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ABSTRACT. We describe the use of pyramid decomposition in Normaliz, asoftware tool
for the computation of Hilbert bases and enumerative data ofrational cones and affine
monoids. Pyramid decomposition in connection with efficient parallelization and stream-
lined evaluation of simplicial cones has enabled Normaliz to process triangulations of size
≈ 5 ·1011 that arise in the computation of Hilbert series related to combinatorial voting
theory.

1. INTRODUCTION

Normaliz is a software tool for the computation of Hilbert bases and enumerative data
of rational cones and affine monoids. In the 14 years of its existence it has found numerous
applications; for example, in integer programming (Bogart, Raymond and Thomas [5]),
algebraic geometry (Craw, Maclagan and Thomas [16]), theoretical physics (Kappl, Ratz
and Staudt [30]), commutative algebra (Sturmfels and Welker [39]) or elimination theory
(Emiris, Kalinka, Konaxis and Ba [23]). Normaliz is used in polymake [29], a computer
system for polyhedral geometry, and in Regina [13], a systemfor computations with 3-
manifolds.

The mathematics of the very first version was described in Bruns and Koch [11], and
the details of version 2.2 (2009) are contained in Bruns and Ichim [9]. In this article we
document the mathematical ideas and the most recent development1 resulting from them.
It has extended the scope of Normaliz by several orders of magnitude.

In algebraic geometry the spectra of algebrasK[C∩L] whereC is a pointed cone and
L a lattice, both contained in a spaceRd, are the building blocks of toric varieties; for
example, see Cox, Little and Schenck [15]. In commutative algebra the algebrasK[C∩L]
which are exactly the normal affine monoid algebras are of interest themselves. It is
clear that an algorithmic approach to toric geometry or affine monoid algebras depends
crucially on an efficient computation of the unique minimal system of generators of a
monoidC∩L that we call itsHilbert basis. Affine monoids of this type are extensively
discussed by Bruns and Gubeladze [6]. The existence and uniqueness of such a minimal
system of generators is essentially due to Gordan [25] and was proven in full generality
by van der Corput [40].

The term “Hilbert basis” was actually coined in integer programming (withL = Zd) by
Giles and Pulleyblank [24] in connection with totally dual integral (TDI) systems. Also
see Schrijver [34, Sections 16.4 and 22.3]. One should note that in integer programming

2010Mathematics Subject Classification.52B20, 13F20, 14M25, 91B12.
Key words and phrases.Hilbert basis, Hilbert series, rational polytope, volume,triangulation, pyramid

decomposition.
1Version 2.10.1 has been uploaded tohttp://www.math.uos.de/normaliz on June 27, 2013.

1

http://www.math.uos.de/normaliz


2 W. BRUNS, B. ICHIM, AND C. S̈OGER

usually an arbitrary, not necessarily minimal, system of generators ofC∩Zd is called a
Hilbert basis ofC. From the computational viewpoint and also in bounds for such sys-
tems of generators, minimality is so important that we include it in the definition. Aardal,
Weismantel and Wolsey [2] discuss Hilbert bases and their connection with Graver Bases
(of sublattices) and Gröbner bases (of binomial ideals). (At present, Normaliz does not
include Graver or Gröbner bases; 4ti2 [1] is a tool for theircomputation.) It should be
noted that Normaliz, or rather a predecessor, was instrumental in finding a counterex-
ample to the Integral Carathéodory Property (Bruns, Gubeladze, Henk, Weismantel and
Martin [7]) that was proposed by Sebő [36]. For more recent developments in nonlinear
optimization using Graver bases, and therefore Hilbert bases, see J. De Loera, R. Hem-
mecke, S. Onn, U.G. Rothblum, R. Weismantel [18], Hemmecke,Köppe and Weismantel
[26], and Hemmecke, Onn and Weismantel [27].

Hilbert functions and polynomials of graded algebras and modules were introduced
by Hilbert himself [28] (in contrast to Hilbert bases). These invariants, and the corre-
sponding generating functions, the Hilbert series, are fundamental in algebraic geometry
and commutative algebra. See [6, Chapter 6] for a brief introduction to this fascinating
area. Ehrhart functions were defined by Ehrhart [22] as lattice point counting functions
in multiples of rational polytopes; see Beck and Robbins [4]for a gentle introduction.
Stanley [38] interpreted Ehrhart functions as Hilbert functions, creating a powerful link
between discrete convex geometry and commutative algebra.In the last decades Hilbert
functions have been the objective of a large number of articles. They even come up in
optimization problems; for example, see De Loera, Hemmecke, Köppe and Weismantel
[17]. Surprisingly, Ehrhart functions have an applicationin compiler optimization; see
Clauss, Loechner and Wilde [14] for more information.

From the very beginning Normaliz has used lexicographic triangulations; see [9], [11]
for the use in Normaliz and De Loera, Rambau and Santos [20] for (regular) triangulations
of polytopes. (Since version 2.1 Normaliz contains a second, triangulation free Hilbert
basis algorithm, originally due to Pottier [33] and calleddual in the following; see [9]).
Lexicographic triangulations are essentially characterized by being incremental in the
following sense. Suppose that the coneC is generated by vectorsx1, . . . ,xn ∈ Rd and
setCi = R+x1+ · · ·+R+xi , i = 0, . . . ,n. Then the lexicographic triangulationΛ (for the
ordered systemx1, . . . ,xn) restricts to a triangulation ofCi for i = 0, . . . ,n. Lexicographic
triangulations are easy to compute, and go very well with Fourier-Motzkin elimination
that computes the support hyperplanes ofC by successive extension fromCi to Ci+1,
i = 0, . . . ,n− 1. The triangulationΛi of Ci is extended toCi+1 by all simplicial cones
F +R+xi+1 whereF ∈ Λi is visible fromxi+1.

As simple as the computation of the lexicographic triangulation is, the algorithm in
the naive form just described has two related drawbacks: (i)one must storeΛi and this
becomes very difficult for sizes≥ 108; (ii) in order to find the facetsF that are visible from
xi+1 we must match the simplicial cones inΛi with the support hyperplanes ofCi that are
visible fromxi+1. While (i) is a pure memory problem, (ii) quickly leads to impossible
computation times.

Pyramid decompositionis the basic idea that has enabled Normaliz to compute dimen-
sion 24 triangulations of size≈ 5 · 1011 in acceptable time on standard multiprocessor
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systems such as SUN xFire 4450 or Dell PowerEdge R910. Instead of going for the lex-
icographic triangulation directly, we first decomposeC into the pyramids generated by
xi+1 and the facets ofCi that are visible fromxi+1, i = 0, . . . ,n−1. These pyramids (of
level 0) are then decomposed into pyramids of level 1 etc. While the level 0 decompo-
sition need not be a polyhedral subdivision in the strict sense, pyramid decomposition
stops after finitely many iterations at the lexicographic triangulation; see Section 2 for the
details and Figure 1 for a simple example.
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FIGURE 1. A pyramid decomposition and a lexicographic triangulation

Pure pyramid decomposition is very memory friendly, but itscomputation times are
even more forbidding than those of pure lexicographic triangulation since too many Four-
ier-Motzkin eliminations become necessary, and almost allof them are inevitably wasted.
That Normaliz can nevertheless cope with extremely large triangulations relies on a well
balanced combination of both strategies that we outline in Section 3.

It is an important aspect of pyramid decomposition that it isvery parallelization friendly
since the pyramids can be treated independently of each other. Normaliz uses OpenMP
for shared memory systems. Needless to say that triangulations of the size mentioned
above can hardly be reached in serial computation.

For Hilbert basis computations pyramid decomposition has afurther and sometimes
tremendous advantage: one can avoid the triangulation of those pyramids for which it is
a priori clear that they will not supply new candidates for the Hilbert basis. This observa-
tion, on which the contribution of the authors to [8] (jointly with Hemmecke and Köppe)
is based, triggered the use of pyramid decomposition as a general principle. See Remark
8 for a brief discussion.

