LIBMPATROL(3) mpatrol library LIBMPATROL(3)

NAME
libmpatrol — dynamic memory allocation and tracing library

SYNOPSIS
#include <mpatrol.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t size);

void *memalign(size_t align, size_t size);
void *valloc(size_t size);

void *pvalloc(size_t size);

void *alloca(size_t size);

char *strdup(const char *str);

char *strndup(const char *str, size_t size);
char *strsave(const char *str);

char *strnsave(const char *str, size_t size);
char *strdupa(const char *str);

char *strndupa(const char *str, size_t size);
void *realloc(void *ptr, size_t size);

void *reallocf(void *ptr, size_t size);

void *recalloc(void *ptr, size_t nelem, size_t size);
void *expand(void *ptr, size_t size);

void free(void *ptr);

void cfree(void *ptr, size_t nelem, size_t size);
void dealloca(void *ptr);

void *xmalloc(size_t size);

void *xcalloc(size_t nelem, size_t size);
char *xstrdup(const char *str);

void *xrealloc(void *ptr, size_t size);
void xfree(void *ptr);

void *operator new(size_t size) throw(std::bad_alloc);

void *operator new(size_t size, const std::nothrow_t&) throw();

void *operator new[](size_t size) throw(std::bad_alloc);

void *operator new[](size_t size, const std::nothrow_t&) throw();

void operator delete(void *ptr) throw();

void operator delete(void *ptr, const std::nothrow_t&) throw();

void operator delete[](void *ptr) throw();

void operator delete[](void *ptr, const std::nothrow_t&) throw();
std::new_handler std::set_new_handler(std::new_handler func) throw();

void *memset(void *ptr, int byte, size_t size);

void bzero(void *ptr, size_t size);

void *memccpy(void *dest, const void *src, int byte, size_t size);

void *memcpy(void *dest, const void *src, size_t size);

void *memmove(void *dest, const void *src, size_t size);

void bcopy(const void *src, void *dest, size_t size);

int memcmp(const void *ptrl, const void *ptr2, size_t size);

int bcmp(const void *ptrl, const void *ptr2, size_t size);

void *memchr(const void *ptr, int byte, size_t size);

void *memmem(const void *ptrl, size t sizel, const void *ptr2, size_t size2);

int __mp_atexit(void (*func)(void));
unsigned long __mp_setoption(long opt, unsigned long val);

Release 1.4 8 January 2002 1

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

int __mp_getoption(long opt, unsigned long *val);

unsigned long __mp_libversion(void);

const char *__mp_strerror(__mp_errortype err);

const char *__mp_function(__mp_alloctype func);

int __mp_setuser(const void *ptr, const void *data);

int __mp_setmark(const void *ptr);

int __mp_info(const void *ptr, __mp_allocinfo *info);
int__mp_syminfo(const void *ptr, __mp_symbolinfo *info);

const char *__mp_symbol(const void *ptr);

int __mp_printinfo(const void *ptr);

unsigned long __mp_snapshot(void);

size_t __mp_iterate(int (*func)(const void *, void *), void *data, unsigned long event);
size_t __mp_iterateall(int (*func)(const void *, void *), void *data);

int __mp_addallocentry(const char *file, unsigned long line, size_t size);
int __mp_addfreeentry(const char *file, unsigned long line, size_t size);
void __mp_clearleaktable(void);

int __mp_startleaktable(void);

int __mp_stopleaktable(void);

void __mp_leaktable(size_t size, int opt, unsigned char flags);

void __mp_memorymap(int stats);

void __mp_summary(void);

int__mp_stats(__mp_heapinfo *info);

void __mp_check(void);

__mp_prologuehandler __mp_prologue(const __mp_prologuehandler);
__mp_epiloguehandler __mp_epilogue(const __mp_epiloguehandler);
__mp_nomemoryhandler __mp_nomemory(const __mp_nomemoryhandler);
int __mp_printf(const char *fmt, ...);

int __mp_vprintf(const char *fmt, va_list args);

void __mp_locprintf(const char *fmt, ...);

void __mp_vlocprintf(const char *fmt, va_list args);

void __mp_logmemory(const void *ptr, size_t size);

int __mp_logstack(size_t frames);

int__mp_logaddr(const void *ptr);

int __mp_edit(const char *file, unsigned long line);

int __mp_list(const char *file, unsigned long line);

int __mp_view(const char *file, unsigned long line);
int__mp_readcontents(const char *file, void *ptr);

int __mp_writecontents(const char *file, const void *ptr);

long __mp_cmpcontents(const char *file, const void *ptr);

int __mp_remcontents(const char *file, const void *ptr);

__mp_errortype __mp_errno;

DESCRIPTION
The mpatrol library contains implementations of dynamic memory allocation functions for C and C++ suit-
able for tracing and debugging, and is available on UNIX, AmigaOS, Windows and Netware platforms.
The library is intended to be used without requiring any changes to existing user source code except the
inclusion of the mpatrol.h header file, although additional functions are supplied for extra tracing and con-
trol. Note that the current version of the mpatrol library is contained in the MPATROL_VERSION pre-
processor macro.

All of the function definitions in mpatrol.h can be disabled by defining the NDEBUG preprocessor macro,
which is the same macro used to control the behaviour of the assert function. If NDEBUG is defined then
no macro redefinition of functions will take place and all special mpatrol library functions will evaluate to
empty statements. The mpalloc.h header file will also be included in this case. It is intended that the NDE-
BUG preprocessor macro be defined in release builds.

Release 1.4 8 January 2002 2

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

The MP_MALLOC family of functions that are defined in mpalloc.h are also defined in mpatrol.h when
NDEBUG is not defined. The mpatrol versions of these functions contain more debugging information
than the mpalloc versions do, but they do not call the allocation failure handler when no more memory is
available (they cause the OUTMEM error message to be given instead). See mpalloc(3) for the descriptions
of the MP_MALLOC family of functions.

All diagnostics are sent to the file mpatrol.log in the current directory by default but this can be changed at
run-time. Additional configuration options can also be changed at run-time by setting and altering the
MPATROL_OPTIONS environment variable. In addition, the LOGFILE, PROFFILE and TRACE-
FILE options are affected by the LOGDIR, PROFDIR and TRACEDIR environment variables respec-
tively. See ENVIRONMENT below for more details.

Details of memory allocations and free memory are stored internally as a tree structure for speed and also
to allow the best fit allocation algorithm to be used. This also enables the library to perform intelligent
resizing of memory allocations and can be used to quickly determine if an address has been allocated on the
heap.

On systems that support memory protection, the library attempts to detect any illegal memory accesses and
display as much information as it can obtain about the address in question and where the illegal memory
access occurred.

Stack traceback information for every memory allocation is available on some supported platforms, which
is useful for determining exactly where a memory allocation was performed or for adding meaning to trac-
ing. Symbol names are read from the executable file and also possibly from any required shared libraries,
and if the USEDEBUG option is used and is available then the debugging section in the executable file will
be read to determine additional source-level information.

On systems that support it, global functions (with C linkage) in an executable file or shared library whose
names begin with __mp_init_ will be noted when the mpatrol library first starts up and is reading the sym-
bols. Such functions will then be called as soon as the mpatrol library is initialised, which can be useful if
the initialisation occurs before main is called. These functions must accept no arguments and must return
no value. Similar behaviour exists for global functions whose names begin with __mp_fini_, except that
such functions will be executed when the mpatrol library terminates. Note that this feature will have no
effect if the symbol table is stripped from the executable file or shared library before the program is run,
and the order in which such functions will be called if there are more than one is unspecified.

