1 """
2 Cython wrapper to provide python interfaces to
3 PROJ.4 (http://trac.osgeo.org/proj/) functions.
4
5 Performs cartographic transformations and geodetic computations.
6
7 The Proj class can convert from geographic (longitude,latitude)
8 to native map projection (x,y) coordinates and vice versa, or
9 from one map projection coordinate system directly to another.
10 The module variable pj_list is a dictionary containing all the
11 available projections and their descriptions.
12
13 The Geod class can perform forward and inverse geodetic, or
14 Great Circle, computations. The forward computation involves
15 determining latitude, longitude and back azimuth of a terminus
16 point given the latitude and longitude of an initial point, plus
17 azimuth and distance. The inverse computation involves
18 determining the forward and back azimuths and distance given the
19 latitudes and longitudes of an initial and terminus point.
20
21 Input coordinates can be given as python arrays, lists/tuples,
22 scalars or numpy/Numeric/numarray arrays. Optimized for objects
23 that support the Python buffer protocol (regular python and
24 numpy array objects).
25
26 Download: http://code.google.com/p/pyproj/downloads/list
27
28 Requirements: python 2.4 or higher.
29
30 Example scripts are in 'test' subdirectory of source distribution.
31 The 'test()' function will run the examples in the docstrings.
32
33 Contact: Jeffrey Whitaker <jeffrey.s.whitaker@noaa.gov
34
35 copyright (c) 2006 by Jeffrey Whitaker.
36
37 Permission to use, copy, modify, and distribute this software
38 and its documentation for any purpose and without fee is hereby
39 granted, provided that the above copyright notice appear in all
40 copies and that both the copyright notice and this permission
41 notice appear in supporting documentation. THE AUTHOR DISCLAIMS
42 ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
43 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
44 SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR
45 CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
46 LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
47 NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
48 CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """
49
50 from pyproj import _proj
51 from pyproj.datadir import pyproj_datadir
52 __version__ = _proj.__version__
53 set_datapath = _proj.set_datapath
54 from array import array
55 import os, math
56
57 pj_list={
58 'aea': "Albers Equal Area",
59 'aeqd': "Azimuthal Equidistant",
60 'airy': "Airy",
61 'aitoff': "Aitoff",
62 'alsk': "Mod. Stererographics of Alaska",
63 'apian': "Apian Globular I",
64 'august': "August Epicycloidal",
65 'bacon': "Bacon Globular",
66 'bipc': "Bipolar conic of western hemisphere",
67 'boggs': "Boggs Eumorphic",
68 'bonne': "Bonne (Werner lat_1=90)",
69 'cass': "Cassini",
70 'cc': "Central Cylindrical",
71 'cea': "Equal Area Cylindrical",
72 'chamb': "Chamberlin Trimetric",
73 'collg': "Collignon",
74 'crast': "Craster Parabolic (Putnins P4)",
75 'denoy': "Denoyer Semi-Elliptical",
76 'eck1': "Eckert I",
77 'eck2': "Eckert II",
78 'eck3': "Eckert III",
79 'eck4': "Eckert IV",
80 'eck5': "Eckert V",
81 'eck6': "Eckert VI",
82 'eqc': "Equidistant Cylindrical (Plate Caree)",
83 'eqdc': "Equidistant Conic",
84 'etmerc': "Extended Transverse Mercator" ,
85 'euler': "Euler",
86 'fahey': "Fahey",
87 'fouc': "Foucaut",
88 'fouc_s': "Foucaut Sinusoidal",
89 'gall': "Gall (Gall Stereographic)",
90 'geocent': "Geocentric",
91 'geos': "Geostationary Satellite View",
