THE POWER OF PYRAMID DECOMPOSITION IN NORMALIZ
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ABSTRACT. We describe the use of pyramid decomposition in Normaknfawvare tool
for the computation of Hilbert bases and enumerative datatanal cones and affine
monoids. Pyramid decomposition in connection with effitigarallelization and stream-
lined evaluation of simplicial cones has enabled Normaljgrbcess triangulations of size
~ 5-10 that arise in the computation of Hilbert series related tmkimatorial voting
theory.

1. INTRODUCTION

Normaliz is a software tool for the computation of Hilbersba and enumerative data
of rational cones and affine monoids. In the 14 years of itsterce it has found numerous
applications; for example, in integer programming (BogRdymond and Thomasl|[5]),
algebraic geometry (Craw, Maclagan and Thomas [16]), ttesal physics (Kappl, Ratz
and Staudt [30]), commutative algebra (Sturmfels and W¢B&@]) or elimination theory
(Emiris, Kalinka, Konaxis and Ba [23]). Normaliz is used iolymake [29], a computer
system for polyhedral geometry, and in Regina [13], a systencomputations with 3-
manifolds.

The mathematics of the very first version was described im8and Koch[[11], and
the details of version 2.2 (2009) are contained in Bruns ahd [9]. In this article we
document the mathematical ideas and the most recent davehﬂresulting from them.

It has extended the scope of Normaliz by several orders ohitatge.

In algebraic geometry the spectra of algelfaS N L] whereC is a pointed cone and
L a lattice, both contained in a spaRé, are the building blocks of toric varieties; for
example, see Cox, Little and Schenck/[15]. In commutatigelaia the algebrd§[CNL|
which are exactly the normal affine monoid algebras are arast themselves. It is
clear that an algorithmic approach to toric geometry or affimonoid algebras depends
crucially on an efficient computation of the unique minimgétem of generators of a
monoidCNL that we call itsHilbert basis Affine monoids of this type are extensively
discussed by Bruns and Gubeladze [6]. The existence andemégs of such a minimal
system of generators is essentially due to Gordan [25] arsdpn@ven in full generality
by van der Corput [40].

The term “Hilbert basis” was actually coined in integer pagming (withL = Z9) by
Giles and Pulleyblank [24] in connection with totally duategral (TDI) systems. Also
see Schrijver [34, Sections 16.4 and 22.3]. One should hatdrt integer programming
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usually an arbitrary, not necessarily minimal, system afegators ofCNZd is called a
Hilbert basis ofC. From the computational viewpoint and also in bounds fohsgycs-
tems of generators, minimality is so important that we idelit in the definition. Aardal,
Weismantel and Wolsey [2] discuss Hilbert bases and the@inection with Graver Bases
(of sublattices) and Grobner bases (of binomial ideal&}).pfesent, Normaliz does not
include Graver or Grobner bases; 41i2 [1] is a tool for tremmputation.) It should be
noted that Normaliz, or rather a predecessor, was instrtahanfinding a counterex-
ample to the Integral Carathéodory Property (Bruns, Gadmd, Henk, Weismantel and
Martin [7]) that was proposed by Sehd [36]. For more rec&vietbpments in nonlinear
optimization using Graver bases, and therefore Hilberédasee J. De Loera, R. Hem-
mecke, S. Onn, U.G. Rothblum, R. Weismantel [18], Hemmekkeppe and Weismantel
[26], and Hemmecke, Onn and Weismantel [27].

Hilbert functions and polynomials of graded algebras andlues were introduced
by Hilbert himself [28] (in contrast to Hilbert bases). Thdavariants, and the corre-
sponding generating functions, the Hilbert series, arednmental in algebraic geometry
and commutative algebra. See [6, Chapter 6] for a brief thiction to this fascinating
area. Ehrhart functions were defined by Ehrhart [22] asckatpioint counting functions
in multiples of rational polytopes; see Beck and Robbinsfpt]a gentle introduction.
Stanley [38] interpreted Ehrhart functions as Hilbert fiimes, creating a powerful link
between discrete convex geometry and commutative algétthe last decades Hilbert
functions have been the objective of a large number of adiclThey even come up in
optimization problems; for example, see De Loera, Hemmegkepe and Weismantel
[17]. Surprisingly, Ehrhart functions have an applicatinorcompiler optimization; see
Clauss, Loechner and Wilde [14] for more information.

From the very beginning Normaliz has used lexicographantyulations; seé [9], [11]
for the use in Normaliz and De Loera, Rambau and Santos [2Qjdigular) triangulations
of polytopes. (Since version 2.1 Normaliz contains a sectmhgulation free Hilbert
basis algorithm, originally due to Pottier [33] and calahl in the following; see([9]).
Lexicographic triangulations are essentially charazéetiby being incremental in the
following sense. Suppose that the cdbés generated by vectors,...,x, € RY and
setCi =R, x1+---+R,X, i =0,...,n. Then the lexicographic triangulatiax (for the
ordered systemy, ..., X,) restricts to a triangulation @; fori =0,...,n. Lexicographic
triangulations are easy to compute, and go very well withrieotMotzkin elimination
that computes the support hyperplane<oby successive extension fro@ to Ci. 1,

i =0,...,n—1. The triangulatiom\; of C; is extended tcCi . ; by all simplicial cones
F + R, X1 whereF € A is visible fromx;, 1.

As simple as the computation of the lexicographic triangoiais, the algorithm in
the naive form just described has two related drawbacksn@ must storé\; and this
becomes very difficult for sizes 105; (ii) in order to find the facetF that are visible from
Xi+1 we must match the simplicial conesM with the support hyperplanes Gf that are
visible fromx;, 1. While (i) is a pure memory problem, (ii) quickly leads to iogsible
computation times.

Pyramid decompositiois the basic idea that has enabled Normaliz to compute dimen-
sion 24 triangulations of sizes 5- 10 in acceptable time on standard multiprocessor
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systems such as SUN xFire 4450 or Dell PowerEdge R910. bhstegoing for the lex-
icographic triangulation directly, we first decompd3ento the pyramids generated by
xi+1 and the facets of; that are visible fromx;, 1, i =0,...,n—1. These pyramids (of
level 0) are then decomposed into pyramids of level 1 etc. |&\thie level 0 decompo-
sition need not be a polyhedral subdivision in the strictseempyramid decomposition
stops after finitely many iterations at the lexicographirtgulation; see Sectian 2 for the
details and Figurgl 1 for a simple example.

Xg X4

X1 X5 X1 X5

X2 X2
FIGURE 1. A pyramid decomposition and a lexicographic triangolati

Pure pyramid decomposition is very memory friendly, butcibnputation times are
even more forbidding than those of pure lexicographic gidation since too many Four-
ier-Motzkin eliminations become necessary, and almostfalem are inevitably wasted.
That Normaliz can nevertheless cope with extremely laigadulations relies on a well
balanced combination of both strategies that we outlinesctiSn[3.

Itis an important aspect of pyramid decomposition thatveis/ parallelization friendly
since the pyramids can be treated independently of each dtteemaliz uses OpenMP
for shared memory systems. Needless to say that triangngatf the size mentioned
above can hardly be reached in serial computation.

For Hilbert basis computations pyramid decomposition h&asrther and sometimes
tremendous advantage: one can avoid the triangulatiorosttpyramids for which it is
a priori clear that they will not supply new candidates far Hilbert basis. This observa-
tion, on which the contribution of the authors to [8] (jointith Hemmecke and Koppe)
is based, triggered the use of pyramid decomposition aserglgorinciple. See Remark
for a brief discussion.