On UNIX platforms, the fork function can cause problems if it is used to make a copy of the parent process
without immediately calling one of the exec family of functions. This is because the child process inherits
all of the memory allocations of the parent process, but also inherits the log, profile and trace files as well.
If both the parent and child processes make subsequent memory allocations there will be multiple entries
with the same allocation indices written to the log, profile or trace files. This can be most confusing when
processing these files afterwards! As a workaround, the mpatrol library will always check the current pro-
cess identifier every time one of its functions is called if the CHECKFORK option is used and will open
new log, profile or trace files if it has determined that the process has been forked. If the CHECKFORK
option is not used then a call to __mp_reinit should be added as the first function call in the child process
in order to duplicate the behaviour of the CHECKFORK option.

Memory allocation profiling is supported, with statistics about every memory allocation and deallocation
that was made during the execution of a program being written to a file at program termination if the PROF
option is used. The information stored in this file can then be used by the mprof command to display vari-
ous tables summarising the memory allocation behaviour of the program that produced it. Memory alloca-
tion tracing is also supported, where a trace of all memory allocations, reallocations and deallocations can
be written to a tracing output file in a concise encoded format for later processing by the mptrace com-
mand. This is controlled with the TRACE option.

FUNCTIONS
The following 19 functions are available as replacements for existing C library functions. To use these you
must include mpatrol.h before all other header files, although on UNIX and Windows platforms (and Ami-
gaOsS when using gcc) they will be used anyway, albeit with slightly less tracing information. If alloca is

Release 1.4 8 January 2002 3

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

being used and alloca.h is included then mpatrol.h must appear after alloca.h otherwise the debugging ver-
sion of alloca will not be used:

malloc

calloc

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded
up to 1 byte. If there is not enough space in the heap then the null pointer will be returned and
errno will be set to ENOMEM. The allocated memory must be deallocated with free or reallo-
cated with realloc.

Allocates nelem elements of size zero-initialised bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be suitably aligned for casting to any type
and can be used to store data of up to nelem * size bytes in length. If nelem * size is O then the
amount of memory allocated will be implicitly rounded up to 1 byte. If there is not enough space
in the heap then the null pointer will be returned and errno will be set to ENOMEM. The allo-
cated memory must be deallocated with free or reallocated with realloc.

memalign

valloc

pvalloc

alloca

strdup

Release 1.4

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be aligned to align bytes and can be used to store data of up to size
bytes in length. If align is zero then the default system alignment will be used. If align is not a
power of two then it will be rounded up to the nearest power of two. If align is greater than the
system page size then it will be truncated to that value. If size is 0 then the memory allocated will
be implicitly rounded up to 1 byte. If there is not enough space in the heap then the null pointer
will be returned and errno will be set to ENOMEM. The allocated memory must be deallocated
with free or reallocated with realloc, although the latter will not guarantee the preservation of
alignment.

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be aligned to the system page size and can be used to store data of
up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded up to 1
byte. If there is not enough space in the heap then the null pointer will be returned and errno will
be set to ENOMEM. The allocated memory must be deallocated with free or reallocated with
realloc, although the latter will not guarantee the preservation of alignment.

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be aligned to the system page size and can be used to store data of
up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded up to 1
page, otherwise size will be implicitly rounded up to a multiple of the system page size. If there is
not enough space in the heap then the null pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free or reallocated with realloc,
although the latter will not guarantee the preservation of alignment.

Allocates size temporary uninitialised bytes from the heap and returns a pointer to the first byte of
the allocation. The pointer returned will be suitably aligned for casting to any type and can be
used to store data of up to size bytes in length. If size is O then the memory allocated will be
implicitly rounded up to 1 byte. If there is not enough space in the heap then the program will be
terminated and the OUTMEM error will be given. The alloca function normally allocates its
memory from the stack, with the result that all such allocations will be freed when the function
returns. This version of alloca allocates its memory from the heap in order to provide better
debugging, but the allocations may not necessarily be freed immediately when the function
returns. The allocated memory can be deallocated explicitly with dealloca, but may not be reallo-
cated or deallocated in any other way. This function is available for backwards compatibility with
older C source code and should not be used in new code.

Allocates exactly enough memory from the heap to duplicate str (including the terminating nul
character) and returns a pointer to the first byte of the allocation after copying str to the newly-
allocated memory. The pointer returned will have no alignment constraints and can be used to
store character data up to the length of str. If str is NULL then an error will be given and the null

8 January 2002 4

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

strndup

strsave

strnsave

strdupa

pointer will be returned. If there is not enough space in the heap then the null pointer will be
returned and errno will be set to ENOMEM. The allocated memory must be deallocated with
free or reallocated with realloc.

Allocates exactly enough memory from the heap to duplicate str (including the terminating nul
character) and returns a pointer to the first byte of the allocation after copying str to the newly-
allocated memory. The pointer returned will have no alignment constraints and can be used to
store character data up to the length of str. If str is NULL and size is non-zero then an error will
be given and the null pointer will be returned. If the length of str is greater than size then only size
characters will be allocated and copied, with one additional byte for the nul character. If there is
not enough space in the heap then the null pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free or reallocated with realloc.
This function is available for backwards compatibility with older C libraries and should not be
used in new code.

Allocates exactly enough memory from the heap to duplicate str (including the terminating nul
character) and returns a pointer to the first byte of the allocation after copying str to the newly-
allocated memory. The pointer returned will have no alignment constraints and can be used to
store character data up to the length of str. If str is NULL then an error will be given and the null
pointer will be returned. If there is not enough space in the heap then the null pointer will be
returned and errno will be set to ENOMEM. The allocated memory must be deallocated with
free or reallocated with realloc. This function is available for backwards compatibility with older
C libraries and should not be used in new code.

Allocates exactly enough memory from the heap to duplicate str (including the terminating nul
character) and returns a pointer to the first byte of the allocation after copying str to the newly-
allocated memory. The pointer returned will have no alignment constraints and can be used to
store character data up to the length of str. If str is NULL and size is non-zero then an error will
be given and the null pointer will be returned. If the length of str is greater than size then only size
characters will be allocated and copied, with one additional byte for the nul character. If there is
not enough space in the heap then the null pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free or reallocated with realloc.
This function is available for backwards compatibility with older C libraries and should not be
used in new code.

Allocates exactly enough temporary memory from the heap to duplicate str (including the termi-
nating nul character) and returns a pointer to the first byte of the allocation after copying str to the
newly-allocated memory. The pointer returned will have no alignment constraints and can be used
to store character data up to the length of str. If str is NULL then an error will be given and the
null pointer will be returned. If there is not enough space in the heap then the program will be ter-
minated and the OUTMEM error will be given. The strdupa function normally allocates its mem-
ory from the stack, with the result that all such allocations will be freed when the function returns.
This version of strdupa allocates its memory from the heap in order to provide better debugging,
but the allocations may not necessarily be freed immediately when the function returns. The allo-
cated memory can be deallocated explicitly with dealloca, but may not be reallocated or deallo-
cated in any other way. This function is available for backwards compatibility with older C source
code and should not be used in new code.

strndupa

Release 1.4

Allocates exactly enough temporary memory from the heap to duplicate str (including the termi-
nating nul character) and returns a pointer to the first byte of the allocation after copying str to the
newly-allocated memory. The pointer returned will have no alignment constraints and can be used
to store character data up to the length of str. If str is NULL and size is non-zero then an error
will be given and the null pointer will be returned. If the length of str is greater than size then only

8 January 2002 5

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

realloc

reallocf

recalloc

expand

Release 1.4

size characters will be allocated and copied, with one additional byte for the nul character. If there
is not enough space in the heap then the program will be terminated and the OUTMEM error will
be given. The strndupa function normally allocates its memory from the stack, with the result
that all such allocations will be freed when the function returns. This version of strndupa allo-
cates its memory from the heap in order to provide better debugging, but the allocations may not
necessarily be freed immediately when the function returns. The allocated memory can be deallo-
cated explicitly with dealloca, but may not be reallocated or deallocated in any other way. This
function is available for backwards compatibility with older C source code and should not be used
in new code.