92 'gins8': "Ginsburg VIII (TsNIIGAiK)",
93 'gn_sinu': "General Sinusoidal Series",
94 'gnom': "Gnomonic",
95 'goode': "Goode Homolosine",
96 'gs48': "Mod. Stererographics of 48 U.S.",
97 'gs50': "Mod. Stererographics of 50 U.S.",
98 'hammer': "Hammer & Eckert-Greifendorff",
99 'hatano': "Hatano Asymmetrical Equal Area",
100 'healpix': "HEALPix",
101 'rhealpix': "rHEALPix",
102 'igh': "Interrupted Goode Homolosine",
103 'imw_p': "Internation Map of the World Polyconic",
104 'isea': "Icosahedral Snyder Equal Area",
105 'kav5': "Kavraisky V",
106 'kav7': "Kavraisky VII",
107 'krovak': "Krovak",
108 'labrd': "Laborde",
109 'laea': "Lambert Azimuthal Equal Area",
110 'lagrng': "Lagrange",
111 'larr': "Larrivee",
112 'lask': "Laskowski",
113 'lonlat': "Lat/long (Geodetic)",
114 'latlon': "Lat/long (Geodetic alias)",
115 'latlong': "Lat/long (Geodetic alias)",
116 'longlat': "Lat/long (Geodetic alias)",
117 'lcc': "Lambert Conformal Conic",
118 'lcca': "Lambert Conformal Conic Alternative",
119 'leac': "Lambert Equal Area Conic",
120 'lee_os': "Lee Oblated Stereographic",
121 'loxim': "Loximuthal",
122 'lsat': "Space oblique for LANDSAT",
123 'mbt_s': "McBryde-Thomas Flat-Polar Sine",
124 'mbt_fps': "McBryde-Thomas Flat-Pole Sine (No. 2)",
125 'mbtfpp': "McBride-Thomas Flat-Polar Parabolic",
126 'mbtfpq': "McBryde-Thomas Flat-Polar Quartic",
127 'mbtfps': "McBryde-Thomas Flat-Polar Sinusoidal",
128 'merc': "Mercator",
129 'mil_os': "Miller Oblated Stereographic",
130 'mill': "Miller Cylindrical",
131 'moll': "Mollweide",
132 'murd1': "Murdoch I",
133 'murd2': "Murdoch II",
134 'murd3': "Murdoch III",
135 'natearth': "Natural Earth",
136 'nell': "Nell",
137 'nell_h': "Nell-Hammer",
138 'nicol': "Nicolosi Globular",
139 'nsper': "Near-sided perspective",
140 'nzmg': "New Zealand Map Grid",
141 'ob_tran': "General Oblique Transformation",
142 'ocea': "Oblique Cylindrical Equal Area",
143 'oea': "Oblated Equal Area",
144 'omerc': "Oblique Mercator",
145 'ortel': "Ortelius Oval",
146 'ortho': "Orthographic",
147 'pconic': "Perspective Conic",
148 'poly': "Polyconic (American)",
149 'putp1': "Putnins P1",
150 'putp2': "Putnins P2",
151 'putp3': "Putnins P3",
152 'putp3p': "Putnins P3'",
153 'putp4p': "Putnins P4'",
154 'putp5': "Putnins P5",
155 'putp5p': "Putnins P5'",
156 'putp6': "Putnins P6",
157 'putp6p': "Putnins P6'",
158 'qua_aut': "Quartic Authalic",
159 'robin': "Robinson",
160 'rouss': "Roussilhe Stereographic",
161 'rpoly': "Rectangular Polyconic",
162 'sinu': "Sinusoidal (Sanson-Flamsteed)",
163 'somerc': "Swiss. Obl. Mercator",
164 'stere': "Stereographic",
165 'sterea': "Oblique Stereographic Alternative",
166 'gstmerc': "Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)",
167 'tcc': "Transverse Central Cylindrical",
168 'tcea': "Transverse Cylindrical Equal Area",
169 'tissot': "Tissot Conic",
170 'tmerc': "Transverse Mercator",
171 'tpeqd': "Two Point Equidistant",
172 'tpers': "Tilted perspective",
173 'ups': "Universal Polar Stereographic",
174 'urm5': "Urmaev V",
175 'urmfps': "Urmaev Flat-Polar Sinusoidal",
176 'utm': "Universal Transverse Mercator (UTM)",
177 'vandg': "van der Grinten (I)",
178 'vandg2': "van der Grinten II",
179 'vandg3': "van der Grinten III",
180 'vandg4': "van der Grinten IV",
181 'vitk1': "Vitkovsky I",
182 'wag1': "Wagner I (Kavraisky VI)",
183 'wag2': "Wagner II",
184 'wag3': "Wagner III",
185 'wag4': "Wagner IV",
186 'wag5': "Wagner V",
187 'wag6': "Wagner VI",
188 'wag7': "Wagner VII",
189 'weren': "Werenskiold I",
190 'wink1': "Winkel I",
191 'wink2': "Winkel II",
