.

short fract __ashlqq3 (short fract a, int b)

fract __ashlhq3 (fract a, int b)

long fract __ashlsq3 (long fract a, int b)

long long fract __ashldq3 (long long fract a, int b)

unsigned short fract __ashluqq3 (unsigned short fract a,
int b)

unsigned fract __ashluhq3 (unsigned fract a, int b)

unsigned long fract __ashlusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

short accum __ashlha3 (short accum a, int b)

accum __ashlsa3 (accum a, int b)

long accum __ashlda3 (long accum a, int b)

long long accum __ashlta3 (long long accum a, int b)

unsigned short accum __ashluha3 (unsigned short accum a,
int b)

unsigned accum __ashlusa3 (unsigned accum a, int b)

unsigned long accum __ashluda3 (unsigned long accum a,

int b)

_ashludqg3 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum __ashluta3 (unsigned long long
accum a, int b)

These functions return the result of shifting a left by b bits.

short fract __ashrqq3 (short fract a, int b)

fract __ashrhq3 (fract a, int b)

long fract __ashrsq3 (long fract a, int b)

long long fract __ashrdq3 (long long fract a, int b)
short accum __ashrha3 (short accum a, int b)

accum __ashrsa3 (accum a, int b)

long accum __ashrda3 (long accum a, int b)

long long accum __ashrta3 (long long accum a, int b)

29
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of arithmetically shifting a right by b bits.

unsigned short fract
int b)

unsigned fract __lshruhq3 (unsigned fract a, int b)

unsigned long fract __lshrusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

unsigned short accum
int b)

unsigned accum __lshrusa3 (unsigned accum a, int b)

unsigned long accum __lshruda3 (unsigned long accum a,
int b)

unsigned long long accum
accum a, int b)

_1shruqqg3 (unsigned short fract a,

_1shrudqg3 (unsigned long long

_1lshruha3 (unsigned short accum a,

_lshruta3 (unsigned long long

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the result of logically shifting a right by b bits.

fract __ssashlhq3 (fract a, int b)

long fract __ssashlsq3 (long fract a, int b)

long long fract __ssashldq3 (long long fract a, int b)
short accum __ssashlha3 (short accum a, int b)

accum __ssashlsa3 (accum a, int b)

long accum __ssashlda3 (long accum a, int b)

long long accum __ssashlta3 (long long accum a, int b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of shifting a left by b bits with signed saturation.

unsigned short fract
a, int b)

unsigned fract __usashluhq3 (unsigned fract a, int b)

unsigned long fract __usashlusq3 (unsigned long fract a,
int b)

unsigned long long fract
long fract a, int b)

unsigned short accum __usashluha3 (unsigned short accum
a, int b)

_usashluqq3 (unsigned short fract

_usashludq3 (unsigned long

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

30 GNU Compiler Collection (GCC) Internals

unsigned accum __usashlusa3 (unsigned accum a, int b) [Runtime Function]

unsigned long accum __usashluda3 (unsigned long accum [Runtime Function]
a, int b)
unsigned long long accum __usashluta3 (unsigned long [Runtime Function]

long accum a, int b)
These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

int __cmpqq2 (short fract a, short fract b)

int __cmphq2 (fract a, fract b)

int __cmpsq2 (long fract a, long fract b)

int __cmpdq2 (long long fract a, long long fract b)

int __cmpuqq2 (unsigned short fract a, unsigned short fract b)

int __cmpuhq2 (unsigned fract a, unsigned fract b)

int __cmpusq2 (unsigned long fract a, unsigned long fract b)

int __cmpudq2 (unsigned long long fract a, unsigned long long

fract b)
int __cmpha2 (short accum a, short accum b) [Runtime Function]
int __cmpsa2 (accum a, accum b) [Runtime Function]
long accum a, long accum b) [Runtime Function]

[]
[]

]
]
]
]
]
]
]
]

int __cmpda2
int __cmpta2 (long long accum a, long long accum b) Runtime Function
Runtime Function

int __cmpuha?2 (unsigned short accum a, unsigned short accum

~ A~~~

b)

int __cmpusa2 (unsigned accum a, unsigned accum b) [Runtime Function]

int __cmpuda2 (unsigned long accum a, unsigned long accum b) [Runtime Function]

int __cmputa2 (unsigned long long accum a, unsigned long long [Runtime Function]
accum b)

These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

Runtime Function
Runtime Function

Runtime Function
short accum __fractqgha (short fract a) Runtime Function

fract __fractqqhq2 (short fract a) []
[]
e
accum __fractqqgsa (short fract a) [Runtime Function]
[]
[]
[]
[]

long fract __fractqqgsq2 (short fract a)
long long fract __fractqqdq2 (short fract a)

long accum __fractqqgda (short fract a) Runtime Function
long long accum __fractqqta (short fract a) Runtime Function
unsigned short fract __fractqquqq (short fract a) Runtime Function

Runtime Function

unsigned fract __fractqquhq (short fract a)

Chapter 4: The GCC low-level runtime library

unsigned long fract __fractqqusq (short fract a)
unsigned long long fract __fractqqudq (short fract a)
unsigned short accum __fractqquha (short fract a)
unsigned accum __fractqqusa (short fract a)

unsigned long accum __fractqquda (short fract a)
unsigned long long accum __fractqquta (short fract a)
signed char __fractqqqi (short fract a)

short __fractqqhi (short fract a)

int __fractqqsi (short fract a)

long __fractqqdi (short fract a)

long long __fractqqti (short fract a)

float __fractqqgsf (short fract a)

double __fractqqdf (short fract a)
short fract __fracthqqq2 (fract a)
long fract __fracthqgsq2 (fract a)

long long fract __fracthqdq2 (fract a)
short accum __fracthgha (fract a)
accum __fracthqgsa (fract a)

long accum __fracthqda (fract a)
long long accum __fracthqta (fract a)
unsigned short fract __fracthquqq (
unsigned fract __fracthquhq (fract a)
unsigned long fract __fracthqusq (fract a)
unsigned long long fract __fracthqudq (fract a)
unsigned short accum __fracthquha (fract a)
unsigned accum __fracthqusa (fract a)

unsigned long accum __fracthquda (fract a)
unsigned long long accum __fracthquta (fract a)
signed char __fracthqqi (fract a)

short __fracthqhi (fract a)

int __fracthqgsi (fract a)

long __fracthqdi (fract a)

long long __fracthqti (fract a)

float __fracthqgsf (fract a)

double __fracthqdf (fract a)

short fract __fractsqqq2 (long fract a)

fract __fractsqhq2 (long fract a)

long long fract __fractsqdq2 (long fract a)
short accum __fractsqha (long fract a)

accum __fractsqgsa (long fract a)

long accum __fractsqda (long fract a)

long long accum __fractsqta (long fract a)
unsigned short fract __fractsquqq (long fract a)
unsigned fract __fractsquhq (long fract a)
unsigned long fract __fractsqusq (long fract a)
unsigned long long fract __fractsqudq (long fract a)

unsigned short accum __fractsquha (long fract a)

fract a)

31

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

32

unsigned
unsigned

unsigned long long accum

signed char __fractsqqi (long fract a)

accum

long accum

GNU Compiler Collection (GCC) Internals

_fractsqusa (long fract a)
_fractsquda (long fract a)

_fractsquta (long fract a)

short __fractsqhi (long fract a)

int

__fractsqsi (long fract a)

long __fractsqdi (long fract a)

long long __fractsqti (long fract a)
float __fractsqsf (long fract a)
double __fractsqdf (long fract a)

short fract

fract

long fract

fractdqqq2 (long long fract a)
_fractdqhq2 (long long fract a)
_fractdqgsq2 (long long fract a)

short accum __fractdgha (long long fract a)

accum

long accum
long long accum

unsigned
unsigned

short fract __
fract

__fractdgsa (long long fract a)

_fractdqda (long long fract a)

_fractdqta (long long fract a)
fractdquqq (long long fract a)
__fractdquhq (long long fract a)

unsigned long fract __fractdqusq (long long fract a)

unsigned

unsigned
unsigned

long long fract

a)

short accum
accum

_fractdqudq (long long fract

__fractdquha (long long fract a)
_fractdqusa (long long fract a)

unsigned long accum __fractdquda (long long fract a)

unsigned long long accum

a)

signed char

_fractdquta (long long fract

fractdqqi (long long fract a)

short __fractdghi (long long fract a)

int __fractdqgsi (long long fract a)

long __fractdqdi (long long fract a)

long long __fractdqti (long long fract a)
float __fractdqgsf (long long fract a)
double __fractdqdf (long long fract a)
short fract __fracthaqq (short accum a)
fract __fracthahq (short accum a)

long fract __fracthasq (short accum a)

long long fract

__fracthadq (short accum a)

accum __fracthasa2 (short accum a)

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
fract

_fracthada2 (short accum a)
_fracthata2 (short accum a)
__fracthauqq (short accum a)
_fracthauhq (short accum a)

long fract __fracthausq (short accum a)

long long fract
short accum __
accum

__fracthaudq (short accum a)
fracthauha (short accum a)
_fracthausa (short accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long accum __fracthauda (short accum a)
unsigned long long accum __fracthauta (short accum a)
signed char __fracthaqi (short accum a)

short __fracthahi (short accum a)

int __fracthasi (short accum a)

long __fracthadi (short accum a)

long long __fracthati (short accum a)

float __fracthasf (short accum a)

double __fracthadf (short accum a)

short fract __fractsaqq (accum a)

fract __fractsahq (accum a)

long fract __fractsasq (accum a)

long long fract __fractsadq (accum a)

short accum __fractsaha2 (accum a)

long accum __fractsada2 (accum a)

long long accum __fractsata2 (accum a)
unsigned short fract __fractsauqq (accum a)
unsigned fract __fractsauhq (accum a)

unsigned long fract __fractsausq (accum a)
unsigned long long fract __fractsaudq (accum a)
unsigned short accum __fractsauha (accum a)
unsigned accum __fractsausa (accum a)

unsigned long accum __fractsauda (accum a)
unsigned long long accum __fractsauta (accum a)
signed char __fractsaqi (accum a)

short __fractsahi (accum a)

int __fractsasi (accum a)

long __fractsadi (accum a)

long long __fractsati (accum a)

float __fractsasf (accum a)

double __fractsadf (accum a)

short fract __fractdaqq (long accum a)

fract __fractdahq (long accum a)

long fract __fractdasq (long accum a)

long long fract __fractdadq (long accum a)

short accum __fractdaha2 (long accum a)

accum __fractdasa2 (long accum a)

long long accum __fractdata2 (long accum a)
unsigned short fract __fractdauqq (long accum a)
unsigned fract __fractdauhq (long accum a)
unsigned long fract __fractdausq (long accum a)
unsigned long long fract __fractdaudq (long accum a)
unsigned short accum __fractdauha (long accum a)
unsigned accum __fractdausa (long accum a)
unsigned long accum __fractdauda (long accum a)
unsigned long long accum __fractdauta (long accum a)
signed char __fractdaqi (long accum a)

33

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

34 GNU Compiler Collection (GCC) Internals

short __fractdahi (long accum a)

int __fractdasi (long accum a)

long __fractdadi (long accum a)

long long __fractdati (long accum a)

float __fractdasf (long accum a)

double __fractdadf (long accum a)

short fract __fracttaqq (long long accum a)

fract __fracttahq (long long accum a)

long fract __fracttasq (long long accum a)

long long fract __fracttadq (long long accum a)

short accum __fracttaha2 (long long accum a)

accum __fracttasa2 (long long accum a)

long accum __fracttada2 (long long accum a)

unsigned short fract __fracttauqq (long long accum a)

unsigned fract __fracttauhq (long long accum a)

unsigned long fract __fracttausq (long long accum a)

unsigned long long fract __fracttaudq (long long accum
a)

unsigned short accum __fracttauha (long long accum a)

unsigned accum __fracttausa (long long accum a)

unsigned long accum __fracttauda (long long accum a)

unsigned long long accum __fracttauta (long long accum
a)

signed char __fracttaqi (long long accum a)

short __fracttahi (long long accum a)

int __fracttasi (long long accum a)

long __fracttadi (long long accum a)

long long __fracttati (long long accum a)

float __fracttasf (long long accum a)

double __fracttadf (long long accum a)

short fract __fractuqqqq (unsigned short fract a)

fract __fractuqqghq (unsigned short fract a)

long fract __fractuqqgsq (unsigned short fract a)

long long fract __fractuqqdq (unsigned short fract a)

short accum __fractuqgha (unsigned short fract a)

accum __fractuqqgsa (unsigned short fract a)

long accum __fractuqqda (unsigned short fract a)

long long accum __fractuqqta (unsigned short fract a)

unsigned fract __fractuqquhq2 (unsigned short fract a)

unsigned long fract __fractuqqusq2 (unsigned short fract
a)

unsigned long long fract __fractuqqudq2 (unsigned
short fract a)

unsigned short accum
a)

unsigned accum

_fractuqquha (unsigned short fract

_fractuqqusa (unsigned short fract a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long accum __fractuqquda (unsigned short fract

a)
unsigned long long accum
fract a)
signed char __fractuqqqi (unsigned short fract a)
short __fractuqqghi (unsigned short fract a)
int __fractuqqgsi (unsigned short fract a)
long __fractuqqdi (unsigned short fract a)
long long __fractuqqti (unsigned short fract a)
float __fractuqqsf (unsigned short fract a)
double __fractuqqdf (unsigned short fract a)
short fract __fractuhqqq (unsigned fract a)

_fractuqquta (unsigned short

fract __fractuhghq (unsigned fract a)

long fract __fractuhqsq (unsigned fract a)

long long fract __fractuhqdq (unsigned fract a)

short accum __fractuhgha (unsigned fract a)

accum __fractuhqgsa (unsigned fract a)

long accum __fractuhqda (unsigned fract a)

long long accum __fractuhqta (unsigned fract a)

unsigned short fract __fractuhquqq2 (unsigned fract a)

unsigned long fract __fractuhqusq2 (unsigned fract a)

unsigned long long fract __fractuhqudq2 (unsigned
fract a)

unsigned short accum __fractuhquha (unsigned fract a)

unsigned accum __fractuhqusa (unsigned fract a)

unsigned long accum __fractuhquda (unsigned fract a)

unsigned long long accum __fractuhquta (unsigned fract
a)

signed char __fractuhqqi (unsigned fract a)

short __fractuhqghi (unsigned fract a)

int __fractuhqgsi (unsigned fract a)

long __fractuhqdi (unsigned fract a)

long long __fractuhqti (unsigned fract a)

float __fractuhqsf (unsigned fract a)

double __fractuhqdf (unsigned fract a)

short fract __fractusqqq (unsigned long fract a)

fract __fractusqhq (unsigned long fract a)

long fract __fractusqsq (unsigned long fract a)

long long fract __fractusqdq (unsigned long fract a)

short accum __fractusgha (unsigned long fract a)

accum __fractusqgsa (unsigned long fract a)

long accum __fractusqda (unsigned long fract a)

long long accum __fractusqta (unsigned long fract a)

unsigned short fract __fractusquqq2 (unsigned long fract
a)

unsigned fract

_fractusquhq2 (unsigned long fract a)

35

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

36 GNU Compiler Collection (GCC) Internals

unsigned long long fract __fractusqudq2 (unsigned long
fract a)

unsigned short accum
)

unsigned accum __fractusqusa (unsigned long fract a)

unsigned long accum __fractusquda (unsigned long fract
a)

unsigned long long accum
fract a)

signed char __fractusqqi (unsigned long fract a)

short __fractusqhi (unsigned long fract a)

int __fractusqgsi (unsigned long fract a)

long __fractusqdi (unsigned long fract a)

long long __fractusqti (unsigned long fract a)

float __fractusqsf (unsigned long fract a)

double __fractusqdf (unsigned long fract a)

short fract __fractudqqq (unsigned long long fract a)

fract __fractudqhq (unsigned long long fract a)

long fract __fractudqgsq (unsigned long long fract a)

long long fract __fractudqdq (unsigned long long fract a)

short accum __fractudgha (unsigned long long fract a)

accum __fractudqgsa (unsigned long long fract a)

long accum __fractudqda (unsigned long long fract a)

long long accum __fractudqta (unsigned long long fract a)

unsigned short fract __fractudquqq2 (unsigned long long
fract a)

unsigned fract __fractudquhq2 (unsigned long long fract a)

unsigned long fract __fractudqusq2 (unsigned long long
fract a)

unsigned short accum
fract a)

unsigned accum __fractudqusa (unsigned long long fract a)

unsigned long accum __fractudquda (unsigned long long
fract a)

unsigned long long accum
long fract a)

signed char __fractudqqi (unsigned long long fract a)

short __fractudghi (unsigned long long fract a)

int __fractudqgsi (unsigned long long fract a)

long __fractudqdi (unsigned long long fract a)

long long __fractudqti (unsigned long long fract a)

float __fractudqgsf (unsigned long long fract a)

double __fractudqdf (unsigned long long fract a)

short fract __fractuhaqq (unsigned short accum a)

fract __fractuhahq (unsigned short accum a)

long fract __fractuhasq (unsigned short accum a)

long long fract __fractuhadq (unsigned short accum a)

_fractusquha (unsigned long fract

__fractusquta (unsigned long

__fractudquha (unsigned long long

_fractudquta (unsigned long

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

short accum __fractuhaha (unsigned short accum a)

accum __fractuhasa (unsigned short accum a)

long accum __fractuhada (unsigned short accum a)

long long accum __fractuhata (unsigned short accum a)

unsigned short fract __fractuhauqq (unsigned short
accum a)

unsigned fract __fractuhauhq (unsigned short accum a)

unsigned long fract __fractuhausq (unsigned short accum
a)

unsigned long long fract __fractuhaudq (unsigned short
accum a)

unsigned accum __fractuhausa2 (unsigned short accum a)

unsigned long accum __fractuhauda2 (unsigned short
accum a)

unsigned long long accum __fractuhauta2 (unsigned
short accum a)

signed char __fractuhaqi (unsigned short accum a)

short __fractuhahi (unsigned short accum a)

int __fractuhasi (unsigned short accum a)

long __fractuhadi (unsigned short accum a)

long long __fractuhati (unsigned short accum a)

float __fractuhasf (unsigned short accum a)

double __fractuhadf (unsigned short accum a)

short fract __fractusaqq (unsigned accum a)

fract __fractusahq (unsigned accum a)

long fract __fractusasq (unsigned accum a)

long long fract __fractusadq (unsigned accum a)

short accum __fractusaha (unsigned accum a)

accum __fractusasa (unsigned accum a)

long accum __fractusada (unsigned accum a)

long long accum __fractusata (unsigned accum a)

unsigned short fract __fractusauqq (unsigned accum a)

unsigned fract __fractusauhq (unsigned accum a)

unsigned long fract __fractusausq (unsigned accum a)

unsigned long long fract __fractusaudq (unsigned
accum a)

unsigned short accum __fractusauha2 (unsigned accum a)

unsigned long accum __fractusauda2 (unsigned accum a)

unsigned long long accum __fractusauta2 (unsigned
accum a)

signed char __fractusaqi (unsigned accum a)

short __fractusahi (unsigned accum a)

int __fractusasi (unsigned accum a)

long __fractusadi (unsigned accum a)

long long __fractusati (unsigned accum a)

float __fractusasf (unsigned accum a)

double __fractusadf (unsigned accum a)