Resizes the memory allocation beginning at ptr to size bytes and returns a pointer to the first byte
of the new allocation after copying ptr to the newly-allocated memory, which will be truncated if
size is smaller than the original allocation. The pointer returned will be suitably aligned for cast-
ing to any type and can be used to store data of up to size bytes in length. If ptr is NULL then the
call will be equivalent to malloc. If size is O then the existing memory allocation will be freed and
the null pointer will be returned. If size is greater than the original allocation then the extra space
will be filled with uninitialised bytes. If there is not enough space in the heap then the null pointer
will be returned and errno will be set to ENOMEM. The allocated memory must be deallocated
with free and can be reallocated again with realloc.

Resizes the memory allocation beginning at ptr to size bytes and returns a pointer to the first byte
of the new allocation after copying ptr to the newly-allocated memory, which will be truncated if
size is smaller than the original allocation. The pointer returned will be suitably aligned for cast-
ing to any type and can be used to store data of up to size bytes in length. If ptr is NULL then the
call will be equivalent to malloc. If size is O then the existing memory allocation will be freed and
the null pointer will be returned. If size is greater than the original allocation then the extra space
will be filled with uninitialised bytes. If there is not enough space in the heap then the null pointer
will be returned, the original allocation will be freed and errno will be set to ENOMEM. The
allocated memory must be deallocated with free and can be reallocated again with realloc. This
function is available for backwards compatibility with older C libraries and should not be used in
new code.

Resizes the memory allocation beginning at ptr to nelem elements of size bytes and returns a
pointer to the first byte of the new allocation after copying ptr to the newly-allocated memory,
which will be truncated if nelem * size is smaller than the original allocation. The pointer returned
will be suitably aligned for casting to any type and can be used to store data of up to nelem * size
bytes in length. If ptr is NULL then the call will be equivalent to calloc. If nelem * size is 0 then
the existing memory allocation will be freed and the null pointer will be returned. If nelem * size
is greater than the original allocation then the extra space will be filled with zero-initialised bytes.
If there is not enough space in the heap then the null pointer will be returned and errno will be set
to ENOMEM. The allocated memory must be deallocated with free and can be reallocated again
with realloc. This function is available for backwards compatibility with older C libraries and cal-
loc and should not be used in new code.

Attempts to resize the memory allocation beginning at ptr to size bytes and either returns ptr if
there was enough space to resize it, or NULL if the block could not be resized for a particular rea-
son. If ptr is NULL then the call will be equivalent to malloc. If size is O then the existing mem-
ory allocation will be freed and the NULL pointer will be returned. If size is greater than the orig-
inal allocation then the extra space will be filled with uninitialised bytes and if size is less than the
original allocation then the memory block will be truncated. If there is not enough space in the
heap then the NULL pointer will be returned and errno will be set to ENOMEM. The allocated
memory must be deallocated with free and can be reallocated again with realloc. This function is
available for backwards compatibility with older C libraries and should not be used in new code.

8 January 2002 6

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

free Frees the memory allocation beginning at ptr so the memory can be reused by another call to allo-
cate memory. If ptr is NULL then no memory will be freed. All of the previous contents will be
destroyed.

cfree Frees the memory allocation beginning at ptr so the memory can be reused by another call to allo-
cate memory. If ptr is NULL then no memory will be freed. All of the previous contents will be
destroyed. The nelem and size parameters are ignored in this implementation. This function is
available for backwards compatibility with older C libraries and calloc and should not be used in
new code.

dealloca
Explicitly frees the temporary memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is NULL then no memory will be explicitly freed. All of
the previous contents will be destroyed. This function can only be used to free memory that was
allocated with the alloca, strdupa and strndupa functions, but is only really required if the mpa-
trol library does not automatically free such memory allocations when the allocating function
returns. This function is mpatrol-specific and should not be used in release code.

The following 5 functions are available as replacements for existing C library extension functions that
always abort and never return NULL if there is insufficient memory to fulfil a request. To use these you
must include mpatrol.h before all other header files, although on UNIX and Windows platforms (and Ami-
gaOS when using gcc) they will be used anyway, albeit with slightly less tracing information:

xmalloc
Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded
up to 1 byte. If there is not enough space in the heap then the program will be terminated and the
OUTMEM error will be given. The allocated memory must be deallocated with xfree or reallo-
cated with xrealloc.

xcalloc Allocates nelem elements of size zero-initialised bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be suitably aligned for casting to any type
and can be used to store data of up to nelem * size bytes in length. If nelem * size is O then the
amount of memory allocated will be implicitly rounded up to 1 byte. If there is not enough space
in the heap then the program will be terminated and the OUTMEM error will be given. The allo-
cated memory must be deallocated with xfree or reallocated with xrealloc.

xstrdup

Allocates exactly enough memory from the heap to duplicate str (including the terminating nul
character) and returns a pointer to the first byte of the allocation after copying str to the newly-
allocated memory. The pointer returned will have no alignment constraints and can be used to
store character data up to the length of str. If str is NULL then an error will be given and the null
pointer will be returned. If there is not enough space in the heap then the program will be termi-
nated and the OUTMEM error will be given. The allocated memory must be deallocated with
xfree or reallocated with xrealloc.

xrealloc

Resizes the memory allocation beginning at ptr to size bytes and returns a pointer to the first byte
of the new allocation after copying ptr to the newly-allocated memory, which will be truncated if
size is smaller than the original allocation. The pointer returned will be suitably aligned for cast-
ing to any type and can be used to store data of up to size bytes in length. If ptr is NULL then the
call will be equivalent to xmalloc. If size is O then it will be implictly rounded up to 1. If size is
greater than the original allocation then the extra space will be filled with uninitialised bytes. If
there is not enough space in the heap then the program will be terminated and the OUTMEM error
will be given. The allocated memory must be deallocated with xfree and can be reallocated again
with xrealloc.

Release 1.4 8 January 2002 7

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

xfree Frees the memory allocation beginning at ptr so the memory can be reused by another call to allo-
cate memory. If ptr is NULL then no memory will be freed. All of the previous contents will be
destroyed.