192 'wintri': "Winkel Tripel"}
193
194 pj_ellps={
195 "MERIT": {'a':6378137.0,'rf':298.257,'description':"MERIT 1983"},
196 "SGS85": {'a':6378136.0,'rf':298.257,'description':"Soviet Geodetic System 85"},
197 "GRS80": {'a':6378137.0,'rf':298.257222101,'description':"GRS 1980(IUGG, 1980)"},
198 "IAU76": {'a':6378140.0,'rf':298.257,'description':"IAU 1976"},
199 "airy": {'a':6377563.396,'b':6356256.910,'description':"Airy 1830"},
200 "APL4.9": {'a':6378137.0,'rf':298.25,'description':"Appl. Physics. 1965"},
201 "NWL9D": {'a':6378145.0,'rf':298.25,'description':" Naval Weapons Lab., 1965"},
202 "mod_airy": {'a':6377340.189,'b':6356034.446,'description':"Modified Airy"},
203 "andrae": {'a':6377104.43,'rf':300.0,'description':"Andrae 1876 (Den., Iclnd.)"},
204 "aust_SA": {'a':6378160.0,'rf':298.25,'description':"Australian Natl & S. Amer. 1969"},
205 "GRS67": {'a':6378160.0,'rf':298.2471674270,'description':"GRS 67(IUGG 1967)"},
206 "bessel": {'a':6377397.155,'rf':299.1528128,'description':"Bessel 1841"},
207 "bess_nam": {'a':6377483.865,'rf':299.1528128,'description':"Bessel 1841 (Namibia)"},
208 "clrk66": {'a':6378206.4,'b':6356583.8,'description':"Clarke 1866"},
209 "clrk80": {'a':6378249.145,'rf':293.4663,'description':"Clarke 1880 mod."},
210 "CPM": {'a':6375738.7,'rf':334.29,'description':"Comm. des Poids et Mesures 1799"},
211 "delmbr": {'a':6376428.,'rf':311.5,'description':"Delambre 1810 (Belgium)"},
212 "engelis": {'a':6378136.05,'rf':298.2566,'description':"Engelis 1985"},
213 "evrst30": {'a':6377276.345,'rf':300.8017,'description':"Everest 1830"},
214 "evrst48": {'a':6377304.063,'rf':300.8017,'description':"Everest 1948"},
215 "evrst56": {'a':6377301.243,'rf':300.8017,'description':"Everest 1956"},
216 "evrst69": {'a':6377295.664,'rf':300.8017,'description':"Everest 1969"},
217 "evrstSS": {'a':6377298.556,'rf':300.8017,'description':"Everest (Sabah & Sarawak)"},
218 "fschr60": {'a':6378166.,'rf':298.3,'description':"Fischer (Mercury Datum) 1960"},
219 "fschr60m": {'a':6378155.,'rf':298.3,'description':"Modified Fischer 1960"},
220 "fschr68": {'a':6378150.,'rf':298.3,'description':"Fischer 1968"},
221 "helmert": {'a':6378200.,'rf':298.3,'description':"Helmert 1906"},
222 "hough": {'a':6378270.0,'rf':297.,'description':"Hough"},
223 "intl": {'a':6378388.0,'rf':297.,'description':"International 1909 (Hayford)"},
224 "krass": {'a':6378245.0,'rf':298.3,'description':"Krassovsky, 1942"},
225 "kaula": {'a':6378163.,'rf':298.24,'description':"Kaula 1961"},
226 "lerch": {'a':6378139.,'rf':298.257,'description':"Lerch 1979"},
227 "mprts": {'a':6397300.,'rf':191.,'description':"Maupertius 1738"},
228 "new_intl": {'a':6378157.5,'b':6356772.2,'description':"New International 1967"},
229 "plessis": {'a':6376523.,'b':6355863.,'description':"Plessis 1817 (France)"},
230 "SEasia": {'a':6378155.0,'b':6356773.3205,'description':"Southeast Asia"},
231 "walbeck": {'a':6376896.0,'b':6355834.8467,'description':"Walbeck"},
232 "WGS60": {'a':6378165.0,'rf':298.3,'description':"WGS 60"},
233 "WGS66": {'a':6378145.0,'rf':298.25,'description':"WGS 66"},
234 "WGS72": {'a':6378135.0,'rf':298.26,'description':"WGS 72"},
235 "WGS84": {'a':6378137.0,'rf':298.257223563,'description':"WGS 84"},
236 "sphere": {'a':6370997.0,'b':6370997.0,'description':"Normal Sphere"},
237 }
238
239
240
241
242
243 set_datapath(pyproj_datadir)
244
245 -class Proj(_proj.Proj):
246 """
247 performs cartographic transformations (converts from
248 longitude,latitude to native map projection x,y coordinates and
249 vice versa) using proj (http://trac.osgeo.org/proj/).
