
NmzIntegrate 1.1

Winfried Bruns and Christof Söger

wbruns@uos.de

csoeger@uos.de

1 The obje
tives of NmzIntegrate

We assume in the following that the reader is familiar withNormaliz, in particular with its
treatment of Ehrhart series and quasipolynomials.NmzIntegrate requiresNormaliz 2.9 or
higher.

Normaliz computes certain data for a monoid

M =C∩L

whereC ⊂ Rn is a rational, polyhedral and pointed cone, andL ⊂ Zn is a sublattice. These
data are defined by the input toNormaliz. NmzIntegrate requires thatM has been endowed
with a grading deg (see the manual ofNormaliz).

For such graded monoidsNormaliz can compute the volume of the rational polytope

P= {x∈ R+M : degx= 1},

the Ehrhart series ofP, and the quasipolynomial representing the Ehrhart function. (Here
R+M is the cone generated by the elements ofM; it may be smaller thanC if L has rank< n.)

These computations can be understood as integrals of the constant polynomialf = 1, namely
with respect to the counting measure defined byL for the Ehrhart function, and with respect to
the (suitably normed) Lebesgue measure for the volume.NmzIntegrate generalizes these com-
putations to arbitrary polynomialsf in n variables with rational coefficients. (Mathematically,
there is no need to restrict oneself to rational coefficientsfor f .)

More precisely, set
E(f ,k) = ∑

x∈M,degx=k

f (x),

1

and callE(f ,_) thegeneralized Ehrhart functionfor f . (With f = 1 we simply count lattice
points.) Thegeneralized Ehrhart seriesis the ordinary generating function

Ef (t) =
∞

∑
k=0

E(f ,k)tk.

It turns out thatEf (t) is the power series expansion of a rational function at the origin, and can
always be written in the form

Ef (t) =
Q(t)

(1− tℓ)totdegf+rankM , Q(t) ∈Q[t], degQ< totdegf + rankM.

Here totdegf is the total degree of the polynomialf , andℓ is the least common multiple of
the degrees of the extreme integral generators ofM. See [2] for an elementary account and the
algorithm used byNmzIntegrate.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomialq(k) with rational coefficients and of degree≤ totdegf + rankM−1 that evaluates to
E(f ,k) for all k ≥ 0. A quasipolynomial is a “polynomial” with periodic coefficients: there
exists aperiodπ ∈ N and true polynomialsq j ∈Q[X], j = 0, . . . ,π −1, such that

q(k) = q(j)(k) if k≡ j (π).

Each of the polynomialsq(j) is given as

q(j)(k) = q(j)
0 +q(j)

1 X+ · · ·+q(j)
totdegf+rankM−1Xtotdegf+rankM−1

with constant coefficients inQ. The periodπ dividesℓ.

Let m= totdegf and fm be the degreem homogeneous component off . By letting k go to
infinity and approximatingfm by a step function that is constant on the meshes of1

kL (with
respect to a fixed basis), one sees

q(j)
totdegf+rankM−1 =

∫
P

fmdλ

wheredλ is the Lebesgue measure that takes value 1 on a basic mesh ofL∩RM in the hyper-

plane of degree 1 elements inRM. In particular, thevirtual leading coefficient q(j)
totdegf+rankM−1

is constant and depends only onfm. If the integral vanishes, the quasipolynomialq has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdegf + rankM−1)! ·qtotdegf+rankM−1

the virtual multiplicity of M and f . It is an integer if fm has integral coefficients andP is a
lattice polytope.

2

NmzIntegrate computes

(ES) the generalized Ehrhart series and its quasipolynomial,
(Int) the Lebesgue integral off overP, or
(LC) the virtual leading coefficient and the virtual multiplicity.

The user controls the type of computation by a command line option. (ES) contains (LC), and
(LC) is just the evaluation of (Int) on the highest homogeneous component off . It is presently
not possible to compute the Ehrhart series and the integral together if f is not homogeneous.