The following 5 functions are available as replacements for existing C++ library functions, but the replace-
ments in mpatrol.h will only be used if the MP_NOCPLUSPLUS preprocessor macro is not defined. The
replacement operators make use of the preprocessor in order to obtain source-level information. If this
causes problems then you should define the MP_NONEWDELETE preprocessor macro and use the
MP_NEW, MP_NEW_NOTHROW and MP_DELETE macros instead of new and delete directly. To
use these C++ features you must include mpatrol.h before all other header files, although on UNIX and
Windows platforms (and AmigaOS when using gcc) they will be used anyway, albeit with slightly less trac-
ing information:

operator new

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded
up to 1 byte. If there is not enough space in the heap then either the std::bad_alloc exception will
be thrown or the null pointer will be returned and errno will be set to ENOMEM - the behaviour
depends on whether the nothrow version of the operator is used. The allocated memory must be
deallocated with operator delete.

operator new[]

Allocates size uninitialised bytes from the heap and returns a pointer to the first byte of the alloca-
tion. The pointer returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If size is 0 then the memory allocated will be implicitly rounded
up to 1 byte. If there is not enough space in the heap then either the std::bad_alloc exception will
be thrown or the null pointer will be returned and errno will be set to ENOMEM - the behaviour
depends on whether the nothrow version of the operator is used. The allocated memory must be
deallocated with operator delete[].

operator delete
Frees the memory allocation beginning at ptr so the memory can be reused by another call to allo-
cate memory. If ptr is NULL then no memory will be freed. All of the previous contents will be
destroyed. This function must only be used with memory allocated by operator new.

operator delete]]
Frees the memory allocation beginning at ptr so the memory can be reused by another call to allo-
cate memory. If ptr is NULL then no memory will be freed. All of the previous contents will be
destroyed. This function must only be used with memory allocated by operator newf].

set_new_handler
Installs a low-memory handler specifically for use with operator new and operator new[] and
returns a pointer to the previously installed handler, or the null pointer if no handler had been pre-
viously installed. This will be called repeatedly by both functions when they would normally
return NULL, and this loop will continue until they manage to allocate the requested space. Note
that this function is equivalent to __mp_nomemory and will replace the handler installed by that
function.

The following 10 functions are available as replacements for existing C library memory operation func-
tions. To use these you must include mpatrol.h before all other header files, although on UNIX and Win-
dows platforms (and AmigaOS when using gcc) they will be used anyway, albeit with slightly less tracing
information:

memset
Writes size bytes of value byte to the memory location beginning at ptr and returns ptr. If size is 0
then no bytes will be written. If the operation would affect an existing memory allocation in the
heap but would straddle that allocation’s boundaries then an error message will be generated in the
log file and no bytes will be written.

Release 1.4 8 January 2002 8

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

bzero

Writes size zero bytes to the memory location beginning at ptr. If size is 0 then no bytes will be
written. If the operation would affect an existing memory allocation in the heap but would strad-
dle that allocation’s boundaries then an error message will be generated in the log file and no bytes
will be written. This function is available for backwards compatibility with older C libraries and
should not be used in new code.

memccpy

Copies size bytes from src to dest and returns NULL, or copies the number of bytes up to and
including the first occurrence of byte if byte exists within the specified range and returns a pointer
to the first byte after byte. If size is 0 or src is the same as dest then no bytes will be copied. The
source and destination ranges should not overlap, otherwise a warning will be written to the log
file. If the operation would affect an existing memory allocation in the heap but would straddle
that allocation’s boundaries then an error message will be generated in the log file and no bytes
will be copied.

memcpy

Copies size bytes from src to dest and returns dest. If size is O or src is the same as dest then no
bytes will be copied. The source and destination ranges should not overlap, otherwise a warning
will be written to the log file. If the operation would affect an existing memory allocation in the
heap but would straddle that allocation’s boundaries then an error message will be generated in the
log file and no bytes will be copied.

memmove

bcopy

Copies size bytes from src to dest and returns dest. If size is O or src is the same as dest then no
bytes will be copied. If the operation would affect an existing memory allocation in the heap but
would straddle that allocation’s boundaries then an error message will be generated in the log file
and no bytes will be copied.

Copies size bytes from src to dest. If size is 0 or src is the same as dest then no bytes will be
copied. If the operation would affect an existing memory allocation in the heap but would straddle
that allocation’s boundaries then an error message will be generated in the log file and no bytes
will be copied. This function is available for backwards compatibility with older C libraries and
should not be used in new code.

memcmp

bcmp

Compares size bytes from ptrl and ptr2 and returns 0 if all of the bytes are identical, or returns the
byte difference of the first differing bytes. If size is 0 or ptrl is the same as ptr2 then no bytes will
be compared. If the operation would read from an existing memory allocation in the heap but
would straddle that allocation’s boundaries then an error message will be generated in the log file
and no bytes will be compared.

Compares size bytes from ptrl and ptr2 and returns O if all of the bytes are identical, or returns the
byte difference of the first differing bytes. If size is 0 or ptrl is the same as ptr2 then no bytes will
be compared. If the operation would read from an existing memory allocation in the heap but
would straddle that allocation’s boundaries then an error message will be generated in the log file
and no bytes will be compared. This function is available for backwards compatibility with older
C libraries and should not be used in new code.

memchr

Searches up to size bytes in ptr for the first occurrence of byte and returns a pointer to it or NULL
if no such byte occurs. If size is 0 then no bytes will be searched. If the operation would affect an
existing memory allocation in the heap but would straddle that allocation’s boundaries then an
error message will be generated in the log file and no bytes will be searched.

memmem

Release 1.4

Searches up to sizel bytes in ptrl for the first occurrence of ptr2 (which is exactly size2 bytes in
length) and returns a pointer to it or NULL if no such sequence of bytes occur. If sizel or size2 is
0 then no bytes will be searched. If the operation would affect an existing memory allocation in
the heap but would straddle that allocation’s boundaries then an error message will be generated in

8 January 2002 9

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

the log file and no bytes will be searched.

The following 42 functions are available as support routines for additional control and tracing in the mpa-
trol library. Although they are documented here as being prefixed by __mp_, their equivalent functions that
are prefixed by mpatrol_ are also defined as aliases in the mpatrol.h header file. To use these you should
include the mpatrol.h header file:

__mp_atexit
Installs a function to be called when the mpatrol library terminates. Up to 32 such functions can
be registered and will be called in reverse order of registration. Returns 1 on success or O if func
could not be registered.

__mp_setoption

Sets the value of an mpatrol option after the library has been initialised. Options that require val-
ues are listed in mpatrol.h prefixed with MP_OPT_*. The opt argument should be set to one of
these macros, and the val argument should be set to the option value, cast to an unsigned integer.
The return value will be 0 on success and 1 on failure. Options that are flags are listed in mpa-
trol.h prefixed with MP_FLG_*. Multiple flags can be set or unset at once using the
MP_OPT_SETFLAGS and MP_OPT_UNSETFLAGS options respectively, with the necessary flags
specified in val. The return value will be 0 on success and a combination of all of the flags that
could not be set or unset on failure.

__mp_getoption
Gets the value of an mpatrol option after the library has been initialised. If opt is a valid option
listed in mpatrol.h then 1 will be returned and the associated value will be returned in val and cast
to an unsigned integer, otherwise 0 will be returned. If optis MP_OPT_SETFLAGS then all of the
mpatrol library flags that are set will be returned in val. If opt is MP_OPT_UNSETFLAGS then all
of the mpatrol library flags that are not set will be returned in val.

__mp_libversion
Returns the version number of the mpatrol library. This can be useful for verifying that the ver-
sion of the mpatrol library that a program is linked with is the one expected at compile-time.

__mp_strerror
Returns the error message corresponding to the error code err or NULL if no such error code
exists. The most recent error code recorded by the mpatrol library can be obtained by examining
__mp_errno.

__mp_function
Returns the name of the function corresponding to the allocation type func or NULL if no such
allocation type exists.

__mp_setuser
Sets the user data for the memory allocation containing ptr. The contents of data are entirely
application-specific as user data will never be examined by the mpatrol library. Such data is asso-
ciated with a memory allocation for its entire lifetime unless overridden by a subsequent call to
__mp_setuser. As such, the user data must be valid for the entire lifetime of the memory alloca-
tion, perhaps even after the allocation has been freed if the NOFREE option is being used. This
function returns 1 if there is an allocated memory block containing ptr, and 0 otherwise.

