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Abstract

Writing codes for the simulation of complex phenomena is an art and science unto itself.
What with finding and using good algorithms, actually writing the code, debugging the
code and testing the code, not much time is left to actually investigate what it was you were
initially out to look at. This is where xmds comes in. xmds allows you to write a high-level
description of the problem you are trying to solve (usually a differential equation of some
form) it goes away and writes low-level simulation code for you (trying very hard to keep
the code as efficient as possible), compiles it and presents it, ready to be run.

xmds is an acronym for eXtensible Multi-Dimensional Simulator. It is open source
software, released under the GNU General Public License, and is written to assist in the
calculation of a wide range of problems, with application in physics, mathematics, and even
finance and economics. A high-level description of the problem at hand is written in XML
(the extensible markup language) and xmds transforms this into C language code. This
code can then be compiled by a C/C++ compiler to produce a binary executable which
solves the problem about as quickly and efficiently as might be achieved with code written
by an expert.

xmds gives modellers—people doing computer modelling—structure, organisation and
standardisation. It provides a framework for describing the system they are trying to sim-
ulate, be it in a physical, mathematical, scientific or even financial or economic setting. It
gives a way to keep the ideas behind a simulation well laid out and, importantly, docu-
mented for others to see and use. And it gives people a common ground from which they
can compare their numerical work; something desperately lacking in an area at the interface
between theory and experiment, which already have a well-ingrained culture of comparison
and verification.

About this manual

This manual has been split into five parts in an attempt to cover all of the material necessary
to be able to use and master xmds, but also to provide an entry point for novices and experts
alike. For the impatient, it may be possible to learn jump right past the tutorial, and learn
what you need to get started from the worked examples in section 9.

Part I is a very simple introduction to xmds, and discusses how to build a simulation
script from scratch, how to modify existing code or a template to perform the simulation
you want, and how to perform stochastic simulations using the Message Passing Interface
(MPI). Novice users may wish to start with Chapter 1 (Starting from scratch) or Chapter 3
(Using a template) to help themselves get going with xmds. Advanced users of xmds may

iii



iv

skip these chapters, and may be more interested in how to use xmds with MPI for running
parallel simulations, which is discussed near the end of Part I.

Part II is a reasonably general discussion of numerical techniques for solution of differen-
tial equations. Some of the techniques discussed are used within xmds, and the procedures
used internally in xmds are outlined.

Part III is an overview of the language and contains some of the details of working
with and the workings of xmds. This along with Part II is the essence of the xmds-1.0

documentation. In time this Part will be updated, but at present only superficial changes
have been made in its layout.

Part IV gives specific information about the keywords used in the xmds language, their
place within a script’s structure, examples of usage, and what xmds expects as arguments
within the respective tags. This Part is particularly aimed at users familiar with xmds who
are likely to want to know the syntax of a particular keyword or other details of a particular
keyword.

Part V is an appendix and covers the XSIL output format, the xsil2graphics utility
program, the loadxsil.m script, the GNU General Public License, and a bibliography.

Tools used to build xmds

These are the multifarious tools with which xmds, its documentation (both handmade and
automatically generated) and its web pages, has been made.

• GNU development suite: autoconf, automake, etc.

• General development tools: make, gcc, g++, cvs

• Editors: emacs, vim

• Linux Distributions: Gentoo Linux, Redhat Linux

• Other Unix and Unix-like environments: True64, CygWin

• Scripting tools and languages: aap, perl, python

• Documentation tools: doxygen, LATEX, latex2html

• Libraries: fftw

• Organisations: Sourceforge.net, APAC

Feedback

Yes, we want feedback! If you have any comments about xmds and/or this manual (such as,
inaccuracies, possible improvements, new features, what it does well, etc.) then please email
one of the current developer or the xmds web page webmaster. You can find the addresses
of both of these people on the xmds web page: http://www.xmds.org. And please, feel free

http://www.xmds.org
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to mention anything, no matter how small. It would be great to see xmds improve the way
people want, and for it to be documented the way the xmds user community wants.
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1
Starting from scratch

It turns out that one of the most difficult things to do in xmds is to write a script from
scratch, which is why most users take either one of their own old scripts, or borrow someone
else’s (or one of the examples) as a template. However, this doesn’t mean to say that one
is never going to have to write a script from scratch (just that it’s usually quite unlikely),
therefore we explain how to do this here. If you’re not interested, and want to get coding
more quickly, then it’s alright to skip to Chapter 3 and learn how to modify an existing
script to your needs.

In this chapter we will outline the tags necessary for xmds to actually parse a document,
and will implement a simple simulation involving these tags. More complete documentation
of the tags and what they do can be found in Chapter 11. The tags necessary for performing
more advanced operations and for solving more complex problems will be introduced in later
tutorial chapters (e.g. see Chapter 4).

1.1 A basic simulation

1.1.1 The simple beginnings of a simulation

xmds is coded using XML (the extensible markup language), and as such each xmds script
must be a “properly formed” XML document. One of the main stipulations for an XML
document to be properly formed is that it have the following line at the top of each document,
and so, each xmds script must have this as its first line:

<?xml version="1.0"?>

There are other stipulations, but they don’t really concern us too much at the moment.
If you’re interested, you can check out the World Wide Web Consortium (W3C) web site
(http://www.w3c.org) for more information.

3
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Each xmds simulation is enclosed within a set of <simulation> tags. Therefore, for
each simulation that you write from scratch, the first few lines of code are going to be:

<?xml version="1.0"?>
<simulation >

<!-- yet more xmds code to come -->

</simulation >

It might be a good idea at this stage to save this code to file. So, for the purposes of the
tutorial, we’ll refer to this script as lorenz.xmds.

Next, the xmds script needs a name. Well, to be honest, it doesn’t really need a name,
but it’s a good idea to add the <name> tag if only for completeness. If the <name> tag is
not included, xmds uses the name of the xmds script file (but with the .xmds extension
removed) as the name of the simulation, so in this simulation if we were to not specify the
<name> then the simulation name used by xmds would be lorenz. However, it is still a
good idea to specify the name inside the simulation text and we do this here, setting <name>

to lorenz. The script now becomes:

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>

<!-- yet more xmds code to come -->

</simulation >

Notice that we have indented the <name> tag from the rest of the tags. It is a good idea
to indent tags that are nested within other tags so that one gets an idea of the document
structure just from looking at the source code.

The next two tags that I recommend you add to your scripts are the <author> and
<description> tags. These tags aren’t necessary for running a simulation or for actually
calculating anything, however, they are good for documenting the simulation, and providing
extra information that may be helpful to others if you show your scripts to other people.
Also, this information may actually be used in future versions of xmds to provide extra
functionality in the output from xmds simulations. The code now is:

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >
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<!-- yet more xmds code to come -->

</simulation >

Alternatively, you can add such information to the script by putting comments in the source
code. The above code may then look something like this:

<?xml version="1.0"?>
<!-- Example simulation: lorenz -->

<!-- Adapted from the example in "Numerical methods for physics"-->
<!-- by Alejandro L. Garcia , pg 78 -->

<!-- Xmds script by: Paul Cochrane -->

<simulation >

<name>lorenz </name>

<!-- yet more xmds code to come -->

</simulation >

1.1.2 General simulation options

Now that the very basic preliminaries are out of the way, we need to focus on the problem
we are trying to solve. So, for the sake of argument, let’s try to solve the Lorenz equations,

dx

dt
= σ(y − x) (1.1)

dy

dt
= rx− y − xz (1.2)

dz

dt
= xy − bz, (1.3)

where σ, r and b are positive constants, and the variables have the initial conditions: x(t =
0) = x0, y(t = 0) = y0, z(t = 0) = z0.

Even though we are trying to solve something as complex as a chaotic system, this is very
easy to write down in xmds. This is especially true since the derivatives are with respect
to time, for if we had spatial derivatives we would have to use Fourier transform techniques
and mappings to simplify the calculation (we’ll cover this stuff in Section 1.2, so don’t worry
that we’re not discussing it here) which would complicate our script a bit more, and we’re
trying to keep things simple here.

The Lorenz model can be used in the study of many interesting phenomena, however it
is possibly best known as a model of global weather [1]. For a system to be chaotic it must
be extremely sensitive to initial conditions such that any small perterbation of the initial
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conditions will cause wildly divergent evolution; and this is something we will hopefully see
here, so let’s continue.

There can be many global parameters in an xmds simulation, although, one in particular
is special. This is the propagation direction, specified by the <prop dim> tag, which is
specified as part of the global functionality of the xmds simulation and appears within the
<simulation> tags, normally after the <description>. In the problem we are trying to
solve, our field is evolving in time, given by the variable t in the above equations, and so the
field is said to be propagating in t so we use time as the propagation dimension. Therefore,
we add the line

<prop_dim >t</prop_dim >

to our xmds script, just after the <description> or conversely just before the <globals>

section (in the situation considered here, these locations are one in the same, however, this
is not the case in general). The script is now

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >

<prop_dim >t</prop_dim >

<!-- yet more xmds code to come -->

</simulation >

This problem we are trying to solve has several constants, namely σ, r, b, x0, y0, and z0.
These variables are going to be used again and again in the simulation therefore it makes
sense to put them into the next element necessary to describe a simulation in xmds, the
<globals> tag. We specify these constants using C/C++ syntax in an XML CDATA block,
which is enclosed within the <globals> element. The xmds code for this is

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions
const double zo = 20.0; // initial conditions

]]>
</globals >
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There are a couple of points to note here. Firstly, and most importantly, the syntax of
the code within the CDATA block must conform to C/C++ syntax rules, otherwise the
simulation won’t be able to be compiled. This is because the code within the CDATA block
is inserted directly into the code for the output simulation. Secondly, the constants that we
are specifying are declared to be double precision to xmds (this is via the double keyword
in the code above) since they are continuous variables in the problem being solved. If for
instance, we had some discrete quantity such as the number of particles in a system, then
we would specify the variable as being integer and would therefore use the int keyword
to declare the variable as such. Lastly, the odd-looking tags for the CDATA block must be
written correctly (i.e. opened with <![CDATA[ and closed with ]]>) otherwise the file won’t
parse, and xmds will give an error. Our script is now,

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >

<prop_dim >t</prop_dim >

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions
const double zo = 20.0; // initial conditions

]]>
</globals >

<!-- yet more xmds code to come -->

</simulation >

1.1.3 The field element

Now that we have set up the physical constants of our problem, we need to describe the
field that we are going to be integrating over, in other words we need to specify a discretised
version of x(t), y(t) and z(t) at the start of the problem. To specify the field for the simple
example we are studying here, we only need to tell xmds the initial value of the field (i.e. that
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when t = 0). Note that in more complex situations (to be studied later) there are more tags
to worry about.

The first tag is the <field> element. This is a container for the other information that
we are using to describe the field, and is used very simply as follows

<field >

<!-- More xmds tags in here -->

</field >

We next give the name of the field, this is supplied with the <name> tag (note that
this is a sub-element of the <field> tag, and so is different from the <name> tag of the
<simulation> element). If no name is given for the field, it defaults to “main”, however, as
mentioned before, it is a good idea to specify a name for the field anyway. We’ll call it main
to be consistent with other scripts you are likely to see, and because this is the main field.

We next must tell xmds which of the field moments to sample directly after the field is
initialised. This is not obvious to those new to xmds, however this gives one the opportunity
to choose whether or not to sample the initial point of the field, and generate output moments
such as mean and standard error, before it is propagated. To do this we put a sequence of
1’s or 0’s within the <samples> element. We must put as many 1’s and 0’s as there are
moment groups defined in the <output> tag (to be discussed later). In our case, we will only
be using one output moment group here, and we do want to sample the initial field for the
moments, hence we add the code

<samples >1</samples >

to our script. The simulation at this stage looks like

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >

<prop_dim >t</prop_dim >

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions



1.1 A basic simulation 9

const double zo = 20.0; // initial conditions
]]>
</globals >

<field >
<name>main</name>
<samples >1</samples >

<!-- yet more xmds code to come -->

</field>

</simulation >

Now we have to initialise the field. In other words, we have to define x(t = 0), y(t = 0),
and z(t = 0). xmds makes this easy by allowing you to define the field as a vector written
in terms of the dimensions of the field. It is possible to define other vectors that are part of
the field, but the vector of the field that we are integrating is the main vector, and this we
name (funnily enough) main. This naming is compulsory since it is possible to have more
than one vector named within a field; however, there must be exactly one vector named
main. We also need to specify the data type of our vector, the names of the components
of the vector and we need to define how the vector should be calculated using C code (in a
CDATA section). For the case we are considering here, the xmds code would be:

<vector >
<name> main </name>
<type> double </type>
<components > x y z </components >
<![CDATA[

x = xo;
y = yo;
z = zo;

]]>
</vector >

So, as we can see, our vector is called main, it is of type double and the names of its com-
ponents are x, y, and z. The CDATA section gives the C code version of what Equation (1.3)
describes.

This code completes the <field> element and we are left with the following code listing:

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).
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</description >

<prop_dim >t</prop_dim >

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions
const double zo = 20.0; // initial conditions

]]>
</globals >

<field>
<name>main</name>
<samples >1</samples >

<vector >
<name> main </name>
<type> double </type>
<components > x y z </components >
<![CDATA[

x = xo;
y = yo;
z = zo;

]]>
</vector >

</field >

<!-- yet more xmds code to come -->

</simulation >

1.1.4 The sequence element

We have arrived at the stage where we can tell xmds how to actually perform the integration
of the field. To do this we use the <sequence> element. The <sequence> element is usually
used as a container for other elements, specifically the <integrate>, <filter> and other
<sequence> elements. The outermost <sequence> element is referred to as the “parent”
<sequence> and the <sequence>s nested within that as the “child” <sequence>s. This
may sound a bit confusing, but it is just a generalisation and a lot of the time you will be
writing scripts with just the one <sequence>. The <sequence> element may have as many of
the other sub-elements as desired to perform the calculation, and the “child” <sequence>s
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can contain another element—the <cycles> element—which controls how many times a
given <sequence> is repeated. The <cycles> element is optional and defaults to one. It is
important to note that the order of segments specified within a <sequence> are significant,
and operations given will be performed in that order.

So, to summarise, most of the time you will just use one <sequence> and it will usually
only contain just the one <integrate> section, hence the code will look like

<sequence >
<integrate >

<!-- More xmds tags to come -->

</integrate >
</sequence >

We shall try to discuss the other features and tags in more depth later on in more advanced
tutorials.

1.1.5 The integrate element

Since the <integrate> element is quite complex, and it does all of the hard work, we’ll
spend some time discussing it.

We need to tell xmds the algorithm to use to integrate the field specified earlier. To
do this we use the <algorithm> tag. This tag is optional and will default to SIEX for
stocastic simulations and to RK4EX for non-stochastic simulations, however, it is a very good
idea to explicitly specify what algorithm your simulation is using, if only to help yourself
in six months time, or a colleague who may end up reading your code. At the moment
(xmds version 1.5-1) there are six algorithms to choose from: RK4EX, RK4IP, ARK45EX,
ARK45IP, SIEX, SIIP. RK4EX is a fourth order Runge-Kutta in the explicit picture, RK4IP
is a fourth order Runge-Kutta in the interaction picture, the ARK45EX and ARK45IP are the
corresponding adaptive time step Runge-Kutta Fehlberg methods, SIEX is the semi-implicit
method in the explicit picture, and SIIP is the semi-implicit method in the interaction
picture. For more information about the specifics of these algorithms and techniques, see
Section 6.3. In solving our problem we’ll use the fourth order Runge-Kutta in the explicit
picture, because we aren’t using any Fourier transforms, and the explicit picture is fine for
our purposes here. Therefore, we specify within the <integrate> tags the line:

<algorithm >RK4EX</algorithm >

telling xmds what algorithm to use.
The next things xmds needs to know are the length of the integration interval, the total

number of steps to take, and the number of samples for each output moment to take within
these steps. These items are denoted by the <interval>, <lattice> and <samples> tags
respectively. The integration interval combined with the number of steps gives the step
size internally used by xmds. We’ll choose some fairly arbitrary numbers here: an interval
length of 10, a large number of lattice points, namely 10000, (which should give us a nice
small step size), and we’ll sample 200 points, and hence set <samples> to 200. The code for
this looks like:
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<interval > 10 </interval >
<lattice > 10000 </lattice >
<samples > 200 </samples >

Having told xmds some of the parameters it must use to perform the integration, we
haven’t yet told it how to actually carry out the integration. By this I mean that we have
to describe in terms of C language code the differential equation that xmds is to use to
evolve the solution forward (see Equation (1.3)). We do this by using a CDATA block, and
writing the equation in a form understandable to both us and xmds which isn’t technically
speaking C code.

<![CDATA[
dx_dt = sigma *(y - x);
dy_dt = r*x - y - x*z;
dz_dt = x*y - b*z;

]]>

Notice that this looks similar to the analytical form of Equation (1.3) in that we have
described the derivatives with respect to time, t of the fields x(t), y(t) and z(t).

With that, we have completed the <integrate> element, and the <sequence> section.
The simulation script is now:

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >

<prop_dim >t</prop_dim >

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions
const double zo = 20.0; // initial conditions

]]>
</globals >

<field>
<name>main</name>
<samples >1</samples >
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<vector >
<name> main </name>
<type> double </type>
<components > x y z </components >
<![CDATA[

x = xo;
y = yo;
z = zo;

]]>
</vector >

</field>

<sequence >
<integrate >

<algorithm >RK4EX</algorithm >
<interval > 10 </interval >
<lattice > 10000 </lattice >
<samples > 200 </samples >
<![CDATA[

dx_dt = sigma *(y - x);
dy_dt = r*x - y - x*z;
dz_dt = x*y - b*z;

]]>
</integrate >

</sequence >

<!-- yet more xmds code to come -->

</simulation >

1.1.6 The output element

Ok, we’re almost there! This is the last section that we need to worry about. So, just to
recap, we’ve told xmds the general features and variables it should use to construct the
simulation, the field to integrate over, and the way in which the integration should take
place and most importantly the differential equation that xmds should use to evolve the
solution. That sounds like about it doesn’t it? Well, no. We haven’t told xmds to output
anything yet, and it’s a bit silly to spend several hours of computer time for the simulation
to come back to you and say: “I’m done!” and you haven’t got any results. Fortunately,
xmds doesn’t let you write a simulation without actually specifying any output. Therefore,
we need to tell xmds what output we want from the simulation, and to do this we use the
<output> element.

The <output> element is just a container for the other tags that specify what is to be
output. The two tags that are contained within the <output> element are: <filename> and
<group>.
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The <filename> tag (fairly obviously) specifies the filename of the output data file. This
tag is optional and defaults to the simulation name (i.e. the value of <name> directly within
the <simulation> tag) with the string .xsil appended. For example, if we didn’t specify a
filename for the simulation we’ve created here, then the filename xmds would use would be
basicSim.xsil. The output data file is in the XSIL format [2] which is a handy interchange
format also using XML.

The <group> tag contains a description (and to a degree the definition) of the moments of
the output data, which can be such things as the power density of the field(s), or just means
and standard errors of the field(s). More than one output group can be specified, but at least
one must be given. Post-processing may be performed before an output group is written
to file, allowing one to do some complex tasks on the data sampled in the running of the
simulation (this is put after the <sampling> tag which is coming up), however this is more
involved than the discussion here, so we won’t be using it. A good place to look if you’re at
all interested is the examples directory in the distribution or see the script repository on the
xmds web page: http://www.xmds.org.

After looking for the <group> tag, xmds then expects to see a <sampling> tag within
that, which defines how the group is to be sampled. This is also just a container for more
specific tags. Just as an aside: although it may seem a pain at this stage to have so many
containers for other containers and tags and so on, this gives the entire document a nice
structure where one builds up a simulation from nice bite-sized (pun not intended) chunks.
Also, one really doesn’t go to the pain of writing a simulation from scratch very often
so this shouldn’t be a big issue when you finally get to writing other and more complex
(and more interesting!) simulations. Within the <sampling> tag xmds expects to see a
<fourier space> tag for each transverse dimension in the simulation, which tells xmds
whether or not to Fourier transform the dimension before being sampled and written out to
disk. For our example here, we don’t have any transverse dimensions so we won’t use this
tag.

Now we need to tell xmds the names of output moments we want to calculate, and the
C code it should use to do so. We do this using the <moments> tag and a CDATA block. For
this simulation things are quite simple since we just want the amplitude of the variables as
they evolve. Just to make this really obvious we’ll define the output moments to be new
variables called xOut, yOut and zOut which are just equal to the variables x, y and z, but
it makes it more obvious in the code what information we are grabbing out of xmds. It
is possible to define as many moments as you wish, but you must define at least one. The
XML code we use is

<sampling >
<moments > xOut yOut zOut </moments >
<![CDATA[

xOut = x;
yOut = y;
zOut = z;

]]>
</sampling >

giving an output section which looks like

http://www.xmds.org
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<output >
<sampling >

<moments > xOut yOut zOut </moments >
<![CDATA[

xOut = x;
yOut = y;
zOut = z;

]]>
</sampling >

</output >

and an overall simulation which is (finally):

<?xml version="1.0"?>
<simulation >

<name>lorenz </name>
<author >Paul Cochrane </author >
<description >

Lorenz attractor example simulation . Adapted from the example
in "Numerical methods for physics" by Alejandro L. Garcia ,
page 78 (1 st ed.).

</description >

<prop_dim >t</prop_dim >

<globals >
<![CDATA[

const double sigma = 10.0;
const double b = 8.0/3.0;
const double r = 28.0;
const double xo = 1.0; // initial conditions
const double yo = 1.0; // initial conditions
const double zo = 20.0; // initial conditions

]]>
</globals >

<field >
<name>main</name>
<samples >1</samples >

<vector >
<name> main </name>
<type> double </type>
<components > x y z </components >
<![CDATA[

x = xo;
y = yo;
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z = zo;
]]>

</vector >
</field >

<sequence >
<integrate >

<algorithm >RK4EX</algorithm >
<interval > 10 </interval >
<lattice > 10000 </lattice >
<samples > 200 </samples >
<![CDATA[

dx_dt = sigma *(y - x);
dy_dt = r*x - y - x*z;
dz_dt = x*y - b*z;

]]>
</integrate >

</sequence >

<output >
<sampling >

<moments > xOut yOut zOut </moments >
<![CDATA[

xOut = x;
yOut = y;
zOut = z;

]]>
</sampling >

</output >
</simulation >

Here is a link to the finished (gzipped) script file lorenz.xmds.gz on the xmds web site
(http://www.xmds.org).

1.1.7 Making the simulation and getting results

Now that the simulation script is ready, it is just a matter of getting xmds to generate
the C++ source code and compiling that with your system’s C++ compiler. This is a very
simple process, and in the vast majority of cases, all one has to do is enter the following at
the command prompt:

% xmds lorenz.xmds

A file called lorenz should now appear in the same directory as your simulation script;
this file is the simulation binary executable file. To run the simulation merely execute the
binary file by entering its name at the command line. You should see something like this

% lorenz
Beginning full step integration ...

http://www.xmds.org/examples/lorenz.xmds.gz
http://www.xmds.org
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Sampled field (for moment group #1) at t = 0.000000e+00
Sampled field (for moment group #1) at t = 5.000000e-02
<snip >
Sampled field (for moment group #1) at t = 9.950000e+00
Sampled field (for moment group #1) at t = 1.000000e+01
maximum step error in moment group 1 was 1.248578e-05

Once the program has finished running, you should find in the same directory as the
binary executable a file called lorenz.xsil. This is the file containing your output data
in a handy XML based format that can be used to interchange data between various other
formats. We’ll look at the output here in two programs, namely Matlab (or Octave) and
Scilab. Matlab is a commercial numerical programming language and environment which
has very powerful graphics capabilities and is used in the scientific community extensively.
Octave is a free program which is highly compatible with Matlab. Scilab is very similar to
Matlab, however it is free to download and install, but doesn’t have quite the same quality
as that made by Matlab. Nevertheless, Scilab is free, and is a handy alternative if your
budget can’t stretch to Matlab. There are subtle differences between Matlab (or Octave)
and Scilab and this is why we discuss the two here. XSIL files can also easily be translated
into scripts suited for input into Mathematica, gnuplot, or R using the bundled software.

Before we can start using Matlab or Scilab, we must convert the data contained in the
.xsil file into something that Matlab, Octave or Scilab can understand. To do this we use
the utility program bundled with xmds called xsil2graphics.

To generate an input file for Matlab or Octave use either

% xsil2graphics lorenz.xsil

or

% xsil2graphics -matlab lorenz.xsil

however the second example is redundant as a Matlab or Octave.m file is the default output
from xsil2graphics. You should see in the current directory a file called lorenz.m and a
data file for the one moment group that we sampled for lorenz1.dat. For Scilab use

% xsil2graphics -scilab lorenz.xsil

giving the files lorenz.sci and lorenz1.dat. Ok, now we’re ready to fire up our relevant
numerical processing and graphical environment and visualise the results.

1.1.7.1 Matlab and Octave

Start Matlab or Octave, and once at the command prompt load the information contained
in the data file by using the command

>> lorenz

doing a whos should give you something similar to this

>> whos
Name Size Bytes Class

error_xOut_1 1x201 1608 double array
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error_yOut_1 1x201 1608 double array
error_zOut_1 1x201 1608 double array
t_1 1x201 1608 double array
xOut_1 1x201 1608 double array
yOut_1 1x201 1608 double array
zOut_1 1x201 1608 double array

Grand total is 1407 elements using 11256 bytes

We can see that we’ve loaded our output data from the simulation into the variables xOut 1,
yOut 1 and zOut 1 in Matlab or Octave. The reason why the 1 is appended to the variable
names is so that if one defines a variable in two different moment groups, but of the same
name, then data isn’t lost. The number refers to the label of the moment group in the
simulation. At present you don’t need to worry about these details, but just realise that
they are there for when you write more complex scripts in the future. The error variables
seen in the whos listing are the differences between the full-step integration and the half-step
integration. The half-step integration is used for error checking purposes, so that you can
check if your simulation is likely to be giving you reliable answers. Now plot the data by
going

>> plot3(xOut_1 , yOut_1 , zOut_1)
>> xlabel(’x’)
>> ylabel(’y’)
>> zlabel(’z’)

and you should see a figure similar to Figure 1.1.
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Figure 1.1: Three dimensional plot in Matlab of the trajectories of a Lorenz attractor. Pa-
rameters used were: σ = 10, b = 8/3, r = 28, with initial conditions of x0 = 1.0, y0 = 1.0, and
z0 = 20.0.
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1.1.7.2 Scilab

A very similar process is necessary for viewing the results in Scilab. Start up scilab, and at
its command prompt run the command

-->exec(’lorenz.sci’)

-->temp_d1 = zeros (1 ,201);

-->t_1 = zeros (1 ,201);

-->xOut_1 = zeros (1 ,201);

-->yOut_1 = zeros (1 ,201);

-->zOut_1 = zeros (1 ,201);

-->error_xOut_1 = zeros (1 ,201);

-->error_yOut_1 = zeros (1 ,201);

-->error_zOut_1 = zeros (1 ,201);

-->lorenz1 = fscanfMat(’lorenz1.dat’);
Error Info buffer is too small (too many columns in your file ?)

-->temp_d1 (:) = lorenz1 (:,1);

-->xOut_1 (:) = lorenz1 (:,2);

-->yOut_1 (:) = lorenz1 (:,3);

-->zOut_1 (:) = lorenz1 (:,4);

-->error_xOut_1 (:) = lorenz1 (:,5);

-->error_yOut_1 (:) = lorenz1 (:,6);

-->error_zOut_1 (:) = lorenz1 (:,7);

-->t_1 (:) = temp_d1 (:);

-->clear lorenz1 temp_d1

to load the data into Scilab (you can safely ignore the warning), and then to obtain a
graphical output of the data, run the command
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-->param3d(xOut_1 , yOut_1 , zOut_1)

which should give something along the lines of that in Figure 1.2
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Figure 1.2: Three dimensional plot in Scilab of the trajectories of a Lorenz attractor. Pa-
rameters used were: σ = 10, b = 8/3, r = 28, with initial conditions of x0 = 1.0, y0 = 1.0, and
z0 = 20.0.

As we can see from both of these figures that we get the usual strange attractor “butterfly”
shape. Now that we’ve spent a lot of time going over the very basics of writing a simulation
from scratch, we now speed up a bit, and introduce some new xmds tags, but still with the
theme that we are writing this all from a clean slate. Hopefully you will be able to see the
other more powerful abilities of xmds and be able to start writing your own simulations.

1.2 A more complex simulation

In this section I’ll introduce how to use Fourier space in your simulations (and the extra
tags required), and explain why it is sometimes easier to perform part of the calculation in
Fourier space and then transform back to position space. To illustrate these extensions to
what we already know from Section 1.1 we’ll look at solving the one-dimensional diffusion
equation

∂a(x, t)

∂t
= κ

∂2a(x, t)

∂x2
(1.4)

where a(x, t) is the field to be evolved by the differential equation and is a function of time,
t, and space x, and κ is a constant describing how quickly the solution diffuses. An example
of an application of the diffusion equation is for modelling the diffusion of (some initial
distribution of) temperature in a metal rod; over time the temperature distribution will
flow from areas of higher temperature to areas of lower temperature, eventually achieving a
uniform distribution over the entire rod.
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So why do we use Fourier space when solving this differential equation? The main reason
is that it’s a lot easier to calculate some of the differentials in Fourier space than it is in
position space. It turns out that if one transforms position space into its respective Fourier
domain, that a partial derivative with respect to position, just becomes i (i.e.

√
−1) times

the coordinate in Fourier space. For our example, such a mapping would be:

∂

∂x
7→ ikx. (1.5)

Hence, in Fourier space, the second derivative on the right hand side of Equation (1.4) is
just −k2

x. Given that (discrete) Fourier transforms aren’t that hard to do on a computer
(and in xmds we use the Fastest Fourier Transforms in the West http://www.fftw.org, so
they’re pretty fast) using such a transformation improves the calculation somewhat.

1.2.1 Specifying the problem

We now need to specify the problem properly. To do this we must specify an initial condi-
tion for the solution we wish to evolve, and we must specify the boundary conditions of the
domain over which we wish to solve this particular problem. Boundary conditions are nec-
essary here since we have a transverse dimension (i.e. x) in this system (recall in Section 1.1
we had no transverse dimensions, only the propagation dimension of time). In following
Garcia [1], as we do here again, we are trying to model the temperature diffusion of an
initial temperature distribution in a one-dimensional rod, the ends of which are kept at a
constant temperature of T = 0. Unfortunately, this implies Dirichlet boundary conditions,
and xmds only implements periodic boundary conditions. This isn’t strictly true, as one can
implement absorbing boundary conditions in xmds (and people do in practice), however,
one has to jump through some hoops that we don’t really want to bother with here. So, to
imitate Dirichlet boundary conditions, we’ll not let the solution evolve outside the domain of
the transverse dimension, x. All this means is that we make that particular domain rather
larger than was necessary, and we make sure we don’t evolve it in time for too long. We also
start with a very narrow initial condition, and not have the diffusion coefficient too high, so
as to inhibit the diffusion a bit. Please note that this is an example simulation to get people
used to using the syntax of xmds and not necessarily to pedantically solve certain physical
problems, we merely use the physical situations here to illustrate xmds, not the other way
around.

An important solution of the diffusion equation is a Gaussian of the form [1]

T (x, t) =
1

σ(t)
√

2π
exp

[
−(x− x0)

2

2σ2(t)

]
, (1.6)

where x0 is the location of the maximum and the standard deviation, σ(t), increases with
time as

σ(t) =
√

2κt. (1.7)

This solution is also a handy initial condition, and this is the analytical form of the initial
condition we will be giving to xmds.

http://www.fftw.org
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1.2.2 Starting off the simulation code

Now with the boundary conditions, and the initial condition specified analytically we are
now in a position to start writing some xmds code. As per usual, we start with the <?xml

version="1.0"?> and <simulation> tags. Then add the simulation name, which we’ll call
diffusion, and we’ll put the author name and a brief description of what the simulation is
supposed to do. The global variables we have in the problem we are solving are the diffusion
coefficient κ, the standard deviation of the initial Gaussian distribution σ, and the positon
of the mean of the Gaussian distribution x0. These variables we’ll call respectively, kappa,
sigma, and x0. The code for this looks like:

<?xml version="1.0"?>
<simulation >

<!-- Global system parameters and functionality -->
<name> diffusion </name>
<author > Paul Cochrane </author >
<description >

Solves the one -dimensional diffusion equation for an initial
Gaussian pulse . Adapted from A. L. Garcia , "Numerical Methods
in Physics" (1994).

</description >

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double kappa = 0.1;
const double sigma = 0.1;
const double x0 = 0.0;

]]>
</globals >

<!-- more xmds code to come -->

</simulation >

which we put into a file called diffusion.xmds.

1.2.3 Describing the field

Again, the next thing to tell xmds about is the <field> element. This time we have a
transverse dimension which is in the x direction, and we mention this using the <dimensions>
tag like so:

<dimensions > x </dimensions >

In the general case, xmds expects a space-separated list of transverse dimensions here, but
in our example things are a bit simpler.
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We now have to tell xmds the number of grid points of the lattice in this dimension, and
over what domain in this dimension the grid is defined. To do these two things we use the
<lattice> and <domains> tags. In our simulation here, we want to sample from x = −1 to
x = 1, and use 100 points. Therefore, we set <lattice> to 100, and <domains> to (-1,1).
Notice that the <domains> tag is defined by using an ordered pair syntax. xmds expects
to see the domain for each transverse dimension defined as an ordered pair i.e. two comma-
separated values enclosed in parentheses; if there is more than one transverse dimension,
then the domains for each are defined by a list of space-separated ordered pairs. The last
thing we need to mention before discussing the <vector> tag is that the number of samples
is set to the same value as that in Section 1.1, i.e. 1, and that the name of the field, as per
usual, is main. The <field> element now looks like

<field >
<name> main </name>
<dimensions > x </dimensions >
<lattice > 100 </lattice >
<domains > (-1,1) </domains >
<samples > 1 </samples >

<!-- more xmds code to come -->

</field >

We now need to specify the <vector> element. This is much the same as previously
discussed in Section 1.1, but with some changes and one addition: the <fourier space>

tag. The vector <name> is again main, the <type> this time is complex though. The reason
this might be confusing is because the temperature is a real quantity, and therefore, those
who have been reading carefully may question why float wasn’t chosen as the type instead.
A type of complex is chosen because we are using a Fourier transform technique whereby
the solution is transformed into Fourier space to calculate the second partial derivative in x
and then transformed back again, and to be able to transform into Fourier space, we need
our variables to be of complex type. The <components> tag is set to T, since this is the
name of the variable about to be defined in the CDATA block to come, and we tell xmds that
this component is not defined in Fourier space by setting the <fourier space> tag to no.

We next define the CDATA block. This is our C++ language representation of Equa-
tion (1.6), which we are using as our initial condition. The CDATA block is

<![CDATA[
T = rcomplex(

exp(-(x - x0)*(x - x0 )/(2.0* sigma*sigma))
/( sigma*sqrt (2.0* M_PI))

,0.0);
]]>

This may look quite complicated, and possibly because we’ve tried to split the code over
several lines in an attempt to break up the various parts and because this is intended for a
fixed width page. The code does nevertheless introduce some important concepts. These are:
the rcomplex() function, the ability to split lines of code over multiple lines if necessary,
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and the M PI variable
The rcomplex() function is one of a set of utility functions added as part of xmds to

allow users to define complex variables. The syntax of rcomplex() is rcomplex(x,y) where
x and y are real variables representing the real and imaginary parts of the complex number
respectively. This explains one line of the CDATA block reads merely: ,0.0);. The lonely
comma is just separating the two arguments to rcomplex(), the 0.0 is the imaginary part of
the variable we are defining, which is real, but of complex type, and the closing parenthesis
and semicolon just finish off the function call syntax.

Notice that the variable T is assigned to a quantity which is defined over multiple lines.
Although this may seem strange to some, for those familiar with C language rules will
know that all the C compiler is looking for is the semicolon as the character denoting the
end of the expression. Therefore, it is possible to split equations over many lines to break
up complicated expressions, or to highlight certain parts of the expression that may be
important.

The M PI variable is an automatically set variable by xmds that is the value of π,
i.e. 3.14159. . .

Note also that one can use any of the standard mathematical functions defined in C/C++,
such as sqrt(), log() etc.

This completes the discussion of the <field> element, which is now:

<!-- Field to be integrated -->
<field >

<name> main </name>
<dimensions > x </dimensions >
<lattice > 100 </lattice >
<domains > (-1,1) </domains >
<samples > 1 </samples >

<vector >
<name> main </name>
<type> complex </type>
<components > T </components >
<fourier_space > no </fourier_space >
<![CDATA[

T = rcomplex(
exp(-(x - x0)*(x - x0 )/(2.0* sigma*sigma))

/( sigma*sqrt (2.0* M_PI))
,0.0);

]]>
</vector >

</field >

1.2.4 The sequence and integrate elements

Using what we know from Section 1.1, we now use <sequence> and <integrate> elements
to describe the guts of what xmds has to do. We’ll use here the RK4EX algorithm, an interval



1.2 A more complex simulation 25

of length 1, a lattice of 1000, and take 50 samples along the propagation direction.
Now, because we’re evolving the solution partially in Fourier space, we need to define the

operators that are going to be performing the evolution. This is done with the <k operators>

element. The reason why we call this the <k operators> element is because Fourier space
is often referred to as k-space, and position space as x-space, hence these operators are
operating in k-space, and so they are k-operators. We next tell xmds that the k-operators
(there is actually only one here) are constant over the course of the simulation by setting
the <constant> tag to yes. We do this because if xmds has to assume that the k-operators
aren’t constant then it has to use much slower code to evolve the solution, and we are fortu-
nate that for our simulation here the k-operators are constant since they can be calculated
via the (also constant) x variable. xmds needs to know the name of the operator we are
going to use for our k-operator, and this we set with the <operator names> tag to be L.
In general, the <operator names> tag expects a space-separated list of the operator names
you wish to define. We then give the C++ code necessary to define the operator in a CDATA

block, and for our simulation this is

<![CDATA[
L = - kappa*kx*kx;

]]>

Note that we have one variable here that we haven’t defined before: kx. This is a variable
automatically defined by xmds when we define k-operators. If we had another variable
called y and defined a k-operator for it, then it would be called ky.

The last thing we need to do within this section of the script is tell xmds how to evolve
the solution—in other words, the differential equation! As in Section 1.1 we use a CDATA

block with a modified C++ syntax that xmds understands to write down the differential
equation.

<![CDATA[
dT_dt = L[T];

]]>

This completes the work necessary to integrate the solution forward, and completes the
<integrate> and <sequence> elements, which are:

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm >RK4EX</algorithm >
<interval >1</interval >
<lattice >1000</lattice >
<samples >50</samples >
<k_operators >

<constant >yes</constant >
<operator_names >L</operator_names >
<![CDATA[

L = -kappa*kx*kx;
]]>

</k_operators >
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<![CDATA[
dT_dt = L[T];

]]>
</integrate >

</sequence >

1.2.5 The output element

The <output> element is much like that discussed in Section 1.1. We need to specify a
<filename> tag, just so that we are documenting everything nicely, and then <group>

and <sampling> elements to describe the rest of the information xmds needs to properly
sample the data and save it out to file. There are two new tags that are needed because we
have a transverse dimension to worry about; these are <fourier space> and <lattice>.
The <fourier space> tag is necessary to tell xmds if the sampling of the output is to
be performed in Fourier space. xmds expects to see a space-separated list of yes or no

values for each of the transverse dimensions, and for the situation here we don’t want the
output sampled in Fourier space and we only have one transverse dimension, so we set
the <fourier space> tag to no. The <lattice> tag tells xmds how finely the transverse
dimensions should be sampled, and in general expects to see a space separated list of values
telling it how many samples in the particular transverse dimension to take. Here we just set
<lattice> to 50. The moments we are interested in sampling is of the temperature, so we
specify a <moments> tag value of temperature and give the code to calculate this moment
in a CDATA block as

<![CDATA[
temperature = T;

]]>

All of this information gives the <output> element to be

<!-- The output to generate -->
<output >

<filename >diffusion.xsil</filename >
<group>

<sampling >
<fourier_space > no </fourier_space >
<lattice > 50 </lattice >
<moments >temperature </moments >
<![CDATA[

temperature = T;
]]>

</sampling >
</group >

</output >
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1.2.6 The final script

We now have a complete script! And this is, in its entirety:

<?xml version="1.0"?>
<!-- Example simulation: Diffusion Equation -->

<simulation >

<!-- Global system parameters and functionality -->
<name>diffusion </name>
<author > Paul Cochrane </author >
<description >

Solves the one -dimensional diffusion equation for an initial
Gaussian pulse . Adapted from A. L. Garcia , "Numerical Methods
in Physics" (1994).

