Csound for Android

Victor Lazzarini, Steven Yi and Martin O’Shea

August 23, 2012

1 Introduction

Welcome to Csound for Android! This document will discuss the details
about using Csound for Android OS using the Eclipse IDE.

For those with knowledge of Csound, hopefully you will see that the
value of your knowledge is only enhanced by offering a new platform on
which to create musical software and works.

1.1 Regarding the Csound for Android Examples Project

This documentation covers discussion of the Csound for Android API. Users
interested in diving in to see how the API is used may want to download
the Csound for Android Examples Project which contains a set of examples
that cover different use cases of the API. The code for each example may be
useful in giving you a jump-start in building your own application.

1.2 Regarding the LGPL License

The Csound for Android includes Csound and libsndfile. These are dis-
tributed as static libraries. Users of the Csound for Android API must
comply with the licensing requirements of the GNU Lesser General Public
License v2.1, which both libraries use. Please carefully review the license
files that accompany each project (you can view a generic version of the
LGPL v2.1 license at http://www.gnu.org/licenses/lgpl-2.1.html).

2 Getting and Using the Csound for Android API

The Csound for Android library is distributed as a Zip release from the
Csound Sourceforge page. The Zip archive includes:

http://mega-nerd.com/libsndfile/
http://www.gnu.org/licenses/lgpl-2.1.html

Statically compiled libcsound.a and libsndfile.a, compiled as universal
binaries for armv6, armv7, and i386 CPU architectures (to work with
both Android devices and simulators)

e C Headers for the Csound C API

Java API source

e Documentation

You will also need to install the android NDK available at |AndroidDe-
veloper] site, to compile the native code in Csound for java.

Csound for Android was chosen to be delivered as pre-compiled libraries
and headers for easy inclusion into projects. After starting a new project in
Eclipse, do the following;:

1. Import the CsoundAndroid Library into Eclipse using file>import
from the location you downloaded it to.

2. Right-click your project and from the context menu choose “Proper-
ties”

3. In the window that opens, select the "Android tab" on the left hand-
side of the window, go to the right of the box labelled "library" select
'add". Select the "CsoundAndroid Library" which you have just added
to your workspace(Step 1).

4. If at anytime when working with the CsoundAndroid library the project
does seem not to recognise the CsoundAndroid is added, select "Project"
from the menu bar and then select "Clean" to rebuild the paths in the
project.

After adding the CsoundAndroid library, it should now be a part of your
project. You will now be able to reference both the standard Csound C API
as well as the Java CsoundObj APT from your project code.

3 Introduction to the API

3.1 CsoundObj and Csound API’s

Csound for Android is released with the standard Csound C API as well
as a custom Java CsoundObj API that has been designed to make develop-
ing on Android OS convenient. The CsoundObj API includes methods for

http://developer.android.com
http://developer.android.com

binding widgets to channels (used to communicate to and from Csound),
enabling hardware sensors, and more. For further detail, please consult the
CsoundObj.java class.

While the CsoundObj API has been designed to ease things for Android
OS development and to follow conventions of Java, the decision was made
not to wrap everything in the Csound C API. . The Csound java Object
that a CsoundObj class holds can be accessed via the getCsound method
in CsoundObj. For more information about the Csound C API, consult
Csound.java class.

4 Using the CsoundObj API

The CsoundObj API revolves around the Java CsoundObj class. This class
contains a Csound Object and has methods for running Csound, as well
as convenience methods to help aid developers in connecting elements to
Csound. By itself, CsoundODbj can take in a CSD file and render it. By
using CsoundValueCacheables, objects can interact to read values from and
write values to Csound. Beyond that, extended features can be accessed by
using the Csound C API together with the Csound object.

4.1 Designing Csound CSD projects to work with Hosts

To communicate to and from a host program with Csound, you will most
likely use chnset and chnget opcodes. These opcodes will allow you to
read from and write values to a named channel. Your host program will
also be writing to and reading from these same channels. As a byproduct of
using named channels, your CSD will be portable to work on other platforms
(Desktop, 10S); porting over apps to/from Android then will only involve
redoing the application and UI code, while your audio engine (Csound)
should “just work.”