250
251 A Proj class instance is initialized with proj map projection
252 control parameter key/value pairs. The key/value pairs can
253 either be passed in a dictionary, or as keyword arguments,
254 or as a proj4 string (compatible with the proj command). See
255 http://www.remotesensing.org/geotiff/proj_list for examples of
256 key/value pairs defining different map projections.
257
258 Calling a Proj class instance with the arguments lon, lat will
259 convert lon/lat (in degrees) to x/y native map projection
260 coordinates (in meters). If optional keyword 'inverse' is True
261 (default is False), the inverse transformation from x/y to
262 lon/lat is performed. If optional keyword 'radians' is True
263 (default is False) lon/lat are interpreted as radians instead of
264 degrees. If optional keyword 'errcheck' is True (default is
265 False) an exception is raised if the transformation is invalid.
266 If errcheck=False and the transformation is invalid, no
267 exception is raised and 1.e30 is returned. If the optional keyword
268 'preserve_units' is True, the units in map projection coordinates
269 are not forced to be meters.
270
271 Works with numpy and regular python array objects, python
272 sequences and scalars.
273 """
274
275 - def __new__(self, projparams=None, preserve_units=False, **kwargs):
276 """
277 initialize a Proj class instance.
278
279 Proj4 projection control parameters must either be given in a
280 dictionary 'projparams' or as keyword arguments. See the proj
281 documentation (http://trac.osgeo.org/proj/) for more information
282 about specifying projection parameters.
283
284 Example usage:
285
286 >>> from pyproj import Proj
287 >>> p = Proj(proj='utm',zone=10,ellps='WGS84') # use kwargs
288 >>> x,y = p(-120.108, 34.36116666)
289 >>> 'x=%9.3f y=%11.3f' % (x,y)
290 'x=765975.641 y=3805993.134'
291 >>> 'lon=%8.3f lat=%5.3f' % p(x,y,inverse=True)
292 'lon=-120.108 lat=34.361'
293 >>> # do 3 cities at a time in a tuple (Fresno, LA, SF)
294 >>> lons = (-119.72,-118.40,-122.38)
295 >>> lats = (36.77, 33.93, 37.62 )
296 >>> x,y = p(lons, lats)
297 >>> 'x: %9.3f %9.3f %9.3f' % x
298 'x: 792763.863 925321.537 554714.301'
299 >>> 'y: %9.3f %9.3f %9.3f' % y
300 'y: 4074377.617 3763936.941 4163835.303'
301 >>> lons, lats = p(x, y, inverse=True) # inverse transform
302 >>> 'lons: %8.3f %8.3f %8.3f' % lons
303 'lons: -119.720 -118.400 -122.380'
304 >>> 'lats: %8.3f %8.3f %8.3f' % lats
305 'lats: 36.770 33.930 37.620'
306 >>> p2 = Proj('+proj=utm +zone=10 +ellps=WGS84') # use proj4 string
307 >>> x,y = p2(-120.108, 34.36116666)
308 >>> 'x=%9.3f y=%11.3f' % (x,y)
309 'x=765975.641 y=3805993.134'
310 >>> p = Proj(init="epsg:32667")
311 >>> 'x=%12.3f y=%12.3f (meters)' % p(-114.057222, 51.045)
312 'x=-1783486.760 y= 6193833.196 (meters)'
313 >>> p = Proj("+init=epsg:32667",preserve_units=True)
314 >>> 'x=%12.3f y=%12.3f (feet)' % p(-114.057222, 51.045)
315 'x=-5851322.810 y=20320934.409 (feet)'
316 """
317
318 if projparams is None:
319 if len(kwargs) == 0:
320 raise RuntimeError('no projection control parameters specified')
321 else:
322 projstring = _dict2string(kwargs)
323 elif type(projparams) == str:
324
325 projstring = projparams
326 else:
327 projstring = _dict2string(projparams)
328
329 if not projstring.count('+units=') and not preserve_units:
330 projstring = '+units=m '+projstring
331 else:
332 kvpairs = []
333 for kvpair in projstring.split():
334 if kvpair.startswith('+units') and not preserve_units:
335 k,v = kvpair.split('=')
336 kvpairs.append(k+'=m ')
337 else:
338 kvpairs.append(kvpair+' ')
339 projstring = ''.join(kvpairs)
340
341
342 projstring = projstring.replace('EPSG','epsg')
343 return _proj.Proj.__new__(self, projstring)
344
346
347 """
348 Calling a Proj class instance with the arguments lon, lat will
349 convert lon/lat (in degrees) to x/y native map projection
350 coordinates (in meters). If optional keyword 'inverse' is True
351 (default is False), the inverse transformation from x/y to
352 lon/lat is performed. If optional keyword 'radians' is True
353 (default is False) the units of lon/lat are radians instead of
354 degrees. If optional keyword 'errcheck' is True (default is
355 False) an exception is raised if the transformation is invalid.
356 If errcheck=False and the transformation is invalid, no
357 exception is raised and 1.e30 is returned.