</description >
<prop_dim >t</prop_dim >

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double kappa = 0.1; // diffusion coefficient
const double sigma = 0.1; // std dev of initial Gaussian
const double x0 = 0.0; // mean position of initial Gaussian

]]>
</globals >

<!-- Field to be integrated over -->
<field >

<name>main</name>
<dimensions > x </dimensions >
<lattice > 100 </lattice >
<domains > (-1,1) </domains >

<samples >1</samples >
<vector >

<name>main</name>
<type>complex </type>
<components >T</components >
<fourier_space >no</fourier_space >
<![CDATA[

T = rcomplex(
exp(-(x - x0)*(x - x0 )/(2.0* sigma*sigma ))/

(sigma*sqrt (2.0* M_PI))
,0.0);

]]>
</vector >



28 Starting from scratch

</field >

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >

<algorithm >RK4EX</algorithm >
<interval >1</interval >
<lattice >1000</lattice >
<samples >50</samples >
<k_operators >

<constant >yes</constant >
<operator_names >L</operator_names >
<![CDATA[

L = -kappa*kx*kx;
]]>

</k_operators >
<![CDATA[

dT_dt = L[T];
]]>

</integrate >
</sequence >

<!-- The output to generate -->
<output >

<filename >diffusion.xsil</filename >
<group >

<sampling >
<fourier_space > no </fourier_space >
<lattice > 50 </lattice >
<moments >temperature </moments >
<![CDATA[

temperature = T;
]]>

</sampling >
</group >

</output >

</simulation >

Here is a link to the finished (gzipped) script file diffusion.xmds.gz on the xmds web site
(http://www.xmds.org).

1.2.7 Making the simulation and getting results

Running through the sequence of events necessary to generate a simulation binary executable
file, running it and producing the results for Matlab, Octave or Scilab, you should see a

http://www.xmds.org/examples/diffusion.xmds.gz
http://www.xmds.org
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sequence of events (and output) something like following:
Generating the simulation binary:

% xmds diffusion.xmds

Running the simulation:

% diffusion
Making forward plan
Making backward plan
Beginning full step integration ...
Sampled field (for moment group #1) at t = 0.000000e+00
Sampled field (for moment group #1) at t = 2.000000e-02
<snip >
Sampled field (for moment group #1) at t = 9.800000e-01
Sampled field (for moment group #1) at t = 1.000000e-00
maximum step error in moment group 1 was 9.909189e-09

The forward and backward plans are the fftw routines calculating the necessary Fourier
transforms.

Generating the Matlab or Octave output:

% xsil2graphics lorenz.xsil
Output file format defaulting to matlab.
Output file name defaulting to ’diffusion.m’
Proccessing xsil data container 1 ...
Writing data container 1 to file ...

Generating the Scilab output:

% xsil2graphics -scilab lorenz.xsil
Output file name defaulting to ’diffusion.sci’
Proccessing xsil data container 1 ...
Writing data container 1 to file ...

1.2.7.1 Matlab

Loading the data into Matlab or Octave:

>> diffusion

Doing a whos:

Name Size Bytes Class

error_temperature_1 50x51 20400 double array
t_1 1x51 408 double array
temperature_1 50x51 20400 double array
x_1 1x50 400 double array

Grand total is 5201 elements using 41608 bytes

Plotting the data:
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>> mesh(t_1 , x_1 , temperature_1)
>> xlabel(’t’)
>> ylabel(’x’)
>> zlabel(’T’)

you should see a figure similar to Figure 1.1.
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Figure 1.3: Three dimensional plot in Matlab of the diffusion of Gaussian pulse according to
the diffusion equation. Parameters used were: κ = 0.1, σ = 0.1, x0 = 0

1.2.7.2 Scilab

Loading the data into Scilab:

-->exec(’diffusion.sci’)

-->temp_d1 = zeros (50 ,51);

-->t_1 = zeros (1 ,51);

-->temp_d2 = zeros (50 ,51);

-->x_1 = zeros (1 ,50);

-->temperature_1 = zeros (50 ,51);

-->error_temperature_1 = zeros (50 ,51);

-->diffusion1 = fscanfMat(’diffusion1.dat’);
Error Info buffer is too small (too many columns in your file ?)
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-->temp_d1 (:) = diffusion1 (:,1);

-->temp_d2 (:) = diffusion1 (:,2);

-->temperature_1 (:) = diffusion1 (:,3);

-->error_temperature_1 (:) = diffusion1 (:,4);

-->t_1 (:) = temp_d1 (1,:);

-->x_1 (:) = temp_d2 (:,1);

-->clear diffusion1 temp_d1 temp_d2

Plotting the data:

-->plot3d(x_1 , t_1 , temperature_1)

should give something along the lines of that in Figure 1.2
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Figure 1.4: Three dimensional plot in Scilab of the diffusion of Gaussian pulse according to
the diffusion equation. Parameters used were: κ = 0.1, σ = 0.1, x0 = 0

Note that in both Figure 1.3 and Figure 1.4 we have an initial Gaussian pulse at t = 0,
which then spreads out and loses amplitude as t increases. This is the expected evolution of
the solution according to the diffusion equation. The data points near the back of the graph,
close to t = 1 are unlikely to be an accurate representation of the solution at this point, and
indeed, are unlikely to be correct. Nevertheless, we have the expected behaviour, and have
now demonstrated sufficient xmds tags for you, the user, to be confident to go off and write
your own simulations. We wish you the very best of luck!
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2
Extra and advanced features

2.1 Error checking

The error checking feature of xmds is enabled by default and is controlled by using the
<error check> tag. This is a boolean tag, and expects either a yes or no entry. In the
context of xmds, error checking means to run the simulation twice: once through at the full
step defined in the simulation script (via the <lattice> and <interval> assignments); and
then again at half of the full step size. The maximum difference between the field values
in each moment group is reported, and gives an indication of the discretisation error in
the simulation. If one of the adaptive algorithms is chosen, error checking means that the
simulation is run a second time with one 16th of the specified tolerance.

For instance, setting <error check> to yes in the atomlaser simulation (this is an
example code in the examples directory of the xmds distribution) we get the following
output:

Making forward plan

Making backward plan

Beginning full step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

Beginning half step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

33
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Sampled field (for moment group #1) at t = 1.000000e-08

maximum step error in moment group 1 was 4.408207e-11

The error reported here is of the order of 10−11 and therefore we can be confident that
discretisation error is not a significant problem in the simulation output. Once you are
sure that your simulation is behaving nicely, you can then turn off error checking by setting
<error check> to no thereby speeding up the simulation. This is especially important for
those whose simulations are going to take a long time to run. So, test your simulation to
make sure that the error is low for a short simulation run, and then for the main run turn
error checking off.

2.2 MPI: automatic parallelisation of simulations

One of the most powerful features of xmds is its ability to automatically parallelise sim-
ulations. We go through an extended discussion of this with specific focus on stochastic
simulations in Chapter 4, but it is of worth mention here as well. Not only can xmds paral-
lelise stochastic simulations by running each stochastic path on a separate computer, but it
is also able to parallelise the computation of deterministic problems as well. It does this with
the help of a package known as MPI, which stands for the Message Passing Interface, and is a
means to organise the communication and computation associated with parallel simulations.
To parallelise your simulation, all you have to do is add one line of code! Honestly. We’re
not joking. To turn this feature on in your code you need to add the line:

<use_mpi > yes </use_mpi >

and that’s it. What xmds will do when running your simulation is split up the computation
of the field and pass these parts of the overall computation to different computers, where it is
solved faster than possible by doing so on a single machine. One good reason for splitting a
simulation like this up and processing each part of the field on different processors is because
for some very large simulations the memory requirements are too large, and therefore won’t
fit on one computer: using MPI is the only way to solve the problem.

There is one major caveat here however: ONLY use MPI for deterministic problems on
a supercomputer, or a cluster setup where there is very small network latency (it doesn’t
take long for computers to talk to one another). This is very important, because the Fourier
transforms require a lot of communication, and if the network between nodes of the cluster
is slow then this will reduce the speed of the computation significantly, probably making it
faster to run on a single cpu. Nevertheless, if you do have access to powerful computing
facilities, then by all means, use this feature.

For stochastic problems, there is a second option you may wish to use, which changes
the way the different paths are allocated between processors. This can be altered by using
the <MPI Method> tag, which can take the values ”Scheduling” or ”Uniform”.
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2.3 Benchmarking

To get an idea as to how long your code is going to run when you scale the various simulation
parameters up for a long simulation, or just to see how long the main body of code takes,
you can use the <benchmark> tag. This tag is a boolean which by default is no, but when
set to yes it tells xmds to insert timing code around the main code block, excluding the
fftw plan creation and deletion steps (this is because these steps are not in general indicative
of how long the simulation will run, especially when scaled up to long simulation times). To
use this feature just put the code

<benchmark > yes </benchmark >

into your simulation script in the global simulation and functionality section, namely before
the <globals> tag.

The simulation will then report at the end of its run how long it took. An example of
this is (again, using the atomlaser simulation):

Making forward plan

Making backward plan

Beginning full step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

Beginning half step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

maximum step error in moment group 1 was 4.408207e-11

Time elapsed for simulation is: 10 seconds

where the simulation has taken (approximately) 10 seconds to complete.

2.4 Wisdom

The <use wisdom> tag is the way to enable FFTW’s wisdom feature. This tag expects a
boolean argument, and by default is set to no. However, when set to yes you can expect an
immense increase in the startup speed of your simulations.

Wisdom is the name fftw gives to stored information about their Fourier transform plans.
What fftw does before it decides to use a particular method for calculating the Fourier
transform is to run some calculations beforehand to see which of the methods is the fastest
(this can be related to your system’s architecture, the size of the problem, etc.) and then
it can optionally store this information so that fftw doesn’t have to go through all of the
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hard work again, and therefore make use of the stored “wisdom” about the problem at
hand. Enabling wisdom means that subsequent runs of the simulation will start up and run
(overall) much faster.

xmds requires a place to save this accumulated wisdom so that it can be reloaded in
subsequent simulation runs. The way xmds does this is to save the widsom in a file called
<hostname>.wisdom, where <hostname> is the name of the computer you are running the
simulation on. Note that for simulations using MPI, that the .wisdom filename uses the
format <hostname><rank>.wisdom where the <rank> is the MPI process rank number, and
stops name conflicts when doing parallel simulations. There are two places that xmds can
store .wisdom files: in the user’s ~/.xmds/wisdom directory; or in the directory local to the
simulation. The former is used if the ~/.xmds/wisdom directory exists, and the latter is used
if not.

Running the atomlaser simulation with wisdom turned on, we get the following output
(for the first run):

Performing fftw calculations

Making forward plan

Making backward plan

Keeping accumulated wisdom

Finished fftw calculations

Beginning full step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

Beginning half step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

maximum step error in moment group 1 was 3.802825e-11

Time elapsed for simulation is: 11 seconds

and then for the second run:

Performing fftw calculations

Standing upon the shoulders of giants... (Importing wisdom)

Making forward plan

Making backward plan

Keeping accumulated wisdom

Finished fftw calculations

Beginning full step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09
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Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

Beginning half step integration ...

Sampled field (for moment group #1) at t = 0.000000e+00

Sampled field (for moment group #1) at t = 2.500000e-09

Sampled field (for moment group #1) at t = 5.000000e-09

Sampled field (for moment group #1) at t = 7.500000e-09

Sampled field (for moment group #1) at t = 1.000000e-08

maximum step error in moment group 1 was 3.802825e-11

Time elapsed for simulation is: 10 seconds

You will note, if you have run the atomlaser simulation both with and without wisdom how
quickly the simulation starts once some fftw wisdom is used. Also, the simulation tells you
that it is using previously generated wisdom, and that it is saving it for future use.

2.5 Binary output

When performing big simulations, i.e. over many dimensions or when propagating for a large
distance over the propagation dimension, one is going to produce very large output files. This
can be a problem, and the problem will be exacerbated by the fact that by default, xmds
outputs data in ascii format, with a lot of redundancy. As a way to reduce the size of the
output, xmds since xmds-1.2 has had the ability to generate binary output files, which are
inherently smaller (and can have better precision) than ascii data files, but also deals away
with the redundancy introduced in the way that the ascii data is stored.

In xmds-1.2 binary output was controlled by the <binary output> and <use double>

tags. This syntax is deprecated as of xmds-1.3 in favour of passing attributes to the
<output> element, and this is the syntax we’ll be discussing here. Users who are still
using xmds-1.2 are advised either to upgrade to a more recent version of xmds to make
use of the better syntax. If you still wish to use xmds-1.2, then the syntax for using binary
output is described in Chapter 11.

2.5.1 The format attribute

As mentioned above, the output format of an xmds simulation is now controlled by the
format attribute of the <output> element. The syntax is as follows:

<output format="ascii"|"binary">
<!-- other xmds tags -->

</output >

where by saying "ascii"|"binary" we mean that the format option is either the string
"ascii" or "binary" (the double quotes are necessary) and that the default option is
"ascii".

For those who have used xmds in the past, you may remember that all of the data is
output into the .xsil file. Binary output doesn’t stop the generation of the .xsil file, but
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merely uses a feature of the XSIL format that enables binary files to be pointed to by the
.xsil file. Therefore, all of the important parameters of the simulation are still saved to
the .xsil file, just the data is now saved to another file (or files if you have more than one
moment group) containing just a binary string of data. So, when using binary output the
following files will be produced: a .xsil file containing simulation parameters and pointing
to the output data (by default, this will be called <simulation name>.xsil); and a binary
data file for each moment group, being called in general <simulation name>mg<moment

group number>.dat.
Running the atomlaser simulation with the format set to "ascii" we get an output

.xsil file of size 808 kB. Now, if we run the atomlaser simulation again, except with the
<output> tag set to

<output format="binary">

then we get a .xsil file of size 4 kB, and a .dat file called atomlasermg0.dat of size 336 kB,
giving a total of 340 kB which is 42% smaller than with just ascii output. Bigger savings
can be expected with longer simulations and/or simulations using more dimensions.

2.5.2 The precision attribute

The default binary output is at double precision. This is not always necessary for output of
data, especially if the data is to be displayed graphically and then interpreted further there;
the extra precision is not necessarily worthwhile. Therefore, there is also the precision

attribute available in the <output> element, with which one can set the output precision to
either single or double precision. The syntax for this is as follows:

<output format="binary" precision="double"|"single">
<!-- more xmds tags -->

</output >

where "double"|"single" means the options are either "double" or "single" with "double"

being the default option. Notice that the format attribute is also set to "binary" this is
to emphasise that it is pointless specifying the precision without the format since the
precision attribute is meaningless for ascii output.

Using this option, and rerunning the atomlaser simulation we find that the file size of
atomlasermg0.dat is 168 kB and atomlaser.xsil is 4 kB, which overall is 21% of the size
of the original ascii output.

2.6 Initialisation of field vectors from file

In Chapter 1, Section 1.1.3 we initialised the field inside the <vector> element by using
C/C++ code. It is also possible to already have these vectors calculated and stored in a file,
which xmds can then load and use to initialise the field. This feature can be useful if the
calculation of the vectors is particularly difficult and you don’t wish for xmds to have to
calculate them, or you may have already generated the data from another program and so
going through the hassle of getting xmds to recalculate the data is a waste of time. Anyway,
it can be handy to do on some occasions and so xmds provides a means for you to do this via
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the <filename> tag within the <vector> element within the <field> element. The syntax
for this is:

<field >
<vector >

<filename format="ascii"|"binary"|"xsil">
<!-- enter the file name here -->

</filename >
</vector >

<field >

where "ascii" is the default option when the format attribute is not specified.
As of xmds-1.3, xmds has the ability to load binary as well as ascii data. Which xmds

should expect is given by the format attribute of the <filename> tag within the <vector>

element. Using binary input, however, doesn’t significantly change how the data should be
organised prior to loading into an xmds simulation. If MPI is enabled xmds will only load
into memory the appropriate part of the input file, irrespective of the file format.

2.6.1 Intialisation from an XSIL file

As of xmds-1.5-3, xmds can initialise a vector from a moment group of an XSIL file
produced by a <breakpoint> tag (see Section 2.9) or an <output> tag in xmds. If you are
generating the XSIL file from an <output> tag, then the output moment group must meet
a certain format for xmds to be able to understand how to load the file correctly. If the file
is generated from an <breakpoint> tag, then this is taken care of for you if the variables
have the same names in the two simulations.

For XSIL files generated from output moment groups, the format of the XSIL file must
be "binary" (not "ascii"). Also, the moment group number of the XSIL file that will be
used for initialisation must be specified with the moment group attribute of the <filename>

tag if there is more than one moment group in the XSIL file, if there is only one moment
group in the XSIL file (as is the case for XSIL files generated from a <breakpoint> tag),
then this attribute can be omitted. If the vector is of type double, then the variables of the
vector are initialised from the output moment group variables of the same name but suffixed
with an ‘R’. If the vector is of type complex, then the real and imaginary components of
each variable are initialised by the values of the output moment group variables of the same
name but with a suffix of ‘R’ for the real component and ‘I’ for the imaginary component.
For example, the complex variables x and y would be initialised by the output moment group
variables xR, xI, yR and yI, and you would use the following code in your <output> tag to
create these variables:

<output >
<group >

<sampling >
<moments >xR xI yR yI</moments >
<![CDATA[

xR = x.re;
xI = x.im;
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yR = y.re;
yI = y.im;
]]>

</sampling >
</group>

</output >

Not every variable in a vector need be present in the moment group of the XSIL file,
as any variable that is not present is automatically initialised to zero, or by a CDATA
section, as in Chapter 1, Section 1.1.3. Although xmds will continue initialisation even if it
cannot find all the variables in a vector in the XSIL file (it will not continue if it cannot find
any variables), it will print a warning about any variables that it cannot find in the XSIL
file. Note that the sequence of initialisation steps for each element in a vector is to first
initialise the element to zero, then to use any code in the CDATA section if present, and
finally to initialise from the XSIL file if the variable is present in the moment group. Hence,
initialisation from the XSIL file will override any initialisation in the CDATA section.

The dimensions of a vector can be initialised in any combination of x-space and k-space
by using the <fourier space> tag in the same way as it is used for initialisation from
C/C++ code, however the default is that each dimension is initialised in x-space.

There are some restrictions on the geometry of the moment group in the XSIL file,
however these conditions depend on whether the geometry matching mode (specified by
the attribute geometry matching mode of the <filename> tag) is set to "strict" mode or
"loose" mode. In "strict" mode, the following conditions apply:

1. The moment group must have the same number of dimensions as the field. In other
words, the moment group can only have been sampled once, as sampling a moment
group a number of times introduces an extra dimension, the propagation dimension.

2. The moment group’s dimensions must have the same name and be in the same order
as those of the field.

3. If a dimension is specified as being in x-space (k-space) in the moment group, then it
must be initialised in x-space (k-space). This can be done using the <fourier space>

tag.

4. Each dimension of the initialisation moment group must have the same number of
points as the corresponding dimension of the field, and the start and end coordinates
must be the same as those for the initialisation moment group.

In other words, in "strict" mode, the geometry of the initialisation moment group must be
the same (to within some small variation) as that of the field. Note that XSIL files generated
by a <breakpoint> tag automatically satisfy conditions 1 and 2 if the dimensions of the two
simulations are the same, and in the same order.

In the "loose" geometry matching mode, the last condition is relaxed to:

4. The step size in each dimension in the initialisation moment group must be the same
as the step size in the corresponding dimension of the field.
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5. Some of the moment group grid points must overlap (i.e. a vector with points at
positions x = 0, 2, 4, 6, 8 cannot be initialised from a moment group with points at
positions x = 1, 3, 5, 7, 9.) Note that points that aren’t initialised by the moment
group are set to zero, or can be initialised by the CDATA element if set.

The advantage of "loose" mode is that it allows one to break up a simulation into parts
where each part requires a slightly different grid. For example, in the diffusion example in
Chapter 1, Section 1.2, the restriction was made that the simulation is not evolved for long
enough such that the field becomes non-zero at the edge of the grid. With "loose" mode,
after running the simulation for some time on a small grid, if the state of the field is sampled
at the end of the simulation, the simulation can be continued on a larger grid (though still
keeping the same step size in that dimension, and ensuring that the grid points do overlap).
Also, if one wishes to increase (or reduce) the number of points in a given dimension, and
keep the width constant, initialise the state of the field with that dimension in k-space, as
in this case, the requirement that the step size in the k-space dimension be the same is
equivalent to the requirement that the width of that dimension in x-space remain the same.
Hence, the number of points in x-space in that dimension can be increased (or reduced).

Note that a binary XSIL file produced on any architecture can be used on any other
architecture (byte swapping is automatically done if the endianness of the machine running
the simulation is different to the endianness of the XSIL file), and XSIL files with the output
in single-precision can also be used.

In summary, the syntax for initialisation of a vector from an XSIL file is:

<field >
<vector >

<filename format="xsil" moment_group="N"
geometry_matching_mode="strict"|"loose">

<!-- enter the file name here -->
</filename >
<fourier_space > <!-- yes , no , ... --> </fourier_space >
<![CDATA[

// optional CDATA code
]]>

</vector >
<field >

where "strict" mode is the default geometry matching mode.

2.6.2 Input data layout for ASCII and binary formats

We now know the syntax of how to tell xmds that we want to input data from file, we just
now need to organise the data that we are going to input into the layout that xmds expects
to see it. Let’s see how this works by considering a simple example. Imagine we have three
input vectors that we want to initialise with double precision data: x, y and z. Their values
are:

x = [ -2.0 -1.0 0.0 1.0 2.0 ]
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y = [ -5e-2 1e-3 -1e-5 2e-4 -7e-2 ]

z = [ 10 20 30 50 1e3 ]

We can see that they are all 5 elements long (this will equal the <lattice> assignment), and
that they can contain numbers formatted in exponential notation. We’ll save this data into
a file called input.dat. xmds expects this data to be ordered in a particular way, which is
related to the way the data is stored internally. This order is an interlacing of the elements
of each vector, such that the first element of the first vector (in this case x) is expected as
the first entry in the input file, then the first element of the second vector (in this case y)
then the first element of the third vector (z here), and then the second element of the first
vector and so on.

One way of describing this is in terms of C/C++ code. The data is expected in this
format:

x[0]

y[0]

z[0]

x[1]

y[1]

z[1]

and so on until the end of the data. Another way of describing this is in terms of the actual
data, and so here is how the file input.dat will look:

-2.0

-5e-2

10

-1.0

1e-3

20

0.0

-1e-5

30

1.0

2e-4

50

2.0

-7e-4

1e3

If this seems unnecessarily complicated—it is. However, this is the way the data is expected
and so we have to behave the way xmds expects otherwise our simulation will not work
properly. As it turns out, storing the data within memory in this fashion means that calcu-
lations are performed on contiguous blocks of memory, and therefore are a lot faster than if
entire vectors were stored with their elements next to one another. This is a significant point
for the memory utilisation internal to the simulation and for maintaining the speed of xmds
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simulations. However, it may be possible in future versions of xmds for the input data to
be specified more logically (i.e. have x defined first, then y etc.) and then for the simulation
to reorganise the data internally so that calculations are performed efficiently and quickly.

If your input data is binary instead of ascii (as we have above), then you would use the
format="binary" assignment in the <filename> tag, and then xmds would expect the data
to be a string of double precison numbers in the same order as that given above.

2.6.3 Importing complex data

If we want to import complex data, we just specify the real then imaginary parts sequentially
as pairs of data. Imagine that we now have two vectors (so we don’t have to consider so
many vectors) called x and y. They have values of (just for the sake of argument)

x = [ 1.2+2.0i 7.5+0.0i ]

y = [ -5e-2+10i 7e10-8e-7i ]

and they will be organised in the input file as follows:

real(x[0])

imag(x[0])

real(y[0])

imag(y[0])

real(x[1])

imag(x[1])

real(y[1])

imag(y[1])

which is

1.2

2.0

-5e-2

10

7.5

0.0

7e10

-8e-7

With complex data the binary input method is slightly different. The assignment to the
format attribute is the same (i.e. "binary"), however, instead of separating the real and
imaginary parts of the complex numbers that are to be read in, one just has the binary
representation of the complex number to be read. So in a sense, the binary input of complex
data is exactly the same as that of double data, except that the data is complex and not
double (which seems obvious, but it sort of had to be said).
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2.7 Command line arguments

Do you want to run your simulation many, many times ranging over several different global
parameters? If the answer is yes, then the command line argument feature of xmds is for
you. In versions of xmds before xmds-1.2 to be able to map a parameter space, or run
the program over many different values of a simple global variable, you had to modify your
script, rerun xmds (with its implied compliation step) and then run the simulation for each
value. This, put plainly sucked, so we put in a way to pass arguments to the simulation
binary executable, enabling us to write a simple shell script (or Perl or Python) to run our
simulation over many different values. This removed the need to recompile the simulation
again and again, and generally speaking speeds things up and takes (at least some of) the
pain out of doing things like mapping parameter spaces.

So, how do we tell xmds to make the simulation accept command line arguments? You
do this with an <argv> tagset, which you put somewhere before the <globals> element. For
those of you who have worked with C before and passing arguments to programs will notice
that we’ve used the argv name here for the list of arguments the program will accept, in
exactly the same way that C programming does by convention. To set up this list, we need
to specify, the arguments, and the relevant properties of the arguments. As such we need
to tell xmds what the name of the argument is, its data type, and its default value (for
the instances when we don’t want to specify the value on the command line). As might be
obvious here, we have a nested structure of information, and hence the corresponding xmds
code is similarly nested. The syntax of adding command line arguments to simulations is as
follows:

<argv>
<arg>

<name> </name> <!-- the argument name -->
<type> </type> <!-- data type of arg -->
<default_value > </default_value > <!-- the default value -->

</arg>
<!-- more arg definitions here if necessary -->

<argv>

We’ll now go through an example to show you how to use this feature, and some of the
subtleties of using command line arguments with xmds-derived simulations. Let’s revisit the
diffusion simulation discussed in Chapter 1, Section 1.2. The main use of command line
arguments is to be able to replace variables given in the <globals> element. Therefore, let’s
change the diffusion coefficient κ (kappa in the code) to be an argument to the simulation. We
do this by adding the following code before the <globals> element, and by commenting out
the kappa declaration and assignment in the existing code. The xmds code then becomes:

<simulation >
<!-- global parameters and functionality tags in here -->

<!-- Command line arguments -->
<argv>

<arg>
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<name> kappa </name>
<type> double </type>
<default_value > 0.1 </default_value >

</arg>
</argv>

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

// const double kappa = 0.1; // diffusion coefficient
const double sigma = 0.1; // std dev of initial Gaussian
const double x0 = 0.0; // mean pos of initial Gaussian

]]>
</globals >

<!-- remainder of diffusion simulation xmds code -->
</simulation >

Notice that we’ve commented out the kappa variable using the C++ line comment style.
This is just to remind us that kappa used to be there and is no longer, and what it was when
we originally wrote the simulation. It can be a good idea to keep this kind of information
around if you want, but it isn’t necessary, and because it’s a comment it will be ignored by
the C/C++ compiler. Of course, if you don’t comment the global declaration out, then the
C/C++ compiler will throw an error and your simulation won’t compile.

Running xmds on the file diffusion.xmds now gives a simulation binary that can accept
arguments. You can try it out by running the simulation like so:

% diffusion --kappa 0.2

where we have run the diffusion simulation with kappa now set to 0.2.
xmds uses the GNU getopt set of functions to implement arguments, and as such

supports both short and long option names. Therefore, the above example could have been
run as

% diffusion -k 0.2

So, at the simplest level, xmds takes the long form of the argument name as the actual name
of the variable, and takes the first character of the variable name for the short form of the
argument. But what happens when you have two variables to be entered at the command
line that start with the letter ‘k’? What xmds does to solve this problem is, if a variable
already has a short option taken (e.g. if we had already defined another variable in the
<argv> list called say kruntsch), then the next character is used for the short option, which
would be the letter ‘a’ for kappa. Of course, if this letter is taken then xmds searches for
a single character representation of kappa throughout the variable name until it finds one
that isn’t used. If xmds doesn’t find a short option that isn’t used, then it throws an error.

Assuming that everything has worked ok, and the assignments to the short options have
worked properly, how can one find out what the short option is if it has changed? Well, you
can simply ask the simulation for help. Just run the simulation with either -h or --help

and it will print out the usage of the simulation and a list of the option names, their data



46 Extra and advanced features

type, and default value. For instance, asking the diffusion simulation for help we get the
following output:

% diffusion --help
Usage : diffusion -k < double >

Details:
Option Type Default value
-k, --kappa double 0.1

So, we call diffusion with -k and the simulation is expecting a double precision number
after the -k flag. Also, we are told that either -k or --kappa are possible options (but we
already knew that anyway), and that kappa is a double precision number of default value
0.1.

And that’s it! At present xmds can accept int, double, float, and char * for command
line arguments. Complex numbers aren’t yet implemented (as of xmds-1.3) but may be
added in a future version.

Now, imagine that we wanted to run the diffusion simulation over a range of values
starting from 0.1 to 1.0. To do this we could write a simple shell script as follows:

#!/bin/sh

for i in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
do

echo "Running diffusion with kappa = $i"
echo "i.e. diffusion --kappa $i"
diffusion --kappa "$i"
mv diffusion.xsil "diffusion_$i.xsil"

done

Notice that we’ve moved the output data file to a new filename since the file diffusion.xsil
will be produced each time the simulation it is run, and hence our data it would get written
over with new data each time the simulation is run, had we not bothered to rename the
.xsil file.

Equivalently, we could have used a Perl script to do the same thing, for instance:

#!/usr/bin/perl -w

use strict;
my $i = 0.1;
while ($i <= 1.0) {

print "Running diffusion with kappa = $i\n";
print "i.e. diffusion --kappa $i\n";
my @args = ("diffusion" , "--kappa" , $i);
system(@args );
‘mv diffusion.xsil diffusion_$i.xsil ‘;
$i = $i + 0.1;

}

Feel free now to extend (and have a play with) diffusion.xmds For example, change the
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simulation to make it possible to vary sigma (and even x0) and see how the output changes,
and in what regimes the assumption that our window size is large enough that the implicit
periodic boundary conditions are unimportant (for a discussion of what this last part of the
sentence means, have a look at Section 1.2.

2.8 Preferences

As of xmds-1.3-1, there has been the ability to have preferences specific to a given user.
This gives the user more flexibility than before as they can control how simulations are built
without having to recompile and reinstall xmds. Also, if xmds was installed by the root
user, a non-root user of the system can modify how their simulations are built without having
to reinstall the system binary and therefore alter how all other users’ programs are built.

2.8.1 Turning preferences on and off

By default preferences are on, and are used if the preferences file can be found. If the
preferences file cannot be found, or if <use prefs> is set to no then the default settings
defined at configuration and installation of xmds will be used. This is also the case for
preference flags that are not specified in the preferences file: the default settings will be
used. Therefore, one doesn’t need to specify all of the settings able to be used, just the ones
one wishes to change.

The <use prefs> tag is set in the global configuration section of the xmds simulation
script, namely at the beginning with the <name>, <prop dim> etc. tags.

If <use prefs> is set to yes explicitly (or not set at all) then xmds will search for a
preferences file. This file is called xmds.prefs and can reside either in the user’s $HOME/.xmds
directory or the directory local to the simulation script being processed. xmds searches for
the file in the user’s home directory first and then in the current directory.

2.8.2 Setting preferences

Preferences are set in the xmds.prefs file by using key-value pairs delimited by an equals
sign (=). Therefore, in general, the format is:

key = value

Spaces around the equals sign are ignored, such that the following are all equivalent:

key=value

key =value

key= value

key = value

The hash character (#) is used for comments; anything after and including the # are
ignored when parsing the options. So, one can make what is happening much clearer what
the flags are to do. For example:
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# this is my funky preferences file

option = some_funky_value some_other_funky_value

other_option = also_quite_funky_variable # isn’t this variable funky?

the first line will be ignored and the text including and after the # on the third line will be
ignored.

2.8.3 What are the options?

The options for building simulations that xmds accepts are:

• xmds options:

XMDS CC the C (C++) compiler xmds will use. Typical options include: cc, gcc, g++.

XMDS CFLAGS the flags passed to the C (C++) compiler. For those who are using the
make utility, then these flags are the same as the CFLAGS variable ordinarily passed
to the C compiler.

XMDS LIBS the libraries and library paths necessary to build the simulation. Again,
for those familiar with make this is the same as the LIBS variable.

XMDS INCLUDES the include paths and files for the C (C++) compiler to look for when
compiling the simulation.

• MPI options:

MPICC the C (C++) compiler used by the local MPI implementation to compile the
simulation. Often this is just mpicc, but on systems such as the APAC super-
computer in Canberra, Australia, this actually is just cc.

MPICCFLAGS the CFLAGS variable to be passed to the MPI C (C++) compiler.

MPILIBS the extra libraries necessary to compile a simulation for use with MPI. For
instance, on cluster systems an MPI implementation such as LAM will be used. In
this case, the extra libraries necessary to compile a simulation will be something
like: -lmpi -llam.

• FFTW options:

FFTW LIBS the libraries and library paths specific to your fftw installation.

FFTW MPI LIBS the libraries and library paths specific to your fftw installation neces-
sary so that you can use fftw with MPI. Warning: only use fftw with a supercom-
puter. To perform Fourier transforms in parallel, a lot of communication between
the nodes is necessary, hence this is only worthwhile on a supercomputer with a
high speed network connection between nodes.

FFTW3 LIBS the libraries and library paths specific to your installation of fftw version
3.

FFTW3 THREADLIBS the additional libraries and library search paths required for using
threaded fftw3 simulations.
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• User defined options (at configuration):

USER LIB if xmds has been installed in the user’s home directory, then this flag needs
to be specified so that xmds can find the xmds-specific libraries when building
a simulation.

USER INCLUDE if xmds has been installed in the user’s home directory, then this flag
needs to be specified so that xmds can find the xmds-specific header files when
building a simulation.

2.8.4 Examples of changing options

Using gcc for g++: When configuring xmds before installation, the configuration script
often sets the default C/C++ compiler for xmds to be g++. This is the GNU C++
compiler. Sometimes this is not desirable, and so one may wish to use the GNU C
compiler (gcc) instead. To do this, one needs to change two things: the XMDS CC setting,
and the XMDS LIBS setting. In the xmds.prefs file one then sets XMDS CC to gcc, and
appends -lstdc++ to the list of flags already given for XMDS LIBS at installation. The
addition of -lstdc++ is so that gcc can make use of the C++ extensions to gcc so
that it can actually compile the simulation (which is in some sense a mix of C and
C++).

Using icc for g++: An alternative C++ compiler to g++ is the Intel C++ Compiler: icc.
To use this compiler instead of g++ or gcc (assuming of course that you have the
compiler installed on your system) just set XMDS CC to icc and prepend -limf to
XMDS LIBS (this adds the icc native support for its maths libraries).

Debugging: By default, xmds is configured to use quite aggressive optimisations when
compiling simulations. If, however, you suspect something is going wrong and you
wish to debug the simulation binary directly (using gdb, dbx or another symbolic
debugger), then you will need to put symbolic debugging information into the binary
executable. To do this, replace the default options by setting the XMDS CFLAGS variable
to -g.

Profiling: There may be instances when one wants to find out what part of the code is
taking up the most time when running a simulation. This is generally speaking a part
of debugging and testing a simulation and not normally part of using xmds. However,
if you’re interested in seeing what lines of code are using the most time, you’ll want
to add profiling information to the code. To do this you will need to add either the
-p or -gp option to the XMDS CFLAGS variable. The -p option generates extra code for
profiling with the prof utility, and the -gp option generates extra code for profiling
with the gprof utility.
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2.9 Breakpoints

Breakpoint elements are parts of a simulation (similar to an <integrate> or a <filter>

element) that cause the state of some vectors of the simulation to be saved to an XSIL file
when the breakpoint element is hit. This can be used early in a simulation to enable you
to check that, for example, the simulation isn’t running off the grid, or that the behaviour
is wrong and the simulation needs to be terminated. This way, much time can be saved
waiting for the result of a long simulation that needs to be re-run anyway.

Another use of breakpoint elements is to save the state of some (or all) vectors to an XSIL
file for loading by another simulation (as discussed earlier in Section 2.6.1 of this chapter).
The naming convention for the vectors (and components of complex vectors) in the XSIL
file produced is the same as that used for loading XSIL files as described in Section 2.6.1.

Although creating an XSIL file to be used for initialising another simulation can be
achieved almost as easily with an output moment group, breakpoints should be used in-
stead of output moment groups for large deterministic simulations that use MPI. Currently
(xmds-1.5-2), because of the way in which output moment groups are sampled with MPI,
each node allocates the entire memory required for sampling each output moment group.
This means that sampling the entire field for a large simulation that will not fit into the
memory of a single node is impossible, and hence creating an XSIL file from which the sim-
ulation could be continued is also impossible. As the intended use of moment groups is that
they should be used to sample a small amount of data, an alternative solution was required
for this situation. Breakpoint elements have been designed such that the additional memory
use when used in a deterministic simulation with MPI is equal to the size of the field stored
on any given node (and only while the XSIL file is being written), instead of the total field
size (for the entire simulation).

The syntax for a breakpoint element (this should be in a <sequence> element) is:

<breakpoint >
<filename > <!-- XSIL filename for output ,

e.g. simulation.xsil --> </filename >
<fourier_space > <!-- yes , no , ... --> </fourier_space >
<vectors > <!-- list of vectors to be saved to the file -->
</vectors >

</breakpoint >
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Using a template

In this tutorial, we’re going to hack an xmds template to pieces to write a simulation script.
This is possibly one of the easiest ways to make an xmds simulation script; almost everything
has been done for you, and all that is left for you to do is to translate the equations into
something a C/C++ compiler could understand. This tutorial builds upon the skills learnt
in Chapter 1 and from the knowledge (of the existence of, at least) of the extra tags discussed
in Chapter 2.

3.1 The advection equation

But first, the problem. Here we’ll solve the one dimensional advection equation

∂

∂t
A(x, t) = −v ∂

∂x
A(x, t), (3.1)

where A(x, t) is the field to evolve according to the differential equation, x is the spatial
dimension, t is time, and v is the velocity of the wave. As with the two examples discussed
in Chapter 1, this example is adapted from that in Garcia [1].

