ROOT User’s Guide

ROOT

An Object-Oriented
Data Analysis Framework

May 2013

Contents

Preface

1 Introduction

1.1
1.2
1.3
14

1.5
1.6

1.7

The ROOT Mailing Lists 0 L 0o e e e e e

Contact Information e e e e e e e e e

Installing ROOT o e
The Organization of the ROOT Framework
1.6.1 SROOTSYS/bin
1.6.2 SROOTSYS/Lib. oo
1.6.3 $ROOTSYS/tutorials
1.6.4 SROOTSYS/test o o v i
1.6.5 SROOTSYS/include
1.6.6 SROOTSYS/<library>
How to Find More Information e

1.7.1 Class Reference Guide

2 Getting Started

2.1
2.2
2.3

2.4

Setting the Environment Variables L
Start and Quit a ROOT Session e
Using the GUL 0 o L 0 e e e
2.3.1 Main Menus and Toolbar L
2.3.2 The Editor Frame
2.3.3 Classes, Methods and Constructors i it it e e e e
2.3.4 User Interaction L e
2.3.5 Building a Multi-pad Canvas
2.3.6 Saving the Canvas e e
2.3.7 Printing the Canvas
The ROOT Command Line o e
2.4.1 Multi-line Commands e
2.4.2 CINT Extensions ot it e
2.4.3 Helpful Hints for Command Line Typing

21

23
23
24
24
24
24
25
25
26
26
28
30
31
31
31
31
31

CONTENTS

2.4.4 Regular Expressiono e 48
2.5 Conventions e 49
2.5.1 Coding Conventions e 49
2.5.2 Machine Independent Types L e e 50
253 TODIECE © o o o e e 50
2.6 Global Variables L e e 50
2.6.1 gROOT . . . e 51
26.2 gFile 51
2.6.3 gDirectory L e 51
2.6.4 gPad e e 51
2.6.5 gRandom 51
2.6.6 gEnvo 52
2.7 Environment Setup L 52
2.7.1 Logon and Logoff Scripts L 53
2.7.2 History File o e 53
2.7.3 Tracking Memory Leaks 53
2.7.4 Memory Checker e 53
2.8 Converting from PAW to ROOT 54
2.8.1 Converting HBOOK/PAW Files 54
Histograms 55
3.1 The Histogram Classes e 55
3.2 Creating Histograms e 95
3.2.1 Constant or Variable Bin Width oL o o6
3.3 Bin Numbering L e 57
3.3.1 Convention e 57
3.3.2 Re-binning L e 57
3.4 Filling Histograms L 57
3.4.1 Automatic Re-binning Option L 58
3.5 Random Numbers and Histograms L e 58
3.6 Adding, Dividing, and Multiplying 59
3.7 Projections L e 59
3.8 Drawing Histograms e 60
3.8.1 Setting the Style 60
3.8.2 Draw Options o o o o i e 60
3.8.3 Drawing a Sub-range of a 2-D Histogram, 77
3.8.4 Superimposing Histograms with Different Scales 78
3.8.5 Statistics Display e 79
3.8.6 Setting Line, Fill, Marker, and Text Attributes 79
3.8.7 Setting Tick Marks on the Axis 80
3.8.8 Giving Titles to the X, Yand Z Axis. i 80
3.9 Making a Copy of an Histogram o e 80

3.10 Normalizing Histograms o e 81

CONTENTS 5

3.11 Saving/Reading Histograms to/from a File o o 81
3.12 Miscellaneous Operations e e e e 81
3.13 Alphanumeric Bin Labels 82
3.13.1 Option 1: SetBinLabel o 82
3.13.2 Option 2: Fill o 83
3.13.3 Option 3: TTree:Draw e 83
3.13.4 Sort Options e 83

3.14 Histogram Stacks e e 84
3.15 TH2Poly o e 85
3.16 Profile Histograms L e 85
3.16.1 Build Options e 86
3.16.2 Drawing a Profile without Error Barso oo 88
3.16.3 Create a Profile from a 2D Histogram 88
3.16.4 Create a Histogram from a Profile 88
3.16.5 Generating a Profile from a TTree 88
3.16.6 2D Profiles 89
3.17 Iso Surfaces L e 90
3.18 3D Implicit Functions e 90
319 TPie . . . e 90
3.20 The User Interface for Histograms 93
3.20.1 THIEItor e 93
3.20.2 TH2Editor e e e 95

4 Graphs 99
4.1 TGraph 99
4.1.1 Graph Draw Options o e 99

4.2 Superimposing Two Graphs e 103
4.3 Graphs with Error Bars 104
4.4 Graphs with Asymmetric Error Bars oo 105
4.5 Graphs with Asymmetric Bent Errorso 106
4.6 TGraphPolar e 107
4.7 TGraph Exclusion Zone 109
4.8 TGraphQQ . . .« o o e 110
4.8.1 Two Datasets e 110
4.8.2 Ome Dataset e 111

4.9 TMultiGraph e 111
4.10 TGraph2D o o e 112
4.11 TGraph2DErrors o o e e 114
4.12 Fitting a Graph o e 114
4.13 Setting the Graph’s Axis Title 116
4.14 Zooming a Graph oL 116

4.15 The User Interface for Graphs0 117

6 CONTENTS
5 Fitting Histograms 119
5.1 The Fit Method e 119
5.2 Fit with a Predefined Function 120
5.3 Fit with a User-Defined Function 120
5.3.1 Creating a TF1 with a Formula 120
5.3.2 Creating a TF1 with Parameters 120
5.3.3 Creating a TF1 with a User Function, 121

5.4 Fixing and Setting Parameters’ Bounds 122
5.5 Fitting Sub Ranges L e 123
5.6 The Fit Panel o 123
5.6.1 Function Choice and Settings L 123
5.6.2 Fitter Settings L 123
5.6.3 Draw Options e 125
5.6.4 Print Options L e 125
5.6.5 Command Buttons 125

5.7 Fitting Multiple Sub Ranges 125
5.8 Adding Functions to the List 127
5.9 Combining Functions L 127
5.10 Associated Function 128
5.11 Access to the Fit Parameters and Results oL 128
5.12 Associated Errorso e 129
5.13 Fit Statistics 129
5.14 The Minimization Package e 129
5.14.1 Basic Concepts of Minuit o 130
5.14.2 The Transformation of Limited Parameters 130
5.14.3 How to Get the Right Answer from Minuit 131
5.14.4 Reliability of Minuit Error Estimates L 131

5.15 FUMILI Minimization Package 132
5.16 Neural Networks e 133
5.16.1 Introduction L 133
5.16.2 The MLP o e e 134
5.16.3 Learning Methods e 134
5.16.4 Using the Network o e 135
5.16.5 Examples e e 136

6 A Little C++ 139
6.1 Classes, Methods and Constructors 139
6.2 Inheritance and Data Encapsulation o 140
6.2.1 Method Overriding e 140
6.2.2 Data Encapsulation 140

6.3 Creating Objects on the Stack and Heap 141

CONTENTS

7 CINT the C++4 Interpreter
7.1 What is CINT?
7.2 The ROOT Command Line Interface o
7.3 The ROOT Script Processor e
7.3.1 Un-named ScriptS e
7.3.2 Named Scripts e
7.3.3 Executing a Script from a Scripto L
7.4 Resetting the Interpreter Environmento L Lo
7.5 A Script Containing a Class Definition o
7.6 Debugging Scripts L e
7.7 Inspecting Objects
7.8 ROOT/CINT Extensions to CH+ o ottt e e e e e e e e
7.9 ACLiC - The Automatic Compiler of Libraries for CINT
T7.9.1 Usage o ot e
7.9.2 Setting the Include Path o
7.9.3 Dictionary Generation oL e
7.9.4 Intermediate Steps and Fileso L
7.9.5 Moving between Interpreter and Compiler Lo L
7.10 Reflex . . . o o o
T.10.1 OVerview oo e e e e e
7.10.2 Selecting Types And Members
7.10.3 Genreflex and Templates
7.10.4 GCCXML Installation
7.10.5 Reflex APL o o e
T710.6 CIntex o o o
8 Object Ownership
8.1 Ownership by Current Directory (gDirectory)
8.2 Ownership by the Master TROOT Object (gROOT)
8.2.1 The Collection of Specials e
8.2.2 Access to the Collection Contents
8.3 Ownership by Other Objects
8.4 Ownership by the User e
8.4.1 The kCanDelete Bit
8.4.2 The kMustCleanup Bit e
9 Graphics and the Graphical User Interface
9.1 Drawing Objects o e e e
9.2 Imteracting with Graphical Objects
9.2.1 Moving, Resizing and Modifying Objects.
9.2.2 Selecting Objects e e
9.2.3 Context Menus: the Right Mouse Button,
9.2.4 Executing Events when a Cursor Passes on Top of an Object

145
145
146
148
148
148
150
150
151
152
153
153
155
156
157
157
158
158
159
160
160
161
161
161
164

165
165
166
166
166
167
167
167
168

9.3

9.4

9.5

9.6

9.7

9.8

9.9

CONTENTS

Graphical Containers: Canvas and Pad L 174
9.3.1 The Global Pad: gPad 176
9.3.2 The Coordinate Systems of a Pad o 177
9.3.3 Converting between Coordinate Systems L oL 178
9.3.4 Dividing a Pad into Sub-pads 178
9.3.5 Updating the Pad e 180
9.3.6 Making a Pad Transparent L 180
9.3.7 Setting the Log Scale e 180
9.3.8 WaitPrimitive method L 181
9.3.9 Locking the Pad e 181
Graphical Objects o 0 e 181
9.4.1 Lines, Arrows and Polylines L 181
9.4.2 Circlesand Ellipses e 183
9.4.3 Rectangles 184
9.4.4 Markerso e e 184
9.4.5 Curly and Wavy Lines for Feynman Diagrams 186
9.4.6 Text and Latex Mathematical Expressions 187
9.4.7 Greek Letters o o L 188
9.4.8 Mathematical Symbols 188
949 TextinaPad 193
9.4.10 The TeX Processor TMathText 194
AXIS . L e 194
9.5.1 Axis Title o o e 196
9.5.2 Axis Options and Characteristics 196
9.5.3 Setting the Number of Divisions 197
9.54 Zooming the AXiS 197
9.5.5 Drawing Axis Independently of Graphs or Histograms 197
9.5.6 Orientation of Tick Marks on Axis e 198
9.5.7 Labels L 198
9.5.8 Axis with Time Units o 200
9.5.9 Axis Examples e 204
Graphical Objects Attributes oL 208
9.6.1 Text Attributes L 208
9.6.2 Line Attributes 211
9.6.3 Fill Attributes 212
9.6.4 Color and Color Palettes. 212
The Graphics Editor e 215
9.7.1 TAxisEditor e 215
9.7.2 TPadEditor e 216
Copy and Paste 216
9.8.1 Using the GUI e 216
9.8.2 Programmatically e 218

Legends o . e e 219

CONTENTS 9

9.10 The PostScript Interface o 221
9.10.1 Special Characters e e 222
9.10.2 Writing Several Canvases to the Same PostScript File 222
9.10.3 The Color Models e 224

9.11 The PDF Interface o 225

9.12 Create or Modify a Style e 225

9.13 3D VIEWETS . . . o v vt i e e e e 227
9.13.1 Invoking a 3D viewero e 227
9.13.2 The GL Viewer 0 e e e 228
0.13.3 The X3D VIeWer o i i i e 235
9.13.4 Common 3D Viewer Architecture L 235

10 Folders and Tasks 243

10.1 Folders o o o e 243

10.2 Why Use Folders? 243

10.3 How to Use Folders e 243
10.3.1 Creating a Folder Hierarchy 243
10.3.2 Posting Data to a Folder (Producer) 245
10.3.3 Reading Data from a Folder (Consumer) 245

10.4 Tasks . . o o o e e 247

10.5 Execute and Debug Tasks e 250

11 Input/Output 251

11.1 The Physical Layout of ROOT Files e 251
11.1.1 The File Header e 252
11.1.2 The Top Directory Description 253
11.1.3 The Histogram Records o 253
11.1.4 The Class Description List (StreamerInfo List) 254
11.1.5 The List of Keys and the List of Free Blocks, 255
11.1.6 File Recovery o o e e e e e e e 255

11.2 The Logical ROOT File: TFile and TKey e 256
11.2.1 Viewing the Logical File Contents 257
11.2.2 The Current Directory e 257
11.2.3 Objects in Memory and Objectson Disk o oL 259
11.2.4 Saving Histograms to Disk o 261
11.2.5 Histograms and the Current Directory 263
11.2.6 Saving Objects to Disk L e 263
11.2.7 Saving Collections to Disk 264
11.2.8 A TFile Object Going Out of Scope 264
11.2.9 Retrieving Objects from Disk 264
11.2.10 Subdirectories and Navigation L 265

11.3 Streamers e e 267

11.3.1 Automatically Generated Streamerso 267

CONTENTS

11.3.2 Transient Data Members (//1) 268
11.3.3 The Pointer to Objects (//->) 268
11.3.4 Variable Length Array e 268
11.3.5 Double32_t o o 269
11.3.6 Prevent Splitting (//|]) - - - -« « o o o o e 269
11.3.7 Streamers with Special Additions 269
11.3.8 Writing Objects o e e e e e 270
11.3.9 Ignore Object Streamers o e e e e 271
11.3.10 Streaming a TClonesArray o o o i e e e 271
11.4 Pointers and References in Persistency L 271
11.4.1 Streaming C++ Pointers e 271
11.4.2 Motivation for the TRef Class o 272
11.4.3 Using TRef o o o e 272
11.4.4 How Does It Work? e 272
11.4.5 Action on Demand 274
11.4.6 Array of TRef.« . . o e 275
11.5 Schema Evolution L e 275
11.5.1 The TStreamerInfo Class e 276
11.5.2 The TStreamerElement Class o 277
11.5.3 Example: TH1 StreamerInfo 277
11.5.4 Optimized StreamerInfo L 278
11.5.5 Automatic Schema Evolution 278
11.5.6 Manual Data Model Evolution Capabilities 278
11.5.7 Manual Schema Evolution Lo 281
11.5.8 Building Class Definitions with the StreamerInfo 281
11.5.9 Example: MakeProject 281
11.6 Migrating to ROOT 3 e e 284
11.7 Compression and Performance L 284
11.8 Remotely Access to ROOT Files viaarootd 285
11.8.1 TNetFile URL o e 285
11.8.2 Remote Authentication L 285
11.8.3 A Simple SeSsion 285
11.8.4 The rootd Daemon L e e e e 286
11.8.5 Starting rootd via inetd L. 286
11.8.6 Command Line Arguments for rootd oL o 287
11.9 Reading ROOT Files via Apache Web Server 287
11.9.1 Using the General Open Function of TFile. 287

11.10XML Interface o s 288

CONTENTS 11

12 Trees 289
12.1 Why Should You Use a Tree? o e 289
12.2 A Simple TTree o o e e 289
12.3 Show an Entry with TTree::Show o 290
12.4 Print the Tree Structure with TTree::Print 291
12.5 Scan a Variable the Tree with TTree::Scan o 291
12.6 The Tree Viewer i i e e e e 291
12.7 Creating and Saving Trees L L 293

12.7.1 Creating a Tree from a Folder Hierarchy 293
12.7.2 Tree and TRef Objects e 295
12.7.3 Autosaveo 295
12.7.4 Trees with Circular Buffers 295
12.7.5 Size of TTree in the File o 295
12.7.6 User Info Attached to a TTree Object o 296
12.7.7 Indexing a Tree o L e e 296
12.8 Branches L e 296
12.9 Adding a Branch to Hold a List of Variables 297
12.10Adding a TBranch to Hold an Object 298
12.10.1 Setting the Split-level 298
12.10.2 Exempt a Data Member from Splitting 300
12.10.3 Adding a Branch to Hold a TClonesArray 300
12.10.4Identical Branch Names oL 300
12.11Adding a Branch with a Folder 300
12.12Adding a Branch with a Collection 301
12.13Examples for Writing and Reading Trees L L 301
12.14Example 1: A Tree with Simple Variables 301
12.14.1 Writing the Tree o . o L o e e 302
12.14.2Viewing the Tree« L e e 302
12.14.3Reading the Tree L 304
12.15Example 2: A Tree with a C Structure 305
12.15.1 Writing the Tree« . . o L e 307
12.15.2 Analysis o oL e e 308
12.16Example 3: Adding Friends to Trees 310
12.16.1 Adding a Branch to an Existing Tree 310
12.16.2 TTree:: AddFriend e 310
12.17Example 4: A Tree with an Event Class 313
12.17.1The Event Class o . o 0 e e e e 313
12.17.2The EventHeader Class 0 e e 313
12.17.3The Track Class e e 314
12.17.4Writing the Tree L e 314
12.17.5Reading the Tree L L e e e 315
12.18Example 5: Import an ASCII File into a TTree e 317

12.19Trees in Analysis o L e 317

12 CONTENTS

12.20Simple Analysis Using TTree::Draw 0oL 0 318
12.20.1 Using Selection with TTree:Draw 0 oo 319
12.20.2 Using TCut Objects in TTree:Draw e 319
12.20.3 Accessing the Histogram in Batch Mode o oL 320
12.20.4 Using Draw Options in TTree::Draw o oo 320
12.20.5 Superimposing Two Histograms L 321
12.20.6 Setting the Range in TTreex:Draw o 321
12.20.7 TTree::Draw Examples oo 0 e 321
12.20.8 Multiple variables visualisation L L L 329
12.20.9 Using TTree::Scan o o o 000t e e e e e 337
12.20.1EventList and TEntryList o o 338
12.20.1Filling a Histogram o L e e 341

12.21Using TTree:MakeClass o o o L 0 o e e 343
12.21.1 Creating a Class with MakeClass o e 343
12.21.2MyClass.h o o o 344
12.21.3MyClass.C o o 345
12.21.4 Modifying MyClass:Loop o . o e 345
12.21.5 Loading MyClass o o o e e e 346

12.22Using TTree::MakeSelector o o 347
12.22.1 Performance Benchmarks L 348

12.23Impact of Compression on I/O L 348

12.24Chains e 349
12.24.1TChain::AddFriend 350

13 Math Libraries in ROOT 351

13.1 TMath . . . o o e 351

13.2 Random Numbers oL 352
13.2.1 TRandom o o e e e e e e 352
13.2.2 TRandoml e 352
13.2.3 TRandom2 e e e 352
13.2.4 TRandoms3 e 352
13.2.5 Seeding the Generators L e 353
13.2.6 Examples of Using the Generators 353
13.2.7 Random Number Distributions L o o 353
13.2.8 UNURAN . . o o 354
13.2.9 Performances of Random Numbers L oL 355

13.3 MathCore Library o e 355

13.4 Generic Vectors for 2, 3 and 4 Dimensions (GenVector) 356
13.4.1 Main Characteristics e 356
13.4.2 Example: 3D Vector Classes o e 359
13.4.3 Example: 3D Point Classes e 361
13.4.4 Example: LorentzVector Classes o 362

13.4.5 Example: Vector Transformations L 364

CONTENTS 13

13.4.6 Example with External Packages L s 367

13.5 MathMore Library 0 e 367
13.6 Mathematical Functions L L 368
13.6.1 Special Functions in MathCore 368
13.6.2 Special Functions in MathMore 369
13.6.3 Probability Density Functions (PDF) 370
13.6.4 Cumulative Distribution Functions (CDF) 371

13.7 Linear Algebra: SMatrix Package L 372
13.7.1 Example: Vector Class (SVector) 372
13.7.2 Example: Matrix Class (SMatrix) 373
13.7.3 Example: Matrix and Vector Functions and Operators 376
13.7.4 Matrix and Vector Functions Lo 377

13.8 Minuit2 Package L 377
13.9 ROOT Statistics Classes o o o vt i e e e e e e e e 378
13.9.1 Classes for Computing Limits and Confidence Levels 378
13.9.2 Specialized Classes for Fitting 378
13.9.3 Multi-variate Analysis Classes e 379

14 Linear Algebra in ROOT 381
14.1 Overview of Matrix Classes o o i i e e e 381
14.2 Matrix Properties Lo e 383
14.2.1 Accessing Properties e 383
14.2.2 Setting Properties L e 384

14.3 Creating and Filling a Matrix o 384
14.4 Matrix Operators and Methods L 386
14.4.1 Arithmetic Operations between Matrices oL 386
14.4.2 Arithmetic Operations between Matrices and Real Numbers 386
14.4.3 Comparisons and Boolean Operations 386
14.4.4 Matrix Norms oL 387
14.4.5 Miscellaneous Operators L 387

14.5 Matrix VIEWS o o o 388
14.5.1 View Operators e e e 388
14.5.2 View Examples oL e 390

14.6 Matrix Decompositions oL L e 390
14.6.1 Tolerances and Scaling e 392
14.6.2 Condition number e 392
14.6.3 LU . . . o o e e s 393
14.6.4 Bunch-Kaufman e 393
14.6.5 Cholesky o e e e 394
14.6.6 QRH 394
14.6.7 SVD . o o 394

14.7 Matrix FEigen Analysis e 394

14.8 Speed Comparisons o ..o e e e e 395

14

15 Adding a Class

15.1 The Role of TObject

15.2

15.3

15.4

15.5

15.6 Adding a Class with ACLiC

15.1.1

15.1.2

15.1.3

15.1.4

15.1.5

15.1.6

15.1.7

15.1.8

15.1.9

15.1.10 Bit Masks and Unique 1D
Motivation
15.2.1 Template Support
The Default Constructor
rootcint: The CINT Dictionary Generator
15.4.1 Dictionaries for STL
Adding a Class with a Shared Library

15.5.1 The LinkDef.h File

Introspection, Reflection and Run Time Type Identification

Collections

Input/Output

Paint/Draw
Clone/DrawClone

Browse

SavePrimitive

GetObjectInfo

IsFolder

16 Collection Classes

16.1 Understanding Collections

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

16.1.1 General Characteristics
16.1.2 Determining the Class of Contained Objects
16.1.3 Types of Collections
16.1.4 Ordered Collections (Sequences)
Iterators: Processing a Collection
Foundation Classes
A Collectable Class

The TIter Generic Iterator

The TList Collection

16.6.1 Iterating Over a TList
The TObjArray Collection
TClonesArray An Array of Identical Objects
16.8.1 The Idea Behind TClonesArray

Template Containers and STL

CONTENTS

397

CONTENTS 15

17 Physics Vectors 423
17.1 The Physics Vector Classes o ittt it e e e 423
17.2 TVectord o e 423

17.2.1 Declaration / Access to the Components 424
17.2.2 Other Coordinates e 424
17.2.3 Arithmetic / Comparison e 425
17.2.4 Related Vectors e 425
17.2.5 Scalar and Vector Products L 425
17.2.6 Angle between Two Vectors e 425
17.2.7 Rotation around Axes L 425
17.2.8 Rotation around a Vector L L 425
17.2.9 Rotation by TRotation Class e 426
17.2.10 Transformation from Rotated Frame 426
17.3 TRotation L e e e e 426
17.3.1 Declaration, Access, Comparisons v v v it i e e e e e e e 426
17.3.2 Rotation around AXes L. 426
17.3.3 Rotation around Arbitrary Axis L 427
17.3.4 Rotation of Local Axes e 427
17.3.5 Inverse Rotation e 427
17.3.6 Compound Rotations e 427
17.3.7 Rotation of TVectord e 427
17.4 TLorentzVector o e e e 428
17.4.1 Declaration L e e 428
17.4.2 Access t0 COmMPONENtS o o i v e e 428
17.4.3 Vector Components in Non-Cartesian Coordinates 429
17.4.4 Arithmetic and Comparison Operators v 429
17.4.5 Magnitude/Invariant mass, beta, gamma, scalar product oL 429
17.4.6 Lorentz Boost e 430
17.4.7 Rotations o e e e 430
17.4.8 Miscellaneous o L e e e e e 430
17.5 TLorentzRotation o . e e 431
17.5.1 Declaration L e e 431
17.5.2 Access to the Matrix Components/Comparisons 431
17.5.3 Transformations of a Lorentz Rotation 431
17.5.4 Transformation of a TLorentzVector 432
17.5.5 Physics Vector Example oL 432

18 The Geometry Package 433

18.1 Quick Start: Creating the “world” L 433
18.1.1 Example 1: Creating the World o 433
18.1.2 Example 2: A Geometrical Hierarchy Look and Feel 434

18.2 Materials and Tracking Mediao 436

18.2.1 Elements, Materials and Mixtures e 436

16

CONTENTS

18.2.2 Radionuclides L 438
18.2.3 Tracking Media e 441
18.2.4 User Interface for Handling Materials and Media 441

18.3 Shapes 441
18.3.1 Units o 442
18.3.2 Primitive Shapes 442
18.3.3 Composite Shapes e e 455
18.3.4 Navigation Methods Performed By Shapes. 459
18.3.5 Creating Shapes« . . e 460
18.3.6 Dividing Shapes e e e e 461
18.3.7 Parametric Shapes L 461

18.4 Geometry Creation L e 461
18.4.1 The Volume Hierarchy e 462
18.4.2 Creating and Positioning Volumes Lo o 464
18.4.3 Geometrical Transformations L Lo 470
18.4.4 Ownership of Geometry Objects 473

18.5 Navigation and Tracking e 474
18.5.1 TGeoNavigator Class it e e e 474
18.5.2 Initializing the Starting Point 474
18.5.3 Initializing the Direction e 475
18.5.4 Imitializing the State e 475
18.5.5 Checking the Current State 475
18.5.6 Saving and Restoring the Current State L. 477
18.5.7 Navigation Queries L e 477
18.5.8 Creating and Visualizing Tracks o 480

18.6 Checking the Geometry L e 481
18.6.1 The Overlap Checker 482
18.6.2 Graphical Checking Methods 484

18.7 The Drawing Package e 487
18.7.1 Drawing Volumes and Hierarchies of Volumes 487
18.7.2 Visualization Settings and Attributes. L oL 488
18.7.3 Ray Tracing o . o e e e 489

18.8 Representing Misalignments of the Ideal Geometry 490
18.8.1 Physical Nodes o . e e 490

18.9 Geometry I/O L L L 492
18.9.1 GDML 493
18.10Navigation Algorithms 493
18.10.1 Finding the State Corresponding to a Location (X,y,2) o oo v v v vt 493
18.10.2 Finding the Distance to Next Crossed Boundary 494
18.11Geometry Graphical User Interface 498
18.11.1Editing a Geometry e e e e e 498
18.11.2 The Geometry Manager Editor o 501

18.11.3 Editing Existing Objects e 502

CONTENTS 17

18.11.4 Creation of New Objects o e 505

18.11.5 Editing Volumes L e e e 505

18.11.6 How to Create a Valid Geometry with Geometry Editors 509

19 Python and Ruby Interfaces 511
19.1 PyROOT Overview o oot e e e e e e e 511
19.1.1 Glue-ing Applications e e 511

19.1.2 Access to ROOT from Python 512

19.1.3 Access to Python from ROOT e 512

19.1.4 Installation o e 513

19.1.5 Using PYROOT . .« o v v v ot e e e e 513

19.1.6 Memory Handling e 517

19.1.7 Performance L e e 518

19.1.8 Use of Python Functions 518

19.1.9 Working with Trees e 520
19.1.10Using Your Own Classes oo v vt it ittt e e e e 522

19.2 How to Use ROOT with Ruby e 522
19.2.1 Building and Installing the Ruby Module 523

20 The Tutorials and Tests 525
20.1 SROOTSYS/tutorials 525
20.2 SROOTSYS/test . . . o v o o e 525
20.2.1 Event - An Example of a ROOT Application 527

20.2.2 stress - Test and Benchmark L o o 532

20.2.3 guitest - A Graphical User Interface 533

21 Example Analysis 535
21.1 Explanation L e e e 535
21.2 Script . . . L e 538
22 Networking 543
22.1 Setting-up a Connection e e e 543
22.2 Sending Objects over the Network 543
22.3 Closing the Connection i e 544
22.4 A Server with Multiple Sockets L 544

23 Threads 547
23.1 Threads and Processes L 547
23.1.1 Process Properties e 547

23.1.2 Thread Properties« . e 547

23.1.3 The Initial Thread o 548

23.2 Implementation of Threads in ROOT 548
23.2.1 Installation L 548

23.2.2 ClasSes o v i e 548

23.2.3 TThread for Pedestrians e 548

18 CONTENTS

23.2.4 TThread in More Details 549

23.3 Advanced TThread: Launching a Method in a Thread 552
23.3.1 Known Problems e 553

23.4 The Signals of ROOT 553
23.5 GlOSSATY o e e e 554
24 PROOF: Parallel Processing 557
25 Writing a Graphical User Interface 559
25.1 The ROOT GUI Classes v v v v v vttt et e e e e e e e e e e e e e 559
25.2 Widgets and Frames L e 559
25.3 TVirtualX e 560
25.4 A Simple Example oL 560
25.4.1 A Standalone Version 564

25.5 Widgets Overview e e 566
25.5.1 TGODject o oo 566
25.5.2 TGWidget e 566
25.5.3 TGWiIndow e 567
25.5.4 Frames e 568

25.6 Layout Management L e 571
25.7 Event Processing: Signals and Slots oo 572
25.8 Widgets in Detail o 577
25.8.1 Buttons LY
25.8.2 Text Entries. L 580
25.8.3 Number Entries e 581
25.8.4 Menus 583
25.8.5 Toolbar e 585
25.8.6 List Boxes L 586
25.8.7 Combo Boxes e 588
25.8.8 Sliders 588
25.8.9 Triple Slider e 589
25.8.10Progress Bars L e 589
25.8.11Static Widgets o o 590
25.8.128tatus Baro e 591
25.8.138plitters L e 591
25.8.14 TGCanvas, ViewPort and Container 593
25.8.15Embedded Canvas e e e 594

25.9 The ROOT Graphics Editor (GED) e e 594
25.9.1 Object Editors o . e 595
25.9.2 Editor Design Elements Lo e 595
25.10Drag and Drop 597
25.10.1Drag and Drop Data Class 597

25.10.2Handling Drag and Drop Events Lo 598

CONTENTS 19

26 ROOT/Qt Integration Interfaces 601
26.1 Qt-ROOT Implementation of TVirtualX Interface (BNL) 601
26.1.1 Installation L L 601
26.1.2 Applications L e 602
26.1.3 TQtWidget Class, Qt Signals / Slots and TCanvas Interface 609

26.2 GST QEROOT . . o o o e e e e e e 611
26.2.1 Create a New Project in the Designer 613
26.2.2 main()o 613

27 Automatic HTML Documentation 615
27.1 Reference Guide e 615
27.1.1 Product and Module Documentation Lo oL L 616

27.2 Converting Sources (and Other Files) to HTML 616
27.3 Special Documentation Elements: Directives o 616
27.3.1 Latex Directive L 617
27.3.2 Macro Directive L 617

27.4 Customizing HTML 0.0 0 e 618
27.4.1 Referencing Documentation for other Libraries 618
27.4.2 Search Engine. L 618
27.4.3 ViewCVS .« . . 618
27.4.4 Wiki Pages e 618

27.5 Tutorial e 618
28 Appendix A: Install and Build ROOT 619
28.1 License. 619
28.2 Installing ROOT o e e 619
28.3 Choosing a Version e 619
28.4 Installing Precompiled Binaries oL e 619
28.5 Installing the Source e 620
28.5.1 Installing and Building the Source from a Compressed File 620
28.5.2 More Build Options e 620

28.6 File system.rootrc oL e 621
28.6.1 TCanvas Specific Settings L 623
28.6.2 THtml Specific Settings L 624
28.6.3 GUI Specific Settings o e 625
28.6.4 TBrowser Settings 626
28.6.5 TRint Specific Settings L 626
28.6.6 ACLIiC Specific Settings e 627
28.6.7 PROOF Related Variables 627

28.7 Documentation to Download 631

20

CONTENTS

Preface

Draft, November 2000 - version 0.6.2In late 1994, we decided to learn and investigate Object Oriented programming
and C++ to better judge the suitability of these relatively new techniques for scientific programming. We knew that
there is no better way to learn a new programming environment than to use it to write a program that can solve a real
problem. After a few weeks, we had our first histogramming package in C++. A few weeks later we had a rewrite of
the same package using the, at that time, very new template features of C+4. Again, a few weeks later we had another
rewrite of the package without templates since we could only compile the version with templates on one single platform
using a specific compiler. Finally, after about four months we had a histogramming package that was faster and more
efficient than the well-known FORTRAN based HBOOK histogramming package. This gave us enough confidence in
the new technologies to decide to continue the development. Thus was born ROOT. Since its first public release at the
end of 1995, ROOT has enjoyed an ever-increasing popularity. Currently it is being used in all major High Energy
and Nuclear Physics laboratories around the world to monitor, to store and to analyse data. In the other sciences as
well as the medical and financial industries, many people are using ROOT. We estimate the current user base to be
around several thousand people. In 1997, Eric Raymond analysed in his paper “The Cathedral and the Bazaar” the
development method that makes Linux such a success. The essence of that method is: “release early, release often
and listen to your customers”. This is precisely how ROOT is being developed. Over the last five years, many of our
“customers” became co-developers. Here we would like to thank our main co-developers and contributors:

Masaharu Goto wrote the CINT C++ interpreter that became an essential part of ROOT. Despite being 8 time
zones ahead of us, we have the feeling he has been sitting in the room next door since 1995.

Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and Virtual
Monte-Carlo. They have been working with the ROOT team since 2000.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT team in 2000 and
has been working on the graphics sub-system.

Ilka Antcheva has been working on the Graphical User Interface classes. She is also responsible for this latest edition
of the Users Guide with a better style, improved index and several new chapters (since 2002).

Bertrand Bellenot has been developing and maintaining the Win32GDK version of ROOT. Bertrand has also many
other contributions like the nice RootShower example (since 2001).

Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-system for Windows
and the GUI Builder (since 2000).

Gerri Ganis has been working on the authentication procedures to be used by the root daemons and the PROOF
system (since 2002).

Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system (since 1995).

Valeri Fine (now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He is currently
working on the Qt layer of ROOT (since 1995).

Victor Perevoztchikov (BNL) worked on key elements of the I/O system, in particular the improved support for
STL collections (1997-2001).

Nenad Buncic developed the HTML documentation generation system and integrated the X3D viewer inside ROOT
(1995-1997).

Suzanne Panacek was the author of the first version of this User’s Guide and very active in preparing tutorials and
giving lectures about ROOT (1999-2002).

Axel Naumann has been developing further the HTML Reference Guide and helps in porting ROOT under Windows
(cygwin/gcc implementation) (since 2000).

Anna Kreshuk has developed the Linear Fitter and Robust Fitter classes as well as many functions in TMath, TF1,
TGraph (since 2005).

Richard Maunder has contributed to the GL viewer classes (since 2004).

21

22 CONTENTS

Timur Pocheptsov has contributed to the GL viewer classes and GL in pad classes (since 2004).

Sergei Linev has developed the XML driver and the TSQLFile classes (since 2003).

Stefan Roiser has been contributing to the reflex and cintex packages (since 2005).

Lorenzo Moneta has been contributing the MathCore, MathMore, Smatrix & Minuit2 packages (since 2005).
Wim Lavrijsen is the author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the $RO0TSYS/README/CREDITS file for their contributions,
and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!
Rene Brun & Fons Rademakers

Geneva, July 2007

Chapter 1

Introduction

In the mid 1990’s, René Brun and Fons Rademakers had many years of experience developing interactive tools and
simulation packages. They had lead successful projects such as PAW, PIAF, and GEANT, and they knew PAW the
twenty-year-old FORTRAN libraries had reached their limits. Although still very popular, these tools could not scale
up to the challenges offered by the Large Hadron Collider, where the data is a few orders of magnitude larger than
anything seen before.

At the same time, computer science had made leaps of progress especially in the area of Object Oriented Design, and
René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an impressive amount of
data, around 10 Terabytes per run. This rate provided the ideal environment to develop and test the next generation
data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa Goto in
Japan. It is an independent product, which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the “Bazaar style”, a term from the book “The Cathedral and the Bazaar” by
Eric S. Raymond. It means a liberal, informal development style that heavily relies on the diverse and deep talent of
the user community. The result is that physicists developed ROOT for themselves; this made it specific, appropriate,
useful, and over time refined and very powerful. The development of ROOT is a continuous conversation between users
and developers with the line between the two blurring at times and the users becoming co-developers.

When it comes to storing and mining large amount of data, physics plows the way with its Terabytes, but other fields
and industry follow close behind as they acquiring more and more data over time. They are ready to use the true and
tested technologies physics has invented. In this way, other fields and industries have found ROOT useful and they
have started to use it also.

In the bazaar view, software is released early and frequently to expose it to thousands of eager co-developers to pound
on, report bugs, and contribute possible fixes. More users find more bugs, because they stress the program in different
ways. By now, after ten years, the age of ROOT is quite mature. Most likely, you will find the features you are looking
for, and if you have found a hole, you are encouraged to participate in the dialog and post your suggestion or even
implementation on roottalk, the ROOT mailing list.

1.1 The ROOT Mailing Lists

The roottalk was the very first active ROOT mailing list. mailing list People can subscribe to it by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml. The RootTalk Forum http://root.cern.ch/phpBB3/ has
been gradually replaced this mailing list since September 2003. The RootTalk Forum is a web-based news group with
about 10 discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in the roottalk or RootTalk Forum
archives. Please use the search engine to see if your question has already been answered before sending a mail to the
roottalk list or post a topic in the Forum.

You can browse the roottalk archives at: http://root.cern.ch/root/roottalk/AboutRootTalk.html. You can send your
question without subscribing to: roottalk@cern.ch

23

http://root.cern.ch/root/Registration.phtml
http://root.cern.ch/phpBB3/
http://root.cern.ch/root/roottalk/AboutRootTalk.html
mailto:roottalk@cern.ch

24 CHAPTER 1. INTRODUCTION
1.2 Contact Information

Several authors wrote this book and you may see a “change of voice” from one chapter to the next. We felt we could
accept this in order to have the expert explain what they know best. If you would like to contribute a chapter or
add to a section, please contact rootdoc@cern.ch. We count on you to send us suggestions on additional topics or on
the topics that need more documentation. Please send your comments, corrections, questions, and suggestions to the
rootdoc list: rootdoc@cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the elementary
functionality and progresses in complexity reaching the specialized topics at the end. The experienced user looking for

0w

special topics may find these chapters useful: see “Networking”, “Writing a Graphical User Interface”, “Threads”, and
“PROOF: Parallel Processing”.

1.3 Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. The styles in used are described below.

To show source code in scripts or source files:

{

cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i = 101;

cout <<" x = "<<x<<K" y = "<<y<<" i = "<<i<< endl;
3

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive system, the ROOT
prompt has a line number (root [12]); for the sake of simplicity, the line numbers are left off.

root[] TLine 1
root[] 1.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory.

When a variable term is used, it is shown between angled brackets. In the example below the variable term <library>
can be replaced with any library in the $RO0TSYS directory: $RO0OTSYS/<library>/inc.

1.4 The Framework

ROOQT is an object-oriented framework aimed at solving the data analysis challenges of high-energy physics. There are
two key words in this definition, object oriented and framework. First, we explain what we mean by a framework and
then why it is an object-oriented framework.

1.4.1 What Is a Framework?

Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and transportation are
services provided by the city. In your house, you have interfaces to the services such as light switches, electrical outlets,
and telephones. The details, for example, the routing algorithm of the phone switching system, are transparent to you
as the user. You do not care; you are only interested in using the phone to communicate with your collaborators to
solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have transportation and
water, you will have to build a road and dig a well. To have services like telephone and electricity you will need to
route the wires to your home. In addition, you cannot build some things yourself. For example, you cannot build a
commercial airport on your patch of land. From a global perspective, it would make no sense for everyone to build his
or her own airport. You see you will be very busy building the infrastructure (or framework) before you can use the
phone to communicate with your collaborators and have a drink of water at the same time. In software engineering,
it is much the same way. In a framework, the basic utilities and services, such as I/O and graphics, are provided.

mailto:rootdoc@cern.ch
mailto:rootdoc@cern.ch

1.5. INSTALLING ROOT 25

In addition, ROOT being a HEP analysis framework, it provides a large selection of HEP specific utilities such as
histograms and fitting. The drawback of a framework is that you are constrained to it, as you are constraint to use the
routing algorithm provided by your telephone service. You also have to learn the framework interfaces, which in this
analogy is the same as learning how to use a telephone.

If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of the more
commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting, Writing a Graphical User
Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run Time Type
Identification (RTTT), Socket and Network Communication, Threads.

1.4.1.1 Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

e Less code to write - the programmer should be able to use and reuse the majority of the existing code. Basic
functionality, such as fitting and histogramming are implemented and ready to use and customize.

e More reliable and robust code - the code inherited from a framework has already been tested and integrated with
the rest of the framework.

e More consistent and modular code - the code reuse provides consistency and common capabilities between
programs, no matter who writes them. Frameworks make it easier to break programs into smaller pieces.

o More focus on areas of expertise - users can concentrate on their particular problem domain. They do not have to
be experts at writing user interfaces, graphics, or networking to use the frameworks that provide those services.

1.4.2 Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented Programming;:

o Encapsulation enforces data abstraction and increases opportunity for reuse.
e Sub classing and inheritance make it possible to extend and modify objects.

¢ Class hierarchies and containment containment hierarchies provide a flexible mechanism for modeling real-world
objects and the relationships among them.

e Complexity is reduced because there is little growth of the global state, the state is contained within each object,
rather than scattered through the program in the form of global variables.

¢ Objects may come and go, but the basic structure of the program remains relatively static, increases opportunity
for reuse of design.

1.5 Imnstalling ROOT

To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html. You have
a choice to download the binaries or the source. The source is quicker to transfer since it is only ~22 MB, but you
will need to compile and link it. The binaries compiled with no degug information range from ~35 MB to ~45 MB
depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can download the
binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment. In most cases it
is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only gcc 3.2 is installed. In such cases
you’ll have to install ROOT from source.

ROOQOT is currently running on the following platforms: supported platforms

e GNU/Linux x86-32 (IA32) and x86-64 (AMD64) (GCC,Intel/icc, Portland/PGCC,KAI/KCC)

e Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)

http://root.cern.ch/root/Availability.html

26

CHAPTER 1. INTRODUCTION

e FreeBSD and OpenBSD (GCC)

e GNU/Hurd (GCC)

e HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

e IBM AIX 4.1 (x1C compiler, GCC)

e Sun Solaris for SPARC (SUN C++ compiler, GCC)

e Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

e Compaq Alpha (GCC, KAI/KCC, DEC/CXX)

e SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)

e Windows >= 95 (Microsoft Visual C++ compiler, Cygwin/GCC)

e MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/x1)

e PowerPC with GNU/Linux and GCC, Debian v2

e PowerPC64 with GNU/Linux and GCC

e ARM with GNU/Linux and GCC

e Lynx0S

1.6 The Organization of the ROOT Framework

Now after we know in abstract terms what the ROOT framework is, let us look at the physical directories and files
that come with the ROOT installation. You may work on a platform where your system administrator has already
installed ROOT. You will need to follow the specific development environment for your setup and you may not have
write access to the directories. In any case, you will need an environment variable called ROOTSYS, which holds the
path of the top ROOT directory.

> echo $ROOTSYS

/opt/root

In the ROOTSYS directory are examples, executables, tutorials, header tutorials files, and, if you opted to download
it, the source is here. The directories of special interest to us are bin, tutorials, 1ib, test, andinclude. The next
figure shows the contents of these directories.

1.6.1 $ROOTSYS/bin

The bin directory contains several executables.

root

root.exe

rootcint
rmkdepend

root-config

cint

makecint

proofd

proofserv

rootd

shows the ROOT splash screen and calls root.exe

the executable that root calls, if you use a debugger such as gdb, you will need to run
root.exe directly CINTdebugger

is the utility ROOT uses to create a class dictionary for CINT
a modified version of makedepend that is used by the ROOT build system

a script returning the needed compile flags and libraries for projects that compile and link
with ROOT

the C++ interpreter executable that is independent of ROOT

the pure CINT version of rootcint, used to generate a dictionary; It is used by some of
CINT install scripts to generate dictionaries for external system libraries

a small daemon used to authenticate a user of ROOT parallel processing capability (PROOF)
the actual PROOF process, which is started by proofd after a user, has successfully been
authenticated

is the daemon for remote ROOT file access (see the TNetFile)

1.6. THE ORGANIZATION OF THE ROOT FRAMEWORK

SROOTSYS

S o] S e

include

27

*.h files

bin lib tutorials test
. i _)fF
cint libAslmage r: Makefile
; libCint ICyfit
mak90|nt ibCore Cyfosm hsimple.cxx
:gt‘;ft"ﬂp IbEG geom I‘:ainlfvent.cxx
*libEGPythia Ol FOIISORK
t. :
i “libEGPythia6 Dagraphics Minexam.cxx
s libFitPanel jgfép'“ t“;gn‘:ﬁ;’“
. qui B
rootd ::Eg:gm Chist tcollbm.cxx
genmap . Iimane tstring. cxx
h2root IRrCiprac Do vmatrix.cxx
hadd :Iggr:;&i ICimath VVector.cxx
rmkdepend Shtoi Dymatrix stressLinear.cxx
proofd iy Dwip QpRandomDriver.cxx
proofser‘l.r libGuiBld Canet Viazy.oxXK '
libGuiHtml ©)physics Y.
libGX11 Eapyroct ki
_ “libGX11TTF Cpythia S ieior e
* Optional libHbook quadp f_'l”'ﬁ" r.oxx
Installation libHist Cruby ello cxx
libHtml C)spectrum Aclock.cxx
libMatrix Casplot Tetris.cxx
libMathCore Dsal BUASE.CXA
libMathMore Dithread SHASS-,Co01
libMinuit Dtree bench.cxx
libNet Rl LA :
libMNew Iyl DrawTest.sh & dt_*\
libPhysics benchmarks.C
libPostscript demos.C
libProof demoshelp.C
libPython geant3tasks.C
‘libRFIO hsimple.C
*libRGL htmlex.C
libReflex MyTasks.cxx
libRint README
libRIO regexp.C
libRooFit rootalias.C
libRuby rootlogon.C
libSpectrum rootlogoff.C
“libThread rootmarks.C
b TMWA staff.root
libTree hsimple.root
libTreePlayer gallery.root
libTreeViewer tasks.C

Figure 1.1: ROOT framework directories

28 CHAPTER 1. INTRODUCTION

1.6.2 $ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by typing root at the system prompt another
way is to link with the ROOT libraries and make the ROOT classes available in your own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed when the options
specified them.

e libAsImage is the image manipulation library

e 1libCint is the C++ interpreter (CINT)

e libCore is the Base classes

e 1ibEG is the abstract event generator interface classes

o *1ibEGPythia is the Pythiab event generator interface

o *1ibEGPythia6 is the Pythia6 event generator interface

e libFitPanel contains the GUI used for fitting

e 1ibGed contains the GUI used for editing the properties of histograms, graphs, etc.

e libGeom is the geometry package (with builder and painter)

o libGpad is the pad and canvas classes which depend on low level graphics

e 1libGraf is the 2D graphics primitives (can be used independent of libGpad)

e 1libGraf3d is the 3D graphics primitives

e 1ibGui is the GUI classes (depend on low level graphics)

e 1ibGuiBld is the GUI designer

e 1libGuiHtml contains the embedded HTML browser

e 1ibGX11 is the low level graphics interface to the X11 system

e *1ibGX11TTF is an add-on library to libGX11 providing TrueType fonts

e libHbook is for interface ROOT - HBOOK

o libHist is the histogram classes (with accompanying painter library)

e libHtml is the HTML documentation generation system

e libMatrix is the matrix and vector manipulation

e libMathCore contains the core mathematics and physics vector classes

e libMathMore contains additional functions, interfacing the GSL math library

e libMinuit is the MINUIT fitter

e libNet contains functionality related to network transfer

e libNew is the special global new/delete, provides extra memory checking and interface for shared memory
(optional)

o libPhysics contains the legacy physics classes (TLorentzVector, etc.)
e libPostscript is the PostScript interface

e 1libProof is the parallel ROOT Facility classes

e 1libPython provides the interface to Python

o *1ibRFIO is the interface to CERN RFIO remote I/O system.

e *1ibRGL is the interface to OpenGL.

e libReflex is the runtime type database library used by CINT

1.6. THE ORGANIZATION OF THE ROOT FRAMEWORK 29

o 1libRint is the interactive interface to ROOT (provides command prompt)

e 1ibRIO provides the functionality to write and read objects to and from ROOT files
e 1libRooFit is the RooFit fitting framework

e 1libRuby is the interface to Ruby

e libSpectrum provides functionality for spectral analysis

e *libThread is the interface to TThread classes

e 1ibTMVA contains the multivariate analysis toolkit

e libTree is the TTree object container system

o libTreePlayer is the TTree drawing classes

e libTreeViewer is the graphical TTree query interface

1.6.2.1 Library Dependencies

Physics Geom Matrix LHlsl‘J Tree

dn \Ee) £ 1|

Al libs nesd Core _Gwin3z | [ext1_ | [GxnTTF] | Gat |
Arrcrars ahow ik deparsianciad

e e e e || ROOT Libraries Dependencies

Figure 1.2: ROOT libraries dependencies

The libraries are designed and organized to minimize dependencies, such that you can load just enough code for the
task at hand rather than having to load all libraries or one monolithic chunk. The core library (1ibCore.so) contains
the essentials; it is a part of all ROOT applications. In the Figure 1-2 you see that libCore.so is made up of base
classes, container classes, meta information classes, operating system specific classes, and the ZIP algorithm used for
compression of the ROOT files.

The CINT library (1ibCint.so) is also needed in all ROOT applications, and even by libCore. It can be used
independently of 1ibCore, in case you only need the C++ interpreter and not ROOT. A program referencing only
TObject only needs 1libCore and 1ibCint. To add the ability to read and write ROOT objects one also has to load
libRIO. As one would expect, none of that depends on graphics or the GUI.

30 CHAPTER 1. INTRODUCTION

Library dependencies have different consequences; depending on whether you try to build a binary, or you just try to
access a class that is defined in a library.

1.6.2.2 Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes you use. The
ROOT reference guide states the library a class is reference guide defined in. Almost all relevant classes can be found
in libraries returned by root-config -glibs; the graphics libraries are retuned by root-config --libs. These
commands are commonly used in Makefiles. Using root-config instead of enumerating the libraries by hand allows
you to link them in a platform independent way. Also, if ROOT library names change you will not need to change your
Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms and trees, only needs
to link the core libraries (1ibCore, 1ibCint, 1ibRI0), 1libHist and libTree. If ROOT needs access to other libraries,
it loads them dynamically. For example, if the TreeViewer is used, 1ibTreePlayer and all libraries 1ibTreePlayer
depends on are loaded also. The dependent libraries are shown in the ROOT reference guide’s library dependency
graph. The difference between reference guide 1ibHist and libHistPainter is that the former needs to be explicitly
linked and the latter will be loaded automatically at runtime when ROOT needs it, by means of the Plugin Manager.
plugin manager

In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin manager plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a plugin library
directly, it has to be explicitly linked. An example of a plugin library is 1ibMinuit. To create and fill histograms you
need to link 1ibHist.so. If the code has a call to fit the histogram, the “fitter” will dynamically load libMinuit if it is
not yet loaded.

1.6.2.3 Plugins: Runtime Library Dependencies for Linking

plugin manager The Plugin Manager TPluginManager allows postponing library dependencies to runtime: a plu-
gin library will only be loaded when it is needed. Non-plugins will need to be linked, and are thus loaded at
start-up. Plugins are defined by a base class (e.g. TFile) that will be implemented in a plugin, a tag used to
identify the plugin (e.g. “rfio: as part of the protocol string), the plugin class of which an object will be created
(e.g. TRFIOFile), the library to be loaded (in short 1ibRFIO.so to RFIO), and the constructor to be called (e.g.
“TRFIOFile()”). This can be specified in the .rootrc which already contains many plugin definitions, or by calls to
gROOT->GetPluginManager () ->AddHandler ().

1.6.2.4 Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the library that defines
this class. On start-up, ROOT parses all files ending on .rootmap rootmap that are in one of the $LD_LIBRARY_PATH
(or $DYLD_LIBRARY_PATH for MacOS, or $PATH for Windows). They contain class names and the library names that the
class depends on. After reading them, ROOT knows which classes are available, and which libraries to load for them.

When TSystem: :Load ("ALib") is called, ROOT uses this information to determine which libraries 1ibALib.so depends
on. It will load these libraries first. Otherwise, loading the requested library could cause a system (dynamic loader)
error due to unresolved symbols.

1.6.3 $ROOTSYS/tutorials

tutorials The tutorials directory contains many example example scripts. They assume some basic knowledge of
ROOT, and for the new user we recommend reading the chapters: “Histograms” and “Input/Output” before trying the
examples. The more experienced user can jump to chapter “The Tutorials and Tests” to find more explicit and specific
information about how to build and run the examples.

The $RO0TSYS/tutorials/ directory include the following sub-directories:

fft: Fast Fourier Transform with the fftw package fit: Several examples illustrating minimization/fitting foam:
Random generator in multidimensional space geom: Examples of use of the geometry package (TGeo classes) gl:
Visualisation with OpenGL graphics: Basic graphics graphs: Use of TGraph, TGraphErrors, etc. gui: Scripts to
create Graphical User Interface hist: Histograming image: Image Processing io: Input/Output math: Maths and
Statistics functions matrix: Matrices (TMatrix) examples mlp: Neural networks with TMultilayerPerceptron net:
Network classes (client/server examples) physics: LorentzVectors, phase space pyroot: Python tutorials pythia:
Example with pythia6 quadp: Quadratic Programming ruby: ruby tutorials smatrix: Matrices with a templated

1.7. HOW TO FIND MORE INFORMATION 31

package spectrum: Peak finder, background, deconvolutions splot: Example of the TSplot class (signal/background
estimator) sql: Interfaces to SQL (mysql, oracle, etc) thread: Using Threads tmva: Examples of the MultiVariate
Analysis classes tree: Creating Trees, Playing with Trees unuran: Interface with the unuram random generator library
xml: Writing/Reading xml files

You can execute the scripts in $RO0TSYS/tutorials (or sub-directories) by setting your current directory in the script
directory or from any user directory with write access. Several tutorials create new files. If you have write access to the
tutorials directory, the new files will be created in the tutorials directory, otherwise they will be created in the user
directory.

1.6.4 S$ROOTSYS/test

The test directory contains a set of examples example that represent all areas of the framework. When a new release is
cut, the examples in this directory are compiled and run to test the new release’s backward compatibility. The list of
source files is described in chapter “The Tutorials and Tests”.

The $RO0TSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage you to explore and exploit
it. We recommend the new users to read the chapter “Getting Started”. The chapter “The Tutorials and Tests” has
instructions on how to build all the programs and it goes over the examples Event and stress.

1.6.5 SROOTSYS/include

The include directory contains all header files. It is especially important because the header files contain the class
definitions.

1.6.6 S$ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading the source you also
get a directory for each library with the corresponding header and source files, located in the inc and src subdirectories.
To see what classes are in a library, you can check the <library>/inc directory for the list of class definitions. For
example, the physics library 1ibPhysics.so contains these class definitions:

> 1s -m $ROOTSYS/math/physics/inc/

LinkDef.h, TFeldmanCousins.h, TGenPhaseSpace.h, TLorentzRotation.h,
TLorentzVector.h, TQuaternion.h, TRobustEstimator.h, TRolke.h,
TRotation.h, TVector2.h, TVector3.h

1.7 How to Find More Information

website The ROOT web site has up to date documentation. The ROOT source code automatically generates this
documentation, so each class is explicitly documented on its own web page, which is always up to date with the latest
official release of ROOT.

The ROOT Reference Guide web pages can be found at class index reference guide http://root.cern.ch/root/html/
ClassIndex.html. Each page contains a class description, and an explanation of each method. It shows the class
inheritance tree and lets you jump to the parent class page by clicking on the class name. If you want more details,
you can even see the source. There is a help page available in the little box on the upper right hand side of each class
documentation page. You can see on the next page what a typical class documentation web page looks like. The ROOT
web site also contains in addition to this Reference Guide, “How To’s”, a list of publications and example applications.

1.7.1 Class Reference Guide

The top of any class reference page lets you jump to different parts of the documentation. The first line links to the
class index and the index for the current module (a group of classes, often a library). The second line links to the
ROOT homepage and the class overviews. The third line links the source information - a HTML version of the source
and header file as well as the CVS (the source management system used for the ROOT development) information of
the files. The last line links the different parts of the current pages.

http://root.cern.ch/root/html/ClassIndex.html
http://root.cern.ch/root/html/ClassIndex.html

32 CHAPTER 1. INTRODUCTION

Location: t ROOT »: BASE »! TAttText

Quick Links: : ROOT § Class Index | Class Hierarchy

Source: . header file | source file | viewCVS header | viewCVS source
Sections: ! class description | function members | data members | class charts

Int_t GetQuantiles (Int_t nprobSum, Double_t* q, const Double_t* probSum)

Compute Quantiles for density distribution of this function
Quantile ®x g of a probability distribution Function F is defined as

Hy
F{xq}= J. fdx=qwith0<=q<=1.

wmiry

Figure 1.3: Example of function documentation, with automatically generated LaTeX-like graphics

TVirtualX T TTC:_“T}S'(] TGX11TTF
TStyle
TPaveLabel <«—— TPaveClass
TPie TSVG

TGraphPolargram (4 TPDF

TVirtwalPS ~—— TPostScript

h___‘_‘_—‘——
TInspectCanvas TImageDump
TText — TLatex

--________ 0

TLegend TLink
TLegendEntry

TGaxi
TDialo rlélflsnvqs TPaveStats

(g ((£ TP;WesText

TPaveText T~ _

TRutt TDiamond

o TGroupButton

Figure 1.4: Inheritance tree, showing what the current class derives from, and which classes inherit from it

1.7. HOW TO FIND MORE INFORMATION

-l- -l.
i

wvolid TList::AddLast (TObject *obj)

{

.l. .l.

/S BAdd object at the end of the list.
if [(IsArgMull ("RddLast™, obj)) return:;
if ('fFirst) |

fFirst = NewLink (obj) ;
flLast = [Fiwot.

} else TObiLink™® TList: :MewLink({TObject™ obj, TObijLink™ prev=0)
fLast = HewLink (obj, fLast):

fSize++;

Changed () ;

Figure 1.5: HTML version of the source file linking all types and most functions

33

34

CHAPTER 1.

INTRODUCTION

Chapter 2

Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click through and learn how to
use the GUI. We continue by using the command line, and explaining the coding conventions, global variables and the
environment setup. If you have not installed ROOT, you can do so by following the instructions in the appendix, or on
the ROOT web site: http://root.cern.ch/root/Availability.html

2.1 Setting the Environment Variables

Before you can run ROOT you need to set the environment variable ROOTSYS and change your path to include root/bin
and library path variables to include root/1lib. Please note: the syntax is for bash, if you are running tcsh you will
have to use setenv instead of export.

1. Define the variable SROOTSYS to the directory where you unpacked the ROOT:
$ export ROOTSYS=$HOME/root
2. Add ROOTSYS/bin to your PATH:
$ export PATH=$PATH:$RO0TSYS/bin
3. Setting the Library Path
On HP-UX, before executing the interactive module, you must set the library path:
$ export SHLIB_PATH=$SHLIB_PATH:$RO0OTSYS/lib
On AIX, before executing the interactive module, you must set the library path:

$ [-z "$LIBPATH"] && export LIBPATH=/1lib:/usr/lib
$ export LIBPATH=$LIBPATH:$RO0TSYS/1lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive module, you must set the library path:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/1ib

On Solaris, in case your LD_ LIBRARY_ PATH is empty, you should set it:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RO0TSYS/lib:/usr/dt/lib

If you use the afs version you should set (vers = version number, arch = architecture):

$ export ROOTSYS=/afs/cern.ch/sw/lcg/external/root/vers/arch/root

If ROOT was installed in $HOME/myroot directory on a local machine, one can do:

cd $HOME/myroot
. bin/thisroot.sh // or source bin/thisroot.sh

The new $RO0TSYS/bin/thisroot. [c]sh scripts will set correctly the ROOTSYS, LD_LIBRARY_PATH or other paths
depending on the platform and the MANPATH. To run the program just type: root.

