
Francesc Alted • Scott Prater

PyTables User’s Guide

Hierarchical datasets in Python
Release 0.8

Alted, Francesc:

PyTables User’s Guide

Hierarchical datasets in Python
Release 0.8

All rights reserved.
© 2002, 2003, 2004 Francesc Alted

Typeset by Francesc Alted and Scott Prater
Day of print: 2004, March, 9th

Copyright Notice and Statement forPyTables Software Library and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and
Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001,
2002, 2003, 2004 by the Board of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at:
http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

III

Contents

1 Introduction 1
1.1 Main Features .2
1.2 The Object Tree . 2

2 Installation 7
2.1 Installation from source . 7

2.1.1 Prerequisites .7
2.1.2 PyTables package installation . 8

2.2 Binary installation (Windows) .10
2.2.1 Windows prerequisites .10
2.2.2 PyTables package installation .10

3 Tutorials 11
3.1 Getting started .11

3.1.1 Importingtables objects . 11
3.1.2 Declaring a Column Descriptor .12
3.1.3 Creating aPyTables file from scratch . 12
3.1.4 Creating a new group .12
3.1.5 Creating a new table .13
3.1.6 Reading (and selecting) data in a table .14
3.1.7 Creating new array objects .15
3.1.8 Closing the file and looking at its content .16

3.2 Browsing theobject treeand appending to tables .17
3.2.1 Traversing the object tree .17
3.2.2 Setting and getting user attributes .18
3.2.3 Getting object metadata .21
3.2.4 Reading data fromArray objects . 23
3.2.5 Appending data to an existing table .24
3.2.6 And finally... how to delete rows from a table .25

3.3 Multidimensional table cells and automatic sanity checks25
3.3.1 Shape checking .28
3.3.2 Field name checking .28
3.3.3 Data type checking .29

4 Library Reference 31
4.1 tables variables and functions .31

4.1.1 Global variables .31
4.1.2 Global functions .31

4.2 TheFile class .32
4.2.1 File instance variables .33
4.2.2 File methods .33
4.2.3 File special methods .37

4.3 TheGroup class .37

IV Contents

4.3.1 Group instance variables .38
4.3.2 Group methods .38
4.3.3 Group special methods .39

4.4 TheLeaf class .40
4.4.1 Leaf instance variables .40
4.4.2 Leaf methods .41

4.5 TheTable class .42
4.5.1 Table instance variables .42
4.5.2 Table methods .42
4.5.3 Table special methods .43
4.5.4 TheRowclass . 44
4.5.5 TheCols class . 45
4.5.6 TheColumn class . 45

4.6 TheArray class .46
4.6.1 Array instance variables .46
4.6.2 Array methods .46
4.6.3 Array special methods .46

4.7 TheEArray class .47
4.7.1 EArray instance variables .47
4.7.2 EArray methods .48

4.8 TheVLArray class .48
4.8.1 VLArray instance variables .48
4.8.2 VLArray methods .49
4.8.3 VLArray special methods .50

4.9 TheUnImplemented class . 50
4.10 TheAttributeSet class . 51

4.10.1 AttributeSet instance variables .51
4.10.2 AttributeSet methods . 51

4.11 Declarative classes .51
4.11.1 TheIsDescription class . 51
4.11.2 TheCol class and its descendants .52
4.11.3 TheAtom class and its descendants. .53

4.12 Helper classes .54
4.12.1 TheFilters class . 55

5 Optimization tips 57
5.1 Taking advantage of Psyco .57
5.2 Compression issues .58
5.3 Shuffling (or how to make the compression process more effective)61
5.4 InformingPyTables about expected number of rows in tables62
5.5 Selecting an User Entry Point (UEP) in your tree .62
5.6 Compacting yourPyTables files . 63

A Supported data types inPyTables 65

B PyTables File Format 67
B.1 Mandatory attributes for aFile . 67
B.2 Mandatory attributes for aGroup . 67
B.3 Mandatory attributes, storage layout and supported datatypes forLeaves 68

B.3.1 Table format . 68
B.3.2 Array format . 69
B.3.3 EArray format . 70
B.3.4 VLArray format . 70

Contents V

C Utilities 73
C.1 ptdump .73

C.1.1 Usage .73
C.1.2 A small tutorial onptdump . 73

C.2 ptrepack .75
C.2.1 Usage .75
C.2.2 A small tutorial onptrepack . 76

La sabiduría no vale la pena si no es
posible servirse de ella para inventar una
nueva manera de preparar los garbanzos.
(Wisdom isn’t worth anything if you can’t
use it to come up with a new way to cook

garbanzos).

—A wise Catalan
in "Cien años de soledad"
Gabriel García Márquez

1

Chapter 1

Introduction

The goal ofPyTables is to enable the end user to manipulate easily scientific datatables andarray
objects in a hierarchical structure. The foundation of the underlying hierarchical data organization is the
excellentHDF5library (see NCSA).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5
API, but only to provide a flexible,very Pythonictool to deal with (arbitrarily) large amounts of data (typically
bigger than available memory) in tables and arrays organized in a hierarchical and persistent disk storage
structure.

A table is defined as a collection of records whose values are stored infixed-lengthfields. All records have
the same structure and all values in each field have the samedata type. The termsfixed-lengthand strictdata
typesmay seem to be a strange requirement for an interpreted language like Python, but they serve a useful
function if the goal is to save very large quantities of data (such as is generated by many Internet services
applications or scientific applications, for example) in an efficient manner that reduces demand on CPU time
and I/O.

In order to emulate in Python records mapped to HDF5 C structsPyTables implements a specialmeta-
classobject so as to easily define all its fields and other properties.PyTables also provides a powerful
interface to mine data in tables. Records in tables are also known in theHDF5naming scheme ascompound
data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and
types information, such as in the following example:

class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = IntCol() # integer (equivalent to Int32Col)
pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = FloatCol(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large)
collections of them to a file for persistent storage. After that, the data can be retrieved and post-processed
quite easily withPyTables or even with anotherHDF5application (in C, Fortran, Java or whatever language
that provides a library to interface with HDF5).

Other important entities inPyTables are thearray objects that are analogous to tables with the difference
that all of their components are homogeneous. They come in different flavors, likegeneric(they provide a
quick and fast way to deal with for numerical arrays),enlargeable(arrays can be extended in any single
dimension) andvariable length(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities ofPyTables .

2 Chapter 1. Introduction

1.1 Main Features

PyTables takes advantage of the powerful object orientation and introspection capabilities offered by Python
to provide these features:

• Support for table entities:Allows the user to work with a large number of records, i.e. more than will
fit into memory.

• Appendable tables:Supports adding records to already created tables. This can be done even between
different Python sessions without copying the dataset or redefining its structure.

• Multidimensional table cells:You can declare a column to consist of general array cells as well as
scalars, which is the only dimensionality allowed the majority of relational databases.

• Support for numerical arrays:Numeric (see Ascheret al.) andnumarray (see Greenfieldet al.) ar-
rays can be used as a useful complement of tables to store homogeneous table slices (such as selections
of table columns).

• Enlargeable arrays:You can add new elements to existing arrays on disk in any dimension you want
(but only one). Besides, you can access to only a slice of your datasets by using the powerful extended
slicing mechanism, without need to load all your complete dataset in-memory.

• Variable length arrays:The number of elements in these arrays can be variable from row to row. This
provides a lot of flexibility when dealing with complex data.

• Supports a hierarchical data model:Allows the user to clearly structure all the data.PyTables builds
up anobject treein memory that replicates the underlying file data structure. Access to the file objects
is achieved by walking through and manipulating this object tree.

• Support of files bigger than 2 GB:PyTables automatically inherits this capability from the underlying
HDF5 library (assuming your platform supports the C long long integer, or, on Windows, __int64).

• Ability to read/modify generic HDF5 files:PyTables can access a wide range of objects in generic
HDF5 files, like compound type datasets (that can be mapped toTable objects), homogeneous datasets
(that can be mapped toArray objects) or variable length record datasets (that can be mapped to
VLArray objects). Besides, if a dataset is not supported, it will be mapped into a specialUnImplemented
class (see 4.9), that will let the user see that the data is there, although it would be unreachable (still,
you will be able to access the attributes and some metadata in the dataset). With that,PyTables
probably can access andmodifymost of the HDF5 files out there.

• Data compression:Supports data compression (using theZlib , LZOandUCLcompression libraries)
out of the box. This is important when you have repetitive data patterns and don’t want to spend time
searching for an optimized way to store them (saving you time spent analyzing your data organization).

• High performance I/O:On modern systems storing large amounts of data, tables and array objects
can be read and written at a speed only limited by the performance of the underlying I/O subsystem.
Moreover, if your data is compressible, even that limit is surmountable!

• Architecture-independent:PyTables has been carefully coded (as has HDF5 itself) with little-endian/big-
endian byte orderings issues in mind. In principle you can write a file on a big-endian machine (like a
Sparc or MIPS) and read it on other little-endian machine (like an Intel or Alpha) without problems. In
addition, it has been tested successfully with 64 bit platforms (Intel-64, MIPS, UltraSparc).

1.2 The Object Tree

The hierarchical model of the underlying HDF5 library allowsPyTables to manage tables and arrays in a
tree-like structure. In order to achieve this, anobject treeentity isdynamicallycreated imitating the HDF5

1.2. The Object Tree 3

structure on disk. The HDF5 objects are read by walking through this object tree. You can get a good picture
of what kind data is kept in the object by examining themetadatanodes.

The different nodes in the object tree are instances ofPyTables classes. There are several types of
classes, but the most important ones are theGroup and theLeaf classes.Group instances (referred to as
groupsfrom now on) are a grouping structure containing instances of zero or more groups or leaves, together
with supplementary metadata.Leaf instances (referred to asleaves) are containers for actual data and cannot
contain further groups or leaves. TheTable , Array , EArray , VLArray andUnImplemented classes are
descendents ofLeaf , and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix
filesystem. As is the case with Unix directories and files, objects in the object tree are often described by
giving their full (or absolute) path names. InPyTables this full path can be specified either as string (such
as ’/subgroup2/table3’) or as a complete object path written in a format known as thenatural name
schema (such asfile.root.subgroup2.table3).

Support fornatural namingis a key aspect ofPyTables . It means that the names of instance variables
of the node objects are the same as the names of the element’s children1. This is veryPythonicand intuitive
in many cases. Check the tutorial section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the
metadata(i.e. special data that describes the structure of the actual data) is loaded. The actual data is not
read until you request it (by calling a method on a particular node). Using the object tree (the metadata) you
can retrieve information about the objects on disk such as table names, titles, name columns, data types in
columns, numbers of rows, or, in the case of arrays, the shapes, typecodes, etc. of the array. You can also
search through the tree for specific kinds of data then read it and process it. In a certain sense, you can think
of PyTables as a tool that applies the same introspection capabilities of Python objects to large amounts of
data in persistent storage.

To better understand the dynamic nature of this object tree entity, let’s start with a samplePyTables
script (you can find it inexamples/objecttree.py) to create a HDF5 file:

from tables import *

class Particle(IsDescription):
identity = StringCol(length=22, dflt=" ", pos = 0) # character String
idnumber = Int16Col(1, pos = 1) # short integer
speed = Float32Col(1, pos = 1) # single-precision

Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")
Get the HDF5 root group
root = fileh.root

Create the groups:
group1 = fileh.createGroup(root, "group1")
group2 = fileh.createGroup(root, "group2")

Now, create an array in the root group
array1 = fileh.createArray(root, "array1", ["string", "array"], "String array")
Create 2 new tables in group1
table1 = fileh.createTable(group1, "table1", Particle)
table2 = fileh.createTable("/group2", "table2", Particle)
Create the last table in group2
array2 = fileh.createArray("/group1", "array2", [1,2,3,4])

Now, fill the tables:
for table in (table1, table2):

1 I got this simple but powerful idea from the excellentObjectify module by David Mertz (see Mertz)

4 Chapter 1. Introduction

Figure 1.1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

Get the record object associated with the table:
row = table.row
Fill the table with 10 records
for i in xrange(10):

First, assign the values to the Particle record
row[’identity’] = ’This is particle: %2d’ % (i)
row[’idnumber’] = i
row[’speed’] = i * 2.
This injects the Record values
row.append()

Flush the table buffers
table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file calledobjecttree.h5 with the structure that appears
in figure 1.1. When the file is created, metadata in the object tree is updated in memory while the actual data
is saved disk. When you close the file the object tree is no longer available. However, when you reopen this
file the object tree will be reconstructed in memory from the metadata on disk, allowing you to work with it
in exactly the same way as when you originally created it.

In figure 1.2 you can see an example of the object tree created when the aboveobjecttree.h5 file is

1.2. The Object Tree 5

fileObject(File)

+name: string = "objecttree.h5"

+root: Group = groupRootObject

+open(filename:string)

+createGroup(where:Group,name:string): Group

+createTable(where:Group,name:string,description:IsDescription): Table

+createArray(where:Group,name:string,object:array): Array

+close()

groupRootObject(Group)

+_v_name: string = root

+group1: Group = groupObject1

+group2: Group = groupObject2

+array1: Array = arrayObject1

groupObject1(Group)

+_v_name: string = group1

+table1: Table = tableObject1

+array2: Array = arrayObject2

groupObject2(Group)

+_v_name: string = group2

+table2: Table = tableObject2

rowObject2(Row)

+identity: CharType

+idnumber: Int16

+speed: Int32

+append()

+nrow()

tableObject2(Table)

+name: string = table2

+row: Row = rowObject2

+read(): Table

arrayObject1(Array)

+name: string = array1

+read(): Array

tableObject1(Table)

+name: string = table1

+row: Row = rowObject1

+read(): Table

rowObject1(Row)

+identity: CharType

+idnumber: Int16

+speed: Float32

+append()

+nrow()

arrayObject2(Array)

+name: string = array2

+read(): Array

Figure 1.2: A PyTables object tree example.

read (in fact, such an object is always created when reading any supported generic HDF5 file). It’s worthwhile
to take your time to understand it2. It will help you to avoid programming mistakes.

2 Bear in mind, however, that this diagram isnot a standard UML class diagram; it is rather meant to show the connections between
thePyTables objects and some of its most important attributes and methods.

7

Chapter 2

Installation

The PythonDistutils are used to build and installPyTables , so it is fairly simple to get the application
up and running. If you want to install the package from sources go to the next section. But if you are running
Windows and want to install precompiled binaries jump to section 2.2). In addition, packages are starting to
appear in different Linux distributions (like for instanceRockLinux or Debian).

2.1 Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed
that you have a recent version ofMS Visual C++ (>= 6.0) compiler installed. AGCCcompiler is assumed
for Unix, but other compilers should work as well.

Extensions inPyTables have developed in Pyrex (see Ewing) and C language. You can rebuild ev-
erything from scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is
included in the distribution.

To compilePyTables you will need a recent version of theHDF5(C flavor) library and thenumarray
(see Greenfieldet al.) package. Although you won’t needNumerical Python (see Ascheret al.) in order
to compile PyTables, it is supported; you only need a reasonably recent version of it (>= 21.x) if you plan on
using its methods in your applications. PyTables has been successfully tested with Numeric 21.3, 22.0 and
23.0. If you already haveNumeric installed, the test driver module will detect it and will run the tests for
Numeric automatically.

2.1.1 Prerequisites

First, make sure that you haveHDF5 1.6.2 andnumarray 0.8 or higher installed (I’m usingHDF5 1.6.2
andnumarray 0.8 currently). If you don’t, you can find them athttp://hdf.ncsa.uiuc.edu/HDF5
andhttp://www.pfdubois.com/numpy .

Compile and install these packages (but see section 2.2.1 for instructions on how to install precompiled
binaries if you are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install theZlib (see Gailly and
Adler), which is also required byHDF5as well. You may also optionally install the excellentLZO andUCL
compression libraries (see Oberhumer and section 5.2).

Unix setup.py will detectHDF5, LZOor UCLlibraries and include files under/usr or /usr/local ; this
will cover most manual installations as well as installations from packages. Ifsetup.py can’t find
libhdf5 or libz (or liblzo or libucl that you may wish to use) or if you have several versions
of a library installed and want to use a particular one, then you can set the path to the resource in the
environment, setting the values of theHDF5_DIR, LZO_DIR or UCL_DIR environment variables to the
path to the particular resource. You may also specify the locations of the resource root directories on
thesetup.py command line. For example:

http://www.rocklinux.org/
http://www.debian.org/
http://hdf.ncsa.uiuc.edu/HDF5
http://www.pfdubois.com/numpy

8 Chapter 2. Installation

--hdf5=/stuff/hdf5-1.6.2
--lzo=/stuff/lzo-1.07
--ucl=/stuff/ucl-1.0.1

If your HDF5library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.2/lib"

or perhaps just

--rpath="/stuff/hdf5-1.6.2/lib"

Check your compiler and linker documentation as well as the PythonDistutils documentation for
the correct syntax.

