
Jaybird

Firebird JCA/JDBC Driver

Release Notes v 2.2.7

Table of Contents

General Notes
Supported Firebird versions
Supported Java versions
Specification support

What's new in Jaybird 2.2
Changes and fixes in Jaybird 2.2.7
Changes and fixes in Jaybird 2.2.6
Changes and fixes in Jaybird 2.2.5
Changes and fixes in Jaybird 2.2.4
Changes and fixes in Jaybird 2.2.3
Changes and fixes in Jaybird 2.2.2
Changes and fixes in Jaybird 2.2.1
Changes and fixes since Jaybird 2.2.0 beta 1
Support for getGeneratedKeys()
Java 6 and JDBC 4.0 API support
Java 7 and JDBC 4.1 API support
Java 8 and JDBC 4.2 API support
Jaybird on Maven
Native and Embedded (JNI) 64-bit Windows and Linux support
Support for Firebird 2.5
Support for Firebird 3.0
Improved support for OpenOffice / LibreOffice Base
Other fixes and changes

Compatibility changes
Java support
Firebird support
Important changes to Datasources
Future changes to Jaybird

Distribution package
License
Source Code

Documentation and Support
Where to get more information on Jaybird
Where to get help
Contributing
Reporting Bugs
Corrections/Additions To Release Notes

JDBC URL Format
Pure Java
Using Firebird client library
Embedded Server



Using Type 2 and Embedded Server driver
Configuring Type 2 JDBC driver
Configuring Embedded Server JDBC driver
Support for multiple JNI libraries

Usage and Reference Manual
Events
Updatable result sets
Firebird management interfaces
Jaybird JDBC extensions
JDBC connection properties

JDBC Compatibility
JDBC deviations and unimplemented features

Jaybird Specifics
Result sets
Using java.sql.ParameterMetaData with Callable Statements
Using ResultSet.getCharacterStream with BLOB fields
Heuristic transaction completion support
Compatibility with com.sun.rowset.*
Support for Firebird 3 BOOLEAN type

Connection pooling with Jaybird
Description of deprecated org.firebirdsql.pool classes
Usage scenario
Connection Pool Classes (deprecated)
org.firebirdsql.pool.FBConnectionPoolDataSource (deprecated)
org.firebirdsql.pool.FBWrappingDataSource
Runtime object allocation and deallocation hints



General Notes

Jaybird is a JCA/JDBC driver suite to connect to Firebird database servers. 

This driver is based on both the JCA standard for application server connections to enterprise 
information systems and the well-known JDBC standard. 

The JCA standard specifies an architecture in which an application server can cooperate with a 
driver so that the application server manages transactions, security, and resource pooling, and the 
driver supplies only the connection functionality. While similar to the JDBC XADataSource 
concept, the JCA specification is considerably clearer on the division of responsibility between the 
application server and driver.

Supported Firebird versions

Jaybird 2.2.7 was tested against Firebird 2.1.7, Firebird 2.5.3 Update 1 and Firebird 3 beta 1, but 
should also support other Firebird versions from 1.0 and up. The Type 2 and embedded server 
JDBC drivers require the appropriate JNI library. Precompiled JNI binaries for Win32 and Linux 
platforms are shipped in the default installation, other platforms require porting/building the JNI 
library for that platform.

Connecting to Firebird 3 requires some additional configuration, see Jaybird and Firebird 3.0 Beta 1
for details.

This driver does not support InterBase servers due to Firebird-specific changes in the protocol and 
database attachment parameters that are sent to the server.

Supported Java versions

Jaybird 2.2.7 supports Java 5 (JDBC 3.0), Java 6 (JDBC 4.0), Java 7 (JDBC 4.1) and Java 8 (JDBC 
4.2). Support for earlier Java versions has been dropped.

Specification support

Driver supports the following specifications:

JDBC 4.2 Driver does not fully support JDBC 4.2 features, but implements large update 
count methods by calling the normal update count methods, and methods with 
SQLType by calling methods accepting the java.sql.Types integer value.

Supports new java.Time classes with some caveats.

JDBC 4.1 Driver implements all JDBC 4.1 methods added to existing interfaces. The driver 
explicitly supports closeOnCompletion, most other methods introduced with 
JDBC 4.1 throw SQLFeatureNotSupportedException.

JDBC 4.0 Driver implements all JDBC 4.0 interfaces and supports exception chaining.

JDBC 3.0 Driver implements all JDBC 3.0 interfaces (but will throw 
FBDriverNotCapableException for some methods)

JCA 1.0 Jaybird provides implementation of 
javax.resource.spi.ManagedConnectionFactory and related interfaces. CCI 
interfaces are not supported.

Although Jaybird depends on the JCA 1.5 classes, JCA 1.5 compatibility is 
currently not guaranteed.

JTA 1.0.1 Driver provides an implementation of javax.transaction.xa.XAResource 

http://jaybirdwiki.firebirdsql.org/jaybird/doku.php?id=tip:firebird30b1


interface via JCA framework and XADataSource implementation.

JMX 1.2 Jaybird provides a MBean to manage Firebird servers and installed databases via 
JMX agent.



What's new in Jaybird 2.2

Jaybird 2.2 introduces the following new features and fixes:

Changes and fixes in Jaybird 2.2.7

The following has been changed or fixed in Jaybird 2.2.7:

• Fixed: blob return value of executable procedure obtained through getters on 
CallableStatement is 8 byte blob id, instead of expected blob content (JDBC-381)
This was a regression caused by the changes of JDBC-350.

Known issues in Jaybird 2.2.7

The following are known in issues in Jaybird 2.2.7 (and earlier):

• ResultSets opened with CLOSE_CURSORS_AT_COMMIT aren't correctly closed on commit 
when auto-commit is off (JDBC-307)

This list is not exhaustive, see the Jaybird tracker for a full list of open bugs.

Changes and fixes in Jaybird 2.2.6

The following has been changed or fixed in Jaybird 2.2.6:

• Reverted Firebird 3 workaround for updatable result sets as bug has been fixed in Firebird 
(JDBC-330)

• Fixed: Processing and closing the ResultSet from callable statement and then using the 
getters throws NullPointerException (JDBC-350)
Using both the getters and the result set for the same callable statement is incorrect; the 
ability to do this might be removed in a future version of Jaybird. A ResultSet should be 
used for selectable procedures, while the getters should be used with executable procedures.

• Fixed: FBManagedConnectionFactory.tryCompleteInLimboTransaction doesn't work 
with recent Firebird 3 builds (JDBC-353)

• Fixed: Jaybird can throw a NullPointerException when a fatal connection error has 
occurred (JDBC-359)

• Fixed: Calling close on a JCA connection triggers exception Connection enlisted in 
distributed transaction (JDBC-362)

• Fixed: Potential memory-leak when using a lot of different connection strings and/or 
properties (JDBC-364)

• Fixed: FBRowUpdater.buildInsertStatement doesn't quote column names (JDBC-370)

• Fixed: EncodingFactory doesn't handle UnsupportedCharsetException (JDBC-371)

• Fixed: Current method of quoting in FBRowUpdater incorrect for dialect 1 (JDBC-372)

Changes and fixes in Jaybird 2.2.5

The following has been changed or fixed in Jaybird 2.2.5:

• Fixed: getCrossReference broken by changes of JDBC-331 (JDBC-335  )

• Added: basic support for Java 8 java.time in PreparedStatement.setObject() and 
ResultSet.updateObject() (JDBC-339)
As part of this change the supported sub-second precision for java.sql.Timestamp has 

http://tracker.firebirdsql.org/browse/JDBC-339
http://tracker.firebirdsql.org/browse/JDBC-335
http://tracker.firebirdsql.org/browse/JDBC-331
http://tracker.firebirdsql.org/browse/JDBC-372
http://tracker.firebirdsql.org/browse/JDBC-371
http://tracker.firebirdsql.org/browse/JDBC-370
http://tracker.firebirdsql.org/browse/JDBC-364
http://tracker.firebirdsql.org/browse/JDBC-362
http://tracker.firebirdsql.org/browse/JDBC-359
http://tracker.firebirdsql.org/browse/JDBC-353
http://tracker.firebirdsql.org/browse/JDBC-350
http://tracker.firebirdsql.org/browse/JDBC-330
http://tracker.firebirdsql.org/browse/JDBC
http://tracker.firebirdsql.org/browse/JDBC-307
http://tracker.firebirdsql.org/browse/JDBC-350
http://tracker.firebirdsql.org/browse/JDBC-381


been increased from 1 millisecond to the maximum Firebird precision of 100 microseconds 
(or 0.1 millisecond)1.