4.2 CsoundValueCacheable for Communicating with Csound

The CsoundObj API has been created to ease communication with Csound
by using objects that implement the CsoundValueCacheable protocol. The
protocol definition is as follows:

Listing 1: CsoundValueCacheable Protocol Definition

public void setup(CsoundObj csoundObj);

public void updateValuesToCsound () ;
public void updateValuesFromCsound();

public void cleanup();

CsoundValueCacheables are used to both read values from Csound as
well as write values to Csound. The lifecycle of CsoundValueCacheables is
as follows:

e setup - this has now been changed. This method is called after
Csound’s compile call but before the main performance loop. Csound-
ValueCacheables should use this method to cache any channel pointers
and any other values they will need during performance.

e updateValuesToCsound and updateValuesFromCsound - these
methods are called during the Csound performance loop. update-
ValuesToCsound is called before each call to csoundPerformKsmps,
while updateValuesFromCsound is called after each call.

e cleanup - this method is called after Csound has completed its run
and should be used by CsoundValueCacheables to free up any allocated
data and remove references to channel pointers.

By using CsoundValueCacheables, CsoundObj functionality can be ex-
tended to communicate with as many items as you would like. The Csound
for the Android API contains pre-made wrapper classes for common Ul
classes (UlSlider, UIButton, UlSwitch) as well as hardware sensors (Ac-
celerometer, Attitude, Gyroscope). CsoundObj has helper methods for
the CsoundValueCacheables that come with the CsoundObj API, as well
as the generic addCsoundValueCacheable and removeCsoundValue-
Cacheable methods for adding custom CsoundValueCacheables. Please
consult these classes as well as their use in context within the Csound for
Android Examples project.

5 Common CsoundObj API Methods

5.1 Binding Widgets to CsoundObj
The CsoundObj API contains the following methods for binding widgets:

Listing 2: Methods for Widget Binding

public CsoundValueCacheable addButton(Button button, String
channelName))

public CsoundValueCacheable addButton(Button button, String
channelName ,int type)

public CsoundValueCacheable addSlider (SeekBar seekBar,
String channelName, double min, double max)}

These methods allow for easy binding of UISeekBars, and
UIButtons, and return the CsoundValueCacheable that was
created to wrap the widget. If the design of your app
requires that you remove a widget from being used with
CsoundObj, you can use the returned CsoundValueCacheable

and pass it to the removeCsoundValueCacheable method.
To bind your own custom widgets, you will need to create
your own CsoundValueCacheable. There are examples of
both using the convenience widget binding methods as
well as custom CsoundValueCacheables in the Csound for
Android Examples project.

\section{Interfacing with Hardwarel}
\subsection{Audio Input and Output}

CsoundObj has been designed to connect everything necessary
for audio input and output from Csound to \textit(OpenSL
) in the when the CsoundLib Library is compiled in with
the NDK, the CsoundObj can also interact with audio
track at run time (this is to allows for downward
compatibility with 2.2 and lower). Enabling input and
output depends on what commandline arguments are given
when running Csound. The commandline arguments should
be supplied as part of the CSD’s \textbf{CsOptions}
section. To enable audio output, use \textbf{-o dac}
and to enable audio input, use \textbf{-i adc}.

\subsection{Accelerometer}

CsoundObj has built-in support for use of the accelerometer
found in android devices. CsoundObj has the following
methods to enable these features:

\begin{lstlisting}[caption=CsoundObj Accelerometer Method]
public CsoundValueCacheable enableAccelerometer (Context
context)

]

When the feature is enabled, CsoundValueCacheables that wrap the sen-
sor will send values into Csound via hardcoded channels:

e Acclerometer

— accelerometerX
— accelerometerY
— accelerometerZ

Once a sensor has been enabled, you can access those values in Csound
using chnget. For further study, please see the Hardware Test example in
the Examples project.

6 Csound for Android Examples

The Examples project contains a number of simple examples that illustrate
different aspects of working with Csound for Android. The following is a
brief description of each of the examples.

6.1 Simple Test 1

Simple example that plays ascending notes. The pitch of the notes can be
altered by using the SeekBar. Also, a ToggleButton is used to turn on/off
the rendering of Csound. In the code, you'll find that the callback that
is connected to the ToggleButton shows the basic usage of CsoundObj to
render a CSD that is included as a resource for the project:

Listing 3: Example code showing configuring and starting a CsoundObj

public void onCheckedChanged (CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
String csd = getResourceFileAsString(R.raw.test);
File f = createTempFile(csd);
csoundObj.addSlider (fSlider, "slider", 0.,
1.);
csoundObj.addCompletionListener (
SimpleTestlActivity.this);
csoundObj.startCsound (f);
} else {
csound0Obj.stopCsound () ;

»;

6.2 Simple Test 2

This is a generative music example that contains a number of SeekBars that
affect the rate of notes generated, the duration of notes, and the ADSR
envelope for each note.