37

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

38 GNU Compiler Collection (GCC) Internals

short fract __fractudaqq (unsigned long accum a)

fract __fractudahq (unsigned long accum a)

long fract __fractudasq (unsigned long accum a)

long long fract __fractudadq (unsigned long accum a)

short accum __fractudaha (unsigned long accum a)

accum __fractudasa (unsigned long accum a)

long accum __fractudada (unsigned long accum a)

long long accum __fractudata (unsigned long accum a)

unsigned short fract __fractudauqq (unsigned long
accum a)

unsigned fract __fractudauhq (unsigned long accum a)

unsigned long fract __fractudausq (unsigned long accum

a)

unsigned long long fract __fractudaudq (unsigned long
accum a)

unsigned short accum __fractudauha2 (unsigned long
accum a)

unsigned accum __fractudausa2 (unsigned long accum a)

unsigned long long accum __fractudauta2 (unsigned long
accum a)

signed char __fractudaqi (unsigned long accum a)

short __fractudahi (unsigned long accum a)

int __fractudasi (unsigned long accum a)

long __fractudadi (unsigned long accum a)

long long __fractudati (unsigned long accum a)

float __fractudasf (unsigned long accum a)

double __fractudadf (unsigned long accum a)

short fract __fractutaqq (unsigned long long accum a)

fract __fractutahq (unsigned long long accum a)

long fract __fractutasq (unsigned long long accum a)

long long fract __fractutadq (unsigned long long accum
a)

short accum __fractutaha (unsigned long long accum a)

accum __fractutasa (unsigned long long accum a)

long accum __fractutada (unsigned long long accum a)

long long accum __fractutata (unsigned long long accum
a)

unsigned short fract
accum a)

unsigned fract
a)

unsigned long fract __fractutausq (unsigned long long
accum a)

unsigned long long fract __fractutaudq (unsigned long
long accum a)

unsigned short accum
accum a)

__fractutauqq (unsigned long long

_fractutauhq (unsigned long long accum

_fractutauha2 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned accum __fractutausa2 (unsigned long long accum

a)
unsigned long accum
accum a)
signed char __fractutaqi (unsigned long long accum a)
short __fractutahi (unsigned long long accum a)
int __fractutasi (unsigned long long accum a)
long __fractutadi (unsigned long long accum a)
long long __fractutati (unsigned long long accum a)
float __fractutasf (unsigned long long accum a)
double __fractutadf (unsigned long long accum a)
short fract __fractqiqq (signed char a)
fract __fractqihq (signed char a)
long fract __fractqisq (signed char a)
long long fract __fractqidq (signed char a)
short accum __fractqiha (signed char a)
accum __fractqisa (signed char a)
long accum __fractqida (signed char a)
long long accum __fractqita (signed char a)
unsigned short fract __fractqiuqq (signed char a)
unsigned fract __fractqiuhq (signed char a)
unsigned long fract __fractqiusq (signed char a)
unsigned long long fract __fractqiudq (signed char a)
unsigned short accum __fractqiuha (signed char a)
unsigned accum __fractqiusa (signed char a)
unsigned long accum __fractqiuda (signed char a)
unsigned long long accum __fractqiuta (signed char a)
short fract __fracthiqq (short a)
fract __fracthihq (short a)
long fract __fracthisq (short a)
long long fract __fracthidq (short a)
short accum __fracthiha (short a)
accum __fracthisa (short a)
long accum __fracthida (short a)
long long accum __fracthita (short a)
unsigned short fract __fracthiuqq (short a)
unsigned fract __fracthiuhq (short a)
unsigned long fract __fracthiusq (short a)
unsigned long long fract __fracthiudq (short a)
unsigned short accum __fracthiuha (short a)
unsigned accum __fracthiusa (short a)
unsigned long accum __fracthiuda (short a)
unsigned long long accum __fracthiuta (short a)
short fract __fractsiqq (int a)
fract __fractsihq (int a)
long fract __fractsisq (int a)
long long fract __fractsidq (int a)

_fractutauda?2 (unsigned long long

39

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

40

short accum

accum

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

GNU Compiler Collection (GCC) Internals

fractsiha (int a)

_fractsisa (int a)

_fractsida (int a)
__fractsita (int a)

short fract __fractsiuqq (int a)
fract __fractsiuhq (int a)

long fract __fractsiusq (int a)

long long fract __fractsiudq (int a)
short accum __fractsiuha (int a)
accum __fractsiusa (int a)

long accum __fractsiuda (int a)

long long accum __fractsiuta (int a)

short fract __fractdiqq (long a)
fract __fractdihq (long a)

long fract
long long fract
short accum

accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fractdisq (long a)
__fractdidq (long a)
fractdiha (long a)

_fractdisa (long a)
long accum
long long accum

__fractdida (long a)
__fractdita (long a)

short fract __fractdiuqq (long a)
fract __fractdiuhq (long a)

long fract __fractdiusq (long a)

long long fract __fractdiudq (long a)
short accum __fractdiuha (long a)
accum __fractdiusa (long a)

long accum __fractdiuda (long a)

long long accum __fractdiuta (long a)

short fract __fracttiqq (long long a)
fract __fracttihq (long long a)

long fract
long long fract
short accum

_fracttisq (long long a)
__fracttidq (long long a)
fracttiha (long long a)

accum __fracttisa (long long a)

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
_fractsfhq (float a)
long fract

fract

_fracttida (long long a)
__fracttita (long long a)

short fract __fracttiuqq (long long a)
fract __fracttiuhq (long long a)

long fract __fracttiusq (long long a)

long long fract __fracttiudq (long long a)
short accum __fracttiuha (long long a)
accum __fracttiusa (long long a)

long accum __fracttiuda (long long a)

long long accum __fracttiuta (long long a)

fractsfqq (float a)

_fractsfsq (foat a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

long long fract __fractsfdq (float a)
short accum __fractsfha (float a)
accum __fractsfsa (float a)

long accum __fractsfda (float a)

long long accum __fractsfta (float a)

unsigned short fract __fractsfuqq (float a)
unsigned fract __fractsfuhq (float a)

unsigned long fract __fractsfusq (float a)
unsigned long long fract __fractsfudq (float a)
unsigned short accum __fractsfuha (float a)
unsigned accum __fractsfusa (float a)

unsigned long accum __fractsfuda (float a)
unsigned long long accum __fractsfuta (float a)
short fract __fractdfqq (double a)

fract __fractdfhq (double a)

long fract __fractdfsq (double a)

long long fract __fractdfdq (double a)

short accum __fractdfha (double a)

accum __fractdfsa (double a)

long accum __fractdfda (double a)

long long accum __fractdfta (double a)

unsigned short fract __fractdfuqq (double a)
unsigned fract __fractdfuhq (double a)

unsigned long fract __fractdfusq (double a)
unsigned long long fract __fractdfudq (double a)
unsigned short accum __fractdfuha (double a)
unsigned accum __fractdfusa (double a)

unsigned long accum __fractdfuda (double a)
unsigned long long accum __fractdfuta (double a)

41

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert from fractional and signed non-fractionals to fractionals and

signed non-fractionals, without saturation.

fract __satfractqqhq2 (short fract a)

long fract __satfractqqsq2 (short fract a)

long long fract __satfractqqdq2 (short fract a)

short accum __satfractqgha (short fract a)

accum __satfractqqgsa (short fract a)

long accum __satfractqqda (short fract a)

long long accum __satfractqqta (short fract a)

unsigned short fract __satfractqquqq (short fract a)

unsigned fract __satfractqquhq (short fract a)

unsigned long fract __satfractqqusq (short fract a)

unsigned long long fract __satfractqqudq (short fract
a)

unsigned short accum __satfractqquha (short fract a)

unsigned accum __satfractqqusa (short fract a)

unsigned long accum __satfractqquda (short fract a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

42 GNU Compiler Collection (GCC) Internals

unsigned long long accum __satfractqquta (short fract

a)
short fract __satfracthqqq2 (fract a)
long fract __satfracthqgsq2 (fract a)

long long fract __satfracthqdq2 (fract a)

short accum __satfracthgha (fract a)

accum __satfracthqgsa (fract a)

long accum __satfracthqda (fract a)

long long accum __satfracthqta (fract a)

unsigned short fract __satfracthquqq (fract a)

unsigned fract __satfracthquhq (fract a)

unsigned long fract __satfracthqusq (fract a)

unsigned long long fract __satfracthqudq (fract a)

unsigned short accum __satfracthquha (fract a)

unsigned accum __satfracthqusa (fract a)

unsigned long accum __satfracthquda (fract a)

unsigned long long accum __satfracthquta (fract a)

short fract __satfractsqqq2 (long fract a)

fract __satfractsqhq2 (long fract a)

long long fract __satfractsqdq2 (long fract a)

short accum __satfractsqgha (long fract a)

accum __satfractsqgsa (long fract a)

long accum __satfractsqda (long fract a)

long long accum __satfractsqta (long fract a)

unsigned short fract __satfractsquqq (long fract a)

unsigned fract __satfractsquhq (long fract a)

unsigned long fract __satfractsqusq (long fract a)

unsigned long long fract __satfractsqudq (long fract a)

unsigned short accum __satfractsquha (long fract a)

unsigned accum __satfractsqusa (long fract a)

unsigned long accum __satfractsquda (long fract a)

unsigned long long accum __satfractsquta (long fract a)

short fract __satfractdqqq2 (long long fract a)

fract __satfractdqhq2 (long long fract a)

long fract __satfractdqsq2 (long long fract a)

short accum __satfractdgha (long long fract a)

accum __satfractdqgsa (long long fract a)

long accum __satfractdqda (long long fract a)

long long accum __satfractdqta (long long fract a)

unsigned short fract __satfractdquqq (long long fract a)

unsigned fract __satfractdquhq (long long fract a)

unsigned long fract __satfractdqusq (long long fract a)

unsigned long long fract __satfractdqudq (long long
fract a)

unsigned short accum __satfractdquha (long long fract a)

unsigned accum __satfractdqusa (long long fract a)

unsigned long accum __satfractdquda (long long fract a)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum __satfractdquta (long long
fract a)

short fract __satfracthaqq (short accum a)

fract __satfracthahq (short accum a)

long fract __satfracthasq (short accum a)

long long fract __satfracthadq (short accum a)

accum __satfracthasa2 (short accum a)

long accum __satfracthada2 (short accum a)

long long accum __satfracthata2 (short accum a)

unsigned short fract __satfracthauqq (short accum a)

unsigned fract __satfracthauhq (short accum a)

unsigned long fract __satfracthausq (short accum a)

unsigned long long fract __satfracthaudq (short accum
a)

unsigned short accum __satfracthauha (short accum a)

unsigned accum __satfracthausa (short accum a)

unsigned long accum __satfracthauda (short accum a)

unsigned long long accum __satfracthauta (short accum

a)
short fract __satfractsaqq (accum a)
fract __satfractsahq (accum a)
long fract __satfractsasq (accum a)

long long fract __satfractsadq (accum a)

short accum __satfractsaha2 (accum a)

long accum __satfractsada2 (accum a)

long long accum __satfractsata2 (accum a)

unsigned short fract __satfractsauqq (accum a)

unsigned fract __satfractsauhq (accum a)

unsigned long fract __satfractsausq (accum a)

unsigned long long fract __satfractsaudq (accum a)

unsigned short accum __satfractsauha (accum a)

unsigned accum __satfractsausa (accum a)

unsigned long accum __satfractsauda (accum a)

unsigned long long accum __satfractsauta (accum a)

short fract __satfractdaqq (long accum a)

fract __satfractdahq (long accum a)

long fract __satfractdasq (long accum a)

long long fract __satfractdadq (long accum a)

short accum __satfractdaha2 (long accum a)

accum __satfractdasa2 (long accum a)

long long accum __satfractdata2 (long accum a)

unsigned short fract __satfractdauqq (long accum a)

unsigned fract __satfractdauhq (long accum a)

unsigned long fract __satfractdausq (long accum a)

unsigned long long fract __satfractdaudq (long accum
a)

unsigned short accum __satfractdauha (long accum a)

43

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]

[Runtime Function]

44 GNU Compiler Collection (GCC) Internals

unsigned accum __satfractdausa (long accum a)

unsigned long accum __satfractdauda (long accum a)

unsigned long long accum __satfractdauta (long accum
a)

short fract __satfracttaqq (long long accum a)

fract __satfracttahq (long long accum a)

long fract __satfracttasq (long long accum a)

long long fract __satfracttadq (long long accum a)

short accum __satfracttaha2 (long long accum a)

accum __satfracttasa2 (long long accum a)

long accum __satfracttada2 (long long accum a)

unsigned short fract __satfracttauqq (long long accum
a)

unsigned fract __satfracttauhq (long long accum a)

unsigned long fract __satfracttausq (long long accum a)

unsigned long long fract __satfracttaudq (long long
accum a)

unsigned short accum
a)

unsigned accum __satfracttausa (long long accum a)

unsigned long accum __satfracttauda (long long accum a)

unsigned long long accum __satfracttauta (long long
accum a)

short fract __satfractuqqqq (unsigned short fract a)

fract __satfractuqqhq (unsigned short fract a)

long fract __satfractuqqsq (unsigned short fract a)

long long fract __satfractuqqdq (unsigned short fract a)

short accum __satfractuqgha (unsigned short fract a)

accum __satfractuqqgsa (unsigned short fract a)

long accum __satfractuqqda (unsigned short fract a)

long long accum __satfractuqqta (unsigned short fract a)

unsigned fract __satfractuqquhq2 (unsigned short fract a)

unsigned long fract __satfractuqqusq2 (unsigned short
fract a)

unsigned long long fract
short fract a)

unsigned short accum
fract a)

unsigned accum __satfractuqqusa (unsigned short fract a)

unsigned long accum __satfractuqquda (unsigned short
fract a)

unsigned long long accum
short fract a)

short fract __satfractuhqqq (unsigned fract a)

fract __satfractuhqhq (unsigned fract a)

long fract __satfractuhqsq (unsigned fract a)

long long fract __satfractuhqdq (unsigned fract a)

_satfracttauha (long long accum

_satfractuqqudq2 (unsigned

_satfractuqquha (unsigned short

__satfractuqquta (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

short accum __satfractuhqgha (unsigned fract a)

accum __satfractuhqgsa (unsigned fract a)

long accum __satfractuhqda (unsigned fract a)

long long accum __satfractuhqta (unsigned fract a)

unsigned short fract __satfractuhquqq2 (unsigned fract
a)

unsigned long fract
a)

unsigned long long fract
fract a)

unsigned short accum
a)

unsigned accum __satfractuhqusa (unsigned fract a)

unsigned long accum __satfractuhquda (unsigned fract a)

unsigned long long accum __satfractuhquta (unsigned
fract a)

short fract __satfractusqqq (unsigned long fract a)

fract __satfractusqhq (unsigned long fract a)

long fract __satfractusqsq (unsigned long fract a)

long long fract __satfractusqdq (unsigned long fract a)

short accum __satfractusqgha (unsigned long fract a)

accum __satfractusqgsa (unsigned long fract a)

long accum __satfractusqda (unsigned long fract a)

long long accum __satfractusqta (unsigned long fract a)

unsigned short fract __satfractusquqq2 (unsigned long
fract a)

unsigned fract __satfractusquhq2 (unsigned long fract a)

unsigned long long fract __satfractusqudq2 (unsigned
long fract a)

unsigned short accum
fract a)

unsigned accum __satfractusqusa (unsigned long fract a)

unsigned long accum __satfractusquda (unsigned long
fract a)

unsigned long long accum
long fract a)

short fract __satfractudqqq (unsigned long long fract a)

fract __satfractudqhq (unsigned long long fract a)

long fract __satfractudqsq (unsigned long long fract a)

long long fract __satfractudqdq (unsigned long long fract
a)

short accum __satfractudgha (unsigned long long fract a)

accum __satfractudqgsa (unsigned long long fract a)

long accum __satfractudqda (unsigned long long fract a)

long long accum __satfractudqta (unsigned long long fract

a)

_satfractuhqusq2 (unsigned fract

_satfractuhqudq2 (unsigned

__satfractuhquha (unsigned fract

__satfractusquha (unsigned long

_satfractusquta (unsigned

45

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

46 GNU Compiler Collection (GCC) Internals

unsigned short fract
long fract a)

unsigned fract __satfractudquhq2 (unsigned long long
fract a)

unsigned long fract
long fract a)

unsigned short accum
long fract a)

unsigned accum __satfractudqusa (unsigned long long fract
a)

unsigned long accum
long fract a)

unsigned long long accum
long long fract a)

short fract __satfractuhaqq (unsigned short accum a)

fract __satfractuhahq (unsigned short accum a)

long fract __satfractuhasq (unsigned short accum a)

long long fract __satfractuhadq (unsigned short accum
a)

short accum __satfractuhaha (unsigned short accum a)

accum __satfractuhasa (unsigned short accum a)

long accum __satfractuhada (unsigned short accum a)

long long accum __satfractuhata (unsigned short accum
a)

unsigned short fract
accum a)

unsigned fract __satfractuhauhq (unsigned short accum
a)

unsigned long fract
accum a)

unsigned long long fract
short accum a)

unsigned accum __satfractuhausa2 (unsigned short accum
a)

unsigned long accum
accum a)

unsigned long long accum
short accum a)

short fract __satfractusaqq (unsigned accum a)

fract __satfractusahq (unsigned accum a)

long fract __satfractusasq (unsigned accum a)

long long fract __satfractusadq (unsigned accum a)

short accum __satfractusaha (unsigned accum a)

accum __satfractusasa (unsigned accum a)

long accum __satfractusada (unsigned accum a)

long long accum __satfractusata (unsigned accum a)

_satfractudquqq?2 (unsigned long

_satfractudqusq2 (unsigned long

_satfractudquha (unsigned long

__satfractudquda (unsigned long

_satfractudquta (unsigned

_satfractuhauqq (unsigned short

_satfractuhausq (unsigned short

_satfractuhaudq (unsigned

_satfractuhauda?2 (unsigned short

_satfractuhauta2 (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function
[Runtime Function
[Runtime Function
[Runtime Function
[Runtime Function
[Runtime Function
[
[

