
λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle’s Logics: HOL1

Tobias Nipkow2 and Lawrence C. Paulson3 and Markus Wenzel4

22 May 2012

1The research has been funded by the EPSRC (grants GR/G53279, GR/
H40570, GR/K57381, GR/K77051, GR/M75440), by ESPRIT (projects 3245:
Logical Frameworks, and 6453: Types) and by the DFG Schwerpunktprogramm
Deduktion.

2Institut für Informatik, Technische Universität München, nipkow@in.tum.de
3Computer Laboratory, University of Cambridge, lcp@cl.cam.ac.uk
4Institut für Informatik, Technische Universität München, wenzelm@in.tum.de

Abstract

This manual describes Isabelle’s formalization of Higher-Order Logic, a poly-
morphic version of Church’s Simple Theory of Types. HOL can be best un-
derstood as a simply-typed version of classical set theory. The monograph
Isabelle/HOL — A Proof Assistant for Higher-Order Logic provides a gentle
introduction on using Isabelle/HOL in practice.

Contents

1 Syntax definitions 1

2 Higher-Order Logic 3
2.1 Syntax . 3

2.1.1 Types and overloading 3
2.1.2 Binders . 6
2.1.3 The let and case constructions 7

2.2 Rules of inference . 8
2.3 A formulation of set theory 9

2.3.1 Syntax of set theory 14
2.3.2 Axioms and rules of set theory 15
2.3.3 Properties of functions 18

2.4 Simplification and substitution 20
2.4.1 Case splitting . 20

2.5 Types . 21
2.5.1 Product and sum types 23
2.5.2 The type of natural numbers, nat 24
2.5.3 Numerical types and numerical reasoning 26
2.5.4 The type constructor for lists, list 27

2.6 Datatype definitions . 30
2.6.1 Basics . 31
2.6.2 Defining datatypes . 35

2.7 Old-style recursive function definitions 36
2.8 Example: Cantor’s Theorem 39

i

CONTENTS ii

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1∀xm . t ; this is possible for any
constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one

1

CHAPTER 1. SYNTAX DEFINITIONS 2

variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expression
of type o is therefore a formula. These include atomic formulae such as P ,
where P is a variable of type o, and more generally expressions such as
P(t , u), where P , t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

Higher-Order Logic

2.1 Syntax

Figure 2.1 lists the constants (including infixes and binders), while Fig. 2.2
presents the grammar of higher-order logic. Note that a~=b is translated to
¬(a = b).

! HOL has no if-and-only-if connective; logical equivalence is expressed using
equality. But equality has a high priority, as befitting a relation, while if-and-

only-if typically has the lowest priority. Thus, ¬¬P = P abbreviates ¬¬(P = P)
and not (¬¬P) = P . When using = to mean logical equivalence, enclose both
operands in parentheses.

2.1.1 Types and overloading

The universal type class of higher-order terms is called term. By default,
explicit type variables have class term. In particular the equality symbol
and quantifiers are polymorphic over class term.

The type of formulae, bool , belongs to class term; thus, formulae are
terms. The built-in type fun, which constructs function types, is overloaded
with arity (term, term) term. Thus, σ ⇒ τ belongs to class term if σ and τ
do, allowing quantification over functions.

HOL allows new types to be declared as subsets of existing types, either
using the primitive typedef or the more convenient datatype (see §2.6).

Several syntactic type classes — plus, minus, times and power — permit
overloading of the operators +, -, *. and ^. They are overloaded to denote
the obvious arithmetic operations on types nat, int and real. (With the ^

operator, the exponent always has type nat.) Non-arithmetic overloadings
are also done: the operator - can denote set difference, while ^ can denote
exponentiation of relations (iterated composition). Unary minus is also writ-
ten as - and is overloaded like its 2-place counterpart; it even can stand for
set complement.

The constant 0 is also overloaded. It serves as the zero element of several
types, of which the most important is nat (the natural numbers). The type

3

CHAPTER 2. HIGHER-ORDER LOGIC 4

name meta-type description
Trueprop bool ⇒ prop coercion to prop

Not bool ⇒ bool negation (¬)
True bool tautology (>)
False bool absurdity (⊥)

If [bool , α, α]⇒ α conditional
Let [α, α⇒ β]⇒ β let binder

Constants

symbol name meta-type description
SOME or @ Eps (α⇒ bool)⇒ α Hilbert description (ε)
ALL or ! All (α⇒ bool)⇒ bool universal quantifier (∀)
EX or ? Ex (α⇒ bool)⇒ bool existential quantifier (∃)
EX! or ?! Ex1 (α⇒ bool)⇒ bool unique existence (∃!)

LEAST Least (α :: ord ⇒ bool)⇒ α least element

Binders

symbol meta-type priority description
o [β ⇒ γ, α⇒ β]⇒ (α⇒ γ) Left 55 composition (◦)
= [α, α]⇒ bool Left 50 equality (=)
< [α :: ord , α]⇒ bool Left 50 less than (<)
<= [α :: ord , α]⇒ bool Left 50 less than or equals (≤)
& [bool , bool]⇒ bool Right 35 conjunction (∧)
| [bool , bool]⇒ bool Right 30 disjunction (∨)

--> [bool , bool]⇒ bool Right 25 implication (→)

Infixes

Figure 2.1: Syntax of HOL

CHAPTER 2. HIGHER-ORDER LOGIC 5

term = expression of class term
| SOME id . formula | @ id . formula
| let id = term; . . . ; id = term in term
| if formula then term else term
| LEAST id . formula

formula = expression of type bool
| term = term
| term ~= term
| term < term
| term <= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| ALL id id∗ . formula | ! id id∗ . formula
| EX id id∗ . formula | ? id id∗ . formula
| EX! id id∗ . formula | ?! id id∗ . formula

Figure 2.2: Full grammar for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 6

class plus_ac0 comprises all types for which 0 and + satisfy the laws x +y =
y +x , (x +y)+z = x +(y +z) and 0+x = x . These types include the numeric
ones nat, int and real and also multisets. The summation operator setsum
is available for all types in this class.

Theory Ord defines the syntactic class ord of order signatures. The rela-
tions < and ≤ are polymorphic over this class, as are the functions mono, min
and max, and the LEAST operator. Ord also defines a subclass order of ord
which axiomatizes the types that are partially ordered with respect to ≤. A
further subclass linorder of order axiomatizes linear orderings. For details,
see the file Ord.thy.

If you state a goal containing overloaded functions, you may need to
include type constraints. Type inference may otherwise make the goal more
polymorphic than you intended, with confusing results. For example, the
variables i , j and k in the goal i ≤ j =⇒ i ≤ j +k have type α :: {ord , plus},
although you may have expected them to have some numeric type, e.g. nat .
Instead you should have stated the goal as (i :: nat) ≤ j =⇒ i ≤ j +k , which
causes all three variables to have type nat .

! If resolution fails for no obvious reason, try setting show_types to true, caus-
ing Isabelle to display types of terms. Possibly set show_sorts to true as well,

causing Isabelle to display type classes and sorts.
Where function types are involved, Isabelle’s unification code does not guar-

antee to find instantiations for type variables automatically. Be prepared to use
res_inst_tac instead of resolve_tac, possibly instantiating type variables. Set-
ting Unify.trace_types to true causes Isabelle to report omitted search paths
during unification.

2.1.2 Binders

Hilbert’s description operator εx . P [x] stands for some x satisfying P , if
such exists. Since all terms in HOL denote something, a description is always
meaningful, but we do not know its value unless P defines it uniquely. We
may write descriptions as Eps(λx . P [x]) or use the syntax SOME x. P [x].

Existential quantification is defined by

∃x . P x ≡ P(εx . P x).

The unique existence quantifier, ∃!x . P , is defined in terms of ∃ and ∀. An
Isabelle binder, it admits nested quantifications. For instance, ∃!x y . P x y
abbreviates ∃!x . ∃!y .P x y ; note that this does not mean that there exists a
unique pair (x , y) satisfying P x y .

CHAPTER 2. HIGHER-ORDER LOGIC 7

The basic Isabelle/HOL binders have two notations. Apart from the usual
ALL and EX for ∀ and ∃, Isabelle/HOL also supports the original notation of
Gordon’s hol system: ! and ?. In the latter case, the existential quantifier
must be followed by a space; thus ?x is an unknown, while ? x. f x=y is a
quantification. Both notations are accepted for input. The print mode “HOL”
governs the output notation. If enabled (e.g. by passing option -m HOL to
the isabelle executable), then ! and ? are displayed.