6.3 Button Test

This example uses a CSD based on the one used for Simple Test 2, but
depends on the user to trigger a button to generate each note. The two but-
tons in this example show two different ways in which to integrate buttons
with CsoundObj:

1. Using CsoundObj’s addButton method, which will setup a k-rate
channel for Csound, the value will be 0 when the button is not pressed,
and will be 1 for one ksmps period when a button is pressed (it returns
to 0 the following ksmps period).

2. Using a standard button callback, the callback will create a string score
and send that to Csound using CsoundODbj’s sendScore method. (See
code below.)

Listing 4: Example code showing sending score text to CsoundObj

String event = String.format("i2 0 %f", value);

csound0Obj.sendScore (event) ;

Note that the second method will read the value from the duration slider
when creating the note, while the first method handles reading the duration
from the channel within the CSD code.

6.4 Ping Pong Delay

This example shows processing audio input in realtime, using a Ping Pong
Delay. The use of audio input is controlled by the standard Csound flag -i
adc that is found in the CSD’s CsOptions section.

6.5 Harmonizer

This example highlights the same techniques as the Ping Pong Delay, but
shows the use of Csound’s streaming Phase Vocoder to create a harmonizer
effect.

6.6 Accelerometer

This example shows the use of the accelerometer sensor. For this example,
the accelerometer is enabled and values are read by the CSD to affect the
pitch of a vco2 oscillator, as well as cutoff and resonance of a moogladder
filter.

6.7 Csound Haiku 4

Csound Haiku is a generative art music work by Iain McCurdy. Number
4 from this set of pieces was chosen to exercise what this platform is of
capable.

6.8 Multitouch XY

This example demonstrates a multitouch performance surface. The multi-
touch code maps each touch down and up to a note on and off. It also sends
continous x and y values to Csound. The Csound programming in the CSD
shows a technique for doing individual per-note control data mapping by
dynamically assigning what channels of data each note should read from.

6.9 Waveview

This example demonstrates using a CsoundValueCacheable to read an f-
table from Csound and displaying that table. Note that the WaveView’s
code is doing some optimization to check if it has already loaded. It is also
checking that the table itself has completed loading before trying to grab
any values for the table.

Listing 5: Waveview code demonstrating reading f-tables from Csound

public void updateValuesFromCsound () {
if (!tablelLoaded) {
Csound csound = csoundObj.getCsound();
CsoundMYFLTArray table = new CsoundMYFLTArray();
int length = csound.TablelLength(1l);
csound.GetTable (table.GetPtr (), 1);
tableData = new double[length];

for (int i = 0; i < length; i++) {
tableDatal[i] = table.GetValue(i);
}

tablelLoaded = true;

new Thread() {
Q@O0verride
public void run() {

int width = getWidth ();
int height = getHeight ();
int middle = height / 2;

points = new int[width];
int tablelLength = tableData.length;

for (int i = 0; i < width; i++) {
float percent = i / (float) (width);
int index = (int) (percent * tableLength);
points[i] = (int) ((tableDatal[index] * middle)
+ middle) ;
}

postInvalidate () ;

}
}.start ();
}
}

7 Making Your First Csound Android App

This section will walk you through your first implementation of the Csound
library for Android:

e assuming you have added the library to your project as explained in
the Getting and Using the Csound for Android API section; and

e that your application is called First Csound__App with the package
name of com.example.first _csound__app; and

e you used the default names for your first class and xml file, which
are MainActivity.java and activity _main.xml respectively

First let us create the user interface. This is simplest using xml files,
though this can be achieved through Java.

First navigate to the res > layout >activity main.xml in the Package
explorer in Eclipse. At the bottom left of the the xml view pane you will
see a graphical layout tab and an activity__main.xml tab

| Graphical La'y::-ut| .;—-l activity_main.xml

Insert the following code in the xml file. This will create three Buttons
and a SeekBar as shown.

Listing 6: Code to create Ul

<Relativelayout xmlns:android="http://schemas.android.com/
apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<!--This is a comment! the following inserts a Button
and is

soley responsiple for how the Button looks in this app.