358
359 Instead of calling with lon, lat, a single ndarray of
360 shape n,2 may be used, and one of the same shape will
361 be returned; this is more efficient.
362
363 Inputs should be doubles (they will be cast to doubles if they
364 are not, causing a slight performance hit).
365
366 Works with numpy and regular python array objects, python
367 sequences and scalars, but is fastest for array objects.
368 """
369 inverse = kw.get('inverse', False)
370 radians = kw.get('radians', False)
371 errcheck = kw.get('errcheck', False)
372
373
374
375
376
377
378
379
380 lon, lat = args
381
382 inx, xisfloat, xislist, xistuple = _copytobuffer(lon)
383 iny, yisfloat, yislist, yistuple = _copytobuffer(lat)
384
385 if inverse:
386 _proj.Proj._inv(self, inx, iny, radians=radians, errcheck=errcheck)
387 else:
388 _proj.Proj._fwd(self, inx, iny, radians=radians, errcheck=errcheck)
389
390 outx = _convertback(xisfloat,xislist,xistuple,inx)
391 outy = _convertback(yisfloat,yislist,xistuple,iny)
392 return outx, outy
393
395 """returns True if projection in geographic (lon/lat) coordinates"""
396 return _proj.Proj.is_latlong(self)
397
399 """returns True if projection in geocentric (x/y) coordinates"""
400 return _proj.Proj.is_geocent(self)
401
491
493 try:
494
495 return array('d',(float(x),)),True,False,False
496 except:
497 raise TypeError('input must be an array, list, tuple or scalar')
498
500 """
501 return a copy of x as an object that supports the python Buffer
502 API (python array if input is float, list or tuple, numpy array
503 if input is a numpy array). returns copyofx, isfloat, islist,
504 istuple (islist is True if input is a list, istuple is true if
505 input is a tuple, isfloat is true if input is a float).
506 """
507
508 isfloat = False; islist = False; istuple = False
509
510
511 if hasattr(x,'shape'):
512 if x.shape == ():
513 return _copytobuffer_return_scalar(x)
514 else:
515 try:
516
517
518
519 x.dtype.char
520 inx = x.astype('d')
521
522 return inx,False,False,False
523 except:
524 try:
525
526
527 x.typecode()
528 inx = x.astype('d')
529
530 return inx,False,False,False
531 except:
532 raise TypeError('input must be an array, list, tuple or scalar')
533 else:
534
535 if hasattr(x, 'typecode'):
536
537 inx = array('d',x)
538
539
540 elif type(x) == list:
541 inx = array('d',x)
542 islist = True
543
544 elif type(x) == tuple:
545 inx = array('d',x)
546 istuple = True
547
548 else:
549 return _copytobuffer_return_scalar(x)
550 return inx,isfloat,islist,istuple
551
553
554 if isfloat:
555 return inx[0]
556 elif islist:
557 return inx.tolist()
558 elif istuple:
559 return tuple(inx)
560 else:
561 return inx
562
564
565 pjargs = []
566 for key,value in projparams.items():
567 pjargs.append('+'+key+"="+str(value)+' ')
568 return ''.join(pjargs)
569
570 -class Geod(_proj.Geod):
571 """
572 performs forward and inverse geodetic, or Great Circle,
573 computations. The forward computation (using the 'fwd' method)
574 involves determining latitude, longitude and back azimuth of a
575 computations. The forward computation (using the 'fwd' method)
576 involves determining latitude, longitude and back azimuth of a
577 terminus point given the latitude and longitude of an initial
578 point, plus azimuth and distance. The inverse computation (using
579 the 'inv' method) involves determining the forward and back
580 azimuths and distance given the latitudes and longitudes of an
581 initial and terminus point.
582 """
583 - def __new__(self, initstring=None, **kwargs):
584 """
585 initialize a Geod class instance.