It is also possible to link with specific libraries by setting theLIBS environment variable:

LIBS="hdf5-1.6.5"
LIBS="hdf5-1.6.5 nsl"

Windows Once you have installed the prerequisites,setup.py needs to know where the necessary library
stub(.lib) andheader(.h) files are installed. Set the following environment variables:

HDF5_DIR Points to the root HDF5 directory (where the include/ and dll/ directories can be found).
Mandatory.

LZO_DIR Points to the root LZO directory (where the include/ and lib/ directories can be found).
Optional.

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories can be found).
Optional.

For example:

set HDF5_DIR=c:\stuff\5-162-win2k\c\release
set UCL_DIR=c:\stuff\ucl-1-01
set LZO_DIR=c:\stuff\lzo-1-07

Or, you can pass this information tosetup.py by setting the appropriate arguments on the command
line. For example:

--hdf5=c:\stuff\5-162-win2k\c\release
--lzo=c:\stuff\lzo-1-07 --ucl=c:\stuff\ucl-1-01

2.1.2 PyTables package installation

Once you have installed the HDF5 library and numarray packages, you can proceed with thePyTables
package itself:

1. Run this command from the mainPyTables distribution directory, including any extra command line
arguments as discussed above:

python setup.py build_ext --inplace

2.1. Installation from source 9

Depending on the compiler flags used when compiling your Python executable, there may appear many
warnings. Don’t worry, almost all of them are caused by variables declared but never used. That’s
normal in Pyrex extensions.

2. To run the test suite, change into the test directory and execute this command:

Unix In the shellsh and its variants:

PYTHONPATH=..
export PYTHONPATH
python test_all.py

Windows Open a DOS terminal and type:

set PYTHONPATH=..
python test_all.py

If you would like to see verbose output from the tests simply add the flag-v and/or the wordverbose
to the command line. You can also run only the tests in a particular test module. For example, to execute
just thetypes test:

python test_types.py -v

If a test fails, please enable verbose output (the-v flag and verbose option), run the failing test
module again, and, very important, get yourPyTables version information by running the command:

python test_all.py --show-versions-only

and send back the output to developers so that we may continue improvingPyTables .

If you run into problems because Python can’t load the HDF5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the
missing libraries can be found.

Windows Put the DLL libraries (hdf5dll.dll and, optionally,lzo.dll anducl.dll) in a direc-
tory listed in yourPATHenvironment variable. Thesetup.py installation program will print out
a warning to that effect if the libraries can’t be found.

3. To install the entirePyTables Python package, change back to the root distribution directory and run
the following command (make sure you have sufficient permissions to write to the directories where
thePyTables files will be installed):

python setup.py install

Of course, you will need super-user privileges if you want to installPyTables on a system-protected
area. You can select, though, a different place to install the package using the--prefix flag:

python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the--prefix flag to install in a non-standard place, you should
properly setup yourPYTHONPATHenvironment variable, so that the python interpreter would be able
to find your newPyTables installation.

You have more installation options available in distutils package. Issue a:

python setup.py install --help

for more information on that subject.

That’s it! The next chapter describes how to usePyTables .

10 Chapter 2. Installation

2.2 Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it
useful for instructions on how to installbinary prerequisiteseven if you want to compilePyTables itself on
Windows.

2.2.1 Windows prerequisites

First, make sure that you have HDF5 1.6.2 or higher and numarray 0.8 or higher installed (I’m using HDF5
1.6.2 and numarray 0.8 currently). If don’t, you can find them athttp://hdf.ncsa.uiuc.edu/HDF5
andhttp://sourceforge.net/projects/numpy/ . Download the binary packages (or sources, if you
want to compile everything yourself) and install them.

For the HDF5 it should be enough to manually copy thehdf5dll.dll , zlib1.dll andszipdll.dll
files to a directory in yourPATHenvironment variable (for exampleC:\WINDOWS\SYSTEM).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC
6.0, such as the package5-162-win2k.zip , regardless of whether you are using Win2k or WinXP (it
should work fine on both). The file5-162-winxp-net.zip was compiled with the MSVC 7.0 (aka
".NET ") and does notwork well with the PyTables binary (which has been generated with MSVC 6.0).
You have been warned!

To enable compression with optional LZO and UCL libraries (see the section 5.2 for hints about how they
may be used to improve performance), fetch and install theLZOandUCLbinaries from:
http://gnuwin32.sourceforge.net/ . Normally, you will only need to fetch and install the

<package>-<version>-bin.zip file and copy thelzo.dll or ucl.dll files in a directory in the
PATHenvironment variable, so that they can be found by thePyTables extensions.

Note: If you are reading this because you have been redirected from the section 2.1 (Installation from
source), some of the headers you will need are in the<package>-<version>-lib.zip file.

2.2.2 PyTables package installation

Download thetables-<version>.win32-py<version>.exe
(tables-<version>-LU.win32-py<version>.exe if you want support for LZO and UCL libraries)
file and execute it.

You can (you should) test your installation by unpacking the source tar-ball, changing to thetest/
subdirectory and executing thetest_all.py script. If all the tests pass (possibly with a few warnings,
related to the potential unavailability of LZO and UCL libs) you already have a working, well-tested copy of
PyTables installed! If any test fails, please try to locate which test module is failing and execute:

python test_<module>.py -v verbose

and also:

python test_all.py --show-versions-only

and mail the output to the developers so that the problem can be fixed in future releases.

That’s it! Now, proceed to the next chapter to see how to usePyTables .

http://hdf.ncsa.uiuc.edu/HDF5
http://sourceforge.net/projects/numpy/
http://gnuwin32.sourceforge.net/

11

Chapter 3

Tutorials

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand
PyTables ’ main features. If you would like more information about some particular instance variable,
global function, or method, look at the doc strings or go to the library reference in chapter 4. If you are
reading this in PDF or HTML formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the termscolumnandfield will be used interchangeably, as will
the termsrow andrecord.

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. atable)
into a file. Then we will select some of the data in the table using Python cuts and createnumarray arrays
to store this selection as separate objects in a tree.

In examples/tutorial1-1.pyyou will find the working version of all the code in this section. Nonetheless,
this tutorial series has been written to allow you reproduce it in a Python interactive console. I encourage you
to do parallel testing and inspect the created objects (variables, docs, children objects, etc.) during the course
of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in thetables package. You normally do that by
executing:

>>> import tables

This is the recommended way to importtables if you don’t want to pollute your namespace. However,
PyTables has a very reduced set of first-level primitives, so you may consider using the alternative:

>>> from tables import *

which will export in your caller application namespace the following objects:openFile , isHDF5 ,
isPyTablesFile and IsDescription . This is a rather reduced set of objects, and for convenience,
we will use this technique to access them.

If you are going to work withnumarray or Numeric arrays (and normally, you will) you will also need
to import objects from them. So mostPyTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> from numarray import * # or "from Numeric import *"

12 Chapter 3. Tutorials

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data
retrieved from it. You need first to define the table, the number of columns it has, what kind of object is
contained in each column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and
an ADC (Analogic to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields
in our record object calledTDCcount andADCcount . We also want to save the grid position in which the
particle has been detected, so we will add two new fields calledgrid_i andgrid_j . Our instrumentation
also can obtain the pressure and energy of the particle. The resolution of the pressure-gauge allows us to use
a simple-precision float to storepressure readings, while theenergy value will need a double-precision
float. Finally, to track the particle we want to assign it a name to identify the kind of the particle it is and a
unique numeric identifier. So we will add two more fields:name will be a string of up to 16 characters, and
idnumber will be an integer of 64 bits (to allow us to store records for extremely large numbers of particles).

Having determined our columns and their types, we can now declare a newParticle class that will
contain all this information:

>>> class Particle(IsDescription):
... name = StringCol(16) # 16-character String
... idnumber = Int64Col() # Signed 64-bit integer
... ADCcount = UInt16Col() # Unsigned short integer
... TDCcount = UInt8Col() # unsigned byte
... grid_i = Int32Col() # integer
... grid_j = IntCol() # integer (equivalent to Int32Col)
... pressure = Float32Col() # float (single-precision)
... energy = FloatCol() # double (double-precision)
...
>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As
its value you assign an instance of the appropriateCol subclass, according to the kind of column defined (the
data type, the length, the shape, etc). See the section 4.11.2 for a complete description of these subclasses.
See also appendix A for a list of data types supported by theCol constructor.

From now on, we can useParticle instances as a descriptor for our detector data table. We will see
later on how to pass this object to construct the table. But first, we must create a file where all the actual data
pushed into our table will be saved.

3.1.3 Creating a PyTables file from scratch

Use the first-levelopenFile (see 4.1.2) function to create aPyTables file:

>>> h5file = openFile("tutorial1.h5", mode = "w", title = "Test file")

openFile (see 4.1.2) is one of the objects imported by the "from tables import * " statement.
Here, we are saying that we want to create a new file in the current working directory called "tutorial1.h5 "
in "w"rite mode and with an descriptive title string ("Test file "). This function attempts to open the file,
and if successful, returns theFile (see 4.2) object instanceh5file . The root of the object tree is specified
in the instance’sroot attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group calleddetectorthat branches from the root node. We
will save our particle data table in this group.

3.1. Getting started 13

>>> group = h5file.createGroup("/", ’detector’, ’Detector information’)

Here, we have taken theFile instanceh5file and invoked itscreateGroup method (see 4.2.2) to
create a new group calleddetectorbranching from "/ " (another way to refer to theh5file.root object we
mentioned above). This will create a newGroup (see 4.3) object instance that will be assigned to the variable
group .

3.1.5 Creating a new table

Let’s now create aTable (see 4.5) object as a branch off the newly-created group. We do that by calling the
createTable (see 4.2.2) method of theh5file object:

>>> table = h5file.createTable(group, ’readout’, Particle, "Readout example")

We create theTable instance undergroup . We assign this table the node name "readout". The
Particle class declared before is thedescriptionparameter (to define the columns of the table) and finally
we set "Readout example" as theTable title. With all this information, a newTable instance is created and
assigned to the variabletable.

If you are curious about how the object tree looks right now, simplyprint theFile instance variable
h5file, and examine the output:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

As you can see, a dump of the object tree is displayed. It’s easy to see theGroup andTable objects we
have just created. If you want more information, just type the variable containing theFile instance:

>>> h5file
File(filename=’tutorial1.h5’, title=’Test file’, mode=’w’, trMap={}, rootUEP=’/’)
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

description := {
"ADCcount": Col(’UInt16’, shape=1, itemsize=2, dflt=0),
"TDCcount": Col(’UInt8’, shape=1, itemsize= 1, dflt=0),
"energy": Col(’Float64’, shape=1, itemsize=8, dflt=0.0),
"grid_i": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"grid_j": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"idnumber": Col(’Int64’, shape=1, itemsize=8, dflt=0),
"name": Col(’CharType’, shape=1, itemsize=16, dflt=None),
"pressure": Col(’Float32’, shape=1, itemsize=4, dflt=0.0) }

byteorder := little

More detailed information is displayed about each object in the tree. Note howParticle , our table de-
scriptor class, is printed as part of thereadouttable description information. In general, you can obtain much
more information about the objects and their children by just printing them. That introspection capability is
very useful, and I recommend that you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to theRow (see 4.5.4)
instance of thistable instance:

14 Chapter 3. Tutorials

>>> particle = table.row

Therow attribute oftable points to theRowinstance that will be used to write data rows into the table.
We write data simply by assigning theRowinstance the values for each row as if it were a dictionary (although
it is actually anextension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>>

This code should be easy to understand. The lines inside the loop just assign values to the different
columns in the Row instanceparticle (see 4.5.4). A call to itsappend() method writes this information
to thetable I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer if we want to write all this
data to disk. We achieve that by calling thetable.flush() method.

>>> table.flush()

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we
are interested in. See the example below:

>>> table = h5file.root.detector.readout
>>> pressure = [x[’pressure’] for x in table.iterrows()
... if x[’TDCcount’]>3 and 20<=x[’pressure’]<50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut" to thereadouttable deeper on the object tree. As you can see, we use
thenatural naming schema to access it. We also could have used theh5file.getNode() method, as we
will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows intable as
they are provided by thetable.iterrows() iterator (see 4.5.2). The iterator returns values until all the
data in table is exhausted. These rows are filtered using the expression:

x[’TDCcount’] > 3 and x[’pressure’] <50

We select the value of thepressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a normalfor loop to accomplish the same purpose, but I find comprehension syntax
to be more compact and elegant.

Let’s select thename column for the same set of cuts:

3.1. Getting started 15

>>> names=[x[’name’] for x in table if x[’TDCcount’]>3 and 20<=x[’pressure’]<50]
>>> names
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]

Note how we have omitted theiterrows() call in the list comprehension. TheTable class has an
implementation of the special method__iter__() that iterates over all the rows in the table. In fact,
iterrows() internally calls this special__iter__() method. Accessing all the rows in a table using this
method is very convenient, especially when working with the data interactively.

That’s enough about selections. The next section will show you how to save these select results to a file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new groupcolumns
branching off the root group. Afterwards, under this group, we will create two arrays that will contain the
selected data. First, we create the group:

>>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and Name")

Note that this time we have specified the first parameter usingnatural naming(h5file.root) instead
of with an absolute path string ("/").

Now, create the first of the twoArray objects we’ve just mentioned:

>>> h5file.createArray(gcolumns, ’pressure’, array(pressure),
... "Pressure column selection")
/columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’NumArray’
byteorder = ’little’

We already know the first two parameters of thecreateArray (see 4.2.2) methods (these are the same
as the first two increateTable): they are the parent groupwhereArray will be created and theArray
instancename. The third parameter is theobjectwe want to save to disk. In this case, it is aNumeric array
that is built from the selection list we created before. The fourth parameter is thetitle.

Now, we will save the second array. It contains the list of strings we selected before: we save this object
as-is, with no further conversion.

>>> h5file.createArray(gcolumns, ’name’, names, "Name column selection")
/columns/name Array(4,) ’Name column selection’

type = ’CharType’
itemsize = 16
flavor = ’List’
byteorder = ’little’

As you can see,createArray() acceptsnames(which is a regular Python list) as anobjectparameter.
Actually, it accepts a variety of different regular objects (see 4.2.2) as parameters. Theflavor attribute (see
the output above) saves the original kind of object that was saved. Based on thisflavor, PyTables will be
able to retrieve exactly the same object from disk later on.

Note that in these examples, thecreateArray method returns anArray instance that is not assigned
to any variable. Don’t worry, this is intentional to show the kind of object we have created by displaying its
representation. TheArray objects has been attached to the object tree and saved to disk, as you can see if
you print the complete object tree:

16 Chapter 3. Tutorials

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use theclose method of the h5fileFile object to close the file before exiting
Python:

>>> h5file.close()
>>> ^D

You have now created your firstPyTables file with a table and two arrays. You can examine it with any
generic HDF5 tool, such ash5dump or h5ls . Here is what thetutorial1.h5 looks like when read with
theh5ls program:

$ h5ls -rd tutorial1.h5
/columns Group
/columns/name Dataset {3}

Data:
(0) "Particle: 5", "Particle: 6", "Particle: 7"

/columns/pressure Dataset {3}
Data:

(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}

Data:
(0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the outputs as displayed by the "ptdump"PyTables utility (located inutils/ directory):

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’

3.2. Browsing theobject treeand appending to tables 17

/detector/readout (Table(10,)) ’Readout example’

You can pass the-v or -d options toptdump if you want more verbosity. Try them out!

3.2 Browsing the object tree and appending to tables

In this section, we will learn how to browse the tree and retrieve meta-information about the actual data, then
append some rows to an existing table to show how table objects can be enlarged.

In examples/tutorial1-2.pyyou will find the working version of all the code in this section. As before, you
are encouraged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree

Let’s start by opening the file we created in last tutorial section.

>>> h5file = openFile("tutorial1.h5", "a")

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the
file.

PyTables , following the Python tradition, offers powerful introspection capabilities, i.e. you can easily
ask information about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existingFile
instance:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

It looks like all of our objects are there. Now let’s make use of theFile iterator to see to list all the nodes
in the object tree:

>>> for node in h5file:
... print node
...
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector/readout (Table(10,)) ’Readout example’

We can use thewalkGroups method (see 4.2.2) of theFile class to list only thegroupson tree:

>>> for group in h5file.walkGroups("/"):
... print group
...

18 Chapter 3. Tutorials

/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’

Note thatwalkGroups() actually returns aniterator, not a list of objects. Using this iterator with the
listNodes() method is a powerful combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in h5file.walkGroups("/"):
... for array in h5file.listNodes(group, classname = ’Array’):
... print array
...
/columns/name Array(4,) ’Name column selection’
/columns/pressure Array(4,) ’Pressure column selection’

listNodes() (see 4.2.2) returns a list containing all the nodes hanging off a specificGroup . If the
classnamekeyword is specified, the method will filter out all instances which are not descendants of the class.
We have asked for onlyArray instances.