We shall use in this example an initial pulse which is a cosine-modulated Gaussian:

A(x, t = 0) = cos[k(x− x0)] exp

[
−(x− x0)

2

2σ2

]
, (3.2)

where k = 2π/λ is the wave number of the pulse, which has a wavelength λ, x0 is the initial
peak position of the pulse, and σ is the initial pulse width (standard deviation). This initial
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condition has an analytical solution (which we give here merely for interest value)

A(x, t) = cos{k[(x− vt)− x0]} exp

{
− [(x− vt)− x0]

2

2σ2

}
(3.3)

= cos{k[x− (x0 + vt)]} exp

{
− [x− (x0 + vt)]2

2σ2

}
, (3.4)

which is still a cosine-modulated Gaussian, just displaced by an amount vt.
The boundary conditions we shall use are periodic, and since we get this for free when

using xmds, there isn’t anything special we need to do here, other than to keep in mind
that the boundary conditions are periodic. As with the diffusion equation example, we’ll
make the x domain go from -0.5 to 0.5, we’ll set the value of σ to 0.1, and x0 to 0. The wave
speed we’ll set to 1. Any other parameters will be mentioned as we go through and hack
with the code.

3.2 The template code

Here is the code that we’re going to hack with. This is just an outline of many of the tags
that we can use to perform a simulation using xmds. Most of them you should know by
now, but one or two you may be unfamiliar with, this is ok, as we don’t need them for what
we want to do. Comments have been put all through the document to give a better idea of
what the tags do and what their default value is (if any).

<?xml version="1.0"?>
<simulation >

<!-- Global system parameters and functionality -->
<name> </name> <!-- the name of the simulation -->
<author > </author > <!-- the author of the simulation -->
<description >

<!-- a description of what the simulation is supposed to do -->
</description >

<prop_dim > </prop_dim > <!-- name of main propagation dim -->

<stochastic > no </stochastic > <!-- defaults to no -->
<!-- these three tags only necessary when stochastic is yes -->
<paths> </paths > <!-- no. of paths -->
<seed> 1 2 </seed> <!-- seeds for rand no. gen -->
<noises > </noises > <!-- no. of noises -->

<use_mpi > no </use_mpi > <!-- defaults to no -->
<error_check > yes </error_check > <!-- defaults to yes -->
<use_wisdom > yes </use_wisdom > <!-- defaults to no -->
<benchmark > yes </benchmark > <!-- defaults to no -->
<use_prefs > yes </use_prefs > <!-- defaults to yes -->
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<!-- Global variables for the simulation -->
<globals >
<![CDATA[

]]>
</globals >

<!-- Field to be integrated over -->
<field >

<name> main </name>
<dimensions > </dimensions > <!-- transverse dims -->
<lattice > </lattice > <!-- no. of points for each dim -->
<domains > (,) </domains > <!-- domain of each dimension -->
<samples > </samples > <!-- sample 1st point of dim? -->

<vector >
<name> main </name>
<type> complex </type> <!-- data type of vector -->
<components > </components > <!-- names of components -->
<fourier_space > </fourier_space > <!-- defined in k-space ? -->
<![CDATA[

]]>
</vector >

</field>

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm > </algorithm > <!-- RK4EX , RK4IP , ARK45EX , ARK45IP , SIEX , SIIP -->
<iterations > </iterations > <!-- default =3 for SI - algs -->
<interval > </interval > <!-- how far in main dim? -->
<lattice > </lattice > <!-- no. points in main dim -->
<samples > </samples > <!-- no. pts in output moment group -->

<k_operators >
<constant > yes </constant > <!-- yes/no -->
<operator_names > </operator_names >
<![CDATA[

]]>
</k_operators >

<vectors > </vectors > <!-- vector names -->
<![CDATA[
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]]>
</integrate >

</sequence >

<!-- The output to generate -->
<output format="binary" precision="single">

<group >
<sampling >

<fourier_space > </fourier_space > <!-- sample in k-space? -->
<lattice > </lattice > <!-- no. points to sample -->
<moments > </moments > <!-- names of moments -->
<![CDATA[

]]>
</sampling >

</group >
</output >

</simulation >

3.3 Ripping it to bits

Now all we need to do is to work out what we need and don’t need, and to throw the relevant
numbers and equations into the relevant places. If the pace is too high, you might like to go
back and re-read Chapter 1 to make sure you got it all.

3.3.1 Global system parameters and functionality

Looking at the block of code that sits between the start <simulation> tag and the <globals>
element, we can add the following things: the name of the simulation is advection, the
author is Paul Cochrane, and the description can be something like:

<description >
Solves the one -dimensional advection equation for an initial
cosine -modulated Gaussian pulse.
Adapted from A. L. Garcia , "Numerical Methods in Physics" (1994).

</description >

The propagation dimension is in time, so we set <prop dim> to t, the simulation isn’t
stochastic, so we can leave the code where it is, or remove it since it’s set to the default
setting anyway. We’ll remove it in this case as we don’t gain anything, and it’s extra code
floating around that we don’t need. Since this isn’t a stochastic simulation, this implies that
the <paths>, <seed> and <noises> tags are unnecessary. Also, we don’t need the <use mpi>

tag either, because we’ve not met it before, the simulation is not stochastic, so making it
use MPI (the message passing interface for parallel simulations) is a waste of time, and the
default setting is off, so again, we rip this tag out.
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We might as well leave error checking on (it’s the default anyway), and leave the <error check>

tag the way it is. This is especially important at the early stages of writing a simulation,
as one can then get an indication of the discretisation error of the simulation and this in-
formation can tell us how to tweak the simulation parameters if necessary. Leaving the
<error check> tag in the code is a good idea, as we’ll probably want to switch it off at some
later stage, and if we leave it in the code we can remember to do this if we want.

We definitely want to use FFTW’s wisdom feature. This is because we have a differential
in space, and it is nice and easy to define the operator in k-space, implying that we’ll need to
use Fourier transforms, and using “wisdom” speeds up the startup time of our simulations.
Hence, we leave <use wisdom> as is.

Benchmarking the code doesn’t take up much room in the script, nor does it take up much
time in the code, and it can be interesting to have around, so we’ll leave the <benchmark>

tag there. However, preferences are on by default anyway, and switching them off probably
won’t be of much use, so we’ll get rid of the <use prefs> tag, which will set it to the default
value of yes.

We’ve seen in Chapter 2 how one can use command line arguments with the <argv>

tagset. At this stage of simulation writing it’s a good idea just to get things going, and not
worry about varying these parameters just yet, so what we’ll do is set them in the <globals>
block and add the <argv> stuff in later if we want to.

The first chunk of code is now:

<!-- Global system parameters and functionality -->
<name> advection </name> <!-- the name of the simulation -->
<author > Paul Cochrane </author > <!-- the author of sim -->
<description >

Solves the one -dimensional advection equation for an initial
cosine -modulated Gaussian pulse.
Adapted from A. L. Garcia , "Numerical Methods in Physics"(1994).

</description >

<prop_dim > t </prop_dim > <!-- name of main propagation dim -->

<error_check > yes </error_check > <!-- defaults to yes -->
<use_wisdom > yes </use_wisdom > <!-- defaults to no -->
<benchmark > yes </benchmark > <!-- defaults to no -->

3.3.2 Global variables for the simulation

Our global variables are v, k, x0 and σ (from inspection of the equations in Section 3.1),
therefore, we need to use the following code for the <globals> block.

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double v = 1.0;
const double x0 = 0.0;
const double sigma = 0.1;
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double k = M_PI/sigma;
]]>
</globals >

Notice that we’ve not used the const keyword in front of the k declaration and as-
signment. This is because we’re deriving the value of the wave number from the standard
deviation of the wave, and so the value itself (as far as C/C++ is concerned) isn’t a constant.
If you’re worried that this may be a problem further down the track, don’t, because it isn’t.

3.3.3 The field to be integrated over

The field, as per normal, has a name of main. We have one dimension other than the
propagation dimension, and that is x, which we want to put say 50 grid points (i.e. <lattice>
is set to 50), and as mentioned earlier, we want the domain to go from -0.5 to 0.5, so the
<domains> tag is set to (-0.5,0.5). We want to sample the first point of this dimension,
so we set <samples> to 1.

Within the <vector> assignments we only have one vector to define, and since we have
to call at least one vector main, we’ll use that. It will have to have a complex type because
we’re going to be using Fourier space for part of the integration, hence we set <type> to
complex. There is only one component we have to define, and that is the field A that we’ll
be integrating over. We therefore use A as the <components> assignment. This isn’t going
to be defined in Fourier space, so the <fourier space> assignment is set to no.

The trickiest part here is now defining the equation in the CDATA block. Recalling the
initial condition in Equation (3.2), we therefore declare the variable A as

A = rcomplex(
cos(k*(x-x0 )) * exp(-(x-x0)*(x-x0 )/(2.0* sigma*sigma )) , 0.0);

where we have used the rcomplex function with a zero imaginary argument to define the
(initially real) quantity, however, of complex type.

The result of these definitions gives us the following code for the <field> element:

<!-- Field to be integrated over -->
<field>

<name> main </name>
<dimensions > x </dimensions > <!-- transverse dims -->
<lattice > 50 </lattice > <!-- no. pts for each dim -->
<domains > ( -0.5 ,0.5) </domains > <!-- domain of each dim -->
<samples > 1 </samples > <!-- sample 1st point of dim? -->

<vector >
<name> main </name>
<type> complex </type> <!-- data type of vector -->
<components > A </components > <!-- names of components -->
<fourier_space > no </fourier_space > <!-- def in k-space ? -->
<![CDATA[

A = rcomplex(
cos(k*(x-x0 )) * exp(-(x-x0)*(x-x0 )/(2.0* sigma*sigma ))
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, 0.0);
]]>

</vector >
</field>

3.3.4 The sequence of integrations to perform

Now we come to the <sequence> section of the code. There’s only one such sequence in this
simulation, so we really only need to worry about the <integrate> block. The algorithm
we’ll use here is the fourth-order Runge-Kutta method in the explicit picture. We want
the wave to circle the system the once, so we’ll choose the <interval> and <lattice> so
that it does so, while having a step size of about 0.002. We therefore set <interval> to
1, and <lattice> to 500. Only 50 points are really necessary for the output of this, hence
<samples> is set to 50.

The next section to define is the <k operators> element. The k-space operator is con-
stant in time, and we’ll call it L (which is sort of a convention in the xmds community). Since
the operator acts in Fourier space, the spatial derivative merely becomes a multiplication,
and so we can set the CDATA block (within the <k operators> element) to:

<![CDATA[
L = rcomplex (0.0, -v*kx);

]]>

Note that we have used the rcomplex() function, and that the operator is complex. This is
because of the mapping of derivatives in x-space to k vectors in k-space; remember that

∂

∂x
7→ ikx. (3.5)

There are no <vectors> to define, so we can just delete this line, however, we must
write down the differential equation we’re trying to solve. So, remembering Equation (3.1),
and the fact that xmds uses a special syntax for writing the differential equation in the
<integrate> element, the CDATA section within the <integrate> element is:

<![CDATA[
dA_dt = L[A];

]]>

Note that we didn’t write down the equations as

<![CDATA[
dA_dt = -v*L[A];

]]>

and define the operator as L = rcomplex(0.0, kx);. This is because of the way xmds
transplants the equations into the code, and specifying the constants within the operators
is the most general way xmds can do this. Heed a warning here though: xmds at present
doesn’t pick this kind of error up, so, one can write the equation as just mentioned and
xmds will happily do its thing, however, your answers will be wrong. So, the advice here is
to be really careful.

The <sequence> element now looks like this:
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<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm > RK4EX </algorithm > <!--RK4EX ,RK4IP ,ARK45EX ,ARK45IP ,SIEX ,SIIP -->
<interval > 1 </interval > <!-- how far in main dim? -->
<lattice > 500 </lattice > <!-- no. points in main dim -->
<samples > 50 </samples ><!-- no. pts in output moment group -->

<k_operators >
<constant > yes </constant > <!-- yes/no -->
<operator_names > L </operator_names >
<![CDATA[

L = rcomplex (0.0, -v*kx);
]]>

</k_operators >

<![CDATA[
dA_dt = L[A];

]]>
</integrate >

</sequence >

3.3.5 The output to generate

We’re in the home stretch now! All we need to do is tell xmds what to spit out at the end of
the simulation. We’ll use ascii output (a bit more portable) and remove the precision assign-
ment; we won’t sample the output moments in Fourier space; we only have one dimension
to sample (namely x) and we’ll use 50 points here; there is only one moment to output, and
that is the field amplitude which we’ll call amp; and finally the code to sample the output
moment is simply equal to the amplitude of the field which is just A, so the code put into
the CDATA block is amp = A;. The <output> element code is therefore:

<!-- The output to generate -->
<output format="binary" precision="single">

<group >
<sampling >

<fourier_space > no </fourier_space ><!--sample in k-space?-->
<lattice > 50 </lattice > <!-- no. pts to sample -->
<moments > amp </moments > <!-- names of moments -->
<![CDATA[

amp = A;
]]>

</sampling >
</group >

</output >
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3.3.6 The final program

And that’s it! The finished simulation is this:

<!-- Global system parameters and functionality -->
<name> advection </name> <!-- the name of the simulation -->
<author > Paul Cochrane </author > <!-- the author of sim -->
<description >

Solves the one -dimensional advection equation for an initial
cosine -modulated Gaussian pulse.
Adapted from A. L. Garcia , "Numerical Methods in Physics"(1994).

</description >

<prop_dim > t </prop_dim > <!-- name of main propagation dim -->

<error_check > yes </error_check > <!-- defaults to yes -->
<use_wisdom > yes </use_wisdom > <!-- defaults to no -->
<benchmark > yes </benchmark > <!-- defaults to no -->

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double v = 1.0;
const double x0 = 0.0;
const double sigma = 0.1;
double k = M_PI/sigma;

]]>
</globals >

<!-- Field to be integrated over -->
<field >

<name> main </name>
<dimensions > x </dimensions > <!-- transverse dims -->
<lattice > 50 </lattice > <!-- no. pts for each dim -->
<domains > ( -0.5 ,0.5) </domains > <!-- domain of each dim -->
<samples > 1 </samples > <!-- sample 1st point of dim? -->

<vector >
<name> main </name>
<type> complex </type> <!-- data type of vector -->
<components > A </components > <!-- names of components -->
<fourier_space > no </fourier_space > <!-- def in k-space ? -->
<![CDATA[

A = rcomplex(
cos(k*(x-x0 )) * exp(-(x-x0)*(x-x0 )/(2.0* sigma*sigma ))

, 0.0);
]]>
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</vector >
</field >

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm > RK4EX </algorithm > <!--RK4EX ,RK4IP ,ARK45EX ,ARK45IP ,SIEX ,SIIP -->
<interval > 1 </interval > <!-- how far in main dim? -->
<lattice > 500 </lattice > <!-- no. points in main dim -->
<samples > 50 </samples ><!-- no. pts in output moment group -->

<k_operators >
<constant > yes </constant > <!-- yes/no -->
<operator_names > L </operator_names >
<![CDATA[

L = rcomplex (0.0, -v*kx);
]]>

</k_operators >

<![CDATA[
dA_dt = L[A];

]]>
</integrate >

</sequence >

<!-- The output to generate -->
<output format="ascii">

<group >
<sampling >

<fourier_space > no </fourier_space ><!--sample in k-space?-->
<lattice > 50 </lattice > <!-- no. pts to sample -->
<moments > amp </moments > <!-- names of moments -->
<![CDATA[

amp = A;
]]>

</sampling >
</group >

</output >

</simulation >

Here is a link to the finished (gzipped) script file advection.xmds.gz on the xmds web
site (http://www.xmds.org).

http://www.xmds.org/examples/advection.xmds.gz
http://www.xmds.org
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3.4 Making the simulation and getting results

As per usual, we just need to run xmds on the simulation script, and then run the simulation.
So, here we go:

% xmds advection.xmds
Output file name defaulting to ’advection.xsil’
compiling ...

g++ - pthread -O3 -ffast -math -funroll -all -loops
-fomit -frame -pointer -o advection advection.cc
-I/home/cochrane/bin -lstdc ++ -lm -lxmds
-L/home/cochrane/bin -lfftw_threads -lfftw

advection ready to execute

then:

% advection
Performing fftw calculations
Standing upon the shoulders of giants ... ( Importing wisdom)
Making forward plan
Making backward plan
Keeping accumulated wisdom
Finished fftw calculations
Beginning full step integration ...
Sampled field (for moment group #1) at t = 0.000000e+00
Sampled field (for moment group #1) at t = 2.000000e-02
Sampled field (for moment group #1) at t = 4.000000e-02
<snip >
Sampled field (for moment group #1) at t = 9.600000e-01
Sampled field (for moment group #1) at t = 9.800000e-01
Sampled field (for moment group #1) at t = 1.000000e-00
maximum step error in moment group 1 was 7.801465e-06
Time elapsed for simulation is: 0 seconds

That was fast eh? And the error isn’t too bad at about 10−5, so we can be vaguely confident
of the results. Lets look at them now, in both Matlab (or Octave) and Scilab.

3.4.1 Matlab and Octave

Using xsil2graphics we generate the Matlab or Octave script by the command:

% xsil2graphics advection.xsil

and then running the following commands in Matlab or Octave:

>> advection
>> mesh(t_1 ,x_1 ,amp_1)
>> xlabel(’t’)
>> ylabel(’x’)
>> zlabel(’A’)

Doing all this should produce something very similar to that in Figure 3.1.
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Figure 3.1: Three dimensional plot in Matlab of a cosine-modulated Gaussian pulse according
to the advection equation. Parameters used were: v = 1, σ = 0.1, x0 = 0, k = π/σ. Notice that
with the periodic boundary conditions that the pulse moves off one side of the figure and re-enters
from the opposite side.

3.4.2 Scilab

Using xsil2graphics we generate the Scilab script by the command:

% xsil2graphics -scilab advection.xsil

and then running the following commands in Scilab:

-->exec(’advection.sci’)

-->temp_d1 = zeros (50 ,51);

-->t_1 = zeros (1 ,51);

-->temp_d2 = zeros (50 ,51);

-->x_1 = zeros (1 ,50);

-->amp_1 = zeros (50 ,51);

-->error_amp_1 = zeros (50 ,51);

-->advection1 = fscanfMat(’advection1.dat’);
Error Info buffer is too small (too many columns in your file ?)

-->temp_d1 (:) = advection1 (:,1);
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-->temp_d2 (:) = advection1 (:,2);

-->amp_1 (:) = advection1 (:,3);

-->error_amp_1 (:) = advection1 (:,4);

-->t_1 (:) = temp_d1 (1,:);

-->x_1 (:) = temp_d2 (:,1);

-->clear advection1 temp_d1 temp_d2

-->plot3d(x_1 ,t_1 ,amp_1)

which should generate something similar to that in Figure 3.2.
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Figure 3.2: Three dimensional plot in Scilab of a cosine-modulated Gaussian pulse according
to the advection equation. Parameters used were: v = 1, σ = 0.1, x0 = 0, k = π/σ. Notice that
with the periodic boundary conditions that the pulse moves off one side of the figure and re-enters
from the opposite side.

3.5 Adding command line arguments

Now that we’re happy with how the simulation is performing, we can define some command
line arguments so that we can investigate the system more easily. We might as well be
able to change all of the global variables except for k (since it depends on one of the other
variables), so add the following code snippet just before the <globals> block:
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<!-- Command line arguments -->
<argv>

<arg>
<name> v </name>
<type> double </type>
<default_value > 1.0 </default_value >

</arg>
<arg>

<name> x0 </name>
<type> double </type>
<default_value > 0.0 </default_value >

</arg>
<arg>

<name> sigma </name>
<type> double </type>
<default_value > 0.1 </default_value >

</arg>
</argv>

But remember to comment out these variables in the <globals> block otherwise the compiler
will throw an error.

Now you can have a play! Try different variable options and see how the equations and
xmds perform.

3.6 The xmds –template option

A new feature of xmds, as of version 1.3-3, is the output of a template code. When xmds
is called with the -template (or equivalently the -t) option, then a template code will be
written to either standard output (i.e. the terminal), or to file, if a filename is given after
the --template flag. For instance, if one entered the following at the command line:

% xmds --template

then you would see several lines of xmds code scroll past. What’s the use in it just scrolling
past you say? Well, you could pipe this output to file like so:

% xmds --template > new_xmds_file.xmds

Nice eh? However, it is possible to save on keystrokes by getting xmds to make the file
directly, saving you from having to use shell-related commands to save the output. To save
a template directly to file, just enter this command:

% xmds --template new_xmds_file.xmds

and this will make a new file for you called new xmds file.xmds in the same directory as
xmds was called. Why have the ability to just send the template to the screen? Well, doing
so doesn’t slow things down, and it gives an extra level of flexibility, and we’re here to make
your life as the user of xmds as easy as possible.



4
Stochastic simulations and MPI

One of the most powerful features of xmds is its ability to automatically parallelise stochastic
(funky way to say “random”) simulations. To illustrate this power we’re going to have a
look at an example of a stochastic differential equation (SDE) both with and without the use
of MPI (the Message Passing Interface used for running parallel simulations). The physical
model we’ll be investigating is the simplified Kubo oscillator model taken from Gardiner [3].

dz

dt
= i[ω +

√
2γξ(t)]z (4.1)

This system is a model of an oscillator with a mean frequency ω perturbed by a noise
term ξ(t). The parameter γ describes the strength of the noise perturbation. Examples of
where this could be used to model an actual physical system are in the theories of magnetic
resonance and laser physics, and in single molecule spectroscopy.

4.1 Without MPI

First off, let’s solve this problem without MPI. For those of you who don’t know, MPI is
the Message Passing Interface and is the current de-facto standard for performing computer
simulations in parallel. MPI is a very powerful library of routines that allow one to perform
different parts of a simulation concurrently on different processors and be able to handle the
relevant communication between processors, or to run the same simulation with different
parameters on different processors, thereby in both situations speeding up the solution of
the given problem. Other similar systems exist, such as PVM (the Parallel Virtual Machine)
but MPI is effectively an extension of this system and is very well developed and works
well on supercomputers and cluster systems. MPI is also what xmds uses to parallelise its
simulations so it gives us further motivation to only discuss it here.

We now take our template, and hack around with it a bit. Our propagation dimension

65
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is time, so we set <prop dim> to t. This time, however, we are performing a stochastic
simulation, so we need to keep the <stochastic>, <paths>, <seed> and <noises> tags.
Setting <stochastic> to yes, the number of paths to 1024, leaving the <seed> setting as-is,
and noting that we only have one noise term, we get the following chunk of code describing
the stochastic part of our simulation:

<stochastic > yes </stochastic > <!-- defaults to no -->
<!-- these three tags only necessary when stochastic is yes -->
<paths> 1024 </paths > <!-- no. of paths -->
<seed> 1 2 </seed> <!-- seeds for rand no. gen -->
<noises > 1 </noises > <!-- no. of noises -->

We’ll leave the <use mpi> tag where it is at present, similarly with the rest of the tags
down to the <globals> section. We’ve got three variables in this simulation: omega, the
mean frequency; gam, the perturbation strength 1; and zo, the initial value of z 2. The
<globals> block comes out to this:

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

double omega = 0; // mean frequency
// the word gamma is already used in many maths libraries ,
// hence we use gam here
double gam = 0.1; // perturbation strength
double zo = 1; // initial value of z

]]>
</globals >

There are no transverse dimensions, so we can get rid of the <dimensions>, <lattice>
and <domains> tags since they are all required just for the transverse dimensions. We want
to sample the first point, so we set <samples> to 1. Our variable z is complex so we leave
the first two tags of the <vector> block as is, and set the <components> tag to z, which we
don’t define in Fourier space, and we just set to the initial value, zo. This gives a <field>

block of

<!-- Field to be integrated over -->
<field>

<name> main </name>
<samples > 1 </samples > <!-- sample 1st point of dim? -->

<vector >
<name> main </name>

1Notice that we don’t actually use the word gamma here. This is because gamma is often used in maths
libraries for such things as the gamma function etc, so we try and avoid name conflicts as much as possible,
and use the word gam.

2we could have just set z to some number later in the setup of the field, however, this way allows us to
change the initial value of z later without having to dig through too much code, and we can easily see how
to replace the <globals> block with an <argv> block and so have more dynamic control over the variables
being put into the simulation.
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<type> complex </type> <!-- data type of vector -->
<components > z </components > <!-- names of components -->
<fourier_space > no </fourier_space > <!--defined in k-space?-->
<![CDATA[

z = zo;
]]>

</vector >
</field>

In the <sequence> block we set the algorithm to SIEX because a semi-implicit algorithm
does a better job of integrating stochastic equations than the fourth-order Runge-Kutta.
We’ll explicitly set the number of iterations to the default of 3 (we might want to change
it in the future), we’ll integrate for 10 seconds so set <interval> to 10. We’ll use 1000
for the lattice size and take 100 samples of it in the output moment group. There aren’t
any k-operators here, so we can delete that entire section (and the <vectors> tag). The
interesting bit is where we write in the differential equation to be solved, which is really easy
to do and is written in the CDATA block as

<![CDATA[
dz_dt = i*omega*z + i*sqrt (2.0* gam)*n_1*z;

]]>

where we’ve expanded out the brackets of the Kubo oscillator equation Equation (4.1).
Notice that the value of xi mentioned in Equation (4.1) has been replaced by the variable
n 1. This is because when we tell xmds that we have noises it automatically creates some
noise variables for us. In the present case we only have one noise, so there is only one
variable, namely n 1. However, in the general case, where we could have say m noises, we
would have the noise variables n 1, n 2, . . . , n m.

Putting these pieces together gives a <sequence> block that looks like this

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm > SIEX </algorithm > <!--RK4EX , RK4IP , SIEX , SIIP -->
<iterations > 3 </iterations > <!-- default =3 for SI - algs -->
<interval > 10 </interval > <!-- how far in main dim? -->
<lattice > 1000 </lattice > <!-- no. points in main dim -->
<samples >100</samples > <!--no. pts in output moment group -->

<![CDATA[
dz_dt = i*omega*z + i*sqrt (2.0* gam)*n_1*z;

]]>
</integrate >

</sequence >

To generate the <output> block we choose the format to be ascii, and remove the (now
superfluous) precision attribute. The sampling isn’t done in Fourier space so we can set
that to no, we want to sample on a lattice of 100 points, and take the moments realz and
imagz, which are the real and imaginary parts of z respectively. These are then defined in
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the CDATA block by the following code

<![CDATA[
realz = real(z);
imagz = imag(z);

]]>

We therefore have an <output> block of

<!-- The output to generate -->
<output format="ascii">

<group >
<sampling >

<fourier_space >no</fourier_space > <!--sample in k-space?-->
<lattice > 100 </lattice > <!-- no. points to sample -->
<moments > realz imagz </moments > <!-- names of moments -->
<![CDATA[

realz = real(z);
imagz = imag(z);

]]>
</sampling >

</group >
</output >

and a final output simulation of

<?xml version="1.0"?>
<simulation >

<name>kubo_tutorial </name> <!-- the name of the sim -->

<author > Paul Cochrane </author > <!-- the author of the sim -->
<description >

Kubo oscillator example simulation . This formally represents a
simple model of an oscillator with a mean frequency omega
perturbed by a noise term xi(t).
Adapted from the example given in "Handbook of Stochastic
Methods", C. W. Gardiner (1997)

</description >

<!-- Global system parameters and functionality -->
<prop_dim > t </prop_dim > <!-- name of main propagation dim -->

<stochastic > yes </stochastic > <!-- defaults to no -->
<!-- these three tags only necessary when stochastic is yes -->
<paths> 1024 </paths > <!-- no. of paths -->
<seed> 1 2 </seed> <!-- seeds for rand no. gen -->
<noises > 1 </noises > <!-- no. of noises -->

<use_mpi > no </use_mpi > <!-- defaults to no -->
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<error_check > yes </error_check > <!-- defaults to yes -->
<use_wisdom > yes </use_wisdom > <!-- defaults to no -->
<benchmark > yes </benchmark > <!-- defaults to no -->
<use_prefs > yes </use_prefs > <!-- defaults to yes -->

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

double omega = 0; // mean frequency
// the word gamma is already used in many maths libraries ,
// hence we use gam here
double gam = 0.1; // perturbation strength
double zo = 1; // initial value of z

]]>
</globals >

<!-- Field to be integrated over -->
<field >

<name> main </name>
<samples > 1 </samples > <!-- sample 1st point of dim? -->

<vector >
<name> main </name>
<type> complex </type> <!-- data type of vector -->
<components > z </components > <!-- names of components -->
<fourier_space > no </fourier_space > <!--defined in k-space?-->
<![CDATA[

z = zo;
]]>

</vector >
</field>

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm > SIEX </algorithm > <!--RK4EX , RK4IP , SIEX , SIIP -->
<iterations > 3 </iterations > <!-- default =3 for SI - algs -->
<interval > 10 </interval > <!-- how far in main dim? -->
<lattice > 1000 </lattice > <!-- no. points in main dim -->
<samples >100</samples > <!--no. pts in output moment group -->

<![CDATA[
dz_dt = i*omega*z + i*sqrt (2.0* gam)*n_1*z;

]]>
</integrate >

</sequence >
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<!-- The output to generate -->
<output format="ascii">

<group >
<sampling >

<fourier_space >no</fourier_space > <!--sample in k-space?-->
<lattice > 100 </lattice > <!-- no. points to sample -->
<moments > realz imagz </moments > <!-- names of moments -->
<![CDATA[

realz = real(z);
imagz = imag(z);

]]>
</sampling >

</group >
</output >

</simulation >

The gzipped script code can be downloaded from the xmds web site http://www.xmds.org
via the link: kubo tutorial.xmds.gz

4.1.1 Making the simulation and getting results

You should be pretty good at doing this now, so we’ll just show you the output of the various
operations and not explain much.

xmds kubo_tutorial.xmds
Output file name defaulting to ’kubo_tutorial.xsil’
compiling ...

g++ - pthread -O3 -ffast -math -funroll -all -loops
-fomit -frame -pointer -o kubo_tutorial kubo_tutorial.cc
-I/home/cochrane/bin -lstdc ++ -lm -lxmds -L/home/cochrane/bin
-lfftw_threads -lfftw

kubo_tutorial ready to execute

then

% kubo_tutorial
Beginning full step paths
Starting path 1
Starting path 2
<snip >
Starting path 1023
Starting path 1024
maximum step error in moment group 1 means was 1.010483e-04
Time elapsed for simulation is: 5 seconds

That was pretty good for doing 1024 paths twice at different time steps eh? Admittedly
we’re not pushing things much here. We’ll do so soon though.

http://www.xmds.org
http://www.xmds.org/examples/kubo_tutorial.xmds.gz


4.1 Without MPI 71

4.1.1.1 Matlab and Octave

Using xsil2graphics we generate the Matlab or Octave script by the command:

% xsil2graphics kubo_tutorial.xsil

Running the following sequence of commands in Matlab or Octave

>> kubo_tutorial
>> plot(t_1 ,mean_realz_1)
>> xlabel(’t’)
>> ylabel(’z’)

generates Figure 4.1.
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Figure 4.1: Matlab generated plot of the evolution of the oscillator frequency z over time
perturbed by noise.

4.1.1.2 Scilab

Using xsil2graphics we generate the Scilab script by the command:

% xsil2graphics -scilab kubo_tutorial.xsil

Running the following sequence of commands in Scilab

-->exec(’kubo_tutorial.sci’)

-->temp_d1 = zeros (1 ,101);

-->t_1 = zeros (1 ,101);

-->mean_realz_1 = zeros (1 ,101);
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-->mean_imagz_1 = zeros (1 ,101);

-->sd_realz_1 = zeros (1 ,101);

-->sd_imagz_1 = zeros (1 ,101);

-->error_realz_1 = zeros (1 ,101);

-->error_imagz_1 = zeros (1 ,101);

-->kubo_tutorial1 = fscanfMat(’kubo_tutorial1.dat’);
Error Info buffer is too small (too many columns in your file ?)

-->temp_d1 (:) = kubo_tutorial1 (:,1);

-->mean_realz_1 (:) = kubo_tutorial1 (:,2);

-->mean_imagz_1 (:) = kubo_tutorial1 (:,3);

-->sd_realz_1 (:) = kubo_tutorial1 (:,4);

-->sd_imagz_1 (:) = kubo_tutorial1 (:,5);

-->error_realz_1 (:) = kubo_tutorial1 (:,6);

-->error_imagz_1 (:) = kubo_tutorial1 (:,7);

-->t_1 (:) = temp_d1 (:);

-->clear kubo_tutorial1 temp_d1

generates Figure 4.2.
Notice that the results we get here are similar to the other Kubo oscillator example

mentioned both later in this document and on the xmds web site. This is intentional, as we
set ω = 0 which should give the same answer, however, this simulation is more general than
the later one discussed in Chapter 10. The main difference careful readers will have noticed
is that the average solution of z does not decay away to zero. This is because we’ve used a
perturbation constant of 0.1 as opposed to 1√

2
used in the later example.

4.1.2 Making the simulation hard

Now’s the time to up the ante. In some real life situations, lots and lots of paths are
required so that decent statistics are generated. For instance, in modelling the evolution of
stock prices one can use a stochastic differential equation, however, for banks etc to be really
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Figure 4.2: Scilab generated plot of the evolution of the oscillator frequency z over time
perturbed by noise.

sure of the results, they need to run of the order of millions of paths. This can take a very
long time, especially if run on a single processor. Therefore, in such situations, being able to
automatically parallelise ones simulation and run the different paths over many CPUs would
be great, and this is something that xmds does really well, as you shall (hopefully) see.

Let’s run the simulation over a few more paths, so we’ll just glibly throw a some zeroes
at the <paths> tag and set it to 1024000, and run the simulation again.

% kubo_tutorial
Beginning full step paths
Starting path 1
Starting path 2
<snip >
Starting path 1023999
Starting path 1024000
maximum step error in moment group 1 means was 9.161489e-05
Time elapsed for simulation is : 1479 seconds

Hmmm, that took a bit longer didn’t it? That’s just over 24 minutes. Surely we can do
better than that! This is where we need to use many computers to solve the problem and
so, this is where MPI comes in.

4.2 With MPI

Now we hope that by farming each path off to a different CPU that we can get an improve-
ment in speed. Let’s try it and find out.

At this stage we should expect that since each individual path doesn’t take very long to
run then the main overhead is going to be communication between farming a job off and
sending the results back. In a more complex simulation it would be normal (and in fact
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much better) for each node to spend quite some time working on an individual path before
sending the information back; such a scenario is far more efficient computational use of CPU
time. In any case, we should see a shorter wall time (the amount of time taken as far as the
clock on the wall is concerned) for the job to complete.

To implement the use of MPI, make sure that your copy of xmds is built with MPI
enabled. To do this one merely needs to run the configure script with the --enable-mpi

option specified. From that point, the only thing you need to change within your XMDS
script to switch back and forth between MPI and non-MPI code is a single flag at the top.
Set the <use mpi> tag to read yes or no as desired. How to run the resulting program will
depend on the specific implementations of MPI that you are using. We will show a typical
case based on the LAM/MPI implementation (another major implementation is MPICH),
but details will vary from system to system.

4.2.1 Example using LAM/MPI

One of the first things to do is to make a hosts file so that LAM can know what machines it
needs to send jobs to. The hosts file is just a list of hostnames of computers you have access
to, that can run MPI. For example here is a sample hosts file called lamhosts

% cat lamhosts
bec00
bec01
bec02
bec03
bec04
bec05
bec06
bec07
bec08
bec09
bec10
bec11
bec12
bec13
bec14
bec15

As you can see there are 16 computers available to run jobs on
Next it’s a good idea to do a recon to check that all of your hosts are working and they

can accept MPI connections. To do this, run the following command, and you should see
similar output.

% recon -v lamhosts
recon: -- testing n0 (bec00)
recon: -- testing n1 (bec01)
recon: -- testing n2 (bec02)
recon: -- testing n3 (bec03)
recon: -- testing n4 (bec04)
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recon: -- testing n5 (bec05)
recon: -- testing n6 (bec06)
recon: -- testing n7 (bec07)
recon: -- testing n8 (bec08)
recon: -- testing n9 (bec09)
recon: -- testing n10 (bec10)
recon: -- testing n11 (bec11)
recon: -- testing n12 (bec12)
recon: -- testing n13 (bec13)
recon: -- testing n14 (bec14)
recon: -- testing n15 (bec15)
-----------------------------------------------------------------------------
Woo hoo!

recon has completed successfully . This means that you will most likely
be able to boot LAM successfully with the "lamboot" command (but this
is not a guarantee ). See the lamboot (1) manual page for more
information on the lamboot command.

If you have problems booting LAM (with lamboot ) even though recon
worked successfully , enable the "-d" option to lamboot to examine each
step of lamboot and see what fails. Most situations where recon
succeeds and lamboot fails have to do with the hboot (1) command (that
lamboot invokes on each host in the hostfile ).
-----------------------------------------------------------------------------

If everything has run successfully, then you can start MPI on each of the nodes (other
computers) by using the lamboot command. This gets each of the other computers ready to
get input from a parallel job, and doesn’t actually start doing any computation. You should
see output similar to this

% lamboot -v lamhosts

LAM 6.5.6/ MPI 2 C++/ ROMIO - University of Notre Dame

Executing hboot on n0 (bec00 - 1 CPU )...
Executing hboot on n1 (bec01 - 1 CPU )...
Executing hboot on n2 (bec02 - 1 CPU )...
Executing hboot on n3 (bec03 - 1 CPU )...
Executing hboot on n4 (bec04 - 1 CPU )...
Executing hboot on n5 (bec05 - 1 CPU )...
Executing hboot on n6 (bec06 - 1 CPU )...
Executing hboot on n7 (bec07 - 1 CPU )...
Executing hboot on n8 (bec08 - 1 CPU )...
Executing hboot on n9 (bec09 - 1 CPU )...
Executing hboot on n10 (bec10 - 1 CPU )...
Executing hboot on n11 (bec11 - 1 CPU )...
Executing hboot on n12 (bec12 - 1 CPU )...
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Executing hboot on n13 (bec13 - 1 CPU )...
Executing hboot on n14 (bec14 - 1 CPU )...
Executing hboot on n15 (bec15 - 1 CPU )...
topology done

Now MPI is set up, we need change one line of code to make our simulation parallel.
Change the <use mpi> tag to read yes and you’re done! Ok, now run xmds over the script
to rebuild the binary executable, giving you something akin to the following:

% xmds kubo_tutorial.xmds
Output file name defaulting to ’kubo_tutorial.xsil’
compiling for MPI parallel execution ...

mpicc -pthread -O3 -ffast -math -funroll -all -loops
-fomit -frame -pointer -lm -lmpi -llam -lstdc++
-I/home/cochrane/bin -L/home/cochrane/bin -o kubo_tutorial
kubo_tutorial.cc -I/home/cochrane/bin -I/usr/local // include/
-lfftw_threads -lfftw -L/usr/local//lib/

kubo_tutorial ready to execute

We now run the simulation by using the command:

% mpirun -c 16 kubo_tutorial

The command line flag -c to the mpirun program tells mpirun how many processes to
generate over the machines we have, and since we have 16 computers to choose from, we set
this to 16 here (it could be higher if you want to run more than one process per CPU).

Running this simulation took almost exactly 6 minutes. Well, that wasn’t a great speed
improvement was it? Especially given that we used 16 computers instead of 1, and now
we’ve got a wall time improvement of about a factor of 4. As I mentioned above, some of
this will be due to communication overhead i.e. too much of the computer’s CPU is used in
just sending the data back and forth across the network, and not enough time is actually
spent just doing the calculation. However, we have reduced the amount of time necessary
to come to a solution, so we have actually done what we set out to do.

A new option for the MPI routines within xmds is to implement load balancing. This
is where the work of a parallel simulation is allocated to each of the CPUs running part of
the job on the basis of the load of the CPU; CPUs with less load on average get more work
to do, and CPUs with more load on average have less work to do. The adaptive scheduler
that performs this operation can be switched on by the use of the code

<MPI_Method >Scheduling </MPI_Method >

or disabled (which may be useful if your system doesn’t allow threads, for example, by the
code:

<MPI_Method >Uniform </MPI_Method >

After you’ve finished your simulation, and generated the results, all that is left to do is to
clean up after having run a parallel simulation. You do this by running the wipe program:

% wipe -v lamhosts

And that’s it. We’ve managed to decrease the amount of wall time necessary to calculate
many paths of a stochastic simulation, and all it took was for us to change one line of code!