In Sectiori 4 we describe the steps by which Normaliz evasuhte simplicial cones in
the triangulation for the computation of Hilbert bases,umeés and Hilbert series. The
evaluation almost always takes significantly more time tientriangulation. Therefore
it must be streamlined as much as possible. For the Hilbeessormaliz uses a Stanley
decomposition [37]. That it can be found efficiently reliesaally on an idea of Koppe
and Verdoolaege [31].

We document the scope of Normaliz’'s computations in Se@ioThe computation
times are compared with those of 4ti2 [1] (Hilbert bases) laatE [19] (Hilbert series).
The test examples have been chosen from the literature (&sd¢kHiosten[[3], Ohsugi
and Hibi [32], Schurmanri_[35], Sturmfels and Welker|[39h)e LattE distribution and
the Normaliz distribution. The desire to master the Hilksties computations asked
for in Schirmann’s paper [35] was an important stimulushi& tecent development of
Normaliz.
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2. LEXICOGRAPHIC TRIANGULATION AND PYRAMID DECOMPOSITION

Consider vectors,...,x, € R9. For Normaliz these must be integral vectors, but
integrality is irrelevant in this section. We want to comgattriangulation of the cone

C=coné€xy,...,Xn) = Ryxg+---+ Ry

with rays throughxy, ..., x,. Such a triangulation is a polyhedral subdivision®into
simplicial subcones generated by linearly independent subset&ef. .., xn}.
For a triangulatiork of a coneC and a subcon€’ we set

SIC'={onC':0€%, dmonC =dimC'}.

In general|C’ need not be a triangulation 6f, but it is so ifC’ is a face ofC.

The lexicographic(or placing) triangulation/\(xy,...,%,) of con€x,...,X,) can be
defined recursively as follows: (i) the triangulation of thero cone is the trivial one,
(i) A(Xq,...,X) is given by

A(Xg, -, %) =N\ (X, ..., Xp—1) U{coOnN& T, xn) : 0 € A(Xq,...,%,—1) Visible fromx,}

whereo is visiblefrom xp if x, ¢ congXxi,...,X,—1) and the line segmety, y| for every
pointy of ¢ intersects coney,...,X,—1) only iny. Note that a polyhedral complex is
always closed under the passage to faces, and the definiiove dakes care of it. In
the algorithms below a polyhedral subdivision can alwaysepeesented by its maximal
faces which for convex full dimensional polyhedra are tHedimensional cones in the
subdivision. For simplicial subdivisions of cones one udfaeourse that the face structure
is completely determined by set theory: every sulisef the set of generators spans a
conical face of dimensiofE|.

We state some useful properties of lexicographic triartgana:

Proposition 1. With the notation introduced, let & congXxg, ..., %) and/Aj = A(xq,. ..,
xj)fori=1....n.

(1) A is the unique triangulation of C with rays through a subsepxt .. ., x,} that
restricts to a triangulation of (fori = 1,...,n andA|C; has rays through a subset
of {Xq,...,%}.

(2) For every face F of C the restrictioft|F is the lexicographic triangulation(x;, ,
X)) wWhere{Xi, ... X b =FN{Xy,....xa}and g < - <im.

(3) If dimGC; > dimCi_1, thenA\ = A(X1, ..., Xi—2,Xi, Xi—1,Xi+1, - - Xn)-

(4) A= N(Xig, -5 Xigs Xj1» - -5 Xj,_q) Where(ig,...,iq) is the lexicographic smallest
index vector of a rank d subset ffs,...,x,} and j; < --- < jn_q lists the com-
plementary indices.

Proof. (1) By construction it is clear that, satisfies the properties of which we claim that
they determiné\ uniquely. On the other hand, the extensio\pf; to a triangulation of
G is uniquely determined if one does not introduce furthesrage triangulation of the
partV of the boundary o€;_1 that is visible fromx; has to coincide with the restriction
of \i_1toV.

(2) One easily checks thatF satisfies the conditions in (1) that charactelds;,, . . .,

Xirn)-
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(3) It is enough to check the claim for= n. Then the only critical point for the
conditions in (1) is whetheA(Xq,...,Xn—2,Xn,X,—1) restricts toC,_1. But this is the
case sinc€,_1 is afacet ofC if dimC > dimC,,_1.

(4) follows by repeated application of (3). O

In the following we will assume that is full dimensional: dinC = d = dimRY. Part
(4) helps us to keep the data structure of lexicographioguations simple: right from
the start we need only to work with the list of dimens@simplicial cones of\ by search-
ing Xi,,...,X, first, choosing cone,,...,x,) as the firsid-dimensional simplicial cone
and subsequently extending the list as prescribed by theitiefi of the lexicographic
triangulation. In other words, we can assume that. ., xq are linearly independent, and
henceforth we will do so.

In order to extend the triangulation we must of course knovctvifacets ofC,_; are
visible from x. Recall that a con€ of dimensiond in RY has a unique irredundant
representation as an intersection of linear halfspaces:

C= (] HT,
He7(C)

where .7 (C) is a finite set of hyperplanes and the orientation of the ddsdf spaces
H~ andH™ is chosen in such a way thatc H* for H € #(C). ForH € 2#(Ci_;) the
facetH NC;_1 is visible fromx; if and only if x; lies in the open halfspadé< = H~ \ H.
When we refer to support hyperplane in the following we alsvenean those that appear
in the irredundant decomposition Gfsince only they are important in the algorithmic
context.

Hyperplanes are represented by linear forms (R%)*, and we always work with the
basise], ..., €] thatis dual to the basks, . . ., eq of unit vectors. For rational hyperplanes
the linear formA can always be chosen in such a way that it has integral comone
efficients and satisfied(x) > 0 for x € C. This choice determinek uniquely. (If one
identifiese], ..., € with ey,...,eq via the standard scalar product, thens nothing but
the primitive integral inner (with respect ©) normal vector ofH.) For later use we
define thelattice) heightof x € RY overH by

hty (%) = [A (X)]-
If F =CnH is the facet ofC cut out byH, we set ht (x) = hty (X).
We can now describe the computation of the triangulatioxy, ..., xn) in @ more for-
mal way in Tablé L. For simplicity we will identify a simpliai coneo with its generating

setC {Xg,...,Xn}. It should be clear from the context what is meant. For furtiee we
introduce the notation

A (C,x)={H € #(C),xe H*} wherex € {<,>,+,—}.

Table[1 formalizes the computation of the lexicographirtgulation.

The function AODSIMPLEX adds a simplicial cone to the (initially empty) list of sim-
plicial cones that, upon completion, contains the lexiepgic triangulation oC. The
function ANDNEWHYP computess#’(C;) from 57 (Ci_1) by Fourier-Motzkin elimina-
tion. (It does nothing ifx; € C;_1.) Its Normaliz implementation has been described
in great detail in[[9]; therefore we skip it here. The funatiBxTENDTRI does exactly
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LEXTRIANGULATION (Xg,...,Xn) EXTENDTRI(i)
1 ADDSIMPLEX (X1,...,Xq) 1 parallel for H € 2<(Ci_1,%)
2 fori+-d+1lton 2 do
3 do 3 for o€ A(Xq,...,%-1)
4 EXTENDTRI(i) 4 do
5 FINDNEWHYP(i) 5 if cNH|=d—-1
6 then ADDSIMPLEX (XU (0 NH))

TABLE 1. Incremental building of lexicographic triangulation

what its name says: it extends the triangulathdry, ..., x;_1) of C_1 to the triangulation
NA(Xq,...,%) of Ci (again doing nothing ik; € Cj_1).