We can combine both calls by using the__call__(where, classname) special method of theFile
object (see 4.2.3). For example:

>>> for array in h5file("/", "Array"):
... print array
...
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

This is a nice shortcut when working interactively.
Finally, we will list all theLeaf , i.e. Table andArray , instances (see 4.4 for detailed information on

Leaf class), in the/detector group. Note that only one instance of theTable class (i.e.readout) will
be selected in this group (as should be the case):

>>> for leaf in h5file.root.detector(’Leaf’):
... print leaf
...
/detector/readout (Table(10,)) ’Readout example’

We have used a call to theGroup.__call__(classname, recursive) special method (4.3.3),
using thenatural namingpath specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let’s
take a look at some importantPyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by
using theAttributeSet class (see section 4.10). You can access this object through the standard attribute
attrs in Leaf nodes and_v_attrs in Group nodes.

For example, let’s imagine that we want to save the date indicating when the data in/detector/readout
table has been acquired, as well as the temperature during the gathering process:

>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

3.2. Browsing theobject treeand appending to tables 19

Now, let’s set a somewhat more complex attribute in the/detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the_v_attrs attribute because detector is aGroup
node. In general, you can save any standard Python data structure as an attribute node. See section 4.10 for a
more detailed explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date
’Wed, 06/12/2003 18:33’
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
’Celsius’
>>> detector._v_attrs.stuff
[5, (2.2999999999999998, 4.5), ’Integer and tuple’]

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current complete attribute set of/detector/table , you can print its repre-
sentation (try hitting theTABkey twice if you are on a Unix Python console with therlcompleter module
active):

>>> table.attrs
/detector/readout (AttributeSet), 14 attributes:

[CLASS := ’TABLE’,
FIELD_0_NAME := ’ADCcount’,
FIELD_1_NAME := ’TDCcount’,
FIELD_2_NAME := ’energy’,
FIELD_3_NAME := ’grid_i’,
FIELD_4_NAME := ’grid_j’,
FIELD_5_NAME := ’idnumber’,
FIELD_6_NAME := ’name’,
FIELD_7_NAME := ’pressure’,
NROWS := 10,
TITLE := ’Readout example’,
VERSION := ’2.0’,
tempScale := ’Celsius’,
temperature := 18.399999999999999]

You can get a list of only the user or system attributes with the_f_list() method.

>>> print table.attrs._f_list("user")
[’temp_scale’, ’temperature’]
>>> print table.attrs._f_list("sys")
[’CLASS’, ’FIELD_0_NAME’, ’FIELD_1_NAME’, ’FIELD_2_NAME’, ’FIELD_3_NAME’,

’FIELD_4_NAME’, ’FIELD_5_NAME’, ’FIELD_6_NAME’, ’FIELD_7_NAME’, ’NROWS’,
’TITLE’, ’VERSION’]

You can also rename attributes:

20 Chapter 3. Tutorials

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_list()
[’tempScale’, ’temperature’]

However, you can’t set, delete or rename read-only attributes:

>>> table.attrs._f_rename("VERSION", "version")
Traceback (most recent call last):

File ">stdin>", line 1, in ?
File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py",
line 249, in _f_rename

raise RuntimeError, \
RuntimeError: Read-only attribute (’VERSION’) cannot be renamed

After your terminating your session, you can useh5ls to read the/detector/readout attributes from
the file written to disk:

$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout Dataset {10/Inf}

Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string
Data: "TABLE"

Attribute: VERSION scalar
Type: 4-byte null-terminated ASCII string
Data: "2.0"

Attribute: TITLE scalar
Type: 16-byte null-terminated ASCII string
Data: "Readout example"

Attribute: FIELD_0_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_1_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_j"

Attribute: FIELD_5_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

Attribute: tempScale scalar

3.2. Browsing theobject treeand appending to tables 21

Type: 8-byte null-terminated ASCII string
Data: "Celsius"

Attribute: temperature {1}
Type: native double
Data: 18.4

Attribute: NROWS {1}
Type: native int
Data: 10

Location: 0:1:0:1952
Links: 1
Modified: 2003-07-24 13:59:19 CEST
Chunks: {2048} 96256 bytes
Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization
Type: struct {

"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 16-byte null-terminated ASCII string
"pressure" +43 native float

} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3 Getting object metadata

Each object inPyTables hasmetadatainformation about the data in the file. Normally thismetainformation
is accessible through the node instance variables. Let’s take a look at some examples:

>>> print "Object:", table
Object: /detector/readout Table(10,) ’Readout example’
>>> print "Table name:", table.name
Table name: readout
>>> print "Table title:", table.title
Table title: Readout example
>>> print "Number of rows in table:", table.nrows
Number of rows in table: 10
>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:
>>> for name in table.colnames:
... print name, ’:= %s, %s’ % (table.coltypes[name], table.colshapes[name])
...
ADCcount := UInt16, 1
TDCcount := UInt8, 1
energy := Float64, 1
grid_i := Int32, 1
grid_j := Int32, 1
idnumber := Int64, 1
name := CharType, 1
pressure := Float32, 1

22 Chapter 3. Tutorials

Here, thename, title , nrows , colnames , coltypes andcolshapes attributes (see 4.2.1 for a
complete attribute list) of theTable object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their
internal doc strings:

>>> print table.__doc__
Represent a table in the object tree.

It provides methods to create new tables or open existing ones, as
well as to write/read data to/from table objects over the
file. A method is also provided to iterate over the rows without
loading the entire table or column in memory.

Data can be written or read both as Row instances or as numarray
(NumArray or RecArray) objects.

Methods:

Common to all leaves:
close()
flush()
getAttr(attrname)
rename(newname)
remove()
setAttr(attrname, attrvalue)

Specific of Table:
iterrows()
read([start] [, stop] [, step] [, field [, flavor]])
removeRows(start, stop)

Instance variables:

Common to all leaves:
name -- the leaf node name
hdf5name -- the HDF5 leaf node name
title -- the leaf title
shape -- the leaf shape
byteorder -- the byteorder of the leaf

Specific of Table:
description -- the metaobject describing this table
row -- a reference to the Row object associated with this table
nrows -- the number of rows in this table
rowsize -- the size, in bytes, of each row
colnames -- the field names for the table (list)
coltypes -- the type class for the table fields (dictionary)
colshapes -- the shapes for the table fields (dictionary)

Thehelp function is also a handy way to seePyTables reference documentation online. Try it yourself
with other object docs:

>>> help(table.__class__)
>>> help(table.removeRows)

3.2. Browsing theobject treeand appending to tables 23

To examine metadata in the/columns/pressureArray object:

>>> pressureObject = h5file.getNode("/columns", "pressure")
>>> print "Info on the object:", repr(pressureObject)
Info on the object: /columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’NumArray’
byteorder = ’little’

>>> print " shape: ==>", pressureObject.shape
shape: ==> (3,)

>>> print " title: ==>", pressureObject.title
title: ==> Pressure column selection

>>> print " type: ==>", pressureObject.type
type: ==> Float64

Observe that we have used thegetNode() method of theFile class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
getNode() has the advantages that it can get a node from the pathname string (as in this example) and can
also act as a filter to show only nodes in a particular location that are instances of classclassname. In general,
however, I consider natural naming to be more elegant and easier to use, especially if you are using the name
completion capability present in interactive console. Try this powerful combination of natural naming and
completion capabilities present in most Python consoles, and see how pleasant it is to browse the object tree
(at least, as pleasant as such an activity can be).

If you look at thetype attribute of thepressureObject object, you can verify that it is a "Float64"
array. By looking at itsshape attribute, you can deduce that the array on disk is unidimensional and has 4
elements. See 4.6.1 or the internal string docs for the completeArray attribute list.

3.2.4 Reading data from Array objects

Once you have found the desiredArray , use theread() method of theArray object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([25., 36., 49.])
>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class ’numarray.numarraycore.NumArray’>
>>> nameArray = h5file.root.columns.name.read()
>>> nameArray
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]
>>> print "nameArray is an object of type:", type(nameArray)
nameArray is an object of type: <type ’list’>
>>>
>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
... print nameArray[i], "-->", pressureArray[i]
...
Particle: 5 --> 25.0
Particle: 6 --> 36.0
Particle: 7 --> 49.0
>>> pressureObject.name
’pressure’

24 Chapter 3. Tutorials

You can see that theread() method (see section 4.6.2) returns an authenticnumarray object for the
pressureObject instance by looking at the output of thetype() call. A read() of thenameObject
object instance returns a native Python list (of strings). The type of the object saved is stored as an HDF5 at-
tribute (namedFLAVOR) for objects on disk. This attribute is then read asArray metainformation (accessible
through in theArray.attrs.FLAVOR variable), enabling the read array to be converted into the original
object. This provides a means to save a large variety of objects as arrays with the guarantee that you will be
able to later recover them in their original form. See section 4.2.2 for a complete list of supported objects for
theArray object class.

3.2.5 Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on disk. Let’s use our well-known
readoutTable object and append some new values to it:

>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>> table.flush()

It’s the same method we used to fill a new table.PyTables knows that this table is on disk, and when
you add new records, they are appended to the end of the table1.

If you look carefully at the code you will see that we have used thetable.row attribute to create a table
row and fill it with the new values. Each time that itsappend() method is called, the actual row is committed
to the output buffer and the row pointer is incremented to point to the next table record. When the buffer is
full, the data is saved on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the.flush() method after a write operation, or else your
tables will not be updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
... print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
... (r[’name’], r[’pressure’], r[’energy’], r[’grid_i’], r[’grid_j’],
... r[’TDCcount’])
...
...
Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |

1 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

3.3. Multidimensional table cells and automatic sanity checks 25

Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.2.6 And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the
the 5th to 9th rows (inclusive):

>>> table.removeRows(5,10)
5

removeRows(start, stop) (see 4.5.2) deletes the rows in the range (start, stop). It returns the num-
ber of rows effectively removed.

We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> h5file.close()
>>> ^D
$

In figure 3.1 you can see a graphical view of thePyTables file with the datasets we have just created. In
figure 3.2 are displayed the general properties of the table/detector/readout .

3.3 Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We will create two groups that
branch directly from theroot node,Particles andEvents . Then, we will put three tables in each group.
In Particles we will put tables based on theParticle descriptor and inEvents , the tables based the
Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created
table/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it inexamples/tutorial2.py). It appears to do all of the above,
but it contains some small bugs. Note that thisParticle class is not directly related to the one defined
in last tutorial; this class is simpler (note, however, themultidimensionalcolumns calledpressure and
temperature).

We also introduce a new manner to describe aTable as a dictionary, as you can see in theEvent
description. See section 4.2.2 about the different kinds of descriptor objects that can be passed to the
createTable() method.

from numarray import *
from tables import *

Describe a particle record
class Particle(IsDescription):

name = StringCol(length=16) # 16-character String
lati = IntCol() # integer
longi = IntCol() # integer
pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)
temperature = FloatCol(shape=(2,3)) # array of doubles (double-precision)

26 Chapter 3. Tutorials

Figure 3.1: The final version of the data file for tutorial 1, with a view of the data objects.

Figure 3.2: General properties of the/detector/readout table.

3.3. Multidimensional table cells and automatic sanity checks 27

Another way to describe the columns of a table
Event = {

"name" : Col(’CharType’, 16), # 16-character String
"TDCcount": Col("UInt8", 1), # unsigned byte
"ADCcount": Col("UInt16", 1), # Unsigned short integer
"xcoord" : Col("Float32", 1), # integer
"ycoord" : Col("Float32", 1), # integer
}

Open a file in "w"rite mode
fileh = openFile("tutorial2.h5", mode = "w")
Get the HDF5 root group
root = fileh.root
Create the groups:
for groupname in ("Particles", "Events"):

group = fileh.createGroup(root, groupname)
Now, create and fill the tables in the Particles group
gparticles = root.Particles
Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):

Create a table
table = fileh.createTable("/Particles", tablename, Particle,

"Particles: "+tablename)
Get the record object associated with the table:
particle = table.row
Fill the table with data for 257 particles
for i in xrange(257):

First, assign the values to the Particle record
particle[’name’] = ’Particle: %6d’ % (i)
particle[’lati’] = i
particle[’longi’] = 10 - i
########### Detectable errors start here. Play with them!
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect
#particle[’pressure’] = array(i*arange(2*3), shape=(2,3)) # Correct
########### End of errors
particle[’temperature’] = (i**2) # Broadcasting
This injects the Record values
particle.append()

Flush the table buffers
table.flush()

Now Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):

Create a table in the Events group
table = fileh.createTable(root.Events, tablename, Event,

"Events: "+tablename)
Get the record object associated with the table:
event = table.row
Fill the table with data on 257 events
for i in xrange(257):

First, assign the values to the Event record
event[’name’] = ’Event: %6d’ % (i)
event[’TDCcount’] = i % (1<<8) # Correct range

28 Chapter 3. Tutorials

########### Detectable errors start here. Play with them!
#event[’xcoord’] = float(i**2) # Correct spelling
event[’xcoor’] = float(i**2) # Wrong spelling
event[’ADCcount’] = i * 2 # Correct type
#event[’ADCcount’] = "s" # Wrong type
########### End of errors
event[’ycoord’] = float(i)**4
This injects the Record values
event.append()

Flush the buffers
table.flush()

Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [p[’TDCcount’] for p in table

if p[’ADCcount’] < 20 and 4 <= p[’TDCcount’] < 15]
print "Last record ==>", p
print "Selected values ==>", e
print "Total selected records ==> ", len(e)
Finally, close the file (this also will flush all the remaining buffers)
fileh.close()

3.3.1 Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will get the following error:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 53, in ?
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect

File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py",
line 281, in array

a.setshape(shape)
File "/usr/local/lib/python2.2/site-packages/numarray/generic.py",

line 530, in setshape
raise ValueError("New shape is not consistent with the old shape")

ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell.
Looking at the source, we see that we were trying to assign an array of shape(2,4) to apressure element,
which was defined with the shape(2,3) .

In general, these kinds of operations are forbidden, with one valid exception: when you assign ascalar
value to a multidimensional column cell, all the cell elements are populated with the value of the scalar. For
example:

particle[’temperature’] = (i**2) # Broadcasting

The valuei**2 is assigned to all the elements of thetemperature table cell. This capability is provided
by thenumarray package and is known asbroadcasting.

3.3.2 Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

3.3. Multidimensional table cells and automatic sanity checks 29

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 74, in ?
event[’xcoor’] = float(i**2) # Wrong spelling

File "/home/falted/PyTables/pytables-0.7/src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise AttributeError, "Error setting \"%s\" attr.\n %s" % \
AttributeError: Error setting "xcoor" attr.

Error was: "exceptions.KeyError: xcoor"

This error indicates that we are attempting to assign a value to a non-existent field in theeventtable object.
By looking carefully at theEvent class attributes, we see that we misspelled thexcoord field (we wrote
xcoor instead). This is unusual behavior for Python, as normally when you assign a value to a non-existent
instance variable, Python creates a new variable with that name. Such a feature can be dangerous when
dealing with an object that contains a fixed list of field names. PyTables checks that the field exists and raises
a KeyError if the check fails.

3.3.3 Data type checking

Finally, in order to test type checking, we will change the next line:

event.ADCcount = i * 2 # Correct type

to read:

event.ADCcount = "s" # Wrong type

This modification will cause the followingTypeError exception to be raised when the script is executed:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 76, in ?
event[’ADCcount’] = "s" # Wrong type

File "/home/falted/PyTables/pytables-0.7/src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise AttributeError, "Error setting \"%s\" attr.\n %s" % \
AttributeError: Error setting "ADCcount" attr.

Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."

You can see the structure created with this (corrected) script in figure 3.3. In particular, note the multidi-
mensional column cells in table/Particles/TParticle2 .

Feel free to examine the rest of examples in directoryexamples , and try to understand them. I’ve
written several practical sample scripts to give you an idea of thePyTables capabilities, its way of dealing
with HDF5 objects, and how it can be used in the real world.

30 Chapter 3. Tutorials

Figure 3.3: Table hierarchy for tutorial 2.

31

Chapter 4

Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named
File , Group , Leaf , Table , Array , EArray , VLArray andUnImplemented . Another one allows the
user to complement the information on these different objects; its name isAttributeSet . Finally, another
important class calledIsDescription allows to build aTable record description by declaring a subclass
of it. Many other classes are defined inPyTables , but they can be regarded as helpers whose goal is mainly
to declare thedata type propertiesof the different first class objects and will be described at the end of this
chapter as well.

An important function, calledopenFile is responsible to create, open or append to files. In addition, a
few utility functions are defined to guess if the user supplied file is aPyTablesor HDF5 file. These are called
isPyTablesFile and isHDF5 , respectively. Finally, there exists a function calledwhichLibVersion
that informs about the versions of the underlying C libraries (for example, theHDF5or theZlib).