If τ is a type of class ord, P a formula and x a variable of type τ , then
the term LEAST x . P [x] is defined to be the least (w.r.t. ≤) x such that P x
holds (see Fig. 2.4). The definition uses Hilbert’s ε choice operator, so Least

is always meaningful, but may yield nothing useful in case there is not a
unique least element satisfying P .1

All these binders have priority 10.

! The low priority of binders means that they need to be enclosed in parenthesis
when they occur in the context of other operations. For example, instead of

P ∧ ∀x .Q you need to write P ∧ (∀x .Q).

2.1.3 The let and case constructions

Local abbreviations can be introduced by a let construct whose syntax ap-
pears in Fig. 2.2. Internally it is translated into the constant Let. It can be
expanded by rewriting with its definition, Let_def.

HOL also defines the basic syntax

case e of c1 => e1 | . . . | cn => en

as a uniform means of expressing case constructs. Therefore case and of

are reserved words. Initially, this is mere syntax and has no logical meaning.
By declaring translations, you can cause instances of the case construct
to denote applications of particular case operators. This is what happens
automatically for each datatype definition (see §2.6).

! Both if and case constructs have as low a priority as quantifiers, which re-
quires additional enclosing parentheses in the context of most other opera-

tions. For example, instead of f x = if . . . then . . . else . . . you need to write
f x = (if . . . then . . . else . . .).

1Class ord does not require much of its instances, so ≤ need not be a well-ordering,
not even an order at all!

CHAPTER 2. HIGHER-ORDER LOGIC 8

refl t = (t::’a)

subst [| s = t; P s |] ==> P (t::’a)

ext (!!x::’a. (f x :: ’b) = g x) ==> (%x. f x) = (%x. g x)

impI (P ==> Q) ==> P-->Q

mp [| P-->Q; P |] ==> Q

iff (P-->Q) --> (Q-->P) --> (P=Q)

someI P(x::’a) ==> P(@x. P x)

True_or_False (P=True) | (P=False)

Figure 2.3: The HOL rules

2.2 Rules of inference

Figure 2.3 shows the primitive inference rules of HOL, with their ml names.
Some of the rules deserve additional comments:

ext expresses extensionality of functions.

iff asserts that logically equivalent formulae are equal.

someI gives the defining property of the Hilbert ε-operator. It is a form of
the Axiom of Choice. The derived rule some_equality (see below) is
often easier to use.

True_or_False makes the logic classical.2

HOL follows standard practice in higher-order logic: only a few connec-
tives are taken as primitive, with the remainder defined obscurely (Fig. 2.4).
Gordon’s hol system expresses the corresponding definitions [2, page 270]
using object-equality (=), which is possible because equality in higher-order
logic may equate formulae and even functions over formulae. But the-
ory HOL, like all other Isabelle theories, uses meta-equality (==) for defi-
nitions.

! The definitions above should never be expanded and are shown for complete-
ness only. Instead users should reason in terms of the derived rules shown

below or, better still, using high-level tactics.

Some of the rules mention type variables; for example, refl mentions the
type variable ’a. This allows you to instantiate type variables explicitly by
calling res_inst_tac.

2In fact, the ε-operator already makes the logic classical, as shown by Diaconescu; see
Paulson [3] for details.

CHAPTER 2. HIGHER-ORDER LOGIC 9

True_def True == ((%x::bool. x)=(%x. x))

All_def All == (%P. P = (%x. True))

Ex_def Ex == (%P. P(@x. P x))

False_def False == (!P. P)

not_def not == (%P. P-->False)

and_def op & == (%P Q. !R. (P-->Q-->R) --> R)

or_def op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)

Ex1_def Ex1 == (%P. ? x. P x & (! y. P y --> y=x))

o_def op o == (%(f::’b=>’c) g x::’a. f(g x))

if_def If P x y ==

(%P x y. @z::’a.(P=True --> z=x) & (P=False --> z=y))

Let_def Let s f == f s

Least_def Least P == @x. P(x) & (ALL y. P(y) --> x <= y)"

Figure 2.4: The HOL definitions

Some derived rules are shown in Figures 2.5 and 2.6, with their ml names.
These include natural rules for the logical connectives, as well as sequent-style
elimination rules for conjunctions, implications, and universal quantifiers.

Note the equality rules: ssubst performs substitution in backward proofs,
while box_equals supports reasoning by simplifying both sides of an equa-
tion.

The following simple tactics are occasionally useful:

strip_tac i applies allI and impI repeatedly to remove all outermost uni-
versal quantifiers and implications from subgoal i .

case_tac "P" i performs case distinction on P for subgoal i : the latter is
replaced by two identical subgoals with the added assumptions P and
¬P , respectively.

smp_tac j i applies j times spec and then mp in subgoal i , which is typi-
cally useful when forward-chaining from an induction hypothesis. As a
generalization of mp_tac, if there are assumptions ∀~x . P~x → Q~x and
P~a, (~x being a vector of j variables) then it replaces the universally
quantified implication by Q~a. It may instantiate unknowns. It fails if
it can do nothing.

2.3 A formulation of set theory

Historically, higher-order logic gives a foundation for Russell and Whitehead’s
theory of classes. Let us use modern terminology and call them sets, but

CHAPTER 2. HIGHER-ORDER LOGIC 10

sym s=t ==> t=s

trans [| r=s; s=t |] ==> r=t

ssubst [| t=s; P s |] ==> P t

box_equals [| a=b; a=c; b=d |] ==> c=d

arg_cong x = y ==> f x = f y

fun_cong f = g ==> f x = g x

cong [| f = g; x = y |] ==> f x = g y

not_sym t ~= s ==> s ~= t

Equality

TrueI True

FalseE False ==> P

conjI [| P; Q |] ==> P&Q

conjunct1 [| P&Q |] ==> P

conjunct2 [| P&Q |] ==> Q

conjE [| P&Q; [| P; Q |] ==> R |] ==> R

disjI1 P ==> P|Q

disjI2 Q ==> P|Q

disjE [| P | Q; P ==> R; Q ==> R |] ==> R

notI (P ==> False) ==> ~ P

notE [| ~ P; P |] ==> R

impE [| P-->Q; P; Q ==> R |] ==> R

Propositional logic

iffI [| P ==> Q; Q ==> P |] ==> P=Q

iffD1 [| P=Q; P |] ==> Q

iffD2 [| P=Q; Q |] ==> P

iffE [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R

Logical equivalence

Figure 2.5: Derived rules for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 11

allI (!!x. P x) ==> !x. P x

spec !x. P x ==> P x

allE [| !x. P x; P x ==> R |] ==> R

all_dupE [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R

exI P x ==> ? x. P x

exE [| ? x. P x; !!x. P x ==> Q |] ==> Q

ex1I [| P a; !!x. P x ==> x=a |] ==> ?! x. P x

ex1E [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R

|] ==> R

some_equality [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a

Quantifiers and descriptions

ccontr (~P ==> False) ==> P

classical (~P ==> P) ==> P

excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q

exCI (! x. ~ P x ==> P a) ==> ? x. P x

impCE [| P-->Q; ~ P ==> R; Q ==> R |] ==> R

iffCE [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R

notnotD ~~P ==> P

swap ~P ==> (~Q ==> P) ==> Q

Classical logic

if_P P ==> (if P then x else y) = x

if_not_P ~ P ==> (if P then x else y) = y

split_if P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))

Conditionals

Figure 2.6: More derived rules

CHAPTER 2. HIGHER-ORDER LOGIC 12

name meta-type description
{} α set the empty set

insert [α, α set]⇒ α set insertion of element
Collect (α⇒ bool)⇒ α set comprehension

INTER [α set , α⇒ β set]⇒ β set intersection over a set
UNION [α set , α⇒ β set]⇒ β set union over a set
Inter (α set)set ⇒ α set set of sets intersection
Union (α set)set ⇒ α set set of sets union

Pow α set ⇒ (α set)set powerset

range (α⇒ β)⇒ β set range of a function

Ball Bex [α set , α⇒ bool]⇒ bool bounded quantifiers

Constants

symbol name meta-type priority description
INT INTER1 (α⇒ β set)⇒ β set 10 intersection
UN UNION1 (α⇒ β set)⇒ β set 10 union

Binders

symbol meta-type priority description
‘‘ [α⇒ β, α set]⇒ β set Left 90 image

Int [α set , α set]⇒ α set Left 70 intersection (∩)
Un [α set , α set]⇒ α set Left 65 union (∪)
: [α, α set]⇒ bool Left 50 membership (∈)

<= [α set , α set]⇒ bool Left 50 subset (⊆)

Infixes

Figure 2.7: Syntax of the theory Set

CHAPTER 2. HIGHER-ORDER LOGIC 13

external internal description
a ~: b ~(a : b) not in

{a1, . . .} insert a1 . . . {} finite set
{x. P [x]} Collect(λx . P [x]) comprehension

INT x:A. B [x] INTER A λx . B [x] intersection
UN x:A. B [x] UNION A λx . B [x] union

ALL x:A. P [x] or ! x:A. P [x] Ball A λx . P [x] bounded ∀
EX x:A. P [x] or ? x:A. P [x] Bex A λx . P [x] bounded ∃

Translations

term = other terms. . .
| {}

| { term (,term)∗ }

| { id . formula }

| term ‘‘ term
| term Int term
| term Un term
| INT id:term . term
| UN id:term . term
| INT id id∗ . term
| UN id id∗ . term

formula = other formulae. . .
| term : term
| term ~: term
| term <= term
| ALL id:term . formula | ! id:term . formula
| EX id:term . formula | ? id:term . formula

Full Grammar

Figure 2.8: Syntax of the theory Set (continued)

CHAPTER 2. HIGHER-ORDER LOGIC 14

note that these sets are distinct from those of ZF set theory, and behave
more like ZF classes.