__mp_setmark
Sets the marked flag for the memory allocation containing ptr, indicating that the memory alloca-
tion cannot be freed (but can be reallocated) and thus will not be listed as a memory leak. This
function returns 1 if there is an allocated memory block containing ptr, and 0 otherwise. Note that
a memory allocation made by alloca, strdupa or strndupa may not be marked.

__mp_info
Obtains information about a specific memory allocation by placing statistics about ptr in info. If

ptr does not belong to a previously allocated memory allocation or free memory block then 0 will
be returned, otherwise 1 will be returned and info will contain the following information (note that

Release 1.4 8 January 2002 10

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

a free memory block will only contain the block and size fields and can be identified by not having
the allocated flag set):

Field Description

block Pointer to first byte of alloc.

size Size of alloc in bytes.

type Type of function which allocated memory.
alloc Allocation index.

realloc Number of times reallocated.

thread Thread identifier.

event Event of last modification.

func Function in which alloc took place.
file File in which alloc took place.

line Line number at which alloc took place.
stack Pointer to function call stack.

typestr Type stored in allocation.

typesize Size of type stored in allocation.
userdata User data associated with allocation.
allocated Indicates if alloc was allocated.

freed Indicates if alloc has been freed.

marked Indicates if alloc has been marked.

profiled Indicates if alloc has been profiled.

traced Indicates if alloc has been traced.

internal Indicates if alloc is internal.
__mp_syminfo

Obtains symbolic information about a specific code address by placing statistics about ptr in info.
If ptr does not belong to a function symbol then O will be returned, otherwise 1 will be returned
and info will contain the following information:

Field Description
name Name of symbol.

object File containing symbol.
addr Start address of symbol.

size Size of symbol.

file Filename corresponding to address.

line Line number corresponding to address.
__mp_symbol

Obtains the name of a function symbol containing the code address specified in ptr. If ptr does not
belong to a function symbol then NULL will be returned.

__mp_printinfo
Displays information about a specific memory allocation containing ptr to the standard error file
stream. If ptr does not belong to a previously allocated memory allocation or free memory block
then O will be returned, otherwise 1 will be returned. This function is intended to be called from
within a debugger.

__mp_snapshot
Returns the current event number, effectively taking a snapshot of the heap. This number can then
be used in later calls to __mp_iterate.

__mp_iterate
Iterates over all of the current allocated and freed memory allocations, calling func with the start
address of every memory allocation that has been modified since event number event. If func is

Release 1.4 8 January 2002 11

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

NULL then __mp_printinfo will be used as the callback function. If event is 0 then func will be
called with the start address of every memory allocation. If func returns a negative number then
the iteration process will be stopped immediately. If func returns a positive number above zero
then __mp_iterate will return the number of times func returned a non-zero number after the iter-
ation process has stopped. The data argument is passed directly to func as its second argument
and is not read by the mpatrol library.

__mp_iterateall

Iterates over all of the current allocated and freed memory allocations and any free memory
blocks, calling func with the start address of every memory allocation or free block. If func is
NULL then __mp_printinfo will be used as the callback function. If func returns a negative num-
ber then the iteration process will be stopped immediately. If func returns a positive number above
zero then __mp_iterate will return the number of times func returned a non-zero number after the
iteration process has stopped. The data argument is passed directly to func as its second argument
and is not read by the mpatrol library. Note that unlike __mp_iterate, this function will also
include internal memory allocations made by the mpatrol library and is intended for walking the
entire heap.

__mp_addallocentry

Adds an entry representing an allocation of size size to the leak table. The allocation will be asso-
ciated with a source filename of file and a line number of line if the former is non-NULL and the
latter is non-zero. If file is non-NULL and line is O then file represents the name of the function
that made the allocation. If file is NULL and line is non-zero then line represents the code address
at which the allocation was made. If file is NULL and line is O then the location of the allocation
is unknown. Returns 1 on success and 0 if there was no more memory available to add another
entry to the leak table.

__mp_addfreeentry

Adds an entry representing a deallocation of size size to the leak table. The deallocation will be
associated with a source filename of file and a line number of line if the former is non-NULL and
the latter is non-zero. If file is non-NULL and line is O then file represents the name of the func-
tion that made the deallocation. If file is NULL and line is non-zero then line represents the code
address at which the deallocation was made. If file is NULL and line is O then the location of the
deallocation is unknown. Returns 1 on success and O if there was no existing allocation from the
same location in the leak table.

__mp_clearleaktable

Deletes all of the existing entries in the leak table, making it empty. This will also affect the
behaviour of the LEAKTABLE option since that option will then only be able to show a summary
of the entries in the leak table that were collected after the last call to this function rather than from
the start of program execution.

__mp_startleaktable

Starts the automatic logging of all memory allocations, reallocations and deallocations to the leak
table. Returns 1 if such logging was already being performed and 0 otherwise.

__mp_stopleaktable

Stops the automatic logging of all memory allocations, reallocations and deallocations to the leak
table. Returns 1 if such logging was already being performed and 0 otherwise.

__mp_leaktable

Release 1.4

Displays a summary of up to size entries from the leak table, or all entries if size is 0. If opt is
MP_LT_ALLOCATED then all allocated entries will be displayed, if opt is MP_LT_FREED then
all freed entries will be displayed and if opt is MP_LT_UNFREED then all unfreed entries will be
displayed. The summary is normally sorted in descending order of total bytes from each entry, but
this can be changed by setting flags to any combination of MP_LT_COUNTS (to sort by the num-
ber of occurrences in each entry) and MP_LT_BOTTOM (to sort in ascending order).

8 January 2002 12

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

__mp_memorymap

If stats is hon-zero then the current statistics of the mpatrol library will be displayed. If the heap
contains at least one allocated, freed or free block then a map of the current heap will also be dis-
played.

__mp_summary

Displays information about the current state of the mpatrol library, including its settings and any
relevant statistics.

__mp_stats

Obtains statistics about the current state of the heap and places them in info. If this information
could not be determined then 0 will be returned, otherwise 1 will be returned and info will contain
the following information:

Field Description

acount Total number of allocated blocks.

atotal Total size of allocated blocks.
fcount Total number of free blocks.
ftotal Total size of free blocks.
gcount Total number of freed blocks.
gtotal Total size of freed blocks.
icount Total number of internal blocks.
itotal Total size of internal blocks.
mcount Total number of marked blocks.
mtotal Total size of marked blocks.

__mp_check

Forces the library to perform an immediate check of the overflow buffers of every memory alloca-
tion and to ensure that nothing has overwritten any free blocks. If any memory allocations made
by the alloca family of functions are out of scope then this function will also cause them to be
freed.

__mp_prologue

Installs a prologue function to be called before any memory allocation, reallocation or deallocation
function. This function will return a pointer to the previously installed prologue function, or the
null pointer if no prologue function had been previously installed. The following arguments will
be used to call the prologue function (the last four arguments contain the function name, file name,
line number and the return address of the calling function, or null pointers and zero if they cannot
be determined):

Argumentl Argument2 Argument3 Called by

-1 size align malloc, etc.
ptr size align realloc, etc.
ptr -1 0 free, etc.

ptr -2 1 strdup, etc.