• Fixed: Deadlocks and other thread safety issues with classes in org.firebirdsql.pool 
(JDBC-341)

Changes and fixes in Jaybird 2.2.4

The following has been changed or fixed in Jaybird 2.2.4:

• Fixed: Exceptions during statement preparation leave connection and transaction open after 
explicit close (JDBC-311)

• Fixed batch update (or insert) with blob set through setBinaryStream() sets empty blob 
for all but the first batch entry (JDBC-312)

• Fixed incomplete checks of database, transaction, statement and blob handle validity before 
continuing with actions. These incomplete checks could lead to unexpected exceptions (for 
example a NullPointerException in iscDatabaseInfo) (JDBC-  313)

• Fixed error when setting connection charset equal to "file.encoding" java property 
(JDBC-314)

• Fixed connection character set not correctly set when specifying the Java connection 
characterset (charSet or localEncoding property)  (JDBC-315)

• Fixed incorrect lengths and/or radix reported by getTypeInfo and getColumns metadata 
(JDBC-317, JDBC-318)

• Initial Java 8 / JDBC 4.2 support (JDBC-319)

• Firebird 3 BOOLEAN type support, see Support for Firebird 3 BOOLEAN type (JDBC-321)

• Added fallback of loading GDSFactoryPlugin implementations to prevent 
NullPointerException in Hibernate reverse engineering wizard in NetBeans (JDBC-325)

• Fixed: Jaybird should specify dialect 3 in dpb when no explicit dialect was set (JDBC-327)

• Fixed: several DatabaseMetaData methods defined by JDBC to only accept the actual table 
name also accepted a LIKE-pattern or empty string or null. This was changed to conform to 
JDBC. This change can break applications that relied on the incorrect behavior (JDBC-331)
Affected methods are: getPrimaryKeys, getBestRowIdentifier, getImportedKeys, 
getExportedKeys and getCrossReference. As part of this change getIndexInfo now handles
names in the wrong case slightly different.
Jaybird 3.0 will further modify and restrict the pattern matching and case sensitivity of 
metadata methods. See Future changes to Jaybird.

Changes and fixes in Jaybird 2.2.3

The following has been changed or fixed in Jaybird 2.2.3:

• Fixed incorrect synchronization in native and embedded protocol (JNI) implementation for 
iscBlobInfo and iscSeekBlob (JDBC-300)
WARNING: Although Jaybird strives for correct synchronization, a JDBC Connection, and
its dependent objects should be used from a single Thread at a time, sharing on multiple 
threads concurrently is not advisable.

• Fixed holdable ResultSet is closed on auto-commit (JDBC-304, JDBC-305)

1 With java.sql.Timestamp the 100 microsecond precision is only available through getNanos() and setNanos()

http://tracker.firebirdsql.org/browse/JDBC-305
http://tracker.firebirdsql.org/browse/JDBC-304
http://tracker.firebirdsql.org/browse/JDBC-300
http://tracker.firebirdsql.org/browse/JDBC-331
http://tracker.firebirdsql.org/browse/JDBC-327
http://tracker.firebirdsql.org/browse/JDBC-325
http://tracker.firebirdsql.org/browse/JDBC-321
http://tracker.firebirdsql.org/browse/JDBC-319
http://tracker.firebirdsql.org/browse/JDBC-318
http://tracker.firebirdsql.org/browse/JDBC-317
http://tracker.firebirdsql.org/browse/JDBC-315
http://tracker.firebirdsql.org/browse/JDBC-314
http://tracker.firebirdsql.org/browse/JDBC-313
http://tracker.firebirdsql.org/browse/JDBC-313
http://tracker.firebirdsql.org/browse/JDBC-312
http://tracker.firebirdsql.org/browse/JDBC-311
http://tracker.firebirdsql.org/browse/JDBC-341


• Fixed table names missing or padded with spaces in Database view of IntelliJ IDEA (JDBC-
308, IDEA  -100786)

• Fixed incorrect JDBC minor version reported under Java 7; this resulted in an incorrect 
column name (for Java 7) in the metadata of DatabaseMetaData.getColumns(...) 
(JDBC-309)

• Added IOException to cause of GDSException with error 335544721; “Unable to complete
network request to host “”” for further investigation (JDBC-306)

Changes and fixes in Jaybird 2.2.2

The following has been changed or fixed in Jaybird 2.2.2:

• Fixed: FBMaintenanceManager.listLimboTransactions() reports incorrect transaction 
id when the result contains multi-site transactions in limbo (JDBC-266)

• Fixed: Calling PreparedStatement.setClob(int, Clob) with a non-Firebird Clob (eg 
like Hibernate does) or calling PreparedStatement.setClob(int, Reader) throws 
FBSQLException: “You can't start before the beginning of the blob” (JDBC-281)

• Fixed: Connection property types not properly processed from isc_dpb_types.properties
(JDBC-  284)

• Fixed: JNI implementation of parameter buffer writes incorrect integers (JDBC-285, JDBC-
286)

• Changed: Throw SQLException when calling execute, executeQuery, executeUpdate 
and addBatch methods accepting a query string on a PreparedStatement or 
CallableStatement as required by JDBC 4.0 (JDBC-288)
NOTE: Be aware that this change can break existing code if you depended on the old, non-
standard behavior! With addBatch(String) the old behavior lead to a memory leak and 
unexpected results.

• Fixed: LIKE escape character JDBC escape ({escape '<char>'}) doesn't work (JDBC-290)

• Added: Support for a connect timeout using connection property connectTimeout. This 
property can be specified in the JDBC URL or Properties object or on the DataSource. If 
the connectTimeout property is not specified, the general DriverManager property 
loginTimeout is used. The value is the timeout in seconds. (JDBC-295)
For the Java wire protocol the connect timeout will detect unreachable hosts. In the JNI 
implementation (native protocol) the connect timeout works as the DPB item 
isc_dpb_connect_timeout which only works after connecting to the server for the 
op_accept phase of the protocol. This means that – for the native protocol – the connect 
timeout will not detect unreachable hosts within the timeout. As that might be unexpected, 
an SQLWarning is added to the connection if the property is specified with the native 
protocol.

• As part of the connect timeout change, hostname handling (if the hostname is an IP-address) 
in the Java wire protocol was changed. This should not have an impact in recent Java 
versions, but on older Java versions (Java 5 up to update 5) this might result in a delay in 
connecting using an IP-address, if that address can't be reverse-resolved to a hostname. 
Workaround is to add an entry for that IP-address to the /etc/hosts or %WINDIR
%\System32\Drivers\etc\hosts file.

http://tracker.firebirdsql.org/browse/JDBC-295
http://tracker.firebirdsql.org/browse/JDBC-290
http://tracker.firebirdsql.org/browse/JDBC-288
http://tracker.firebirdsql.org/browse/JDBC-286
http://tracker.firebirdsql.org/browse/JDBC-286
http://tracker.firebirdsql.org/browse/JDBC-285
http://tracker.firebirdsql.org/browse/JDBC-284
http://tracker.firebirdsql.org/browse/JDBC-284
http://tracker.firebirdsql.org/browse/JDBC-281
http://tracker.firebirdsql.org/browse/JDBC-266
http://tracker.firebirdsql.org/browse/JDBC-306
http://tracker.firebirdsql.org/browse/JDBC-309
http://youtrack.jetbrains.com/issue/IDEA-100786
http://youtrack.jetbrains.com/issue/IDEA-100786
http://tracker.firebirdsql.org/browse/JDBC-308
http://tracker.firebirdsql.org/browse/JDBC-308


Changes and fixes in Jaybird 2.2.1

The following has been changed or fixed in Jaybird 2.2.1:

• Fixed: UnsatisfiedLinkError in libjaybird22(_x64).so undefined symbol: 
_ZTVN10__cxxabiv117__class_type_infoE on Linux (JDBC-259) 

• Added connection property columnLabelForName for backwards compatible behavior of 
ResultSetMetaData#getColumnName(int) and compatibility with bug in 
com.sun.rowset.CachedRowSetImpl (JDBC-260)
Set property to true for backwards compatible behavior (getColumnName() returns the 
column label); don't set the property or set it to false for JDBC-compliant behavior 
(recommended).

• Fixed: setString(column, null) on “? IS (NOT) NULL” condition does not set 
parameter to NULL (JDBC-264)

• The charSet connection property now accepts all aliases of the supported Java character 
sets (eg instead of only Cp1252 now windows-1252 is also accepted) (JDBC-267)

• Fixed: values of charSet property are case-sensitive (JDBC-268)

• Fixed: setting a parameter as NULL with the native protocol does not work when Firebird 
describes the parameter as not nullable (JDB  C-271)

Changes and fixes since Jaybird 2.2.0 beta 1

The following was changed or fixed after the release of Jaybird 2.2.0 beta 1:

• ConcurrentModificationException when closing connection obtained from 
org.firebirdsql.ds.FBConnectionPoolDataSource with statements open (JDBC-250)

• Memory leak when obtaining multiple connections for the same URL (JDBC-249)

• CPU spikes to 100% when using events and Firebird Server is stopped or unreachable 
(JDBC-  232)

• Events do not work on Embedded (JDBC-247)

• Provide workaround for character set transliteration problems in database filenames and 
other connection properties (JDBC-253); see also Support for Firebird 2.5.

• FBBackupManager does not allow 16kb page size for restore (JDBC-255)

• Log warning and add warning on Connection when no explicit connection character set is 
specified (JDBC-257)

Support for getGeneratedKeys()

Support was added for the getGeneratedKeys() functionality for Statement and 
PreparedStatement. 

There are four distinct use-cases:

1. Methods accepting an int parameter with values of Statement.NO_GENERATED_KEYS and 
Statement.RETURN_GENERATED_KEYS

When NO_GENERATED_KEYS is passed, the query will be executed as a normal query.