In Section 4 we describe the steps by which Normaliz evaluates the simplicial cones in
the triangulation for the computation of Hilbert bases, volumes and Hilbert series. The
evaluation almost always takes significantly more time thanthe triangulation. Therefore
it must be streamlined as much as possible. For the Hilbert series Normaliz uses a Stanley
decomposition [37]. That it can be found efficiently relies crucially on an idea of Köppe
and Verdoolaege [31].

We document the scope of Normaliz’s computations in Section5. The computation
times are compared with those of 4ti2 [1] (Hilbert bases) andLattE [19] (Hilbert series).
The test examples have been chosen from the literature (Beckand Hoşten [3], Ohsugi
and Hibi [32], Schürmann [35], Sturmfels and Welker [39]),the LattE distribution and
the Normaliz distribution. The desire to master the Hilbertseries computations asked
for in Schürmann’s paper [35] was an important stimulus in the recent development of
Normaliz.
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2. LEXICOGRAPHIC TRIANGULATION AND PYRAMID DECOMPOSITION

Consider vectorsx1, . . . ,xn ∈ Rd. For Normaliz these must be integral vectors, but
integrality is irrelevant in this section. We want to compute a triangulation of the cone

C= cone(x1, . . . ,xn) = R+x1+ · · ·+R+xn

with rays throughx1, . . . ,xn. Such a triangulation is a polyhedral subdivision ofC into
simplicial subconesσ generated by linearly independent subsets of{x1, . . . ,xn}.

For a triangulationΣ of a coneC and a subconeC′ we set

Σ|C′ = {σ ∩C′ : σ ∈ Σ, dimσ ∩C′ = dimC′}.

In generalΣ|C′ need not be a triangulation ofC′, but it is so ifC′ is a face ofC.
The lexicographic(or placing) triangulationΛ(x1, . . . ,xn) of cone(x1, . . . ,xn) can be

defined recursively as follows: (i) the triangulation of thezero cone is the trivial one,
(ii) Λ(x1, . . . ,xn) is given by

Λ(x1, . . . ,xn) = Λ(x1, . . . ,xn−1)∪{cone(σ ,xn) : σ ∈ Λ(x1, . . . ,xn−1) visible fromxn}

whereσ is visiblefrom xn if xn /∈ cone(x1, . . . ,xn−1) and the line segment[xn,y] for every
point y of σ intersects cone(x1, . . . ,xn−1) only in y. Note that a polyhedral complex is
always closed under the passage to faces, and the definition above takes care of it. In
the algorithms below a polyhedral subdivision can always berepresented by its maximal
faces which for convex full dimensional polyhedra are the full dimensional cones in the
subdivision. For simplicial subdivisions of cones one usesof course that the face structure
is completely determined by set theory: every subsetE of the set of generators spans a
conical face of dimension|E|.

We state some useful properties of lexicographic triangulations:

Proposition 1. With the notation introduced, let Ci = cone(x1, . . . ,xi) andΛi = Λ(x1, . . . ,
xi) for i = 1, . . . ,n.

(1) Λn is the unique triangulation of C with rays through a subset of{x1, . . . ,xn} that
restricts to a triangulation of Ci for i = 1, . . . ,n andΛ|Ci has rays through a subset
of {x1, . . . ,xi}.

(2) For every face F of C the restrictionΛ|F is the lexicographic triangulationΛ(xi1,
. . . ,xim) where{xi1, . . . ,xim}= F ∩{x1, . . . ,xn} and i1 < · · ·< im.

(3) If dimCi > dimCi−1, thenΛ = Λ(x1, . . . ,xi−2,xi ,xi−1,xi+1, . . . ,xn).
(4) Λ = Λ(xi1, . . . ,xid,x j1, . . . ,x jn−d) where (i1, . . . , id) is the lexicographic smallest

index vector of a rank d subset of{x1, . . . ,xn} and j1 < · · · < jn−d lists the com-
plementary indices.

Proof. (1) By construction it is clear thatΛn satisfies the properties of which we claim that
they determineΛ uniquely. On the other hand, the extension ofΛi−1 to a triangulation of
Ci is uniquely determined if one does not introduce further rays: the triangulation of the
partV of the boundary ofCi−1 that is visible fromxi has to coincide with the restriction
of Λi−1 toV.

(2) One easily checks thatΛ|F satisfies the conditions in (1) that characterizeΛ(xi1, . . . ,
xim).
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(3) It is enough to check the claim fori = n. Then the only critical point for the
conditions in (1) is whetherΛ(x1, . . . ,xn−2,xn,xn−1) restricts toCn−1. But this is the
case sinceCn−1 is a facet ofC if dimC> dimCn−1.

(4) follows by repeated application of (3). �

In the following we will assume thatC is full dimensional: dimC = d = dimRd. Part
(4) helps us to keep the data structure of lexicographic triangulations simple: right from
the start we need only to work with the list of dimensiond simplicial cones ofΛ by search-
ing xi1, . . . ,xid first, choosing cone(xi1, . . . ,xid) as the firstd-dimensional simplicial cone
and subsequently extending the list as prescribed by the definition of the lexicographic
triangulation. In other words, we can assume thatx1, . . . ,xd are linearly independent, and
henceforth we will do so.

In order to extend the triangulation we must of course know which facets ofCi−1 are
visible from xi . Recall that a coneC of dimensiond in Rd has a unique irredundant
representation as an intersection of linear halfspaces:

C=
⋂

H∈H (C)

H+,

whereH (C) is a finite set of hyperplanes and the orientation of the closed half spaces
H− andH+ is chosen in such a way thatC⊂ H+ for H ∈H (C). ForH ∈H (Ci−1) the
facetH ∩Ci−1 is visible fromxi if and only if xi lies in the open halfspaceH< = H− \H.
When we refer to support hyperplane in the following we always mean those that appear
in the irredundant decomposition ofC since only they are important in the algorithmic
context.

Hyperplanes are represented by linear formsλ ∈ (Rd)∗, and we always work with the
basise∗1, . . . ,e

∗
d that is dual to the basise1, . . . ,ed of unit vectors. For rational hyperplanes

the linear formλ can always be chosen in such a way that it has integral coprimeco-
efficients and satisfiesλ (x) ≥ 0 for x ∈C. This choice determinesλ uniquely. (If one
identifiese∗1, . . . ,e

∗
d with e1, . . . ,ed via the standard scalar product, thenλ is nothing but

the primitive integral inner (with respect toC) normal vector ofH.) For later use we
define the(lattice) heightof x∈ Rd overH by

htH(x) = |λ (x)|.
If F =C∩H is the facet ofC cut out byH, we set htF(x) = htH(x).

We can now describe the computation of the triangulationΛ(x1, . . . ,xn) in a more for-
mal way in Table 1. For simplicity we will identify a simplicial coneσ with its generating
set⊂ {x1, . . . ,xn}. It should be clear from the context what is meant. For further use we
introduce the notation

H
∗(C,x) = {H ∈H (C),x∈ H∗} where∗ ∈ {<,>,+,−}.

Table 1 formalizes the computation of the lexicographic triangulation.
The function ADDSIMPLEX adds a simplicial cone to the (initially empty) list of sim-

plicial cones that, upon completion, contains the lexicographic triangulation ofC. The
function FINDNEWHYP computesH (Ci) from H (Ci−1) by Fourier-Motzkin elimina-
tion. (It does nothing ifxi ∈ Ci−1.) Its Normaliz implementation has been described
in great detail in [9]; therefore we skip it here. The function EXTENDTRI does exactly
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LEXTRIANGULATION (x1, . . . ,xn)
1 ADDSIMPLEX (x1, . . . ,xd)
2 for i← d+1 to n
3 do
4 EXTENDTRI(i)
5 FINDNEWHYP(i)

EXTENDTRI(i)
1 parallel for H ∈H

<(Ci−1,xi)
2 do
3 for σ ∈ Λ(x1, . . . ,xi−1)
4 do
5 if |σ ∩H|= d−1
6 then ADDSIMPLEX (xi ∪ (σ ∩H))

TABLE 1. Incremental building of lexicographic triangulation

what its name says: it extends the triangulationΛ(x1, . . . ,xi−1) of Ci−1 to the triangulation
Λ(x1, . . . ,xi) of Ci (again doing nothing ifxi ∈Ci−1).