Note that the set of hyperplanes over which the loop XTENDTRI runs is given by
HC=(Ci—1,%i).

One is tempted to improveX@ENDTRI by better bookkeeping and using extra infor-
mation on triangulations of cones. We discuss our more arflestless attempts in the
following remark.

Remark 2. (a) If one knows the restriction df(x,...,X_1) to the facets o€;_1, then
A(x1,...,%) can be computed very fast. However, unlessn, the facet triangulation
must now be extended to the facet$gfand this step eats up the previous gain, as exper-
iments have shown, at least for the relatively small tridations to which KTENDTRI

is really applied after the pyramid decomposition desctibelow.

(b) The test of the conditiono "H| =d — 1 is positive if and only ifd — 1 of the
generators ob lie in H. Its verification can be accelerated if one knows which moét
the d-dimensional cones in(xy,...,X_1) are already shared by another simplicial cone
in A(xg,...,X%—-1), and are therefore not available for the formation of a newnpécial
cone. But the extra bookkeeping requires more time thanimeday its use.

(c) One refinement is used in our implementation, thougmftsence is almost unmea-
surable. Each simplicial cone M(x,...,%—1) has been added with a certain generator
Xj, ] <i. (The first cone is considered to be added with each of itsrgémrs.) It is
not hard to see that only those simplicial cones that have bdded with a generator
Xj € H can satisfy the conditiofo NH| = d — 1, and this information is used to reduce
the number of pairéH, o) to be tested.

@d) If [HN{xq,...,%-1}| =d—1, thenH € <(Ci_1,%) produces exactly one new
simplicial cone of dimensiow, namely conéx,H N{x1,...,X_1}), and therefore the
loop overo can be suppressed.

The product|s#<(Ci_1,%)| - |Z| determines the complexity of ENDTRI. Even
though the loop oveH is parallelized (as indicated kparallel for), the time spent in
EXTENDTRI can be very long. (The “exterior” loops inMDNEWHYP are parallelized
as well.) The second limiting factor forx@ENDTRI is memory: it is already difficult
to store triangulations of size $@nd impossible for size- 10°. Therefore the direct
approach to lexicographic triangulations does not workraly large cones.
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Now we present a radically different way to lexicographiarigulations via iterated
pyramid decompositionsThe cones that appear in this type of decomposition aredall
pyramidssince their cross-section polytopes are pyramids in thalisanse, namely of
type conyF,x) whereF is a facet and is a vertex not contained .

Definition 3. The pyramid decompositiofl (Xy, ...,%,) of C = conéx,...,xn) iS recur-
sively defined as follows: it is the trivial decompositiom fo= 0, and

M(Xg,...,%) =M (Xq, ..., %—1) U{CONE&F, xp) :
F aface ofC(xy,...,X,—1) visible fromx,}.

As already pointed out in the introduction, the pyramid deposition is not a polyhe-
dral subdivision in the strong sense: the intersection offacesF andF’ need not be a
common face of andF’ (but is always a face df or F’). See Figur€ll for an example.

In order to iterate the pyramid decomposition we B&txy,...,X,) = M(X,..., %),
and

XX, ..., %) = U (N(x:x€P)}  fork>0.
PeM*1(xq,....Xn)
Note that this recursion cannot descend indefinitely, siheenumber of generators goes
down in each recursion level. We denote tbal pyramid decompositioby M%(xy, ...,
Xn). More precisely:

Proposition 4. One had1®(xq, ..., X)) = M" 9 (X1, ..., Xn) = A(X1, ..., %)

Proof. In the casen = d, the pyramid decomposition is obviously the face lattic&pf
and therefore coincides with the lexicographic triangalat Forn > d the first full di-
mensional pyramid reached is the simplicial cone ¢gne. ., xq). All the other pyramids
have at mosh — 1 generators, and so we can use induction: For &aeh1(xy,...,Xn)
the total pyramid decomposition &f is the lexicographic triangulation(x; : X € P).
According to Propositioh]1(2) these triangulations matcimg the common boundaries
of the pyramids, and therefore constitute a triangulatib@.olt evidently satisfies the
conditions in Proposition] 1(1). O

This leads to a recursive computatiordi, . .., x,) by the algorithms in Table 2. The

TOTALPYRDEC(Xy,...,Xn) PROCES$YRSREC(i)

1 ADDSIMPLEX (Xq,...,Xq) 1 for H e Z<~(C_1,%)

2 fori<d+1ton 2 dokey«+ {xi}U({x1,...,Xi—1}NH)
3 do 3 ToTALPYRDEC(key)

4 PROCES$YRSREC(i)

TABLE 2. Total pyramid decomposition

first realizes the building dfl(xy,...,X,) (represented by its full dimensional members)
and the second takes care of the recursion that deflfiés, ..., X).

Pyramid decomposition has the virtue of requiring verydithemory since the trian-
gulation need not be stored for its future extension. Howekere is a severe drawback:
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as above, one must compute the support hyperplang&(R) for all pyramids encoun-
tered. In a “pure” approach, one computes the support higrep of the simplicial cones
at the bottom of the pyramid decomposition; this is esskytize inversion of the matrix
of its generators (see equatidn (4.1)). Then one passeshthekifrom a pyramid to its
“mother”, discarding those that fail to have all generatirghe “mother” in its positive
halfspace or have been found previously. These two comditawe easily tested. Sup-
poseP is the pyramid to which ®TALPYRDEC is applied in ROCES$YRSREC and
Ge ' (P). ThenG e 7 (Xy...,%) \ H(X1,...,%—1) if and only if the following two
conditions are satisfied:

(i) xjeGtforj=1,...,i—1;

(i) x; e G~ forall j=1,...,i —1such thak; ¢ P.

One should note that pyramids effectively reduce the dim@nshe complexity of
condF,xn) is completely determined by the fadetwhich has dimensiod — 1.

While being very memory efficient, total pyramid decompiositis in a naive imple-
mentation much slower than building the lexicographiatgiaation directly. For one of
our standard test examplesx4} x 3 contingency tables, dimension 30 with 48 extreme
rays; seel[8]) the lexicographic triangulation with redpecthe order of generators in
the input file has 654,272 full dimensional cones. In serial computation on anllifte
2600 PC, [EXTRIANGULATION computes it in approximately 2 minutes, whereas T
TALPYRDEC needs about 11 minutes. The current implementation, destin the next
section, reduces the serial computation time to 13 seconds.

Remark 5. Pyramid decomposition is not only useful for the computatdd triangu-
lations, but also helps in finding support hyperplanes. Rent the critical complexity
parameter i$7<(Ci_1,%)| - |27~ (Ci_1,%)|, and as in its use for triangulation, pyramid
decomposition lets us replace a very large product of thessit two “global” lists by
a sum of small “local” products—the price to be paid is the patational waste invested
for the support hyperplanes of the pyramids that are ustdemson. Nevertheless pyra-
mid decomposition leads to a substantial reduction in camguime also for support
hyperplanes, and Normaliz uses this effect. We illustraite by computation times for
the 5x 5 x 3 contingency tables (dimension 55 with 75 extreme rays[&¢eThe cone
has 306955 support hyperplanes. On a Sun xFire 4450 we measurethhcsenputa-
tion time of 16822 seconds if only IRKDNEWHYP is used. The current implementation
reduces this to 834 seconds.