Acknowledgement.We gratefully acknowledge the support we received from JohnAbbott and
Anna Bigatti in using CoCoALib, on which the multivariate polynomial algebra inNmzInte-

grate is based.

2 Input �les

NmzIntegrate can be used in two ways:

1. by direct call from the command line,

2. by call from withinNormaliz with the appropriate options.

If NmzIntegrate misses an input file that should have been produced byNormaliz, it calls
Normaliz and makes it produce the missing file(s).

For mutual calls it is necessary that the executables ofNormaliz andNmzIntegrate reside in
the same directory.

2.1 Basi
 input �les

The files<project>.in and<project>.pnm must be provided by the user.Normaliz needs
<project>.in in order to produce the files read byNmzIntegrate. The file<project>.pnm

contains the polynomial to be integrated.

2.2 Auxiliary �les produ
ed by Normaliz

One runsNormaliz with the option

-T (or -y) for (Int) and (LC),
-y for (ES).

(It is allowed to combine-T and-y.) If NmzIntegrate callsNormaliz, then it chooses these
options automatically.

This will produce the files with the following suffixes (in addition to <project>.out and
possibly further output files determined by theNormaliz options-f and-a):

-T inv, tgn, tri

3

-y inv, tgn, dec.

NmzIntegrate reads

• the grading and the rank from<project>.inv,
• the rays of the triangulation from<project>.tgn,
• the triangulation from<project>.tri (for (Int) and (LC)) and
• the Stanley decomposition from<project>.dec (for (ES)).

If <project>.tri does not exist for one of the tasks (Int) or (LC),NmzIntegrate checks for
the existence of<project>.dec and reads the triangulation from it.

NmzIntegrate does itself not read<project>.in nor any other output file ofNormaliz.

2.3 The polynomial

The polynomial is read from the file<project>.pnm. The input format is defined by the
following rules:

1. The polynomial is a product ofnonzerofactors.

2. The factors are separated by the character*.

3. A factor is a sum of terms.

4. A term is a product of a rational number and a monomial. The number 1 can of course
be omitted.

5. A monomial is a (possibly empty) product of indeterminatesx[<i>] or powersx[<i>]^<j>
of indeterminates where<i> represents an index between 1 andn and<j> represents a
positive integer.

6. Spaces, line breaks, and the brackets(and) can be used for visual structuring. They
have no mathematical meaning (so far), and will be removed before the computation of
the polynomial.

Note that the names of the variables are fixed:x[1],. . . ,x[<n>] where<n> represents the
numbern.

An example:

1/120*(x[1]+x[2]^2)*(-2x[3]x[4])

is a well formed input polynomial, but

1/120 * x[1]+x[2]^2* -2x[3] x[4]

represents the same polynomial.

Most likely, the syntax check is not 100% nonsense proof. Note that some input errors will
cause CoCoA exceptions.

4

3 Running NmzIntegrate

There are three ways to runNmzIntegrate:

1. direct call from the command line

2. call fromNormaliz (see Normaliz manual)

3. from jNormaliz via Normaliz.

The shortest possible command to startNmzIntegrate is

nmzIntegrate <project>

This will run the default computation (ES) on the<project>. The full input syntax is

nmzIntegrate [-cEIL] [-x=<T>] <project>

where-c and-x=<T> have the same meaning as forNormaliz:

-c activates the verbose mode in which control information is written to the terminal,
-x=<T> limits the number of parallel threads to<T>.

The remaining options control the type of computation:

-E activates the computation (ES) (the default mode, can be omitted),
-I activates the computation (Int),
-L activates the computation (LC).

These three options can be accumulated. If at least two options are set, the computations are
carried out according to the following rules:

• If -E is present,-L will be suppressed since its result is contained in that of-E.
• If -I is present, then it will be suppressed if one of-E or L is set and the polynomial is

homogeneous since-L and-I are identical for homogeneous polynomials.

If two different computations are carried out, then their output will appear consecutively in the
output file.