Runtime Function
Runtime Function

]
]
]
]
]
]
]
]

Chapter 4: The GCC low-level runtime library

unsigned short fract
a)

unsigned fract __satfractusauhq (unsigned accum a)

unsigned long fract __satfractusausq (unsigned accum
a)

unsigned long long fract
accum a)

unsigned short accum
accum a)

unsigned long accum
a)

unsigned long long accum
accum a)

short fract __satfractudaqq (unsigned long accum a)

fract __satfractudahq (unsigned long accum a)

long fract __satfractudasq (unsigned long accum a)

long long fract __satfractudadq (unsigned long accum a)

short accum __satfractudaha (unsigned long accum a)

accum __satfractudasa (unsigned long accum a)

long accum __satfractudada (unsigned long accum a)

long long accum __satfractudata (unsigned long accum a)

unsigned short fract __satfractudauqq (unsigned long
accum a)

unsigned fract __satfractudauhq (unsigned long accum a)

unsigned long fract __satfractudausq (unsigned long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum __satfractudausa2 (unsigned long accum
a)

unsigned long long accum
long accum a)

short fract __satfractutaqq (unsigned long long accum a)

fract __satfractutahq (unsigned long long accum a)

long fract __satfractutasq (unsigned long long accum a)

long long fract __satfractutadq (unsigned long long
accum a)

short accum __satfractutaha (unsigned long long accum a)

accum __satfractutasa (unsigned long long accum a)

long accum __satfractutada (unsigned long long accum a)

long long accum __satfractutata (unsigned long long
accum a)

unsigned short fract
long accum a)

_satfractusauqq (unsigned accum

__satfractusaudq (unsigned
__satfractusauha?2 (unsigned
_satfractusauda?2 (unsigned accum

_satfractusauta2 (unsigned

__satfractudaudq (unsigned
_satfractudauha?2 (unsigned long

_satfractudauta2 (unsigned

__satfractutauqq (unsigned long

47

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[]

Runtime Function

[Runtime Function]

48 GNU Compiler Collection (GCC) Internals

unsigned fract _
accum a)

unsigned long fract
long accum a)

unsigned long long fract
long long accum a)

unsigned short accum __satfractutauha2 (unsigned long
long accum a)

unsigned accum __satfractutausa2 (unsigned long long
accum a)

unsigned long accum
long accum a)

short fract __satfractqiqq (signed char a)

fract __satfractqihq (signed char a)

long fract __satfractqisq (signed char a)

long long fract __satfractqidq (signed char a)

short accum __satfractqiha (signed char a)

accum __satfractqisa (signed char a)

long accum __satfractqida (signed char a)

long long accum __satfractqita (signed char a)

unsigned short fract __satfractqiuqq (signed char a)

unsigned fract __satfractqiuhq (signed char a)

unsigned long fract __satfractqiusq (signed char a)

unsigned long long fract __satfractqiudq (signed char
a)

unsigned short accum __satfractqiuha (signed char a)

unsigned accum __satfractqiusa (signed char a)

unsigned long accum __satfractqiuda (signed char a)

unsigned long long accum __satfractqiuta (signed char

_satfractutauhq (unsigned long long

_satfractutausq (unsigned long

_satfractutaudq (unsigned

__satfractutauda?2 (unsigned long

a)
short fract __satfracthiqq (short a)
fract __satfracthihq (short a)
long fract __satfracthisq (short a)

long long fract __satfracthidq (short a)

short accum __satfracthiha (short a)

accum __satfracthisa (short a)

long accum __satfracthida (short a)

long long accum __satfracthita (short a)

unsigned short fract __satfracthiuqq (short a)
unsigned fract __satfracthiuhq (short a)

unsigned long fract __satfracthiusq (short a)
unsigned long long fract __satfracthiudq (short a)
unsigned short accum __satfracthiuha (short a)
unsigned accum __satfracthiusa (short a)

unsigned long accum __satfracthiuda (short a)
unsigned long long accum __satfracthiuta (short a)
short fract __satfractsiqq (int a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]
]
]
]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

fract __satfractsihq (int a)

long fract __satfractsisq (int a)

long long fract __satfractsidq (int a)
short accum __satfractsiha (int a)
accum __satfractsisa (int a)

long accum __satfractsida (int a)

long long accum __satfractsita (int a)
unsigned short fract __satfractsiuqq (int a)
unsigned fract __satfractsiuhq (int a)
unsigned long fract __satfractsiusq (int a)
unsigned long long fract __satfractsiudq (int a)
unsigned short accum __satfractsiuha (int a)
unsigned accum __satfractsiusa (int a)

unsigned long accum __satfractsiuda (int a)
unsigned long long accum __satfractsiuta (int a)
short fract __satfractdiqq (long a)

fract __satfractdihq (long a)

long fract __satfractdisq (long a)
long long fract __satfractdidq (long a)
short accum __satfractdiha (long a)
accum __satfractdisa (long a)

long accum __satfractdida (long a)

long long accum __satfractdita (long a)
unsigned short fract __satfractdiuqq (long a)
unsigned fract __satfractdiuhq (long a)
unsigned long fract __satfractdiusq (long a)
unsigned long long fract __satfractdiudq (long a)
unsigned short accum __satfractdiuha (long a)

unsigned accum __satfractdiusa (long a)
unsigned long accum __satfractdiuda (long a)
unsigned long long accum __satfractdiuta (long a)
short fract __satfracttiqq (long long a)

fract __satfracttihq (long long a)
long fract __satfracttisq (long long a)
long long fract __satfracttidq (long long a)
short accum __satfracttiha (long long a)

accum __satfracttisa (long long a)
long accum __satfracttida (long long a)

long long accum __satfracttita (long long a)
unsigned short fract __satfracttiuqq (long long a)

unsigned fract __satfracttiuhq (long long a)
unsigned long fract __satfracttiusq (long long a)
unsigned long long fract __
unsigned short accum __satfracttiuha (long long a)
unsigned accum __satfracttiusa (long long a)

unsigned long accum __satfracttiuda (long long a)

unsigned long long accum

satfracttiudq (long long a)

_satfracttiuta (long long a)

49

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

50

short fract
_satfractsfhq (float a)

fract

long fract
long long fract
short accum
_satfractsfsa (float a)

accum

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
_satfractdfhq (double a)

fract

long fract
long long fract
short accum
_satfractdfsa (double a)

accum

long accum
long long accum

GNU Compiler Collection (GCC) Internals

_satfractsfqq (float a) Runtime Function]
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

_satfractsfsq (float a)
__satfractsfdq (float a)
_satfractsfha (float a)

_satfractsfda (float a)
__satfractsfta (float a
_satfractsfuqq

)
short fract (float a)

[
[]
[]
[]
[]
[]
[]
[]
_ []
fract __satfractsfuhq (float a) []
long fract __satfractsfusq (float a) []
long long fract __satfractsfudq (float a) []
short accum __satfractsfuha (float a) []
accum __satfractsfusa (float a) [Runtime Function]
long accum __satfractsfuda (float a) [Runtime Function]
long long accum __satfractsfuta (float a) [Runtime Function]
__satfractdfqq (double a) [Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[]
[]
[]
[]
[]
[]
[]
[]
]

Runtime Function

__satfractdfsq (double a)
satfractdfdq (double a)
_satfractdfha (double a)

__satfractdfda (double a)
_satfractdfta (double a)

unsigned short fract __satfractdfuqq (double a) Runtime Function
unsigned fract __satfractdfuhq (double a) Runtime Function
unsigned long fract __satfractdfusq (double a) Runtime Function
unsigned long long fract __satfractdfudq (double a) Runtime Function
unsigned short accum __satfractdfuha (double a) Runtime Function
unsigned accum __satfractdfusa (double a) Runtime Function
unsigned long accum __satfractdfuda (double a) Runtime Function
unsigned long long accum __satfractdfuta (double a) [Runtime Function

The functions convert from fractional and signed non-fractionals to fractionals, with

saturation.
unsigned char __fractunsqqqi (short fract a) [Runtime Function]
unsigned short __fractunsqghi (short fract a) [Runtime Function]
unsigned int __fractunsqqsi (short fract a) [Runtime Function]
unsigned long __fractunsqqdi (short fract a) [Runtime Function]
unsigned long long __fractunsqqti (short fract a) [Runtime Function]
unsigned char __fractunshqqi (fract a) [Runtime Function]
unsigned short __fractunshghi (fract a) [Runtime Function]
unsigned int __fractunshqsi (fract a) [Runtime Function]
unsigned long __fractunshqdi (fract a) [Runtime Function]
unsigned long long __fractunshqti (fract a) [Runtime Function]
unsigned char __fractunssqqi (long fract a) [Runtime Function]
unsigned short __fractunssghi (long fract a) [Runtime Function]

Chapter 4:

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

The GCC low-level runtime library

int __fractunssqsi (long fract a)

long __fractunssqdi (long fract a)

long long __fractunssqti (long fract a)
char __fractunsdqqi (long long fract a)
short __fractunsdghi (long long fract a)
int __fractunsdqgsi (long long fract a)

long __fractunsdqdi (long long fract a)
long long __fractunsdqti (long long fract a)

char __fractunshaqi (short accum a)
short __fractunshahi (short accum a)
int __fractunshasi (short accum a)

long __fractunshadi (short accum a)
long long __fractunshati (short accum a)

char __fractunssaqi (accum a)
short __fractunssahi (accum a)
int __fractunssasi (accum a)

long __fractunssadi (accum a)
long long __fractunssati (accum a)

char __fractunsdaqi (long accum a)
short __fractunsdahi (long accum a)
int __fractunsdasi (long accum a)

long __fractunsdadi (long accum a)
long long __fractunsdati (long accum a)

char __fractunstaqi (long long accum a)
short __fractunstahi (long long accum a)
int __fractunstasi (long long accum a)

long __fractunstadi (long long accum a)

long long __fractunstati (long long accum a)
char __fractunsuqqqi (unsigned short fract a)
short __fractunsuqghi (unsigned short fract a)
int __fractunsuqqsi (unsigned short fract a)
long __fractunsuqqdi (unsigned short fract a)

long long __fractunsuqqti (unsigned short fract

a)

char

_fractunsuhqqi (unsigned fract a)
short __fractunsuhqghi (unsigned fract a)
int __fractunsuhqsi (unsigned fract a)
long __fractunsuhqdi (unsigned fract a)
long long __fractunsuhqti (unsigned fract a)
char __fractunsusqqi (unsigned long fract a)
short __fractunsusqghi (unsigned long fract a)
int __fractunsusqsi (unsigned long fract a)
long __fractunsusqdi (unsigned long fract a)
long long __fractunsusqti (unsigned long fract

a)

char __fractunsudqqi (unsigned long long fract a)

o1

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

52 GNU Compiler Collection (GCC) Internals

unsigned short __fractunsudghi (unsigned long long fract

a)
unsigned int __fractunsudqsi (unsigned long long fract a)
unsigned long __fractunsudqdi (unsigned long long fract a)
unsigned long long __fractunsudqti (unsigned long long

fract a)
unsigned char __fractunsuhaqi (unsigned short accum a)
unsigned short __fractunsuhahi (unsigned short accum a)
unsigned int __fractunsuhasi (unsigned short accum a)
unsigned long __fractunsuhadi (unsigned short accum a)
unsigned long long __fractunsuhati (unsigned short

accum a)
unsigned char __fractunsusaqi (unsigned accum a)
unsigned short __fractunsusahi (unsigned accum a)
unsigned int __fractunsusasi (unsigned accum a)
unsigned long __fractunsusadi (unsigned accum a)
unsigned long long __fractunsusati (unsigned accum a)
unsigned char __fractunsudaqi (unsigned long accum a)
unsigned short __fractunsudahi (unsigned long accum a)
unsigned int __fractunsudasi (unsigned long accum a)
unsigned long __fractunsudadi (unsigned long accum a)
unsigned long long __fractunsudati (unsigned long

accum a)
unsigned char __fractunsutaqi (unsigned long long accum

a)
unsigned short

a)
unsigned int __fractunsutasi (unsigned long long accum

a)
unsigned long __fractunsutadi (unsigned long long accum

a)
unsigned long long __fractunsutati (unsigned long long

accum a)
short fract __fractunsqiqq (unsigned char a)
fract __fractunsqihq (unsigned char a)
long fract __fractunsqisq (unsigned char a)
long long fract __fractunsqidq (unsigned char a)
short accum __fractunsqiha (unsigned char a)
accum __fractunsqisa (unsigned char a)
long accum __fractunsqida (unsigned char a)
long long accum __fractunsqita (unsigned char a)
unsigned short fract __fractunsqiuqq (unsigned char a)
unsigned fract __fractunsqiuhq (unsigned char a)
unsigned long fract __fractunsqiusq (unsigned char a)
unsigned long long fract __fractunsqiudq (unsigned

char a)
unsigned short accum

_fractunsutahi (unsigned long long accum

_fractunsqiuha (unsigned char a)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned accum __fractunsqiusa (unsigned char a)

unsigned long accum __fractunsqiuda (unsigned char a)

unsigned long long accum __fractunsqiuta (unsigned
char a)

short fract __fractunshiqq (unsigned short a)

fract __fractunshihq (unsigned short a)

long fract __fractunshisq (unsigned short a)

long long fract __fractunshidq (unsigned short a)

short accum __fractunshiha (unsigned short a)

accum __fractunshisa (unsigned short a)

long accum __fractunshida (unsigned short a)

long long accum __fractunshita (unsigned short a)

unsigned short fract __fractunshiuqq (unsigned short a)

unsigned fract __fractunshiuhq (unsigned short a)

unsigned long fract __fractunshiusq (unsigned short a)

unsigned long long fract __fractunshiudq (unsigned
short a)

unsigned short accum __fractunshiuha (unsigned short a)

unsigned accum __fractunshiusa (unsigned short a)

unsigned long accum __fractunshiuda (unsigned short a)

unsigned long long accum __fractunshiuta (unsigned
short a)

short fract __fractunssiqq (unsigned int a)

fract __fractunssihq (unsigned int a)

long fract __fractunssisq (unsigned int a)

long long fract __fractunssidq (unsigned int a)

short accum __fractunssiha (unsigned int a)

accum __fractunssisa (unsigned int a)

long accum __fractunssida (unsigned int a)

long long accum __fractunssita (unsigned int a)

unsigned short fract __fractunssiuqq (unsigned int a)

unsigned fract __fractunssiuhq (unsigned int a)

unsigned long fract __fractunssiusq (unsigned int a)

unsigned long long fract __fractunssiudq (unsigned int
a)

unsigned short accum __fractunssiuha (unsigned int a)

unsigned accum __fractunssiusa (unsigned int a)

unsigned long accum __fractunssiuda (unsigned int a)

unsigned long long accum __fractunssiuta (unsigned int
a)

short fract __fractunsdiqq (unsigned long a)

fract __fractunsdihq (unsigned long a)

long fract __fractunsdisq (unsigned long a)

long long fract __fractunsdidq (unsigned long a)

short accum __fractunsdiha (unsigned long a)

accum __fractunsdisa (unsigned long a)

long accum __fractunsdida (unsigned long a)

93

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

54 GNU Compiler Collection (GCC) Internals

long long accum __fractunsdita (unsigned long a)

unsigned short fract __fractunsdiuqq (unsigned long a)

unsigned fract __fractunsdiuhq (unsigned long a)

unsigned long fract __fractunsdiusq (unsigned long a)

unsigned long long fract __fractunsdiudq (unsigned
long a)

unsigned short accum __fractunsdiuha (unsigned long a)

unsigned accum __fractunsdiusa (unsigned long a)

unsigned long accum __fractunsdiuda (unsigned long a)

unsigned long long accum __fractunsdiuta (unsigned
long a)

short fract __fractunstiqq (unsigned long long a)

fract __fractunstihq (unsigned long long a)

long fract __fractunstisq (unsigned long long a)

long long fract __fractunstidq (unsigned long long a)

short accum __fractunstiha (unsigned long long a)

accum __fractunstisa (unsigned long long a)

long accum __fractunstida (unsigned long long a)

long long accum __fractunstita (unsigned long long a)

unsigned short fract __fractunstiuqq (unsigned long
long a)

unsigned fract __fractunstiuhq (unsigned long long a)

unsigned long fract __fractunstiusq (unsigned long long
a)

unsigned long long fract __fractunstiudq (unsigned
long long a)

unsigned short accum
long a)

unsigned accum _

unsigned long accum
a)

unsigned long long accum __fractunstiuta (unsigned
long long a)

__fractunstiuha (unsigned long

_fractunstiusa (unsigned long long a)
__fractunstiuda (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from fractionals to unsigned non-fractionals; and from un-

signed non-fractionals to fractionals, without saturation.

short fract __satfractunsqiqq (unsigned char a)

fract __satfractunsqihq (unsigned char a)

long fract __satfractunsqisq (unsigned char a)

long long fract __satfractunsqidq (unsigned char a)

short accum __satfractunsqiha (unsigned char a)

accum __satfractunsqisa (unsigned char a)

long accum __satfractunsqida (unsigned char a)

long long accum __satfractunsqita (unsigned char a)

unsigned short fract __satfractunsqiuqq (unsigned char
a)

unsigned fract

__satfractunsqiuhq (unsigned char a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long fract __satfractunsqiusq (unsigned char

a)

unsigned long long fract
(unsigned char a)

unsigned short accum
a)

unsigned accum __satfractunsqiusa (unsigned char a)

unsigned long accum __satfractunsqiuda (unsigned char
a)

unsigned long long accum
(unsigned char a)

short fract __satfractunshiqq (unsigned short a)

fract __satfractunshihq (unsigned short a)

long fract __satfractunshisq (unsigned short a)

long long fract __satfractunshidq (unsigned short a)

short accum __satfractunshiha (unsigned short a)

accum __satfractunshisa (unsigned short a)

long accum __satfractunshida (unsigned short a)

long long accum __satfractunshita (unsigned short a)

unsigned short fract __satfractunshiuqq (unsigned
short a)

unsigned fract __satfractunshiuhq (unsigned short a)

unsigned long fract __satfractunshiusq (unsigned short
a)

unsigned long long fract
(unsigned short a)

unsigned short accum __satfractunshiuha (unsigned
short a)

unsigned accum _

unsigned long accum
a)

unsigned long long accum
(unsigned short a)

short fract __satfractunssiqq (unsigned int a)

fract __satfractunssihq (unsigned int a)

long fract __satfractunssisq (unsigned int a)

long long fract __satfractunssidq (unsigned int a)

short accum __satfractunssiha (unsigned int a)

accum __satfractunssisa (unsigned int a)

long accum __satfractunssida (unsigned int a)

long long accum __satfractunssita (unsigned int a)

unsigned short fract __satfractunssiuqq (unsigned int
a)

unsigned fract __satfractunssiuhq (unsigned int a)

unsigned long fract __satfractunssiusq (unsigned int

a)

_satfractunsqiudq

_satfractunsqiuha (unsigned char

_satfractunsqiuta

_satfractunshiudq

_satfractunshiusa (unsigned short a)
__satfractunshiuda (unsigned short

_satfractunshiuta

95

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

56 GNU Compiler Collection (GCC) Internals

unsigned long long fract
(unsigned int a)

unsigned short accum
a)

unsigned accum __satfractunssiusa (unsigned int a)

unsigned long accum __satfractunssiuda (unsigned int
a)

unsigned long long accum
(unsigned int a)

short fract __satfractunsdiqq (unsigned long a)

fract __satfractunsdihq (unsigned long a)

long fract __satfractunsdisq (unsigned long a)

long long fract __satfractunsdidq (unsigned long a)

short accum __satfractunsdiha (unsigned long a)

accum __satfractunsdisa (unsigned long a)

long accum __satfractunsdida (unsigned long a)

long long accum __satfractunsdita (unsigned long a)

unsigned short fract __satfractunsdiuqq (unsigned long
a)

unsigned fract __satfractunsdiuhq (unsigned long a)

unsigned long fract __satfractunsdiusq (unsigned long
a)

unsigned long long fract
(unsigned long a)

unsigned short accum
a)

unsigned accum __satfractunsdiusa (unsigned long a)

unsigned long accum __satfractunsdiuda (unsigned long
a)

unsigned long long accum
(unsigned long a)

short fract __satfractunstiqq (unsigned long long a)

fract __satfractunstihq (unsigned long long a)

long fract __satfractunstisq (unsigned long long a)

long long fract __satfractunstidq (unsigned long long a)

short accum __satfractunstiha (unsigned long long a)

accum __satfractunstisa (unsigned long long a)

long accum __satfractunstida (unsigned long long a)

long long accum __satfractunstita (unsigned long long a)

unsigned short fract __satfractunstiuqq (unsigned long
long a)

unsigned fract __satfractunstiuhq (unsigned long long a)

unsigned long fract __satfractunstiusq (unsigned long
long a)

unsigned long long fract __satfractunstiudq
(unsigned long long a)

_satfractunssiudq

_satfractunssiuha (unsigned int

__satfractunssiuta

__satfractunsdiudq

_satfractunsdiuha (unsigned long

__satfractunsdiuta

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned short accum
long a)

unsigned accum __satfractunstiusa (unsigned long long a)

unsigned long accum __satfractunstiuda (unsigned long
long a)

unsigned long long accum _
(unsigned long long a)

_satfractunstiuha (unsigned long

_satfractunstiuta

o7

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from unsigned non-fractionals to fractionals, with saturation.