35

http://root.cern.ch/root/Availability.html

36 CHAPTER 2. GETTING STARTED

2.2 Start and Quit a ROOT Session

% root
sk sk sk sk sk sk sk sk sk sk sk ok o ok ok ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk ok

WELCOME to ROOT
Version 5.34/07 26 April 2013

You are welcome to visit our Web site
http://root.cern.ch

¥ ¥ X X X %X X% %
¥ ¥ X X X X X *

K 3K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k %k %k K 3K 3K 3K 3k 3k 3k 5k 5k 5k 5k %k X K 3K 5K 5k 5k 5k %k %k >k >k >k k Kk kK k

ROOT 5.34/07 (v5-34-070@c1f030b, May 13 2013, 16:42:38 on macosx64)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

To start ROOT you can type root at the system prompt. This starts up CINT, the ROOT command line C/C++
interpreter, and it gives you the ROOT prompt (root[0]).

It is possible to launch ROOT with some command line options, as shown below:

% root -7
Usage: root [-1] [-b] [-n] [-q] [dir] [[file:]data.root]
[filel.C ... fileN.C]
Options:
-b : run in batch mode without graphics
-n : do not execute logon and logoff macros as specified in .rootrc
-q : exit after processing command line macro files
-1 : do not show splash screen
-X : exit on exception
dir : if dir is a valid directory cd to it before executing

-7 : print usage
-h : print usage
--help : print usage
-config : print ./configure options

-memstat : run with memory usage monitoring
e -b ROOT session runs in batch mode, without graphics display. This mode is useful in case one does not want to
set the DISPLAY or cannot do it for some reason.

e -n usually, launching a ROOT session will execute a logon script and quitting will execute a logoff script. This
option prevents the execution of these two scripts.

« it is also possible to execute a script without entering a ROOT session. One simply adds the name of the script(s)
after the ROOT command. Be warned: after finishing the execution of the script, ROOT will normally enter a
new session.

e -q process command line script files and exit.

For example if you would like to run a script myMacro.C in the background, redirect the output into a file myMacro.log,
and exit after the script execution, use the following syntax:

root -b -q myMacro.C > myMacro.log
If you need to pass a parameter to the script use:

root -b -q 'myMacro.C(3)' > myMacro.log

2.3. USING THE GUI 37
Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:
root -b -q 'myMacro.C("text")' > myMacro.log

You can build a shared library with ACLiC and then use this shared library on the command line for a quicker execution
(i.e. the compiled speed rather than the interpreted speed). See also “CINT the C++ Interpreter”.

root -b -q myMacro.so > myMacro.log

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes, global variables, and
functions via the command line. By typing C++ statements at the prompt, you can create objects, call functions,
execute scripts, etc. For example:

root[] 1+sqrt(9)

(const double)4.00000000000000000e+00

root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl
Hello O

Hello 1

Hello 2

Hello 3

root[] .q

To exit the ROOT session, type .q.

root[] .q

2.3 Using the GUI

The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the class TCanvas). Every
object in the canvas is a graphical object in the sense that you can grab it, resize it, and change some characteristics
using the mouse. The canvas area can be divided in several sub areas, so-called pads (the class TPad). A pad is a
canvas sub area that can contain other pads or graphical objects. At any one time, just one pad is the so-called active
pad. Any object at the moment of drawing will be drawn in the active pad. The obvious question is: what is the
relation between a canvas and a pad? In fact, a canvas is a pad that spans through an entire window. This is nothing
else than the notion of inheritance. The TPad class is the parent of the TCanvas class. In ROOT, most objects derive
from a base class TObject. This class has a virtual method Draw() such as all objects are supposed to be able to be
“drawn”. If several canvases are defined, there is only one active at a time. One draws an object in the active canvas by
using the statement:

object.Draw()

This instructs the object “object” to draw itself. If no canvas is opened, a default one (named “c1”) is created. In the
next example, the first statement defines a function and the second one draws it. A default canvas is created since
there was no opened one. You should see the picture as shown in the next figure.

root[] TF1 f1("funcl","sin(x)/x",0,10)
root[] f1.Draw()
<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

The following components comprise the canvas window:

e Menu bar - contains main menus for global operations with files, print, clear canvas, inspect, etc.
e Tool bar - has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.
e Canvas - an area to draw objects.

e Status bar - displays descriptive messages about the selected object.

o Editor frame - responds dynamically and presents the user interface according to the selected object in the canvas.

38 CHAPTER 2. GETTING STARTED

Ele Et View Opsoms fspect Classes f— Menubar
| Slolele] 218 wiF | Llelssolo] o|s|s|olu] | o|L]s (b Toal bar
style | | sin{x)ix |

Canvas

Status bar

II:NH [mc1 (167232 | (xe2 7414, 10 142017)

ES

Editor frame

Figure 2.1: A canvas with drawing

2.3.1 Main Menus and Toolbar

At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

2.3.1.1 File Menu

e New Canvas: creates a new canvas window in the current ROOT session.
e Open...: popup a dialog to open a file.
o (Close Canvas: close the canvas window.

e Save: save the drawing of the current canvas in a format selectable from the submenu. The current canvas name
is used as a file name for various formats such as PostScript, GIF, JPEG, C macro file, root file.

e Save As...: popup a dialog for saving the current canvas drawing in a new filename.
e Print: popup a dialog to print the current canvas drawing

e Quit ROOT: exit the ROOT session

Mews Canvas

Save 2
Save as..

Print...
Gt ROOT

2.3. USING THE GUI 39

2.3.1.2 Edit Menu

There is only one active menu entry in the Edit menu. The others menu entries will be implemented and will become
active in the near future.

e C(lear: delete all objects in the canvas or in the selected pad according to the selected entry in the submenu.

2.3.1.3 View Menu

o Editor: toggles the view of the editor. If it is selected activates and shows up the editor on the left side of the
canvas window. According to the selected object, the editor loads the corresponding user interface for easy change
of the object’s attributes.

o Toolbar: toggles the view of the toolbar. If it is selected activates and shows up the toolbar. It contains buttons
for easy and fast access to most frequently used commands and for graphics primitive drawing. Tool tips are
provided for helping users.

o Status Bar: toggles the view of the status bar. If it is selected, the status bar below the canvas window shows
up. There the identification of the objects is displayed when moving the mouse (such as the object’s name, the
object’s type, its coordinates, etc.).

e Colors: creates a new canvas showing the color palette.
e Markers: creates a new canvas showing the various marker styles.
o Iconify: create the canvas window icon, does not close the canvas

o View With...: If the last selected pad contains a 3-d structure, a new canvas is created with a 3-D picture
according to the selection made from the cascaded menu: X3D or OpenGL. The 3-D image can be interactively
rotated, zoomed in wire-frame, solid, hidden line or stereo mode.

vEitor |
Toolhar
Event Status

Zolors
Eants
tarkers

lcanify
Wieny With b

2.3.1.4 Options Menu
o Auto Resize Canvas: turns auto-resize of the canvas on/off:

— on - the canvas fits to the window when changing the window size;
— off - the canvas stays fixed when changing the window size.

e Resize Canvas: resizes and fits the canvas to the window size.

e Move Opaque: if selected, graphics objects are moved in opaque mode; otherwise, only the outline of objects
is drawn when moving them. The option opaque produces the best effect but it requires a reasonably fast
workstation or response time.

e Resize Opaque: if selected, graphics objects are resized in opaque mode; otherwise, only the outline of objects is
drawn when resizing them.

o Interrupt: interrupts the current drawing process.

e Refresh: redraws the canvas contents.

40 CHAPTER 2. GETTING STARTED

e Pad Auto FExec: executes the list of TExecs in the current pad.

o Statistics: toggles the display of the histogram statistics box.

e Histogram Title: toggles the display of the histogram title.

o Fit Parameters: toggles the display of the histogram or graph fit parameters.

o Can Edit Histogram: enables/disables the possibility to edit histogram bin contents.

v Auto Fesize Canvas
Besize Canvas

Move Opague

Resize Dpague

Interrupt
Refresh

Pad Auto Exec

v Statistics
v Histogram Title
Fit Parameters
Can Edit Histograms

2.3.1.5 Inspect Menu

e ROOT: inspects the top-level gROOT object (in a new canvas).
o Start Browser: starts a new object browser (in a separate window).

o GUI Builder: starts the GUI builder application (in a separate window).

E[:] OT

atart Browser
aui Builder

2.3.1.6 Help Menu

e Canvas: help on canvas as a whiteboard area for drawing.

e Menus: help on canvas menus.

e Graphics Editor: help on primitives’ drawing and objects’ editor.

e Browser: help on the ROOT objects’ and files’ browser.

e Objects: help on DrawClass, Inspect and Dump context menu items.
e PostScript: help on how to print a canvas to a PostScript file format.

e About ROOT": pops up the ROOT Logo with the version number.

2.3.1.7 Classes Menu

o C(lasses: starts the ClassTree viewer that draws inheritance tree for a list of classes.

2.3. USING THE GUI 41

Basic Help On...

Graphics Editar
Browser
Ohjects
Postscript

About ROOT...

2.3.1.8 Toolbar
The following menu shortcuts and utilities are available from the toolbar:

QI Create a new canvas window.

ﬂ Popup the Open File dialog.

Popup the Save As... dialog.

% Popup the Print dialog.

ﬂ Interrupts the current drawing process.

%
Q Redraw the canvas.

g Inspect the gROOT object.

Create a new objects’ browser.

You can create the following graphical objects using the toolbar buttons for primitive drawing. Tool tips are provided
for helping your choice.

LI An Arc or circle: Click on the center of the arc, and then move the mouse. A rubber band circle is shown. Click
again with the left button to freeze the arc.

ll A Line: Click with the left button at the point where you want to start the line, then move the mouse and click
again with the left button to freeze the line.

M An Arrow:Click with the left button at the point where you want to start the arrow, then move the mouse and
click again with the left button to freeze the arrow.

g A Diamond: Click with the left button and freeze again with the left button. The editor draws a rubber band
box to suggest the outline of the diamond.

© | An Ellipse: Proceed like for an arc. You can grow/shrink the ellipse by pointing to the sensitive points. They
are highlighted. You can move the ellipse by clicking on the ellipse, but not on the sensitive points. If, with the ellipse
context menu, you have selected a fill area color, you can move a filled-ellipse by pointing inside the ellipse and dragging
it to its new position.

J A Pad: Click with the left button and freeze again with the left button. The editor draws a rubber band box to
suggest the outline of the pad.

| A PaveLabel: Proceed like for a pad. Type the text of label and finish with a carriage return. The text will
appear in the box.

A Pave Text: Proceed like for a pad. You can then click on the TPaveText object with the right mouse button
and select the option InsertText.

42 CHAPTER 2. GETTING STARTED

Paves Text: Proceed like for a TPaveText.

M A Poly Line: Click with the left button for the first point, move the moose, click again with the left button for a
new point. Close the poly-line with a double click. To edit one vertex point, pick it with the left button and drag to
the new point position.

& | A Curly Line: Proceed as for the arrow or line. Once done, click with the third button to change the characteristics
of the curly line, like transform it to wave, change the wavelength, etc.

ﬂ A Curly Arc: Proceed like for an ellipse. The first click is located at the position of the center, the second click
at the position of the arc beginning. Once done, one obtains a curly ellipse, for which one can click with the third
button to change the characteristics, like transform it to wavy, change the wavelength, set the minimum and maximum
angle to make an arc that is not closed, etc.

L | A Text/Latex string: Click with the left button where you want to draw the text and then type in the text
terminated by carriage return. All TLatex expressions are valid. To move the text or formula, point on it keeping the
left mouse button pressed and drag the text to its new position. You can grow/shrink the text if you position the
mouse to the first top-third part of the string, then move the mouse up or down to grow or shrink the text respectively.
If you position the mouse near the bottom-end of the text, you can rotate it.

|i| A Marker: Click with the left button where to place the marker. The marker can be modified by using the
method SetMarkerStyle() of TSystem.

|¥ A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected area. Close the
cut by double clicking on the last point. A TCutG object is created. It can be used as a selection for a TTree: :Draw.
You can get a pointer to this object with:

TCutG cut = (TCutG*)gPad->GetPrimitive("CUTG")

Once you are happy with your picture, you can select the Save as canvas.C item in the canvas File menu. This will
automatically generate a script with the C++4 statements corresponding to the picture. This facility also works if you
have other objects not drawn with the graphics editor (histograms for example).

2.3.2 The Editor Frame

The ROOT graphics editor loads the corresponding object editor objEditor according to the selected object obj in
the canvas respecting the class inheritance. An object in the canvas is selected after the left mouse click on it. For
example, if the selected object is TAxis, the TAxisEditor will shows up in the editor frame giving the possibility for
changing different axis attributes. The graphics editor can be:

Embedded - connected only with the canvas in the application window that appears on the left of the canvas window
after been activated via View menu / Editor. It appears on the left side if the canvas window allowing users to edit the
attributes of the selected object via provided user interface. The name of the selected object is displayed on the top of
the editor frame in red color. If the user interface needs more space then the height of the canvas window, a vertical
scroll bar appears for easer navigation.

Global - has own application window and can be connected to any created canvas in a ROOT session. It can be
activated via the context menu entries for setting line, fill, text and marker attributes for backward compatibility, but
there will be a unique entry in the near future.

The user interface for the following classes is available since ROOT v.4.04: TAttLine, TAttFill, TAttMarker, TAttText,
TArrow, TAxis, TCurlyArc, TCurlyLine, TFrame, TH1, TH2, TGraph, TPad, TCanvas, TPaveStats. For more details,
see “The Graphics Editor”, “The User Interface for Histograms”, “The User Interface for Graphs”.

2.3.3 Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members and methods. The next line creates an
object named f1 of the class TF1 that is a one-dimensional function. The type of an object is called a class. The object
itself is called an instance of a class. When a method builds an object, it is called a constructor.

TF1 f1("funcl","sin(x)/x",0,10)

2.3. USING THE GUI 43
£ Momentum distribution |E||§||E|
Eile Edit Miew OQptions Inspect Classes Help

Mame
momentum: TH1F

Line ———
- —=
[——— =l
Fill ———
C11- |-

Title

[Using TH1Editor

Histogram

Plot————
’7(7 2-0 © 3-D

Error: IEdges 'I
Style: |N|:|Line "I

¥ Bar option
™ add outer line
Eal

-
w:[1.00 4] o:[0.04 4
Percentage: IM

™ Horizantal Bar
karker

0
=
2
k=

©
a.
=

=]
I

style IBmL Using TH1Editor

momentum

Entries 6188
Mean 54.85
RMS 32.37

e | [os 5

hd Zdemo_Editor -0

Styls |

MName

Graph:TGraph

Ling ———
W-[—
| — i
Fill

- .

Title

|Graph

Shape

Mo Line

" Smooth Line
& Simpla Line
 Bar Chart
T Fill area

¥ Show Marker
kdarker

| gl e

Monte Carlo Study of Z scaling

File Edit Yiew Options

Inspect Classes

= =)

Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies

Ed’sldg’
(barniGev?)

B 5 = 63(GeV)
¥4 = 200(GeV)
V5 = 500(GeV)

AL BELL R Sl Rl IR Bl L

T

107 1w z

44 CHAPTER 2. GETTING STARTED

In our constructor the function sin(x)/x is defined for use, and 0 and 10 are the limits. The first parameter, func1 is
the name of the object £1. Most objects in ROOT have a name. ROOT maintains a list of objects that can be searched
to find any object by its given name (in our example funci).

The syntax to call an object’s method, or if one prefers, to make an object to do something is:

object.method_name(parameters)

The dot can be replaced by “->” if object is a pointer. In compiled code, the dot MUST be replaced by a “->” if
object is a pointer.

object_ptr->method_name (parameters)

So now, we understand the two lines of code that allowed us to draw our function. f1.Draw() stands for “call the
method Draw() associated with the object £1 of the class TF1”. Other methods can be applied to the object £1 of the
class TF1. For example, the evaluating and calculating the derivative and the integral are what one would expect from
a function.

root[] f1.Eval(3)
(Double_t)4.70400026866224020e-02
root[] f1.Derivative(3)

(Double_t) (-3.45675056671992330e-01)
root[] f1.Integral(0,3)
(Double_t)1.84865252799946810e+00
root[] f1.Draw()

By default the method TF1::Paint (), that draws the function, computes 100 equidistant points to draw it. The
number of points can be set to a higher value with:

root[] £1.SetNpx(2000);

Note that while the ROOT framework is an object-oriented framework, this does not prevent the user from calling
plain functions.

2.3.4 User Interaction

Now we will look at some interactive capabilities. Try to draw the function sin(x)/x again. Every object in a window
(which is called a canvas) is, in fact, a graphical object in the sense that you can grab it, resize it, and change its
characteristics with a mouse click. For example, bring the cursor over the x-axis. The cursor changes to a hand with a
pointing finger when it is over the axis. Now, left click and drag the mouse along the axis to the right. You have a very
simple zoom.

When you move the mouse over any object, you can get access to selected methods by pressing the right mouse button
and obtaining a context menu. If you try this on the function TF1, you will get a menu showing available methods. The
other objects on this canvas are the title, a TPaveText object; the x and y-axis, TAxis objects, the frame, a TFrame
object, and the canvas a TCanvas object. Try clicking on these and observe the context menu with their methods.

For example try selecting the SetRange () method and putting -10, 10 in the dialog box fields. This is equivalent to
executing f1.SetRange(-10,10) from the command line, followed by £1.Draw(). Here are some other options you
can try.

Once the picture suits your wishes, you may want to see the code you should put in a script to obtain the same result.
To do that, choose Save / canvas.C entry of the File menu. This will generate a script showing the options set in
the current canvas. Notice that you can also save the picture into various file formats such as PostScript, GIF, etc.
Another interesting possibility is to save your canvas into the native ROOT format (.rootfile). This will enable you to
open it again and to change whatever you like. All objects associated to the canvas (histograms, graphs) are saved at
the same time.

2.3. USING THE GUI 45
[e IS [=] E3
File Edit Wiew Options Inspect Classes Help
sin{x)/x
1=
B TF1::funci
B DrawPanel
0.8 | SetMaximum
L Setkdinimum
— SetMpE
0.6 — SetRange
: SetPartlames
B Sethlame
0.4 | SetTitle
— Delete
B DrawClass
0.2 | DrawClone
L Dump
— Inspect
01— SetDrawOption
L Setlineattributes
B SetFillattributes
—0.2— _
- SEtM&rker'ﬁ'anHUtES III|IIII|IIII|IIII|IIII|IIII|IIII
0 1 2 3 4 5 b 7 8 9 10

Figure 2.2: A context menu

46 CHAPTER 2. GETTING STARTED
2.3.5 Building a Multi-pad Canvas
Let us now try to build a canvas with several pads.

root[] TCanvas *MyC = new TCanvas('"MyC","Test canvas",1)
root[] MyC->Divide(2,2)

Once again, we call the constructor of a class, this time the class TCanvas. The difference between this and the previous
constructor call (TF1) is that here we are creating a pointer to an object. Next, we call the method Divide() of the
TCanvas class (that is TCanvas: :Divide()), which divides the canvas into four zones and sets up a pad in each of
them. We set the first pad as the active one and than draw the functionf 1there.

root[] MyC->cd(1)
root[] fi->Draw()

All objects will be drawn in that pad because it is the active one. The ways for changing the active pad are:

e Click the middle mouse button on a pad will set this pad as the active one.

e Use the method TCanvas: :cd() with the pad number, as was done in the example above:
root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom. Each new pad created by TCanvas: :Divide() has a
name, which is the name of the canvas followed by 1, 2, etc. To apply the method cd() to the third pad, you would
write:

root[] MyC_3->cd()

e Third pad will be selected since you called TPad: :cd() for the object MyC_3. ROOT will find the pad that was
namedMyC_3when you typed it on the command line (see ROOT/CINT Extensions to C++).

2.3.6 Saving the Canvas

File pame: |mymacro.C

LFIn offype: |ROOT macros (".C)

Figure 2.3: The SaveAs... dialog

Using the File menu / Save cascade menu users can save the canvas as one of the files from the list. Please note that
saving the canvas this way will overwrite the file with the same name without a warning.

2.4. THE ROOT COMMAND LINE 47

All supported file types can be saved via File menu / SaveAs... This dialog gives a choice to show or suppress the
confirmation message for overwriting an existing file.

If the Ovewrite check box is not selected, a message dialog appears asking the user to overwrite the file (Yes/No). The
user choice is saved for the next time the Save As... dialog shows up.

2.3.7 Printing the Canvas

The Print command in the canvas File menu pops-up a print dialog where the user can specify a preferred print
command and the printer name.

Frint command: |=print -P Erint

Frinter: de-rbz20-hp Cancel

Both print parameters can be set via the new Print.Command and Print.Printer rootrc resources as follows:

Printer settings.

WinNT.*.Print.Command: AcroRd32.exe
Unix.*.Print.Command: xprint -PYp %f
Print.Printer: 32-rb205-hp

Print.Directory:

If the %p and %f are specified as a part of the print command, they will be replaced by the specified printer name and
the file name. All other parameters will be kept as they are written. A print button is available in the canvas toolbar
(activated via View menu/Toolbar).

2.4 The ROOT Command Line

We have briefly touched on how to use the command line. There are different types of commands.

1. CINT commands start with “.”

root[]l .? //this command will list all the CINT commands
root[] .L <filename> //load [filename]
root[] .x <filename> //load and ezecute [filename]

2. SHELL commands start with “.!” for example:

root[] .! 1s

3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser()

2.4.1 Multi-line Commands

You can use the command line to execute multi-line commands. To begin a multi-line command you must type a single
left curly bracket {, and to end it you must type a single right curly bracket }. For example:

48 CHAPTER 2. GETTING STARTED

root[] {

end with '}'> Int_t j = 0;

end with '}'> for (Int_t i = 0; i < 3; i++)
end with '}'> {

end with '}'> j= j + i;

end with '}'> cout << "i = " << i << ", j = " << j << endl;
end with '}'> }

end with '}'> }

i=0,3=0

i=1,3=1

i=2,3j=3

It is more convenient to edit a script than the command line, and if your multi line commands are getting unmanageable,
you may want to start with a script instead.

2.4.2 CINT Extensions

We should say that some things are not standard C++. The CINT interpreter has several extensions. See “ROOT/CINT
Extensions to C++".

2.4.3 Helpful Hints for Command Line Typing

The interpreter knows all the classes, functions, variables, and user defined types. This enables ROOT to help users to
complete the command line. For example, if we do not know anything about the TLine class, the Tab feature helps us
to get a list of all classes starting with TL(where <TAB> means type the Tab key).

root[] 1 = new TLi<TAB>
TList

TListIter

TLink

TLine

TLimitDataSource

TLimit

To list the different constructors and parameters for TLine use the <TAB> key as follows:

root[] 1 = new TLine(<TAB>

TLine TLine()

TLine TLine(Double_t x1,Double_t yl1,Double_t x2,Double_t y2)
TLine TLine(const TLine& line)

2.4.4 Regular Expression
The meta-characters below can be used in a regular expression:

4

e ‘77 start-of-line anchor

e ‘$’ end-of-line anchor

e ‘.’ matches any character

e ‘[’ start a character class

e ’1’end a character class

e “'negates character class if first character
e ‘*¥Kleene closure (matches 0 or more)

o ’+Positive closure (1 or more)

o ‘?” Optional closure (0 or 1)

2.5. CONVENTIONS 49

When using wildcards the regular expression is assumed to be preceded by a ‘*’ (BOL) and terminated by ‘$’ (EOL).
All ‘¥’ (closures) are assumed to be preceded by a ‘.’; i.e. any character, except slash _/_. Tts special treatment allows
the easy matching of pathnames. For example, _*.root_ will match _aap.root_, but not _pipo/aap.root_.

The escape characters are:

o \ backslash

e b backspace

o f form feed

e n new line

e T carriage return

e s space

e t tab

e e ASCII ESC character (‘033’)

e DDD number formed of 1-3 octal digits
e xDD number formed of 1-2 hex digits

e “C C = any letter. Control code

The class TRegexp can be used to create a regular expression from an input string. If wildcard is true then the input
string contains a wildcard expression.

TRegexp(const char *re, Bool_t wildcard)
Regular expression and wildcards can be easily used in methods like:
Ssiz_t Index(const TString& string,Ssiz_t* len,Ssiz_t i) const

The method finds the first occurrence of the regular expression in the string and returns its position.

2.5 Conventions

In this paragraph, we will explain some of the conventions used in ROOT source and examples.

2.5.1 Coding Conventions

From the first days of ROOT development, it was decided to use a set of coding conventions. This allows a consistency
throughout the source code. Learning these will help you identify what type of information you are dealing with and
enable you to understand the code better and quicker. Of course, you can use whatever convention you want but if you
are going to submit some code for inclusion into the ROOT sources, you will need to use these.

These are the coding conventions:

e Classes begin with T: TLine, TTree

e Non-class types end with _t: Int_t

o Data members begin with f: fTree

e Member functions begin with a capital: Loop()

o Constants begin with k: kInitialSize, kRed

o Global variables begin with g: gEnv

o Static data members begin with fg: fgTokenClient

e Enumeration types begin with E: EColorLevel

o Locals and parameters begin with a lower case: nbytes

o Getters and setters begin with Get and Set: SetLast(), GetFirst()

50 CHAPTER 2. GETTING STARTED

2.5.2 Machine Independent Types

Different machines may have different lengths for the same type. The most famous example is the int type. It may
be 16 bits on some old machines and 32 bits on some newer ones. To ensure the size of your variables, use these pre
defined types in ROOT:

e Char_t Signed Character 1 byte

e UChar_t Unsigned Character 1 byte

e Short_t Signed Short integer 2 bytes

e UShort_t Unsigned Short integer 2 bytes

e Int_t Signed integer 4 bytes

e UInt_tUnsigned integer 4 bytes

e Long64_t Portable signed long integer 8 bytes

e ULong64_t Portable unsigned long integer 8 bytes

e Float_t Float 4 bytes

e Double_t Float 8 bytes

e Double32_t Double 8 bytes in memory, written as a Float 4 bytes

o Bool_t Boolean (0=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the result will be the same and the interpreter
or the compiler will treat them in exactly the same way.

2.5.3 TObject

In ROOT, almost all classes inherit from a common base class called TObject. This kind of architecture is also used in
the Java language. The TObject class provides default behavior and protocol for all objects in the ROOT system. The
main advantage of this approach is that it enforces the common behavior of the derived classes and consequently it
ensures the consistency of the whole system. See “The Role of TObject”.

TObject provides protocol, i.e. (abstract) member functions, for:

o Object I/O (Read (), Write())

o Error handling (Warning(), Error(), SysError (), Fatal())
« Sorting (IsSortable(), Compare (), IsEqual(), Hash())

« Inspection (Dump(), Inspect())

 Printing (Print())

e Drawing (Draw(), Paint (), ExecuteEvent())

o Bit handling (SetBit(), TestBit())

e Memory allocation (operatornew and delete, IsOnHeap())
o Access to meta information (IsA(), InheritsFrom())

e Object browsing (Browse (), IsFolder())

2.6 Global Variables

ROOT has a set of global variables that apply to the session. For example, gDirectory* always holds the current
directory, andgStyle* holds the current style.

All global variables begin with “g¢” followed by a capital letter.

2.6. GLOBAL VARIABLES 51

2.6.1 gROOT

The single instance of TROOT is accessible via the global gRO0OT and holds information relative to the current session.
By using the gROOT pointer, you get the access to every object created in a ROOT program. The TROOT object has
several lists pointing to the main ROOT objects. During a ROOT session, the gROOT keeps a series of collections to
manage objects. They can be accessed via gROOT: :GetList0f. .. methods.

gRO0OT->GetList0fClasses ()
gROOT->GetList0fColors ()
gROOT->GetList0£Types ()
gROOT->GetList0fGlobals ()
gROOT->GetList0fGlobalFunctions ()
gRO0OT->GetList0fFiles ()
gROOT->GetListOfMappedFiles ()
gROOT->GetList0fSockets ()
gROOT->GetList0fCanvases ()
gRO0OT->GetList0fStyles()
gRO0OT->GetList0fFunctions ()
gROOT->GetList0fSpecials()
gROOT->GetList0fGeometries ()
gROOT->GetList0fBrowsers ()
gROOT->GetList0fMessageHandlers ()

These methods return a TSeqCollection, meaning a collection of objects, and they can be used to do list operations
such as finding an object, or traversing the list and calling a method for each of the members. See the TCollection
class description for the full set of methods supported for a collection. For example, to find a canvas called clyou can
do:

root[] gROOT->GetListOfCanvases()->FindObject("cl1")

This returns a pointer to a TObject, and before you can use it as a canvas you need to cast it to a TCanvasx*.

2.6.2 gFile

gFile is the pointer to the current opened file in the ROOT session.

2.6.3 gDirectory

gDirectory is a pointer to the current directory. The concept and role of a directory is explained in the chapter
“Input/Output”.

2.6.4 gPad

A graphic object is always drawn on the active pad. It is convenient to access the active pad, no matter what it is. For
that, we have gPad that is always pointing to the active pad. For example, if you want to change the fill color of the
active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor(38)

To get the list of colors, if you have an open canvas, click in the “View” menu, selecting the “Colors” entry.

2.6.5 gRandom

gRandom is a pointer to the current random number generator. By default, it points to a TRandom3 object,
based on the “Mersenne-Twister” generator. This generator is very fast and has very good random proprieties
(a very long period of 10°7). Setting the seed to 0 implies that the seed will be uniquely generated using
the TUUID. Any other value will be used as a constant. The following basic random distributions are provided:
Rndm() or Uniform(min,max), Gaus(mean,sigma), Exp(tau), BreitWigner(mean,sigma), Landau(mean,sigma),
Poisson(mean), Binomial (ntot,prob). You can customize your ROOT session by replacing the random number
generator. You can delete gRandom and recreate it with your own. For example:

52 CHAPTER 2. GETTING STARTED

root[] delete gRandom;
root[] gRandom = new TRandom2(0); //seed=0

TRandom?2 is another generator, which is also very fast and uses only three words for its state.

2.6.6 gEnv

gEnv is the global variable (of type TEnv) with all the environment settings for the current session. This variable is set
by reading the contents of a .rootrc file (or $RO0TSYS/etc/system.rootrc) at the beginning of the root session. See
Environment Setup below for more information.

2.7 Environment Setup

The behavior of a ROOT session can be tailored with the options in the .rootrc file. At start-up, ROOT looks for a
.rootrc file in the following order:

e ./.rootrc //local directory
e $HOME/.rootrc //user directory

o $RO0TSYS/etc/system.rootrc //global ROOT directory

If more than one .rootrc files are found in the search paths above, the options are merged, with precedence local,
user, global. While in a session, to see current settings, you can do:

root[] gEnv->Print()
The rootrec file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$(RO0OTSYS)/1lib
Unix.*.Root.MacroPath: . :~/rootmacros:$(ROOTSYS) /macros

Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true

Unix.*.Root.TTFontPath:

Activate memory statistics

Rint.Root.MemStat: 1

Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C

Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The various options are explained in $RO0TSYS/etc/system.rootrc. The .rootrc file contents are combined. For
example, if the flag to use true type fonts is set to true in the system.rootrc file, you have to set explicitly it false in
your local .rootrc file if you do not want to use true type fonts. Removing the UseTTFontsstatement in the local
.rootrc file will not disable true fonts. The value of the environment variable ROOTDEBUG overrides the value in the
.rootrc file at startup. Its value is used to set gDebug and helps for quick turn on debug mode in TROOT startup.

ROOT looks for scripts in the path specified in the .rootrc file in the Root.Macro.Path variable. You can expand
this path to hold your own directories.

2.7. ENVIRONMENT SETUP 53

2.7.1 Logon and Logoff Scripts

The rootlogon.C and rootlogoff.C files are scripts loaded and executed at start-up and shutdown. The rootalias.C
file is loaded but not executed. It typically contains small utility functions. For example, the rootalias.C script
that comes with the ROOT distributions (located in $RO0TSYS/tutorials) defines the function edit(char *file).
This allows the user to call the editor from the command line. This particular function will start the VI editor if the
environment variable EDITOR is not set.

root[0] edit("c1.C")

For more details, see $RO0TSYS/tutorials/rootalias.C.

2.7.2 History File

You can use the up and down arrow at the command line, to access the previous and next command. The commands
are recorded in the history file $HOME/.root_hist. It is a text file, and you can edit, cut, and paste from it. You
can specify the history file in the system.rootrc file, by setting the Rint.Historyoption. You can also turn off the
command logging in the system.rootrc file with the option: Rint.History: -

The number of history lines to be kept can be set also in .rootrc by:

Rint.HistSize: 500
Rint.HistSave: 400

The first value defines the maximum of lines kept; once it is reached all, the last HistSave lines will be removed.
One can set HistSize to 0 to disable history line management. There is also implemented an environment variable
called ROOT_HIST. By setting ROOT_HIST=300:200 the above values can be overriden - the first value corresponds to
HistSize, the (optional) second one to HistSave. You can set ROOT_HIST=0 to disable the history.

2.7.3 Tracking Memory Leaks

You can track memory usage and detect leaks by monitoring the number of objects that are created and deleted (see
TObjectTable). To use this facility, edit the file $RO0TSYS/etc/system.rootrc or .rootrc if you have this file and
add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code or on the command line you can type the line:
gObjectTable->Print () ;

This line will print the list of all active classes and the number of instances for each class. By comparing consecutive
print outs, you can see objects that you forgot to delete. Note that this method cannot show leaks coming from the
allocation of non-objects or classes unknown to ROOT.

2.7.4 Memory Checker

A memory checking system was developed by D.Bertini and M.Ivanov and added in ROOT version 3.02.07. To activate
the memory checker you can set the resource Root .MemCheck to 1 (e.g.: Root.MemCheck: 1 in the .rootrc file). You
also have to link with 1ibNew.so (e.g. use root-config --new --1ibs) or to use rootn.exe. When these settings
are in place, you will find a file “memcheck.out” in the directory where you started your ROOT program after the
completion of the program execution. You can also set the resource Root.MemCheckFile to the name of a file. The
memory information will be written to that file. The contents of this memcheck.out can be analyzed and transformed
into printable text via the memprobe program (in $RO0TSYS/bin).

54 CHAPTER 2. GETTING STARTED
2.8 Converting from PAW to ROOT

The web page at: http://root.cern.ch/root/HowtoConvertFromPAW . html#TABLE gives the “translation” table
of some commonly used PAW commands into ROOT. If you move the mouse cursor over the picture at: http:
//root.cern.ch/root /HowtoConvertFromPAW.html#SET, you will get the corresponding ROOT commands as tooltips.

2.8.1 Converting HBOOK/PAW Files

ROOT has a utility called h2root that you can use to convert your HBOOK/PAW histograms or ntuple files into
ROOT files. To use this program, you type the shell script command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically generated for you. If hbookfile is of the
form file.hbook, then the ROOT file will be called file.root. This utility converts HBOOK histograms into ROOT
histograms of the class THIF. HBOOK profile histograms are converted into ROOT profile histograms (see class
TProfile). HBOOK row-wise and column-wise ntuples are automatically converted to ROOT Trees. See “Trees”.
Some HBOOK column-wise ntuples may not be fully converted if the columns are an array of fixed dimension (e.g.
var[6]) or if they are a multi-dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by prefixing the integer identifier with the letter “h”
if the identifier is a positive integer and by "h_" if it is a negative integer identifier. In case of row-wise or column-wise
ntuples, each column is converted to a branch of a tree. Note that h2root is able to convert HBOOK files containing
several levels of sub-directories. Once you have converted your file, you can look at it and draw histograms or process
ntuples using the ROOT command line. An example of session is shown below:

// this connects the file hbookconverted.root
root[] TFile f("hbookconverted.root");

// display histogram named h10 (was HBBOK <d 10)
root[] h10.Draw();

// display column "wvar" from ntuple h30
root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a tree. ROOT includes a function TTree::MakeClass to generate
automatically the code for a skeleton analysis function. See “Example Analysis”.

In case one of the ntuple columns has a variable length (e.g. px(ntrack)), h.Draw("px") will histogram the px column
for all tracks in the same histogram. Use the script quoted above to generate the skeleton function and create/fill the
relevant histogram yourself.

http://root.cern.ch/root/HowtoConvertFromPAW.html#TABLE
http://root.cern.ch/root/HowtoConvertFromPAW.html#SET
http://root.cern.ch/root/HowtoConvertFromPAW.html#SET

Chapter 3

Histograms

This chapter covers the functionality of the histogram classes. We begin with an overview of the histogram classes,
after which we provide instructions and examples on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can begin working with histograms as soon as
possible. Some of the examples have graphics commands that may look unfamiliar to you. These are covered in the
chapter “Input/Output”.

3.1 The Histogram Classes

ROOT supports histograms up to three dimensions. Separate concrete classes are provided for one-dimensional,
two-dimensional and three-dimensional classes. The histogram classes are split into further categories, depending on
the set of possible bin values:

e TH1C, TH2C and TH3C contain one byte per bin (maximum bin content = 255)

o TH1S, TH2S and TH3S contain one short per bin (maximum bin content = 65 535).

o TH1I, TH2I and TH3I contain one integer per bin (maximum bin content = 2 147 483 647).

o TH1F, TH2F and TH3F contain one float per bin (maximum precision = 7 digits).

e TH1D, TH2D and TH3D contain one double per bin (maximum precision = 14 digits).
ROOQOT also supports profile histograms, which constitute an elegant replacement of two-dimensional histograms in
many cases. The inter-relation of two measured quantities X and Y can always be visualized with a two-dimensional
histogram or scatter-plot. Profile histograms, on the other hand, are used to display the mean value of Y and its RMS
for each bin in X. If Y is an unknown but single-valued approximate function of X, it will have greater precision in a
profile histogram than in a scatter plot.

e TProfile : one dimensional profiles

e TProfile2D : two dimensional profiles
All ROOT histogram classes are derived from the base class TH1 (see figure above). This means that two-dimensional

and three-dimensional histograms are seen as a type of a one-dimensional histogram, in the same way in which
multidimensional C arrays are just an abstraction of a one-dimensional contiguous block of memory.

3.2 Creating Histograms

There are several ways in which you can create a histogram object in ROOT. The straightforward method is to use
one of the several constructors provided for each concrete class in the histogram hierarchy. For more details on the
constructor parameters, see the subsection “Constant or Variable Bin Width” below. Histograms may also be created
by:

 Calling the Clone() method of an existing histogram

55

56 CHAPTER 3. HISTOGRAMS

TH3C - TGLTH3Composition
TH3D - TProfile3D
TH3 ~ : TH3F
. TH3
THLC TH3s
TObject - THamed THID - TProfile
TAttLine - s TH1F
TAtFIll - THL & TH1I THaC
TAttMarker THLK oD . TProfile2D
TH1S
™o ™ TH2F
-t TH2
THZPaly
TH2S

Figure 3.1: The class hierarchy of histogram classes

e Making a projection from a 2-D or 3-D histogram

o Reading a histogram from a file (see Input/Output chapter)

// using various constructors

TH1* hl = new TH1I("hi", "h1 title", 100, 0.0, 4.0);
TH2* h2 = new TH2F("h2", "h2 title", 40, 0.0, 2.0, 30, -1.5, 3.5);
TH3* h3 = new TH3D("h3", "h3 title", 80, 0.0, 1.0, 100, -2.0, 2.0,

50, 0.0, 3.0);

// cloning a histogram
TH1* hc = (TH1*)h1->Clone();

// projecting histograms

// the projections always contain double values !
TH1* hx = h2->ProjectionX(); // ! THID, not THIF
THi* hy = h2->ProjectionY(); // ! THID, not THIF

3.2.1 Constant or Variable Bin Width

The histogram classes provide a variety of ways to construct a histogram, but the most common way is to provide the
name and title of histogram and for each dimension: the number of bins, the minimum x (lower edge of the first bin)
and the maximum x (upper edge of the last bin).

TH2* h = new TH2D(
/* name */ "h2",
/* title */ "Hist with comnstant bin width",
/* X-dimension */ 100, 0.0, 4.0,
/* Y-dimension */ 200, -3.0, 1.5);

When employing his constructor, you will create a histogram with constant (fixed) bin width on each axis. For the
example above, the interval [0.0, 4.0] is divided into 100 bins of the same width w X = 4.0 - 0.0 100 = 0.04 for
the X axis (dimension). Likewise, for the Y axis (dimension), we have bins of equal widthwY = 1.5 - (-3.0) 200 =
0.0225.

If you want to create histograms with variable bin widths, ROOT provides another constructor suited for this purpose.
Instead of passing the data interval and the number of bins, you have to pass an array (single or double precision) of
bin edges. When the histogram has n bins, then there are n+1 distinct edges, so the array you pass must be of size n+1.

const Int_t NBINS = 5;

Double_t edges[NBINS + 1] = {0.0, 0.2, 0.3, 0.6, 0.8, 1.03};
// Bin 1 corresponds to range [0.0, 0.2]

// Bin 2 corresponds to range [0.2, 0.3] etc...

TH1* h new TH1D(
/* name */ "hi",

3.3. BIN NUMBERING o7

/* title */ "Hist with variable bin width",
/* number of bins %/ NBINS,

/* edge array */ edges

)

FEach histogram object contains three TAxis objects: fXaxis , fYaxis, and fZaxis, but for one-dimensional histograms
only the X-axis is relevant, while for two-dimensional histograms the X-axis and Y-axis are relevant. See the class
TAxis for a description of all the access methods. The bin edges are always stored internally in double precision.

You can examine the actual edges / limits of the histogram bins by accessing the axis parameters, like in the example
below:

const Int_t XBINS = 5; const Int_t YBINS = 5;
Double_t xEdges[XBINS + 1] = {0.0, 0.2, 0.3, 0.6, 0.8, 1.0};
Double_t yEdges[YBINS + 1] = {-1.0, -0.4, -0.2, 0.5, 0.7, 1.0%};

TH2* h = new TH2D("h2", "h2", XBINS, xEdges, YBINS, yEdges);
TAxis* xAxis = h->GetXaxis(); TAxis* yAxis = h->GetYaxis();

cout << "Third bin on Y-dimension: " << endl; // corresponds to

// [-0.2, 0.5]
cout << "\tLower edge: " << yAxis->GetBinLowEdge(3) << endl;
cout << "\tCenter: " << yAxis->GetBinCenter(3) << endl;

cout << "\tUpper edge: " << yAxis->GetBinUpEdge(3) << endl;

3.3 Bin Numbering

All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size bins along X and variable
size bins along Y or vice-versa. The functions to fill, manipulate, draw, or access histograms are identical in both cases.

3.3.1 Convention

For all histogram types: nbins , xlow , xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (xlow INCLUDED).

The second to last bin (bin# nbins) contains the upper-edge (xup EXCLUDED).
The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a “global bin” number is defined. For example, assuming a 3-D histogram h with
binx, biny, binz, the function returns a global/linear bin number.

Int_t bin = h->GetBin(binx, biny, binz);
This global bin is useful to access the bin information independently of the dimension.

3.3.2 Re-binning

At any time, a histogram can be re-binned via the TH1::Rebin() method. It returns a new histogram with the
re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

3.4 Filling Histograms

A histogram is typically filled with statements like:

58 CHAPTER 3. HISTOGRAMS

h1->Fill(x);

h1->Fill(x,w); // with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,2z);
h3->Fill(x,y,z,w);

The Fill method computes the bin number corresponding to the given x, y or z argument and increments this bin by
the given weight. The Fill() method returns the bin number for 1-D histograms or global bin number for 2-D and
3-D histograms. If TH1::Sumw2() has been called before filling, the sum of squares is also stored. One can increment a
bin number directly by calling TH1: : AddBinContent (), replace the existing content via TH1::SetBinContent () , and
access the bin content of a given bin via TH1::GetBinContent () .

Double_t binContent = h->GetBinContent (bin);

3.4.1 Automatic Re-binning Option

By default, the number of bins is computed using the range of the axis. You can change this to re-bin automatically by
setting the automatic re-binning option:

h->SetBit (TH1: :kCanRebin) ;

Once this is set, the Fi11() method will automatically extend the axis range to accommodate the new value specified
in the Fil1() argument. The used method is to double the bin size until the new value fits in the range, merging bins
two by two. The TTree: :Draw() method extensively uses this automatic binning option when drawing histograms of
variables in TTree with an unknown range. The automatic binning option is supported for 1-D, 2-D and 3-D histograms.
During filling, some statistics parameters are incremented to compute the mean value and root mean square with the
maximum precision. In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a check is made that the bin
contents do not exceed the maximum positive capacity (127 or 65 535). Histograms of all types may have positive
or/and negative bin contents.

3.5 Random Numbers and Histograms

TH1::FillRandom() can be used to randomly fill a histogram using the contents of an existing TF1 function or another
TH1 histogram (for all dimensions). For example, the following two statements create and fill a histogram 10 000 times
with a default Gaussian distribution of mean 0 and sigma 1 :

root[] TH1F h1("hi1","Histo from a Gaussian",100,-3,3);
root[] hil.FillRandom("gaus",10000);

TH1: :GetRandom() can be used to get a random number distributed according the contents of a histogram. To fill a
histogram following the distribution in an existing histogram you can use the second signature of TH1::FillRandom().
Next code snipped assumes that h is an existing histogram (TH1).

root[] THI1F h2("h2","Histo from existing histo",100,-3,3);
root[] h2.FillRandom(&hi, 1000);

The distribution contained in the histogram h1 (TH1) is integrated over the channel contents. It is normalized to one.
The second parameter (1000) indicates how many random numbers are generated.

Getting 1 random number implies:

o Generating a random number between 0 and 1 (say r1)
e Find the bin in the normalized integral for r1
o Fill histogram channel

You can see below an example of the TH1: : GetRandom () method which can be used to get a random number distributed
according the contents of a histogram.

3.6. ADDING, DIVIDING, AND MULTIPLYING 59

void getrandomh() {
TH1F *source = new TH1F("source'","source hist",100,-3,3);
source->FillRandom("gaus",1000);
THIF #final = new TH1F("final","final hist",100,-3,3);

// continued. ..

for (Int_t i=0;i<10000;i++) {

final->Fill (source—->GetRandom()) ;
}
TCanvas *cl = new TCanvas('"cl","c1",800,1000);
c1->Divide(1,2);
cl->cd(1);
source->Draw() ;
cl->cd(2);

final->Draw();
cl->cd();

3.6 Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:

o Addition of a histogram to the current histogram
o Additions of two histograms with coefficients and storage into the current histogram
e Multiplications and divisions are supported in the same way as additions.

e The Add , Divide and Multiply methods also exist to add, divide or multiply a histogram by a function.
Histograms objects (not pointers) TH1F hil can be multiplied by a constant using:
hl.Scale(const)
A new histogram can be created without changing the original one by doing:
TH1F h3 = 8%hl;
To multiply two histogram objects and put the result in a 3rd one do:
TH1F h3 = h1lx*h2;
The same operations can be done with histogram pointers TH1F *h1, *h2 following way:
hi->Scale(const) TH1F h3 = 8%(*hl); TH1F h3 = (xh1)*(*h2);

Of course, the TH1 methods Add , Multiply and Divide can be used instead of these operators.

If a histogram has associated error bars (TH1::Sumw2() has been called), the resulting error bars are also computed
assuming independent histograms. In case of divisions, binomial errors are also supported.

3.7 Projections

One can make:

e a 1-D projection of a 2-D histogram or profile. See TH2: :ProfileX, TH2: :ProfileY,TProfile: :ProjectionX,
TProfile2D: :ProjectionXY, TH2: :ProjectionX, TH2: :ProjectionY .

e a 1-D, 2-D or profile out of a 3-D histogram see TH3: :ProjectionZ, TH3: :Project3D.

These projections can be fit via: TH2: :FitSlicesX, TH2::FitSlicesY, TH3::FitSlicesZ.

60 CHAPTER 3. HISTOGRAMS
3.8 Drawing Histograms

When you call the Draw method of a histogram (TH1::Draw) for the first time, it creates a THistPainter object and
saves a pointer to painter as a data member of the histogram. The THistPainter class specializes in the drawing of
histograms. It allows logarithmic axes (X, y, z) when the CONT drawing option is using. The THistPainter class is
separated from the histogram so that one can have histograms without the graphics overhead, for example in a batch
program. The choice to give each histogram has its own painter rather than a central singleton painter, allows two
histograms to be drawn in two threads without overwriting the painter’s values. When a displayed histogram is filled
again, you do not have to call the Draw method again. The image is refreshed the next time the pad is updated. A pad
is updated after one of these three actions:

e A carriage control on the ROOT command line
e A click inside the pad

e A call to TPad: :Update ()

By default, the TH1: :Draw clears the pad before drawing the new image of the histogram. You can use the "SAME"
option to leave thevprevious display in tact and superimpose the new histogram. The same histogram can be drawn
with different graphics options in different pads. When a displayed histogram is deleted, its image is automatically
removed from the pad. To create a copy of the histogram when drawing it, you can use TH1: :DrawClone (). This will
clone the histogram and allow you to change and delete the original one without affecting the clone. You can use
TH1: :DrawNormalized() to draw a normalized copy of a histogram.

TH1 #TH1::DrawNormalized(Option_t *option,Double_t norm) const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the normalized histogram is
returned. The contents of the histogram copy are scaled such that the new sum of weights (excluding under and
overflow) is equal to norm .

Note that the returned normalized histogram is not added to the list of histograms in the current directory in memory.
It is the user’s responsibility to delete this histogram. The kCanDelete bit is set for the returned object. If a pad
containing this copy is cleared, the histogram will be automatically deleted. See “Draw Options” for the list of options.

3.8.1 Setting the Style

Histograms use the current style gStyle, which is the global object of class TStyle. To change the current style for
histograms, the TStyle class provides a multitude of methods ranging from setting the fill color to the axis tick marks.
Here are a few examples:

void SetHistFillColor(Color_t color = 1)
void SetHistFillStyle(Style_t styl = 0)
void SetHistLineColor(Color_t color = 1)
void SetHistLineStyle(Style_t styl = 0)
void SetHistLineWidth(Width_t width = 1)

When you change the current style and would like to propagate the change to a previously created histogram you can
call TH1: :UseCurrentStyle(). You will need to call UseCurrentStyle() on each histogram. When reading many
histograms from a file and you wish to update them to the current style, you can use gROOT: :ForceStyle and all
histograms read after this call will be updated to use the current style. See “Graphics and the Graphical User Interface”.
When a histogram is automatically created as a result of a TTree: :Draw , the style of the histogram is inherited from
the tree attributes and the current style is ignored. The tree attributes are the ones set in the current TStyle at the time
the tree was created. You can change the existing tree to use the current style, by calling TTree: :UseCurrentStyle ()

3.8.2 Draw Options

The following draw options are supported on all histogram classes:

“AXIS”: Draw only the axis.

3.8. DRAWING HISTOGRAMS 61
e “HIST”: When a histogram has errors, it is visualized by default with error bars. To visualize it without errors
use HIST together with the required option (e.g. “HIST SAME C”).
e “SAME”: Superimpose on previous picture in the same pad.
e “CYL”: Use cylindrical coordinates.
e “POL”: Use polar coordinates.
e “SPH”: Use spherical coordinates.
o “PSR”: Use pseudo-rapidity/phi coordinates.
e “LEGO”: Draw a lego plot with hidden line removal.
e “LEGO1”: Draw a lego plot with hidden surface removal.
e “LEG02”: Draw a lego plot using colors to show the cell contents.
e “SURF”: Draw a surface plot with hidden line removal.
e “SURF1”: Draw a surface plot with hidden surface removal.
e “SURF2”: Draw a surface plot using colors to show the cell contents.
e “SURF3”: Same as SURF with a contour view on the top.
e “SURF4”: Draw a surface plot using Gouraud shading.

e “SURF5”: Same as SURF3 but only the colored contour is drawn. Used with option CYL , SPH or PSR it allows to
draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In Cartesian or polar coordinates,
option SURF3 is used.

The following options are supported for 1-D histogram classes:

e “AH”: Draw the histogram, but not the axis labels and tick marks

e “B”: Draw a bar chart

e “C”: Draw a smooth curve through the histogram bins

e “E”: Draw the error bars

e “E0”: Draw the error bars including bins with 0 contents

e “E1”: Draw the error bars with perpendicular lines at the edges

e “E2”: Draw the error bars with rectangles

e “E3”: Draw a fill area through the end points of the vertical error bars

e “E4”: Draw a smoothed filled area through the end points of the error bars
e “L”: Draw a line through the bin contents

e “P”: Draw a (poly)marker at each bin using the histogram’s current marker style
e “P0”: Draw current marker at each bin including empty bins

e “PIE”: Draw a Pie Chart

o “xH”: Draw histogram with a * at each bin

e “LF2”: Draw histogram as with option “L” but with a fill area. Note that “L” also draws a fill area if the histogram
fill color is set but the fill area corresponds to the histogram contour.

e “9”: Force histogram to be drawn in high resolution mode. By default, the histogram is drawn in low resolution
in case the number of bins is greater than the number of pixels in the current pad

e “I[”: Draw histogram without the vertical lines for the first and the last bin. Use it when superposing many
histograms on the same picture.

The following options are supported for 2-D histogram classes:

62 CHAPTER 3. HISTOGRAMS

e “ARR”: Arrow mode. Shows gradient between adjacent cells

e “BOX”: Draw a box for each cell with surface proportional to contents

e “BOX1”: A sunken button is drawn for negative values, a raised one for positive values
e “COL”: Draw a box for each cell with a color scale varying with contents

e “COLZ”: Same as “COL” with a drawn color palette

e “CONT”: Draw a contour plot (same as CONTO)

e “CONTZ”: Same as “CONT” with a drawn color palette

e “CONTO”: Draw a contour plot using surface colors to distinguish contours

e “CONT1”: Draw a contour plot using line styles to distinguish contours

e “CONT2”: Draw a contour plot using the same line style for all contours

e “CONT3”: Draw a contour plot using fill area colors

e “CONT4”: Draw a contour plot using surface colors (SURF2 option at theta = 0)

e "CONT5": Use Delaunay triangles to compute the contours

e “LIST”: Generate a list of TGraph objects for each contour

e “FB”: To be used with LEGO or SURFACE , suppress the Front-Box

e “BB”: To be used with LEGO or SURFACE , suppress the Back-Box

e “A”: To be used with LEGO or SURFACE , suppress the axis

o “SCAT”: Draw a scatter-plot (default)

e “SPEC”: Use TSpectrum2Painter tool for drawing

e “TEXT”: Draw bin contents as text (format set via gStyle->SetPaintTextFormat) .
e “TEXTnn”: Draw bin contents as text at angle nn (0<nn<90).

e “[cutg]”: Draw only the sub-range selected by the TCutG name “cutg”.

e “Z”: The “Z” option can be specified with the options: BOX, COL, CONT, SURF, and LEGO to display the color palette

with an axis indicating the value of the corresponding color on the right side ofthe picture.

The following options are supported for 3-D histogram classes:

non

: Draw a 3D scatter plot.

e “BOX”: Draw a box for each cell with volume proportional to contents
e “LEGO”: Same as “B0OX”

e “ISO”: Draw an iso surface

e “FB”: Suppress the Front-Box

e “BB”: Suppress the Back-Box

e “A”: Suppress the axis
Most options can be concatenated without spaces or commas, for example, if h is a histogram pointer:

h->Draw("E1SAME") ;
h->Draw("elsame");

The options are not case sensitive. The options BOX , COL and COLZ use the color palette defined in the current style
(see TStyle: :SetPalette). The options CONT , SURF , and LEGO have by default 20 equidistant contour levels, you can
change the number of levels with TH1: : SetContour. You can also set the default drawing option with TH1: :SetOption
. To see the current option use TH1: :GetOption . For example:

h->SetOption("lego");
h->Draw(); // will use the lego option
h->Draw("scat") // will use the scatter plot option

3.8. DRAWING HISTOGRAMS 63
3.8.2.1 The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i,j) a number of points proportional to the cell
content are drawn. A maximum of 500 points per cell are drawn. If the maximum is above 500 contents are normalized
to 500.

3.8.2.2 The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i,j) an arrow is drawn. The orientation of
the arrow follows the cell gradient.

3.8.2.3 The BOX Option

For each cell (i,j) a box is drawn with surface proportional to contents. The size of the box is proportional to the
absolute value of the cell contents. The cells with negative contents are drawn with an X on top of the boxes. With
option BOX1 a button is drawn for each cell with surface proportional to contents’ absolute value. A sunken button is
drawn for negative values, a raised one for positive values.
3.8.2.4 The ERRor Bars Options

e "E" Default. Draw only error bars, without markers

o "E0" Draw also bins with 0 contents (turn off the symbols clipping).

e "E1" Draw small lines at the end of error bars

e "E2" Draw error rectangles

e "E3" Draw a fill area through the end points of vertical error bars

e "E4" Draw a smoothed filled area through the end points of error bars

Note that for all options, the line and fill attributes of the histogram are used for the errors or errors contours. Use
gStyle->SetErrorX(dx) to control the size of the error along x. The parameter dx is a percentage of bin width for
errors along X. Set dx=0 to suppress the error along X. Use gStyle->SetEndErrorSize (np) to control the size of the
lines at the end of the error bars (when option 1 is used). By default np=1 (np represents the number of pixels).

3.8.2.5 The Color Option

For each cell (i,j) a box is drawn with a color proportional to the cell content. The color table used is defined in the
current style (gStyle). The color palette in TStyle can be modified with TStyle: :SetPalette .

3.8.2.6 The TEXT Option
For each cell (i, j) the cell content is printed. The text attributes are:
o Text font = current font set by TStyle

e Text size= 0.02 * pad-height * marker-size

e Text color= marker color

64 CHAPTER 3. HISTOGRAMS

This is the total distribution

total
Entries 30000
Mean -0.5476
++ RMS 1.414

400

350

300

250

200

150

100

4LIIII|I III|IIII |IIII|II II|IIII|I III|IIII
2

n
=

;

AT
-
-
]

Figure 3.2: The “E1” bars’ option

3.8.2.7 The CONTour Options

The following contour options are supported:

e "CONT": Draw a contour plot (same as CONTO)

e "CONTO": Draw a contour plot using surface colors to distinguish contours
e "CONT1": Draw a contour plot using line styles to distinguish contours

e "CONT2": Draw a contour plot using the same line style for all contours

e "CONT3": Draw a contour plot using fill area colors

e "CONT4":Draw a contour plot using surface colors (SURF2 option at theta = 0); see also options “AITOFF”,
“MERCATOR”, etc. below

e "CONT5": Use Delaunay triangles to compute the contours

The default number of contour levels is 20 equidistant levels. It can be changed with TH1::SetContour. When option
“LIST” is specified together with option “CONT”; all points used for contour drawing, are saved in the TGraph object
and are accessible in the following way:

TObjArray *contours =

gROOT->GetList0fSpecials()->FindObject ("contours") ;
Int_t ncontours = contours->GetSize(); TList *list =
(TList*)contours->At(i);

Where “i” is a contour number and list contains a list of TGraph objects. For one given contour, more than one disjoint
poly-line may be generated. The TGraph numbers per contour are given by list->GetSize(). Here we show how to
access the first graph in the list.

65

3.8. DRAWING HISTOGRAMS

xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(d) + xylandau(10)

a
v L] L] LI] = =« » B 1 .9
. .]
Ce s . da
LI I I |] L] ”
| BN B I | LI I} .=
e
[L 1
rorEEEREE .- B
IR ER N AR —-
[1
¥ N
=
A
Ja
s BEENE =
[B B B B B
s sl diseid,
= v &

xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(d) + xylandau(10)

- - e e

a e s 4 oA g

“__;_q_.m._.m._n_

n
I

—_— e -

-

- N

I R PR PR PR T PO PO PR P I PO P

o+ ™ o

Figure 3.3: Different draw options

66

CHAPTER 3. HISTOGRAMS

xygaus + xygaus(5) + xylandau(10)

26 28 (33 41 327 2 2 19 15 § & 7 8 2 3 3

_____ .- guwmmé 1 oTEXT |

2z § 10 3

a2z

:? &7 125 188 225 ;23& 200 159 142 1 1!9 63 59 55 &7 39 36 ZB bl 25
P i R ANV BVI VO O I ANV SOV B ANV 2 I O VO AN ANV N I A AR ANANANE
‘4 -3 -2 -1 0 1 2 3 4

Figure 3.4: The TEXT option

3.8. DRAWING HISTOGRAMS

xygaus + xygaus(d) + xylandau(10) xygaus + xygaus(d) + xylandau(10)
a f] Y
2 2
1 B
0 0

]

2]
2]

B TT T I I T [T I T T IT T T[T T T[T T T[T TTTTTT

&
BTTTT LLARRLRRRE REREY RARY

i

e

by = 3
TTT

=

)

2]

BT |||||||||-|.|||| UL RS RERAN L

e

Figure 3.5: Different contour options

67

68 CHAPTER 3. HISTOGRAMS

TGraph *grl = (TGraph*)list->First();

e “AITOFF”: Draw a contour via an AITOFF projection
e “MERCATOR”: Draw a contour via a Mercator projection
e “SINUSOIDAL”: Draw a contour via a Sinusoidal projection

e “PARABOLIC”: Draw a contour via a Parabolic projection

The tutorial macro earth.C uses these four options and produces the following picture:

Aitaff Mercator

150 -0 - 100 150

Sinusoidal Parabolic

an an

&l &l

40 40

2b 2b

-1E0 -1 -5 S0 100 150 150 100 -5 S0 100 150

Figure 3.6: The earth.C macro output

3.8.2.8 The LEGO Options
In a lego plot, the cell contents are drawn as 3D boxes, with the height of the box proportional to the cell content.
e “LEGO”: Draw a lego plot with hidden line removal

e “LEGO1”: Draw a lego plot with hidden surface removal

e “LEG02”: Draw a lego plot using colors to show the cell contents

A lego plot can be represented in several coordinate systems; the default system is Cartesian coordinates. Other
possible coordinate systems are CYL , POL , SPH , and PSR .