• Sets are given by predicates over some type σ. Types serve to define
universes for sets, but type-checking is still significant.

• There is a universal set (for each type). Thus, sets have complements,
and may be defined by absolute comprehension.

• Although sets may contain other sets as elements, the containing set
must have a more complex type.

Finite unions and intersections have the same behaviour in HOL as they do
in ZF. In HOL the intersection of the empty set is well-defined, denoting the
universal set for the given type.

2.3.1 Syntax of set theory

HOL’s set theory is called Set. The type α set is essentially the same as
α ⇒ bool . The new type is defined for clarity and to avoid complications
involving function types in unification. The isomorphisms between the two
types are declared explicitly. They are very natural: Collect maps α⇒ bool
to α set , while op : maps in the other direction (ignoring argument order).

Figure 2.7 lists the constants, infixes, and syntax translations. Figure 2.8
presents the grammar of the new constructs. Infix operators include union
and intersection (A ∪ B and A ∩ B), the subset and membership relations,
and the image operator ‘‘. Note that a~:b is translated to ¬(a ∈ b).

The {a1, . . .} notation abbreviates finite sets constructed in the obvious
manner using insert and {}:

{a, b, c} ≡ insert a (insert b (insert c {}))

The set {x. P [x]} consists of all x (of suitable type) that satisfy P [x],
where P [x] is a formula that may contain free occurrences of x . This syntax
expands to Collect(λx . P [x]). It defines sets by absolute comprehension,
which is impossible in ZF; the type of x implicitly restricts the comprehen-
sion.

The set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A→ P [x]

∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

CHAPTER 2. HIGHER-ORDER LOGIC 15

mem_Collect_eq (a : {x. P x}) = P a

Collect_mem_eq {x. x:A} = A

empty_def {} == {x. False}

insert_def insert a B == {x. x=a} Un B

Ball_def Ball A P == ! x. x:A --> P x

Bex_def Bex A P == ? x. x:A & P x

subset_def A <= B == ! x:A. x:B

Un_def A Un B == {x. x:A | x:B}

Int_def A Int B == {x. x:A & x:B}

set_diff_def A - B == {x. x:A & x~:B}

Compl_def -A == {x. ~ x:A}

INTER_def INTER A B == {y. ! x:A. y: B x}

UNION_def UNION A B == {y. ? x:A. y: B x}

INTER1_def INTER1 B == INTER {x. True} B

UNION1_def UNION1 B == UNION {x. True} B

Inter_def Inter S == (INT x:S. x)

Union_def Union S == (UN x:S. x)

Pow_def Pow A == {B. B <= A}

image_def f‘‘A == {y. ? x:A. y=f x}

range_def range f == {y. ? x. y=f x}

Figure 2.9: Rules of the theory Set

The constants Ball and Bex are defined accordingly. Instead of Ball A
P and Bex A P we may write ALL x:A. P [x] and EX x:A. P [x]. The
original notation of Gordon’s hol system is supported as well: ! and ?.

Unions and intersections over sets, namely
⋃

x∈A B [x] and
⋂

x∈A B [x], are
written UN x:A. B [x] and INT x:A. B [x].

Unions and intersections over types, namely
⋃

x B [x] and
⋂

x B [x], are
written UN x. B [x] and INT x. B [x]. They are equivalent to the previous
union and intersection operators when A is the universal set.

The operators
⋃

A and
⋂

A act upon sets of sets. They are not binders,
but are equal to

⋃
x∈A x and

⋂
x∈A x , respectively.

2.3.2 Axioms and rules of set theory

Figure 2.9 presents the rules of theory Set. The axioms mem_Collect_eq

and Collect_mem_eq assert that the functions Collect and op : are iso-
morphisms. Of course, op : also serves as the membership relation.

All the other axioms are definitions. They include the empty set, bounded
quantifiers, unions, intersections, complements and the subset relation. They
also include straightforward constructions on functions: image (‘‘) and

CHAPTER 2. HIGHER-ORDER LOGIC 16

CollectI [| P a |] ==> a : {x. P x}

CollectD [| a : {x. P x} |] ==> P a

CollectE [| a : {x. P x}; P a ==> W |] ==> W

ballI [| !!x. x:A ==> P x |] ==> ! x:A. P x

bspec [| ! x:A. P x; x:A |] ==> P x

ballE [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q

bexI [| P x; x:A |] ==> ? x:A. P x

bexCI [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x

bexE [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q

Comprehension and Bounded quantifiers

subsetI (!!x. x:A ==> x:B) ==> A <= B

subsetD [| A <= B; c:A |] ==> c:B

subsetCE [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P

subset_refl A <= A

subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B

equalityD1 A = B ==> A<=B

equalityD2 A = B ==> B<=A

equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

equalityCE [| A = B; [| c:A; c:B |] ==> P;

[| ~ c:A; ~ c:B |] ==> P

|] ==> P

The subset and equality relations

Figure 2.10: Derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 17

emptyE a : {} ==> P

insertI1 a : insert a B

insertI2 a : B ==> a : insert b B

insertE [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P

ComplI [| c:A ==> False |] ==> c : -A

ComplD [| c : -A |] ==> ~ c:A

UnI1 c:A ==> c : A Un B

UnI2 c:B ==> c : A Un B

UnCI (~c:B ==> c:A) ==> c : A Un B

UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c:A; c:B |] ==> c : A Int B

IntD1 c : A Int B ==> c:A

IntD2 c : A Int B ==> c:B

IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

UN_I [| a:A; b: B a |] ==> b: (UN x:A. B x)

UN_E [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R

INT_I (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)

INT_D [| b: (INT x:A. B x); a:A |] ==> b: B a

INT_E [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R

UnionI [| X:C; A:X |] ==> A : Union C

UnionE [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R

InterI [| !!X. X:C ==> A:X |] ==> A : Inter C

InterD [| A : Inter C; X:C |] ==> A:X

InterE [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R

PowI A<=B ==> A: Pow B

PowD A: Pow B ==> A<=B

imageI [| x:A |] ==> f x : f‘‘A

imageE [| b : f‘‘A; !!x.[| b=f x; x:A |] ==> P |] ==> P

rangeI f x : range f

rangeE [| b : range f; !!x.[| b=f x |] ==> P |] ==> P

Figure 2.11: Further derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 18

Union_upper B:A ==> B <= Union A

Union_least [| !!X. X:A ==> X<=C |] ==> Union A <= C

Inter_lower B:A ==> Inter A <= B

Inter_greatest [| !!X. X:A ==> C<=X |] ==> C <= Inter A

Un_upper1 A <= A Un B

Un_upper2 B <= A Un B

Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A

Int_lower2 A Int B <= B

Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Figure 2.12: Derived rules involving subsets

range.
Figures 2.10 and 2.11 present derived rules. Most are obvious and resem-

ble rules of Isabelle’s ZF set theory. Certain rules, such as subsetCE, bexCI
and UnCI, are designed for classical reasoning; the rules subsetD, bexI, Un1
and Un2 are not strictly necessary but yield more natural proofs. Similarly,
equalityCE supports classical reasoning about extensionality, after the fash-
ion of iffCE. See the file HOL/Set.ML for proofs pertaining to set theory.

Figure 2.12 presents lattice properties of the subset relation. Unions form
least upper bounds; non-empty intersections form greatest lower bounds.
Reasoning directly about subsets often yields clearer proofs than reasoning
about the membership relation. See the file HOL/subset.ML.

Figure 2.13 presents many common set equalities. They include commu-
tative, associative and distributive laws involving unions, intersections and
complements. For a complete listing see the file HOL/equalities.ML.

! Blast_tac proves many set-theoretic theorems automatically. Hence you sel-
dom need to refer to the theorems above.