4.5 Language-independent routines for exception handling

document me!

_Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR

_Unwind_GetIP
_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.6 Miscellaneous runtime library routines

4.6.1 Cache control functions

void __clear_cache (char *beg, char *end)

This function clears the instruction cache between beg and end.

[Runtime Function]

Chapter 5: Language Front Ends in GCC 59

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees|, page 107), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

Chapter 6: Source Tree Structure and Build System 61

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-=host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you're building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

62 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One

of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

‘fixincludes’
The support for fixing system headers to work with GCC. See
‘fixincludes/README’ for more information. The headers fixed by this mech-
anism are installed in ‘1ibsubdir/include-fixed’. Along with those headers,
‘README-fixinc’ is also installed, as ‘1ibsubdir/include-fixed/README’.

gcc The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 63, for details.

‘include’ Headers for the 1ibiberty library.

‘intl’ GNU libintl, from GNU gettext, for systems which do not include it in libc.
‘libada’ The Ada runtime library.

‘libcpp’ The C preprocessor library.

‘libgfortran’
The Fortran runtime library.

‘libffi’ The libffi library, used as part of the Java runtime library.
‘libiberty’
The 1ibiberty library, used for portability and for some generally useful data

structures and algorithms. See Section “Introduction” in GNU libiberty, for
more information about this library.

‘libjava’ The Java runtime library.

‘libmudflap’
The 1ibmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See Section “GNU configure and build system”
in The GNU configure and build system, for details.

Chapter 6: Source Tree Structure and Build System 63

6.3 The

‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 93.

6.3.1 Subdirectories of ‘gcc’

The ‘gec’ directory contains the following subdirectories:

‘language’

‘config’

‘doc’

‘ginclude’

po

‘testsuite’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++), ‘objc’ (for Objective-C) and ‘objcp’ (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler|, page 93); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 71, for details of the
files in these directories.

Configuration files for supported architectures and operating systems. See
Section 6.3.9 [Anatomy of a Target Back End], page 75, for details of the files
in this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See
Section 6.3.7 [Documentation], page 68.

System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 68, for details of when these and other headers are installed.

Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites], page 76.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gec’ directory is configured with an Autoconf-generated script ‘configure’. The

‘configure’

script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files

‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

6.3.2.1 S

‘configure’

cripts Used by ‘configure’

uses some other scripts to help in its work:

64 GNU Compiler Collection (GCC) Internals

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used.

e The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files|, page 64, for details of the
contents of these files.

e Fach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 74, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’ is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 19 [Makefile Fragments|, page 529) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language /Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’ is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.
e ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.
e ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.

e ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

Chapter 6: Source Tree Structure and Build System 65

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End
‘config-lang.in’ File], page 74) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.
e ‘bconfig.h’, for use in programs that run on the build machine.
e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for
functions in the target ‘.c’ file. FIXME: why is such a separate header necessary?

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes|, page 93).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build /host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.
pdf Produce PDF-formatted documentation.
html Produce HTML-formatted documentation.
man Generate man pages.

info Generate info-formatted pages.
mostlyclean

Delete the files made while building the compiler.
clean That, and all the other files built by ‘make all’.

distclean
That, and all the files created by configure.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

66 GNU Compiler Collection (GCC) Internals

srcextra Generates files in the source directory that do not exist in CVS but should go
into a release tarball. One example is ‘gcc/java/parse.c’ which is generated
from the CVS source file ‘gcc/java/parse.y’.

srcinfo
srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

install Installs gcc.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘. log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-x*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:
bootstrap-lean

Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

Chapter 6: Source Tree Structure and Build System 67

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N =1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N =1...4)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. For more information,
see Section “Building with profile feedback” in Installing GCC.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N =1...4)
For each package that is bootstrapped, rename directories so that, for example,
‘gcc’ points to the stageN GCC, compiled with the stageN-1 GCC?2.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.

68 GNU Compiler Collection (GCC) Internals

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 68, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘Iibsubdir/include’. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These headers,
‘is0646.h’, ‘stdarg.h’; ‘stdbool.h’, and ‘stddef.h’, are installed in ‘libsub-
dir/include’; unless the target Makefile fragment (see Section 19.1 [Target Fragment],
page 529) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘libsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <limits.h>; this is generated from ‘glimits.h’; to-
gether with ‘1imitx.h’ and ‘1imity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <limits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when ‘config.gcc’ sets use_gcc_tgmath
to yes.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by make html. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,
and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

Chapter 6: Source Tree Structure and Build System 69

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc-common. texi’
Common definitions for manuals.

‘gpl.texi’
‘gpl_v3.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $ (TEXI2PDF)). HTML formatted manuals are generated
by make html. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $ (MAKEINFO0), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs’. Each manual to be
provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo —--html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be checked into SVN, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools

70 GNU Compiler Collection (GCC) Internals

are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common. texi’ which ‘texi2pod.pl’ understands:

Q@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘G@code’ is better than that of ‘Goption’ but for man page
output a different effect is wanted.

@gccoptlist
Use for summary lists of options in manuals.
Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid

problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’ The GNU General Public License.

‘COPYING.LIB’
The GNU Lesser General Public License.

‘*ChangeLog*’
‘x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

Chapter 6: Source Tree Structure and Build System 71

FIXME: document such files in subdirectories, at least ‘config’, ‘cp’, ‘objc’, ‘testsuite’.

6.3.8 Anatomy of a Language Front End
A front end for a language in GCC has the following parts:

e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 72, for details.

e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’.Jj

e A mention of the name under which the language’s runtime library is recog-
nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke. texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

If the front end is added to the official GCC source repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in ‘gcc/gccbug.in’, as well as being added to the
Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu.org mailing list.

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs’]
(see Section 6.3.7.1 [Texinfo Manuals], page 69) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

mailto:gcc-announce@gcc.gnu.org

72

GNU Compiler Collection (GCC) Internals

e Any old releases or CVS repositories of the front end, before its in-

clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gcc/old-releases/.

The release and snapshot script ‘maintainer-scripts/gcc_release’
should be updated to generate appropriate tarballs for this front
end. The associated ‘maintainer-scripts/snapshot-README’ and

‘maintainer-scripts/snapshot-index.html’ files should be updated to list
the tarballs and diffs for this front end.

If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

6.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-

tion, and possibly some subsidiary programs build alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’

This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 74, for details of its contents

‘Make-lang.in’

This file is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in ‘config-lang.in’) for
the following values of hook, and any other Makefile rules required to build
those targets (which may if necessary use other Makefiles specified in outputs
in ‘config-lang.in’, although this is deprecated). It also adds any testsuite
targets that can use the standard rule in ‘gcc/Makefile.in’ to the variable
lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source
tree.
info Build info documentation for the front end, in the build directory.

This target is only called by ‘make bootstrap’ if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate ‘-1’ ar-
guments pointing to directories of included files.

pdf Build PDF documentation for the front end, in the build direc-
tory. This should be done using $(TEXI2PDF), with appropriate
‘-I’ arguments pointing to directories of included files.

ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 73

html Build HTML documentation for the front end, in the build direc-
tory.
man Build generated man pages for the front end from Texinfo man-

uals (see Section 6.3.7.2 [Man Page Generation], page 69), in the
build directory. This target is only called if the necessary tools are
available, but should ignore errors so as not to stop the build if
errors occur; man pages are optional and the tools involved may be
installed in a broken way.

install-common
Install everything that is part of the front end, apart from the
compiler executables listed in compilers in ‘config-lang.in’.

install-info
Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info files
that should be installed.

install-man
Install man pages for the front end. This target should ignore
errors.

srcextra Copies its dependencies into the source directory. This generally
should be used for generated files such as Bison output files
which are not present in CVS, but should be included in any
release tarballs. This target will be executed during a bootstrap
if ‘--enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory.
These targets will be executed during a bootstrap if
‘-—enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘kclean’ targets. See
Section “Standard Targets for Users” in GNU Coding Standards,
for details of the standard targets. For GCC, maintainer-clean
should delete all generated files in the source directory that are
not checked into CVS, but should not delete anything checked into
CVS.

‘Make-lang.in’ must also define a variable lang_0BJS to a list of host object
files that are used by that language.

74 GNU Compiler Collection (GCC) Internals

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 7 [Options], page 89.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. In addition the main direc-
tory contains ‘c-config-lang.in’, which contains limited information for the C language.
This file is a shell script that may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘--enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘-—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

Chapter 6: Source Tree Structure and Build System 75

outputs If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file ‘lan-
guage /Makefile’ from ‘language/Makefile.in’, but this is deprecated, build-
ing everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 22 [Type
Information|, page 537.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 16 [Machine Descriptions|, page 269), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 17
[Target Description Macros and Functions|, page 369), possibly a target Makefile
fragment ‘t-machine’ (see Section 19.1 [The Target Makefile Fragment], page 529),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 17.16 [Condition Code],
page 449, for further details.

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gecc’. See Chapter 7 [Options|, page 89.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File|, page 64) for the
systems with this target architecture.

e Documentation in ‘gcc/doc/invoke.texi’ for any command-line options supported by
this target (see Section 17.3 [Run-time Target Specification], page 378). This means
both entries in the summary table of options and details of the individual options.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 17.25 [Defining target-specific uses of __attribute__|, page 502), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific format checking styles
supported.

e Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see
Section 16.8.5 [Constraints for Particular Machines|, page 288).

e A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

76 GNU Compiler Collection (GCC) Internals

e Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

e Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the official GCC source repository, the following are also
necessary:

e An entry for the target architecture in ‘readings.html’ on the GCC web site, with
any relevant links.

e Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

e A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

e Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘~1.¢’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a
well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcc.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 21 : -1)];

Chapter 6: Source Tree Structure and Build System 7

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1ink_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void

link_failure (void)
{
abort ();
}
#endif

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target
or xfail. A selector is: one or more target triplets, possibly including wildcard charac-
ters; a single effective-target keyword; or a logical expression. Depending on the con-
text, the selector specifies whether a test is skipped and reported as unsupported or is
expected to fail. Use ‘“*—*—*’ to match any target. Effective-target keywords are defined in
‘target-supports.exp’ in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘7, ‘&&’, or ‘| |’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*x—*-* ia64*—*-*" } }

{ target { powerpcx-*-* && 1p64 } }
{ xfail { 1p64 || vect_no_align } }

78

GNU Compiler Collection (GCC) Internals

{ dg-do do-what-keyword [{ target/xfail selector }] }

do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

compile Compile with ‘-S’ to produce an assembly code file.
assemble Compile with ‘=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector }’ then the test is
skipped unless the target system is included in the list of target triplets or
matches the effective-target keyword.

If ‘do-what-keyword’ is run and the directive includes the optional ‘{ xfail
selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of ‘do-what-keyword’; those tests can
use directive dg-xfail-if.

{ dg-options options [{ target selector }] }

This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }

Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives.

The supported values of feature are:

c99_runtime
The target’s C99 runtime (both headers and libraries).

mipsl6_attribute
mips16 function attributes. Only MIPS targets support this fea-
ture, and only then in certain modes.

{ dg-timeout n [{target selector }] }

Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }

Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor. The normal timeout limit, in seconds, is found
by searching the following in order:

e the value defined by an earlier dg-timeout directive in the test

Chapter 6: Source Tree Structure and Build System 79

e variable tool_timeout defined by the set of tests
e gcc,timeout set in the target board
e 300

{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }
Skip the test if the test system is included in selector and if each of the options
in include-opts is in the set of options with which the test would be compiled
and if none of the options in exclude-opts is in the set of options with which
the test would be compiled.

Use ‘"*"’ for an empty include-opts list and ‘"""’ for an empty exclude-opts list.

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } { include-opts } { exclude-opts } }
Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) and dg-xfail-if) are met.

{ dg-require-support args }
Skip the test if the target does not provide the required support; see
‘gcc—dg.exp’ in the GCC testsuite for the actual directives. These
directives must appear after any dg-do directive in the test and before any
dg-additional-sources directive. They require at least one argument,
which can be an empty string if the specific procedure does not examine the
argument.

{ dg-require-effective-target keyword }
Skip the test if the test target, including current multilib flags, is not covered
by the effective-target keyword. This directive must appear after any dg-do
directive in the test and before any dg-additional-sources directive.

{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

{ dg-error regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘"error"’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]1] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘"warning"’ unless it is part of regexp.

80

GNU Compiler Collection (GCC) Internals

{ dg-message regexp [comment [{ target/xfail selector } [line] }]] }

The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }]] }

This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }

This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’. For
this directive ‘xfail’ has the same effect as ‘target’.

{ dg-output regexp [{ target/xfail selector }] }

This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

{ dg-prune-output regexp }

Prune messages matching regexp from test output.

{ dg-additional-files "filelist" }

Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }

Specify additional source files to appear in the compile line following the main
test file.

{ dg-final { local-directive } }

This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.

The GCC testsuite defines the following directives to be used within dg-final.

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-repo-files
Removes files generated for this test for ‘-~frepo’.

cleanup-rtl-dump suffix
Removes RTL dump files generated for this test.

cleanup-tree-dump suffix
Removes tree dump files matching suffix which were generated for
this test.

cleanup-saved-temps
Removes files for the current test which were kept for
‘--save-temps’.

Chapter 6: Source Tree Structure and Build System 81

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly
output.

scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test’s
assembly output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler
output.

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler out-
put.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assem-
bler output.

scan-tree-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with
suffix suffix.

scan-tree-dump regex suffix [{ target/xfail selector 1}]
Passes if regex matches text in the dump file with suffix suffix.

scan-tree-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix
suffix.

scan-tree-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix
suffix.

scan-tree-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file
with suffix suffix.

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

82 GNU Compiler Collection (GCC) Internals

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov
tests.

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available
at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the ‘gcc/testsuite/ada/acats’ di-
rectory, and enabled automatically when running make check, assuming the Ada language
has been enabled when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:
$ make check-ada CHAPTERS="c3 c9"
The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, ¢9 corresponds to chapter 9, which deals with tasking
features of the language.

There is also an extra chapter called ‘gcc’ containing a template for creating new exe-
cutable tests.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

6.4.4 C Language Testsuites
GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

‘gcc.dg/compat’
This subdirectory contains tests for binary compatibility using ‘compat.exp’,
which in turn uses the language-independent support (see Section 6.4.8 [Support
for testing binary compatibility], page 86).

‘gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

http://www.adaic.org/compilers/acats/2.5

Chapter 6: Source Tree Structure and Build System 83

gcc

gcc.

gcc

gcc

gcc.

gcc.

gcc.

gcc.

gcc.

gcc.

.dg/format’

This subdirectory contains tests of the ‘~Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

.dg/special’

FIXME: describe this.

.c-torture’

This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

c-torture/compat’

FIXME: describe this.
This directory should probably not be used for new tests.

c-torture/compile’

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as NO_LABEL _
VALUES and STACK_SIZE are used.

c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

c-torture/misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’
Test ‘-fbranch-probabilities’ using ‘bprob.exp’, which in
turn uses the generic, language-independent framework (see

84 GNU Compiler Collection (GCC) Internals

Section 6.4.7 [Support for testing profile-directed optimizations],
page 85).

‘dg-*.c’ Test the testsuite itself using ‘dg-test.exp’.

‘gcovx.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 6.4.6 [Support for
testing gcov], page 84).

‘i386-pf-*.c’
Test i386-specific ~ support for data prefetch using
‘i386-prefetch.exp’.

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

6.4.5 The Java library testsuites.

Runtime tests are executed via ‘make check’in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR="/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

We encourage developers to contribute test cases to Mauve.

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘gcov.exp’. gcov tests also rely
on procedures in ‘gcc.dg.exp’ to compile and run the test program. A typical gcov test
contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }
A line count command appears within a comment on the source line that is expected to

get the specified count and has the form count(cnt). A test should only check line counts
for lines that will get the same count for any architecture.

http://sourceware.org/mauve/

Chapter 6: Source Tree Structure and Build System 85

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i && j < 20) /* branch(27 50 75) */

/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.4.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_QOPTIONS
list of options with which to run each test, similar to the lists for torture tests

86 GNU Compiler Collection (GCC) Internals

6.4.8 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname _main.suffix’
Contains the main program, which calls a function in file ‘testname _x.suffix’.

