
PyOpenGL Manual

by Tarn Weisner Burton and Mike C. Fletcher

PyOpenGL Manual
by Tarn Weisner Burton and Mike C. Fletcher

PyOpenGL [http://pyopengl.sourceforge.net] is a cross-platform open source Python binding to OpenGL
[http://www.opengl.org] which provides a standard 2D and 3D graphics API. PyOpenGL also supports GLU, GLE
[http://linas.org/gle], GLUT [http://reality.sgi.com/mjk/glut3], WGL, and Togl.

http://pyopengl.sourceforge.net
http://www.opengl.org
http://linas.org/gle
http://reality.sgi.com/mjk/glut3

Table of Contents

1 Introduction . 1
Interfaces To Other Libraries. 1
Installation . 1
Bug Reporting . 2

2 Upgrading From PyOpenGL 1.5. 4
Error Handling . 4
GL . 4
GLUT . 6

3 User’s Guide . 7
GL . 7

Selection and Feedback buffers. 7
Array Routines . 8
Image Routines. 10
Error Handling . 10

GLU . 10
GLUT . 11
WGL . 12
GLE . 12
Extensions . 12
Writing Portable Code. 13

4 Internals . 15
Porting . 15
Contributing . 16

The Build System. 17
Interface Files . 17

Docstrings . 18
Exception Handlers. 18

A Changes . 20
B Licenses . 24

PyOpenGL 1.5.5 License. 24
PyOpenGL 1.5.6 License. 24
GLE License . 25
PyGLUT License . 27

Chapter 1. Introduction

Chapter 1. Introduction
PyOpenGL is a cross-platform open source Python binding to the standard OpenGL API providing 2-D
and 3-D graphic drawing. PyOpenGL supports the GL, GLU, GLE, and GLUT libraries. The library can
be used with almost any Python windowing library which can provide an OpenGL context. Currently
supported libraries include:

• FXPy [http://fxpy.sourceforge.net]
• pygame [http://pygame.seul.org]
• Tkinter
• win32gui
• wxPython [http://www.wxpython.org]

All PyOpenGL modules are contained in the packageOpenGL. For the sake of brevity, the top level
package name is omitted when referring to modules, variables and functions in this document. For
example, instead ofOpenGL.GL this document uses the labelGL.

Interfaces To Other Libraries
PyOpenGL currently requires either Python 1.5.2 or greater because of the use of the Distutils setup
mechanisms. For versions of Python earlier than 1.5.2, the PyOpenGL 1.5.5 release (available from the
PyOpenGL project download page) may be usable.

PyOpenGL includes support for the Tkinter widget, Togl [http://togl.sourceforge.net]. Togl 1.5 is
currently shipped with PyOpenGL.

PyOpenGL’s setup will attempt to enable certain functionality (primarily array support) if it can import
the Python Numeric Extensions available at: http://numpy.sourceforge.net [http://numpy.sourceforge.net].
Most people interested in using PyOpenGL for nontrivial purposes will want to install this package
before installing PyOpenGL.

PyOpenGL does not directly interface with the Python Imaging Library, or PIL
[http://www.pythonware.com/products/pil/index.htm], but PIL images can be used within PyOpenGL
easily. Demonstrations of this are available within the PyOpenGL package.

Installation
Before installing PyOpenGL be sure to uninstall or remove any previous versions. Failure to do this may
result in irratic behavior of Python scripts which use PyOpenGL.

There are two main methods of installing PyOpenGL. On Win32 systems executable installers are
available, for other platforms you will have to build PyOpenGL from the source. To do so you will need
Distutils 1.0.2pre or higher. Python 2.1 users should already have this installed. To get the latest version
of see the distutils-sig [http://www.python.org/sigs/distutils-sig] page.

You will also need the GLUT library. On UNIX systems this will probably already be present, for other
systems see the GLUT homepage [http://reality.sgi.com/mjk/glut3/glut3.html].

1

http://fxpy.sourceforge.net
http://pygame.seul.org
http://www.wxpython.org
http://togl.sourceforge.net
http://numpy.sourceforge.net
http://www.pythonware.com/products/pil/index.htm
http://www.python.org/sigs/distutils-sig
http://reality.sgi.com/mjk/glut3/glut3.html

Chapter 1. Introduction

As discussed in the previous section PyOpenGL can interface to the Numeric library
[http://numpy.sourceforge.net]. To enable this support Numeric and its associated headers must be
installed at build time.

To build PyOpenGL type

$ python setup.py build

at the shell prompt.

Note

SWIG [http://swig.sourceforge.net] is not needed to build PyOpenGL, but if SWIG is
present on your system then thebuild_w setup command can be used to rebuild the
generated wrappers. Currently only SWIG 1.3a5 is supported.

After building, to install type

$ python setup.py install

This will also execute the build command if required. To find out what various options are accepted by
the setup script one can also

$ python setup.py build -help

or

$ python setup.py install -help

Important

The setup script will try to build Togl if theTkinter module can be imported. Togl
version 1.5 is shipped with this version of PyOpenGL. The building of Togl can be
bypassed by changing a setting in a platform specific configuration file. The name of
this file is based onsys.platform . For instance, on Linux platforms it will be called
config/linux.cfg . For more information on this file see the Porting Section.

Bug Reporting
Please submit bug reports using the bug tracker at the PyOpenGL project page
[http://sourceforge.net/projects/pyopengl]. There are also support and feature request trackers at this
page.

Note

PyOpenGL development, usage and bugs are discussed on the PyOpenGL mailing list
[http://groups.yahoo.com/group/PyOpenGL].

Before you send any bug reports, try the demos and if they show the same problem. When submitting a
bug report always include:

1.complete traceback

2

http://numpy.sourceforge.net
http://swig.sourceforge.net
http://sourceforge.net/projects/pyopengl
http://groups.yahoo.com/group/PyOpenGL

Chapter 1. Introduction

2. the HTML output of the scriptOpenGL/scripts/info.py

If you have problems compiling PyOpenGL, also include:

1. description of your system and your compiler
2. output of following python statements

import sys, distutils
print sys.platform
print sys.version
print distutils.__version__

3

Chapter 2. Upgrading From PyOpenGL 1.5

Chapter 2. Upgrading From PyOpenGL 1.5
This section presents various notes regarding upgrading from PyOpenGL 1.5 to the newer PyOpenGL 2
binding. This complete rewrite of the PyOpenGL system has a slightly different API from the original
PyOpenGL binding. Most of these changes are minor, with the obvious exception of the error handling
mechanism (which is always strict in PyOpenGL 2, while only optionally strict in PyOpenGL 1.5).