The id section is used for refferencing to the Button
throughout

the rest of the project -->

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/
android"

android:id="@+id/ButtonList"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>

<Button
android:id="@+id/StartCsound"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:text="StartCsound"

/>

<Button
android:id="@+id/StopCsound"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:text="StopCsound"

/>

<Button
android:id="@+id/Buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:text="B1"

10

/>
</LinearLayout >

<!--This is a comment! the following inserts a SeekBar (
comminly reffered to as a slider) and is

soley responsiple for how the Button looks in this app.

The id section is used for refferencing to the SeekBar
throughout

the rest of the project-->

<SeekBar
android:id="@+id/SeekBar1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="Q@+id/ButtonlList"
/>

</RelativeLayout >

. MainActivity

StartCsound StopCsound B1

Next go to your project manifest to add the necessary permissions for
fully using the CsoundObj. This is done by selecting AndroidManifest.xml
from the package explorer, then selecting AndroidManifest.xml from tabs at
the bottom of the main pane

11

| Manifest | Application |[E] Permissions |[I] Instrumentation l.;——l AndrnidManifest.xml[

Adding the following to your Manifest

l= «manifest xmlns:android="http:/“schemas.android. com/apk/ressandroid"”

2 package="com. example. first_csound_app"”

3 android:versionCode="1"

4 android:versionName="1.8" =

5

B <uses-sdk

7 android:minSdkVersion="8"

& android: targetSdkVersion="15" /=

9

18= <application

11 android:icon="8drawablesic_launcher"”

2 android: label="Estring app_name"

13 android:theme="8style /AppTheme" =

14= cactivity

15 android:name=" MainActivity"

16 android: label="Bstring/title_activity_main” =

17e <intent-filters

18 <action android:name="android.intent.action.MAIN® /=

19

26 <category android:name="android. intent.category. AUNCHER" /=

2z </intent-filter>

22 <factivity=

23 </application>

24 <l-- Add the| following code--»

25 «l-- MODIFY_AUDIO_SETTINGS is needed to use audio effects such as environmental reverb --»
@26 <uses-permission android:name="android.permission. MODIFY_AUDIO_SETTINGS®/ >

27 <uses-permission android:name="android.permission. WRITE_EXTERNAL_STORAGE" />

28 cuses-permission android:name="android.permission. RECORD_AUDIO" /=

29 </manifest>

Now that the Ul is built and the manifest has been prepared, proceed to
opening the main activity of the project src>com.example.first csound_ -
app>MainActivity.java. You should see the following when you open the
class (depending on your Eclipse preferences the line numbering may not

appear)

12

1 package com.example.first_csound_app;
si @ import android.os.Bundle;[]
iz |
13
14 public class MoinActivity extends Activity {
15
1= @0verride
al? public void onCreatelBundle savedInstanceState) {
18 super.onCreate{savedInstanceState);
149 setContentView(R. layout.activity_main);
28 }
21
22z @0verride
a3 public boolean onCreatelptionsMenu{Menu menu) {
24 getMenulnflater(}.inflote(R. menu.octivity_main, menul;
25 return true;
Zb }
27
Z&
20 1
34

First add the BaseCsoundActivity.java class to your project. This can
be done by copying it into the src folder of your project on your computer
from the CsoundAndroidExamples project that comes with the Csound for
Android download.

Next you need to import the necessary packages into your package for
the application to compile correctly. These include the Csound package and
widget packages for the Ul. To see all the automatically imported packages
click the + button beside the import shown in the last image

13

1 package com.example.first_csound_app;

adl

33
34
i5
36
iv
38

= import

import
import
import
import
import
import
F/THIS
import
import
import
import
import

java.io.File;

android.os.Bundle;

android.app.Activity;

android.view.Menu;

android.view.Menultem;

android.view.View;
android.support.vd.app.NavUtils;

IS A COMMENT!// The following are the packages you need to import/s/
android.widget.Button;

android.widget.SeekBar;

com.example. first_csound_app.R;

com. csounds . CsoundObi;

com.example. first_csound_app.BaseCsoundActivity;

FELLILTES ST LIS SL LTSS LSS LS LLTLTET ST

public

class MainActivity extends BoseCsoundActivity {

= B0verride
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
setContentView(R. layout. activity_main);

b= @0verride

public boolean onCreatelptionsMenu(Menu menu) {

getMenulnflater().inflate(R.menu.activity_main, menu);
return true;

Next extend your class with BaseCsoundActivity instead of Activity
(note that BaseCsoundActivity extends Activity). Then add your variables
and then initialise them in the onCreate method as shown below.