‘testname _x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

‘testname _y.suffix’
Shares data with, or gets arguments from, ‘testname _x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_OPTIONS="[list [list {tst1} {alt1}]
...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [1ist [1ist {-g -00} {-03}] [list
{-fpic} {-fPIC -02}]1], the test is first built with ‘~g -00’ by the compiler under test and
with ‘=03’ by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘~fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’

rm site.exp

make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="1lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat.exp"

Chapter 6: Source Tree Structure and Build System 87

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-—x*
These commands can be used in ‘testname_main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname _main.suffix’ the options are also used to link the test program.

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

6.4.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run
multiple times, each with a different set of options. These are known as torture tests.
‘gcc/testsuite/lib/torture-options.exp’ defines procedures to set up these lists:

torture-init
Initialize use of torture lists.

set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish
Finalize use of torture lists.

The ‘. exp’ file for a set of tests that use torture options must include calls to these three
procedures if:

e [t calls gcc-dg-runtest and overrides DG_.TORTURE_OPTIONS.

e It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or

objc.

e It calls dg-pch.

It is not necessary for a ‘. exp’ file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG_TORTURE_OPTIONS defined in ‘gcc-dg.exp’.

Most uses of torture options can override the default lists by defin-

ing TORTURE_OPTIONS or add to the default list by defining ADDI-
TIONAL_TORTURE_OPTIONS. Define these in a ‘.dejagnurc’ file or add
them to the ‘site.exp’ file; for example

88

set ADDITIONAL_TORTURE_OPTIONS
{ -02 -ftree-loop-linear } \
{ -02 -fpeel-loops }]

[1ist \

GNU Compiler Collection (GCC) Internals

Chapter 7: Option specification files 89

7 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties|, page 90.

e A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the c1_target_option
structure.

e An option definition record. These records have the following fields:

[

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 90)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-” form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-” form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 17.3
[Run-time Target], page 378) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

90 GNU Compiler Collection (GCC) Internals

7.2 Option properties

The second field of an option record can specify the following properties:
Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.

language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. Each lan-
guage must have been declared by an earlier Language record. See Section 7.1
[Option file format], page 89.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W?”
or “m” are assumed to have a “no-” form unless this property is used.

Negative (othername)
The option will turn off another option othername, which is the the option
name with the leading “-” removed. This chain action will propagate through
the Negative property of the option to be turned off.

Joined

Separate The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with —o0). An option is allowed to have both of these properties.

JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

UInteger The option’s argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.
UInteger should also be used on options like -falign-loops where both -
falign-loops and -falign-loops=n are supported to make sure the saved
options are given a full integer.

Var(var) The state of this option should be stored in variable var. The way that the
state is stored depends on the type of option:

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

Chapter 7: Option specification files 91

The option-processing script will usually declare var in ‘options.c’ and leave
it to be zero-initialized at start-up time. You can modify this behavior using
VarExists and Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

VarExists
The variable specified by the Var property already exists. No definition should
be added to ‘options.c’ in response to this option record.

You should use this property only if the variable is declared outside ‘options.c’.

Init(value)
The variable specified by the Var property should be statically initialized to
value.

Mask (name)
The option is associated with a bit in the target_flags variable (see
Section 17.3 [Run-time Target], page 378) and is active when that bit is set.
You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the associated macros
are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask (othername)

InverseMask (othername, thisname)
The option is the inverse of another option that has the Mask (othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

MaskExists
The mask specified by the Mask property already exists. No MASK or TARGET
definitions should be added to ‘options.h’ in response to this option record.

The main purpose of this property is to support synonymous options. The
first option should use ‘Mask(name)’ and the others should use ‘Mask(name)
MaskExists’.

Report The state of the option should be printed by ‘-fverbose-asm’.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘--help’ output.

92 GNU Compiler Collection (GCC) Internals

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

Save Build the cl_target_option structure to hold a copy of the option, add the

functions cl_target_option_save and cl_target_option_restore to save
and restore the options.

Chapter 8: Passes and Files of the Compiler 93

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double
handful of language specific tree codes defined in ‘c-common.def’. The Fortran front end
uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (CROSS-
REF) on each function, and uses the gimplifier callbacks to convert the language-specific
tree nodes directly to GIMPLE (CROSSREF) before passing the function off to be com-
piled. The Fortran front end converts from a private representation to GENERIC, which is
later lowered to GIMPLE when the function is compiled. Which route to choose probably
depends on how well GENERIC (plus extensions) can be made to match up with the source
language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. .. this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics.
I plan to move all code generation bits (both Tree and RTL) to compile_function. Should
we hide cgraph from the front ends and move back to rest_of_compilation as the official

94 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate repre-
sentation of a function into the GIMPLE language (CROSSREF). The term stuck, and so
words like “gimplification”, “gimplify”, “gimplifier” and the like are sprinkled throughout
this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.c’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_O0K, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in ‘passes.c’, ‘tree-optimize.c’ and ‘tree-pass.h’. Its
job is to run all of the individual passes in the correct order, and take care of standard
bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

Each pass may have its own dump file (for GCC debugging purposes). Passes without
any names, or with a name starting with a star, do not dump anything.

Chapter 8: Passes and Files of the Compiler 95

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info RTL passes use first. . .

8.4 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification
and what source files they are located in.

e Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.c’ and described by pass_remove_useless_stmts.

e Mudflap declaration registration

If mudflap (see Section “-fmudflap -fmudflapth -fmudflapir” in Using the GNU Compiler
Collection (GCC)) is enabled, we generate code to register some variable declarations
with the mudflap runtime. Specifically, the runtime tracks the lifetimes of those variable
declarations that have their addresses taken, or whose bounds are unknown at compile
time (extern). This pass generates new exception handling constructs (try/finally),
and so must run before those are lowered. In addition, the pass enqueues declarations
of static variables whose lifetimes extend to the entire program. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_1.

e OpenMP lowering

If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.
Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation
of the control flow graph. The pass is located in ‘omp-low.c’ and is described by
pass_lower_omp.

e OpenMP expansion
If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.c’ and is described by pass_expand_omp.

e Lower control flow
This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.c’ and is described by pass_lower_cf.

e Lower exception handling control flow
This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After

96

GNU Compiler Collection (GCC) Internals

this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal
or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.c’. The lowering pass itself is in ‘tree-eh.c’ and is
described by pass_lower_eh.

Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.c’ and is described by pass_build_cfg.

Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in ‘tree-dfa.c’ and is described by
pass_referenced_vars.

Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.c’ and is described
by pass_build_ssa.

Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization (if turned on). In the first pass we only warn for uses that
are positively uninitialized; in the second pass we warn for uses that are possibly
uninitialized. The pass is located in ‘tree-ssa.c’ and is defined by pass_early_
warn_uninitialized and pass_late_warn_uninitialized.

Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.c’ and is described by pass_dce.

Dominator optimizations

This pass performs trivial dominator-based copy and constant propagation, expression
simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It it located in ‘tree-ssa-dom.c’ and is described by pass_dominator.

Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.c’ and is described by pass_forwprop.

Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries

Chapter 8: Passes and Files of the Compiler 97

are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

e PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.c’
and is described by pass_phiopt.
e May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in ‘tree-ssa-alias.c’ and is described
by pass_may_alias.

Interprocedural points-to information is located in ‘tree-ssa-structalias.c’ and de-
scribed by pass_ipa_pta.

e Profiling

This pass rewrites the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘predict.c’ and is described by pass_profile.

e Lower complex arithmetic

This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.c’ and is described by pass_
lower_complex.

e Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.c’ and is described by pass_sra.

e Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in ‘tree-ssa-dse.c’ and is
described by pass_dse.

e Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.c’ and
is described by pass_tail_recursion.

e Forward store motion

This pass sinks stores and assignments down the flowgraph closer to their use point.
The pass is located in ‘tree-ssa-sink.c’ and is described by pass_sink_code.

e Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.c’ and is described by pass_pre.

98

GNU Compiler Collection (GCC) Internals

Just before partial redundancy elimination, if ‘~funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.c’ and is described by pass_cse_reciprocal.

Full redundancy elimination

This is a simpler form of PRE that only eliminates redundancies that occur an all
paths. It is located in ‘tree-ssa-pre.c’ and described by pass_fre.

Loop optimization

The main driver of the pass is placed in ‘tree-ssa-loop.c’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on RTL level (function calls, operations that expand to nontrivial sequences of insns).
With ‘~-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.c’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.c’.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.c’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.c’. This
pass should eventually replace the RTL level loop unswitching in ‘loop-unswitch.c’,
but currently the RTL level pass is not completely redundant yet due to deficiencies in
tree level alias analysis.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip.c’ ||

‘cfgloop.c’, ‘cfgloopanal.c’ and ‘cfgloopmanip.c’.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in
‘tree-vectorizer.c’ (the main driver and general utilities), ‘tree-vect-analyze.c’
and ‘tree-vect-transform.c’. Analysis of data references is in ‘tree-data-ref.c’.

Autoparallelization. This pass splits the loop iteration space to run into several threads.
The pass is implemented in ‘tree-parloops.c’.

Chapter 8: Passes and Files of the Compiler 99

e Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This patch re-introduces COND_EXPR at
GIMPLE level. This pass is located in ‘tree-if-conv.c’ and is described by pass_
if_conversion.

e Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.c’
and is described by pass_ccp.

A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.c’ and described by pass_store_ccp.

e Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in ‘tree-ssa-copy.c’
and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.c’ and described by pass_store_copy_prop.

e Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.c’ and is described by pass_vrp.

e Folding built-in functions

This pass simplifies built-in functions, as applicable, with constant arguments or with
inferable string lengths. It is located in ‘tree-ssa-ccp.c’ and is described by pass_
fold_builtins.

e Split critical edges
This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.c’ and is described by pass_
split_crit_edges.

e Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.c’ and is described by pass_
cd_dce.

e Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.

100

GNU Compiler Collection (GCC) Internals

The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.c’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.c’.

Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.c’ and is described by
pass_warn_function_return.

Mudflap statement annotation

If mudflap is enabled, we rewrite some memory accesses with code to validate that
the memory access is correct. In particular, expressions involving pointer dereferences
(INDIRECT_REF, ARRAY_REF, etc.) are replaced by code that checks the selected address
range against the mudflap runtime’s database of valid regions. This check includes
an inline lookup into a direct-mapped cache, based on shift/mask operations of the
pointer value, with a fallback function call into the runtime. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_2.

Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.c’ and
is described by pass_del_ssa.

Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.c’ and is described by pass_merge_phi.

Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL_RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.c’ and is
described by pass_nrv.

Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.
Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.c’ and is described by pass_object_sizes.

Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.c’ and described by pass_lim.

Chapter 8: Passes and Files of the Compiler 101

e Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

e Removal of empty loops

This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_empty_loop.

e Unrolling of small loops

This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_complete_unroll.

e Predictive commoning

This pass makes the code reuse the computations from the previous iterations of the
loops, especially loads and stores to memory. It does so by storing the values of these
computations to a bank of temporary variables that are rotated at the end of loop. To
avoid the need for this rotation, the loop is then unrolled and the copies of the loop
body are rewritten to use the appropriate version of the temporary variable. This pass
is located in ‘tree-predcom.c’ and described by pass_predcom.

e Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.c’ and described by pass_loop_prefetch.

e Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.c’ and described by pass_reassoc.

e Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

8.5 RTL passes

The following briefly describes the RTL generation and optimization passes that are run
after the Tree optimization passes.
e RTL generation
The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

102

GNU Compiler Collection (GCC) Internals

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

Generation of exception landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in
the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located in ‘except.c’.

Control flow graph cleanup

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.c’, and there are support routines in ‘cfgrtl.c’ and ‘jump.c’.

Forward propagation of single-def values

This pass attempts to remove redundant computation by substituting variables that
come from a single definition, and seeing if the result can be simplified. It performs
copy propagation and addressing mode selection. The pass is run twice, with values
being propagated into loops only on the second run. The code is located in ‘fwprop.c’.

Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The code for this pass is located in
‘cse.c’.

Global common subexpression elimination

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.c’, and the
LCM routines are in ‘lcm.c’.

Loop optimization

This pass performs several loop related optimizations. The source files ‘cfgloopanal.c’
and ‘cfgloopmanip.c’ contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by ‘loop-init.c’. A loop invariant
motion pass is implemented in ‘loop-invariant.c’. Basic block level optimizations—
unrolling, peeling and unswitching loops— are implemented in ‘loop-unswitch.c’
and ‘loop-unroll.c’. Replacing of the exit condition of loops by special machine-
dependent instructions is handled by ‘loop-doloop.c’.

Chapter 8: Passes and Files of the Compiler 103

e Jump bypassing
This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.c’.

e If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload, it will generate predicated in-
structions when supported by the target. The code is located in ‘ifcvt.c’.

e Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of
the other transformation, such as CSE or register allocation. The code for this pass is
located in ‘web.c’.

e Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The code is located in ‘combine.c’.

e Register movement

This pass looks for cases where matching constraints would force an instruction to
need a reload, and this reload would be a register-to-register move. It then attempts to
change the registers used by the instruction to avoid the move instruction. The code
is located in ‘regmove.c’.

e Mode switching optimization

¢

This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The code for this
pass is located in ‘mode-switching.c’.

e Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The code for this pass is located in ‘modulo-sched.c’.

e Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the definition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The code for this
pass is located in ‘haifa-sched.c’, ‘sched-deps.c’, ‘sched-ebb.c’, ‘sched-rgn.c’
and ‘sched-vis.c’.

e Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

104

GNU Compiler Collection (GCC) Internals

e Register move optimizations. This pass makes some simple RTL code trans-
formations which improve the subsequent register allocation. The source file is
‘regmove.c’.

e The integrated register allocator (IRA). It is called integrated because coalescing,
register live range splitting, and hard register preferencing are done on-the-fly dur-
ing coloring. It also has better integration with the reload pass. Pseudo-registers
spilled by the allocator or the reload have still a chance to get hard-registers if
the reload evicts some pseudo-registers from hard-registers. The allocator helps to
choose better pseudos for spilling based on their live ranges and to coalesce stack
slots allocated for the spilled pseudo-registers. IRA is a regional register allocator
which is transformed into Chaitin-Briggs allocator if there is one region. By de-
fault, IRA chooses regions using register pressure but the user can force it to use
one region or regions corresponding to all loops.

Source files of the allocator are ‘ira.c’, ‘ira-build.c’, ‘ira-costs.c’,
‘ira-conflicts.c’, ‘dra-color.c’, ‘ira-emit.c’, ‘ira-lives’, plus header files
‘ira.h’ and ‘ira-int.h’ used for the communication between the allocator and
the rest of the compiler and between the IRA files.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for
communication between them.

Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.c’, and the various prediction routines are in
‘predict.c’.

Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists. The code is located in ‘var-tracking.c’.

Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The code for this pass is located in ‘reorg.c’.

Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler

Chapter 8: Passes and Files of the Compiler 105

figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch. The code for this pass is located in ‘final.c’.

e Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The code for this pass is located in ‘reg-stack.c’.

e Final

This pass outputs the assembler code for the function. The source files are ‘final.c’
plus ‘insn-output.c’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’ is used for communication
between these files. If mudflap is enabled, the queue of deferred declarations and any
addressed constants (e.g., string literals) is processed by mudflap_finish_file into a
synthetic constructor function containing calls into the mudflap runtime.

e Debugging information output

This is run after final because it must output the stack slot offsets for pseudo registers
that did not get hard registers. Source files are ‘dbxout.c’ for DBX symbol table
format, ‘sdbout.c’ for SDB symbol table format, ‘dwarfout.c’ for DWARF symbol
table format, files ‘dwarf2out.c’ and ‘dwarf2asm.c’ for DWARF2 symbol table format,
and ‘vmsdbgout.c’ for VMS debug symbol table format.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 107

9 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcclgec.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

9.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘~-enable-checking’. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is

mailto:gcc@gcc.gnu.org

108 GNU Compiler Collection (GCC) Internals

therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) &% !'TEST_P (y))
x =1;

and

int i = (TEST_P (t) !'= 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)
as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

9.2.1 Trees

This section is not here yet.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 109

9.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODEs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
Z€ro.

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often multiple nodes corre-
sponding to the same type.

110 GNU Compiler Collection (GCC) Internals

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int () [7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 111

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

TYPE_CANONICAL

This macro returns the “canonical” type for the given type node. Canonical
types are used to improve performance in the C++ and Objective-C++ front
ends by allowing efficient comparison between two type nodes in same_type_p:
if the TYPE_CANONICAL values of the types are equal, the types are equivalent;
otherwise, the types are not equivalent. The notion of equivalence for canonical
types is the same as the notion of type equivalence in the language itself. For
instance,

When TYPE_CANONICAL is NULL_TREE, there is no canonical type for the given
type node. In this case, comparison between this type and any other type
requires the compiler to perform a deep, “structural” comparison to see if the
two type nodes have the same form and properties.

The canonical type for a node is always the most fundamental type in the
equivalence class of types. For instance, int is its own canonical type. A
typedef I of int will have int as its canonical type. Similarly, I* and a typedef
IP (defined to I*) will has int* as their canonical type. When building a new
type node, be sure to set TYPE_CANONICAL to the appropriate canonical type.
If the new type is a compound type (built from other types), and any of those
other types require structural equality, use SET_TYPE_STRUCTURAL_EQUALITY to
ensure that the new type also requires structural equality. Finally, if for some
reason you cannot guarantee that TYPE_CANONICAL will point to the canonical
type, use SET_TYPE_STRUCTURAL_EQUALITY to make sure that the new type—and

112

GNU Compiler Collection (GCC) Internals

any type constructed based on it-requires structural equality. If you suspect
that the canonical type system is miscomparing types, pass ——param verify-
canonical-types=1 to the compiler or configure with --enable-checking to
force the compiler to verify its canonical-type comparisons against the structural
comparisons; the compiler will then print any warnings if the canonical types
miscompare.

TYPE_STRUCTURAL_EQUALITY_P

This predicate holds when the node requires structural equality checks, e.g.,
when TYPE_CANONICAL is NULL_TREE.

SET_TYPE_STRUCTURAL_EQUALITY

same_type_

This macro states that the type node it is given requires structural equality
checks, e.g., it sets TYPE_CANONICAL to NULL_TREE.

p
This predicate takes two types as input, and holds if they are the same type.

For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE

Used to represent the void type.