69

3.8. DRAWING HISTOGRAMS

xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(d) + xylandau(10)

SURF1CYL

Figure 3.7: “LEGO” and “SURF” options

70 CHAPTER 3. HISTOGRAMS

e “CYL”: Cylindrical coordinates: x-coordinate is mapped on the angle; y-coordinate - on the cylinder length.
e “POL”: Polar coordinates: x-coordinate is mapped on the angle; y-coordinate - on the radius.
e “SPH”: Spherical coordinates: x-coordinate is mapped on the latitude; y-coordinate - on the longitude.

o “PSR”: PseudoRapidity/Phi coordinates: x-coordinate is mapped on Phi.
With TStyle: :SetPalette the color palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette(1);

3.8.2.9 The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the mesh is proportional to the cell content. A
surface plot can be represented in several coordinate systems. The default is Cartesian coordinates, and the other
possible systems are CYL, POL, SPH, and PSR . The following picture uses SURF1 . With TStyle: :SetPalette the color
palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette(1);

xygaus + xygaus(d) + xylandau(10) xygaus + xygaus(d) + xylandau(10)

xygaus + xygaus(5) + xylandau(10)

Figure 3.8: Different surface options

e “SURF”: Draw a surface plot with hidden line removal
e “SURF1”: Draw a surface plot with hidden surface removal
e “SURF2”: Draw a surface plot using colors to show the cell contents

e “SURF3”: Same as SURF with a contour view on the top

3.8. DRAWING HISTOGRAMS 71

e “SURF4”: Draw a surface plot using Gouraud shading

e “SURF5”: Same as SURF3 but only the colored contour is drawn. Used with options CYL , SPH or PSR it allows to
draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In Cartesian or polar coordinates,
option SURF3 is used.

3.8.2.10 The BAR Options

When the option “bar” or “hbar” is specified, a bar chart is drawn.

The options for vertical bar chart are “bar”, “bar0”, “barl”, “bar2”, “bar3”, “bars”.

Division

500 :
[Al nations

400 [French only

300
200

100

Figure 3.9: Vertical bar charts

e The bar is filled with the histogram fill color.

e The left side of the bar is drawn with a light fill color.

e The right side of the bar is drawn with a dark fill color.

e The percentage of the bar drawn with either the light or dark color is:

— 0 per cent for option "bar" or "bar0"
— 10 per cent for option "bar1"
— 20 per cent for option "bar2"
— 30 per cent for option "bar3"
— 40 per cent for option "bar4"

Use TH1: :SetBarWidth() to control the bar width (default is the bin width). Use TH1::SetBarOffset to control the
bar offset (default is 0). See the example $RO0TSYS/tutorials/hist/hbars.C

The options for the horizontal bar chart are “hbar”, “hbar0”, “hbarl”, “hbar2”, “hbar3”, and “hbar4”.

e A horizontal bar is drawn for each bin.

e The bar is filled with the histogram fill color.

e The bottom side of the bar is drawn with a light fill color.

e The top side of the bar is drawn with a dark fill color.

e The percentage of the bar drawn with either the light or dark color is:

— 0 per cent for option “hbar” or “hbar0”

72 CHAPTER 3. HISTOGRAMS

— 10 per cent for option “hbar1”
— 20 per cent for option “hbar2”
— 30 per cent for option “hbar3”
— 40 per cent for option “hbar4”

Use TH1: :SetBarWidth to control the bar width (default is the bin width). Use TH1: :SetBarOffset to control the
bar offset (default is 0). See the example $RO0TSYS/tutorials/hist/hbars.C

Nation

Mation

GR

10 107 10°

Figure 3.10: Horizontal bar charts

3.8.2.11 The Z Option: Display the Color Palette on the Pad

The “Z” option can be specified with the options: COL, CONT, SURF, and LEGO to display the color palette with an axis
indicating the value of the corresponding color on the right side of the picture. If there is not enough space on the right
side, you can increase the size of the right margin by calling TPad: : SetRightMargin(). The attributes used to display
the palette axis values are taken from the Z axis of the object. For example, you can set the labels size on the palette
axis with:

hist->GetZaxis()->SetLabelSize();

3.8.2.12 Setting the Color Palette

You can set the color palette with TStyle: :SetPalette , e.g.
gStyle->SetPalette(ncolors,colors);

For example, the option COL draws a 2-D histogram with cells represented by a box filled with a color index, which is a
function of the cell content. If the cell content is N, the color index used will be the color number in colors[N] . If
the maximum cell content is greater than ncolors , all cell contents are scaled to ncolors. If ncolors<=0, a default
palette of 50 colors is defined. This palette is recommended for pads, labels. It defines:

e Index 0 to 9: shades of gray

¢ Index 10 to 19:shades of brown
¢ Index 20 to 29:shades of blue

e Index 30 to 39: shades of red

3.8. DRAWING HISTOGRAMS 73
e Index 40 to 49:basic colors

The color numbers specified in this palette can be viewed by selecting the menu entry Colors in the View menu of the
canvas menu bar. The color’s red, green, and blue values can be changed via TColor: :SetRGB.

If ncolors == 1 && colors == 0, then a Pretty Palette with a spectrum violet to red is created with 50 colors.
That’s the default rain bow palette.

Other prefined palettes with 255 colors are available when colors == 0. The following value of ncolors (with colors
= 0) give access to:

e ncolors = 51 : Deep Sea palette.

e ncolors = 52 : Grey Scale palette.

e ncolors = 53 : Dark Body Radiator palette.

e ncolors = 54 : Two-color hue palette palette. (dark blue through neutral gray to bright yellow)
e ncolors = 55: Rain Bow palette.

e ncolors = 56 : Inverted Dark Body Radiator palette.

The color numbers specified in the palette can be viewed by selecting the item “colors” in the “VIEW?” menu of the
canvas toolbar. The color parameters can be changed via TColor: :SetRGB.

Note that when drawing a 2D histogram h2 with the option “COL” or “COLZ” or with any “CONT” options using the
color map, the number of colors used is defined by the number of contours n specified with: h2->SetContour (n)

3.8.2.13 TPaletteAxis

A TPaletteAxisobject is used to display the color palette when drawing 2D histograms. The object is automatically
created when drawing a 2D histogram when the option “z” is specified. It is added to the histogram list of functions.
It can be retrieved and its attributes can be changed with:

TPaletteAxis *palette=(TPaletteAxis*)h->FindObject("palette");

The palette can be interactively moved and resized. The context menu can be used to set the axis attributes. It is
possible to select a range on the axis, to set the min/max in z.

3.8.2.14 The SPEC Option

The “SPEC” option offers a large set of options/attributes to visualize 2D histograms thanks to “operators” following
the “SPEC” keyword. For example, to draw the 2-D histogram h2 using all default attributes except the viewing angles,
one can do:

h2->Draw ("SPEC a(30,30,0)");

[P

The operators’ names are case unsensitive (i.e. one can use “a” or “A”) and their parameters are seperated by coma
Operators can be put in any order in the option and must be separated by a space " “. No space characters should be
put in an operator. All the available operators are described below.

o
gy .

The way how a 2D histogram will be painted is controled by two parameters: the “Display modes groups” and the
“Display Modes”. “Display modes groups” can take the following values:

e 0 = Simple - simple display modes using one color only

1 = Light - the shading is carried out according to the position of the fictive light source

e 2 = Height - the shading is carried out according to the channel contents

o 3 = LightHeight - combination of two previous shading algorithms (one can control the weight between both
algorithms).

“Display modes” can take the following values:

e 1 = Points
¢ 2 =QGrid

74 CHAPTER 3. HISTOGRAMS

« 3 = Contours

e 4 = Bars

e 5 = LinesX
e 6 = LinesY
e 7 = BarsX
e 8 = BarsY
e 9 = Needles

e 10 = Surface
e 11 = Triangles

These parameters can be set by using the “dm” operator in the option.
h2->Draw("SPEC dm(1,2)");

The above example draws the histogram using the “Light Display mode group” and the “Grid Display mode”. The
following tables summarize all the possible combinations of both groups:

Points Grid Contours Bars LinesX LinesY
Simple X X X X X X
Light X X - - X X
Height X X X X X X
LightHeight x X - - x X
BarsX BarsY Needles Surface Triangles

Simple X X X - X

Light - - - X X

Height X X - X X

LightHeight - - - b X

The “Pen Attributes” can be changed using pa(color,style,width). Next example sets line color to 2, line type to 1
and line width to 2. Note that if pa() is not specified, the histogram line attributes are used:

h2->Draw("SPEC dm(1,2) pa(2,1,2)");
The number of “Nodes” can be changed with n(nodesx,nodesy). Example:
h2->Draw ("SPEC n(40,40)");

Sometimes the displayed region is rather large. When displaying all channels the pictures become very dense and
complicated. It is very difficult to understand the overall shape of data. “n(nx,ny)” allows to change the density of
displayed channels. Only the channels coinciding with given nodes are displayed.

The visualization “Angles” can be changed with “a(alpha,beta,view)”: “alpha” is the angle between the bottom
horizontal screen line and the displayed space on the right side of the picture and “beta” on the left side, respectively.
One can rotate the 3-d space around the vertical axis using the “view” parameter. Allowed values are 0, 90, 180 and
270 degrees.

h2->Draw("SPEC n(40,40) dm(0,1) a(30,30,0)");
The operator “zs(scale)” changes the scale of the Z-axis. The possible values are:

o 0 = Linear (default),

3.8. DRAWING HISTOGRAMS (0]

e 1 = Log,
e 2 = Sqrt.

If gPad->SetLogz () has been set, the log scale on Z-axis is set automatically, i.e. there is no need for using the zs ()
operator. Note that the X and Y axis are always linear.

The operator “ci(r,g,b)” defines the colors increments (r, g and b are floats). For sophisticated shading (Light, Height
and LightHeight Display Modes Groups) the color palette starts from the basic pen color (see pa() function). There is
a predefined number of color levels (256). Color in every level is calculated by adding the increments of the r , g , b
components to the previous level. Using this function one can change the color increments between two neighboring
color levels. The function does not apply on the Simple Display Modes Group. The default values are: (1,1,1).

The operator “ca(color_algorithm)” allows to choose the Color Algorithm. To define the colors one can use one of
the following color algorithms (RGB, CMY, CIE, YIQ, HVS models). When the level of a component reaches the limit
value one can choose either smooth transition (by decreasing the limit value) or a sharp modulo transition (continuing
with 0 value). This allows various visual effects. One can choose from the following set of the algorithms:

¢ 0 = RGB Smooth,
« 1 = RGB Modulo,
e 2 =CMY Smooth,
e 3 = CMY Modulo,
e 4 = CIE Smooth
e 5 = CIE Modulo,
e 6 = YIQ Smooth,
e 7 =YIQ Modulo,
e« 8 = HVS Smooth,
e« 9 = HVS Modulo

This function does not apply on Simple display modes group. Default value is 0. Example choosing CMY Modulo to
paint the 2D histogram:

h2->Draw("SPEC c1(3) dm(0,1) a(30,30,0)");

The operator “1p(x,y,z)” sets the light position. In Light and LightHeight display modes groups the color palette is
calculated according to the fictive light source position in 3-d space. Using this function one can change the source’s
position and thus achieve various graphical effects. This function does not apply for Simple and Height display modes
groups. Default is: 1p(1000,1000,100) .

The operator “s(shading,shadow)” allows to set the shading. The surface picture is composed of triangles. The edges
of the neighboring triangles can be smoothed (shaded). The shadow can be painted as well. The function does not
apply on Simple display modes group. The possible values for shading are:

e 0 = Not Shaded,
e 1 = Shaded.

The possible values for shadow are:

e 0 = Shadows are not painted,
e 1 = Shadows are painted.

Default values: s(1,0) .

The operator “b(bezier)” sets the Bezier smoothing. For Simple display modes group and for Grid, LinesX and
LinesY display modes one can smooth data using Bezier smoothing algorithm. The function does not apply on other
display modes groups and display modes. Possible values are: 0 = No bezier smoothing, 1 = Bezier smoothing. Default
value is: b(0).

The operator “cw(width)” sets the contour width. This function applies only on for the Contours display mode. One
can change the width between horizontal slices and thus their density. Default value: cw(50) .

The operator “lhw(weight)” sets the light height weight. For LightHeight display modes group one can change the
weight between both shading algorithms. The function does not apply on other display modes groups. Default value is
1hw(0.5) .

76 CHAPTER 3. HISTOGRAMS

The operator “cm(enable,color,width,height,style)” allows to draw a marker on each node. In addition to the
surface drawn using any above given algorithm one can display channel marks. One can control the color as well as the
width, height (in pixels) and the style of the marks. The parameter enable can be set to 0 = Channel marks are not
drawn or 1 = Channel marks drawn. The possible styles are:

e 1 = Dot,

e 2 = Cross,

e 3 = Star,

e 4 = Rectangle,
e 5 =X,

e 6 = Diamond,
e 7 = Triangle.

The operator “cg(enable,color)” channel grid. In addition to the surface drawn using any above given algorithm
one can display grid using the color parameter. The parameter enable can be set to:

e 0 = Grid not drawn,
e 1 = Grid drawn.

See the example in $RO0TSYS/tutorials/spectrum/spectrumpainter.C .

Figure 3.11: The picture produced by spectrumpainter.C macro

3.8. DRAWING HISTOGRAMS 7

3.8.2.15 3-D Histograms

By default a 3D scatter plot is drawn. If the “BOX” option is specified, a 3D box with a volume proportional to the
cell content is drawn.

3.8.3 Drawing a Sub-range of a 2-D Histogram

From f2

h2
Entries 100000
Mean x -D.455
Mean y 246
800 “.. |RMSx 3.017
. BMSy 3.015
500
400
300
200
100 o
**}"‘ b LT
1 DD ";f{;?a:o.ﬂ ;-" 5
10

Figure 3.12: The picture produced by fit2a.C macro

Using a TCutG object, it is possible to draw a 2D histogram sub-range. One must create a graphical cut (mouse or
C++) and specify the name of the cut between “[” and “]” in the Draw option.

For example, with a TCutGnamed “cutg”, one can call:
myhist->Draw("surfl [cutgl");

Or, assuming two graphical cuts with name “cut1” and “cut2”, one can do:

hl.Draw("lego");
h2.Draw(" [cutl,-cut2],surf,same");

The second Draw will superimpose on top of the first lego plot a subset of h2using the “surf” option with:

o all the bins inside cuti
o all the bins outside cut?2

Up to 16 cuts may be specified in the cut string delimited by " [..]". Currently only the following drawing options are
sensitive to the cuts option: col , box , scat , hist , lego , surf and cartesian coordinates only. See a complete
example in the tutorial $RO0TSYS/tutorials/fit/fit2a.C .

78 CHAPTER 3. HISTOGRAMS

3.8.4 Superimposing Histograms with Different Scales
The following script creates two histograms; the second histogram is the bins integral of the first one. It shows a

procedure to draw the two histograms in the same pad and it draws the scale of the second histogram using a new
vertical axis on the right side.

my histogram

Eﬁlﬂ-f— :1!]!]00
Ell}ﬂ-f— —fﬂﬂl]ﬂ
15L‘]-f— —fﬁﬂl]ﬂ
1ﬂlﬂ-f— —f-ﬂlﬂl]ﬂ
EGf— —fEﬂI]ﬂ
T s

Figure 3.13: Superimposed histograms with different scales

void twoscales() {

TCanvas *cl = new TCanvas("cl","different scales hists",600,400);

//create, fill and draw hl

gStyle->SetOptStat (KFALSE) ;

TH1F *hl = new TH1F("h1",'"my histogram",100,-3,3);

for (Int_t i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));

hi->Draw();

c1->Update();

//create hintl filled with the bins integral of hl

THIF *hintl = new TH1F("hint1","hl bins integral",100,-3,3);

Float_t sum = 0;

for (Int_t i=1;i<=100;i++) {

sum += h1->GetBinContent(i);
hint1->SetBinContent (i, sum) ;

}

//scale hintl to the pad coordinates

Float_t rightmax = 1.1*hintl->GetMaximum();

Float_t scale gPad->GetUymax () /rightmax;

hint1->SetLineColor (kRed) ;

hinti1->Scale(scale);

hint1->Draw("same");

//draw an azis on the right side

TGaxis*axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),
gPad->GetUxmax () ,gPad->GetUymax (),
0,rightmax,510,"+L");

axis—>SetLineColor (kRed) ;

axis->SetLabelColor (kRed) ;

3.8. DRAWING HISTOGRAMS 79

axis->Draw();

3.8.5 Statistics Display

By default, a histogram drawing includes the statistics box. Use TH1::SetStats(kXFALSE) to eliminate the statistics
box. If the statistics box is drawn, gStyle->SetOptStat (mode) allow you to select the type of displayed information .
The parameter mode has up to nine digits that can be set OFF (0) or ON as follows:

mode = ksiourmen (default =000001111)

= 1 the name of histogram is printed
= 1 the number of entries

= 1 the mean value

= 2 the mean and mean error values
= 1 the root mean square (RMS)

= 2 the RMS and RMS error

= 1 the number of underflows

= 1 the number of overflows

= 1 the integral of bins

= 1 the skewness

L]
n n H o0 g W B B o B

= 2 the skewness and the skewness error
e k = 1 the kurtosis
e k = 2 the kurtosis and the kurtosis error

Never call SetOptStat(0001111) , but SetOptStat(1111) , because 0001111 will be taken as an octal number.

The method TStyle: :SetOptStat(Option_t*option) can also be called with a character string as a parameter. The
parameter option can contain:

e 1 for printing the name of histogram
¢ e the number of entries

e m the mean value

e M the mean and mean error values

e r the root mean square (RMS)

e R the RMS and RMS error

e u the number of underflows

e o the number of overflows

e i the integral of bins

¢ s the skewness

e S the skewness and the skewness error
e k the kurtosis

e K the kurtosis and the kurtosis error

gStyle->SetOptStat("ne"); // prints the histogram name and number
// of entries

gStyle->SetOptStat("n"); // prints the histogram name

gStyle->SetOptStat("nemr"); // the default wvalue

With the option "same", the statistic box is not redrawn. With the option "sames", it is re-drawn. If it hides the
previous statistics box, you can change its position with the next lines (where h is the histogram pointer):

root[] TPaveStats *s =

(TPaveStats*)h->GetListOfFunctions () ->FindObject ("stats");
root[] s->SetXINDC (newxl); // new z start position
root[] s->SetX2NDC (newx2); // new = end position

3.8.6 Setting Line, Fill, Marker, and Text Attributes

The histogram classes inherit from the attribute classes: TAttLine, TAttFill, TAttMarker and TAttText. See the
description of these classes for the list of options.

80 CHAPTER 3. HISTOGRAMS

3.8.7 Setting Tick Marks on the Axis

The TPad::SetTicks() method specifies the type of tick marks on the axis. Let tx=gPad->GetTickx() and
ty=gPad->GetTicky ().

e tx = 1; tick marks on top side are drawn (inside)

e tx = 2; tick marks and labels on top side are drawn

e ty = 1; tick marks on right side are drawn (inside)

e ty = 2; tick marks and labels on right side are drawn

e tx=ty=0 by default only the left Y axis and X bottom axis are drawn

Use TPad: :SetTicks (tx,ty) to set these options. See also the methods of TAxis that set specific axis attributes. If
multiple color-filled histograms are drawn on the same pad, the fill area may hide the axis tick marks. One can force
the axis redrawing over all the histograms by calling:

gPad->RedrawAxis();

3.8.8 Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first and then call TAxis: :SetTitle.

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");
h->GetZaxis()->SetTitle("Z axis title");

The histogram title and the axis titles can be any TLatex string. The titles are part of the persistent histogram. For
example if you wanted to write E with a subscript (T) you could use this:

h->GetXaxis()->SetTitle("E_{T}");

For a complete explanation of the Latex mathematical expressions, see “Graphics and the Graphical User Interface”. It
is also possible to specify the histogram title and the axis titles at creation time. These titles can be given in the “title”

W,

parameter. They must be separated by “;

TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",
100,0,1);

Any title can be omitted:

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);
TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

The method SetTitle has the same syntax:

h->SetTitle("Histogram title;An other X title Axis");

3.9 Making a Copy of an Histogram

Like for any other ROOT object derived from TObject , the Clone method can be used. This makes an identical copy
of the original histogram including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone(); // renaming is recommended,
hnew->SetName ("hnew") ; // because otherwise you will have
// two histograms with the same

// name

3.10. NORMALIZING HISTOGRAMS 81
3.10 Normalizing Histograms
You can scale a histogram (TH1 xh) such that the bins integral is equal to the normalization parameter norm:

Double_t scale = norm/h->Integral();
h->Scale(scale);

3.11 Saving/Reading Histograms to/from a File

The following statements create a ROOT file and store a histogram on the file. Because TH1 derives from TNamed , the
key identifier on the file is the histogram name:

TFile f("histos.root","new");

TH1F hi1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000) ;

hi->Write();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
THIF *h = (TH1F*)f.Get("hgaus");

One can save all histograms in memory to the file by:
file->Write();

For a more detailed explanation, see “Input/Output”.

3.12 Miscellaneous Operations

e TH1::KolmogorovTest(TH1* h2,0ption_t *option) is statistical test of compatibility in shape between two
histograms. The parameter option is a character string that specifies:

o “U” include Underflows in test (also for 2-dim)

o “0” include Overflows (also valid for 2-dim)

e “N” include comparison of normalizations

e “D” put out a line of “Debug” printout

e “M” return the maximum Kolmogorov distance instead of prob

e “X” run the pseudo experiments post-processor with the following procedure: it makes pseudo experiments based
on random values from the parent distribution and compare the KS distance of the pseudo experiment to the
parent distribution. Bin the KS distances in a histogram, and then take the integral of all the KS values above the
value obtained from the original data to Monte Carlo distribution. The number of pseudo-experiments NEXPT
is currently fixed at 1000. The function returns the integral. Note that this option “X” is much slower.

e TH1::Smooth - smoothes the bin contents of a 1D histogram.

e TH1::Integral(Option_t *opt)-returns the integral of bin contents in a given bin range. If the option “width”
is specified, the integral is the sum of the bin contents multiplied by the bin width in x .

e TH1::GetMean(int axis) - returns the mean value along axis.
e TH1::GetRMS(int axis) - returns the Root Mean Square along axis.
e TH1::GetEntries() - returns the number of entries.

e TH1::GetAsymmetry(TH1 *h2,Double_t c2,Double_tdc2)

82 CHAPTER 3. HISTOGRAMS

— returns an histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined
as:

Asymmetry = (h1l - h2)/(hl + h2); //where hl = this

o It works for 1D , 2D , etc. histograms. The parameter c2 is an optional argument that gives a relative weight
between the two histograms, and dc 2 is the error on this weight. This is useful, for example, when forming an
asymmetry between two histograms from two different data sets that need to be normalized to each other in
some way. The function calculates the errors assuming Poisson statistics on hl and h2 (that is, dh=sqrt(h)). In
the next example we assume that hl and h2 are already filled:

h3 = h1->GetAsymmetry(h2);

e Then h3 is created and filled with the asymmetry between h1l and h2 ; h1 and h2 are left intact.
e Note that the user’s responsibility is to manage the created histograms.

e TH1::Reset() - resets the bin contents and errors of a histogram

3.13 Alphanumeric Bin Labels

By default, a histogram axis is drawn with its numeric bin labels. One can specify alphanumeric labels instead.

3.13.1 Option 1: SetBinLabel

To set an alphanumeric bin label call:
TAxis::SetBinLabel(bin,label);

This can always be done before or after filling. Bin labels will be automatically drawn with the histogram.

% demo bin labels

File Edit Yiew Options Tools Help

test Use the axis Context Menu LabelsOption
"a" to sort by alphabetic order
">" to sort by decreasing values

July | 60 i 71 :69 : 64 (69 : 61 (60 6569 :78 65 ;53| "<" tosortbyincreasing values
March |59 (53 :54 67 64 (62 (68 69 64 .68 ;76 :66 .50 61 64 56 63 66 : 63 : 69
December |55 | 57 {52 | 70 {50 {75 {59 | 54 | 69 {49 i 61 | 66 | 42 {60 | 59 : 55 | 63 | 57 i 54 i 58
x| dem
Eile Ecit View Options Tools August | 76 i 65 : 62 63 : 77 63 (76 64 ; 63 : 68 ; 73 i 67 : 586 [57 [52 | 67 | 64 | 74 | 67 : 53
October | 66 i 71 : 59 : 63 (61 : 72 (67 (57 | 70 i 62 : 63 ; 72 : 69 ; 69 ; 60 ; 65 ; 60 : 60 : 57 : 68
February | 63 64 (64 (47 159 :72 74 61 061 73 057 163 169 |71 81 0 68 52 53 170 :48
270 = September |46 161 (68 0 61 75 (64 (53 62 70 (48 (63 (6B 50 67 69 0 63 51 64 0 55 @ 64
265 — May (65 {75 66 : 67 (64 (6B (65 | 60 | 60 (66 59 (51 77 {61 | 5658 ;49 (58 {72 53
260 April [55 {42 (61 (63 69 {59 {57 (53 62 (52 (60 49 (60 (69 (60 (55 59 51 5671
255 B Movember | 62 {67 {97 i 71 (61 (68 68 (63 69 (66 58 (65 :60 67 62 71 |55 60 | 51 48
250 June | 74 64 59 163 78 (59 : 65 58 . 55 : 63 46 166 73 60 0 63 | 60 . 57 . 54
245 January 64 .64 55 54 55 61 62 69 51 4B 67 ; 57
240 §3 2 g eggiege
a d 6 § o S 28 3 &
2 & z @
W

235 0— |

230

225

Valer, ety Fimg er Ss&isﬁ@f’sg Potg, Barng Pagh, Tobt, Bong P Moy, ean Aoy, &gamm%qe A Havrg,

Figure 3.14: Histograms with alphanumeric bin labels

See example in $RO0OTSYS/tutorials/hist/hlabelsl.C , hlabels2.C

3.13. ALPHANUMERIC BIN LABELS

3.13.2 Option 2: Fill

You can also call a Fil1() function with one of the arguments being a string:

hist1->Fill(somename,weigth) ;
hist2->Fill(x,somename,weight) ;
hist2->Fill(somename,y,weight);
hist2->Fill (somenamex, somenamey,weight) ;

3.13.3 Option 3: TTree::Draw

You can use a char* variable type to histogram strings with TTree: :Draw().

PT

GH

SE

(a4

ES

BE

AT

GB

FR

CH

DE

tree.Draw("Nation: :Division", "", "text");
Nation:Division
: : hN
1 1 { Entries
_2 ; S 1 1 e 1 Mean x
L e B .. Mean y
2 4 1 1 1 k| HMS ¥
4 10 1 7 5 1 1 [1 . RMS Y
_5 3 a, 2 o 1 2 5 3

_2 ‘.3 3 2; 7 1 1 5 1 1 3

L b 7 3 2 1 1 e 1

_1? ; ; 2 ; m a 5 a 1 1 ; m

_.; ; N 1 ; ; 7 1 2 1 1

_. .E; 35 7 ; a? 2? 5 1 1 a ;E. l.; 1 2 21 ';

_1; 12 2 ; a ; 5 ; 1 a

_a.l;2 23 2 ; 33 3, 2 2 ..1 5 1 ,,;

m 15& 3 ,1., 1?., 3,1 mz ‘.3 ; 2 ; 5 7 ,.], 1,55 13

_,; " 53 5 ? ;E. m " ; 2 a I.} ? 25 ‘;

_..u.l 55 7 a ;1. l 2? i “ - 2 a 5 o 1 m 7 ‘; l 2
Ps EF ST SPS LEP EF Fl PE [ME oo TIS AG TH

83

3354
453
3.247
3.237
2.337

Figure 3.15: Using a *char variable type in TTree::Draw

There is an example in $RO0TSYS/tutorials/tree/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You change that and draw the value of char[0] as
an integer by adding an arithmetic operation to the expression as shown below.

tree.Draw("MyChar + 0");

3.13.4 Sort Options

When using the options 2 or 3 above, the labels are automatically added to the list (THashList) of labels for a given
axis. By default, an axis is drawn with the order of bins corresponding to the filling sequence. It is possible to reorder
the axis alphabetically or by increasing or decreasing values. The reordering can be triggered via the TAxis context
menu by selecting the menu item “LabelsOption” or by calling directly.

84 CHAPTER 3. HISTOGRAMS
TH1::LabelsOption(option,axis);

Here axis may be X, Y, or Z. The parameter option may be:

W

e “a” sort by alphabetic order

e “>” sort by decreasing values

e “<” sort by increasing values

e “h” draw labels horizontal

o “v” draw labels vertical

o “u” draw labels up (end of label right adjusted)

o “d” draw labels down (start of label left adjusted)

When using the option second above, new labels are added by doubling the current number of bins in case one label
does not exist yet. When the filling is terminated, it is possible to trim the number of bins to match the number of
active labels by calling:

TH1: :LabelsDeflate(axis);

Here axis may be X, Y, or Z. This operation is automatic when using TTree: :Draw . Once bin labels have been created,
they become persistent if the histogram is written to a file or when generating the C++ code via SavePrimitive .

3.14 Histogram Stacks

A THStack is a collection of TH1 (or derived) objects. Use THStack: :Add(TH1 *h) to add a histogram to the stack.
The THStack does not own the objects in the list.

Stacked 1D hiSthrﬂmﬂ Stacked 1D hiSthrﬂmﬂ
r 700 T o U T U T —
1400 — B
i N PO RO OO WU .o S0 SO SN
1200 — r
L B0 L B e
1000 — C
B 400 PO SRR
BOO o
00 O 200 MEREEEEREE R i T, R RN
400 __ 200 RGN EY KU S LS A
soa b S SRR~ VO U & SN N
ﬂ_ (2 1
-4 4 - - - -1 a 1 4

Figure 3.16: Stacked histograms

By default, THStack: :Draw draws the histograms stacked as shown in the left pad in the picture above. If the option
"nostack" is used, the histograms are superimposed as if they were drawn one at a time using the "same" draw option
. The right pad in this picture illustrates the THStack drawn with the "nostack" option.

hs->Draw("nostack") ;

Next is a simple example, for a more complex one see $RO0TSYS/tutorials/hist/hstack.C.

3.15. TH2POLY 85

THStack hs("hs","test stacked histograms");

TH1F *h1 = new TH1F("h1","test hstack",100,-4,4);
h1->FillRandom("gaus",20000) ;
h1->SetFillColor (kRed) ;

hs.Add(hl);

TH1F *h2 = new TH1F("h2","test hstack",100,-4,4);
h2->FillRandom("gaus",15000) ;

h2->SetFillColor (kBlue) ;

hs.Add (h2);

TH1F *h3 = new TH1F("h3","test hstack",100,-4,4);
h3->FillRandom("gaus",10000) ;

h3->SetFillColor (kGreen) ;

hs.Add (h3);

TCanvas c1("cl1","stacked hists",10,10,700,900);
cl.Divide (1,2);

cl.cd(1);

hs.Draw();

cl.cd(2);

hs->Draw("nostack") ;

3.15 TH2Poly

TH2Poly is a 2D Histogram class allowing to define polygonal bins of arbitary shape.

Each bin in the TH2Poly histogram is a TH2PolyBin object. TH2PolyBin is a very simple class containing the vertices
and contents of the polygonal bin as well as several related functions.

Bins are defined using one of the AddBin() methods. The bin definition should be done before filling.

The following very simple macro shows how to build and fill a TH2Poly:

{
TH2Poly *h2p = new TH2Poly();
Double t x1[] = {0, 5, 5};
Double_t y1[] = {0, 0, 5};
Double_t x2[] = {0, -1, -1, 0};
Double_t y2[1 = {0, 0, -1, -1};
Double_t x3[] = {4, 3, 0, 1, 2.4};
Double_t y3[]1 = {4, 3.7, 1, 4.7, 3.5};
h2p->AddBin(3, x1, y1);
h2p->AddBin(3, x2, y2);
h2p->AddBin(3, x3, y3);
h2p->Fill(3, 1, 3); // fill bin 1
h2p->Fill(-0.5, -0.5, 7); // fill bin 2
h2p->Fill(-0.7, -0.5, 1); // fill bin 2
h2p->Fill(1, 3, 5); // fill bin 3
}

More examples can bin found in $RO0TSYS/tutorials/hist/th2poly*.C

3.16 Profile Histograms

Profile histograms are in many cases an elegant replacement of two-dimensional histograms. The relationship of
two quantities X and Y can be visualized by a two-dimensional histogram or a scatter-plot; its representation is not
particularly satisfactory, except for sparse data. If Y is an unknown [but single-valued] function of X, it can be displayed
by a profile histogram with much better precision than by a scatter-plot. Profile histograms display the mean value
of Y and its RMS for each bin in X. The following shows the contents [capital letters] and the values shown in the
graphics [small letters] of the elements for bin j. When you fill a profile histogram with TProfile.Fill(x,y) :

86 CHAPTER 3. HISTOGRAMS

Europe (bin contents are normalized to the surfaces in km?)

x10°
k]
=
=
= 500
o
—1400
S e P - R A - - _la0g
:_ 'Europé e R N
— |Entries 111116 : ; 200
— |Meanx 1244 i i - S
| Mean y 50.9
— |[RMSx 1165 ! : : :
:_. BRMS y B.578 : N : SEER 100
35 _Ii...l....l...’ ... ‘I‘-Tulv s III - 9
-25 -20 -15 -10 -5 0 5 10 15 20 25 30 35
longitude

Figure 3.17: A TH2Poly histogram example

e H[j] will contain for each bin j the sum of the y values for this bin
e L[j] contains the number of entries in the bin j

e e[j] or s[j] will be the resulting error depending on the selected option. See “Build Options”.

E[j] = sum Y**2

L[j] = number of entries in bin J
H[j] = sum Y

h(j] = H[j]1 / L[j]

s[j] = sqrtlE[j] / LI[j] - h[jI**2]
elj]l = s[j] / sqrtlL[j]]

In the special case where s[j] is zero, when there is only one entry per bin, e[j] is computed from the average of the
s[j] for all bins. This approximation is used to keep the bin during a fit operation. The TProfile constructor takes
up to eight arguments. The first five parameters are similar to TH1D constructor.

TProfile(const char *name,const char *title,Int_t nbinsx,
Double_t xlow, Double_t xup, Double_t ylow, Double_t yup,
Option_t *option)

All values of y are accepted at filling time. To fill a profile histogram, you must use TProfile: :Fill function. Note
that when filling the profile histogram the method TProfile: :Fill checks if the variable y is between fYmin and
fYmax. If a minimum or maximum value is set for the Y scale before filling, then all values below ylow or above yup
will be discarded. Setting the minimum or maximum value for the Y scale before filling has the same effect as calling
the special TProfile constructor above where ylow and yup are specified.

3.16.1 Build Options

The last parameter is the build option. If a bin has N data points all with the same value Y, which is the case when
dealing with integers, the spread in Y for that bin is zero, and the uncertainty assigned is also zero, and the bin is
ignored in making subsequent fits. If SQRT(Y) was the correct error in the case above, then SQRT(Y) /SQRT(N) would
be the correct error here. In fact, any bin with non-zero number of entries N but with zero spread (spread = s[j])

3.16. PROFILE HISTOGRAMS 87

should have an uncertainty SQRT(Y)/SQRT(N). Now, is SQRT(Y) /SQRT (N) really the correct uncertainty 7 That it is
only in the case where the Y variable is some sort of counting statistics, following a Poisson distribution. This is
the default case. However, Y can be any variable from an original NTUPLE, and does not necessarily follow a Poisson
distribution. The computation of errors is based on Y = values of data points; N = number of data points.

e 7 7’ - the default is blank, the errors are:

e spread/SQRT(N) for a non-zero spread

e SQRT(Y)/SQRT(N) for a spread of zero and some data points
e 0 for no data points

e ‘s’ - errors are:

e spread for a non-zero spread

e SQRT(Y) for a Spread of zero and some data points

e 0 for no data points

e ‘i’ - errors are:

e spread/SQRT(N) for a non-zero spread

e 1/SQRT(12xN) for a Spread of zero and some data points
e 0 for no data points

e ‘G’ - errors are:

e spread/SQRT(N) for a non-zero spread

e sigma/SQRT(N) for a spread of zero and some data points

e 0 for no data points

The option ‘i’ is used for integer Y values with the uncertainty of +0.5, assuming the probability that Y takes any
value between Y-0.5 and Y+0.5 is uniform (the same argument for Y uniformly distributed between Y and Y+1).
An example is an ADC measurement. The ‘G’ option is useful, if all Y variables are distributed according to some
known Gaussian of standard deviation Sigma. For example when all Y’s are experimental quantities measured with the
same instrument with precision Sigma. The next figure shows the graphic output of this simple example of a profile
histogram.

// Create a canvas gtving the coordinates and the size
TCanvas *cl = new TCanvas('"cl", "Profile example",200,10,700,500);

// Create a profile with the name, title, the number of bins,
// the low and high limit of the z-aztis and the low and high
// limit of the y-azis.
// No option is given so the default is used.
hprof = new TProfile("hprof",

"Profile of pz versus px",100,-4,4,0,20);

// Fill the profile 25000 times with random numbers

Float_t px, py, pz;

for (Int_t i=0; i<25000; i++) {
// Use the random number generator to get two numbers following
// a gaussian distribution with mean=0 and sigma=1
gRandom->Rannor (px,py) ;
Pz = PX*px + Py*py;
hprof->Fill(px,pz,1);

}

hprof->Draw() ;

88 CHAPTER 3. HISTOGRAMS

Profile of pz versus px

hprof
18— Entries 24998
- Mean -0.004147
16— Mean y 2.007
—_ RMS 0.9976
- RMS y 1.999
14— -
— _+‘|' Jr +
12— JrJ(-
10— iy \ ++Jf
— # _|_++
8l— +
- + =
I + .|_
B— * +
— +++ #+
al— it "
L H+...++ ++-+—+++
2 __ +++"""‘+ +"'-r.-++
D — 1 1 1 | | 1 1 1 1 | 11 1 1 | 11 1 1 |+ 11 1 | | 11 1 | | 1 1 1 1 | 11 1 1
-4 -3 -2 -1 0 1 2 3 4

Figure 3.18: A profile histogram example

3.16.2 Drawing a Profile without Error Bars

To draw a profile histogram and not show the error bars use the “HIST” option in the TProfile: :Draw method. This
will draw the outline of the TProfile.

3.16.3 Create a Profile from a 2D Histogram

You can make a profile from a histogram using the methods TH2: :ProfileX and TH2: :ProfileY.

3.16.4 Create a Histogram from a Profile

To create a regular histogram from a profile histogram, use the method TProfile: :ProjectionX .This example
instantiates a TH1D object by copying the TH1D piece of TProfile.

TH1D *sum = myProfile.ProjectionX();

You can do the same with a 2D profile using the method TProfile2D: :ProjectionXY .

3.16.5 Generating a Profile from a TTree

The ’prof’ and ’profs’ options in the TTree: :Draw method generate a profile histogram (TProfile), given a two
dimensional expression in the tree, or a TProfile2D given a three dimensional expression. See “Trees”. Note that you
can specify ’prof’ or ’profs’ : ’prof’ generates a TProfile with error on the mean, ’profs’ generates a TProfile
with error on the spread.

3.16. PROFILE HISTOGRAMS 89

3.16.6 2D Profiles

The class for a 2D Profile is called TProfile2D . It is in many cases an elegant replacement of a three-dimensional
histogram. The relationship of three measured quantities X, Y and Z can be visualized by a three-dimensional histogram
or scatter-plot; its representation is not particularly satisfactory, except for sparse data. If Z is an unknown (but
single-valued) function of (X,Y), it can be displayed with a TProfile2D with better precision than by a scatter-plot.
A TProfile2D displays the mean value of Z and its RMS for each cell in X, Y. The following shows the cumulated
contents (capital letters) and the values displayed (small letters) of the elements for cell i, j.

When you fill a profile histogram with TProfile2D.Fill(x,y,z):

e E[i,j] contains for each bin i, j the sum of the z values for this bin
e L[i,j] contains the number of entries in the bin j

e e[j] or s[j] will be the resulting error depending on the selected option. See “Build Options”.

E[i,j] = sum z

L[i,j] = sum 1

h(i,j] = H[i,j 1 / L[i,j]

s[i,j] = sqrtlE[i,j] / L[i,jl- hli,jl*=*2]
eli,jl = s[i,j] / sqrtlL[i,jl]

In the special case where s[i,j] is zero, when there is only one entry per cell, e[i, j] is computed from the average of
the s[i,j] for all cells. This approximation is used to keep the cell during a fit operation.

Profile of pz versus px and py

4 hprof2d
- J) Entries 24999
- Mean x -0.002311
3 _ Meany -0.009267
- k RMS x 0.9971
o «{RMSy 0.9996
1=
O
A
.2:_
3
_4 : 1 1 1 1 | 1 1 1 1 | 1 1 1 I. . | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
"4 -3 -2 -1 0 1 2 3 4

Figure 3.19: A TProfile2D histogram example

TCanvas *cl = new TCanvas("cl",
"Profile histogram example",
200, 10,700,500) ;

90 CHAPTER 3. HISTOGRAMS

hprof2d = new TProfile2D("hprof2d",
"Profile of pz versus px and py",
40,-4,4,40,-4,4,0,20);

// Filling the TProftle2D with 25000 points

Float_t px, py, pz;

for (Int_t i=0; i<25000; i++) {
gRandom->Rannor (px,py) ;
Pz = pPX*px + DPy*py;
hprof2d->Fill(px,py,pz,1);

}

hprof2d->Draw() ;

3.17 Iso Surfaces

Paint one Gouraud shaded 3d iso surface though a 3d histogram at the value computed as follow: Sum0fWeights/(NbinsX*NbinsYx!

void hist3d() {
TH3D *h3 = new TH3D("h3", "h3", 20, -2, 2, 20, -2, 2, 20, 0, 4);
Double_t x,y,z;
for (Int_t i=0; i<10000; i++) {
gRandom—->
Rannor(x,y);
z=x*x+y*y;
h3->Fill(x,y,2);
}

h3->Draw("iso");

3.18 3D Implicit Functions

TF3 *fun3 = new TF3("fun3","sin(x*x+y*y+z*z-36)",-2,2,-2,2,-2,2);
fun3->Draw() ;

3.19 TPie

The TPie class allows to create a Pie Chart representation of a one dimensional data set. The data can come from an
array of Double_t (or Float_t) or from a 1D-histogram. The possible options to draw a TPie are:

e “R” Paint the labels along the central “R”adius of slices.
e “T” Paint the labels in a direction “T”angent to circle that describes the TPie.
e “3D” Draw the pie-chart with a pseudo 3D effect.

e “NOL” No OutLine: do not draw the slices’ outlines; any property over the slices’ line is ignored.

The method SetLabelFormat () is used to customize the label format. The format string must contain one of these
modifiers:

. — J%txt : to print the text label associated with the slice
. — %val : to print the numeric value of the slice

. — J%frac : to print the relative fraction of this slice

. — %perc : to print the % of this slice

mypie->SetLabelFormat ("/txt (%frac)");

See the macro $RO0TSYS/tutorials/graphics/piechart.C .

3.19. TPIE

h3

Figure 3.20: Iso surfaces

Sin(x*x+y*y+z*z)

Figure 3.21: 3D implicit function

91

92 CHAPTER 3. HISTOGRAMS

Pie with offset and no colors Pie with radial labels

%
[+]

»,
&

-
o~
S

N

=)

[y

=]

Pie with tangential labels Pie with verbose labels

B siice0
[siice1 2.30 (45.1 %)
Il siicez iced

[|slicea
B slices

0.20 (3.9 %)
1.10 (21.6 %) Sliceld
Slice1 0.60 (11.8 %)

0.90 (179652

Slice3

Figure 3.22: The picture generated by tutorial macro piechart.C

3.20. THE USER INTERFACE FOR HISTOGRAMS 93
3.20 The User Interface for Histograms

The classes T H1 Editor and T H2 Editor provides the user interface for setting histogram’s attributes and rebinning
interactively.

3.20.1 THI1Editor

[=]mx

lgmninal | [Arbitrary Distribution | plot1

. Entries 100000
Mean 2775

RMS 162.3

setel— {| Arbitrary Distribution

- gl

h—=
h——— &l

-

3.20.1.1 The Style Tab

3.20.1.1.1 Title sets the title of the histogram.

3.20.1.1.2 Plot draw a 2D or 3D plot; according to the dimension, different drawing possibilities can be set.

3.20.1.1.3 Error add different error bars to the histogram (no errors, simple, etc.).

3.20.1.1.4 Add further things which can be added to the histogram (None, simple/smooth line, fill area, etc.)

3.20.1.2 2-D Plot

3.20.1.2.1 Simple Drawing draw a simple histogram without errors (= “HIST” draw option). In combination
with some other draw options an outer line is drawn on top of the histogram

3.20.1.2.2 Show markers draw a marker on to of each bin (=“P” draw option).

3.20.1.2.3 Draw bar chart draw a bar chart (=“B” draw option).

94 CHAPTER 3. HISTOGRAMS

3.20.1.2.4 Bar option draw a bar chart (=“BAR” draw option); if selected, it will show an additional interface
elements for bars: width, offset, percentage and the possibility to draw horizontal bars.

3.20.1.3 3-D Plot

3.20.1.3.1 Add set histogram type Lego-Plot or Surface draw (Lego, Legol.2, Surf, Surfl...5).
3.20.1.3.2 Coords set the coordinate system (Cartesian, Spheric, etc.).

3.20.1.3.3 Error same as for 2D plot.

3.20.1.3.4 Bar set the bar attributes: width and offset.

3.20.1.3.5 Horizontal Bar draw a horizontal bar chart.

3.20.1.4 The Binning tab

The binning tab has two different layouts. One is for a histogram, which is not drawn from an ntuple. The other one
is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a rebinned
histogram from the original data i.e. the ntuple.

_—T
a8

 ——

IH III Ty

X axis

To see the differences do:

TFile f("hsimple.root");
hpx->Draw("BAR1"); // non ntuple histogram
ntuple->Draw("px");// ntuple histogram

3.20. THE USER INTERFACE FOR HISTOGRAMS 95
3.20.1.5 Non ntuple histogram

Rebin with a slider and the number of bins (shown in the field below the slider). The number of bins can be changed
to any number, which divides the number of bins of the original histogram. A click on the Apply button will delete the

origin histogram and will replace it by the rebinned one on the screen. A click on the Ignore button will restore the
origin histogram.

3.20.1.6 Histogram drawn from an ntuple

3.20.1.6.1 Rebin with the slider, the number of bins can be enlarged by a factor of 2, 3, 4, 5 (moving to the right)
or reduced by a factor of 1, 1 1 1

3131 5

3.20.1.6.2 BinOffset with a BinOffset slider the origin of the histogram can be changed within one binwidth.
Using this slider the effect of binning the data into bins can be made visible (statistical fluctuations).

3.20.1.6.3 Axis Range with a double slider it is possible to zoom into the specified axis range. It is also possible
to set the upper and lower limit in fields below the slider.

3.20.1.6.4 Delayed drawing all the Binning sliders can set to delay draw mode. Then the changes on the

histogram are only updated, when the Slider is released. This should be activated if the redrawing of the histogram is
time consuming.

3.20.2 TH2Editor

[Fe g1 DL
Eile Edil View Oplions Inspect Classes Help
Style | Binnin - -
N | gining| [Using TH2Editor |
ame
ntemp: THZF C
Line ——— 1200 C
| | =~ B
| 100
Tlg —————————— C
Using THZEdilor 500 -
T m-— Eie Edt Wiew OQpfons [napect Classes l:Iﬂ.h..
F 2.0 3D r IS‘MI |Bm|
Confour: [ContD = m_— :II::: e Using TH2Editor
Cont #: a3 & C e
I amow [Box 2“__ | ISE -1
= [—— =l
Mcol [Scat o !
[Tet F Pakete 0— T
. : ILlslng TH2ZEdRar
e 200 Pl
- .- =R R Clzo Flao
Marker ————— -oj -n" Type: | Surm -
e Coorss: | Caresan =]
— conte: 39 5

™ Emors F Front
F Paktie F Back

sar

w100 &) o[oo &
Frame Fil

Fin

(/- .-
Marker

el e

3.20.2.1 Style Tab:

3.20.2.1.1 Title set the title of the histogram

96 CHAPTER 3. HISTOGRAMS

3.20.2.1.2 Histogram change the draw options of the histogram.

3.20.2.1.3 Plot draw a 2D or 3D plot of the histogram; according to the dimension, the drawing possibilities are
different.

3.20.2.2 2-D Plot

3.20.2.2.1 Contour draw a contour plot (None, Cont0...5)

3.20.2.2.2 Cont # set the number of Contours;

3.20.2.2.3 Arrow set the arrow mode and shows the gradient between adjacent cells;

3.20.2.2.4 Col a box is drawn for each cell with a color scale varying with contents;

3.20.2.2.5 Text draw bin contents as text;

3.20.2.2.6 Box a box is drawn for each cell with surface proportional to contents;

3.20.2.2.7 Scat draw a scatter-plot (default);

3.20.2.2.8 DPalette the color palette is drawn.

3.20.2.3 3-D Plot

3.20.2.3.1 Type set histogram type to Lego or surface plot; draw (Lego, Legol.2, Surf, Surfl...5)

3.20.2.3.2 Coords set the coordinate system (Cartesian, Spheric, etc.);

3.20.2.3.3 Cont # set the number of Contours (for e.g. Lego2 draw option);

3.20.2.3.4 Errors draw errors in a Cartesian lego plot;

3.20.2.3.5 DPalette draw the color palette;

3.20.2.3.6 Front draw the front box of a Cartesian lego plot;

3.20.2.3.7 Back draw the back box of a Cartesian lego plot;

3.20.2.3.8 Bar change the bar attributes: the width and offset.

3.20.2.4 Rebinning Tab

The Rebinning tab has two different layouts. One is for a histogram that is not drawn from an ntuple; the other one
is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a rebinned
histogram from the original data i.e. the ntuple. To see the differences do for example:

TFile f ("hsimple.root");
hpxpy->Draw("Lego2"); // non ntuple histogram
ntuple->Draw("px:py","","Lego2"); // ntuple histogram

3.20. THE USER INTERFACE FOR HISTOGRAMS 97

3.20.2.5 Non-ntuple histogram:

Rebin with sliders (one for the x, one for the y-axis) and the number of bins (shown in the field below them can
be changed to any number, which divides the number of bins of the original histogram. Selecting the Apply button
will delete the origin histogram and will replace it by the rebinned one on the screen. Selecting the Ignore the origin
histogram will be restored.

File Edit ¥iew Options |nspect Classes]:lﬂ-:.l
Style Elrmlngl
weme | |Two Peaks =
hbgmp-THEF Style Binning |
okt i e l 180
e S,
SR -Jé < g e | hpEpY S THER 160
of Bing: 33 Eehin
BinOmst [0.0205 : " : > — 140
I - D T T L T T T T
B # of Bins: | 10 [
e el 100
-5 -2 2 5 |
eofBing | 40 S I ITII 80
BinOmsl: 1.0000 : # of Bins: I—
LI R R I R O I | _Eu
il — Apply | lnore |
e ?- 40
I 052 051 &xis Range ————
4
I-Z'IE'_IL'I aE1.00 T n
F Delayd drawing | -400 | 080
= SR S
| 400 zo0

W Delayed drawing

3.20.2.6 Histogram drawn from an ntuple

3.20.2.6.1 Rebin with the sliders the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right)
or reduced by a factor of é, L

1 1
3' 40 5"

3.20.2.6.2 BinOffset with the BinOffset slider the origin of the histogram can be changed within one binwidth.
Using this slider the effect of binning the data into bins can be made visible (=> statistical fluctuations).

3.20.2.6.3 Axis Range with a double slider that gives the possibility for zooming. It is also possible to set the
upper and lower limit in fields below the slider.

3.20.2.6.4 Delayed drawing all the binning sliders can be set to delay draw mode. Then the changes on the
histogram are only updated, when the Slider is released. This should be activated if the redrawing of the histogram is
too time consuming.

98

CHAPTER 3. HISTOGRAMS

Chapter 4

Graphs

A graph is a graphics object made of two arrays X and Y, holding the x,y coordinates of n points. There are several
graph classes; they are TGraph, TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

4.1 TGraph

The TGraph class supports the general case with non-equidistant points, and the special case with equidistant points.
Graphs are created with the TGraph constructor. First, we define the arrays of coordinates and then create the graph.
The coordinates can be arrays of doubles or floats.

Int_t n = 20;

Double_t x[n], y[n];

for (Int_t i=0; i<m; i++) {
x[1] i*0.1;
y[il 10%sin(x[1]+0.2);

}
TGraph *grl = new TGraph (n, x, y);

An alternative constructor takes only the number of points n. It is expected that the coordinates will be set later.
TGraph *gr2 = new TGraph(n);
The default constructor can also be used. Further calls to SetPoint () will extend the internal vectors.

TGraph *gr3 = new TGraph();

4.1.1 Graph Draw Options

The various drawing options for a graph are explained in TGraph: :PaintGraph. They are:

e “L” A simple poly-line between every points is drawn

e “F” A fill area is drawn

e “F1” Idem as “F” but fill area is no more repartee around X=0 or Y=0
e “F2” draw a fill area poly line connecting the center of bins

e “A” Axis are drawn around the graph

e “C” A smooth curve is drawn

e “x” A star is plotted at each point

e “P” The current marker of the graph is plotted at each point

e “B” A bar chart is drawn at each point

99

100

CHAPTER 4. GRAPHS

e “[1” Only the end vertical/horizontal lines of the error bars are drawn. This option only applies to the

TGraphAsymmErrors.

e “1” ylow = rwymin

The options are not case sensitive and they can be concatenated in most cases. Let us look at some examples.

4.1.1.1 Continuous Line, Axis and Stars (AC¥*)

Graph

10

Figure 4.1: A graph drawn with axis, * markers and continuous line (option AC*)

Int_t n = 20;
Double_t x[n], yl[nl;
for (Int_t i=0;i<n;i++) {

x[i] = i%0.1;
y[i] = 10*sin(x[i]+0.2);
}
TGraph *gr = new TGraph(n,x,y);

TCanvas *cl

new TCanvas('"c1","Graph Draw Options",

200,10,600,400) ;

gr->Draw ("ACx") ;

4.1.1.2 Bar Graphs (AB)

root[] TGraph *grl = new TGraph(n,x,y);
root[] gri->SetFillColor(40);
root[] gri->Draw("AB");

4.1. TGRAPH 101

Graph

10

Figure 4.2: A graph drawn with axis and bar (option AB)

This code will only work if n, x, and y is defined. The previous example defines these. You need to set the fill color,
because by default the fill color is white and will not be visible on a white canvas. You also need to give it an axis, or
the bar chart will not be displayed properly.

4.1.1.3 Filled Graphs (AF)

root[] TGraph *gr3 = new TGraph(n,x,y);
root[] gr3->SetFillColor (45);
root[] gr3->Draw("AF")

This code will only work if n, x, yare defined. The first example defines them. You need to set the fill color, because by
default the fill color is white and will not be visible on a white canvas. You also need to give it an axis, or the filled
polygon will not be displayed properly.

4.1.1.4 Marker Options

{
Int_t n = 20;
Double_t x[n], yl[n];

// build the arrays with the coordinate of points
for (Int_t i=0; i<n; i++) {

x[i] i*0.1;

y[i] 10*sin(x[1]1+0.2);

3

// create graphs

TGraph *gr3 = new TGraph(n,x,y);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",
200,10,600,400) ;

102 CHAPTER 4. GRAPHS

Graph

10

0 n.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4.3: A graph drawn with axis and fill (option AF)

Graph

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4.4: Graph markers created in different ways

4.2. SUPERIMPOSING TWO GRAPHS 103

// draw the graph with the azis,contineous line, and put
// a marker using the graph's marker style at each point
gr3->SetMarkerStyle(21) ;

cl->cd(4);

gr3->Draw("APL");

// get the points in the graph and put them into an array
Double_t *nx = gr3->GetX();
Double_t *ny = gr3->GetY();

// create markers of different colors
for (Int_t j=2; j<n-1; j++) {
TMarker *m = new TMarker(nx[j], 0.5*ny[jl, 22);
m->SetMarkerSize(2);
m->SetMarkerColor (31+j) ;
m->Draw() ;

4.2 Superimposing Two Graphs

To super impose two graphs you need to draw the axis only once, and leave out the “A” in the draw options for the
second graph. Next is an example:

Graph

:

0 2 4 6 8 10

Figure 4.5: Superimposing two graphs

Int_t n = 20;
Double_t x[n], y[n], x1[n], yi[nl;

// create a blue graph with a cos function

104 CHAPTER 4. GRAPHS

gri->SetLineColor (4);
gri->Draw("AC*");

gr2->SetLineWidth(3);
gr2->SetMarkerStyle(21);
gr2->SetLineColor(2);
gr2->Draw("CP") ;

4.3 Graphs with Error Bars

A TGraphErrors is a TGraph with error bars. The various draw format options of TGraphErrors: :Paint () are derived
from TGraph.

void TGraphErrors::Paint(Option_t *option)

TGraphErrors Example

Figure 4.6: Graphs with different draw options of error bars

In addition, it can be drawn with the “Z” option to leave off the small lines at the end of the error bars. If option
contains “>”_ an arrow is drawn at the end of the error bars. If option contains “|>”, a full arrow is drawn at the end
of the error bars. The size of the arrow is set to 2/3 of the marker size.

The option “[]1” is interesting to superimpose systematic errors on top of the graph with the statistical errors. When it
is specified, only the end vertical/horizontal lines of the error bars are drawn.

To control the size of the lines at the end of the error bars (when option 1 is chosen) use SetEndErrorSize(np). By
default np=1; np represents the number of pixels.

gStyle->SetEndErrorSize (up) ;

4.4. GRAPHS WITH ASYMMETRIC ERROR BARS 105

The four parameters of TGraphErrors are: X, Y (as in TGraph), X-errors, and Y-errors - the size of the errors in the x
and y direction. Next example is $RO0TSYS/tutorials/graphs/gerrors.C.

{
cl = new TCanvas("cl1","A Simple Graph with error bars",200,10,700,500);

c1->SetGrid();

// create the coordinate arrays

Int_t n = 10;

Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Float_t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

// create the error arrays
Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Float_t eyl[n] {.s8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create the TGraphErrors and draw tt
gr = new TGraphErrors(n,x,y,ex,ey);
gr->SetTitle("TGraphErrors Example");
gr->SetMarkerColor(4) ;
gr->SetMarkerStyle(21);
gr->Draw("ALP") ;

c1->Update();

4.4 Graphs with Asymmetric Error Bars

TGraphAsymmErrors Example

Figure 4.7: A graph with asymmetric error bars

A TGraphAsymmErrors is a TGraph with asymmetric error bars. It inherits the various draw format options from
TGraph. Its method Paint (Option_t *option) paints the TGraphAsymmErrors with the current attributes. You can
set the following additional options for drawing:

106

CHAPTER 4. GRAPHS

e “z” or “Z”the horizontal and vertical small lines are not drawn at the end of error bars

e “>7an arrow is drawn at the end of the error bars

e “|>7a full arrow is drawn at the end of the error bar; its size is % of the marker size

e “[17only the end vertical /horizontal lines of the error bars are drawn; this option is interesting to superimpose

systematic errors on top of a graph with statistical errors.