2.3.3 Properties of functions

Figure 2.14 presents a theory of simple properties of functions. Note that
inv f uses Hilbert’s ε to yield an inverse of f . See the file HOL/Fun.ML for a
complete listing of the derived rules. Reasoning about function composition
(the operator o) and the predicate surj is done simply by expanding the
definitions.

CHAPTER 2. HIGHER-ORDER LOGIC 19

Int_absorb A Int A = A

Int_commute A Int B = B Int A

Int_assoc (A Int B) Int C = A Int (B Int C)

Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A

Un_commute A Un B = B Un A

Un_assoc (A Un B) Un C = A Un (B Un C)

Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Compl_disjoint A Int (-A) = {x. False}

Compl_partition A Un (-A) = {x. True}

double_complement -(-A) = A

Compl_Un -(A Un B) = (-A) Int (-B)

Compl_Int -(A Int B) = (-A) Un (-B)

Union_Un_distrib Union(A Un B) = (Union A) Un (Union B)

Int_Union A Int (Union B) = (UN C:B. A Int C)

Inter_Un_distrib Inter(A Un B) = (Inter A) Int (Inter B)

Un_Inter A Un (Inter B) = (INT C:B. A Un C)

Figure 2.13: Set equalities

name meta-type description
inj surj (α⇒ β)⇒ bool injective/surjective

inj_on [α⇒ β, α set]⇒ bool injective over subset
inv (α⇒ β)⇒ (β ⇒ α) inverse function

inj_def inj f == ! x y. f x=f y --> x=y

surj_def surj f == ! y. ? x. y=f x

inj_on_def inj_on f A == !x:A. !y:A. f x=f y --> x=y

inv_def inv f == (%y. @x. f(x)=y)

Figure 2.14: Theory Fun

CHAPTER 2. HIGHER-ORDER LOGIC 20

There is also a large collection of monotonicity theorems for constructions
on sets in the file HOL/mono.ML.

2.4 Simplification and substitution

Simplification tactics tactics such as Asm_simp_tac and Full_simp_tac use
the default simpset (simpset()), which works for most purposes. A quite
minimal simplification set for higher-order logic is HOL_ss; even more frugal
is HOL_basic_ss. Equality (=), which also expresses logical equivalence, may
be used for rewriting. See the file HOL/simpdata.ML for a complete listing of
the basic simplification rules.

See the Reference Manual for details of substitution and simplification.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left
part of a conjunction helps in simplifying the right part. This effect is not

available by default: it can be slow. It can be obtained by including conj_cong

in a simpset, addcongs [conj_cong].

! By default only the condition of an if is simplified but not the then and else

parts. Of course the latter are simplified once the condition simplifies to True

or False. To ensure full simplification of all parts of a conditional you must remove
if_weak_cong from the simpset, delcongs [if_weak_cong].

If the simplifier cannot use a certain rewrite rule — either because of
nontermination or because its left-hand side is too flexible — then you might
try stac:

stac thm i , where thm is of the form lhs = rhs , replaces in subgoal i in-
stances of lhs by corresponding instances of rhs . In case of multiple
instances of lhs in subgoal i , backtracking may be necessary to select
the desired ones.

If thm is a conditional equality, the instantiated condition becomes an
additional (first) subgoal.

HOL provides the tactic hyp_subst_tac, which substitutes for an equal-
ity throughout a subgoal and its hypotheses. This tactic uses HOL’s general
substitution rule.

2.4.1 Case splitting

HOL also provides convenient means for case splitting during rewriting.
Goals containing a subterm of the form if b then...else... often require

CHAPTER 2. HIGHER-ORDER LOGIC 21

a case distinction on b. This is expressed by the theorem split_if:

?P(if ?b then ?x else ?y) = ((?b → ?P(?x)) ∧ (¬?b → ?P(?y))) (∗)

For example, a simple instance of (∗) is

x ∈ (if x ∈ A then A else {x}) = ((x ∈ A→ x ∈ A)∧(x /∈ A→ x ∈ {x}))

Because (∗) is too general as a rewrite rule for the simplifier (the left-hand
side is not a higher-order pattern in the sense of the Reference Manual),
there is a special infix function addsplits of type simpset * thm list ->

simpset (analogous to addsimps) that adds rules such as (∗) to a simpset,
as in

by(simp_tac (simpset() addsplits [split_if]) 1);

The effect is that after each round of simplification, one occurrence of if is
split acording to split_if, until all occurences of if have been eliminated.

It turns out that using split_if is almost always the right thing to do.
Hence split_if is already included in the default simpset. If you want to
delete it from a simpset, use delsplits, which is the inverse of addsplits:

by(simp_tac (simpset() delsplits [split_if]) 1);

In general, addsplits accepts rules of the form

?P(c ?x1 . . . ?xn) = rhs

where c is a constant and rhs is arbitrary. Note that (∗) is of the right form
because internally the left-hand side is ?P(If ?b ?x ?y). Important further
examples are splitting rules for case expressions (see §2.5.4 and §2.6.1).

Analogous to Addsimps and Delsimps, there are also imperative versions
of addsplits and delsplits

Addsplits: thm list -> unit

Delsplits: thm list -> unit

for adding splitting rules to, and deleting them from the current simpset.

2.5 Types

This section describes HOL’s basic predefined types (α × β, α + β, nat and
α list) and ways for introducing new types in general. The most important
type construction, the datatype, is treated separately in §2.6.

CHAPTER 2. HIGHER-ORDER LOGIC 22

symbol meta-type description
Pair [α, β]⇒ α× β ordered pairs (a, b)
fst α× β ⇒ α first projection
snd α× β ⇒ β second projection

split [[α, β]⇒ γ, α× β]⇒ γ generalized projection
Sigma [α set , α⇒ β set]⇒ (α× β)set general sum of sets

Sigma_def Sigma A B == UN x:A. UN y:B x. {(x,y)}

Pair_eq ((a,b) = (a’,b’)) = (a=a’ & b=b’)

Pair_inject [| (a, b) = (a’,b’); [| a=a’; b=b’ |] ==> R |] ==> R

PairE [| !!x y. p = (x,y) ==> Q |] ==> Q

fst_conv fst (a,b) = a

snd_conv snd (a,b) = b

surjective_pairing p = (fst p,snd p)

split split c (a,b) = c a b

split_split R(split c p) = (! x y. p = (x,y) --> R(c x y))

SigmaI [| a:A; b:B a |] ==> (a,b) : Sigma A B

SigmaE [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P

|] ==> P

Figure 2.15: Type α× β

CHAPTER 2. HIGHER-ORDER LOGIC 23

2.5.1 Product and sum types

Theory Prod (Fig. 2.15) defines the product type α×β, with the ordered pair
syntax (a, b). General tuples are simulated by pairs nested to the right:

external internal
τ1 × . . .× τn τ1 × (. . . (τn−1 × τn) . . .)
(t1, . . . , tn) (t1, (. . . , (tn−1, tn) . . .)

In addition, it is possible to use tuples as patterns in abstractions:

%(x,y). t stands for split(%x y. t)

Nested patterns are also supported. They are translated stepwise:

%(x,y,z). t ; %(x,(y,z)). t

; split(%x.%(y,z). t)

; split(%x. split(%y z. t))

The reverse translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which can affects proofs. For example the term (%(x,y).(y,x))(a,b) requires
the theorem split (which is in the default simpset) to rewrite to (b,a).

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some
important examples are

Let: let pattern = t in u

Quantifiers: ALL pattern:A. P

Choice: SOME pattern. P

Set operations: UN pattern:A. B

Sets: {pattern. P}

There is a simple tactic which supports reasoning about patterns:

split_all_tac i replaces in subgoal i all !!-quantified variables of product
type by individual variables for each component. A simple example:

1. !!p. (%(x,y,z). (x, y, z)) p = p

by(split_all_tac 1);

1. !!x xa ya. (%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)

CHAPTER 2. HIGHER-ORDER LOGIC 24

symbol meta-type description
Inl α⇒ α+ β first injection
Inr β ⇒ α+ β second injection

sum_case [α⇒ γ, β ⇒ γ, α+ β]⇒ γ conditional

Inl_not_Inr Inl a ~= Inr b

inj_Inl inj Inl

inj_Inr inj Inr

sumE [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s

sum_case_Inl sum_case f g (Inl x) = f x

sum_case_Inr sum_case f g (Inr x) = g x

surjective_sum sum_case (%x. f(Inl x)) (%y. f(Inr y)) s = f s

sum.split_case R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &

(! y. s = Inr(y) --> R(g(y))))

Figure 2.16: Type α + β

Theory Prod also introduces the degenerate product type unit which
contains only a single element named () with the property

unit_eq u = ()

Theory Sum (Fig. 2.16) defines the sum type α+β which associates to the
right and has a lower priority than ∗: τ1+τ2+τ3∗τ4 means τ1+(τ2+(τ3∗τ4)).

