
ZODB Storage API
Release 1.00

Zope Corporation

September 30, 2003

Lafayette Technology Center
513 Prince Edward Street

Fredericksburg, VA 22401
http://www.zope.com/

Abstract

A ZODB storage provides the low-level storage for ZODB transactions. Examples include FileStorage, OracleStor-
age, and bsddb3Storage. The storage API handles storing and retrieving individual objects in a transaction-specifc
way. It also handles operations like pack and undo. This document describes the interface implemented by storages.

Contents

1 Concepts 1
1.1 Versions. 1

2 Storage Interface 2

3 ZODB.BaseStorage Implementation 5

4 Notes for Storage Implementors 5

5 Distributed Storage Interface 5

1 Concepts

1.1 Versions

Versions provide support for long-running transactions. They extend transaction semantics, such as atomicity and
serializability, to computation that involves many basic transactions, spread over long periods of time, which may be
minutes, or years.

Versions were motivated by a common problem in website management, but may be useful in other domains as well.
Often, a website must be changed in such a way that changes, which may require many operations over a period of
time, must not be visible until completed and approved. Typically this problem is solved through the use ofstaging
servers. Essentially, two copies of a website are maintained. Work is performed on a staging server. When work
is completed, the entire site is copied from the staging server to the production server. This process is too resource

intensive and too monolithic. It is not uncommon for separate unrelated changes to be made to a website and these
changes will need to be copied to the production server independently. This requires an unreasonable amount of
coordination, or multiple staging servers.

ZODB addresses this problem through long-running transactions, calledversions. Changes made to a website can be
made to a version (of the website). The author sees the version of the site that reflects the changes, but people working
outside of the version cannot see the changes. When the changes are completed and approved, they can be saved,
making them visible to others, almost instantaneously.

Versions require support from storage managers. Version support is an optional feature of storage managers and
support in a particular database will depend on support in the underlying storage manager.

2 Storage Interface

General issues:

The objects are stored as Python pickles. The pickle format is important, because various parts of ZODB depend on
it, e.g. pack.

Conflict resolution

Various versions of the interface.

Concurrency and transactions.

The various exceptions that can be raised.

An object that implements theStorage interface must support the following methods:

tpc begin (transaction[, tid[, status]])
Begin the two-phase commit fortransaction.

This method blocks until the storage is in the not committing state, and then places the storage in the committing
state. If the storage is in the committing state and the given transaction is the transaction that is already being
committed, then the call does not block and returns immediately without any effect.

The optionaltid argument specifies the timestamp to be used for the transaction ID and the new object serial
numbers. If it is not specified, the implementation chooses the timestamp.

The optionalstatusargument, which has a default value of’ ’ , has something to do with copying transactions.

store (oid, serial, data, version, transaction)
Storedata, a Python pickle, for the object ID identified byoid. A Storage need not and often will not write data
immediately. If data are written, then the storage should be prepared to undo the write if a transaction is aborted.

The value ofserial is opaque; it should be the value returned by theload() call that read the ob-
ject. version is a string that identifies the version or the empty string.transaction, an instance of
ZODB.Transaction.Transaction , is the current transaction. The current transaction is the transaction
passed to the most recenttpc begin() call.

There are several possible return values, depending in part on whether the storage writes the data immediately.
The return value will be one of:

•None, indicating the data has not been stored yet

•a string, containing the new serial number for the object

•a sequence of object ID, serial number pairs, containing the new serial numbers for objects updated by
earlierstore() calls that are part of this transaction. If the serial number is not a string, it is an exception
object that should be raised by the caller.Note: This explanation is confusing; how to tell the sequence of
pairs from the exception? Barry, Jeremy, please clarify here.

Several different exceptions can be raised when an error occurs.

2 2 Storage Interface

•ConflictError is raised whenserial does not match the most recent serial number for objectoid.

•VersionLockError is raised when objectoid is locked in a version and theversionargument contains
a different version name or is empty.

•StorageTransactionError is raised whentransactiondoes not match the current transaction.

•StorageError or, more often, a subclass of it, is raised when an internal error occurs while the storage
is handling thestore() call.

restore (oid, serial, data, version, transaction)
A lot like store() but without all the consistency checks. This should only be used when weknowthe data is
good, hence the method name. While the signature looks likestore() , there are some differences:

•serial is the serial number of this revision, not of the previous revision. It is used instead of
self. serial , which is ignored.

•Nothing is returned.

•datacan beNone, which indicates a George Bailey object (one who’s creation has been transactionally
undone).

new oid ()
XXX

tpc vote (transaction)
XXX

tpc finish (transaction, func)
Finish the transaction, making any transaction changes permanent. Changes must be made permanent at this
point.

If transactionis not the current transaction, nothing happens.

func is called with no arguments while the storage lock is held, but possibly before the updated date is made
durable. This argument exists to support theConnection object’s invalidation protocol.

abortVersion (version, transaction)
Clear any changes made by the given version.versionis the version to be aborted; it may not be the empty
string. transactionis the current transaction.

This method is state dependent. It is an error to call this method if the storage is not committing, or if the given
transaction is not the transaction given in the most recenttpc begin() .