Let’s start discussing the first-level variables and functions available to the user, then the different classes
defined inPyTables .

4.1 tables variables and functions

4.1.1 Global variables

__version__ ThePyTables version number.

ExtVersion The version of the Pyrex extension module. This might be useful when reporting bugs.

HDF5Version The underlying HDF5 library version number.

4.1.2 Global functions

copyFile(srcFilename=None, dstFilename=None, title=None, filters=None, copyuserattrs=1, overwrite=0)
Copy a closedPyTables (or genericHDF5) file specified bysrcFilenameto dstFilename. Returns a
tuple in the form(ngroups, nleaves, nbytes) specifiying the number of groups, leaves and
bytes copied.

title The title for the new file. If not specified, the source file title will be copied.

filters A Filters instance (see 4.12.1). If specified, it will override the original filter properties inall
source nodes.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0.
The default is to copy them.

overwrite If dstFilename file already exists and overwrite is 1, it will be silently overwritten. The
default is not overwriting.

32 Chapter 4. Library Reference

isHDF5(filename) Determines whether filename is in the HDF5 format or not. When successful, returns a
positive value, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To this function
to work, it needs a closed file.

isPyTablesFile(filename)Determines whether a file is in thePyTables format. When successful, returns
the format version string, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To
this function to work, it needs a closed file.

openFile(filename, mode=’r’, title=’’, trMap={}, rootUEP="/", filters=None) Open aPyTables (or generic
HDF5) file and returns aFile object.

filename The name of the file (supports environment variable expansion). It is suggested that it should
have any of".h5" , ".hdf" or ".hdf5" extensions, although this is not mandatory.

mode The mode to open the file. It can be one of the following:

’r’ read-only; no data can be modified.

’w’ write; a new file is created (an existing file with the same name would be deleted).

’a’ append; an existing file is opened for reading and writing, and if the file does not exist it is
created.

’r+’ is similar to ’a’, but the file must already exist.

title If filename is new, this will set a title for the root group in this file. If filename is not new, the title
will be read from disk, and this will not have any effect.

trMap A dictionary to map names in the object tree Python namespace into different HDF5 names in
file namespace. The keys are the Python names, while the values are the HDF5 names. This is
useful when you need to use HDF5 node names with invalid or reserved words in Python.

rootUEP The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the
starting point to create the object tree. The group has to be named after its HDF5 name and can
be a path. If it does not exist, aRuntimeError exception is issued. Use this if you do not want
to build theentire object tree, but rather only asubtreeof it.

filters An instance of theFilters class (see section 4.12.1) that provides information about the de-
sired I/O filters applicable to the leaves that hangs directly fromroot (unless other filters properties
are specified for these leaves). Besides, if you do not specify filter properties for its child groups,
they will inherit these ones. So, if you open a new file with this parameter set, all the leaves that
would be created in the file will recursively inherit this filtering properties (again, if you don’t
prevent that from happening by specifying other filters on the child groups or leaves).

whichLibVersion(libname) Returns info about versions of the underlying C libraries.libname can be
whether"hdf5" , "zlib" , "lzo" or "ucl" . It always returns a tuple of 3 elements. When suc-
cessful, the first element of this tuple has a positive value, and is 0 (zero) when library is not available
(for example LZO or UCL). In case the library is available, the second element of tuple contains the
library version and the third element the date (if available) of that version.

4.2 The File class

This class is returned when aPyTables file is opened with theopenFile function. It has methods to flush
and close files. Also, theFile class offer methods to create, rename and delete nodes, as well as to traverse
the object tree. One of its attributes (rootUEP) represents theuser entry pointto the object tree attached to
the file.

Next, we will discuss the attributes and methods for File class1.

1 On the following, the termLeaf will whether refer to aTable , Array , EArray , VLArray or UnImplemented node object.

4.2. TheFile class 33

4.2.1 File instance variables

filename Filename opened.

format_version ThePyTables version number of this file.

isopen It takes the value 1 if the underlying file is open. 0 otherwise.

mode Mode in which the filename was opened.

root Theroot of the object tree hierarchy. It is aGroup instance.

rootUEP The UEP (User Entry Point) group in file (see 4.1.2).

title The title of the root group in file.

trMap This is a dictionary that maps node names between python and HDF5 domain names. Its initial values
are set from thetrMap parameter passed to theopenFile function. You can change its contentsafter
a file is opened and the new map will take effect over any new object added to the tree.

filters Container for filter properties associated to this file. See section 4.12.1 for more information on this
object.

objects Dictionary with all objects (groups or leaves) on tree.

groups Dictionary with all object groups on tree.

leaves Dictionary with all object leaves on tree.

4.2.2 File methods

copyChildren(whereSrc, whereDst, recursive=0, filters=None, copyuserattrs=1, start=0,
stop=None, step=1, overwrite = 0)

Copy (recursively) the children of a group into another location. Returns a tuple in the form(ngroups, nleaves, nbytes)
specifiying the number of groups, leaves and bytes copied.

whereSrc The parent group where the children to be copied are hanging on. This parameter can be a path
string (for example"/level1/group5"), or anotherGroup instance.

whereDst The parent group where the source children will be copied to. This group must exist or aLookupError
will be issued. This parameter can be a path string (for example"/level1/group6"), or another
Group instance.

recursive Specifies whether the copy should recurse into subgroups or not. The default is not recurse.

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of theFilters class (see section 4.12.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

start, stop, step Specifies the range of rows in child leaves to be copied; the default is to copy all the rows.

overwrite Whether the possible existing children hanging fromwhereDst and having the same names than
whereSrc children should overwrite the destination nodes or not.

34 Chapter 4. Library Reference

copyFile(dstFilename=None, title=None, filters=None, copyuserattrs=1, overwrite=0)

Copy the contents of this file todstFilename. If the filename already exists it won’t be overwritten unless
overwriteis set to true (see later). Returns a tuple in the form(ngroups, nleaves, nbytes) specifiying
the number of groups, leaves and bytes copied.

title The title for the new file. If not specified, the source file title will be copied.

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of theFilters class (see section 4.12.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

overwrite Whether overwrite or not the possibly existingdstFilenamefile. The default is not overwrite it.

createGroup(where, name, title=’’, filters=None)

Create a new Group instance with namenamein wherelocation.

where The parent group where the new group will hang from.whereparameter can be a path string (for
example"/level1/group5"), or another Group instance.

name The name of the new group.

title A description for this group.

filters An instance of theFilters class (see section 4.12.1) that provides information about the desired I/O
filters applicable to the leaves that hangs directly from this new group (unless other filters properties
are specified for these leaves). Besides, if you do not specify filter properties for its child groups, they
will inherit these ones.

createTable(where, name, description, title=’’, filters=None, expectedrows=10000)

Create a newTable instance with namenamein wherelocation.

where The parent group where the new table will hang from.whereparameter can be a path string (for
example"/level1/leaf5"), or Group instance.

name The name of the new table.

description An instance of a user-defined class (derived from theIsDescription class) where table fields
are defined. However, in certain situations, it is more handy to allow this description to be supplied as
a dictionary (for example, when you do not know beforehand which structure will have your table). In
such a cases, you can pass the description as a dictionary as well. See section 3.3 for an example of
use. Finally, aRecArray object from thenumarray package is also accepted, and all the information
about columns and other metadata is used as a basis to create theTable object. Moreover, if the
RecArray has actual data this is also injected on the newly createdTable object.

title A description for this object.

filters An instance of theFilters class (see section 4.12.1) that provides information about the desired I/O
filters to be applied during the life of this object.

expectedrowsAn user estimate of the number of records that will be on table. If not provided, the default
value is appropriate for tables until 1 MB in size (more or less, depending on the record size). If you
plan to save bigger tables you should provide a guess; this will optimize the HDF5 B-Tree creation and
management process time and memory used. See section 5.4 for a discussion on that issue.

4.2. TheFile class 35

createArray(where, name, object, title=’’)

Create a newArray instance with namenamein wherelocation.

object The regular array to be saved. Currently accepted values are: lists, tuples, scalars (int and float),
strings and (multidimensional)Numeric and NumArray arrays (includingCharArrays string ar-
rays). However, these objects must be regular (i.e. they cannot be like, for example,[[1,2],2]).
Also, objects that has some of its dimension equal to zero are not supported (this will be solved when
unlimited arrays will be implemented).

SeecreateTable description 4.2.2 for more information on thewhere, nameandtitle, parameters.

createEArray(where, name, atom, title=’’, filters=None, expectedrows=1000)

Create a newEArray instance with namenamein wherelocation.

atom An Atom instance representing theshape, typeandflavor of the atomic objects to be saved. One (and
only one) of the shape dimensionsmust be 0. The dimension being 0 means that the resultingEArray
object can be extended along it. Multiple enlargeable dimensions are not supported right now. See
section 4.11.3 for the supported set ofAtom class descendants.

expectedrows In the case of enlargeable arrays this represents an user estimate about the number of row
elements that will be added to the growable dimension in the EArray object. If not provided, the default
value is 1000 rows. If you plan to create both much smaller or much bigger EArrays try providing a
guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

SeecreateTable description 4.2.2 for more information on thewhere, name, title, andfilters parame-
ters.

createVLArray(where, name, atom=None, title=’’, filters=None, expectedsizeinMB=1.0)

Create a newVLArray instance with namenamein wherelocation. See the section 4.8 for a description of
theVLArray class.

atom An Atom instance representing the shape, type and flavor of the atomic object to be saved. See sec-
tion 4.11.3 for the supported set ofAtom class descendants.

expectedsizeinMBAn user estimate about the size (in MB) in the finalVLArray object. If not provided,
the default value is 1 MB. If you plan to create both much smaller or much bigger VLA’s try providing
a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

SeecreateTable description 4.2.2 for more information on thewhere, name, title, andfilters parame-
ters.

getNode(where, name=’’, classname=’’)

Returns the object nodenameunderwherelocation.

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has already a child calledname, a
ValueError error is raised.

name The object name desired. Ifnameis a null string (’’), or not supplied, this method assumes to find the
object inwhere.

classnameIf supplied, returns only an instance of this class name. Possible values are:’Group’ , ’Leaf’ ,
’Table’ , ’Array’ , ’EArray’ , ’VLArray’ and ’UnImplemented’ . Note that these values are
strings.

36 Chapter 4. Library Reference

getAttrNode(where, attrname, name=’’)

Returns the attributeattrnameunderwhere.namelocation.

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has not a child calledname, a
ValueError error is raised.

attrname The name of the attribute to get.

name The node name desired. Ifnameis a null string (’’), or not supplied, this method assumes to find the
object inwhere.

setAttrNode(where, attrname, attrvalue, name=’’)

Sets the attributeattrnamewith valueattrvalueunderwhere.namelocation.

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has not a child calledname, a
ValueError error is raised.

attrname The name of the attribute to set on disk.

attrvalue The value of the attribute to set. Only strings attributes are supported natively right now. However,
you can always use(c)Pickle so as to serialize any object you want save therein.

name The node name desired. Ifnameis a null string (’’), or not supplied, this method assumes to find the
object inwhere.

listNodes(where, classname=’’)

Returns a list with all the object nodes (Group or Leaf) hanging fromwhere. The list is alpha-numerically
sorted by node name.

where The parent group. Can be a path string orGroup instance.

classnameIf a classnameparameter is supplied, the iterator will return only instances of this class (or sub-
classes of it). The only supported classes inclassnameare’Group’ , ’Leaf’ , ’Table’ , ’Array’ ,
’EArray’ , ’VLArray’ and’UnImplemented’ . Note that these values are strings.

removeNode(where, name = "", recursive=0)

Removes the object nodenameunderwherelocation.

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has not a child calledname, a
LookupError error is raised.

name The name of the node to be removed. If not provided, thewherenode is changed.

recursive If not supplied, the object will be removed only if it has no children. If supplied with a true value,
the object and all its descendants will be completely removed.

renameNode(where, newname, name)

Rename the object nodenameunderwherelocation.

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has not a child calledname, a
LookupError error is raised.

newname Is the new name to be assigned to the node.

name The name of the node to be changed. If not provided, thewherenode is changed.

4.3. TheGroup class 37

walkGroups(where=’/’)

Iterator that returns the list of Groups (not Leaves) hanging fromwhere. If whereis not supplied, the root
object is taken as origin. The returned Group list is in a top-bottom order, and alpha-numerically sorted when
they are at the same level.

where The origin group. Can be a path string orGroup instance.

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

4.2.3 File special methods

Following are described the methods that automatically trigger actions when aFile instance is accessed in a
special way (e.g.,fileh("/detector") will cause a call togroup.__call__("/detector")).

__call__(where="/", classname="")

Recursively iterate over the children in theFile instance. It takes two parameters:

where If supplied, the iteration starts from this group.

classname(String)If supplied, only instances of this class are returned.

Example of use:

Recursively print all the nodes hanging from ’/detector’
print "Nodes hanging from group ’/detector’:"
for node in h5file("/detector"):

print node

__iter__()

Iterate over the children on theFile instance. However, this does not accept parameters. This iteratoris
recursive.

Example of use:

Recursively list all the nodes in the object tree
h5file = tables.openFile("vlarray1.h5")
print "All nodes in the object tree:"
for node in h5file:

print node

4.3 The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together
with supporting metadata.

Working with groups and leaves is similar in many ways to working with directories and files, respec-
tively, in a Unix filesystem. As with Unix directories and files, objects in the object tree are often de-
scribed by giving their full (or absolute) path names. This full path can be specified either as a string (like in

38 Chapter 4. Library Reference

’/group1/group2’) or as a complete object path written innatural nameschema (like in
file.root.group1.group2) as discussed in the section 1.2.

A collateral effect of thenatural namingschema is that you must be aware when assigning a new attribute
variable to a Group object to not collide with existing children node names. For this reason and to not pollute
the children namespace, it is explicitly forbidden to assign "normal" attributes to Group instances, and the
only ones allowed must start with some reserved prefixes, like "_f_ " (for methods) or "_v_ " (for instance
variables) prefixes. Any attempt to assign a new attribute that does not starts with these prefixes, will raise a
NameError exception.

Other effect is that you cannot use reserved Python names or other non-allowed python names (like for
example "$a" or "44") as node names. You can, however, make use of thetrMap (translation map dictionary)
parameter in theopenFile function (see section 4.1.2) in order to use non-valid Python names as node
names in the file.

4.3.1 Group instance variables

_v_title A description for this group.

_v_name The name of this group.

_v_hdf5name The name of this group in HDF5 file namespace.

_v_pathname A string representation of the group location in tree.

_v_parent The parent Group instance.

_v_rootgroup Pointer to the root group object.

_v_file Pointer to the associated File object.

_v_depth The depth level in tree for this group.

_v_nchildren The number of children (groups or leaves) hanging from this instance.

_v_children Dictionary with all nodes (groups or leaves) hanging from this instance.

_v_groups Dictionary with all node groups hanging from this instance.

_v_leavesDictionary with all node leaves hanging from this instance.

_v_attrs The associatedAttributeSet instance (see 4.10).

_v_filters Container for filter properties. See section 4.12.1 for more information on this object.

4.3.2 Group methods

This class define the__setattr__ , __getattr__ and __delattr__ and they work as normally in-
tended. So, you can access, assign or delete children to a group by just using the next constructs:

Add a Table child instance under group with name "tablename"
group.tablename = Table(recordDict, "Record instance")
table = group.tablename # Get the table child instance
del group.tablename # Delete the table child instance

Caveat: The following methods are documented for completeness, and they can be used without any
problem. However, you should use the high-level counterpart methods in theFile class, because these are
most used in documentation and examples, and are a bit more powerful than those exposed here.

_f_join(name)

Helper method to correctly concatenate a name child object with the pathname of this group.

4.3. TheGroup class 39

_f_rename(newname)

Change the name of this group tonewname.

_f_remove(recursive=0)

Remove this object. Ifrecursiveis true, force the removal even if this group has children.

_f_getAttr(attrname)

Gets the HDF5 attributeattrnameof this group.

_f_setAttr(attrname, attrvalue)

Sets the attributeattrnameof this group to the valueattrvalue. Only string values are allowed.

_f_listNodes(classname=’’)

Returns alist with all the object nodes hanging from this instance. The list is alpha-numerically sorted by
node name. If aclassnameparameter is supplied, it will only return instances of this class (or subclasses
of it). The supported classes inclassnameare ’Group’ , ’Leaf’ , ’Table’ and ’Array’ , ’EArray’ ,
’VLArray’ and’UnImplemented’ .

_f_walkGroups()

Iterator that returns the list of Groups (not Leaves) hanging fromself. The returned Group list is in a top-
bottom order, and alpha-numerically sorted when they are at the same level.

_f_close()

Close this group, making it and its children unaccessible in the object tree.