When RETURN_GENERATED_KEYS is passed, the driver will add all columns of the table in 
ordinal position order (as in the (JDBC) metadata of the table). It is advisable to retrieve the 
values from the getGeneratedKeys() resultset by column name.

http://tracker.firebirdsql.org/browse/JDBC-257
http://tracker.firebirdsql.org/browse/JDBC-255
http://tracker.firebirdsql.org/browse/JDBC-253
http://tracker.firebirdsql.org/browse/JDBC-247
http://tracker.firebirdsql.org/browse/JDBC-232
http://tracker.firebirdsql.org/browse/JDBC-232
http://tracker.firebirdsql.org/browse/JDBC-249
http://tracker.firebirdsql.org/browse/JDBC-250
http://tracker.firebirdsql.org/browse/JDBC-271
http://tracker.firebirdsql.org/browse/JDBC-271
http://tracker.firebirdsql.org/browse/JDBC-268
http://tracker.firebirdsql.org/browse/JDBC-267
http://tracker.firebirdsql.org/browse/JDBC-264
http://tracker.firebirdsql.org/browse/JDBC-260
http://tracker.firebirdsql.org/browse/JDBC-259


We opted to include all columns as it is next to impossible to decide which columns are 
filled by a trigger or otherwise and only returning the primary key will be too limiting

2. Methods accepting an int[] parameter with column indexes.

The values in the int[] parameter are the ordinal positions of the columns as specified in 
the (JDBC) metadata of the table. For a null or empty array the statement is processed as is. 
Invalid ordinal positions are ignored and silently dropped (be aware: the JDBC specification 
is not entirely clear if this is valid behavior, so this might change in the future)

3. Methods accepting a String[] parameter with column names.

The values in the String[] are the column names to be returned. The column names 
provided are processed as is and not checked for validity or the need of quoting. Providing 
non-existent or incorrectly (un)quoted columns will result in an exception when the 
statement is processed by Firebird.

This method is the fastest as it does not retrieve metadata from the server.

4. Providing a query already containing a RETURNING clause. In this case all of the previous 
cases are ignored and the query is executed as is. It is possible to retrieve the resultset using 
getGeneratedKeys().

This functionality will only be available if the ANTLR 3.4 runtime classes are on the classpath. 
Except for calling methods with NO_GENERATED_KEYS, absence of the ANTLR runtime will throw 
FBDriverNotCapableException.

This functionality should work for INSERT (from Firebird 2.0), and for UPDATE, UPDATE OR INSERT 
and DELETE (from Firebird 2.1).

Java 6 and JDBC 4.0 API support

Support was added for the following JDBC 4.0 features:

• Automatic driver loading: on Java 6 and later it is no longer necessary to use 
Class.forName("org.firebirdsql.jdbc.FBDriver") to load the driver

• Implementation of java.sql.Wrapper interface on various JDBC classes; in general it only 
unwraps to the specific implementation class (and superclasses) and implemented interfaces

• Support for chained exceptions (use getNextException() and iterator() to view other, 
related exceptions) and getCause() to retrieve the cause (deprecating similar 
getInternalException())

• Support for getClientInfo() and setClientInfo() on Connection

Java 7 and JDBC 4.1 API support

Support was added for the following JDBC 4.1 features:

• try-with-resources2

• Statement closeOnCompletion

Other methods added by JDBC 4.1 will throw FBDriverNotCapableException (a subclass of 
SQLFeatureNotSupportedException).

2 See http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html


Java 8 and JDBC 4.2 API support

Minimal support for JDBC 4.2 was added in Jaybird 2.2.4 and extended in 2.2.5:

• Large update counts: no actual support is provided, method call is forwarded to the normal 
update count method returning an int.

• Methods accepting java.sql.SQLType: no actual support is provided, method call is 
forwarded to equivalent method accepting a java.sql.Types integer value.

• PreparedStatement.setObject() and ResultSet.updateObject() now accept 
java.time objects:

DATE TIME TIMESTAMP (VAR)CHAR BLOB SUB_TYPE TEXT

java.time.LocalTime X X X
java.time.LocalDate X X X
java.time.LocalDateTime X X X X X
java.time.OffsetTime X X
java.time.OffsetDateTime X X

• Retrieval of java.time objects using getObject(int, Class<?>) and 
getObject(String, Class<?>) is not yet supported.

Jaybird on Maven

Jaybird 2.2.7 is available on maven, with a separate artifact for each supported Java version.

Groupid: org.firebirdsql.jdbc, artifactid: jaybird-jdkXX (where XX is 15, 16, 17 or 18).

Version: 2.2.7

When deploying to a JavaEE environment, exclude the javax.resource connector-api 
dependency as this will be provided by the application server.

Native and Embedded (JNI) 64-bit Windows and Linux support

The JNI libraries for native and embedded support now also have a 64 bit version.

Support for Firebird 2.5

Added support for Firebird 2.5 Services API enhancements:

• The security database can be set

• Support for SET/DROP AUTO ADMIN

• Mapping for new role RDB$ADMIN in security database

• Added new Firebird 2.1 shutdown/online modes available in Firebird 2.5 via the Services 
API

• Support for NBackup via Services API in Firebird 2.5

• Support for Trace/Audit via Services API in Firebird 2.5

Since Firebird 2.5, Firebird supports full UTF-8 database filenames and other connection properties 
(Database Parameter Buffer values). Jaybird does not yet support these changes, but a workaround 
is available:



This workaround consists of two steps

1. Ensure your Java application is executed with the system property file.encoding=UTF-8 
(either because that is the default encoding for your OS, or by explicitly specifying this 
property on the commandline of your application using -Dfile.encoding=UTF-8)

2. Include property utf8_filename=1 in the JDBC URL or (non-standard) properties of the 
datasource

This will only work if the Firebird server is version 2.5 or higher.

Support for Firebird 3.0

Jaybird 2.2.x only supports Firebird 3.0 using the legacy authentication. The new authentication 
model and wire protocol encryption is not yet supported. Technically these new protocol options 
will work when using the Type 2 driver, but this hasn't been fully tested.

When using Jaybird with Firebird 3.0, make sure that

• Wire protocol encryption is not required

• Legacy authentication is enabled

• The user has been created with the legacy usermanager

The new BOOLEAN data type is supported

See the Jaybird Wiki for more details.

Improved support for OpenOffice / LibreOffice Base

The interpretation of the JDBC standard by Jaybird differs from the interpretation by OpenOffice / 
LibreOffice. To address some of the problems caused by these differences, Jaybird now provides a 
separate protocol for OpenOffice / LibreOffice.

When connecting from Base, use the protocol prefix jdbc:firebirdsql:oo:. Be aware that this is 
a variant of the pure Java wire protocol and not the native or embedded protocol.

Issues addressed by this protocol:

• Result sets are not closed when a statements is finished (eg fully read ResultSet or when 
creating a new Statement in auto-commit mode)

• DatabaseMetaData#getTablePrivileges(...)  reports privileges granted to PUBLIC and 
to the current role (as reported by CURRENT_ROLE) as being granted to the user (after Jaybird
2.2.0 beta 1).

Other fixes and changes

• Replaced mini-j2ee.jar with connector-api-1.5.jar: make sure to remove the old 
mini-j2ee.jar from the classpath of your application.

• Dropped jaybird-pool jar from the distribution (all classes are include in the jaybird jar 
and the jaybird-full jar)

• FBResultSetMetaData#getcolumnName(int) will now return the original column name (if
available) for compliance with the JDBC specification, getColumnLabel(int) will still 
return the alias (or the column name if no alias is defined). See Compatibility with 
com.sun.rowset.* for potential problems when using the reference implementation of 
CachedRowSet.
Jaybird 2.2.1 introduced the connection property columnLabelForName which will revert to 

http://jaybirdwiki.firebirdsql.org/jaybird/doku.php?id=tip:firebird30b1


the old behavior when set to true. Be aware that the old behavior is not JDBC-compliant.

• FBDatabaseMetaData has been updated to include metadata columns defined by JDBC 3.0, 
4.0 and 4.1. This also changes the position of OWNER_NAME column in the result set of 
getTables(..) as this column is Jaybird-specific and not defined in JDBC. 

• FBDatabaseMetaData#getIndexInfo(..) now also returns expression indexes. The 
COLUMN_NAME column will contain the expression (if available).

• FBDatabaseMetaData#getIndexInfo(..) now correctly limits the returned indexes to 
unique indexes when parameter unique is set to true.

• The connection property octetsAsBytes can be used to identify fields with CHARACTER SET
OCTETS as being (VAR)BINARY (in ResultSetMetaData only)

• The getTime(), getDate(), getTimestamp() methods which take a Calendar object now 
correctly handle conversions around Daylight Savings Time (DST) changes. Before, the time
was first converted to the local JVM timezone, and then to the timezone of the provided 
Calendar, this could lose up to an hour in time. Now the time is converted directly to the 
timezone of the provided Calendar. (JDBC-154)

A full list of changes is available at:

Jaybird 2.2.7: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10660&styleName=Text&projectId=10002

Jaybird 2.2.6: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10588&styleName=Text&projectId=10002

Jaybird 2.2.5: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10582&styleName=Text&projectId=10002

Jaybird 2.2.4: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10531&styleName=Text&projectId=10002

Jaybird 2.2.3: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10510&styleName=Text&projectId=10002

Jaybird 2.2.2: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
projectId=10002&styleName=Text&version=10480

Jaybird 2.2.1: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10474&styleName=Text&projectId=10002

Jaybird 2.2.0: http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?
version=10053&styleName=Text&projectId=10002

http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10053&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10053&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10474&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10474&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10002&styleName=Text&version=10480
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10002&styleName=Text&version=10480
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10510&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10510&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10531&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10531&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10582&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10582&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10588&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10588&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10660&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10660&styleName=Text&projectId=10002
http://tracker.firebirdsql.org/browse/JDBC-154


Compatibility changes

Jaybird 2.2 introduces some changes in compatibility and announces future breaking changes. The 
version previously announced as Jaybird 2.3 will be released as Jaybird 3.0.