Note that the set of hyperplanes over which the loop in EXTENDTRI runs is given by
H <(Ci−1,xi).

One is tempted to improve EXTENDTRI by better bookkeeping and using extra infor-
mation on triangulations of cones. We discuss our more or less fruitless attempts in the
following remark.

Remark 2. (a) If one knows the restriction ofΛ(x1, . . . ,xi−1) to the facets ofCi−1, then
Λ(x1, . . . ,xi) can be computed very fast. However, unlessi = n, the facet triangulation
must now be extended to the facets ofCi , and this step eats up the previous gain, as exper-
iments have shown, at least for the relatively small triangulations to which EXTENDTRI

is really applied after the pyramid decomposition described below.
(b) The test of the condition|σ ∩H| = d− 1 is positive if and only ifd− 1 of the

generators ofσ lie in H. Its verification can be accelerated if one knows which facets of
thed-dimensional cones inΛ(x1, . . . ,xi−1) are already shared by another simplicial cone
in Λ(x1, . . . ,xi−1), and are therefore not available for the formation of a new simplicial
cone. But the extra bookkeeping requires more time than is gained by its use.

(c) One refinement is used in our implementation, though its influence is almost unmea-
surable. Each simplicial cone inΛ(x1, . . . ,xi−1) has been added with a certain generator
x j , j < i. (The first cone is considered to be added with each of its generators.) It is
not hard to see that only those simplicial cones that have been added with a generator
x j ∈ H can satisfy the condition|σ ∩H| = d−1, and this information is used to reduce
the number of pairs(H,σ) to be tested.

(d) If |H ∩{x1, . . . ,xi−1}| = d−1, thenH ∈H <(Ci−1,xi) produces exactly one new
simplicial cone of dimensiond, namely cone(xi ,H ∩ {x1, . . . ,xi−1}), and therefore the
loop overσ can be suppressed.

The product|H <(Ci−1,xi)| · |Σ| determines the complexity of EXTENDTRI. Even
though the loop overH is parallelized (as indicated byparallel for ), the time spent in
EXTENDTRI can be very long. (The “exterior” loops in FINDNEWHYP are parallelized
as well.) The second limiting factor for EXTENDTRI is memory: it is already difficult
to store triangulations of size 108 and impossible for size≥ 109. Therefore the direct
approach to lexicographic triangulations does not work fortruly large cones.
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Now we present a radically different way to lexicographic triangulations via iterated
pyramid decompositions. The cones that appear in this type of decomposition are called
pyramidssince their cross-section polytopes are pyramids in the usual sense, namely of
type conv(F,x) whereF is a facet andx is a vertex not contained inF .

Definition 3. Thepyramid decompositionΠ(x1, . . . ,xn) of C = cone(x1, . . . ,xn) is recur-
sively defined as follows: it is the trivial decomposition for n= 0, and

Π(x1, . . . ,xn) = Π(x1, . . . ,xn−1)∪{cone(F,xn) :

F a face ofC(x1, . . . ,xn−1) visible fromxn}.

As already pointed out in the introduction, the pyramid decomposition is not a polyhe-
dral subdivision in the strong sense: the intersection of two facesF andF ′ need not be a
common face ofF andF ′ (but is always a face ofF or F ′). See Figure 1 for an example.

In order to iterate the pyramid decomposition we setΠ0(x1, . . . ,xn) = Π(x1, . . . ,xn),
and

Πk(x1, . . . ,xn) =
⋃

P∈Πk−1(x1,...,xn)

{Π(xi : xi ∈ P)} for k> 0.

Note that this recursion cannot descend indefinitely, sincethe number of generators goes
down in each recursion level. We denote thetotal pyramid decompositionby Π∞(x1, . . . ,
xn). More precisely:

Proposition 4. One hasΠ∞(x1, . . . ,xn) = Πn−d(x1, . . . ,xn) = Λ(x1, . . . ,xn).

Proof. In the casen = d, the pyramid decomposition is obviously the face lattice ofC,
and therefore coincides with the lexicographic triangulation. Forn > d the first full di-
mensional pyramid reached is the simplicial cone cone(x1, . . . ,xd). All the other pyramids
have at mostn−1 generators, and so we can use induction: For eachP∈ Π(x1, . . . ,xn)
the total pyramid decomposition ofP is the lexicographic triangulationΛ(xi : xi ∈ P).
According to Proposition 1(2) these triangulations match along the common boundaries
of the pyramids, and therefore constitute a triangulation of C. It evidently satisfies the
conditions in Proposition 1(1). �

This leads to a recursive computation ofΛ(x1, . . . ,xn) by the algorithms in Table 2. The

TOTALPYRDEC(x1, . . . ,xn)
1 ADDSIMPLEX (x1, . . . ,xd)
2 for i← d+1 to n
3 do
4 PROCESSPYRSREC(i)

PROCESSPYRSREC(i)
1 for H ∈H <(Ci−1,xi)
2 do key←{xi}∪ ({x1, . . . ,xi−1}∩H)
3 TOTALPYRDEC(key)

TABLE 2. Total pyramid decomposition

first realizes the building ofΠ(x1, . . . ,xn) (represented by its full dimensional members)
and the second takes care of the recursion that definesΠ∞(x1, . . . ,xn).

Pyramid decomposition has the virtue of requiring very little memory since the trian-
gulation need not be stored for its future extension. However, there is a severe drawback:
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as above, one must compute the support hyperplanes inH (P) for all pyramids encoun-
tered. In a “pure” approach, one computes the support hyperplanes of the simplicial cones
at the bottom of the pyramid decomposition; this is essentially the inversion of the matrix
of its generators (see equation (4.1)). Then one passes themback from a pyramid to its
“mother”, discarding those that fail to have all generatorsof the “mother” in its positive
halfspace or have been found previously. These two conditions are easily tested. Sup-
poseP is the pyramid to which TOTALPYRDEC is applied in PROCESSPYRSREC and
G ∈H (P). ThenG ∈H (x1 . . . ,xi) \H (x1, . . . ,xi−1) if and only if the following two
conditions are satisfied:

(i) x j ∈G+ for j = 1, . . . , i−1;
(ii) x j ∈G> for all j = 1, . . . , i−1 such thatx j /∈ P.

One should note that pyramids effectively reduce the dimension: the complexity of
cone(F,xn) is completely determined by the facetF , which has dimensiond−1.

While being very memory efficient, total pyramid decomposition is in a naı̈ve imple-
mentation much slower than building the lexicographic triangulation directly. For one of
our standard test examples (4×4×3 contingency tables, dimension 30 with 48 extreme
rays; see [8]) the lexicographic triangulation with respect to the order of generators in
the input file has 2,654,272 full dimensional cones. In serial computation on an Intel i7
2600 PC, LEXTRIANGULATION computes it in approximately 2 minutes, whereas TO-
TAL PYRDEC needs about 11 minutes. The current implementation, described in the next
section, reduces the serial computation time to 13 seconds.