3. THE CURRENT IMPLEMENTATION

Since version 2.7 (and partly since 2.5) Normaliz has coetbiexicographic trian-
gulation with pyramid decomposition. The support hypeanpkand the triangulation are
extended from one generator to the next only until certaumnbls are exceeded. From
that point on, the algorithm BLD CONE described in Tablel3 switches to pyramid de-
composition, and the same mixed strategy is then applidtetpyramids.

We now use two types of passage to pyramids, a recursive arf®RoiCESYRSREC
and a nonrecursive one ViRBCES$YRS. The main reason for this split approach is that
on the one hand recursion limits the effect of parallel@afjas it does in Normaliz 2.7),
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BuUILD CONE(Xq, ..., Xn; recursion PROCES$YRSREC(i)
1 ADDSIMPLEX (X1,...,Xq) 1 for He #2<(Ci-1,%)
2 fori<d+1ton 2 dokey«+ {xi}U({x1,...,Xi—1} NH)
3 do 3 BuiLD CONE(Kkey true)
4 if MakePyramidsSupg recursion
5 then PROCESS’YRSREC(i) PROCES®PYRS(i, level)
6 else ifMakePyramidsTri 1 for H € #<(Ci_1,%)
7 then PROCES®YRS(i,level) 2 do key« {x} U ({Xq,...,%_1} NH)
8 else EXTENDTRI(i) 3 STOREPYR(keylevel+ 1)
9 FINDNEWHYP(i)
10 if TopCone
11 then EVALUATE PYRS(0)

TABLE 3. Combining lexicographic triangulation and pyramid deposition

and, on the other hand, the recursive approach neverttsgless time in the computation
of support hyperplanes for the top cone.

The booleamecursionindicates whether the recursive passage to pyramids isedlo
For the top cone BILD CONE is called withrecursion= true. The boolearMakePyra-
midsSupgombines two conditions:

(1) while set tafalseinitially, it remainstrue once the branchROCES$YRSREC has
been taken the first time;

(2) itis settrue if the complexity parametgrz’<(Ci_1,X)| - |7~ (Ci_1, % )| exceeds
a threshold.

In the nonrecursive passage to pyramids we cut the umbdaral between a pyramid
and its mother and just store the pyramid for later evalmatibhe nonrecursive call is
controlled by the booleaMakePyramidsTrihat combines three conditions:

(1) while set tofalse initially, it remainstrue once the branch ROCES®YRS has
been taken the first time;

(2) itis settrueif the complexity parametdrz’<(Ci_1,%)| - |Z| exceeds a threshold,;

(3) itis settrueif the memory protection threshold is exceeded;

The last point needs to be explaineduiBo CONE is not only called for the processing
of the top coneC, but also for the parallelized processing of the storedmyata. Since
each of the “parallel” pyramids produces simplicial cortég, buffer in which the sim-
plicial cones are collected for evaluation, may be severegrrun without condition (3),
especially if|.727<(Ci_1,%)| is small, and therefore condition (2) is reached only fogéar
IA(x1,...,%-1)|. The variabldevelindicates the generation of the pyramid; for the top
cone it has value-1, and increases by 1 with each new generation.

At the end of BuiLD CONE for the top coneC we start the evaluation of the stored
pyramids as described in Talble 4.
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EVALUATE PYRs(level)
1 if PyramidLisflevel =0

2  thenreturn

3 parallel for P € PyramidListlevel
4 do

5 BUILD CONE(P, false

6 EVALUATE PYRs(level+1)

TABLE 4. Evaluation of pyramids

Remark 6. (a) For efficiency Normaliz completely avoids nested patfiaation. There-
fore the parallelization in IRDNEWHYP and EXTENDTRI is switched off when the par-
allelization in B/ALUATE PYRS is active. On the other hand, these are active when the top
cone or recursively built pyramids are being processed.

(b) Despite of considerable efforts we have not found a cetepf satisfactory solution
in which pyramids could always be processed recursivelysamdltaneously in parallel.
Because of (a) we can only parallelize the pyramids dirgmtigluced from the top cone in
the recursive approach, and then parallelization may biéslehiby an insufficient number
of hyperplanes iZ’<(Ci_1, %) or, more often, by enormous differences in the sizes of the
pyramids, so that one of them may be running solo for a long-+t#recognizing the size
in advance has turned out difficult. Parallelization iINGENEWHYP and EXTENDTRI is
then the better solution.

Moreover, a large pyramid together with its children mayduee a huge number of
simplicial cones and overrun the evaluation buffer. Séoiaps can be interrupted at any
time, and therefore the memory problem cannot arise.

(c) As soon as BILD CONE switches to pyramids, the triangulatidvxy, ..., %_1) is
no longer needed for further extension. Therefore it issbipto the evaluation buffer.
The buffer is emptied whenever it has exceeded its presetasid program flow allows
its parallelized evaluation. (Because of (a) this is notgsvpossible.)

(d) The strategy for the evaluation of pyramids is simil&thk buffer forlevel+ 1 is
exceeded, evaluation on that level will be started as sopossible. Usually this results
in a tree of evaluations over several levels.

We add a few minor details of the implementation.

Remark 7. (a) For nonrecursive pyramids the support hyperplanesgrisom the last
generator need not be computed since they are irrelevamtidogulation and pyramid
decomposition.

(b) Simplicial facets ofC;_1 produce exactly one simplicial pyramid @. They are
treated directly by ADSIMPLEX.

(c) If the extreme rays df have been singled out from the given generaxars. ., X,
before BuiLD CONE is called, then only the extreme rays are used in the pyrastgdm-
position and the lexicographic triangulation.

(d) If a grading is defined explicitly (see Sectidn 4), themNaliz orders the generators
by degree and those of the same degree by input order befitldenguhe coneC. This is
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an attempt to cover as much ground as possible by using dersecd small degree. On
the whole, we have reached good results with this choice.

Remark 8. (Partial triangulation) The idea of pyramid decomposition was born when
the authors observed that the computation of Hilbert baseally does not need a full
triangulation ofC. If a simplicial coneo cannot contribute new candidates for the Hilbert
basis ofC, it need not be evaluated, and if a pyramid consists only ohsimplicial
cones, it need not be triangulated at all. This is the castg i) = 1 in PROCES$YRS.

The resulting strategy has sometimes striking results aslalready described inl [8].
It is mentioned here only for completeness. If a full trialagion is not required, then
PROCES$YRs discards all pyramids of height 1 from further processittpwever, their
support hyperplanes must be computed if processed reely$ilf followed strictly, the
recursion will not stop before the simplicial cones at thétdro of the pyramid decompo-
sition. As for full triangulations, this is usually not optal. Normaliz therefore switches
to EXTENDTRI for pyramids of height> 2 from a certain level on.

4. EVALUATION OF SIMPLICIAL CONES

The fast computation of triangulations via pyramid decosifian must be accompa-
nied by an efficient evaluation of the simplicial cones intifi@ngulation, which is almost
always the more time consuming step.