The definition of products and sums in terms of existing types is not
shown. The constructions are fairly standard and can be found in the re-
spective theory files. Although the sum and product types are constructed
manually for foundational reasons, they are represented as actual datatypes
later.

2.5.2 The type of natural numbers, nat

The theory Nat defines the natural numbers in a roundabout but traditional
way. The axiom of infinity postulates a type ind of individuals, which is
non-empty and closed under an injective operation. The natural numbers are
inductively generated by choosing an arbitrary individual for 0 and using the
injective operation to take successors. This is a least fixedpoint construction.

Type nat is an instance of class ord, which makes the overloaded functions
of this class (especially < and <=, but also min, max and LEAST) available on

CHAPTER 2. HIGHER-ORDER LOGIC 25

symbol meta-type priority description
0 α zero

Suc nat ⇒ nat successor function
* [α, α]⇒ α Left 70 multiplication

div [α, α]⇒ α Left 70 division
mod [α, α]⇒ α Left 70 modulus
dvd [α, α]⇒ bool Left 70 “divides” relation
+ [α, α]⇒ α Left 65 addition
- [α, α]⇒ α Left 65 subtraction

Constants and infixes

nat_induct [| P 0; !!n. P n ==> P(Suc n) |] ==> P n

Suc_not_Zero Suc m ~= 0

inj_Suc inj Suc

n_not_Suc_n n~=Suc n

Basic properties

Figure 2.17: The type of natural numbers, nat

0+n = n

(Suc m)+n = Suc(m+n)

m-0 = m

0-n = n

Suc(m)-Suc(n) = m-n

0*n = 0

Suc(m)*n = n + m*n

mod_less m<n ==> m mod n = m

mod_geq [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n

div_less m<n ==> m div n = 0

div_geq [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)

Figure 2.18: Recursion equations for the arithmetic operators

CHAPTER 2. HIGHER-ORDER LOGIC 26

nat . Theory Nat also shows that <= is a linear order, so nat is also an instance
of class linorder.

Theory NatArith develops arithmetic on the natural numbers. It defines
addition, multiplication and subtraction. Theory Divides defines division,
remainder and the “divides” relation. The numerous theorems proved include
commutative, associative, distributive, identity and cancellation laws. See
Figs. 2.17 and 2.18. The recursion equations for the operators +, - and * on
nat are part of the default simpset.

Functions on nat can be defined by primitive or well-founded recursion;
see §2.7. A simple example is addition. Here, op + is the name of the infix
operator +, following the standard convention.

primrec

"0 + n = n"

"Suc m + n = Suc (m + n)"

There is also a case-construct of the form

case e of 0 => a | Suc m => b

Note that Isabelle insists on precisely this format; you may not even change
the order of the two cases. Both primrec and case are realized by a recursion
operator nat_rec, which is available because nat is represented as a datatype.

Tactic induct_tac "n" i performs induction on variable n in subgoal i
using theorem nat_induct. There is also the derived theorem less_induct:

[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n

2.5.3 Numerical types and numerical reasoning

The integers (type int) are also available in HOL, and the reals (type real)
are available in the logic image HOL-Complex. They support the expected
operations of addition (+), subtraction (-) and multiplication (*), and much
else. Type int provides the div and mod operators, while type real provides
real division and other operations. Both types belong to class linorder, so
they inherit the relational operators and all the usual properties of linear
orderings. For full details, please survey the theories in subdirectories Integ,
Real, and Complex.

All three numeric types admit numerals of the form sd . . . d , where s is an
optional minus sign and d . . . d is a string of digits. Numerals are represented
internally by a datatype for binary notation, which allows numerical calcu-
lations to be performed by rewriting. For example, the integer division of
54342339 by 3452 takes about five seconds. By default, the simplifier cancels
like terms on the opposite sites of relational operators (reducing z+x<x+y to

CHAPTER 2. HIGHER-ORDER LOGIC 27

z<y, for instance. The simplifier also collects like terms, replacing x+y+x*3

by 4*x+y.
Sometimes numerals are not wanted, because for example n+3 does not

match a pattern of the form Suc k . You can re-arrange the form of an arith-
metic expression by proving (via subgoal_tac) a lemma such as n+3 = Suc

(Suc (Suc n)). As an alternative, you can disable the fancier simplifica-
tions by using a basic simpset such as HOL_ss rather than the default one,
simpset().

Reasoning about arithmetic inequalities can be tedious. Fortunately,
HOL provides a decision procedure for linear arithmetic: formulae involv-
ing addition and subtraction. The simplifier invokes a weak version of this
decision procedure automatically. If this is not sufficent, you can invoke the
full procedure Lin_Arith.tac explicitly. It copes with arbitrary formulae
involving =, <, <=, +, -, Suc, min, max and numerical constants. Other sub-
terms are treated as atomic, while subformulae not involving numerical types
are ignored. Quantified subformulae are ignored unless they are positive uni-
versal or negative existential. The running time is exponential in the number
of occurrences of min, max, and - because they require case distinctions. If
k is a numeral, then div k, mod k and k dvd are also supported. The for-
mer two are eliminated by case distinctions, again blowing up the running
time. If the formula involves explicit quantifiers, Lin_Arith.tac may take
super-exponential time and space.

If Lin_Arith.tac fails, try to find relevant arithmetic results in the li-
brary. The theories Nat and NatArith contain theorems about <, <=, +, -
and *. Theory Divides contains theorems about div and mod. Use Proof
General’s find button (or other search facilities) to locate them.

2.5.4 The type constructor for lists, list

Figure 2.19 presents the theory List: the basic list operations with their
types and syntax. Type α list is defined as a datatype with the constructors
[] and #. As a result the generic structural induction and case analysis
tactics induct tac and cases tac also become available for lists. A case

construct of the form

case e of [] => a | x#xs => b

is defined by translation. For details see §2.6. There is also a case splitting
rule split_list_case

P(case e of [] => a | x#xs => f x xs) =
((e = []→ P(a)) ∧ (∀x xs . e = x#xs → P(f x xs)))

CHAPTER 2. HIGHER-ORDER LOGIC 28

symbol meta-type priority description
[] α list empty list
[α, α list]⇒ α list Right 65 list constructor

null α list ⇒ bool emptiness test
hd α list ⇒ α head
tl α list ⇒ α list tail

last α list ⇒ α last element
butlast α list ⇒ α list drop last element

@ [α list , α list]⇒ α list Left 65 append
map (α⇒ β)⇒ (α list ⇒ β list) apply to all

filter (α⇒ bool)⇒ (α list ⇒ α list) filter functional
set α list ⇒ α set elements
mem α⇒ α list ⇒ bool Left 55 membership

foldl (β ⇒ α⇒ β)⇒ β ⇒ α list ⇒ β iteration
concat (α list)list ⇒ α list concatenation

rev α list ⇒ α list reverse
length α list ⇒ nat length

! α list ⇒ nat ⇒ α Left 100 indexing
take, drop nat ⇒ α list ⇒ α list take/drop a prefix
takeWhile,
dropWhile (α⇒ bool)⇒ α list ⇒ α list take/drop a prefix

Constants and infixes

external internal description
[x1, . . ., xn] x1 # · · · # xn # [] finite list

[x:l. P] filter (λx .P) l list comprehension

Translations

Figure 2.19: The theory List

CHAPTER 2. HIGHER-ORDER LOGIC 29

null [] = True

null (x#xs) = False

hd (x#xs) = x

tl (x#xs) = xs

tl [] = []

[] @ ys = ys

(x#xs) @ ys = x # xs @ ys

set [] = {}

set (x#xs) = insert x (set xs)

x mem [] = False

x mem (y#ys) = (if y=x then True else x mem ys)

concat([]) = []

concat(x#xs) = x @ concat(xs)

rev([]) = []

rev(x#xs) = rev(xs) @ [x]

length([]) = 0

length(x#xs) = Suc(length(xs))

xs!0 = hd xs

xs!(Suc n) = (tl xs)!n

Figure 2.20: Simple list processing functions

CHAPTER 2. HIGHER-ORDER LOGIC 30

map f [] = []

map f (x#xs) = f x # map f xs

filter P [] = []

filter P (x#xs) = (if P x then x#filter P xs else filter P xs)

foldl f a [] = a

foldl f a (x#xs) = foldl f (f a x) xs

take n [] = []

take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)

drop n [] = []

drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)

takeWhile P [] = []

takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])

dropWhile P [] = []

dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)

Figure 2.21: Further list processing functions

which can be fed to addsplits just like split_if (see §2.4.1).
List provides a basic library of list processing functions defined by prim-

itive recursion. The recursion equations are shown in Figs. 2.20 and 2.21.