Remark 5. Pyramid decomposition is not only useful for the computation of triangu-
lations, but also helps in finding support hyperplanes. For them the critical complexity
parameter is|H <(Ci−1,xi)| · |H

>(Ci−1,xi)|, and as in its use for triangulation, pyramid
decomposition lets us replace a very large product of the sizes of two “global” lists by
a sum of small “local” products–the price to be paid is the computational waste invested
for the support hyperplanes of the pyramids that are uselesslater on. Nevertheless pyra-
mid decomposition leads to a substantial reduction in computing time also for support
hyperplanes, and Normaliz uses this effect. We illustrate this by computation times for
the 5×5×3 contingency tables (dimension 55 with 75 extreme rays; see[8]). The cone
has 306,955 support hyperplanes. On a Sun xFire 4450 we measured a serial computa-
tion time of 16,822 seconds if only FINDNEWHYP is used. The current implementation
reduces this to 4,334 seconds.

3. THE CURRENT IMPLEMENTATION

Since version 2.7 (and partly since 2.5) Normaliz has combined lexicographic trian-
gulation with pyramid decomposition. The support hyperplanes and the triangulation are
extended from one generator to the next only until certain bounds are exceeded. From
that point on, the algorithm BUILD CONE described in Table 3 switches to pyramid de-
composition, and the same mixed strategy is then applied to the pyramids.

We now use two types of passage to pyramids, a recursive one via PROCESSPYRSREC

and a nonrecursive one via PROCESSPYRS. The main reason for this split approach is that
on the one hand recursion limits the effect of parallelization (as it does in Normaliz 2.7),
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BUILD CONE(x1, . . . ,xn; recursion)
1 ADDSIMPLEX (x1, . . . ,xd)
2 for i← d+1 to n
3 do
4 if MakePyramidsSupp& recursion
5 then PROCESSPYRSREC(i)
6 else ifMakePyramidsTri
7 then PROCESSPYRS(i, level)
8 else EXTENDTRI(i)
9 FINDNEWHYP(i)

10 if TopCone
11 then EVALUATE PYRS(0)

PROCESSPYRSREC(i)
1 for H ∈H

<(Ci−1,xi)
2 do key←{xi}∪ ({x1, . . . ,xi−1}∩H)
3 BUILD CONE(key, true)

PROCESSPYRS(i, level)
1 for H ∈H <(Ci−1,xi)
2 do key←{xi}∪ ({x1, . . . ,xi−1}∩H)
3 STOREPYR(key, level+1)

TABLE 3. Combining lexicographic triangulation and pyramid decomposition

and, on the other hand, the recursive approach neverthelesssaves time in the computation
of support hyperplanes for the top cone.

The booleanrecursionindicates whether the recursive passage to pyramids is allowed.
For the top cone BUILD CONE is called withrecursion= true. The booleanMakePyra-
midsSuppcombines two conditions:

(1) while set tofalseinitially, it remainstrueonce the branch PROCESSPYRSREC has
been taken the first time;

(2) it is settrue if the complexity parameter|H <(Ci−1,xi)| · |H
>(Ci−1,xi)| exceeds

a threshold.

In the nonrecursive passage to pyramids we cut the umbilicalcord between a pyramid
and its mother and just store the pyramid for later evaluation. The nonrecursive call is
controlled by the booleanMakePyramidsTrithat combines three conditions:

(1) while set tofalse initially, it remains true once the branch PROCESSPYRS has
been taken the first time;

(2) it is settrue if the complexity parameter|H <(Ci−1,xi)| · |Σ| exceeds a threshold;
(3) it is settrue if the memory protection threshold is exceeded;

The last point needs to be explained. BUILD CONE is not only called for the processing
of the top coneC, but also for the parallelized processing of the stored pyramids. Since
each of the “parallel” pyramids produces simplicial cones,the buffer in which the sim-
plicial cones are collected for evaluation, may be severelyoverrun without condition (3),
especially if|H <(Ci−1,xi)| is small, and therefore condition (2) is reached only for large
|Λ(x1, . . . ,xi−1)|. The variablelevel indicates the generation of the pyramid; for the top
cone it has value−1, and increases by 1 with each new generation.

At the end of BUILD CONE for the top coneC we start the evaluation of the stored
pyramids as described in Table 4.
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EVALUATE PYRS(level)
1 if PyramidList[level] = /0
2 then return
3 parallel for P∈ PyramidList[level]
4 do
5 BUILD CONE(P, f alse)
6 EVALUATE PYRS(level+1)

TABLE 4. Evaluation of pyramids

Remark 6. (a) For efficiency Normaliz completely avoids nested parallelization. There-
fore the parallelization in FINDNEWHYP and EXTENDTRI is switched off when the par-
allelization in EVALUATE PYRS is active. On the other hand, these are active when the top
cone or recursively built pyramids are being processed.

(b) Despite of considerable efforts we have not found a completely satisfactory solution
in which pyramids could always be processed recursively andsimultaneously in parallel.
Because of (a) we can only parallelize the pyramids directlyproduced from the top cone in
the recursive approach, and then parallelization may be limited by an insufficient number
of hyperplanes inH <(Ci−1,xi) or, more often, by enormous differences in the sizes of the
pyramids, so that one of them may be running solo for a long time—recognizing the size
in advance has turned out difficult. Parallelization in FINDNEWHYP and EXTENDTRI is
then the better solution.

Moreover, a large pyramid together with its children may produce a huge number of
simplicial cones and overrun the evaluation buffer. Serialloops can be interrupted at any
time, and therefore the memory problem cannot arise.

(c) As soon as BUILD CONE switches to pyramids, the triangulationΛ(x1, . . . ,xi−1) is
no longer needed for further extension. Therefore it is shipped to the evaluation buffer.
The buffer is emptied whenever it has exceeded its preset size and program flow allows
its parallelized evaluation. (Because of (a) this is not always possible.)

(d) The strategy for the evaluation of pyramids is similar. If the buffer forlevel+1 is
exceeded, evaluation on that level will be started as soon aspossible. Usually this results
in a tree of evaluations over several levels.

We add a few minor details of the implementation.

Remark 7. (a) For nonrecursive pyramids the support hyperplanes arising from the last
generator need not be computed since they are irrelevant fortriangulation and pyramid
decomposition.

(b) Simplicial facets ofCi−1 produce exactly one simplicial pyramid inCi . They are
treated directly by ADDSIMPLEX.

(c) If the extreme rays ofC have been singled out from the given generatorsx1, . . . ,xn
before BUILD CONE is called, then only the extreme rays are used in the pyramid decom-
position and the lexicographic triangulation.

(d) If a grading is defined explicitly (see Section 4), then Normaliz orders the generators
by degree and those of the same degree by input order before building the coneC. This is
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an attempt to cover as much ground as possible by using generators of small degree. On
the whole, we have reached good results with this choice.

Remark 8. (Partial triangulation) The idea of pyramid decomposition was born when
the authors observed that the computation of Hilbert bases usually does not need a full
triangulation ofC. If a simplicial coneσ cannot contribute new candidates for the Hilbert
basis ofC, it need not be evaluated, and if a pyramid consists only of such simplicial
cones, it need not be triangulated at all. This is the case if htH(xi) = 1 in PROCESSPYRS.

The resulting strategy has sometimes striking results and was already described in [8].
It is mentioned here only for completeness. If a full triangulation is not required, then
PROCESSPYRS discards all pyramids of height 1 from further processing. (However, their
support hyperplanes must be computed if processed recursively.) If followed strictly, the
recursion will not stop before the simplicial cones at the bottom of the pyramid decompo-
sition. As for full triangulations, this is usually not optimal. Normaliz therefore switches
to EXTENDTRI for pyramids of height≥ 2 from a certain level on.

4. EVALUATION OF SIMPLICIAL CONES

The fast computation of triangulations via pyramid decomposition must be accompa-
nied by an efficient evaluation of the simplicial cones in thetriangulation, which is almost
always the more time consuming step.