Java support

Java 5 support will be dropped for Jaybird 3.0 as Java 5 has been on End-Of-Public-Updates3 status 
since October 2009.

Java 6 support will be dropped for Jaybird 3.1 as Java 6 has been on End-Of-Public-Updates status 
since February 2013.

Firebird support

Jaybird 2.2 supports Firebird 1.0 and higher, but is only tested with Firebird 2.1, 2.5 and 3.0. With 
Jaybird 3.0 formal support for Firebird 1.0 and 1.5 will be dropped. In general this should not 
impact the use of the driver, but might have impact on the availability and use of metadata 
information. This also means that from Jaybird 3.0 bugs that only occur with Firebird 1.0 and 1.5 
will not be fixed. With Jaybird 3.1 support for Firebird 2.0 will be dropped.

Important changes to Datasources

The ConnectionPoolDataSource and XADataSource implementations in org.firebirdsql.pool
and org.firebirdsql.pool.sun contain several bugs with regard to pool and connection 
management when used by a JavaEE application server. The decision was made to write new 
implementations in the package org.firebirdsql.ds.

The following implementation classes have been deprecated and will be removed in Jaybird 3.0:

• org.firebirdsql.pool.DriverConnectionPoolDataSource

• org.firebirdsql.pool.FBConnectionPoolDataSource

• org.firebirdsql.pool.sun.AppServerDataSource

• org.firebirdsql.pool.sun.AppServerXADataSource

• org.firebirdsql.jca.FBXADataSource

• org.firebirdsql.pool.SimpleDataSource

Their replacement classes are:

• org.firebirdsql.ds.FBConnectionPoolDataSource

• org.firebirdsql.ds.FBXADataSource

• org.firebirdsql.pool.FBSimpleDataSource (a normal DataSource)

We strongly urge you to switch to these new implementations if you are using these classes in an 
application server. The bugs are described in JDBC-86, JDBC-93, JDBC-131 and JDBC-144.

The deprecated classes can still be used with the DataSource implementations 
WrappingDataSource as the identified bugs do not occur with this implementation, but we advise 
you to switch to FBSimpleDataSource. If you require a standalone connection pool (outside an 
application server) or statement pooling, please consider using a third-party connection pool like 
C3P0, DBCP or HikariCP.

The new ConnectionPoolDataSource and XADataSource implementations only provide the basic 
functionality specified in the JDBC specifications and do not provide any pooling itself. The 

3 See http://www.oracle.com/technetwork/java/eol-135779.html

http://tracker.firebirdsql.org/browse/JDBC-144
http://tracker.firebirdsql.org/browse/JDBC-131
http://tracker.firebirdsql.org/browse/JDBC-93
http://tracker.firebirdsql.org/browse/JDBC-86
http://www.oracle.com/technetwork/java/eol-135779.html


ConnectionPoolDataSource and XADataSource are intended to be used by connection pools (as 
provided by application servers) and should not be connection pools themselves.

Future changes to Jaybird

The next versions of Jaybird will include some – potentially – breaking changes. We advise to 
check your code if you will be affected by these changes and prepare for these changes if possible.

Removal of deprecated classes, packages and (interface) methods

As announced above, the ConnectionPoolDataSource implementations in 
org.firebirdsql.pool and org.firebirdsql.jca will be removed in Jaybird 3.0. The entire 
org.firebirdsql.pool package will be removed.

The following (deprecated) classes will also be removed:

• org.firebirdsql.jdbc.FBWrappingDataSource (old deprecated class subclassing 
org.firebirdsql.pool.FBWrappingDataSource), only included in jaybird-full jar

Furthermore the following interfaces will be removed as they are no longer needed:

• FirebirdSavepoint (identical to java.sql.Savepoint)

The following interfaces will have some of the methods removed:

• FirebirdConnection

◦ setFirebirdSavepoint() replace with Connection#setSavepoint()

◦ setFirebirdSavepoint(String name) replace with 
Connection#setSavepoint(String name)

◦ rollback(FirebirdSavepoint savepoint) replace with 
Connection#rollback(Savepoint savepoint)

◦ releaseSavepoint(FirebirdSavepoint savepoint) replace with 
Connection#releaseSavepoint(Savepoint savepoint)

If you are still using these interfaces or methods, please change your code to use the JDBC interface 
or method instead.

Handling (VAR)CHAR CHARACTER SET OCTETS as (VAR)BINARY type

From Jaybird 3.0 on (VAR)CHAR CHARACTER SET OCTETS will be considered to be of 
java.sql.Types type (VAR)BINARY. This should not impact normal use of methods like 
get/setString(), but will impact the metadata and the type of object returned by getObject() (a 
byte array instead of a String).

Handling connections without explicit connection character set

When no connection character set has been specified (properties lc_ctype or encoding with 
Firebird character set, or charSet or localEncoding with Java character set), Jaybird will 
currently use the NONE character set. This means that the Firebird server will return the bytes for 
(VAR)CHAR columns as they are stored, while Jaybird will convert between bytes and Strings using 
the local platform encoding.

This default has the potential of corrupting data when switching platforms or using the same 
database with different local encoding, or for transliteration errors when the database character set 
does not accept some byte combinations. We are currently discussing changing this behavior (see 
JDBC-257). We haven't decided on the exact changes yet, but most likely the next version of 
Jaybird will refuse to connect without an explicit connection character set. For the time being, 

http://tracker.firebirdsql.org/browse/JDBC-257


Jaybird will log a warning and add a warning on the Connection when no explicit character set was
specified.

Review your use of the connection character sets and change it if you are not specifying it explicitly.
Be aware that changing this may require you to fix the data as it is currently stored in your database 
if your database character set does not match the local platform encoding of your Java application. If
you are sure that NONE is the correct character set for you, specify it explicitly in your connection 
string or connection properties.

Replacement or upgrade of logging library

Logging in Jaybird 3.0 will be changed. We will probably switch to java.util.logging, but we 
are also considering slf4j, or upgrading Log4J to version 2.x.

Stricter JDBC compliance for DatabaseMetaData methods

The current implementation of DatabaseMetaData methods do not conform to the JDBC 
specification when it comes to case sensitivity and quoted object names.

In Jaybird 3.0 meta data methods will no longer do the following:

• Remove quotes around object names

• Trying the uppercased value, when the original parameter value failed to produce results

For example:

CREATE TABLE tablename (
column1 INTEGER,
"column2" INTEGER

);
In Jaybird 2.2 using getColumns(null, null, "tablename", "column%") will return COLUMN1(!). 
Unquoted object names are stored uppercase in Firebird, so in Jaybird 3.0 this will produce no rows
as tablename does not match TABLENAME.

Changing the query to getColumns(null, null, "TABLENAME", "column%") in Jaybird 2.2 and 3.0 
will only produce one row (with column2), as COLUMN1 does not match column%.

In Jaybird 2.2 using getColumns(null, null, "\"TABLENAME\"", "column%") will return column2 as
the quotes will be stripped, with Jaybird 3.0 this will produce no rows.



Distribution package

The following file groups can be found in distribution package:

• jaybird-2.2.7.jar – archive containing JCA/JDBC driver, implementation of connection 
pooling and statement pooling interfaces, and JMX management class. It requires JCA 1.5.

• jaybird-full-2.2.7.jar – merge of jaybird-2.2.7.jar and connector-api-1.5.jar. 
This archive can be used for standalone Jaybird deployments, it should not be used within 
application servers.

• jaybird-2.2.7-sources.jar – archive containing the sources of Jaybird (specific to this 
JDK version); for including Jaybird sources in your IDE.

• lib/connector-api-1.5.jar – archive containing JCA 1.5 classes (required dependency).

• lib/antlr-runtime-3.4.jar – archive containing ANTLR runtime classes, required for 
generated keys functionality (optional dependency).

• lib/log4j-core.jar – archive containing core Log4J classes that provide logging 
(optional dependency).

Jaybird has compile-time and run-time dependencies on the JCA 1.5 classes. Additionally, if Log4J 
classes are found in the class path, it is possible to enable extensive logging inside the driver. If the 
ANTLR runtime classes are absent, the generated keys functionality will not be available.

Native dependencies (required only for Type 2 and Embedded):

• jaybird22.dll – Windows 32-bit

• jaybird22_x64.dll – Windows 64-bit

• libjaybird22.so – Linux 32-bit (x86)

• libjaybird22_x64.so – Linux 64-bit (AMD/Intel 64)

The Windows DLLs have been built with Microsoft Visual Studio 2010 SP1. To use the native or 
embedded driver, you will need to install the Microsoft Visual C++ 2010 SP 1 redistributable 
available at:

• x86: http://www.microsoft.com/download/en/details.aspx?id=8328

• x64: http://www.microsoft.com/download/en/details.aspx?id=13523

License

Jaybird JCA/JDBC driver is distributed under the GNU Lesser General Public License (LGPL). 
Text of the license can be obtained from http://www.gnu.org/copyleft/lesser.html. 

Using Jaybird (by importing Jaybird's public interfaces in your Java code), and extending Jaybird by
subclassing or implementation of an extension interface (but not abstract or concrete class) is 
considered by the authors of Jaybird to be dynamic linking. Hence our interpretation of the LGPL is 
that the use of the unmodified Jaybird source does not affect the license of your application code.