INTEGER_TYPE

REAL_TYPE

Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 113

FIXED_POINT_TYPE

Used to represent the short _Fract, _Fract, long _Fract, long long _Fract,
short _Accum, _Accum, long _Accum, and long long _Accum types. The num-
ber of bits in the fixed-point representation is given by TYPE_PRECISION, as in
the INTEGER_TYPE case. There may be padding bits, fractional bits and integral
bits. The number of fractional bits is given by TYPE_FBIT, and the number of
integral bits is given by TYPE_IBIT. The fixed-point type is unsigned if TYPE_
UNSIGNED holds; otherwise, it is signed. The fixed-point type is saturating if
TYPE_SATURATING holds; otherwise, it is not saturating.

COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form ‘T X: :*’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_
ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

114 GNU Compiler Collection (GCC) Internals

Note that in C (but not in C++) a function declared like void £ () is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap. If
TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that
case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_
TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-
to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class
type. For more information, see see Section 9.4.2 [Classes|, page 116.

UNION_TYPE
Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE
Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally
these expressions will reference a field in the outer object using a PLACEHOLDER _
EXPR.

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 115

OFFSET_TYPE
This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_QOFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.

integer_type_node
A node for int.

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

9.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with : : in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types defined with the class, struct, and union key-
words.)

9.4.1 Namespaces
A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

116 GNU Compiler Collection (GCC) Internals

DECL_NAME

This macro is used to obtain the IDENTIFIER_NODE corresponding to the un-

qualified name of the name of the namespace (see Section 9.2.2 [Identifiers],

page 109). The name of the global namespace is ‘::’, even though in C++
the global namespace is unnamed. However, you should use comparison with
global_namespace, rather than DECL_NAME to determine whether or not a
namespace is the global one. An unnamed namespace will have a DECL_NAME
equal to anonymous_namespace_name. Within a single translation unit, all un-
named namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.
Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALTAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special : :std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list,
See Section 9.5 [Declarations|, page 118. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_
ALTAS set.

9.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one mem-
ber, the next can be found by following the TREE_CHAIN. You should not depend in any

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 117

way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN field. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Im-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_
BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_
TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other flags, BINFO_MARKED_P and BINFO_FLAG_1 to BINFO_FLAG_6 can be used for language
specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function

body.

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

118 GNU Compiler Collection (GCC) Internals

CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

9.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 9.6 [Functions], page 123.

9.5.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

TREE_FILENAME
This macro returns the name of the file in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

TREE_LINENO
This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:
struct S {};

is roughly equivalent to C code like:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 119

struct S {};
typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P

This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P

This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P

This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL

CONST_DECL

These nodes are used to represent labels in function bodies. For more informa-
tion, see Section 9.6 [Functions|, page 123. These nodes only appear in block
scopes.

These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL

TYPE_DECL

VAR_DECL

These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for

120 GNU Compiler Collection (GCC) Internals

a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

PARM_DECL
Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

FIELD_DECL

These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The position of the field within the
parent record is specified by a combination of three attributes. DECL_FIELD_
OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the field closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this
word; this may be nonzero even for fields that are not bit-fields, since DECL_
OFFSET_ALIGN may be greater than the natural alignment of the field’s type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_
FIELD_TYPE also contains the type that was originally specified for it, while

DECL_TYPE may be a modified type with lesser precision, according to the
size of the bit field.

NAMESPACE_DECL
See Section 9.4.1 [Namespaces|, page 115.

TEMPLATE_DECL

These nodes are used to represent class, function, and variable (static data
member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_
DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_
DECL nodes on the specializations list just as they would ordinary FUNCTION_
DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

USING_DECL

Back ends can safely ignore these nodes.

9.5.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 121

9.5.2.1 Current structure hierarchy

struct tree_decl_minimal
This is the minimal structure to inherit from in order for common DECL macros
to work. The fields it contains are a unique ID, source location, context, and
name.

struct tree_decl_common
This structure inherits from struct tree_decl_minimal. It contains fields
that most DECL nodes need, such as a field to store alignment, machine mode,
size, and attributes.

struct tree_field_decl
This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

struct tree_label_decl
This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

struct tree_translation_unit_decl
This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

struct tree_decl_with_rtl
This structure inherits from struct tree_decl_common. It contains a field to
store the low-level RTL associated with a DECL node.

struct tree_result_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.

struct tree_const_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

struct tree_parm_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

struct tree_decl_with_vis
This structure inherits from struct tree_decl_with_rtl. It contains fields
necessary to store visibility information, as well as a section name and assembler
name.

struct tree_var_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

struct tree_function_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

122 GNU Compiler Collection (GCC) Internals

9.5.2.2 Adding new DECL node types
Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a ‘.def’ file in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to ‘tree.def’.

Create a new structure type for the DECL node

These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the first member.

struct tree_foo_decl

{

struct tree_decl_with_vis common;

}
Would create a structure name tree_foo_decl that inherits from struct tree_
decl_with_vis.

For language specific DECL nodes, this new structure type should go in the
appropriate ‘.h’ file. For DECL nodes that are part of the middle-end, the
structure type should go in ‘tree.h’.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value specified with it. For
language specific DECL nodes, this new enumerator value should go in the ap-
propriate ‘.def’ file. For DECL nodes that are part of the middle-end, the
enumerator values are specified in ‘treestruct.def’.

Update union tree_node
In order to make your new structure type usable, it must be added to union
tree_node. For language specific DECL nodes, a new entry should be added to
the appropriate ‘.h’ file of the form
struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in ‘tree.h’.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_
node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.

For language specific DECL nodes, their is an init_ts function in an appropri-
ate ‘.c’ file, which initializes the lookup table. Code setting up the table for
new DECL nodes should be added there. For each DECL tree code and enumera-
tor value representing a member of the inheritance hierarchy, the table should
contain 1 if that tree code inherits (directly or indirectly) from that member.
Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator
value TS_FOO0_DECL, would be set up as follows

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 123

tree_contains_struct [FOO_DECL] [TS_FOO_DECL] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_WRTL] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_COMMON] 1;
tree_contains_struct [FOO_DECL] [TS_DECL_MINIMAL] = 1;

[

For DECL nodes that are part of the middle-end, the setup code goes into
‘tree.c’.

Add macros to access any new fields and flags

Each added field or flag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the field.
These macros generally take the following form

#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname
However, if the structure is simply a base class for further structures, something
like the following should be used

#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
#define BASE_STRUCT_FIELDNAME(NODE) \
(BASE_STRUCT_CHECK (NODE) ->base_struct.fieldname

9.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_" macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_
DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was defined. For example, in
class C { friend void £() {} };

the DECL_CONTEXT for £ will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT
for the referenced VAR_DECL is not the same as the function currently being processed, and
neither DECL_EXTERNAL nor TREE_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

124

GNU Compiler Collection (GCC) Internals

9.6.1 Function Basics
The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_

DECL_NAME

P
This predicate holds for a function that is the program entry point ::code.

This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like £<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME ﬁseﬁ)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_EXTERNAL

This predicate holds if the function is undefined.

TREE_PUBLIC

This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P

This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED

This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P

This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P

This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 125

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete

type.

DECL_QOVERLOADED_QOPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

126

GNU Compiler Collection (GCC) Internals

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA

if (THUNK_VCALL_OFFSET)

this += (*((ptrdiff_t #**) this)) [THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P

This predicate holds if the function is not a thunk function.

GLOBAL_INIT_PRIORITY

If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL

This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so

forth.

DECL_ARGUMENTS

This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT

TREE_TYPE

This macro returns the RESULT_DECL for the function.

This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS

This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P

This predicate holds when the exception-specification of its arguments is of the
form ‘()’.

DECL_ARRAY_DELETE_OPERATOR_P

This predicate holds if the function an overloaded operator deletel[].

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 127

DECL_FUNCTION_SPECIFIC_TARGET
This macro returns a tree node that holds the target options that are to be
used to compile this particular function or NULL_TREE if the function is to be
compiled with the target options specified on the command line.

DECL_FUNCTION_SPECIFIC_OPTIMIZATION
This macro returns a tree node that holds the optimization options that are to
be used to compile this particular function or NULL_TREE if the function is to
be compiled with the optimization options specified on the command line.

9.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL DECL_
INITIAL. However, back ends should not make use of the particular value given by DECL_
INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.

9.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;
{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */

128

}

GNU Compiler Collection (GCC) Internals

break;

stmt = TREE_CHAIN (stmt);

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

ASM_EXPR

BREAK_STMT

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

Used to represent a break statement. There are no additional fields.

CASE_LABEL_EXPR

Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... b:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 129

CLEANUP_STMT

Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT

CTOR_STMT

DECL_STMT

DO_STMT

Used to represent a continue statement. There are no additional fields.

Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 9.6 [Functions], page 123.

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR

EXPR_STMT

FOR_STMT

GOTO_EXPR

Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the

130 GNU Compiler Collection (GCC) Internals

GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

HANDLER
Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

IF_STMT

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i =7) ...
where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_EXPR
Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT
for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 131

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE_DECL. This node is needed inside
template functions, to implement using directives during instantiation.

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

9.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

tree DECL_ATTRIBUTES (tree decl) [Tree Macro]
This macro returns the attributes on the declaration decl.

tree TYPE_ATTRIBUTES (tree type) [Tree Macro]
This macro returns the attributes on the type type.

9.8 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should you rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:
TREE_TYPE

Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

132 GNU Compiler Collection (GCC) Internals

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)
As this example indicates, the operands are zero-indexed.

All the expressions starting with OMP_ represent directives and clauses used by the
OpenMP API http://www.openmp.org/.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST

These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)

+ TREE_INST_CST_LOW (e))
HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The
value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
overflow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_
zero_node and size_one_node variables are analogous, but have type size_t
rather than int.

The function tree_int_cst_1t is a predicate which holds if its first argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant’s type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

http://www.openmp.org/

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 133

FIXED_CST
These nodes represent fixed-point constants. The type of these constants is
obtained with TREE_TYPE. TREE_FIXED_CST_PTR points to to struct fixed_value;
TREE_FIXED_CST returns the structure itself. Struct fixed_value contains data
with the size of two HOST_BITS_PER_WIDE_INT and mode as the associated
fixed-point machine mode for data.

COMPLEX_CST
These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST
These nodes are used to represent vector constants, whose parts are constant
nodes. Each individual constant node is either an integer or a double constant
node. The first operand is a TREE_LIST of the constant nodes and is accessed
through TREE_VECTOR_CST_ELTS.

STRING_CST
These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

PTRMEM_CST

These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which
the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general different from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };

struct D : public B {};

int D::*dp = &D::i;
The PTRMEM_CST_CLASS for &D: :1 is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B: :i is a member of B, not D.

VAR_DECL

These nodes represent variables, including static data members. For more in-
formation, see Section 9.5 [Declarations|, page 118.

134 GNU Compiler Collection (GCC) Internals

NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

ABS_EXPR These nodes represent the absolute value of the single operand, for both integer
and floating-point types. This is typically used to implement the abs, labs and
1labs builtins for integer types, and the fabs, fabsf and fabsl builtins for
floating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PREDECREMENT _EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR
These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

ADDR_EXPR
These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is voidx.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 135

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR
These nodes represent, conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.
FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

REALPART_EXPR

IMAGPART_EXPR
These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an Ivalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR
These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

FIXED_CONVERT_EXPR
These nodes are used to represent conversions that involve fixed-point values.
For example, from a fixed-point value to another fixed-point value, from an

136 GNU Compiler Collection (GCC) Internals

integer to a fixed-point value, from a fixed-point value to an integer, from a
floating-point value to a fixed-point value, or from a fixed-point value to a
floating-point value.

THROW_EXPR

These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses
the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR

RSHIFT_EXPR
These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is larger
than or equal to the first operand’s type size.

BIT_IOR_EXPR

BIT_XOR_EXPR

BIT_AND_EXPR
These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR
These nodes represent logical “and” and logical “or”, respectively. These oper-
ators are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of the
operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR
These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

POINTER_PLUS_EXPR
This node represents pointer arithmetic. The first operand is always a
pointer/reference type. The second operand is always an unsigned integer type

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 137

compatible with sizetype. This is the only binary arithmetic operand that can
operate on pointer types.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR
These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first) and
multiplication. Their operands may have either integral or floating type, but
there will never be case in which one operand is of floating type and the other
is of integral type.
The behavior of these operations on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

RDIV_EXPR

This node represents a floating point division operation.

TRUNC_DIV_EXPR

FLOOR_DIV_EXPR

CEIL_DIV_EXPR

ROUND_DIV_EXPR
These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_
EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.

The behavior of these operations on signed arithmetic overflow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR

FLOOR_MOD_EXPR

CEIL_MOD_EXPR

ROUND_MOD_EXPR
These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is defined as a - (a/b)*b where the division
calculated using the corresponding division operator. Hence for TRUNC_MOD_
EXPR this definition assumes division using truncation towards zero, i.e. TRUNC_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXACT_DIV_EXPR
The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

ARRAY_REF
These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale

138

GNU Compiler Collection (GCC) Internals

the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and
fourth operands are used after gimplification to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF

These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

TARGET _MEM_REF

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR

These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The first argument is TMR_SYMBOL and
must be a VAR_DECL of an object with a fixed address. The second argument is
TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP
and must be an INTEGER_CST. The fifth argument is TMR_OFFSET and must
be an INTEGER_CST. Any of the arguments may be NULL if the appropriate
component does not appear in the address. Address of the TARGET_MEM_REF is
determined in the following way.
&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is
preserved for the purposes of the RTL alias analysis. The seventh argument is
a tag representing the results of tree level alias analysis.

These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, equal, and not equal comparison operators. The first and
second operand with either be both of integral type or both of floating type.
The result type of these expressions will always be of integral or boolean type.
These operations return the result type’s zero value for false, and the result
type’s one value for true.

For floating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a floating point exception.

ORDERED_EXPR
UNORDERED_EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two floating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 139

UNLT_EXPR
UNLE_EXPR
UNGT_EXPR
UNGE_EXPR
UNEQ_EXPR
LTGT_EXPR

IEEE NaN, their comparison is defined to be unordered, otherwise the compar-
ison is defined to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type’s zero
value for false, and the result type’s one value for true.

These nodes represent the unordered comparison operators. These operations
take two floating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the first operand is less than the second. With the
possible exception of LTGT_EXPR, all of these operations are guaranteed not to
generate a floating point exception. The result type of these expressions will
always be of integral or boolean type. These operations return the result type’s
zero value for false, and the result type’s one value for true.

MODIFY_EXPR

INIT_EXPR

COMPONENT _

These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.

These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+="), by reduction to ‘=" assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i = i + 3’.

These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is undefined.

REF

These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte offset of the field,
but should not be used directly; call component_ref_field_offset instead.

COMPOUND_EXPR

COND_EXPR

These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

These nodes represent 7: expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

140

CALL_EXPR

STMT_EXPR

GNU Compiler Collection (GCC) Internals

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&
i <10) ?71i : abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x 7 : 3 is equivalent
to x 7 x : 3, assuming that x is an expression without side-effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side-effects.

These nodes are used to represent calls to functions, including non-static mem-
ber functions. CALL_EXPRs are implemented as expression nodes with a variable
number of operands. Rather than using TREE_OPERAND to extract them, it is
preferable to use the specialized accessor macros and functions that operate
specifically on CALL_EXPR nodes.

CALL_EXPR_FN returns a pointer to the function to call; it is always an expression
whose type is a POINTER_TYPE.

The number of arguments to the call is returned by call_expr_nargs, while
the arguments themselves can be accessed with the CALL_EXPR_ARG macro. The
arguments are zero-indexed and numbered left-to-right. You can iterate over
the arguments using FOR_EACH_CALL_EXPR_ARG, as in:

tree call, arg;

call_expr_arg_iterator iter;

FOR_EACH_CALL_EXPR_ARG (arg, iter, call)

/* arg is bound to successive arguments of call. %/

For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

CALL_EXPRs also have a CALL_EXPR_STATIC_CHAIN operand that is used to im-
plement nested functions. This operand is otherwise null.

These nodes are used to represent GCC’s statement-expression extension. The
statement-expression extension allows code like this:
int £ { return ({ int j; j =3; j +7; }); }
In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression. The
value of the expression is the value of the last sub-statement in the body. More
precisely, the value is the value computed by the last statement nested inside
BIND_EXPR, TRY_FINALLY_EXPR, or TRY_CATCH_EXPR. For example, in:
3D

the value is 3 while in:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 141

BIND_EXPR

LOOP_EXPR

EXIT_EXPR

{if (0 {3 B

there is no value. If the STMT_EXPR does not yield a value, it’s type will be
void.

These nodes represent local blocks. The first operand is a list of variables,
connected via their TREE_CHAIN field. These will never require cleanups. The
scope of these variables is just the body of the BIND_EXPR. The body of the
BIND_EXPR is the second operand.

These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or array.
The first operand is reserved for use by the back end. The second operand
is a TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or
UNION_TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a
FIELD_DECL and the TREE_VALUE of each node will be the expression used to
initialize that field.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST or a RANGE_EXPR
of two INTEGER_CSTs. A single INTEGER_CST indicates which element of the
array (indexed from zero) is being assigned to. A RANGE_EXPR indicates an
inclusive range of elements to initialize. In both cases the TREE_VALUE is the
corresponding initializer. It is re-evaluated for each element of a RANGE_EXPR.
If the TREE_PURPOSE is NULL_TREE, then the initializer is for the next available
array element.

In the front end, you should not depend on the fields appearing in any particular
order. However, in the middle end, fields must appear in declaration order. You
should not assume that all fields will be represented. Unrepresented fields will
be set to zero.

COMPOUND_LITERAL_EXPR

These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_
EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the
unnamed object represented by the compound literal; the DECL_INITIAL of that

142 GNU Compiler Collection (GCC) Internals

VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

SAVE_EXPR
A SAVE_EXPR represents an expression (possibly involving side-effects) that is
used more than once. The side-effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side-
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR

A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as a full-expression, or as the second operand of a TARGET_EXPR. AGGR_INIT_
EXPRs have a representation similar to that of CALL_EXPRs. You can use the
AGGR_INIT_EXPR_FN and AGGR_INIT_EXPR_ARG macros to access the function
to call and the arguments to pass.

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the AGGR_INIT_EXPR_SLOT operand,
which is always a VAR_DECL, is taken, and this value replaces the first argument
in the argument list.

In either case, the expression is void.
VA_ARG_EXPR

This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 143

TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

CHANGE_DYNAMIC_TYPE_EXPR

Indicates the special aliasing required by C++ placement new. It has two
operands: a type and a location. It means that the dynamic type of the loca-
tion is changing to be the specified type. The alias analysis code takes this into
account when doing type based alias analysis.

OMP_PARALLEL

OMP_FOR

Represents #pragma omp parallel [clausel ... clauseN]. It has four
operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

Represents #pragma omp for [clausel ... clauseN]. It has 5 operands:
Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.
Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop conditional expression of the form VAR
{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=}
INCR.