The constructor has six arrays as parameters: X and Y as TGraph and low X-errors and high X-errors, low Y-errors
and high Y-errors. The low value is the length of the error bar to the left and down, the high value is the length of the
error bar to the right and up.

cl = new TCanvas("cl","A Simple Graph with error bars",
200,10,700,500) ;
c1->SetGrid();

// create the arrays for the points

Int_t n = 10;

Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95%};
Double_t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1%};

// create the arrays with high and low errors

Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double_t eyl[n] {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

Double_t exhl[n] {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

// create TGraphAsymmErrors with the arrays

gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
gr->SetTitle("TGraphAsymmErrors Example");
gr->SetMarkerColor(4) ;

gr->SetMarkerStyle(21);

gr->Draw("ALP") ;

4.5 Graphs with Asymmetric Bent Errors

A TGraphBentErrors is a TGraph with bent, asymmetric error bars.

The various format options to draw a

TGraphBentErrors are explained in TGraphBentErrors::Paint method. The TGraphBentErrors is drawn by
default with error bars and small horizontal and vertical lines at the end of the error bars. If option “z” or “Z” is
specified, these small lines are not drawn. If the option “X” is specified, the errors are not drawn (the TGraph: :Paint
method equivalent).

if option contains “>”, an arrow is drawn at the end of the error bars
o if option contains “|>”, a full arrow is drawn at the end of the error bars
o the size of the arrow is set to 2/3 of the marker size

o if option “[1” is specified, only the end vertical/horizontal lines of the error bars are drawn. This option is
interesting to superimpose systematic errors on top of a graph with statistical errors.

This figure has been generated by the following macro:

Int_t n = 10;

Double t x[n] = {-0.22,0.05,0.25,0.35,0.5,0.61,0.7,0.85,0.89,0.95};
Double_t y[nl = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05%};
Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

4.6. TGRAPHPOLAR 107

TGraphBentErrors Example

Figure 4.8: A graph with asymmetric bent error bars

Double_t exh[n]
Double_t eyh[n]

{.02,.08,.05,.05,.03,.03,.04, .05, .06, .03};
{.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

Double_t exld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.03};
Double_t eyld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double_t exhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.03};
Double_t eyhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.05,.0};
gr = new TGraphBentErrors(n,x,y,

exl,exh,eyl,eyh,ex1ld,exhd,eyld,eyhd) ;
gr->SetTitle("TGraphBentErrors Example");
gr->SetMarkerColor(4) ;
gr->SetMarkerStyle(21);
gr->Draw("ALP") ;

4.6 TGraphPolar

The TGraphPolar class creates a polar graph (including error bars). A TGraphPolar is a TGraphErrors represented in
polar coordinates. It uses the class TGraphPolargram to draw the polar axis.

TCanvas *CPol = new TCanvas("CPol","TGraphPolar Examples",700,700);
Double_t rmin=0;
Double_t rmax=TMath::Pi()*2;
Double_t r[1000];
Double_t thetal[1000];
TF1 * fpl = new TF1("fplot","cos(x)",rmin,rmax) ;
for (Int_t ipt = 0; ipt < 1000; ipt++) {
rlipt] = ipt*(rmax-rmin)/1000+rmin;
thetalipt] = fpl->Eval(rl[ipt]);

108 CHAPTER 4. GRAPHS

}

TGraphPolar * grPl = new TGraphPolar(1000,r,theta);
grP1->SetLineColor(2);

grP1->Draw("AOL") ;

The TGraphPolar drawing options are:

“Q” Polar labels are paint orthogonally to the polargram radius.
“P” Polymarker are paint at each point position.

“E” Paint error bars.

“F” Paint fill area (closed polygon).

“A”Force axis redrawing even if a polagram already exists.

il
Fem—pm. .
e

L. T
e

i

T

d
v
v

,
—

e
—'-I|_'_
A
"
"
;
A
:
j

e
-

e *"i

o

" T
-

L om—mrter=™ "y

Figure 4.9: A polar graph

4.7. TGRAPH EXCLUSION ZONE

4.7 TGraph Exclusion Zone

109

When a graph is painted with the option “C” or “L”, it is possible to draw a filled area on one side of the line. This is
useful to show exclusion zones. This drawing mode is activated when the absolute value of the graph line width (set
thanks to SetLineWidth) is greater than 99. In that case the line width number is interpreted as 100*f£+11 = ££11.
The two-digit numbers “11” represent the normal line width whereas “f£” is the filled area width. The sign of “££11”
allows flipping the filled area from one side of the line to the other. The current fill area attributes are used to draw

the hatched zone.

800
Eile Edit Miew Options Tools

N\ Exclusion graphs examples

Help

Style |

MName
Graph:TEraph

Line —————
|_IME [
[f————— =]
Fill

M-
Title

|Graph

-

Shape

= o Ling

= Smooth Line
" Simple Line
(" Bar Chart
= Fill area

[Show barker
Exclusion Zone

M+ [
Marker

I TS

-

cl = new TCanvas("cl","Exclusion graphs examples",200,10,700,500);

c1->SetGrid();

Exclusion graphs

0 0.5

1

1.5

2

Figure 4.10: Graphs with exclusion zones

// create the multigraph
TMultiGraph *mg = new TMultiGraph();
mg->SetTitle("Exclusion graphs");

// create the graphs points

const Int_t n = 35;

Double_t x1[n], x2[n], x3[n], yilnl, y2[nl, y3[nl;
for (Int_t i=0;i<n;i++) {

x1[i] = i%0.1; y1[i]
x2[1i] = x1[i]; y2[i]
x3[i]

3

= 10*sin(x1[i]);
10*cos(x1[i]);

// create the 1st TGraph
grl = new TGraph(n,x1,y1);

gri->SetLineColor(2);

gri->SetLineWidth(1504) ;
gri->SetFillStyle(3005);

// create the 2nd TGraph

x1[i]+.5; y3[i] = 10*sin(x1[i])-2;

110 CHAPTER 4. GRAPHS

gr2 = new TGraph(n,x2,y2);
gr2->SetLineColor (4);
gr2->SetLineWidth(-2002) ;
gr2->SetFillStyle(3004) ;
gr2->SetFillColor (9);

// create the 3rd TGraph
gr3 = new TGraph(n,x3,y3);
gr3->SetLineColor(5);
gr3->SetLineWidth(-802);
gr3->SetFillStyle(3002);
gr3->SetFillColor(2);

// put the graphs in the multigraph
mg->Add (grl);
mg->Add (gr2) ;
mg->Add (gr3) ;

// draw the multigraph
mg->Draw ("AC") ;

4.8 TGraphQQ

A TGraphQQ allows drawing quantile-quantile plots. Such plots can be drawn for two datasets, or for one dataset and a
theoretical distribution function.

4.8.1 Two Datasets

ga-plot of 2 samples from same normal dist. qq-plot of samples from normal and cauchy dist.

aE aE -

C e C ;' .
2l v 2l e o ®

L & C i

1 1

o o

-1_— -1__

e ,«i' N ot
=L .J." LJ =L (1) .:

.. e :I
5| wir I NI AN AN AN NSNS AN NI AN AN A AR Sl ol T U I N N TN N O MO SO A
-2 -1 i} 1 2 -10 i} 10 20 30

Figure 4.11: Examples of qqg-plots of 2 datasets

Quantile-quantile plots are used to determine whether two samples come from the same distribution. A qg-plot draws
the quantiles of one dataset against the quantile of the other. The quantiles of the dataset with fewer entries are on
Y-axis, with more entries - on X-axis. A straight line, going through 0.25 and 0.75 quantiles is also plotted for reference.
It represents a robust linear fit, not sensitive to the extremes of the datasets. If the datasets come from the same
distribution, points of the plot should fall approximately on the 45 degrees line. If they have the same distribution
function, but different parameters of location or scale, they should still fall on the straight line, but not the 45 degrees
one.

4.9. TMULTIGRAPH 111

The greater their departure from the straight line, the more evidence there is that the datasets come from different
distributions. The advantage of qg-plot is that it not only shows that the underlying distributions are different,
but, unlike the analytical methods, it also gives information on the nature of this difference: heavier tails, different
location/scale, different shape, etc.

4.8.2 One Dataset

qq-plot of a data sample vs the theoretical distribution

data quantiles

'3_|='f||||||||||||||||||||||||||||

theoretical quantiles

Figure 4.12: Examples of qg-plots of 1 dataset

Quantile-quantile plots are used to determine if the dataset comes from the specified theoretical distribution, such as
normal. A qg-plot draws quantiles of the dataset against quantiles of the specified theoretical distribution. Note, that
density, not CDF should be specified a straight line, going through 0.25 and 0.75 quantiles could also be plotted for
reference. It represents a robust linear fit, not sensitive to the extremes of the dataset. As in the two datasets case,
departures from straight line indicate departures from the specified distribution. Next picture shows an example of a
qq-plot of a dataset from N(3, 2) distribution and TMath::Gaus(0, 1) theoretical function. Fitting parameters are
estimates of the distribution mean and sigma.

4.9 TMultiGraph

A TMultiGraph is a collection of TGraph (or derived) objects. Use TMultiGraph: :Addto add a new graph to the list.
The TMultiGraph owns the objects in the list. The drawing and fitting options are the same as for TGraph.

// create the points

Int_t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1%};
Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05%};

112 CHAPTER 4. GRAPHS

10—

Figure 4.13: A multigraph example

Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double_t eyl[n] {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8%};

TGraph *grl = new TGraph(n,x2,y2);
TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

TMultiGraph *mg = new TMultiGraph(Q);
mg->Add (grl) ;

mg->Add (gr2) ;

mg->Draw ("ALP") ;

4.10 TGraph2D

This class is a set of N points x[1], y[i], z[i] in a non-uniform grid. Several visualization techniques are implemented,
including Delaunay triangulation. Delaunay triangulation is defined as follow: ‘for a set S of points in the Euclidean
plane, the unique triangulation DT(S) of S such that no point in S is inside the circum-circle of any triangle in DT(S).
DT(S) is the dual of the Voronoi diagram of S. If n is the number of points in S, the Voronoi diagram of S is the
partitioning of the plane containing S points into n convex polygons such that each polygon contains exactly one point
and every point in a given polygon is closer to its central point than to any other. A Voronoi diagram is sometimes
also known as a Dirichlet tessellation.

The TGraph2D class has the following constructors:

o With an arrays’ dimension n and three arrays x, y, and z (can be arrays of doubles, floats, or integers):

4.10. TGRAPH2D 113

Delaunay Triangles

“oronol Diagram

Figure 4.14: Delaunay triangles and Voronoi diagram

TGraph2D *g = new TGraph2D(n,x,y,z);

e With an array dimension only:

TGraph2D *g = new TGraph2D(n);

e Internal arrays are filled with the method SetPoint at the position “i” with the values x, y, z:
g->SetPoint(i,x,y,2z);

o Without parameters; the method SetPoint must be used to fill the internal arrays.

TGraph2D *g = new TGraph2D();

e From a file:

TGraph2D *g = new TGraph2D("graph.dat");

The arrays are read from the ASCII file “graph.dat” according to a specified format. The format’s default value is

“%lg %lg %lg”. Note that in any of last three cases, the SetPoint method can be used to change a data point or to add
a new one. If the data point index (i) is greater than the size of the internal arrays, they are automatically extended.

Specific drawing options can be used to paint a TGraph2D:

e “TRI” the Delaunay triangles are drawn using filled area. A hidden surface drawing technique is used. The surface
is painted with the current fill area color. The edges of the triangles are painted with the current line color;

e “TRIW’the Delaunay triangles are drawn as wire frame;

e “TRI1” the Delaunay triangles are painted with color levels. The edges of the triangles are painted with the
current line color;

e “TRI2” the Delaunay triangles are painted with color levels;
e “P”’draws a marker at each vertex;

o “PO” draws a circle at each vertex. Each circle background is white.

A TGraph2D can be also drawn with ANY options valid for 2D histogram drawing. In this case, an intermediate 2D
histogram is filled using the Delaunay triangles technique to interpolate the data set. TGraph2D linearly interpolate a Z
value for any (X,Y) point given some existing (X,Y,Z) points. The existing (X,Y,Z) points can be randomly scattered.
The algorithm works by joining the existing points to make Delaunay triangles in (X,Y). These are then used to define
flat planes in (X,Y,Z) over which to interpolate. The interpolated surface thus takes the form of tessellating triangles
at various angles. Output can take the form of a 2D histogram or a vector. The triangles found can be drawn in 3D.
This software cannot be guaranteed to work under all circumstances. It was originally written to work with a few
hundred points in anXY space with similar X and Y ranges.

114

R
L5
T

Figure 4.15: Graph2D drawn with option “surfl” and “tril p0”

TCanvas *c = new TCanvas("c","Graph2D example",0,0,700,600);

Double_t x, y, z, P = 6.;
Int_t np = 200;

TGraph2D *dt = new TGraph2D() ;
TRandom *r = new TRandom() ;

for (Int_t N=0; N<np; N++) {
x = 2%P*(r->Rndm(N))-P;
y = 2*%P*(r->Rndm(N))-P;
z
dt->SetPoint (N,x,y,2) ;

¥
gStyle->SetPalette(55) ;

dt->Draw("surfl"); // use "surfl" to gemerate the left picture
} // use "tril p0" to gemerate the right one

(sin(x) /x)*(sin(y) /y)+0.2;

CHAPTER 4. GRAPHS

A more complete example is $RO0TSYS/tutorials/fit/graph2dfit.C that produces the next figure.

4.11 TGraph2DErrors

A TGraph2DErrors is a TGraph2D with errors. It is useful to perform fits with errors on a 2D graph. An example is

the macro $RO0OTSYS/tutorials/graphs/graph2derrorsfit.C.

4.12 Fitting a Graph

The graph Fit method in general works the same way as the TH1::Fit. See “Fitting Histograms”.

4.12. FITTING A GRAPH 115

| Original functicn with Graph2D peints antop | Difference between Original function o d ndf
and Function with nokae L 336.8.1 9.1
Mean 0.7284 1 0.7434

Sigma G775 1 167

B EES B

g E B

(=]

[__Histogram produced with Delaunay interpalation | Differance between Orlginal function E;::;’m 4;:’;“11:3
and Interpolation with Delaunsy triangles |5 .- 4141 0.ETE
6033 & 0.88

Differance between Original function :j‘ ! "::nt “um
and Minuit fit ans= :
Mean 8954 1 4.446

9602 1 1.976

A LA
% »s’:"; "t 0
ra rﬁ i“.‘l"“i‘“

K

Figure 4.16: Output of macro graph2dfit.C

116 CHAPTER 4. GRAPHS
4.13 Setting the Graph’s Axis Title

To give the axis of a graph a title you need to draw the graph first, only then does it actually have an axis object.
Once drawn, you set the title by getting the axis and calling the TAxis: :SetTitle method, and if you want to center
it, you can call the TAxis: :CenterTitle method.

Assuming that n, x, and y are defined. Next code sets the titles of the x and y axes.

root[] gr5 = new TGraph(n,x,y)

root[] gr5->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root[] gr5->Draw("ALP")

root[] gr5->GetXaxis()->SetTitle("X-Axis")

root[] gr5->GetYaxis()->SetTitle("Y-Axis")

root[] gr5->GetXaxis()->CenterTitle()

root[] gr5->GetYaxis()->CenterTitle()

root[] gr5->Draw("ALP")

For more graph examples see the scripts: $RO0TSYS/tutorials directory graph.C, gerrors.C, zdemo.C, and
gerrors2.C.

Graph

Y-Axis

X-Axis

Figure 4.17: A graph with axis titles

4.14 Zooming a Graph

To zoom a graph you can create a histogram with the desired axis range first. Draw the empty histogram and then
draw the graph using the existing axis from the histogram.

cl = new TCanvas("cl","A Zoomed Graph",200,10,700,500);
hpx = new TH2F("hpx","Zoomed Graph Example",10,0,0.5,10,1.0,8.0);

4.15. THE USER INTERFACE FOR GRAPHS 117

hpx->SetStats(kFALSE); // no statistics

hpx->Draw() ;

Int_t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

gr = new TGraph(n,x,y);

gr->SetMarkerColor(4) ;

gr->SetMarkerStyle(20);

gr->Draw("LP");// and draw it without an azis

The next example is the same graph as above with a zoom in the x and y directions.

Zoomed Graph Example

]
TTTT |II

1IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 4.18: A zoomed graph

4.15 The User Interface for Graphs

The class TGraphEditor provides the user interface for setting the following graph attributes interactively:

o Title text entry field ... sets the title of the graph.

e Shape radio button group - sets the graph shapes:

— No Line: draw unconnected points;

Smooth Line: a smooth curve;

Simple Line: a simple poly-line;

Bart Chart: a bar chart at each point.

Fill Area: a fill area is drawn.

o Show Marker - sets markers as visible or invisible.

o Exclusion Zone - specifies the exclusion zone parameters :

118 CHAPTER 4. GRAPHS

— ’+-° check button: sets on which side of the line the exclusion zone will be drawn;
— Width combo box: defines the width of the zone.

A Simple Graph Example

A Simple Graph

~ - [T I

[J={m =] 10]

-
:
-
|
:
:
-
5

Chapter 5
Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram via the context menu, or you can use the TH1: :Fit
method. The Fit Panel, which is limited, is best for prototyping. The histogram needs to be drawn in a pad before the
Fit Panel is invoked. The method TH1: :Fit is more powerful and is used in scripts and programs.

5.1 The Fit Method

To fit a histogram programmatically, you can use the TH1: :Fit method. Here is the signature of TH1::Fit and an
explanation of the parameters:

void Fit(const char *fname, Option_t *option, Option_t *goption,
Axis_t xxmin, Axis_t =xxmax)

o xfname:The name of the fitted function (the model) is passed as the first parameter. This name may be one of
ROOT pre-defined function names or a user-defined function. The functions below are predefined, and can be
used with the TH1::Fit method:

e “gaus” Gaussian function with 3 parameters: f(x) = pO*exp(-0.5*%((x-pl)/p2)°2)
e “expo”An Exponential with 2 parameters: f(x) = exp(pO+pl*x)
e “polN” A polynomial of degree N: £(x) = p0 + plxx + p2*x2 +...

e “landau” Landau function with mean and sigma. This function has been adaptedfrom the CERNLIB routine G110
denlan.

e xoption:The second parameter is the fitting option. Here is the list of fitting options:
e “W” Set all weights to 1 for non empty bins; ignore error bars

o “WW” Set all weights to 1 including empty bins; ignore error bars
e “I” Use integral of function in bin instead of value at bin center
o “L” Use log likelihood method (default is chi-square method)

e “U” Use a user specified fitting algorithm

e “Q” Quiet mode (minimum printing)

e “V” Verbose mode (default is between Q and V)

e “E” Perform better errors estimation using the Minos technique
e “M” Improve fit results

e “R” Use the range specified in the function range

e “N” Do not store the graphics function, do not draw

e “0” Do not plot the result of the fit. By default the fitted function is drawn unless the option “N” above is
specified.

119

120 CHAPTER 5. FITTING HISTOGRAMS

e “+” Add this new fitted function to the list of fitted functions (by default, the previous function is deleted and
only the last one is kept)

e “B”Use this option when you want to fix one or more parameters and the fitting function is like polN, expo,
landau, gaus.

e “LL”An improved Log Likelihood fit in case of very low statistics and when bincontentsare not integers. Do not
use this option if bin contents are large (greater than 100).

o “C”In case of linear fitting, don’t calculate the chisquare (saves time).
o “F”If fitting a polN, switch to Minuit fitter (by default, polN functions are fitted by the linear fitter).

e xgoption:The third parameter is the graphics option that is the same as in the TH1: :Draw (see the chapter
Draw Options).

e xxmin, xxmax: Thee fourth and fifth parameters specify the range over which to apply the fit.

By default, the fitting function object is added to the histogram and is drawn in the current pad.

5.2 Fit with a Predefined Function

To fit a histogram with a predefined function, simply pass the name of the function in the first parameter of TH1: :Fit.
For example, this line fits histogram object hist with a Gaussian.

root[] hist.Fit("gaus");

The initial parameter values for pre-defined functions are set automatically.

5.3 Fit with a User-Defined Function

You can create a TF1 object and use it in the call the TH1: :Fit. The parameter in to the Fit method is the NAME of
the TF1 object. There are three ways to create a TF1.

e Using C++ expression using x with a fixed set of operators and functions defined in TFormula.
e Same as first one, with parameters

o Using a function that you have defined

5.3.1 Creating a TF1 with a Formula

Let’s look at the first case. Here we call the TF1 constructor by giving it the formula: sin(x)/x.
root[] TF1 *f1 = new TF1("f1","sin(x)/x",0,10)
You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *£f2 = new TF1("f2","f1x2",0,10)

5.3.2 Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression. Here we use two parameters:
root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
The parameter index is enclosed in square brackets. To set the initial parameters explicitly you can use:

root[] f1->SetParameter(0,10);

5.3. FIT WITH A USER-DEFINED FUNCTION 121

[0]*x*sin([1]*x)

Figure 5.1: The function x*sin(x)

This sets parameter 0 to 10. You can also use SetParameters to set multiple parameters at once.
root[] fi1->SetParameters(10,5);
This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:

root[] fi->Draw()

5.3.3 Creating a TF1 with a User Function

The third way to build a TF1 is to define a function yourself and then give its name to the constructor. A function for
a TF1 constructor needs to have this exact signature:

Double_t fitf(Double_t *x,Double_t *par)
The two parameters are:

e x a pointer to the dimension array. Each element contains a dimension. For a 1D histogram only x [0] is used, for
a 2D histogram x[0] and x[1] is used, and for a 3D histogram x[0], x[1], and x[2] are used. For histograms,
only 3 dimensions apply, but this method is also used to fit other objects, for example an ntuple could have 10
dimensions.

e par a pointer to the parameters array. This array contains the current values of parameters when it is called by

the fitting function.

The following script $RO0TSYS/tutorials/fit/myfit.C illustrates how to fit a 1D histogram with a user-defined
function. First we declare the function.

122 CHAPTER 5. FITTING HISTOGRAMS

// define a function with 3 parameters

Double_t fitf(Double_t *x,Double_t *par) {
Double_t arg = 0O;
if (par[2]!=0) arg = (x[0] - par[i1])/par[2];
Double_t fitval = par[0]*TMath: :Exp(-0.5*%arg*arg) ;
return fitval;

Now we use the function:

// this function used fitf to fit a histogram
void fitexample() {

// open a file and get a histogram
TFile *f = new TFile("hsimple.root");
TH1F xhpx = (TH1F*)f->Get("hpx");

// Create a TF1 object using the function defined above.

// The last three parameters specify the number of parameters
// for the function.

TF1 *func = new TF1("fit",fitf,-3,3,3);

// set the parameters to the mean and RMS of the histogram
func->SetParameters(500,hpx->GetMean () ,hpx->GetRMS()) ;

// give the parameters meaningful names
func->SetParNames ("Constant","Mean_value","Sigma");

// call TH1::Fit with the name of the TF1 object
hpx->Fit ("fit");

5.4 Fixing and Setting Parameters’ Bounds

Parameters must be initialized before invoking the Fit method. The setting of the parameter initial values is automatic
for the predefined functions: poln, exp, gaus, and landau. You can fix one or more parameters by specifying the “B”
option when calling the Fit method. When a function is not predefined, the fit parameters must be initialized to some
value as close as possible to the expected values before calling the fit function.

To set bounds for one parameter, use TF1: :SetParLimits:
func->SetParLimits(0,-1,1);
When the lower and upper limits are equal, the parameter is fixed. Next two statements fix parameter 4 at 10.

func->SetParameter (4,10);
func->SetParLimits(4,10,10);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter (4,0);
func->FixParameter (4,0);

Note that you are not forced to set the limits for all parameters. For example, if you fit a function with 6 parameters,
you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits(3,-10,4);
func->FixParameter (4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries [-10, 4] with initial value -1.5, and
parameter 4 is fixed to 0.

5.5. FITTING SUB RANGES 123

5.5 Fitting Sub Ranges

By default, TH1: :Fit will fit the function on the defined histogram range. You can specify the option “R” in the second
parameter of TH1::Fit to restrict the fit to the range specified in the TF1 constructor. In this example, the fit will be
limited to -3 to 3, the range specified in the TF1 constructor.

root[] TF1 *f1l = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1","R");

You can also specify a range in the call to TH1: :Fit:
root[] hist->Fit("f1","","" -2,2)

See macros $RO0OTSYS/tutorials/fit/myfit.C and multifit.C as more completed examples.

5.6 The Fit Panel

To display the Fit Panel right click on a histogram to pop up the context menu, and then select the menu entry Fit
Panel.

The new Fit Panel GUI is available in ROOT v5.14. Its goal is to replace the old Fit Panel and to provide more user
friendly way for performing, exploring and comparing fits.

By design, this user interface is planned to contain two tabs: “General” and “Minimization”. Currently, the “General”
tab provides user interface elements for setting the fit function, fit method and different fit, draw, print options.

The new fit panel is a modeless dialog, i.e. when opened, it does not prevent users from interacting with other windows.
Its first prototype is a singleton application. When the Fit Panel is activated, users can select an object for fitting in
the usual way, i.e. by left-mouse click on it. If the selected object is suitable for fitting, the fit panel is connected with
this object and users can perform fits by setting different parameters and options.

5.6.1 Function Choice and Settings

‘Predefined’ combo box - contains a list of predefined functions in ROOT. You have a choice of several polynomials, a
Gaussian, a Landau, and an Exponential function. The default one is Gaussian.

‘Operation’ radio button group defines the selected operational mode between functions:

Nop - no operation (default);

Add - addition;

Conv - convolution (will be implemented in the future).

Users can enter the function expression into the text entry field below the ‘Predefined’ combo box. The entered string
is checked after the Enter key was pressed and an error message shows up, if the function string is not accepted.

‘Set Parameters’ button opens a dialog for parameters settings, which will be explaned later.

5.6.2 Fitter Settings

‘Method’ combo box currently provides only two fit model choices: Chi-square and Binned Likelihood. The default one
is Chi-square. The Binned Likelihood is recomended for bins with low statistics.

‘Linear Fit’ check button sets the use of Linear fitter when is selected. Otherwise the minimization is done by Minuit,
i.e. fit option “F” is applied. The Linear fitter can be selected only for functions linears in parameters (for example -
poll).

‘Robust’ number entry sets the robust value when fitting graphs.
‘No Chi-square’ check button switch On/Off the fit option “C” - do not calculate Chi-square (for Linear fitter).
‘Integral’ check button switch On/Off the option “I” - use integral of function instead of value in bin center.

‘Best Errors’ sets On/Off the option “E” - better errors estimation by using Minos technique.

124 CHAPTER 5. FITTING HISTOGRAMS

800 N Fit Panel ,
Data Set [TH1F:hpx =l

— Fit Function
Type: |Prede-1D =] [gaus =]

Operation
|—ﬁ' Mop Add & Conv |

|gau5
Selacted:
Jaus Set Parameters. .. I

General | Minimization |

—Fit Settings
kdathod
[Chi-square =] User-Defined, |
™ Linear fit B Robust Iﬁj
Fit Oplions .
™ Integral ™ Use range
™ Best errors [Improve fit results
™ Al weights =1 [Add to list
™ Emply bins, waights=1 [~ Use Gradient
Draw Oplions
™ SAME
™ Mo drawing
™ Do not store/draw Advancad I

i mil

el FEEEENEHEEEEE BN B REREEBENERRREREEEERR

update | Et | Beset | Ciose |

THI Fihps LIB beirnst MIGRAL Hr: O Prn: DEF

Figure 5.2: The Fit Panel

5.7. FITTING MULTIPLE SUB RANGES 125

‘All weights = 1’ sets On/Off the option “W”- all weights set to 1 excluding empty bins; error bars ignored.
‘Empty bins, weights=1" sets On/Off the option “WW” - all weights equal to 1 including empty bins; error bars ignored.

‘Use range’ sets On/Off the option “R” - fit only data within the specified function range. Sliders settings are used if
this option is set to On. Users can change the function range values by pressing the left mouse button near to the
left /right slider edges. It is possible to change both values simultaneously by pressing the left mouse button near to the
slider center and moving it to a new position.

‘Improve fit results’ sets On/Off the option “M”- after minimum is found, search for a new one.

‘Add to list’ sets On/Off the option “+”- add function to the list without deleting the previous one. When fitting a
histogram, the function is attached to the histogram’s list of functions. By default, the previously fitted function is
deleted and replaced with the most recent one, so the list only contains one function. Setting this option to On will
add the newly fitted function to the existing list of functions for the histogram. Note that the fitted functions are
saved with the histogram when it is written to a ROOT file. By default, the function is drawn on the pad displaying
the histogram.

5.6.3 Draw Options

‘SAME’ sets On/Off function drawing on the same pad. When a fit is executed, the image of the function is drawn on
the current pad.

‘No drawing’ sets On/Off the option “0”- do not draw the fit results.

‘Do not store/draw’ sets On/Off option “N”- do not store the function and do not draw it.

5.6.4 Print Options

This set of options specifies the amount of feedback printed on the root command line after performed fits.
‘Verbose’ - prints fit results after each iteration.
‘Quiet’ - no fit information is printed.

‘Default’ - between Verbose and Quiet.

5.6.5 Command Buttons

Fit button - performs a fit taking different option settings via the Fit Panel interface.
Reset - sets the GUI elements and related fit settings to the default ones.

Close - closes the Fit panel window.

5.7 Fitting Multiple Sub Ranges

The script for this example is $RO0TSYS/tutorials/fit/multifit.C. It shows how to use several Gaussian functions
with different parameters on separate sub ranges of the same histogram. To use a Gaussian, or any other ROOT built
in function, on a sub range you need to define a new TF1. Each is ‘derived’ from the canned function gaus.

First, four TF1 objects are created - one for each sub-range:

gl = new TF1("ml1","gaus",85,95);

g2 = new TF1("m2","gaus",98,108);

g3 = new TF1("m3","gaus",110,121);

// The total is the sum of the three, each has 3 parameters
total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

Next, we fill a histogram with bins defined in the array x.

126

CHAPTER 5. FITTING HISTOGRAMS

Example of several fits in subranges

= h
- Entries 49
- Mean 104.6
61— RMS 14.3
5
T
3
o

T |I e ==

85 80 95 100 105 110 115 120 125 130

Figure 5.3: Fitting a histogram with several Gaussian functions

// Create a histogram and set tt's contents
h = new TH1F("gl","Example of several fits in subranges",
np,85,134);
h->SetMaximum(7) ;
for (int i=0; i<mp; i++) {
h->SetBinContent (i+1,x[i]);
X
// Define the parameter array for the total function
Double_t par[9];

When fitting simple functions, such as a Gaussian, the initial values of the parameters are automatically computed by
ROOT. In the more complicated case of the sum of 3 Gaussian functions, the initial values of parameters must be set.
In this particular case, the initial values are taken from the result of the individual fits. The use of the “+” sign is
explained below:

// Fit each function and add it to the list of functions
h->Fit(gl,"R");
h->Fit (g2, "R+");
h->Fit(g3,"R+");

// Get the parameters from the fit
gl->GetParameters (&par [0]);
g2->GetParameters (&par[3]);
g3->GetParameters (&par [6]);

// Use the parameters on the sum
total->SetParameters(par) ;
h->Fit(total,"R+");

5.8. ADDING FUNCTIONS TO THE LIST 127

5.8 Adding Functions to the List

The example $RO0TSYS/tutorials/fit/multifit.C also illustrates how to fit several functions on the same histogram.
By default a Fit command deletes the previously fitted function in the histogram object. You can specify the option
“4+” in the second parameter to add the newly fitted function to the existing list of functions for the histogram.

root[] hist->Fit("fi1","+" """ -2,2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

5.9 Combining Functions

You can combine functions to fit a histogram with their sum as it is illustrated in the macro FitDemo.C
($ROOTSYS/tutorials/fit/FittingDemo.C). We have a function that is the combination of a background and
Lorentzian peak. Each function contributes 3 parameters:

Ap(5)
(B —m)?+(5)?

y(E) = a1 + axE + azFE* +

BackgroundLorentzian Peak

par[0] = a; par[0] = 4,

par[1] = a9 par[1] = G

par[2] = a3 par[2] =m

The combination function (fitFunction) has six parameters:
fitFunction = background(x,par) + LorentzianPeak(x,&par[3])
par [0]=a; par[1]l=a; par[2]=a; par[3]=A, par[4]=G par[5]=m

This script creates a histogram and fits it with the combination of two functions. First we define the two functions and
the combination function:

// Quadratic background function

Double_t background(Double_t *x, Double_t *par) {
return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];

3

// Lorentzian Peak function

Double_t lorentzianPeak(Double_t *x, Double_t *par) {
return (0.5%par[0]*par[1]/TMath::Pi()) / TMath::Max(l.e-10,
(x[0]-par[2])*(x[0]-par[2])+ .25%par[1]*par[1]);

}

// Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
return background(x,par) + lorentzianPeak(x,&par[3]);

}

void FittingDemo() {

// bevington ezercise by P. Malzacher, modified by R. Brun
const int nBins = 60;

Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
23,26,36,25,27,35,40,44,66,81,
75,57,48,45,46,41,35,36,53,32,
40,37,38,31,36,44,42,37,32,32,
43,44,35,33,33,39,29,41,32,44,
26,39,29,35,32,21,21,15,25,15%};

THIF *histo = new TH1F("example_ 9_1",

"Lorentzian Peak on Quadratic Background",60,0,3);

128 CHAPTER 5. FITTING HISTOGRAMS

for(int i=0; i < nBins; i++) {
// we use these methods to explicitly set the content
// and error instead of using the fill method.
histo->SetBinContent(i+1,datal[i]);
histo->SetBinError(i+1,TMath: :Sqrt(datali]));

}

// create a TF1 with the range from 0 to 3 and 6 parameters

TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

// first try without starting values for the parameters

// this defaults to 1 for each param.

histo->Fit("fitFcn");

// this results in an ok fit for the polynomial function however
// the non-linear part (Lorentzian

Lorentzian Peak on Quadratic Background

et et aeeeeeeeaaeaaeeaeeeeaeeaaaeaaeeeeeeeaaaa e e et e e a e a e e e e e eaa e a e e e e ek e e a e e e e e e s a ek e e e e e aaa e raaes

—4— Dala
—— Background fit

— Signal fit
— Global F_r'r

Figure 5.4: The output of the FittingDemo() example

5.10 Associated Function

One or more objects (typically a TF1*) can be added to the list of functions (fFunctions) associated to each histogram.
A call to TH1::Fit adds the fitted function to this list. Given a histogram h, one can retrieve the associated function
with:

TF1 *myfunc = h->GetFunction("myfunc");

5.11 Access to the Fit Parameters and Results

If the histogram (or graph) is made persistent, the list of associated functions is also persistent. Retrieve a pointer to the
function with the TH1::GetFunction()method. Then you can retrieve the fit parameters from the function

5.12. ASSOCIATED ERRORS 129
(++TF1°%*%) with calls such as:

root[] TF1 *fit = hist->GetFunction(function_name);
root[] Double_t chi2 = fit->GetChisquare();

// value of the first parameter

root[] Double_t pl = fit->GetParameter(0);

// error of the first parameter

root[] Double_t el = fit->GetParError(0);

5.12 Associated Errors

By default, for each bin, the sum of weights is computed at fill time. One can also call TH1: : Sumw2 to force the storage
and computation of the sum of the square of weights per bin. If Sumw2 has been called, the error per bin is computed
as the sqrt (sum of squares of weights); otherwise, the error is set equal to the sqrt (bin content). To return
the error for a given bin number, do:

Double_t error = h->GetBinError(bin);

Empty bins are excluded in the fit when using the Chi-square fit method. When fitting the histogram with the low
statistics, it is recommended to use the Log-Likelihood method (option ‘L’ or “LL”).

5.13 Fit Statistics

You can change the statistics box to display the fit parameters with the TStyle: :SetOptFit(mode) method. This
parameter has four digits: mode = pcev (default = 0111)

e p = 1 print probability

e ¢ = 1 print Chi-square/number of degrees of freedom
o e =1 print errors (if e=1, v must be 1)

o v = 1 print name/values of parameters

For example, to print the fit probability, parameter names/values, and errors, use:

gStyle->SetOptFit (1011);

5.14 The Minimization Package

This package was originally written in FORTRAN by Fred James and part of PACKLIB (patch D506). It has been
converted to a C++ class by René Brun. The current implementation in C++ is a straightforward conversion of the
original FORTRAN version. The main changes are:

e The variables in the various Minuit labeled common blocks have been changed to the TMinuit class data members

e The internal arrays with a maximum dimension depending on the maximum number of parameters are now data
members’ arrays with a dynamic dimension such that one can fit very large problems by simply initializing the
TMinuit constructor with the maximum number of parameters

e The include file Minuit.h has been commented as much as possible using existing comments in the code or the
printed documentation

e The original Minuit subroutines are now member functions
o Constructors and destructor have been added

o Instead of passing the FCN function in the argument list, the addresses of this function is stored as pointer in the
data members of the class. This is by far more elegant and flexible in an interactive environment. The member
function SetFCN can be used to define this pointer

130 CHAPTER 5. FITTING HISTOGRAMS

e The ROOT static function Printf is provided to replace all format statements and to print on currently defined
output file

e The derived class TMinuit01ld contains obsolete routines from the FORTRAN based version

o The functions SetObjectFit/GetObjectFit can be used inside the FCN function to set/get a referenced object
instead of using global variables

e By default fGraphicsMode is true. When calling the Minuit functions such as mncont, mnscan, or any Minuit
command invoking mnplot, TMinuit: :mnplot () produces a TGraph object pointed by fPlot. One can retrieve
this object with TMinuit: :GetPlot() . For example:

h->Fit("gaus");

gMinuit->Command ("SCAn 1");

TGraph *gr = (TGraph*)gMinuit->GetPlot();
gr->SetMarkerStyle(21);

gr->Draw("alp");

e To set Minuit in no graphics mode, call

gMinuit->SetGraphicsMode (kFALSE) ;

5.14.1 Basic Concepts of Minuit

The Minuit package acts on a multi parameter FORTRAN function to which one must give the generic name FCN. In
the ROOT implementation, the function FCN is defined via the Minuit SetFCN member function when a HistogramFit
command is invoked. The value of FCN will in general depend on one or more variable parameters.

To take a simple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F, TH1D) the Fit function de-
fines the Minuit fitting function as being H1FitChisquare or H1FitLikelihood depending on the options selected.
H1FitChisquare calculates the chi-square between the user fitting function (Gaussian, polynomial, user defined, etc)
and the data for given values of the parameters. It is the task of Minuit to find those values of the parameters which
give the lowest value of chi-square.

5.14.2 The Transformation of Limited Parameters

For variable parameters with limits, Minuit uses the following transformation:
Pint = arcsin(2((Pext-a)/(b-a))-1)
Pext = a+((b-a)/(2)) (sinPint+1)

so that the internal value Pint can take on any value, while the external value Pext can take on values only between
the lower limit a and the ext upper limit b. Since the transformation is necessarily non-linear, it would transform
a nice linear problem into a nasty non-linear one, which is the reason why limits should be avoided if not necessary.
In addition, the transformation does require some computer time, so it slows down the computation a little bit, and
more importantly, it introduces additional numerical inaccuracy into the problem in addition to what is introduced in
the numerical calculation of the FCN value. The effects of non-linearity and numerical round off both become more
important as the external value gets closer to one of the limits (expressed as the distance to nearest limit divided by
distance between limits). The user must therefore be aware of the fact that, for example, if he puts limits of (0, 1010)
on a parameter, then the values 0.0 and 1. 0 will be indistinguishable to the accuracy of most machines.

The transformation also affects the parameter error matrix, of course, so Minuit does a transformation of the error
matrix (and the “parabolic” parameter errors) when there are parameter limits. Users should however realize that the
transformation is only a linear approximation, and that it cannot give a meaningful result if one or more parameters is

very close to a limit, where glgjﬁ # 0. Therefore, it is recommended that:

e Limits on variable parameters should be used only when needed in order to prevent the parameter from taking
on unphysical values

e When a satisfactory minimum has been found using limits, the limits should then be removed if possible, in order
to perform or re-perform the error analysis without limits

5.14. THE MINIMIZATION PACKAGE 131

5.14.3 How to Get the Right Answer from Minuit

Minuit offers the user a choice of several minimization algorithms. The MIGRAD algorithm is in general the best
minimized for nearly all functions. It is a variable-metric method with inexact line search, a stable metric updating
scheme, and checks for positive-definiteness. Its main weakness is that it depends heavily on knowledge of the first
derivatives, and fails miserably if they are very inaccurate.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following techniques to
alleviate problems caused by limits:

5.14.3.1 Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of limits has
probably not prevented Minuit from finding the right minimum. On the other hand, if one or more parameters is
near its limit at the minimum, this may be because the true minimum is indeed at a limit, or it may be because the
minimized has become ‘“’blocked” at a limit. This may normally happen only if the parameter is so close to a limit
(internal value at an odd multiple of £7 that Minuit prints a warning to this effect when it prints the parameter

values. The minimized can become blocked at a limit, because at a limit the derivative seen by the minimized a?,fn ; 1s
zero no matter what the real derivative % is.

oF B oF OPext\ OF _0
OPint) \ OPext OPint] \ OPext)

5.14.3.2 Getting the Right Parameter Errors with Limits

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error matrix, and the
parameter errors it reports should be accurate and very close to those you would have got without limits. In other
cases (which should be more common, since otherwise you would not need limits), the very meaning of parameter
errors becomes problematic. Mathematically, since the limit is an absolute constraint on the parameter, a parameter
at its limit has no error, at least in one direction. The error matrix, which can assign only symmetric errors, then
becomes essentially meaningless.

5.14.3.3 Interpretation of Parameter Errors

There are two kinds of problems that can arise: the reliability of Minuit’s error estimates, and their statistical
interpretation, assuming they are accurate.

5.14.3.4 Statistical Interpretation

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting of exact confidence
levels see the articles:

o F.James. Determining the statistical Significance of experimental Results. Technical Report DD/81/02 and
CERN Report 81-03, CERN, 1981

o« W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in Ezperimental Physics. North-
Holland, 1971

5.14.4 Reliability of Minuit Error Estimates

Minuit always carries around its own current estimates of the parameter errors, which it will print out on request, no
matter how accurate they are at any given point in the execution. For example, at initialization, these estimates are just
the starting step sizes as specified by the user. After a HESSE step, the errors are usually quite accurate, unless there
has been a problem. Minuit, when it prints out error values, also gives some indication of how reliable it thinks they
are. For example, those marked CURRENT GUESS ERROR are only working values not to be believed, and APPROXIMATE
ERROR means that they have been calculated but there is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least Minuit believes the errors are accurate, although there is always a
small chance that Minuit has been fooled. Some visible signs that Minuit may have been fooled:

132 CHAPTER 5. FITTING HISTOGRAMS

o Warning messages produced during the minimization or error analysis
o Failure to find new minimum
o Value of EDM too big (estimated Distance to Minimum)

o Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated with the
others

o Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally difficult
problem, and one which has been badly parameterized so that individual errors are not very meaningful because
they are so highly correlated

e Parameter at limit. This condition, signaled by a Minuit warning message, may make both the function minimum
and parameter errors unreliable. See the discussion above ‘Getting the right parameter errors with limits’

The best way to be absolutely sure of the errors is to use ‘’independent’calculations and compare them, or compare
the calculated errors with a picture of the function. Theoretically, the covariance matrix for a’*physical” function must
be positive-definite at the minimum, although it may not be so for all points far away from the minimum, even for a
well-determined physical problem. Therefore, if MIGRAD reports that it has found a non-positive-definite covariance
matrix, this may be a sign of one or more of the following;:

5.14.4.1 A Non-physical Region

On its way to the minimum, MIGRAD may have traversed a region that has unphysical behavior, which is of course not
a serious problem as long as it recovers and leaves such a region.

5.14.4.2 An Underdetermined Problem

If the matrix is not positive-definite even at the minimum, this may mean that the solution is not well defined, for
example that there are more unknowns than there are data points, or that the parameterization of the fit contains a
linear dependence. If this is the case, then Minuit (or any other program) cannot solve your problem uniquely. The
error matrix will necessarily be largely meaningless, so the user must remove the under determinedness by reformulating
the parameterization. Minuit cannot do this itself.

5.14.4.3 Numerical Inaccuracies

It is possible that the apparent lack of positive-definiteness is due to excessive round off errors in numerical calculations
(in the user function), or not enough precision. This is unlikely in general, but becomes more likely if the number
of free parameters is very large, or if the parameters are badly scaled (not all of the same order of magnitude), and
correlations are large. In any case, whether the non-positive-definiteness is real or only numerical is largely irrelevant,
since in both cases the error matrix will be unreliable and the minimum suspicious.

5.14.4.4 An Ill-posed Problem

For questions of parameter dependence, see the discussion above on positive-definiteness. Possible other mathematical
problems are the following:

e Excessive numerical round off - be especially careful of exponential and factorial functions which get big very
quickly and lose accuracy.

e Starting too far from the solution - the function may have unphysical local minima, especially at infinity in some
variables.

5.15 FUMILI Minimization Package

FUMILL is used to minimize Chi-square function or to search maximum of likelihood function. Experimentally measured
values F; are fitted with theoretical functions f;(7,) where 7 are coordinates, and g - vector of parameters. For
better convergence Chi-square function has to be the following form

5.16. NEURAL NETWORKS 133

= 2
2 n —
x> 1 fi(@i,0) — F;
2 22< o;

i=1

where o; are errors of the measured function. The minimum condition is:

j J

X =1 0fif . .
S L 58~ B = 0.i = 1
1 j=1 i

where m is the quantity of parameters. Expanding left part of this equation over parameter increments and retaining
only linear terms one gets

aX 82X2 or
(0;)9 o " Z (39i59k>9—§0 B =0 =0

here A° is some initial value of parameters. In general case:

82)(2 - 10 é)fj - Fj 82fj
90;00), Z? : Z > 00,00,

’L
,]:

In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last term in previous
equation is discarded. It is often done, not always wittingly, and sometimes causes troubles, for example, if user wants
to limit parameters with positive values by writing down 6? instead of §;. FUMILI will fail if one tries minimize

x2 = ¢g%(6) where g is arbitrary function.

Approximate value is:

<
3

32 2
00, aak

3fj

um"_‘

J:1

Then the equations for parameter increments are:

8X2 +ZZ O — 09 =0, i=1...m
89 ik k k.f - PPN

Remarkable feature of algorithm is the technique for step restriction. For an initial value of parameter 00 a parallelepiped
P, is built with the center at 8° and axes parallel to coordlnate axes ;. The lengths of parallelepiped sides along i-th
axis is 2b;, where b; is such a value that the functions f;(6) are quasi-linear all over the parallelepiped.

FUMILI takes into account simple linear inequalities in the form:

Hé'mn S 01 S oinax

They form parallelepiped P (Py may be deformed by P). Very similar step formulae are used in FUMILI for negative
logarithm of the likelihood function with the same idea - linearization of function argument.

5.16 Neural Networks

5.16.1 Introduction

Neural Networks are used in various fields for data analysis and classification, both for research and commercial
institutions. Some randomly chosen examples are image analysis, financial movements’ predictions and analysis, or
sales forecast and product shipping optimization. In particles physics neural networks are mainly used for classification
tasks (signal over background discrimination). A vast majority of commonly used neural networks are multilayer
perceptrons. This implementation of multilayer perceptrons is inspired from the MLPfit package, which remains one of
the fastest tools for neural networks studies.

134 CHAPTER 5. FITTING HISTOGRAMS

input walues

input layer

wielght matrix 1

hidden layer

wielght matrx 2

output layer

output values

5.16.2 The MLP

The multilayer perceptron is a simple feed-forward network with the following structure showed on the left.

It is made of neurons characterized by a bias and weighted links in between - let’s call those links synapses. The
input neurons receive the inputs, normalize them and forward them to the first hidden layer. Each neuron in any
subsequent layer first computes a linear combination of the outputs of the previous layer. The output of the neuron is
then function of that combination with f being linear for output neurons or a sigmoid for hidden layers.

Such a structure is very useful because of two theorems:
1- A linear combination of sigmoids can approximate any continuous function.

2- Trained with output=1 for the signal and 0 for the background, the approximated function of inputs X is the
probability of signal, knowing X.

5.16.3 Learning Methods

The aim of all learning methods is to minimize the total error on a set of weighted examples. The error is defined
as the sum in quadrate, divided by two, of the error on each individual output neuron. In all methods implemented
in this library, one needs to compute the first derivative of that error with respect to the weights. Exploiting the
well-known properties of the derivative, one can express this derivative as the product of the local partial derivative by
the weighted sum of the outputs derivatives (for a neuron) or as the product of the input value with the local partial
derivative of the output neuron (for a synapse). This computation is called “back-propagation of the errors”. Six
learning methods are implemented.

5.16.3.1 Stochastic Minimization

This is the most trivial learning method. The Robbins-Monro stochastic approximation is applied to multilayer
perceptrons. The weights are updated after each example according to the formula:

wij(t+ 1) = wi;(t) + Awi; (1)

5.16. NEURAL NETWORKS 135
with:

Oep
8101']'

Awg;(t) = —n (- 6) + eAwg;(t — 1)

The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

5.16.3.2 Steepest Descent With Fixed Step Size (Batch Learning)

It is the same as the stochastic minimization, but the weights are updated after considering all the examples, with the
total derivative dEdw. The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

5.16.3.3 Steepest Descent Algorithm

Weights are set to the minimum along the line defined by the gradient. The only parameter for this method is Tau.
Lower Tau = higher precision = slower search. A value Tau=3 seems reasonable.

5.16.3.4 Conjugate Gradients With the Polak-Ribiere Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and Reset, which
defines the epochs where the direction is reset to the steepest descent (estimated by using the Polak-Ribiere formula).

5.16.3.5 Conjugate Gradients With the Fletcher-Reeves Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and Reset, which
defines the epochs where the direction is reset to the steepest descent (estimated by using the Fletcher-Reeves formula).

5.16.3.6 The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

It implies the computation of a NxN matrix, but seems more powerful at least for less than 300 weights. Parameters are
Tau and Reset, which defines the epochs where the direction is reset to the steepest descent.

5.16.4 Using the Network

Neural network are build from a set of “samples”. A sample is a set of values defining the inputs and the corresponding
output that the network should ideally provide. In ROOT this is a TTree entry. The first thing to be decided is the
network layout. This layout is described in a string where the layers are separated by semicolons. The input/output
layers are defined by giving the expression for each neuron, separated by comas. Hidden layers are just described by
the number of neurons.

In addition, input and output layer formulas can be preceded by ‘@’ (e.g. “@out”) if one wants to normalize the
corresponding value. Also, if the string ends with ‘!’, output neurons are set up for classification, i.e. with a sigmoid (1
neuron) or softmax (more neurons) activation function.

Many questions on the good usage of neural network, including rules of dumb to determine the best network topology
are addressed at ftp://ftp.sas.com/pub/neural/FAQ.html

// a simple network: 2 inputs, 10 hidden and 1 normalized
// output neuron
TMultilayerPerceptron network("r,z:10:@Br",tree);

Expressions are evaluated as for TTree::Draw(). Input and outputs are taken from the TTree associ-
ated with the network. This TTree can be given as argument of the constructor or defined later with
TMultiLayerPerceptron: :SetData(). FEvents can also be weighted. The weight expression can be given in
the constructor or set later with the method SetWeight () of the class TMultiLayerPerceptron. Two datasets must
be defined before learning the network: a training dataset that is used when minimizing the error, and a test dataset
that will avoid bias. Those two datasets can be build aside and then given to the network, or can be build from a
standard expression. By default, half of the events are put in both datasets.

ftp://ftp.sas.com/pub/neural/FAQ.html

136 CHAPTER 5. FITTING HISTOGRAMS

// a more complex 4:8:1 network

// the ptsumf branch is used as wetigh;

// default event lists are explicit

TMultilayerPerceptron network("m,pt,acol,acopl:8:type","pt",tree,
"Entry$%2","Entry$/2") ;

The method TMultiLayerPerceptron: :SetLearningMethod () defines the learning method. Learning methods are:

TMultilayerPerceptron: :kStochastic,
TMultilayerPerceptron: :kBatch,
TMultiLayerPerceptron: :kSteepestDescent,
TMultiLayerPerceptron: :kRibierePolak,
TMultiLayerPerceptron: :kFletcherReeves,
TMultilayerPerceptron: :kBFGS // default

The training can start with TMultilayerPerceptron: :Train(Int_t nepoch,Option_t* options). The first argu-
ment is the number of epochs while option is a string that can contain “text” (simple text output), “graph” (evaluating
graphical training curves), “update = X” (step for the text/graph output update) or “+” (will skip the randomization
and start from the previous values). All combinations are available.

network.Train(1000, "text,graph,update=10"); // full output every

// 10 epochs
network.Train(100,"text,+"); // 100 more epochs
//starts with existing weights

The weights can be saved to a file (DumpWeights) and then reloaded (LoadWeights) to a new compatible network. The
output can also be evaluated (Evaluate) for a given output neuron and an array of double input parameters or the
network can be exported (Export) as a standalone code. Up to now, this is only as a C++ or PYTHON class, but
other languages could be implemented.

5.16.5 Examples

An example of how to use TMultilayerPerceptron is the macro mlpHiggs.C in SROOTSYS/tutorials. Using some
standard simulated information that could have been obtained at LEP, a neural network is build, which can make the
difference between WW events and events containing a Higgs boson. Starting with a TFile containing two TTrees: one
for the signal, the other for the background, a simple script is used:

void mlpHiggs(Int_t ntrain=100) {

if (!gRO0T->GetClass("TMultiLayerPerceptron'))
gSystem->Load ("1ibMLP") ;
// prepare inputs — the 2 trees are merged into one, and a
// "type" branch, equal to 1 for the signal and O for the
// background is added
TFile input("mlpHiggs.root");
TTree *signal = (TTree *)input.Get("sig filtered");
TTree *background = (TTree *)input.Get("bg_filtered");
TTree *simu = new TTree('"MonteCarlo",

"Filtered Monte Carlo Events");

Since the input is a TTree and we are starting from two different TTrees (with different names), they are first merged
into one, and a “type” branch is added, that says whether there is a signal or a background event. Those irrelevant
details are skipped here.

TMultilayerPerceptron #*mlp = new TMultilayerPerceptron(
"msumf ,ptsumf, acolin, acopl:8:type","ptsumf",simu,
"Entry$%2","Entry$/2");

mlp->Train(ntrain, "text,graph,update=10");

5.16. NEURAL NETWORKS 137

The neural network is instantiated and trained. “ptsumf” is used as a weight, and the standard event lists are explicit.
The network that is then build has four input neurons, eight additional ones in the only hidden layer and one single
output neuron.

// Use the NN to plot the results for each sample
THIF *bg = new TH1F("bgh","NN output",50,-.5,1.5);
TH1F *sig = new TH1F("sigh","NN output",50,-.5,1.5);
bg->SetDirectory(0);
sig->SetDirectory(0);
Double_t params[4];
for (i = 0; i < background->GetEntries(); i++) {
background->GetEntry (i) ;
params [0] = msumf; params[1] = ptsumf;
params[2] = acolin; params[3] = acopl;
bg->Fill (mlp->Evaluate(0,params));
}
for (i = 0; i < signal->GetEntries(); i++) {
signal->GetEntry (i) ;
params [0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
params[3] = acopl;
sig->Fill(mlp->Evaluate (0,params));

}

TCanvas *cv = new TCanvas("NNout_cv","Neural net output");
bg->SetFillStyle (3008) ;

bg->SetFillColor (kBlue) ;
sig->SetFillStyle(3003);
sig->SetFillColor (kRed) ;

bg->SetStats(0);

sig->SetStats(0);

bg->Draw() ;

sig->Draw("same");

TLegend *legend = new TLegend(.75,.80,.95,.95);
legend->AddEntry (bg, "Background (WW) ") ;
legend->AddEntry(sig, "Signal (Higgs)");
legend->Draw() ;

The neural net output is then used to display the final difference between background and signal events. The figure
“The neural net output” shows this plot.

As it can be seen, this is a quite efficient technique. As mentioned earlier, neural networks are also used for fitting
function. For some application with a cylindrical symmetry, a magnetic field simulation gives as output the angular
component of the potential vector A, as well as the radial and z components of the B field.

One wants to fit those distributions with a function in order to plug them into the Geant simulation code. Polynomial
fits could be tried, but it seems difficult to reach the desired precision over the full range. One could also use a spline
interpolation between known points. In all cases, the resulting field would not be C-infinite.

An example of output (for Br) is shown. First the initial function can be seen as the target. Then, the resulting
(normalized) neural net output. In order to ease the learning, the “normalize output” was used here. The initial
amplitude can be recovered by multiplying by the original RMS and then shifting by the original mean.

138 CHAPTER 5. FITTING HISTOGRAMS

NN output

Background (WW)

500 - Signal {Higgs)

400

200

100

300 —

Figure 5.5: The neural net output

Figure 5.6: The original and the neural net for Br

Chapter 6

A Little C++

This chapter introduces you to some useful insights into C++, to allow you to use of the most advanced features in
ROOQOT. It is in no case a full course in C++.

6.1 Classes, Methods and Constructors

C++ extends C with the notion of class. If you're used to structures in C, a class is a struct that is a group of
related variables, which is extended with functions and routines specific to this structure (class). What is the interest?
Consider a struct that is defined this way:

struct Line {
float x1;
float yi;
float x2;
float y2;

This structure represents a line to be drawn in a graphical window. (x1,y1) are the coordinates of the first point,
(x2,y2) the coordinates of the second point. In the standard C, if you want to draw effectively such a line, you first
have to define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1l =
firstline.yl =
firstline.x2 =
firstline.y2 =

©O© 00 NN

-

O O O O

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To draw this line, you will have to write a
function, say LineDraw(Line 1) and call it with your object as argument:

LineDraw(firstline);
In C++, we would not do that. We would instead define a class like this:

class TLine {
Double_t x1;
Double_t yi;
Double_t x2;
Double_t y2;
TLine(int x1, int y1, int x2, int y2);
void Draw();

Here we added two functions, that we will call methods or member functions, to the TLine class. The first method is
used for initializing the line objects we would build. It is called a constructor. The second one is the Draw method
itself. Therefore, to build and draw a line, we have to do:

139

140 CHAPTER 6. A LITTLE C++

TLine 1(0.2,0.2,0.8,0.9);
1.Draw();

The first line builds the object 1by calling its constructor. The second line calls the TLine: :Draw() method of this
object. You don’t need to pass any parameters to this method since it applies to the object 1, which knows the
coordinates of the line. These are internal variables x1, y1, x2, y2 that were initialized by the constructor.

6.2 Inheritance and Data Encapsulation

We have defined a TLine class that contains everything necessary to draw a line. If we want to draw an arrow, is it so
different from drawing a line? We just have to draw a triangle at one end. It would be very inefficient to define the
class TArrow from scratch. Fortunately, inheritance allows a class to be defined from an existing class. We would write
something like:

class TArrow : public TLine {
int ArrowHeadSize;
void Draw();
void SetArrowSize(int arrowsize);

The keyword “public” will be explained later. The class TArrow now contains everything that the class TLine does,
and a couple of things more, the size of the arrowhead and a function that can change it. The Draw method of TArrow
will draw the head and call the draw method of TLine. We just have to write the code for drawing the head!

6.2.1 Method Overriding

Giving the same name to a method (remember: method = member function of a class) in the child class (TArrow)
as in the parent (TLine) does not give any problem. This is called overriding a method. Draw in TArrow overrides
Draw in TLine. There is no possible ambiguity since, when one calls the Draw() method; this applies to an object
which type is known. Suppose we have an object 1 of type TLine and an object a of type TArrow. When you want to
draw the line, you do:

1.Draw();
Draw() from TLine is called. If you do:
a.Draw();

Draw() from TArrow is called and the arrow a is drawn.