14

1 package com.example.first_csound_app;
—import java.io.File;

import android.os.Bundle;

import android.opp.Activity;

import android.view.Menu;

import android.view.Menultem;

import android.view.View;

import android.support.vd.app.NavUtils;

FATHIS IS A COMMENT!// The following are the packages you need to import///
import android.widget.Button;

import android.widget.SeekBar;

import com.example.first_csound_app.R;

import com.csounds.CsoundObi;

16 import com.exomple.first_csound_app.BoseCsoundActivity;

T SIILIITS LTSS ST TSI ST LSS

=
~ RN R s T A

E

=
=

L

[l el
W

=
L

public class MainActivity extends BoseCsoundActivity {

private CsoundObj csoundObi;
Button startCsound, stopCsound, buttonl;
SeekBar seekBarl;

262 @0verride
a7 public wvoid onCreate(Bundle savedInstanceState) {
28 super.onCreate(savedInstanceState);
29 setContentView(R. layout. activity_main);
31 csoundldbj = new Csounddbj();
32 startCsound = (Button) findViewById(R.id.S5tartCsound);
33 stopCsound = (Button) findViewById(R.id.StopCsound);
34 buttonl = (Button) findViewById(R.id.Buttonl);;
35 seekBarl = (SeekBar) findViewById(R.id.SeekBarl);
36
37 }
38
392 B0verride
) public boolean onCreatelptionsMenu(Menu menu) {
41 getMenulnflater().inflate(R.menu.activity_main, menu);
42 return true;
43 }
44
45
46 }
48

Finally in our Activity class we have to connect our Ul comments to our
CsoundObj to allow us to pass information from our Ul to our Csound code.
In following code the max value of the SeekBar is set to 1 and the minium
value is set to 0. To reserve this data in your Csound code use the opcode
chnget and buttonl and seekBarl. The button and SeekBar are added each
time before every time CsoundObj is set playing to ensure they are in the
variable cacheable for the object

15

1 package com.example.first_csound_app;
v 3= import java.io.File;

5 import android.os.Bundle;
w6 import android.app.Activity;
7 import android.view.Menu;
ui & import android.view.Menultem;
9 import android.view.View;
w18 import android.support.v4.app.NavUtils;
11 //THIS IS A COMMENT!// The following are the packages vou need to import///
12 import android.widget.Button;
12 dimport android.widget.SeekBar;
14 import com.example.first_csound_app.R;
15 import com.csounds.CsoundObj;
16 import com.example.first_csound_app.BaseCsoundActivity;
17 SELETLEIEEIILIIEIS SIS ETELITL LTSS SIS

19 public class MoinActivity extends Base(soundActivity {
private CsoundObj csoundObj;

Button startCsound, stopCsound, buttonl;
SeekBar seekBarl;

25 @0verride
b public void onCreate(Bundle savedInstanceState) {
27 super.onlreate(savedInstanceState);
28 setContentView(R.layout.activity_main);
30 csoundlbj = new CsoundObj();
31 startCzsound = (Button) findViewById(R.id.5tart(sound);
32 stopCsound = (Button) findViewById(R.id.StopCsound);
33 buttonl = (Button) findViewById(R.id.Buttonl);;
34 seekBarl = (SeekBar) findViewById(R.id.35eekBarl);
35
36 startCsound.setOnClickListener{new View.OnClickListener{) {
37
A 3B public void onClick({View v} {
39
49 csoundlbj.addSlider(seekBarl, "seekBarl", @, 1);
41 csoundObj.addButton(buttonl, "buttonl");
2 csoundObj. startCsound(createTempFile{getResourceFileAsString(R. raw. button_test)));
43
44 1
45 iH
46
47 stopCsound. setOnClickListener(new View.OnClickListener() {
48
40 public void onClick(View v} {
58
51 csoundObi. stopCsound();
52
53
54 1
55 B
56
57 1
58
59 @0verride
bl public boolean onCreateQptionsMenu{Menu menu) {
61 getMenuInflater().inflate(R.menu.activity_main, menu);
B2 return true;
23
= 1

Finally, to get your Csound code into the project, create a raw folder
in your project in the res folder. This can be done by right clicking your

16

res folder in your package explorer in Eclipse, from the drop down menu set
new followed by folder then name the folder raw.