Let σ be a simplicial cone generated by the linearly independent vectorsv1, . . . ,vd.
The evaluation is based on thegenerator matrix Gσ whoserows arev1, . . . ,vd. Before
we outline the evaluation procedure, let us substantiate the remark made in Section 2 that
finding the support hyperplanes amounts to the inversion ofGσ . Let Hi be the support
hyperplane ofσ opposite tovi , given by the linear formλi = a1ie∗1 + · · ·+ adie∗d with
coprime integer coefficientsa j . Then

(4.1) λi(vk) =
d

∑
j=1

vk ja ji =

{

htHi (vi), k= i,

0, k 6= i.

Thus the matrix(ai j ) is G−1
σ up to scaling of its columns. Usually the inverse is computed

only for the first simplicial cone in every pyramid since its support hyperplanes are really
needed. But matrix inversion is rather expensive, and Normaliz goes to great pains to
avoid it.

Normaliz computes sets of vectors, primarily Hilbert bases, but also measures, for ex-
ample the volumes of rational polytopes. A polytopeP arises from a coneC by cuttingC
with a hyperplane, and for Normaliz such hyperplanes are defined by gradings: agrading
is a linear form deg :Zd→ Z (extended naturally toRd) with the following properties: (i)
deg(x) > 0 for all x∈C, x 6= 0, and (ii) deg(Zd) = Z. The first condition guarantees that
the intersectionP=C∩A1 for the affine hyperplane

A1 = {x∈ Rd : deg(x) = 1}

is compact, and therefore a rational polytope. The second condition is harmless for in-
tegral linear forms since it can be achieved by extracting the greatest common divisor of
the coefficients of deg with respect to the dual basis.
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The grading deg can be specified explicitly by the user or chosen implicitly by Nor-
maliz. The implicit choice makes only sense if there is a natural grading, namely one
under which the extreme integral generators ofC all have the same degree. (If it exists, it
is of course uniquely determined.)

At present, Normaliz evaluates the simplicial conesσ in the triangulation ofC for the
computation of the following data:

(HB) the Hilbert basis ofC,
(LP) the lattice points in the rational polytopeP=C∩A1,
(Vol) the normalized volume vol(P) of the rational polytopeP (also called themulti-

plicity of C),
(Ehr) theHilbert or Ehrhart function H(C,k) = |kP∩Zd|, k∈ Z+.

4.1. Volume computation. Task (Vol) is the easiest, and Normaliz computes vol(P) by
summing the volumes vol(σ ∩A1) whereσ runs over the simplicial cones in the triangu-
lation. With the notation introduced above, one has

vol(σ ∩A1) =
|det(Gσ )|

deg(v1) · · ·deg(vd)
.

For the justification of this formula note that the simplexσ ∩A1 is spanned by the vectors
vi/deg(vi), i = 1, . . . ,d, and that the vertex 0 of thed-simplexδ = conv(0,σ ∩A1) has
(lattice) height 1 over the opposite facetσ ∩A1 of δ so that vol(σ ∩A1) = vol(δ ).

In pure volume computations Normaliz (since version 2.9) utilizes the following propo-
sition that often reduces the number of determinant calculations significantly.

Proposition 9. Let σ and τ be simplicial cones sharing a facet F Let v1, . . . ,vd spanτ
and let vd be opposite of F. Ifdet(Gσ )|= 1, then|det(Gτ)|= htF(vd).

Proof. The proposition is a special case of [6, Prop. 3.9], but is also easily seen directly.
Suppose thatwd is the generator ofσ opposite toF. ThenGσ = {v1, . . . ,vd−1,wd}, and
|detGσ |= 1 by hypothesis. Thereforev1, . . . ,vd−1,wd spanZd. With respect to this basis,
the matrix of coordinates ofv1, . . . ,vd is lower trigonal with 1 on the diagonal, except in
the lower right corner where we find−htF(vd). �

Every new simplicial coneτ found by EXTENDTRI is taken piggyback by an already
known “partner”σ sharing a facetF with τ. Therefore Normaliz records|detGσ | with
σ , and if |detGσ |= 1 there is no need to compute|det(Gτ)| since the height of the “new”
generatorvd overF is known. Remark 13(b) contains some numerical data illuminating
the efficiency of this strategy that we callexploitation of unimodularity. One should note
that it is inevitable to compute|det(Gσ )| for the first simplicial cone in every pyramid.

4.2. Lattice points in semi-open parallelotopes.The remaining tasks depend on the set
E of lattice points in the semi-open parallelotope

par(v1, . . . ,vd) = {q1v1+ · · ·+qdvd : 0≤ qi < 1}.

For the efficiency of the evaluation it is important to generateE = Zd∩par(v1, . . . ,vd) as
fast as possible. The basic observation is thatE is a set of representatives of the group
Zd/Uσ where the subgroupUσ is spanned byv1, . . . ,vd. Thus one findsE in two steps:
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(Rep) find a representative of every residue class, and
(Mod) reduce its coefficients with respect to theQ-basisv1, . . . ,vd modulo 1.

The first idea for (Rep) that comes to mind (and used in the firstversion of Normaliz)
is to decomposeZd/Uσ into a direct sum of cyclic subgroupsZui , i = 1, . . . ,d where
u1, . . . ,ud is aZ-basis ofZd and denotes the residue class moduloUσ . The elementary
divisor theorem guarantees the existence of such a decomposition, and finding it amounts
to a diagonalization ofGσ overZ. But diagonalization is even more expensive than matrix
inversion, and therefore it is very helpful that a filtrationof Zd/Uσ with cyclic quotients
is sufficient. Such a filtration can be based on trigonalization:

Proposition 10. With the notation introduced, let e1, . . . ,ed denote the unit vectors in
Zd and let X∈ GL(d,Z) such that XGσ is an upper triangular matrix D with diagonal
elements a1, . . . ,ad ≥ 1. Then the vectors

(4.2) b1e1+ · · ·+bded, 0≤ bi < ai , i = 1, . . . ,d,

represent the residue classes inZd/Uσ .

Proof. Note that the rows ofXGσ are aZ-basis ofUσ . Since|Zd/Uσ | = |detGσ | =
a1 · · ·ad, it is enough to show that the elements listed represent pairwise different residue
classes. Letp be the largest index such thatap > 1. Note thatap is the order of the cyclic
groupZep, and that we obtain aZ-basis ofU ′σ =Uσ +Zep if we replace thep-th row of
XGσ by ep. If two vectorsb1e1+ · · ·+bpep andb′1e1+ · · ·+b′pep in our list represent
the same residue class moduloUσ , then they are even more so moduloU ′σ . It follows that
bi = b′i for i = 1, . . . , p−1, and taking the difference of the two vectors, we conclude that
bp = b′p as well. �

The first linear algebra step that comes up is therefore the trigonalization

(4.3) XGσ = D.

Let Gtr
σ be the transpose ofGσ . For (Mod) it is essentially enough to reduce thoseei

modulo 1 that appear with a coefficient> 0 in (4.2), and thus we must solve the simulta-
neous linear systems

(4.4) Gtr
σ xi = ei , ai > 1,

where we considerxi andei as column vectors. In a crude approach one would simply
invert the matrixGtr

σ (or Gσ ), but in general the number ofi such thatai > 1 is small
compared tod (especially ifd is large), and it is much better to solve a linear system with
the specific multiple right hand side given by (4.4). The linear algebra is of course done
overZ, usinga1 · · ·ad as a common denominator. Then Normaliz tries to produce the
residue classes and to reduce them modulo 1 (or, overZ, moduloa1 · · ·ad) as efficiently
as possible.

For task (LP) one extracts the vectors of degree 1 fromE, and the degree 1 vectors
collected from allσ from the set of lattice points inP = C∩A1. For (HB) one first
reduces the elements ofE∪{v1, . . . ,vd} to a Hilbert basis ofσ , collects these and then
applies “global” reduction inC. This procedure has been described in [9], and nothing
essential has been added meanwhile.
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4.3. Hilbert series and Stanley decomposition.The most difficult and mathematically
most interesting task is (Ehr). For its solution one uses thewell-known fact that the
Hilbert or Ehrhart series, the generating function

HC(t) =
∞

∑
k=0

H(C,k)tk,

is a rational function oft. Forσ one has

Hσ(t) =
h0+h1t + · · ·+hsts

(1− tg1) · · ·(1− tgd)
, gi = degvi , h j = |{x∈ E : degx= j}|.