6.2.2 Data Encapsulation

We have seen previously the keyword “public”. This keyword means that every name declared public is seen by the
outside world. This is opposed to “private” that means only the class where the name was declared private could see
this name. For example, suppose we declare in TArrow the variable ArrowHeadSize private.

private:
int ArrowHeadSize;

Then, only the methods (i.e. member functions) of TArrow will be able to access this variable. Nobody else will see it.
Even the classes that we could derive from TArrow will not see it. On the other hand, if we declare the method Draw ()
as public, everybody will be able to see it and use it. You see that the character public or private does not depend
of the type of argument. It can be a data member, a member function, or even a class. For example, in the case of
TArrow, the base class TLine is declared as public:

class TArrow : public TLine { ...

6.3. CREATING OBJECTS ON THE STACK AND HEAP 141

This means that all methods of TArrow will be able to access all methods of TLine, but this will be also true for
anybody in the outside world. Of course, this is true if TLine accepts the outside world to see its methods/data
members. If something is declared private in TLine, nobody will see it, not even TArrow members, even if TLine is
declared as a public base class.

What if TLine is declared “private” instead of “public” ? Well, it will behave as any other name declared private in
TArrow: only the data members and methods of TArrow will be able to access TLine, its methods and data members,
nobody else. This may seem a little bit confusing and readers should read a good C++ book if they want more details.
Especially since, besides public and private, a member can be protected. Usually, one puts private the methods that the
class uses internally, like some utilities classes, and that the programmer does not want to be seen in the outside world.

With “good” C++ practice (which we have tried to use in ROOT), all data members of a class are private. This is
called data encapsulation and is one of the strongest advantages of Object Oriented Programming (OOP). Private data
members of a class are not visible, except to the class itself. So, from the outside world, if one wants to access those
data members, one should use so called “getters” and “setters” methods, which are special methods used only to get or
set the data members. The advantage is that if the programmers want to modify the inner workings of their classes,
they can do so without changing what the user sees. The user does not even have to know that something has changed
(for the better, hopefully). For example, in our TArrow class, we would have set the data member ArrowHeadSize
private. The setter method is SetArrowSize (), we do not need a getter method:

class TArrow : public TLine {
private:
int ArrowHeadSize;
public:
void Draw();
void SetArrowSize(int arrowsize);

To define an arrow object you call the constructor. This will also call the constructor of TLine, which is the parent
class of TArrow, automatically. Then we can call any of the line or arrow public methods:

root[] TArrow *myarrow = new TArrow(1,5,89,124);
root[] myarrow->SetArrowSize(10);
root[] myarrow->Draw();

6.3 Creating Objects on the Stack and Heap

To explain how objects are created on the stack and on the heap we will use the Quad class. You can find the
definition in $RO0TSYS/tutorials/quadp/Quad.h and Quad.cxx. The Quad class has four methods. The constructor
and destructor, Evaluate that evaluates ax**2 + bx +c, and Solve which solves the quadratic equation ax**2 + bx
+c = 0.

Quad.h :

class Quad {
public:
Quad(Float_t a, Float_t b, Float_t c);
~Quad () ;
Float_t Evaluate(Float_t x) const;
void Solve() const;

private:
Float_t fA;
Float_t £B;
Float_t £C;
};
Quad. cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

142 CHAPTER 6. A LITTLE C++

Quad: :Quad(Float_t a, Float_t b, Float_t c) {

fA = a;
fB = b;
fC = c;
}
Quad::~Quad() {
Cout <<"deleting object with coeffts: "<< fA << "," << fB << " "
<< fC << endl;
}

Float_t Quad::Evaluate(Float_t x) const {
return fA*x*xx + fBxx + fC;
}
void Quad::Solve() const {
Float_t temp = fB*fB - 4.*xfA*xfC;
if (temp > 0.) {
temp = sqrt(temp);
cout << "There are two roots: " << (-fB - temp) / (2.%fA)
<< " and " << (-fB + temp) / (2.%fA) << endl;

} else {
if (temp == 0.) {
cout << "There are two equal roots: " << -fB / (2.*fA)
<< endl;
} else {

cout << "There are no roots'" << endl;

}

Let us first look how we create an object. When we create an object by:
root[] Quad my_object(l.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with the idea; it is not unlike a
local variable in a function or subroutine. Although there are still a few old timers who do not know it, FORTRAN
is under no obligation to save local variables once the function or subroutine returns unless the SAVE statement is
used. If not then it is likely that FORTRAN will place them on the stack and they will “pop off” when the RETURN
statement is reached. To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(l.,2.,-3.);

The second line declares a pointer to Quad called my_objptr. From the syntax point of view, this is just like all the
other declarations we have seen so far, i.e. this is a stack variable. The value of the pointer is set equal to

new Quad(l.,2.,-3.);

new, despite its looks, is an operator and creates an object or variable of the type that comes next, Quad in this case,
on the heap. Just as with stack objects it has to be initialized by calling its constructor. The syntax requires that the
argument list follow the type. This one statement has brought two items into existence, one on the heap and one on
the stack. The heap object will live until the delete operator is applied to it.

There is no FORTRAN parallel to a heap object; variables either come or go as control passes in and out of a function
or subroutine, or, like a COMMON block variables, live for the lifetime of the program. However, most people in HEP
who use FORTRAN will have experience of a memory manager and the act of creating a bank is a good equivalent of
a heap object. For those who know systems like ZEBRA, it will come as a relief to learn that objects do not move,
C++ does not garbage collect, so there is never a danger that a pointer to an object becomes invalid for that reason.
However, having created an object, it is the user’s responsibility to ensure that it is deleted when no longer needed, or
to pass that responsibility onto to some other object. Failing to do that will result in a memory leak, one of the most
common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the “->” operator e.g.:

6.3. CREATING OBJECTS ON THE STACK AND HEAP 143
root[] my_objptr->Solve();

Although we chose to call our pointer my_objptr, to emphasize that it is a pointer, heap objects are so common in an
object-oriented program that pointer names rarely reflect the fact - you have to be careful that you know if you are
dealing with an object or its pointer! Fortunately, the compiler won’t tolerate an attempt to do something like:

root[] my_objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised not to follow! As we have
seen, heap objects have to be accessed via pointers, whereas stack objects can be accessed directly. They can also be
accessed via pointers:

root[] Quad stack_quad(l.,2.,-3.);
root[] Quad *stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very careful if you take
the address of stack objects. As we shall see soon, they are deleted automatically, which could leave you with an illegal
pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that releases resources for
(or destroy) an object of a class. It is opposite of a constructor that create the object of a class when is called. The
compiler will provide a destructor that does nothing if none is provided. We will add one to our Quad class so that we
can see when it is called. The class names the destructor but with a prefix ~ which is the C++ one’s complement
i.e. bit wise complement, and hence has destruction overtones! We declare it in the .h file and define it in the .cxx file.
It does not do much except print out that it has been called (still a useful debug technique despite today’s powerful
debuggers!).

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(l.,2.,-3.);

To delete the object:

root[] delete my_objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly necessary (and
CINT does it automatically), but the object is no more accessible, and any attempt to use the pointer again will, as has
already been stated, cause grief. So much for heap objects, but how are stack objects deleted? In C++, a stack object
is deleted as soon as control leaves the innermost compound statement that encloses it. Therefore, it is singularly futile
to do something like:

root[] { Quad my_object(l.,2.,-3.); }

CINT does not follow this rule; if you type in the above line, you will not see the destructor message. As explained in
the Script lesson, you can load in compound statements, which would be a bit pointless if everything disappeared as
soon as it was loaded! Instead, to reset the stack you have to type:

root[] gROOT->Reset();

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many roles, acts as a
resource manager. Start ROOT again and type in the following;:

root[] .L Quad.cxx

root[] Quad my_object(l.,2.,-3.);

root[] Quad *my_objptr = new Quad(4.,5.,-6.);
root[] gROOT->Reset();

144 CHAPTER 6. A LITTLE C++

You will see that this deletes the first object but not the second. We have also painted ourselves into a corner, as
my_objptr was also on the stack. This command will fail.

root[] my_objptr->Solve();

CINT no longer knows what my_objptr is. This is a great example of a memory leak; the heap object exists but we
have lost our way to access it. In general, this is not a problem. If any object will outlive the compound statement in
which it was created then a more permanent pointer will point to it, which frequently is part of another heap object.
See Resetting the Interpreter Environment in the chapter “CINT the C++ Interpreter”.

Chapter 7

CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT command line interpreter and script processor. First, we explain what
CINT is and why ROOT uses it. Then we discuss CINT as the command line interpreter, the CINT commands,
and CINT extensions to C++ are discussed. CINT as the script interpreter is explained and illustrated with several
examples.

7.1 What is CINT?

CINT, which is pronounced [’sint], is a C++ interpreter. An interpreter takes a program, in this case a C++
program, and carries it out by examining each instruction and in turn executing the equivalent sequence of machine
language. For example, an interpreter translates and executes each statement in the body of a loop “n” times. It does
not generate a machine language program. This may not be a good example, because most interpreters have become
‘smart’ about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable. Once compiled the execution
is very fast, which makes a compiler best suited for the case of “built once, run many times”. For example, the ROOT
executable is compiled occasionally and executed many times. It takes anywhere from 1 to 45 minutes to compile
ROOT for the first time (depending on the CPU). Once compiled it runs very fast. On the average, a compiled program
runs roughly ten times faster than an interpreted one. Because compiling is slow, using a compiler is cumbersome for
rapid prototyping when one changes and rebuilds as often as once per minute. An interpreter, on the other hand, is
the perfect tool for code that changes often and runs a few times. Most of the time, interpreters are built for scripting
languages, such as JavaScript, IDL, or Python. These languages are specifically designed to be interpreted rather than
compiled. The advantage of using a normally compiled language is that code can be compiled once the prototype
is debugged and refined. CINT is a C++ interpreter, making it a tool for rapid prototyping and scripting in C++.
It is also available as a stand-alone product, see http://root.cern.ch/cint. This page also has links to all the CINT
documentation. The downloadable tar file contains documentation, the CINT executable, and many demo scripts that
are not included in the regular ROOT distribution. Here is the list of CINT main features:

e Supports K&R-C, ANSI-C, and ANSI-C++

e CINT covers 85-95% of the C++, ANSI-C and K&R-C language constructs. It supports multiple inheritance,
virtual function, function overloading, operator overloading, default parameters, templates, and much more.
CINT is robust enough to interpret its own source code. CINT is not designed to be a 100% ANSI/ISO compliant
C++ language processor. It is a portable scripting language environment, which is close enough to the standard
C++.

o Interprets Large C/C++ source code

e CINT can handle huge C/C++ source code, and loads source files quickly. It can interpret its own, over 70,000
lines source code - more than 150,000 lines.

¢ Enables mixing Interpretation & Native Code

e Depending on the need for execution speed or the need for interaction, one can mix native code execution and
interpretation. “makecint” encapsulates arbitrary C/C++ objects as precompiled libraries. A precompiled
library can be configured as a dynamically linked library. Accessing interpreted code and precompiled code can
be done seamlessly in both directions.

« Provides a Single-Language solution

145

http://root.cern.ch/cint

146

CHAPTER 7. CINT THE C++ INTERPRETER
CINT/makecint is a single-language environment. It works with any ANSI-C/C++ compiler to provide the
interpreter environment on top of it.
Simplifies C++

CINT is meant to bring C+-+ to the non-software professional. C++ is simpler to use in the interpreter
environment. It helps the non-software professional (the domain expert) to talk the same language as the software
counterpart.

Provides RTTI and a Command Line

CINT can process C++ statements from command line, dynamically define/erase class definition and functions;
load /unload source files and libraries. Extended Run Time Type Identification is provided, allowing you to
explore imaginative new ways of using C++.

CINT has a built-in debugger for complex C++ code and a text based class browser is part of it.
It is portable.

CINT works on number of operating systems: HP-UX, Linux, Sun0S, Solaris, AIX, Alpha-0SF, IRIX, FreeBSD,
NetBSD, NEC EWS4800, News0S, BeBox, WindowsNT, Windows9x, MS-DOS, Mac0S, VMS, NextStep, Convex.

7.2 The ROOT Command Line Interface

Start up a ROOT session by typing root at the system prompt.

> root
sk sk ok ok sk ok ok sk 3 ok ok sk ok ok sk 3 ok ok sk ok ok sk ok ok ok 3 ok ok sk ok ok sk 3k oK ok sk ok ok sk ok ok sk

* X X X X X X *

You are welcome to visit our Web site

WELCOME to ROOT

Version 5.16/00 27 June 2007

http://root.cern.ch

* % ¥ X X X ¥ ¥

>k >k >k 3k 5k 5k 5k ok 5k 5k >k %k %k 5k %k %k >k >k >k 5k 5k 5k %k >k >k >k %k %k >k >k >k >k >k >k %k %k >k >k >k >k k Kk *k

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

Now we create a TLine object:

root[] TLine 1

root[] 1.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root[] 1.SetX1(10)

root[] 1.SetY1(11)

root[] 1.Print()

TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root[] .g

0x4038f080 class TLine 1 , size=40

0x0
0x0
0x0
0x0
0x0

protected: Double_t fX1 //X of 1st point
protected: Double_t fY1 //V of 1st point
protected: Double_t fX2 //X of 2nd point
protected: Double_t fY2 //V of 2nd point
private: static class TClass* fgIsA

7.2. THE ROOT COMMAND LINE INTERFACE

Here we note:

147

o Terminating with ;¢ is not required, see “ROOT/CINT Extensions to C++".

e Emacs style command line editing.

o Raw interpreter commands start with a dot (.).

root[]

.class TLine

class TLine //4 line segment

size=0x38

(tagnum=289,voffset=-1,isabstract=0,parent=-1,gcomp=0:-1,d21=~cd=£7)
List of base class——

Object //Basic ROOT object
AttLine //Line attributes

List of member variable--——————--—--—-"--------—-—-

protected: Double_t fX1 //X of 1st point
protected: Double_t fY1 //V of 1st point
protected: Double_t £fX2 //X of 2nd point
protected: Double_t fY2 //V of 2nd point
static const enum TLine:: kLineNDC
private: static TClass* fgIsA

List of member function-----------------=----———-

0x0 public: T
Oxc public: T
Defined in TLine
(compiled) 0x0
(compiled) 0x0
(compiled) 0x0
(compiled) 0x0
(compiled) 0x8a3a718
(compiled) 0x0
filename line:
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
(compiled) 0:0 0
root[] 1.Print(); >

root[] 1.Dump(); >>

root[] 7

Here we see:

size busy function type and name (in TLine)

public: virtual void ~TLine(void);

public: TLine TLine(void);

public: TLine TLine(Double_t x1,Double_t yi,
Double_t x2,Double_t y2);

public: TLine TLine(const TLine& line);

public: virtual void Copy(TObject& line) const;

public: virtual Int_t DistancetoPrimitive(

Int_t px,Int_t py);

public: static int ImplFileLine(void);

public: static const char* ImplFileName(void);

public: static int DeclFileLine(void);

public:TLine& operator=(const TLine&);

test.log

test.log

Use .class as quick help and reference
Unix like I/O redirection (; is required before >)
Use 7 to get help on all “raw” interpreter commands

Use @ to abort a multi-line command

Now let us execute a multi-line command:

root[] {

end with '}', '@':ab
end with '}', '@':ab
end with '}', '@':ab
end with '}', '@':ab
end with '}', '@':ab
end with '}', '@':ab
end with '}', '@':ab

ort > TLine 1;

ort > for (int i = 0; i < 5; i++) {
ort > 1.SetX1(i);

ort > 1.SetY1(i+1);

ort > 1.Print();

ort > }

ort > }

148

TLine
TLine
TLine
TLine
TLine
root []

X1=0.000000 Y1=1.000000 X2=0
X1=1.000000 Y1=2.000000 X2=0
X1=2.000000 Y1=3.000000 X2=0
X1=3.000000 Y1=4.000000 X2=0
X1=4.000000 Y1=5.000000 X2=0

-9

Here we note:

.000000 Y
.000000 Y
.000000 Y
.000000 Y
.000000 Y

2=
2

2=
2=
2=

0.000000
0.000000
0.
0
0

000000

.000000
.000000

e A multi-line command starts with a { and ends with a }.

CHAPTER 7. CINT THE C++ INTERPRETER

o Every line has to be correctly terminated with a ; (like in “real” C++).

o All objects are created in globalscope.

e There is no way to back up; you are better off writing a script.

e Use .q to exit root.

7.3 The ROOT Script Processor

ROOT script files contain pure C++ code. They can contain a simple sequence of statements like in the multi command
line example given above, but also arbitrarily complex class and function definitions.

7.3.1

Un-named Scripts

Let us start with a script containing a simple list of statements (like the multi-command line example given in the
previous section). This type of script must start with a { and end with a } and is called an un-named script. Assume
the file is called script1.C

{

#include <iostream.h>
cout << " Hello" << endl;

float x = 3.;
float y = 5.;
int i = 101;
cout <<" x = "<<x<<K" y = "<<y<<" i = "<<i<< endl;

To execute the stream of statements in script1.C do:

root[]

.x scriptl.C

This loads the contents of file scriptl.C and executes all statements in the interpreter’s global scope. One can
re-execute the statements by re-issuing “.x scriptl.C” (since there is no function entry point). Scripts are searched
for in the Root.MacroPath as defined in your .rootrc file. To check which script is being executed use:

root[]

.which scriptl.C

/home/rdm/root/./scriptl.C

7.3.2

Named Scripts

Let us change the un-named script to a named script. Copy the file scriptl.C to script2.C and add a function
statement:

7.3. THE ROOT SCRIPT PROCESSOR 149

#include <iostream.h>

int run()
{
cout << " Hello" << endl;
float x = 3.;
float y = 5.;
int i= 101;
cout <<" x = "< x <" y = "<y K" i ="<< i << endl;
return O;

Notice that no surrounding {} are required in this case. To execute function run() in script2.C do:

root[] .L script2.C // load script in memory
root[] run() // execute entry point Tun
Hello

x=3y=51i-=101

(int)0

root[] run() // ezecute run() again
Hello

x=3y=51=101

(int)O

root[] .func // list all functions known by CINT
filename line:size busy function type and name
script2.C 4:9 0 public: int run();

The last command shows that run() has been loaded from file script2.C, that the function run() starts on line 4 and
is 9 lines long. Notice that once a function has been loaded it becomes part of the system just like a compiled function.
Now we copy the file script2.C to the script3.C and change the function name from run() to script3(int j =
10):

#include <iostream.h>
int script3(int j = 10) {
cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i=j;

cout <<" x = "< x <<", y = "< y <<", i = "<< i << endl;
return O;

To execute script3() in script3.C type:

root[] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3(8). Note that the above only works when
the filename (minus extension) and function entry point are both the same.

The function script3() can still be executed multiple times:

root[] script3()

Hello
x=3,y=25,1=10
(int)O

root[] script3(33)
Hello

x=3,y=25,1=33
(int)O

150 CHAPTER 7. CINT THE C++ INTERPRETER

In a named script, the objects created on the stack are deleted when the function exits. For example, this scenario is
very common. You create a histogram in a named script on the stack. You draw the histogram, but when the function
exits the canvas is empty and the histogram disappeared. To avoid histogram from disappearing you can create it on
the heap (by using new). This will leave the histogram object intact, but the pointer in the named script scope will be
deleted. Since histograms (and trees) are added to the list of objects in the current directory, you can always retrieve
them to delete them if needed.

root[] TH1F *h
root[] THiF *h

(TH1F*)gDirectory->Get ("myHist"); // or
(TH1F*)gDirectory->GetList () ->FindObject ("myHist");

In addition, histograms and trees are automatically deleted when the current directory is closed. This will automatically
take care of the clean up. See “Input/Output”.

7.3.3 Executing a Script from a Script

You may want to execute a script conditionally inside another script. To do it you need to call the interpreter and
you can do that with TROOT: :ProcessLine(). The example $RO0TSYS/tutorials/tree/cernstaff.C calls a script
to build the root file if it does not exist:

void cernstaff() {
if (gSystem->AccessPathName("cernstaff.root")) {
gROOT->ProcessLine(".x cernbuild.C");
}

ProcessLine takes a parameter, which is a pointer to an int or to a TInterpreter: :EErrorCode to let you ac-
cess the CINT error code after an attempt to interpret. This will contain the CINT error as defined in enum
TInterpreter: :EErrorCode.

7.4 Resetting the Interpreter Environment

Variables created on the command line and in un-named scripts are in the interpreter’s global scope, which makes the
variables created in un-named scripts available on the command line event after the script is done executing. This is
the opposite of a named script where the stack variables are deleted when the function in which they are defined has
finished execution.

When running an un-named script over again and this is frequently the case since un-named scripts are used to
prototype, one should reset the global environment to clear the variables. This is done by calling gRO0OT->Reset ().
It is good practice, and you will see this in the examples, to begin an un-named script with gRO0T->Reset(). It
clears the global scope to the state just before executing the previous script (not including any logon scripts). The
gRO0OT->Reset () calls the destructor of the objects if the object was created on the stack. If the object was created on
the heap (via new) it is not deleted, but the variable is no longer associated with it. Creating variables on the heap in
un-named scripts and calling gRO0OT->Reset () without you calling the destructor explicitly will cause a memory leak.
This may be surprising, but it follows the scope rules. For example, creating an object on the heap in a function (in a
named script) without explicitly deleting it will also cause a memory leak. Since when exiting the function only the
stack variables are deleted. The code below shows gRO0OT->Reset () calling the destructor for the stack variable, but
not for the heap variable. In the end, neither variable is available, but the memory for the heap variable is not released.
Here is an example:

root[] gDebug = 1

(const int)1

root[] TFile stackVar("stack.root","RECREATE")

TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root[] TFile *heapVar = new TFile('"heap.root","RECREATE")
TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two variables, one on the stack and one
on the heap.

7.5. A SCRIPT CONTAINING A CLASS DEFINITION 151

root[] gROOT->Reset()

TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root

TDirectory dtor called for stack.root

When we call gRO0OT->Reset (), CINT tells us that the destructor is called for the stack variable, but it does not
mention the heap variable.

root[] stackVar

Error: No symbol stackVar in current scope
FILE:/var/tmp/faaa0ljWe_cint LINE:1

xx Interpreter error recovered *

root[] heapVar

Error: No symbol heapVar in current scope
FILE:/var/tmp/gaaa0ljWe_cint LINE:1

x*x Interpreter error recovered *

Neither variable is available in after the call to reset.

root[] gROOT->FindObject("stack.root")
(class TObject*)0x0

root[] gROOT->FindObject("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a FindObject. However, the heap object is
still around and taking up memory.

Note gROOT->Reset () should be never called in a named script or a compiled program.
7.5 A Script Containing a Class Definition

Lets create a small class TMyClass and a derived class TChild. The virtual method TMyClass: :Print ()is overridden
in TChild. Save this in file called script4.C.

#include <iostream.h>

class TMyClass {

private:
float fX; //x position in centimeters
float £fY; //y position in centimeters
public:

TMyClass() { £fX = fY = -1; }
virtual void Print() const;
void SetX(float x) { fX = x; }
void SetY(float y) { fY = y; 2}

s
void TMyClass::Print() const // parent print method
{

cout << "fX = " << fX << ", fY = " << fY << endl;
}
class TChild : public TMyClass {

public:

void Print() const;

s
void TChild::Print() const // child print metod
{

cout << "This is TChild::Print()" << endl;
TMyClass: :Print () ;

152 CHAPTER 7. CINT THE C++ INTERPRETER
To execute script4.C do:

root[] .L script4.C
root[] TMyClass *a = new TChild
root[] a->Print()

This is TChild: :Print()
fX = -1, fY = -1

root[] a->SetX(10)
root[] a->SetY(12)
root[] a->Print()

This is TChild: :Print()
fX = 10, fY = 12

root[] .class TMyClass

class TMyClass

size=0x8 FILE:script4.C LINE:3

List of base class———--—--—————————————————————————————
List of member variable-----—----"---------------——
Defined in TMyClass

0x0 private: float fX

0x4 private: float fY

List of member function------———---------————————————
Defined in TMyClass

filename line:size busy function type and name

script4.C 16:5 0 public: class TMyClass TMyClass(void);
script4.C 22:4 0 public: void Print(void);

script4.C 12:1 0 public: void SetX(float x);

script4.C 13:1 0 public: void SetY(float y);

root[] .q

As you can see, an interpreted class behaves just like a compiled class.

There are some limitations for a class created in a script:

e They cannot inherit from TObject. Currently the interpreter cannot patch the virtual table of compiled objects
to reference interpreted objects.

o Because the I/O is encapsulated in TObject and a class defined in a script cannot inherit from TObject, it cannot
be written to a ROOT file.

See “Adding a Class” for ways how to add a class with a shared library and with ACLiC.

7.6 Debugging Scripts

A powerful feature of CINT is the ability to debug interpreted functions by means of setting breakpoints and being
able to single step through the code and print variable values on the way. Assume we have script4.C still loaded, we
can then do:

root[] .b TChild::Print
Break point set to line 26 script4.C
root[] a.Print()

26 ~ TChild::Print() const

27 A

28 cout << "This is TChild::Print()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s

This is TChild: :Print()

7.7. INSPECTING OBJECTS 153

29 MyClass: :Print () ;
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print() const

7 A

18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p fX
(float)1.000000000000e+01

FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s

}
fX = 10, fY = 12

19 %
30 }
2 }
root[] .q

7.7 Inspecting Objects

An object of a class inheriting from TObject can be inspected, with the Inspect () method. The TObject: : Inspect
method creates a window listing the current values of the objects members. For example, the next picture is of TFile.

root[] TFile f("staff.root")
root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object. If you clicked on fList, the
list of objects in memory and there were none, no new canvas would be shown. On top of the page are the navigation
buttons to see the previous and next screen.

7.8 ROOT/CINT Extensions to C++

In the next example, we demonstrate three of the most important extensions ROOT/CINT makes to C++. Start
ROOT in the directory $RO0TSYS/tutorials (make sure to have first run ".x hsimple.C"):

root[] f = new TFile("hsimple.root")
(class TFilex)0x4045e690
root[] £.1sQ)

TFilexx* hsimple.root

TFilex hsimple.root

KEY: THI1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py ps px

KEY: THProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;l Demo ntuple

root[] hpx.Draw()

NULL

Warning in <MakeDefCanvas>: creating a default canvas with name cl
root[] .q

The first command shows the first extension; the declaration of £ may be omitted when “new” is used. CINT will
correctly create £ as pointer to object of class TFile.

The second extension is shown in the second command. Although f is a pointer to TFile we don’t have to use the

w”

pointer de-referencing syntax “->" but can use the simple “” notation.

154

@HDDT Object Inspector

Eile Edit Miew Options

Inspect Classes

CHAPTER 7. CINT THE C++ INTERPRETER

M=l E3
Help

backward |

forvard |

TFile staff.root:0

Member Mame Yalue Title
i 10 File descriptor
fBEGIN 64 First used byte in file
fEND 38474 Last used byte in file
f¥ersion 22600 File formal version
fCompress 1 (=1 file is compressed, O otherwise)
fOption*fData READ
fUnits 4 Number of bytes for file pointers
fSeekFree 38420 Location on'disk of free segments structure
fNbytesFree 54 Number of bytes for free segments structure
fWritten 0 Number of objects wrilten so far
fSumBufter 0 Sum of buffer sizes of objects written so fav
fSum2Bufier 0 Sum of squares of buffer sizes of objects written so far
fFree -=0 Free segments Linked list table
fBytesWrite g Number of bytes written to this file
fBytesRead 352 Number of bytes read from this file
fModified 1 true if divectory has been modified
fWritable . 0 true if directory is writable
fCatimeC.1Datime 20001012/173203
fCatimeM.1Datime 20001012/173204
fNbytesKeys 118 Number of bytes for the keys
fNbytesName 56 Number of bytes in TNamed at creation time
{SeekDir 64 Location of divectory on file
fSeekParent 0 Location of pavent divectory on file
fSeekKeys 38304 Location of Keys record ox file
“fFile ==10711b80 | moinrer to current file in memory
“fMother -=0 pointer to mother L}f the directory
“fList ->10613818 | Pointer to objects list in memory
fKeys ->10711e08 | Pojnter to keys list in memory
fName."fCata staff.roo!
fTitle." fCata
fUniquell 0 object unigue ident ifier
iBits 50331649

bit field status won

Figure 7.1: ROOT object inspector of TFile

7.9. ACLIC - THE AUTOMATIC COMPILER OF LIBRARIES FOR CINT 155

@HDDT Object Inspector
File Edit Miew Options Inspect Classes Help
backward forward =
THashLisl q Doubly linked list with hashtable for lookup
Member Hame Valne Title
"fTable —->10711e30 Hashtabie used for guick fookup of abjects
*fFirst -=106a7dd0 pointer to first entvy in linked lis?
*fLast -=106a7ddo pointer to last entry in linked lis?
"fCache —=0 cache to speedup sequential calling of Before!) and After) functions
fAscending ! sorting order (when colling Sordf) or for TSortedlis?)
1Sorted a trie if collection has been sorted
fHlame. *Data
1Size 1 number of elements in coflection .
UniguelD o object unigue identifier
TIE!itS 50331698 bit fleld status word | _Ij
p »

Figure 7.2: The object inspector of fKeys, the list of keys in the memory

The third extension is more important. In case CINT cannot find an object being referenced, it will ask ROOT to
search for an object with an identical name in the search path defined by TROOT: :FindObject (). If ROOT finds the
object, it returns CINT a pointer to this object and a pointer to its class definition and CINT will execute the requested
member function. This shortcut is quite natural for an interactive system and saves much typing. In this example,
ROOT searches for hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a line. The difference between having it
and leaving it off is that when you leave it off the return value of the command will be printed on the next line. For
example:

root[] 23+5
(int)28
root[] 23+5;
root[]

Be aware that these extensions do not work when a compiler replaces the interpreter. Your code will not compile,
hence when writing large scripts, it is best to stay away from these shortcuts. It will save you from having problems
compiling your scripts using a real C++ compiler.

7.9 ACLiC - The Automatic Compiler of Libraries for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled, linked and dynamically
loaded using the C++ compiler and linker. The advantage of this is that your scripts will run with the speed of
compiled C++ and that you can use language constructs that are not fully supported by CINT. On the other hand,
you cannot use any CINT shortcuts (see ROOT/CINT Extensions to C++) and for small scripts, the overhead of the
compile/link cycle might be larger than just executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++ script, using the compiler and the compiler
options that were used to compile the ROOT executable. You do not have to write a makefile remembering the
correct compiler options, and you do not have to exit ROOT.

156 CHAPTER 7. CINT THE C++ INTERPRETER

7.9.1 Usage

Before you can compile your interpreted script you need to add include statements for the classes used in the script.
Once you did that, you can build and load a shared library containing your script. To load it use the command .L and
append the file name with a “+7”.

root[] .L MyScript.C+
root[] .files

xfile="/home/./MyScript_C.so"

The + option generates the shared library and names it by taking the name of the file “filename” but replacing the
dot before the extension by an underscore and by adding the shared library extension for the current platform. For
example on most platforms, hsimple.cxx will generate hsimple_cxx.so. If we execute a .files command we can see
the newly created shared library is in the list of loaded files.

The 4+ command rebuild the library only if the script or any of the files it includes are newer than the library. When
checking the timestamp, ACLiC generates a dependency file which name is the same as the library name, just replacing
the ‘so’ extension by the extension ‘d’. For example on most platforms, hsimple.cxx will generate hsimple_cxx.d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the .x command. This is the same
as executing a named script. You can have parameters and use .xor .X. The only difference is you need to append a +

or a ++.

root[] .x MyScript.C+ (4000)
Creating shared library /home/./MyScript_C.so

You can select whether the script in compiled with debug symbol or with optimization by appending the letter ‘g’ or
‘O’ after the ‘4’ or ‘44" Without the specification, the script is compiled with the same level of debugging symbol and
optimization as the currently running ROOT executable. For example:

root[] .L MyScript.C+tg

will compile MyScript.C with debug symbols; usually this means giving the -g option to compiler.

root[] .L MyScript.C++0

will compile MyScript.C with optimizations; usually this means giving the -0 option to compiler. The syntax:

root[] .L MyScript.C++

is using the default optimization level. The initial default is to compile with the same level of optimization as the root
executable itself. The default can be changed by:

root[] gSystem->SetAclicMode(TSystem: :kDebug) ;
root[] gSystem->SetAclicMode(TSystem: :kOpt) ;

Note that the commands:

root[] .L MyScript.C+g
root[] .L MyScript.C+0

respectively compile MyScript.C with debug and optimization if the library does not exist yet; they will not change
the debug and the optimization level if the library already exist and it is up to date. To use ACLiC from compiled
code or from inside another macro, we recommend using the ProcessLine () method of TROOT. For example, in one
script you can use ACLiC to compile and load another script.

gROOT->ProcessLine(".L MyScript.C+")
gROOT->ProcessLine(".L MyScript.C++")

7.9. ACLIC - THE AUTOMATIC COMPILER OF LIBRARIES FOR CINT 157

7.9.2 Setting the Include Path

You can get the include path by typing:

root[] .include

You can append to the include path by typing:

root[] .include $HOME/mypackage/include

In a script you can append to the include path:
gSystem->AddIncludePath(" -I$HOME/mypackage/include ")
You can also overwrite the existing include path:
gSystem->SetIncludePath(" -I$HOME/mypackage/include ")

The $RO0TSYS/include directory is automatically appended to the include path, so you do not have to worry about
including it. To add library that should be used during linking of the shared library use something like:

gSystem->AddLinkedLibs("-L/my/path -lanylib");

This is especially useful for static libraries. For shared ones you can also simply load them before trying to compile the
script:

gSystem->Load ("mydir/mylib") ;

ACLiC uses the directive fMakeSharedLibs to create the shared library. If loading the shared library fails, it tries to
output a list of missing symbols by creating an executable (on some platforms like OSF, this does not HAVE to be an
executable) containing the script. It uses the directive fMakeExe to do so. For both directives, before passing them
to TSystem: :Exec(), it expands the variables $SourceFiles, $SharedLib, $LibName, $IncludePath, $LinkedLibs,
$ExeNameand$0bjectFiles. See SetMakeSharedLib() for more information on those variables. When the file being
passed to ACLiC is on a read only file system, ACLiC warns the user and creates the library in a temporary directory:

root[] .L readonly/t.C++

Warning in <ACLiC>: /scratch/aclic/subs/./readonly is not writable!
Warning in <ACLiC>: Output will be written to /tmp

Info in <TUnixSystem::ACLiC>: creating shared library
/tmp//scratch/aclic/subs/. /readonly/t_C.so

To select the temporary directory ACLiC looks at $TEMP, $TEMP_DIR, $TEMPDIR, $TMP, $TMPDIR, $TMP_DIRor uses
/tmp (or C:/). Also, a new interface TSystem: :Get/SetBuildDir is introduced to let users select an alterna-
tive ‘root’ for building of the ACLiC libraries. For filename/full/path/name/macro.C, the library is created as
fBuildDir/full/path/name/macro_C.so.

7.9.3 Dictionary Generation

You can direct what is added to the dictionary generated by ACLiC in two ways. The simplest way is to add at the
end of script (i.e. after the symbols have been defined) something like:

#if defined(__MAKECINT__)
#pragma link C++ class MyOtherClass;
#endif

You can also write this portion of code in a file name MyScript_linkdef .h where the suffix > _linkdef ’is the prefix de-
fined by the key ‘ACLiC.Linkdef' in the currently used resource file (usually .rootrcor$RO0TSYS/etc/system.rootrc)
and the prefix is the name of your script.

In ROOT 3.05/03 and above, the default behavior of rootcint is to not link in (i.e. generate the dictionary for) any of
the symbols. In particular, this means that the following lines are now, in the general case, unnecessary.

158 CHAPTER 7. CINT THE C++ INTERPRETER

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

This also means that linking the instantiation of a class template:
#pragma link C++ class mytemplate<int>;

ONLY links this specific class. In previous versions of ROOT, depending on many factors, this might also have included
the linking of many other instantiation of class template used directly or indirectly by ’mytemplate’.

A typical case would have been to rely on:
#pragma link C++ class vector<MyClass>;

to also induce the generation of the iterators. You now need to request them explicitly. Another advantage of the
change is that now, if you omit the ‘pragma link off’ line from your linkdef file, you can actually sprinkle the ‘pragma
link C++ class’ across as many of you header as file as you need.

See the documentation of rootcint for details how pragma can be used.

NOTE: You should not call ACLiC with a script that has a function called main(). When ACLiC calls rootcint
with a function called main it tries to add every symbol it finds while parsing the script and the header files to the
dictionary. This includes the system header files and the ROOT header files. It will result in duplicate entries at best
and crashes at worst, because some classes in ROOT need special attention before they can be added to the dictionary.

7.9.4 Intermediate Steps and Files

ACLIC executes two steps and a third one if needed. These are:

e Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific version of makecint, CINT generic
dictionary generator.

e Calling the compiler to build the shared library from the script

e If there are errors, it calls the compiler to build a dummy executable to report clearly unresolved symbols.

ACLiC makes a shared library with a CINT dictionary containing the classes and functions declared in the script. It
also adds the classes and functions declared in included files with the same name as the script file and any of the
following extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This means that, by default, you cannot combine scripts from
different files into one library by using #include statements; you will need to compile each script separately. In a
future release, we plan to add the global variables declared in the script to the dictionary also. If you are curious about
the specific calls, you can raise the ROOT debug level: gDebug=3 and ACLiC will print these steps. If you need to
keep the intermediate files around, for example when debugging the script using gdb, use gDebug="7.

7.9.5 Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them with both, the interpreter and with
ACLIiC. To do so, do not use the CINT extensions and program around the CINT limitations. When it is not possible
or desirable to program around the CINT limitations, you can use the C preprocessor symbols defined for CINT and
rootcint.

The preprocessor symbol __CINT__ is defined for both CINT and rootcint. The symbol __MAKECINT__ is only defined
in rootcint.

Use !defined(__CINT__) || defined(__MAKECINT__) to bracket code that needs to be seen by the compiler and
rootcint, but will be invisible to the interpreter.

Use !'defined (__CINT__)to bracket code that should be seen only by the compiler and not by CINT or rootcint.For
example, the following will hide the declaration and initialization of the array gArray from both CINT and rootcint.

#if !'defined(__CINT_)
int gArrayl[] = { 2, 3, 4};
#endif

7.10. REFLEX 159

Because ACLIC calls rootcint to build a dictionary, the declaration of gArray will not be included in the dictionary,
and consequently, gArray will not be available at the command line even if ACLiC is used. CINT and rootcint will
ignore all statements between the "#if !defined (__CINT__)" and “#endif". If you want to use gArray in the same
script as its declaration, you can do so. However, if you want use the script in the interpreter you have to bracket the
usage of gArray between #if’s, since the definition is not visible. If you add the following preprocessor statements:

#if !defined(__CINT__)

int gArrayl[]l = { 2, 3, 4};
#elif defined(__MAKECINT_)
int gArray(];

#endif

gArray will be visible to rootcint but still not visible to CINT. If you use ACLiC, gArray will be available at the
command line and be initialized properly by the compiled code.

We recommend you always write scripts with the needed include statements. In most cases, the script will still run
with the interpreter. However, a few header files are not handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

o The subset of standard C/C++ headers defined in $RO0TSYS/cint/include.

o Headers of classes defined in a previously loaded library (including ROOT own). The defined class must have a
name known to ROOT (i.e. a class with a ClassDef).

A few headers will cause problems when they are included in interpreter mode, because the interpreter itself already
includes them. In general, the interpreter needs to know whether to use the interpreted or compiled version. The mode
of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for rootcint. Bracket these with:
ldefined(__CINT__) || defined(__MAKECINT__)

e All CINT headers, see $RO0TSYS/cint/inc
o Headers with classes named other than the file name. For example Rtypes.h and GuiTypes.h.

e Headers with a class defined in libraries before the library is loaded. For example: having #include
"TLorentzVector.hbefore gSystem->Load ("1ibPhysics"). This will also cause problems when compiling the
script, but a clear error message will be given. With the interpreter, it may core dump. Bracket these type of
include statements with#if !defined (__CINT__),this will print an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional for the interpreter can lead to a
subtle but fatal error. For example:

#ifndef __CINT__
#include "TTree.h"
#else

class TTree;
#endif

class subTree : public TTree {

};

In this case, rootcint does not have enough information about the TTree class to produce the correct dictionary file.
If you try this, rootcint and compiling will be error free, however, instantiating a subTree object from the CINT
command line will cause a fatal error. In general, it is recommended to let rootcint see as many header files as
possible.

7.10 Reflex

Reflection is the ability of a programming language to introspect its data structures and interact with them at runtime
without prior knowledge. Reflex provides reflection capabilities for C+4. With the ROOT v5.08, Reflex is an optional
package. It will become a mandatory package (loaded by default) with the next ROOT versions. In order to build it
you have to ./configure --enable-reflex

160 CHAPTER 7. CINT THE C++ INTERPRETER

7.10.1 Overview

Inside ROOT Reflex is thought to replace the current reflection system, which is inherent to CINT. This is an ongoing
work and not part of this release. Nevertheless, Reflex dictionaries can be used inside ROOT while populating the
current CINT data structures via a special gateway called Cintex (see “Cintex”).

In order to use reflection a dictionary of the data structures involved has to be generated. Before generating the
dictionaries, the source code has to be parsed and the information extracted. In the ROOT environment, there are two
ways to generate dictionaries for the Reflex library.

e Using CINT as a source code parser - the command to issue when using CINT for parsing C++ constructs is:

rootcint -reflex -f module/src/G__Module.cxx -c module/inc/TModl.h
module/inc/TMod2.h module/inc/Linkdef.h

o Using the gcc compiler as a source code parser: With this option a special program called “gccxml” has to be
installed. This program is an extension to gcc and produces xml code out of parsed C++ definitions which will
be further used to generate the proper dictionary source code via a python script. For parsing C++ constructs
using the gcc compiler the command will be:

rootcint -gccxml -f module/src/G__Module.cxx -c module/inc/TModl.h
module/inc/TMod2.h module/inc/Linkdef.h

Note: an installation of Python and gccxml is required for using this option.

7.10.2 Selecting Types And Members

You can use selection files to tell genreflex what it should generate a dictionary for. If you do not use it, it will generate
a dictionary for all types in the files passed at the command line, or when specifying --deep for all types it finds.

The selection file is passed to genreflex with the —-s parameters like this:
genreflex -s selection.xml headerl.h header2.h.
It is an XML file with the following structure:

<lcgdict>

[<selection>]

<class [name="classname"] [pattern="wildname"]
[file_name="filename"] [file_pattern="wildname"]
[id="xxxx"] [type="vector"]l/>

<class name="classname" >

<field name="m_transient" transient="true'"/>

<field name="m_anothertransient" transient="true"/>
<properties propl="valuel" [prop2="value2"]/>
</class>

<function [name="funcname"] [pattern="wildname"]
[proto_name="name(int)"] [proto_pattern="name(int,*)"] />
<enum [name="enumname"] [patter="wildname"] />
<variable [name="varname"] [patter="wildname"] />
[</selection>]

<exclusion>

<class [name='"classname"] [pattern="wildname"] />
<method name="unwanted" />

</class>

</lcgdict>

7.10. REFLEX 161

7.10.3 Genreflex and Templates

The program parsing the header files and providing genreflex with the information what’s in them is called GCCXML.
It only sees templates if they are instantiated. See the C++ standard on when template instantiation happens. The
rule of thumb is: if you design a templated class then it probably does not happen in that templated class’s header.

So you need to help GCCXML. There are two common approaches: the struct member, and the “proper” C++ way.

7.10.3.1 Explicit Template Instantiation

This is the preferred method, but it is not widely used. Suppose you have a templated template class C and a templated
function template T A::f(const T&) const;. You can instantiate them (say with template parameter long long)
using:

#ifdef __ GCCXML__

// GCCXML explicit template instantiation block
template class C<long long>;

template long long A::f(const long long);
#endif

You can even put this into your regular header file: it is surrounded by an #ifdef __GCCXML__ and will thus be
invisible to any other compiler.

7.10.3.2 Template Instantiation by struct Members

Suppose you have a templated template class C and a templated function template T f(const T&) const; defined in file
C.h. For the templated class you can use:

#include "C.h"
#ifdef __GCCXML__
// GCCXML explicit template instantiation block
namespace {

struct GCCXML_DUMMY_INSTANTIATION {

C<long long> dummyMember;

s
by
#endif

Often people put these instantiations into a separate header which in turn #includes the actual header, such that the
C++ sources do not see the GCCXML_DUMMY INSTANTIATION.

7.10.4 GCCXML Installation

Gceexml is a front-end to the gee compiler suite, which generates xml code out of parsed C++ definitions. Gecexml
needs to be installed in order to use this option. Now we are using a patched version of gccxml release 0.6.0 called
(0.6.0__patch3). This installation can be downloaded from http://spi.cern.ch/lcgsoft/.

Once the dictionary sources have been generated, they can be compiled into a library and loaded via the Reflex builder
system. The dictionary information can be used via the Reflex API. For this purpose, Reflex provides eight classes,
which exploit the whole functionality of the system.

7.10.5 Reflex API

Reflex offers a simple yet powerful API to access Reflex reflection database. The following classes are defined in the
namespace ROOT: :Reflex and documented at http://root.cern.ch/root/html/REFLEX Index.html.

An object is an abstraction of a user object. It contains the information about its type and it is location in memory.

Type is an abstraction of a C++ type. Types in Reflex are:

e Array

http://spi.cern.ch/lcgsoft/
http://root.cern.ch/root/html/REFLEX_Index.html

162 CHAPTER 7. CINT THE C++ INTERPRETER

o Class/struct

o Templated class/struct
e Enum

¢ Function

¢ Fundamental

e Pointer

e Pointer to member

o Typedef

e Union

A scope is an abstraction of a C++ type. It holds information such as its declaring scope, it is underlying scope and
it is data/function members. Scopes are:

o Namespace

o Class/Struct

o Templated class/struct
e Union

e Enum

A member lives inside a scope and is of a given Type. Members can be distinguished as:

¢ DataMember
¢ FunctionMember
e Templated member

Base holds the information about the inheritance structure of classes. It contains information such as the offset to the
base class and the type of the base class.

Properties are key/value pairs where the key is a string and the value an Any object (Boost::Any). Any objects can
hold any type of information be it a string, int or any arbitrary object. Properties can be attached to Types, Scopes
and Members and hold any kind of information that is not specific to C+4. Examples for Properties would be the
class author, a description of a member or the class id.

A MemberTemplate is an abstraction of a templated member. It holds the information about its template parameters
and a list of its instantiations.

A TypeTemplate is an abstraction of a templated type (e.g. class). It holds the same information as the MemberTem-
plate (e.g. template parameters, list of instantiations)

The Reflex package lives in the namespace ROOT: :Reflex. Below some examples of usage of the package are given.
For further information please see the documentation of the different API classes.

The next examples will refer to the example class MyClass:

class MyClass {

public:
MyClass() : fMem1(47), fMem2("foo") { }
int GetMeml1() { return fMeml; }
int GetMeml(int i) { return fMemlx*i; }
void SetMemi(int i) { fMeml = i; }
std: :string GetMem2() { return fMem2; }
void SetMem2(const std::string & str) { fMem2 = str; }

private:
int fMemil;
std::string fMem2;
s

The first thing after loading a dictionary (which is done at the moment at the same time as the implemenation library),
will be to look up a certain Type or Scope.

Type tl1 = Type: :ByName("MyClass");

7.10. REFLEX 163

Every API class provides the operator bool, which will return true if the information retrieved for this instance is
valid and further actions on this instance can be taken.

if (£1) {
if (t1.IsClass()) std::cout << "Class ";
std::cout << t1.Name();

As a class is also a scope (as enum and union) we can now also iterate over its members. This can be done either with
stl like iterators or with an iteration by number:

For (Member_Iterator mi = tl1.DataMember_Begin();
mi !'= DataMember End(); ++mi) {
std::cout << (*mi).Name(SCOPED) << " "
<< (*mi) .TypeOf () .Name (QUALIFIED) ;

Member m;
for (size_t i = 0; i < tl1.FunctionMemberSize(); ++i) {
m = tl1.FunctionMemberAt(i);
std::cout << m.Name() << " " << m.TypeOf() .Name() ;
for (Type_Iterator ti = m.FunctionParaeter_Begin(); ti !=
m.FunctionParameter_End(); ++ti) {
std::cout << (*ti).Name() << std::endl;

3

It is not only possible to introspect information through Reflex but also take actions. E.g. instantiate classes/structs,
invoke functions, set data members, etc. The instantiation of a type which represents a class struct can be done with:

Object ol = tl.Construct();

which will call the default constructor for this type and allocate the memory for this type inside the Object. The
Object will also contain the type information constructed.

Now the object of a certain type has been constructed one may interact with it. E.g. getting the value of a data
member can be done via which will return an Object of the data member in question.

Object mem_obj = ol.Get("fMeml");
int real_value 0;
if (mem_obj.TypeOf () .Name() == "int)
int real_value = Object_Cast<int>(mem_obj);

It is also possible to invoke function members via the Object class. A function member can be looked up by name,
if the member is overloaded an additional parameter which is the string representation of the type can be passed.
Currently parameters for the function to invoke shall be passed as a vector of memory addresses of the parameters.
This may change in the future to pass a vector of Objects.

int parl = 2;

std::vector<voidx*> parVec;

parVec.push_back(&parl);

int ret_val = Object_Cast<int>(
ol.Invoke("GetMeml","int (int)",parVec));

Calling the destructor of an Object can be done via, this will call both the destructor and of the object type and
deallocate the memory.

ol.Destruct();

164 CHAPTER 7. CINT THE C++ INTERPRETER

7.10.6 Cintex

Cintex is an optional package inside ROOT. In order to build it you have to
./configure --enable-cintex at the ROOT configuration step.

The purpose of the Cintex package is to bridge uni-directional information from the Reflex to the CINT dictionary
system. This package will be needed as long as the unification of the Reflex and CINT dictionaries has not been
completed. This unification is work ongoing. In order to use Cintex functionality it will be needed to load the Cintex
library (e.g. libCintex.so on linux systems) and enable the Cintex gateway with

Cintex: :Enable();

After these two steps have been taken, any Reflex dictionary information should be propagated to the CINT dictionaries
and subsequently usable inside the CINT environment (e.g. from the root prompt). If wanted debugging information
while loading Reflex dictionaries can be turned on with (any number greater than 0 can be used as argument but will
not make any difference in the amount of debugging output for the time being).

Cintex: :SetDebug(1);

Chapter 8

Object Ownership

An object has ownership of another object if it has permission to delete it. Usually a collection or a parent object
such as a pad holds ownership. To prevent memory leaks and multiple attempts to delete an object, you need to know
which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.
o Histograms, trees, and event lists created by the user are owned by current directory (gDirectory). When the
current directory is closed or deleted the objects it owns are deleted.

o The TROOT master object (gROOT) has several collections of objects. Objects that are members of these collections
are owned by gROOT see “Ownership by the Master TROOT Object (gROOT).

o Objects created by another object, for example the function object (e.g.TF1) created by the TH1: :Fitmethod is
owned by the histogram.

e An object created by DrawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule and user ownership
in more detail.

8.1 Ownership by Current Directory (gDirectory)

When a histogram, tree, or event list (TEventList) is created, it is added to the list of objects in the current directory
by default. You can get the list of objects in a directory and retrieve a pointer to a specific object with the GetList
method. This example retrieves a histogram.

THIF *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. It looks in memory, and is
implemented in all ROOT collections. You can change the directory of a histogram, tree, or event list with the
SetDirectory method. Here we use a histogram for an example, but the same applies to trees and event lists.

h->SetDirectory(newDir) ;

You can also remove a histogram from a directory by using SetDirectory(0). Once a histogram is removed from the
directory, it will not be deleted when the directory is closed. It is now your responsibility to delete this histogram once
you have finished with it. To change the default that automatically adds the histogram to the current directory, you
can call the static function:

TH1::AddDirectory (kFALSE) ;

Not all histograms created here after will be added to the current directory. In this case, you own all histogram objects
and you will need to delete them and clean up the references. You can still set the directory of a histogram by calling
SetDirectory once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

165

166 CHAPTER 8. OBJECT OWNERSHIP

8.2 Ownership by the Master TROOT Object (gROOT)

The master object gROOT, maintains several collections of objects. For example, a canvas is added to the collection of
canvases and it is owned by the canvas collection.

TSeqCollection* fFiles List of TFile

TSeqCollection* fMappedFiles List of TMappedFile
TSeqCollection* fSockets List of TSocket and TServerSocket
TSeqCollection* fCanvases List of TCanvas

TSeqCollection* fStyles List of TStyle

TSeqCollection* fFunctions List of TF1, TF2, TF3
TSeqCollection* fTasks List of TTask

TSeqCollection* fColors List of TColor

TSeqCollection* fGeometries List of geometries
TSeqCollection* fBrowsers List of TBrowser

TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove collections

These collections are also displayed in the root folder of the Object Browser. Most of these collections are self
explanatory. The special cases are the collections of specials and cleanups.

8.2.1 The Collection of Specials

This collection contains objects of the following classes: TCutG, TMultiDimFit, TPrincipal, TChains. In addition it
contains the gHtml object, gMinuit objects, and the array of contours graphs (TGraph) created when calling the Draw
method of a histogram with the "CONT, LIST" option.

8.2.2 Access to the Collection Contents

The current content for a collection listed above can be accessed with the corresponding gRO0T->GetList0f method
(for example gROOT->GetListO0fCanvases). In addition, gROOT->GetListOfBrowsables returns a collection of all
objects visible on the left side panel in the browser. See the image of the Object Browser in the next figure.

% RODT Object Browser _ [O] %]

Eile Miew Qpfions

29 root - | Egl“,?

| &ll Folders | Cantents of “/roat"
| oot [Browsers] Canvases

1 home spanacek] Classes (] Clearups
(IROOT Files [Colors (] Functions
|:| Geometries |:| Handlers

[MapFiles (_JROOT Files
(] Sockets (] Specials
|:| Streamer info |:| Styles

|:| Tasks

15 Obijects. | Coubaly linked list i

Figure 8.1: The ROOT Object Browser

8.3. OWNERSHIP BY OTHER OBJECTS 167

8.3 Ownership by Other Objects

When an object creates another, the creating object is the owner of the created one. For example:
myHisto->Fit ("gaus")

The call to Fit copies the global TF1 Gaussian function and attaches the copy to the histogram. When the histogram is
deleted, the copy is deleted also.

When a pad is deleted or cleared, all objects in the pad with the kCanDelete bit set are deleted automatically. Currently
the objects created by the DrawCopy methods, have the kCanDelete bit set and are therefore owned by the pad.

8.4 Ownership by the User

The user owns all objects not described in one of the above cases. TObject has two bits, kCanDelete and kMustCleanup,
that influence how an object is managed (in TObject::fBits). These are in an enumeration in TObject.h. To set
these bits do:

MyObject->SetBit (kCanDelete)
MyObject->SetBit (kMustCleanup)

The bits can be reset and tested with the TObject: :ResetBit and TObject: :TestBit methods.

8.4.1 The kCanDelete Bit

The gROOT collections (see above) own their members and will delete them regardless of the kCanDelete bit. In all
other collections, when the collection Clear method is called (i.e. TList::Clear()), members with the kCanDelete
bit set, are deleted and removed from the collection. If the kCanDelete bit is not set, the object is only removed from
the collection but not deleted.

If a collection Delete (TList: :Delete()) method is called, all objects in the collection are deleted without considering
the kCanDelete bit. It is important to realize that deleting the collection (i.e. delete MyCollection), DOES NOT
delete the members of the collection.

If the user specified MyCollection->SetOwner () the collection owns the objects and delete MyCollection will delete
all its members. Otherwise, you need to:

// delete all member objects in the collection
MyCollection->Delete() ;

// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and the user can set it for any object. For example,
the user must manage all graphics primitives. If you want TCanvas to delete the primitive you created you have to set
the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::1s(). The last number is either 1 or 0 and is the kCanDelete
bit.

root[] TCanvas MyCanvas("MyCanvas")
root[] MyCanvas.Divide(2,1)
root[] MyCanvas->cd(MyCanvas_1)

root[] hstat.Draw() // hstat is an existing THIF
root[] MyCanvas->cd(MyCanvas_2)
root[] hstat.DrawCopy() // DrawCopy sets the kCanDelete bit

(class TH1%)0x88e73f8
root[] MyCanvas.ls()
Canvas Name=MyCanvas ...
TCanvas ... Name= MyCanvas ...
TPad ... Name= MyCanvas_1 ...

168 CHAPTER 8. OBJECT OWNERSHIP

TFrame

0BJ: THIF hstat Event Histogram : 0
TPaveText ... title

TPaveStats ... stats
TPad ... Name= MyCanvas_2 ...

TFrame

0BJ: THIF hstat Event Histogram : 1
TPaveText ... title

TPaveStats ... stats

8.4.2 The kMustCleanup Bit

When the kMustCleanup bit is set, the object destructor will remove the object and its references from all collections
in the clean up collection (gROOT: :fCleanups). An object can be in several collections, for example if an object is in a
browser and on two canvases. If the kMustCleanup bit is set, it will be removed automatically from the browser and
both canvases when the destructor of the object is called.

The kMustCleanup bit is set:

o When an object is added to a pad (or canvas) in TObject: : AppendPad.

e« When an object is added to a TBrowser with TBrowser: : Add.

e When an object is added to a TFolder withTFolder: :Add.

e When creating an inspector canvas with TInspectCanvas: : Inspector.

e When creating a TCanvas.

e When painting a frame for a pad, the frame’s kMustCleanup is set in TPad: :PaintPadFrame

The user can add his own collection to the collection of clean ups, to take advantage of the automatic garbage collection.
For example:

// create two list
TList #*myListl, *myList2;

// add both to of clean ups
gRO0T->GetList0fCleanUps () ->Add (myList1);
gRO0OT->GetList0fCleanUps () ->Add (myList2) ;

// assuming myObject is in myListl and myList2, when calling:
delete myObject;

// the object is deleted from both lists

Chapter 9

Graphics and the Graphical User
Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various plots, histograms, and 3D
graphical objects. In this chapter, we are going to focus on principals of graphics and 2D objects. Plots and histograms
are discussed in a chapter of their own.

9.1 Drawing Objects

In ROOT, most objects derive from a base class TObject. This class has a virtual method Draw() so all objects are
supposed to be able to be “drawn”. The basic whiteboard on which an object is drawn is called a canvas (defined by
the class TCanvas). If several canvases are defined, there is only one active at a time. One draws an object in the active
canvas by using the statement:

object.Draw()

This instructs the object “object” to draw itself. If no canvas is opened, a default one (named “c1”) is instantiated
and is drawn.

root[] TLine a(0.1,0.1,0.6,0.6)
root[] a.Draw()
<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

The first statement defines a line and the second one draws it. A default canvas is drawn since there was no opened one.

9.2 Interacting with Graphical Objects

When an object is drawn, one can interact with it. For example, the line drawn in the previous paragraph may be
moved or transformed. One very important characteristic of ROOT is that transforming an object on the screen will
also transform it in memory. One actually interacts with the real object, not with a copy of it on the screen. You can
try for instance to look at the starting X coordinate of the line:

root[] a.GetX1()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now move it interactively by clicking with the
left mouse button in the line’s middle and try to do again:

root[] a.GetX1()
(Double_t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of ‘a’ have changed. As said, interacting with an object
on the screen changes the object in memory.

169

170 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.2.1 Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or programmatically. First, let’s see how it is done
in the GUIL

9.2.1.1 The Left Mouse Button

As was just seen moving or resizing an object is done with the left mouse button. The cursor changes its shape to
indicate what may be done:

=

Point the object or one part of it:

=

Rotate: =

E|T

Resize (exists also for the other directions):

I

Enlarge (used for text):

b

Here are some examples of:

Move:

Eile Edit ¥iew Options |nspect
abs{sin{x)/x) ||

Moving: : Resizing:

[HY2 + Y72 - H7F BRIV |

Sy RS s T

P

Rotating:

9.2.1.2 With C++ Statements (Programmatically)

How would one move an object in a script? Since there is a tight correspondence between what is seen on the screen
and the object in memory, changing the object changes it on the screen. For example, try to do:

root[] a.SetX1(0.9)

9.2. INTERACTING WITH GRAPHICAL OBJECTS 171

This should change one of the coordinates of our line, but nothing happens on the screen. Why is that? In short, the
canvas is not updated with each change for performance reasons. See “Updating the Pad”.

9.2.2 Selecting Objects
9.2.2.1 The Middle Mouse Button

Objects in a canvas, as well as in a pad, are stacked on top of each other in the order they were drawn. Some objects
may become “active” objects, which mean they are reordered to be on top of the others. To interactively make an
object “active”, you can use the middle mouse button. In case of canvases or pads, the border becomes highlighted
when it is active.