586
587 Geodetic parameters for specifying the ellipsoid
588 can be given in a dictionary 'initparams', as keyword arguments,
589 or as as proj4 geod initialization string.
590 Following is a list of the ellipsoids that may be defined using the
591 'ellps' keyword (these are stored in the model variable pj_ellps)::
592
593 MERIT a=6378137.0 rf=298.257 MERIT 1983
594 SGS85 a=6378136.0 rf=298.257 Soviet Geodetic System 85
595 GRS80 a=6378137.0 rf=298.257222101 GRS 1980(IUGG, 1980)
596 IAU76 a=6378140.0 rf=298.257 IAU 1976
597 airy a=6377563.396 b=6356256.910 Airy 1830
598 APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
599 airy a=6377563.396 b=6356256.910 Airy 1830
600 APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
601 NWL9D a=6378145.0. rf=298.25 Naval Weapons Lab., 1965
602 mod_airy a=6377340.189 b=6356034.446 Modified Airy
603 andrae a=6377104.43 rf=300.0 Andrae 1876 (Den., Iclnd.)
604 aust_SA a=6378160.0 rf=298.25 Australian Natl & S. Amer. 1969
605 GRS67 a=6378160.0 rf=298.247167427 GRS 67(IUGG 1967)
606 bessel a=6377397.155 rf=299.1528128 Bessel 1841
607 bess_nam a=6377483.865 rf=299.1528128 Bessel 1841 (Namibia)
608 clrk66 a=6378206.4 b=6356583.8 Clarke 1866
609 clrk80 a=6378249.145 rf=293.4663 Clarke 1880 mod.
610 CPM a=6375738.7 rf=334.29 Comm. des Poids et Mesures 1799
611 delmbr a=6376428. rf=311.5 Delambre 1810 (Belgium)
612 engelis a=6378136.05 rf=298.2566 Engelis 1985
613 evrst30 a=6377276.345 rf=300.8017 Everest 1830
614 evrst48 a=6377304.063 rf=300.8017 Everest 1948
615 evrst56 a=6377301.243 rf=300.8017 Everest 1956
616 evrst69 a=6377295.664 rf=300.8017 Everest 1969
617 evrstSS a=6377298.556 rf=300.8017 Everest (Sabah & Sarawak)
618 fschr60 a=6378166. rf=298.3 Fischer (Mercury Datum) 1960
619 fschr60m a=6378155. rf=298.3 Modified Fischer 1960
620 fschr68 a=6378150. rf=298.3 Fischer 1968
621 helmert a=6378200. rf=298.3 Helmert 1906
622 hough a=6378270.0 rf=297. Hough
623 helmert a=6378200. rf=298.3 Helmert 1906
624 hough a=6378270.0 rf=297. Hough
625 intl a=6378388.0 rf=297. International 1909 (Hayford)
626 krass a=6378245.0 rf=298.3 Krassovsky, 1942
627 kaula a=6378163. rf=298.24 Kaula 1961
628 lerch a=6378139. rf=298.257 Lerch 1979
629 mprts a=6397300. rf=191. Maupertius 1738
630 new_intl a=6378157.5 b=6356772.2 New International 1967
631 plessis a=6376523. b=6355863. Plessis 1817 (France)
632 SEasia a=6378155.0 b=6356773.3205 Southeast Asia
633 walbeck a=6376896.0 b=6355834.8467 Walbeck
634 WGS60 a=6378165.0 rf=298.3 WGS 60
635 WGS66 a=6378145.0 rf=298.25 WGS 66
636 WGS72 a=6378135.0 rf=298.26 WGS 72
637 WGS84 a=6378137.0 rf=298.257223563 WGS 84
638 sphere a=6370997.0 b=6370997.0 Normal Sphere (r=6370997)
639
640 The parameters of the ellipsoid may also be set directly using
641 the 'a' (semi-major or equatorial axis radius) keyword, and
642 any one of the following keywords: 'b' (semi-minor,
643 or polar axis radius), 'e' (eccentricity), 'es' (eccentricity
644 squared), 'f' (flattening), or 'rf' (reciprocal flattening).
645
646 See the proj documentation (http://trac.osgeo.org/proj/) for more
647
648 See the proj documentation (http://trac.osgeo.org/proj/) for more
649 information about specifying ellipsoid parameters (specifically,
650 the chapter 'Specifying the Earth's figure' in the main Proj
651 users manual).
652
653 Example usage:
654
655 >>> from pyproj import Geod
656 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
657 >>> # specify the lat/lons of some cities.