These upgrading notes are by no means a complete discussion of the PyOpenGL 2 binding and are only
meant as a guide to the most likely issues when upgrading.

Error Handling
PyOpenGL 2 always uses "strict" OpenGL operation, which is closer to the operation of Python itself, i.e.
errors are raised as exceptions, rather than silently being passed back to the user.glGetError is not
available as it would never return anything saveGL_NO_ERROR.

To convert, you will want to search for each instance ofglGetError and introduce the appropriate
exception handling mechanisms. The exceptions raised are:

• GL.GLerror by all modules exceptWGL
• GLU.GLUerror by someGLUfunctions. Note thatGLUcan also throwGL.GLerror
• WindowsError /SystemError by WGL

GL

glCleanRotMat – Not Available. This utility function attempted to recover from precision errors
encountered with multiple matrix rotations. This seems like an inelegant approach to the situation.
Consider using quaternion addition (seeOpenGL/quaternion.py) or single rotation calls.

glSaveTIFF , glSaveJPEG , glSavePPM – Not Available. These functions attempted to save a file
in a particular format directly from the OpenGL context. They largely duplicated effort both from the
Python Imaging Library (PIL) (image handling) and python itself (file handling). Since
glReadPixels is fully functional under PyOpenGL, these functions were not provided. See
OpenGLContext/tests/saveimage.py for demonstration code showing how to save an image
using PIL

glTetrahedra – Not Available. This does not seem like something that needs to be in the core
library.

glTriangleNormals , glIndexedGeomDSPL , glTrianglesWithNormals , glLines ,
glPoints – Not Available . These functions provide somewhat higher level rendering mechanisms for
a small subset of geometry types. They do not really seem to be something that belongs in the core
library. Although they may be implemented in a utility library at a later date for legacy purposes, at the
present time they are not supported.

glGetError . See Error Handling above for rationale. You will need to either define a nop function
glGetError , or remove all instances ofglGetError .

4

Chapter 2. Upgrading From PyOpenGL 1.5

glGetBooleanv , glGetFloatv , glGetDoublev , glGetIntegerv – Changed Behavior.The
glGetX family of functions no longer chooses a single default type for each argument, instead, it returns
the type appropriate to the explicitly named function. For instance,

>>> glGetInteger(GL_MODELVIEW_MATRIX)
[[1 0 0 0]

[0 1 0 0]
[0 0 1 0]
[0 0 0 1]]

You will need to search for eachglGetX call and determine if the call really intended to use the function
named, or whether it was relying on the looser semantics of the original functions.

gl XPointer Family – Changed Behavior. There are now two major variants of these functions. The
first variant, spelled with the appropriate type decoration{d|f|i|b|ub} takes a two- dimensional
python (or Numeric) array as its single argument:

glVertexPointerd([[0.0, 0.0, 0.0], # note need for 2-d array!
[5.0, 0.0, 0.0], # Changed with PyOpenGL 2
[5.0, 5.0, 0.0],
[0.0, 5.0, 0.0]])

The second variant allows you to specify a string argument, as well as the stride argument, and matches
the semantics of the underlying OpenGL function.

glVertexPointer(3, GL_DOUBLE, 0, vertices.tostring())

Note

glInterleavedArrays is not part of this family and requires a string, not an array
argument

glVertex - Changed Behavior. glVertex no longer supports passing in arrays of points, you will
need to convert your code to usingglVertexPointer{d|f} .

glColor2Vertexd , glColor2Vertex – Not Available. Like glVertex this functionally should
be replaced usingglVertexPointer andglColorPointer .

Function Aliases. PyOpenGL 1.5 provided a number of convenience names which were aliases for
decorated function names. To preserve code compatibility, many of these functions are now available
within PyOpenGL 2.

Function Aliases

glGetBooleanv aliases glGetBoolean
glGetDoublev aliases glGetDouble
glGetIntegerv aliases glGetInteger
glColor
glColor3
glColor4
glEvalCoord

5

Chapter 2. Upgrading From PyOpenGL 1.5

glEvalCoord1
glEvalCoord2

glFogfv aliases glFog
glIndexd aliases glIndex
glLightfv aliases glLight
glLightModelfv aliases glLightModel
glMaterialfv aliases glMaterial
glNormal
glNormal3
glNormal4
glRasterPos
glRasterPos2
glRasterPos3
glRasterPos4

glRotated aliases glRotate
glScaled aliases glScale
glTexCoord
glTexCoord1
glTexCoord2
glTexCoord3
glTexCoord4

glTexGendv aliases glTexGen
glTexParameterfv aliases glTexParameter
glTranslated aliases glTranslate
glVertexd aliases glVertex

GLUT
Callback Registration – Changed Behavior.The method for registering callbacks inGLUThas
changed. Instead of calling:

glutSetReshapeFuncCallback(OnResize)
glutReshapeFunc()

You will call:

glutReshapeFunc(OnResize)

If you need to unbind the callback then just useNone instead of a callback function in the callback
registration function, i.e.

glutReshapeFunc(None)

If you need your code to run under both versions, you can catch a raisedNameError on
glutSetReshapeFuncCallback and callglutReshapeFunc . See
OpenGLContext.GLUTContext for a demonstration.

glutInit – Changed Behavior.This method initializes the GLUT windowing system taking a
non-string sequence of strings such as available in sys.argv. PyOpenGL would allow you to use a single
string as the argument.glutInit returns the arguments not used by GLUT as a list of strings.