9.2.2.2 With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the objects are drawn in the active canvas. To
activate a canvas you can use the TPad: :cd() method.

root[] cl->cd()

9.2.3 Context Menus: the Right Mouse Button

The context menus are a way to interactively call certain methods of an object. When designing a class, the programmer
can add methods to the context menu of the object by making minor changes to the header file.

9.2.3.1 Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context menu for it. The script hsimple.C draws
a histogram. The image below shows the context menus for some of the objects on the canvas. Next picture shows
that drawing a simple histogram involves as many as seven objects. When selecting a method from the context menu
and that method has options, the user will be asked for numerical values or strings to fill in the option. For example,
TAxis::SetTitle will prompt you for a string to use for the axis title.

9.2.3.2 Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu corresponds to a method of the class. Look
for example to the menu named TAxis: :xaxis. xaxis is the name of the object and TAxis the name of its class. If we
look at the list of TAxis methods, for example in http://root.cern.ch/root/htmldoc/TAxis.html, we see the methods
SetTimeDisplay () andUnZoom(), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list of the class methods; the
second division is a list of the parent class methods. The subsequent divisions are the methods other parent classes
in case of multiple inheritance. For example, see the TPaveText: :title context menu. A TPaveText inherits from
TAttLine, which has the method SetLineAttributes().

9.2.3.3 Adding Context Menus for a Class

For a method to appear in the context menu of the object it has to be marked by // *MENU* in the header file. Below
is the line from TAttLine.h that adds the SetLineAttribute method to the context menu.

virtual void SetLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It takes advantage of that to create the
context menu on the fly when the object is clicking on. If you click on an axis, ROOT will ask the interpreter what are
the methods of the TAxis and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class that you want to use in the ROOT
environment, you use rootcint that builds the so-called stub functions and the dictionary. These functions and the
dictionary contain the knowledge of the used classes. To do this, rootcint parses all the header files. ROOT has

http://root.cern.ch/root/htmldoc/TAxis.html

172 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
O Dynamic Filling Example BB
Eile Edit Miew Oplions Inspect Classes Help
® o
I_ TPaveText:title [ibution hpx | |
Ment = ynm
Clear Mean = TPave3stats::stats
DeleteText RMS -
EditText SEl'-.-'ESTE,”E
IrsertLine A L TErame SetFormatFit
InserText aetFormatstats
ReadFile SetBordertode SetOptFit
Sata|lWith SetBardersize setOptstat
Setlabel Celete Zlear
Settdargin DrawClass InsertLine
SetBorderSize TH1F::hpx DrawClane aetlabel
SetCornerRadius Dump SetBorderSize
SetMame DrawFanel Inspect SetComerRadius
— F?t setDrawCption SetMame
- FitFanel Setlinesttributas Delete
S ethaximu S etFill Attributes DrawClass
BERIENTRE Sethdinimum
Cump DrawClone
Smooth
Inspect Dump
SetDrawption 5 SetN_ame 2 3 Inspect
TAxis:xaxis setDrawCption
— oetlineattributes s ConterTiile TCanvas::ci : :
—— setFillattributes . : sellinestiributes
: SetRange setCanyassize SefFillatributes
setTextattributes SetTimeDisplay Divida .
: SetTextattributes
SetTimeFormat UseCurrentStyle
Sethame tion Saveds
SetTitle ibutes SetBorderkdode
Delete utes setBordersize
OrawClass L ik Ltes W SetEd.itahIe
DrawClone aetGridx
Inspect Setlogx
SetDrawOption setlogy
aetlogz

Sethdivisions

Figure 9.1: Context menus of different objects in a canvas

9.2. INTERACTING WITH GRAPHICAL OBJECTS 173

defined some special syntax to inform CINT of certain things, this is done in the comments so that the code still
compiles with a C+4 compiler.

For example, you have a class with a Draw() method, which will display itself. You would like a context menu to
appear when on clicks on the image of an object of this class. The recipe is the following:
e The class has to contain the ClassDef/ClassImp macros

e For each method you want to appear in the context menu, put a comment after the declaration containing *MENU*
or *TOGGLE* depending on the behavior you expect. One usually uses Set methods (setters). The *TOGGLE*
comment is used to toggle a boolean data field. In that case, it is safe to call the data field £MyBool where
MyBool is the name of the setter SetMyBool. Replace MyBool with your own boolean variable.

e You can specify arguments and the data members in which to store the arguments.
For example:

class MyClass : public TObject {

private:
int fVi; // first variable
double fv2; // second wvariable
public:

int GetV1i() {return fVi;}

double GetV2() {return fV2;}

void SetVi(int x1) { fV1 = x1;} // *MENU*

void SetV2(double d2) { fV2 = d42;} // *MENU*

void SetBoth(int x1, double d2) {fVl = x1; fV2 = d2;}

ClassDef (MyClass,1)

To specify arguments:
void SetXXX(Int_t x1, Float_t y2); //#MENU* *ARGS={xz1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more than one argument, these arguments are
separated by commas, where fX1 and Y2 are data fields in the same class.

void SetXXX(Int_t x1, Float_t y2); //#MENU* *ARGS={xl=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when selecting SetXXX field will show the values of
variables. We indicate to the system which argument corresponds to which data member of the class.

9.2.4 Executing Events when a Cursor Passes on Top of an Object

This paragraph is for class designers. When a class is designed, it is often desirable to include drawing methods for it.
We will have a more extensive discussion about this, but drawing an object in a canvas or a pad consists in “attaching”
the object to that pad. When one uses object.Draw(), the object is NOT painted at this moment. It is only attached
to the active pad or canvas.

Another method should be provided for the object to be painted, the Paint () method. This is all explained in the next
paragraph. As well as Draw() and Paint (), other methods may be provided by the designer of the class. When the
mouse is moved or a button pressed/released, the TCanvas function named HandleInput () scans the list of objects in
all it’s pads and for each object calls some standard methods to make the object react to the event (mouse movement,
click or whatever).

The second one is DistanceToPrimitive (px,py). This function computes a “distance” to an object from the mouse
position at the pixel position (px, py, see definition at the end of this paragraph) and returns this distance in pixel
units. The selected object will be the one with the shortest computed distance. To see how this works, select the
“Event Status” item in the canvas “Options” menu. ROOT will display one status line showing the picked object. If
the picked object is, for example, a histogram, the status line indicates the name of the histogram, the position x,y in
histogram coordinates, the channel number and the channel content.

174 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

It is nice for the canvas to know what the closest object from the mouse is, but it’s even nicer to be able to make this
object react. The third standard method to be provided is ExecuteEvent (). This method actually does the event
reaction. Its prototype is where px and py are the coordinates at which the event occurred, except if the event is a key

press, in which case px contains the key code.

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the following (defined in Buttons.h):

kNoEvent, kButtonliDown, kButton2Down,
kButton3Down, kKeyDown, kButtonlUp,
kButton2Up, kButton3Up, kButtoniMotion,
kButton2Motion, kButton3Motion, kKeyPress,
kButtonlLocate, kButton2Locate, kButton3Locate,
kKeyUp, kButtonlDouble, kButton2Double,
kButton3Double, kMouseMotion, kMouseEnter,
kMouseLeave

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants very basic treatment. We will not go into
that and let the reader refer to the sources of classes like TLine or TBox. Go and look at their ExecuteEvent method!
We can nevertheless give some reference to the various actions that may be performed. For example, one often wants
to change the shape of the cursor when passing on top of an object. This is done with the SetCursor method:

gPad->SetCursor (cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft,
kTopRight, kBottomSide, kLeftSide,
kTopSide, kRightSide, kMove,
kCross, kArrowHor, kArrowVer,
kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch

They are defined in TVirtualX.h and again we hope the names are self-explanatory. If not, try them by designing a
small class. It may derive from something already known like TLine.

Note that the ExecuteEvent () functions may in turn; invoke such functions for other objects, in case an object is
drawn using other objects. You can also exploit at best the virtues of inheritance. See for example how the class
TArrow (derived from TLine) use or redefine the picking functions in its base class.

The last comment is that mouse position is always given in pixel units in all these standard functions. px=0 and py=0
corresponds to the top-left corner of the canvas. Here, we have followed the standard convention in windowing systems.
Note that user coordinates in a canvas (pad) have the origin at the bottom-left corner of the canvas (pad). This is all
explained in the paragraph “The Coordinate Systems of a Pad”.

9.3 Graphical Containers: Canvas and Pad

We have talked a lot about canvases, which may be seen as windows. More generally, a graphical entity that contains
graphical objects is called a Pad. A Canvas is a special kind of Pad. From now on, when we say something about pads,
this also applies to canvases. A pad (class TPad) is a graphical container in the sense it contains other graphical objects
like histograms and arrows. It may contain other pads (sub-pads) as well. A Pad is a linked list of primitives of any
type (graphs, histograms, shapes, tracks, etc.). It is a kind of display list.

Drawing an object is nothing more than adding its pointer to this list. Look for example at the code of TH1: :Draw().
It is merely ten lines of code. The last statement is AppendPad (). This statement calls method of TObject that just
adds the pointer of the object, here a histogram, to the list of objects attached to the current pad. Since this is a
TObject’s method, every object may be “drawn”, which means attached to a pad.

When is the painting done then ? The answer is: when needed. Every object that derives from TObject has a Paint ()
method. It may be empty, but for graphical objects, this routine contains all the instructions to paint effectively it in

9.3. GRAPHICAL CONTAINERS: CANVAS AND PAD

List of primitives

175

TH1

TH2

TGraph

TPie

~

TH1: :Draw() ;

List of primitives gy

I

Figure 9.2: The pad display list

N~

TGraph: :Draw() ; TPie: :Draw() ;

TH2: :Draw() ;

TH1

TH2

TGraph

TPie

Faint ()

Paint ()

Faint ()

Faint ()

Figure 9.3: Pad painting

176 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

the active pad. Since a Pad has the list of objects it owns, it will call successively the Paint () method of each object,
thus re-painting the whole pad on the screen. If the object is a sub-pad, its Paint () method will call the Paint ()
method of the objects attached, recursively calling Paint () for all the objects.

In some cases a pad need to be painted during a macro execution. To force the pad painting gPad->Update() (see
next section) should be performed.

The list of primitives stored in the pad is also used to pick objects and to interact with them.

9.3.1 The Global Pad: gPad

When an object is drawn, it is always in the so-called active pad. For every day use, it is comfortable to be able to
access the active pad, whatever it is. For that purpose, there is a global pointer, called gPad. It is always pointing to
the active pad. If you want to change the fill color of the active pad to blue but you do not know its name, do this.

root[] gPad->SetFillColor(38)

To get the list of colors, go to the paragraph “Color and color palettes” or if you have an opened canvas, click on the
View menu, selecting the Colors item.

9.3.1.1 Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this pad contains some objects, it is sometimes
interesting to access one of those objects. The method GetPrimitive() of TPad, i.e. TPad::GetPrimitive(const
char* name) does exactly this. Since most of the objects that a pad contains derive from TObject, they have a name.
The following statement will return a pointer to the object myobjectname and put that pointer into the variable obj.
As you can see, the type of returned pointer is TObjectx*.

root[] obj = gPad->GetPrimitive("myobjectname")
(class TObject#*)0x1063cba8

Even if your object is something more complicated, like a histogram THA1F, this is normal. A function cannot return
more than one type. So the one chosen was the lowest common denominator to all possible classes, the class from
which everything derives, TObject. How do we get the right pointer then? Simply do a cast of the function output
that will transform the output (pointer) into the right type. For example if the object is a TPaveLabel:

root[] obj = (TPaveLabelx) (gPad->GetPrimitive("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question remains. An object has a name if it derives
from TNamed, not from TObject. For example, an arrow (TArrow) doesn’t have a name. In that case, the “name” is
the name of the class. To know the name of an object, just click with the right button on it. The name appears at
the top of the context menu. In case of multiple unnamed objects, a call to GetPrimitive("className") returns the
instance of the class that was first created. To retrieve a later instance you can use GetListOfPrimitives (), which
returns a list of all the objects on the pad. From the list you can select the object you need.

9.3.1.2 Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects owned by that pad. This list is accessible
by the GetListOfPrimitives() method of TPad. This method returns a pointer to a TList. Suppose we get the
pointer to the object, we want to hide, call it obj (see paragraph above). We get the pointer to the list:

root[] 1i = gPad->GetListOfPrimitives()
Then remove the object from this list:
root[] li->Remove(obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for example). If one wants to
make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many histograms drawn on the same plot (with the
option “same”). There are other ways! Try to use the method described here for simple objects.

9.3. GRAPHICAL CONTAINERS: CANVAS AND PAD 177

9.3.2 The Coordinate Systems of a Pad

There are coordinate systems in a TPad: user coordinates, normalized coordinates (NDC), and pixel coordinates.

QL) iQ,a)

(00) il,0]

Usar coamdinates MOC coordinates Fixel coordinates

Figure 9.4: Pad coordinate systems

9.3.2.1 The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use the user coordinates, and all graphic
primitives have their parameters defined in terms of user coordinates. By default, when an empty pad is drawn, the
user coordinates are set to a range from 0 to 1 starting at the lower left corner. At this point they are equivalent of the
NDC coordinates (see below). If you draw a high level graphical object, such as a histogram or a function, the user
coordinates are set to the coordinates of the histogram. Therefore, when you set a point it will be in the histogram
coordinates.

For a newly created blank pad, one may use TPad: :Range to set the user coordinate system. This function is defined
as:

void Range(float x1,float yi1,float x2,float y2)
The arguments x1, x2 defines the new range in the x direction, and the y1, y2 define the new range in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100,-100,100,100)

This will set the active pad to have both coordinates to go from -100 to 100, with the center of the pad at (0,0). You
can visually check the coordinates by viewing the status bar in the canvas. To display the status bar select Event
Status entry in the View canvas menu.

| MyCarwas 321,122 |w=1.28, y=-595

Figure 9.5: The status bar

9.3.2.2 The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user system. The coordinates range from 0 to 1
and (0, 0) corresponds to the bottom-left corner of the pad. Several internal ROOT functions use the NDC system (3D
primitives, PostScript, log scale mapping to linear scale). You may want to use this system if the user coordinates are
not known ahead of time.

9.3.2.3 The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as DistanceToPrimitive() and
ExecuteEvent (). Its primary use is for cursor position, which is always given in pixel coordinates. If (px,py) is the
cursor position, px=0 and py=0 corresponds to the top-left corner of the pad, which is the standard convention in
windowing systems.

178 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.3.2.4 Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But sometimes, you will want to use NDC. For example,
if you want to draw text always at the same place over a histogram, no matter what the histogram coordinates are.
There are two ways to do this. You can set the NDC for one object or may convert NDC to user coordinates. Most
graphical objects offer an option to be drawn in NDC. For instance, a line (TLine) may be drawn in NDC by using
DrawLineNDC(). A latex formula or a text may use TText: :SetNDC() to be drawn in NDC coordinates.

9.3.3 Converting between Coordinate Systems

There are a few utility functions in TPad to convert from one system of coordinates to another. In the following table, a
point is defined by (px,py) in pixel coordinates, (ux,uy) in user coordinates, (ndcx,ndcy) in normalized coordinates,
(apx, apy) are in absolute pixel coordinates.

Conversion TPad’s Methods Returns
NDC to Pixel UtoPixel (ndcx) Int t
VtoPixel (ndcy) Int_t
Pixel to User PixeltoX(px) Double_t
PixeltoY(py) Double_t
PixeltoXY(px,py,&ux,&uy) Double_t ux,uy
User to Pixel XtoPixel (ux) Int ¢
YtoPixel (uy) Int_t
XYtoPixel (ux,uy, &px,&py) Int_t px,py
User to absolute pixel XtoAbsPixel (ux) Int_t
YtoAbsPixel (uy) Int_t
XYtoAbsPixel (ux,uy, &apx,&apy) Int_t apx,apy
Absolute pixel to user AbsPixeltoX (apx) Double_t
AbsPixeltoY (apy) Double_t
AbsPixeltoXY (apx,apy,&ux,&uy) Double_t ux,uy

Note: all the pixel conversion functions along the Y axis consider that py=0 is at the top of the pad except PixeltoY()
which assume that the position py=0 is at the bottom of the pad. To make PixeltoY() converting the same way as
the other conversion functions, it should be used the following way (p is a pointer to a TPad):

p->PixeltoY(py - p->GetWh());

9.3.4 Dividing a Pad into Sub-pads
Dividing a pad into sub pads in order for instance to draw a few histograms, may be done in two ways. The first is to

build pad objects and to draw them into a parent pad, which may be a canvas. The second is to automatically divide a
pad into horizontal and vertical sub pads.

9.3.4.1 Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to explicitly indicate the size
and position of those sub-pads. Suppose we want to build a sub-pad in the active pad (pointed by gPad). First, we
build it, using a TPad constructor:

root[] spadl = new TPad("spadi","The first subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5, 0.5). These coordinates are
in NDC. This means that they are independent of the user coordinates system, in particular if you have already drawn
for example a histogram in the mother pad. The only thing left is to draw the pad:

root[] spadl->Draw()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

9.3. GRAPHICAL CONTAINERS: CANVAS AND PAD 179
9.3.4.2 Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way to automatically generate
horizontal and vertical sub-pads inside a given pad.

root[] padl->Divide(3,2)

Figure 9.6: Dividing a pad into 6 sub-pads

Figure 9.7: Dividing a pad into 6 sub-pads
If pad1 is a pad then, it will divide the pad into 3 columns of 2 sub-pads. The generated sub-pads get names padi_i
where the index i=1 to nxm (in our case padl_1, padl_2...padl_6). The names padl_letc... correspond to new
variables in CINT, so you may use them as soon as the executed method was pad->Divide(). However, in a compiled

program, one has to access these objects. Remember that a pad contains other objects and that these objects may
themselves be pads. So we can use the GetPrimitive () method:

TPad* padl_1 = (TPad*) (padl->GetPrimitive("padi_1"))

One question remains. In case one does an automatic divide, how one can set the default margins between pads? This
is done by adding two parameters to Divide (), which are the margins in x and y:

root[] padl->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

180 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.3.5 Updating the Pad

For performance reasons, a pad is not updated with every change. For example, changing the coordinates of the pad
does not automatically redraw it. Instead, the pad has a “bit-modified” that triggers a redraw. This bit is automatically
set by:

e Touching the pad with the mouse - for example resizing it with the mouse.
e Finishing the execution of a script.
o Adding a new primitive or modifying some primitives for example the name and title of an object.

e You can also set the “bit-modified” explicitly with the Modified method:

// the pad has changed

root[] padl->Modified()

// recursively update all modified pads:
root[] c1l->Update()

A subsequent call to TCanvas: :Update () scans the list of sub-pads and repaints the pads declared modified.

In compiled code or in a long macro, you may want to access an object created during the paint process. To do so, you
can force the painting with a TCanvas: :Update(). For example, a TGraph creates a histogram (TH1) to paint itself. In
this case the internal histogram obtained with TGraph: :GetHistogram() is created only after the pad is painted. The
pad is painted automatically after the script is finished executing or if you force the painting with TPad: :Modified ()
followed by a TCanvas: :Update (). Note that it is not necessary to call TPad: :Modified () after a call to Draw(). The
“bit-modified” is set automatically by Draw(). A note about the “bit-modified” in sub pads: when you want to update
a sub pad in your canvas, you need to call pad->Modified () rather than canvas->Modified(), and follow it with a
canvas->Update (). If you use canvas->Modified(), followed by a call to canvas->Update (), the sub pad has not
been declared modified and it will not be updated. Also note that a call to pad->Update() where pad is a sub pad of
canvas, calls canvas->Update () and recursively updates all the pads on the canvas.

9.3.6 Making a Pad Transparent

As we will see in the paragraph “Fill Attributes”, a fill style (type of hatching) may be set for a pad.
root[] padl->SetFillStyle(istyle)

This is done with the SetFillStyle method where istyle is a style number, defined in “Fill Attributes”. A special
set of styles allows handling of various levels of transparency. These are styles number 4000 to 4100, 4000 being fully
transparent and 4100 fully opaque. So, suppose you have an existing canvas with several pads. You create a new pad
(transparent) covering for example the entire canvas. Then you draw your primitives in this pad. The same can be
achieved with the graphics editor. For example:

root[] .x tutorials/hist/hidraw.C

root[] TPad *newpad=new TPad('"newpad",'"Transparent pad",0,0,1,1);
root[] newpad->SetFillStyle(4000);

root[] newpad->Draw();

root[] newpad->cd();

root[] // create some primitives, etc

9.3.7 Setting the Log Scale

Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the histogram. The scale is an
attribute of the pad because you may want to draw the same histogram in linear scale in one pad and in log scale in
another pad. Frequently, we see several histograms on top of each other in the same pad. It would be very inconvenient
to set the scale attribute for each histogram in a pad.

Furthermore, if the logic was set in the histogram class (or each object) the scale setting in each Paint method of all
objects should be tested.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame will convince you. The
SetLogx (), SetLogy () and SetLogz() methods are there. As you see, TPad defines log scale for the two directions x
and y plus z if you want to draw a 3D representation of some function or histogram.

The way to set log scale in the x direction for the active pad is:

9.4. GRAPHICAL OBJECTS 181
root[] gPad->SetLogx(1)

To reset log in the z direction:

root[] gPad->SetLogz(0)

If you have a divided pad, you need to set the scale on each of the sub-pads. Setting it on the containing pad does not
automatically propagate to the sub-pads. Here is an example of how to set the log scale for the x-axis on a canvas with
four sub-pads:

root[] TCanvas MyCanvas("MyCanvas","My Canvas")
root[] MyCanvas->Divide(2,2)

root[] MyCanvas->cd(1)

root[] gPad->SetLogx()

root[] MyCanvas->cd(2)

root[] gPad->SetLogx()

root[] MyCanvas->cd(3)

root[] gPad->SetLogx()

9.3.8 WaitPrimitive method

When the TPad: :WaitPrimitive () method is called with no arguments, it will wait until a double click or any key
pressed is executed in the canvas. A call to gSystem->Sleep(10) has been added in the loop to avoid consuming at all
the CPU. This new option is convenient when executing a macro. By adding statements like:

canvas—>WaitPrimitive();

You can monitor the progress of a running macro, stop it at convenient places with the possibility to interact with the
canvas and resume the execution with a double click or a key press.

9.3.9 Locking the Pad

You can make the TPad non-editable. Then no new objects can be added, and the existing objects and the pad can not
be changed with the mouse or programmatically. By default the TPad is editable.

TPad: :SetEditable (kFALSE)

9.4 Graphical Objects

In this paragraph, we describe the various simple 2D graphical objects defined in ROOT. Usually, one defines these
objects with their constructor and draws them with their Draw() method. Therefore, the examples will be very brief.
Most graphical objects have line and fill attributes (color, width) that will be described in “Graphical objects attributes”.
If the user wants more information, the class names are given and he may refer to the online developer documentation.
This is especially true for functions and methods that set and get internal values of the objects described here. By
default 2D graphical objects are created in User Coordinates with (0, 0) in the lower left corner.

9.4.1 Lines, Arrows and Polylines

The simplest graphical object is a line. It is implemented in the TLine class. The line constructor is:
TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)
The arguments x1, y1, x2, y2 are the coordinates of the first and second point. It can be used:

root[] 1 = new TLine(0.2,0.2,0.8,0.3)
root[] 1->Draw()

182 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
The arrow constructor is:

TArrow(Double_t x1, Double_t y1,
Double_t x2, Double_t y2,
Float_t arrowsize, Option_t *option)

It defines an arrow between points x1,y1 and x2,y2. The arrow size is in percentage of the pad height. The option
parameter has the following meanings:

LL>”
-
LL<|77
!(<77
>
44|>”
LL<>’7
% >
¢L<|>77

Once an arrow is drawn on the screen, one can:

e click on one of the edges and move this edge.

e click on any other arrow part to move the entire arrow.

Examples of various arrow formats

itod

M

oy
TN

£,

Figure 9.8: Different arrow formats

9.4. GRAPHICAL OBJECTS 183

If FillColor is 0, an open triangle is drawn; else a full triangle is filled with the set fill color. If ar is an arrow object,
fill color is set with:

ar.SetFillColor(icolor);

Where icolor is the color defined in “Color and Color Palettes”.

The default-opening angle between the two sides of the arrow is 60 degrees. It can be changed with the method
ar->SetAngle(angle), where angle is expressed in degrees.

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D space. Its constructor is:
TPolyLine(Int_t n,Double_t* x,Double_t* y,Option_t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates of the points. TPolyLine
can be used by it self, but is also a base class for other objects, such as curly arcs.

9.4.2 Circles and Ellipses

An ellipse can be truncated and rotated. It is defined by its center (x1,y1) and two radii r1 and r2. A minimum and
maximum angle may be specified (phimin,phimax). The ellipse may be rotated with an angle theta. All these angles
are in degrees. The attributes of the outline line are set via TAttLine, of the fill area - via TAttFill class. They are
described in “Graphical Objects Attributes”.

Examples of Ellipses

Figure 9.9: Different types of ellipses

When an ellipse sector is drawn only, the lines between the center and the end points of the sector are drawn by default.
By specifying the drawn option “only”, these lines can be avoided. Alternatively, the method SetNoEdges() can be
called. To remove completely the ellipse outline, specify zero (0) as a line style.

The TEllipse constructor is:

TEllipse(Double_t x1, Double_t y1, Double_t rl, Double_t r2,
Double_t phimin, Double_t phimax, Double_t theta)

An ellipse may be created with:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)
root[] e->Draw()

184 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.4.3 Rectangles

The class TBox defines a rectangle. It is a base class for many different higher-level graphical primitives. Its bottom left
coordinates x1, y1 and its top right coordinates x2, y2, defines a box. The constructor is:

TBox(Double_t x1,Double_t yl1,Double_t x2,Double_t y2)
It may be used as in:

root[] b = new TBox(0.2,0.2,0.8,0.3)
root[] b->SetFillColor(5)
root[] b->Draw()

Figure 9.10: A rectangle with a border

A TWbox is a rectangle (TBox) with a border size and a border mode. The attributes of the outline line and of the fill
area are described in “Graphical Objects Attributes”

9.4.4 Markers

A marker is a point with a fancy shape! The possible markers are shown in the next figure.

O N AV O A O o M 2
20 21 22 23 24 26 27 28 29 30

25

+= *x O X - - @
2 3 4 5 6 7 8 9 10 11

Figure 9.11: Markers

The marker constructor is:
TMarker (Double_t x,Double_t y,Int_t marker)

The parameters x and y are the marker coordinates and marker is the marker type, shown in the previous figure.
Suppose the pointer ma is a valid marker. The marker size is set via ma->SetMarkerSize(size), where size is the
desired size. Note, that the marker types 1, 6 and 7 (the dots) cannot be scaled. They are always drawn with the same
number of pixels. SetMarkerSize does not apply on them. To have a “scalable dot” a circle shape should be used
instead, for example, the marker type 20. The default marker type is 1, if SetMarkerStyle is not specified. It is the
most common one to draw scatter plots.

The user interface for changing the marker color, style and size looks like shown in this picture. It takes place in the
editor frame anytime the selected object inherits the class TAttMarker.

9.4. GRAPHICAL OBJECTS 185

Figure 9.12: Different marker sizes

harker
M=) [o5 =

Figure 9.13: Different marker sizes

A L

d

3H+++++++++++ S

Figure 9.14: The use of non-symmetric markers

186 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

Non-symmetric symbols should be used carefully in plotting. The next two graphs show how the misleading a careless
use of symbols can be. The two plots represent the same data sets but because of a bad symbol choice, the two on the
top appear further apart from the next example.

A TPolyMaker is defined by an array on N points in a 2D space. At each point x[i], y[i] a marker is drawn. The list
of marker types is shown in the previous paragraph. The marker attributes are managed by the class TAttMarker and
are described in “Graphical Objects Attributes”. The TPolyMarker constructor is:

TPolyMarker (Int_t n,Double_t *x,Double_t *y,Option_t *option)

Where x and y are arrays of coordinates for the n points that form the poly-marker.

9.4.5 Curly and Wavy Lines for Feynman Diagrams

This is a peculiarity of particle physics, but we do need sometimes to draw Feynman diagrams. Our friends working
in banking can skip this part. A set of classes implements curly or wavy poly-lines typically used to draw Feynman
diagrams. Amplitudes and wavelengths may be specified in the constructors, via commands or interactively from
context menus. These classes are TCurlyLine and TCurlyArc. These classes make use of TPolyLine by inheritance;
ExecuteEvent methods are highly inspired from the methods used in TPolyLine and TArc.

e’ q

Figure 9.15: The picture generated by the tutorial macro feynman.C

The TCurlyLine constructor is:

TCurlyLine(Double_t x1, Double_t yl, Double_t x2, Double_t y2,
Double_t wavelength, Double_t amplitude)

The coordinates (x1, y1) define the starting point, (x2, y2) - the end-point. The wavelength and the amplitude are
given in percent of the pad height.

The TCurlyArc constructor is:

TCurlyArc(Double_t x1, Double_t y1, Double_t rad,
Double_t phimin, Double_t phimax,
Double_t wavelength, Double_t amplitude)

The curly arc center is (x1, y1) and the radius is rad. The wavelength and the amplitude are given in percent of the
line length. The parameters phimin and phimax are the starting and ending angle of the arc (given in degrees). Refer
to $RO0OTSYS/tutorials/graphics/feynman.C for the script that built the figure above.

9.4. GRAPHICAL OBJECTS 187

9.4.6 Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (TPaveLabel), or titles of graphs or many other
objects but it can live a life of its own. All text displayed in ROOT graphics is an object of class TText. For a physicist,
it will be most of the time a TLatex expression (which derives from TText). TLatex has been conceived to draw
mathematical formulas or equations. Its syntax is very similar to the Latex in mathematical mode.

9.4.6.1 Subscripts and Superscripts

Subscripts and superscripts are made with the _ and ~ commands. These commands can be combined to make complex
subscript and superscript expressions. You may choose how to display subscripts and superscripts using the 2 functions
SetIndiceSize(Double_t) and SetLimitIndiceSize(Int_t). Examples of what can be obtained using subscripts
and superscripts:

The expression Gives The expression Gives The expression Gives
x{2y} o x{y {2}} v x_{1}{y_{1}} ot
x_{2y} Ty, x~{y_{1}} ¥ x_{1}"{y} xy

9.4.6.2 Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac command is used for large fractions in
displayed formula; it has two arguments: the numerator and the denominator. For example, the equation x =y + z 2
y 2 + 1 is obtained by following expression x=#frac{y+z/2}{y " {2}+1}.

9.4.6.3 Roots

The #sqrt command produces the square ROOT of its argument; it has an optional first argument for other roots.

\io 1o

Example: #sqrt{10} #sqrt[3]{10}

9.4.6.4 Delimiters

You can produce three kinds of proportional delimiters.

#[1{....} or “ala” Latex

#left[..... #right]big square brackets

#{3{....} or #left{..... #right}big curly brackets
#11{....} or #leftl|..... #right|big absolute value symbol
#O{....} or #left(..... #right)big parenthesis

9.4.6.5 Changing Style in Math Mode

You can change the font and the text color at any moment using:

#font [font-number]{. ..} and #color[color-number]{...}

9.4.6.6 Line Splitting

A TLatex string may be split in two with the following command: #splitline{top}{bottom}. TAxis and TGaxis
objects can take advantage of this feature. For example, the date and time could be shown in the time axis over two
lines with: #splitline{21 April 2003}{14:23:56}

188 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.4.7 Greek Letters

The command to produce a lowercase Greek letter is obtained by adding # to the name of the letter. For an uppercase
Greek letter, just capitalize the first letter of the command name.

#alpha #beta #chi #delta #varepsilon #phi
#gamma #eta #iota #varphi #kappa #lambda
#mu #nu #omicron #pi #theta #rho
#sigma #tau #upsilon #varomega #omega #xi
#psi #zeta #Alpha #Beta #Chi #Delta
#Epsilon #Phi #Gamma #Eta #Iota #Kappa
#vartheta #Lambda #Mu #Nu #0micron #Pi
#Theta #Rho #Sigma #Tau #Upsilon #0mega
#varsigma #Xi #Psi #epsilon #varUpsilon #Zeta

9.4.8 Mathematical Symbols

TLatex can make mathematical and other symbols. A few of them, such as + and >, are produced by typing the
corresponding keyboard character. Others are obtained with the commands as shown in the table above.

9.4.8.1 Accents, Arrows and Bars

Symbols in a formula are sometimes placed one above another. TLatex provides special commands for that.
#hat{a} =hat

#check =inverted hat

#acute =acute

#grave =accent grave

#dot =derivative

#ddot =double derivative

#tilde =tilde

#slash =special sign. Draw a slash on top of the text between brackets for example
#slash{E}_{T}generates “Missing ET”

a __ is obtained with #bar{a}

a -> is obtained with #vec{a}

9.4.8.2 Example 1

The script $RO0TSYS/tutorials/graphics/latex.C:

{
TCanvas c1("c1","Latex",600,700);
TLatex 1;
1.SetTextAlign(12);
1.SetTextSize(0.04);

1.DrawlLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int~{x}_{0}cos (#frac{#pi}{2}t~{2})dt");
1.DrawlLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int~{x}cos (#frac{#pit{2}t~{2})dt");
1.DrawLatex(0.1,0.4,"3) R = [A|~{2} =

#frac{1}{2} (#[1{#frac{1}{2}+C(V)}~{2}+
#[1{#frac{1{2+s(VHXF~{21)");

1.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=

—#infty} {#infty}A(i) cos# [J{#frac{it{t+i}}");

9.4. GRAPHICAL OBJECTS

(e I o x

File Edit ¥iew Oplions [nspect Classes

189

Help

Lower case

alpha:
beta :
gamma :
delta :
epsilon :
zeta :
eta:
theta :
iota :
kappa :
lambda :
mu :

nu :

Xi:
omicron :
pi :

rho :
sigma :
tau :
upsilon :
phi :

chi :

psi :
omega :

-

T = Jr o = ==

—

4 g T A O J0f = = = &/

2 € = e C

Upper case

Alpha :
Beta :

Gamma :

Delta :

Epsilon :

Zeta :
Eta :
Theta :
lota :

Kappa :

Lambda :

Mu :
Nu :
Xi:

Omicron :

Pi:
Rho :
Sigma :
Tau :

Upsilon :

Phi :
Chi :
Psi :
Omega :

I N m B I

D E xR e < -AdMT OO MmMZ ZER"TE

Variations

varepsilon: ¢

vartheta : 3

varsigma : g

varUpsilon: T
varphi : P

varomega : m

190

& #club *
§ #voidn ™
< #leq =
= #Happrox +
e #in &
= #supset c
~ #cap v
#ocopyright
™ #trademark ™
x #times +
« #bullet ¢
f #voidb o
" #doublequote
| #lbar |
| #arcbottom [
| #downarrow «
> Rleftrightarrow ®
|| #Downarrow <«
<> #lLeftrightarrow []

CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

#idiamond
#aleph
#geq

#neq
#notin
#subseteq
#cup
#copyright
#void3
#divide
#circ
#infty
#angle
ficbar
#arctop
#leftarrow
#otimes
#Leftarrow

#prod

i~

I

I

H = & >

#heart
#Jgothic
#LT
#equiv
#subset
#supseteq
#wedge
#oright
#AA

#pm

- #3dots

<]

#nabla

= # R

e @ <

c

. #tdownleftarrow —

#topbar
#arcbar
#uparrow
#oplus

#Uparrow

i
!

#spade
#Rgothic
#GT
#propto
#notsubset
#oslash
#vee
#void1

#aa

#

#upoint
#partial
#corner
#ltbar
#bottombar

~» #rightarrow

v

#surd

— #Rightarrow

I

#int

9.4. GRAPHICAL OBJECTS 191

B test Mi=] Eq
Eile Edit Miew Options |lhspect Classes Help

X

) C=d \I% lcns(Qﬂtz]dt

2) C(x)=d \I% ‘Tcus(Qﬂtzjdt
3) R-JAP -1 1—+EM]2+[;—+SM]2]

4 Fiy = i Afi)cos [t_lu]

Figure 9.16: The picture generated by the tutorial macro latex.C

192 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.4.8.3 Example 2

The script $RO0TSYS/tutorials/graphics/latex2.C:

TCanvas c1("c1","Latex",600,700);

TLatex 1;

1.SetTextAlign(23);

1.SetTextSize(0.1);
1.DrawLatex(0.5,0.95,"e " {+}e " {-HrightarrowZ {0}
#rightarrowI#bar{I}, g#bar{q}");
1.DrawLatex(0.5,0.75," |#vec{at#tbullet#vec{b}|=
#Sigmaa~{i}_{jk}+b~{bj}_{i}");
1.DrawLatex(0.5,0.5,"i(#partial_{#mult#tbar{#psit#tgamma™{#mu}
+m#tbar{#psi}=0

#Leftrightarrow (#Box+m~{2}) #psi=0");
1.DrawLatex(0.5,0.3,"L_{em}=eJ {#mu} {em}A {#mu} ,
J™{#mu}_{em}=#bar{I}#tgamma_{#mu}I
M~{j}_{i}=#SigmaA_{#alphal}#tau~{#alphaj}_{i}");

2 =10 %]
Eile Edit Miew Options [hspect Classes Help

ete—Z’>ll, qq
|§-b|=Za‘jk+b:’j
i(0, vy +my=0 & (0+m°)y=0
Lom=€dbnA, , Jon=Iv 1, M=ZA 10

Figure 9.17: The picture generated by the tutorial macro latex2.C

9.4.8.4 Example 3

The script $RO0TSYS/tutorials/graphics/latex3.C:

TCanvas c1("cl1");

TPaveText pt(.1,.5,.9,.9);

pt.AddText ("#frac{2s}{#pi#talpha~{2}}
#frac{d#sigma}{dcos#theta} (e~{+}e"{-}
#rightarrow f#bar{f}) = ");

9.4. GRAPHICAL OBJECTS 193

pt.AddText ("#left| #frac{1}{1 - #Delta#alphal} #right| {2}
(1+cos”{2}#theta");

pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alphal} #chi(s)
#[1{#hat{g}_{#nu}"{e}#that{g}_{#nu}~{£f}

(1 + cos™{2}#theta) + 2 #hat{g}_{a} {e}

#hat{g}_{a}"{f} cos#theta) } #right}");

pt.SetLabel ("Born equation");

pt.Draw();

Born equation

25 do
me? deost

(e = ff ‘ — r (14c05°0)

+4 HE{ 3 _EM x(s) [EEU + cos) +23.g, cosf)] }

+ 18l P & +E2](§f+g"](1+cns e],,g & o5 o coso)

Figure 9.18: The picture generated by the tutorial macro latex3.C

9.4.9 Text in a Pad

Text displayed in a pad may be embedded into boxes, called paves, or may be drawn alone. In any case, it is
recommended to use a Latex expression, which is covered in the previous paragraph. Using TLatex is valid whether
the text is embedded or not. In fact, you will use Latex expressions without knowing it since it is the standard for all
the embedded text. A pave is just a box with a border size and a shadow option. The options common to all types of
paves and used when building those objects are the following;:

option = "T" top frame

option = "B" bottom frame

option = "R" right frame

option = "L" left frame

option = "NDC" x1,y1l,x2,y2 are given in NDC
option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more functional objects like TPaveLabels. There
are several categories of paves containing text: TPaveLabel, TPaveText and TPavesText. TPaveLabels are panels
containing one line of text. They are used for labeling.

TPaveLabel (Double_t x1, Double_t yl1, Double_t x2, Double_t y2,
const char *label, Option_t *optiomn)

Where (x1, y1) are the coordinates of the bottom left corner, (x2,y2) - coordinates of the upper right corner. “label”
is the text to be displayed and “option” is the drawing option, described above. By default, the border size is 5 and the
option is “br”. If one wants to set the border size to some other value, one may use the method SetBorderSize (). For

194 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

example, suppose we have a histogram, which limits are (-100,100) in the x direction and (0, 1000) in the y direction.
The following lines will draw a label in the center of the histogram, with no border. If one wants the label position to
be independent of the histogram coordinates, or user coordinates, one can use the option “NDC”. See “The Coordinate
Systems of a Pad”.

root[] pl = new TPaveLabel(-50,0,50,200,"Some text")
root[] pl->SetBorderSize(0)
root[] pl->Draw()

IThia is a PavelLakel with option TL This is & PavelLabel with option TR

|Thi3 is a PavelLabel with option EL This is a Pavelabel with opticn BR

Figure 9.19: PaveLabels drawn with different options

A TPaveLabel can contain only one line of text. A TPaveText may contain several lines. This is the only difference.
This picture illustrates and explains some of the points of TPaveText. Once a TPaveText is drawn, a line can be added
or removed by brining up the context menu with the mouse.

A TPavesText is a stack of text panels (see TPaveText). One can set the number of stacked panels at building time. It
has the following constructor: By default, the number of stacked panels is 5, option=“br”.

TPavesText (Double_t x1, Double_t yl, Double_t x2, Double_t y2,
Int_t npaves, Option_t* option)

9.4.10 The TeX Processor TMathText

TMathText’s purpose is to write mathematical equations, exactly as TeX would do it. The syntax is the same as the
TeX’s one.

The script $RO0TSYS/tutorials/graphics/tmathtex.C:
gives the following output:

TMathText uses plain TeX syntax and uses “\” as control instead of “#”. If a piece of text containing “\” is given to
TLatex then TMathText is automatically invoked. Therefore, as histograms’ titles, axis titles, labels etc ... are drawn
using TLatex, the TMathText syntax can be used for them also.

9.5 Axis

The axis objects are automatically built by various high level objects such as histograms or graphs. Once build, one
may access them and change their characteristics. It is also possible, for some particular purposes to build axis on their
own. This may be useful for example in the case one wants to draw two axis for the same plot, one on the left and one
on the right.

For historical reasons, there are two classes representing axis. TAxis * axis is the axis object, which will be returned
when calling the TH1: :GetAxis () method.

TAxis *axis = histo->GetXaxis()

Of course, you may do the same for Y and Z-axis. The graphical representation of an axis is done with the TGaxis
class. The histogram classes and TGraph generate instances of this class. This is internal and the user should not have
to see it.

5. AXIS 195

File Edit VYiew Options Inspector Classes Help

A PaveText is a Pave with text lines andfor boxes
The Position of the text may be automatic
Text/Line/Box attributes may be set for individual elements

The PaveText below has heen created automatically
by reading the macro file with the statements O
used to generate this PaveText ‘I.Nﬁ-h O

pave U0

TPaveText pt1{0.015,0.66,0 95,0 95)

TPaveText pt2{0.09,0.015,0.91,0.63)

pt2 . SetFillColor{ 28)

TText “t1=pt1.AddText{"A PaveText iz a Pave with text lines and/or boxes")
TText “t2=pt1.AddText({"The Position of the text may be antomatkic')

TText “tI=pt1.AddText({"Text/LineBox attributes may be set for individual elements"
£33 .SetTextColor(2)

TText “t30=pt1.AddTexk" ")

TLine “H=pt1.AddLine{d,0,0,0)

1 .SetLineColon4)

I1.SetLineWidth{6)

TText “td=pt1.AddText{"The PaveText below has been created automatically™)
TText “ty=pt1.AddText{"by reading the macroe file with the statements")
TText “te=pt1. AddText{"used to generate this PaveText")

TText “t7=pt1.AddText{"Have Fun with ROOT")

t7 SetTextColor{6)

t7 . SetTextAngle(12)

i7 SetTextAlign(22)

t7 SetTextSize(0.05)

pt1.Draw

pt2 ReadFile{pavet mac)

pt2 Draw

Figure 9.20: PaveText examples

—_—

C++ header files
*User.h

Figure 9.21: A PaveText example

196 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

50 (X a32") = X s0 2" X ok, 20 Qoky @1k,

Kpt+kq+=
28 1B
) -ay U
3B _ 38 1 as ' 51p1 27 p102
W51P1UE a U51P1UE T 8n? fﬂ'1 aa, >
102

r = o (T, 22,1 1t (my - P F(2) 5 (pa - X)

4Re{ = x(s)[959.(1 + cos?8) + 959l cos]}

p(r) = =5, Vi) & \/‘/‘/)

24

(¢+1)CJE N R
2m C RHIC 2 E Y ¥IE Heio-Nopk

Figure 9.22: A TMathText example

9.5.1 Axis Title

The axis title is set, as with all named objects, by
axis->SetTitle("Whatever title you want");
When the axis is embedded into a histogram or a graph, one has to first extract the axis object:

h->GetXaxis () ->SetTitle("Whatever title you want")

9.5.2 Axis Options and Characteristics

The axis options are most simply set with the styles. The available style options controlling specific axis options are
the following:

TAxis *axis = histo->GetXaxis();
axis->SetAxisColor(Color_t color = 1);
axis->SetLabelColor(Color_t color = 1);
axis->SetLabelFont(Style_t font = 62);
axis->SetLabelOffset(Float_t offset = 0.005);
axis->SetLabelSize(Float_t size = 0.04);
axis->SetNdivisions(Int_t n = 510, Bool_t optim = kTRUE);
axis->SetNoExponent (Bool_t noExponent = kTRUE);
axis->SetTickLength(Float_t length = 0.03);
axis->SetTitleOffset(Float_t offset = 1);
axis->SetTitleSize(Float_t size = 0.02);

The getters corresponding to the described setters are also available. The general options, not specific to axis, as for
instance SetTitleTextColor () are valid and do have an effect on axis characteristics.

9.5. AXIS 197

9.5.3 Setting the Number of Divisions

Use TAxis::SetNdivisions(ndiv,optim) to set the number of divisions for an axis. The ndiv and optim are as
follows:

e ndiv = N1 + 100%N2 + 10000*N3

e N1 = number of first divisions.
e N2 = number of secondary divisions.
e N3 = number of tertiary divisions.

e optim = kTRUE (default), the divisions’ number will be optimized around the specified value.

e optim = kFALSE, or n < 0, the axis will be forced to use exactly n divisions.

For example:

ndiv = 0: no tick marks.

ndiv = 2: 2 divisions, one tick mark in the middle of the axis.
ndiv = 510: 10 primary divisions, 5 secondary divisions

ndiv = -10: exactly 10 primary divisions

9.5.4 Zooming the Axis

You can use TAxis: :SetRange or TAxis: :SetRangeUser to zoom the axis.
TAxis::SetRange(Int_t binfirst,Int_t binlast)

The SetRange method parameters are bin numbers. They are not axis. For example if a histogram plots the values
from 0 to 500 and has 100 bins, SetRange (0,10) will cover the values 0 to 50. The parameters for SetRangeUser are
user coordinates. If the start or end is in the middle of a bin the resulting range is approximation. It finds the low edge
bin for the start and the high edge bin for the high.

TAxis::SetRangeUser (Axis_t ufirst,Axis_t ulast)

Both methods, SetRange and SetRangeUser, are in the context menu of any axis and can be used interactively. In
addition, you can zoom an axis interactively: click on the axis on the start, drag the cursor to the end, and release the
mouse button.

9.5.5 Drawing Axis Independently of Graphs or Histograms

An axis may be drawn independently of a histogram or a graph. This may be useful to draw for example a supplementary
axis for a graph. In this case, one has to use the TGaxis class, the graphical representation of an axis. One may use
the standard constructor for this kind of objects:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax, Double_t ymax,
Double_t wmin, Double_t wmax, Int_t ndiv = 510,
Option_t* chopt,Double_t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis’ start in the user coordinates system, and xmax, ymax
are the end coordinates. The arguments wmin and wmax are the minimum (at the start) and maximum (at the end)
values to be represented on the axis; ndiv is the number of divisions. The options, given by the “chopt” string are the
following:

e chopt = ’G’: logarithmic scale, default is linear.

e chopt = ’B’: Blank axis (it is useful to superpose the axis).

198 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

Instead of the wmin,wmax arguments of the normal constructor, i.e. the limits of the axis, the name of a TF1 function
can be specified. This function will be used to map the user coordinates to the axis values and ticks.

The constructor is the following:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax, Double_t ymax,
const char* funcname, Int_t ndiv=510,
Option_t* chopt, Double_t gridlength=0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or even decreasing. In fact,
anything you like.

9.5.6 Orientation of Tick Marks on Axis

Tick marks are normally drawn on the positive side of the axis, however, if xmin = xmax, then negative.

e chopt = ’+’: tick marks are drawn on Positive side. (Default)
e chopt = ’-’: tick marks are drawn on the negative side.

e chopt = ’+-’: tick marks are drawn on both sides of the axis.
e chopt = ‘U’: unlabeled axis, default is labeled.

9.5.7 Labels

9.5.7.1 Position

Labels are normally drawn on side opposite to tick marks. However, chopt = ’=’: on Equal side. The function
TAxis: :CenterLabels() sets the bit kCenterLabels and it is visible from TAxis context menu. It centers the bin

labels and it makes sense only when the number of bins is equal to the number of tick marks. The class responsible for
drawing the axis TGaxis inherits this property.

9.5.7.2 Orientation

Labels are normally drawn parallel to the axis. However, if xmin = xmax, then they are drawn orthogonal, and if
ymin=ymax they are drawn parallel.

9.5.7.3 Labels for Exponents

By default, an exponent of the form 10"N is used when the label values are either all very small or very large. One can
disable the exponent by calling:

TAxis: :SetNoExponent (kTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less than the fgMaxDigits global
member. If the property SetNoExponent was set in TAxis (via TAxis::SetNoExponent), the TGaxis will inherit this
property. TGaxis is the class responsible for drawing the axis. The method SetNoExponent is also available from the
axis context menu.

9.5.7.4 Number of Digits in Labels

TGaxis::fgMaxDigits is the maximum number of digits permitted for the axis labels above which the notation with
10°N is used. It must be greater than 0. By default fgMaxDigits is 5 and to change it use the TGaxis: :SetMaxDigits
method. For example to set fgMaxDigits to accept 6 digits and accept numbers like 900000 on an axis call:

TGaxis: :SetMaxDigits(6)

9.5. AXIS 199

[X Drawing from DhDraw -0 x|
FEile Edit Wiew Options |nspect Classes Help
[This is the px distribufon e [This is the px distribufjon "
Hent= 25000 Hent= 25000
] NI I I I IR B [P TY TR Mean = 0.0007 1
10 2 FME =0.BBBH 1000 2 FME =0.BBBH
:]
10 2 3 100
10 3 3 10
TF 3 1F
Coboados s Doy b b e aaalaasaly] Coboala s by Lo b byaaalaaaaly
4 3 2 A1 0 1 2 3 4 4 3 2 A1 0 1 2 3 4

Figure 9.23: Y-axis with and without exponent labels

9.5.7.5 Tick Mark Positions

Labels are centered on tick marks. However, if xmin = xmax, then they are right adjusted.

e chopt = ’R’: labels are right adjusted on tick mark (default is centered)
e chopt = ’L’: labels are left adjusted on tick mark.

e chopt = ’C’: labels are centered on tick mark.

e chopt = ’M’: In the Middle of the divisions.

9.5.7.6 Label Formatting

Blank characters are stripped, and then the label is correctly aligned. The dot, if last character of the string, is also
stripped. In the following, we have some parameters, like tick marks length and characters height (in percentage of the
length of the axis, in user coordinates). The default values are as follows:

e Primary tick marks: 3.0 %

e Secondary tick marks: 1.5 %
 Third order tick marks: .75 %

o Characters height for labels: 4%
 Labels offset: 1.0 %

9.5.7.7 Stripping Decimals

Use the TStyle: :SetStripDecimals to strip decimals when drawing axis labels. By default, the option is set to true,
and TGaxis::PaintAxis removes trailing zeros after the dot in the axis labels, e.g. {0, 0.5, 1, 1.5, 2, 2.5, etc.}

TStyle::SetStripDecimals (Bool_t strip=kTRUE)

If this function is called with strip=kFALSE, TGaxis: :PaintAxis() will draw labels with the same number of digits
after the dot, e.g. {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, etc.}

200 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
9.5.7.8 Optional Grid

chopt = ’W’: cross-Wire

9.5.7.9 Axis Binning Optimization

By default, the axis binning is optimized.

e chopt = ’N’: No binning optimization

e chopt >1°: Integer labeling

9.5.8 Axis with Time Units

Histograms’ axis can be defined as “time axis”. To do that it is enough to activate the SetTimeDisplay attribute on a
given axis. If h is a histogram, it is done the following way:

h->GetXaxis()->SetTimeDisplay (1) ; // X azis is a time azis

Two parameters can be adjusted in order to define time axis: the time format and the time offset.

9.5.8.1 Time Format

It defines the format of the labels along the time axis. It can be changed using the TAxis method SetTimeFormat. The
time format is the one used by the C function strftime (). It is a string containing the following formatting characters:

For the date: %a, abbreviated weekday name
%b abbreviated month name
%d day of the month (01-31)
%m month (01-12)
%y year without century
%Y year with century

For the time: %H hour (24-hour clock)
%I hour (12-hour clock)
%p local equivalent of AM or PM
%M minute (00-59)
%S seconds (00-61)
%% %

The other characters are output as is. For example to have a format like dd/mm/yyyy one should do:
h->GetXaxis () ->SetTimeFormat ("%d/%m/%Y") ;

If the time format is not defined, a default one will be computed automatically.

9.5.8.2 Time Offset

This is a time in seconds in the UNIX standard UTC format (the universal time, not the local one), defining the
starting date of a histogram axis. This date should be greater than 01/01/95 and is given in seconds. There are three
ways to define the time offset:

1- By setting the global default time offset:

TDatime da(2003,02,28,12,00,00);
gStyle->SetTimeOffset (da.Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the example above, notice the
usage of TDatime to translate an explicit date into the time in seconds required by SetTimeFormat.

2- By setting a time offset to a particular axis:

9.5. AXIS 201

TDatime dh(2001,09,23,15,00,00);
h->GetXaxis () ->SetTimeOffset (dh.Convert());

3- Together with the time format using SetTimeFormat. The time offset can be specified using the control character
%F after the normal time format. %F is followed by the date in the format: yyyy-mm-dd hh:mm:ss.

h->GetXaxis () ->SetTimeFormat ("%d/%m/%y%F2000-02-28 13:00:01");

Notice that this date format is the same used by the TDatime function AsSQLString. If needed, this function can be
used to translate a time in seconds into a character string which can be appended after %F. If the time format is not
specified (before %F) the automatic one will be used. The following example illustrates the various possibilities.

gStyle->SetTit1leH(0.08);
TDatime da(2003,02,28,12,00,00);
gStyle->SetTimeOffset (da.Convert());
ct = new TCanvas("ct","Time on axis",0,0,600,600);
ct->Divide(1,3);
htl = new TH1F("hti","ht1",30000,0.,200000.);
ht2 = new TH1F("ht2","ht2",30000,0.,200000.);
ht3 = new TH1F("ht3","ht3",30000,0.,200000.);
for (Int_t i=1;i<30000;i++) {
Float_t noise = gRandom->Gaus(0,120);
ht1->SetBinContent (i,noise);
ht2->SetBinContent (i ,noise*noise) ;
ht3->SetBinContent (i,noise*noise*noise);

}

ct->cd(1);
ht1->GetXaxis()->SetLabelSize(0.06);
ht1->GetXaxis()->SetTimeDisplay(1);
ht1->GetXaxis()->SetTimeFormat ("%d/%m/%y%kF2000-02-2813:00:01") ;
ht1->Draw();

ct—>cd(2);
ht2->GetXaxis () ->SetLabelSize(0.06);
ht2->GetXaxis () ->SetTimeDisplay (1) ;
ht2->GetXaxis()->SetTimeFormat ("%d/%m/%y") ;
ht2->Draw() ;

ct->cd(3);
ht3->GetXaxis()->SetLabelSize(0.06);

TDatime dh(2001,09,23,15,00,00);
ht3->GetXaxis()->SetTimeDisplay (1) ;
ht3->GetXaxis () ->SetTimeOffset (dh.Convert());
ht3->Draw() ;

The output is shown in the figure below. If a time axis has no specified time offset, the global time offset will be stored
in the axis data structure. The histogram limits are in seconds. If wmin and wmax are the histogram limits, the time
axis will spread around the time offset value from TimeOffset+wmin to TimeOffset+wmax. Until now all examples had
a lowest value equal to 0. The following example demonstrates how to define the histogram limits relatively to the time
offset value.

// Define the time offset as 2003, January 1st
TDatime T0(2003,01,01,00,00,00);

int X0 = TO.Convert();

gStyle->SetTimeOffset (X0) ;

// Define the lowest histogram limit as 2002,September 23rd
TDatime T1(2002,09,23,00,00,00);
int X1 = T1.Convert()-X0;

// Define the highest histogram limit as 2003, March 7th

202 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

[1
Hean A D0 ek 0
ETES wrk D

<00

i L 1 i L 1 i L 1 " L 1 " L 1 i L 1 " L L " L L " L 1
2802100 Z8M200 2900200 2900200 2900200 250200 010300 01/0300 0170300 0150300

IE =
fali [ErkEm o
1007w 08

L] Sl et

EH?I:I.EEIE 280203 010303 010303 010303 010303 020303 020303 020302 020303

I@ =
falis | Eres o
10wk 08

i 1] BB et

10000

e—TT T T 1]
=

&

-10000

" " 1 " " 1 " L 1 " L 1 " " L " " 1 " " 1 " " 1 " L 1
23-15h 23-21h 2403k 2409k 24-15h Z24-21k 2503k 2509k 25-18Rh 25-21h

Figure 9.24: Time axis examples

9.5. AXIS 203

TDatime T2(2003,03,07,00,00,00);
int X2 = T2.Convert(1)-X0;

TH1F * hl = new TH1F("h1","test",100,X1,X2);

TRandom r;

for (Int_t i=0;i<30000;i++) {
Double_t noise = r.Gaus(0.5%(X1+X2),0.1x(X2-X1));
h1->Fill(noise);

}

h1->GetXaxis()->SetTimeDisplay(1);
h1->GetXaxis()->SetLabelSize(0.03);
h1->GetXaxis()->SetTimeFormat ("%Y/%m/%d") ;
hi->Draw();

The output is shown in the next figure. Usually time axes are created automatically via histograms, but one may also
want to draw a time axis outside a “histogram context”. Therefore, it is useful to understand how TGaxis works for
such axis. The time offset can be defined using one of the three methods described before. The time axis will spread
around the time offset value. Actually, it will go from TimeOffset+wmin to TimeOffset+wmax where wmin and wmax
are the minimum and maximum values (in seconds) of the axis. Let us take again an example. Having defined “2003,
February 28 at 12h”, we would like to see the axis a day before and a day after.

test

1200/ h1

Entries 30oaa
Mean -1.503e+06
RMS 1.416e+06

1000

800—

600

400—

200

[[T R T B L1 [
guuﬂ‘luffﬁ 2002M11/02 2002M12/02 2003/01/01 2003/01/31 2003/03/02

Figure 9.25: A histogram with time axis X

A TGaxis can be created the following way (a day has 86400 seconds):

TGaxis *axis = new TGaxis(xl,y1,x2,y2,-100000,150000,2405,"t");

the “t” option (in lower case) means it is a “time axis”. The axis goes form 100000 seconds before TimeOffset and
150000 seconds after. So the complete macro is:

204 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

cl = new TCanvas('"cl","Examples of TGaxis",10,10,700,500);
c1->Range(-10,-1,10,1);

TGaxis *axis = new TGaxis(-8,-0.6,8,-0.6,-100000,150000,2405,"t");
axis—>SetLabelSize(0.03);

TDatime da(2003,02,28,12,00,00);
axis->SetTimeOffset(da.Convert());

axis->SetTimeFormat ("%d/%m/%Y") ;
axis—>Draw();

The time format is specified with:
axis—>SetTimeFormat ("%d/%m/%Y") ;

The macro gives the following output:

cn b bvv v b g
27/02/2003 28/02/2003 01/03/2003

Thanks to the TLatex directive #splitline it is possible to write the time labels on two lines. In the previous example
changing the SetTimeFormat line by:

axis->SetLabelOffset (0.02);
axis->SetTimeFormat ("#splitline{%Y}{/d//m}");

will produce the following axis:

2003 2003 2003
27102 28102 01/03

9.5.9 Axis Examples

To illustrate what was said, we provide two scripts. The first one creates the picture shown in the next figure.