Let o be a simplicial cone generated by the linearly independentovsvy, ..., Vvy.
The evaluation is based on tgenerator matrix G whoserows arevs,...,vq. Before
we outline the evaluation procedure, let us substantigegimark made in Sectionh 2 that
finding the support hyperplanes amounts to the inversioB£€f Let H; be the support
hyperplane ofo opposite tov;, given by the linear form\; = ayi€] + - - - 4 agjej with
coprime integer coefficients. Then

d hty, (Vi )7 k=i,
4.1 Ailvi) = Y Viaii = : _
( ) ( k) jzl kjdi {07 k;él.
Thus the matriXajj ) is G, up to scaling of its columns. Usually the inverse is computed
only for the first simplicial cone in every pyramid since itgpport hyperplanes are really
needed. But matrix inversion is rather expensive, and Nbzngaes to great pains to
avoid it.

Normaliz computes sets of vectors, primarily Hilbert bases also measures, for ex-
ample the volumes of rational polytopes. A polytdparises from a con€ by cuttingC
with a hyperplane, and for Normaliz such hyperplanes ar@e@fby gradings: grading
is a linear form degZd — Z (extended naturally t&9) with the following properties: (i)
degx) > 0 forallx e C, x# 0, and (i) degz?) = Z. The first condition guarantees that
the intersectiof® = C N A; for the affine hyperplane

A; = {xe RY: degx) = 1}

is compact, and therefore a rational polytope. The secondition is harmless for in-
tegral linear forms since it can be achieved by extractieggifeatest common divisor of
the coefficients of deg with respect to the dual basis.
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The grading deg can be specified explicitly by the user or @hasplicitly by Nor-
maliz. The implicit choice makes only sense if there is a ratgrading, namely one
under which the extreme integral generator€ @il have the same degree. (If it exists, it
is of course uniquely determined.)

At present, Normaliz evaluates the simplicial cowems the triangulation oCC for the
computation of the following data:

(HB) the Hilbert basis o€,

(LP) the lattice points in the rational polytope= C N Ag,

(Vol) the normalized volume vOP) of the rational polytopé (also called themulti-
plicity of C),

(Ehr) theHilbert or Ehrhart function HC, k) = [kPNZ9|, k € Z,..

4.1. Volume computation. Task (Vol) is the easiest, and Normaliz computegRbby
summing the volumes v N A1) whereo runs over the simplicial cones in the triangu-
lation. With the notation introduced above, one has

| det(Go)|
VO|(GﬁA1) = deq\/l) — .deng).
For the justification of this formula note that the simptexi A; is spanned by the vectors
vi/deqVvi), i =1,...,d, and that the vertex O of thé:simplexd = con 0,0 NA;) has
(lattice) height 1 over the opposite faeeih A; of d so that volo N A1) = vol(9).
In pure volume computations Normaliz (since version 2.Biges the following propo-
sition that often reduces the number of determinant cdicula significantly.

Proposition 9. Let o and T be simplicial cones sharing a facet F Let v..,vyq spant
and let y be opposite of F. 1flet Gy)| = 1, then|det G;)| = htr (vg).

Proof. The proposition is a special case of [6, Prop. 3.9], but is abssily seen directly.
Suppose thatyy is the generator off opposite toF. ThenGg = {v1,...,Vg_1,Wy}, and
|detG,| = 1 by hypothesis. Therefora, . .., vg_1, Wy spanzd. With respect to this basis,
the matrix of coordinates ofi, ..., vy is lower trigonal with 1 on the diagonal, except in
the lower right corner where we findhtg (vy). O

Every new simplicial cone found by EXTENDTRI is taken piggyback by an already
known “partner’o sharing a faceF with 7. Therefore Normaliz recordsletG,| with
o, and if| detGy| = 1 there is no need to compyteet G; )| since the height of the “new”
generatong overF is known. Remark 13(b) contains some numerical data ill atirg
the efficiency of this strategy that we cakploitation of unimodularityOne should note
that it is inevitable to computelet Gy )| for the first simplicial cone in every pyramid.

4.2. Lattice points in semi-open parallelotopes.The remaining tasks depend on the set
E of lattice points in the semi-open parallelotope

pan(vi,...,Vq) = {0av1+---+0qvg : 0 < g < 1}.

For the efficiency of the evaluation it is important to geteEa= Z9 Npar(vy, ...,Vq) as
fast as possible. The basic observation is thas a set of representatives of the group
79 /U where the subgrougy is spanned bys, ..., vg. Thus one find€ in two steps:
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(Rep) find a representative of every residue class, and
(Mod) reduce its coefficients with respect to thiebasisvy, . ..,vqg modulo 1.

The first idea for (Rep) that comes to mind (and used in theviasgtion of Normaliz)
is to decompos&d /U, into a direct sum of cyclic subgroug&t;, i = 1,...,d where
U1,...,Uq is aZ-basis ofZd and~ denotes the residue class modulg. The elementary
divisor theorem guarantees the existence of such a decaiopoand finding it amounts
to a diagonalization 0B, overZ. But diagonalization is even more expensive than matrix
inversion, and therefore it is very helpful that a filtratiohZ9 /U, with cyclic quotients
is sufficient. Such a filtration can be based on trigonalizati

Proposition 10. With the notation introduced, let;e..,e4 denote the unit vectors in
79 and let Xe GL(d,Z) such that XG is an upper triangular matrix D with diagonal
elementsa...,a4 > 1. Then the vectors

represent the residue classe<ifl/U,.

Proof. Note that the rows oXG, are aZ-basis ofUy. Since|Zd/Uy| = |detGy| =
ai ---ayg, it is enough to show that the elements listed representviz@different residue
classes. Lep be the largest index such the > 1. Note thatay, is the order of the cyclic
groupZey, and that we obtain &-basis olU; = Uy + Zey, if we replace thep-th row of
XGg by ep. If two vectorsbye; + - - +bpep andbje; + - -- +byep in our list represent
the same residue class modulg, then they are even more so modulp. It follows that
bi =bf fori=1,...,p—1, and taking the difference of the two vectors, we conclixdé t
bp = bf, as well. O

The first linear algebra step that comes up is therefore ithentalization
(4.3) XGg =D.

Let GI be the transpose @&,. For (Mod) it is essentially enough to reduce these
modulo 1 that appear with a coefficientO in (4.2), and thus we must solve the simulta-
neous linear systems

(4.4) Gixi=a, a&>1,

where we considex; andg as column vectors. In a crude approach one would simply
invert the matrixGY (or Gy), but in general the number ofsuch thatg; > 1 is small
compared tal (especially ifd is large), and it is much better to solve a linear system with
the specific multiple right hand side given lhy (4.4). The dinalgebra is of course done
overZ, usinga; ---ag as a common denominator. Then Normaliz tries to produce the
residue classes and to reduce them modulo 1 (or, Bveroduloa; - - - a4) as efficiently

as possible.

For task (LP) one extracts the vectors of degree 1 fEanand the degree 1 vectors
collected from allo from the set of lattice points i? = CNA;. For (HB) one first
reduces the elements BfuU {vi,...,vy} to a Hilbert basis otr, collects these and then
applies “global” reduction ifC. This procedure has been described_ in [9], and nothing
essential has been added meanwhile.
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4.3. Hilbert series and Stanley decomposition.The most difficult and mathematically
most interesting task is (Ehr). For its solution one useswvib#-known fact that the
Hilbert or Ehrhart seriesthe generating function

H :ch,kk,
c(t) k;( )t

is a rational function of. For o one has
_ ho+hgt+---+het®

Hq(t) = A-te). (1-tw) 9° degvi,  hj=|[{xe€E:degx= j}|.
This follows immediately from the disjoint decomposition
(4.5) z9no=Jx+Mg
XeE

whereMy is the (free) monoid generated a3y, . . ., vgy.