__mp_epilogue

Release 1.4

Installs an epilogue function to be called after any memory allocation, reallocation or deallocation
function. This function will return a pointer to the previously installed epilogue function, or the
null pointer if no epilogue function had been previously installed. The following arguments will
be used to call the epilogue function (the last four arguments contain the function name, file name,
line number and the return address of the calling function, or null pointers and zero if they cannot
be determined):

8 January 2002 13

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

Argument Called by

ptr malloc, realloc, strdup, etc.
-1 free, etc.

__mp_nomemory
Installs a low-memory handler and returns a pointer to the previously installed handler, or the null
pointer if no handler had been previously installed. This will be called once by C memory alloca-
tion functions, and repeatedly by C++ memory allocation functions, when they would normally
return NULL. The four arguments contain the function name, file name, line number and the
return address of the calling function, or null pointers and zero if they cannot be determined. Note
that this function is equivalent to set_new_handler and will replace the handler installed by that
function.

__mp_printf
Writes format string fmt with variable arguments to the log file, with each line prefixed by >. The
final length of the string that is written to the log file must not exceed 1024 characters. Returns the
number of characters written, or a negative number upon error.

__mp_vprintf
Writes format string fmt with variable argument list args to the log file, with each line prefixed by
>. The final length of the string that is written to the log file must not exceed 1024 characters.
Returns the number of characters written, or a negative number upon error.

__mp_locprintf
Writes format string fmt with variable arguments to the log file, with each line prefixed by >. The
final length of the string that is written to the log file must not exceed 1024 characters. It also
writes information to the log file about where the call to this function was made, which includes
the source file location and the call stack if they are available.

__mp_vlocprintf
Writes format string fmt with variable argument list args to the log file, with each line prefixed by
>. The final length of the string that is written to the log file must not exceed 1024 characters. It
also writes information to the log file about where the call to this function was made, which
includes the source file location and the call stack if they are available.

__mp_logmemory
Displays the contents of a block of memory beginning at ptr, dumping size consecutive bytes to
the log file in hexadecimal format.

__mp_logstack
Displays the current call stack, skipping frames stack frames from the current stack frame before
writing the symbolic stack trace to the log file. Returns 1 if successful, or 0 if the call stack could
not be determined or if frames was too large for the current call stack.

__mp_logaddr
Displays information about a specific memory allocation containing ptr to the log file. If ptr does
not belong to a previously allocated memory allocation then 0 will be returned, otherwise 1 will be
returned.

__mp_edit
Invokes a text editor to edit file at line number line via the mpedit command. Returns 1 if the text
editor was successfully invoked, -1 if there was an error, or 0 if there is no support for this feature.
This function will only work on a system where the EDIT option works.

__mp_list
Displays a context listing of file at line number line via the mpedit command. Returns 1 if the list-

ing was successfully performed, -1 if there was an error, or 0 if there is no support for this feature.
This function will only work on a system where the LIST option works.

Release 1.4 8 January 2002 14

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

__mp_view
Either invokes a text editor to edit file at line number line or displays a context listing of file at line
number line depending on the setting of the EDIT and LIST options. This is done via the mpedit
command and will have no effect if the EDIT and LIST options are not set or if these options are
not supported on the system. Returns 1 if the edit or listing was successfully performed, -1 if there
was an error, or 0 if neither of the options were set or if there is no support for this feature.

__mp_readcontents
Reads the contents of a memory allocation contents file into the memory allocation containing ptr.
The name of the file is composed of the file string followed by the allocation index of the memory
allocation separated by a dot. If file is NULL then it is assumed to be 0 otherwise.

__mp_writecontents
Writes the contents of the memory allocation containing ptr to an allocation contents file. The
name of the file is composed of the file string followed by the allocation index of the memory allo-
cation separated by a dot. If file is NULL then it is assumed to be .mpatrol. Returns 1 if the con-
tents were written successfully and 0 otherwise.

__mp_cmpcontents
Compares the contents of the memory allocation containing ptr with the contents of a previously
written allocation contents file. The name of the file is composed of the file string followed by the
allocation index of the memory allocation separated by a dot. If file is NULL then it is assumed to
be .mpatrol. Any differences are written to the mpatrol log file. Returns the number of differences
found, or -1 if there was an error.

__mp_remcontents
Removes the memory allocation contents file that corresponds to the memory allocation contain-
ing ptr. The name of the file is composed of the file string followed by the allocation index of the
memory allocation separated by a dot. If file is NULL then it is assumed to be 0 otherwise.

The following global variable is available for additional control in the mpatrol library. To use it you should
include the mpatrol.h header file:

__mp_errno
Contains the most recent error code encountered by the mpatrol library. Its value can be reset to
MP_ET_NONE before calling an mpatrol library function, and then examined afterwards, either
by comparison with the known error codes in the __mp_errortype enumeration, or with __mp_str-
error.

LINKING
In order to use the mpatrol library on UNIX platforms, the following libraries must be linked in before any
other library that defines dynamic memory allocation functions with the same names:

Library Reason

—Impatrol To use this library.

—Impatrolmt To use the thread-safe mpatrol library.

—Impalloc To use the release library.

—Imptools To use the mpatrol tools library.

-lld If built with COFF or XCOFF support.

—lelf If built with ELF support.

—Ibfd & —liberty If built with BFD support.

—Icl If built on HP/UX.

—lexc If built on IRIX or Tru64.

—limagehlp If built on Windows.

—Ipthreads If built on AIX with threads support.

—lthread If built on DG/UX with threads support.

—Ipthread If built on UNIX with threads support.
Release 1.4 8 January 2002 15

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

On UNIX platforms, if there were no calls to memory allocation functions before —Impatrol or —Impa-
trolmt appears on the link line then the mpatrol library will not be linked in if it is an archive library. How-
ever, this can be overridden by placing —umalloc just before that point.

You may also wish to set your core file size limit to be zero before running any programs linked with the
mpatrol library as the extra memory that the library uses can make such files much larger than normal, and
if you are planning on using a symbolic debugger then you won’t need the core files anyway.

ENVIRONMENT
The library can read certain options at run-time from an environment variable called MPA-
TROL_OPTIONS. This variable must contain one or more valid option keywords from the list below and
must be no longer than 1024 characters in length. If MPATROL_OPTIONS is unset or empty then the
default settings will be used.

The syntax for options specified within the MPATROL_OPTIONS environment variable is OPTION or
OPTION=VALUE, where OPTION is a keyword from the list below and VALUE is the setting for that
option. If VALUE is numeric then it may be specified using binary, octal, decimal or hexadecimal notation,
with binary notation beginning with either Ob or 0B. If VALUE is a character string containing spaces then
it may be quoted using double quotes. No whitespace may appear between the = sign, but whitespace must
appear between different options. Note that option keywords can be given in lowercase as well as upper-
case, or a mixture of both.

ALLOCBYTE=unsigned integer
Specifies an 8-bit byte pattern with which to prefill newly-allocated memory. This can be used to
detect the use of memory which has not been initialised after allocation. Note that this setting will
not affect memory allocated with calloc or recalloc as these functions always prefill allocated
memory with an 8-bit byte pattern of zero. Default value: ALLOCBY TE=0xFF.

ALLOCSTOP=unsigned integer
Specifies an allocation index at which to stop the program when it is being allocated. When the
number of memory allocations reaches this number the program will be halted, and its state may
be examined at that point by using a suitable debugger. Note that this setting will be ignored if its
value is zero. Default value: ALLOCSTOP=0.

ALLOWOFLOW
Specifies that a warning rather than an error should be produced if any memory operation function
overflows the boundaries of a memory allocation, and that the operation should still be performed.
This option is provided for circumstances where it is desirable for the memory operation to be per-
formed, regardless of whether it is erroneous or not.