Even more, all extension interfaces to which application might want to link are released under dual 
LGPL/modified BSD license. Latter is basically “AS IS” license that allows any kind of use of that 
source code. Jaybird should be viewed as an implementation of that interfaces and LGPL section for
dynamic linking is applicable in this case.

http://www.gnu.org/copyleft/lesser.html
http://www.microsoft.com/download/en/details.aspx?id=13523
http://www.microsoft.com/download/en/details.aspx?id=8328


Source Code

The distribution package contains the normal sources in jaybird-2.2.7-sources.jar; this file 
does not include the sources of the tests, nor the sourcecode for other JDK-versions.

Full source code, including tests and build files, can be obtained from the Subversion repository at 
SourceForge.net. The repository URL is
svn://svn.code.sf.net/p/firebird/code/client-java

Alternatively source code can be viewed online at

http://sourceforge.net/p/firebird/code/ 

http://sourceforge.net/p/firebird/code/
svn://svn.code.sf.net/p/firebird/code/client-java


Documentation and Support

Where to get more information on Jaybird

The most detailed information can be found in the Jaybird Frequently Asked Questions (FAQ). The 
FAQ is included in the distribution, and is available on-line in several places. 

JaybirdWiki is available at http://jaybirdwiki.firebirdsql.org/

Jaybird 2.1 Programmers Manual: 
http://www.firebirdsql.org/file/documentation/drivers_documentation/Jaybird_2_1_
JDBC_driver_manual.pdf

Where to get help

The best place to start is the FAQ. Many details for using Jaybird with various programs are located 
there. Below are some links to useful web sites.

• The http://groups.yahoo.com/group/Firebird-Java and corresponding mailing-list 
Firebird-Java@yahoogroups.com

• The code for Firebird and this driver are on http://sourceforge.net/projects/firebird

• The Firebird project home page http://www.firebirdsql.org

Contributing

There are several ways you can contribute to Jaybird or Firebird in general:

• Participate on the mailinglists (see http://www.firebirdsql.org/en/mailing-lists/)

• Report bugs or submit patches on the tracker (see below)

• Become a developer (for Jaybird contact us on Firebird-Java, for Firebird in general, use the 
Firebird-devel mailing-list)

• Become a paying member or sponsor of the Firebird Foundation (see 
http://www.firebirdsql.org/en/firebird-foundation/)

See also http://www.firebirdsql.org/en/consider-your-contribution/

Reporting Bugs

The developers follow the Firebird-Java@yahoogroups.com list. Join the list and post 
information about suspected bugs. List members may be able to help out to determine if it is an 
actual bug, provide a workaround and get you going again,  whereas bug fixes might take awhile.

If you are sure that this is a bug you can report it in the Firebird bug tracker, project “Java Client 
(Jaybird)” at http://tracker.firebirdsql.org/browse/JDBC

When reporting bugs, please provide a minimal, but complete reproduction, including databases and
sourcecode to reproduce the problem. Patches to fix bugs are also appreciated. Make sure the patch 
is against a recent trunk version of the code.

Corrections/Additions To Release Notes

Please send corrections, suggestions, or additions to these Release Notes to to the mailing list at 
Firebird-Java@yahoogroups.com.

mailto:Firebird-Java@yahoogroups.com
http://tracker.firebirdsql.org/browse/JDBC
http://www.firebirdsql.org/en/consider-your-contribution/
http://www.firebirdsql.org/en/firebird-foundation/
http://www.firebirdsql.org/en/mailing-lists/
http://www.firebirdsql.org/
http://sourceforge.net/projects/firebird
http://groups.yahoo.com/group/Firebird-Java
http://www.firebirdsql.org/file/documentation/drivers_documentation/Jaybird_2_1_JDBC_driver_manual.pdf
http://www.firebirdsql.org/file/documentation/drivers_documentation/Jaybird_2_1_JDBC_driver_manual.pdf
http://jaybirdwiki.firebirdsql.org/


JDBC URL Format

Jaybird provides different JDBC URLs for different usage scenarios:

Pure Java
jdbc:firebirdsql://host[:port]/<database>

Default URL, will connect to the database using Type 4 JDBC driver using the Java implementation
of the Firebird wire-protocol. Best suited for client-server applications with dedicated database 
server. Port can be omitted (default value is 3050), host name must be present. 

The <database> part should be replaced with the database alias or the path to the database. In 
general it is advisable to uses database aliases instead of the path the file.

On Linux the root / should be included in the path. A database located on /opt/firebird/db.fdb 
should use the URL below (note the double slash after port!). 
jdbc:firebirdsql://host:port//opt/firebird/db.fdb 

Deprecated but still available alternative URL:

jdbc:firebirdsql:host[/port]:<database>

Using Firebird client library
jdbc:firebirdsql:native:host[/port]:<database>

Type 2 driver, will connect to the database using client library (fbclient.dll on Windows, and 
libfbclient.so on Linux). Requires correct installation of the client library.

jdbc:firebirdsql:local:<database>

Type 2 driver in local mode. Uses client library as in previous case, however will not use socket 
communication, but rather access database directly. Requires correct installation of the client 
library.

Embedded Server
jdbc:firebirdsql:embedded:<database>

Similar to the Firebird client library, however fbembed.dll on Windows and libfbembed.so on 
Linux are used. Requires correctly installed and configured Firebird embedded library.



Using Type 2 and Embedded Server driver

Jaybird 2.2 provides a Type 2 JDBC driver that uses the native client library to connect to the 
databases. Additionally Jaybird 2.2 can use the embedded version of Firebird so Java applications 
do not require a separate server setup.

However the Type 2 driver has its limitations:

Due to multi-threading issues in the Firebird client library as well as in the embedded server 
version, it is not possible to access a single connection from different threads simultaneously. When
using the client library only one thread is allowed to access a connection at a time. Access to 
different connections from different threads is however allowed. Client library in local mode and 
embedded server library on Linux do not allow multithreaded access to the library. Jaybird provides 
necessary synchronization in Java code, however the mutex is local to the classloader that loaded 
the Jaybird driver.

Care should be taken when deploying applications in web or application servers: put jar files 
in the main library directory of the web and/or application server, not in the library directory
of the web or enterprise application (WEB-INF/lib directory or in the .EAR file).

Configuring Type 2 JDBC driver

The Type 2 JDBC driver requires the Jaybird JNI library to be installed and available to the Java 
Virtual Machine. Precompiled binaries for Windows and Linux platforms are distributed with 
Jaybird.

Please note that Jaybird 2.2 provides an update to the JNI libraries to support new features. 
It is not compatible with the JNI library for Jaybird 2.1 or earlier.

• jaybird22.dll / jaybird22_x64.dll is a precompiled binary for the Windows platform. It 
was successfully tested with Windows XP and Windows 7, but there should be no issues in other
Windows OS versions (as long as the MS Visual C++ 2010 SP1 distributable is available). 
The library should be copied into a directory in the PATH environment variable, or be made 
available to the JVM using the java.library.path system property.

• libjaybird22.so / libjaybird22_x64.so is a precompiled binary for the Linux platform 
(AMD/Intel). It must be available via the LD_LIBRARY_PATH environment variable, or be made 
available to the JVM using the java.library.path system property.
Dependent libraries (libfbclient.so or libfbembed.so) need to be on the LD_LIBRARY_PATH. 
The java.library.path is ignored for these libraries as they are loaded from the JNI library, 
and not from Java.
Some Firebird distributions will not create libfbclient.so (but only libfbclient.so.2 and
.so.2.5), you will need to add a symlink with the name as expected by Jaybird. 

• Other platforms can easily compile the JNI library by checking out the Jaybird sources from the 
CVS and using ./build.sh compile-native command in the directory with checked out 
sources.

After making Jaybird JNI library available to the JVM, the application has to tell driver to start 
using this by either specifying TYPE2 or LOCAL type in the connection pool or data source 
properties or using appropriate JDBC URL when connecting via java.sql.DriverManager.

Configuring Embedded Server JDBC driver

The Embedded Server JDBC driver uses the same JNI library and configuration steps for the Type 2
JDBC driver. 



There is however one issue related to the algorithm of Firebird Embedded Server installation 
directory resolution. Firebird server uses pluggable architecture for internationalization. By default 
server loads fbintl.dll or libfbintl.so library that contains various character encodings and 
collation orders. This library is expected to be installed in the intl/ subdirectory of the server 
installation. The algorithm of directory resolution is the following:

1. FIREBIRD environment variable.

2. RootDirectory parameter in the firebird.conf file.

3. The directory where server binary is located.

When Embedded Server is used from Java and no FIREBIRD environment variable is specified, it 
tries to find firebird.conf in the directory where application binary is located. In our case 
application binary is JVM and therefore Embedded Server tries to find its configuration file in the 
bin/ directory of the JDK or JRE installation. Same happens to the last item of the list. In most 
cases this is not desired behavior.

Therefore, if the application uses character encodings, UDFs or wants to fine-tune server behavior  
through the configuration file, the FIREBIRD environment variable must be specified and point to 
the installation directory of the Embedded Server, e.g. current working directory.

Support for multiple JNI libraries

Upto Jaybird 2.0 only one client library could be loaded in a single JVM. That could be either an 
embedded Firebird library (fbembed.dll/libfbembed.so), or Firebird client library 
(fbclient.dll/libfbclient.so). This could lead to problems, For example, if embedded Firebird
was used first, the JDBC driver would access the database file directly instead of using the local IPC
protocol if only the path to the database was specified. It was not possible to change this without 
restarting the JVM.