2.6 Datatype definitions

Inductive datatypes, similar to those of ml, frequently appear in applica-
tions of Isabelle/HOL. In principle, such types could be defined by hand
via typedef, but this would be far too tedious. The datatype definition
package of Isabelle/HOL (cf. [1]) automates such chores. It generates an
appropriate typedef based on a least fixed-point construction, and proves
freeness theorems and induction rules, as well as theorems for recursion and
case combinators. The user just has to give a simple specification of new
inductive types using a notation similar to ml or Haskell.

The current datatype package can handle both mutual and indirect re-
cursion. It also offers to represent existing types as datatypes giving the
advantage of a more uniform view on standard theories.

CHAPTER 2. HIGHER-ORDER LOGIC 31

2.6.1 Basics

A general datatype definition is of the following form:

datatype (~α)t1 = C 1
1 τ

1
1,1 . . . τ 11,m1

1
| . . . | C 1

k1
τ 1k1,1 . . . τ 1k1,m1

k1
...

and (~α)tn = C n
1 τn1,1 . . . τn1,mn

1
| . . . | C n

kn τ
n
kn ,1 . . . τnkn ,mn

kn

where ~α = (α1, . . . , αh) is a list of type variables, C j
i are distinct constructor

names and τ ji ,i ′ are admissible types containing at most the type variables
α1, . . . , αh . A type τ occurring in a datatype definition is admissible if and
only if

• τ is non-recursive, i.e. τ does not contain any of the newly defined type
constructors t1, . . . , tn , or

• τ = (~α)tj ′ where 1 ≤ j ′ ≤ n, or

• τ = (τ ′1, . . . , τ
′
h ′)t ′, where t ′ is the type constructor of an already existing

datatype and τ ′1, . . . , τ
′
h ′ are admissible types.

• τ = σ → τ ′, where τ ′ is an admissible type and σ is non-recursive (i.e.
the occurrences of the newly defined types are strictly positive)

If some (~α)tj ′ occurs in a type τ ji ,i ′ of the form

(. . . , . . . (~α)tj ′ . . . , . . .)t ′

this is called a nested (or indirect) occurrence. A very simple example of a
datatype is the type list, which can be defined by

datatype ’a list = Nil

| Cons ’a (’a list)

Arithmetic expressions aexp and boolean expressions bexp can be modelled
by the mutually recursive datatype definition

datatype ’a aexp = If_then_else (’a bexp) (’a aexp) (’a aexp)

| Sum (’a aexp) (’a aexp)

| Diff (’a aexp) (’a aexp)

| Var ’a

| Num nat

and ’a bexp = Less (’a aexp) (’a aexp)

| And (’a bexp) (’a bexp)

| Or (’a bexp) (’a bexp)

The datatype term, which is defined by

CHAPTER 2. HIGHER-ORDER LOGIC 32

datatype (’a, ’b) term = Var ’a

| App ’b (((’a, ’b) term) list)

is an example for a datatype with nested recursion. Using nested recursion
involving function spaces, we may also define infinitely branching datatypes,
e.g.

datatype ’a tree = Atom ’a | Branch "nat => ’a tree"

Types in HOL must be non-empty. Each of the new datatypes (~α)tj
with 1 ≤ j ≤ n is non-empty if and only if it has a constructor C j

i with the
following property: for all argument types τ ji ,i ′ of the form (~α)tj ′ the datatype
(~α)tj ′ is non-empty.

If there are no nested occurrences of the newly defined datatypes, ob-
viously at least one of the newly defined datatypes (~α)tj must have a con-
structor C j

i without recursive arguments, a base case, to ensure that the new
types are non-empty. If there are nested occurrences, a datatype can even
be non-empty without having a base case itself. Since list is a non-empty
datatype, datatype t = C (t list) is non-empty as well.

Freeness of the constructors

The datatype constructors are automatically defined as functions of their
respective type:

C j
i :: [τ ji ,1, . . . , τ

j

i ,mj
i

]⇒ (α1, . . . , αh)tj

These functions have certain freeness properties. They construct distinct
values:

C j
i x1 . . . xmj

i
6= C j

i ′ y1 . . . ymj

i′
for all i 6= i ′.

The constructor functions are injective:

(C j
i x1 . . . xmj

i
= C j

i y1 . . . ymj
i
) = (x1 = y1 ∧ . . . ∧ xmj

i
= ymj

i
)

Since the number of distinctness inequalities is quadratic in the number of
constructors, the datatype package avoids proving them separately if there
are too many constructors. Instead, specific inequalities are proved by a
suitable simplification procedure on demand.3

3This procedure, which is already part of the default simpset, may be referred to by
the ML identifier DatatypePackage.distinct_simproc.

CHAPTER 2. HIGHER-ORDER LOGIC 33

Structural induction

The datatype package also provides structural induction rules. For datatypes
without nested recursion, this is of the following form:∧

x1 . . . xm1
1
. [[Ps11,1

xr11,1 ; . . . ; Ps1
1,l1

1

xr1
1,l1

1

]] =⇒ P1

(
C 1

1 x1 . . . xm1
1

)
...∧

x1 . . . xm1
k1
. [[Ps1

k1,1
xr1

k1,1
; . . . ; Ps1

k1,l
1
k1

xr1
k1,l

1
k1

]] =⇒ P1

(
C 1

k1
x1 . . . xm1

k1

)
...∧

x1 . . . xmn
1
. [[Psn1,1

xrn1,1 ; . . . ; Psn
1,ln

1

xrn
1,ln

1

]] =⇒ Pn

(
C n

1 x1 . . . xmn
1

)
...∧

x1 . . . xmn
kn
. [[Psn

kn ,1
xrn

kn ,1
; . . .Psn

kn ,ln
kn

xrn
kn ,ln

kn

]] =⇒ Pn

(
C n

kn x1 . . . xmn
kn

)
P1 x1 ∧ . . . ∧ Pn xn

where

Recj
i :=

{(
r j
i ,1, s

j
i ,1

)
, . . . ,

(
r j

i ,l ji
, s j

i ,l ji

)}
={

(i ′, i ′′)
∣∣∣ 1 ≤ i ′ ≤ m j

i ∧ 1 ≤ i ′′ ≤ n ∧ τ ji ,i ′ = (α1, . . . , αh)ti ′′
}

i.e. the properties Pj can be assumed for all recursive arguments.
For datatypes with nested recursion, such as the term example from

above, things are a bit more complicated. Conceptually, Isabelle/HOL un-
folds a definition like

datatype (’a,’b) term = Var ’a

| App ’b (((’a, ’b) term) list)

to an equivalent definition without nesting:

datatype (’a,’b) term = Var

| App ’b ((’a, ’b) term_list)

and (’a,’b) term_list = Nil’

| Cons’ ((’a,’b) term) ((’a,’b) term_list)

Note however, that the type (’a,’b) term_list and the constructors Nil’
and Cons’ are not really introduced. One can directly work with the original
(isomorphic) type ((’a, ’b) term) list and its existing constructors Nil
and Cons. Thus, the structural induction rule for term gets the form∧

x . P1 (Var x)∧
x1 x2 . P2 x2 =⇒ P1 (App x1 x2)

P2 Nil∧
x1 x2 . [[P1 x1; P2 x2]] =⇒ P2 (Cons x1 x2)

P1 x1 ∧ P2 x2

CHAPTER 2. HIGHER-ORDER LOGIC 34

Note that there are two predicates P1 and P2, one for the type (’a,’b) term

and one for the type ((’a, ’b) term) list.
For a datatype with function types such as ’a tree, the induction rule

is of the form∧
a . P (Atom a)

∧
ts . (∀x . P (ts x)) =⇒ P (Branch ts)

P t

In principle, inductive types are already fully determined by freeness and
structural induction. For convenience in applications, the following derived
constructions are automatically provided for any datatype.

The case construct

The type comes with an ml-like case-construct:

case e of C j
1 x1,1 . . . x1,mj

1
⇒ e1

...

| C j
kj

xkj ,1 . . . xkj ,mj
kj

⇒ ekj

where the xi ,j are either identifiers or nested tuple patterns as in §2.5.1.

! All constructors must be present, their order is fixed, and nested patterns are
not supported (with the exception of tuples). Violating this restriction results

in strange error messages.