P&;,G'-Csound.&ppz
7::,% First_Csound_App
b Bsre
> %gen [Generated Java Files]
=i, Android 4.1
b =i, Android Dependencies
{2 assets
» 2= bin
> 2 libs
vires
F = drawable-hdpi
P (= drawable-ldpi
F = drawable-mdpi
P = drawable-xhdpi
F = layout
P = menu
F(=values
F =values-large
(= values-v11
P =values-v14
1 AndroidManifest.xmil
-}%ic_launcher—web.png
) lintaxml
proguard-project.txt
project.properties

Next go to the containing folder of your project on your computer and
put your Csound .csd file in the raw folder. Now when you return to Eclipse
and run your project as an Android Application by clicking the play button
in Eclipse, Your first Csound app should be running with your Csound code,
congratulations!

8 Csound App 2.0

This app demonstrates the use of the Csound library in the context of a
larger application with multiple Activities, Views and the ability to load in
different .csd files dynamically. It is designed for stand alone use for those
that do not want to get their hands dirty with Android programming but
still want access to the platform, and for those who want an app with lots
of functionality that they can use in their own applications.

Hence the in order to get up and running with Csound on Android, all
you need to do is use chnget in your .csd to get access to the Ul values.

17

SeekBars are set from 0 to 1 consequently some scaling may be necessary in
your .csd. The Variable names to be used are:

e Performancel
— seekBarl
Performance 2
— seekBar?2
Mixer

— seekBar3
— seekBar4
— seekBarh
— seekBar6
— seekBar7
— seekBar8

e Performancel

- Bl
- B2
- B3
- B4
- B5
— B6
- B7
- B8
- B9
— B10
— B11
— B12
— B13
- B14
— B15

18

— B16
- B17
— B18
- B19

Performance 2

- B20
- B21
— B22
— B23
- B24

Listing 7: Exampe of code to be used in .csd to connect Seekbars and
Buttons

kVolume chnget "seekBarl"
kOn0ff chnget "B1"

To use the xy pad in tab Performance2 use the following

Listing 8: Exampe of code to be used in .csd to connect xy pad

S_xName sprintf "touch.%d.x", i_instanceNunm
S_yName sprintf "touch.%d.y", i_instanceNum

kx chnget S_xName
ky chnget S_yName

For those who want to customise the app and understand its workings
the following, along with the comments in the apps code should help. This
application has been designed to allow user changes to the source code and
was built to demonstrate the use of a singleton design process to preserve
a CsoundObj for the whole Android lifecycle of an application. There are
several situations that have to be taken into consideration.

1. Adding the UI controls to the CsoundObj when Android Activities are
created and destroyed by the Android OS to recover RAM.

2. The selecting of new .csd files to be loaded into the application, and
creating a new CsoundObj object for this event.

3. The consistency between different activities and views to allow users
to change between views during a performance.

19

Many of these features are achieved by extending Application. It is used
to store the CsoundObj, the current file path, the current features of each
application and view. it is also used to give all activities a set of methods
which will always have to be called and which will never be destroyed by
the Android life cycle, thus ensuring their constant availability It is impor-
tant to note that throughout this app BaseCsoundActivity.java is extended
instead of Activity (As BaseCsoundActivity.java extends Acitivity). BaseC-
soundActivity.java is used to take advantage of it methods such as:

e protected String getResourceFileAsString(int resId)
e protected File createTempFile(String csd)

Hence this may be a design choice worth remembering when coding your
own apps.

9 Conclusion

We hope that this document has helped you to become familiar with the
design and usage of the Csound for Android API. The example Java and
Csound CSD code should hopefully give you a good starting point for your
own musical projects, and we encourage you to take these examples and run
with it. We look forward to hearing your questions and feedback on this
API, and most of all, look forward to seeing what you will create with all of
this. Best of luck and enjoy!

20

	Introduction
	Regarding the Csound for Android Examples Project
	Regarding the LGPL License

	Getting and Using the Csound for Android API
	Introduction to the API
	CsoundObj and Csound API's

	Using the CsoundObj API
	Designing Csound CSD projects to work with Hosts
	CsoundValueCacheable for Communicating with Csound

	Common CsoundObj API Methods
	Binding Widgets to CsoundObj

	Csound for Android Examples
	Simple Test 1
	Simple Test 2
	Button Test
	Ping Pong Delay
	Harmonizer
	Accelerometer
	Csound Haiku 4
	Multitouch XY
	Waveview

	Making Your First Csound Android App
	Csound App 2.0
	Conclusion