Part II

Numerical Modelling Theory

77





5
Introduction

Unfortunately, appropriate mathematical models for the majority of natural phenomenon
generate equations that are non-integrable. This means that the solutions to the problem
cannot be written as exact analytic expressions, and those who would seek solutions must
appeal to the modern computer to calculate them by a numerical procedure. The capability
of modern computers continues to grow at a phenomenal rate, and hence so also does the
field of computational physics. In fact it has been described by some as a “third way of doing
physics”, in addition to the more standard theoretical and experimental approaches. Compu-
tational physics represents an unusual marriage of these two approaches (which traditionally
have always been rivals) in that the governing equations must be based on believable theory,
yet each simulation is very much like an experiment to determine what actually happens.
However, due perhaps to its rapid growth, computational physics is in need of improvement
in at least one particular area. In a recent review titled Microscopic simulations in physics [4]
Ceperley writes:

Sadly, the lore of experimental and theoretical physics has not yet fully penetrated into
computational physics. Before the field can advance, certain standards, which are common-
place in other technical areas, need to be adopted so that people and codes can work together.

Here Ceperley is addressing the issue of standards and reproducibility within computa-
tional physics. The results of one group must be able to be independently verified by another
group, and should one group cease working in a particular area it should be not unnecessarily
difficult for another group to pick up where they left off. However, code writing is inherently
individualistic and does not naturally lend itself to these properties. Further, the range of
problems that encompass every physical phenomenon known to our species is not small, and
if every problem had to be individually coded into a detailed computer program, checked,
and debugged—well, the future would look bleak.

What is needed is to be able to specify the generalities of the problem without having to
continually reprogram the detailed mechanisms of solving it. This approach is known as high
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level programming, and there are a variety of both commercial and public license packages
based on this approach. Unfortunately, to achieve the necessary flexibility these packages
tend to be “interpreters”, and thus they are seldom efficient at calculating the solution. And
for some problems, those that take fast computers days and weeks to solve, efficiency is
paramount. The only way to obtain efficiency is to directly compile a well written low level
program, letting the compiler do the optimisation – which is what compilers are very good
at. What many mathematicians and scientists would wish to have is their own personal
expert computer programmer, who takes their high level description of the problem and
writes a low level program specifically dedicated to solving it. Further, it is essential that
this process is error free.

Presented here is a solution to these difficulties. xmds is a computer program that
generates computer programs. xmds interprets a high level description of a problem, and
in turn writes a low level computer program that a compiler can compile and optimise.
The executable file produced then solves the problem as quickly and efficiently as possible.
Further, once xmds is debugged, the process of code generation, at least from the high
level script onwards, becomes error free. Of course, xmds cannot be written to be able to
process absolutely any problem; xmds has its own scope of capability, which is outlined in
Chapter 8.

We begin by outlining some of the basic theory involved in numerical modelling, and
then follow on with the develpoment strategy behind xmds and the structure of the source
code. We then look at the functionality of xmds, and illustrate this with worked examples.
We close with a brief outlook for future development.



6
Numerical Modelling Theory

6.1 Differential Equations

The majority of numerical models for real world problems are based on one or more differ-
ential equations involving the various parameters concerned. The large majority of which
may be written in the very general form:[

A (x, y)
∂2

∂x2
+ 2B (x, y)

∂2

∂x∂y
+ C (x, y)

∂2

∂y2

]
ai (x, y) = f i

(
x, y, a,

∂ai

∂x
,
∂ai

∂y

)
. (6.1)

These come under three sub-classifications [5] according the the parameters A, B, and C:

1. The PDE is said to be elliptic in regions of the x-y plane where AC −B2 > 0.

2. The PDE is said to be parabolic in regions of the x-y plane where AC −B2 = 0.

3. The PDE is said to be hyperbolic in regions of the x-y plane where AC −B2 < 0.

This model for classifying PDEs is only two dimensional, but many problems in physics
exhibit up to four dimensions. However, the majority of PDEs in physics are able to be
expressed in a form where one of the dimensions is special; special in that there are only
ever first order derivatives involving that dimension. A two dimensional form of such a PDE
looks like:

C (x, y)
∂2

∂y2
ai (x, y) = f i

(
x, y, a,

∂ai

∂x
,
∂ai

∂y

)
, (6.2)

and such an equation falls into the category of “parabolic” by the above classification. For
this reason many three and four dimensional PDEs in physics are referred to as parabolic,
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although technically this classification exists only for PDEs in two dimensions. The more
general form for such “parabolic-like” differential equations is:

∂

∂x0
ai(x) = f i [x, a(x)] , (6.3)

where the functionals f i may include first or second order partial derivatives of the transverse
dimensions, xi6=0. This set of equations can be generalised to allow the functionals f i to
include partial derivatives of any order. Given that the equations are in this general form,
they may be propagated in the first order dimension, x0, using one of the algorithms detailed
further on.

6.1.1 Boundary Conditions

In the case of partial differential equations, the equations must apply either over all of the
space spanned by the transverse dimensions, or else over a confined region of this space.
Either way, computational resources cannot solve over an infinite region of space, and so
boundaries of some sort must be imposed. Therefore, a description of what happens at these
boundaries is essential for solving the problem. There are three common types of boundary
conditions:

1. Dirichlet boundary conditions This is where the value of a component is fixed at
a particular boundary:

ai
(
x|xk = xk

±
)

= ai
k±. (6.4)

2. Neumann boundary conditions This is where the cross-boundary gradient of a
component is fixed at a particular boundary:

∂

∂xk
ai

(
x|xk = xk

±
)

= bik±. (6.5)

3. Periodic boundary conditions This is where the value of a component (and all of
its cross-boundary derivatives) is the same at each end of the dimension in question.
It is as if this dimension was originally circular, except that it has been cut for the
purpose of discretisation.(

∂

∂xk

)n

ai
(
x|xk = xk

+

)
=

(
∂

∂xk

)n

ai
(
x|xk = xk

−
)
, n = 0, 1, 2... (6.6)

If an infinite region of space is absolutely necessary, then it can be mapped to a finite region
of space using a transformation such as x = tan(ε), which maps an infinite range in x to
a finite range, [−π

2
,+π

2
], in ε. There are, of course, a few caveats when performing such a

mapping.
Finally, the last boundary condition is the initial state of the components. The values (or

form) of all the components must be specified for some point in the dimension of propagation,
x0.
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6.2 Stochastic Equations

Stochastic differential equations also include noise sources, ξ(x), which may be real or com-
plex:

∂

∂x0
ai(x) = f i [x, a(x)] + gij [a(x)] ξj(x). (6.7)

These can make propagation a little more technically challenging, but not impossible, and
enables a vast range of complex phenomena to be modelled. As a result an individual
propagation path becomes dependent on the underlying noise sources used, and usually
many such paths using independent noises are combined and averaged to obtain the desired
result. The noise sources are normally delta-correlated in the propagation dimension, though
not always in the transverse dimensions, and not always with each other, so that generally:〈

ξi(x)ξj(x′)
〉

= δ(x0′ − x0)Cij(x
′
⊥,x⊥); (6.8)〈

ξi(x)ξj∗(x′)
〉

= δ(x0′ − x0)Dij(x
′
⊥,x⊥), (6.9)

where as usual the subscript ⊥ denotes the transverse dimensions.

6.2.1 Ito vs Stratonovich Calculus

The integration of a stochastic equation as expressed above is not well defined in normal
calculus. In fact, there are multiple ways in which such an integration can be defined as
the limit of some discrete process, and they are not equivalent. The two main forms of
stochastic calculus are Ito calculus and Stratonovich calculus. Ito calculus is better suited
to mathematical proofs, but Stratonovich calculus has the major advantage that derivatives
follow the normal chain rule. This typically simplifies the numerical technique for solving
a Stratonovich equation with a high-order method. Both types of equations arise naturally
from modelling physical systems. Fortunately, it is possible to transform a set of equations
in Ito calculus to Stratonovich calculus (and vice-versa).

If a set of Ito equations is given by:

(I)
∂

∂x0
ai = f i [a] + gij [a] ξj, (6.10)

then the corresponding set of Stratonovich equations is

(S)
∂

∂x0
ai = f i [a]− 1

2

∑
jk

gkj [a]
∂

∂ak
gij [a] + gij [a(x)] ξj(x). (6.11)

Numerical integration of stochastic equations is more computationally intensive than deter-
ministic equations of equivalent size and complexity.

6.3 Numerical Methods for Differential Equations

We now briefly describe several numerical methods for integrating deterministic and stochas-
tic differential equations.
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6.3.1 The Euler and Inverse Euler Methods

Consider the ordinary differential equation:

∂

∂t
a(t) = f [t, a], (6.12)

where f is some functional of t and/or a. Given that a “current” value of a (say an = a(tn))
is known then the simplest method to propagate a forward in time is to use the current slope
(f [tn, an]) to calculate the new value an+1:

an+1 = an + h f [tn, an], (6.13)

where h is the time step so that tn+1 = tn + h. This is known at the explicit, or forward
time, Euler method. It is very simple, but not very accurate or stable. Stability can be
improved to an extent by thinking in reverse. Rather than using the slope at the current
point in time to calculate the next value of a, use the slope and the next point in time. But
this, of course, is not known until the next value of a is known, so the process becomes an
iterative, or implicit one. Initially the current value of a is used as next value, and then the
step:

an+1 = an + h f [tn+1, an+1], (6.14)

is iterated until convergence is obtained. This method is known as the implicit, or backward
time, or inverse, Euler method. For certain classes of differential equation, implicit methods
are more stable than their explicit equivalents, but overall the implicit Euler method is no
more accurate than the explicit Euler method.

The explicit and implicit Euler methods do not account for the second and higher order
derivatives of a. Thus the error per step is of order h2, which means the error over a given
integration interval is of order h. Consequently these methods are known as first order
methods.

Both of these methods can be used to integrate stochastic equations by treating the
noise terms as part of a larger function f which depends on a pseudo-random number which
changes each time step. This technique converges to the Ito integral with a convergence of
order h1/2. In general, the order of the stochastic convergence of a numerical method will be
less than or equal to half the order of the deterministic convergence.

6.3.2 The Improved Euler Method

Here two evaluations of the derivative f [t, a] are made. The first one is based on the current
value a, and is used to estimate the next value of a as in the explicit method. This estimated
next value is then used to calculate the next value of the derivative, which in turn is used to
make a second estimate of the next value of a as in the implicit method. These two estimates
are then averaged:

a
(1)
n+1 = an + h f [tn, an]; (6.15)

a
(2)
n+1 = an + h f [tn+1, a

(1)
n+1]; (6.16)

an+1 =
1

2

(
a

(1)
n+1 + a

(2)
n+1

)
. (6.17)
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The two estimates of f [t, a] account for the second order derivative of a, so the error per step
is reduced to order h3, and the integral is correct to order h2. This method is also known as
the improved Euler-Cauchy method, or Huen’s method. It is also known as the second-order
Runge-Kutta method.

Unfortunately, this method is not guaranteed to converge for stochastic integration when
the noise terms are naively added to the function on the RHS.

6.3.3 The Semi-Implicit Method

This method is very similar to the improved Euler method. Essentially the method lies half
way between the explicit and implicit methods in that the new value for a is calculated based
on the derivative at the mid-point of the step. Similarly to the implicit method, the current
value of a is used initially as the mid-point value, am = a(tm); tm = t + h/2, and then the
step:

am = an +
1

2
h f [tm, am], (6.18)

is iterated until convergence is obtained. The next value for a is then:

an+1 = 2am − an. (6.19)

Similar to the improved Euler method, the semi-implicit method is also a second order
method. It has the added advantage that a näıve inclusion of the noise terms in the function
f produces an algorithm that converges to the Stratonovich integral with global error of the
order of h.

6.3.4 The Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method has been the workhorse for numerical modelling for
many years. The method uses four evaluations of the derivative to account for the first,
second, third, and fourth derivatives—making it a fourth order method. The method is
simply:

k1 = h f [tn, an]; (6.20)

k2 = h f [
1

2
(tn + tn+1), an +

1

2
k1]; (6.21)

k3 = h f [
1

2
(tn + tn+1), an +

1

2
k2]; (6.22)

k4 = h f [tn+1, an + k3]; (6.23)

an+1 = an +
1

6
(k1 + 2k2 + 2k3 + k4) . (6.24)

(6.25)

Higher order methods are possible, but usually the extra accuracy does not warrant the
extra computation. In other words, this method usually achieves the fastest evaluation for a
given propagation accuracy. Note that even an optimised implementation of this algorithm
will require about three times as much memory as a lower order method.
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Although empirically there is a subclass of Stratonovich stochastic problems that converge
with this algorithm to second order, there is no guarantee of convergence for stochastic
equations.

6.3.5 The Adaptive Fourth-Order Runge-Kutta Method

For problems that exhibit very diverse behavior of the solution, say with slow change for
large parts of the propagation and rapid variations in others, it is very useful to employ an
algorithm that can adjust its stepsize. This allows the simulation to speed through smooth
uninteresting countryside in a few great strides but to tiptoe with many small steps through
treacherous terrain.

The adaptive stepsize method implemented in xmds in an embedded fourth-fifth order
Runge-Kutta method (ARK45). It takes advantage of the fact that it is possible to combine
certain six function evaluations that can result in a fifth order Runge-Kutta method in
another way to give a result that is accurate to fourth order. The ARK45 algorithm calculates
the forth and fifth order solution and uses the difference between them as an estimate of the
current discretisation error.

The structure is:

k1 = h f [tn, an];

k2 = h f [tn + a2h, an + b21k1];

k3 = h f [tn + a3h, an + b31k1 + b32k2];

k4 = h f [tn + a4h, an + b41k1 + b42k2 + b43k3];

k5 = h f [tn + a5h, an + b51k1 + b52k2 + b53k3 + b54k4];

k6 = h f [tn + a6h, an + b61k1 + b62k2 + b63k3 + b64k4 + b65k5];

an+1 = an + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6);

a∗n+1 = an + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 +O(h5). (6.26)

Here an+1 is the fifth order- and a∗n+1 the fourth order solution. The coefficients that appear
are listed in table 6.1. To adjust the time step xmds calculates the relative difference between
the two solutions ∆m. If partial differential equations are being solved it will determine the
maximum of the relative errors of all grid points, omitting points where the function is less
than cthresh ×M [a], where cthresh is a small threshold value (see chapter 11) and M [a] is the
peak value of the function across the grid. If multiple functions are present, each peak value
is determined separately.

If the prescribed accuracy is ∆tol, a time step of size δτn is accepted if ∆m ≤ ∆tol. It is
rejected if ∆m > ∆tol, and the step must be calculated again. The size of the next time step
δτn+1 is determined by:

δτn+1 =


0.92δτn

∣∣∣∣∆tol

∆m

∣∣∣∣1/5

if ∆m ≤ ∆tol,

0.92δτn

∣∣∣∣∆tol

∆m

∣∣∣∣1/4

if ∆m > ∆tol.

(6.27)



6.4 Numerical Methods for Partial Differential Equations 87

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5

0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

− 9
10

6
5

125
594

13525
55296

5 1 −11
54

5
2

−70
27

35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

Table 6.1: Cash-Karp parameters for the embedded Runga-Kutta method.

This algorithm will consume even more memory than the fourth-order Runge-Kutta, but
this easily pays off in situations where the rate of change of the solution varies a lot, or when
the appropriate step size is unknown.

As with the fourth-order Runge-Kutta there is no guarantee of convergence for stochastic
equations.

6.4 Numerical Methods for Partial Differential Equa-

tions

The methods in the previous section all deal with ordinary differential equations quite well,
but partial differential equations are considerably more complex, since the derivative depends
also upon the values for a at other points in the transverse space. In principle, once the
transverse spaces have been divided into a finite lattice, sets of partial differential equations
are just larger sets of ordinary differential equations, but there are many subtleties involved
with achieving this discretisation.

The critical issue is how the evolution due to the transverse derivatives is performed.
This issue divides algorithms into two classes: explicit picture and interaction picture. We
begin here by explaining just how the transverse derivatives may be calculated, and then
outline how the Semi-Implicit and the Runge-Kutta algorithms can be applied in each of
these cases.

6.4.1 Evaluating Transverse Derivatives

The transverse dimensions must be discretised to form a lattice. Lattices with more points
enable more detail, but also take up more memory, and more computational resource. The
transverse derivatives must be evaluated at each lattice point, and there must be some
method for doing so that uses the values of the field from the other lattice points. There are
two main methods for doing this.
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Firstly, there is the matrix method. If we let ak represent the discretised values of a(x)
at the lattice points xk, then we may evaluate the first order derivative like so:(

∂a(x)

∂x

)
xk

=
ak+1 − ak−1

xk+1 − xk−1

(6.28)

= Mjkaj, k 6= 1, n. (6.29)

Note the symmetry of the weightings about the point where the derivative is being evaluated,
causing the method to be space centered. Note also that, unless periodic boundary conditions
are specified, it is not not possible to implement a space centered method at the ends of the
lattice. The best that can be done is to implement a non-space centered method at the ends,
and insist that the derivatives vanish at the lattice boundaries for the technique to be valid.
M may be expressed as a tri-diagonal square matrix, which for periodic boundary conditions
is:

M =
1

2∆x



0 1 0 0 ... ... −1
−1 0 1 0 ... ... 0
0 −1 0 1 ... ... 0
... ... ... ... ... ... ...
0 ... ... −1 0 1 0
0 ... ... 0 −1 0 1
1 ... ... 0 0 −1 0


. (6.30)

And similarly for evaluating the second derivative we might use:

M =
1

(∆x)2



−2 1 0 0 ... ... 1
1 −2 1 0 ... ... 0
0 1 −2 1 ... ... 0
... ... ... ... ... ... ...
0 ... ... 1 −2 1 0
0 ... ... 0 1 −2 1
1 ... ... 0 0 1 −2


. (6.31)

These methods evaluate the derivatives using only the adjacent points in space, but in
principle it is possible to use progressively more distant neighbours to produce an estimate
of each derivative which takes into account contributions from higher order derivatives. In
practice, these methods are used rarely due to the availability of a method based on the
Fourier Transform. The partial derivate with respect to dimension xj is calculated quite
simply using Equation (6.32):

∂

∂xj
a(x) =

∂

∂xj

1

(2π)
N
2

∫
dkeik·xã(k)

=
1

(2π)
N
2

∫
dkeik·x(ikj)ã(k). (6.32)

This method can equally be applied to discrete data. Firstly a discrete Fourier Transform
is applied to the field data ak, then the data is multiplied point by point by the corresponding
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ikj values, and then the discrete inverse Fourier Transform is applied to obtain the a′k data.
Extending this method for higher order derivatives is trivial. Equation (6.33) illustrates
some example mappings:

f(kx, ky, ...) 7→ f(kx, ky, ...);

∂

∂x
7→ ikx;

∂2

∂x2
7→ (ikx)

2 = −k2
x;

∂2

∂x∂y
7→ (ikx)(iky) = −kxky. (6.33)

This method becomes computationally more efficient than the matrix method when a
number of higher order derivatives are desired, for example when a Laplacian operator is
being applied in multiple transverse dimensions. The main limitations of this method are
that it implies periodic boundary conditions and that it cannot be implemented on a non-
regular grid.

6.4.2 Explicit Picture Methods

In the explicit picture, all linear and nonlinear operators are explicitly calculated and summed
to generate the total derivative for each field component, whereas in the interaction picture
linear operators are dealt with separately to nonlinear operators.

Once a set of partial differential equations has been discretised to a finite lattice in the
transverse dimensions, it is formally equivalent to a large set of coupled ordinary differential
equations, and therefore it can be solved by higher order methods such as the semi-implicit
method of Section 6.3.3, or the fourth order Runge-Kutta (RK4) method of Section 6.3.4.
Partial derivatives of the fields can be determined by Crank-Nicholson methods or spectral
methods. Thus explicit picture methods are capable of solving the fully fledged generalised
PDE:

∂

∂x0
a(x) = N (x, a(x),p(x), ξ(x)) , (6.34)

pi(x) = F−1
[
ΣjLij

(
x0,k⊥

)
F

[
aj(x)

]]
. (6.35)

This is the PDE that is listed in Equation (8.3) with the cross propagating vector b omitted.
Refer to Chapter 8 for a full explanation of the variables. The important thing to note
is that the total derivative of the vector a is expressed in terms of the general nonlinear
functionals N , and that this form allows for nonlinear partial derivatives that may have

spatial dependence, for example 1
r

(
∂
∂r

)2
.

6.4.3 The Semi-Implicit method in the Explicit Picture

Here we use the Fourier Transform (or Spectral) method to determine the transverse deriva-
tives. The procedure, after Section 6.3.3, is:
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1. Calculate ξ if required.

2. x0 = x0 + 1
2
h

3. aI = a

4. For N-1 iterations do:

(a) p = F−1 [L (x0,k⊥) · F [a]]

(b) a = hN (x, a,p, ξ)

(c) a = aI + 1
2
a

5. p = F−1 [L (x0,k⊥) · F [a]]

6. a = hN (x, a,p, ξ)

7. a = aI + a

8. x0 = x0 + 1
2
h

Here an extra copy of the field is needed to store the initial a into aI , and a similar size
vector is needed for the derivatives p.

6.4.4 The Fourth Order Runge-Kutta Method in the Explicit Pic-
ture

Again we use the Fourier Transform (or Spectral) method to determine the transverse deriva-
tives. The procedure, after Section 6.3.4, then is:

1. Calculate ξ if required.

2. aK = a

3. aI = a

4. p = F−1 [L (x0,k⊥) · F [aK ]]

5. aK = hN (x, aK ,p, ξ)

6. a = a + 1
6
aK

7. x0 = x0 + 1
2
h

8. aK = aI + 1
2
aK

9. p = F−1 [L (x0,k⊥) · F [aK ]]

10. aK = hN (x, aK ,p, ξ)

11. a = a + 1
3
aK
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12. aK = aI + 1
2
aK

13. p = F−1 [L (x0,k⊥) · F [aK ]]

14. aK = hN (x, aK ,p, ξ)

15. a = a + 1
3
aK

16. x0 = x0 + 1
2
h

17. a = aI + a

18. p = F−1 [L (x0,k⊥) · F [aK ]]

19. aK = hN (x, aK ,p, ξ)

20. a = a + 1
6
aK

This method requires two extra copies of the field. One, aI , for the initial field value,
and the other, aK , to act as a working field while the original vector a collects the derivative
contributions. This saves the final step of copying aK back into a that would had to have
been performed if aK had collected the derivative contributions. It also requires a similar size
vector for the derivatives p. On most systems where the calculation is not memory-limited,
this method tends to achieve a desired accuracy many times faster than the semi-implicit
method.

6.4.5 The Fourth/ Fifth Order adaptive Runge-Kutta Method in
the Explicit Picture

Once more we use the Fourier Transform (or Spectral) method to determine the transverse
derivatives. In order to minimize memory usage the current contents of the arrays containing
the final solution are reused to calculate some of the k-vectors. The optimized procedure,
after Section 6.3.5, then is:

1. Calculate ξ if required.

2. aK = a

3. aI = a

4. p = F−1 [L (x0,k⊥) · F [aK ]]

5. aK = hN (x0, aK ,p, ξ)

6. a = a + c1aK

7. a∗ = a∗ + c∗1aK

8. x0 = x0 + a2h
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9. aK = aI + b21aK

10. p = F−1 [L (x0,k⊥) · F [aK ]]

11. aK = hN (x0, aK ,p, ξ)

12. aJ = (1− b31/c1)aI + b31/c1a + b32aK

13. x0 = x0 + (a3 − a2)h
(Note: c2 = c∗2 = 0)

14. p = F−1 [L (x0,k⊥) · F [aK ]]

15. aJ = hN (x0, aJ ,p, ξ)

16. aL = (1− b41/c1)aI + b41/c1a + b42aK + b43aJ

17. a = a + c3aJ

18. a∗ = a∗ + c∗3aJ

19. x0 = x0 + (a4 − a3)h

20. p = F−1 [L (x0,k⊥) · F [aK ]]

21. aL = hN (x, aL,p, ξ)

22. a = a + c4aL

23. a∗ = a∗ + c∗4aL

24. aL = (1− b51/c1)aI + b51/c1a + b52aK + (b53 − b51c3/c1)aJ + (b54 − b51c4/c1)aL

25. x0 = x0 + (a5 − a4)h

26. p = F−1 [L (x0,k⊥) · F [aK ]]

27. aL = hN (x, aL,p, ξ)

28. a∗ = a∗ + c∗5aL

(Note: c5 = 0)

29. aL = f1aI + f2aK + f3aJ + f4a + f5aL + f6a
∗

30. x0 = x0 + (a6 − a5)h

31. p = F−1 [L (x0,k⊥) · F [aK ]]

32. aL = hN (x, aL,p, ξ)
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33. a = a + c6aJ

34. a∗ = a∗ + c∗6aJ

The fi coefficients for the last function evaluation are derived from the original Cash-Karp
coefficients (see table 6.1) in the following way:

g = c1c
∗
4 − c∗1c4

f1 = 1 + (b64(c
∗
1 − c1) + b61(c4 − c∗4))/g

f2 = b62

f3 = b63 + (b64(c
∗
1 − c3) + b61(c

∗
3c4 − c3c

∗
4))/g

f4 = (b61c
∗
4 − b64c

∗
1)/g

f5 = b65 + c∗5(b61c4 − b64c1)/g

f6 = (b64c1 − b61c4)/g

(6.36)

This method requires six extra copies of the field. One, aI , for the initial field value, three
aK , aJ , aL, to act as a working fields while the original vector a and a∗ collect the derivative
contributions. It also requires a similar size vector for the derivatives p.

6.4.6 The Ninth Order Runge-Kutta Method in the Explicit Pic-
ture

We continue to use the Fourier Transform (or Spectral) method to determine the transverse
derivatives. The procedure is

1. Calculate ξ if required.

2. x0 = x0 + a1h

3. aa = a

4. p = F−1 [L (x0,k⊥) · F [aa]]

5. aa = N (x, aa,p, ξ)

6. x0 = x0 + (a2 − a1)h

7. ab = a + b2,1aa

8. p = F−1 [L (x0,k⊥) · F [ab]]

9. ab = N (x, ab,p, ξ)

10. x0 = x0 + (a3 − a2)h

11. ac = a + b3,1aa + b3,2ab
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12. p = F−1 [L (x0,k⊥) · F [ac]]

13. ac = N (x, ac,p, ξ)

14. x0 = x0 + (a4 − a3)h

15. ad = a + b4,1aa + b4,2ab + b4,3ac

16. p = F−1 [L (x0,k⊥) · F [ad]]

17. ad = N (x, ad,p, ξ)

18. x0 = x0 + (a5 − a4)h

19. ae = a + b5,1aa + b5,2ab + b5,3ac + b5,4ad

20. p = F−1 [L (x0,k⊥) · F [ae]]

21. ae = N (x, ae,p, ξ)

22. x0 = x0 + (a6 − a5)h

23. ai = a + b6,1aa + b6,2ab + b6,3ac + b6,4ad + b6,5ae

24. p = F−1 [L (x0,k⊥) · F [af ]]

25. ai = N (x, ai,p, ξ)

26. x0 = x0 + (a7 − a6)h

27. aj = a + b7,1aa + b7,2ab + b7,3ac + b7,4ad + b7,5ae + b7,6ai

28. p = F−1 [L (x0,k⊥) · F [aj]]

29. aj = N (x, aj,p, ξ)

30. x0 = x0 + (a8 − a7)h

31. ab = a + b8,1aa + b8,6ai + b8,7aj

32. p = F−1 [L (x0,k⊥) · F [ab]]

33. ab = N (x, ab,p, ξ)

34. x0 = x0 + (a9 − a8)h

35. ac = a + b9,1aa + b9,6ai + b9,7aj + b9,8ab

36. p = F−1 [L (x0,k⊥) · F [ac]]

37. ac = N (x, ac,p, ξ)

38. x0 = x0 + (a10 − a9))h
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39. ad = a + b10,1aa + b10,6ai + b10,7aj + b10,8ab + b10,9ac

40. p = F−1 [L (x0,k⊥) · F [ad]]

41. ad = N (x, ad,p, ξ)

42. x0 = x0 + (a11 − a10)h

43. ae = a + b11,1aa + b11,6ai + b11,7aj + b11,8ab + b11,9ac + b11,10ad

44. p = F−1 [L (x0,k⊥) · F [ae]]

45. ae = N (x, ae,p, ξ)

46. x0 = x0 + (a12 − a11)h

47. af = a + b12,1aa + b12,6ai + b12,7aj + b12,8ab + b12,9ac + b12,10ad + b12,11ae

48. p = F−1 [L (x0,k⊥) · F [af ]]

49. af = N (x, af ,p, ξ)

50. x0 = x0 + (a13 − a12)h

51. ag = a + b13,1aa + b13,6ai + b13,7aj + b13,8ab + b13,9ac + b13,10ad + b13,11ae + b13,12af

52. p = F−1 [L (x0,k⊥) · F [ag]]

53. ag = N (x, ag,p, ξ)

54. x0 = x0 + (a14 − a13)h

55. ah = a+b14,1aa +b14,6ai +b14,7aj +b14,8ab +b14,9ac +b14,10ad +b14,11ae +b14,12af +b14,13ag

56. p = F−1 [L (x0,k⊥) · F [ah]]

57. ah = N (x, ah,p, ξ)

58. ai = a + b15,1aa + b15,6ai + b15,7aj + b15,8ab + b15,9ac + b15,10ad + b15,11ae + b15,12af +
b15,13ag + b15,14ah

59. aj = (1−b16,6/b15,6)a+(b16,1−b15,1b16,6/b15,6)aa+(b16,6/b15,6)ai+(b16,7−b15,7b16,6/b15,6)aj+
(b16,8−b16,8b16,6/b15,6)ab+(b16,9−b15,9b16,6/b15,6)ac+(b16,10−b15,10b16,6/b15,6)ad+(b16,11−
b15,11b16,6/b15,6)ae + (b16,12 − b15,12b16,6/b15,6)af + (b16,13 − b15,13b16,6/b15,6)ag + (b16,14 −
b15,14b16,6/b15,6)ah

60. x0 = x0 + (a15 − a14)h

61. p = F−1 [L (x0,k⊥) · F [ai]]

62. ai = N (x, ai,p, ξ)
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63. x0 = x0 + (a16 − a15)h

64. p = F−1 [L (x0,k⊥) · F [aj]]

65. aj = N (x, aj,p, ξ)

66. a = a + c1aa + c8ab + c9ac + c10ad + c11ae + c12af + c13ag + c14ah + c15ai + c16aj

This method requires 10 extra copies of the field, aa to jj. Many of the ai bij and ci
constants are zero in the Eight/Ninth order Runge Kutta method are zero, meaning not all
fields produced at each midstep are required all the time, this allows us to reduce the total
number of fields required significantly. The 15th and 16th steps were merged together as
well to reduce the total fields needed in memory. Stochastic problems when solved with this
methods will achieve a significant performance boost many orders or magnitude greater than
extra memory use.

6.4.7 The Eighth/Ninth Order adaptive Runge-Kutta Method in
the Explicit Picture

We continue to use the Fourier Transform (or Spectral) method to determine the transverse
derivatives. The procedure is

1. Calculate ξ if required.

2. x0 = x0 + a1h

3. aa = a

4. p = F−1 [L (x0,k⊥) · F [aa]]

5. aa = N (x, aa,p, ξ)

6. x0 = x0 + (a2 − a1)h

7. ab = a + b2,1aa

8. p = F−1 [L (x0,k⊥) · F [ab]]

9. ab = N (x, ab,p, ξ)

10. x0 = x0 + (a3 − a2)h

11. ac = a + b3,1aa + b3,2ab

12. p = F−1 [L (x0,k⊥) · F [ac]]

13. ac = N (x, ac,p, ξ)

14. x0 = x0 + (a4 − a3)h
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15. ad = a + b4,1aa + b4,2ab + b4,3ac

16. p = F−1 [L (x0,k⊥) · F [ad]]

17. ad = N (x, ad,p, ξ)

18. x0 = x0 + (a5 − a4)h

19. ae = a + b5,1aa + b5,2ab + b5,3ac + b5,4ad

20. p = F−1 [L (x0,k⊥) · F [ae]]

21. ae = N (x, ae,p, ξ)

22. x0 = x0 + (a6 − a5)h

23. ai = a + b6,1aa + b6,2ab + b6,3ac + b6,4ad + b6,5ae

24. p = F−1 [L (x0,k⊥) · F [af ]]

25. ai = N (x, ai,p, ξ)

26. x0 = x0 + (a7 − a6)h

27. aj = a + b7,1aa + b7,2ab + b7,3ac + b7,4ad + b7,5ae + b7,6ai

28. p = F−1 [L (x0,k⊥) · F [aj]]

29. aj = N (x, aj,p, ξ)

30. x0 = x0 + (a8 − a7)h

31. ab = a + b8,1aa + b8,6ai + b8,7aj

32. p = F−1 [L (x0,k⊥) · F [ab]]

33. ab = N (x, ab,p, ξ)

34. x0 = x0 + (a9 − a8)h

35. ac = a + b9,1aa + b9,6ai + b9,7aj + b9,8ab

36. p = F−1 [L (x0,k⊥) · F [ac]]

37. ac = N (x, ac,p, ξ)

38. x0 = x0 + (a10 − a9))h

39. ad = a + b10,1aa + b10,6ai + b10,7aj + b10,8ab + b10,9ac

40. p = F−1 [L (x0,k⊥) · F [ad]]

41. ad = N (x, ad,p, ξ)
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42. x0 = x0 + (a11 − a10)h

43. ae = a + b11,1aa + b11,6ai + b11,7aj + b11,8ab + b11,9ac + b11,10ad

44. p = F−1 [L (x0,k⊥) · F [ae]]

45. ae = N (x, ae,p, ξ)

46. x0 = x0 + (a12 − a11)h

47. af = a + b12,1aa + b12,6ai + b12,7aj + b12,8ab + b12,9ac + b12,10ad + b12,11ae

48. p = F−1 [L (x0,k⊥) · F [af ]]

49. af = N (x, af ,p, ξ)

50. x0 = x0 + (a13 − a12)h

51. ag = a + b13,1aa + b13,6ai + b13,7aj + b13,8ab + b13,9ac + b13,10ad + b13,11ae + b13,12af

52. p = F−1 [L (x0,k⊥) · F [ag]]

53. ag = N (x, ag,p, ξ)

54. x0 = x0 + (a14 − a13)h

55. ah = a+b14,1aa +b14,6ai +b14,7aj +b14,8ab +b14,9ac +b14,10ad +b14,11ae +b14,12af +b14,13ag

56. p = F−1 [L (x0,k⊥) · F [ah]]

57. ah = N (x, ah,p, ξ)

58. ai = a + b15,1aa + b15,6ai + b15,7aj + b15,8ab + b15,9ac + b15,10ad + b15,11ae + b15,12af +
b15,13ag + b15,14ah

59. aj = (1−b16,6/b15,6)a+(b16,1−b15,1b16,6/b15,6)aa+(b16,6/b15,6)ai+(b16,7−b15,7b16,6/b15,6)aj+
(b16,8−b16,8b16,6/b15,6)ab+(b16,9−b15,9b16,6/b15,6)ac+(b16,10−b15,10b16,6/b15,6)ad+(b16,11−
b15,11b16,6/b15,6)ae + (b16,12 − b15,12b16,6/b15,6)af + (b16,13 − b15,13b16,6/b15,6)ag + (b16,14 −
b15,14b16,6/b15,6)ah

60. x0 = x0 + (a15 − a14)h

61. p = F−1 [L (x0,k⊥) · F [ai]]

62. ai = N (x, ai,p, ξ)

63. x0 = x0 + (a16 − a15)h

64. p = F−1 [L (x0,k⊥) · F [aj]]

65. aj = N (x, aj,p, ξ)
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66. aInt = a

67. a = a + c1aa + c8ab + c9ac + c10ad + c11ae + c12af + c13ag + c14ah + c15ai + c16aj

68. aa = aInt + c∗1aa + c∗8ab + c∗9ac + c∗10ad + c∗11ae + c∗12af + c∗13ag + c∗14ah + c∗15ai + c∗16aj

This method requires 11 extra copies of the field. An additional copy is required for the
adaptive time-step (compared to the non adaptive ARK9EX) since the approximate error
in the step must be calculated. This is achieved using the field stored in aa which holds
the 8th order solution, analogous to the a∗ in the ARK45 method. Once again we should
note the adaptive step implemented in this method is stochastically safe, making it the best
performing solver for stochastic problems.

6.4.8 Interaction Picture Methods

Interaction picture methods can only be applied to equations of the general form:

∂

∂x0
ai(x0,x⊥) = F−1

[
Li(x0,k⊥)F [ai(x)]

]
+N i (x, a(x), ξ(x)) . (6.37)

Although it is possible to define interaction picture algorithms in which the linear opera-
tors may have the general matrix form Lij, here they are restricted to the diagonal form
Li. Non-diagonal operators require eigen-vector-value decomposition each time step and at
each lattice point, which becomes computationally expensive. These Li operators may still
have coefficients that depend on the the propagation dimension and an the Fourier space
coordinates k⊥.

The evolution of the field a is carried out in both normal space and Fourier space in
alternating steps, hence this method is also known as a Split-Step method, or a Split-Operator
method. The exact implementation depends on the main integration method employed, as
is detailed in the following Sections, 6.4.9 and 6.4.10.

As a general rule the interaction picture algorithms are faster and more stable than their
Explicit picture counterparts, but they are also more restrictive with regard to the allowable
linear operators.

6.4.9 The Semi-Implicit method in the Interaction Picture

The original derivation of this method was performed by Drummond [6], and we repeat it
here since it is the most efficient and stable method for solving stochastic PDEs. Consider
now expressing the field a as the transform:

ai(x0,x⊥) = e(x0−z)Li(x0,k⊥) [
bi(x0,x⊥)

]
. (6.38)

The time derivative of a then becomes:

∂

∂x0
ai(x0,x⊥) = Li

(
x0,k⊥

) [
ai

]
+ e(x0−z)f i(x0,k⊥)Li

[
ḃi

]
, (6.39)
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since the operators L are linear. Equating this result with Equation (6.37) we get:

ḃi(x0,x⊥) = e−(x0−z)Li(x0,k⊥) [
N i (x, a, ξ)

]
. (6.40)

Now solving for b using the semi-implicit method yields:

bi
(
x0 +

h

2
,x⊥

)
= bi

(
x0,x⊥

)
(6.41)

+
1

2
h e−(x0+h

2
−z)Li(x0,k⊥)

[
N i

(
x0 +

h

2
,x⊥, a

(
x0 +

h

2
,x⊥

)
, ξ

)]
. (6.42)

Finally, if we define z = x0 + h
2

then a and b become identical at the middle of the time
step, and we obtain

bi
(
x0 +

h

2
,x⊥

)
= bi

(
x0,x⊥

)
+
h

2
N i

(
x0 +

h

2
,x⊥,b

(
x0 +

h

2
,x⊥

)
, ξ

)
. (6.43)

Hence the a and b fields are transformed from one to the other at the beginning and end of
the time step using the linear operators, and the b field is evolved over the time step using
the nonlinear operators and the semi-implicit algorithm. Thus the algorithm becomes quite
simply:

1. a = e
1
2
hL(x0,k⊥) · a

2. Calculate ξ if required.

3. x0 = x0 + 1
2
h

4. For each point in space do:

(a) aI = a

(b) For N-1 iterations do:

i. a = aI + 1
2
hN (x, a, ξ)

(c) a = aI + hN (x, a, ξ)

5. x0 = x0 + 1
2
h

6. a = e
1
2
hL(x0,k⊥) · a

The first and the last steps are easily performed with the field in Fourier space since the
linear operators reduce to k⊥ multipliers. Note that the dependence of the linear operators
Li(x0,k⊥) on the propagation dimension ought to be weak in comparison to the size of the
time step. If they do vary with time then the exponentials will have to be calculated at every
time step, which can be computationally expensive with some CPU architectures. Otherwise
the exponentials may be pre-calculated and tabulated for reference.