Since Jaybird 2.1, Jaybird is able to correctly load arbitrary number of shared libraries that 
implement the ISC API and forward the requests correctly depending on the type of the driver being
used.



Usage and Reference Manual

Events

Events is one of the unique features in the Firebird RDBMS and allows asynchronous notification 
of the applications about named events that happen in the database. Information on this feature can 
found in the free IB 6.0 documentation set as well as in The Firebird Book by Helen Borrie.

The interfaces and classes for the event support can be found in org.firebirdsql.event package, 
which includes:

● EventManager interface to register for the synchronous and asynchronous notification about 
the events in the database;

● EventListener interface which has to be implemented by the application that wants to 
participate in the asynchronous notification;

● DatabaseEvent interface which represents the object that will be passed to the 
EventListener notification method;

● Implementation of the above interfaces: FBEventManager and FBDatabaseEvent.

Please note, that each instance of FBEventManager will open a new socket connection to the 
Firebird server on the port specified by Firebird.

Similar to other JDBC extensions in Jaybird, the interfaces are released under the modified BSD 
license, the implementation of the code is released under LGPL license.

Default holdable result sets (closed ResultSet in auto-commit mode)

This connection property allows to create holdable result sets by default. This is needed as a 
workaround for the applications that do not follow JDBC specification in regard to the auto-commit 
mode. 

Specifically, such applications open a result set and, while traversing it, execute other statements 
using the same connection. According to JDBC specification the result set has to be closed if 
another statement is executed using the same connection in auto-commit mode. Among others the 
OpenOffice/LibreOffice Base users have problems with the JDBC compatibility in Jaybird.

The property is called:

● defaultResultSetHoldable as connection property for JDBC URL or for 
java.sql.DriverManager class and no or empty value should be assigned to it; it has an 
alias defaultHoldable to simplify the typing;

● isc_dpb_result_set_holdable as a DPB member;

● FirebirdConnectionProperties interface methods isDefaultResultSetHoldable() 
and setDefaultResultSetHoldable(boolean)

Note, the price for using this feature is that each holdable result set will be fully cached in 
memory. The memory occupied by it will be released when the statement that produced the 
result set is either closed or re-executed.

Updatable result sets

Jaybird provides support for updatable result sets. This feature allows a Java application to update 
the current record using the updateXXX methods of java.sql.ResultSet interface. Updates are 
performed within the current transaction using a best row identifier in WHERE clause. This sets the 
following limitation on the result set “updatability”:



• the SELECT references a single table;

• all columns not referenced in SELECT permit NULLs (otherwise INSERTs will fail);

• the SELECT statement does not contain DISTINCT predicate, aggregate functions, joined 
tables or stored procedures;

• the SELECT statement references all columns from the table primary key definition or an 
RDB$DB_KEY column.

Firebird management interfaces

Jaybird provides full support of the Firebird Services API that allows Java applications to perform 
various server management tasks:

• database backup/restore on remote server; it is possible to performs metadata-only backups, 
switch the garbage collection during backup off, restore databases with no validity 
constraints or active indices, etc.

• database maintenance, e.g. database shutdown, sweep, changing the forced writes settings, 
changing SQL dialect of the database, shadow management, etc.

• retrieving database statistics including header page statistics, system table statistics, data 
page statistics and index statistics.

• user management, including adding, modifying, and deleting user accounts.

Jaybird JDBC extensions

Jaybird provides extensions to some JDBC interfaces. JDBC extension interface classes are released
under modified BSD license, on “AS IS” and “do what you want” basis, this should make linking to
these classes safe from the legal point of view. All classes belong to org.firebirdsql.jdbc.* 
package. The table below shows all JDBC extensions present in Jaybird with a driver version in 
which the extension was introduced.

JDBC extensions

Interface Since Method name Description
FirebirdDriver 2.0 newConnectionProperties() Create new instance of 

FirebirdConnectionProper
ties interface that can be used
to set connection properties 
programmatically.

connect(FirebirdConnectionP
roperties)

Connect to the Firebird 
database using the specified 
connection properties.

FirebirdConnectionP
roperties

2.0 see JDBC connection properties 
section for more details.

FirebirdConnection 1.5 createBlob() Create new BLOB in the 
database. Later this BLOB can
be passed as a parameter into 
PreparedStatement or 
CallableStatement.

1.5 getIscEncoding() Get connection character 



JDBC extensions

encoding.

2.0 getTransactionParameters(
    int isolationLevel
)

Get the TPB parameters for 
the specified transaction 
isolation level.

2.0 createTransactionParameterB
uffer()

Create an empty transaction 
parameter buffer.

2.0 setTransactionParameters(
    int isolationLevel,
    
TransactionParameterBuffer 
tpb
)

Set TPB parameters for the 
specified transaction isolation 
level. The newly specified 
mapping is valid for the whole
connection lifetime.

2.0 setTransactionParameters(
    
TransactionParameterBuffer 
tpb
)

meters are effective until the 
transaction isolation is 
changed.

FirebirdDatabaseMet
aData

getProcedureSourceCode(Stri
ng)

Get source code for the 
specified stored procedure 
name.

getTriggerSourceCode(String
)

Get source code for the 
specified trigger name.

getViewSourceCode(String) Get source code for the 
specified view name.

FirebirdStatement 1.5 getInsertedRowsCount()
getUpdatedRowsCount()
getDeletedRowsCount()

Extension that allows to get 
more precise information 
about outcome of some 
statement.

1.5 hasOpenResultSet() Check if this statement has 
open result set. Correctly 
works only when auto-commit
is disabled. Check method 
documentation for details.

1.5 getCurrentResultSet() Get current result set. 
Behaviour of this method is 
similar to the behavior of the  
Statement.getResultSet(),
except that this method can be 
called as much as you like.

1.5 isValid() Check if this statement is still 
valid. Statement might be 
invalidated when connection is
automatically recycled 
between transactions due to 
some irrecoverable error.

2.0 getLastExecutionPlan() Get execution plan for the last 



JDBC extensions

executed statement.

FirebirdPreparedSta
tement

2.0 getExecutionPlan() Get the execution plan of this 
prepared statement.

2.0 getStatementType() Get the statement type of this 
prepared statement.

FirebirdCallableSta
tement

1.5 setSelectableProcedure(
    boolean selectable
)

Mark this callable statement as
a call of the selectable 
procedure. By default callable 
statement uses EXECUTE 
PROCEDURE SQL statement to 
invoke stored procedures that 
return single row of output 
parameters or a result set. In 
former case it retrieves only 
the first row of the result set.

FirebirdResultSet 2.0 getExecutionPlan() Get execution plan for this 
result set.

FirebirdBlob 1.5 detach() Method “detaches” a BLOB 
object from the underlying 
result set. Lifetime of 
“detached” BLOB is limited 
by the lifetime of the 
connection.

1.5 isSegmented() Check if this BLOB is 
segmented. Seek operation is 
not defined for the segmented 
BLOBs.

1.5 setBinaryStream(
  long position
)

Opens an output stream at the 
specified position, allows 
modifying BLOB content. Due
to server limitations only 
position 0 is supported.

FirebirdBlob.BlobIn
putStream

1.5 getBlob() Get corresponding BLOB 
instance.

1.5 seek(int position) Change the position from 
which BLOB content will be 
read, works only for stream 
BLOBs.

FirebirdSavepoint4 2.0 interface is equivalent to the java.sql.Savepoint interface 
introduced in JDBC 3.0 specification, however allows using 
Firebird savepoints also in JDBC 2.0 (JDK 1.3.x) applications.

4 To be removed in Jaybird 3.0



JDBC connection properties

The table below lists the properties for the connections that are obtained from this data source. 
Commonly used parameters have the corresponding getter and setter methods, the rest of the 
Database Parameters Block parameters can be set using setNonStandardProperty setter method.

Property Getter Setter Description

database + + (deprecated) Path to the database in 
the format

[host/port:]<database>

This property is not specified in the 
JDBC standard. Use the the standard 
defined serverName, portNumber and
databaseName instead

serverName + + Hostname or IP address of the Firebird
server

portNumber + + Portnumber of the Firebird server

databaseName + + Database alias or full-path

type + + Type of the driver to use. Possible 
values are:

• PURE_JAVA or TYPE4 for type 4 
JDBC driver 

• NATIVE or TYPE2 for type 2 
JDBC driver 

• EMBEDDED for using embedded 
version of the Firebird. 

blobBufferSize + + Size of the buffer used to transfer 
BLOB content. Maximum value is 
64k-1.

socketBufferSize + + Size of the socket buffer. Needed on 
some Linux machines to fix 
performance degradation.

buffersNumber + + Number of cache buffers (in database 
pages) that will be allocated for the 
connection. Makes sense for 
ClassicServer only.

charSet + + Character set for the connection. 
Similar to encoding property, but 
accepts Java names instead of Firebird 
ones.

encoding + + Character encoding for the connection.
See Firebird documentation for more 
information.

useTranslation + + Path to the properties file containing 
character translation map.