658 >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
659 >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
660 >>> newyork_lat = 40.+(47./60.); newyork_lon = -73.-(58./60.)
661 >>> london_lat = 51.+(32./60.); london_lon = -(5./60.)
662 >>> # compute forward and back azimuths, plus distance
663 >>> # between Boston and Portland.
664 >>> az12,az21,dist = g.inv(boston_lon,boston_lat,portland_lon,portland_lat)
665 >>> "%7.3f %6.3f %12.3f" % (az12,az21,dist)
666 '-66.531 75.654 4164192.708'
667 >>> # compute latitude, longitude and back azimuth of Portland,
668 >>> # given Boston lat/lon, forward azimuth and distance to Portland.
669 >>> endlon, endlat, backaz = g.fwd(boston_lon, boston_lat, az12, dist)
670 >>> "%6.3f %6.3f %13.3f" % (endlat,endlon,backaz)
671 '45.517 -123.683 75.654'
672 >>> # compute the azimuths, distances from New York to several
673 >>> # cities (pass a list)
674 >>> lons1 = 3*[newyork_lon]; lats1 = 3*[newyork_lat]
675 >>> lons2 = [boston_lon, portland_lon, london_lon]
676 >>> lats2 = [boston_lat, portland_lat, london_lat]
677 >>> az12,az21,dist = g.inv(lons1,lats1,lons2,lats2)
678 >>> for faz,baz,d in list(zip(az12,az21,dist)): "%7.3f %7.3f %9.3f" % (faz,baz,d)
679 ' 54.663 -123.448 288303.720'
680 '-65.463 79.342 4013037.318'
681 ' 51.254 -71.576 5579916.651'
682 >>> g2 = Geod('+ellps=clrk66') # use proj4 style initialization string
683 >>> az12,az21,dist = g2.inv(boston_lon,boston_lat,portland_lon,portland_lat)
684 >>> "%7.3f %6.3f %12.3f" % (az12,az21,dist)
685 '-66.531 75.654 4164192.708'
686 """
687
688
689 ellpsd = {}
690 if initstring is not None:
691 for kvpair in initstring.split():
692 k,v = kvpair.split('=')
693 k = k.lstrip('+')
694 if k in ['a','b','rf','f','es','e']:
695 v = float(v)
696 ellpsd[k] = v
697
698 kwargs = dict(list(kwargs.items()) + list(ellpsd.items()))
699 self.sphere = False
700 if 'ellps' in kwargs:
701
702 ellps_dict = pj_ellps[kwargs['ellps']]
703 a = ellps_dict['a']
704 if ellps_dict['description']=='Normal Sphere':
705 self.sphere = True
706 if 'b' in ellps_dict:
707 b = ellps_dict['b']
708 es = 1. - (b * b) / (a * a)
709 f = (a - b)/a
710 elif 'rf' in ellps_dict:
711 f = 1./ellps_dict['rf']
712 b = a*(1. - f)
713 es = 1. - (b * b) / (a * a)
714 else:
715
716
717
718
719
720
721 a = kwargs['a']
722 if 'b' in kwargs:
723 b = kwargs['b']
724 es = 1. - (b * b) / (a * a)
725 f = (a - b)/a
726 elif 'rf' in kwargs:
727 f = 1./kwargs['rf']
728 b = a*(1. - f)
729 es = 1. - (b * b) / (a * a)
730 elif 'f' in kwargs:
731 f = kwargs['f']
732 b = a*(1. - f)
733 es = 1. - (b/a)**2
734 elif 'es' in kwargs:
735 es = kwargs['es']
736 b = math.sqrt(a**2 - es*a**2)
737 f = (a - b)/a
738 elif 'e' in kwargs:
739 es = kwargs['e']**2
740 b = math.sqrt(a**2 - es*a**2)
741 f = (a - b)/a
742 else:
743 b = a
744 f = 0.
745 es = 0.
746
747
748 if math.fabs(f) < 1.e-8: self.sphere = True
749 self.a = a
750 self.b = b
751 self.f = f
752 self.es = es
753 return _proj.Geod.__new__(self, a, f)
754
755 - def fwd(self, lons, lats, az, dist, radians=False):
756 """
757 forward transformation - Returns longitudes, latitudes and back
758 azimuths of terminus points given longitudes (lons) and
759 latitudes (lats) of initial points, plus forward azimuths (az)
760 and distances (dist).