Further advantages of this method are that the forward and backward Fourier transforms
may be performed in place (i.e. within the current memory block), as can the point-by-point
multiplication of the field by the exponentials. Thus no extra copies of the field are required.
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6.4.10 The Fourth Order Runge-Kutta Method in the Interaction
Picture

One way of reducing the memory overhead on the RK4 algorithm is to move into an inter-
action picture, exactly as was performed in the split-step semi-implicit method above. This
method was derived by Rob Ballagh’s BEC group at the University of Otago. It is described
in detail in the PhD thesis of B.M. Caradoc-Davies [7].

We will present only an optimised recipe for implementing this algorithm:

1. Calculate ξ if required.

2. aK = a

3. a = e
1
2
hL(x0,k⊥) · a

4. aI = a

5. aK = hN (x, aK , ξ)

6. aK = e
1
2
hL(x0,k⊥) · aK

7. a = a + 1
6
aK

8. x0 = x0 + 1
2
h

9. aK = aI + 1
2
aK

10. aK = hN (x, aK , ξ)

11. a = a + 1
3
aK

12. aK = aI + 1
2
aK

13. aK = hN (x, aK , ξ)

14. a = a + 1
3
aK

15. x0 = x0 + 1
2
h

16. aK = aI + aK

17. aK = e
1
2
hL(x0,k⊥) · aK

18. aK = hN (x, aK , ξ)

19. a = e
1
2
hL(x0,k⊥) · a

20. a = a + 1
6
aK
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Similarly to the semi-implicit algorithm in the interaction picture, the first and the last
steps are easily performed with the field in Fourier space since the linear operators reduce
to k⊥ multipliers. And again note that the dependence of the linear operators Li(x0,k⊥) on
the propagation dimension ought to be weak in comparison to the size of the time step.

This algorithm has a similar memory overhead as its Explicit picture counterpart, but it
no longer needs the memory for the p derivatives vector, nor does it have to do the work to
calculate this vector.

The interaction picture method relies on the derivative Operator being independent of
the propagation dimension, otherwise it cannot function as a fourth order algorithm.

6.4.11 The Fourth/ Fifth Order adaptive Runge-Kutta Method
in the Interaction Picture

In the Fourth/ Fifth Order adaptive Runge-Kutta algorithm it seems we would require too
many Fourier transforms for this to be efficient. Following [8] the function can however
primarily be evolved in Fourier space and transformed into normal space for calculation of
the N (x, ai, ξ) only. The use of the interaction picture does not allow a reduction of the
computational effort to the same extent as in the RK4IP algorithm, but this method can
still be vastly superior over the adaptive explicit picture method as it allows larger step sizes
for equations containing certain derivative operators. In the following the vectors a, a∗ are
supposed to be initially in Fourier space. Note that for the calculation of the N () these are
transformed into normal space.

1. Calculate ξ if required.

2. aK = a

3. a = ea2hL(x0,k⊥) · a

4. aI = a

5. a∗ = a

6. aK = h F [N (x0,F−1 [aK ] , ξ)]

7. aK = e−a2hL(x0,k⊥) · aK

8. a = a + c1aK

9. a∗ = a∗ + c∗1aK

10. x0 = x0 + a2h

11. aK = aI + b21aK

12. aK = h F [N (x0,F−1 [aK ] , ξ)]

13. aJ = (1− b31/c1)aI + b31/c1a + b32aK
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14. x0 = x0 + (a3 − a2)h
(Note: c2 = c∗2 = 0)

15. aJ = e(a3−a2)hL(x0,k⊥) · aJ

16. aJ = h F [N (x0,F−1 [aJ ] , ξ)]

17. aJ = e−(a3−a2)hL(x0,k⊥) · aJ

18. aL = (1− b41/c1)aI + b41/c1a + b42aK + b43aJ

19. a = a + c3aJ

20. a∗ = a∗ + c∗3aJ

21. x0 = x0 + (a4 − a3)h

22. aL = e(a4−a2)hL(x0,k⊥) · aL

23. aL = h F [N (x,F−1 [aL] , ξ)]

24. aL = e−(a4−a2)hL(x0,k⊥) · aL

25. a = a + c4aL

26. a∗ = a∗ + c∗4aL

27. aL = (1− b51/c1)aI + b51/c1a + b52aK + (b53 − b51c3/c1)aJ + (b54 − b51c4/c1)aL

28. x0 = x0 + (a5 − a4)h

29. aL = e(a5−a2)hL(x0,k⊥) · aL

30. aL = h F [N (x,F−1 [aL] , ξ)]

31. aL = e−(a5−a2)hL(x0,k⊥) · aL

32. a∗ = a∗ + c∗5aL

(Note: c5 = 0)

33. aL = f1aI + f2aK + f3aJ + f4a + f5aL + f6a
∗

34. x0 = x0 + (a6 − a5)h

35. aL = e(a6−a2)hL(x0,k⊥) · aL

36. aL = h F [N (x,F−1 [aL] , ξ)]
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37. aL = e−(a6−a2)hL(x0,k⊥) · aL

38. a = a + c6aJ

39. a∗ = a∗ + c∗6aJ

40. x0 = x0 + (a6 − a5)h

41. a = e(1−a2)hL(x0,k⊥) · a

42. a∗ = e(1−a2)hL(x0,k⊥) · a∗

The fi coefficients are listed in section 6.4.5. Unlike its fixed step counterpart (RK4IP),
this algorithm requires significant memory for the fastest calculation of the Fourier space
propagation, as the arguments of the exponentials contain different factors of ai−a2 for each
application. If this turns out to be a problem, XMDS offers the possibility to sacrifice speed
for less memory consumption by the use of an appropriate flag.

As the two computed solutions are of fourth and fifth order only if the derivative operators
are independent of the propagation dimension, this algorithm cannot be used at all for
problems where this is not the case.

6.4.12 The Ninth Order Runge-Kutta Method in the Interaction
Picture

The ninth order Runge-Kutta does require a large amount of Fourier transforms, since there
is no temporal Symmetry in the algorithm. However the improvement in convergence may
offset the extra time required, particularly in stochastic problems.

1. Calculate ξ if required.

2. x0 = x0 + a1h

3. aa = a

4. a = ehL(x0,k⊥) · a

5. aa = h F [N (x0,F−1 [aa] , ξ)]

6. aa = ehL(x0,k⊥) · aa

7. x0 = x0 + (a2 − a1)h

8. ab = a + b2,1aa

9. ab = e−(1−a2)hL(x0,k⊥) · ab

10. ab = h F [N (x0,F−1 [ab] , ξ)]
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11. ab = e(1−a2)hL(x0,k⊥) · ab

12. x0 = x0 + (a3 − a2)h

13. ac = a + b3,1aa + b3,2ab

14. ac = e−(1−a3)hL(x0,k⊥) · ac

15. ac = h F [N (x0,F−1 [ac] , ξ)]

16. ac = e(1−a3)hL(x0,k⊥) · ac

17. x0 = x0 + (a4 − a3)h

18. ad = a + b4,1aa + b4,2ab + b4,3ac

19. ad = e−(1−a4)hL(x0,k⊥) · ad

20. ad = h F [N (x0,F−1 [ad] , ξ)]

21. ad = e(1−a4)hL(x0,k⊥) · ad

22. x0 = x0 + (a5 − a4)h

23. ae = a + b5,1aa + b5,2ab + b5,3ac + b5,4ad

24. ae = e−(1−a5)hL(x0,k⊥) · ae

25. ae = h F [N (x0,F−1 [ae] , ξ)]

26. ae = e(1−a5)hL(x0,k⊥) · ae

27. x0 = x0 + (a6 − a5)h

28. ai = a + b6,1aa + b6,2ab + b6,3ac + b6,4ad + b6,5ae

29. ai = e−(1−a6)hL(x0,k⊥) · ai

30. ai = h F [N (x0,F−1 [ai] , ξ)]

31. ai = e(1−a6)hL(x0,k⊥) · ai

32. x0 = x0 + (a7 − a6)h

33. aj = a + b7,1aa + b7,2ab + b7,3ac + b7,4ad + b7,5ae + b7,6ai

34. aj = e−(1−a7)hL(x0,k⊥) · aj

35. aj = h F [N (x0,F−1 [aj] , ξ)]
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36. aj = e(1−a7)hL(x0,k⊥) · aj

37. x0 = x0 + (a8 − a7)h

38. ab = a + b8,1aa + b8,6ai + b8,7aj

39. ab = e−(1−a8)hL(x0,k⊥) · ab

40. ab = h F [N (x0,F−1 [ab] , ξ)]

41. ab = e(1−a8)hL(x0,k⊥) · ab

42. x0 = x0 + (a9 − a8)h

43. ac = a + b9,1aa + b9,6ai + b9,7aj + b9,8ab

44. ac = e−(1−a9)hL(x0,k⊥) · ac

45. ac = h F [N (x0,F−1 [ac] , ξ)]

46. ac = e(1−a9)hL(x0,k⊥) · ac

47. x0 = x0 + (a10 − a9))h

48. ad = a + b10,1aa + b10,6ai + b10,7aj + b10,8ab + b10,9ac

49. ad = e−(1−a10)hL(x0,k⊥) · ad

50. ad = h F [N (x0,F−1 [ad] , ξ)]

51. ad = e(1−a10)hL(x0,k⊥) · ad

52. x0 = x0 + (a11 − a10)h

53. ae = a + b11,1aa + b11,6ai + b11,7aj + b11,8ab + b11,9ac + b11,10ad

54. ae = e−(1−a11)hL(x0,k⊥) · ae

55. ae = h F [N (x0,F−1 [ae] , ξ)]

56. ae = e(1−a11)hL(x0,k⊥) · ae

57. x0 = x0 + (a12 − a11)h

58. af = a + b12,1aa + b12,6ai + b12,7aj + b12,8ab + b12,9ac + b12,10ad + b12,11ae

59. af = e−(1−a12)hL(x0,k⊥) · af

60. af = h F [N (x0,F−1 [af ] , ξ)]
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61. af = e(1−a12)hL(x0,k⊥) · af

62. x0 = x0 + (a13 − a12)h

63. ag = a + b13,1aa + b13,6ai + b13,7aj + b13,8ab + b13,9ac + b13,10ad + b13,11ae + b13,12af

64. ag = e−(1−a13)hL(x0,k⊥) · ag

65. ag = h F [N (x0,F−1 [ag] , ξ)]

66. ag = e(1−a13)hL(x0,k⊥) · ag

67. x0 = x0 + (a14 − a13)h

68. ah = a+b14,1aa +b14,6ai +b14,7aj +b14,8ab +b14,9ac +b14,10ad +b14,11ae +b14,12af +b14,13ag

69. ah = e−(1−a14)hL(x0,k⊥) · ah

70. ah = h F [N (x0,F−1 [ah] , ξ)]

71. ah = e(1−a14)hL(x0,k⊥) · ah

72. ai = a + b15,1aa + b15,6ai + b15,7aj + b15,8ab + b15,9ac + b15,10ad + b15,11ae + b15,12af +
b15,13ag + b15,14ah

73. aj = (1−b16,6/b15,6)a+(b16,1−b15,1b16,6/b15,6)aa+(b16,6/b15,6)ai+(b16,7−b15,7b16,6/b15,6)aj+
(b16,8−b16,8b16,6/b15,6)ab+(b16,9−b15,9b16,6/b15,6)ac+(b16,10−b15,10b16,6/b15,6)ad+(b16,11−
b15,11b16,6/b15,6)ae + (b16,12 − b15,12b16,6/b15,6)af + (b16,13 − b15,13b16,6/b15,6)ag + (b16,14 −
b15,14b16,6/b15,6)ah

74. x0 = x0 + (a15 − a14)h

75. ai = h F [N (x0,F−1 [ai] , ξ)]

76. x0 = x0 + (a16 − a15)h

77. aj = h F [N (x0,F−1 [aj] , ξ)]

78. a = a + c1aa + c8ab + c9ac + c10ad + c11ae + c12af + c13ag + c14ah + c15ai + c16aj

The method requires 10 copies of the field like its explicit picture counterpart. Note no
rotations are required for steps 15 and 16 since they both occur at the end of the time step.
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6.4.13 The Eighth / Ninth Order adaptive Runge-Kutta Method
in the Interaction Picture

The Eighth/Ninth order Runge-Kutta also requires a large number of Fourier transforms
since there is no temporal symmetry in the algorithm. However, the improvement in con-
vergence may offset the extra time required, particularly in stochastic problems.

1. Calculate ξ if required.

2. x0 = x0 + a1h

3. aa = a

4. a = ehL(x0,k⊥) · a

5. aa = h F [N (x0,F−1 [aa] , ξ)]

6. aa = ehL(x0,k⊥) · aa

7. x0 = x0 + (a2 − a1)h

8. ab = a + b2,1aa

9. ab = e−(1−a2)hL(x0,k⊥) · ab

10. ab = h F [N (x0,F−1 [ab] , ξ)]

11. ab = e(1−a2)hL(x0,k⊥) · ab

12. x0 = x0 + (a3 − a2)h

13. ac = a + b3,1aa + b3,2ab

14. ac = e−(1−a3)hL(x0,k⊥) · ac

15. ac = h F [N (x0,F−1 [ac] , ξ)]

16. ac = e(1−a3)hL(x0,k⊥) · ac

17. x0 = x0 + (a4 − a3)h

18. ad = a + b4,1aa + b4,2ab + b4,3ac

19. ad = e−(1−a4)hL(x0,k⊥) · ad

20. ad = h F [N (x0,F−1 [ad] , ξ)]

21. ad = e(1−a4)hL(x0,k⊥) · ad

22. x0 = x0 + (a5 − a4)h
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23. ae = a + b5,1aa + b5,2ab + b5,3ac + b5,4ad

24. ae = e−(1−a5)hL(x0,k⊥) · ae

25. ae = h F [N (x0,F−1 [ae] , ξ)]

26. ae = e(1−a5)hL(x0,k⊥) · ae

27. x0 = x0 + (a6 − a5)h

28. ai = a + b6,1aa + b6,2ab + b6,3ac + b6,4ad + b6,5ae

29. ai = e−(1−a6)hL(x0,k⊥) · ai

30. ai = h F [N (x0,F−1 [ai] , ξ)]

31. ai = e(1−a6)hL(x0,k⊥) · ai

32. x0 = x0 + (a7 − a6)h

33. aj = a + b7,1aa + b7,2ab + b7,3ac + b7,4ad + b7,5ae + b7,6ai

34. aj = e−(1−a7)hL(x0,k⊥) · aj

35. aj = h F [N (x0,F−1 [aj] , ξ)]

36. aj = e(1−a7)hL(x0,k⊥) · aj

37. x0 = x0 + (a8 − a7)h

38. ab = a + b8,1aa + b8,6ai + b8,7aj

39. ab = e−(1−a8)hL(x0,k⊥) · ab

40. ab = h F [N (x0,F−1 [ab] , ξ)]

41. ab = e(1−a8)hL(x0,k⊥) · ab

42. x0 = x0 + (a9 − a8)h

43. ac = a + b9,1aa + b9,6ai + b9,7aj + b9,8ab

44. ac = e−(1−a9)hL(x0,k⊥) · ac

45. ac = h F [N (x0,F−1 [ac] , ξ)]

46. ac = e(1−a9)hL(x0,k⊥) · ac

47. x0 = x0 + (a10 − a9))h
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48. ad = a + b10,1aa + b10,6ai + b10,7aj + b10,8ab + b10,9ac

49. ad = e−(1−a10)hL(x0,k⊥) · ad

50. ad = h F [N (x0,F−1 [ad] , ξ)]

51. ad = e(1−a10)hL(x0,k⊥) · ad

52. x0 = x0 + (a11 − a10)h

53. ae = a + b11,1aa + b11,6ai + b11,7aj + b11,8ab + b11,9ac + b11,10ad

54. ae = e−(1−a11)hL(x0,k⊥) · ae

55. ae = h F [N (x0,F−1 [ae] , ξ)]

56. ae = e(1−a11)hL(x0,k⊥) · ae

57. x0 = x0 + (a12 − a11)h

58. af = a + b12,1aa + b12,6ai + b12,7aj + b12,8ab + b12,9ac + b12,10ad + b12,11ae

59. af = e−(1−a12)hL(x0,k⊥) · af

60. af = h F [N (x0,F−1 [af ] , ξ)]

61. af = e(1−a12)hL(x0,k⊥) · af

62. x0 = x0 + (a13 − a12)h

63. ag = a + b13,1aa + b13,6ai + b13,7aj + b13,8ab + b13,9ac + b13,10ad + b13,11ae + b13,12af

64. ag = e−(1−a13)hL(x0,k⊥) · ag

65. ag = h F [N (x0,F−1 [ag] , ξ)]

66. ag = e(1−a13)hL(x0,k⊥) · ag

67. x0 = x0 + (a14 − a13)h

68. ah = a+b14,1aa +b14,6ai +b14,7aj +b14,8ab +b14,9ac +b14,10ad +b14,11ae +b14,12af +b14,13ag

69. ah = e−(1−a14)hL(x0,k⊥) · ah

70. ah = h F [N (x0,F−1 [ah] , ξ)]

71. ah = e(1−a14)hL(x0,k⊥) · ah

72. ai = a + b15,1aa + b15,6ai + b15,7aj + b15,8ab + b15,9ac + b15,10ad + b15,11ae + b15,12af +
b15,13ag + b15,14ah
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73. aj = (1−b16,6/b15,6)a+(b16,1−b15,1b16,6/b15,6)aa+(b16,6/b15,6)ai+(b16,7−b15,7b16,6/b15,6)aj+
(b16,8−b16,8b16,6/b15,6)ab+(b16,9−b15,9b16,6/b15,6)ac+(b16,10−b15,10b16,6/b15,6)ad+(b16,11−
b15,11b16,6/b15,6)ae + (b16,12 − b15,12b16,6/b15,6)af + (b16,13 − b15,13b16,6/b15,6)ag + (b16,14 −
b15,14b16,6/b15,6)ah

74. x0 = x0 + (a15 − a14)h

75. ai = h F [N (x0,F−1 [ai] , ξ)]

76. x0 = x0 + (a16 − a15)h

77. aj = h F [N (x0,F−1 [aj] , ξ)]

78. aInt = a

79. a = a + c1aa + c8ab + c9ac + c10ad + c11ae + c12af + c13ag + c14ah + c15ai + c16aj

80. aa = aInt + c∗1aa + c∗8ab + c∗9ac + c∗10ad + c∗11ae + c∗12af + c∗13ag + c∗14ah + c∗15ai + c∗16aj

The method requires 11 copies of the field and has a variable time step which is stochastically
safe like its explicit picture counterpart. Once again no rotations are required for steps 15
and 16 since they both occur at the end of the time step.

6.4.14 Adding a Cross Vector

The nonlinear functionals of Equations (6.35) and (6.37) may also include variables that
are a function of the same transverse space, but are which are governed by ODEs in one of
the transverse dimensions. These components need never be transformed to Fourier space,
and so ought to be separated from the main vector components for efficiency reasons. In
Equation (8.3) they are referred to as the vector b, which propagates in dimension xc.
This vector has a definite value once the main vector a has a definite value. This means
that for most integration algorithms a current value for the cross vector may be calculated
immediately prior to calculating the N functionals.

In the semi-implicit method in the explicit picture the cross vector b is calculated using
the semi-implicit method and using linear interpolation in the xc dimension to create the
mid-lattice point values for a that are required.

Similarly, with the RK4 method, in both the explicit and interaction pictures, the calcu-
lation of b is performed using the RK4 method, and again using linear interpolation in the
xc dimension to create the mid-lattice point values for a that are required. Note that this
use of simple linear interpolation causes a loss of order when implementing a higher order
method such as the RK4, but generally the transverse lattice is sufficiently fine for this to
be negligible.

However, as mentioned earlier the semi-implicit method in the interaction picture need
only sweep through the memory space of main field vector once with each nonlinear step.
Therefore it would be desirable to use an algorithm that can calculate the cross vector si-
multaneously in the same sweep. The semi-implicit method in the interaction picture does
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this by employing the standard semi-implicit algorithm in the propagation direction simul-
taneously with another semi-implicit algorithm in the transverse propagation dimension. In
pseudo-code it looks like this:

1. a = e
1
2
hL(x0,k⊥) · a

2. Calculate ξ if required.

3. x0 = x0 + 1
2
h

4. For each point in space do:

(a) aI = a

(b) bI = b

(c) For N-1 iterations do:

i. a = aI + 1
2
hN (x, a,b, ξ)

ii. b = bI + 1
2
∆xc H(x, a,b)

(d) a = aI + hN (x, a,b, ξ)

(e) b = bI + 1
2
∆xc H(x, a,b)

(f) b(xc + ∆xc) = bI + ∆xc H(x, a,b)

5. x0 = x0 + 1
2
h

6. a = e
1
2
hL(x0,k⊥) · a

This routine assumes that the cross vector b was already initialised at the first lattice point
in xc.

6.5 Discretisation and Sampling Errors

In order to produce an accurate result, any numerical integration must proceed with a suffi-
ciently small time step h. The difference between the correct result and the numerical result
with a particular time step is known as the discretisation error. For deterministic equations,
it is usually (see next paragraph) sufficient to reduce h until the result converges to the
desired accuracy. For stochastic equations this is not precisely correct, as a greater number
of time steps will induce a different choice “noise” from the random number generators.
This means that the two trajectories will be different members of the ensemble of possible
trajectories, so they should not be expected to converge to each other. In order to verify the
convergence of a stochastic integration, it is necessary to ensure that the same trajectory, or
path, is examined with time steps of differing size. This can be done by averaging the noise
contributions of a fine-grained path to generate the noise contributions to a coarse-grained
path.

Many problems represent some localised interaction in a psuedo-infite space. In other
words any radiation shed from the interaction should propagate away without ever being
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reflected back into the region of interest. In such cases boundaries must be sufficiently
far away from the important area of the field to have no effect on the result, and when
periodic boundary conditions are used (these are in fact enforced with xmds) damping
must be applied near the boundaries so as to absorb any such radiation. The lattice used
in each transverse dimension must be sufficiently fine to be able to exhibit the details, yet
not so fine as to cause memory problems - or cause the solution to take forever to compute.
Further still, field details that are significantly smaller than those present at initialisation
may evolve during the simulation, and the evolution of such detail will ultimately be affected
by the finesse of the transverse lattice. Therefore simply reducing the time step alone is not a
complete guarantee of accuracy. The results must be inspected to ensure that the transverse
lattice was fine enough to contain the detail. If unsure then re-run the simulation with a
finer lattice, as the evolution may be attempting to generate singularities.

Usually, meaningful results only come from stochastic integration by averaging moments
of the fields over large numbers of paths. This leads to a second form of error for stochastic
equations due to the standard error in the mean. This is known as the sampling error, and
scales as the inverse square root of the number of paths taken.
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7
Development and Program Structure

It only takes a few items of information to define a numerical simulation, yet the list of
instructions necessary to get a computer to calculate the solution is vast in comparison.
Going from the former to the latter is non-trivial. It can be done in a single step (as
far as the user is concerned) with high level programming languages, but most computer
programmers know from experience that the numerical solution can be calculated more
efficiently by writing comparatively more code in a low level script, than less code in a
high level script. This is because the programmer knows the purpose of the program, and
can optimise it accordingly as the list of instructions is expanded. On the other hand a
compiler can only perform optimisations that it knows are guaranteed to work regardless of
the purpose of the program.

By restricting the scope of programs to those with a known range of purposes, one is
able to write a compiler that generates more efficient output code. In other words the
possible input code is constrained to a very small set of instructions which, even though
they may be complex, have a well defined expansion into a simpler instruction set. Further,
it is not necessary to define the expansion down to the level of assembly code – one only
needs to define the expansion to a point where it no longer relies critically on the compiler’s
optimisation ability. This is how xmds works: transform from specialised input script to
efficient C code, and then let an ordinary compiler do the rest.

In choosing the high level syntax we have attempted to employ some degree of foresight:
the future is likely to see more interconnection of computer networks around the world,
and information is already taking a standardised form for transfer. Until now this has
primarily been HTML (Hyper Text Mark-up Language), but now there is increasing interest
in an “extensible” mark-up language of which HTML is only a subset. This is known as
XML (eXtensible Mark-up Language) [9, 10]. Also, a standard for data interchange has been
developed at Caltech [2] which is a subset of XML: XSIL or eXtensible Scientific Interchange
Language, and this has been chosen as the format for field data input/output.

117
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Using XML for the input script has another significant advantage: the format for the
simulation data takes on a tree-like structure which can be extended and made as complex as
is necessary. This is the extensible property of XML. Appropriately named element tags are
used to mark-up the essential data, and may be nested accordingly to group the information.
The result is a logical human-readable script with data represented in a manner preserving
both synthetic and sequential relationships.

xmds has undergone a few development iterations for the purpose of refinement and
extension. There have been two particularly difficult aspects. The first was in defining an
appropriate equation syntax. This syntax had to be in C code style since xmds merely
transplants these equations into the output C code (which it then compiles), and yet it had
to be capable of representing equations of the form shown in Equation (8.3). Further, it was
desired that the C code form of such an equation must be the same regardless of the type
of integration algorithm chosen. This difficulty was compounded by the desire to include
split-operator algorithms, which process the linear and nonlinear terms entirely separately.
The result that we have achieved here is quite elegant, though there are a few caveats with
regard to writing the equations.

The second area of difficulty was enabling the user to define exactly what they wanted
as output. The simplest solution would have been to save the raw field data to file as the
simulation progressed, and the user left to process it afterward in their own preferred plotting
and calculation package. However, with stochastic problems the user usually wishes to
calculate the average of some property or moment of the field over many different trajectories
or integration runs. Therefore it was necessary to enable to user to define such moments so
that they may be calculated and averaged before the output data is written to file.

The source code for xmds is written in object oriented C, otherwise known as C++.
The main routine is very simple, and its procedure is as shown on the left side in Figure 7.1.
The right side is performed by the simulation data class.

A non-validating XML parser processes the input file and populates a node tree based
on the Document Object Model [11]. This parser was written by the author, but there is
little need to describe it in detail here. This node tree is then passed to a simulation class
object which extracts its own relevant data, and in turn creates child objects to process the
relevant sub-trees. The class structure of xmds is shown in Figure 7.2.

Once the input file has been processed, a “dry run” of the main sequence tree is called
in order to evaluate the total number of samples requested for each output moment group.
Finally the output code is generated. This is accomplished with a “tree walking” tech-
nique. To begin with the simulation object writes any include statements that are necessary.
Then it writes any define statements particular to itself, and then calls each of its child
objects to do the same. This process is continued down the tree until every object in
the tree has written its define statements. Starting again at the simulation element, the
process is repeated to write the global variables, the routine prototypes, and finally the
routines themselves. This tree walking is performed by the Element class with the vir-
tual functions, aptly titled, writeDefines(), writeGlobals(), writePrototypes(), and
writeRoutines(). These routines are then overridden in the derived classes to write the
code specific to each class.

As mentioned in the previous section, one of the primary areas of difficulty was developing
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Begin

Process command line arguments

Parse input file

Process simulation element

Generate output code

Call system compiler

End

Write includes

Write defines

Write globals

Write prototypes

Write routines

Figure 7.1: xmds main procedure

a C-code style syntax which would allow a large range of complex PDEs to be encoded,
and in a manner that remains independent of the exact integrate algorithm chosen. This
was implemented using a two step process. To begin with, the user is required to write
equations with any differential operators replaced by an operator[component] representation.
For example, the NLSE shown in Equation (7.1),

∂φ

∂z
= i

[
∂2φ

∂t2
+ |φ|2φ

]
, (7.1)

would be written in C-code style as:

dphi_dz = L[phi ] + i*~phi*phi*phi;

where the operator L is defined in Fourier space as being

L = -i*kt*kt/2;

The first step is to search the user’s equations for such operator[component] expressions,
and replace them with something else depending on the algorithm chosen. In the explicit
picture they are replaced with a reference to an internally calculated vector (which is exactly
the derivative calculated with the Fourier transform method), whereas in the interaction
picture the field is evolved in Fourier space according to the operator[component] expressions
found, and in the original code the text strings for these expressions are replaced with zero.
The second step is to use #define macros to map the equation variables to the internal data
arrays within the generated code. Thus for the example above, using an explicit picture
method the output code in the derivative calculation routine becomes:
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xmdsArg xmdsArgElement

xmdsUtility

xmdsElement

xsilField

xmdsArgv

xmdsField

xmdsGlobals

xmdsOutput

xmdsSegment

xmdsSimulation

xmdsVectorElement

xmdsBreakPoint

xmdsMomentGroup

xmdsFilter

xmdsIntegrate

xmdsSequence

xmdsIntegrateEX

xmdsIntegrateIP

xmdsIntegrateRK4

xmdsIntegrateSI

xmdsIntegrateRK4EX

xmdsIntegrateSIEX

xmdsIntegrateRK4IP

xmdsIntegrateSIIP

xmdsVector

xmdsIntegrateARK45 xmdsIntegrateARK45IP

xmdsIntegrateARK45EX

Figure 7.2: xmds class hierarchy

void _sg1_calculate_delta_a(
const double & _step ) {

complex dphi_dz;
_main_main_go_space (0);
_main_sg1_coterms_go_space (0);
unsigned long _main_main_pointer =0;
unsigned long _main_sg1_coterms_pointer =0;
double t = _main_xmin0;
for(unsigned long _i0 =0; _i0 <_main_lattice0 ; _i0 ++) {
// ************** propagation code **************
dphi_dz = _sg1_coterm_L_phi + i*~phi*phi*phi;
// **********************************************

_main_main[_main_main_pointer + 0] = dphi_dz*_step;
_main_main_pointer += _main_main_ncomponents;
_main_sg1_coterms_pointer += _main_sg1_coterms_ncomponents;
t += _main_dx0;
}

}

with the following relevant define statements placed at the head of the file:

// field main defines
#define _main_ndims 1
#define _main_lattice0 100
#define _main_xmin0 -5.000000e+00
#define _main_dx0 ((5.000000e+00 - -5.000000e+00)/( double )100)
#define _main_dk0 (2* M_PI /(5.000000e+00 - -5.000000e+00))
#define dt _main_dx0
#define dkt _main_dk0
// vector main defines
#define _main_main_ncomponents 1
#define phi _main_main[_main_main_pointer + 0]
// vector sg1_coterms defines
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#define _main_sg1_coterms_ncomponents 1
#define _sg1_coterm_L_phi _main_sg1_coterms[_main_sg1_coterms_pointer +0]

This does not make for compact code, but it was desired that the generated code remain
readable by the user so that they may inspect it to see exactly what xmds is doing in regards
to solving their problem. It also has the added advantage that, should a user wish to do
something rare and obscure, they only need to write a short script to generate a base C-code
listing which they may then alter to suit their problem.
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8
Functionality

This chapter describes the full functionality of xmds, but in practice most of this detail is
not required to integrate common types of ODEs and PDEs. One of the particularly useful
features of xmds is that both the high-level description of the problem and the generated
program can efficiently handle systems with widely varying complexity. Skip to the worked
examples to see how very different kinds of equations can be easily integrated.

xmds is designed to integrate the following general PDE:

∂

∂x0
a(x) = N

(
x, a(x),p(x),b(x), ξ(x ,

∫
dxjf(x, a(x),p(x),b(x), ξ(x))

)
, (8.1)

pi(x) = F−1
[
ΣjLij

(
x0,k⊥

)
F

[
aj(x)

]]
, (8.2)

∂

∂xc
b(x) = H (x, a(x),b(x)) , (8.3)

where the vector a represents an m-component real or complex valued field, though for some
problems the field may only have one component. The vector x is the real-valued space in
which a lies, which is the propagation dimension, x0, plus the transverse dimensions, xi6=0,
if any. The number of transverse dimensions that the field may have is limited to 64 by
xmds, but is more likely to be further limited by the complier and stack size used when
the output code is compiled. The vector p may have any number of components (including
zero), and may be derived through the action of a matrix of linear operators, Lij, on the
main vector components. The action of these linear operators is calculated with the main
vector in Fourier space, hence, as explained in Section 6.4.1, transverse partial derivatives
reduce simply to multiplication by the transverse Fourier space dimensions. The vector b
is optional, and is an n-component real or complex valued field which propagates along the
transverse dimension xc. For stochastic problems ξ is a vector of independent real Gaussian
noises. The total derivatives for vectors a and b are expressed as the general functionals N
and H respectively. Note that this form allows for nonlinear partial derivatives that may
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have spatial dependence, for example 1
r

(
∂
∂r

)2
.

Equation (8.3) is “Schrödinger-like” in that it is first order in the propagation dimen-
sion. As an example, if the field was a vector field representing three dimensional fluid flow
then there would be three components to the field, which itself would exist in four dimen-
sional space, with perhaps the propagation dimension being time and the three transverse
dimensions being space.

xmds can only handle problems whose only non-local terms are integrals over some or all
of the transverse dimensions. For local equations, the evolution of the field at any point in
x is only ever a function (including derivatives) of the field components at that exact point
in space—not anywhere else. This is clearly restrictive of the range of physical problems
that may be modelled. However, many non-local problems are only so because of variables
that propagate in a dimension which is transverse to the main propagation dimension, and
thus are easily modelled by including a secondary field which is propagated orthogonally
along this transverse dimension. This is the purpose of the b field which is the secondary or
“cross” field propagating in the transverse dimension xc, where c 6= 0.

In order to maximise the efficiency of the generated code while being able to handle
a broad range of problems, xmds utilises a range of algorithms. These were covered in
Section 6.4. Re-capping, the algorithms fell into two main categories:

1. Explicit picture. As detailed in Section 6.4.2 the transverse derivatives of the field
are calculated using the Fourier Transform method of Section 6.4.1. In all cases this
requires extra memory and computational expense, but it enables any equations of the
general from of Equation (8.3) to be solved.

2. Interaction picture. Here the field components are also evolved in Fourier space
using the interaction picture technique, as detailed in Section 6.4.8. The form of PDE
that may be solved using this technique is shown in Equation (8.5).

∂

∂x0
ai(x0,x⊥) = F−1

[
Li(x0,k⊥)F [ai(x)]

]
+N i (x, a(x),b(x), ξ(x)) , (8.4)

∂

∂xc
b(x) = H (x, a(x),b(x)) . (8.5)

This form is significantly more restrictive than that of Equation (8.3). In particular,
the linear operator matrix must be diagonal, and may not have coefficients with spatial
dependence.

Within both of these pictures, either the semi-Implicit or Runge-Kutta algorithms may
be employed. For more detail refer Section 6.4. This gives rise to the matrix of algorithms
listed in Table 8.1.

There are two main things that xmds can do to a field: forward evolve (integrate/
propagate) it according to the set of PDEs, and reshape (filter) it according to a set of
functions. These two actions may serve as the building blocks for an elaborate sequence of
operations to be performed on the field. This is done by defining a sequence of segments; a
segment being either an integrate step, a filter step, or else a sub-loop of further segments.

The key to xmds, as explained in the introduction, is that it is a code generator. xmds
requires the user to write their particular PDEs (or ODEs) as a few lines of C code, which are
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Explicit picture Interaction picture

Semi-Implicit SIEX SIIP
4th Order Runge-Kutta RK4EX RK4IP

4th/5th Order adaptive Runge-Kutta ARK45EX ARK45IP
9th Order Runge-Kutta RK9EX RK9IP

8th/9th Order adaptive Runge-Kutta ARK89EX ARK89IP

Table 8.1: The Algorithm Matrix

transplanted from the input script to the relevant points in the output code. This technique
proves itself well for efficient code that is extremely flexible. A potential user should not be
daunted at the prospect of having to learn basic C syntax – the flexibility gained by this
approach well justifies the effort.

In terms of output results, it is usually desired to sample the field at various points
throughout the sequence of operations and thus generate a sequence of samples. Further,
when sampling, often the raw complex value of the field at the point in question is not
relevant, it is a more general moment of field components and dimensions that is desired.
The examples provided in Chapters 9 and 10 will help explain. Also, the evolution of the
field is usually solved on a lattice much finer than is necessary to make a good plot of the
output. Thus to save on memory and also size of output file it is better to sample on some
reduced lattice rather than at every point in the main field lattice. It may also be desirable,
when sampling for a particular group of moments, to transform the field to Fourier space in
one, some or all of the transverse dimensions. At this point it is also possible to collapse
one or more of the transverse dimensions by requesting either to sample a cross-section or
else to integrate over the dimension in question with a particular kernel function. Once
all field propagations are finished the sampled output can be post-processed to transform
the propagation dimension into Fourier space, and again place the remaining transverse
dimensions into any partial Fourier space, which may be the same or different to the one in
which the field was sampled in. The original sampled moments may be used here or moments
of these moments may be specified. Finally, if the evolution of the field involves stochastic
terms, it will usually be desired to perform this sequence of operations a number of times
(re-initialising the field each time) so as to determine averages and standard errors in those
averages for the output moments over multiple trajectories, or paths.

Diagrammatically, the functionality of xmds is shown in Figure 8.1. Usually, using
xmds is much simpler than this—look at the worked examples!

8.1 Installing and Running xmds

This software package is designed to install onto Unix and Linux operating systems (including
the Cygwin environment on Windows), though an experienced programmer might easily port
it to another platform. xmds requires a very small amount of disk space, and the RAM
required is dependent algorithm, but is usually little more than the size needed to store a
certain number of copies of the fields to be integrated. A C++ compiler is required as are also
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Figure 8.1: xmds—a functional diagram

the FFTW (Fastest Fourier Transform in the West) libraries for C. Further, for stochastic
problems xmds can produce output code which uses MPI routines to parallelise the problem
for running on multiple CPUs or computer clusters. An MPI compiler is required to take
advantage of this. XMDS can also use an OpenMP threads to use multiple processors on
single jobs if an OpenMP-enabled compiler is available.

8.1.1 Installation

Installation instructions and files are available at: http://www.xmds.org/downloads
First, if parallel processing is desired, a working MPI system and/or an OpenMP-enabled

compiler should be installed.
Second, the FFTW libraries must be installed if they are not already present. These

libraries may be found at: http://www.fftw.org/. Version 2.1.x (and, optionally 3.x) of the
fftw library is required for proper execution of xmds. xmds expects that the fftw.h header
file is in one of the /usr/include or the /usr/local/include directories, with the libraries
in a sibling /usr/lib or /usr/local/lib directory. These are the standard locations. If
the fftw installation is non-standard then you will need to use the--with-fftw-path option
for the configure program, pointing to the parent directory containing the fftw /include

and /lib sub-directories. If parallel processing is desired, FFTW must be built with MPI
or OpenMP options enabled.