_f_copyChildren(where, recursive=0, filters=None, copyuserattrs=1, start=0, stop=None, step=1,
overwrite=0)

Copy (recursively) the children of this group into another location specified bywhere(it can be a path string
or aGroup object). Returns a tuple in the form(ngroups, nleaves, nbytes) specifiying the number
of groups, leaves and bytes copied.

recursive Specifies whether the copy should recurse into subgroups or not. The default is not recurse.

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of theFilters class (see section 4.12.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

start, stop, step Specifies the range of rows in child leaves to be copied; the default is to copy all the rows.

overwrite Whether the possible existing children hanging from this group and having the same names than
where children should overwrite the destination nodes or not.

4.3.3 Group special methods

Following are described the methods that automatically trigger actions when aGroup instance is accessed in
a special way (e.g.,group("Table") will be equivalent to a call togroup.__call__("Table")).

40 Chapter 4. Library Reference

__call__(classname="", recursive=0)

Iterate over the children in theGroup instance. It takes two parameters:

classname(String)If supplied, only instances of this class are returned.

recursive (Integer)If false, only children hanging immediately after the group are returned. If true, a recur-
sion over all the groups hanging from it is performed.

Example of use:

Recursively print all the arrays hanging from ’/’
print "Arrays the object tree ’/’:"
for array in h5file.root(classname="Array", recursive=1):

print array

__iter__()

Iterate over the children on the group instance. However, this does not accept parameters. This iterator isnot
recursive.

Example of use:

Non-recursively list all the nodes hanging from ’/detector’
print "Nodes in ’/detector’ group:"
for node in h5file.root.detector:

print node

4.4 The Leaf class

The goal of this class is to provide a place to put common functionality of all its descendants as well as
provide a way to help classifying objects on the tree. ALeaf object is an end-node, that is, a node that can
hang directly from a group object, but that is not a group itself and, thus, it cannot have descendents. Right
now, the set of end-nodes is composed byTable , Array , EArray , VLArray andUnImplemented class
instances. In fact, all the previous classes inherits from theLeaf class.

4.4.1 Leaf instance variables

The public variables and methods that class descendants inherits fromLeaf are listed below.

name The Leaf node name in Python namespace.

hdf5name The Leaf node name in HDF5 namespace.

objectID The HDF5 object ID of the Leaf node.

title The Leaf title (actually a property rather than a plain attribute).

shape The shape of the associated data in the Leaf.

byteorder The byteorder of the associated data of the Leaf.

attrs The associatedAttributeSet instance (see 4.10).

filters Container for filter properties. See section 4.12.1 for more information on this object.

Besides, the next instance variables are also defined and have similar meaning as its counterparts in the
Group class:

4.4. TheLeaf class 41

_v_hdf5name The name of this leaf in HDF5 file namespace.

_v_pathname A string representation of the leaf location in tree.

_v_parent The parentGroup instance.

_v_rootgroup Pointer to the rootGroup object.

_v_file Pointer to the associatedFile object.

_v_depth The depth level in tree for this leaf.

4.4.2 Leaf methods

copy(where, name, title=None, filters=None, copyuserattrs=1, start=0, stop=None, step=1,
overwrite=0)

Copy this leaf into another location. It returns a tuple(object, nbytes) whereobject is the newly
created object andnbytes is the number of bytes copied. The meaning of the parameters is explained below:

where Can be a path string orGroup instance. Ifwheredoesn’t exists or has not a child calledname, a
LookupError error is raised.

name The name of the destination node.

title The new title for destination. If None, the original title is copied.

filters An instance of theFilters (see section 4.12.1) class. A None value means that the source properties
are copiedas is.

copyuserattrs Whether copy the user attributes of the source leaf to the destination or not. The default is to
copy them.

start, stop, step Specifies the range of rows to be copied; the default is to copy all the rows.

overwrite If the destination nodenamealready exists this specifies whether it should be overwritten or not.
The default is not overwrite it.

remove()

Remove this leaf.

rename(newname)

Change the name of this leaf tonewname.

getAttr(attrname)

Gets the HDF5 attributeattrnameof this leaf.

setAttr(attrname, attrvalue)

Sets the attributeattrnameof this leaf to the valueattrvalue.

flush()

Flush the leaf buffers (if any).

close()

Flush the leaf buffers (if any) and close the dataset.

42 Chapter 4. Library Reference

4.5 The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and
from/to table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangs fromTable . This
object is an instance of theRowclass (see 4.5.4). See the tutorial sections chapter 3 on how to use theRow
interface. The columns of the tables can also be easily accessed (and more specifically, they can be read but
not written) by making use of theColumn class, through the use of anextensionof the natural naming schema
applied inside the tables. See the section 4.5.6 for some examples of use of this capability.

Note that this object inherits all the public attributes and methods thatLeaf already has.

4.5.1 Table instance variables

description The metaobject describing this table.

row TheRowinstance for this table (see 4.5.4).

nrows The number of rows in this table.

rowsize The size, in bytes, of each row.

cols A Cols (see section 4.5.5) instance that serves as accessor toColumn (see section 4.5.6) objects.

colnames The field names for the table (list).

coltypes The data types for the table fields (dictionary).

colshapesThe shapes for the table fields (dictionary).

4.5.2 Table methods

append(rows=None)

Append a series of rows to thisTable instance.rows is an object that can keep the rows to be append in
several formats, like aRecArray , a list of tuples, list ofNumeric /NumArray /CharArray objects, string,
Python buffer or None (no append will result). Of course, thisrows object has to be compliant with the
underlying format of theTable instance or aValueError will be issued.

Example of use:

from tables import *
class Particle(IsDescription):

name = StringCol(16, pos=1) # 16-character String
lati = IntCol(pos=2) # integer
longi = IntCol(pos=3) # integer
pressure = Float32Col(pos=4) # float (single-precision)
temperature = FloatCol(pos=5) # double (double-precision)

fileh = openFile("test4.h5", mode = "w")
table = fileh.createTable(fileh.root, ’table’, Particle, "A table")
Append several rows in only one call
table.append([("Particle: 10", 10, 0, 10*10, 10**2),

("Particle: 11", 11, -1, 11*11, 11**2),
("Particle: 12", 12, -2, 12*12, 12**2)])

fileh.close()

4.5. TheTable class 43

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldingRow(see section 4.5.4) instances built from rows in table. If a range is supplied
(i.e. some of thestart, stopor stepparameters are passed), only the appropriate rows are returned. Else, all the
rows are returned. See also the__call__() and__iter__() special methods in section 4.5.3 for shorter
ways to call this iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, thenall the rows in the object are selected.

read(start=None, stop=None, step=1, field=None, flavor="numarray")

Returns the actual data inTable . If field is not supplied, it returns the data as aRecArray object table.
The meaning of thestart, stopandstepparameters is the same as in therange() python function, except

that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

The rest of the parameters are described next:

field If specified, only the columnfield is returned as aNumArray object. If this is not supplied, all the fields
are selected and aRecArray is returned.

flavor When a field in table is selected, passing aflavor parameter make an additional conversion to happen
in the default"numarray" returned object.flavor must have any of the next values:"numarray"
(i.e. no conversion is made),"Numeric" , "Tuple" or "List" .

removeRows(start=None, stop=None)

Removes a range of rows in the table. If onlystart is supplied, this row is to be deleted. If a range is supplied,
i.e. both thestart andstopparameters are passed, all the rows in the range are removed. Astepparameter is
not supported, and it is not foreseen to implement it anytime soon.

start Sets the starting row to be removed. It accepts negative values meaning that the count starts from the
end. A value of 0 means the first row.

stop Sets the last row to be removed tostop- 1, i.e. the end point is omitted (in the Pythonrange tradition).
It accepts, likewisestart, negative values. A special value ofNone means the last row.

4.5.3 Table special methods

Following are described the methods that automatically trigger actions when aTable instance is accessed in
a special way (e.g.,table["var2"] will be equivalent to a call totable.__getitem__("var2")).

__call__(start=None, stop=None, step=1)

It returns the same iterator thanTable.iterrows(start, stop, step) . It is, therefore, a shorter way
to call it.

Example of use:

result = [row[’var2’] for row in table(step=4)
if row[’var1’] <= 20]

Which is equivalent to:

result = [row[’var2’] for row in table.iterrows(step=4)
if row[’var1’] <= 20]

44 Chapter 4. Library Reference

__iter__()

It returns the same iterator thanTable.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row[’var2’] for row in table
if row[’var1’] <= 20]

Which is equivalent to:

result = [row[’var2’] for row in table.iterrows()
if row[’var1’] <= 20]

__getitem__(key)

It takes different actions depending on the type of thekey parameter:

key is an Integer The corresponding table row is returned as aRecArray.Record object.

key is a Slice The row slice determined bykey is returned as aRecArray object.

key is a String Thekey is interpreted as acolumnname of the table, and, if it exists, it is read and returned
as aNumArray or CharArray object (whatever is appropriate).

Example of use:

record = table[4]
recarray = table[4:1000:2]
narray = table["var2"]

Which is equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)
narray = table.read(field="var2")

4.5.4 The Rowclass

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the
keys are the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won’t be able to access their documentation
interactively. Neither you won’t be able to access it’s internal attributes (they are not directly accessible from
Python), although thataccessors(i.e. methods that return an internal attribute) has been defined for the most
important variables.

Rowmethods

append() Once you have filled the proper fields for the current row, calling this method actually commit this
data to the disk (actually data is written to the output buffer).

nrow() Accessor that returns the current row in the table. It is useful to know which row is being dealt with
in the middle of a loop.

4.5. TheTable class 45

4.5.5 The Cols class

This class is used as anaccessorto the table columns following the natural name convention, so that you can
access the different columns because there exist one attribute with the name of the columns for each associated
Column instances. Besides, and like theRowclass, it works similar to a dictionary, where the keys are the
column names of the associated table and the values areColumn instances. See section 4.5.6 for examples of
use.

4.5.6 The Column class

Each instance of this class is associated with one column of every table. These instances are used to fetch
(but not set) actual data from the table columns. The access interface is like a regular list, and you can select
individual values or slices.

Column instance variables

table The parentTable instance.

name The name of the associated column.

Column methods

__getitem__(key)Returns a column element or slice. It takes different actions depending on the type of
thekeyparameter: Ifkeyis an integer, the corresponding element in the column is returned as a scalar
object or as aNumArray /CharArray object, depending on its shape. Ifkeyis a slice, the row range
determined by this slice is returned as aNumArray or CharArray object (whichever is appropriate).

Example of use:

print "Column handlers:"
for name in table.colnames:

print table.cols[name]
print
print "Some selections:"
print "Select table.cols.name[1]-->", table.cols.name[1]
print "Select table.cols.name[1:2]-->", table.cols.name[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure[:]
print "Select table.cols[’temperature’][:]-->", table.cols[’temperature’][:]

and the output of this for a certain arbitrary table is:

Column handlers:
/table.cols.name (Column(1,), CharType)
/table.cols.lati (Column(2,), Int32)
/table.cols.longi (Column(1,), Int32)
/table.cols.pressure (Column(1,), Float32)
/table.cols.temperature (Column(1,), Float64)

Some selections:
Select table.cols.name[1]--> Particle: 11
Select table.cols.name[1:2]--> [’Particle: 11’]
Select table.cols.lati[1:3]--> [[11 12]

[12 13]]
Select table.cols.pressure[:]--> [90. 110. 132.]
Select table.cols[’temperature’][:]--> [100. 121. 144.]

46 Chapter 4. Library Reference

See theexamples/table2.py for a more complete example.

4.6 The Array class

Represents an array on file. It provides methods to write/read data to/from array objects in the file. This
class does not allow to enlarge the datasets on disk; see theEArray descendant in section 4.7 if you want
enlargeable dataset support and/or compression features.

Caveat: All Numeric andnumarray data types are supported except those that corresponds to complex
data types2. Seenumarray manual (Greenfieldet al.) to know more about the supported data types, or see
appendix A.

Note that this object inherits all the public attributes and methods fromLeaf already provides.

4.6.1 Array instance variables

flavor The object representation for this array. It can be any of"NumArray", "CharArray" "Numeric", "List",
"Tuple", "String", "Int" or "Float" values.

nrows The length of the first dimension of Array.

nrow On iterators, this is the index of the current row.

type The type class of the represented array.

itemsize The size of the base items. Specially useful forCharArray objects.

4.6.2 Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to flush() method inherited fromLeaf .

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldingnumarray instances built from rows in array. The return rows are taken from the
first dimension in case of anArray instance and the enlargeable dimension in case of anEArray instance.
If a range is supplied (i.e. some of thestart, stopor stepparameters are passed), only the appropriate rows
are returned. Else, all the rows are returned. See also the__call__() and__iter__() special methods
in section 4.6.3 for shorter ways to call this iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

read(start=None, stop=None, step=1)

Read the array from disk and return it as anumarray (default) object, or an object with the same original
flavor that it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the
case of anArray instance and theenlargeabledimension in case of anEArray) for reading.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

4.6.3 Array special methods

Following are described the methods that automatically trigger actions when anArray instance is accessed
in a special way (e.g.,array[2:3,...,::2] will be equivalent to a call to
array.__getitem__(slice(2,3, None), Ellipsis, slice(None, None, 2))).

2 However, these might be included in the future

4.7. TheEArray class 47

__call__(start=None, stop=None, step=1)

It returns the same iterator thanArray.iterrows(start, stop, step) . It is, therefore, a shorter way
to call it.

Example of use:

result = [row for row in arrayInstance(step=4)]

Which is equivalent to:

result = [row for row in arrayInstance.iterrows(step=4)]

__iter__()

It returns the same iterator thanArray.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row[2] for row in array]

Which is equivalent to:

result = [row[2] for row in array.iterrows(0, 0, 1)]

__getitem__(key)

It returns anumarray (default) object (or an object with the same originalflavor that it was saved) containing
the slice of rows stated in thekey parameter. The set of allowed tokens inkey is the same as extended slicing
in python (theEllipsis token included).

Example of use:

array1 = array[4] # array1.shape == array.shape[1:]
array2 = array[4:1000:2] # len(array2.shape) == len(array.shape)
array3 = array[::2, 1:4, :]
array4 = array[1, ..., ::2, 1:4, 4:] # General slice selection

4.7 The EArray class

This is a child of theArray class (see 4.6) and as such,EArray represents an array on the file. The differ-
ence is thatEArray allows to enlarge datasets along any single dimension3 you select. Another important
difference is that it also support compression.

So, in addition to the attributes and methods thatEArray inherits fromArray , it supports a few more
that provides a way to enlarge the arrays on disk. Following are described the new variables and methods as
well as some that already exists inArray but that differ somewhat on the meaning and/or functionality in the
EArray context.

4.7.1 EArray instance variables

atom The class instance choosed for the atom object (see section 4.11.3).

extdim The enlargeable dimension.

nrows The length of the enlargeable dimension.
3 In the future, multiple enlargeable dimensions might be implemented as well.

48 Chapter 4. Library Reference

4.7.2 EArray methods

append(object)

Appends anobject to the underlying dataset. Obviously, this object has to have the same type as the
EArray instance, and if not, aTypeError is issued. In the same way, the dimensions of theobject has
to conform those ofEArray , that is, all the dimensions has to be the same except, of course, that of the
enlargeable dimension which can be of any length (even 0!).

Example of use (code available inexamples/earray1.py):

import tables
from numarray import strings

fileh = tables.openFile("earray1.h5", mode = "w")
a = tables.StringAtom(shape=(0,), length=8)
Use ’a’ as the object type for the enlargeable array
array_c = fileh.createEArray(fileh.root, ’array_c’, a, "Chars")
array_c.append(strings.array([’a’*2, ’b’*4], itemsize=8))
array_c.append(strings.array([’a’*6, ’b’*8, ’c’*10], itemsize=8))

Read the string EArray we have created on disk
for s in array_c:

print "array_c[%s] => ’%s’" % (array_c.nrow, s)
Close the file
fileh.close()

and the output is:

array_c[0] => ’aa’
array_c[1] => ’bbbb’
array_c[2] => ’aaaaaa’
array_c[3] => ’bbbbbbbb’
array_c[4] => ’cccccccc’

4.8 The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have a
variable number of (homogeneous) elements (calledatomicobjects, or justatoms). Variable length arrays
(or VLA’s for short), similarly toTable instances, can have only one dimension, and likewiseTable , the
compound elements (theatoms) of the rows ofVLArrays can be fully multidimensional objects.

VLArray provides methods to read/write data from/to variable length array objects residents on disk.
Also, note that this object inherits all the public attributes and methods thatLeaf already has.

4.8.1 VLArray instance variables

atom The class instance choosed for the atom object (see section 4.11.3).

nrow On iterators, this is the index of the current row.

nrows The total number of rows.

4.8. TheVLArray class 49

4.8.2 VLArray methods

append(object1, object2, ...)

Append theobjects passed as parameters to a single row in theVLArray instance. The type of the objects
has to be compliant with theVLArray.atom instance type.