AUTOSAVE=unsigned integer
Specifies the frequency at which to periodically write the profiling data to the profiling output file.
When the total number of profiled memory allocations and deallocations is a multiple of this num-
ber then the current profiling information will be written to the profiling output file. This option
can be used to instruct the mpatrol library to dump out any profiling information just before a fatal
error occurs in a program, for example. Note that this setting will be ignored if its value is zero.
Default value: AUTOSAVE=0.

CHECK=unsigned range

Specifies a range of allocation indices at which to check the integrity of free memory and overflow
buffers. The range must be specified as no more than two unsigned integers separated by a dash,
followed by an optional forward slash and an unsigned integer specifying an event checking fre-
quency. If numbers on either the left side or the right side of the dash are omitted then they will be
assumed to be 0 and infinity respectively. If the event checking frequency is omitted then it is
assumed to be 1. A value of 0 on its own indicates that no such checking will ever be performed.
This option can be used to speed up the execution speed of the library at the expense of checking.
Default value: CHECK=0.

Release 1.4 8 January 2002 16

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

CHECKALL
Equivalent to the CHECKALLOCS, CHECKREALLOCS, CHECKFREES and CHECK-
MEMORY options specified together.

CHECKALLOCS
Checks that no attempt is made to allocate a block of memory of size zero. A warning will be
issued for every such case.

CHECKFORK
Checks at every call to see if the process has been forked in case new log, profiling and tracing
output files need to be started. This option only has an effect on UNIX platforms, but should not
be used in multithreaded programs if each thread has a different process identifier.

CHECKFREES
Checks that no attempt is made to deallocate a NULL pointer. A warning will be issued for every
such case.

CHECKMEMORY
Checks that no attempt is made to perform a zero-length memory operation on a NULL pointer.

CHECKREALLOCS
Checks that no attempt is made to reallocate a NULL pointer or resize an existing block of mem-
ory to size zero. Warnings will be issued for every such case.

DEFALIGN=unsigned integer
Specifies the default alignment for general-purpose memory allocations, which must be a power of
two (and will be rounded up to the nearest power of two if it is not). The default alignment for a
particular system is calculated at run-time.

EDIT Specifies that a text editor should be invoked to edit any relevant source files that are associated
with any warnings or errors when they occur. Only diagnostics which occur at source lines in the
program will be affected and only then if they contain source-level information. This option is
currently only available on UNIX platforms as it makes use of the mpedit command. It also over-
rides the behaviour of the LIST option and affects the behaviour of the __mp_view function.

FAILFREQ=unsigned integer
Specifies the frequency at which all memory allocations will randomly fail. For example, a value
of 10 will mean that roughly 1 in 10 memory allocations will fail, but a value of 0 will disable all
random failures. This option can be useful for stress-testing an application. Default value: FAIL-
FREQ=0.

FAILSEED=unsigned integer
Specifies the random number seed which will be used when determining which memory alloca-
tions will randomly fail. A value of 0 will instruct the library to pick a random seed every time it
is run. Any other value will mean that the random failures will be the same every time the pro-
gram is run, but only as long as the seed stays the same. Default value: FAILSEED=0.

FREEBY TE=unsigned integer
Specifies an 8-bit byte pattern with which to prefill newly-freed memory. This can be used to
detect the use of memory which has just been freed. It is also used internally to ensure that freed
memory has not been overwritten. Note that the freed memory may be reused the next time a
block of memory is allocated and so once memory has been freed its contents are not guaranteed
to remain the same as the specified byte pattern. Default value: FREEBY TE=0x55.

FREESTOP=unsigned integer
Specifies an allocation index at which to stop the program when it is being freed. When the mem-
ory allocation with the specified allocation index is to be freed the program will be halted, and its
state may be examined at that point using a suitable debugger. Note that this setting will be
ignored if its value is zero. Default value: FREESTOP=0.

HELP Displays a quick-reference option summary to the stderr file stream.

Release 1.4 8 January 2002 17

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

LARGEBOUND=unsigned integer
Specifies the limit in bytes up to which memory allocations should be classified as large alloca-
tions for profiling purposes. This limit must be greater than the small and medium bounds.
Default value: LARGEBOUND=2048.

LEAKTABLE
Specifies that the leak table should be automatically used and a leak table summary should be dis-
played at the end of program execution. The summary shows a flat profile of all unfreed memory
allocations since the start of the program, or since the last call to __mp_clearleaktable if that
function was called.

LIMIT=unsigned integer
Specifies the limit in bytes at which all memory allocations should fail if the total allocated mem-
ory should increase beyond this. This can be used to stress-test software to see how it behaves in
low memory conditions. The internal memory used by the library itself will not be counted as part
of the total heap size, but on some systems there may be a small amount of memory required to
initialise the library itself. Note that this setting will be ignored if its value is zero. Default value:
LIMIT=0.

LIST Specifies that a context listing should be shown for any relevant source files that are associated
with any warnings or errors when they occur. Only diagnostics which occur at source lines in the
program will be affected and only then if they contain source-level information. This option is
currently only available on UNIX platforms as it makes use of the mpedit command. It also over-
rides the behaviour of the EDIT option and affects the behaviour of the __mp_view function.

LOGALL
Equivalent to the LOGALLOCS, LOGREALLOCS, LOGFREES and LOGMEMORY
options specified together.

LOGALLOCS
Specifies that all memory allocations are to be logged and sent to the log file. Note that any mem-
ory allocations made internally by the library will not be logged.

LOGFILE=string

Specifies an alternative file in which to place all diagnostics from the mpatrol library. If the
LOGDIR environment variable is set and the specified file does not contain a path component in
its filename then the log file will be located in the directory specified in LOGDIR. A filename of
stderr will send all diagnostics to the stderr file stream and a filename of stdout will do the equiv-
alent with the stdout file stream. Note that if a problem occurs while opening the log file or if any
diagnostics require to be displayed before the log file has had a chance to be opened then they will
be sent to the stderr file stream. Default value: LOGFILE=mpatrol.log or LOG-
FILE=%n.%p.log if the LOGDIR environment variable is set.

LOGFREES
Specifies that all memory deallocations are to be logged and sent to the log file. Note that any
memory deallocations made internally by the library will not be logged.

LOGMEMORY
Specifies that all memory operations are to be logged and sent to the log file. These operations
will be made by calls to functions such as memset and memcpy. Note that any memory opera-
tions made internally by the library will not be logged.

LOGREALLOCS
Specifies that all memory reallocations are to be logged and sent to the log file. Note that any
memory reallocations made internally by the library will not be logged.

MEDIUMBOUND-=unsigned integer
Specifies the limit in bytes up to which memory allocations should be classified as medium alloca-
tions for profiling purposes. This limit must be greater than the small bound but less than the large
bound. Default value: MEDIUMBOUND=256.

Release 1.4 8 January 2002 18

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

NOFREE=unsigned integer

Specifies that a number of recently-freed memory allocations should be prevented from being
returned to the free memory pool. Such freed memory allocations will then be flagged as freed
and can be used by the library to provide better diagnostics. If the size of the freed queue is speci-
fied as zero then all freed memory will be immediately reused by the mpatrol library. Note that if
this option is given a non-zero value then the mpatrol library will always force a memory realloca-
tion to return a pointer to newly-allocated memory, but the expand function will never be affected
by this option. Default value: NOFREE=0.