To perform case distinction on a goal containing a case-construct, the
theorem tj .split is provided:

P(tj case f1 . . . fkj e) = ((∀x1 . . . xmj
1
. e = C j

1 x1 . . . xmj
1
→ P(f1 x1 . . . xmj

1
))

∧ . . . ∧
(∀x1 . . . xmj

kj

. e = C j
kj

x1 . . . xmj
kj

→ P(fkj x1 . . . xmj
kj

)))

where tj_case is the internal name of the case-construct. This theorem can
be added to a simpset via addsplits (see §2.4.1).

Case splitting on assumption works as well, by using the rule tj .split_asm
in the same manner. Both rules are available under tj .splits (this name is
not bound in ML, though).

! By default only the selector expression (e above) in a case-construct is simpli-
fied, in analogy with if (see page 20). Only if that reduces to a constructor is

one of the arms of the case-construct exposed and simplified. To ensure full simpli-
fication of all parts of a case-construct for datatype t , remove t.case_weak_cong
from the simpset, for example by delcongs [thm "t.weak_case_cong"].

CHAPTER 2. HIGHER-ORDER LOGIC 35

The function size

Theory NatArith declares a generic function size of type α ⇒ nat . Each
datatype defines a particular instance of size by overloading according to
the following scheme:

size(C j
i x1 . . . xmj

i
) =


0 if Recj

i = ∅

1 +
l ji∑

h=1
size xr j

i,h
if Recj

i =
{(

r j
i ,1, s

j
i ,1

)
, . . . ,

(
r j

i ,l ji
, s j

i ,l ji

)}
where Recj

i is defined above. Viewing datatypes as generalised trees, the size
of a leaf is 0 and the size of a node is the sum of the sizes of its subtrees + 1.

2.6.2 Defining datatypes

The theory syntax for datatype definitions is given in the Isabelle/Isar refer-
ence manual. In order to be well-formed, a datatype definition has to obey
the rules stated in the previous section. As a result the theory is extended
with the new types, the constructors, and the theorems listed in the previous
section.

Most of the theorems about datatypes become part of the default simpset
and you never need to see them again because the simplifier applies them
automatically. Only induction or case distinction are usually invoked by
hand.

induct_tac "x" i applies structural induction on variable x to subgoal i ,
provided the type of x is a datatype.

induct_tac "x1 . . . xn" i applies simultaneous structural induction on the
variables x1, . . . , xn to subgoal i . This is the canonical way to prove
properties of mutually recursive datatypes such as aexp and bexp, or
datatypes with nested recursion such as term.

In some cases, induction is overkill and a case distinction over all constructors
of the datatype suffices.

case_tac "u" i performs a case analysis for the term u whose type must be
a datatype. If the datatype has kj constructors C j

1 , . . . C j
kj

, subgoal i is
replaced by kj new subgoals which contain the additional assumption
u = C j

i ′ x1 . . . xmj

i′
for i ′ = 1, . . ., kj .

Note that induction is only allowed on free variables that should not occur
among the premises of the subgoal. Case distinction applies to arbitrary
terms.

CHAPTER 2. HIGHER-ORDER LOGIC 36

For the technically minded, we exhibit some more details. Processing
the theory file produces an ml structure which, in addition to the usual
components, contains a structure named t for each datatype t defined in the
file. Each structure t contains the following elements:

val distinct : thm list

val inject : thm list

val induct : thm

val exhaust : thm

val cases : thm list

val split : thm

val split_asm : thm

val recs : thm list

val size : thm list

val simps : thm list

distinct, inject, induct, size and split contain the theorems described
above. For user convenience, distinct contains inequalities in both direc-
tions. The reduction rules of the case-construct are in cases. All theorems
from distinct, inject and cases are combined in simps. In case of mut-
ually recursive datatypes, recs, size, induct and simps are contained in a
separate structure named t1 . . . tn .

2.7 Old-style recursive function definitions

Old-style recursive definitions via recdef requires that you supply a well-
founded relation that governs the recursion. Recursive calls are only allowed
if they make the argument decrease under the relation. Complicated recur-
sion forms, such as nested recursion, can be dealt with. Termination can
even be proved at a later time, though having unsolved termination condi-
tions around can make work difficult.4

Using recdef, you can declare functions involving nested recursion and
pattern-matching. Recursion need not involve datatypes and there are few
syntactic restrictions. Termination is proved by showing that each recursive
call makes the argument smaller in a suitable sense, which you specify by
supplying a well-founded relation.

Here is a simple example, the Fibonacci function. The first line declares
fib to be a constant. The well-founded relation is simply < (on the natural
numbers). Pattern-matching is used here: 1 is a macro for Suc 0.

4This facility is based on Konrad Slind’s TFL package [4]. Thanks are due to Konrad
for implementing TFL and assisting with its installation.

CHAPTER 2. HIGHER-ORDER LOGIC 37

consts fib :: "nat => nat"

recdef fib "less_than"

"fib 0 = 0"

"fib 1 = 1"

"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

With recdef, function definitions may be incomplete, and patterns may
overlap, as in functional programming. The recdef package disambiguates
overlapping patterns by taking the order of rules into account. For missing
patterns, the function is defined to return a default value.

The well-founded relation defines a notion of “smaller” for the function’s
argument type. The relation ≺ is well-founded provided it admits no in-
finitely decreasing chains

· · · ≺ xn ≺ · · · ≺ x1.

If the function’s argument has type τ , then ≺ has to be a relation over τ : it
must have type (τ × τ)set .

Proving well-foundedness can be tricky, so Isabelle/HOL provides a col-
lection of operators for building well-founded relations. The package recog-
nises these operators and automatically proves that the constructed relation
is well-founded. Here are those operators, in order of importance:

• less_than is “less than” on the natural numbers. (It has type (nat ×
nat)set , while < has type [nat , nat]⇒ bool .

• measure f , where f has type τ ⇒ nat , is the relation ≺ on type τ such
that x ≺ y if and only if f (x) < f (y). Typically, f takes the recursive
function’s arguments (as a tuple) and returns a result expressed in
terms of the function size. It is called a measure function. Recall
that size is overloaded and is defined on all datatypes (see §2.6.1).

• inv imageR f is a generalisation of measure. It specifies a relation
such that x ≺ y if and only if f (x) is less than f (y) according to R,
which must itself be a well-founded relation.

• R1<*lex*>R2 is the lexicographic product of two relations. It is a
relation on pairs and satisfies (x1, x2) ≺ (y1, y2) if and only if x1 is less
than y1 according to R1 or x1 = y1 and x2 is less than y2 according
to R2.

• finite_psubset is the proper subset relation on finite sets.

We can use measure to declare Euclid’s algorithm for the greatest com-
mon divisor. The measure function, λ(m, n) . n, specifies that the recursion
terminates because argument n decreases.

CHAPTER 2. HIGHER-ORDER LOGIC 38

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"

"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

The general form of a well-founded recursive definition is

recdef function rel
congs congruence rules (optional)
simpset simplification set (optional)
reduction rules

where

• function is the name of the function, either as an id or a string.

• rel is a HOL expression for the well-founded termination relation.

• congruence rules are required only in highly exceptional circumstances.

• The simplification set is used to prove that the supplied relation is
well-founded. It is also used to prove the termination conditions:
assertions that arguments of recursive calls decrease under rel. By
default, simplification uses simpset(), which is sufficient to prove well-
foundedness for the built-in relations listed above.

• reduction rules specify one or more recursion equations. Each left-hand
side must have the form f t , where f is the function and t is a tuple of
distinct variables. If more than one equation is present then f is defined
by pattern-matching on components of its argument whose type is a
datatype.

The ml identifier f .simps contains the reduction rules as a list of
theorems.

With the definition of gcd shown above, Isabelle/HOL is unable to prove
one termination condition. It remains as a precondition of the recursion
theorems:

gcd.simps;

["! m n. n ~= 0 --> m mod n < n

==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"]

: thm list

The theory HOL/ex/Primes illustrates how to prove termination conditions
afterwards. The function Tfl.tgoalw is like the standard function goalw,
which sets up a goal to prove, but its argument should be the identifier
f .simps and its effect is to set up a proof of the termination conditions:

CHAPTER 2. HIGHER-ORDER LOGIC 39

Tfl.tgoalw thy [] gcd.simps;

Level 0

! m n. n ~= 0 --> m mod n < n

1. ! m n. n ~= 0 --> m mod n < n

This subgoal has a one-step proof using simp_tac. Once the theorem is
proved, it can be used to eliminate the termination conditions from elements
of gcd.simps. Theory HOL/Subst/Unify is a much more complicated exam-
ple of this process, where the termination conditions can only be proved by
complicated reasoning involving the recursive function itself.