However, one cannot compuit:(t) by simply adding these functions since points in
the intersections of the simplicial coneswould be counted several times. Fortunately,
the intricate inclusion-exclusion problem can be avoidedesthere existlisjointdecom-
positions ofC by semi-open simplicial cones\ SwhereSis a union of facets (and not
just arbitrary faces!) ob. The seriesd g(t) is as easy to compute &k, (t) itself. Let
x € E, x= 3 qVvi. Then we defineg(x) as the sum of alW; such that (i) = 0 and (ii) the
facet opposite to; belongs tdS. Then

S xeE tdege(x)+degx

(4.6) Ho\s(t) = (1—t9) .. (1—t%)

This follows from the fact thatx+ Mgy ) \ S= £(x) + X+ Mg, and so we just sum over the
disjoint decomposition d£9N (o \ S) induced by[(45). (Also seél[9, Lemma 11].)

The existence of a disjoint decomposition@into sets of typeos \ Swas shown by
Stanley [37] using the existence of a line shellingdCobroved by Bruggesser and Mani.
Instead of finding a shelling order for the lexicographiamgulation (which is in princi-
ple possible), Normaliz 2.0-2.5 used a line shelling fordeeomposition, as discussed
in [9]. This approach works well for cones of moderate sizé,Has a major drawback:
finding the setSrequires searching over the shelling order, and in pagidhke whole tri-
angulation must be stored. Koppe and Verdoolaege [31]gatevmuch simpler principle
for the disjoint decomposition (already implemented infKaliz 2.7). As a consequence,
each simplicial cone in the triangulation can be treatedmmete independence from the
others, and can therefore be discarded once it has beerama@lunless the user insists
on seeing the triangulation):

Lemma 11. Let Q- be a vector in the interior of C such thatcQs not contained in
a support hyperplane of any simplicial in a triangulation of C. Foro choose g as
the union of the support hyperplang€<(o,Oc). Then the semi-open simplicial cones
o\ S form a disjoint decomposition of C.

See [31] for a proof. It is of course not possible to choose@er vector @ that
avoids all hyperplanes in advance, but this is not a reallpneb Normaliz choose®c
in the interior of the first simplicial cone, and works withexicographic infinitesimal
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perturbationO;. (This trick is known as "simulation of simplicity” in compational
geometry; see Edelsbrunnér [21]). 0t € H< (or Oc € H~), thenO; € H< (or O; €
H~). In the critical cas€¢ € H, we take the linear form representindd and look up
its coordinates in the dual basi§ . . ., €. If the first nonzero coordinate is negative, then
. € H<, and elseD; € H~.
At first it seems that one must compute the support hyperplahe in order to apply
Lemmad1l. However, it is much better to solve the system

(4.7) GUI? =QOc.

The solutionl ¢ is called theindicator of 0. One hagDc € H< (or Oc € H~) if I <0
(or 1 > 0) for the generatow; opposite tdH (A vanishes o). Let us callo genericif
all entries ofl © are nonzero.

If 1.7 = 0—this happens rarely, and very rarely for more than onexindehen we are
forced to compute the linear form representing the suppgoétplane opposite of. In
view of (4.1) this amounts to solving the systems

(4.8) Gox=8, 17=0,

simultaneously for the lexicographic decision.

If ois unimodular, in other words, [detGy| = 1, then the only system to be solved is
(4.1), provided that is generic. Normaliz tries to take advantage of this fact bgssing
whethero is unimodular, testing two necessary conditions:

(PU1) Everyo (except the first) is inserted into the triangulation witresatain generator
;. LetH be the facet o&r opposite to. If hty (X)) > 1, theno is nonunimodular.
(The number hi(x ) has been computed in the course of the triangulation.)
(PU2) If gcddegvy,...,degvy) > 1, theno is not unimodular.

If o passes both tests, we calpibtentially unimodular (Data on the efficiency of this
test will be given in Remark13(a)).
After these preparations we can describe the order in whaimigliz treats the trigo-

nalization [4.8) and the linear systerns (4.4),1(4.7) ang)(4.

(L1) If o is potentially unimodular, ther _(4.7) is solved first. It caow be decided
whethero is indeed unimodular.

(L2) If o is not unimodular, then the trigonalizatidn _(4.3) is cadr@ut next. In the
potentially unimodular, but nongeneric case, the trigaasibn is part of the so-
lution of (4.8) (with multiple right hand side).

(L3) In the nonunimodular case, we now solve the sysfem (@ith multiple right
hand side).

(L4) If o is not potentially unimodular and not generic, it remainsatve the system
(4.8) (with multiple right hand side).

As the reader may check, it is never necessary to performsadigs. In the unimodular
case, (L1) must be done, and additionally (L2¥ifs nongeneric. lo is not even poten-
tially unimodular, (L2) and (L3) must be done, and additibn@.4) if it is nongeneric. In
the potentially unimodular, but nonunimodular case, (I(L.2) and (L3) must be carried
out.
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Remark 12. (a) If one stores the transformation mat¥bof (4.3) and its inverse (for ex-
ample as a sequence of row exchanges and elementary traasifors), then one can
solve the remaining systems without further trigonalimati However, in general the
bookkeeping needs more time than it saves as tests have shown

(b) The simplicial cones stored in the evaluation buffer @i@cessed in parallel, and
parallelization works very well for them.

(c) Simplicial cones of height 1 need not be evaluated for)(&i2l (LP); see Rematk 8.

4.4. Presentation of Hilbert series. We conclude this section with a brief discussion of
the computation and the representation of the Hilbert séryeNormaliz. The reader can
find the necessary backgroundlin [6, Chapter 6].

Summing the Hilbert seriek (4.6) is very simple if they aNdshe same denominator,
for example in the case in which the generator<ofor at least the extreme integral
generators) have degree 1. For efficiency, Normaliz firshfofdenominator classes” in
which the Hilbert series with the same denominator are aotated. At the end, the class
sums are added over a common denominator that is extendetewdrenecessary. This
yields a “raw” form of the Hilbert series of type

R(t)
(1—tS)-- - (1—ts)’
whose denominator in general hagl factors.