The first script is:

cl = new TCanvas('"cl","Examples of Gaxis",10,10,700,500);
cl->Range(-10,-1,10,1);

TGaxis *axisl = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
axis1l->SetName("axisl1");

axisl->Draw();

TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,0.001,10000,510,"G");
axis2->SetName("axis2");

axis2->Draw();

TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
axis3->SetName("axis3");

axis3->Draw();

TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
axis4->SetName("axis4");

axis4->Draw();

9.5. AXIS 205

8 _ 0 9000
- - 100 200 300 400 500 600 700 800 900 Z1g 8000
— FWWWWTWWWWTWWWWTWWWWTWWWWTWWWWTWWW
4 10° 20 7000
- 30 — 6000
2 | [ETIT BT AR TIT B SR T B A IR T BT B A I R TIT
T 10° 107 10" 1 10 10° 10° 40 — 5000
0 10" —
= 50 4000
_2 : | T T T N W NN TN AN TN TN TN [N N NN M N T TN TN N NN N T AN T M A |
B 6 4 2 0 2 4 6 8 —60 3000
4 10 = 70 — 2000
6 B R S 1000
— 1.2 1.22 1.24 1.26 1.28 1.3 1.32
8 1 — 90 0

Figure 9.26: The first axis example

TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32,80506,"-+");
axisb->SetName("axis5");

axisb->SetLabelSize(0.03);

axisb->SetTextFont (72);

axisb->SetLabelOffset (0.025);

axis5->Draw();

TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,100,900,50510,"-");
axis6->SetName("axis6");

axis6->Draw();

TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
axis7->SetName("axis7");

axis7->SetLabelOffset (0.01);

axis7->Draw();

TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,0,90,50510,"-");
axis8->SetName("axis8");
axis8->Draw();

The second example shows the use of the second form of the constructor, with axis ticks position determined by a
function TF1:

void gaxis3a()

{
gStyle->SetOptStat (0) ;

TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);

206

| Axes |

CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

axis with decreasing values
2 0 -2 -4 £ 8 -10

_I LI | T T T | T T T T T | T T I| T T T | T T T | T T T || T T | T T T
15—
1__ |III|III|III|III|III|III|I 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
— 0020406 08 1 1.2 14 1.6 1.8 2
= exponential axis
05—
- @
o £ e
n g 00F
- £ 200
05 £ r
- & i
- =
11— =
1.5
_2_IIIIIIIE|||I||||||||II||||||||II|IIII|IIII|IIII
0 1 2 4 5 6 7 8 9 10
Figure 9.27: The second axis example
h2->Draw();

TF1 *fl=new TF1("f1","-x",-10,10);
TGaxis *Al1 = new TGaxis(0,2,10,2,"f1",510,"-");
A1->SetTitle("axis with decreasing values");

A1->Draw();

TF1 *f2=new TF1("f2","exp(x)",0,2);
TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
A2->SetTitle("exponential axis");

A2->SetLabelSize(0.03);
A2->SetTitleSize(0.03);
A2->SetTitleOffset(1.2);
A2->Draw() ;

TF1 *£3=new TF1("£3","log10(x)",0,800);
TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
A3->SetTitle("logarithmic axis");

A3->SetLabelSize (0.03);
A3->SetTitleSize(0.03);
A3->SetTitleOffset(1.2);
A3->Draw();

void seism() {
TStopwatch sw; sw.Start();

TDatime dtime;

gStyle->SetTimeOffset (dtime.Convert());

9.5. AXIS 207

X Time on axis - O] x|
Eile Edit ¥iew Options |lnspect Classes Help
| The ROOT seism |

1000
900
00
700
600
500
400
300
200
100

0

-100

-200

=300

400

-500

-G00

-Ton

-G00

-900

_1nqgh03 15h0T 15h11 15h16 15h20 15h24 15h28 15h33 15h37 15h41 15hd5

Figure 9.28: An axis example with time display

TCanvas *cl = new TCanvas('"cl1","Time on axis",10,10,1000,500);
cl1->SetFillColor (42);

cl->SetFrameFillColor(33);

c1->SetGrid();

Float_t bintime = 1;

// one bin = 1 second. change it to set the time scale
TH1F *ht = new TH1F("ht","The ROOT seism",10,0,10%*bintime) ;
Float_t signal = 1000;

ht->SetMaximum(signal) ;

ht->SetMinimum(-signal);

ht->SetStats(0);

ht->SetLineColor(2);
ht->GetXaxis()->SetTimeDisplay(1);
ht->GetYaxis()->SetNdivisions(520);

ht->Draw();

for (Int_t i=1;i<2300;i++) {

// Build a signal : noisy damped sine

Float_t noise = gRandom->Gaus(0,120);

if (1 > 700)

noise += signal#*sin((i-700.)*6.28/30)*exp((700.-1)/300.);

ht->SetBinContent (i,noise);

cl1->Modified();

c1->Update();

gSystem->ProcessEvents () ;

//canvas can be edited during the loop

}

printf("Real Time = %8.3fs,Cpu Time = %8.3fsn",sw.RealTime(),

sw.CpuTime ());

208 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.6 Graphical Objects Attributes

9.6.1 Text Attributes

When a class contains text or derives from a text class, it needs to be able to set text attributes like font type, size,
and color. To do so, the class inherits from the TAttText class (a secondary inheritance), which defines text attributes.
TLatex and TText inherit from TAttText.

9.6.1.1 Setting Text Alignment

Text alignment may be set by a method call. What is said here applies to all objects deriving from TAttText, and
there are many. We will take an example that may be transposed to other types. Suppose “la” is a TLatex object.
The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:
align = 10*HorizontalAlign + VerticalAlign

For horizontal alignment, the following convention applies:

o 1 = left
e 2 = centered

e 3 =right
For vertical alignment, the following convention applies:

e 1 = bottom
¢ 2 = centered

e 3 =top
For example, align: 11 = left adjusted and bottom adjusted; 32 = right adjusted and vertically centered.
9.6.1.2 Setting Text Angle
Use TAttText: :SetTextAngle to set the text angle. The angle is the degrees of the horizontal.
root[] la->SetTextAngle(angle)

9.6.1.3 Setting Text Color

Use TAttText: :SetTextColor to set the text color. The color is the color index. The colors are described in “Color
and Color Palettes”.

root[] la->SetTextColor(color)

9.6. GRAPHICAL OBJECTS ATTRIBUTES

9.6.1.4 Setting Text Font

209

Use TAttText: :SetTextFont to set the font. The parameter font is the font code, combining the font and precision:

font = 10 * fontID + precision
root[] la->SetTextFont(font)
The table below lists the available fonts. The font IDs must be between 1 and 14. The precision can be:

o Precision = 0 fast hardware fonts (steps in the size)

o Precision = 1 scalable and rotate-able hardware fonts (see below)

e Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used. The fonts have a minimum (4) and
maximum (37) size in pixels. These fonts are fast and are of good quality. Their size varies with large steps and they
cannot be rotated. Precision 1 and 2 fonts have a different behavior depending if True Type Fonts (TTF) are used
or not. If TTF are used, you always get very good quality scalable and rotate-able fonts. However, TTF are slow.

Precision 1 and 2 fonts have a different behavior for PostScript in case of TLatex objects:

o With precision 1, the PostScript text uses the old convention (see TPostScript) for some special characters to

draw sub and superscripts or Greek text.

o With precision 2, the “PostScript” special characters are drawn as such. To draw sub and superscripts it is highly

recommended to use TLatex objects instead.

For example: font = 62 is the font with ID 6 and precision 2.

The available fonts are:

Font ID X11

© 00 N O Ut W N

o S S = S S S
O T I e)

times-medium-i-normal
times-bold-r-normal
times-bold-i-normal
helvetica-medium-r-norma, 1
helvetica-medium-o-norma 1
helvetica-bold-r-normal
helvetica-bold-o-normal
courier-medium-r-normal
courier-medium-o-normal
courier-bold-r-normal
courier-bold-o-normal
symbol-medium-r-normal

times-medium-r-normal

True Type name
“Times New Roman”
“Times New Roman”
“Times New Roman”
“Arial”

“Arial”

“Arial”

“Arial”

“Courier New”
“Courier New”
“Courier New”
“Courier New”
“Symbol”

“Times New Roman”

“Wingdings”

Is italic
Yes
No
Yes

“boldness”

R T T TG U TP TN SO SR RN

This script makes the image of the different fonts:

textc = new TCanvas("textc",'"Example of text",1);

for (int i=1;i<15;i++) {

cid = new char([8];

sprintf (cid,"ID %d :

210

ID1:
ID2:
ID3:
ID4:
ID5:
ID6:
ID7:
ID8:
ID9:

ID10:
D11
ID12:
ID13:
ID 14 :

CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

The guick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox 1s not here anymore
The guick brown fox 1is not here anymore
The quick brown fox is not here anymore
The gquick brown fox is not here anymore
Tne 6uiyk Bpowv $ol 10 voT NePe Avyuope

The quick brown fox is not here anymore

The quick brown fox is not here anymore

Figure 9.29: Font’s examples

9.6. GRAPHICAL OBJECTS ATTRIBUTES 211

cid[7] = 0;
1id = new TLatex(0.1,1-(double)i/15,cid);
1lid->SetTextFont (62) ;
1lid->Draw();
1 = new TLatex(.2,1-(double)i/15,
"The quick brown fox is not here anymore")
1->SetTextFont (i*10+2);
1->Draw();

9.6.1.5 How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your .rootrc file.
Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the TTF is active, you get the following
message at the start of a session: “Free Type Engine v1.x used to render TrueType fonts.” You can also check with the
command:

gEnv->Print ()

9.6.1.6 Setting Text Size

Use TAttText: :SetTextSize to set the text size.
root[] la->SetTextSize(size)

The size is the text size expressed in percentage of the current pad size.

The text size in pixels will be:

o If current pad is horizontal, the size in pixels = textsize * canvas_height

o If current pad is vertical, the size in pixels = textsize * canvas_width

Text

|_IRE =]
5. helvetica bold =]
22 Middle, Middle =]

The user interface for changing the text color, size, font and allignment looks like
shown in this picture. It takes place in the editor frame anytime the selected object inherits the class TAttText.

9.6.2 Line Attributes

All classes manipulating lines have to deal with line attributes: color, style and width. This is done by using secondary
inheritance of the class TAttLine. The line color may be set by a method call. What is said here applies to all objects
deriving from TAttLine, and there are many (histograms, plots). We will take an example that may be transposed to
other types. Suppose “1i” is a TLine object. The line color is set with:

root[] 1li->SetLineColor(color)

The argument color is a color number. The colors are described in “Color and Color Palettes”

The line style may be set by a method call. What is said here applies to all objects deriving from TAttLine, and there
are many (histograms, plots). We will take an example that may be transposed to other types. Suppose “1i” is a
TLine object. The line style is set with:

212 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
root[] li->SetLineStyle(style)

The argument style is one of: 1=solid, 2=dash, 3=dot, 4=dash-dot.

The line width may be set by a method call. What is said here applies to all objects deriving from TAttLine, and

there are many (histograms, plots). We will take an example that may be transposed to other types. Suppose “1i” is a
TLine object. The line width is set with:

root[] 1li->SetLineWidth(width)

The width is the width expressed in pixel units.

Line

- —=

] -
I _I The user interface for changing the line color, line width and style looks like shown in this
picture. It takes place in the editor frame anytime the selected object inherits the class TAttLine.

9.6.3 Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have to deal with fill attributes. This is done by
using secondary inheritance of the class TAttFill. Fill color may be set by a method call. What is said here applies to
all objects deriving from TAttFill, and there are many (histograms, plots). We will take an example that may be
transposed to other types. Suppose “h” is a TH1F (1 dim histogram) object. The histogram fill color is set with:

root[] h->SetFillColor(color)

The color is a color number. The colors are described in “Color and color palettes”

Fill style may be set by a method call. What is said here applies to all objects deriving from TAttFill, and there are
many (histograms, plots). We will take an example that may be transposed to other types. Suppose “h” is a TH1F (1
dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is: 0:hollow, 1001:solid, 2001:hatch style, 3000+pattern number:patterns, 4000 to 4100:trans-
parency, 4000:fully transparent, 4100: fully opaque.

Fill styles >3100 and <3999 are hatches. They are defined according to the Fil1Style=3ijk value as follows:
e i(1-9) specifies the space between each hatch (1=minimum space, 9=maximum). The final spacing is set by
SetHatchesSpacing () method and it is*GetHatchesSpacing().

e j(0-9) specifies the angle between 0 and 90 degres as follows: 0=0, 1=10, 2=20, 3=30, 4=45, 5=not drawn, 6=60,
7=70, 8=80 and 9=90.

e k(0-9) specifies the angle between 0 and 90 degres as follows: 0=180, 1=170, 2=160, 3=150, 4=135, 5=not drawn,
6=120, 7=110, 8=100 and 9=90.

9.6.4 Color and Color Palettes

At initialization time, a table of basic colors is generated when the first Canvas constructor is called. This table is a
linked list, which can be accessed from the gROOT object (see TROOT: : GetList0fColors()). Each color has an index
and when a basic color is defined, two “companion” colors are defined:

o the dark version (color index + 100)

o the bright version (color index + 150)

9.6. GRAPHICAL OBJECTS ATTRIBUTES

3001

3006

B R L S) O L O O o O o o |

.

Aok
fotckketcke kR
f************

k.
otk ok ok

[IEXN XY FEY FIN PN FEN FRY POy PN FOY POV XY PO

3016

Fill styles

3002

3007

AN I,

3012

R R R R R A A SRR
SRR RA AR AR A AR
R W

3017

3018

213

NN

3005

L7 e

il
is

i

15
il

iiinis

Figure 9.30: The various patterns

3015

3020

Figure 9.31: The basic ROOT colors

214 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

1 =black

Z=red

3 = bright green

4 = bright blue

= yallow

= hiot pink

= BOUE

= green

= blue

0-=% basic colors
10-=19: gray shades
Al-=2487 brown shades
J-=3% blug shades
-89 rad shade

=

-

[P = SR

The dark and bright colors are used to give 3-D effects when drawing various boxes (see TWbox, TPave, TPaveText,
TPaveLabel, etc). If you have a black and white copy of the manual, here are the basic colors and their indices.

The list of currently supported basic colors (here dark and bright colors are not shown) are shown. The color numbers
specified in the basic palette, and the picture above, can be viewed by selecting the menu entry Colors in the View
canvas menu. The user may define other colors. To do this, one has to build a new TColor:

TColor(Int_t color,Float_t r,Float_t g,Float_t b,const charx* name)

One has to give the color number and the three Red, Green, Blue values, each being defined from 0 (min) to 1(max).
An optional name may be given. When built, this color is automatically added to the existing list of colors. If the color
number already exists, one has to extract it from the list and redefine the RGB values. This may be done for example
with:

root[] color=(TColorx) (gROOT->GetList0fColors()->At(index_color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index_color is the color number you wish to change.
Fill

I:I | - | The user interface for changing the fill color and style looks like shown in this picture. It
takes place in the editor frame anytime the selected object inherits the class TAttFill.

9.6.4.1 Color Palette (for Histograms)

Defining one color at a time may be tedious. The histogram classes (see Draw Options) use the color palette. For
example, TH1: :Draw("col") draws a 2-D histogram with cells represented by a box filled with a color CI function of
the cell content. If the cell content is N, the color CI used will be the color number in colors[N]. If the maximum cell
content is >ncolors, all cell contents are scaled to ncolors. The current color palette does not have a class or global
object of its own. It is defined in the current style as an array of color numbers. The current palette can be changed
with:

TStyle::SetPalette(Int_t ncolors,Int_t*color_indexes).

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is defined. The colors defined in this palette
are good for coloring pads, labels, and other graphic objects. If ncolors > 0 and colors = 0, the default palette
is used with a maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty palette with a spectrum
Violet->Red is created. It is recommended to use this pretty palette when drawing lego(s), surfaces or contours. For
example, to set the current palette to the “pretty” one, do:

root[] gStyle->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a custom palette. You can adapt it to suit
your needs. In case you use it for contour coloring, with the current color/contour algorithm, always define two more
colors than the number of contours.

9.7. THE GRAPHICS EDITOR 215

void palette() {
// Ezample of creating new colors (purples)
const Int_t colNum = 10; // and defining of a new palette
Int_t palette[colNum];
for (Int_t i=0; i<colNum; i++) {
// get the color and if it does not exist create it
if (! gROOT->GetColor(230+i)){
TColor *color =
new TColor (230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
} else {
TColor *color = gROOT->GetColor(230+i);
color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);
}
palette[i] = 230+i;
}
gStyle->SetPalette(colNum,palette);
TF2 *f2 = new TF2("f2","exp(-(x"2)-(y"2))",-3,3,-3,3);
// two contours less than the number of colors in palette
f2->SetContour (colNum-2) ;
f2->Draw("cont") ;

9.7 The Graphics Editor

A new graphics editor took place in ROOT v4.0. The editor can be activated by selecting the Editor menu entry in the
canvas View menu or one of the context menu entries for setting line, fill, marker or text attributes. The following
object editors are available for the current ROOT version.

9.7.1 TAxisEditor

B

B |- Ticks| 0035

o+ ¥ Optimize
I FLog [karelon

Lo

|v title

M |- sizef 004 3
|6. helvetica bold =]
[T Centered Offset:

™ Rotated | 1-””2’

Labels

M sz 0043
™ MoExp | 0.005 5

|6. helvetica bold =]

This user interface gives the possibility for changing the following axis attributes:

e color of the selected axis, the axis’ title and labels;
o the length of thick parameters and the possibility to set them on both axis sides (if +- is selected);
e to set logarithmic or linear scale along the selected axis with a choice for optimized or more logarithmic labels;

e primary, secondary and tertiary axis divisions can be set via the three number fields;

216 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

o the axis title can be added or edited and the title’s color, position, offset, size and font can be set interactively;

o the color, size, and offset of axis labels can be set similarly. In addition, there is a check box for no exponent
choice, and another one for setting the same decimal part for all labels.

9.7.2 TPadEditor

PadiCanvas

™ Fixed aspect ratio

[T Crosshair W Edit

WV Grids W Gridy

W Tickx W Ticky

Log Scale

m =m =
Border Mode ———

= Sinken horder
i Mo barder
' Raised horder

Size: IZ— vI

o It provides the following user interface:

o Fixed aspect ratio - can be set for pad resizing.

o Edit - sets pad or canvas as editable.

¢ Cross-hair - sets a cross hair on the pad.

e TickX - set ticks along the X axis.

e TickY - set ticks along the Y axis.

e GridX - set a grid along the X axis.

e GridY - set a grid along the Y axis.

e The pad or canvas border size can be set if a sunken or a raised border mode is

¢ selected; no border mode can be set too.

9.8 Copy and Paste

You can make a copy of a canvas using TCanvas: :DrawClonePad. This method is unique to TCanvas. It clones the
entire canvas to the active pad. There is a more general method TObject: :DrawClone, which all objects descendent of
TObject, specifically all graphic objects inherit. Below are two examples, one to show the use of DrawClonePad and
the other to show the use of DrawClone.

9.8.1 Using the GUI

In this example we will copy an entire canvas to a new one with DrawClonePad. Run the script draw2dopt.cC.
root[] .x tutorials/hist/draw2dopt.C
This creates a canvas with 2D histograms. To make a copy of the canvas follow the steps:

o Right-click on it to bring up the context menu

¢ Select DrawClonePad

9.8. COPY AND PASTE

E@tﬂ

Eile Edit Miew Options

Inspect Classes

217

IS[=] E3
Help

tyQaun + thgaun[s]« eHandauf]

15/9/00

Eygaun + thgaun(s] - eHandaufio] |

=
=
-
o -
=

15/9/00

| LEGO1 l

EYQaLE + EpgauN(S]+ eMandauiie] |

15/9/00 *

15/9/00

Figure 9.32: Different draw options

218 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

This copies the entire canvas and all its sub-pads to a new canvas. The copied canvas is a deep clone, and all the
objects on it are copies and independent of the original objects. For instance, change the fill on one of the original
histograms, and the cloned histogram retains its attributes. DrawClonePad will copy the canvas to the active pad; the
target does not have to be a canvas. It can also be a pad on a canvas.

If you want to copy and paste a graphic object from one canvas or pad to another canvas or pad, you can do so with
DrawClone method inherited from TObject. All graphics objects inherit the TObject: :DrawClone method. In this
example, we create a new canvas with one histogram from each of the canvases from the script draw2dopt.C.

o Start a new ROOT session and execute the script draw2dopt.C
e Select a canvas displayed by the script, and create a new canvas c1 from the File menu.

o Make sure that the target canvas (c1) is the active one by middle clicking on it. If you do this step right after
step 2, ¢l will be active.

e Select the pad with the first histogram you want to copy and paste.
e Right click on it to show the context menu, and select DrawClone.

e Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by the script, until you have one pad from each
type. If you wanted to put the same annotation on each of the sub pads in the new canvas, you could use DrawClone
to do so. Here we added the date to each pad. The steps to this are:

e Create the label in on of the pads with the graphics editor.
e Middle-click on the target pad to make it the active pad

e Use DrawClone method of the label to draw it in each of the other panels.

The option in the DrawClone method argument is the Draw option for a histogram or graph. A call to TH1: :DrawClone
can clone the histogram with a different draw option.

9.8.2 Programmatically

To copy and paste the four pads from the command line or in a script you would execute the following statements:

root[] .x tutorials/hist/draw2dopt.C

root[] TCanvas c1("cl","Copy Paste",200,200,800,600);
root[] surfaces->cd(1); // get the first pad
root[] TPad *pl = gPad;

root[] lego->cd(2);// get the next pad
root[] TPad *p2 = gPad;

root[] cont->cd(3);// get the next pad
root[] TPad *p3 = gPad;

root[] c2h->cd(4);// get the next pad

root[] TPad *p4 = gPad;

root[] // to draw the four clones

root[] c1->cd();

root[] pl->DrawClone();

root[] p2->DrawClone();

root[] p3->DrawClone();

root[] p4->DrawClone();

Note that the pad is copied to the new canvas in the same location as in the old canvas. For example if you were to
copy the third pad of surf to the top left corner of the target canvas you would have to reset the coordinates of the
cloned pad.

9.9. LEGENDS 219

9.9 Legends

Legends for a graph are obtained with a TLegend object. This object points to markers, lines, boxes, histograms,
graphs and represent their marker, line, fill attributes. Any object that has a marker or line or fill attribute may have
an associated legend. A TLegend is a panel with several entries (class TLegendEntry) and is created by the constructor

TLegend (Double_t x1, Double_t yl1, Double_t x2, Double_t y2,
const char *header, Option_t *option)

The legend is defined with default coordinates, border size and option. The legend coordinates (NDC) in the current
pad are x1, y1, x2, y2. The default text attributes for the legend are:

e Alignment = 12 left adjusted and vertically centered

e Angle = 0 (degrees)

o Color =1 (black)

e Size = calculate when number of entries is known

e Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title
The title is a regular entry and supports TLatex. The default is no title (header = 0). The options are the same as

for TPave; by default, they are “brand”. Once the legend box is created, one has to add the text with the AddEntry ()
method:

TLegendEntry* TLegend: :AddEntry(TObject *obj,
const char *label,
Option_t *option)

The parameters are:

o *objis a pointer to an object having marker, line, or fill attributes (a histogram, or a graph)
e label is the label to be associated to the object

e option:

e “L” draw line associated with line attributes of obj, if obj inherits from TAttLine.

e “P” draw poly-marker associated with marker attributes of obj, if obj inherits TAttMarker.

e “F” draw a box with fill associated with fill attributes of obj, if obj inherits TAttFill.
One may also use the other form of the method AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name,
const char *label,
Option_t *option)

Here name is the name of the object in the pad. Other parameters are as in the previous case. Next example shows
how to create a legend:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry(funl, "One Theory","1");
leg->AddEntry(fun3, "Another Theory","f");
leg->AddEntry(gr,"The Data",'"p");
leg->Draw();
// oops we forgot the blue line... add it after
leg->AddEntry (fun2,

"#sqrt{2#pi} P_{T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader ("The Legend Title");
leg->Draw() ;

Here funil, fun2, fun3 and gr are pre-existing functions and graphs. You can edit the TLegend by right clicking on it.

220 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
abs(sin(x)/(x))
1= The Legend Title
[One Theory
o r . Another Theory
L * The Data
r co ‘lﬁ Pr [y) latex formula
0.6—
- SN Y N
- ¥ 3 A y N
04 r % PN Y
r - - 1
r L _ i b ! *
) - | 1
i ! k i [
= ! * "-_ , ;‘ o
0.2 ;] § 7‘ I
! x 3
] i L,
¥ (¥ '
n L Ll | [- | | - | | I“; Ll | [| | | | IFI |
0 1 2 3 4 D b 7 8 g 10

Figure 9.33: A legend example

9.10. THE POSTSCRIPT INTERFACE 221

9.10 The PostScript Interface

To generate a PostScript (or encapsulated PostScript) file for a single image in a canvas, you can:
o Select to print the canvas in the PostScript file format from the File menu / Save or Save As menu entries. By
default, a PostScript file is generated, if you do not specify the file format.

e Click in the canvas area, near the edges, with the right mouse button and select the Print context menu entry.
This will generate a file of canvas pointed to by cl. You can select the name of the PostScript file. If the file
name is xxx.ps, you will generate a PostScript file named xxx.ps. If the file name is xxx.eps, you generate an
encapsulated Postscript file instead. In your program (or script), you can type:

c1->Print ("xxx.ps") // or
c1->Print ("xxx.eps")

Next example prints the picture in the pad pointed by padi.
padl->Print ("xxx.ps")
The TPad: :Print method has a second parameter called option. Its value can be:

¢ 0 which is the default and is the same as “ps”

e “ps” a Postscript file is produced

e “Portrait” a Postscript file is produced with Portrait orientation
¢ “Landscape” a Postscript file is produced with Landscape orientation
e “eps”an Encapsulated Postscript file

e “Preview”an Encapsulated Postscript file with preview is produced
e “gif” a Graphics Interchange Format file

e “cxx” a C4++ macro file is generated

e “pdf”a Portable Document Format file

e “xml” a eXtensible Mark-up Language file

e “jpg”a Joint Photographic Experts Group file

o “png” a Portable Network Graphics Format (PNG file)

o “xpm” a X11 Pixel Map Format

e “svg” a Scalable Vector Graphics file

o “tiff” a Tagged-Image File Format

e “root”’a ROQOT binary file is produced

You do not need to specify this second parameter; you can indicate by the filename extension what format you want to
save a canvas in (i.e. canvas.ps, canvas.gif, canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the picture on the screen, where
the size along x is always 20 cm. You can set the size of the PostScript picture before generating the picture with a
command such as:

TPostScript myps("myfile.ps",111)
myps .Range (xsize,ysize);
object->Draw();

myps.Close();

The first parameter in the TPostScript constructor is the name of the file; the second one is the format option:

222 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

e 111 - ps portrait
e 112 - ps landscape

e 113 - eps
You can set the default paper size with:
gStyle->SetPaperSize (xsize,ysize);

You can resume writing again in this file with myps.0Open(). Note that you may have several Post Script files opened
simultaneously. Use TPostScript: :Text(x,y,"string") to add text to a postscript file. This method writes the
string in quotes into a PostScript file at position x, y in world coordinates.

9.10.1 Special Characters

The following characters have a special action on the PostScript file:

e ¢ - goto Greek

e ’ - go to special

L]
R

- go to Zapf Dingbats
e 7 - go to subscript
e ~ - go to superscript
e ! - go to normal level of script
e & - backspace one character
e # - end of Greek or end of ZapfDingbats
These special characters are printed as such on the screen. To generate one of these characters on the PostScript file,

you must escape it with the escape character “@”. The use of these special characters is illustrated in several scripts
referenced by the TPostScript constructor.

9.10.2 Writing Several Canvases to the Same PostScript File
The following sequence writes the canvas to “c1.ps” and closes the postscript file:
TCanvas c1("cl1");

h1l.Draw();
cl.Print("cl.ps");

If the Postscript file name finishes with “(”, the file remains opened (it is not closed). If the Postscript file name
finishes with “)” and the file has been opened with “(”, the file is closed.

{
TCanvas c1("c1");
hil.Draw();
cl.Print("cl.ps("); // write canvas and keep the ps file open
h2.Draw();
cl.Print("cl.ps"); // canvas is added to "cl.ps"
h3.Draw();
cl.Print("cl.ps)"); // canvas is added to "cl.ps”
// and ps file is closed
}

The TCanvas: :Print("file.ps(") mechanism is very useful, but it can be a little inconvenient to have the action of
opening/closing a file being atomic with printing a page. Particularly if pages are being generated in some loop, one
needs to detect the special cases of first and last page. The “[” and “]” can be used instead of “(” and “)” as shown in
the next example.

9.10. THE POSTSCRIPT INTERFACE 223

cl.Print("file.ps["); // no actual print; just open file.ps
for (i=0; i<10; ++i) {
// fill canvas for context %

cl.Print("file.ps"); // actually print canvas to file.ps
} // end loop
cl.Print("file.ps]l"); // no actual print; just close file.ps

The following script illustrates how to open a postscript file and draw several pictures. The generation of a new
postscript page is automatic when TCanvas: :Clear is called by object->Draw().

{
TFile f("hsimple.root");
TCanvas c1("cl1","canvas",800,600);
//select PostScript output type
Int_t type = 111; //portrait ps
// Int_t type = 112; //landscape ps
// Int_t type = 113; //eps
//create a PostScript file and set the paper size
TPostScript ps("test.ps",type);
ps.Range(16,24); //set z,y of printed page
//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw() ;
cl.Update(); //force drawing in a script
hprof->Draw() ;
cl.Update();
hpx->Draw("legol");
cl.Update();
ps.Close();
}

The next example does the same:

TFile f("hsimple.root");
TCanvas cl1("cl1","canvas",800,600);

//set z,y of printed page
gStyle->SetPaperSize(16,24);

//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw() ;

c1->Print("testl.ps(", "Portrait");

hprof->Draw() ;

c1->Print("testl.ps");

hpx->Draw("legol");

cl1->Print("testl.ps)");

This following example shows two pages. The canvas is divided. TPostScript: :NewPage must be called before starting
a new picture. object->Draw does not clear the canvas in this case because we clear only the pads and not the main
canvas. Note that c1->Update must be called at the end of the first picture.

TFile *f1 = new TFile("hsimple.root");
TCanvas *cl = new TCanvas('"cl1");
TPostScript *ps = new TPostScript("file.ps",112);

// picture 1

224 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

c1->Divide(2,1);
ps—>NewPage () ;
cl->cd(1);
hpx->Draw() ;
cl->cd(2);
hprof->Draw() ;

// picture 2
c1->Update();
ps—>NewPage () ;
cl->cd(1);
hpxpy->Draw() ;
cl->cd(2);
ntuple->Draw("px") ;
c1->Update () ;
ps—>Close();

// invoke PostScript viewer
gSystem->Exec("gs file.ps");
¥

The next one does the same:

{
TFile *f1 = new TFile("hsimple.root");
TCanvas *cl = new TCanvas("cl1");
c1->Divide(2,1);

// picture 1

cl->cd(1);

hpx->Draw() ;

cl->cd(2);

hprof->Draw() ;

c1->Print ("test2.ps(", "Landscape");

// picture 2

cl->cd(1);

hpxpy->Draw() ;

cl->cd(2);

ntuple->Draw("px") ;

c1->Print("test2.ps)");

gSystem—>Exec("gs file.ps"); // invoke PostScript wiewer

9.10.3 The Color Models

TPostScript (and TPDF) support two color models: RGB and CMYK. CMY and CMYK models are subtractive color
models unlike RGB which is an additive. They are mainly used for printing purposes. CMY means Cyan Magenta
Yellow to convert RGB to CMY it is enough to do: C=1-R, M=1-G and Y=1-B. CMYK has one more component K
(black). The conversion from RGB to CMYK is:

Double_t Black
Double_t Cyan
Double_t Magenta
Double_t Yellow

TMath: :Min(TMath: :Min(1-Red, 1-Green) , 1-Blue);
(1-Red-Black)/(1-Black);
(1-Green-Black)/(1-Black);
(1-Blue-Black)/(1-Black);

CMYK add the black component which allows to have a better quality for black printing. TPostScript (and TPDF)
support the CMYK model. To change the color model use

gStyle->SetColorModelPS(c);

e ¢ = 0 means TPostScript will use RGB color model (default)
1 means TPostScript will use CMYK color model

9.11. THE PDF INTERFACE 225

9.11 The PDF Interface

Like PostScript, PDF is a vector graphics output format allowing a very high graphics output quality. The functionnalities
provided by this class are very similar to those provided by TPostScript*.

Compare to PostScript output, the PDF files are usually smaller because some parts of them can be compressed.

PDF also allows to define table of contents. This facility can be used in ROOT. The following example shows how to
proceed:

{
TCanvas* canvas = new TCanvas("canvas");
TH1F* histo = new TH1F("histo","test 1",10,0.,10.);
histo->SetFillColor(2);
histo->Fill(2.);
histo->Draw();
canvas->Print ("plots.pdf (","Title:0One bin filled");
histo->Fill(4.);
histo->Draw();
canvas—->Print ("plots.pdf","Title:Two bins filled");
histo->Fill(6.);
histo->Draw();
canvas->Print ("plots.pdf","Title:Three bins filled");
histo->Fill(8.);
histo->Draw();
canvas->Print ("plots.pdf","Title:Four bins filled");
histo->Fill(8.);
histo->Draw();
canvas->Print ("plots.pdf)","Title:The fourth bin content is 2");
}

)

Each character string following the keyword “Title:” makes a new entry in the table of contents.

9.12 Create or Modify a Style

All objects that can be drawn in a pad inherit from one or more attribute classes like TAttLine, TAttFill, TAttText,
TAttMarker. When objects are created, their default attributes are taken from the current style. The current style
is an object of the class TStyle and can be referenced via the global variable gStyle (in TStyle.h). See the class
TStyle for a complete list of the attributes that can be set in one style.

ROOT provides several styles called:

e “Default” - the default style
e “Plain” - the simple style (black and white)
e “Bold” - bolder lines

e “Video” - suitable for html output or screen viewing
The “Default” style is created by:
TStyle *default = new TStyle("Default","Default Style");

The “Plain” style can be used if you want to get a “conventional” PostScript output or if you are working on a
monochrome display. The following example shows how to create it.

TStyle *plain = new TStyle("Plain",
"Plain Style(no colors/fill areas)");
plain->SetCanvasBorderMode (0) ;
plain->SetPadBorderMode (0) ;
plain->SetPadColor(0);
plain->SetCanvasColor(0) ;
plain->SetTitleColor(0);
plain->SetStatColor(0);

226 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE
You can set the current style by:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style by:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles by:

TStyle *stl = new TStyle("stl","my style");
stl->Set...
st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via statements like:

gStyle->SetStatX(0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset(1.2);
gStyle->SetLabelFont (72) ;

Note that when an object is created, its attributes are taken from the current style. For example, you may have created
a histogram in a previous session and saved it in a file. Meanwhile, if you have changed the style, the histogram will be
drawn with the old attributes. You can force the current style attributes to be set when you read an object from a file
by calling ForceStyle before reading the objects from the file.

gROOT->ForceStyle();

When you call gRO0OT->ForceStyle() and read an object from a ROOT file, the object’s method UseCurrentStyle
is called. The attributes saved with the object are replaced by the current style attributes. You call also call
myObject->UseCurrentStyle () directly. For example if you have a canvas or pad with your histogram or any other
object, you can force these objects to get the attributes of the current style by:

canvas->UseCurrentStyle();

The description of the style functions should be clear from the name of the TStyle setters or getters. Some functions
have an extended description, in particular:

e TStyle::SetLabelFont

e TStyle::SetLineStyleString: set the format of dashed lines.

e TStyle::SetOptStat

o TStyle::SetPalette to change the colors palette

e TStyle::SetTitleOffset

e TStyle::SetOptDate(Int_t optdate) to support several date formats. If optdate is non-null, the current
date/time will be printed in the canvas. The position of the date string can be controlled by: optdate =
10*format+mode

e mode = 1 the date is printed in the bottom/left corner

o mode = 2 date is printed in the bottom/right corner

o mode = 3 date is printed in the top/right corner

o format = O (default) date format is like: “Wed Sep 25 17:10:35 2002”
e format = 1 date format is: “2002-09-25"
e format = 2 date format is: “2002-09-25 17:10:35”

9.13. 3D VIEWERS 227

9.13 3D Viewers

ROOQOT provides several viewers capable of displaying 3D content:

e the Pad - simple line drawing using TPad and associated projection class TView;
o GL Viewer - high quality and performance viewer(See “The GL Viewer”);
o X3D viewer - simple legacy viewer (See “The X3D Viewer”);
e GL-in-pad - combination of basic GL viewer in TPad, with no hardware acceleration.
The X3D and GL viewers are created as external windows, associated with a pad, and displaying the same content

as it. Only these external viewers are detailed here - for Pad (TPad, TView classes) you should refer to “Graphical
Containers: Canvas and Pad” and the class definitions.

All viewers use a common architecture to publish 3D objects to the viewer - described in “Common 3D Viewer
Architecture” below. In most cases, you will not need to use this, working instead with a package, such as the “The
Geometry Package”, which provides comprehensive, high level functionality to create and place objects into complex
3D scenes, and uses the viewer architecture internally to show the result in your chosen viewer.

9.13.1 Invoking a 3D viewer

A 3D viewer can be created in a script by passing the appropriate option to Draw () when attaching the drawn object(s)
to a pad. For a fuller explanation of pads, attaching objects with Draw() etc. refer to “Graphical Containers: Canvas
and Pad”.

root[] myShapes->Draw("ogl");
Valid option strings are:

o “ogl” : external GL viewer
e “x3d”: external X3D viewer
e “pad”: pad viewer
If no option is passed to Draw() then the “pad” is used by default. If you already have content in a pad, which you

would like to display in one of the external viewers you can select from the canvas View menu / View With, and pick
the viewer type.

o 1ol
File Edit Dptions Inspect Classes Help
Editar

Toolbar
Ewent Status

Zolors
]] =
Markers

|canify

Figure 9.34: Invoking external 3D viewers from canvas menus

Note: A current limitation means that when an external viewer is created the pad is no longer redrawn. When the
external viewer is closed, clicking in the pad will refresh.

228 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.13.2 The GL Viewer

The GL Viewer uses (or compliant libraries such as) to generate high quality, high-performance 3D renderings, with
sophisticated lighting, materials and rendering styles for 3D scenes. Many users will be able to take advantage of
hardware acceleration of the underlying OpenGL commands by their computer’s video card, resulting is considerable
performance gains - up to interactive manipulation of 1000’s of complex shapes in real-time.

The GL Viewer is supported on all official ROOT platforms (assuming you have suitable libraries), and is the main 3D
viewer, which development effort is concentrated upon. As OpenGL® is a trademark we refer to our viewer built on
this technology as the ‘GL Viewer’. The code for it can be found under $RO0TSYS/gl.

File Camera Help

Style IGuidesl Clipping |
Mame ———
GLWiewer:TGLEAYiewer

Light sources:
vV Top

V' Right

IV Bottom

IV Left

V' Front

Clear colar |:| |v

Update behaviour
I Ignore sizes
IV Reset on update
¥ Reseton dbl-click
Update Scene

Camera Home >

Figure 9.35: The GL 3D Viewer

You can manipulate the viewer via the GUI or via the base TGLViewer object behind the interface. These are detailed
below - see also $RO0OTSYS/tutorials/gl/glViewerExercise.C.

9.13.2.1 Projections Modes (Cameras)

The GL Viewer supports two basic types of camera, which affect how the 3D world is projected onto the 2D render
area:

e Perspective: Objects are drawn with characteristic ‘foreshortening’ effect, where distant objects appear smaller
than near ones. This is useful for obtaining a ‘real world’ views. The degree of foreshortening is affected by the
current camera field of view (focal length of its ‘lens’) - see “Adjusting Cameras”.

e Orthographic: Distance from camera does not affect object size. These projections are useful for measurement or

checking alignments, as the sizes and angles between objects are preserved.

You can select the active camera from the viewer’s Camera menu on the top menu bar. There are three perspective
camera choices:

o Perspective (Floor XOZ) Default

o Perspective (Floor YOZ)

9.13. 3D VIEWERS 229

o Perspective (Floor XOY)

In each case the perspective camera is constrained to keep the chosen floor plane, defined by a pair of world axes,
appearing level at all times - i.e. there is no banking of the ‘horizon’ that you experience when a plane rolls. There are
also three orthographic camera choices:

o Orthographic (XOY)

o Orthographic (XOZ)

o Orthographic (ZOY)
Orthographic projections are generally constrained to look down one of the global axes of the world, with the other two
axes lying horizontal/vertical on the viewer window. Therefore, XOY has the X-axis horizontal, the Y-axis vertical.
You can always confirm the orientation and constraints of the camera in the world by enabling axis drawing in the

“Guides” tab - see sections “Guides” and “Clipping” below. For orthographic camera a ruler-depicting current scene
units is also available.

You can also pick the current camera by obtaining a handle to the GL Viewer object behind the interface:
TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

calling the method TGLViewer: :SetCurrentCamera with one of the TGLViewer: :ECameraType types:
v->SetCurrentCamera(TGLViewer: :kCameraPerspX0Z) ;

See also $ROOTSYS/tutorials/gl/glViewerExercise.C.

9.13.2.2 Adjusting Cameras

The interactions with the camera are summarized above. In each case the interaction is listed, along with description
and user actions required to achieve it. For all cameras you can reset the original default view, framing the entire
scene, by double clicking any mouse button.

®
Orbit ;
"rofate round scene center” |
Left Mouse Button + Drag !
) _i_ e
w-.l'u I ,l'l.z

.H""“'*-..
Truck
"nah paraliel to film plang®
Middle Mouse Button +
Drag
or Arrow Keys

Dolly
“ove carmera glong gye Ime/

Right Mouse Button +
Horizontal Drag

Figure 9.36: GL Viewer camera interactions

For the Zoom interaction you can use the following modifiers combinations to adjust the sensitivity:

230 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

o Shiftx 10
o Ctrlx 0.1
e Shift + Ctrlx 0.01

The modifiers must be applied after the zoom action has started (right mouse button is down).

Note for orthographic cameras:

e There is no field of view of view/focal length - dollying and zooming producing an identical scaling action.

e There is a fixed eye direction - so the ‘Orbit’ action is disabled.
Note for perspective cameras:

« Dollying (moving the camera backwards/forwards) and zooming are often confused, and may appear very similar.

e When you dolly the camera the lens focal length does not change, hence the distortions associated with the
projections are unaffected. However the movement can result in objects coming ‘through the front’ of the camera
and disappearing.

e When you zoom, the camera does not move - hence clipping of near objects is unaffected. However with extremely
small zooms (FOV large/focal length short) noticeable distortions, causing straight lines to become curved, can
be seen with objects near the camera - the ‘fisheye’ lens effect.

e Generally dollying is more ‘natural’, but you may need to use both to achieve the desired perspective and eye
position - particularly when you are working inside or very close to 3D objects.

Configure the camera by calling the methods SetPerspectiveCamera() or SetOrthographicCamera() of TGLViewer:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();
v->SetOrthoCamera (TGLViewer: :kCameraOrthoX0Y,
left,right,top,bottom);

v->SetPerspectiveCamera (camera,fov,dolly,center,hRotate,vRotate);

Note - you can configure any of the six cameras in the viewer at any time, but you will not see the result until the
camera is made current.

9.13.2.3 Draw Styles

The GL Viewer supports three different rendering modes, which are applied to all the objects in your scene, but not
Clip Shapes and Guides (See “Clipping” and “Manipulators”). These are shown below, along with the key used to
activate the style.

Figure 9.37: GL Viewer draw styles

Filled Polygons Wireframe Outline Enable with ‘r’ key Enable with ‘w’” key Enable with ‘t’ key Solid polygons,
with hidden surface Object edges in color, with Combination of Filled Polygons removal, color surface materials, no
surface filling/hiding. and Outline styles. Solid opacity, specular reflection etc. shapes with edges. Black background.
Black background. White background.

Call method TGLViewer: :SetStyle with one of TGLRnrCtx: :EDrawStyleflags kFill, kOutline, kWireFrame:

v->SetStyle (TGLRnrCtx: :kFill);

9.13. 3D VIEWERS 231

9.13.2.4 Lighting / Style

The GL viewer creates five diffuse lights (left, right, top, bottom, and front) arranged around the 3D scene. These
lights are carried with the camera - that is they are always in same position relative to your eye - the left light always
shines from the left.

Light controls are located: Viewer Controls Pane ‘Style’.

Each light has a checkbox to enable/disable it. Set lights on/off with TGLLightSet: :SetLight e.g.

v->GetLightSet () ->SetLight (TGLLightSet: :kLightBottom, KFALSE);

9.13.2.5 Clipping

The GL viewer supports interactive clipping, enabling you to remove sections of your 3D scene and the shapes, revealing
internal details.

Figure 9.38: GL Viewer interactive box clipping

The controls for clipping can be found under: Viewer Controls Pane ‘Clipping’ tab.

Two clipping ‘shapes’ are currently supported:

¢ Single plane

e« Box

Pick the type from the radio buttons - only one (or none) may be active at one time.

The clip object can be adjusted by:

¢ Adjusting the values in the properties panel GUI

o Directly manipulating the clip object in the viewer

232 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

To show and/or directly manipulate the object check the ‘Show / Edit in Viewer’ checkbox. The clip object is drawn in
semi-transparent light brown. The current manipulator is attached to it, allowing you direct control over its position,
scale and rotation. See “Manipulators” section below for details on using viewer manipulators.

The clip plane is described by the standard plane equation: ax+by+cz+d=0, where the factors a, b, c, d are entered
into the edit boxes, and applied using the ‘Apply’ button.

The clip box is described by its center position, entered in the ‘Center X', ‘Center Y’ and ‘Center Z’ edit boxes, and its
lengths (extents) entered in the ‘Length X', ‘Length Y’ and ‘Length Z’ edit boxes.

This clipping is achieved using OpenGL clip plane support; as such, there are certain limitations:

e Solid shapes are not capped - they appear hollow.

e Only shapes, which can be described with combination of planes, can be rendered in this fashion - e.g. a clipping
tube is not possible.

o Each additional clipping plane requires an additional render pass - so the more active planes the more time the
render will take.

Set the current clip object with TGLClipSet: :SetClipType
v->GetClipSet () ->SetClipType (TGLClipSet: :kClipPlane) ;
Configure the clip object with TGLClipSet::SetClipState

Double_t planeEq[4] = {0.5,1.0,-1.0, 2.0};
v->GetClipSet () ->SetClipState (TGLClipSet: :kClipPlane, planeEq);

As with cameras, any clip can be configured at any time, but you must set the clip current to see the effect.

9.13.2.6 Manipulators

Manipulators are GUI ‘widgets’ or controls attached to a 3D object in the viewer, allowing a direct manipulation of
the object’s geometry. There are three manipulators for the three basic geometries transformations. In each case, the
manipulator consists of three components, one for each local axis of the object, shown in standard colors: red (X),
green (Y) and blue (Z).

Activate the manipulator by moving the mouse over one of these components (which turns yellow to indicate active
state). Click with left mouse and drag this active component to perform the manipulation. Toggle between the

[N N B4

manipulator types using the ‘x’, ‘c’; ‘v’ keys while the mouse cursoris above the manipulator. Note: Manipulators
cannot be controlled via the APT at present.

9.13.2.7 Guides

Guides are visual aids drawn into the viewer world. Controls for these are under the “Guides” tab:
Viewer Controls Pane Guides Tab

Axes show the world (global) frame coordinatedirections: X (red), Y (green) and Z (blue). The negative portion of the
azis line is shown in dark color, the positive in bright. The azis name and minimum / maximum values are labeled in
the same color. There are three options for azes drawing - selected by radio buttons:

o None - not drawn (default).
o Edge - draw axes on the (minimum) edge of the scene extents box.
e Origin - drawn axes through the origin.

For edge azes, the zero value for each axis is marked on the axis line with a colored sphere. For origin azes, a single
white sphere is shown at the origin.

Edge azes are depth clipped - i.e. are obscured by 3D objects in front of them. Origin azes (which generally pass
through the middle of the 3D scene) are not depth clipped - so always visible.

9.13. 3D VIEWERS 233

Translation

Move the object along one of a
local axis. Axis lines with arrow
heads.

{enable with v’ key)

Scale

Scale the object along one of a
local axis. Axis lines with box
heads.

{enable with 'x" key)

Rotation

Rotate the object along one of a
local axis. Axis nings in plane
with axis normal.

{enable with 'c’ key)

Figure 9.39: GL Viewer object manipulators

234 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

A single orange sphere of fixed view port (window) size can be shown at any arbitrary position. Enable / disable the
drawing with ‘Show’ checkbox. Enter X/Y/Z position in the edit boxes to set position. Initial position is at the center
of the scene.

Set the guides using TGLViewer: :SetGuideState e.g. to enable edge axes, and enable a reference marker at world
position 50, 60, 100:

Double_t refPos[3] = {50.0,60.0,100.0%};
v->SetGuideState (TGLUtil: :kAxesEdge, kTRUE, refPos);

9.13.2.8 Selecting Scene Shapes

You can select a single shape from your scene by pressing ‘Shift’ key, pointing and left clicking anywhere on the shape
in the viewer. Selection is currently shown by drawing the shape-bounding box (not depth clipped) in white (polygon
or wire frame render styles) or red (outline render style). Manipulators supported by the shape are drawn in red, green
and blue while the non-supported ones are drawn in grey. To deselect a shape, either select another, or shift/click
anywhere on the background (empty space) in the viewer. You cannot select Manipulators or Guides (Axes / Reference
Marker).

9.13.2.9 Editing Shapes
When a shape is selected, the viewer’s control pane shows the user interface that allows you to review and adjust the
color and geometry properties of the shape.

Note: At present modifications to the shapes are local to the viewer - they are not propagated back to external
objects/client that published to the viewer. The changes are preserved only until the viewer is closed. In some cases,
this will never be feasible as there is not a one-to-one correspondence between a shape in the viewer and a single
external object in which the modification could be stored.

9.13.2.10 Colors / Style

Viewer Controls Pane ‘Style’ tab.

A full description of OpenGL materials, colors and lighting is beyond the scope of this document. You should refer to
the OpenGL programming manual (Red Book) for a full discussion. In most cases adjustment of the Diffuse color
material + Opacity/Shine properties is sufficient to achieve desired results.

A shape has four-color materials (components):

« Diffuse

¢ Ambient

e Specular

o Emissive
For each of these you can select the component via the radio buttons. Each component can have the red, green and
blue values for the component adjusted via the sliders. You can apply this adjustment to the shape itself, or to all

shapes sharing a common ‘family’. Shapes of the same family have external objects with the same TObject name string.
You can also adjust the ‘Opacity’ and ‘Shine’ for the shapes materials via the sliders.

9.13.2.11 Geometry

Viewer Controls Pane ‘Geometry’ tab.

Review and modify the shapes X/Y/Z center and scaling factors via the edit boxes. Selection and editing of shapes is
not available via the API at present.

9.13.2.12 Outputting Viewer Contents

The current viewer rendering can be output to an external EPS or PDF, using the options under the ‘File’ menu on the
top menu bar. The file is named ‘viewer.eps’ or ‘viewer.pdf’ and written to the current ROOT directory.

9.13. 3D VIEWERS 235

9.13.3 The X3D Viewer

The X3D viewer is a fairly simple and limited viewer, capable of showing basic lines and polygons. It lacks the quality,
performance and more advanced features of the GL Viewer, and additionally is not supported on Windows. It is not
actively developed and you are encouraged to use the GL Viewer out of preference. The below table presents the main
interactions - these are repeated in the Help dialog of the viewer.

Action KeyActionKey

Wireframe Mode wRotate about xx a

Hidden Line Mode eRotate about yy b

Hidden Surface Mode rRotate about zz ¢

Move object down uAuto-rotate about x1 2 3
Move object up iAuto-rotate about y4 5 6

Move object left 1Auto-rotate about z7 8 9

Move object right hToggle controls styleo

Move object forward jToggle stereo displays
Move object backward kToggle blue stereo viewd
Adjust focus (stereo mode) [] { }Toggle double bufferf

Rotate object Left mouse button down + move.

9.13.4 Common 3D Viewer Architecture

The 3D Viewer Architecture provides a common mechanism for viewer clients to publish 3D objects to it. It enables:
e Decoupling of producers (geometry packages etc) who model collection of 3D objects from consumers (viewers)
which display them.
e Producer code free of explicit drawing commands & viewer specific branching.
e Support differing viewers and clients capabilities, e.g.
o Mix of native (in viewer) shapes and generic client side tessellation.
o Local/global frame object description
¢ Bounding boxes

 Placing copies sharing common geometry (logical/physical shapes).
The architecture consists of:

e TVirtualViewer3D interface: An abstract handle to the viewer, allowing client to add objects, test preferences
etc.

o TBuffer3D class hierarchy: Used to describe 3D objects (“shapes”) - filled /added by negotiation with viewer via
TVirtualViewer3D.

A typical interaction between viewer and client using these, taken from TGeoPainter is:

TVirtualViewer3D * viewer = gPad->GetViewer3D();

// Does wviewer prefer local frame positions?

Bool_t localFrame = viewer->PreferLocalFrame();

// Perform first fetch of buffer from the shape and try adding it to the viewer
const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D: :kCore |

TBuffer3D: :kBoundingBox |

TBuffer3D: :kShapeSpecific,

localFrame);

Int_t reqSections = viewer->AddObject(buffer, &addDaughters);

236 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

// If the viewer requires additional sections fetch from the shape
// (if possible) and add again

if (reqSections != TBuffer3D: :kNone)
shape.GetBuffer3D(reqSections, localFrame);

Together these allow clients to publish objects to any one of the 3D viewers free of viewer specific drawing code. They
allow our simple x3d viewer, and considerably more sophisticated OpenGL one to both work with both geometry
libraries (g3d and geom) efficiently.

In addition to external viewers, created in separate windows, this architecture is also used by internal TPad drawing
when it requires 3D projections. Publishing to a viewer consists of the following steps:

1- Create / obtain viewer handle.

2- Begin scene on viewer.

3- Fill mandatory parts of TBuffer3D describing object.

4- Add to viewer.

5- Fill optional parts of TBuffer3D as requested by viewer.
[.... repeat 3/4/5 as required for other/child objects]

6- End scene on viewer.

You should attach the top-level node of your external geometry (or the manager) to a TPad object using
TObject::Draw(), and perform the publishing to the viewer in your object’s TObject::Paint() over-
loaded method. See “Scene Rebuilds”, and example scripts, for more details.

9.13.4.1 Creating / Obtaining Viewer Handle

External viewers are bound to a TPad object (this may be removed as a requirement in the future). You can create or
obtain the current viewer handle via the method:

TVirtualViewer3D * v = gPad->GetViewer3D("type");
Here the “type” string defines the viewer type - currently one of:

o “ogl” : External GL viewer
e “x3d”: External X3D viewer

e “pad”: Pad viewer

If no type is passed (null string), and there is no current viewer, then the type is defaulted to “pad”. If no type is passed
and there is a current viewer, then this is returned - hence once a viewer is created it can be obtained elsewhere by:

TVirtualViewer3D * v = gPad->GetViewer3D();

9.13.4.2 Opening / Closing Scenes

Objects must be added to viewer between BeginScene () and EndScene() calls e.g.

viewer->BeginScene();
// Add objects
viewer ->EndScene();

These calls enable the viewer to suspend redraws, and perform internal caching/setup. If the object you attach to the
pad derives from TAtt3D, then the pad will take responsibility for calling BeginScene () and EndScene() for you. You
can always test if the scene is already open for object addition with:

viewer->BuildingScene();

Note: the x3d viewer does not support rebuilding of scenes - objects added after the first Open/Close Scene pair will
be ignored.

9.13. 3D VIEWERS 237

Producers Intermediaries Consumers
TVirtualViewer3D & TBuffer3D

TVirtualViewer3D
Interface
:;‘:;;1“‘“‘” AddObject(..) | TViewerOpenGL
TGeoPainter| | =<————=={ Logical { physical
-l maps of objects.
Can be rebuilt.
Old Geometry TNode = ~| TViewerX3D
TNode/TBRIK etc. (g3d Geom) = = Scene of points
g segments polys.
Single build.
‘Standalone’ shapes = e
TPolyLine3D etc. [] - =
O TViewer3DPad
—— e e e e e e e e e e e e e = = = = = = = == Direct draw each
Other clients == = time. Frame Buffered.
GEANT4 etc. =k o

Figure 9.40: Overview of 3D viewer architecture

9.13.4.3 Describing Objects - Filling TBuffer3D

The viewers behind the TVirtualViewer3D interface differ greatly in their capabilities e.g.

e Some support native shape (e.g. spheres/tubes in OpenGL) and can draw these based on an abstract description.
Others always require a tessellation description based on TBuffer3D’s kRaw / kRawSizes points/lines/segments
sections.

o Some need the 3D object positions in the master (world) frame, others can cope with local frames and a translation
matrix to place the object.

¢ Some require bounding boxes for objects - others do not.

Similarly some viewer clients are only capable of providing positions in master frame, cannot provide bounding boxes
etc. Additionally we do not want to incur the cost of expensive tessellation operations if the viewer does not require
them. To cope with these variations the TBuffer3D objects are filled by negotiation with the viewer.

TBuffer3D classes are conceptually divided into enumerated sections: kCore, kBoundingBox, kRaw - see the class
diagram and the file TBuffer3D.h for more details. The TBuffer3D methods SectionsValid(), SetSectionsValid(),
ClearSectionsValid() are used to test, set, clear these section validity flags e.g.

buffer.SetSectionsValid (TBuffer3D: :kShapeSpecific);
if (buffer.SectionsValid(TBuffer3D:: kShapeSpecific)) {

3

The sections found in the base TBuffer3D (kCore/kBoundingBox/kRawSizes/kRaw) are sufficient to describe any
tessellated shape in a generic fashion. An additional kShapeSpecific section is added in TBuffer3D derived classes,
allowing a more abstract shape description (“a sphere of inner radius x, outer radius y”). This enables a viewer, which
knows how to draw (tessellate) the shape itself to do so, while providing a generic fallback suitable for all viewers. The
rules for client negotiation with the viewer are:

238

CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

TBuffer3D

Core
Logical Shape ID
Local/Master Translation

Attributes: Color, Transparency efc.

Bounding Box
Axis Aligned (Local Frame)
Orientated (Master Frame)

Raw Sizes
Nb Points/Segs/Polys

Raw
Points/Segs/Polys

7

Generic Shapes

TBuffer3aDSphere

Shape Specific
Inner Radius
Outer Radius
Theta Min/Max
Phi Min/Max

TBuffer3DTube

Shape Specific
Inner Radius
Quter Radius
Half Length

<

TBuffer3DTubeSeg

Shape Specific
Phi Min
Phi Max

TBuffer3DCutTube

Shape Specific
Low Plane
High Plane

Figure 9.41: TBuffer3D class hierarchy

additional
shape specific
classes
to be added in
future

9.13. 3D VIEWERS 239

o If suitable specialized TBuffer3D class exists, use it, otherwise use TBuffer3D.
e Complete the mandatory kCore section.

e Complete the kShapeSpecific section if applicable.

e Complete the kXBoundingBox if you can.

o Pass this buffer to the viewer using one of the TBuffer3D: : AddObject () methods.