761 latitudes (lats) of initial points, plus forward azimuths (az)
762 and distances (dist).
763
764 Works with numpy and regular python array objects, python
765 sequences and scalars.
766
767 if radians=True, lons/lats and azimuths are radians instead of
768 degrees. Distances are in meters.
769 """
770
771 inx, xisfloat, xislist, xistuple = _copytobuffer(lons)
772 iny, yisfloat, yislist, yistuple = _copytobuffer(lats)
773 inz, zisfloat, zislist, zistuple = _copytobuffer(az)
774 ind, disfloat, dislist, distuple = _copytobuffer(dist)
775 _proj.Geod._fwd(self, inx, iny, inz, ind, radians=radians)
776
777 outx = _convertback(xisfloat,xislist,xistuple,inx)
778 outy = _convertback(yisfloat,yislist,xistuple,iny)
779 outz = _convertback(zisfloat,zislist,zistuple,inz)
780 return outx, outy, outz
781
782 - def inv(self,lons1,lats1,lons2,lats2,radians=False):
783 """
784 inverse transformation - Returns forward and back azimuths, plus
785 distances between initial points (specified by lons1, lats1) and
786 terminus points (specified by lons2, lats2).
787
788 Works with numpy and regular python array objects, python
789 sequences and scalars.
790
791 if radians=True, lons/lats and azimuths are radians instead of
792 degrees. Distances are in meters.
793 """
794
795 inx, xisfloat, xislist, xistuple = _copytobuffer(lons1)
796 iny, yisfloat, yislist, yistuple = _copytobuffer(lats1)
797 inz, zisfloat, zislist, zistuple = _copytobuffer(lons2)
798 ind, disfloat, dislist, distuple = _copytobuffer(lats2)
799 _proj.Geod._inv(self,inx,iny,inz,ind,radians=radians)
800
801 outx = _convertback(xisfloat,xislist,xistuple,inx)
802 outy = _convertback(yisfloat,yislist,xistuple,iny)
803 outz = _convertback(zisfloat,zislist,zistuple,inz)
804 return outx, outy, outz
805
806 - def npts(self, lon1, lat1, lon2, lat2, npts, radians=False):
807 """
808 Given a single initial point and terminus point (specified by
809 python floats lon1,lat1 and lon2,lat2), returns a list of
810 longitude/latitude pairs describing npts equally spaced
811 intermediate points along the geodesic between the initial and
812 terminus points.
813
814 if radians=True, lons/lats are radians instead of degrees.
815
816 Example usage:
817
818 >>> from pyproj import Geod
819 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
820 >>> # specify the lat/lons of Boston and Portland.
821 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
822 >>> # specify the lat/lons of Boston and Portland.
823 >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
824 >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
825 >>> # find ten equally spaced points between Boston and Portland.
826 >>> lonlats = g.npts(boston_lon,boston_lat,portland_lon,portland_lat,10)
827 >>> for lon,lat in lonlats: '%6.3f %7.3f' % (lat, lon)
828 '43.528 -75.414'
829 '44.637 -79.883'
830 '45.565 -84.512'
831 '46.299 -89.279'
832 '46.830 -94.156'
833 '47.149 -99.112'
834 '47.251 -104.106'
835 '47.136 -109.100'
836 '46.805 -114.051'
837 '46.262 -118.924'
838 >>> # test with radians=True (inputs/outputs in radians, not degrees)
839 >>> import math
840 >>> dg2rad = math.radians(1.)
841 >>> rad2dg = math.degrees(1.)
842 >>> lonlats = g.npts(dg2rad*boston_lon,dg2rad*boston_lat,dg2rad*portland_lon,dg2rad*portland_lat,10,radians=True)
843 >>> for lon,lat in lonlats: '%6.3f %7.3f' % (rad2dg*lat, rad2dg*lon)
844 '43.528 -75.414'
845 '44.637 -79.883'
846 '45.565 -84.512'
847 '46.299 -89.279'
848 '46.830 -94.156'
849 '47.149 -99.112'
850 '47.251 -104.106'
851 '47.136 -109.100'
852 '46.805 -114.051'
853 '46.262 -118.924'
854 """
855 lons, lats = _proj.Geod._npts(self, lon1, lat1, lon2, lat2, npts, radians=radians)
856 return list(zip(lons, lats))
857
859 """run the examples in the docstrings using the doctest module"""
860 import doctest, pyproj
861 doctest.testmod(pyproj,verbose=True)
862
863 if __name__ == "__main__": test()
864