The main method of installation is from a “tarball”. Download xmds-1.6.5.tar.gz and

http://www.xmds.org/downloads
http://www.fftw.org/
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then (as root) 1:

tar -xzvf xmds -1.6.5.tar.gz
cd xmds -1.6.5
./ configure
make
make install

or as a user (to be installed in the bin directory of your home directory):

tar -xvzf xmds -1.6.5.tar.gz
cd xmds -1.6.5
./ configure --with -user
make
make install

For help on the various configuration options, one can run the command

./ configure --help

which will show a (very long) list of options which can be changed to customise the way
xmds is installed and the options that it can use to build simulations. The different variables
that one can change are:

• XMDS CC: the C++ compiler used by xmds to compile simulations

• XMDS CFLAGS: the C++ compiler flags used to build simulations

• XMDS LIBS: the libraries used to build simulations

• XMDS INCLUDES: the include flags used for building simulations

• FFTW LIBS: the libraries specific to fftw

• FFTW MPI LIBS: the libraries specific to fftw but for the MPI compiler

• FFTW3 LIBS: the libraries specific to version 3 of fftw

• MPICC: the MPI C++ compiler

• MPICCFLAGS: the compiler flags to use with mpicc

• MPILIBS: the library flags to pass to mpicc

• USER LIB: the location of the file xmds library functions, only necessary if xmds is
compiled for user use (e.g. -L/home/cochrane/bin)

• USER INCLUDE: the location of the xmds header files, only necessary if xmds is com-
piled for user use (e.g. -I/home/cochrane/bin)

1Note: when fftw is installed in /usr/local then --with-fftw-path must be specified so that the
configure script can find the libraries and headers.
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One can also set various options on the command line as arguments to the configure script.
The options available are:

• --with-user: to install xmds into the user’s bin directory within their home directory.
This will also point the USER LIB and USER INCLUDE variables to the correct places so
that xmds will find its required headers and libraries so that it can build simulations.

• --enable-mpi: to check for MPI in the configuration and to enable the use of MPI for
building simulations.

• --enable-threads: to check for the ability of the fftw libraries to use threads, and
enable their use in simulations.

• --enable-fftw3: to check for version 3 of fftw and enable use of it for building simu-
lations.

• --with-fftw-path: the path to the fftw installation. Note: when fftw is installed
in /usr/local then --with-fftw-path must be specified so that the configure script
can find the libraries and headers.

• --with-fftw3-path: the path to the fftw3 installation (if different to the path for
fftw2).

• --with-mpi-libs: extra libraries needed when checking for MPI.

• --with-mpi-path: set the path to the prefix of your MPI distribution.

• --with-mpi-compiler: set the mpi C++ compiler.

8.1.2 Usage

For usage, at the command prompt type:

% xmds

and the output should be:

This is xmds version 1.6.5,

using C compiler ’gcc’

(and C compiler ’mpicc’ for parallel work)

Usage: xmds [-v] [-c] infile

infile: required, the input file

v: optional, verbose mode

c: optional, turns off automatic compilation of simulation
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or something similar. The “verbose” mode can be quite useful as it will repeat back to the
user exactly how it is interpreting the input file. Switching off automatic compilation can
be handy when one is testing a script and doesn’t want to wait for the script to compile,
especially if the resultant binary isn’t wanted anyway. This option can also be used by those
people who want to use xmds to produce a skeleton C++ code with which they want to
change directly themselves to perform something more complex than is yet possible with
xmds.

The first thing xmds does is run the input file through its own XML parser. If the
input file contains bad XML syntax then these will be the first errors to be picked upon.
xmds then processes the input file, and writes the code dedicated to solving the particular
simulation, and compiles it.

% xmds nlse.xmds
compiling ...

gcc -pthread -O3 -ffast -math -funroll -all -loops
-fomit -frame -pointer -o nlse nlse.cc -I/home/cochrane/bin
-lstdc++ -lm -lxmds -L/home/cochrane/bin -lfftw_threads -lfftw

’nlse’ ready to execute

All that remains is to execute the compiled program:

% nlse

Refer to the kubo.xmds example in Section 10.2 for execution of a parallel problem. Or
see Chapter 4.

8.1.3 Preferences

As of xmds-1.3-1 it is possible for people to specify the simulation build options in a
preferences file. Previously, if one wanted to change how the simulations were built, one
had to recompile xmds with the relevant compile flags etc. Now, all one has to do is
specify the compilation flags in a preferences file. xmds looks for a file called xmds.prefs

in $HOME/.xmds/ and (if not found there) in the directory local to the xmds script you are
trying to compile. The format of the preferences file is:

<compile flag name> = <compile flag value>

For example:

XMDS CC = gcc

Comments can be added by using a hash character (#). Any thing after (and includ-
ing) the hash are ignored. As another example of a preferences file, here is an example
xmds.prefs:

# xmds preferences file
XMDS_CC=gcc # this , here , is a comment
XMDS_CFLAGS = - pthread -O3 -ffast -math -funroll -all -loops
XMDS_LIBS=-lstdc ++ -lm -lxmds -L/home/cochrane/bin
XMDS_INCLUDES = -I/home/cochrane/bin
THREADLIBS = - lfftw_threads
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The use of preferences can be switched on and off with the use of the <use prefs> tag
(which should be located after the <simulation> element, near where <error check> and
friends live). This is a boolean option, so to switch preferences off one should use no. The
default is yes, but if you don’t have any preferences, or you haven’t specified them all,
then the default values (that were decided when xmds was built) are used for anything not
specified.

8.2 Syntax summary

The xml elements used can be divided into two main categories: those that may contain
code and/or other elements, and those that merely contain variable assignments. The former
can perhaps be called “structural” elements, and the latter perhaps “assignment” elements.
These are summarised in Tables 8.2 and 8.3 respectively.

Element name Used in Req. May contain

<simulation> top level yes <name>, <prop dim>, <error check>,
<stochastic>, <paths>, <noises>, <argv>
<globals>, <field>, <sequence>, <output>
<binary output>, <use double>, <use wisdom>

<benchmark>, <use prefs>, <argv>, <threads>
<fftw version>

<globals> <simulation> no C code
<argv> <simulation> no <arg>

<arg> <argv> yes <name>, <type>, <default value>

<field> <simulation> yes <name>, <dimensions>, <lattice>
<domains>, <samples>, <vector>

<vector> <field> yes <name>, <type>, <components>, <vectors>
<filename>, <fourier space>, and C code

<sequence> <simulation> yes <integrate>, <filter>, <sequence>
<sequence> no <cycles>, <integrate>

<filter>, <sequence>
<integrate> <sequence> no <algorithm>, <interval>, <lattice>, <samples>,

<k operators>, <vectors>, <cross propagation>,
<iterations>, <moment group>, <tolerance>,
<max iterations>, <min time step>, <cutoff>,
<smallmemory>, <no noise>, <halt non finite>,
and C code

<k operators> <integrate> no <constant>,
<operator names>, and C Code

<cross propagation> <integrate> no <prop dim>, <vectors>, and C Code
<filter> <sequence> no <fourier space>, <vectors>, <functions>,

<moment group>, and C Code
<output> <simulation> yes <filename>, <group>
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<group> <output> yes <sampling>, <post propagation>

<sampling> <group> yes <lattice>, <fourier space>,
<vectors>, <moments>, <type>, and C code

<post propagation> <group> no <fourier space>, <moments>, and C Code
Table 8.2: The structural elements

Element name Used in Req. May contain

<name> <simulation> no string: defaults to filename-extn
<field> no string: defaults to “main”
<vector> yes string
<arg> yes string

<prop dim> <simulation> yes string
<cross propagation>

<error check> <simulation> no yes/no: defaults to yes
<stochastic> <simulation> no yes/no: defaults to no
<use mpi> <simulation> no yes/no: defs. to no

<MPI Method> <simulation> no Scheduling/Uniform: defs. to Scheduling
<paths> <simulation> – integer: reqd. if stochastic
<seed> <simulation> – integer: 2 reqd. if stochastic

<noises> <simulation> – integer: reqd. if stochastic
<dimensions> <field> no array of strings
<lattice> <field> – array of integers,

<sampling> same no. as trans. dims
<integrate> yes integer

<domains> <field> – array of bracketed pairs of floats
<components> <vector> yes array of strings

<type> <vector> no <complex> or <double>
<sampling>

<arg> yes string
<vectors> <vector> no array of strings

<k operators>

<sampling>

<integrate> yes array of strings
<filter>

<cross propagation>

<moment group> <integrate> no array of strings
<filter>

<functions> <integrate> no array of strings
<filter>

<constant> <k operators> no yes/no: defaults to no
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<operator names> <k operators> yes array of strings
<filename> <vector> no string

<output> no string: defaults to <name>.xsil

<fourier space> <vector>, <filter> no array of yes/no
<sampling> yes array of yes/no

<post propagation> yes array of yes/no: same no. as
non-collapsed trans. dims + 1

<samples> <field> yes integer: as many as are <group>

<integrate>

<cycles> <sequence> yes integer (not in main sequence)
<algorithm> <integrate> no string: defaults to RK4EX (or

SIEX for stochastic problems)
<interval> <integrate> yes string
<no noise> <integrate> no yes/no, defaults to no

<iterations> <integrate> no (SIIP: integer, defaults to 3)
<tolerance> <integrate> yes (ARK45: string)

<max iterations> <integrate> no (ARK45: integer, defaults to infinity)
<min time step> <integrate> no (ARRK45/89: double, defaults to 1e-13)

<cutoff> <integrate> no (ARK45: string, defaults to 1e-3)
<smallmemory> <integrate> no (ARK45IP: yes/no, defaults to no)

<halt non finite> <integrate> no yes/no: defaults to no
<moments> <sampling> yes array of strings

<post propagation>

<default value> <arg> yes depends upon <type> declaration
<benchmark> <simulation> no yes/no: defaults to no
<use wisdom> <simulation> no yes/no: defaults to no

<binary output> <simulation> no yes/no: defaults to no (deprecated)
<use double> <simulation> no yes/no: defaults to no (deprecated)
<use prefs> <simulation> no yes/no: defaults to yes

Table 8.3: The assignment elements

8.3 C-coding within elements

xmds is all about transplanting equations into the necessary multi-dimensional loop struc-
ture to solve them, which has the direct consequence that it is necessary for your equations to
be written in standard C syntax. To begin with, variable names may not start with a num-
ber, and may not be a reserved keyword such as void, int, long, double, complex, for, while,
if, switch, return, etc.... This applies to the variable names listed in the <dimensions>,
<components>, <operator names>, and <moments> assignments. It also applies to user de-
fined variables where C-code is allowed.
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Function name Math Argument(s) Result

abs(n) |n| integer integer
fabs(x) |x| real real
exp(x) ex real real
log(x) ln(x) real real
sqrt(x)

√
x real real

pow(x,y) xy real,real real
sin(x) sin(x) real real
asin(x) sin−1(x) real real
cos(x) cos(x) real real
acos(x) cos−1(x) real real
tan(x) tan(x) real real
atan(x) tan−1(x) real real
cot(x) cotan(x) real real

complex(x,y) x+ iy real,real complex
rcomplex(x,y) x+ iy real,real complex
pcomplex(x,y) xeiy real,real complex
conj(z) or z z∗ complex complex

c exp(z) ez complex complex
c log(z) ln(z) complex complex
c sqrt(z)

√
z complex complex

real(z) real{z} complex real
imag(z) imag{z} complex real
mod(z) |z| complex real
arg(z) imag{ln(z)} complex real
mod2(z) |z|2 complex real

Table 8.4: Commonly used functions

Globals should be declared as:

const long int1 = 7;
const double real1 = 23.45;
const complex comp1 = complex (0.4 ,0.2);

double r = sqrt(x*x + y*y);
complex z = pcomplex(r,M_PI /2);

As can be seen there are three main variable types available: integers, reals, and complex
– best declared as long, double, and complex respectively. The range of mathematical
functions available is the same as that for C-programming, as well as some complex functions
defined in the xmdscomplex.h header file in the /source directory. The ones most likely to
be of use are summarised in Table 8.4. And remember, avoid using transcendental functions
in the main integration equations if speed is important.
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Example for:
<prop dim>z</prop dim>

<noises>2</noises>
<dimensions>x y</dimensions>

Variable Available in

z <integrate>, <k operators>,
<filter>, <sampling>

z or kz <post propagation>

dz <integrate>, <k operators>

x or kx <vector>, <integrate>, <k operators>,
y or ky <sampling>,

dx or dkx and <post propagation> where dimension
dy or dky hasn’t been collapsed
n 1, n 2 <vector>, <integrate>, <filter>

Table 8.5: Automatically declared variables

It is also possible to create piece-wise functions by using if statements, which must be
done in the usual C syntax. Here are two alternate syntaxes that will turn on functions
damping1 and damping2 after t=1.0 and t=2.0 respectively:

double damping1;

if(t>1.0)
damping1 = 1.0;

else
damping1 = 0;

const double damping2 = t >2.0? 1 : 0;

xmds automatically declares a number of variables, depending on the element, for the
equations to reference. These are summarised in Table 8.5. If a particular dimension is in
Fourier space (ie. if the corresponding <fourier space> assignment was “yes”) then it is
referenced by its name as specified in the <field> element but prefixed by a “k”.

Finally, be wary of unintentional integer divisions, for example const double c = 1/2;,
as the compiler will perform an integer division on the 1/2 before converting to a double,
resulting in c=0.0! It ought to be written as const double c = 1.0/2; if c=0.5 was the
intended result.
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Worked example: nlse.xmds

XML is very much like HTML, so readers with any experience in writing HTML will find
XML fairly straight forward. However, even if a user has not had any experience in HTML
they will pick up the XML with the help of some example simulation files. A comprehensive
guide to general XML syntax is available in [9]. For now, a good introduction will be to step
through the “nlse.xmds” example script, then we can work through some more advanced
examples to elaborate on some of the options available. These examples scripts can be found
in the /examples directory, along with many others. They may also be downloaded from
the web site http://www.xmds.org/examples.html.

<?xml version="1.0"?>
<!--Example simulation: Non -Linear Schroedinger Equation -->

<simulation >

<name>nlse</name>
<prop_dim >z</prop_dim >
<error_check >yes</error_check >
<stochastic >no</stochastic >

<globals >
<![CDATA[

const double energy = 4;
const double vel = 0.0;
const double hwhm = 1.0;

]]>
</globals >

<field >

135
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<name>main</name>
<dimensions > t </dimensions >
<lattice > 100 </lattice >
<domains > (-5,5) </domains >

<samples >1</samples >
<vector >

<name>main</name>
<type>complex </type>
<components >phi</components >
<fourier_space >no</fourier_space >
<![CDATA[

const double w0 = hwhm*sqrt (2/log (2));
const double amp = sqrt(energy/w0/sqrt(M_PI /2));

phi = pcomplex(amp*exp(-t*t/w0/w0),vel*t);
]]>

</vector >
<vector >

<name>vc1</name>
<type>double </type>
<components >damping </components >
<fourier_space >no</fourier_space >
<![CDATA[

damping =1.0*(1 - exp(-pow(t*t/4/4 ,10)));
]]>

</vector >

</field >

<sequence >
<integrate >

<algorithm >RK4IP</algorithm >
<interval >20</interval >
<lattice >1000</lattice >
<samples >50</samples >
<k_operators >

<constant >yes</constant >
<operator_names >L</operator_names >
<![CDATA[

L = rcomplex(0,-kt*kt/2);
]]>
</k_operators >
<vectors >main vc1</vectors >
<![CDATA[

dphi_dz = L[phi ] + i*~phi*phi*phi - phi*damping;
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]]>
</integrate >

</sequence >

<output >
<filename >nlse.xsil</filename >
<group >

<sampling >
<fourier_space > no </fourier_space >
<lattice > 50 </lattice >
<moments >pow_dens </moments >
<![CDATA[

pow_dens =~phi*phi;
]]>

</sampling >
</group >

</output >

</simulation >

The above XML file describes to xmds how to write a program that solves the Nonlinear
Schrödinger Equation in one dimension; Equation (9.1).

∂φ

∂ξ
= i

[
1

2

∂2φ

∂τ 2
+ iΓ(τ)φ+ |φ|2φ

]
. (9.1)

Here φ is the single component complex field (phi in the input file), ξ is the propagation
dimension (z), τ is the local time coordinate (t), and Γ is a damping field (damping) applied
to absorb scattered radiation at the domain boundaries. Figure 9.1 shows what the output
of this simulation should look like.

At the head of the file:

<?xml version="1.0"?>
<!--Example simulation: Non -Linear Schroedinger Equation -->

Here the first line defines the file as an XML file. xmds requires correct XML syntax, but
otherwise does not need to validate the file with a DTD (Document Type Definition). The
second line is simply a comment line. All comments begin with a “<!--” and end with a
“-->”. Any characters are allowed in-between save for the comment closing sequence “-->”.

The remainder of the file is covered in detail in Sections 9.1–9.8, while Section 8.2 contains
a tabulated summary of the syntax.

9.1 The simulation element

<simulation >

<name>nlse</name>
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Figure 9.1: Results for nlse.xmds

<prop_dim >z</prop_dim >
<error_check >yes</error_check >
<stochastic >no</stochastic >

<!-- More xmds code -->

</simulation >

The root XML element of the input file must be a <simulation> element, which contains
the high level description of the problem.

Within the <simulation> element xmds will first look for a simulation <name>. This
information is optional, the default being the file name minus its last extension. It is used
as the base for the output .cc file, and is the name of the executable that xmds will make.

The <prop dim> assignment defines the name of the main propagation dimension. It
is compulsory, as it is expected that whichever symbol is used here will also appear in the
equations the user supplies.

The <error check> assignment is optional, the default being “yes”. This option tells
xmds whether to write the code so as to repeat the simulation with half the step sizes in
the integration segments, and subsequently compare the two sets of results. It is a good
idea to leave this option on until confident that the errors are acceptable for the simulation
in question. If set to “yes” the output executable will compare all output moments on a
point by point basis between the full and half-step runs. It will then write out to screen
the maximum value of the discrepancy, and the half-step results will be used for the final
output.

The <stochastic> assignment is also optional, the default being “yes”. It tells xmds
whether the simulation uses Gaussian noise terms or not. If <stochastic> is set to “yes”
then three further assignments, <paths>, <seed>, and <noises> become compulsory. The
kubo.xmds and fibre.xmds examples in Chapter 10 cover stochastic simulations in more
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detail.
The child elements within the <simulation> element that xmds then looks for are

<globals>, <field>, <sequence>, and <output>.

9.2 The globals element

<globals >
<![CDATA[

const double energy = 4;
const double vel = 0.0;
const double hwhm = 1.0;

]]>
</globals >

This element is optional, and is used to define any numerical constants that are useful to
have globally available to all sections of code. The <![CDATA[ ... ]]> container tells the
XML parser to copy its contents without attempting to parse them. The contents:

const double energy = 4;
const double vel = 0.0;
const double hwhm = 1.0;

are copied directly into the output C code and therefore must have correct C syntax. See
Section 8.3 for more on C syntax.

9.3 The field element

<field >
<name>main</name>
<dimensions > t </dimensions >
<lattice > 100 </lattice >
<domains > (-5,5) </domains >

<samples >1</samples >

<!-- Possibly more xmds code -->

</field >

This element is compulsory as it is central to the problem definition: it specifies the
geometry of the field. There are five assignments that xmds looks for in this element:
<name>, <dimensions>, <lattice>, <domains>, and <samples>.

The <name> assignment provides a name for the field. It is not compulsory and will
default to “main”. It is envisaged that future versions xmds may allow sub fields within
fields, but at present only one <field> element is permitted.

The <dimensions> assignment lists the names of the transverse field dimensions. From
this point on the number of transverse dimensions is set to the number of names found in this
assignment. If this assignment is empty or absent then the field is assumed to be without
transverse dimensions (as in the kubo.xmds example), and xmds will not look for either
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a <lattice> assignment or a <domains> assignment. The dimension names must be valid
names as far as the C language is concerned–see Section 8.3.

The <lattice> assignment is compulsory if there were one or more transverse dimension
names found in the <dimensions> assignment, and xmds will look for the same number of
positive integers here as there were transverse dimensions. Each of these integers defines the
number of points or steps to use in the corresponding transverse dimension, and so xmds
expects to find integers with a value of 2 or more in each case.

The <domains> assignment is similar, except that it defines the domain range for each
dimension. This is done by entering a bracketed pair of real numbers for each dimension,
and xmds expects the range b−a for any pair (a,b) to be greater than 10−100. Each domain
range is divided according to Equation (9.2), in which n is the number of lattice points. Note
that the points stop one spacing short of the upper value—this is due to the forced periodic
boundary conditions.

xj =
(n− j + 1)a+ (j − 1)b

n
, j = 1, . . . , n. (9.2)

Finally the <samples> assignment tells xmds which moment groups (Section 9.8) to
sample immediately after all the field’s vectors have been initialised. A sequence of “0” or
“1” entries is expected, as many as there are moment groups defined in the output (xmds
checks this once all moment groups have been processed). The correspondence is sequential.
A “1” means sample the moment group in question, a “0” means do not.

Next xmds will look for the field’s vectors.

9.4 The vector element

<vector >
<name>main</name>
<type>complex </type>
<components >phi</components >
<fourier_space >no</fourier_space >
<![CDATA[

const double w0 = hwhm*sqrt (2/log (2));
const double amp = sqrt(energy/w0/sqrt(M_PI /2));

phi = pcomplex(amp*exp(-t*t/w0/w0),vel*t);
]]>

</vector >

The <name> assignment is compulsory here, as it is quite common to employ more than
one vector. The field must have at least one vector called “main”, as it is this vector that
xmds forward evolves in the main propagation dimension.

The <type> assignment is optional. It will default to “complex” unless specifically stated
as “double”, which is the standard data type in C for floating point variables. Note that
vectors of type “double” cannot be Fourier transformed without some arbitrary definition of
how this is done. Thus xmds requires that “double” vectors always remain in the Fourier
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space in which they were initialised. A request to access them in some other Fourier space
will result in an error.

The <components> assignment is compulsory. It identifies by name the components of the
vector. Here there is only one component, but more may be defined simply by separating
them with spaces, for example <components>phi theta</components>. The component
names must be valid as far as the C language is concerned – see Section 8.3.

Finally the initialisation of the vector must be defined. This can be done in two ways.
Either by means of a <filename> assignment, or by supplying C code. Here we are doing
the latter. In the absence of <filename> assignment xmds looks for a <fourier space>

assignment followed by the initialisation code.
The <fourier space> assignment must contain as many “yes” or “no” entries as there

are transverse dimensions in the field, which in this case is only one. A “yes” entry means
the corresponding dimension is in Fourier space when initialised, and vice-versa.

When initialising from code, the code is included as the content of the <vector> element.
There must be an equation for each component, and these may include functions of <global>
variables and of the transverse dimensions. Again see Section 8.3 for more information.
Two points to remember: firstly if the field components are complex variables they may
be initialised using the complex functions in Table 8.4, and secondly every field component
should be explicitly initialised – even if it is only being initialised to zero.

Finally, when initialising from file, xmds expects that the file is simply a sequence of
numbers in ASCII format, with as many numbers as the product of lattice points and vector
components. In usual C convention, the component index varies most rapidly, then the right
most transverse dimension lattice and so on. The left most transverse dimension lattice
dimension varies most slowly. If the vector is complex then each data point is read in as a
sequential real and imaginary pair. All vectors initialised from file are assumed to be entirely
in normal space.

9.5 The sequence element

<sequence >

<integrate >

<!-- More xmds code -->

</integrate >

<!-- More xmds code -->

</sequence >

Next comes the <sequence> element, which can be used in two different contexts. The
first context (as used here) is the “top level” <sequence> element, and is simply for defining
the sequence of segments that happen to the field after initialisation. In a stochastic simula-
tion this sequence is repeated for each integration path, but in this non-stochastic example
the sequence is only stepped through once. In this context xmds expects to find any number
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of <integrate>, <filter>, or <sequence> elements – which leads us to the second context.

In the second context <sequence> elements may be used as child elements within parent
<sequence> elements, in which case they represent a sub-loop to be repeated one or more
times. The number of repetitions is defined by a simple <cycles> assignment within, which
is expected to be the first element. In the absence of a <cycles> element the number of
cycles defaults to one, but if it is present it must come first. Any number of <integrate>,
<filter>, or <sequence> elements may then follow. Obviously the ordering of segments
within any sequence element is important.

9.6 The integrate element

<integrate >

<algorithm >RK4IP</algorithm >
<interval >20</interval >
<lattice >1000</lattice >
<samples >50</samples >
<k_operators >

<constant >yes</constant >
<operator_names >L</operator_names >
<![CDATA[

L = rcomplex(0,-kt*kt/2);
]]>

</k_operators >
<vectors >main vc1</vectors >
<![CDATA[

dphi_dz = L[phi ] + i*~phi*phi*phi - phi*damping;
]]>

</integrate >

Here lies the heart of what xmds is all about, and not surprisingly it forms the most com-
plex element. The <algorithm> assignment is optional, and will default to SIEX for stochas-
tic simulations and RK4EX for non-stochastic simulations. The assignments <interval>,
<lattice>, and <samples>, are all compulsory, and respectively represent the integration
range, total number of steps, and number of samples for each output moment group to take
within these steps. Thus each integer in the <samples> assignment must be either zero or
else a factor of <lattice>, and if not xmds will exit with an error message to that effect.

The rest of the <integrate> element consists of “writing down” the form of Equa-
tion (8.3) in a high level format. Here the algorithm is RK4IP, which, as explained earlier,
is an interaction picture algorithm. The dispersion term in Equation (9.1) is represented
here by the linear operator “L” acting on field component “phi”. The presence of the term
“L[phi]” in the equations causes the field to be evolved in Fourier space in accordance with
the algorithm listed in Section 6.4.10. The N operators are everything left over once terms
such as this are removed.
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The <k operators> element contains just what its name implies: k-space operators.
Within this element a <constant> declaration is used to indicate whether or not these op-
erators depend on the propagation dimension. This declaration is optional with the default
being “no”, but this will produce slower code. If the operators do not depend on the propa-
gation dimension then you will get faster code is you enter <constant>yes</constant>. An
<operator names> assignment is compulsory. One or more operator names may be listed
here, and they all must be explicitly defined in the code. Refer to Equation (6.33) for how
to write the Lij operators as functions of the Fourier space dimensions. The operator names
must be valid names as far as the C language is concerned—see Section 8.3.

If there are no non-zero linear operators Lij, then the entire <k operators> element may
be omitted.

Extreme DANGER!!!!!!!

Because of the way xmds works internally, it is possible when using an interaction
picture routine to write the main equations in such as way as that everything works fine,
but the results will be incorrect! The problem is that xmds does not closely inspect the
main equations. What it does is it looks for operator[component] combinations, registers
their presence, and the replaces their text with something else. In the explicit picture they
are replaced with a reference to an internally calculated vector (p = F−1 [L (x0,k⊥) · F [a]]),
but in the interaction picture they are replaced with “0” and the component ai being acted

on by the operator L is evolved in Fourier space using ai = e
1
2
hLi(x0,k⊥)ai. This means that

if you write

<![CDATA[
dtheta_dz = L1[theta ] + i*theta*theta*theta - theta*damping;
dphi_dz = L2[theta ] + i*~phi *phi *phi - phi *damping ; // no !!

]]>

the component theta will be evolved in Fourier space using the sum of the operators L1 and
L2, and the evolution of phi will not include L2[theta]. Further, writing something like
3*L1[theta] does not have the intended effect - theta will still only be evolved with L1,
not 3*L1. We realise this is a potential source of error, but it enables the equation syntax to
remain uniform for all algorithms. A future version of xmds will check the users equations
more thoroughly. When using explicit picture algorithms none of these problems exist. If
no errors are reported then what you get will be what your equations asked for.

Sometimes, it is useful to calculate a function without having to calculate it separately
for every transverse position. This can be done by including the code in a <functions>

element.

<functions >
<![CDATA[

double f = sin (2.0*z); // This is a function of the propagation dimension only.
]]>

</functions >

Conversely, it is often desirable to reference a variable in the equations that is a function of the
spatial coordinates, but is otherwise constant. The variable damping is exactly one of these.
Rather than re-calculating it at every time step and lattice point, what we did here was to
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define an additional field vector “vc1” in the <field> element that could store this variable,
calculate it once when it is initialised, and then reference it in the main equations. Therefore,
we must tell xmds which vectors we wish to access in the equations. This is done with the
<vectors> assignment. The reason that we do not make all vectors available everywhere by
default is one of efficiency. For example if a particular vector was initialised in x-space then
it would have to be transformed to k-space in order to use it in the <k operators> code. If
we did not need to use it there then the Fourier transform would have been a waste of CPU
time. Further, the damping variable used here would have to have been declared as type
complex in order to have been able to be Fourier transformed to k-space to be available in
the <k operators> element where it wasn’t needed, causing a waste of memory as well.

Another possible function required to define the equations of motion is some integral
across the transverse dimensions. These are specified with the <moment group> element.
We do not have one of these in our worked example, but as an example we might need the
total number of atoms:

<moment_group >
<moments >number </moments >
<integrate_dimension >yes</integrate_dimension >

<![CDATA[
number += ~ phi*phi;

]]>
</moment_group >

The child elements here name the moments to be defined, and then describe which, if any, of
the transverse dimensions are to be integrated. The CDATA block defines the moments them-
selves. The ”number” moment in this example will be integrated over the only transverse
dimension. <moment group> and <functions> elements may be used any number of times
in any order. The propagation of the integration equations themselves is performed where
the <vectors> tag is placed.

Something else to keep in mind is that when a smooth function is required it is often
tempting to use transcendental functions (such as sqrt, exp, sin, cos, log, ...). However,
these functions are computationally expensive, particularly on processors that were not de-
signed with such functions in mind. If they are only used once to pre-calculate a constant
vector (as is done here) then fine, but if you include them in your main equations then ex-
pect a big reduction in performance. If a smooth function that depends on the propagation
dimension is required, then, unless it is essential to the model, it is usually better use a low
order polynomial approximation.

9.7 The filter element

The <filter> element, though not covered in this example, is relatively straightforward.
Here is an example which retains a Gaussian profile of the field centered on t = 0:

<filter >
<vectors >main</vectors >
<fourier_space >no</fourier_space >
<![CDATA[

phi *= exp(-(t*t));
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]]>
</filter >

As in the <vector> element the space in which the filter is to be applied is specified in a
<fourier space> assignment. <moment group> and <functions> elements may be used in
the <filter> element just as they are used in the <integrate> element.

9.8 The output element

<output >
<filename >nlse.xsil</filename >
<group >

<sampling >
<fourier_space > no </fourier_space >
<lattice > 50 </lattice >
<moments >pow_dens </moments >
<![CDATA[

pow_dens =~phi*phi;
]]>

</sampling >
</group>

</output >

The <output> element is compulsory and defines what will be used as the output.

The <filename> assignment is optional. From version 1.2 xmds can produce binary
output, as well as the default ascii format. Both output formats will produce an ascii file
in XSIL format [2]. The default name for this file is the <simulation> <name> appended
with “.xsil”. With ascii output all of the data is contained within the XSIL file. However,
with binary output, the data is pointed to by the (ascii) XSIL file, where the actual data is
distributed among different files labelled according to simulation name and output moment
group. In general, the filenames are combined like this: simulation name + mg + moment
group number + .dat. For instance, if the simulation name is nlse, then the output binary
file for the first moment group will be called nlsemg1.dat.

In order that old output data remains meaningful, xmds copies the input simulation
script to the name of the output file (overwriting it if it already exists), and then the output
data is inserted as <XSIL> elements before the closing </simulation> tag. This way, the
input parameters that generated the output data remain known.

Next xmds looks for the <group> elements contained within, of which there must be one
or more. The <group> element contains moments that are sampled on a common output
lattice in a common Fourier space. If necessary the group may then be post-processed after
all segments have been performed, for example to calculate moments with the propagation
dimension itself in Fourier space.

Thus xmds looks for a compulsory <sampling> element within the <group> element that
defines how to sample for the moments. It then looks for an optional <post propagation>

element (within the same <group> element) that defines any post-processing required.
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Consider firstly the <sampling> element: Firstly, a <fourier space> assignment is com-
pulsory, which contains as many “yes” or “no” entries as there are transverse dimensions, so
that the field may be transformed accordingly prior to sampling. In this example the field’s
“t” dimension remains in normal space.

Next xmds looks for a <lattice> assignment containing the lattice on which to sample
on, for to sample the entire field may produce much more data than is necessary to obtain
a good plot. In this assignment there should be as many integers as there are transverse
dimensions. Each integer should be one of the following values (or else xmds will exit with
an appropriate error message):

• 0: A lattice integer of zero requests xmds to integrate the moments over this dimension.
This will cause the output field to no longer be a function of this transverse dimension.

• 1: A lattice integer of 1 requests xmds to sample the moments on a cross-sectional slice
of this dimension, also causing the output field to loose this transverse dimension. If
this dimension is in normal space then xmds will extract the slice at the middle lattice
point (point number N/2 + 1 using integer division), otherwise xmds will extract the
slice at the zero momentum point, k = 0.

• A factor of the main field’s corresponding lattice value which is greater than one. In
this case, if it is sampled in normal space xmds uses a coarser lattice that still spans
the entire domain, whereas if it is in Fourier space it samples a narrower window of
the k-space domain centered on the zero momentum point, k = 0. You may of course
specify the same number of lattice points here as there are in this dimension, in which
case the output moments are simply mapped point for point.

If there are no transverse dimensions, xmds will not look for either of the above two
assignments. Next comes the <moments> assignment which lists the names of the moments.
Any number of moments are possible, provided there is at least one. Finally the code used
for calculating these moments is inserted as the content of the <sampling> element. The
moments are complex variables and so the code may be written accordingly.

Next, a <post propagation> element may optionally follow the <sampling> element.
In this element there must be a <fourier space> element with a “yes” or “no” entry for
the propagation dimension, and as many more as there are remaining transverse dimensions
in the sampled output. In the case of partially collapsed output the correspondence is
sequential. For example if the field had three transverse dimensions “x y z” and the“y”
dimension was collapsed by using a <lattice> assignment (within the <sampling> element)
like “50 1 50”, then a <fourier space> assignment of “yes no yes” would mean transform
to Fourier space in the propagation dimension, normal space in the “x” dimension, and
Fourier space in the “z” dimension when evaluating the post-processing moments. Finally
there is another <moments> assignment (with new names), and more code in the content
for processing the moments already derived at the sampling level. As with most other
code blocks functions of dimensions may also be included, but only of the dimensions that
haven’t been collapsed (plus the propagation dimension). Finally, it is only the real part of
the <post propagation> moments that are written as output, or added to the stochastic
sums before they are processed.
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In the absence of a <post propagation> element the real parts of the <sampling> mo-
ments are used instead.
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10
More Examples

10.1 ndparamp.xmds

<?xml version="1.0"?>
<!--Non -Degenerate Parametric Amplifier -->
<!--Simulton formation for logical switching -->

<simulation >

<name>ndparamp </name>
<prop_dim >z</prop_dim >
<error_check >yes</error_check >

<globals >
<![CDATA[

const double e1 =350;
const double e2 =350;
const double r1 = 1;
const double r2 = 1;
const double vy1 = 0.5;
const double vy2 = -0.5;
const double yc1 = -0.2;
const double yc2 = 0.2;
const double tc1 = 0;
const double tc2 = 0;

double amp1=sqrt(e1/2/ M_PI/r1/r1);
double amp2=sqrt(e2/2/ M_PI/r2/r2);

149
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]]>
</globals >

<field>
<name>main</name>
<dimensions > y t </dimensions >
<lattice > 100 100 </lattice >
<domains > ( -10 ,10) ( -10 ,10) </domains >
<samples >1 1</samples >

<vector >
<name>main</name>
<type>complex </type>
<components >ff1 ff2 sh</components >
<fourier_space >no no</fourier_space >
<![CDATA[

ff1 = pcomplex(amp1*exp(-pow((y - yc1)/r1/2,2)
-pow((t - tc1)/r1/2,2)),+vy1*y);

ff2 = pcomplex(amp2*exp(-pow((y - yc2)/r2/2,2)
-pow((t - tc2)/r2/2,2)),+vy2*y);

sh = rcomplex (0,0);
]]>

</vector >

<vector >
<name>vc1</name>
<type>double </type>
<components >damping </components >
<fourier_space >no no</fourier_space >
<![CDATA[

damping =1.0*(1 - exp(-pow((y*y + t*t)/8/8 ,10)));
]]>

</vector >
</field >

<sequence >
<integrate >

<algorithm >RK4IP</algorithm >
<interval >10</interval >
<lattice >500</lattice >
<samples >50 50 </samples >
<k_operators >

<constant >yes</constant >
<operator_names >Lap1 Lap2</operator_names >
<![CDATA[

Lap1 = i*(-(ky*ky + kt*kt) - 1);
Lap2 = i*(-(ky*ky + kt*kt)/2 - 1);
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]]>
</k_operators >
<vectors >main vc1</vectors >

<![CDATA[
dff1_dz = Lap1[ff1 ] + i*~ff2*sh - damping*ff1;
dff2_dz = Lap1[ff2 ] + i*~ff1*sh - damping*ff2;
dsh_dz = Lap2[sh] + i* ff1*ff2 - damping * sh;

]]>
</integrate >

</sequence >

<output >

<group >
<sampling >

<fourier_space > no no </fourier_space >
<lattice > 50 0 </lattice >
<moments >pow_dens </moments >
<![CDATA[

pow_dens = ~ ff1*ff1 + ~ ff2*ff2 + 2*~ sh*sh;
]]>

</sampling >
</group >

<group >
<sampling >

<fourier_space > no no </fourier_space >
<lattice > 0 0 </lattice >
<moments >etot</moments >
<![CDATA[

etot = ~ ff1*ff1 + ~ ff2*ff2 + 2*~ sh*sh;
]]>

</sampling >
</group >

</output >
</simulation >

This simulation describes how to solve for the evolution of three bosonic fields governed
by a non-degenerate parametric interaction, as described in Equations (10.1) and (10.2).
Perhaps not surprisingly, the majority of the above script is to generate the particular ini-
tialisation conditions and to define a number of output moments—the portion concerned
with actually implementing these equations is not that great.

∂φj

∂ξ
= i

[(
∂2

∂τ 2
+

∂2

∂ζ2
+ iΓ(τ, ζ)− 1

)
φj + φ∗3−jφ3

]
, j = 1, 2; (10.1)

∂φ3

∂ξ
= i

[(
1

σ

∂2

∂τ 2
+

1

2

∂2

∂ζ2
+ iΓ(τ, ζ)− γ

)
φ3 + φ1φ2

]
. (10.2)
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The main difference between this simulation and the nlse.xmds simulation is that it now
has a three component field which has two transverse dimensions. Also two moment groups
are being evaluated, one being integrated over the “t” dimension, and the other integrated
over both transverse dimensions.
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Figure 10.1: Results for ndparamp.xmds

10.2 kubo.xmds

<?xml version="1.0"?>
<!--Example Kubo oscillator simulation -->

<simulation >

<name>kubo</name>
<prop_dim >t</prop_dim >
<error_check >yes</error_check >
<stochastic >yes</stochastic >
<paths>1</paths >
<use_mpi >no</use_mpi >
<seed>1 2</seed>
<noises >1</noises >

<field>
<samples >1</samples >
<vector >

<name>main</name>
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<type>complex </type>
<components >z</components >
<![CDATA[

z = 1;
]]>

</vector >
</field>

<sequence >
<integrate >

<algorithm >SIEX</algorithm >
<interval >10</interval >
<lattice >1000</lattice >
<samples >100</samples >
<iterations >3</iterations >
<![CDATA[

dz_dt = i*z*n_1;
]]>

</integrate >

</sequence >

<output >
<group >

<sampling >
<moments >realz</moments >
<![CDATA[

realz = z;
]]>
</sampling >

</group >
</output >

</simulation >

The kubo oscillator is described in Equation (10.3), in which the argument of the complex
vector z is “blown” about by a (real) Gaussian noise term, ξ(t). This is a simple stochastic
ODE.

∂z

∂t
= iξ(t)z. (10.3)

Such Gaussian noise terms, in analytic form, are correlated in time and space through Dirac
delta functions, as shown in Equation (10.4).