In order to find a presentation with factors, Normaliz proceeds as follows. First it

reduces the fraction to lowest terms by factoring the denator of [4.9) into a product
of cyclotomic polynomials:

(4.9) He(t) =

R(t) € Z[t],

(4.10) Hc(t) = ﬂ, Z(t) e Z[t], 1 Z(1),

lyy s,
which is of course the most economical way for represerttind) (as a single fraction).
The orders and the multiplicities of the cyclotomic polyrats can easily be bounded
since all denominators i _(4.6) divic{&—t’~’)OI where/ is the least common multiple of
the degrees deg So we can find a representation

F(t)
(1—t)...(1—t&)’
in which ey is the least common multiple of the orders of the cyclotonoikypomials that
appear in[(4.10)eq_; is the least common multiple of the orders that have mudiigyli
> 2 etc. Normaliz produces the presentation (4.11) whenéesdégree of the numerator

remains of reasonable size.
It is well-known that the Hilbert function itself is a quasignomial:

(4.12) H(C,k) = do(K) + da(K)K+ -+ 1(Kk* L k>0,

where the coefficientg; (k) € Q are periodic functions df whose common period is the
least common multiple of the orders of the cyclotomic polynals in the denominator of
(4.10). Normaliz computes the quasipolynomial, with theyso that its period is not too
large. It is not hard to see that the periods of the indivicwafficients are related to the
representatiori (4.11) in the following wag is the common period of the coefficients

(4.11) He(t) = F(t) € Z[t],



THE POWER OF PYRAMID DECOMPOSITION IN NORMALIZ 17

Jd_1,---,0d_k- The leading coefficieny_, is actually constant (henag = 1), and
related to the multiplicity by the equation

vol(P)
(d-1)t"

Sinceqq_1 and vo[P) are computed completely independently from each othegtemju
(4.13) can be regarded as a test of correctness for both mambe

The choice[(4.11) foHc(t) is motivated by the desire to find a standardized represen-
tation whose denominator conveys useful information. Tdeler should note that this
form is not always the expected one. For example(fer R2 with dege;) = 2 and
dege;) = 3, the three representations (4.9)—(4.11) are

1 1 1-t4t?

(1-t)(1-13) (i3 (1-1)(1-t°)
Actually, it is unclear what the most natural standardizegresentation of the Hilbert
series as a fraction of two polynomials should look like gsslthe denominator {4 —t)¢.
Perhaps the most satisfactory representation should usaardnator(1 —tP)---(1—
tPd) in which the exponentg; are the degrees of a homogeneous system of parameters
(for the monoid algebr& [Z4 NC] over an infinite field). At present Normaliz cannot
find such a representation (except the one with the triviabdgnator(1 — t*)d)), but
future versions may contain this functionality.

(4.13) Qd—1 =

5. COMPUTATIONAL RESULTS

In this section we want to document that the algorithmic apph described in the
previous sections (andl[9]) is very efficient and mastersmdations that appeared inac-
cessible some years ago. We compare Normaliz 2.8 to 4ti@ioret .5, for Hilbert basis
computations and to Lattg, version 1.5, for Ehrhart seties Yersions we have used are
both contained in the package LattE integrale 1.5.3 [19]).

Almost all computations were run on a Dell PowerEdge R916 witntel Xeon E7540
(a total of 24 cores running at 2 Ghz), 128 GB of RAM and a has# df 500 GB. The
remaining computations were run on a SUN xFire 4450 with apamable configuration.
In parallelized computations we have limited the numbehoéads used to 20. As the
large examples below show, the parallelization scaleseffiy. In Tables b and] 7x=1
indicates serial execution whereas-20 indicates parallel execution with a maximum of
20 threads. Normaliz needs relatively little memory. Alinals Normaliz computations
mentioned run stably witkc 1 GB of RAM.

Normaliz is distributed as open source under the GPL. Intafdio the source code,
the distribution contains executables for the major platfoLinux, Mac and Windows.

5.1. Overview of the examples.We have chosen the following test candidates:

(1) CondPar, CEffP1 andP1VsCut come from combinatorial voting theor§ondPar
represents the Condorcet parado&ffP1 computes the Condorcet efficiency of
plurality voting, andP1VsCut compares plurality voting to cutoff, all for 4 candi-
dates. See Schurmann [35] for more detalils.
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(2) 4x4, 5x5 and6x6 represent monoids of “magic squares”: squares of sizet4
5x 5 and 6x 6 to be filled with nonnegative integers in such a way thatails,
columns and the two diagonals sum to the same “magic constEmey belong
to the standard LattE distribution [19].

(3) bo5 andlo6 belong to the area of statistical ranking; see Sturmfels\&atker
[39]. bo5 represents the boolean model for the symmetric gi&gnd1o6 rep-
resents the linear order model f&y.

(4) small andbig are test examples used in the development of Normaliz withou
further importancesmall has already been discussed.in [9].

(5) cyclo36, cyclo38, cyclo42 andcyclo60 represent the cyclotomic monoids of
orders 36, 38, 42 and 60. They are additively generated byadive ({,1) €
C x Z where runs over the roots of unity of the given order. They have been
discussed by Beck and Hostén [3].

(6) A443 andA553 represent monoids defined by dimension 2 marginal distabat
of dimension 3 contingency tables of sizes 4 x 3 and 5x 5 x 3. They had been
open cases in the classification of Ohsugi and Hibi [32] anckviiaished inl[8].

(7) crossi0, cross15 andcross20 are (the monoids defined by) the cross polytopes
of dimensions 10, 15 and 20 contained in the LattE distrdsu9].

The columns of Tablgl5 contain the values of characteristinerical data of the test
exampledM, namely: edim is the embedding dimension, i. e., the rankeflattice in
which M is embedded by its definition, whereas rank is the rari¥d oftext is the number
of the extreme rays of the cofe; M, and #supp the number of its support hyperplanes.
#Hilb is the size of the Hilbert basis M.

The last two columns list the number of simplicial cones ia thangulation and the
number of components of the Stanley decomposition. Theseada not invariants d¥l.
However, if the triangulation uses only lattice points ofattite polytopeP (all exam-
ples starting fronbo5), then the number of components of the Stanley decompnosgio
exactly the normalized volume &

The open entries fo6x6 seem to be out of reach presently. The Hilbert series of
6x6 Is certainly a challenge for the future development of NdiznaOther challenges
are 1o7, the linear order polytope fo; and the first case of the cyclotomic monoids
cyclo105 thatis not covered by the theorems of Beck and Hogten [3etércycl0105
will ever become computable, is quite unclear in view of igagtic number of support
hyperplanes. However, we are rather optimisticifor; the normality of the linear order
polytope forS; is an open question.

5.2. Hilbert bases. Table[6 contains the computation times for the Hilbert baseke
test candidates. When comparing 4ti2 and Normaliz one ghmik that 4ti2 is not made
for the input of cones by generators, but for the input vigeewphyperplanesCondPar
—6x6). The same applies to the Normaliz dual mede While Normaliz is somewhat
faster even in serial execution, the times are of similarmitade. It is certainly an advan-
tage that its execution has been parallelized. When oneNon®aliz with the primary
algorithm on such examples it first computes the extremeahire cone and uses them
as generators.
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Input | edim| rank| #ext #supp| #Hilb # triangulation # Stanley deg
CondPar 24| 24 234 27 242 1.344.671 1.816.323
P1VsCut 24| 24| 1.872 28| 9.621|271.164.705.162 2.282.604.742.033
CEffP1 24| 24| 3.928 30| 25.192| 347.225.775.338 4.111.428.313.448

434 16 8 20 16 20 46 48

5x5 25| 15| 1.940 25| 4.828 12.112.488 21.210.526

6x6 36| 24|97.548 36 | 522.347 - -

bob 31| 27 120 235 120| 20.853.141.970 20.853.141.97(
lo6 16| 16 720 910 720| 5.745.903.354 5.801.113.080

small 6 6 190 32| 34.591 1.593 2.276.921

big 7 7 27 56| 73.551 337 18.788.796
cyclo36 13| 13 36 46.656 37 44.608 46.656
cyclo38 19| 19 38| 923.780 39 370.710 923.780
cyclo4d?2 13| 13 42 24.360 43 161.249 183.120
cyclo60 17| 17 60| 656.100 61 12.475.500 13.616.100

A443 40| 30 48 4.948 48 2.654.272 2.654.320

A553 55| 43 75| 306.955 75| 9.248.527.905 9.249.511.725
crossi10 11 11 20 1.024 21 512 1.024
crossi1b 16| 16 30 32.678 31 16.384 32.768
cross20 21| 21 40| 1.048.576 41 524.288 1.048.576

TABLE 5. Numerical data of test examples

Despite of the fact that several examples could not be egddotbe computable with
4ti2, we tried. We stopped the computations when the timeelkadeded 150 h (T) or the
memory usage had exceeded 100 GB (R). However, one showddhait553 (and re-
lated examples) can be computed by “LattE for tea, thotp: //www.latte-4ti2.de),
albeit with a very large computation time; seé [8]. This &g@h uses symmetries to re-
duce the amount of computations.