Property Getter Setter Description

password + + Corresponding password.

roleName + + SQL role to use.

userName + + Name of the user that will be used by 
default.

useStreamBlobs + + Boolean flag tells driver whether 
stream BLOBs should be created by 
the driver, by default “false”. Stream 
BLOBs allow “seek” operation to be 
called, however due to a bug in gbak 
utility they are disabled by default.

useStandardUdf + + Boolean flag tells driver to assume that
standard UDFs are defined in the 
database. This extends the set of 
functions available via escaped 
function calls. This does not affect 
non-escaped use of functions.

defaultResultSetHol
dable

+ + Boolean flag tells driver to construct 
the default result set to be holdable. 
This prevents it from closing in auto-
commit mode if another statement is 
executed over the same connection.

tpbMapping + + TPB mapping for different transaction 
isolation modes.

defaultIsolation + + Default transaction isolation level. All 
newly created connections will have 
this isolation level. One of:

• TRANSACTION_READ_COMMITTE
D 

• TRANSACTION_REPEATABLE_RE
AD 

• TRANSACTION_SERIALIZABLE 

defaultTransactionI
solation

+ + Integer value from 
java.sql.Connection interface 
corresponding to the transaction 
isolation level specified in isolation 
property.

nonStandardProperty getNonStandar
dProperty(Str

ing)

+

setNonStanda
rdProperty(S

tring)

setNonStanda
rdProperty(S

tring,
String)

Allows to set any valid connection 
property that does not have 
corresponding setter method. Two 
setters are available: 

setNonStandardProperty(String) 
method takes only one parameter in 
form 
“propertyName[=propertyValue]”, 
this allows setting non-standard 



Property Getter Setter Description

parameters using configuration files.

setNonStandardProperty(String, 
String) takes property name as first 
parameter, and its value as the second 
parameter.

connectTimeout + + The connect timeout in seconds. For 
the Java wire protocol detects 
unreachable hosts, for JNI (native 
protocol) only defines a timeout during
the op_accept phase after connecting 
to the server.



JDBC Compatibility

The Jaybird driver is not officially JDBC-compliant as the certification procedure is too expensive. 
The following lists some of the differences between JDBC specification and Jaybird 
implementation. This list is not exhaustive.

JDBC deviations and unimplemented features

The following optional features and the methods for their support are not implemented:

● java.sql.Array data type is not (yet) supported

● java.sql.Blob does not implement following methods:

– position(Blob, long) and position(byte[], long); Firebird does not provide 
any server-side optimization for these calls, client application must fetch complete 
BLOB content from the server to do pattern search.

– truncate(long); Firebird does not provide such functionality on the server side, 
application must fetch old BLOB from the server and pump old content into a newly 
created BLOB.

● java.sql.Connection

– getCatalog() and setCatalog(String) are not supported by Firebird server

– getTypeMap() and setTypeMap(Map) are not supported

● java.sql.Ref data type is not supported by Firebird server

● java.sql.SQLData data type is not supported by Firebird server

● java.sql.SQLInput is not supported

● java.sql.SQLOutput is not supported

● java.sql.SQLXML is not supported

● java.sql.RowId is not supported

● java.sql.NClob is not supported

● java.sql.Statement

– cancel() is implemented, but not fully supported by Jaybird

● java.sql.Struct data type is not supported by server.

The following methods are implemented, but deviate from the specification:

● java.sql.Statement 

– get/setMaxFieldSize does nothing, Firebird server does not support this feature.

– get/setQueryTimeout does nothing, Firebird server does not support this feature.

● java.sql.PreparedStatement 

– setObject(int index, Object object, int type) Target SQL type is 
determined from the class of the passed object and corresponding parameter is 
ignored.

– setObject(int index, Object object, int type, int scale) Same as 
above, type and scale are ignored.

● java.sql.ResultSetMetaData 



– isReadOnly() always returns false 

– isWritable() always returns true 

– isDefinitivelyWritable() always returns true



Jaybird Specifics

Jaybird has some implementation-specific issues that should be considered during development.

Result sets

Jaybird behaves differently not only when different result set types are used but also whether the 
connection is in auto-commit mode or not.

• ResultSet.TYPE_FORWARD_ONLY result sets when used in auto-commit mode are 
completely cached on the client before the execution of the query is finished. This leads to 
the increased time  needed to execute statement, however the result set navigation happens 
almost instantly. When auto-commit mode is switched off, only part of the result set 
specified by the fetch size is cached on the client.

• ResultSet.TYPE_SCROLL_INSENSITIVE result sets are always cached on the client. The 
reason is quite simple – the Firebird API does not provide scrollable cursor support, 
navigation is possible only in one direction.

• ResultSet.HOLD_CURSORS_OVER_COMMIT holdability is supported in Jaybird only for result 
sets of type ResultSet.TYPE_SCROLL_INSENSITIVE. For other result set types driver will 
throw an exception.

Using java.sql.ParameterMetaData with Callable Statements

This interface can be used only to obtain information about the IN parameters. Also it is not allowed
to call the PreparedStatement.getParameterMetaData method before all of the OUT parameters
are registered. Otherwise the corresponding method of CallableStatement throws an 
SQLException, because the driver tries to prepare the procedure call with incorrect number of 
parameters.

Using ResultSet.getCharacterStream with BLOB fields

Jaybird JDBC driver always uses connection encoding when converting array of bytes into character
stream. The BLOB SUB_TYPE 1 fields allow setting the character encoding for the field. However 
when the contents of the field is sent to the client, it is not converted according to the character set 
translation rules in Firebird, but is sent “as is”. When such fields are accessed from a Java 
application via Jaybird and character set of the connection does not match the character encoding of 
the field, conversion errors might happen. Therefore it is recommended to convert such fields in the 
application using the appropriate encoding.

Heuristic transaction completion support

Current JCA implementation does not support XAResource.forget(Xid). It might be important in 
cases where a distributed transaction  - that was at some time in-limbo -  was either committed or 
rolled back by the database administrator. Such transactions appear to Jaybird as successfully 
completed, however XA specification requires resource manager to “remember” such transaction 
until the XAResource.forget(Xid) is called.

Compatibility with com.sun.rowset.*

The reference implementation of javax.sql.rowset included with Java in package 
com.sun.rowset does not correctly look up columns by name as it ignores column aliases and only 
allows look up by the original column name5 (this specifically applies to 

5 See JDBC-162 and http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7046875 for details

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7046875
http://tracker.firebirdsql.org/browse/JDBC-162


com.sun.rowset.CachedRowSetImpl).

We advise you to either only access columns by their index or use an implementation which 
correctly uses the column label for column lookup (which is either the alias or the original column 
name if no alias was defined).

Jaybird 2.2.1 introduced the connection property columnLabelForName for backwards compatible 
behavior of ResultSetMetaData#getColumnName(int). Set property to true for backwards 
compatible behavior (getColumnName() returns the column label); don't set the property or set it to 
false for JDBC-compliant behavior (recommended).

Support for Firebird 3 BOOLEAN type

Jaybird 2.2.4 introduces support for the Firebird 3 BOOLEAN type. A boolean field can also be set 
with all numeric setters and the string setter (as implied by JDBC 4.1 appendix B).

For numeric types, currently only 0 will set to false and all other values will set to true. This is 
something that might change in the future. Only 0 for false and 1 for true are guaranteed, in the 
future we might decide to throw a conversion exception for other values!

For string types we currently set true for "true", "T", "Y" and "1" (case insensitive, ignoring 
whitespace), all other values will set false; this is for compatibility with the current getBoolean 
behaviour of FBStringField. This is something that might change in the future. Only "true" and 
"1" for true and "false" and "0" for false are guaranteed (case insensitive, ignoring 
whitespace), in the future we might decide to throw a conversion exception for other values!

When using string or numeric setters for a boolean field we strongly recommend to only use the 
guaranteed values (0, 1, "0", "1", "true" and "false"). Better yet: use the boolean setter instead.



Connection pooling with Jaybird

As described in Important changes to Datasources, the ConnectionPoolDataSource 
implementations in org.firebirdsql.pool contain some serious issues. The connection pool 
capability which depends on these classes will be removed in Jaybird 3.0.

This change leaves only the ConnectionPoolDataSource implementations in 
org.firebirdsql.ds (for use by application server connection pools). There are no plans to 
reintroduce a new standalone connection pooling capability. We probably will migrate some of the 
features like statement pooling to the normal JDBC driver.

If you require standalone connection pooling, or use an application server which has no built-in 
connectionpool, please consider using a third-party connection pool like c3p0, DBCP or HikariCP.

Description of deprecated org.firebirdsql.pool classes

WARNING: This section provides information on deprecated classes,

See Important changes to Datasources

Connection pooling provides effective way to handle physical database connections. It is believed 
that establishing new connection to the database takes some noticeable amount or time and in order 
to speed things up one has to reuse connections as much as possible. While this is true for some 
software and for old versions of Firebird database engine, establishing connection is hardly 
noticeable with Firebird 1.0.3 and Firebird 1.5. So why is connection pooling needed?

There are few reasons for this. Each good connection pool provides a possibility to limit number of 
physical connections established with the database server. This is an effective measure to localize 
connection leaks. Any application cannot open more physical connections to the database than 
allowed by connection pool. Good pools also provide some hints where connection leak occurred. 
Another big advantage of connection pool is that it becomes a central place where connections are 
obtained, thus simplifying system configuration. However, main advantage of good connection pool
comes from the fact that in addition to connection pooling, it can pool also prepared statement. 
Tests executed using AS3AP benchmark suite show that prepared statement pooling might increase 
speed of the application by 100% keeping source code clean and understandable.