〈ξi(x)ξj(x
′)〉 = δi,jΠ

N
i=0δ(x

i − x′i). (10.4)

However, when solving stochastic DEs numerically, algorithms work with discrete time in-
tervals and lattice spacings. Therefore these Dirac delta correlations must be transformed
to Kronecker delta correlations using the integration time step and the spatial volume of the
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lattice, as shown in Equation (10.5):

〈ξi(x)ξj(x
′)〉 =

δi,jΠ
N
i=0δxi,x′i

ΠN
i=0∆x

i
. (10.5)

The good news is that xmds calculates this for the user—all that has to be done is to
specify, as a simple <noises> assignment within the <simulation> element, the maximum
number of noise terms required in any one segment, and then reference them as n 1, n 2, etc.
as can be seen in this example. These noises are available within the initialisation code for
each field <vector>, within the main integration equations code (not in the <k operators>

code), and in the code for any <filter> segments. Within the initialisation code and
<filter> code the variances of the noises are determined by the lattice cell volume product
for the particular <fourier space> specification as shown in Equation (10.6):

〈ninj〉 =
δi,j

Π∆kmΠ∆xn
, (10.6)

where m are the transverse dimensions in Fourier space and n the transverse dimensions in
normal space. Also note that

∆ki =
2π

xi
max − xi

min

. (10.7)

Within the main integration equations the variances must also reflect the integration step
size, as given by Equation (10.8):

〈ninj〉 =
δi,j

ΠN
i=0∆x

i
. (10.8)

xmds uses the Box-Mueller technique, as shown in Equation (10.9), which generates a pair
of Gaussian noises, ξ1 and ξ2, from a pair of random numbers, x1 and x2, that have a uniform
distribution between zero and one.

ξ1 + iξ2 = [−2∆ln(x1)]
1
2 ei2πx2 ; P(xi < y) = y ; y : 0 < y ≤ 1; yεR. (10.9)

Estimating the error between full and half step sizes now poses an interesting problem,
since both evolutions must use the same underlying noise (which is a function of both space
and time) if the difference between these paths is to be meaningful. The random number
generator must be reset before each of these integrations, but how is the noise in the half-
step case appropriated? There are two methods. The first is to use the same noise for
both half-steps as is used for the one whole step. This is undesirable since it makes sense
to use the half-step integration results (being the more accurate) for the final output, and
therefore independent noises must be used for each step. So, the second solution is to do
just this, and use the average of the two noises when calculating the full-step integration.
Now, suppose the problem uses N noises and has a transverse lattice of M points. Within
the SIEX, RK4IP, and the RK4EX integration algorithms the main field vector is swept
through severals times in the course of each time step, thus a M × N vector of noise must
be calculated at the beginning of the time step and referenced during the calculation of the
main field vector’s derivatives. In the full-step case two such vectors are calculated, and
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then averaged to provide the equivalent full-step noise. However, the SIIP algorithm only
sweeps though the main field vector once for each time step, and so only N noises need be
calculated at a time (thus saving on memory and RAM access), provided two independent
random number generators are used: the first generator is used for the first half step, the
second for the second half step, and the average of both is used for the full step. In C this
is done with the erand48(n) function which uses the 48-bit integer n to generate the next
random number, advancing n to the next in sequence in the process. The states of the two
independent generators are simply two independent integers, n1 and n2. The user supplies
the initial values for these integers in the <seed> assignment.

Stochastic problems are very well suited to parallel computer architectures, as different
paths can run on different processors, and do not have to transfer information until the
integration is complete. Multiple path stochastic problems such as this may be parallised
using MPI routines. If an MPI compiler was specified in the configuration step of installation
(this will often be mpicc), then all that needs to be done is to toggle the optional <use mpi>

assignment to yes. xmds will then place the appropriate MPI calls in the output code and
compile it with the MPI compiler. The executable should then be run through the MPI
execution handler (probably mpirun), with the number of processors option supplied. For
example if 16 processors are available then the final command for execution would be

% mpirun -np 16 kubo

Note that whole paths are assigned independently to the processors, so there is no benefit
in specifying more processors than there are paths in the simulation. It is not necessary for
the number of processors to be a factor of the number of paths, some processors will simply
do one more paths than others.

Also note that for both of the semi-implicit algorithms, SIEX and SIIP, an <iterations>

assignment may be used within the <integrate> element to specify the number of iterations
to use in the method (refer Sections 6.3.3, 6.4.3, and 6.4.9). This assignment is optional,
and will default to three when absent.

The reason that the kubo oscillator is used as an example is that it has an analytic
solution, as shown in Equation (10.10). Figure 10.2 shows the results for a single trajectory
and an averaged trajectory, illustrating the expected behaviour.

〈z(t)〉 = z0e
− t

2 . (10.10)

Since the variance of the noise terms scale with the inverse of the integration step size,
the integration method suffers a loss of order with regard to error vs step size. While this is
normally a second order method for non-stochastic problems, it becomes a first order method
for problems with noise, as was explained in Section 6.3.1.

10.3 fibre.xmds

<?xml version="1.0"?>
<!--Example fibre noise simulation -->

<simulation >
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Figure 10.2: Results for kubo.xmds

<name>fibre </name>
<prop_dim >t</prop_dim >
<error_check >yes</error_check >
<stochastic >yes</stochastic >
<use_mpi >no</use_mpi >
<paths>1</paths >
<seed>1 2</seed>
<noises >2</noises >

<globals >
<![CDATA[
const double ggamma = 1;
const double beta = sqrt (2*2* M_PI*ggamma /10);
]]>

</globals >

<field>
<name>main</name>
<dimensions > x </dimensions >
<lattice > 50 </lattice >
<domains > (-5,5) </domains >
<samples >1</samples >

<vector >
<name>main</name>
<type>complex </type>
<components >phi</components >
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<fourier_space >no</fourier_space >
<![CDATA[
phi=0;
]]>

</vector >
</field>

<sequence >
<integrate >

<algorithm >SIIP</algorithm >
<interval >2.5</interval >
<lattice >5000</lattice >
<samples >50</samples >
<k_operators >

<constant >yes</constant >
<operator_names >L</operator_names >

<![CDATA[
L = i*(-kx*kx);
]]>

</k_operators >
<iterations >3</iterations >

<![CDATA[
dphi_dt = L[phi] - ggamma*phi + beta/sqrt (2)* complex(n_1 ,n_2);
]]>

</integrate >
</sequence >

<output >
<group >

<sampling >
<fourier_space > yes </fourier_space >
<lattice > 50 </lattice >
<moments >pow_dens </moments >

<![CDATA[
pow_dens = conj(phi)*phi;
]]>

</sampling >
</group >

</output >
</simulation >

This simulation solves Equation (10.11), in which a one dimensional damped field is
subject to a complex noise. This is a stochastic PDE.

∂ψ

∂t
= −i∂

2ψ

∂x2
− γψ +

β√
2
(ξ1(x, t) + iξ2(x, t)). (10.11)

Again the reason for using this as an example of a stochastic PDE is that it has an
analytic solution, as shown in Equation (10.12). Figure 10.3 displays the results of this
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simulation in Fourier space for a single trajectory and an averaged trajectory, which appear
as expected. 〈

|ψ(k, t)|2
〉

= e−2γt|ψ0(k)|2 +
β2Lx

4πγ
(1− e−2γt), (10.12)

where Lx is the length of the x domain.
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Figure 10.3: Results for fibre.xmds

One important issue here is that the variance of the noise terms now scales with the
product of the number of lattice points (for a given domain). Hence changing to a finer
lattice actually increases the single trajectory error, and the relationship between the error
and the lattice product will depend on the order of the spatial derivatives. The only way to
overcome this is to reduce the integration step size, which added to the fact that there are
more lattice points in the first place, means that fine lattice resolution in a stochastic PDE
is computationally very expensive.

10.4 tla.xmds

<?xml version="1.0"?>
<!--Two Level Atom Example simulation to illustrate a
cross propagating field -->

<simulation >

<prop_dim > z </prop_dim >

<globals >
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<![CDATA[
const double g = 1;
const double t0 = 1;

]]>
</globals >

<field >
<dimensions > t </dimensions >
<lattice > 100 </lattice >
<domains > ( -10 , 15) </domains >
<samples > 1 0 </samples >

<vector >
<name> main </name>
<type> double </type>
<components > E </components >
<![CDATA[

E = 2/ t0/cosh(t/t0);
]]>

</vector >

<vector >
<name> cross </name>
<type> double </type>
<components > P N </components >
<![CDATA[

P = 0;
N = -1;

]]>
</vector >

</field>

<sequence >
<integrate >

<algorithm > RK4EX </algorithm >
<interval > 4 </interval >
<lattice > 50 </lattice >
<samples > 50 50 </samples >
<vectors > main cross </vectors >

<![CDATA[
dE_dz = g*P;

]]>
<cross_propagation >

<vectors > cross </vectors >
<prop_dim > t </prop_dim >
<![CDATA[

dP_dt = E*N;
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dN_dt = -E*P;
]]>

</cross_propagation >
</integrate >

</sequence >

<output >

<group >
<sampling >

<lattice > 50 </lattice >
<moments > pow_dens </moments >
<![CDATA[

pow_dens = E*E;
]]>

</sampling >
</group >

<group >
<sampling >

<vectors > main cross </vectors >
<lattice > 50 </lattice >
<moments > P_out N_out </moments >
<![CDATA[

P_out = P;
N_out = N;

]]>
</sampling >
</group >

</output >
</simulation >

This simulation solves for the propagation of an optical pulse through a field of atoms
having a transition frequency tuned to that of the optical pulse centre frequency. The atoms
are modelled as “two level” atoms. The propagation equations, shown in Equation (10.13),
are deceptively simple.

∂E(t, z)

∂z
= gP,

∂P (t, z)

∂t
= EN,

∂N(t, z)

∂t
= −EP. (10.13)

The reality of this problem is that there are three components, two propagating in the
main propagation dimension, t, and the other in the transverse dimension z. The component
E is the electric field amplitude, P the polarisation state of the atoms, and N the excitation
state of the atoms (-1 being all in the ground state and +1 being all in the excited state).
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Lastly g is a coupling constant between the electric field and the atoms.
The curious feature of this set of PDEs, in fact the very reason why it is chosen it

as an example, is that there exists a soliton solution for the electric field, as shown in
Equation (10.14):

E(t, z) =
2

gt0
sech

(
t− az

t0

)
, (10.14)

which is time lagged with propagation at the rate

a =
g

(t0)2
. (10.15)

The result for the electric field in the above simulation is shown in Figure 10.4, in which
the soliton solution is evident.
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Figure 10.4: Results for tla.xmds

The cross propagating components, N and P , may still be thought of as existing in the
same space as the main vector component, E, and so they are declared as an extra vector in
the <field> element. However, the equations governing the evolution of such cross vectors
are not allowed to include any transverse derivatives – i.e. they are not allowed to be PDEs.
Therefore, through the main vector equations may be PDEs, the cross propagating vector
need not be transformed to Fourier space when the main vector is. So although the cross
vector components could be included as part of the main vector, they are better defined as
a separate vector for efficiency reasons.

In the SIIP integration algorithm the transverse evolution of the cross vector is calculated
simultaneously with the forward evolution of the main vector, but in all other algorithms
the cross vector is calculated prior to calculating the main vector derivatives. Thus the
governing equations for the cross vector must be separated from those for the main vector.
This is done by including a <cross propagation> element within the main <integrate>

element, and placing the cross vector equations within. Also required within this element
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is a list of the <vectors> that are to be cross propagated, and a <prop dim> assignment
specifying the dimension of cross propagation. The <vectors> that were made accessible
for the main equations will also be accessible here.

10.5 highdim.xmds

<?xml version="1.0"?>
<simulation >

<name>highdim </name>

<!-- Global system parameters and functionality -->
<prop_dim >t</prop_dim >
<error_check >yes</error_check >
<use_mpi >yes</use_mpi >
<use_wisdom >yes</use_wisdom >
<benchmark >yes</benchmark >

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double noise = 0.0;
const double hbar = 1.05500000000e-34;
const double M = 1.409539200000000e-25;
const double omegax = 0.58976353090742;
const double omegay = 0.58976353090742;
const double omegaz = 0.58976353090742/30;
const double U11 = 2.974797272874263e-51;
const double U13 = -1.417820412490823e-50;
const double U33 = 2.974797272874263e-51;
const double inum = 1.0 e6;
const double Uoh11 = U11/hbar;
const double Uoh13 = U13/hbar;
const double Uoh33 = U33/hbar;
const double mu = pow (15* inum*U11*omegax*omegay

*omegaz/M_PI /4 ,0.4)* pow(M ,0.6)/2;
const double delta = 1.0 e9;
const double F = 2.0e-2;
const double g = sqrt(Uoh11 *2.0/ delta );
const double loss11 =1.0e-2;
const double loss12 =1.6e-22;
const double loss31 =1.0e-2;
const double loss32 =1.6e-22;
const double loss132 =8.0e-17;
const double chi = F*g*delta;
const double biggamma = g*g*delta /2;
const double gam13 = Uoh13/chi;
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const double gam33 = Uoh33/chi;
const double gameff = ( Uoh11 -biggamma )/chi;
const double gamloss11=loss11 /2/chi;
const double gamloss12=loss12/chi;
const double gamloss31=loss31 /2/chi;
const double gamloss32=loss32/chi;
const double gamloss132=loss132/chi;
const double cnoise = noise/sqrt (2.0);

]]>
</globals >

<argv>
<arg>

<name>kjoek</name>
<type>double </type>
<default_value > -1.0e6</default_value >

</arg>
<arg>

<name>joekappamax </name>
<type>double </type>
<default_value >1.0e2</default_value >

</arg>
</argv>

<!-- Field to be integrated over -->
<field >

<dimensions >x y z</dimensions >
<lattice >16 16 16 </lattice >
<domains >(-1.2e-4 ,1.2e-4) ( -1.2e-4,1.2e-4) ( -8.0e-3,8.0e-3)</domains >
<samples >1 1 1 </samples >

<vector >
<name> vc1 </name>
<type>double </type>
<components >vcore V1r V3r gV1r gV3r</components >
<fourier_space >no no no</fourier_space >
<![CDATA[

vcore = ( omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
V1r = 0.5*M*vcore/hbar/chi -(gameff+gam13 /2)/2/( dx*dy*dz);
V3r = M*vcore/hbar/chi -(gam13 /2+ gam33 )/2/(dx*dy*dz);
gV1r = 0.5*M*vcore/hbar/chi;
gV3r = M*vcore/hbar/chi;

]]>
</vector >

<vector >
<name> main </name>
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<type>complex </type>
<components >phi1a phi1b phi3a phi3b gphi1a gphi3a </components >
<fourier_space >no no no</fourier_space >
<vectors > vc1 </vectors >
<![CDATA[

const double realfn = (mu -0.5*M*vcore )/Uoh11/hbar;

phi1a = realfn >0. ? complex(sqrt(realfn ),0) : complex (0 ,0);
phi1b = realfn >0. ? complex(sqrt(realfn ),0) : complex (0 ,0);
phi3a = complex (0 ,0);
phi3b = complex (0 ,0);
gphi1a = realfn >0. ? complex(sqrt(realfn ),0) : complex (0,0);
gphi3a = complex (0,0);

]]>
</vector >

</field >

<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm >ARK89IP </algorithm >
<interval >1e-7</interval >
<tolerance >1.0e-7</tolerance >

<lattice >1000</lattice >
<samples >10 10 1 </samples >
<k_operators >

<constant >yes</constant >
<operator_names > L2p L2n L4p L4n </operator_names >
<![CDATA[

L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L2n = complex (0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
L4n = complex (0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));

]]>
</k_operators >

<moment_group >
<moments >chippy </moments >
<integrate_dimension >yes yes yes</integrate_dimension >

<![CDATA[
chippy += ~ gphi1a*gphi1a;
]]>

</moment_group >

<moment_group >
<moments >ippy ichippy </moments >
<integrate_dimension >no no no</integrate_dimension >
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<![CDATA[
ippy += phi1a;
ichippy += gphi1a;
]]>

</moment_group >
<moment_group >
<moments >py ic</moments >
<integrate_dimension >yes yes no</integrate_dimension >

<![CDATA[
py += phi1a;
ic += gphi1a;
]]>

</moment_group >
<moment_group >
<moments >ppy ichi</moments >
<integrate_dimension >no yes yes</integrate_dimension >

<![CDATA[
ppy += phi1a;
ichi += gphi1a;
]]>

</moment_group >

<vectors > main vc1 </vectors >
<![CDATA[

const complex dens1 = phi1b*phi1a;
const complex dens3 = phi3b*phi3a;

const double gdens1 = ( gphi1a.re*gphi1a.re+gphi1a.im*gphi1a.im);
const double gdens3 = ( gphi3a.re*gphi3a.re+gphi3a.im*gphi3a.im);

dphi1a_dt = L2p[phi1a ] + ( -i*V1r -gamloss11
+( gamloss132 /2+ gamloss12 )/2/(dx*dy*dz))* phi1a
+ (-i*gameff -gamloss12 )* dens1*phi1a
- (i*gam13+gamloss132 )* dens3*phi1a -i*phi1b*phi3a
+ i*chippy*ippy;

dphi1b_dt = L2n[phi1b ] + (i*V1r -gamloss11
+( gamloss132 /2+ gamloss12 )/2/(dx*dy*dz))* phi1b
+ (i*gameff -gamloss12 )* dens1*phi1b
+ (i*gam13 -gamloss132 )* dens3*phi1b +i*phi1a*phi3b;

dphi3a_dt = L4p[phi3a ] + ( -i*V3r -gamloss31
+( gamloss132 /2+ gamloss32 )/2/(dx*dy*dz))* phi3a
+ (-i*gam33 -gamloss32 )* dens3*phi3a
- i*0.5* phi1a*phi1a -(i*gam13+gamloss132 )* dens1*phi3a;

dphi3b_dt = L4n[phi3b ] + (i*V3r -gamloss31
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+( gamloss132 /2+ gamloss32 )/2/(dx*dy*dz))* phi3b
+ (i*gam33 -gamloss32 )* dens3*phi3b
+ i*0.5* phi1b*phi1b +(i*gam13 -gamloss132 )* dens1*phi3b;

dgphi1a_dt = L2p[gphi1a ] + ( -i*gV1r -gamloss11 )* gphi1a
+(-i*gameff -gamloss12 )* gdens1*ichippy

- (i*gam13+gamloss132 )* gdens3*gphi1a -i*conj(gphi1a )* gphi3a;

dgphi3a_dt = L4p[gphi3a ] + ( -i*gV3r -gamloss31 )* gphi3a
+(-i*gam33 -gamloss32 )* gdens3*gphi3a
- i*0.5* gphi1a*gphi1a +(i*gam13 -gamloss132 )* gdens1*gphi3a;

]]>
</integrate >

</sequence >

<!-- The output to generate -->
<output format="binary" precision="double">

<group >
<sampling >

<fourier_space > no no no</fourier_space >
<lattice > 16 1 1</lattice >
<moments >atoms molecules gatoms gmolecules </moments >
<![CDATA[

atoms=phi1b*phi1a;
molecules=phi3b*phi3a;
gatoms=conj(gphi1a )* gphi1a;
gmolecules=conj(gphi3a )* gphi3a;

]]>
</sampling >

</group >
<group >

<sampling >
<fourier_space > no no no</fourier_space >
<lattice > 0 16 0</lattice >
<moments >rn_1 rn_2 grn_1 grn_2 excitedn </moments >
<![CDATA[

rn_1 = phi1b*phi1a;
rn_2 = phi3b*phi3a;
grn_1 = conj(gphi1a )* gphi1a;
grn_2 = conj(gphi3a )* gphi3a;
excitedn = g*g/4* phi1b*phi1b*phi1a*phi1a+F*F*phi3b*phi3a

- F*g/2*( phi1b*phi1b*phi3a+phi1a*phi1a*phi3b);
]]>

</sampling >
</group >
<group >

<sampling >
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<fourier_space > no no no</fourier_space >
<lattice > 4 8 16</lattice >
<moments >atomsr moleculesr atomsi moleculesi </moments >
<![CDATA[

atomsr=phi1a;
moleculesr=phi3a;
atomsi=-i*gphi1a;
moleculesi=-i*gphi3a;

]]>
</sampling >

</group >
</output >

</simulation >

This simulation is included to highlight the usage of moment groups in evolution. Here
we wish to use various variables integrated over one, two or all the transverse dimensions.
This is done in integrate or filter elements by the inclusion of a moment group. Using the
first as an example:

<moment_group>

<moments>chippy</moments>

<integrate_dimension>yes yes yes</integrate_dimension>

<![CDATA[

chippy += ~gphi1a*gphi1a;

]]>

</moment_group>

The syntax is similar to output and filter syntax, but note that the equality must be a
”+=” and not simply ”=”. This element provides the integral of the modulus squared of the
field gphi1a, which can then be used normally in the integration code by the designated name,
chippy. Other variables are actually fields in which any number of transverse dimensions may
be integrated, and the others are left.

When <functions> and <moment group> elements are used, the position of the <vectors>
tag is crucial. It specifies when the integrate code is to be executed, which will usually need
to be after the moment groups are calculated.

10.6 highdim vector version.xmds

<?xml version="1.0"?>
<simulation >

<name>highdim </name>
<!-- Global system parameters and functionality -->
<prop_dim >t</prop_dim >
<error_check >yes</error_check >
<use_mpi >yes</use_mpi >
<use_wisdom >yes</use_wisdom >
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<benchmark >yes</benchmark >

<!-- Global variables for the simulation -->
<globals >
<![CDATA[

const double noise = 0.0;
const double hbar = 1.05500000000e-34;
const double M = 1.409539200000000e-25;
const double omegax = 0.58976353090742;
const double omegay = 0.58976353090742;
const double omegaz = 0.58976353090742/30;
const double U11 = 2.974797272874263e-51;
const double U13 = -1.417820412490823e-50;
const double U33 = 2.974797272874263e-51;
const double inum = 1.0 e6;
const double Uoh11 = U11/hbar;
const double Uoh13 = U13/hbar;
const double Uoh33 = U33/hbar;
const double mu = pow (15* inum*U11*omegax*omegay

*omegaz/M_PI /4 ,0.4)* pow(M ,0.6)/2;
const double delta = 1.0 e9;
const double F = 2.0e-2;
const double g = sqrt(Uoh11 *2.0/ delta );
const double loss11 =1.0e-2;
const double loss12 =1.6e-22;
const double loss31 =1.0e-2;
const double loss32 =1.6e-22;
const double loss132 =8.0e-17;
const double chi = F*g*delta;
const double biggamma = g*g*delta /2;
const double gam13 = Uoh13/chi;
const double gam33 = Uoh33/chi;
const double gameff = ( Uoh11 -biggamma )/chi;
const double gamloss11=loss11 /2/chi;
const double gamloss12=loss12/chi;
const double gamloss31=loss31 /2/chi;
const double gamloss32=loss32/chi;
const double gamloss132=loss132/chi;
const double cnoise = noise/sqrt (2.0);

]]>
</globals >

<argv>
<arg>

<name>kjoek</name>
<type>double </type>
<default_value > -1.0e6</default_value >
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</arg>
<arg>

<name>joekappamax </name>
<type>double </type>
<default_value >1.0e2</default_value >

</arg>
</argv>

<!-- Field to be integrated over -->
<field >

<dimensions >x y z</dimensions >
<lattice >16 16 16 </lattice >

<domains >(-1.2e-4,1.2e-4) ( -1.2e-4,1.2e-4) ( -8.0e-3,8.0e-3)</domains >
<samples >1 1 1 </samples >

<vector >
<name> vc1 </name>
<type>double </type>
<components >Vr(5)</components >
<fourier_space >no no no</fourier_space >
<![CDATA[

Vr (1) = ( omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
Vr (2) = 0.5*M*Vr(1)/ hbar/chi -(gameff+gam13 /2)/2/( dx*dy*dz);
Vr (3) = M*Vr(1)/ hbar/chi -(gam13 /2+ gam33 )/2/(dx*dy*dz);
Vr (4) = 0.5*M*Vr(1)/ hbar/chi;
Vr (5) = M*Vr(1)/ hbar/chi;
]]>

</vector >

<vector >
<name> main </name>
<type>complex </type>
<components > phi (6) </components >
<fourier_space >no no no</fourier_space >
<vectors > vc1 </vectors >
<![CDATA[

const double realfn = (mu -0.5*M*Vr(1))/ Uoh11/hbar;

for(long j=1; j<7; j++) {
if (j==1||j==2||j==5)
phi(j) = realfn >0. ? complex(sqrt(realfn ),0) : complex (0,0);

else
phi(j) = complex (0,0);

}
]]>

</vector >
</field>
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<!-- The sequence of integrations to perform -->
<sequence >

<integrate >
<algorithm >ARK89EX </algorithm >
<interval >1e-7</interval >
<tolerance >1.0e-7</tolerance >
<lattice >1000</lattice >
<samples >10 10 1 </samples >
<k_operators >

<constant >yes</constant >
<operator_names > L2p L2n L4p L4n </operator_names >
<![CDATA[

L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L2n = complex (0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
L4n = complex (0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));

]]>
</k_operators >

<moment_group >
<moments >chippy </moments >
<integrate_dimension >yes yes yes</integrate_dimension >

<![CDATA[
chippy += ~ phi (5)* phi (5);
]]>

</moment_group >

<moment_group >
<moments >ippy ichippy </moments >
<integrate_dimension >no no no</integrate_dimension >

<![CDATA[
ippy += phi (1);
ichippy += phi (5);
]]>

</moment_group >
<moment_group >
<moments >py ic</moments >
<integrate_dimension >yes yes no</integrate_dimension >

<![CDATA[
py += phi (1);
ic += phi (5);
]]>

</moment_group >
<moment_group >
<moments >ppy ichi</moments >
<integrate_dimension >no yes yes</integrate_dimension >
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<![CDATA[
ppy += phi (1);
ichi += phi (5);
]]>

</moment_group >

<vectors > main vc1 </vectors >
<![CDATA[

const complex dens1 = phi (2)* phi (1);
const complex dens3 = phi (4)* phi (3);

const double gdens1 = ( phi (5).re*phi (5).re+phi (5).im*phi (5).im);
const double gdens3 = ( phi (6).re*phi (6).re+phi (6).im*phi (6).im);

dphi_dt (1) = L2p[phi ](1) + ( -i*Vr(2)- gamloss11
+( gamloss132 /2+ gamloss12 )/2/(dx*dy*dz))* phi (1)
+ (-i*gameff -gamloss12 )* dens1*phi (1)
- (i*gam13+gamloss132 )* dens3*phi(1) -i*phi (2)* phi (3)
+ i*chippy*ippy;

dphi_dt (2) = L2n[phi ](2) + (i*Vr(2)- gamloss11
+( gamloss132 /2+ gamloss12 )/2/(dx*dy*dz))* phi (2)
+ (i*gameff -gamloss12 )* dens1*phi(2)
+ (i*gam13 -gamloss132 )* dens3*phi (2) +i*phi (1)* phi (4);

dphi_dt (3) = L4p[phi ](3) + ( -i*Vr(3)- gamloss31
+( gamloss132 /2+ gamloss32 )/2/(dx*dy*dz))* phi (3)
+ (-i*gam33 -gamloss32 )* dens3*phi (3)
- i*0.5* phi (1)* phi (1) -(i*gam13+gamloss132 )* dens1*phi (3);

dphi_dt (4) = L4n[phi ](4) + (i*Vr(3)- gamloss31 +( gamloss132 /2
+gamloss32 )/2/( dx*dy*dz))*phi(4)
+ (i*gam33 -gamloss32 )* dens3*phi(4)
+ i*0.5* phi (2)* phi (2) +(i*gam13 -gamloss132 )* dens1*phi (4);

dphi_dt (5) = L2p[phi ](5) + ( -i*Vr(4)- gamloss11 )*phi(5)
+(-i*gameff -gamloss12 )* gdens1*ichippy
- (i*gam13+gamloss132 )* gdens3*phi(5)-i*conj(phi (5))* phi (6);

dphi_dt (6) = L4p[phi ](6) + ( -i*Vr(5)- gamloss31 )*phi(6)
+(-i*gam33 -gamloss32 )* gdens3*phi (6)
- i*0.5* phi (5)* phi (5) +(i*gam13 -gamloss132 )* gdens1*phi (6);

]]>
</integrate >

</sequence >

<!-- The output to generate -->
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<output format="binary" precision="double">
<group >

<sampling >
<fourier_space > no no no</fourier_space >
<lattice > 16 1 1</lattice >
<moments >atoms molecules gatoms gmolecules </moments >
<![CDATA[

atoms=phi (2)* phi (1);
molecules=phi (4)* phi (3);
gatoms=conj(phi (5))* phi (5);
gmolecules=conj(phi (6))* phi (6);

]]>
</sampling >

</group >
<group >

<sampling >
<fourier_space > no no no</fourier_space >
<lattice > 0 16 0</lattice >
<moments >rn_1 rn_2 grn_1 grn_2 excitedn </moments >
<![CDATA[

rn_1 = phi (2)* phi (1);
rn_2 = phi (4)* phi (3);
grn_1 = conj(phi (5))* phi (5);
grn_2 = conj(phi (6))* phi (6);
excitedn = g*g/4*phi (2)* phi (2)* phi (1)* phi (1)+F*F*phi (4)* phi (3)
- F*g/2*( phi (2)* phi (2)* phi (3)+ phi (1)* phi (1)* phi (4));

]]>
</sampling >

</group >
<group >

<sampling >
<fourier_space > no no no</fourier_space >
<lattice > 4 8 16</lattice >
<moments >atomsr moleculesr atomsi moleculesi </moments >
<![CDATA[

atomsr=phi (1);
moleculesr=phi (3);
atomsi=-i*phi (5);
moleculesi=-i*phi (6);

]]>
</sampling >

</group >
</output >

</simulation >

This simulation is identical in function to the highdim.xmds example above, but describes
the fields as an array of components rather than a list. This notation may be very valuable
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when the numbers of component get very large and the equations can be easily described in
terms of the index.

WARNING: There is no bounds checking on the index of your field, so be careful when
writing your equations in this form.

When using this notation, if XMDS needs to calculate the k-space operator of any of
the components of an array, all of them are calculated. This makes, for example, high-
dim vector version.xmds slower than the old version.

IMPORTANT: For interaction picture algorithms, if a k-space operator is applied to
any component of a vector, then it is applied to ALL OF THEM. This means that high-
dim vector version.xmds only solves the correct equations when used with an EX algorithm.
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11
Language Reference

11.1 simulation

required <simulation> xmds tags </simulation>

Contains: <name>, <prop dim>, <error check>, <stochastic>, <globals>, <use mpi>,
<MPI Method>, <field>, <sequence>, <output>, <noises>, <paths>, <benchmark>,
<binary output> (obsolete), <use wisdom>, <use double> (obsolete), <use prefs>,
<argv>, <threads>, <use openmp>, <fftw version>

Subelement of: None

Path to tag: <simulation>

Description: Container tag for the xmds simulation code.

Example:

<simulation >
<!-- xmds tags -->

</simulation >

11.2 name (simulation)

optional <name> string </name>

Contains: string

177
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Subelement of: <simulation>

Path to tag: <simulation> → <name>

Description: The name of the xmds simulation. Defines the name of the output C code file
and subsequently the name of the simulation binary executable. This tag is optional,
and if not specified then the output filenames will be derived from the xmds script
filename minus its last extension. For instance, for the atomlaser.xmds script, the
base for the output .cc file will be atomlaser. This isn’t really a very instructive
example. . .

Example:

<simulation >
<name> atomlaser </name>

</simulation >

11.3 prop dim (simulation)

required <prop dim> string variableName </prop dim>

Contains: string

Subelement of: <simulation>

Path to tag: <simulation> → <prop dim>

Description: The name of the main propagation direction. This name must appear in the
equations supplied. This condition, however, is not checked and therefore a possible
source of error for the user.

Example:

<simulation >
<prop_dim > z </prop_dim >

<simulation >

11.4 error check

optional <error check> bool </error check>

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <error check>
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Description: Whether or not to run the simulation at half the time step as well as at the
full time step and give the difference between the results. Defaults to yes.

Example:

<simulation >
<error_check > yes </error_check >

</simulation >

11.5 use mpi

optional <use mpi> bool <use mpi>

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <use mpi>

Description: Whether or not to use MPI routines for parallel processing of the simulation.
This writes very different code depending on whether the simulation is stochastic or
non-stochastic. Only certain problems on certain systems can be efficiently parallelised
when the equations are non-stochastic. Defaults to no.

Example:

<simulation >
<use_mpi > yes </use_mpi >

</simulation >

11.6 stochastic

optional <stochastic> bool </stochastic>

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <stochastic>

Description: Defaults to no. Tells xmds whether or not the simulation uses Gaussian
noise terms. If this tag is set to yes then the <paths>, <seeds> and <noises> tags
become compulsory.

Example:
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<simulation >
<stochastic > no </stochastic >

</simulation >

11.7 MPI Method

optional <MPI Method> string </MPI Method>

Contains: string

Subelement of: <simulation>

Path to tag: <simulation> → <MPI Method>

Description: Defaults to Scheduling. For stochastic simulations using MPI, it tells xmds
which method to use for splitting the paths between different processors. The default
”Scheduling” option is usually optimal, but requires the use of threads. If threads are
unavailable, the ”Uniform” option should be used.

Example:

<simulation >
<MPI_Method > Uniform </MPI_Method >

</simulation >

11.8 paths

optional <paths> int </paths>

(required if <stochastic> is yes)

Contains: integer

Subelement of: <simulation>

Path to tag: <simulation> → <paths>

Description: The number of stochastic paths to integrate.

Example:

<simulation >
<paths > 3 </paths >

</simulation >
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11.9 seed

optional <seed> int int </seed>

(required if <stochastic> is yes)

Contains: array of two integers

Subelement of: <simulation>

Path to tag: <simulation> → <seed>

Description: The seed to the random number generator. Internally, these are the seeds
passed to the C routine erand48() to generate two independent random number gen-
erators, hence the use of two integers.

Example:

<simulation >
<seed> 1 2 </seed>

</simulation >

11.10 noises

optional <noises> int </noises>

(required if <stochastic> is yes)

Contains: integer

Attributes: optional kind="gaussian|gaussFast|poissonian|uniform", mean="int" (re-
quired for poissonian)

Subelement of: <simulation>

Path to tag: <simulation> → <noises>

Description: The number of noise terms in the simulation. xmds automatically declares
the variables n 1 . . . n m where m is the number of noises specified. As of xmds-1.3-3
the <noises> tag now accepts attributes. Currently these are gaussian, gaussFast,
poissonian, and uniform. Each refers to a different noise source;

gaussian refers to the original noise routine that xmds uses. It produces a Gaussian-
distributed variable with mean of zero and variance of 1/(product of the propa-
gation and transverse step sizes).

gaussFast is a slightly faster implementation of the same routine, and will eventually
replace the old gaussian routine.
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poissonian is a Poissonian noise source, and requires the mean rate attribute to be
set to the desired mean rate of the Poissonian noise distribution. Simulations
where the mean rate is a function of the propagation dimension or other variables
are not supported via this method, but judicious use of the functions element can
allow this rate to be adjusted manually.

uniform gives uniformly distributed noise on the interval [0, 1).

Example:

<simulation >
<noises kind="gaussian"> 1 </noises >

</simulation >

11.11 benchmark

optional <benchmark> bool </benchmark> xmds-1.2+

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <benchmark>

Description: Defaults to no. Tells xmds whether or not to put timing code around the
main section of code (that part of the code excluding fftw creation and deletion) as a
way of benchmarking the simulation, or at least giving an idea of how long the main
section of code will take.

Example:

<simulation >
<benchmark > yes </benchmark >

</simulation >

11.12 binary output

optional <binary output> bool </binary output> xmds-1.2+
Obsolete: see <output>

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <binary output>
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Description: Defaults to no. If set to yes xmds saves data file in binary format instead
of the default, ascii.

This tag is now obsolete. Please specify the format attribute in the <output> tag. For
example: <output format="binary">.

Example:

<simulation >
<binary_output > yes </binary_output >

</simulation >

11.13 use wisdom

optional <use wisdom> bool </use wisdom> xmds-1.2+

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <use wisdom>

Description: Defaults to no. If yes the simulation will use fftw’s wisdom feature. The
simulation will look in the user’s ~/.xmds/wisdom directory (or failing the existence of
such a directory, in the directory local to the simulation binary executable) for a file
labelled <hostname>.wisdom where <hostname> is the name of the computer currently
running the simulation. If such a file exists, then the xmds simulation will load this
wisdom as part of the fftw plan creation step, thus drastically reducing startup time
of the simulation. Any accumulated wisdom will be then added back to this file at the
fftw plan deletion stage. If no wisdom file is found, the simulation will create one in
an appropriate location and then save any accumulated wisdom to this file.

Example:

<simulation >
<use_wisdom > no </use_wisdom >

</simulation >

11.14 use double

optional <use double> bool </use double> xmds-1.2+
Obsolete: see <output>

Contains: boolean
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Subelement of: <simulation>

Path to tag: <simulation> → <use double>

Description: Defaults to yes. Decides the precision of the output data. Only useful when
<use binary> is set to yes. If set to no then single precision output is used. This
option is useful in reducing the size of the output files.

This tag is now obsolete. Please specify the precision attribute in the <output> tag.
For example: <output precision="double">.

Example:

<simulation >
<use_double > no </use_double >

</simulation >

11.15 use prefs

optional <use prefs> bool </use prefs> xmds-1.2+

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <use prefs>

Description: Defaults to yes. Tells xmds whether or not to use the user preferences file
(called xmds.prefs) located in either the user’s .xmds directory or within the directory
local to the xmds simulation script. By default, xmds will use the preferences file if it
exists, if not then it uses the preferences set when xmds was built. One can explicitly
use the build preferences by setting <use prefs> to no.

The format of the preferences file is a sequence of key/value pairs separated by an
equals sign (=). For instance, if one wished to change the compiler used by xmds to
compile simulations then one needs to change the XMDS CC variable. Hence, to do set
this to icc, for example, one would enter the following line into the xmds.prefs file:
XMDS CC = icc

Example:

<simulation >
<use_prefs > no </use_prefs >

</simulation >
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11.16 threads

optional <threads> int </threads>

Contains: integer

Subelement of: <simulation>

Path to tag: <simulation> → <threads>

Description: If set to a value of n 6= 1, this tag tells xmds to create a simulation that
uses the threaded version of the FFT library, and to use n threads for calculating the
FFT’s.

Example:

<simulation >
<threads > 3 </threads >

</simulation >

11.17 use openmp

optional <use openmp> bool </use openmp>

Contains: boolean

Subelement of: <simulation>

Path to tag: <simulation> → <use openmp>

Description: Defaults to no. Tells xmds whether to make use of OpenMP compiler di-
rectives to instruct the compiler how to parallelise parts of the simulation other than
the FFT’s. The simulation will compile correctly if OpenMP by the compiler, and you
will need to ensure that the correct flags are passed to the compiler to ensure that it
does enable OpenMP support (e.g. for Intel’s C compiler the flag -openmp must be
passed to the compiler to enable OpenMP). OpenMP cannot be used simultaneously
with MPI for deterministic simulations. Also, the number of OpenMP threads used in
a simulation defaults to the number of physical processors available. Note that best
performance will be achieved if FFTW is compiled to use OpenMP threads instead of
the default pthreads if your simulations make use of OpenMP threads.

See the OpenMP website (http://www.openmp.org) for more information about OpenMP.
As of mid-2006, Intel’s icc compiler supports OpenMP, however the current release of
GCC (4.1.1) does not. Support for OpenMP is planned for the 4.2 release of GCC.