This follows immediately from the disjoint decomposition

(4.5) Zd∩σ =
⋃

x∈E

x+Mσ

whereMσ is the (free) monoid generated byv1, . . . ,vd.
However, one cannot computeHC(t) by simply adding these functions since points in

the intersections of the simplicial conesσ would be counted several times. Fortunately,
the intricate inclusion-exclusion problem can be avoided since there existdisjointdecom-
positions ofC by semi-open simplicial conesσ \SwhereS is a union of facets (and not
just arbitrary faces!) ofσ . The seriesHσ\S(t) is as easy to compute asHσ (t) itself. Let
x∈ E, x= ∑qivi . Then we defineε(x) as the sum of allvi such that (i)qi = 0 and (ii) the
facet opposite tovi belongs toS. Then

(4.6) Hσ\S(t) =
∑x∈E tdegε(x)+degx

(1− tg1) · · ·(1− tgd)
.

This follows from the fact that(x+Mσ )\S= ε(x)+x+Mσ , and so we just sum over the
disjoint decomposition ofZd∩ (σ \S) induced by (4.5). (Also see [9, Lemma 11].)

The existence of a disjoint decomposition ofC into sets of typeσ \S was shown by
Stanley [37] using the existence of a line shelling ofC proved by Bruggesser and Mani.
Instead of finding a shelling order for the lexicographic triangulation (which is in princi-
ple possible), Normaliz 2.0–2.5 used a line shelling for thedecomposition, as discussed
in [9]. This approach works well for cones of moderate size, but has a major drawback:
finding the setsSrequires searching over the shelling order, and in particular the whole tri-
angulation must be stored. Köppe and Verdoolaege [31] proved a much simpler principle
for the disjoint decomposition (already implemented in Normaliz 2.7). As a consequence,
each simplicial cone in the triangulation can be treated in complete independence from the
others, and can therefore be discarded once it has been evaluated (unless the user insists
on seeing the triangulation):

Lemma 11. Let OC be a vector in the interior of C such that OC is not contained in
a support hyperplane of any simplicialσ in a triangulation of C. Forσ choose Sσ as
the union of the support hyperplanesH <(σ ,OC). Then the semi-open simplicial cones
σ \Sσ form a disjoint decomposition of C.

See [31] for a proof. It is of course not possible to choose anorder vector OC that
avoids all hyperplanes in advance, but this is not a real problem. Normaliz choosesOC
in the interior of the first simplicial cone, and works with a lexicographic infinitesimal
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perturbationO′C. (This trick is known as ”simulation of simplicity” in computational
geometry; see Edelsbrunner [21]). IfOC ∈ H< (or OC ∈ H>), thenO′C ∈ H< (or O′C ∈
H>). In the critical caseOC ∈ H, we take the linear formλ representingH and look up
its coordinates in the dual basise∗1, . . . ,e

∗
d. If the first nonzero coordinate is negative, then

O′C ∈ H<, and elseO′C ∈ H>.
At first it seems that one must compute the support hyperplanes of σ in order to apply

Lemma 11. However, it is much better to solve the system

(4.7) Gtr
σ Iσ = OC.

The solutionIσ is called theindicator of σ . One hasOC ∈ H< (or OC ∈ H>) if Iσ
i < 0

(or Iσ
i > 0) for the generatorvi opposite toH (λ vanishes onH). Let us callσ genericif

all entries ofIσ are nonzero.
If Iσ

i = 0—this happens rarely, and very rarely for more than one index i—then we are
forced to compute the linear form representing the support hyperplane opposite ofvi . In
view of (4.1) this amounts to solving the systems

(4.8) Gσ x= ei , Iσ
i = 0,

simultaneously for the lexicographic decision.
If σ is unimodular, in other words, if|detGσ |= 1, then the only system to be solved is

(4.7), provided thatσ is generic. Normaliz tries to take advantage of this fact by guessing
whetherσ is unimodular, testing two necessary conditions:

(PU1) Everyσ (except the first) is inserted into the triangulation with a certain generator
xi . Let H be the facet ofσ opposite toxi . If htH(xi)> 1, thenσ is nonunimodular.
(The number htH(xi) has been computed in the course of the triangulation.)

(PU2) If gcd(degv1, . . . ,degvd)> 1, thenσ is not unimodular.

If σ passes both tests, we call itpotentially unimodular. (Data on the efficiency of this
test will be given in Remark 13(a)).

After these preparations we can describe the order in which Normaliz treats the trigo-
nalization (4.3) and the linear systems (4.4), (4.7) and (4.8):

(L1) If σ is potentially unimodular, then (4.7) is solved first. It cannow be decided
whetherσ is indeed unimodular.

(L2) If σ is not unimodular, then the trigonalization (4.3) is carried out next. In the
potentially unimodular, but nongeneric case, the trigonalization is part of the so-
lution of (4.8) (with multiple right hand side).

(L3) In the nonunimodular case, we now solve the system (4.4)(with multiple right
hand side).

(L4) If σ is not potentially unimodular and not generic, it remains tosolve the system
(4.8) (with multiple right hand side).

As the reader may check, it is never necessary to perform all 4steps. In the unimodular
case, (L1) must be done, and additionally (L2) ifσ is nongeneric. Ifσ is not even poten-
tially unimodular, (L2) and (L3) must be done, and additionally (L4) if it is nongeneric. In
the potentially unimodular, but nonunimodular case, (L1),(L2) and (L3) must be carried
out.
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Remark 12. (a) If one stores the transformation matrixX of (4.3) and its inverse (for ex-
ample as a sequence of row exchanges and elementary transformations), then one can
solve the remaining systems without further trigonalization. However, in general the
bookkeeping needs more time than it saves as tests have shown.

(b) The simplicial cones stored in the evaluation buffer areprocessed in parallel, and
parallelization works very well for them.

(c) Simplicial cones of height 1 need not be evaluated for (HB) and (LP); see Remark 8.

4.4. Presentation of Hilbert series. We conclude this section with a brief discussion of
the computation and the representation of the Hilbert series by Normaliz. The reader can
find the necessary background in [6, Chapter 6].

Summing the Hilbert series (4.6) is very simple if they all have the same denominator,
for example in the case in which the generators ofC (or at least the extreme integral
generators) have degree 1. For efficiency, Normaliz first forms “denominator classes” in
which the Hilbert series with the same denominator are accumulated. At the end, the class
sums are added over a common denominator that is extended whenever necessary. This
yields a “raw” form of the Hilbert series of type

(4.9) HC(t) =
R(t)

(1− ts1) · · ·(1− tsr )
, R(t) ∈ Z[t],

whose denominator in general has> d factors.
In order to find a presentation withd factors, Normaliz proceeds as follows. First it

reduces the fraction to lowest terms by factoring the denominator of (4.9) into a product
of cyclotomic polynomials:

(4.10) HC(t) =
Z(t)

ζz1 · · ·ζzw

, Z(t) ∈ Z[t], ζzj ∤ Z(t),

which is of course the most economical way for representingHC(t) (as a single fraction).
The orders and the multiplicities of the cyclotomic polynomials can easily be bounded
since all denominators in (4.6) divide(1− tℓ)d whereℓ is the least common multiple of
the degrees degxi . So we can find a representation

(4.11) HC(t) =
F(t)

(1− te1) · · ·(1− ted)
, F(t) ∈ Z[t],

in whiched is the least common multiple of the orders of the cyclotomic polynomials that
appear in (4.10),ed−1 is the least common multiple of the orders that have multiplicity
≥ 2 etc. Normaliz produces the presentation (4.11) whenever the degree of the numerator
remains of reasonable size.