Operand OMP_FOR_PRE_BODY contains side-effect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INC. These side-effects are part of the OMP_
FOR block but must be evaluated before the start of loop body.

The loop index variable VAR must be a signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2 and the increment expression INCR
are required to be loop invariant integer expressions that are evaluated without
any synchronization. The evaluation order, frequency of evaluation and side-
effects are unspecified by the standard.

OMP_SECTIONS

Represents #pragma omp sections [clausel ... clauseN].

144 GNU Compiler Collection (GCC) Internals

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION
Section delimiter for OMP_SECTIONS.

OMP_SINGLE
Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER
Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED
Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL
Represents #pragma omp critical [name].

Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identifier to label the critical sec-
tion.

OMP_RETURN
This does not represent any OpenMP directive, it is an artificial marker to
indicate the end of the body of an OpenMP. It is used by the flow graph
(tree-cfg.c) and OpenMP region building code (omp-low.c).

OMP_CONTINUE
Similarly, this instruction does not represent an OpenMP directive, it is used
by OMP_FOR and OMP_SECTIONS to mark the place where the code needs to loop
to the next iteration (in the case of OMP_FOR) or the next section (in the case
of OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_ATOMIC
Represents #pragma omp atomic.

Operand 0 is the address at which the atomic operation is to be performed.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 145

Operand 1 is the expression to evaluate. The gimplifier tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

OMP_CLAUSE

Represents clauses associated with one of the OMP_ directives. Clauses are rep-
resented by separate sub-codes defined in ‘tree.h’. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_TF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION. Each code represents the corresponding OpenMP
clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

VEC_LSHIFT_EXPR

VEC_RSHIFT_EXPR
These nodes represent whole vector left and right shifts, respectively. The first
operand is the vector to shift; it will always be of vector type. The second
operand is an expression for the number of bits by which to shift. Note that
the result is undefined if the second operand is larger than or equal to the first
operand’s type size.

VEC_WIDEN_MULT_HI_EXPR

VEC_WIDEN_MULT_LO_EXPR
These nodes represent widening vector multiplication of the high and low parts
of the two input vectors, respectively. Their operands are vectors that contain
the same number of elements (N) of the same integral type. The result is a
vector that contains half as many elements, of an integral type whose size is
twice as wide. In the case of VEC_WIDEN_MULT_HI_EXPR the high N/2 elements
of the two vector are multiplied to produce the vector of N/2 products. In the
case of VEC_WIDEN_MULT_LO_EXPR the low N/2 elements of the two vector are
multiplied to produce the vector of N/2 products.

VEC_UNPACK_HI_EXPR

VEC_UNPACK_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector,
respectively. The single operand is a vector that contains N elements of the
same integral or floating point type. The result is a vector that contains half
as many elements, of an integral or floating point type whose size is twice as
wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector
are extracted and widened (promoted). In the case of VEC_UNPACK_LO_EXPR
the low N/2 elements of the vector are extracted and widened (promoted).

146 GNU Compiler Collection (GCC) Internals

VEC_UNPACK_FLOAT_HI_EXPR

VEC_UNPACK_FLOAT_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector,
where the values are converted from fixed point to floating point. The single
operand is a vector that contains N elements of the same integral type. The
result is a vector that contains half as many elements of a floating point type
whose size is twice as wide. In the case of VEC_UNPACK_HI_EXPR the high N/2
elements of the vector are extracted, converted and widened. In the case of VEC_
UNPACK_LO_EXPR the low N/2 elements of the vector are extracted, converted
and widened.

VEC_PACK_TRUNC_EXPR
This node represents packing of truncated elements of the two input vectors into
the output vector. Input operands are vectors that contain the same number
of elements of the same integral or floating point type. The result is a vector
that contains twice as many elements of an integral or floating point type whose
size is half as wide. The elements of the two vectors are demoted and merged
(concatenated) to form the output vector.

VEC_PACK_SAT_EXPR
This node represents packing of elements of the two input vectors into the
output vector using saturation. Input operands are vectors that contain the
same number of elements of the same integral type. The result is a vector that
contains twice as many elements of an integral type whose size is half as wide.
The elements of the two vectors are demoted and merged (concatenated) to
form the output vector.

VEC_PACK_FIX_TRUNC_EXPR
This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from floating point to fixed point.
Input operands are vectors that contain the same number of elements of a
floating point type. The result is a vector that contains twice as many elements
of an integral type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_EXTRACT_EVEN_EXPR

VEC_EXTRACT_ODD_EXPR
These nodes represent extracting of the even/odd elements of the two input
vectors, respectively. Their operands and result are vectors that contain the
same number of elements of the same type.

VEC_INTERLEAVE_HIGH_EXPR

VEC_INTERLEAVE_LOW_EXPR
These nodes represent merging and interleaving of the high/low elements of
the two input vectors, respectively. The operands and the result are vectors
that contain the same number of elements (N) of the same type. In the case of
VEC_INTERLEAVE_HIGH_EXPR, the high N/2 elements of the first input vector are
interleaved with the high N/2 elements of the second input vector. In the case
of VEC_INTERLEAVE_LOW_EXPR, the low N/2 elements of the first input vector
are interleaved with the low N/2 elements of the second input vector.

Chapter 10: RTL Representation 147

10 RTL Representation

The last part of the compiler work is done on a low-level intermediate representation called
Register Transfer Language. In this language, the instructions to be output are described,
pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

10.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]") surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rt1.def’, which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

148 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

10.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS
(code). Currently, ‘rtl.def’ defines these classes:

RTX_0BJ An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class x.

RTX_CONST_OBJ
An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE
An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE
An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY
An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

RTX_COMM_ARITH
An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class <.

RTX_BIN_ARITH
An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

Chapter 10: RTL Representation 149

RTX_BITFIELD_OPS

An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 10.11 [Bit-Fields], page 177.

RTX_TERNARY

RTX_INSN

RTX_MATCH

An RTX code for other three input operations. Currently only IF_THEN_ELSE
and VEC_MERGE.

An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 10.18 [Insns|, page 187.

An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC

RTX_EXTRA

An RTX code for an auto-increment addressing mode, such as POST_INC.

All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, ‘rtl.def’ specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ei’.

These are the most commonly used format characters:

An expression (actually a pointer to an expression).
An integer.

A wide integer.

A string.

A vector of expressions.

A few other format characters are used occasionally:

‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

150 GNU Compiler Collection (GCC) Internals

v ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

1 All codes of this class have format e.

<

c

2 All codes of these classes have format ee.

b

3 All codes of these classes have format eee.

i All codes of this class have formats that begin with iuueiee. See Section 10.18
[Insns|, page 187. Note that not all RTL objects linked onto an insn chain are
of class i.

o

m

X You can make no assumptions about the format of these codes.

10.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

Chapter 10: RTL Representation 151

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC

to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

10.4 Access to Special Operands
Some RTL nodes have special annotations associated with them.
MEM

MEM_ALIAS_SET (x)

If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a conflicting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)
If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,
in which case this is some field reference, and TREE_OPERAND (x,
0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_OFFSET (x)
The offset from the start of MEM_EXPR as a CONST_INT rtx.

152

REG

SYMBOL_REF

GNU Compiler Collection (GCC) Internals

MEM_SIZE (x)
The size in bytes of the memory reference as a CONST_INT rtx.
This is mostly relevant for BLKmode references as otherwise the size
is implied by the mode.

MEM_ALIGN (x)
The known alignment in bits of the memory reference.

ORIGINAL_REGNO (x)
This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)
If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)
If this register is known to hold the value of some user-level decla-
ration, this is the offset into that logical storage.

SYMBOL_REF_DECL (x)
If the symbol_ref x was created for a VAR_DECL or a FUNCTION_
DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class ’c’, that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-file constant pool; again, there is no associated front end
symbol table entry.

SYMBOL_REF_CONSTANT (x)
If ‘CONSTANT_POOL_ADDRESS_P (x)’ is true, this is the constant
pool entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)
A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)
In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are specific to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION
Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL
Set if the symbol is local to this “module”. See TARGET_
BINDS_LOCAL_P.

Chapter 10: RTL Representation 153

SYMBOL_FLAG_EXTERNAL
Set if this symbol is not defined in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL
Set if the symbol is located in the small data section.
See TARGET_IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)
This is a multi-bit field accessor that returns the tls_
model to be used for a thread-local storage symbol. It
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO
Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_
REF_BLOCK_OFFSET fields.

SYMBOL_FLAG_ANCHOR
Set if the symbol is used as a section anchor. “Sec-
tion anchors” are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement ‘-fsection-anchors’.

If this ﬂagisset,then SYMBOL_FLAG_HAS_BLOCK_INFO
will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target’s use.

SYMBOL_REF_BLOCK (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure
to which the symbol belongs, or NULL if it has not been assigned a block.

SYMBOL_REF_BLOCK_OFFSET (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first
object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been
assigned to a block, or it has not been given an offset within that block.

10.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

154 GNU Compiler Collection (GCC) Internals

RTL_CONST_CALL_P (x)
In a call_insn indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.

RTL_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a call to a pure function.
Stored in the return_val field and printed as ‘/i’.

RTL_CONST_OR_PURE_CALL_P (x)
In a call_insn, true if RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTL_LOOPING_CONST_OR_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a possibly infinite looping
call to a const or pure function. Stored in the call field and printed as ‘/c’.
Only true if one of RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if
the insn has been deleted. Stored in the volatil field and printed as ‘/v’.

INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. If both this flag and MEM_SCALAR_P are clear, then we
don’t know whether this mem is in a structure or not. Both flags should never
be simultaneously set. Stored in the in_struct field and printed as ‘/s’.

MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in

Chapter 10: RTL Representation 155

a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this flag and
MEM_IN_STRUCT_P are clear, then we don’t know whether this mem is in a struc-
ture or not. Both flags should never be simultaneously set. Stored in the
return_val field and printed as ‘/1’.

MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

MEM_NOTRAP_P (x)
In mem, nonzero for memory references that will not trap. Stored in the call
field and printed as ‘/c’.

MEM_POINTER (x)
Nonzero in a mem if the memory reference holds a pointer. Stored in the frame_
related field and printed as ‘/f’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the return_val
field and printed as ‘/1i’.

REG_POINTER (x)
Nonzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTX_FRAME_RELATED_P (x)

Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

156 GNU Compiler Collection (GCC) Internals

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

MEM_READONLY_P (x)
Nongzero in a mem, if the memory is statically allocated and read-only.

Read-only in this context means never modified during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library’s global offset table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transfered from the runtime loader to the application, this memory will never
be subsequently modified.

Stored in the unchanging field and printed as ‘/u’.

SCHED_GROUP_P (x)
During instruction scheduling, in an insn, call_insn or jump_insn, indicates
that the previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, use insns before a call_insn may not
be separated from the call_insn. Stored in the in_struct field and printed
as ‘/s’.

SET_IS_RETURN_P (x)
For a set, nonzero if it is for a return. Stored in the jump field and printed as
L/J 7'

SIBLING_CALL_P (x)
For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.

STRING_POOL_ADDRESS_P (x)
For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/f’.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_
VAR_P nongzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)
Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero

Chapter 10: RTL Representation 157

extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 17.5 [Storage Layout|, page 381). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)

In a symbol_ref, indicates that x has been declared weak. Stored in the
return_val field and printed as ‘/1i’.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.

Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_
REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call

In a mem, 1 means that the memory reference will not trap.
In a call, 1 means that this pure or const call may possibly infinite loop.

In an RTL dump, this flag is represented as ‘/c’.

frame_related

in_struct

In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.
In mem expressions, 1 means that the memory reference holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.

In an RTL dump, this flag is represented as ‘/f’.

In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

158

return_val

Jjump

unchanging

GNU Compiler Collection (GCC) Internals

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.

In mem expressions, 1 means the memory reference is to a scalar known not to
be a member of a structure, union, or array.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In call expressions, 1 means the call is pure.

In an RTL dump, this flag is represented as ‘/i’.

In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In an RTL dump, this flag is represented as ‘/j’.

In reg and mem expressions, 1 means that the value of the expression never
changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

Chapter 10: RTL Representation 159

used This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 10.20 [Sharing], page 196).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

volatil In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local

label.
In an RTL dump, this flag is represented as ‘/v’.

10.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C
code, machine modes are represented by an enumeration type, enum machine_mode, defined
in ‘machmode.def’. Each RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 17.5 [Storage Layout]|, page 381).

BImode “Bit” mode represents a single bit, for predicate registers.

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes

but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

160

DImode
TImode
0Imode
QFmode

HFmode

TQFmode

SFmode

DFmode

XFmode

SDmode

DDmode

TDmode

TFmode

QQmode

HQmode

SQmode

DQmode

TQmode

GNU Compiler Collection (GCC) Internals

“Double Integer” mode represents an eight-byte integer.
“Tetra Integer” (7) mode represents a sixteen-byte integer.
“Octa Integer” (?7) mode represents a thirty-two-byte integer.

“Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

“Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

“Three-Quarter-Floating” (7) mode represents a three-quarter-precision (three
byte) floating point number.

“Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM

types.

“Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

“Extended Floating” mode represents an IEEE extended floating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

“Single Decimal Floating” mode represents a four byte decimal floating point
number (as distinct from conventional binary floating point).

“Double Decimal Floating” mode represents an eight byte decimal floating point
number.

“Tetra Decimal Floating” mode represents a sixteen byte decimal floating point
number all 128 of whose bits are meaningful.

“Tetra Floating” mode represents a sixteen byte floating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.

“Quarter-Fractional” mode represents a single byte treated as a signed frac-
tional number. The default format is “s.7”.

“Half-Fractional” mode represents a two-byte signed fractional number. The
default format is “s.15”.

“Single Fractional” mode represents a four-byte signed fractional number. The
default format is “s.31”.

“Double Fractional” mode represents an eight-byte signed fractional number.
The default format is “s.63”.

“Tetra Fractional” mode represents a sixteen-byte signed fractional number.
The default format is “s.127”.

Chapter 10: RTL Representation 161

UQQmode

UHQmode

USQmode

UDQmode

UTQmode

HAmode

SAmode

DAmode

TAmode

UHAmode

USAmode

UDAmode

UTAmode

CCmode

BLKmode

VOIDmode

“Unsigned Quarter-Fractional” mode represents a single byte treated as an
unsigned fractional number. The default format is “.8”.

“Unsigned Half-Fractional” mode represents a two-byte unsigned fractional
number. The default format is “.16”.

“Unsigned Single Fractional” mode represents a four-byte unsigned fractional
number. The default format is “.32”.

“Unsigned Double Fractional” mode represents an eight-byte unsigned frac-
tional number. The default format is “.64”.

“Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned fractional
number. The default format is “.128”.

“Half-Accumulator” mode represents a two-byte signed accumulator. The de-
fault format is “s8.7”.

“Single Accumulator” mode represents a four-byte signed accumulator. The
default format is “s16.15”.

“Double Accumulator” mode represents an eight-byte signed accumulator. The
default format is “s32.31”.

“Tetra Accumulator” mode represents a sixteen-byte signed accumulator. The
default format is “s64.63”.

“Unsigned Half-Accumulator” mode represents a two-byte unsigned accumula-
tor. The default format is “8.8”.

“Unsigned Single Accumulator” mode represents a four-byte unsigned accumu-
lator. The default format is “16.16”.

“Unsigned Double Accumulator” mode represents an eight-byte unsigned accu-
mulator. The default format is “32.32”.

“Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned accu-
mulator. The default format is “64.64”.

“Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use ccO (see see Section 17.16
[Condition Code], page 449).

“Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

162 GNU Compiler Collection (GCC) Internals

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and 0Imode,
respectively.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT
Decimal floating point modes. By default these are SDmode, DDmode and TDmode.

MODE_FRACT
Signed fractional modes. By default these are QQmode, HQmode, SQmode, DQmode
and TQmode.

MODE_UFRACT
Unsigned fractional modes. By default these are UQQmode, UHQmode, USQmode,
UDQmode and UTQmode.

MODE_ACCUM
Signed accumulator modes. By default these are HAmode, SAmode, DAmode and
TAmode.

MODE_UACCUM
Unsigned accumulator modes. By default these are UHAmode, USAmode, UDAmode
and UTAmode.

Chapter 10: RTL Representation 163

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any CC_MODE
modes listed in the ‘machine-modes.def’. See Section 16.12 [Jump Patterns],
page 334, also see Section 17.16 [Condition Code], page 449.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_IBIT (m)
Returns the number of integral bits of a datum of fixed-point mode m.

GET_MODE_FBIT (m)
Returns the number of fractional bits of a datum of fixed-point mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

164 GNU Compiler Collection (GCC) Internals

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

10.7 Constant Expression Types
The simplest RTL expressions are those that represent constant values.

(const_int 1)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).
Constants generated for modes with fewer bits than HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode).

There is only one expression object for the integer value zero; it is the value
of the variable constO_rtx. Likewise, the only expression for integer value one
is found in consti_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constml_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return constO_rtx, constl_rtx,
const2_rtx or constml_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and constl_rtx will point to the same object. If STORE_FLAG_VALUE
is —1, const_true_rtx and constml_rtx will point to the same object.

(const_double:m i0 il ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.

If m is VOIDmode, the bits of the value are stored in i0 and il. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and il with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE

Chapter 10: RTL Representation 165

(see Section 17.23 [Floating Point], page 499). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 17.21.2 [Data Output], page 470).

(const_fixed:m ...)
Represents a fixed-point constant of mode m. The operand is a data structure
of type struct fixed_value and is accessed with the macro CONST_FIXED_
VALUE. The high part of data is accessed with CONST_FIXED_VALUE_HIGH; the
low part is accessed with CONST_FIXED_VALUE_LOW.

(const_vector:m [x0 x1 ...])
Represents a vector constant. The square brackets stand for the vector contain-
ing the constant elements. x0, x1 and so on are the const_int, const_double
or const_fixed elements.

The number of units in a const_vector is obtained with the macro CONST_
VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).

Individual elements in a vector constant are accessed with the macro CONST_
VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant
and n is the element desired.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 16.19 [Insn Attributes], page 350) since constant strings
in C are placed in memory.

(symbol_ref :mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with <_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)
Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_
DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and

166

GNU Compiler Collection (GCC) Internals

minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.

m should be Pmode.

The macro CONSTO_RTX (mode) refers to an expression with value 0 in mode mode. If
mode mode is of mode class MODE_INT, it returns constO_rtx. If mode mode is of mode class
MODE_FLOAT, it returns a CONST_DOUBLE expression in mode mode. Otherwise, it returns a
CONST_VECTOR expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers
to an expression with value 1 in mode mode and similarly for CONST2_RTX. The CONST1_RTX
and CONST2_RTX macros are undefined for vector modes.