If undo is not supported, then version data may be simply discarded. If undo is supported, however, then the
abortVersion() operation must be undoable, which implies that version data must be retained. Use the
supportsUndo() method to determine if the storage supports the undo operation.

commitVersion (source, destination, transaction)
Store changes made in thesourceversion into thedestinationversion. AVersionCommitError is raised if
thesourceanddestinationare equal or ifsourceis an empty string. Thedestinationmay be an empty string, in
which case the data are saved to non-version storage.

This method is state dependent. It is an error to call this method if the storage is not committing, or if the given
transaction is not the transaction given in the most recenttpc begin() .

If the storage doesn’t support undo, then the old version data may be discarded. If undo is supported, then
this operation must be undoable and old transaction data may not be discarded. Use thesupportsUndo()
method to determine if the storage supports the undo operation.

close ()
Finalize the storage, releasing any external resources. The storage should not be used after this method is called.

lastSerial (oid)
Returns the serial number for the last committed transaction for the object identified byoid. If there is no serial

3

number foroid — which can only occur if it represents a new object — returnsNone. Note: This is not defined
for ZODB.BaseStorage .

lastTransaction ()
Return transaction ID for last committed transaction.Note: This is not defined forZODB.BaseStorage .

getName ()
Returns the name of the store. The format and interpretation of this name is storage dependent. It could be a file
name, a database name, etc.

getSize ()
An approximate size of the database, in bytes.

getSerial (oid)
Return the serial number of the most recent version of the object identified byoid.

load (oid, version)
Returns the pickle data and serial number for the object identified byoid in the versionversion.

loadSerial (oid, serial)
Load a historical version of the object identified byoid having serial numberserial.

modifiedInVersion (oid)
Returns the version that the object with identifieroid was modified in, or an empty string if the object was not
modified in a version.

isReadOnly ()
Returns true if the storage is read-only, otherwise returns false.

supportsTransactionalUndo ()
Returns true if the storage implementation supports transactional undo, or false if it does not.Note: This is not
defined forZODB.BaseStorage .

supportsUndo ()
Returns true if the storage implementation supports undo, or false if it does not.

supportsVersions ()
Returns true if the storage implementation supports versions, or false if it does not.

transactionalUndo (transaction id, transaction)
Undo a transaction specified bytransaction id. This may need to do conflict resolution.Note: This is not
defined forZODB.BaseStorage .

undo (transaction id)
Undo the transaction corresponding to the transaction ID given bytransaction id. If the transaction cannot be
undone, thenUndoError is raised. On success, returns a sequence of object IDs that were affected.

undoInfo (XXX)
XXX

undoLog ([first[, last[, filter]]])
Returns a sequence ofTransactionDescription objects for undoable transactions.first gives the index
of the first transaction to be retured, with0 (the default) being the most recent.

Note: last is confusing; can Barry or Jeremy try to explain this?

If filter is provided and notNone, it must be a function which accepts aTransactionDescription object
as a parameter and returns true if the entry should be reported. If omitted orNone, all entries are reported.

versionEmpty (version)
Return true if there are no transactions for the specified version.

versions ([max])
Return a sequence of the versions stored in the storage. Ifmaxis given, the implementation may choose not to

4 2 Storage Interface

return more thanmaxversion names.

history (oid[, version[, size[, filter]]])
Return a sequence ofHistoryEntry objects. The information provides a log of the changes made to the
object. Data are reported in reverse chronological order. Ifversionis given, history information is given with
respect to the specified version, or only the non-versioned changes if the empty string is given. By default, all
changes are reported. The number of history entries reported is constrained bysize, which defaults to1. If filter
is provided and notNone, it must be a function which accepts aHistoryEntry object as a parameter and
returns true if the entry should be reported. If omitted orNone, all entries are reported.

pack (t, referencesf)
Remove transactions from the database that are no longer needed to maintain the current state of the database
contents. Undo will not be restore objects to states from before the most recent call topack() .

copyTransactionsFrom (other[, verbose])
Copy transactions from another storage, given byother. This is typically used when converting a database
from one storage implementation to another. This will userestore() if available, but will usestore()
if restore() is not available. Whenstore() is needed, this may fail withConflictError or
VersionLockError .

iterator ([start[, stop]])
Return a iterable object which produces all the transactions from a range. Ifstart is given and notNone,
transactions which occurred before the identified transaction are ignored. Ifstop is given and notNone,
transactions which occurred after the identified transaction are ignored; the specific transaction identified by
stop will be included in the series of transactions produced by the iterator.Note: This is not defined for
ZODB.BaseStorage .

registerDB (db, limit)
Register a databasedb for distributed storage invalidation messages. The maximum number of objects to in-
validate is given bylimit. If more objects need to be invalidated than this limit, then all objects are invalidated.
This argument may beNone, in which case no limit is set. Non-distributed storages should treat this is a null
operation. Storages should work correctly even if this method is not called.

3 ZODB.BaseStorage Implementation

4 Notes for Storage Implementors

5 Distributed Storage Interface

Distributed storages support use with multiple application processes.

Distributed storages have a storage instance per application and some sort of central storage server that manages data
on behalf of the individual storage instances.

When a process changes an object, the object must be invaidated in all other processes using the storage. The central
storage sends a notification message to the other storage instances, which, in turn, send invalidation messages to their
respective databases.

5

	1 Concepts
	1.1 Versions

	2 Storage Interface
	3 ZODB.BaseStorage Implementation
	4 Notes for Storage Implementors
	5 Distributed Storage Interface