It is well-known that the Hilbert function itself is a quasipolynomial:

(4.12) H(C,k) = q0(k)+q1(k)k+ · · ·+qd−1(k)k
d−1, k≥ 0,

where the coefficientsq j(k) ∈Q are periodic functions ofk whose common period is the
least common multiple of the orders of the cyclotomic polynomials in the denominator of
(4.10). Normaliz computes the quasipolynomial, with the proviso that its period is not too
large. It is not hard to see that the periods of the individualcoefficients are related to the
representation (4.11) in the following way:ek is the common period of the coefficients



THE POWER OF PYRAMID DECOMPOSITION IN NORMALIZ 17

qd−1, . . . ,qd−k. The leading coefficientqd−1 is actually constant (hencee1 = 1), and
related to the multiplicity by the equation

(4.13) qd−1 =
vol(P)
(d−1)!

.

Sinceqd−1 and vol(P) are computed completely independently from each other, equation
(4.13) can be regarded as a test of correctness for both numbers.

The choice (4.11) forHC(t) is motivated by the desire to find a standardized represen-
tation whose denominator conveys useful information. The reader should note that this
form is not always the expected one. For example, forC = R2

+ with deg(e1) = 2 and
deg(e2) = 3, the three representations (4.9)–(4.11) are

1
(1− t2)(1− t3)

=
1

ζ 2
1 ζ2ζ3

=
1− t + t2

(1− t)(1− t6)
.

Actually, it is unclear what the most natural standardized representation of the Hilbert
series as a fraction of two polynomials should look like, unless the denominator is(1−t)d.
Perhaps the most satisfactory representation should use a denominator(1− t p1) · · ·(1−
t pd) in which the exponentspi are the degrees of a homogeneous system of parameters
(for the monoid algebraK[Zd∩C] over an infinite fieldK). At present Normaliz cannot
find such a representation (except the one with the trivial denominator(1− tℓ)d)), but
future versions may contain this functionality.

5. COMPUTATIONAL RESULTS

In this section we want to document that the algorithmic approach described in the
previous sections (and [9]) is very efficient and masters computations that appeared inac-
cessible some years ago. We compare Normaliz 2.8 to 4ti2, version 1.5, for Hilbert basis
computations and to LattE, version 1.5, for Ehrhart series (the versions we have used are
both contained in the package LattE integrale 1.5.3 [19]).

Almost all computations were run on a Dell PowerEdge R910 with 4 Intel Xeon E7540
(a total of 24 cores running at 2 Ghz), 128 GB of RAM and a hard disk of 500 GB. The
remaining computations were run on a SUN xFire 4450 with a comparable configuration.
In parallelized computations we have limited the number of threads used to 20. As the
large examples below show, the parallelization scales efficiently. In Tables 6 and 7-x=1
indicates serial execution whereas-x=20 indicates parallel execution with a maximum of
20 threads. Normaliz needs relatively little memory. Almost all Normaliz computations
mentioned run stably with< 1 GB of RAM.

Normaliz is distributed as open source under the GPL. In addition to the source code,
the distribution contains executables for the major platforms Linux, Mac and Windows.

5.1. Overview of the examples.We have chosen the following test candidates:

(1) CondPar, CEffPl andPlVsCut come from combinatorial voting theory.CondPar
represents the Condorcet paradox,CEffPl computes the Condorcet efficiency of
plurality voting, andPlVsCut compares plurality voting to cutoff, all for 4 candi-
dates. See Schürmann [35] for more details.
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(2) 4x4, 5x5 and6x6 represent monoids of “magic squares”: squares of size 4×4,
5×5 and 6×6 to be filled with nonnegative integers in such a way that all rows,
columns and the two diagonals sum to the same “magic constant”. They belong
to the standard LattE distribution [19].

(3) bo5 andlo6 belong to the area of statistical ranking; see Sturmfels andWelker
[39]. bo5 represents the boolean model for the symmetric groupS5 andlo6 rep-
resents the linear order model forS6.

(4) small andbig are test examples used in the development of Normaliz without
further importance.small has already been discussed in [9].

(5) cyclo36, cyclo38, cyclo42 andcyclo60 represent the cyclotomic monoids of
orders 36, 38, 42 and 60. They are additively generated by thepairs (ζ ,1) ∈
C×Z+ whereζ runs over the roots of unity of the given order. They have been
discussed by Beck and Hoşten [3].

(6) A443 andA553 represent monoids defined by dimension 2 marginal distributions
of dimension 3 contingency tables of sizes 4×4×3 and 5×5×3. They had been
open cases in the classification of Ohsugi and Hibi [32] and were finished in [8].

(7) cross10, cross15 andcross20 are (the monoids defined by) the cross polytopes
of dimensions 10, 15 and 20 contained in the LattE distribution [19].

The columns of Table 5 contain the values of characteristic numerical data of the test
examplesM, namely: edim is the embedding dimension, i. e., the rank of the lattice in
whichM is embedded by its definition, whereas rank is the rank ofM. #ext is the number
of the extreme rays of the coneR+M, and #supp the number of its support hyperplanes.
#Hilb is the size of the Hilbert basis ofM.

The last two columns list the number of simplicial cones in the triangulation and the
number of components of the Stanley decomposition. These data are not invariants ofM.
However, if the triangulation uses only lattice points of a lattice polytopeP (all exam-
ples starting frombo5), then the number of components of the Stanley decomposition is
exactly the normalized volume ofP.

The open entries for6x6 seem to be out of reach presently. The Hilbert series of
6x6 is certainly a challenge for the future development of Normaliz. Other challenges
arelo7, the linear order polytope forS7 and the first case of the cyclotomic monoids
cyclo105 that is not covered by the theorems of Beck and Hoşten [3]. Whethercyclo105
will ever become computable, is quite unclear in view of its gigantic number of support
hyperplanes. However, we are rather optimistic forlo7; the normality of the linear order
polytope forS7 is an open question.

5.2. Hilbert bases. Table 6 contains the computation times for the Hilbert basesof the
test candidates. When comparing 4ti2 and Normaliz one should note that 4ti2 is not made
for the input of cones by generators, but for the input via support hyperplanes (CondPar
– 6x6). The same applies to the Normaliz dual mode-d. While Normaliz is somewhat
faster even in serial execution, the times are of similar magnitude. It is certainly an advan-
tage that its execution has been parallelized. When one runsNormaliz with the primary
algorithm on such examples it first computes the extreme raysof the cone and uses them
as generators.
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Input edim rank #ext #supp #Hilb # triangulation # Stanley dec

CondPar 24 24 234 27 242 1.344.671 1.816.323

PlVsCut 24 24 1.872 28 9.621 271.164.705.162 2.282.604.742.033

CEffPl 24 24 3.928 30 25.192 347.225.775.338 4.111.428.313.448

4x4 16 8 20 16 20 46 48

5x5 25 15 1.940 25 4.828 12.112.488 21.210.526

6x6 36 24 97.548 36 522.347 – –

bo5 31 27 120 235 120 20.853.141.970 20.853.141.970

lo6 16 16 720 910 720 5.745.903.354 5.801.113.080

small 6 6 190 32 34.591 1.593 2.276.921

big 7 7 27 56 73.551 337 18.788.796

cyclo36 13 13 36 46.656 37 44.608 46.656

cyclo38 19 19 38 923.780 39 370.710 923.780

cyclo42 13 13 42 24.360 43 161.249 183.120

cyclo60 17 17 60 656.100 61 12.475.500 13.616.100

A443 40 30 48 4.948 48 2.654.272 2.654.320

A553 55 43 75 306.955 75 9.248.527.905 9.249.511.725

cross10 11 11 20 1.024 21 512 1.024

cross15 16 16 30 32.678 31 16.384 32.768

cross20 21 21 40 1.048.576 41 524.288 1.048.576

TABLE 5. Numerical data of test examples

Despite of the fact that several examples could not be expected to be computable with
4ti2, we tried. We stopped the computations when the time hadexceeded 150 h (T) or the
memory usage had exceeded 100 GB (R). However, one should note thatA553 (and re-
lated examples) can be computed by “LattE for tea, too” (http://www.latte-4ti2.de),
albeit with a very large computation time; see [8]. This approach uses symmetries to re-
duce the amount of computations.