Example of use (code available inexamples/vlarray1.py):

import tables
from Numeric import * # or, from numarray import *

Create a VLArray:
fileh = tables.openFile("vlarray1.h5", mode = "w")
vlarray = fileh.createVLArray(fileh.root, ’vlarray1’,
tables.Int32Atom(flavor="Numeric"),

"ragged array of ints", Filters(complevel=1))
Append some (variable length) rows
All these different parameter specification are accepted:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])
vlarray.append(5, 6, 9, 10, 12)

Now, read it through an iterator
for x in vlarray:

print vlarray.name+"["+str(vlarray.nrow)+"]-->", x

Close the file
fileh.close()

And the output for this looks like:

vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]
vlarray1[3]--> [5 6 9 10 12]

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some of thestart, stopor step
parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the
__call__() and__iter__() special methods in section 4.8.3 for shorter ways to call this iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

read(start=None, stop=None, step=1)

Returns the actual data inVLArray . As the lengths of the different rows are variable, the returned value is a
python list, with as many entries as specified rows in the range parameters.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

50 Chapter 4. Library Reference

4.8.3 VLArray special methods

Following are described the methods that automatically trigger actions when aVLArray instance is accessed
in a special way (e.g.,vlarray[2:5] will be equivalent to a call tovlarray.__getitem__(slice(2,5,None)).

__call__(start=None, stop=None, step=1)

It returns the same iterator thanVLArray.iterrows(start, stop, step) . It is, therefore, a shorter
way to call it.

Example of use:

for row in vlarray(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

Which is equivalent to:

for row in vlarray.iterrows(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

__iter__()

It returns the same iterator thanVLArray.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row for row in vlarray]

Which is equivalent to:

result = [row for row in vlarray.iterrows()]

__getitem__(key)

It returns the slice of rows determined bykey , which can be an integer index or an extended slice. The
returned value is a list of objects of typearray.atom.type .

Example of use:

list1 = vlarray[4]
list2 = vlarray[4:1000:2]

4.9 The UnImplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file
(i.e. one that has not been created withPyTables , but with some other HDF5 library based tool), chances
are that the specific combination ofdatatypesand/ordataspacesin some dataset might not be supported by
PyTables yet. In such a case, this dataset will be mapped into theUnImplemented class and hence, the
user will still be able to build the complete object tree of this generic HDF5 file, as well as enabling the access
(both read andwrite) of the attributes of this dataset and some metadata. Of course, the user won’t be able to
read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its
datasets would not be supported byPyTables . However, if you are really interested in having access to an
unimplemented dataset, please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from theLeaf class (see 4.4).

4.10. TheAttributeSet class 51

4.10 The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open,
rename or delete existing ones.

Like in Group instances,AttributeSet instances make use of thenatural namingconvention, i.e. you
can access the attributes on disk like if they werenormalAttributeSet attributes. This offers the user a
very convenient way to access (but also to set and delete) node attributes by simply specifying them like a
normalattribute class.

Caveat: All Python data types are supported. The scalar ones (i.e. String, Int and Float) are mapped
directly to the HDF5 counterparts, so you can correctly visualize them with any HDF5 tool. However, the
rest of the data types and more general objects are serialized usingcPickle , so you will be able to correctly
retrieve them only from a Python-aware HDF5 library. Hopefully, the list of supported native attributes will
be extended to fully multidimensional arrays sometime in the future.

4.10.1 AttributeSet instance variables

_v_node The parent node instance.

_v_attrnames List with all attribute names.

_v_attrnamessysList with system attribute names.

_v_attrnamesuser List with user attribute names.

4.10.2 AttributeSet methods

Note that this class define the__setattr__ , __getattr__ and__delattr__ and they work as normally
intended. So, you can access, assign or delete attributes on disk by just using the next constructs:

leaf.attrs.myattr = "string attr" # Set the attribute myattr
attrib = leaf.attrs.myattr # Get the attribute myattr
del leaf.attrs.myattr # Delete the attribute myattr

_f_copy(where) Copy the user attributes towhereobject.wherehas to be aGroup or Leaf instance.

_f_list(attrset = "user") Return the list of attributes of the parent node.attrsetselects the attribute set to
be returned. An"user" value returns only the user attributes and this is the default."sys" returns
only the system (some of which are read-only) attributes."readonly" returns the system read-only
attributes."all" returns both the system and user attributes.

_f_rename(oldattrname, newattrname)Rename an attribute.

4.11 Declarative classes

In this section a series of classes that are meant todeclaredatatypes that are required for primaryPyTables
(like Table or VLArray) objects are described.

4.11.1 The IsDescription class

This class is in fact a so-calledmetaclassobject. There is nothing special on this fact, except that their
subclasses attributes are transformed during its instantiation phase, and new methods for instances are defined
based on the values of the class attributes.

It is designed to be used as an easy, yet meaningful way to describe the properties ofTable objects
through the use of classes that inherit properties from it. In order to define such a special class, you have to
declare it as descendant ofIsDescription, with many attributes as columns you want in your table. The name
of these attributes will become the name of the columns, while its values are the properties of the columns

52 Chapter 4. Library Reference

that are obtained through the use of theCol class constructor. See the section 4.11.2 for instructions on how
define the properties of the table columns.

Then, you can pass an instance of this object to theTable constructor, where all the information it
contains will be used to define the table structure. See the section 3.3 for an example on how that works.

4.11.2 The Col class and its descendants

TheCol class is used as a mean to declare the different properties of a table column. In addition, a series of
descendant classes are offered in order to make these column descriptions easier to the user. In general, it is
recommended to use these descendant classes, as they are more meaningful when found in the middle of the
code.

Note that the only public method accessible in these classes is the constructor itself.

Col(dtype="Float64", shape=1, dflt=None, pos=None)Declare the properties of aTable column.

dtype The data type for the column. See the appendix A for a relation of data types supported in a
IsDescription class declaration. The type description is accepted both in string format and as
numarray data type.

shape An integer or a tuple, that specifies the number ofdtypeitems for each element (or shape, for
multidimensional elements) of this column. ForCharType columns, the last dimension is used
as the length of the character strings. However, for this kind of objects, the use ofStringCol
subclass is strongly recommended.

dflt The default value for elements of this column. If the user does not supply a value for an element
while filling a table, this default value will be written to disk. If the user supplies an scalar value
for a multidimensional column, this value is automaticallybroadcastedto all the elements in the
column cell. Ifdflt is not supplied, an appropriate zero value (ornull string) will be chosen by
default.

pos By default, columns are arranged in memory following an alpha-numerical order of the column
names. In some situations, however, it is convenient to impose a user defined ordering.pos
parameter allows the user to force the desired ordering.

StringCol(length=None, dflt=None, shape=1, pos=None)Declare a column to be of typeCharType . The
lengthparameter sets the length of the strings. The meaning of the other parameters are like in theCol
class.

BoolCol(dflt=0, shape=1, pos=None)Define a column to be of typeBool . The meaning of the parameters
are the same of those in theCol class.

IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None)Declare a column to be of typeIntXX , depending
on the value ofitemsizeparameter, that sets the number of bytes of the integers in the column.sign
determines whether the integers are signed or not. The meaning of the other parameters are the same of
those in theCol class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None)Define a column of typeInt8 .

UInt8Col(dflt=0, shape=1, pos=None)Define a column of typeUInt8 .

Int16Col(dflt=0, shape=1, pos=None)Define a column of typeInt16 .

UInt16Col(dflt=0, shape=1, pos=None)Define a column of typeUInt16 .

Int32Col(dflt=0, shape=1, pos=None)Define a column of typeInt32 .

UInt32Col(dflt=0, shape=1, pos=None)Define a column of typeUInt32 .

Int64Col(dflt=0, shape=1, pos=None)Define a column of typeInt64 .

UInt64Col(dflt=0, shape=1, pos=None)Define a column of typeUInt64 .

4.11. Declarative classes 53

FloatCol(dflt=0, shape=1, itemsize=8, pos=None)Define a column to be of typeFloatXX , depending on
the value ofitemsize . Theitemsize parameter sets the number of bytes of the floats in the column
and the default is 8 bytes (double precision). The meaning of the other parameters are the same as those
in theCol class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None)Define a column of typeFloat32 .

Float64Col(dflt=0.0, shape=1, pos=None)Define a column of typeFloat64 .

4.11.3 The Atom class and its descendants.

The Atom class is meant to declare the different properties of thebase element(also known asatom) of
EArray andVLArray objects. TheAtom instances have the property that its length is always the same.
However, you can grow objects along the extendable dimension in the case ofEArray or put a variable
number of them on aVLArray row. Moreover, the atoms are not restricted to scalar values, and they can be
fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier.
In general, it is recommended to use these descendant classes, as they are more meaningful when found in
the middle of the code. Note that the only public methods accessible in these classes are theatomsize()
method and the constructor itself. Theatomsize() method returns the total length, in bytes, of the element
base atom.

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="NumArray") Define properties for the base elements ofEArray
andVLArray objects.

dtype The data type for the base element. See the appendix A for a relation of data types supported.
The type description is accepted both in string format and as numarray data type.

shape In a EArray context, it is atuple specifing the shape of the object, and one (and only one) of
its dimensionsmust be 0, meaning that theEArray object will be enlarged along this axis. In the
case of aVLArray , it can be an integer with a value of 1 (one) or a tuple, that specifies whether
the atom is an scalar (in the case of a 1) or has multiple dimensions (in the case of a tuple). For
CharType elements, the last dimension is used as the length of the character strings. However,
for this kind of objects, the use ofStringAtom subclass is strongly recommended.

flavor The object representation for this atom. It can be any of"CharArray" or "String" for the
CharType type and"NumArray", "Numeric", "List" or "Tuple" for the rest of the types. If the
specified values differs fromCharArrayor NumArrayvalues, the read atoms will be converted to
that specific flavor. If not specified, the atoms will remain in their native format (i.e.CharArray
or NumArray).

StringAtom(shape=1, length=None, flavor="CharArray") Define an atom to be ofCharType type. The
meaning of theshapeparameter is the same as in theAtom class.lengthsets the length of the strings
atoms.flavor can be whether"CharArray" or "String" . Unicode strings are not supported by this
type; see theVLStringAtom class if you want Unicode support (only available forVLAtom objects).

BoolAtom(shape=1, flavor="NumArray") Define an atom to be of typeBool . The meaning of the pa-
rameters are the same of those in theAtom class.

IntAtom(shape=1, itemsize=4, sign=1, flavor="NumArray") Define an atom to be of typeIntXX , de-
pending on the value ofitemsizeparameter, that sets the number of bytes of the integers that conform
the atom.signdetermines whether the integers are signed or not. The meaning of the other parameters
are the same of those in theAtom class.

This class has several descendants:

Int8Atom(shape=1, flavor="NumArray") Define an atom of typeInt8 .

54 Chapter 4. Library Reference

UInt8Atom(shape=1, flavor="NumArray") Define an atom of typeUInt8 .

Int16Atom(shape=1, flavor="NumArray") Define an atom of typeInt16 .

UInt16Atom(shape=1, flavor="NumArray") Define an atom of typeUInt16 .

Int32Atom(shape=1, flavor="NumArray") Define an atom of typeInt32 .

UInt32Atom(shape=1, flavor="NumArray") Define an atom of typeUInt32 .

Int64Atom(shape=1, flavor="NumArray") Define an atom of typeInt64 .

UInt64Atom(shape=1, flavor="NumArray") Define an atom of typeUInt64 .

FloatAtom(shape=1, itemsize=8, flavor="NumArray") Define an atom to be ofFloatXX type, depend-
ing on the value ofitemsize . Theitemsize parameter sets the number of bytes of the floats in the
atom and the default is 8 bytes (double precision). The meaning of the other parameters are the same
as those in theAtom class.

This class has two descendants:

Float32Atom(shape=1, flavor="NumArray") Define an atom of typeFloat32 .

Float64Atom(shape=1, flavor="NumArray") Define an atom of typeFloat64 .

Now, there come two special classes,ObjectAtom andVLString , that actually do not descend from
Atom, but which goal is so similar that they should be described here. The difference between them and
the Atom and descendents classes is that these special classes does not allow multidimensional atoms, nor
multiple values per row. Aflavor can’t be specified neither as it is immutable (see below).

Caveat emptor: You are only allowed to use these classes to createVLArray objects, notEArray
objects.

ObjectAtom() This class is meant to fitany kind of object in a row of anVLArray instance by using
cPickle behind the scenes. Due to the fact that you cannot foresee how long will be the output of the
cPickle serialization (i.e. the atom already has avariable length), you can only fit a representant of
it per row. However, you can still pass several parameters to theVLArray.append() method as they
will be regarded as atupleof compound objects (the parameters), so that we still have only one object to
be saved in a single row. It does not accept parameters and its flavor is automatically set to"Object" ,
so the reads of rows always returns an arbitrary python object. You can regardObjectAtom types as
an easy way to save an arbitrary number of generic python objects in aVLArray object.

VLStringAtom() This class describes arow of the VLArray class, rather than anatom. It differs from
the StringAtom class in that you can only add one instance of it to one specific row, i.e. the
VLArray.append() method only accepts one object when the base atom is of this type. Besides,
it supports Unicode strings (contrarily toStringAtom) because it uses the UTF-8 codification (this
is why its atomsize() method returns always 1) when serializing to disk. It does not accept any
parameter and because itsflavor is automatically set to"VLString" , the reads of rows always returns
a python string. See the appendix B.3.4 if you are curious on how this is implemented at the low-level.
You can regardVLStringAtom types as an easy way to save generic variable length strings.

Seeexamples/vlarray1.py and examples/vlarray2.py for further examples onVLArray s,
including object serialization and Unicode string management.

4.12 Helper classes

In this section are listed classes that does not fit in any other section and that mainly serves for ancillary
purposes.

4.12. Helper classes 55

4.12.1 The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with
the enlargeable leaves, that isTable , EArray andVLArray .

The public variables ofFilters are listed below:

complevel The compression level (0 means no compression).

complib The compression filter used (in case of compressed dataset).

shuffle Whether the shuffle filter is active or not.

fletcher32 Whether the fletcher32 filter is active or not.

There are noFilters public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

The parameters that can be passed to theFilters class constructor are:

complevel Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compres-
sion. The default is that compression is disabled, that balances between compression effort and CPU
consumption.

complib Specifies the compression library to be used. Right now,"zlib" (default), "lzo" and "ucl"
values are supported. See section 5.2 for some advice on which library is better suited to your needs.

shuffle Whether or not to use theshufflefilter present in theHDF5library. This is normally used to improve
the compression ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables
shuffling and 1 makes it active. The default value depends on whether compression is enabled or not;
if compression is enabled, shuffling defaults to be active, else shuffling is disabled.

fletcher32 Whether or not to use thefletcher32filter in the HDF5 library. This is used to add a checksum on
each data chunk. A value of 0 disables the checksum and it is the default.

Of course, you can also create an instance and then assign the ones you want to change. For example:

import numarray as na
from tables import *

fileh = openFile("test5.h5", mode = "w")
atom = Float32Atom(shape=(0,2))
filters = Filters(complevel=1, complib = "lzo")
filters.fletcher32 = 1
arr = fileh.createEArray(fileh.root, ’earray’, atom, "A growable array",

filters = filters)
Append several rows in only one call
arr.append(na.array([[1., 2.],

[2., 3.],
[3., 4.]], type=na.Float32))

Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

56 Chapter 4. Library Reference

This enforces the use of theLZO library, a compression level of 1 and a fletcher32 checksum filter as well.
See the output of this example:

Result Array:
/earray (EArray(3L, 2), fletcher32, shuffle, lzo(1)) ’A growable array’

type = Float32
shape = (3L, 2)
itemsize = 4
nrows = 3
extdim = 0
flavor = ’NumArray’
byteorder = ’little’

57

Chapter 5

Optimization tips

On this chapter, you will get deeper knowledge ofPyTables internals.PyTables has several places where
the user can improve the performance of his application. If you are planning to deal with really large data, you
should read carefully this section in order to learn how to get an important boost for your code. But if your
dataset is small or medium size (say, up to 1 MB), you should not worry about that as the default parameters
in PyTables are already tuned to handle that perfectly.

5.1 Taking advantage of Psyco

Psyco (see Rigo)is a kind of specialized compiler for Python that typically accelerates Python applications
with no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit like
Java’s, that emit machine code on the fly instead of interpreting your Python program step by step. The result
is that your unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to have it a try. However, it only runs
on Intel 386 architectures, so if you are using other architectures, you are out of luck (at least until Psyco will
support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets,
like this:

def readFile(filename):
"Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
result = []
for table in fileh("/", ’Table’):

result = [p[’var3’] for p in table if p[’var2’] <= 20]

fileh.close()
return e

if __name__=="__main__":
print readFile("myfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name__=="__main__":
import pysco
psyco.bind(readFile)
print readFile("myfile.h5")

That’s all!. From now on, each time that you execute your python script, Psyco will deploy its sophisti-
cated algorithms so as to accelerate your calculations.