6

Chapter 3. User’s Guide

Chapter 3. User’s Guide
Most of the functions which appear in PyOpenGL 2 are identical in calling method and functionality to
that of the appropriate specification. There are a few exceptions because of the differences between C and
Python. Most of these exceptions are due to the difference between C and Python in the way that they
access arrays. For example, a C function like this:

void foo(int count, const int *args);

will have the Python binding:

foo(args) -> None

Also C functions which write array data to a function argument like:

void bar(int args[4]);

will have the Python binding:

bar() -> args[]

The following sections will document changes other than simple changes like the above examples. When
in doubt about the Python binding for a specific function one can always check the docstring explicitly.
For instance, to check the Python binding of the C functionglDeleteTextures which has the C
binding

void glDeleteTextures(GLsizei n, const GLuint *textures);

one could do the following from the Python prompt

>>> from OpenGL.GL import *
>>> glDeleteTextures.__doc__
’glDeleteTextures(textures[]) -> None’

Notice that the parametern is missing from the Python prototype since this can automatically be
determined from the parametertextures . Also note that the notationtextures[] is used in
docstrings to indicate that thetextures parameter should be a Python sequence. If thetextures
parameter was required to be a two dimensional array than this would be indicated bytextures[][] .
If one of the array dimensions is expected to have a fixed size than this will be indicated by a number
enclosed in the brackets. For instance,glePolyCone of the GLE module has the prototype

glePolyCone(point_array[][3], color_array[][3], radius_array[]) -> None

Of course in many Python IDEs the first line of the function docstring will be displayed in a tool-tip when
you type the function name in a Python script. Another way to see all the functions, attributes, or
docstrings of a specific module is to use the pydoc utility. Python 2.1 includes this utility. For other
versions of Python see Ka-Ping Lee’s Python Things [http://web.lfw.org/python].

GL
OpenGL Library; API versions 1.0 and 1.1

7

http://web.lfw.org/python

Chapter 3. User’s Guide

Selection and Feedback buffers

Normally in OpenGL to use a selection buffer one would do the following:

GLuint buffer[SIZE];
glSelectBuffer(SIZE, buffer);
glRenderMode(GL_SELECT);
/* draw some stuff */
GLint count = glRenderMode(GL_RENDER);
/* parse the selection buffer */

In Python this accomplished like this:

glSelectBuffer(SIZE) # allocate a selection buffer of SIZE elements
glRenderMode(GL_SELECT)
draw some stuff
buffer = glRenderMode(GL_RENDER)
for hit_record in buffer:

min_depth, max_depth, names = hit_record
do something with the record

Feedback buffers are used in the same way except that each item in the buffer is tuple(token,
value) , where value is either a passthrough token or a list of vertices. Note that ifglRenderMode
returns a buffer than it also resets OpenGL’s pointer for the corresponding buffer. This means that the
buffer returned byglRenderMode is independent of future calls toglRenderMode , i.e. it will not be
overwritten by any such future calls. This makes the returned buffer somewhat thread-safe. It also means
that every call toglRenderMode(GL_SELECT | GL_FEEDBACK) needs to preceded by a call to
glSelectBuffer or glFeedbackBuffer first, i.e. the following code will not work

glSelectBuffer(SIZE) # allocate a selection buffer of SIZE elements
glRenderMode(GL_SELECT)
draw some stuff
buffer = glRenderMode(GL_RENDER)
do another selection
glRenderMode(GL_SELECT)
draw some stuff
buffer = glRenderMode(GL_RENDER)

Instead one must

glSelectBuffer(SIZE) # allocate a selection buffer of SIZE elements
glRenderMode(GL_SELECT)
draw some stuff
buffer = glRenderMode(GL_RENDER)
do another selection
glSelectBuffer(SIZE) allocate a new selection buffer
glRenderMode(GL_SELECT)
draw some stuff
buffer = glRenderMode(GL_RENDER)

In previous versions of PyOpenGL in order to perform selection one would use the
glSelectWithCallback function. This function is still available, but the only thing that it does in
addition to the method described above is setup the projection matrix usinggluPickMatrix .

8

Chapter 3. User’s Guide

Array Routines

Each call which sets an array pointer, such asglVertexPointer , will have many variants. First there
will a function which is identical that of the specification. For thepointer argument one should pass a
string. Also note that the stride values are used.

Next there will a set of functions named

gl XPointer{ub|b|us|s|ui|i|f|d}

These will usually take as a single argument a multidimensional array of values. The type argument is
controlled by the suffix of the function (ub is unsigned byte, etc.) All other arguments are derived from
the dimensions of the array.

So forglColorPointer we have:

glColorPointer(size, type, stride, pointer) -> None
glColorPointerub(pointer[][]) -> None
glColorPointerb(pointer[][]) -> None
glColorPointerus(pointer[][]) -> None
glColorPointers(pointer[][]) -> None
glColorPointerui(pointer[][]) -> None
glColorPointeri(pointer[][]) -> None
glColorPointerf(pointer[][]) -> None
glColorPointerd(pointer[][]) -> None

This same decoration strategy is used for other array functions besidesgl XPointer . For instance,
glDrawElements has the Python binding:

glDrawElements(mode, count, type, indices) -> None

whereindices is expected to be a string. There are also the decorated bindings

glDrawElementsub(mode, indices[]) -> None
glDrawElementsus(mode, indices[]) -> None
glDrawElementsui(mode, indices[]) -> None

where "indices" is now a single dimensional array.

When calling aglColorPointer , glVertexPointer , etc. Python needs to allocate memory to
store the values that OpenGL needs. This memory is reference counted and takes into account function
calls likeglPushClientAttrib andglPopClientAttrib . To force this memory to be released
one just need to make a callglColorPointerub(None) .

CurrentlyglPushClientAttrib will always set theGL_CLIENT_VERTEX_ARRAY_BITflag as
glPopClientAttrib has no way of knowing that flag was set and the state of the flag is needed to
know whether or not to decrement the pointer locks on the allocated memory. This may change in the
future. That said, surrounding array useglPushClientAttrib /glPopClientAttrib is a good
way to force the release of any allocated memory, but make sure that all calls togl XPointer , etc. are
within theClientAttrib block if you chose to use this scheme.

9

Chapter 3. User’s Guide

Note

Since all the memory allocation is automatic there is no need forglGetPointerv
function, so it is excluded.

Note

The functionglInterleavedArrays is also present, but it does not have the
variants that the others do (i.e., noglInterleavedArraysf)

Warning

If you write an extension module which makes calls to the pointer functions and
expects to interact with PyOpenGL safely it should push the client state (from within
the extension) before and after array use.