The examplesCEffPl, PlVsCut, 5x5 and6x6 are clear cases for the dual algorithm.
However, it is sometimes difficult to decide whether the primary, triangulation based al-
gorithm or the dual algorithm is faster. An example illustrating this dilemma is given by
lo6. As small clearly shows, the dual algorithm behaves badly if the final Hilbert basis
is large, even if the number of support hyperplanes is small.

The computation time ofbo5 which is close to zero is quite surprising at first glance, but
it has a simple explanation: the lexicographic triangulation defined by the generators in
the input file is unimodular so that all pyramids have height 1, and the partial triangulation
is empty.

The computation time for the Hilbert series ofcyclo38 is large compared to the time
for the Hilbert series in Table 7. The reason is the large number of support hyperplanes

http://www.latte-4ti2.de
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Input 4ti2 Nmz -d -x=1 Nmz -d -x=20 Nmz -N -x=1 Nmz -N -x=20

CondPar 0.025 s 0.018 s 0.031 s 5.628 s 1.775 s

PlVsCut 6.697 s 1.967 s 0.567 s – –

CEffPl 6:09 m 2:15 m 15.75 s – –

4x4 0.008 s 0.003 s 0.011 s 0.004 s 0.010 s

5x5 3.835 s 1.684 s 0.382 s 4:27 m 1:40 m

6x6 123:18:24 h 20:07:14 h 1:21:11 h – –

bo5 T – – 0.588 s 0.377 s

lo6 31:32 m 16:18 m 1:19 m 60:16 m 11:54 m

small 48:48 m 38:02 m 3:33 m 3.098 s 3.861 s

big T – – 3:05 m 43.758 s

cyclo36 T – – 1.477 s 1.092 s

cyclo38 R – – 36:55:53 h 2:02:32 h

cyclo60 R – – 7:06 m 2:17 m

A443 T – – 1.080 s 0.438 s

A553 R – – 3:15:15 h 15:59 m

TABLE 6. Computation times for Hilbert bases

together with a large number of candidates for the Hilbert basis. Therefore the reduction
needs much time.

The Hilbert basis computations in the Normaliz primary modeshow the efficiency of
partial triangulations (see Remark 8). Some numerical dataare contained in [8].

We have omitted thecross examples from the Hilbert basis computation in view of
the obvious unimodular triangulation of the cross polytopes (different from the one used
by Normaliz).cross20 needs 19.904 s withNmz -x=20.

5.3. Ehrhart series. Now we compare the computation times for Ehrhart series of Nor-
maliz and LattE. One should note that the computations with LattE are not completely
done by open source software: for the computation of Ehrhartseries it invokes the com-
mercial program Maple. LattE has a variant for the computation of Ehrhart polynomials
that avoids Maple; however, it can only be applied to latticepolytopes (and not to rational
polytopes in general).

There are three columns with computation times for LattE. The first,LattE ES, lists
the times for LattE alone, without Maple, the second,LattE + M ES, the combined com-
putation time of LattE and Maple (both for Ehrhart series), and the third,LattE EP, the
computation time of LattE for the Ehrhart polynomial. In allof these three columns we
have chosen the best time that we have been able to reach with various parameter settings
for LattE. However, LattE has failed on many candidates, partly because it produces enor-
mous output files. We have stopped it when the time exceeded 150 hours (T), the memory
usage was more than 100 GB RAM (R) or it has produced more than 400 GB of output



THE POWER OF PYRAMID DECOMPOSITION IN NORMALIZ 21

(O). These limitation were imposed by the system available for testing. In two cases it
has exceeded the system stack limit; this is marked by S.

Input LattE ES LattE+M ES LattE EP Nmz -x=1 Nmz -x=20

CondPar O S - 28.352 s 8.388 s

PlVsCut O O - – 175:11:26 h

CEffPl O S - – 218:13:55 h

4x4 0.579 s 3.465 s - 0.004 s 0.010 s

5x5 O 72:39:23 h - 5:20 m 2:47 m

bo5 T T T 90:05:43 h 7:20:50 h

lo6 R R T 14:17:09 h 2:18:14 h

small 57.890 s 39:36 m 41.337 s 0.370 s 0.274 s

big R R 9:15 m 1.513 s 0.334 s

cyclo36 R R 28:55 m 1.591 s 1.653 s

cyclo38 R R R 40.099 s 33.220 s

cyclo42 R R 2:14:06 h 4.784 s 4.547 s

cyclo60 R R R 7:47 m 5:36 m

A443 R R R 54.758 s 16.515 s

A553 R R T 112:59:33 h 7:37:04 h

cross10 T T 11.712 s 0.016 s 0.021 s

cross15 R R 49:06 m 0.675 s 0.487 s

cross20 R R R 32.820 s 23.207 s

TABLE 7. Computation times for Ehrhart series and Ehrhart polynomials

Remark 13. (a) From the Ehrhart series calculation ofPlVsCut we have obtained the
following statistics on the types of simplicial cones:

(1) 61,845,707,957 are unimodular,
(2) 108,915,272,879 are not unimodular, but satisfy condition (PU1), and of these
(3) 62,602,898,779 are potentially unimodular.

This shows that condition (PU2) that was added at a later stage has a satisfactory effect.
(The number of potentially unimodular, but nonunimodular simplicial cones is rather high
in this class.) The average value of|detGσ | is ≈ 10. This can be read off Table 5 since
the sum of the|detGσ | is the number of components of the Stanley decomposition.

The number of nongeneric simplicial cones is 129,661,342. The total numbers of
linear systems that had to be solved for the computation of the Ehrhart series is bounded
by 516,245,872,838≤ s≤ 516,375,534,180.

The total number of pyramids was 80,510,681. It depends on the number of parallel
threads that are allowed.

(b) For examples with a high proportion of unimodular cones the exploitation of uni-
modularity based on Proposition 9 is very efficient in volumecomputations. For example,
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lo5 requires only 102,526,351 determinant calculations instead of 5,801,113,080. For
PlVsCut it saves about 25%.

(c) For the examples from combinatorial voting theory (CondPar, CEffPl, PlVsCut)
Schürmann [35] has suggested a very efficient improvement via symmetrization that re-
places the Ehrhart series of a polytope by the generalized Ehrhart series of a projection.
Normaliz now has an offspring, NmzIntegrate, that computesgeneralized Ehrhart series;
see Bruns and Söger [12].

The volumes of the pertaining polytopes had already been computed by Schürmann
with LattE integrale. This information was very useful for checking the correctness of
Normaliz.

(d) The short Normaliz computation times for thecyclo andcross examples are made
possible by the special treatment of simplicial facets in the Fourier-Motzkin elimination;
see [9].
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[31] M. Köppe and S. Verdoolaege,Computing parametric rational generating functions with aPrimal

Barvinok algorithm.Electr. J. Comb.15 (2008), R16, 1–19.
[32] H. Ohsugi and T. Hibi,Toric ideals arising from contingency tables.In: Commutative Algebra and

Combinatorics. Ramanujan Mathematical Society Lecture Note Series4 (2006), 87–111.
[33] L. Pottier,The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM Press 1996.
[34] A. Schrijver,Theory of linear and integer programming.Wley, 1998.
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CHRISTOF SÖGER, UNIVERSITÄT OSNABRÜCK, FB MATHEMATIK /INFORMATIK , 49069 OSNA-
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