58 Chapter 5. Optimization tips

 0

 50

 100

 150

 200

 250

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.1: Writing tables with/without Psyco.

 0

 200

 400

 600

 800

 1000

 1200

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.2: Reading tables with/without Psyco.

You can see in the graphs 5.1 and 5.2 how much I/O speed improvement you can get by using Psyco.
By looking at this figures you can get an idea if these improvements are of your interest or not. In general, if
you are not going to use compression you will take advantage of Psyco if your tables are medium sized (1e+3
< nrows < 1e+6), and this advantage will disappear progressively when the number of rows grows well over
one million. However if you use compression, you will probably see improvements even beyond this limit
(see section 5.2). As always, there is no substitute for experimentation with your own dataset.

5.2 Compression issues

One of the beauties ofPyTables is that it supports compression on tables (but not on arrays!, that may come
later), although it is disabled by default. Compression of big amounts of data might be a bit controversial
feature, because compression has a legend of being a very big CPU time resources consumer. However, if
you are willing to check if compression can help not only reducing your dataset file size butalso improving
your I/O efficiency, keep reading.

There is an usual scenario where users need to save duplicated data in some record fields, while the others

5.2. Compression issues 59

Table 5.1: Comparison between different compression libraries. The tests has been conducted on a Pentium 4 at 2 GHz
and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (Krow/s) Speed reading (Krow/s)

NO COMPR 244.0 24.4 16.0 18.0 27.8
Zlib (lvl 1) 8.5 17.0 3.11 26.5 144.4
Zlib (lvl 6) 7.1 20.1 3.10 22.4 144.9
Zlib (lvl 9) 7.2 42.5 3.10 10.6 145.1
LZO (lvl 1) 9.7 14.6 1.95 30.6 230.5
UCL (lvl 1) 6.9 38.3 2.58 11.7 185.4

have varying values. In a relational database approach such a redundant data can normally be moved to other
tables and a relationship between the rows on the separate tables can be created. But that takes analysis and
implementation time, and made the underlying libraries more complex and slower.

PyTables transparent compression allows the user to not worry about finding which is their optimum
data tables strategy, but rather use less, not directly related, tables with a larger number of columns while still
not cluttering the database too much with duplicated data (compression is responsible to avoid that). As a
side effect, data selections can be made more easily because you have more fields available in a single table,
and they can be referred in the same loop. This process may normally end in a simpler, yet powerful manner
to process your data (although you should still be careful about what kind of scenarios compression use is
convenient or not).

The compression library used by default is theZlib (see Gailly and Adler), and as HDF5requiresit, you
can safely use it and expect that your HDF5 files can be read on any other platform that has HDF5 libraries
installed. Zlib provides good compression ratio, although somewhat slow, and reasonably fast decompression.
Because of that, it is a good candidate to be used for compress you data.

However, in many situations (i.e. writeonce, readmultiple), it is critical to havevery gooddecompression
speed (at expense of whether less compression or more CPU wasted on compression, as we will see soon).
This is why support for two additional compressors has been added to PyTables: LZO and UCL (see Ober-
humer). Following his author (and checked by the author of this manual), LZO offers pretty fast compression
(although small compression ratio) and extremely fast decompression while UCL achieve an excellent com-
pression ratio (at the price of spending much more CPU time) while allowing very fast decompression (and
very closeto the LZO one). In fact, LZO and UCL are so fast when decompressing that, in general (that
depends on your data, of course), writing and reading a compressed table is actually faster (and sometimes
much faster) than if it is uncompressed. This fact is very important, specially if you have to deal with very
large amounts of data.

Be aware that the LZO and UCL support in PyTables is not standard on HDF5, so if you are going to
use your PyTables files in other contexts different from PyTables you will not be able to read them. Still, see
the appendix C.2 where theptrepack utility is described to find a way to free your files from LZO or UCL
dependencies, so that you can use these compressors locally with the guaranty that you can replace them by
ZLIB (or even remove compression completely) if you want to export the files to other HDF5 tools afterwards.

In order to give you a raw idea of what ratios would be achieved, and what resources would be consumed,
look at the table 5.1. This table has been obtained from synthetic data and with a somewhat outdated PyTables
version (0.5), so take this just as a guide because your mileage will probably vary. Have also a look at the
graphs 5.3 and 5.4 (these graphs has been obtained with tables with different row sizes and PyTables version
than the previous example, so, do not try to directly compare the figures). They show how evolves the speed
of writing/reading rows as the size (the row number) of tables grows. Even though in these graphs the size
of one single row is 56 bytes, you can most probably extrapolate this figures to other row sizes. If you are
curious how well can perform compression together with Psyco, look at the graphs 5.5 and 5.6. As you can
see, the results are pretty interesting.

By looking at graphs, you can expect that, generally speaking, LZO would be the fastest both compressing
and uncompressing, but the one that achieves the worse compression ratio (although that may be just ok for
many situations). UCL is the slowest when compressing, but is faster than Zlib when decompressing, and,
besides, it achieves very good compression ratios (generally better than Zlib). Zlib represents a balance

60 Chapter 5. Optimization tips

 0

 50

 100

 150

 200

 250

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco & No compression
ZLIB
LZO
UCL

Figure 5.3: Writing tables with several compressors.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No compression
ZLIB
LZO
UCL

Figure 5.4: Reading tables with several compressors.

 0

 50

 100

 150

 200

 250

 300

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

Psyco & No compression
Psyco & ZLIB
Psyco & LZO
Psyco & UCL

Figure 5.5: Writing tables with several compressors and Psyco.

5.3. Shuffling (or how to make the compression process more effective) 61

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

Psyco & No compression
Psyco & ZLIB
Psyco & LZO
Psyco & UCL

Figure 5.6: Reading tables with several compressors and Psyco.

between them: it’s somewhat slow compressing, the slowest during decompressing, but it normally achieves
fairly good compression ratios.

So, if your ultimate goal is reading as fast as possible, choose LZO. If you want to reduce as much as
possible your data, while retaining good read speed, choose UCL. If you don’t mind too much about the
above parameters and/or portability is important for you, Zlib is your best bet.

The compression level that I recommend to use for all compression libraries is 1. This is the lowest level
of compression, but if you take the approach suggested above, normally the redundant data is to be found in
the same row, so the redundant data locality is very high and such a small level of compression should be
enough to achieve a good compression ratio on your data tables, saving CPU cycles for doing other things.
Nonetheless, in some situations you may want to check how compression level affects your application.

You can select the compression library and level by setting thecomplib andcompress keywords in the
Filters class (see 4.12.1). A compression level of 0 will completely disable compression (the default), 1
is the less CPU time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in
mind that LZO is not accepting a compression level right now, so, when using LZO, 0 means that compression
is not active, and any other value means that LZO is active.

5.3 Shuffling (or how to make the compression process more
effective)

TheHDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its
name isshuffle, and because it can greatly benefit compression and don’t take many CPU resources, it is active
by defaultin PyTables whenever the compression is activated (independently of the compressor choosed).
It is of course deactivated when compression is off (which is the default, as you already should know).

From the HDF5 reference manual:

The shufflefilter de-interlaces a block of data by reordering the bytes. All the bytes from one
consistent byte position of each data element are placed together in one block; all bytes from a
second consistent byte position of each data element are placed together a second block; etc. For
example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will
re-order data as 000111222333. This can be a valuable step in an effective compression algorithm
because the bytes in each byte position are often closely related to each other and putting them
together can increase the compression ratio.

In table 5.2 you can see a benchmark that shows how theshufflefilter can help to the different li-
braries to compress data in three table datasets. Generally speaking,shufflemakes the writing process (shuf-

62 Chapter 5. Optimization tips

Table 5.2: Comparison between different compression libraries. The tests has been conducted on a Pentium 4 at 2 GHz
and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (MB/s) Speed reading (MB/s)

NO COMPR 165.4 24.5 17.13 6.6 9.6
Zlib (lvl 1) 26.4 22.2 5.77 7.3 28.4
Zlib+shuffle 4.0 19.0 5.94 8.6 27.6
LZO (lvl 1) 44.9 17.8 4.13 9.2 39.7
LZO+shuffle 4.3 16.4 5.03 9.9 32.6
UCL (lvl 1) 27.4 48.8 5.02 3.3 32.7
UCL+shuffle 3.5 38.1 5.31 4.3 30.9

fling+compressing) faster (between 7% and 22%), which is an interesting result in itself. However, the reading
process (unshuffling+decompressing) is slower, but by a lesser extent (between 3% and 18%).

But the most remarkable fact is the level of compression that compressor filters can achieve aftershuffle
has passed over the data: the total file size can be up to 40 times smaller than the uncompressed file, and up to
5 times smaller than the already compressed files (!). Of course, the data for doing this test is synthetic, and
shuffleseems to do a great work with it, so in general, the results will vary in your case. However, due to the
small drawbacks (read are slowed down by a small extent) and its potential gains (faster writing, but specially
much better compression level), I do believe that it is a good thing to have such a filter enabled by default in
the battle for discovering redundancy in your data.

5.4 Informing PyTables about expected number of rows in tables

The underlying HDF5 library that is used byPyTables takes the data in bunches of a certain length, so-
calledchunks, to write them on disk as a whole, i.e. the HDF5 library treats chunks as atomic objects and
disk I/O is always made in terms of complete chunks. This allows data filters to be defined by the application
to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a
dataset the larger the B-tree. Large B-trees take memory and causes file storage overhead as well as more disk
I/O and higher contention for the metadata cache. Consequently, it’s important to balance between memory
and I/O overhead (small B-trees) and time to access to data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you
help it by providing an estimation of the number of rows for a table. This must be made in table creation time
by passing this value in theexpectedrows keyword ofcreateTable method (see 4.2.2).

When your table size is bigger than 1 MB (take this figure only as a reference, not strictly), by providing
this guess of the number of rows you will be optimizing the access to your data. When the table size is
larger than, say 100MB, you arestrongly suggested to provide such a guess; failing to do that may cause
your application doing very slow I/O operations and demandinghuge amounts of memory. You have been
warned!.

5.5 Selecting an User Entry Point (UEP) in your tree

If you have ahugetree in your data file with many nodes on it, creating the object tree would take long time.
Many times, however, you are interested only in access to a part of the complete tree, so you won’t strictly
need PyTables to build the entire object tree in-memory, but only theinterestingpart.

This is where therootUEP parameter ofopenFile function (see 4.1.2) can be helpful. Imagine that you
have a file called"test.h5" with the associated tree that you can see in figure 5.7, and you are interested
only in the section marked in red. You can avoid the build of all the object tree by saying toopenFile that
your root will be the/Group2/Group3 group. That is:

fileh = openFile("test.h5", rootUEP="/Group2/Group3")

5.6. Compacting yourPyTables files 63

Table2

Group1 Group2

Table1

Root

Group3

Table4 Table5 Array2

Array1

Figure 5.7: Complete tree in filetest.h5 , and subtree of interest for the user.

Table4 Table5 Array2

Root

Figure 5.8: Resulting object tree derived from the use of therootUEP parameter.

As a result, the actual object tree built will be like the one that can be seen in figure 5.8.
Of course this has been a simple example and the use of therootUEP parameter was not very necessary.

But when you havethousandsof nodes on a tree, you will certainly appreciate therootUEP parameter.

5.6 Compacting your PyTables files

Let’s suppose that you have a file on which you have made a lot of row deletions on one or more tables,
or deleted many leaves or even entire subtrees. These operations migth leaveholes(i.e. space that is not
used anymore) in your files, that may potentially affect not only the size of the files but, more importantly, the
performance of I/O. This is because when you delete a lot of rows on a table, the space is not automatically re-
covered on-the-flight. In addition, if you add many more rows to a table than specified in theexpectedrows
keyword in creation time this may affect performace as well as explained in section 5.4.

In order to cope with these issues, you should be aware that a handyPyTables utility calledptrepack
can be very useful, not only to compact your already existingleakyfiles, but also to adjust some internal
parameters (both in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum
I/O speed. Please, check the appendix C.2 for a brief tutorial on its use.

Another thing that you might want to useptrepack for is changing the compression filters or compres-
sion levels on your existing data for different goals, like checking how this can affect both final size and I/O
performance, or getting ride of the optional compressors likeLZO or UCL in your existing files in case you
want to use them with generic HDF5 tools that does not have support for these filters.

65

Appendix A

Supported data types in PyTables

IsDescription subclasses supports a limited set of data types to define the table fields. Such a set is
roughly the same than the types supported by thenumarray package (see Greenfieldet al.) in Python, with
the exception of the complex datatypes that are not supported yet.

These data types in table columns can be set through the use of theCol class and its descendants
(see 4.11.2). You may find useful the table A as a quick reference to the complete set of supported data
types in PyTables.

Table A.1: Data types supported by subclasses ofIsDescription definitions.

Type Code Description C Type Size (in bytes) Python Counterpart

Bool boolean unsigned char 1 Boolean
Int8 8-bit integer signed char 1 Integer
UInt8 8-bit unsigned integer unsigned char 1 Integer
Int16 16-bit integer short 2 Integer
UInt16 16-bit unsigned integer unsigned short 2 Integer
Int32 integer int 4 Integer
UInt32 unsigned integer unsigned int 4 Long
Int64 64-bit integer long long 8 Long
UInt64 unsigned 64-bit integer unsigned long long 8 Long
Float32 single-precision float float 4 Float
Float64 double-precision float double 8 Float
CharType arbitrary length string char[] * String

67

Appendix B

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However,
there are situations were you may want to create truly nativePyTables files with those tools while retaining
fully compatibility with PyTables format. That is perfectly possible, and in this appendix is presented the
format that you should endow to your own-generated files in order to get a fullyPyTables compatible file.

We are going to describe the1.2 version ofPyTables file format (introduced inPyTables version
0.8). At this stage, this file format is considered stable enough to do not introduce significant changes during
a reasonable amount of time. As times goes by, some changes will be introduced (and documented here) in
order to cope with new necessities. However, the changes will be carefully analyzed so as to ensure backward
compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables
naming scheme) and datasets (Leaves in PyTables naming scheme). For groups, the only requirements
are that they must have somesystem attributesavailable. By convention, system attributes inPyTables are
written in upper case, and user attributes in lower case but this is not enforced by the software. In the case of
datasets, besides the mandatory system attributes, some conditions are further needed in their storage layout,
as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create aPyTables file, provided that the filter is a
standard one in HDF5, likezlib, shuffleor szip(although the last one cannot be used from withinPyTables
to create a new file, datasets compressed with szip can be read, because it is the HDF5 library which do the
decompression transparently).

B.1 Mandatory attributes for a File

The File object is, in fact, an special HDF5group structure that isroot for the rest of the objects on the
object tree. The next attributes are mandatory for the HDF5root groupstructure inPyTables files:

CLASS This attribute should always be set to’GROUP’ for group structures.

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the ’1.2’ string.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string’1.0’ .

B.2 Mandatory attributes for a Group

The next attributes are mandatory forgroupstructures:

CLASS This attribute should always be set to’GROUP’ for group structures.

68 Appendix B.PyTables File Format

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string’1.0’ .

There exist a specialGroup , called theroot, that, in addition to the attributes listed above, it requires the
next one:

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the ’1.2’ string.

B.3 Mandatory attributes, storage layout and supported datatypes
for Leaves

This depends on the kind ofLeaf . The format for each type follows.

B.3.1 Table format

Mandatory attributes

The next attributes are mandatory fortablestructures:

CLASS Must be set to’TABLE’ .

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’2.1’ .

FIELD_X_NAME It contains the names of the different fields. TheX means the number of the field (beware,
order do matter). You should add as many attributes of this kind as fields you have in your records.

NROWS This should contain the number ofcompounddatatype entries in the dataset. It must be anint
datatype.

Storage Layout

A Table has adataspacewith a1-dimensional chunkedlayout.

Datatypes supported

The datatype of the elements (rows) ofTable must be the H5T_COMPOUNDcompounddatatype, and each
of these compound components must be built with only the next HDF5 datatypesclasses:

H5T_BITFIELD This class is used to represent theBool type. Such a type must be build using a H5T_NATIVE_B8
datatype, followed by a HDF5H5Tset_precision call to set its precision to be just 1 bit.

H5T_INTEGER This includes the next datatypes:

H5T_NATIVE_SCHAR This represents asigned charC type, but it is effectively used to represent
an Int8 type.

H5T_NATIVE_UCHAR This represents anunsigned charC type, but it is effectively used to repre-
sent anUInt8 type.

H5T_NATIVE_SHORT This represents ashort C type, and it is effectively used to represent an
Int16 type.

H5T_NATIVE_USHORT This represents anunsigned shortC type, and it is effectively used to rep-
resent anUInt16 type.

H5T_NATIVE_INT This represents anint C type, and it is effectively used to represent anInt32
type.