Image Routines

glDrawPixels and the other image/texturing functions have much the same decoration scheme as the
array functions. ForglDrawPixels there is the standard function which expects a string as the pixel
data:

glDrawPixels(width, height, format, type, pixels) -> None

This function will respect the parameters set byglPixelStore{i|f} . There is also a collection of
variants which take a multidimensional array as the data source and setglPixelStore{i|f}
automatically. For example:

glDrawPixelsub(format, pixels) -> None

Notice thatwidth andheight are inferred from the pixel data and the type is GLubyte.

Error Handling

In OpenGL the current error status is retrieved with the functionglGetError . This function returns an
error code and clears the current error status at the same time. On some distributed systems multiple
errors may be generated at a time. In that case it is necessary to callglGetError multiple times.

PyOpenGL does not expose theglGetError . Instead it automatically checks the error status and
throws an instance ofGL.GLerror on an error. This is a more "Pythonic" approach.GL.GLerror is a
subclass ofEnvironmentError and has aerrno andmsg like EnvironmentError . In the case
of multiple errors theerrno attribute will be set to a tuple of error numbers andmsg will be a
concatenation of the error messages for each error.

GLU
GL Utility Library; API versions 1.0, 1.1, 1.2 and 1.3

10

Chapter 3. User’s Guide

For the most part the Python bindings of the GLU module are identical to that of the GLU specification.
The first main difference is in the callback implementation ofGLUnurbs , GLUquadric and
GLUtesselator . Callbacks can be set with the appropriate function, for instance

def begin(type):
print ’begin’, type

tess = gluNewTess()
gluTessCallback(tess, GLU_TESS_BEGIN, begin)

except that the error callbacksGLU_TESS_ERROR, GLU_TESS_ERROR_DATA, or GLU_ERROR
cannot be set. Instead aGLU.GLUerror exception is thrown on an error. The value of the exception
will be a 2-tuple except when the error is a tessellation error, in which case the value will be set to
(error_code, error_string, polygon_data) .

Some other GLU functions can also throw aGLUerror . These are primarily functions which would
normally return an error code. For instance,gluScaleImage

try:
dataout = gluScaleImage(format, widthin, heightin, typein,

datain, widthout, heightout, typeout)
except GLUerror:

pass

The last major difference between theGLUmodule and theGLUspecification is that it also implements
the variant decoration scheme as discussed previously for the GL module. This is implemented for the
image functions:gluScaleImage , gluBuild1DMipmaps , gluBuild2DMipmaps ,
gluBuild3DMipmaps , gluBuild1DMipmapLevels , gluBuild2DMipmapLevels , and
gluBuild3DMipmapLevels .

GLUT
GL Utility Toolkit; API versions 1.0, 2.0, 3.0, 3.4, 3.6, and 3.7

PyOpenGL provides coverage of all GLUT API versions and the calling convention for the exposed
functions are identical to that of the C binding, with a few minor exceptions.

First, theglutInit function takes a list of arguments (usuallysys.argv , but notsys.argv[1:])
and returns all non GLUT arguments. For example

import sys

my_argv = glutInit(sys.argv)

Secondly, setting callbacks in Python is done in the same way as done in C, but Python has noNULL
pointer soNone is used to clear a callback instead, i.e.

def on_display():
pass

11

Chapter 3. User’s Guide

glutDisplayFunc(on_display) # set the callback
glutDisplayFunc(None) # clear the callback

For more information about GLUT see the Man Pages
[http://pyopengl.sourceforge.net/documentation/ref/glut.html], the GLUT homepage
[http://reality.sgi.com/mjk/glut3/glut3.html], or OpenGL.org’s GLUT documentation
[http://www.opengl.org/developers/documentation/glut.html].

WGL
Win32 OpenGL Library; API version 4

PyOpenGL has complete coverage of the WGL API, with the exception that the
GetEnhMetaFilePixelFormat function is currently not supported.

Like the rest of PyOpenGL, the WGL module has a strict error mechanism. If a Windows error occurs
during a WGL call then aWindowsError exception error is thrown. For Python versions less than 2.1,
anOSError will be thrown instead.

For more information about WGL see the MSDN Library
[http://msdn.microsoft.com/library/?url=/library/en-
us/opengl/hh/opengl/ntopnglo_0e0o.asp?frame=true].

GLE
Tubing and Extrusion Library; API version 3

PyOpenGL supports version 3 of the GLE (Tubing and Extrusion) library. The function prototype
exposed by the Python binding are identical to that of the GLE C binding, except that passing array
lengths explicitly is not needed. For more information consult the docstring of each function or the Man
Pages [http://pyopengl.sourceforge.net/documentation/ref/gle.html]. For information regarding GLE
itself see the GLE homepage [http://linas.org/gle].

Extensions
PyOpenGL includes support for many GL, GLU and WGL extensions. These extensions are implemented
as sub-modules of theGL, GLUor WGLpackage. For example, theGL_ARB_multitexture extension
would be implemented in the moduleGL.ARB.multitexture . For every extension that PyOpenGL
supports the corresponding module will exist regardless of whether or not that extension is implemented
by the user’s OpenGL library. A placeholder module will also exist even if the extension defines no new
tokens or functions. If the extension is not supported by the current context than any attempt to use that
extension will throw aGLerror exception with a code ofGL_INVALID_OPERATION.

Each OpenGL implementation has its’ own method for linking to OpenGL extensions. These methods
vary from dynamic linking to static linking and even some dynamic/static combinations. Regardless of
which case applies to a specific implementation of OpenGL, one still needs to verify that a particular
extension is supported before attempting to use any functions or tokens that it declares. This is usually
done by callingglGetString(GL_EXTENSIONS) and looking for extension name in the returned
string.