Usage scenario

When some statement is used more than one time, it makes sense to use prepared statement. It will 
be compiled by the server only once, but reused many times. It provides significant speedup when 
some statement is executed in a loop. But what if some prepared statement will be used during 
lifetime of some object? Should we prepare it in object's constructor and link object lifetime to 
JDBC connection lifetime or should we prepare statement each time it is needed? All such cases 
make handling of the prepared statements hard, they pollute application's code with irrelevant 
details. 

Connection and statement pooling remove such details from application's code. How would the 
code in this case look like? Here's the example



Example 1. Typical JDBC code with statement pooling
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

...
Connection connection = dataSource.getConnection();
try {
    PreparedStatement ps = connection.prepareStatement(
        “SELECT * FROM test_table WHERE id = ?”);
    try {
        ps.setInt(1, id);
        ResultSet rs = ps.executeQuery();
        while (rs.next()) {
            // do something here
        }
    } finally {
        ps.close();
    }
} finally {
    connection.close();
}
...

Lines 001-018 show typical code when prepared statement pooling is used. Application obtains 
JDBC connection from the data source (instance of javax.sql.DataSource interface), prepares 
some SQL statement as if it is used for the first time, sets parameters, and executes the query. Lines 
012 and 015 ensure that statement and connection will be released under any circumstances. Where 
do we benefit from the statement pooling? Call to prepare a statement in lines 004-005 is 
intercepted by the pool, which checks if there's a free prepared statement for the specified SQL 
query. If no such statement is found it prepares a new one. In line 013 prepared statement is not 
closed, but returned to the pool, where it waits for the next call. Same happens to the connection 
object that is returned to the pool in line 016.

Connection Pool Classes (deprecated)

Jaybird connection pooling classes belong to org.firebirdsql.pool.* package.

Description of some connection pool classes.
AbstractConnectionPool Base class for all connection pools. Can be used for 

implementing custom pools, not necessarily for JDBC 
connections.

BasicAbstractConnectionPool Subclass of AbstractConnectionPool, implements 
javax.sql.ConnectionPoolDataSource interface. Also 
provides some basic properties (minimum and maximum 
number of connections, blocking and idle timeout, etc) 
and code to handle JNDI-related issues.

DriverConnectionPoolDataSource Implementation of 
javax.sql.ConnectionPoolDataSource for arbitrary 
JDBC drivers, uses java.sql.DriverManager to obtain 
connections, can be used as JNDI object factory.

FBConnectionPoolDataSource Jaybird specific implementation of 
javax.sql.ConnectionPoolDataSource and 
javax.sql.XADataSource interfaces, can be used as 
JNDI object factory.

FBSimpleDataSource Implementation of javax.sql.DataSource interface, no 
connection and statement pooling is available, 



Description of some connection pool classes.

connections are physically opened in getConnection() 
method and physically closed in their close() method.

FBWrappingDataSource Implementation of javax.sql.DataSource interface that 
uses FBConnectionPoolDataSource to allocate 
connections. This class defines some additional properties 
that affect allocated connections. Can be used as JNDI 
object factory.

SimpleDataSource Implementation of javax.sql.DataSource interface that 
uses javax.sql.ConnectionPoolDataSource to allocate
physical connections.

org.firebirdsql.pool.FBConnectionPoolDataSource (deprecated)

This class is a corner stone of connection and statement pooling in Jaybird. It can be instantiated 
within the application as well as it can be made accessible to other applications via JNDI. Class 
implements both java.io.Serializable and javax.naming.Referenceable interfaces, which 
allows using it in a wide range of web and application servers. 

Class implements both javax.sql.ConnectionPoolDataSource and javax.sql.XADataSource 
interfaces. Pooled connections returned by this class implement javax.sql.PooledConnection 
and javax.sql.XAConnection interfaces and can participate in distributed JTA transactions.

Class provides following configuration properties:

Standard JDBC Properties

This group contains properties defined in the JDBC specification and should be standard to all 
connection pools.

Property Getter Setter Description
maxIdleTime + + Maximum time in milliseconds after 

which idle connection in the pool is 
closed.

maxPoolSize + + Maximum number of open physical 
connections.

minPoolSize + + Minimum number of open physical 
connections. If value is greater than 0, 
corresponding number of connections 
will be opened when first connection 
is obtained.

maxStatements + + Maximum size of prepared statement 
pool. If 0, statement pooling is 
switched off. When application 
requests more statements than can be 
kept in pool, Jaybird will allow 
creating that statements, however 
closing them would not return them 
back to the pool, but rather 
immediately release the resources.



Pool Properties

This group of properties are specific to the Jaybird  implementation of the connection pooling 
classes.

Property Getter Setter Description
blockingTimeout + + Maximum time in milliseconds during 

which application can be blocked 
waiting for a connection from the 
pool. If no free connection can be 
obtained, exception is thrown.

retryInterval + + Period in which pool will try to obtain 
new connection while blocking the 
application.

pooling + + Allows to switch connection pooling 
off.

statementPooling + + Allows to switch statement pooling 
off.

pingStatement + + Statement that will be used to “ping” 
JDBC connection, in other words, to 
check if it is still alive. This statement 
must always succeed.

pingInterval + + Time during which connection is 
believed to be valid in any case. Pool 
“pings” connection before giving it to 
the application only if more than 
specified amount of time passed since 
last “ping”.

Runtime Pool Properties

This group contains read-only properties that provide information about the state of the pool.

Property Getter Setter Description
freeSize + - Tells how many free connections are 

in the pool. Value is between 0 and 
totalSize.

workingSize + - Tells how many connections were 
taken from the pool and are currently 
used in the application.

totalSize + - Total size of open connection. At the 
pool creation – 0, after obtaining first 
connection – between minPoolSize 
and maxPoolSize.

connectionCount + - Deprecated. Same as freeSize.



org.firebirdsql.pool.FBWrappingDataSource

This class is a wrapper for FBConnectionPoolDataSource converting interface from 
javax.sql.ConnectionPoolDataSource to javax.sql.DataSource. It defines same properties as
FBConnectionPoolDataSource does.

Runtime object allocation and deallocation hints

Pool implementation shipped with Jaybird can provide hints for the application where the 
connection was obtained from the pool, when it was released back to the pool, when the statement 
was prepared. Such information is written into the log when appropriate system properties are set to 
true.

List of properties

Property name Description
FBLog4j Enables logging inside driver. This is the essential property, if it is 

not present or set to false, no debug information is available.

When it is set to true, pool automatically prints the following 
information:

• When physical connection is added to the pool – DEBUG

• When a maximum pool capacity is reached – DEBUG

• When connection is obtained from pool – DEBUG

• When connection is released back to pool – DEBUG

• Whether pool supports open statements across transaction 
boundaries – INFO

FBPoolShowTrace Enables logging of the thread stack trace when debugging is enabled 
and:

• Connection is allocated from the pool – DEBUG

• Thread is blocked while waiting for a free connection – WARN
FBPoolDebugStmtCache When statement caching is used and debugging is enabled, following 

information is logged:

• When a statement is prepared – INFO

• When statement cache is cleaned – INFO

• When statement is obtained from or returned back to pool – INFO


	Jaybird
	Firebird JCA/JDBC Driver Release Notes v 2.2.7
	General Notes
	Supported Firebird versions
	Supported Java versions
	Specification support

	What's new in Jaybird 2.2
	Changes and fixes in Jaybird 2.2.7
	Changes and fixes in Jaybird 2.2.6
	Changes and fixes in Jaybird 2.2.5
	Changes and fixes in Jaybird 2.2.4
	Changes and fixes in Jaybird 2.2.3
	Changes and fixes in Jaybird 2.2.2
	Changes and fixes in Jaybird 2.2.1
	Changes and fixes since Jaybird 2.2.0 beta 1
	Support for getGeneratedKeys()
	Java 6 and JDBC 4.0 API support
	Java 7 and JDBC 4.1 API support
	Java 8 and JDBC 4.2 API support
	Jaybird on Maven
	Native and Embedded (JNI) 64-bit Windows and Linux support
	Support for Firebird 2.5
	Support for Firebird 3.0
	Improved support for OpenOffice / LibreOffice Base
	Other fixes and changes

	Compatibility changes
	Java support
	Firebird support
	Important changes to Datasources
	Future changes to Jaybird

	Distribution package
	License
	Source Code

	Documentation and Support
	Where to get more information on Jaybird
	Where to get help
	Contributing
	Reporting Bugs
	Corrections/Additions To Release Notes

	JDBC URL Format
	Pure Java
	Using Firebird client library
	Embedded Server

	Using Type 2 and Embedded Server driver
	Configuring Type 2 JDBC driver
	Configuring Embedded Server JDBC driver
	Support for multiple JNI libraries

	Usage and Reference Manual
	Events
	Updatable result sets
	Firebird management interfaces
	Jaybird JDBC extensions
	JDBC connection properties

	JDBC Compatibility
	JDBC deviations and unimplemented features

	Jaybird Specifics
	Result sets
	Using java.sql.ParameterMetaData with Callable Statements
	Using ResultSet.getCharacterStream with BLOB fields
	Heuristic transaction completion support
	Compatibility with com.sun.rowset.*
	Support for Firebird 3 BOOLEAN type

	Connection pooling with Jaybird
	Description of deprecated org.firebirdsql.pool classes
	Usage scenario
	Connection Pool Classes (deprecated)
	org.firebirdsql.pool.FBConnectionPoolDataSource (deprecated)
	org.firebirdsql.pool.FBWrappingDataSource
	Runtime object allocation and deallocation hints