If the viewer requires more sections to be completed (kRaw/kRawSizes) TBuffer3D: :AddObject () will return flags
indicating which ones, otherwise it returns kNone. If requested, you must fill the buffer, mark these sections valid, and
call TBuffer3D: :AddObject again, to complete adding the object. For example, in out TGeo geometry package, in
TGeoPainter: :PaintShape, we perform the negotiation with viewer:

TVirtualViewer3D * viewer = gPad->GetViewer3D();
if (shape.IsA() != TGeoCompositeShape::Class()) {
// Does wiewer prefer local frame positions?
Bool_t localFrame = viewer->PreferLocalFrame();
// Perform first fetch of buffer from the shape and adding
// it to the viewer
const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D: :kCore |
TBuffer3D: :kBoundingBox |
TBuffer3D: :kShapeSpecific, localFrame);
Int_t reqSections = viewer->AddObject(buffer, &addDaughters) ;
// If the viewer requires additional sections fetch from the
// shape (if possible) and add again
if (reqSections != TBuffer3D::kNone) {
shape.GetBuffer3D(reqSections, localFrame);
viewer->AddObject (buffer, &addDaughters);

The buffer is supplied/filled by the appropriate TShape: :GetBuffer3D() and TShape::FillBuffer3D overloads
e.g. for a sphere in TGeoSphere.

const TBuffer3D &TGeoSphere::GetBuffer3D(Int_t reqSections,
Bool_t localFrame) const {
// Fills a static 3D buffer and returns a reference.
static TBuffer3DSphere buffer;
// Filling of kBoundingBox ts defered to TGeoBBoz, and
// kCore on up to TGeoShape
TGeoBBox: :FillBuffer3D(buffer, reqSections, localFrame);
// Complete kShapeSpecific section for sphere
if (reqSections & TBuffer3D::kShapeSpecific) {
buffer.fRadiusInner = fRmin;
buffer.fRadiusOuter = fRmax;

buffer.SetSectionsValid(TBuffer3D: :kShapeSpecific) ;
}
// Complete kRawSizes section
if (reqSections & TBuffer3D::kRawSizes) {

buffer.SetSectionsValid (TBuffer3D: :kRawSizes);
}

// Complete kRaw tesselation section
if ((reqSections & TBuffer3D::kRaw) &&
buffer.SectionsValid(TBuffer3D: :kRawSizes)) {
SetPoints (buffer.fPnts);
// Transform points to master frame tf viewer requires %t
// The fLocalFrame flag and translation matriz will have
// already been set in TGeoShape::FillBuffer3D() as required

240 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

if ('buffer.fLocalFrame)

TransformPoints (buffer.fPnts, buffer.NbPnts());
SetSegsAndPols (buffer) ;
buffer.SetSectionsValid(TBuffer3D: :kRaw) ;

}

return buffer;
}
Note:

e we use a static TBuffer3D derived object for efficiency - once the object is added the buffer can be reused.

o kRawSize (the calculation of tessellation sizing required in buffer) and kRaw (the actual filling of tessellation) is
split, as the X3D viewer requires two publication passes - one to establish the full tessellation capacity for all
shapes, and another to actually add them. Splitting avoids having to do the expensive tessellation on the first
pass.

9.13.4.4 Shape Specific TBuffer3D Derived Classes

Currently we provide the following shape specific classes, which the GL Viewer can take advantage of (see TBuffer3D.h
and TBuffer3DTypes.h)

o TBuffer3DSphere - solid, hollow and cut spheres (GL Viewer only supports solid spheres at present - cut / hollow
ones will be requested as tessellated objects by client.)

o TBuffer3DTube - basic tube with inner/outer radius and length.
o TBuffer3DTubeSeg - angle tube segment.

o TBuffer3DCutTube - angle tube segment with plane cut ends.

See the above example from TGeoSphere: :GetBuffer3D and also equivalent functions in TGeoTube, TGeoTubeSeg and
TGeoCtub. Anyone is free to add new TBuffer3D classes, but it should be clear that one or more viewers will require
updating to be able to take advantage of them. Hence we only provide classes which existing viewers can benefit from.
The number of native shapes in GL Viewer will be expanded in the future.

9.13.4.5 Master / Local Reference Frames

The Core section of TBuffer3D contains two members relating to reference frames:

e fLocalFrame: indicates if any positions in the buffer (bounding box and tessellation vertexes) are in local or
master (world frame).

o fLocalMaster: is a standard 4x4 translation matrix (OpenGL column major ordering) for placing the object
into the 3D master frame.

If fLocalFrame is false, fLocalMaster should contain an identity matrix. This is set by default, and can be reset
using the TBuffer3D: :SetLocalMasterIdentity() method.

9.13.4.6 Bounding Boxes

You are not obliged to complete the kBoundingBox section, as any viewer requiring one internally (GL Viewer) will
build it if you do not provide. However to do this the viewer will force you to provide the (expensive) raw tessellation,
and the resulting box will be axis aligned with the overall scene, which is non-ideal for rotated shapes. As we need
to support orientated (rotated) bounding boxes, TBuffer3D requires the 6 vertices of the box. We also provide a
convenience function, TBuffer: : SetAABoundingBox (), for simpler case of setting an axis aligned bounding box. The
bounding box should be filled in same frame (local / master) as the rest of the TBuffer3D, and inaccordance with
fLocalFrame flag.

A typical example from TGeoBBox::FillBuffer3D:

9.13. 3D VIEWERS 241

if (reqSections & TBuffer3D::kBoundingBox) {
Double_t halflengths[3] = { fDX, fDY, £fDZ };
buffer.SetAABoundingBox (fOrigin, halfLengths);
if (!'buffer.fLocalFrame) {
TransformPoints (buffer.fBBVertex[0], 8);
}
buffer.SetSectionsValid (TBuffer3D: :kBoundingBox) ;

9.13.4.7 Logical and Physical Objects

Some viewers can support two types of object placement:

e Add object as a single independent entity in the world reference frame - e.g. a sphere, radius r, at x, y, z.

o Repeated placement (copying) in world frame of this locally unique piece of geometry (described in local reference
frame) e.g. define a sphere S (radius r), place copy at x1, y1, z1, another copy at x2, y2, z2 etc.

The second case is very typical in geometry packages, e.g. ROOT’s TGeo package, GEANT4 etc, where we have very
large number repeated placements of relatively few unique “shapes”.

Some viewers (GL Viewer only at present) are able to take advantage of this by identifying unique logical shapes from
the £ID logical ID member of TBuffer3D. If repeated addition of the same £ID is found, the shape is cached already -
and the costly tessellation does not need to be sent again. The viewer can also perform internal GL specific caching
(display lists) with considerable performance gains in these cases. For this to work correctly the logical object in must
be described in TBuffer3D in the local reference frame, complete with the local/master translation. In some cases you
will not have a real object you can reasonably set TBuffer3D: :fID to, or the object is recycled or temporary.
To suppress internal caching in the GL Viewer in these cases, set TBuffer3D::£fID to 0 (null).

The viewer indicates it can support local frame objects through the TVirtualViewer3D interface method:
PreferLocalFrame (). If this returns kTRUE you can make repeated calls to AddObject (), with TBuffer3D containing
the same fID, and different fLocalMaster placements.

For viewers supporting logical /physical objects, the TBuffer3D content refers to the properties of the logical object,
with the exception of:

e fLocalMaster transform

e fColor

o fTransparency

attributes, which can be varied for each physical object.

As a minimum requirement all clients must be capable of filling the raw tessellation of the object buffer, in the
master reference frame. Conversely viewers must always be capable of displaying the object described by this buffer. If
either does not meet this requirement the object may not be displayed.

9.13.4.8 Scene Rebuilds

TBuffer3D: :AddObject is not an explicit command to the viewer - it may for various reasons decide to ignore it:

e It already has the object internally cached.
e The object falls outside some ‘interest’ limits of the viewer camera.

e The object is too small to be worth drawing.

In all these cases TBuffer3D: :AddObject () returns kNone, as it does for successful addition, indicating it does not
require further information about this object. Hence you should not try to make any assumptions about what the
viewer did with the object. The viewer may decide to force the client to rebuild (republish) the scene, obtaining a
different collection of objects, if the internal viewer state changes .e.g. significant camera move. It does this presently
by forcing a repaint on the attached TPad object - hence you should attach you master geometry object to the pad (via
TObject: :Draw()), and perform the publishing to the viewer in response to TObject: :Paint ().

242 CHAPTER 9. GRAPHICS AND THE GRAPHICAL USER INTERFACE

9.13.4.9 Physical IDs

TVirtualViewer3D provides for two methods of object addition:

virtual Int_t AddObject(const TBuffer3D &buffer,
Bool_t * addChildren = 0)
virtual Int_t AddObject(UInt_t physicallD,
const TBuffer3D & buffer,
Bool_t *addChildren = 0)

If you use the first (simple) case a viewer using logical /physical pairs will generate sequential IDs for each physical
object internally. Scene rebuilds will require destruction and recreation of all physical objects. For the second you
can specify an identifier from the client side, which must be unique and stable - i.e. the IDs of a published object is
consistent, regardless of changes in termination of contained child geometry branches. In this case the viewer can safely
cache the physical objects across scene rebuilds, discarding those no longer of interest.

9.13.4.10 Child Objects

In many geometries there is a rigid containment hierarchy, and so if the viewer is not interested in a certain object due
to limits/size then it will also not be interest in any of the contained branch of siblings. Both TBuffer3D: : AddObject ()
methods have an addChildren return parameter. The viewer will complete this (if passed) indicating if children of the
object just sent are worth sending.

9.13.4.11 Recycling TBuffer3D

Once add TBuffer3D: :AddObject () has been called, the contents are copied to the viewer’s internal data structures.
You are free to destroy this TBuffer3D, or recycle it for the next object if suitable.

9.13.4.12 Examples

For an example of a simple geometry, working in master reference frame examine the code under $RO0TSYS/g3d. For
a more complex example, which works in both master and local frames, and uses logical/physical division of shape
geometry and placement, examine the code under $RO0OTSYS/geom - in particular TGeoShape hierarchy, and the painter
object TGeoPainter (under geopainter) where the negotiation with the viewer is performed.

Chapter 10

Folders and Tasks

10.1 Folders

A TFolder is a collection of objects visible and expandable in the ROOT object browser. Folders have a name and a
title and are identified in the folder hierarchy by an “UNIX-like” naming convention. The base of all folders is //root.
It is visible at the top of the left panel in the browser. The browser shows several folders under //root.

New folders can be added and removed to/from a folder.

10.2 Why Use Folders?

One reason to use folders is to reduce class dependencies and improve modularity. Each set of data has a producer
class and one or many consumer classes. When using folders, the producer class places a pointer to the data into a
folder, and the consumer class retrieves a reference to the folder.

The consumer can access the objects in a folder by specifying the path name of the folder.
Here is an example of a folder’s path name:
//root/Event/Hits/TCP

One does not have to specify the full path name. If the partial path name is unique, it will find it; otherwise it will
return the first occurrence of the path.

The first diagram shows a system without folders. The objects have pointers to each other to access each other’s data.
Pointers are an efficient way to share data between classes. However, a direct pointer creates a direct coupling between
classes. This design can become a very tangled web of dependencies in a system with a large number of classes.

In the second diagram, a reference to the data is in the folder and the consumers refer to the folder rather than
each other to access the data. The naming and search service provided by the ROOT folders hierarchy provides an
alternative. It loosely couples the classes and greatly enhances I/O operations. In this way, folders separate the data
from the algorithms and greatly improve the modularity of an application by minimizing the class dependencies.

In addition, the folder hierarchy creates a picture of the data organization. This is useful when discussing data design
issues or when learning the data organization. The example below illustrates this point.

10.3 How to Use Folders

Using folders means to build a hierarchy of folders, posting the reference to the data in the folder by the producer, and
creating a reference to the folder by the user.

10.3.1 Creating a Folder Hierarchy

To create a folder hierarchy you add the top folder of your hierarchy to //root. Then you add a folder to an existing
folder with the TFolder: :AddFolder method. This method takes two parameters: the name and title of the folder to
be added. It returns a pointer of the newly created folder.

The code below creates the folder hierarchy shown in the browser. In this macro, the folder is also added to the list of
browsable. This way, it is visible in the browser on the top level.

243

244 CHAPTER 10. FOLDERS AND TASKS

% ROOT Object Browser =] B4

Eile Miew Qplions Help

QText - B) =

| &ll Falders | Contents of “froot/Clas

(droot 21 []Base Classes
- [Classes (] Data Members

E' 155411 (I Methods

' . () Data Members (_1Real Data Members
- -[_] Fieal Data Mem

oo L] Methods
E - _1Base Classes
:L kol

- - [TSignalHandler

+- [TClass

-] TACkss

- [_) TRileHandler

- [_] TParticle

- [TObject

- [THamed

- L TG MenuTitle

- TGToolBar

|:|TG ButtonGroup
|:|TG Composite Frame
|:|TG Frame

- L TG Window

- [TG Object

- [ATa0kiect

|:|TG Horizontal Frame
- [TGListwiew
|:|TG Canvas

[:lTFmer -
a |

|4 Ohiects. | Doubly linked list v

F=-=F=—=fF=—=fF=—=pf==fp==p==p==p-=p=e=epe=epe=ep=e=p=e == =p==p=

10.3. HOW TO USE FOLDERS 245

Producer Folder Consumers

\%%

// Add the top folder of my hierary to //root

TFolder *aliroot=gRO0T->GetRootFolder ()->AddFolder("aliroot",
"aliroot top level folders");

// Add the hierarchy to the list of browsables

gROOT->GetList0fBrowsables()->Add(aliroot,"aliroot");

// Create and add the constants folder
TFolder *constants=aliroot->AddFolder("Constants",
"Detector constants");

// Create and add the pdg folder to pdg
TFolder *pdg = constants->AddFolder("DatabasePDG","PDG database");

// Create and add the run folder
TFolder *run = aliroot->AddFolder("Run","Run dependent folders");

// Create and add the configuration folder to run
TFolder *configuration = run->AddFolder("Configuration",
"Run configuration");

// Create and add the run_mc folder
TFolder *run_mc = aliroot->AddFolder ("RunMC",
"MonteCarlo run dependent folders");

// Create and add the configuration_mc folder to run_mc
TFolder *configuration_mc = run_mc->AddFolder("Configuration",
"MonteCarlo run configuration");

10.3.2 Posting Data to a Folder (Producer)

A TFolder can contain other folders as shown above or any TObject descendents. In general, users will not post a
single object to a folder; they will store a collection or multiple collections in a folder. For example, to add an array to
a folder:

TObjArray *array;
run_mc->Add (array) ;

10.3.3 Reading Data from a Folder (Consumer)

One can search for a folder or an object in a folder using the TROOT: :FindObjectAny method. It analyzes the string
passed as its argument and searches in the hierarchy until it finds an object or folder matching the name. With
FindObjectAny, you can give the full path name, or the name of the folder. If only the name of the folder is given, it

246 CHAPTER 10. FOLDERS AND TASKS

"% ROOT Object Browser M=] E3

File Wiew Options Help
{4 root ll | Eﬂﬁﬁzl
|All Folders | Contents of “/root"
b oot (1 Browsers
[momedghiszpanacekiUse | (T Canvases
[_IROOT Files ([Classes
I:i|aJirn:u:|t [E3 Cleanups
|%|- |;:"| Constants [Colors
| - - [DatakbasePDG EFurictions
- r—:—l Fiun (] Geometries
v o= [Configuration
S I Handlers
- [0 Configuration 1 bapFes
(_JROOT Files
() 5ockets
[Specials
(] Strearner Irifio
[Styles
[Tasks
(| m [Jaliroot

|16 Ohjects. | v

10.4. TASKS 247

will return the first instance of that name. A string-based search is time consuming. If the retrieved object is used
frequently or inside a loop, you should save a pointer to the object as a class data member. Use the naming service
only in the initialization of the consumer class. When a folder is deleted, any reference to it in the parent or other
folder is deleted also.

conf=(TFolder*)gROOT->FindObjectAny("/aliroot/Run/Configuration") ;
// or ...
conf=(TFolder*)gRO0T->FindObjectAny ("Configuration");

By default, a folder does not own the object it contains. You can overwrite that with TFolder: :SetOwner. Once
the folder is the owner of its contents, the contents are deleted when the folder is deleted. Some ROOT objects are
automatically added to the folder hierarchy. For example, the following folders exist on start up:

//root/RO0T Files with the list of open Root files
//root/Classes with the list of active classes
//root/Geometries with active geometries
//root/Canvases with the list of active canvases
//root/Styles with the list of graphics styles
//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a pointer to the corresponding TFile
object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny(
"/RO0TFiles/myFile.root");

//or. ..

TFile *myFile = (TFile*)gROOT->FindObjectAny("myFile.root");

10.4 Tasks

Tasks can be organized into a hierarchy and displayed in the browser. The TTask class is the base class from which
the tasks are derived. To give task functionality, you need to subclass the TTask class and override the Exec method.
An example of TTask subclassesis $RO0TSYS/tutorials/MyTasks.cxx. The script that creates a task hierarchy and
adds it to the browser is $RO0TSYS/tutorials/tasks.C. Here is a part of MyTasks.cxx that shows how to subclass
from TTask.

// A set of classes deriving from TTask see macro tasks.C. The Ezec
// function of each class prints one line when it <s called.
#include "TTask.h"
class MyRun : public TTask {
public:

MyRun() { ; }

MyRun(const char #*name,const char *title);

virtual ~MyRun() { ; }

void Exec(Option_t *option="");

ClassDef (MyRun, 1) // Run Reconstruction task
};

class MyEvent : public TTask {
public:
MyEvent() { ; }
MyEvent (const char *name,const char *title);
virtual ~MyEvent() { ; }
void Exec(Option_t *option="");
ClassDef (MyEvent,1) // Event Reconstruction task
s

Later in MyTasks. cxx, we can see examples of the constructor and overridden Exec() method:

248 CHAPTER 10. FOLDERS AND TASKS

ClassImp(MyRun)

MyRun: :MyRun(const char *name,const char *title):TTask(name,title)
{

}

void MyRun::Exec(Option_t *option)

{

printf ("MyRun executingn");

3

Each TTask derived class may contain other TTasks that can be executed recursively. In this way, a complex program
can be dynamically built and executed by invoking the services of the top level task or one of its subtasks. The
constructor of TTask has two arguments: the name and the title. This script creates the task defined above, and
creates a hierarchy of tasks.

// Show the tasks im a browser. To execute a Task, select
// "ExecuteTask" in the context menu see also other functions in the
// TTask context menu, such as:
// -setting a breakpoint in one or more tasks
// -enabling/disabling one task, etc
void tasks() {
gROOT->ProcessLine(".L MyTasks.cxx+");

TTask *run = new MyRun("run","Process one run");
TTask *event = new MyEvent("event",'"Process one event");
TTask *geomInit = new MyGeomInit("geomInit",
"Geometry Initialisation");
TTask *matInit = new MyMaterialInit("matInit",
"MaterialsInitialisation");
new MyTracker("tracker","Tracker manager");

TTask *tracker

TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");
TTask *its = new MyRecITS("its","ITS Reconstruction");
TTask *muon = new MyRecMUON('"muon","MUON Reconstruction");

TTask *phos new MyRecPHOS("phos","PHOS Reconstruction");

TTask *rich new MyRecRICH("rich","RICH Reconstruction");

TTask *trd = new MyRecTRD("trd","TRD Reconstruction");

TTask *global new MyRecGlobal("global","Global Reconstruction");

// Create a hierarchy by adding sub tasks
run->Add(geomInit);
run->Add (matInit);
run->Add (event) ;
event—->Add (tracker) ;
event->Add(global) ;
tracker->Add(tpc) ;
tracker->Add(its);
tracker->Add (muon) ;
tracker->Add (phos) ;
tracker->Add(rich);
tracker->Add(trd) ;

// Add the top level task
gRO0T->GetList0fTasks () ->Add (run) ;

// Add the task to the browser
gRO0OT->GetList0fBrowsables () ->Add (run);
new TBrowser;

Note that the first line loads the class definitions in MyTasks.cxx with ACLiC. ACLiC builds a shared library and
adds the classes to the CINT dictionary. See “Adding a Class with ACLiC”.

To execute a TTask, you call the ExecuteTask method. ExecuteTask will recursively call:

10.4. TASKS

% BOOT Object Browser

File Miew Options

Help

£ tracker

= & s

| &1l Falders

| Contents of "frundeventirac

I:lrcu:ut

|:|m::meighifspanacekfrnntES.l‘rnc
[_JROOT Files
|:|run
IL |:| geominit
:L _drmatnit
EI |:| event
El tracker
. .. - DTF'C
- |:||ts
E— - [_dmuon
E— - Dphns
E— -[_rich
- [trd
- - [global

1] | B

I:lrin:h |:|tpc:

[trd

itz [Jmuon [_Jpkos

| & Ohiects. |

Figure 10.1: Tasks in the ROOT browser

249

250 CHAPTER 10. FOLDERS AND TASKS

e the TTask: :Execmethod of the derived class;

e the TTask: :ExecuteTasks to execute for each task the list of its subtasks;

If the top level task is added to the list of ROOT browseable objects, the tree of tasks can be seen in the ROOT
browser. To add it to the browser, get the list of browseable objects first and add it to the collection.

gROOT->GetList0fBrowsables () ->Add (run) ;

The first parameter of the Add method is a pointer to a TTask, the second parameter is the string to show in the
browser. If the string is left out, the name of the task is used.

After executing, the script above the browser will look like in this figure.

10.5 Execute and Debug Tasks

The browser can be used to start a task, set break points at the beginning of a task or when the task has completed.
At a breakpoint, data structures generated by the execution up this point may be inspected asynchronously and then
the execution can be resumed by selecting the “Continue” function of a task.

A task may be active or inactive (controlled by TTask: :SetActive). When a task is inactive, its sub tasks are not
executed. A task tree may be made persistent, saving the status of all the tasks.

Chapter 11

Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It begins with an explanation of the
physical layout of a ROOT file. It includes a discussion on compression, and file recovery. Then we explain the logical
file, the class TFile and its methods. We show how to navigate in a file, how to save objects and read them back. We
also include a discussion on Streamers. Streamers are the methods responsible to capture an objects current state to
save it to disk or send it over the network. At the end of the chapter is a discussion on the two specialized ROOT files:
TNetFile and TWebFile.

11.1 The Physical Layout of ROOT Files

A ROOT file is like a UNIX file directory. It can contain directories and objects organized in unlimited number of
levels. Tt also is stored in machine independent format (ASCII, IEEE floating point, Big Endian byte ordering). To
look at the physical layout of a ROOT file, we first create one. This example creates a ROOT file and 15 histograms,
fills each histogram with 1000 entries from a Gaussian distribution, and writes them to the file.

char name[10], title[20];
TObjArray Hlist(0); // create an array of Histograms
TH1F* h; // create a pointer to a histogram
// make and fill 15 histograms and add them to the object array
for (Int_t i = 0; i < 15; i++) {
sprintf (name, "h%d",i) ;
sprintf(title,"histo nr:%d",i);
h = new TH1F(name,title,100,-4,4);
Hlist.Add(h);
h->FillRandom("gaus",1000) ;
}
// open a file and write the array to the file
TFile f("demo.root","recreate");
Hlist->Write();
f.Close();

The example begins with a call to the TFile constructor. This class is describing the ROOT file (that has the extension
“.root”). In the next section, we will cover TFile in details. The last line of the example closes the file. To view its
contents we need to open it again, and to create a TBrowser object by:

root[] TFile f("demo.root")
root[] TBrowser browser;

You can check if the file is correctly opened by:

TFile f("demo.root");
if (f.IsZombie()) {
cout << "Error opening file" << endl;

251

CHAPTER 11. INPUT/OUTPUT

252
% ROOT Object Browser =] E3
Eile Miew Qplions Help
5] demo.root LI |
| &ll Falders | Contents of "*ROOT Files/demo.root”
(Jroot lda h0; [10;1 | 111 [12
) homesspanacekitutorials |.kh1351 |kh14;1 |kh1i1 |.kh251
QHDDT Files MCARIMCA I VCAR GA
= "a dermno root Lk h?-l Lk hEi1 |_k hg 1
15 Ohijects. e
Figure 11.1: The browser with 15 created histograms
exit(-1);
} else {
}

Once we have the TFile object, we can call the TFile: :Map() method to view the physical layout. The output prints
the date/time, the start record address, the number of bytes in the record, the class name of the record and the

compression factor.

root[] f.Map()

20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124502
20051208/124503
20051208/124503
20051208/124503
20051208/124503

At:
At:
At:
At:
At:
At:
At:
At:
:3057
:3460
13871
14271
14680
At:
At:
At:
At:
At:
At:
At:

At
At
At
At
At

100
214
627
1037
1433
1833
2235
2651

5089
5509
5915
6320
9372
10104
10157

N=114
N=413
N=410
N=396
N=400
N=402
N=416
N=406
N=403
N=411
N=400
N=409
N=409
N=420
N=406
N=405
N=3052
N=732
N=53
N=1

TFile
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F
TH1F

CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =
CX =

StreamerInfo CX
KeysList
FreeSegments

END

WNNNNDNDDNDNNDNDNDNDNDNDNDDNDNDNDDND

.35
.36
.45
.42
.41
.33
.39
.40
.36
.42
.38
.38
.32
.40
.40
.16

Here we see the fifteen histograms (TH1F’s) with the first one starting at byte 148. We also see an entry TFile. You
may notice that the first entry starts at byte 100. The first 100 bytes are taken by the file header.

11.1.1 The File Header

This table shows the file header information. When fVersion is greater than 1000000, the file is a large file (> 2 GB)
and the offsets will be 8 bytes long. The location in brackets are the location in the case of a large file.

11.1. THE PHYSICAL LAYOUT OF ROOT FILES

253

Byte Value Name Description

1->4 “root” Root file identifier

5->8 fVersion File format version

9->12 fBEGIN Pointer to first data record

13 -> 16 [13->20] fEND Pointer to first free word at the EOF

17 -> 20 [21->28] fSeekFree Pointer to FREE data record

21 -> 24 [29->32) fNbytesFree Number of bytes in FREE data record

25 -> 28 [33->36] nfree Number of free data records

29 -> 32 [37->40] fNbytesName Number of bytes in TNamed at creation time
33 -> 33 [41->41] fUnits Number of bytes for file pointers

34 —> 37 [42->45] fCompress Zip compression level

34 > 37 [46->53] fSeekInfo Pointer to TStreamerInfo record

34 -> 37 [54->57] fNBytesInfo Number of bytes in TStreamerInfo record
34 -> 37 [58->75] fCompress Universal Unique ID

The first four bytes of the file header contain the string “root” which identifies a file as a ROOT file. Because of this
identifier, ROOT is not dependent on the “.root” extension. It is still a good idea to use the extension, just for us
to recognize them easier. The nfree and value is the number of free records. This variable along with FNBytesFree
keeps track of the free space in terms of records and bytes. This count also includes the deleted records, which are
available again.

11.1.2 The Top Directory Description

The 84 bytes after the file header contain the top directory description, including the name, the date and time it was
created, and the date and time of the last modification.

20010404/092347 At:64 N=84 TFile

11.1.3 The Histogram Records

What follows are the 15 histograms, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX
20010404/092347 At:528 N=377 TH1F CX

2.49
2.51

The first 4 bytes of each record is an integer holding the number of bytes in this record. A negative number flags the
record as deleted, and makes the space available for recycling in the next writing. The rest of bytes in the header
contain all the information to identify uniquely a data block on the file. It is followed by the object data.

The next table explains the values in each individual record. If the key is located past the 32 bit file limit (> 2 GB)
then some fields will be 8 bytes instead of 4 bytes (values between the brackets):

Byte Value Name Description

1->4 Nbytes Length of compressed object (in bytes)

5->6 Version TKey version identifier

7->10 ObjLen Length of uncompressed object

11 > 14 Datime Date and time when object was written to file
15 -> 16 KeyLen Length of the key structure (in bytes)

17 -> 18 Cycle Cycle of key

254 CHAPTER 11. INPUT/OUTPUT

19 -> 22 [19->26) SeekKey Pointer to record itself (consistency check)
23 -> 26 [27->34] SeekPdir Pointer to directory header
27 -> 27 [35->35] lname Number of bytes in the class name
28 > ... [36->.. .] | ClassName | Object Class Name
-> . | lname | Number of bytes in the object name
- . | Name | 1Name bytes with the name of the object
-> . | 1ITitle | Number of bytes in the object title
-> . | Title | Title of the object
->. | DATA | Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

11.1.4 The Class Description List (StreamerInfo List)

The histogram records are followed by the StreamerInfo list of class descriptions. The list contains the description of
each class that has been written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors and object data members have to be
described also. In demo.root, the class description list contains the description for:

e THIF

« all classes in the TH1F inheritance tree

« all classes of the object data members

« all classes in the object data members’ inheritance tree.
This description is implemented by the TStreamerInfo class, and is often referred to as simply StreamerInfo. You
can print a file’s StreamerInfolist with the TFile: :ShowStreamerInfo method. Below is an example of the output.

Only the first line of each class description is shown. The demo.root example contains only TH1F objects. Here we see
the recursive nature of the class description; it contains the StreamerInfoof all the classes needed to describe TH1F.

root[] f.ShowStreamerInfo()

StreamerInfo for class: TH1F, version=1
BASE TH1 offset=0 type= O
BASE TArrayF offset=0 type= 0O

1-Dim histogram base class
Array of floats

StreamerInfo for class: TH1, version=3

BASE TNamed offset=0 type=67 The basis for named object(name,title)
BASE TAttLine offset=0 type=0 Line attributes

BASE TAttFill offset=0 type=0 Fill area attributes

BASE TAttMarker offset=0 type=0 Marker attributes

Int_t fNcells offset=0 type=3 number bins(1D),cells(2D)+U/Overflows
TAxis fXaxis offset=0 type=61 X axis descriptor

TAxis fYaxis offset=0 type=61 Y axis descriptor

TAxis fZaxis offset=0 type=61 Z axis descriptor

Short_t fBarOffset offset=0 type=2 (1000*offset) for barcharts or legos
Short_t fBarWidth offset=0 type=2 (1000*width) for bar charts or legos
Stat_t fEntries offset=0 type=8 Number of entries//continued..

Stat_t fTsumw offset=0 type=8 Total Sum of weights

Stat_t fTsumw2 offset=0 type=8 Total Sum of squares of weights
Stat_t fTsumwx offset=0 type=8 Total Sum of weightx*X

Stat_t fTsumwx2 offset=0 type=8 Total Sum of weight*X*X

Double_t fMaximum offset=0 type=8 Maximum value for plotting

11.1. THE PHYSICAL LAYOUT OF ROOT FILES 255

Double_t fMinimum offset=0 type=8 Minimum value for plotting
Double_t fNormFactor offset=0 type=8 Normalization factor
TArrayD fContour offset=0 type=62 Array to display contour levels
TArrayD fSumw2 offset=0 type=62 Array of sum of squares of weights
TString £fOption offset=0 type=65 histogram options
TList* fFunctions offset=0 type=63 ->Pointer to list of functions(fits,user)

StreamerInfo for class: TNamed, version=1

StreamerInfo for class: TAttLine, version=1

StreamerInfo for class: TAttFill, version=1

StreamerInfo for class: TAttMarker, version=1

StreamerInfo for class: TArrayF, version=1

StreamerInfo for class: TArray, version=1

StreamerInfo for class: TAxis, version=6

StreamerInfo for class: TAttAxis, version=4

ROOT allows a class to have multiple versions, and each version has its own description in form of a StreamerInfo.
Above you see the class name and version number. The StreamerInfolist has only one description for each class/version
combination it encountered. The file can have multiple versions of the same class, for example objects of old and new
versions of a class can be in the same file. The StreamerInfois described in detail in the section on Streamers.

11.1.5 The List of Keys and the List of Free Blocks

The last three entries on the output of TFile: :Map() are the list of keys, the list of free segments, and the address
where the data ends.. When a file is closed, it writes a linked list of keys at the end of the file. This is what we see in
the third to the last entry. In our example, the list of keys is stored in 732 bytes beginning at byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976 and is not very long, only 53 bytes,
since we have not deleted any objects. The last entry is the address of the last byte in the file.

11.1.6 File Recovery

A file may become corrupted or it may be impossible to write it to disk and close it properly. For example if the file
is too large and exceeds the disk quota, or the job crashes or a batch job reaches its time limit before the file can
be closed. In these cases, it is imperative to recover and retain as much information as possible. ROOT provides an
intelligent and elegant file recovery mechanism using the redundant directory information in the record header.

If a file that has been not properly closed is opened again, it is scanned and rebuilt according to the information in
the record header. The recovery algorithm reads the file and creates the saved objects in memory according to the
header information. It then rebuilds the directory and file structure. If the file is opened in write mode, the recovery
makes the correction on disk when the file is closed; however if the file is opened in read mode, the correction can not
be written to disk. You can also explicitly invoke the recovery procedure by calling the TFile: :Recover () method.
You can recover the directory structure, but you cannot save what you recovered to the file on disk. In the following
example, we interrupted and aborted the previous ROOT session, causing the file not to be closed. When we start a
new session and attempt to open the file, it gives us an explanation and status on the recovery attempt.

root[] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not closed, trying to recover successfully recovered 1t

256 CHAPTER 11. INPUT/OUTPUT

11.2 The Logical ROOT File: TFile and TKey

We saw that the TFile: :Map() method reads the file sequentially and prints information about each record while
scanning the file. It is not feasible to support only sequential access and hence ROOT provides random or direct access,
i.e. reading a specified object at a time. To do so, TFile keeps a list of TKeys, which is essentially an index to the
objects in the file. The TKey class describes the record headers of objects in the file. For example, we can get the list of
keys and print them. To find a specific object on the file we can use the TFile: :Get () method.

root[] TFile f("demo.root")
root[] f.GetListOfKeys()->Print()

TKey Name = hO, Title = histo nr:0, Cycle = 1
TKey Name = hl, Title = histo nr:1, Cycle = 1
TKey Name = h2, Title = histo nr:2, Cycle = 1
TKey Name = h3, Title = histo nr:3, Cycle = 1
TKey Name = h4, Title = histo nr:4, Cycle = 1
TKey Name = h5, Title = histo nr:5, Cycle = 1
TKey Name = h6, Title = histo nr:6, Cycle = 1
TKey Name = h7, Title = histo nr:7, Cycle = 1
TKey Name = h8, Title = histo nr:8, Cycle = 1
TKey Name = h9, Title = histo nr:9, Cycle = 1
TKey Name = h10, Title = histo nr:10, Cycle = 1
TKey Name = hll, Title = histo nr:11, Cycle = 1
TKey Name = h12, Title = histo nr:12, Cycle = 1
TKey Name = h13, Title = histo nr:13, Cycle = 1
TKey Name = h14, Title = histo nr:14, Cycle = 1

root[] THIF *h9 = (TH1F*)f.Get("h9");

The TFile: :Get () finds the TKey object with name “h9”. Using the TKey info it will import in memory the object in
the file at the file address #3352 (see the output from the TFile: :Map above). This is done by the Streamer method
that is covered in detail in a later section. Since the keys are available in a TList of TKeys we can iterate over the
list of keys:

TFile f("demo.root");

TIter next(f.GetListOfKeys());

TKey *key;

while ((key=(TKey*)next())) {
printf("key: %s points to an object of class: %s at %dn",
key->GetName (),
key->GetClassName () ,key->GetSeekKey ()) ;

The output of this script is:

root[] .x iterate.C

key: hO points to an object of class: TH1F at 150
key: hl points to an object of class: TH1F at 503
key: h2 points to an object of class: THIF at 854
key: h3 points to an object of class: THIF at 1194
key: h4 points to an object of class: THIF at 1539
key: hb5 points to an object of class: THIF at 1882
key: h6 points to an object of class: THIF at 2240
key: h7 points to an object of class: THIF at 2582
key: h8 points to an object of class: THIF at 2937
key: h9 points to an object of class: THIF at 3293
key: hl0 points to an object of class: THIF at 3639
key: hll points to an object of class: TH1F at 3986
key: hl2 points to an object of class: TH1F at 4339
key: hl3 points to an object of class: THIF at 4694
key: hl4 points to an object of class: THIF at 5038

11.2. THE LOGICAL ROOT FILE: TFILE AND TKEY 257

In addition to the list of keys, TFile also keeps two other lists: TFile: :fFree is a TList of free blocks used to recycle
freed up space in the file. ROOT tries to find the best free block. If a free block matches the size of the new object to
be stored, the object is written in the free block and this free block is deleted from the list. If not, the first free block
bigger than the object is used. TFile::fListHead contains a sorted list (TSortedList) of objects in memory. The
diagram below illustrates the logical view of the TFile and TKey.

11.2.1 Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a TDirectory. We can list the contents, print the
name, and create subdirectories. In a ROOT session, you are always in a directory and the directory you are in is
called the current directory and is stored in the global variable gDirectory. Let us look at a more detailed example of
a ROQT file and its role as the current directory. First, we create a ROOT file by executing a sample script.

root[] .x $RO0TSYS/tutorials/hsimple.C

Now you should have hsimple.root in your directory. The file was closed by the script so we have to open it again to
work with it. We open the file with the intent to update it, and list its contents.

root[] TFile f ("hsimple.root","UPDATE")
root[] £.1s0)

TFile** hsimple.root

TFile* hsimple.root

KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;l py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

It shows the two lines starting with TFile followed by four lines starting with the word “KEY”. The four keys tell us
that there are four objects on disk in this file. The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk, called hpx. It is of the class TH1F
(one-dimensional histogram of floating numbers). The object’s title is “This is the px distribution”. If the line starts
with 0BJ, the object is in memory. The <class> is the name of the ROOT class (T-something). The <variable> is the
name of the object. The cycle number along with the variable name uniquely identifies the object. The <title> is the
string given in the constructor of the object as title.

The figure shows a TFile with five objects in the top directory (kObjA;1, k0ObjA;2, k0bjB;1, k0bjC;1 and kObjD;1).
ObjA is on file twice with two different cycle numbers. It also shows four objects in memory (mObjE, mObjeF, mObjM,
mObjL). It also shows several subdirectories.

11.2.2 The Current Directory

When you create a TFile object, it becomes the current directory. Therefore, the last file to be opened is always the
current directory. To check your current directory you can type:

root[] gDirectory->pwd()
Rint:/

This means that the current directory is the ROOT session (Rint). When you create a file, and repeat the command
the file becomes the current directory.

root[] TFile f1("AFilel.root");
root[] gDirectory->pwd()
AFilel.root:/

If you create two files, the last becomes the current directory.

258 CHAPTER 11. INPUT/OUTPUT

ROOT File/Directory/Key description

TFl Ie fFree = TLis! of free blocks

First:Last I— First:Last 4|>

Header

feys = TList of Keys

Key 0 Key1 —

fListHead = TSortable of Objects in memory

Object | SubDir Object

-

o7 L ¢
-7 - bl
- & r 4
- @ s 4 ’ (I
=T . - pl
-7 - - - & 4
_ S — , ~Key 0}
TModified: True if directory is madified s 5 0
P £ 1
TWrntable: True if directory is writable s . !
- \
ThatimeC: Trealion DatefTime 7 T 0 i
g — Object}—>
TDatimeM: Last mod DaleTime .- p i
r e 1
THhytesKey=: Humber of hytes of key o L g
r -]
THhytezsHame : Healer lenglh up tao litle o o \
’
15eekDir: Start of Directory on file J THhytes: Size of compressed Ohject
) L TOhjLen: Size of uncompressed Ohject
13eekParent: Siart of Parent Directory p ;)
; 1Datime: DatefMime when wnlten 1o slore
T3eekkeys! Mointer to Keys recard i TEeylen: Humber of bytes for the key

1Cycle : Cycle number

13eekkFey: Mointer 1o Ohjecl on file
13eekllir: Moinler to directory on file
TClazsHame: TKey'

THame: Ohject name

iTille: Ohject Title

Figure 11.2: ROOT File/Directory/Key description

11.2. THE LOGICAL ROOT FILE: TFILE AND TKEY 259

Cycle numiber
/’X’_/'\\
S L d

.
.
(kajA;])f(kajAE) (koo) {kobjD;Hkobjc; 1)—m Objects on Disk

Objects in Memary

[MObB |

\

o

g

,mobjmjr {mejEjl—{(mejL] —{(meij

Directories

(kobiE; kOij;]HkObjl;])—M m
(kobi; 1)—(kot:|:jK;)

Figure 11.3: The structure of TFile

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the TDirectory: :cd method. The next
command changes the current directory back to the first file.

root[] £1.cd(Q;
root[] gDirectory->pwd()
AFilel.root:/

Note that even if you open the file in “READ” mode, it still becomes the current directory. CINT also offers a shortcut
for ghirectory->pwd() and gDirectory->1s(), you can type:

root[] .pwd

AFilel.root:/

root[] .ls

TFilex* AFilel.root
TFilex AFilel.root

To return to the home directory where we were before:

root[] gROOT->cd()
(unsigned char)1
root[] gROOT->pwd()
Rint:/

11.2.3 Objects in Memory and Objects on Disk

The TFile::1s() method has an option to list the objects on disk (“~d”) or the objects in memory (“-m”). If no
option is given it lists both, first the objects in memory, then the objects on disk. For example:

root[] TFile *f = new TFile("hsimple.root");
root[] gDirectory->1s("-m"

TFilexx* hsimple.root

TFilex hsimple.root

260 CHAPTER 11. INPUT/OUTPUT

Remember that gDirectory is the current directory and at this time is equivalent to “£”. This correctly states that no
objects are in memory.

The next command lists the objects on disk in the current directory.

root[] gDirectory->1s("-d")

TFilex* hsimple.root

TFilex hsimple.root

KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from disk into memory, we have to use it or “Get” it explicitly. When we use the object, ROOT
gets it for us. Any reference to hprof will read it from the file. For example drawing hprof will read it from the file
and create an object in memory. Here we draw the profile histogram, and then we list the contents.

root[] hprof->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root[] £->1s(Q)

TFile** hsimple.root

TFile* hsimple.root

0BJ: TProfile hprof Profile of pz versus px : O

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;l py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class TProfile, called hprof has been
added in memory to this directory. This new hprof in memory is independent from the hprof on disk. If we make
changes to the hprof in memory, they are not propagated to the hprof on disk. A new version of hprof will be saved
once we call Write.

You may wonder why hprof is added to the objects in the current directory. hprof is of the class TProfile that
inherits from TH1D, which inherits from TH1. TH1 is the basic histogram. All histograms and trees are created in the
current directory (also see “Histograms and the Current Directory”). The reference to “all histograms” includes objects
of any class descending directly or indirectly from TH1. Hence, our TProfile hprof is created in the current directory
f.There was another side effect when we called the TH1: :Draw method. CINT printed this statement:

<TCanvas: :MakeDefCanvas>: created default TCanvas with name ci

It tells us that a TCanvas was created and it named it c1. This is where ROOT is being nice, and it creates a canvas
for drawing the histogram if no canvas was named in the draw command, and if no active canvas exists. The newly
created canvas, however, is NOT listed in the contents of the current directory. Why is that? The canvas is not added
to the current directory, because by default ONLY histograms and trees are added to the object list of the current
directory. Actually, TEventList objects are also added to the current directory, but at this time, we don’t have to
worry about those. If the canvas is not in the current directory then where is it? Because it is a canvas, it was added
to the list of canvases.

This list can be obtained by the command gRO0T->GetList0fCanvases()->1s(). The 1s() will print the contents of
the list. In our list, we have one canvas called c1. It has a TFrame, a TProfile, and a TPaveStats.

root[] gROOT->GetListOfCanvases()->1s()

Canvas Name=cl Title=cl

Option=TCanvas fX1lowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1

Name= cl1 Title= ci

Option=TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
0BJ: TProfile hprof Profile of pz versus px : O

TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
TPaveStats X1=2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one more OBJ entry.

11.2. THE LOGICAL ROOT FILE: TFILE AND TKEY 261

root[] hpx->Draw()
root[] £->1s0)

TFilex* hsimple.root

TFilex hsimple.root

0BJ: TProfile hprof Profile of pz versus px : O
0BJ: THIF hpx This is the px distribution : O
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

TFile: :1s() loops over the list of objects in memory and the list of objects on disk. In both cases, it calls the 1s()
method of each object. The implementation of the 1s method is specific to the class of the object, all of these objects
are descendants of TObject and inherit the TObject: :1s() implementation. The histogram classes are descendants of
TNamed that in turn is a descent of TObject. In this case, TNamed: :1s() is executed, and it prints the name of the
class, and the name and title of the object. Each directory keeps a list of its objects in the memory. You can get this
list by TDirectory: :GetList (). To see the lists in memory contents you can do:

root [Jf->GetList) ->1s()
0BJ: TProfile hprof Profile of pz versus px : O
0BJ: THIF hpx This is the px distribution : O

Since the file f is the current directory (gDirectory), this will yield the same result:

root[] gDirectory->GetList()->1s()
0BJ: TProfile hprof Profile of pz versus px : O
0BJ: THIF hpx This is the px distribution : O

11.2.4 Saving Histograms to Disk

At this time, the objects in memory (OBJ) are identical to the objects on disk (KEY). Let’s change that by adding a
fill to the hpx we have in memory.

root[] hpx->Fill(0)
Now the hpx in memory is different from the histogram (hpx) on disk. Only one version of the object can be in memory,
however, on disk we can store multiple versions of the object. The TFile: :Write method will write the list of objects

in the current directory to disk. It will add a new version of hpx and hprof.

root[] f->Write()
root[] £f->1s()

TFile** hsimple.root

TFilex hsimple.root

0BJ: TProfile hprof Profile of pz versus px : O
0BJ: THIF hpx This is the px distribution : O
KEY: THI1F hpx;2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple

The TFile: :Write method wrote the entire list of objects in the current directory to the file. You see that it added
two new keys: hpx;2 and hprof;2 to the file. Unlike memory, a file is capable of storing multiple objects with the
same name. Their cycle number, the number after the semicolon, differentiates objects on disk with the same name. If
you wanted to save only hpx to the file, but not the entire list of objects, you could use the TH1: :Writemethod of hpx:

root[] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName () to find the name of the object and use it to
create a key with the same name. You can specify a new name by giving it as a parameter to the Write method.

262 CHAPTER 11. INPUT/OUTPUT

Nsirmplercc Legend
Objects on Disk

ot) (oo

ah—\ ,ﬁﬁl Objects in Mermory
P hproof] (mobe)

Directores

nsirmple

“rpxe1 }—{hpxpy:1}—{ hprof: 1 }—{ ntuple:1}—{ hpx2 | hprof:2)

: ' hpx | hproct

Figure 11.4: The file before and after the call to Write
root[] hpx->Write("newName")
If you want to re-write the same object, with the same key, use the overwrite option.
root[] hpx->Write("",TObject: :kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the matching name is overwritten if such an
object exists. If not, a new object with the new name will be created.

root[] hpx->Write('"newName",TObject::kOverwrite)

The Write method did not affect the objects in memory at all. However, if the file is closed, the directory is emptied
and the objects on the list are deleted.

root[] f->Close()

root[] £->1s()

TFilexx* hsimple.root
TFilex hsimple.root

In the code snipped above, you can see that the directory is now empty. If you followed along so far, you can see that
c1 which was displaying hpx is now blank. Furthermore, hpx no longer exists.

root[] hpx->Draw()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the objects or any attempt to reference the
objects will fail.

11.2. THE LOGICAL ROOT FILE: TFILE AND TKEY 263

11.2.5 Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objects in the current directory. You can get the list
of histograms in a directory and retrieve a pointer to a specific histogram.

TH1F *h
TH1F *h

(TH1F*)gDirectory->Get ("myHist"); // or
(TH1F*)gDirectory->GetList () ->FindObject ("myHist") ;

The method TDirectory: :GetList () returns a TList of objects in the directory. You can change the directory of a
histogram with the SetDirectory method.

h->SetDirectory(newDir) ;
If the parameter is 0, the histogram is no longer associated with a directory.
h->SetDirectory(0);

Once a histogram is removed from the directory, it will no longer be deleted when the directory is closed. It is now your
responsibility to delete this histogram object once you are finished with it. To change the default that automatically
adds the histogram to the current directory, you can call the static function:

TH1::AddDirectory (kFALSE) ;

In this case, you will need to do all the bookkeeping for all the created histograms.

11.2.6 Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file. For example to save a canvas to the
ROQT file you can use either TObject: :Write() or TDirectory: :WriteTObject (). The example:

root[] cl->Write()

This is equivalent to:

root[] f->WriteTObject(cl)

For objects that do not inherit from TObject use:
root[] f->WriteObject(ptr,"nameofobject")
Another example:

root[] TFile *f = new TFile("hsimple.root","UPDATE")

root[] hpx->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root[] ci1->Write()

root[] £->1s()

TFilex* hsimple.root

TFilex hsimple.root

0BJ: THIF hpx This is the px distribution : O
KEY: TH1F hpx;2 This is the px distribution

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

KEY: TCanvas «cl1;1 cl

264 CHAPTER 11. INPUT/OUTPUT

11.2.7 Saving Collections to Disk

All collection classes inherit from TCollection and hence inherit the TCollection: :Write() method. When you
call TCollection: :Write() each object in the container is written individually into its own key in the file. To write
all objects into one key you can specify the name of the key and use the optionTObject: :kSingleKey. For example:

root[] TList * list = new TList;

root[] TNamed * nl, * n2;

root[] nl = new TNamed("namel","titlel");

root[] n2 = new TNamed('"name2","title2");

root[] list->Add(n1);

root[] list->Add(n2);

root[] gFile->WriteObject(list,"list",TObject: :kSingleKey);

11.2.8 A TFile Object Going Out of Scope

There is another important point to remember about TFile: :Close and TFile: :Write. When a variable is declared
on the stack in a function such as in the code below, it will be deleted when it goes out of scope.

void foo() {
TFile f("AFile.root","RECREATE");
}

As soon as the function foohas finished executing, the variable f is deleted. When a TFile object is deleted an
implicit call to TFile: :Close is made. This will save only the file descriptor to disk. It contains the file header, the
StreamerInfolist, the key list, the free segment list, and the end address. See “The Physical Layout of ROOT Files”.
The TFile: :Close does not make a call to Write (), which means that the objects in memory will not be saved in the
file. You need to explicitly call TFile: :Write() to save the object in memory to file before the exit of the function.

void foo() {
TFile f("AFile.root","RECREATE");

. stuff

f.Write(Q);

To prevent an object in a function from being deleted when it goes out of scope, you can create it on the heap instead
of on the stack. This will create a TFile object f, that is available on a global scope, and it will still be available when
exiting the function.

void foo() {
TFile *f = new TFile("AFile.root","RECREATE");
}

11.2.9 Retrieving Objects from Disk

If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name could be in a ROOT file. In our example, we saved a
modified histogram hpx to the file, which resulted in two hpx’s uniquely identified by the cycle number: hpx;1 and
hpx;2. The question is how we can retrieve the right version of hpx. When opening the file and using hpx, CINT
retrieves the one with the highest cycle number. To read the hpx;1 into memory, rather than the hpx:2 we would get
by default, we have to explicitly get it and assign it to a variable.

root[] TFile *f1 = new TFile("hsimple.root")
root[] THIF *hpx1l; f1->GetObject("hpx;1",hpx)
root[] hpxl->Draw()

11.2. THE LOGICAL ROOT FILE: TFILE AND TKEY 265

11.2.10 Subdirectories and Navigation

The TDirectory class lets you organize its contents into subdirectories, and TFile being a descendent of TDirectory
inherits this ability. Here is an example of a ROOT file with multiple subdirectories as seen in the ROOT browser.
To add a subdirectory to a file use TDirectory: :mkdir. The example below opens the file for writing and creates a
subdirectory called “Wed011003”. Listing the contents of the file shows the new directory in the file and the TDirectory
object in memory.

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] f->mkdir("Wed011003")
(class TDirectory*)0x1072b5c8

root[] f->1s()

TFilex* AFile.root
TFilex AFile.root
TDirectory* Wed011003 Wed011003
KEY: TDirectory Wed011003;1 Wed011003

We can change the current directory by navigating into the subdirectory, and after changing directory; we can see that
gDirectory is now “Wed011003”.

root[] f->cd("Wed011003")
root[] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gDirectory we have gFile, another global that points to the current file. In our example, gDirectory
points to the subdirectory, and gFile points to the file (i.e. the files’ top directory).

root[] gFile->pwd()
AFile.root:/

Use cd() without any arguments to return to the file’s top directory.

root[] f->cd()
AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the current directory, which is the subdirectory
“Wed011003”.

root[] f->cd("Wed011003")

root[] THIF *histo = new TH1F("histo","histo",10,0,10)
root[] gDirectory->1s()

TDirectory* Wed011003 Wed011003

0BJ: TH1F histo histo : O

If you are in a subdirectory and you want to have a pointer to the file containing the subdirectory, you can do:
root[] gDirectory->GetFile()

If you are in the top directory gDirectory* is the same asgFile*. We write the file to save the histogram on disk,
to show you how to retrieve it later.

root[] f->Write()

root[] gDirectory->1s()

TDirectory* Wed011003 Wed011003
0BJ: THIF histo histo : O

KEY: TH1F histo;1 histo

266 CHAPTER 11. INPUT/OUTPUT

When retrieving an object from a subdirectory, you can navigate to the subdirectory first or give it the path name
relative to the file. The read object is created in memory in the current directory. In this first example, we get histo
from the top directory and the object will be in the top directory.

root[] TH1 *h; f->GetObject("Wed011003/histo;1",h)

If file is written, a copy of histo will be in the top directory. This is an effective way to copy an object from one
directory to another. In contrast, in the code box below, histo will be in memory in the subdirectory because we
changed the current directory.

root[] f£->cd("Wed011003")
root[] TH1 *h; gDirectory->GetObject("histo;1",h)

Note that there is no warning if the retrieving was not successful. You need to explicitly check the value of h, and if it
is null, the object could not be found. For example, if you did not give the path name the histogram cannot be found
and the pointer to h is null:

root[] TH1 *h; gDirectory->GetObject("Wed011003/histo;1",h)
root[] h

(class TH1%)0x10767de0

root[] TH1 #h; gDirectory->GetObject("histo;1",h)

root[] h

(class TH1%)0x0

To remove a subdirectory you need to use TDirectory: :Delete. There is no TDirectory: :rmdir. The Delete method
takes a string containing the variable name and cycle number as a parameter.

void Delete(const char *namecycle)
The namecycle string has the format name;cycle. The next are some rules to remember:

o name = * means all, but don’t remove the subdirectories
e cycle =* means all cycles (memory and file)
e cycle =“” means apply to a memory object
e cycle = 9999 also means apply to a memory object
w»

o namecycle = “” means the same as namecycle =“T*”

e namecycle = T* delete subdirectories
For example to delete a directory from a file, you must specify the directory cycle:
root[] f->Delete("Wed011003;1")
Some other examples of namecycle format are:

o foo:delete the object named foo from memory

e foo;1: delete the cycle 1 of the object named foo from the file

e foo;*: delete all cycles of foo from the file and also from memory
e *;2: delete all objects with cycle number 2 from the file

e x;%: delete all objects from memory and from the file

e Tx;x: delete all objects from memory and from the file including all subdirectories

11.3. STREAMERS 267
11.3 Streamers

To follow the discussion on Streamers, you need to know what a simple data type is. A variable is of a simple data
type if it cannot be decomposed into other types. Examples of simple data types are longs, shorts, floats, and chars.
In contrast, a variable is of a composite data type if it can be decomposed. For example, classes, structures, and
arrays are composite types. Simple types are also called primitive types, basic types, and CINT sometimes calls them
fundamental types.

When we say, “writing an object to a file”, we actually mean writing the current values of the data members. The most
common way to do this is to decompose (also called the serialization of) the object into its data members and write
them to disk. The decomposition is the job of the Streamer. Every class with ambitions to be stored in a file has a
Streamerthat decomposes it and “streams” its members into a buffer.

The methods of the class are not written to the file, it contains only the persistent data members. To decompose the
parent classes, the Streamercalls the Streamerof the parent classes. It moves up the inheritance tree until it reaches
an ancestor without a parent. To serialize the object data members it calls their Streamer. They in turn move up
their own inheritance tree and so forth. The simple data members are written to the buffer directly. Eventually the
buffer contains all simple data members of all the classes that make up this particular object. Data members that are
references (as MyClass &f0bj;) are never saved, it is always the responsibility of the object’s constructor to set them

properly.

11.3.1 Automatically Generated Streamers

A Streamerusually calls other Streamers: the Streamerof its parents and data members. This architecture depends on
all classes having Streamers, because eventually they will be called. To ensure that a class has a Streamer, rootcint
automatically creates one in the ClassDef macro that is defined in $RO0TSYS/include/Rtypes.h. ClassDef defines
several methods for any class, and one of them is the Streamer. The automatically generated Streameris complete
and can be used as long as no customization is needed.

The Event class is defined in $RO0TSYS/test/Event.h. Looking at the class definition, we find that it inherits from
TObject. It is a simple example of a class with diverse data members.

class Event : public TObject {

private:
TDirectory *fTransient; //! current directory
Float_t fPt; //! transient walue

char fType[20];

Int_t fNtrack;

Int_t fNseg;

Int_t fNvertex;

UInt_t fFlag;

Float_t fTemperature;

EventHeader fEvtHdr; /711 don't split

TClonesArray *fTracks; //=>

TH1F *fH; //->

Int_t fMeasures[10];

Float_t fMatrix[4] [4];

Float_t xfClosestDistance; //[fllvertez]

The Event class is added to the CINT dictionary by the rootcint utility. This is the rootcint statement in the
$RO0TSYS/test/Makefile:

O@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h
The EventDict.cxx file contains the automatically generated Streamerfor Event:

void Event::Streamer (TBuffer &R__b){
// Stream an object of class Event.
if (R__b.IsReading()) {
Event::Class()->ReadBuffer(R__b, this);
} else {

268 CHAPTER 11. INPUT/OUTPUT

Event::Class()->WriteBuffer(R__b, this);

When writing an Event object, TClass: :WriteBuffer is called. WriteBuffer writes the current version number of
the Event class, and its contents into the buffer R__b. The Streamercalls TClass: :ReadBuffer when reading an
Event object. The ReadBuffer method reads the information from buffer R__b into the Event object.

11.3.2 Transient Data Members (//!)

To prevent a data member from being written to the file, insert a “!” as the first character after the comment marks.
It tells ROOT not to save that data member in a root file when saving the class. For example, in this version of Event,

the fPt and fTransient data members are not persistent.

class Event : public TObject {

private:
TDirectory *fTransient; //! current directory
Float_t £fPt; //! transient wvalue

11.3.3 The Pointer to Objects (//->)

The string “->” in the comment field of the members *fH and *fTracks instruct the automatic Streamer to assume
these will point to valid objects and the Streamerof the objects can be called rather than the more expensive R__b <<
fH. It is important to note that no check is done on the validity of the pointer value. In particular if the pointer points,
directly or indirectly, back to the current object, this will result in an infinite recursion and the abrupt end of the
process.

TClonesArray *fTracks; //=>
TH1F *fH; //=>

11.3.4 Variable Length Array

When the Streamercomes across a pointer to a simple type, it assumes it is an array. Somehow, it has to know how
many elements are in the array to reserve enough space in the buffer and write out the appropriate number of elements.
This is done in the class definition. For example:

class Event : public TObject {

private:
char fType [20] ;
Int_t fNtrack;
Int_t fNseg;
Int_t fNvertex;
Float_t *fClosestDistance; // [fNvertez]

The array fClosestDistance is defined as a pointer of floating point numbers. A comment mark (//), and the number
in square brackets tell the Streamerthe length of the array for this object. In general the syntax is:

<simple type> *<name>//[<length>]

The length cannot be an expression. If a variable is used, it needs to be an integer data member of the class. It must
be defined ahead of its use, or in a base class.

The same notation also applies to variable length array of object and variable length array of pointer to objects.

MyObject *obj; //[fNojbs]
MyObject *xobjs; //[fDatas]

11.3. STREAMERS 269

11.3.5 Double32 t

Math operations very often require double precision, but on saving single usually precision is sufficient. For this purpose
we support the typedef Double32_ t which is stored in memory as a double and on disk as a float or interger. The actual
size of disk (before compression) is determined by the parameter next to the data member declartion. For example:

Double32_t m_data; // [min,maxz<,nbits>]

If the comment is absent or does not contain min, max, nbit, the member is saved as a float.

If min and max are present, they are saved as a 32 bits precision. min and max can be explicit values or be expressions
of values known to CINT (e.g. “pi").

If nbits is present, the member is saved as int with ‘nbit’ For more details see the io tutorials double32.C.

Double32_t compression and precision |

16

nmmz fi32z fi30 fiz8 fizé6 fiz4 fiz2 20 fi18 fi16 fl14 fi12 fi10 fis fi6 fi4d A2

Figure 11.5: Compression and precision of Double32_t

11.3.6 Prevent Splitting (//||)

If you want to prevent a data member from being split when writing it to a tree, append the characters || right after
the comment string. This only makes sense for object data members. For example:

EventHeader fEvtHdr; //11 do not split the header

11.3.7 Streamers with Special Additions

Most of the time you can let rootcint generate a Streamer for you. However if you want to write your own
Streameryou can do so. For some classes, it may be necessary to execute some code before or after the read or
write block in the automatic Streamer. For example after the execution of the read block, one can initialize some

270 CHAPTER 11. INPUT/OUTPUT

non persistent members. There are two reasons why you would need to write your own Streamer: 1) if you have a
non-persistent data member that you want to initialize