12

http://pyopengl.sourceforge.net/documentation/ref/glut.html
http://reality.sgi.com/mjk/glut3/glut3.html
http://www.opengl.org/developers/documentation/glut.html
http://msdn.microsoft.com/library/?url=/library/en-us/opengl/hh/opengl/ntopnglo_0e0o.asp?frame=true
http://pyopengl.sourceforge.net/documentation/ref/gle.html
http://pyopengl.sourceforge.net/documentation/ref/gle.html
http://linas.org/gle

Chapter 3. User’s Guide

Extensions are potentially context dependent, which means that an extension supported by one OpenGL
context may not be supported by another. This means that verification that extension is supported and
loading of the extension procedure addresses (if the OpenGL extension mechanism is dynamic) needs to
be done for each context that intends to use a particular extension. PyOpenGL simplifies this somewhat
by providing a single initialization function for each extension which does the following:

1.verify the extension is supported by the current context
2. load all procedure addresses for extension if needed
3. return a boolean indicating success of the previous steps

The naming scheme of the this initialization is designed to be consistent with the naming scheme used
with OpenGL extensions. For instance, here is a function which takes an extension name and returns the
initialization function name:

def init_name(extension_name):
parts = string.split(extension_name, ’_’)
return string.join([string.lower(parts[0]), ’Init’] +

map(string.capitalize, parts[2:]) +
[parts[1]], ”)

>>> init_name(’GL_ARB_multitexture’)
’glInitMultitextureARB’

>>> init_name(’GLU_SGI_filter4_parameters’)
’gluInitFilter4ParametersSGI’

As an example of extension usage, here is a GLUT program that needs the GL_ARB_multitexture
extension:

from OpenGL.GLUT import *
from OpenGL.GL.ARB.multitexture import *
import sys

initialize GLUT
argv = glutInit(sys.argv)

create a window, needs to be done before glInitMultitextureARB
glutCreateWindow(’foo’)

see if GL_ARB_multitexture is supported
if not glInitMultitextureARB():

it’s not supported...panic!
print "Help, I’m lost without GL_ARB_multitexture!"
sys.exit(1)

do something with it...

It is important to note that the initialization function for an extensionmustbe called by each context that
intends to use that extension. Failure to do so will result in aGL.GLerror with a code of
GL_INVALID_OPERATIONeven if the extension is actually supported by that context.

13

Chapter 3. User’s Guide

Writing Portable Code
For many modules PyOpenGL is designed to support multiple versions of the API exposed by that
particular module. For instance, theGLUmodule supports GLU API versions 1.0, 1.1, 1.2 and 1.3. In
many cases different versions of an API have different functions and constants. There are several ways
for Python code to determine at runtime which API is exposed.

All PyOpenGL modules have an attribute named__api_version__ which is set to an integer which
defines the current version. Usually this a combination of the major version number in the high word and
the minor in the low word. SoGLUhas

__api_version__ = 0x100 | 0x101 | 0x102 | 0x103

Currently the only exception to this is theGLUTmodule which only uses the low word to store the Xlib
implementation number (see your GLUT header for information about this.)

Often times a C header which defines an API has some macro or macros which define the version number.
PyOpenGL includes the same macros as module attributes to make porting C code easier. For theGLU
module these macros areGLU_VERSION_1_1, GLU_VERSION_1_2, andGLU_VERSION_1_3. So
if your Python code needs GLU 1.2 to run then you could test for this at runtime by doing the following:

from OpenGL.GLU import *

try:
GLU_VERSION_1_2

except:
print "Help! I’m lost without GLU 1.2!"
sys.exit(1)

14

Chapter 4. Internals

Chapter 4. Internals

Porting
There are three main files which contain platform specific information. The first is the configuration file
used by the setup script. The following code illustrates how this file is selected

name = sys.platform
config_name = os.path.join(’config’, name + ’.cfg’)

while len(name) and not os.path.exists(config_name):
name = name[:-1]
config_name = os.path.join(’config’, name + ’.cfg’)

The net effect of this method is to allow the names of configuration files to proceed from fine to coarse in
granularity. For instance, suppose that the "linux-alpha" platform required a special configuration file but
all other Linux platforms (linux, linux1, linux2, linux-i386, etc.) used the same configuration file. To
cover both of these cases one would create two configuration files:config/linux.cfg and
config/linux-alpha.cfg .

This configuration file controls various build options, such as include directories or lib directories. For
example, here is a verbatim copy of this file for the "linux" platform:

; General config options
;
; Setting build_togl to zero will avoid trying to build Togl
;
; gl_platform is the name of the platform specific OpenGL module
; For X-windows this GLX, Windows has WGL, etc.
;
; include_dirs and library_dirs are a sys.pathsep separated list of
; additional directories for headers and libraries. No quotes
; are needed
[General]
build_togl=1
gl_platform=GLX
include_dirs=/usr/include:/usr/local/include:/usr/X11/include
library_dirs=/usr/lib:/usr/local/lib:/usr/X11/lib

; a sys.pathsep separated list of the libs needed when linking GL
[GL]
libs=GL:X11:Xext

; a sys.pathsep separated list of the libs needed when linking GLU
; the GL libraries are included automatically
[GLU]
libs=GLU

; a sys.pathsep separated list of the libs needed when linking GLUT
; the GL and GLU libraries are included automatically

15

Chapter 4. Internals

[GLUT]
libs=glut:Xi:Xmu

; a comma separated list of the libs needed when linking Togl
; the GL and GLU libraries are included automatically
[Togl]
libs=Xmu:Xt:m

Most of the entries are explained by the embedded comments, but one is worth commenting on further.
This is the "gl_platform" entry. This entry is used tell the setup script the name of the platform specific
GL platform. This name is used in thesrc/config.h and the
src/interface_util/platform.c files to include the right code for that platform. For instance
in src/config.h

#if defined(WGL_PLATFORM)

#include <windows.h>

/* Do extension definitions define the C prototype
or just the enumerants? */

#define EXT_DEFINES_PROTO 0

/* A function which returns true if the current
context is valid */

#define CurrentContextIsValid() wglGetCurrentContext()

/* Get a hash code (long) corresponding to the
current context */

#define GetCurrentContext() ((long)wglGetCurrentContext())

/* Does the platform have a dynamic extension loading
mechanism? */

#define HAS_DYNAMIC_EXT 1

#elif defined(AGL_PLATFORM)

.

.

.

The last platform specific file is thesrc/interface_util/platform.c file. This file defines
functions to retrieve platform specific extension addresses and extension strings. For more information
see the source code.

Contributing
PyOpenGL uses the wrapper generator SWIG to convert wrapper descriptions (interfaces) into Python
extension modules. In order to add to PyOpenGL you need SWIG 1.3a5 which available at the SWIG

16

http://swig.sourceforge.net
http://swig.sourceforge.net

Chapter 4. Internals

homepage [http://swig.sourceforge.net]. If you haven’t used SWIG before then you might consider
playing with it a bit before you contemplate trying to contribute to PyOpenGL.