The options-c and-x=<T> are passed formNormaliz to NmzIntegrate and vice versa.NmzIn-

tegrate passes also the option-e to Normaliz as a precaution against overflow errors. If such
an error occurs or it is a priori clear that 64 bit precision isnot sufficient forNormaliz, it must
be run beforehand with the option-B (and-T or -y). NmzIntegrate itself works always with
infinite precision.

Note thatNmzIntegrate may need much more memory thanNormaliz, especially with a high
number of parallel threads. This is due to the fact that it mayhave to cope with very long
polynomials.

4 The output �le

The output will be written to the file<project>.intOut (so that it can be clearly distinguished
from theNormaliz output file).

5

NmzIntegrate factors the polynomial, and the factorization is written tothe output file. For the
computation (LC) the polynomial is first replaced by its leading form, and the output file then
contains the factorization of the leading form.

The output file is self explanatory, but see theNormaliz documentation for the interpretation
of the format in which the generalized Ehrhart series and thequasipolynomial are printed.

Please have a look at the files

rationalES.intOut, rationalInt.intOut and rationalLC.intOut.

They were all produced from the example filerational.in in theNormaliz distribution and
the filerational.pnm, andrational.intOut was suitably renamed.

The directoryexample contains further input files suited forNmzIntegrate. Look out for files
with the suffixpnm.

5 Distribution and installation

The basic package (source, documentation, examples) forNmzIntegrate is contained in the
basic package ofNormaliz that you can download from

http://www.math.uos.de/normaliz

The installation is described in theNormaliz documentation.

Likewise the executable ofNmzIntegrate is contained in theNormaliz executable package for
your system.

ThereforeNmzIntegrate does not need a separate installation.

6 Compilation

Before the compilation ofNmzIntegrate you must compileNormaliz 2.9 (or higher) and in-
stall CoCoLib 0.9951 [1] (not contained in theNormaliz distribution).NmzIntegrate will not
compile with later versions of CoCoALib or earlier versionsof Normaliz.

Important:after the configuration of CoCoALib, butbefore its compilation viamake you must
modify the fileconfiguration/autoconf.mk in the following way: add the flag

-DCoCoA_THREADSAFE_HACK

to the definition ofCXXFLAGS_COMMON (probably near line 24 ofconfiguration/autoconf.mk).

Under Linux or Mac OS navigate to the directorygenEhrhart and runmake. You should move
the executablenmzIntegrate to the directory that containsnormaliz.

Depending on the location of CoCoALib, you may have to adjustthe path leading to it in the
Makefile in genEhrhart.

If you should want to compileNmzIntegrate under MS Windows, please contact the authors.

6

http://www.math.uos.de/normaliz

7 Copyright and how to
ite

NmzIntegrate 1.1 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer toNormaliz in any publication for whichNmzIntegrate it has been used:

W. Bruns, B. Ichim and C. Söger:Normaliz. Algorithms for rational cones and affine
monoids. Available fromhttp://www.math.uos.de/normaliz.

You can add a reference to [2] in order to indicate thatNmzIntegrate has been used.

8 Changes relative to version 1.0

1. NmzIntegrate can now be used on objects that do not have maximal dimension in their
surrounding space.

2. NmzIntegrate callsNormaliz if input files are missing.

3. The input syntax for polynomials has been improved: whitespace is neglected.

4. The efficiency has been improved significantly by using integral arithmetic internally
instead of rational arithmetic.

Referen
es

[1] J. Abbott and A. Bigatti,CoCoALib. A GPL C++ library for doing Computations in
Commutative Algebra. Available fromhttp://cocoa.dima.unige.it/cocoalib/

[2] W. Bruns and C. Söger,Generalized Ehrhart series and integration in Normaliz.
arXiv:1211.5178

7

http://www.math.uos.de/normaliz
http://cocoa.dima.unige.it/cocoalib/
arXiv:1211.5178

	The objectives of NmzIntegrate
	Input files
	Basic input files
	Auxiliary files produced by Normaliz
	The polynomial

	Running NmzIntegrate
	The output file
	Distribution and installation
	Compilation
	Copyright and how to cite
	Changes relative to version 1.0