The example€EffP1, P1VsCut, 5x5 and6x6 are clear cases for the dual algorithm.
However, it is sometimes difficult to decide whether the @iy triangulation based al-
gorithm or the dual algorithm is faster. An example illustrg this dilemma is given by
lo6. As small clearly shows, the dual algorithm behaves badly if the findbett basis
is large, even if the number of support hyperplanes is small.

The computation time dfo5 which is close to zero is quite surprising at first glance, but
it has a simple explanation: the lexicographic triangolatiefined by the generators in
the inputfile is unimodular so that all pyramids have heiglarid the partial triangulation
is empty.

The computation time for the Hilbert series©fc1038 is large compared to the time
for the Hilbert series in Tablel 7. The reason is the large remobsupport hyperplanes
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Input 4ti2 | Nmz -d -x=1 | Nmz -d -x=20 | Nmz -N -x=1| Nmz -N -x=20
CondPar 0.025s 0.018s 0.031s 5.628 s 1.775s
P1VsCut 6.697 s 1.967 s 0.567 s - -
CEffP1 6:09m 2:15m 15.75s - -
4x4 0.008 s 0.003 s 0.011s 0.004 s 0.010s

5x5 3.835s 1.684 s 0.382s 4:27m 1:40 m

6x6 | 123:18:24 h 20:07:14 h 1:21:11 h - -
bob T - - 0.588 s 0.377s

lo6 31:32m 16:18 m 1:19m 60:16 m 11:54 m
small 48:48 m 38:02 m 3:33m 3.098 s 3.861s
big T - - 3:05m 43.758 §
cyclo36 T - - 1.477s 1.092 s
cyclo38 R - - 36:55:53 h 2:02:32 h
cyclo60 R - - 7:06 m 2:17 m
A443 T - - 1.080s 0.438s
A553 R - - 3:15:15 h 15:59 m

TABLE 6. Computation times for Hilbert bases

together with a large number of candidates for the Hilbesidarl herefore the reduction
needs much time.

The Hilbert basis computations in the Normaliz primary metew the efficiency of
partial triangulations (see Remark 8). Some numerical @i@@ontained iri [8].

We have omitted theross examples from the Hilbert basis computation in view of
the obvious unimodular triangulation of the cross poly®fmfferent from the one used
by Normaliz).cross20 needs 19.904 s witkmz -x=20.

5.3. Ehrhart series. Now we compare the computation times for Ehrhart series of No
maliz and LattE. One should note that the computations wétiH are not completely
done by open source software: for the computation of Ehdwaares it invokes the com-
mercial program Maple. LattE has a variant for the compaitatif Ehrhart polynomials
that avoids Maple; however, it can only be applied to lattiogtopes (and not to rational
polytopes in general).

There are three columns with computation times for LattEe Tifst,LattE ES, lists
the times for LattE alone, without Maple, the secamahtE + M ES, the combined com-
putation time of LattE and Maple (both for Ehrhart seriegy #¢he third,LattE EP, the
computation time of LattE for the Ehrhart polynomial. In aflthese three columns we
have chosen the best time that we have been able to reachasittus parameter settings
for LattE. However, LattE has failed on many candidates)ybecause it produces enor-
mous output files. We have stopped it when the time exceedgtdis (T), the memory
usage was more than 100 GB RAM (R) or it has produced more t@ar>B of output
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(O). These limitation were imposed by the system availabtddsting. In two cases it
has exceeded the system stack limit; this is marked by S.

Input | LattE ES | LattE+M ES | LattE EP | Nmz -x=1 | Nmz -x=20
CondPar o S - 28.352 5 8.388 s
P1VsCut o O - —1175:11:26 h

CEffP1 o S - —218:13:55 h
434 0.579 s 3.465s - 0.004 s 0.010 s

5x5 @] 72:39:23 h - 5:20m 2:47 m

bob T T T| 90:05:43 h| 7:20:50 h

lo6 R R T| 14:17:09h| 2:18:14h
small | 57.890s 39:36 m| 41.337 s 0.370 s 0.274 s
big R R 9:15m 1.513s 0.334 s
cyclo36 R R| 2855m 1.591s 1.653s
cyclo38 R R R 40.099 s 33.220 5
cyclo4d?2 R R| 2:14:06 h 4.784 s 4547 s
cyclo60 R R R 7:47 m 5:36 m

A443 R R R 54.758 5 16.515 5

A553 R R T|112:59:33h  7:37:04 h
crossi10 T T| 11.712s 0.016 s 0.021s
crossi1b R R| 49:06 m 0.675s 0.487 s
cross20 R R R 32.820 5 23.207 5

TABLE 7. Computation times for Ehrhart series and Ehrhart polyiatam

Remark 13. (a) From the Ehrhart series calculationRifVisCut we have obtained the
following statistics on the types of simplicial cones:

(1) 61,845 707,957 are unimodular,
(2) 108915272 879 are not unimodular, but satisfy condition (PU1), ancheke
(3) 62602 898 779 are potentially unimodular.

This shows that condition (PU2) that was added at a lateedtag a satisfactory effect.
(The number of potentially unimodular, but nonunimodulardicial cones is rather high
in this class.) The average value|afetGy| is =~ 10. This can be read off Tablé 5 since
the sum of theédetG,| is the number of components of the Stanley decomposition.

The number of nongeneric simplicial cones is J&®1 342. The total numbes of
linear systems that had to be solved for the computationeoEtirhart series is bounded
by 516245872 838< s< 516375534 180.

The total number of pyramids was &10 681. It depends on the number of parallel
threads that are allowed.

(b) For examples with a high proportion of unimodular cortes éxploitation of uni-
modularity based on Propositibh 9 is very efficient in voluroenputations. For example,
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105 requires only 10526 351 determinant calculations instead 0861 113 080. For
P1VsCut it saves about 25%.

(c) For the examples from combinatorial voting theotyr{dPar, CEffP1, P1VsCut)
Schirmann([35] has suggested a very efficient improvemarggmmetrization that re-
places the Ehrhart series of a polytope by the generalizédaBhseries of a projection.
Normaliz now has an offspring, Nmzintegrate, that compgtsseralized Ehrhart series;
see Bruns and Soger [12].

The volumes of the pertaining polytopes had already beerpuated by Schirmann
with LattE integrale. This information was very useful fdrecking the correctness of
Normaliz.

(d) The short Normaliz computation times for thyc1o andcross examples are made
possible by the special treatment of simplicial facets anFourier-Motzkin elimination;
see([9].
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