B.3. Mandatory attributes, storage layout and supported datatypes forLeaves 69

H5T_NATIVE_UINT This represents anunsigned intC type, and it is effectively used to represent
anUInt32 type.

H5T_NATIVE_LONG This represents alongC type, and it is effectively used to represent anInt32
or anInt64 , depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG This represents anunsigned longC type, and it is effectively used to repre-
sent anUInt32 or anUInt64 , depending on whether you are running a 32-bit or 64-bit archi-
tecture.

H5T_NATIVE_LLONG This represents along longC type (__int64 , if you are using a Windows
system) and it is effectively used to represent anInt64 type.

H5T_NATIVE_ULLONG This represents anunsigned long longC type (beware: this type does not
have a correspondence on Windows systems) and it is effectively used to represent anUInt64
type.

H5T_FLOAT This includes the next datatypes:

H5T_NATIVE_FLOAT This represents afloatC type and it is effectively used to represent anFloat32
type.

H5T_NATIVE_DOUBLE This represents adoubleC type and it is effectively used to represent an
Float64 type.

H5T_STRING The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. astringC type) followed
with a call to the HDF5H5Tset_size() function to set their length.

H5T_ARRAY This allows the construction of homogeneous, multi-dimensional arrays, so that you can in-
clude such objects in compound records. The types supported as elements of H5T_ARRAY datatypes
are the ones described above. Currently, PyTables does not support nested H5T_ARRAY types.

You should note thatnested compounddatatypes are not allowed inTable objects.

B.3.2 Array format

Mandatory attributes

The next attributes are mandatory forarray structures:

CLASS Must be set to’ARRAY’ .

FLAVOR This is meant to provide the information about the kind of object kept in theArray , i.e. when the
dataset is read, it will be converted to the indicated flavor. It can take one the next string values:

"NumArray" The dataset will be returned as aNumArray object (from thenumarray package).

"CharArray" The dataset will be returned as aCharArray object (from thenumarray package).

"Numeric" The dataset will be returned as anarray object (from theNumeric package).

"List" The dataset will be returned as a PythonList object.

"Tuple" The dataset will be returned as a PythonTuple object.

"Int" The dataset will be returned as a PythonInt object. This is meant mainly for scalar (i.e. without
dimensions) integer values.

"Float" The dataset will be returned as a PythonFloat object. This is meant mainly for scalar (i.e.
without dimensions) floating point values.

"String" The dataset will be returned as a PythonString object. This is meant mainly for scalar (i.e.
without dimensions) string values.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’2.0’ .

70 Appendix B.PyTables File Format

Storage Layout

An Array has adataspacewith a N-dimensional contiguouslayout (if you prefer achunkedlayout see
EArray below).

Datatypes supported

The elements ofArray must have HDF5atomic datatypes, and can currently be one of the next HDF5
datatypesclasses: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. See theTable for-
mat description in section B.3.1 for more info about these types.

You should note that H5T_ARRAY class datatypes are not allowed inArray objects.

B.3.3 EArray format

Mandatory attributes

The next attributes are mandatory forearraystructures:

CLASS Must be set to’EARRAY’ .

EXTDIM (Integer) Must be set to the extensible dimension. Only one extensible dimension is supported
right now.

FLAVOR This is meant to provide the information about the kind of objects kept in theEArray , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take the same values as theArray
object (see B.3.2), except"Int" and"Float" .

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’1.0’ .

Storage Layout

An EArray has adataspacewith aN-dimensional chunkedlayout.

Datatypes supported

The elements ofEArray must have HDF5atomicdatatypes, and can currently be one of the next HDF5
datatypesclasses: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. See theTable for-
mat description in section B.3.1 for more info about these types.

You should note that H5T_ARRAY class datatypes are not allowed inEArray objects.

B.3.4 VLArray format

Mandatory attributes

The next attributes are mandatory forvlarray structures:

CLASS Must be set to’VLARRAY’ .

FLAVOR This is meant to provide the information about the kind of objects kept in theVLArray , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take one of the next values:

"NumArray" The elements in dataset will be returned asNumArray objects (from thenumarray
package).

"CharArray" The elements in dataset will be returned asCharArray objects (from thenumarray
package).

"String" The elements in the dataset will be returned as PythonString objects offixed length (and
not asCharArrays).

B.3. Mandatory attributes, storage layout and supported datatypes forLeaves 71

"Numeric" The elements in the dataset will be returned asarray objects (from theNumeric pack-
age).

"List" The elements in the dataset will be returned as PythonList objects.

"Tuple" The elements in the dataset will be returned as PythonTuple objects.

"Object" The elements in the dataset will be interpreted as pickled (i.e. serialized objects through the
use of thePickle Python module) objects and returned as Pythongenericobjects. Only one of
such objects will be supported per entry. As thePickle module is not normally available in other
languages, this flavor won’t be useful in general.

"VLString" The elements in the dataset will be returned as PythonString objects ofanylength, with
the twist thatUnicode strings are supported as well (provided you use theUTF-8 codification,
see below). However, only one of such objects will be supported per entry.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’1.0’ .

Storage Layout

An VLArray has adataspacewith a1-dimensional chunkedlayout.

Datatypes supported

The datatype of the elements (rows) ofVLArray objects must be the H5T_VLENvariable-length(or VL for
short) datatype, and the base datatype specified for the VL datatype can be of anyatomicHDF5 datatype that
is listed in theTable format description section B.3.1. That includes the classes:

• H5T_BITFIELD

• H5T_INTEGER

• H5T_FLOAT

• H5T_STRING

• H5T_ARRAY

You should note that this does not include another VL datatype, or compound datatype. Note as well that,
for Object andVLString special flavors, the base for the VL datatype is always a H5T_NATIVE_UCHAR.
That means that the complete row entry in the dataset has to be used in order to fully serialize the object or
the variable length string.

In addition, if you plan to use aVLString flavor for your text data and you are using ascii-7 (7 bits
ASCII) codification for your strings, but you don’t know (or just don’t want) to convert it to the required
UTF-8 codification, you should not worry too much about that because the ASCII characters with values in
the range [0x00, 0x7f] are directly mapped to Unicode characters in the range [U+0000, U+007F] and the
UTF-8 encoding has the useful property that an UTF-8 encoded ascii-7 string is indistinguishable from a
traditional ascii-7 string. So, you will not need any further conversion in order to save your ascii-7 strings and
have anVLString flavor.

73

Appendix C

Utilities

PyTables comes with a couple of utilities that make the life easier to the user. One is calledptdump and
lets you see the contents of aPyTables file (or genericHDF5file, if supported). The other one is named
ptrepack that allows to (recursively) copy sub-hierarchies of objects present in a file into another one,
changing, if desired, some of the filters applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of
thePyTables package, so that you can invoke them from any place in your filesystem after the installation
has successfully finished.

C.1 ptdump

As has been said before,ptdump utility allows you look into the contents of yourPyTables files. It lets
you see not only the data but also the metadata (that is, thestructureand additional information in the form
of attributes).

C.1.1 Usage

For instructions on how to use it, just pass the-h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-R start,stop,step] [-a] [-h] [-d] [-v] file[:nodepath]
-R select a range of rows in the form "start,stop,step"
-a show attributes in nodes (only useful when -v or -d are active as well)
-d dump data information onb leaves
-h prints help on usage
-v means dumping more metainformation on nodes

C.1.2 A small tutorial on ptdump

Let’s suppose that we want to know only thestructureof a file. In order to do that, just don’t pass any flag,
just the file as parameter:

$ ptdump vlarray1.h5
Filename: ’vlarray1.h5’ Title: ’’ , Last modif.: ’Fri Feb 6 19:33:28 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

74 Appendix C. Utilities

we can see that the file contains a just a leaf object calledvlarray1 , that is an instance ofVLArray , has 4
rows, and two filters has been used in order to create it:shuffle andzlib (with a compression level of 1).

Let’s say we want more metainformation. Just add the-v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’

so we can see more info about the atoms that are the components of thevlarray1 dataset, i.e. they are
scalars of typeInt32 and withNumeric flavor.

If we want information about the attributes on the nodes, we must add the-a flag:

$ ptdump -va vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/._v_attrs (AttributeSet), 5 attributes:

[CLASS := ’GROUP’,
FILTERS := None,
PYTABLES_FORMAT_VERSION := ’1.2’,
TITLE := ’’,
VERSION := ’1.0’]

/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:

[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Let’s have a look at the real data:

$ ptdump -d vlarray1.h5
/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

Data dump:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

we see here a data dump of the 4 rows invlarray1 object, in the form of a list. Because the object is a VLA,
we see a different number of integers on each row.

Say that we are interested only on a specificrow rangeof the /vlarray1 object:

ptdump -R2,4 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

C.2. ptrepack 75

Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See
how we have selected only the/vlarray1 object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,4 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:

[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

C.2 ptrepack

This utility is a very powerful one and let’s you to copy any leaf, group or complete subtree into another
file. During the copy process you are allowed to change the filter properties if you want so. Also, in the case
of duplicated pathnames, you can decide if you want to overwrite already existing nodes on the destination
file. Generally speaking,ptrepack can be useful in may situations, like replicating a subtree in another
file, change the filters in objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositoris or evenimporting genericHDF5 files and create truePyTables
counterparts.

C.2.1 Usage

For instructions on how to use it, just pass the-h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R range] [--non-recursive]
[--dest-title=title] [--dont-copyuser-attrs] [--overwrite-nodes]
[--complevel=(0-9)] [-complib=lib] [--shuffle=(0|1)]
[--fletcher32=(0|1)] [--keep-source-filters]
sourcefile:sourcegroup destfile:destgroup
-h -- Print usage message.
-v -- Show more information.
-o -- Overwite destination file.
-R start,stop,step -- Select a slice in *all* leaves.
--non-recursive -- Do not do a recursive copy. Default is do it.
--dest-title=title -- Title for the new file (if not specified,

the source is copied).
--dont-copy-userattrs -- Do not copy the user attrs (default is do it)
--overwrite-nodes -- Overwrite destination nodes if they exist. Default is

76 Appendix C. Utilities

not overwrite them.
--complevel=(0-9) -- Sets a compression level (0 for no compression, which

is the default).
--complib=lib -- Sets the compression library to be used during the copy.

lib can be set to "zlib", "lzo" or "ucl". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active

if complevel>0).
--fletcher32=(0|1) -- Whether activate or not the fletcher32 filter (not

active by default).
--keep-source-filters -- Use the original filters in source files. The

default is not doing that if any of --complevel, --complib, --shuffle
or --fletcher32 option is specified.

C.2.2 A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output ofexamples/tutorial1-1.py , and we want
to copy our reduced data (i.e. those datasets that hangs from the/column group to another file. First, let’s
remember the content of theexamples/tutorial1.h5 :

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ , Last modif.: ’Fri Feb 6

19:33:28 2004’ , rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10L,)) ’Readout example’

Now, copy the/columns to other non-existing file. That’s easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That’s all. Let’s see the contents of the newly createdreduced.h5 file:

$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:26:47 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’

so, you have copied the childs of/columns group into theroot of thereduced.h5 file.
Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group

/columns itself included. You can do that by just specificing the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:39:15 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’

C.2. ptrepack 77

/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

Ok. much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding
the -o flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:41:57 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where you can see how the old contents of thereduced.h5 file has been overwritten.
You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:52:22 2004’,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where the/detector/readout has been copied to/rawdata in destination.
We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from ’tutorial1.h5:/detector/readout’ to
’reduced.h5:/rawdata’
The error was --> exceptions.ValueError: The destination

(/rawdata (Table(10L,)) ’Readout example’) already exists.
Assert the overwrite parameter if you really want to overwrite it.

The destination file looks like:
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 15:52:22 2004’;

rootUEP=’/’; filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

Traceback (most recent call last):
File "../utils/ptrepack", line 358, in ?

start=start, stop=stop, step=step)
File "../utils/ptrepack", line 111, in copyLeaf

raise RuntimeError, "Please, check that the node names are not
duplicated in destination, and if so, add the --overwrite-nodes flag
if desired."

78 Appendix C. Utilities

RuntimeError: Please, check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

ooops!. We ran into problems: we forgot that/rawdata pathname already existed in destination file. Let’s
add the--overwrite-nodes , as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:02:20 2004’;

rootUEP=’/’; filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

you can check how the filter properties has been changed for the/rawdata table. Check as the other nodes
still exists.

Finally, let’s copy aslice of the readout table in origin to destination, under a new group called
/slices and with the name, for example,aslice :

$ ptrepack -R1,8,3 tutorial1.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:17:13 2004’;

rootUEP=’/’; filters=Filters(); Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/slices (Group) ’’
/slices/aslice (Table(3L,)) ’Readout example’

note how only 3 rows of the originalreadout table has been copied to the newaslice destination. Note
as well how the previously inexistentslices group has been created in the same operation.

79

Bibliography

ASCHER, David, Paul F. DUBOIS, Konrad HINSEN, Jim HUGUNIN, and Travis OLIPHANT, : Numerical
Python. Package to speed-up arithmetic operations on arrays of numbers.
URL http://www.pfdubois.com/numpy/ 2, 7

EWING, Greg, :Pyrex. A Language for Writing Python Extension Modules.
URL http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex 7

GAILLY , JeanLoup and Mark ADLER, : zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression
Library. A standard library for compression purposes.
URL http://www.gzip.org/zlib/ 7, 59

GREENFIELD, Perry, Todd MILLER, Richard L. WHITE, and J. C. HSU., : Numarray. Reimplementation of
Numeric which adds the ability to efficiently manipulate large numeric arrays in ways similar to Matlab
and IDL. Among others, Numarray provides the record array extension.
URL http://stsdas.stsci.edu/numarray/ 2, 7, 46, 65

MERTZ, David, : Objectify. On the ’Pythonic’ treatment of XML documents as objects(II). Article describing
XML Objectify, a Python module that allows working with XML documents as Python objects. Some of
the ideas presented here are used in PyTables.
URL http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.
html 3

NCSA, : What is HDF5? Concise description about HDF5 capabilities and its differences from earlier
versions (HDF4).
URL http://hdf.ncsa.uiuc.edu/whatishdf5.html 1

OBERHUMER, Markus F.X.J., :LZO and UCL. A couple of portable lossless data compression libraries.
They offer pretty fast compression and extremly fast decompression.
URL http://www.oberhumer.com/opensource/ 7, 59

RIGO, Armin, : Psyco. A Python specializing compiler.Run existing Python software faster, with no change
in your source.
URL http://psyco.sourceforge.net 57

http://www.pfdubois.com/numpy/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.gzip.org/zlib/
http://stsdas.stsci.edu/numarray/
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://hdf.ncsa.uiuc.edu/whatishdf5.html
http://www.oberhumer.com/opensource/
http://psyco.sourceforge.net

	Introduction
	Main Features
	The Object Tree

	Installation
	Installation from source
	Prerequisites
	PyTables package installation

	Binary installation (Windows)
	Windows prerequisites
	PyTables package installation

	Tutorials
	Getting started
	Importing tables objects
	Declaring a Column Descriptor
	Creating a PyTables file from scratch
	Creating a new group
	Creating a new table
	Reading (and selecting) data in a table
	Creating new array objects
	Closing the file and looking at its content

	Browsing the object tree and appending to tables
	Traversing the object tree
	Setting and getting user attributes
	Getting object metadata
	Reading data from Array objects
	Appending data to an existing table
	And finally... how to delete rows from a table

	Multidimensional table cells and automatic sanity checks
	Shape checking
	Field name checking
	Data type checking

	Library Reference
	tables variables and functions
	Global variables
	Global functions

	The File class
	File instance variables
	File methods
	File special methods

	The Group class
	Group instance variables
	Group methods
	Group special methods

	The Leaf class
	Leaf instance variables
	Leaf methods

	The Table class
	Table instance variables
	Table methods
	Table special methods
	The Row class
	The Cols class
	The Column class

	The Array class
	Array instance variables
	Array methods
	Array special methods

	The EArray class
	EArray instance variables
	EArray methods

	The VLArray class
	VLArray instance variables
	VLArray methods
	VLArray special methods

	The UnImplemented class
	The AttributeSet class
	AttributeSet instance variables
	AttributeSet methods

	Declarative classes
	The IsDescription class
	The Col class and its descendants
	The Atom class and its descendants.

	Helper classes
	The Filters class

	Optimization tips
	Taking advantage of Psyco
	Compression issues
	Shuffling (or how to make the compression process more effective)
	Informing PyTables about expected number of rows in tables
	Selecting an User Entry Point (UEP) in your tree
	Compacting your PyTables files

	Supported data types in PyTables
	PyTables File Format
	Mandatory attributes for a File
	Mandatory attributes for a Group
	Mandatory attributes, storage layout and supported datatypes for Leaves
	Table format
	Array format
	EArray format
	VLArray format

	Utilities
	ptdump
	Usage
	A small tutorial on ptdump

	ptrepack
	Usage
	A small tutorial on ptrepack