Example:

http://www.openmp.org
http://www.openmp.org
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<simulation >
<use_openmp > yes </use_openmp >

</simulation >

11.18 fftw version

optional <fftw version> int </fftw version>

Contains: integer

Subelement of: <simulation>

Path to tag: <simulation> → <fftw version>

Description: Defaults to 2. This tag tells xmds which version of the fftw library to use.
Currently, fftw3 does not support distributed-memory fourier transforms using MPI,
but only shared-memory transforms using threads. Consequently, fftw version 3 can
only be used for simulations that are not MPI-using deterministic simulations. Stochas-
tic MPI simulations can take advantage of fftw3 as they do not need distributed-
memory fourier transforms.

To override the libraries that xmds links against when compiling a simulation that
uses fftw3, override the FFTW3 LIBS library in your xmds.prefs file.

Example:

<simulation >
<fftw_version > 3 </fftw_version >

</simulation >

11.19 globals

optional <globals> C code </globals>

Contains: CDATA block with C++ code

Subelement of: <simulation>

Path to tag: <simulation> → <globals>

Description: Defines variables and constants that are globally available to all sections of
the output C code.

Example:
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<simulation >
<globals >

<![CDATA[
const double energy = 4;
const double vel = 0.0;
const double hwhm = 1.0;

]]>
</globals >

<simulation >

11.20 argv

optional <argv> xmds tags </argv> xmds-1.2+

Contains: <arg>

Subelement of: <simulation>

Path to tag: <simulation> → <argv>

Description: Overall tag containing the arguments to be supplied at the simulation com-
mand line. Command line arguments can be very useful if one wants to vary pa-
rameters within the simulation, between simulation runs. Hence one can write a
(Perl/Python/shell) script to run the simulation over the various parameters, with-
out having to rewrite an xmds script, recompile and then rerun.

Example:

<simulation >
<argv>

<!-- xmds tags -->
</argv>

<simulation >

11.20.1 arg

required <arg> xmds tags </arg> xmds-1.2+

Contains: <name>, <type>, <default value>

Subelement of: <argv>

Path to tag: <simulation> → <argv> → <arg>

Description: Container for the tags describing a given command line argument.
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Example:

<simulation >
<argv>

<arg>
<!-- xmds tags -->

</arg>
</argv>

<simulation >

11.20.2 name (arg)

required <name> char * </name> xmds-1.2+

Contains: string

Subelement of: <arg>

Path to tag: <simulation> → <argv> → <arg> → <name>

Description: The name of the command line argument. This tag is used to create a flag to
specify the value of the variable entered at the command line. Two forms are accepted:
a short form and a long form, each conforming to the GNU getopt conventions. For
instance, for a variable named nconst the flag used at the command line will have
a short form of -n and a long form of --nconst. However, if another variable has
been chosen beginning with the letter n, then -n is no longer unique, and to make
the short flag unique, xmds chooses the next character in the variable name, in this
case the letter c, and making the short form flag -c. The long form remains the same,
i.e. --nconst. Of course, if the letter c has also been used then xmds loops through
all of the other letters in the variable name until it finds a match. If no match is found
xmds reports an error.

To check the short and long forms of the flags the simulation expects, the user can use
the -h or --help options with the simulation. For instance, with the nlse simulation,
one can enter the following command to get a listing of the arguments the xmds
simulation expects at its command line:

% nlse --help

Example:

<simulation >
<argv>

<arg>
<name> nconst </name>
<type> int </type>
<default_value > 2 </default_value >
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</arg>
</argv>

<simulation >

11.20.3 type (arg)

required <type> char * </type> xmds-1.2+

Contains: string

Subelement of: <arg>

Path to tag: <simulation> → <argv> → <arg> → <type>

Description: The type of the command line argument, e.g. int, double, char *. At present
this mechanism cannot handle complex inputs.

Example:

<simulation >
<argv>

<arg>
<name> nconst </name>
<type> int </type>
<default_value > 2 </default_value >

</arg>
</argv>

<simulation >

11.20.4 default value

required <default value> char * </default value> xmds-1.2+

Contains: string

Subelement of: <arg>

Path to tag: <simulation> → <argv> → <arg> → <default value>

Description: The default value of the command line argument. Values will be converted
from the string entered into the type given in the <type> tag. If the variable is not
specified at the command line then this is the value used by the simulation.

Example:
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<simulation >
<argv>

<arg>
<name> nconst </name>
<type> int </type>
<default_value > 2 </default_value >

</arg>
</argv>

<simulation >

11.21 field

required <field> xmds tags </field>

Contains: <name>, <dimensions>, <lattice>, <domains>, <samples>, <vector>

Subelement of: <simulation>

Path to tag: <simulation> → <globals> → <field>

Description: Container element to hold the tags describing the field to be integrated. At
present, only one field is permitted in a simulation.

Example:

<simulation >
<field >

<!-- xmds tags -->
</field >

<simulation >

11.21.1 name (field)

optional <name> string </name>

Contains: string

Subelement of: <field>

Path to tag: <simulation> → <field> → <name>

Description: The name of the field to integrate. Defaults to main.

Example:
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<simulation >
<field >

<name> main </name>
</field >

</simulation >

11.21.2 dimensions

optional <dimensions> string variableName string variableName . . . </dimensions>

Contains: array of strings

Subelement of: <field>

Path to tag: <simulation> → <field> → <dimensions>

Description: A space delimited array of the names of dimensions in the field other than
the propagation dimension. This element is therefore a list of the transverse field
dimensions.

Example:

<simulation >
<field >

<dimensions > t </dimensions >
</field >

<simulation >

11.21.3 lattice (field)

optional <lattice> int int . . . </lattice>
(required if <dimensions> assignment present)

Contains: array of integers

Subelement of: <field>

Path to tag: <simulation> → <field> → <lattice>

Description: A space delimited array of integers giving the number of points in the grid
for each dimension listed in the <dimensions> tag.

Exmaple:
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<simulation >
<field >

<lattice > 100 </lattice >
</field >

</simulation >

11.21.4 domains

optional <domains> (double, double) (double, double) . . . </domains>
(required if <dimensions> assignment present)

Contains: array of ordered pairs of doubles

Subelement of: <field>

Path to tag: <simulation> → <field> → <domains>

Description: This tag specifies the domain range of each dimension listed in the <dimensions>
tag.

Example:

<simulation >
<field >

<domains > (-5, 5) </domains >
</field >

</simulation >

11.21.5 samples (field)

required <samples> int int . . . </samples>

Contains: array of integers, specifically either 1 or 0

Subelement of: <field>

Path to tag: <simulation> → <field> → <samples>

Description: Tells xmds which moment groups to sample. This tag should contain a space
separated list of 1’s and 0’s. A 1 meaning sample the moment group in question, and
a 0 meaning do not.

Example:



11.21 field 193

<simulation >
<field >

<samples > 1 </samples >
</field >

</simulation >

11.21.6 vector

required <vector> xmds tags </vector>

Contains: <name>, <filename>, <type>, <components>, <fourier space>, <vectors>,
CDATA

Subelement of: <field>

Path to tag: <simulation> → <field> → <vector>

Description: A container for tags describing a vector of the field.

Example:

<simulation >
<field >

<vector >
<!-- xmds tags -->

</vector >
</field >

</simulation >

11.21.6.1 name (vector)

required <name> string </name>

Contains: string

Subelement of: <vector>

Path to tag: <simulation> → <field> → <vector> → <name>

Description: Name of the vector in question. At least one vector must be present, and at
least one vector must be called main.

Example:
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<simulation >
<field >

<vector >
<name> main </name>

</vector >
</field >

</simulation >

11.21.6.2 filename (vector)

optional <filename> string </filename>

Contains: string

Attributes: optional format="ascii"|"binary"|"xsil"

Attributes for the XSIL format: optional moment group="N"

optional geometry matching mode="strict"|"loose"

Subelement of: <vector>

Path to tag: <simulation> → <field> → <vector> → <filename>

Description: Tells xmds the file from which to load the initial field.

The <filename> tag accepts one optional attribute: format. This attribute can take
one of three options; "ascii", "binary", or "xsil" where "ascii" is the default
option. However, "xsil" is the most robust of these formats as it can load any binary
XSIL file produced by XMDS (irrespective of what architecture the file was produced
on). See Chapter 2, Section 2.6.1 for more information on loading XSIL files.

Caution should be taken here when using the "binary" format since loading a binary
file is more difficult to get correct than loading an ascii file. However, the added
difficulty is offset by being able to have smaller and more complex input data. A first
thing to note is that the byte ordering of the system you are going to be loading the
file into has to be the same as the file itself. For instance, creating a binary file for
input to xmds on PowerPC will not load correctly on an x86 platform.

For the "binary" and "ascii" formats, xmds expects the input data to be essentially
interlaced so that it is loaded into memory correctly. The best way to explain this is
by way of example. If the input data is to be three vectors, say x, y and z, then xmds
expects the data to be formed thus:

x[0] y[0] z[0] x[1] y[1] z[1] ...

and so on with a new line or space between each entry. The only difference between the
ascii and binary input formats is that the newline (or space) character is unnecessary,
and xmds just expects a sequence of double values ordered as above.
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For complex types, xmds expects the imaginary part of each variable to follow the real
part. If the input data for the previous example were complex numbers, then xmds
would expect the data to be in the order:

real(x[0]) imag(x[0]) real(y[0]) imag(y[0]) real(z[0]) imag(z[0]) ...

Example:

<simulation >
<field >

<vector >
<filename format="binary"> blah </filename >

</vector >
</field >

</simulation >

11.21.6.3 type (vector)

optional <type> string of complex or double </type>

Contains: string interpreted as either complex or double type

Subelement of: <vector>

Path to tag: <simulation> → <field> → <vector> → <type>

Description: The data type of the vector. Defaults to complex if not specified. It is a
good idea to use complex here when one is using a Fourier transform technique to
integrate the equations, even if initially the variables are double.

Example:

<simulation >
<field >

<vector >
<type> complex </type>

</vector >
</field >

</simulation >

11.21.6.4 components

required <components> string variableName string variableName . . . </components>

Contains: array of strings

Subelement of: <vector>
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Path to tag: <simulation> → <field> → <vector> → <components>

Description: Names the components of the vector. If a large array of components are
required, it is possible to declare that here by putting the size of the array in parentheses
immediately after the name. Subsequent references to these components must have the
index afterwards in parentheses.

Example:

<simulation >
<field >

<vector >
<components > phi JoeIsGreat (256) </components >

</vector >
</field >

</simulation >

11.21.6.5 fourier space (vector)

optional <fourier space> bool bool . . . </fourier space>

(required if <filename> not present)

Contains: array of booleans

Subelement of: <vector>

Path to tag: <simulation> → <field> → <vector> → <fourier space>

Description: Tells xmds whether the dimension specified is initialised in Fourier space.
This is a space separated list of yes/no values. A value of yes meaning the dimension
is defined in Fourier space, and no meaning the dimension is defined in x-space.

Example:

<simulation >
<field >

<vector >
<fourier_space > no </fourier_space >

</vector >
</field >

</simulation >

11.21.6.6 vectors (vector)

required <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings
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Subelement of: <vector>

Path to tag: <simulation> → <field> → <vector> → <vectors>

Description: Tells xmds the names of the variables are to be referenced in a CDATA block.
Defaults to main.

Example:

<simulation >
<field >

<vector >
<vectors > main vc1 </vectors >

</vector >
</field >

</simulation >

11.22 sequence

required <sequence> xmds tags </sequence>

Contains: <integrate>, <filter>, <sequence>

Subelement of: <simulation> or <sequence>

Path to tag: <simulation> → <sequence> (→ <sequence>)

Description: Container tag for the sequence of integrations to perform. May contain other
sequences within itself. If subsequences exist, then they must contain a <cycles>

assignment.

Example:

<simulation >
<sequence >

<!-- xmds tags -->
</sequence >

</simulation >

11.22.1 cycles

optional <cycles> int </cycles>

(required in nested <sequence>s)

Contains: integer
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Subelement of: <sequence>

Path to tag: <simulation> → <sequence> → <cycles>

Description: The number of times to perform a given sequence (as a subsequence of the
main sequence). Defaults to 1.

Example:

<simulation >
<sequence >

<cycles > 3 </cycles >
</sequence >

</simulation >

11.22.2 integrate

optional <integrate> xmds tags </integrate>

Contains: <algorithm>, <interval>, <iterations>, <tolerance>, <max iterations>,
<smallmemory>, <cutoff>, <halt non finite>, <lattice>, <samples>, <k operators>,
<moment group>, <functions>, <vectors>, CDATA

Subelement of: <sequence>

Path to tag: <simulation> → <sequence> → <integrate>

Description: Container element holding the tags that describe how the integration should
take place.

Example:

<simulation >
<sequence >

<integrate >
<!-- xmds tags -->

</integrate >
</sequence >

</simulation >

11.22.2.1 algorithm

optional <algorithm> string algorithmName </algorithm>

Contains: string, one of RK4EX, RK4IP, ARK45EX, ARK45IP, SIEX, or SIIP

Subelement of: <integrate>
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Path to tag: <simulation> → <sequence> → <integrate> → <algorithm>

Description: The algorithm to use when integrating the equations. Defaults to SIEX if
<stochastic> is yes or RK4EX if <stochastic> is no. The six algorithms that xmds
currently contains are:

RK4EX Fourth-order Runge-Kutta in the explicit picture.

RK4IP Fourth-order Runge-Kutta in the interaction picture.

ARK45EX adaptive step size Runge-Kutta-Fehlberg in the explicit picture.

ARK45IP adaptive step size Runge-Kutta-Fehlberg in the interaction picture.

SIEX Semi-implicit method in the explicit picture.

SIIP Semi-implicit method in the interaction picture.

Example:

<simulation >
<sequence >

<integrate >
<algorithm > RK4IP </algorithm >

</integrate >
</sequence >

</simulation >

11.22.2.2 interval

required <interval> double </interval>

Contains: double

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <interval>

Description: The integration range. This is the interval over which the main propagation
dimension will be integrated.

Example:

<simulation >
<sequence >

<integrate >
<interval > 20 </interval >

</integrate >
</sequence >

</simulation >
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11.22.2.3 iterations

optional <iterations> int </iterations>

Contains: integer

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <iterations>

Description: When using one of the semi-implicit algorithms this option can be altered to
control the number of iterations of the algorithm to for convergence of the method.
Defaults to 3.

Example:

<simulation >
<sequence >

<integrate >
<iterations > 5 </iterations >

</integrate >
</sequence >

</simulation >

11.22.2.4 tolerance

required <tolerance> double </tolerance>

Contains: double

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <tolerance>

Description: If one of the adaptive step size methods is used, this assignment controls the
maximum relative error that is allowed per step on any of the grid points.

Example:

<simulation >
<sequence >

<integrate >
<tolerance >1e-10</tolerance >

</integrate >
</sequence >

</simulation >
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11.22.2.5 max iterations

optional <max iterations> int </max iterations>

Contains: integer

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <max iterations>

Description: Applies to the ARK45 algorithms only. If the behaviour of the solution is
unknown and might result in a very small step size the maximum number of iterations
(steps and discarded steps) can be limited with this optional tag. This is particularly
useful in the debugging stage or on systems that impose time limits on their running
programs.

Example:

<simulation >
<sequence >

<integrate >
<max_iterations >5000000 </max_iterations >

</integrate >
</sequence >

</simulation >

11.22.2.6 min time step

optional <min time step> double </min time step>

Contains: double

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <min time step>

Description: The minimum time-step an integration algorithm should try, before halting
that pass of the integration. This option applies to the adaptive algorithms (ARK45
and ARK89) only.

The default value is 1e-13, that is, 10−13. A value of 0 disables the check on the
time-step, which will slightly speed up integrations that do not require the check.

Example:

<simulation >
<sequence >

<integrate >
<min_time_step >1e-10</min_time_step >
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</integrate >
</sequence >

</simulation >

11.22.2.7 smallmemory

optional <smallmemory> bool </smallmemory>

Contains: boolean

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <smallmemory>

Description: Defaults to no. In this case, when using the ARK45IP algorithm xmds
calculates and stores six copies of the derivative operators per step as each of them can
be reused once. For problems with memory limitations it might be better to assign
yes to this element, then each array of derivatives needs to be calculated twice per
step, but significantly less memory should be used.

Example:

<simulation >
<sequence >

<integrate >
<smallmemory > yes </smallmemory >

</integrate >
</sequence >

</simulation >

11.22.2.8 cutoff

optional <cutoff> double </cutoff>

Contains: double

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <cutoff>

Description: If one of the adaptive step size methods is used, the cutoff value sets the
threshold for the function values that are included in the determination of relative
errors. Grid points where the function is less than cutoff*peakvalue are not included.
The value defaults to 1/1000;

Example:
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<simulation >
<sequence >

<integrate >
<cutoff > 1e-5 </cutoff >

</integrate >
</sequence >

</simulation >

11.22.2.9 halt non finite

optional <halt non finite> bool </halt non finite>

Contains: boolean

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <halt non finite>

Description: If yes, then halt the current integration pass if it produces a non-finite num-
ber in the first component of the main vector. Since non-finite numbers usually pro-
pogate quickly through the components of the main vector, this will quickly detect any
non-finite number.

Examples of non-finite numbers are 1.0/0.0, which is infinite, and 0.0/0.0, which
is not a number (NaN). Some platforms process non-finite numbers slower than finite
numbers; others process them faster. Regardless, they are unlikely to be useful results
from an integration.

Note that, by default, xmds compiles the generated C++ code with optimizations
that sacrifice strict compliance with floating-point arithmetic standards (e.g. IEEE
754).

Many of these optimizations assume that all floating-point numbers are finite. Natu-
rally, this may pose problems for a non-finite number check. In some cases, the check
for non-finite numbers is optimized to oblivion. Depending on other optimizations, the
time-step may become NaN and the integration will never move forward and therefore
never terminate.

An easy way to see if the check for non-finite numbers survived optimization is to run
the following (supposing xmds compiled the simulation binary from simulation.xmds):

strings simulation | grep halt_non_finite:

(The colon is important.) If this command prints output similar to the following:

* NOTICE: halt_non_finite: Integration halted.

then at least the check is not optimized away and halt non finite is more likely to
work.
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When using GCC xmds enables the -ffast-math flag. In GCC version 3.3, this seems
to pose problems with halt non finite. Removing the -ffast-math flag should solve
the problem. Alternatively, keeping this flag and adding the -fno-unsafe-math-optimizations
flag after the -ffast-math flag seems to work (and should produce faster code). GCC 4
seems to have no problem.

There seems to be no problem using version 10.1 of Intel’s compiler icc. Note that
icc sacrifices floating-point compliance for speed by default, but this can be changed
using the -fp-model flag.

Remember you can change compilation flags by editing the preference file (see section
2.8 for more information on preferences). Of course, you can also edit the compilation
command printed by xmds and run it by hand.

Overall, however, there are no guarantees that halt non finite will work when sac-
rificing accuracy for speed in floating-point arithmetic.

Defaults to no.

Example:

<simulation >
<sequence >

<integrate >
<halt_non_finite > yes </halt_non_finite >

</integrate >
</sequence >

</simulation >

11.22.2.10 lattice (integrate)

required <lattice> int </lattice>

Contains: integer

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <lattice>

Description: The number of points to use over the integration interval i.e. over the number
entered in the <interval> assignment.

Example:

<simulation >
<sequence >

<integrate >
<lattice > 1000 </lattice >

</integrate >
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</sequence >
</simulation >

11.22.2.11 samples (integrate)

required <samples> int int . . . </samples>

Contains: array of integers

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <samples>

Description: The number of samples to take of each output moment group. This is a space
separated list of integers, the number of which must be equal to the number of output
moment groups. Each integer must be a factor of the <lattice> assignment or 0. If
set to 0 then the given moment group is not sampled.

Example:

<simulation >
<sequence >

<integrate >
<samples > 50 </samples >

</integrate >
</sequence >

</simulation >

11.22.2.12 k operators

optional <k operators> xmds tags </k operators>

Contains: <vectors>, <constant>, <operator names>, CDATA

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <k operators>

Description: Container for tags describing the k-space (i.e. Fourier space) operators.

Example:

<simulation >
<sequence >

<integrate >
<k_operators >

<!-- xmds tags -->
</k_operators >
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</integrate >
</sequence >

</simulation >

11.22.2.12.1 vectors (k operators)

optional <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings

Subelement of: <k operators>

Path to tag: <simulation>→ <sequence>→ <integrate>→ <k operators>→ <vectors>

Description: Vectors to be referred to in CDATA block. Defaults to main.

Example:

<simulation >
<sequence >

<integrate >
<k_operators >

<vectors > main vc1 </vectors >
</k_operators >

</integrate >
</sequence >

</simulation >

11.22.2.12.2 constant

optional <constant> bool </constant>

Contains: boolean

Subelement of: <k operators>

Path to tag: <simulation>→ <sequence>→ <integrate>→ <k operators>→ <constant>

Description: Tells xmds whether or not the k-space operators are constant over the course
of the simulation, in other words, they don’t depend upon the propagation dimension.
If they are constant, then giving a value of yes for this tag speeds up the simulation
as more efficient code can be used. Defaults to no.

Example:
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<simulation >
<sequence >

<integrate >
<k_operators >

<constant > yes </constant >
</k_operators >

</integrate >
</sequence >

</simulation >

11.22.2.12.3 operator names

required <operator names> string variableName string variableName . . . </operator names>

Contains: array of strings

Subelement of: <k operators>

Path to tag: <simulation>→ <sequence>→ <integrate>→ <k operators>→ <operator names>

Description: The names of the k-space operators as they appear in the CDATA block within
the <k operators> element. This is a space separated list of strings of the operator
names.

Example:

<simulation >
<sequence >

<integrate >
<k_operators >

<operator_names > L </operator_names >
</k_operators >

</integrate >
</sequence >

</simulation >

11.22.2.13 moment group (integrate)

optional <moment group> xmds tags </moment group>

Contains: <moments>, <integrate dimension>, CDATA

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <moment group>

Description: Defines and calculates a number or vector integrated through zero or more
of the transverse dimensions of the problem.
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Example:

<simulation >
<sequence >

<integrate >
<moment_group >

<moments >joe is great</moments >
<integrate_dimension >no yes</integrate_dimension >

<![CDATA[
joe += ~ psi*psi;
is += ~ phi*phi;
great += theta;
]]>

</moment_group >
</integrate >

</sequence >
</simulation >

11.22.2.14 functions (integrate)

optional <functions> CDATA </functions>

Contains: CDATA

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <functions>

Description: This is the best place to define any functions that do not depend on the
transverse dimensions.

Example:

<simulation >
<sequence >

<integrate >
<functions >
<![CDATA[

/* Some C code */
]]>

</functions >
</integrate >

</sequence >
</simulation >



11.22 sequence 209

11.22.2.15 vectors (integrate)

required <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings

Subelement of: <integrate>

Path to tag: <simulation> → <sequence> → <integrate> → <vectors>

Description: The vectors xmds needs to access in the equations. Given as a space sepa-
rated list of strings. Defaults to main.

Example:

<simulation >
<sequence >

<integrate >
<vectors > main vc1 </vectors >

</integrate >
</sequence >

</simulation >

11.22.3 filter

optional <filter> xmds tags </filter>

Contains: <vectors>, <fourier space>, CDATA

Subelement of: <sequence>

Path to tag: <simulation> → <sequence> → <filter>

Description: Container element for the tags describing how the field is to be filtered, if at
all.

Example:

<simulation >
<sequence >

<filter >
<!-- xmds tags -->

</filter >
</sequence >

</simulation >
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11.22.3.1 moment group (filter)

optional <moment group> xmds tags </moment group>

Contains: <moments>, <integrate dimension>, CDATA

Subelement of: <filter>

Path to tag: <simulation> → <sequence> → <filter> → <moment group>

Description: Defines and calculates a number or vector integrated through zero or more
of the transverse dimensions of the problem.

Example:

<simulation >
<sequence >

<filter >
<moment_group >

<moments >joe is great</moments >
<integrate_dimension >no yes</integrate_dimension >

<![CDATA[
joe += ~ psi*psi;
is += ~ phi*phi;
great += theta;
]]>

</moment_group >
</filter >

</sequence >
</simulation >

11.22.3.2 functions (filter)

optional <functions> CDATA </functions>

Contains: CDATA

Subelement of: <filter>

Path to tag: <simulation> → <sequence> → <filter> → <functions>

Description: This is the best place to define any functions that do not depend on the
transverse dimensions.

Example:
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<simulation >
<sequence >

<filter >
<functions >
<![CDATA[

/* Some C code */
]]>

</functions >
</filter >

</sequence >
</simulation >

11.22.3.3 vectors (filter)

required <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings

Subelement of: <filter>

Path to tag: <simulation> → <filter> → <vectors>

Description: The names of the vectors xmds should apply the filter to. Given as a space
separated list of strings. Defaults to main.

Example:

<simulation >
<filter >

<vectors > main vc1 </vectors >
</filter >

</simulation >

11.22.3.4 fourier space (filter)

optional <fourier space> boolean boolean . . . </fourier space>

Contains: array of booleans

Subelement of: <filter>

Path to tag: <simulation> → <integrate> → <filter> → <fourier space>

Description: Tells xmds in which space the filter is to be applied. This is a list of yes/no
options for each vector.

Example:
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<simulation >
<integrate >

<filter >
<fourier_space > yes no </fourier_space >

</filter >
</integrate >

</simulation >

11.22.3.5 cross propagation

optional <cross propagation> xmds tags </cross propagation>

Contains: <vectors>, <prop dim>, CDATA

Subelement of: <integrate>

Path to tag: <simulation> → <integrate> → <cross propagation>

Description: Container of the tags describing the cross propagation vectors, if any.

Example:

<simulation >
<integrate >

<cross_propagation >
<!-- xmds tags -->

</cross_propagation >
</integrate >

</simulation >

11.22.3.5.1 prop dim (cross propagation)

required <prop dim> string </prop dim>

Contains: string

Subelement of: <cross propagation>

Path to tag: <simulation> → <integrate> → <cross propagation> → <prop dim>

Description: The propagation dimension of the cross propagating vector.

Example:

<simulation >
<integrate >

<cross_propagation >
<prop_dim > z </prop_dim >
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</cross_propagation >
</integrate >

</simulation >

11.22.3.5.2 vectors (cross propagation)

required <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings

Subelement of: <cross propagation>

Path to tag: <simulation> → <sequence> → <integrate> → <cross propagation> →
<vectors>

Description: The names of the cross propagating vectors as a list of strings.

Example:

<simulation >
<sequence >

<integrate >
<cross_propagation >

<vectors > main vc1 </vectors >
</cross_propagation >

</integrate >
</sequence >

</simulation >

11.22.4 breakpoint

optional <breakpoint> xmds tags </breakpoint>

Contains: <filename>, <fourier space>, <vectors>

Subelement of: <sequence>

Path to tag: <simulation> → <sequence> → <breakpoint>

Description: Saves some vectors to a binary XSIL file when this element is reached in the
simulation. This can be used for generating an XSIL file that can be used as an input
for another simulation, or to check the behaviour of the simulation part way through.
This feature is described further in Chapter 2, Section 2.9.

Example:
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<simulation >
<sequence >

<breakpoint >
<!-- xmds tags -->

</breakpoint >
</sequence >

</simulation >

11.22.4.1 filename (breakpoint)

optional <filename> string </filename>

Contains: string

Subelement of: <breakpoint>

Path to tag: <simulation> → <sequence> → <breakpoint> → <filename>

Description: Sets the XSIL file to which the breakpoint information should be saved.

Example:

<simulation >
<sequence >

<breakpoint >
<filename > blah.xsil </filename >

</breakpoint >
</sequence >

</simulation >

11.22.4.2 fourier space (breakpoint)

optional <fourier space> boolean boolean . . . </fourier space>

Contains: array of booleans

Subelement of: <breakpoint>

Path to tag: <simulation> → <sequence> → <breakpoint> → <fourier space>

Description: Tells xmds in which space the breakpoint is to be written in. This is a list
of yes/no options for each vector.

Example:
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<simulation >
<sequence >

<breakpoint >
<fourier_space > yes no </fourier_space >

</breakpoint >
</sequence >

</simulation >

11.22.4.3 vectors (breakpoint)

required <vectors> string vectorName string vectorName . . . </vectors>

Contains: array of strings

Subelement of: <breakpoint>

Path to tag: <simulation> → <sequence> → <breakpoint> → <vectors>

Description: The names of the vectors that will be saved to the XSIL file.

Example:

<simulation >
<sequence >

<breakpoint >
<vectors > main vc1 </vectors >

</breakpoint >
</sequence >

</simulation >

11.23 output

required <output> xmds tags </output>

Contains: <filename>, <group>

Attributes: optional format="ascii|binary", optional precision="double|single"

Subelement of: <simulation>

Path to tag: <simulation> → <output>

Description: Container for elements describing what data should be output and how it
should be output.

Accepts two optional attributes, format and precision. The format attribute defines
the output format of the data. The options available are "ascii" and "binary", with
"ascii" being the default option. The precision attribute defines the output data
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precision. This can be either "double" or "single", with these options referring to
double or single precision floating point numbers respectively. This option is only
meaningful when format is set to "binary" as the precision does not affect the output
when "ascii" is chosen.

Example:

<simulation >
<output format="binary" precision="single">

<!-- xmds tags -->
</output >

</simulation >

11.23.1 filename (output)

optional <filename> string </filename>

Contains: string

Subelement of: <output>

Path to tag: <simulation> → <output> → <filename>

Description: Optional filename for output data.

Example:

<simulation >
<output >

<filename > nlse.xsil </filename >
</output >

</simulation >

11.23.2 group

required <group> xmds tags </group>

Contains: <sampling>, <post propagation>

Subelement of: <output>

Path to tag: <simulation> → <output> → <group>

Description: Container for tags describing the relevant moment group. There must be at
least one group element given.

Example:
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<simulation >
<output >

<group >
<!-- xmds tags -->

</group >
</output >

</simulation >

11.23.2.1 sampling

required <sampling> xmds tags </sampling>

Contains: <vectors>, <fourier space>, <lattice>, <moments>, CDATA

Subelement of: <group>

Path to tag: <simulation> → <output> → <group> → <sampling>

Description: Container for tags describing how to sample the moment group.

Example:

<simulation >
<output >

<group >
<sampling >

<!-- xmds tags -->
</sampling >

</group >
</output >

</simulation >

11.23.2.1.1 type (sampling)

optional <type> string of complex or double </type>

Contains: string interpreted as either complex or double type

Subelement of: <sampling>

Path to tag: <simulation> → <output> → <group> → <sampling> → <type>

Description: The data type of the output data. Defaults to complex if the vector that
the output data depends on is of type complex, and double otherwise. Note that a
type of double cannot be used with a <post propagation> tag as the fourier trans-
forms available to the <post propagation> tag require the output data to be of type
complex.
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Example:

<simulation >
<output >

<group >
<sampling >

<type> complex </type>
</sampling >

</group>
</output >

</simulation >

11.23.2.1.2 fourier space (sampling)

required <fourier space> bool bool . . . </fourier space>

Contains: array of booleans

Subelement of: <sampling>

Path to tag: <simulation>→ <output>→ <group>→ <sampling>→ <fourier space>

Description: A boolean telling xmds whether or not to sample in Fourier space. This
should be a space separated list of booleans, one for each transverse dimension.

Example:

<simulation >
<output >

<group >
<sampling >

<fourier_space > no </fourier_space >
</sampling >

</group>
</output >

</simulation >

11.23.2.1.3 vectors (sampling)

optional <vectors> string variableName string variableName . . . </vectors>

Contains: array of strings

Subelement of: <sampling>

Path to tag: <simulation> → <output> → <group> → <sampling> → <vectors>
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Description: Space separated list of strings giving the names of the vectors to sample.
Defaults to main.

Example:

<simulation >
<output >

<group >
<sampling >

<vectors > main vc1 </vectors >
</sampling >

</group >
</output >

</simulation >

11.23.2.1.4 lattice (sampling)

optional <lattice> int int . . . </lattice>

Contains: array of integers

Subelement of: <sampling>

Path to tag: <simulation> → <output> → <group> → <sampling> → <lattice>

Description: A space separated list of integers, each describing how many points to sample
of each transverse dimension (if greater than 1: see below). One entry must exist for
each transverse dimension.

If an entry is set to 0, then xmds integrates the moments over this dimension. this
will cause the output field to no longer be a function of this transverse dimension.

If an entry is set to 1, then xmds will sample the moments on a cross-sectional slice of
this dimension, also causing the output field to lose this transverse dimension. If this
dimension is in normal space then xmds will extract the slice at the middle lattice
point (point number N/2 + 1 using integer division), otherwise xmds will extract the
slice at the zero momentum point, k = 0.

Example:

<simulation >
<output >

<group >
<sampling >

<lattice > 50 </lattice >
</sampling >

</group >
</output >

</simulation >
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11.23.2.1.5 moments (sampling)

required <moments> string variableName string variableName . . . </moments>

Contains: array of strings

Subelement of: <sampling>

Path to tag: <simulation> → <output> → <group> → <sampling> → <moments>

Description: A list of strings of the names of the moments to sample. These variables will
then be mentioned in the CDATA block following this tag.

Example:

<simulation >
<output >

<group >
<sampling >

<moments > pow_dens </moments >
</sampling >

</group>
</output >

</simulation >

11.23.2.2 post propagation

optional <post propagation> xmds tags </post propagation>

Contains: <fourier space>, <moments>, CDATA

Subelement of: <group>

Path to tag: <simulation> → <output> → <group> → <post propagation>

Description: Container for tags describing any post propagation processing of the data
that should be done prior to output to file.

Example:

<simulation >
<output >

<group >
<post_propagation >

<!-- xmds tags -->
</post_propagation >

</group>
</output >

</simulation >
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11.23.2.2.1 fourier space (post propagation)

required <fourier space> bool bool . . . </fourier space>

Contains: array of booleans

Subelement of: <post propagation>

Path to tag: <simulation>→ <output>→ <group>→ <post propagation>→ <fourier space>

Description: Whether or not the post propagation is performed in Fourier space. This is a
list of yes/no entries for the propagation dimension and as many remaining transverse
dimensions.

Example:

<simulation >
<output >

<group >
<post_propagation >

<fourier_space > no </fourier_space >
</post_propagation >

</group >
</output >

</simulation >

11.23.2.2.2 moments (post propagation)

required <moments> string variableName string variableName . . . </moments>

Contains: array of strings

Subelement of: <post propagation>

Path to tag: <simulation>→ <output>→ <group>→ <post propagation>→ <moments>

Description: The names of the moments (with different names to the moments defined
directly within the group element) to be derived from the post processing.

Example:

<simulation >
<output >

<group >
<post_propagation >

<moments > pow_dens </moments >
</post_propagation >

</group >
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</output >
</simulation >
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A
The XSIL input/output syntax

Following is an example of a multi-dimensional multi-component field written in XSIL format
(for more information see reference [2]). The XSIL format is extensible, and the format below
has been specifically tailored for representing this type of field. The parent element, known as
an <XSIL> data container, contains one <Param> assignment, and two <Array> assignments.

The one and only <Param> assignment, “n independent”, is an integer and defines the
number of independent dimensions of the field.

The first <Array> element, “variables”, defines the total number and names of all
variables—both independent and dependent. The second <Array> element, “data”, defines
the lattice for the data, and then the data itself. Following standard C index convention,
the last dimension index is the one that changes most rapidly in the data. Hence this data
has 3 lattice points in the first independent dimension “t”, 5 lattice points in the second
independent dimension “x”, and there are 4 variables to be read—2 independent and 2
dependent, which of course must be the same as the number of variable names declared in
the variables array.

<?xml version="1.0">

<XSIL Name="moment_group_1">
<Param Name="n_independent">2</Param>
<Array Name="variables" Type="Text">

<Dim>4</Dim>
<Stream ><Metalink Format="Text" Delimiter=" \n"/>

t x real(a1) imag(a1)
</Stream >

</Array>
<Array Name="data" Type="double">

<Dim>3</Dim>
<Dim>5</Dim>
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<Dim>4</Dim>
<Stream ><Metalink Format="Text" Delimiter=" \n"/>

-1.000000e+00 -1.000000e+00 0.000000e+00 0.000000e+00
-1.000000e+00 -0.500000e+00 0.000000e+00 0.000000e+00
-1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
-1.000000e+00 0.500000e+00 0.000000e+00 0.000000e+00
-1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 -1.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 -0.500000e+00 1.000000e+00 -1.000000e+00
0.000000e+00 0.000000e+00 1.000000e+00 -1.000000e+00
0.000000e+00 0.500000e+00 1.000000e+00 -1.000000e+00
0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00
1.000000e+00 -1.000000e+00 0.000000e+00 0.000000e+00
1.000000e+00 -0.500000e+00 0.000000e+00 0.000000e+00
1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+00 0.500000e+00 0.000000e+00 0.000000e+00
1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00

</Stream >
</Array>

</XSIL>



B
The xsil2graphics utility program

~/Applications/xmds/xmds-devel/examples$ xsil2graphics --help

xsil2graphics utility supplied with xmds version 1.6.5

Usage: xsil2graphics [options] infile

Options:

infile: required, the input xsil file

-h/--help: optional, display this information

-m/--matlab: optional, produce matlab output (default)

-s/--scilab: optional, produce scilab output

-a/--mathematica: optional, produce mathematica 5.x ouput

-e/--mathematica: optional, produce mathematica ouput

-g/--gnuplot: optional, produce gnuplot ouput

-r/--R: optional, produce R ouput

-o/--outfile: optional, alternate output file name

-v/--verbose: optional, verbose output

For further help, please see http://www.xmds.org

Most users will find this utility essential: it writes the output as .dat ascii files and writes
a separate file which is executed from within a common plotting program in order to load
in the data. Currently supported packages include matlab (http://www.mathworks.com),
scilab (http://scilabsoft.inria.fr/), Mathematica (http://www.wolfram.com), gnuplot and R.
If no output file name is specified then the last extension is removed from the input file name
and an appropriate ending (.m, .sci, or .nb) is appended. To avoid confusion between data
from different XSIL data containers (as there may have been more than one container within
the input file specified) xsil2graphics appends all variable names with an integer specifying
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which XSIL data container (in sequence) they came from.
There is an example plotting program for Mathematica in the examples directory. To use

the output of xsil2graphics in matlab, one merely needs to call the name of the .xsil file
without the .xsil extension. For example, for the nlse simulation, the output file is nlse.xsil
and the command one uses in matlab is:

>> nlse

In scilab, for the same simulation, the command to use is:

-->exec(’nlse.sci’)



C
loadxsil.m utility script

C.1 Name

loadxsil—load simulation data into matlab

C.2 Synopsis

loadxsil(’<xsil file>’)

C.3 Description

Utility script bundled with xmds, used to load simulation output data (from the xsil data
file) into matlab, where the results can be presented graphically.

To load data from the xsil file data file.xsil, enter at the matlab command prompt:

>> loadxsil(’data file.xsil’)

C.4 Examples

At the matlab command prompt:

>> loadxsil(’nlse.xsil’)

loads the data contained in nlse.xsil into matlab
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C.5 Authors

Written by Paul Cochrane

C.6 Bugs

No known bugs. However, the loadxsil script does not work in Matlab version 4.0 or below;
it can only be used with Matlab version 5.0 and above. Users with Matlab 4.0 can use the
xsil2graphics utility as a means to import data into Matlab.

C.7 See also

xmds(1), xsil2graphics(1), http://www.xmds.org

C.8 Copyright

Copyright (C) 2003-2004
Code contributed by Paul Cochrane
This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

http://www.xmds.org


D
Gnu General Public License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301, USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

231



232 Gnu General Public License

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The ”Program”, below, refers to any such program or work, and a ”work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
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of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software interchange;
or,

c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
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provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through
any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.



235

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and ”any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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