NOPROTECT
Specifies that the mpatrol library’s internal data structures should not be made read-only after
every memory allocation, reallocation or deallocation. This may significantly speed up execution
but this will be at the expense of less safety if the program accidentally overwrites some of the
library’s internal data structures. Note that this option has no effect on systems that do not support
memory protection.

OFLOWBY TE=unsigned integer
Specifies an 8-bit byte pattern with which to fill the overflow buffers of all memory allocations.
This is used internally to ensure that nothing has been written beyond the beginning or the end of a
block of allocated memory. Note that this setting will only have an effect if the OFLOWSIZE
option is in use. Default value: OFLOWBY TE=0xAA.

OFLOWSIZE=unsigned integer
Specifies the size in bytes to use for all overflow buffers, which must be a power of two (and will
be rounded up to the nearest power of two if it is not). This is used internally to ensure that noth-
ing has been written beyond the beginning or the end of a block of allocated memory. Note that
this setting specifies the size for only one of the overflow buffers given to each memory allocation;
the other overflow buffer will have an identical size. No overflow buffers will be used if this set-
ting is zero. Default value: OFLOWSIZE=0.

OFLOWWATCH
Specifies that watch point areas should be used for overflow buffers rather than filling with the
overflow byte. This can significantly reduce the speed of program execution. Note that this option
has no effect on systems that do not support watch point areas.

PAGEALLOC=LOWER|UPPER
Specifies that each individual memory allocation should occupy at least one page of virtual mem-
ory and should be placed at the lowest or highest point within these pages. This allows the library
to place an overflow buffer of one page on either side of every memory allocation and write-pro-
tect these pages as well as all free and freed memory. Note that this option has no effect on sys-
tems that do not support memory protection, and is disabled by default on other systems as it can
slow down the speed of program execution.

PRESERVE
Specifies that any reallocated or freed memory allocations should preserve their original contents.
This option must be used with the NOFREE option and has no effect otherwise.

PROF Specifies that all memory allocations and deallocations are to be profiled and sent to the profiling
output file. Memory reallocations are treated as a memory deallocation immediately followed by a
memory allocation.

PROFFILE=string
Specifies an alternative file in which to place all memory allocation profiling information from the
mpatrol library. If the PROFDIR environment variable is set and the specified file does not con-
tain a path component in its filename then the profiling output file will be located in the directory
specified in PROFDIR. A filename of stderr will send this information to the stderr file stream
and a filename of stdout will do the equivalent with the stdout file stream. Note that if a problem
occurs while opening the profiling output file then the profiling information will not be output.
Default value: PROFFILE=mpatrol.out or PROFFILE=%n.%p.out if the PROFDIR

Release 1.4 8 January 2002 19

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

environment variable is set.

PROGFILE=string
Specifies an alternative filename with which to locate the executable file containing the program’s
symbols. On most systems, the library will automatically be able to determine this filename, but
on a few systems this option may have to be used before any or all symbols can be read.

REALLOCSTOP=unsigned integer
Specifies a reallocation index at which to stop the program when a memory allocation is being
reallocated. If the ALLOCSTOP option is non-zero then the program will be halted when the
allocation matching that allocation index is reallocated the specified number of times. Otherwise
the program will be halted the first time any allocation is reallocated the specified number of
times. Note that this setting will be ignored if its value is zero. Default value: REALLOC-
STOP=0.

SAFESIGNALS
Instructs the library to save and replace certain signal handlers during the execution of library code
and to restore them afterwards. This was the default behaviour in version 1.0 of the mpatrol
library and was changed since some memory-intensive programs became very hard to interrupt
using the keyboard, thus giving the impression that the program or system had hung.

SHOWALL
Equivalent to the SHOWFREE, SHOWFREED, SHOWUNFREED, SHOWMAP and
SHOWSYMBOLS options specified together.

SHOWFREE
Specifies that a summary of all of the free memory blocks should be displayed at the end of pro-
gram execution. This step will not be performed if an abnormal termination occurs or if there
were no free memory blocks.

SHOWFREED
Specifies that a summary of all of the freed memory allocations should be displayed at the end of
program execution. This option must be used in conjunction with the NOFREE option and this
step will not be performed if an abnormal termination occurs or if there were no freed allocations.

SHOWMAP
Specifies that a memory map of the entire heap should be displayed at the end of program execu-
tion. This step will not be performed if an abnormal termination occurs or if the heap is empty.

SHOWSYMBOLS
Specifies that a summary of all of the function symbols read from the program’s executable file
should be displayed at the end of program execution. This step will not be performed if an abnor-
mal termination occurs or if no symbols could be read from the executable file.

SHOWUNFREED
Specifies that a summary of all of the unfreed memory allocations should be displayed at the end
of program execution. This step will not be performed if an abnormal termination occurs or if
there are no unfreed allocations. Note that any marked memory allocations will not be listed.

SMALLBOUND-=unsigned integer
Specifies the limit in bytes up to which memory allocations should be classified as small alloca-
tions for profiling purposes. This limit must be greater than zero but less than the medium and
large bounds. Default value: SMALLBOUND=32.

TRACE
Specifies that all memory allocations, reallocations and deallocations are to be traced and sent to
the tracing output file.

TRACEFILE=string
Specifies an alternative file in which to place all memory allocation tracing information from the
mpatrol library. If the TRACEDIR environment variable is set and the specified file does not con-
tain a path component in its filename then the tracing output file will be located in the directory

Release 1.4 8 January 2002 20

LIBMPATROL(3) mpatrol library LIBMPATROL(3)

specified in TRACEDIR. A filename of stderr will send this information to the stderr file stream
and a filename of stdout will do the equivalent with the stdout file stream. Note that if a problem
occurs while opening the tracing output file then the tracing information will not be output.
Default value: TRACEFILE=mpatrol.trace or TRACEFILE=%n.%p.trace if the TRACEDIR
environment variable is set.

UNFREEDABORT=unsigned integer

Specifies the minimum number of unfreed allocations at which to abort the program just before
program termination. A summary of all the allocations will be displayed on the standard error file
stream before aborting. This option may be handy for use in batch tests as it can force tests to fail
if they do not free up a minimum number of memory allocations, although marked allocations will
not be considered as unfreed allocations. Note that this setting will be ignored if its value is zero.
Default value: UNFREEDABORT=0.

USEDEBUG

Specifies that any debugging information in the executable file should be used to obtain additional
source-level information. This option will only have an effect if the executable file contains a
compiler-generated line number table and will be ignored if the mpatrol library was built to sup-
port an object file access library that cannot read line tables from object files.

USEMMAP

SEE ALSO

Specifies that the library should use mmap instead of sbrk to allocate user memory on UNIX plat-
forms. This option should be used if there are problems when using the mpatrol library in combi-
nation with another malloc library which uses sbrk to allocate its memory. Memory internal to
the mpatrol library is allocated with mmap on systems where it is supported in order to segregate
it from user memory, and this behaviour is reversed with the USEMMAP option. It is ignored on
systems that do not support the mmap system call.

mpatrol(1), mprof(1), mptrace(1), mleak(1), mpsym(1), mpedit(1), hexwords(1l), mmap(2), sbrk(2),
libmpalloc(3), malloc(3), new(3c++), alloca(3), memory(3), string(3), assert(3), elf(3e), bfd(3).

The mpatrol manual and reference card.

http://www.cbmamiga.demon.co.uk/mpatrol/

AUTHOR

Graeme S. Roy <graeme.roy@analog.com>

COPYRIGHT

Copyright (C) 1997-2002 Graeme S. Roy <graeme.roy@analog.com>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public License along with this library; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Release 1.4

8 January 2002 21