PyOpenGL makes extensive use of the SWIG typemap feature. Chances are that you won’t have to write
any complex typemaps yourself as most these have probably already been created to support theGL
module, etc. You may have to write some simple scalar typemaps.

The Build System

You probably won’t have to modify the build system to add a module unless the module needs some
external library or such. To add a module just put the interface file (.i extension) in the interface directory.
For example,GL.ARB.multitexture goes intointerface/GL/ARB/multitexture.i .

Interface Files

Here are some lines common to every interface file (using the GLUT module as an example)

/*
BUILD api_versions [1, 2, 5, 7, 9, 11, 13]
BUILD macro_template ’GLUT_XLIB_IMPLEMENTATION >= %(api_version)d’
BUILD headers [’GL/glut.h’]
BUILD libs [’GLUT’]
*/

%module GLUT

#define __version__ "$Revision: 1.23 $"
#define __api_version__ API_VERSION
#define __doc__ "http:\057\057reality.sgi.com/mjk/glut3/glut3.html"

%include util.inc

First off notice that the__doc__ define uses "\057\057" and not "//". This is because the preprocessor of
SWIG is a bit buggy and sometimes won’t handle double slashes.

Second, notice the inclusion of theutil.inc file. It defines a lot of the typemaps and such needed by
PyOpenGL modules, chances are you’ll need it.

PyOpenGL has the ability to support multiple versions of an API. This is accomplished by this line

BUILD api_versions [1, 2, 5, 7, 9, 11, 13]

For each number listed in this list the build system will run SWIG with the macro API_VERSION
defined to be the API version to be generated. So suppose that I want to put in a feature that is only
supported in version 11 of the API. Then the function prototype in the interface would look like this:

#if API_VERSION >= 11
void foo(int bar);
#endif

17

http://swig.sourceforge.net
http://swig.sourceforge.net

Chapter 4. Internals

Note that the SWIG preprocessor also doesn’t like comparisons between hexadecimal numbers so don’t
use this

#ifdef API_VERSION >= 0xb

When the generated C code for the interface is compiled it needs to pick out the right code for API
version that is supported. Usually the API version is defined by some macro in the header file which
defines the API. For instance, GLUT has the macro GLUT_XLIB_IMPLEMENTATION. In order to test
this macro first the build system needs to know what header the macro is located in. This is accomplished
by the

BUILD headers [’GL/glut.h’]

line. The build system also needs to know how to make a comparison on the macro. This is accomplished
by the

BUILD macro_template ’GLUT_XLIB_IMPLEMENTATION >= %(api_version)d’

line. The string defined by the macro template line should be a Python format string. The substitution
names allowed areapi_version_underscore which splits the API_VERSION into high word and
low word separated by an underscore, andapi_version which is just API_VERSION as an integer.
api_version_underscore is useful for macros likeGL_VERSION_1_1.

If the API that you are wrapping defines structures or classes which need to be exposed than you need to
use the "shadow" feature of SWIG. I won’t go into all the details of how this feature works here. To see
an example of its use look at the WGL module. To turn on shadowing use this line:

BUILD shadow 1

There are other "BUILD" headers allowed by PyOpenGL. Here are some examples:

• To only build the module on GLX platforms:
BUILD gl_platforms [’GLX’]

• To specify what libraries the module needs:
BUILD libs = [’GLUT’]

Note that the names in the in the libs header are platform independent names. The setup script
transforms these into a platform specific name or names. For example on Win32, GLUT = glut32.

18

Chapter 4. Internals

Docstrings

One nice feature of Python is the docstring feature. SWIG does not support this natively, but PyOpenGL
has a workaround to enable their use. To add a docstring to a function call "foo" just include in the
interface the line:

DOC(foo, "foo() -> bar")

Exception Handlers

PyOpenGL doesn’t expose theglGetError function, instead it throws aGL.GLerror exception. To
turn on the GL exception handler you need a line like this:

GL_EXCEPTION_HANDLER()

Some GL commands are designed to run between aglBegin and aglEnd . For these it is not possible
to callglGetError , so before these functions you need this:

EXCEPTION_HANDLER()

To restore the ordinary exception handler just callGL_EXCEPTION_HANDLERagain.

WGL, AGL, etc. need their own OS specific exception handler, so you’ll need use the SWIG%except
command. Look at theWGLmodule for an example.

19

Appendix A. Changes

Appendix A. Changes
2.0.0.44

1.Fixed PyMem_Del -> PyObject_Del bug; Patch #455646.
2.MadeglDrawRangeElementsEXT more like other array functions including adding decoration

variants
3.Added some aliases for various extension initialization functions.
4.Added the GL_OML_subsample, GL_OML_resample, and GL_OML_interlace extensions
5.Fixed Numeric import bug in the interface_util library.
6.Added quaternion class.
7.Changed comments over to C style.
8.Fixed install bug which prevented installation of demos.

2.0.0.42beta

1.Added GL 1.0 compatibility.
2.Moved info.py into the new scripts directory
3.Added a "__build__" attribute toOpenGL/__init__.py
4.Added the GL_EXT_texture_object, GL_EXT_polygon_offset, and the GL_EXT_vertex_array

extensions
5.MadeglDrawElements more like other array functions including adding decoration variants

2.0.0.40beta

1.Fixed the export name ofgluPwlCurve andgluNurbsCurve
2.Fixed mishandling of count parameter ingluPwlCurve and changed the prototype to

gluPwlCurve(nobj, points, type) .
3.Changed proto of gluNurbsCurve to gluNurbsCurve(nobj, knot, ctlarray,

type) -> None
4.Changed prototype ofgluNurbsSurface to gluNurbsSurface(nobj, sknot, tknot,

ctlarray, type) -> None
5.Added initialization functions to extension modules.
6.Added the platform specific sourceplatform.c
7.Killed theOpenGL.extensions module, no longer needed.
8.Added atrackball module.

2.0.0.34b3

1.Fixed the export name ofgluTessVertex , was_gluTessVertex .
2.Fixed misuse ofPyObject_CallFunction which resulted in wrong number of arguments

passed when only one argument was being passed to a callback. Affected several functions in the
GLU and GLUT modules.