10.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main

memory.

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

Chapter 10: RTL Representation 167

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it
points to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m1 reg:m2 bytenum)
subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

168 GNU Compiler Collection (GCC) Internals

Each pseudo register has a natural mode. If it is necessary to operate on it in
a different mode, the register must be enclosed in a subreg.

There are currently three supported types for the first operand of a subreg:

e pseudo registers This is the most common case. Most subregs have pseudo
regs as their first operand.

e mem subregs of mem were common in earlier versions of GCC and are still
supported. During the reload pass these are replaced by plain mems. On
machines that do not do instruction scheduling, use of subregs of mem are
still used, but this is no longer recommended. Such subregs are considered
to be register_operands rather than memory_operands before and dur-
ing reload. Because of this, the scheduling passes cannot properly sched-
ule instructions with subregs of mem, so for machines that do scheduling,
subregs of mem should never be used. To support this, the combine and
recog passes have explicit code to inhibit the creation of subregs of mem
when INSN_SCHEDULING is defined.

The use of subregs of mem after the reload pass is an area that is not well
understood and should be avoided. There is still some code in the compiler
to support this, but this code has possibly rotted. This use of subregs is
discouraged and will most likely not be supported in the future.

e hard registers It is seldom necessary to wrap hard registers in subregs; such
registers would normally reduce to a single reg rtx. This use of subregs is
discouraged and may not be supported in the future.

subregs of subregs are not supported. Using simplify_gen_subreg is the
recommended way to avoid this problem.

subregs come in two distinct flavors, each having its own usage and rules:

Paradoxical subregs
When m1 is strictly wider than m2, the subreg expression is called
paradoxical. The canonical test for this class of subreg is:
GET_MODE_SIZE (m1) > GET_MODE_SIZE (m2)

Paradoxical subregs can be used as both Ivalues and rvalues. When
used as an lvalue, the low-order bits of the source value are stored
in reg and the high-order bits are discarded. When used as an
rvalue, the low-order bits of the subreg are taken from reg while
the high-order bits may or may not be defined.

The high-order bits of rvalues are in the following circumstances:

e subregs of mem When m2 is smaller than a word, the macro
LOAD_EXTEND_OP, can control how the high-order bits are de-
fined.

e subreg of regs The upper bits are defined when SUBREG_
PROMOTED_VAR_P is true. SUBREG_PROMOTED_UNSIGNED_P de-
scribes what the upper bits hold. Such subregs usually rep-
resent local variables, register variables and parameter pseudo
variables that have been promoted to a wider mode.

Chapter 10: RTL Representation 169

bytenum is always zero for a paradoxical subreg, even on big-
endian targets.

For example, the paradoxical subreg:
(set (subreg:SI (reg:HI x) 0) y)

stores the lower 2 bytes of y in x and discards the upper 2 bytes.
A subsequent:
(set z (subreg:SI (reg:HI x) 0))

would set the lower two bytes of z to y and set the upper two bytes
to an unknown value assuming SUBREG_PROMOTED_VAR_P is false.

Normal subregs
When ml is at least as narrow as m2 the subreg expression is
called normal.

Normal subregs restrict consideration to certain bits of reg. There
are two cases. If m1 is smaller than a word, the subreg refers to
the least-significant part (or lowpart) of one word of reg. If mI is
word-sized or greater, the subreg refers to one or more complete
words.

When used as an lvalue, subreg is a word-based accessor. Storing
to a subreg modifies all the words of reg that overlap the subreg,
but it leaves the other words of reg alone.

When storing to a normal subreg that is smaller than a word, the
other bits of the referenced word are usually left in an undefined
state. This laxity makes it easier to generate efficient code for
such instructions. To represent an instruction that preserves all
the bits outside of those in the subreg, use strict_low_part or
zero_extract around the subreg.

bytenum must identify the offset of the first byte of the subreg
from the start of reg, assuming that reg is laid out in memory
order. The memory order of bytes is defined by two target macros,
WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN:

e WORDS_BIG_ENDIAN, if set to 1, says that byte number zero is
part of the most significant word; otherwise, it is part of the
least significant word.

e BYTES_BIG_ENDIAN, if set to 1, says that byte number zero is
the most significant byte within a word; otherwise, it is the
least significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_
BIG_ENDIAN. However, most parts of the compiler treat floating
point values as if they had the same endianness as integer values.
This works because they handle them solely as a collection of integer
values, with no particular numerical value. Only real.c and the
runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Thus,

170

GNU Compiler Collection (GCC) Internals

(subreg:HI (reg:SI x) 2)

on a BYTES_BIG_ENDIAN, ‘UNITS_PER_WORD == 4’ target is the same
as
(subreg:HI (reg:SI x) 0)

on a little-endian, ‘UNITS_PER_WORD == 4’ target. Both subregs
access the lower two bytes of register x.

A MODE_PARTIAL_INT mode behaves as if it were as wide as the corresponding
MODE_INT mode, except that it has an unknown number of undefined bits. For
example:

(subreg:PSI (reg:SI 0) 0)

accesses the whole of ‘(reg:SI 0)’, but the exact relationship between
the PSImode value and the SImode value is not defined. If we assume
‘UNITS_PER_WORD <= 4’, then the following two subregs:

(subreg:PSI (reg:DI 0) 0)

(subreg:PSI (reg:DI 0) 4)
represent independent 4-byte accesses to the two halves of ‘(reg:DI 0)’. Both
subregs have an unknown number of undefined bits.

If ‘'UNITS_PER_WORD <= 2’ then these two subregs:

(subreg:HI (reg:PSI 0) 0)

(subreg:HI (reg:PSI 0) 2)
represent independent 2-byte accesses that together span the whole of
‘(reg:PSI 0)’. Storing to the first subreg does not affect the value of the
second, and vice versa. ‘(reg:PSI 0)’ has an unknown number of undefined
bits, so the assignment:

(set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))

does not guarantee that ‘(subreg:HI (reg:PSI 0) 0)’ has the value ‘(reg:HI

4)’.

The rules above apply to both pseudo regs and hard regs. If the semantics

are not correct for particular combinations of m1, m2 and hard reg, the target-

specific code must ensure that those combinations are never used. For example:
CANNOT_CHANGE_MODE_CLASS (m2, mi, class)

must be true for every class class that includes reg.

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

It has been several years since a platform in which BYTES_BIG_ENDIAN not
equal to WORDS_BIG_ENDIAN has been tested. Anyone wishing to support such
a platform in the future may be confronted with code rot.

(scratch:m)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 10.15 [Side
Effects|, page 180).

Chapter 10: RTL Representation 171

(cc0)

(pc)

This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

e To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, constO_rtx).

e To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if _then_else
(in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable
ccO_rtx. Any attempt to create an expression of code ccO will return ccO_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 17.16
[Condition Code], page 449. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

172 GNU Compiler Collection (GCC) Internals

(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

(concatm rtx rtx)
This RTX represents the concatenation of two other RTXs. This is used for
complex values. It should only appear in the RTL attached to declarations and
during RTL generation. It should not appear in the ordinary insn chain.

(concatnm [rtx ...]1)
This RTX represents the concatenation of all the rtx to make a single value.
Like concat, this should only appear in declarations, and not in the insn chain.

10.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

(ss_plus:m x y)

(us_plus:m x y)
These three expressions all represent the sum of the values represented by x and
y carried out in machine mode m. They differ in their behavior on overflow of
integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)
This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 10.7 [Constants|, page 164) to represent the typical
two-instruction sequence used in RISC machines to reference a global memory
location.

The number of low order bits is machine-dependent but is normally the number
of bits in a Pmode item minus the number of bits set by high.

m should be Pmode.

(minus:m x y)

(ss_minus:m x y)

(us_minus:m x y)
These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on overflow is the same as for the three variants of
plus (see above).

Chapter 10: RTL Representation 173

(compare:m x y)

(neg:m x)

Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, either (cc0) or a register. See Section 10.10 [Comparisons],
page 176.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (ccO) is used, it is VOIDmode. Otherwise it
is some mode in class MODE_CC, often CCmode. See Section 17.16 [Condition
Code], page 449. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(ss_neg:m x)
(us_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They differ in the behavior
on overflow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated
to m. ss_neg and us_neg ensure that an out-of-bounds result saturates to the
maximum or minimum signed or unsigned value.

(mult:m x y)
(ss_mult:m x y)
(us_mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m. ss_mult and us_mult ensure that an out-of-bounds result
saturates to the maximum or minimum signed or unsigned value.

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

174 GNU Compiler Collection (GCC) Internals

For unsigned widening multiplication, use the same idiom, but with zero_
extend instead of sign_extend.

(div:m x y)

(ss_div:m x y)
Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient. ss_div ensures that an out-of-bounds result saturates
to the maximum or minimum signed value.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m! (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

(us_div:m x y)
Like div but represents unsigned division. us_div ensures that an out-of-
bounds result saturates to the maximum or minimum unsigned value.

(mod:m x y)
(umod:m x y)
Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)
Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with floating point, if both operands
are zeros, or if either operand is NaN, then it is unspecified which of the two
operands is returned as the result.

(umin:m x y)
(umax:m x y)
Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

Chapter 10:

(ashift:m

RTL Representation 175

x c)

(ss_ashift:m x c)
(us_ashift:m x c)

(1shiftrt:
(ashiftrt:

(rotate:m
(rotatert:

(abs:m x)

(sqrt:m x)

(ffs:m x)

(clz:m x)

(ctz:m x)

(popcount :

These three expressions represent the result of arithmetically shifting x left by
¢ places. They differ in their behavior on overflow of integer modes. An ashift
operation is a plain shift with no special behavior in case of a change in the
sign bit; ss_ashift and us_ashift saturates to the minimum or maximum
representable value if any of the bits shifted out differs from the final sign bit.

x have mode m, a fixed-point machine mode. ¢ be a fixed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of ¢ is QImode regardless of m.

mxc)

mxc)

Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

X c)
mx c)
Similar but represent left and right rotate. If ¢ is a constant, use rotate.

Represents the absolute value of x, computed in mode m.

Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may
be valid.

Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most significant bit position. If x is zero, the value is deter-
mined by CLZ_DEFINED_VALUE_AT_ZERO (see Section 17.30 [Misc|, page 508).
Note that this is one of the few expressions that is not invariant under widening.
The mode of x will usually be an integer mode.

Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least significant bit position. If x is zero, the value is deter-
mined by CTZ_DEFINED_VALUE_AT_ZERO (see Section 17.30 [Misc|, page 508).
Except for this case, ctz(x) is equivalent to ffs(x) - 1. The mode of x will
usually be an integer mode.

m x)
Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x will usually be an integer mode.

176 GNU Compiler Collection (GCC) Internals

(parity:m x)
Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x will usually be an integer mode.

(bswap:m x)
Represents the value x with the order of bytes reversed, carried out in mode
m, which must be a fixed-point machine mode.

10.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 17.30 [Misc|, page 508) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE_INT’ mode, FLOAT_STORE_FLAG_VALUE
(see Section 17.30 [Misc], page 508) if the relation holds, or zero if it does not, for comparison
operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_
VALUE (see Section 17.30 [Misc|, page 508) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the first operand of an if _then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than —1 but
not unsigned greater-than, because —1 when regarded as unsigned is actually Oxffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons
are distinguished by the machine modes of the operands.
(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.
(ne:m x y)

STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

Chapter 10: RTL Representation

(gt:m x y)

177

STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-

parison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(1t:m x y)
(tu:m x y)
Like gt and gtu but test for “less than”.
(ge:m x y)
(geu:m x y)
Like gt and gtu but test for “greater than or equal”.
(le:m x y)
(leu:m x y)
Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)

This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the

value represented by then and the one represented by else.

On most machines, 1f_then_else expressions are valid only to express condi-

tional jumps.

(cond [testl valuel test2 value2 ...] default)

Similar to if_then_else, but more general. Each of testl, test2, ...

is per-

formed in turn. The result of this expression is the value corresponding to the

first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for

insn attributes. See Section 16.19 [Insn Attributes], page 350.

10.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)

This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the

memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 16.9 [Standard Names|, page 309) and is usually a full-word integer

mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv

pattern.

The mode m is the same as the mode that would be used for loc if it were a

register.

178 GNU Compiler Collection (GCC) Internals

A sign_extract can not appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

Unlike sign_extract, this type of expressions can be Ivalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
specified bit-field.

10.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vecl vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vecl or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vecl.

(vec_select:m vecl selection)
This describes an operation that selects parts of a vector. vecl is the source
vector, selection is a parallel that contains a const_int for each of the sub-
parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vecl vec2)
Describes a vector concat operation. The result is a concatenation of the vectors
vecl and vec2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

10.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in
(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
The conversion operation is not a mere placeholder, because there may be more than one

way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

Chapter 10: RTL Representation 179

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a floating-point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

When m is a fixed-point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

180 GNU Compiler Collection (GCC) Internals

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fract_convert:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, floating-point value x to fixed-
point mode m, fixed-point value x to integer mode m regarded as signed, or
fixed-point value x to floating-point mode m. When overflows or underflows
happen, the results are undefined.

(sat_fract:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, or floating-point value x to fixed-
point mode m. When overflows or underflows happen, the results are saturated
to the maximum or the minimum.

(unsigned_fract_convert:m x)
Represents the result of converting fixed-point value x to integer mode m re-
garded as unsigned, or unsigned integer value x to fixed-point mode m. When
overflows or underflows happen, the results are undefined.

(unsigned_sat_fract:m x)
Represents the result of converting unsigned integer value x to fixed-point mode
m. When overflows or underflows happen, the results are saturated to the
maximum or the minimum.

10.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

10.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

Chapter 10: RTL Representation 181

(set 1val x)

(return)

Represents the action of storing the value of x into the place represented by
Ival. Ival must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or ccO.

If Ival is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If Ival is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if Ival is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If Ival is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If Ival is a zero_extract, then the referenced part of the bit-field (a memory or
register reference) specified by the zero_extract is given the value x and the
rest of the bit-field is not changed. Note that sign_extract can not appear in
Ival.

If Ival is (cc0), it has no machine mode, and x may be either a compare
expression or a value that may have any mode. The latter case represents
a “test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.

If Ival is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list
whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.

If Ival is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If Ival is neither (cc0) nor (pc), the mode of Ival must not be VOIDmode and
the mode of x must be valid for the mode of Ival.

Ival is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

182

GNU Compiler Collection (GCC) Internals

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 16.4 [RTL Template],
page 271) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn if it is a hard register clobber. For pseudo-
register clobber, the register allocator and the reload pass do not assign the
same hard register to the clobber and the input operands if there is an insn al-
ternative containing the ‘&’ constraint (see Section 16.8.4 [Modifiers|, page 287)

Chapter 10: RTL Representation 183

(use x)

for the clobber and the hard register is in register classes of the clobber in the
alternative. You can clobber either a specific hard register, a pseudo register, or
a scratch expression; in the latter two cases, GCC will allocate a hard register
that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
..)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)]1 0))
(use (reg:SI 1))1)

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘movmemm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg_equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, xI and so
on are individual side effect expressions—expressions of code set, call, return,
clobber or use.

184

GNU Compiler Collection (GCC) Internals

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,
(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))1)

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (ccO) (reg:SI 34))
(set (pc) (if_then_else
(eq (cc0) (const_int 0))
(label_ref ...)
(pc))D
But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond expr])

(sequence

Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

[insns ...])

Represents a sequence of insns. Fach of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns

Chapter 10: RTL Representation 185

in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 16.19.7 [Delay Slots]|, page 357.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)
Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [1r0 1r1 ...])
Represents a table of jump addresses. The vector elements Ir0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [1r0 1rl ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector
elements Ir0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)
Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
specifies the amount of temporal locality; 0 if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

10.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length

186 GNU Compiler Collection (GCC) Internals

in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms: (plus:m x z), (minus:m x z),
or (plus:m x i), where z is an index register and i is a constant.

Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may
not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes
onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

Chapter 10: RTL Representation 187

10.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:
asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (xz));
is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:
(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0
[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")1))
Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
... for successive output operands.

10.18 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn 1.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

188

GNU Compiler Collection (GCC) Internals

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn

jump_insn

call_insn

The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions to which pc can be set in
that instruction). If there is an instruction to return from the current function,
it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; other jump
target labels are recorded as REG_LABEL_TARGET notes. The exception is addr_
vec and addr_diff_vec, where JUMP_LABEL is NULL_RTX and the only way to
find the labels is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.
call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.

Chapter 10: RTL Representation 189

code_label

barrier

note

A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 17.10.7 [Register Arguments|, page 424) are
stored. If the argument is caller-copied (see Section 17.10.7 [Register Argu-
ments|, page 424), the stack slot will be mentioned in CLOBBER and USE entries;
if it’s callee-copied, only a USE will appear, and the MEM may point to addresses
that are not stack slots.

CLOBBERed registers in this list augment registers specified in CALL_USED_
REGISTERS (see Section 17.7.1 [Register Basics], page 394).

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_
NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,
the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_
point, in ‘final.c’.

To set the kind of a label, use the SET_LABEL_KIND macro.

Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

190 GNU Compiler Collection (GCC) Internals

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER
identifies which CODE_LABEL or note of type NOTE_INSN_DELETED_
LABEL is associated with the given region.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END
These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_BEG
Appears at the start of the function body, after the function pro-
logue.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the first insn in a block that has already been processed.

Chapter 10: RTL Representation 191

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)
An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel
must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or —1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains —1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may
come between the related insns. These are only used by the schedulers and by
combine. This is a deprecated data structure. Def-use and use-def chains are
now preferred.

REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two
operands: the first is an insn, and the second is another insn_list expression (the next one
in the chain). The last insn_list in the chain has a null pointer as second operand. The
significant thing about the chain is which insns appear in it (as first operands of insn_list
expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn.

192 GNU Compiler Collection (GCC) Internals

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_LABEL_OPERAND
This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that refers to the operand as an
ordinary operand. The label may still eventually be a jump target, but if so in
an indirect jump in a subsequent insn. The presence of this note allows jump
optimization to be aware that op is, in fact, being used, and flow optimization
to build an accurate flow graph.

REG_LABEL_TARGET
This insn is a jump_insn but not a addr_vec or addr_diff_vec. It uses op,
a code_label as a direct or indirect jump target. Its purpose is similar to
that of REG_LABEL_OPERAND. This note is only present if the insn has multiple
targets; the last label in the insn (in the highest numbered insn-field) goes
into the JUMP_LABEL field and does not have a REG_LABEL_TARGET note. See
Section 10.18 [Insns|, page 187.

Chapter 10: RTL Representation 193

REG_CROSSING_JUMP

REG_SETJMP

This insn is an branching instruction (either an unconditional jump or an indi-
rect jump) which crosses between hot and cold sections,