3.Added locking mechanism toGLUtesselator andGLUnurbs to prevent user data from being
collected by the garbage collector.

4.Fixed prototype ofgluUnProject4 , was missingclipW argument.
5.Fixed prototypes ofgluBuild1DMipmapLevels , was missing some arguments.

20

Appendix A. Changes

6.FixedgluNurbsCallbackData wrapper , wrong object pointer cast.
7.Changed list separator in config files toos.pathsep instead of a comma.
8.Fixed bug inPyObject_Dimension on non-Numeric arrays.

9. Fixed docstrings ofglTexImage2D
10. setup.py now adds the current directory to the search path. Needed sincebuild_py has to execute

various configure programs.

2.0.0.27b2

1.When testing for aGLerror an attempt is now made to verify that the current context is valid. This
avoids strange behavior likeglutDestroyWindow throwingGLerror when it is used to destroy
the current window. Also in 2.0b1 a maximum limit of 16 errors could be return byGLerror . This
was done to avoid infinite loop result resulting from calls toglGetError without a valid context.
This is not needed anymore, so the hard-coded limit has been removed.

2.Fixedsys.argv bugs in knot and molehill demos.
3.Added short name aliases likeglTranslate = glTranslated .
4.FixedglGetBooleanv , now needs only one argument.
5.Added build number to setup.
6.The current version number of the entire PyOpenGL system is now stored in__version__ .
7.Fixed various Python 1.5/1.6 incompatibilities.
8.Fixed image routines which return packed images likeglGetPolygonStipple .
9.AddedglGetPolgonStippleub andglPolygonStippleub to use arrays instead of packed

strings.
10.Fixed bugs inglMap{1|2}{f|d} in the automatic selection ofustride and vstride

arguments.
11.Fixed glRenderMode and glSelectBuffer to avoid the strange behavior of

glSelectBuffer(0, NULL) on some systems.
12.glutInit now raises TypeError if its single argument is not a non-string sequence.
13.Removed the GL_EXT_polygon_offset extension since it is a standard part of OpenGL 1.1 and some

systems seem to define GL_EXT_polygon_offset yet don’t exportglPolygonOffsetEXT .
14.Fixed bug inglGetBooleanv which caused it to return the wrong number of values, i.e. not

parameter specific.
15.Fixed a bug in WGL routines in which the previous error wasn’t cleared.
16.Added support for GLU 1.0 and 1.1 to support Mesa.
17.Added theinfo script.
18.Added new platform specific config files.
19.Fixed broken prototypes inGL.EXT.coordinate_frame , GL.EXT.cull_vertex ,

GL.EXT.multi_draw_arrays andGL.EXT.fog_coord .
20.Changed the generation of shadow wrappers a bit and turned theGL andGLUmodules into shadow

wrappers.

2.0b1

1.WGLmodules now throwWindowsError (OSError for Python 2.0) on a windows error.
2.AddedGLerror to GLandGLUerror to GLU. "except GLerror, e:" now works.
3.GLerror now handles multiple errors resulting from distributed systems.

2.0a4

21

Appendix A. Changes

1.Made the viewport argument togluPickMatrix a keyword.
2. Added a glSelectWithCallback function. This function is pretty trivial since

glRenderMode already returns a selection buffer. See the release notes.
3. Made the order arguments toglMap{1|2}{f|v}v automatic and removed the stride arguments.
4. ChangedGLexception andGLUexception to GLerror andGLUerror .
5. Killed theRTSmodule.
6. Killed the GL.Autodesk.facet_arrays module. Doesn’t look as though it is possible to

support it using the current memory management model.
7. glRenderMode now returns the instance ofglFeedbackBuffer or glSelectBuffer

instead of a copy. It also resets the GL’s pointer to the buffer toNULLafter it’s done.
8. Fixed build bug in which modules with the same name likeWGL.ARB.extensions_string and

WGL.EXT.extensions_string had conflicting obj names (really a work around for a distutils
bug.)

9. FixedWGL.EXT.extensions_string prototype and reference inextensions.py
10. RemovedcheckExtension andraiseExtension .
11. Made considerable changes to theextensions module.
12. GLerror with a code ofGL_INVALID_OPERATION is now thrown on an attempt use an

unsupported extension. This is done to match the OpenGL 1.2 behavior of GL_ARB_imaging.

2.0a3

1. Improved font and menu code ofGLUT.
2.Added theGLEmodule.
3.Fixed exported name ofgluNurbsSurface , was_gluNurbsSurface .
4.AddedRTSmodule andhello2rts demo.
5.The array code of PyOpenGL now works even if Numeric support was compiled in, but Numeric is

not found at runtime.
6.A NotImplementedError is thrown if an extension is not available even on systems that

use static extensions. If the extension is available andglGetProcAddress fails then an
ImportError is thrown.

7.Fixed Joystick callback in GLUT 4.0 code (poll_interval parameter was missing.)
8.Added support for preliminary GLUT 4.0 code. It’s inclusion depends on the macro

GLUT_XLIB_IMPLEMENTATION not on the macro GLUT_API_VERSION since
GLUT_API_VERSIONdoes not include the minor version number.

9.AddedglTexSubImage1D{ub|b|us|s|ui|i|f|d} andglTexSubImage2D{ub|b|us|s|ui|i|f|d}
10.Added support for 3D and 4D texturing.
11.Added GLU 1.3 support.
12.Added lots more extensions (the running tally is now at 165.)

2.0a2

1.Changed the base class ofGLUexception to EnvironmentError instead ofException
2.Added support forglInterleavedArrays .
3.Removed nonsense variants ofglVertexPointer , etc. such asglVertexPointerub . No

corresponding GL calls exist.
4.Added collection of convenience functions (glVertexd , glVertexf , etc.) to avoid silly calls like

glVertex3f([0, 1, 2]) or glColor4f(0, 1, 2, 3)

22

Appendix A. Changes

5.Changed the exception thrown on an attempt to use an unsupported extension to
NotImplementedError instead ofImportError .

6. Added the moduleextensions which does various useful things like getting the list of
implemented or supported extensions.

7. Added extension support forGLU.
8. RemovedglGetError since anyGLerror will now throw an instance ofGLexception which is

derived fromEnvironmentError .
9. Added multi-window support toGLUT. Window callbacks are now window specific as per the

specification.
10. AddedgluScaleImagef , glScaleImagei , etc. toGLU.
11. Changed implementation ofGLUnurbs andGLUquadric to match that ofGLUtesselator to

prepare for addition of GLU 1.3 support.
12. The model view matrix, projection matrix, and viewport arguments togluProject and

gluUnProject are now optional.
13. Added lots more extensions....

23

Appendix B. Licenses

Appendix B. Licenses
Forward Note: This forward is for informational purposes only.

The PyOpenGL project on SourceForge was started by David Ascher, previous maintainer of the
PyOpenGL package, to further development of the binding while David was unable to continue such
development. At the time of the project’s start, PyOpenGL was version 1.5.5. You can find this version of
the package on the downloads page of the project.

Because of this history, there are two licenses which pertain to the library, both of which are "BSD Style"
licenses (though with minor variations in wording).

For all versions up to and including 1.5.5, the PyOpenGL 1.5.5 License is applicable.

For all versions greater than 1.5.5, both the PyOpenGL 1.5.5 License and the PyOpenGL 1.5.6 License
are applicable.

For all versions of PyOpenGL greater than or equal to 2.0 the following licenses also apply

• the GLE License applies to the GLE module
• the SGI Free Software License B [http://oss.sgi.com/projects/FreeB] applies to GL and GLU modules
• the PyGLUT License applies to the GLUT module since PyOpenGL’s GLUT module is a derivative of
PyGLUT.

PyOpenGL 1.5.5 License
Copyright © 1997-1998 by James Hugunin, Cambridge MA, USA, Thomas Schwaller, Munich,
Germany and David Ascher, San Francisco CA, USA.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names
of James Hugunin, Thomas Schwaller, or David Ascher not be used in advertising or publicity pertaining
to distribution of the software without specific, written prior permission.

JAMES HUGUNIN, THOMAS SCHWALLER AND DAVID ASCHER DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL JAMES
HUGUNIN, THOMAS SCHWALLER AND DAVID ASCHER BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

PyOpenGL 1.5.6 License

24

http://oss.sgi.com/projects/FreeB

Appendix B. Licenses

PyOpenGL 1.5.6 is based on PyOpenGL 1.5.5, Copyright © 1997-1998 by James Hugunin, Cambridge
MA, USA, Thomas Schwaller, Munich, Germany and David Ascher, San Francisco CA, USA.

Contributors to the PyOpenGL project in addition to those listed above include:

• David Konerding
• Soren Renner
• Rene Liebscher
• Randall Hopper
• Michael Fletcher
• Thomas Malik
• Thomas Hamelryck
• Jack Jansen
• Michel Sanner

Contributors to the PyOpenGL 2 project in addition to those listed above include:

• Tarn Weisner Burton
• Andrew Cox

PyOpenGL 1.5.6 Copyright © 1997-1998, 2000-2001

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3.The names of the contributors may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

25

Appendix B. Licenses

GLE License
SOFTWARE AGREEMENT

PLEASE READ THIS AGREEMENT CAREFULLY BEFORE INSTALLING OR USING THIS
SOFTWARE. IF YOU INSTALL OR USE THIS SOFTWARE, YOU AGREE TO THESE TERMS.

This software is owned by International Business Machines Corporation ("IBM"), or its subsidiaries or
IBM’s suppliers, and is copyrighted and licensed, not sold. IBM retains title to the software, and grants
you a nonexclusive license for the software.

Under this license, you may:

1.use the software on one or more machines at a time;
2.make copies of the software for use or backup purposes within your enterprise;
3.modify this software and merge it with another program; and
4.make copies of the original file you downloaded and distribute it, provided that you transfer a copy

of this license to the other party.

The other party agrees to these terms by its first use of this software.

You must reproduce the copyright notice and any other legend of ownership on each copy or partial copy
of the software.

This software, as provided by IBM, is only intended to assist in the development of a working software
program. The software may not function as written: additional code is required. In addition, the software
may not compile and/or bind successfully as written.

IBM PROVIDES THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD ANY PART
OF THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. IN NO EVENT, UNLESS REQUIRED BY
APPLICABLE LAW, SHALL IBM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF IBM HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF
SUCH DAMAGES.

IBM does not warrant that the contents of the software will meet your requirements, that the software is
error-free or that the software does not infringe on any intellectual property rights of any third party.

IBM may make improvements and/or changes in the software at any time.

Changes may or may not be made periodically to the information in the software; these changes may be
reported, for the software included herein, in new editions.

26

Appendix B. Licenses

References, if any, in the software to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in the software is not intended to state or imply that only IBM’s licensed program may be used.
Any functionally equivalent program may be used.

The laws of New York State govern this agreement.

PyGLUT License
PyGLUT file is derived from the glut.h distributed with GLUT 3.7. It is a complete wrapper for GLUT
API version 4 (provisional) including the game functionality.

The conversion to a SWIG interface file was done by Andrew Cox [mailto:acox@globalnet.co.uk].

I (Andrew Cox) place no additional limitations on what can be done with the contents of this file beyond
those it inherits from GLUT.

DISCLAIMER: PyGlut is provided AS IS without warranty of any kind, either express or implied,
including but not limited to the implied warranties of merchantability and fitness for a particular purpose.
In no event shall Andrew Cox be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Andrew Cox has been advised of the
possibility of such damages.

Copyright © Mark J. Kilgard, 1994, 1995, 1996, 1998.

This program is freely distributable without licensing fees and is provided without guarantee or warrantee
expressed or implied. This program is -not- in the public domain.

27

mailto:acox@globalnet.co.uk

	PyOpenGL Manual
	Chapter 1. Introduction
	Interfaces To Other Libraries
	Installation
	Bug Reporting

	Chapter 2. Upgrading From PyOpenGL 1.5
	Error Handling
	GL
	GLUT

	Chapter 3. User's Guide
	GL
	GLU
	GLUT
	WGL
	GLE
	Extensions
	Writing Portable Code

	Chapter 4. Internals
	Porting
	Contributing

	Appendix A. Changes
	Appendix B. Licenses
	PyOpenGL 1.5.5 License
	PyOpenGL 1.5.6 License
	GLE License
	PyGLUT License