Isabelle/HOL can prove the gcd function’s termination condition auto-
matically if supplied with the right simpset.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"

simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"

"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

If all termination conditions were proved automatically, f .simps is added
to the simpset automatically, just as in primrec. The simplification rules
corresponding to clause i (where counting starts at 0) are called f .i and can
be accessed as thms "f .i", which returns a list of theorems. Thus you can,
for example, remove specific clauses from the simpset. Note that a single
clause may give rise to a set of simplification rules in order to capture the
fact that if clauses overlap, their order disambiguates them.

A recdef definition also returns an induction rule specialised for the
recursive function. For the gcd function above, the induction rule is

gcd.induct;

"(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm

This rule should be used to reason inductively about the gcd function. It
usually makes the induction hypothesis available at all recursive calls, leading
to very direct proofs. If any termination conditions remain unproved, they
will become additional premises of this rule.

2.8 Example: Cantor’s Theorem

Cantor’s Theorem states that every set has more subsets than it has elements.
It has become a favourite example in higher-order logic since it is so easily
expressed:

∀f :: α⇒ α⇒ bool . ∃S :: α⇒ bool . ∀x :: α . f x 6= S

CHAPTER 2. HIGHER-ORDER LOGIC 40

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
states that for every function from α to its powerset, some subset is outside
its range.

The Isabelle proof uses HOL’s set theory, with the type α set and the
operator range.

context Set.thy;

The set S is given as an unknown instead of a quantified variable so that we
may inspect the subset found by the proof.

Goal "?S ~: range (f :: ’a=>’a set)";

Level 0

?S ~: range f

1. ?S ~: range f

The first two steps are routine. The rule rangeE replaces ?S ∈ range f by
?S = f x for some x .

by (resolve_tac [notI] 1);

Level 1

?S ~: range f

1. ?S : range f ==> False

by (eresolve_tac [rangeE] 1);

Level 2

?S ~: range f

1. !!x. ?S = f x ==> False

Next, we apply equalityCE, reasoning that since ?S = f x , we have ?c ∈ ?S
if and only if ?c ∈ f x for any ?c.

by (eresolve_tac [equalityCE] 1);

Level 3

?S ~: range f

1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False

2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False

Now we use a bit of creativity. Suppose that ?S has the form of a comprehen-
sion. Then ?c ∈ {x .?P x} implies ?P ?c. Destruct-resolution using CollectD

instantiates ?S and creates the new assumption.

by (dresolve_tac [CollectD] 1);

Level 4

{x. ?P7 x} ~: range f

1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False

2. !!x. [| ?c3 x ~: {x. ?P7 x}; ?c3 x ~: f x |] ==> False

Forcing a contradiction between the two assumptions of subgoal 1 completes
the instantiation of S . It is now the set {x . x 6∈ f x}, which is the standard
diagonal construction.

CHAPTER 2. HIGHER-ORDER LOGIC 41

by (contr_tac 1);

Level 5

{x. x ~: f x} ~: range f

1. !!x. [| x ~: {x. x ~: f x}; x ~: f x |] ==> False

The rest should be easy. To apply CollectI to the negated assumption, we
employ swap_res_tac:

by (swap_res_tac [CollectI] 1);

Level 6

{x. x ~: f x} ~: range f

1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x

by (assume_tac 1);

Level 7

{x. x ~: f x} ~: range f

No subgoals!

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically. The default classical set claset() contains rules for most
of the constructs of HOL’s set theory. We must augment it with equalityCE

to break up set equalities, and then apply best-first search. Depth-first search
would diverge, but best-first search successfully navigates through the large
search space.

choplev 0;

Level 0

?S ~: range f

1. ?S ~: range f

by (best_tac (claset() addSEs [equalityCE]) 1);

Level 1

{x. x ~: f x} ~: range f

No subgoals!

If you run this example interactively, make sure your current theory con-
tains theory Set, for example by executing context Set.thy. Otherwise the
default claset may not contain the rules for set theory.

Bibliography

[1] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL —
lessons learned in Formal-Logic Engineering. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in
Higher Order Logics: TPHOLs ’99, volume 1690 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[2] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge Uni-
versity Press, 1993.

[3] Lawrence C. Paulson. A formulation of the simple theory of types (for
Isabelle). In P. Martin-Löf and G. Mints, editors, COLOG-88: Interna-
tional Conference on Computer Logic, LNCS 417, pages 246–274, Tallinn,
Published 1990. Estonian Academy of Sciences, Springer.

[4] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’96, volume 1125 of Lecture Notes in Computer Science,
pages 381–397. Springer-Verlag, 1996.

42

Index

! symbol, 4, 6, 13, 15, 28
| symbol, 4
[] symbol, 28
symbol, 28
& symbol, 4
* symbol, 3, 25
* type, 23
+ symbol, 3, 25
+ type, 23
- symbol, 3, 25
--> symbol, 4
: symbol, 12
< constant, 24
< symbol, 25
<= constant, 24
<= symbol, 12
= symbol, 4
? symbol, 4, 6, 15
?! symbol, 4
@ symbol, 4, 28
^ symbol, 3
‘‘ symbol, 12
{} symbol, 12

0 constant, 3, 25

Addsplits, 21
addsplits, 21, 30, 34
ALL symbol, 4, 13, 15
All constant, 4
All_def theorem, 9
all_dupE theorem, 11
allE theorem, 11
allI theorem, 11
and_def theorem, 9

arg_cong theorem, 10

Ball constant, 12, 15
Ball_def theorem, 15
ballE theorem, 16
ballI theorem, 16
Bex constant, 12, 15
Bex_def theorem, 15
bexCI theorem, 16, 18
bexE theorem, 16
bexI theorem, 16, 18
bool type, 3
box_equals theorem, 9, 10
bspec theorem, 16
butlast constant, 28

case symbol, 26, 27, 34
case_tac, 9, 35
case_weak_cong, 34
ccontr theorem, 11
classical theorem, 11
Collect constant, 12, 14
Collect_mem_eq theorem, 15
CollectD theorem, 16, 40
CollectE theorem, 16
CollectI theorem, 16, 41
Compl_def theorem, 15
Compl_disjoint theorem, 19
Compl_Int theorem, 19
Compl_partition theorem, 19
Compl_Un theorem, 19
ComplD theorem, 17
ComplI theorem, 17
concat constant, 28
cong theorem, 10

43

INDEX 44

conj_cong, 20
conjE theorem, 10
conjI theorem, 10
conjunct1 theorem, 10
conjunct2 theorem, 10
context, 41

datatype, 30
Delsplits, 21
delsplits, 21
disjCI theorem, 11
disjE theorem, 10
disjI1 theorem, 10
disjI2 theorem, 10
div symbol, 25
div_geq theorem, 25
div_less theorem, 25
Divides theory, 26
double_complement theorem, 19
drop constant, 28
dropWhile constant, 28
dvd symbol, 25

empty_def theorem, 15
emptyE theorem, 17
Eps constant, 4, 6
equalityCE theorem, 16, 18, 40, 41
equalityD1 theorem, 16
equalityD2 theorem, 16
equalityE theorem, 16
equalityI theorem, 16
EX symbol, 4, 13, 15
Ex constant, 4
EX! symbol, 4
Ex1 constant, 4
Ex1_def theorem, 9
ex1E theorem, 11
ex1I theorem, 11
Ex_def theorem, 9
exCI theorem, 11
excluded_middle theorem, 11

exE theorem, 11
exI theorem, 11
ext theorem, 8

False constant, 4
False_def theorem, 9
FalseE theorem, 10
filter constant, 28
foldl constant, 28
fst constant, 22
fst_conv theorem, 22
Fun theory, 19
fun type, 3
fun_cong theorem, 10

hd constant, 28
higher-order logic, 3–41
HOL, 7
hol system, 3, 6
HOL_basic_ss, 20
HOL_ss, 20
hyp_subst_tac, 20

If constant, 4
if, 20
if_def theorem, 9
if_not_P theorem, 11
if_P theorem, 11
if_weak_cong, 20
iff theorem, 8
iffCE theorem, 11, 18
iffD1 theorem, 10
iffD2 theorem, 10
iffE theorem, 10
iffI theorem, 10
image_def theorem, 15
imageE theorem, 17
imageI theorem, 17
impCE theorem, 11
impE theorem, 10
impI theorem, 8
in symbol, 5

INDEX 45

ind type, 24
induct_tac, 26, 35
inj constant, 19
inj_def theorem, 19
inj_Inl theorem, 24
inj_Inr theorem, 24
inj_on constant, 19
inj_on_def theorem, 19
inj_Suc theorem, 25
Inl constant, 24
Inl_not_Inr theorem, 24
Inr constant, 24
insert constant, 12
insert_def theorem, 15
insertE theorem, 17
insertI1 theorem, 17
insertI2 theorem, 17
INT symbol, 12, 13, 15
Int symbol, 12
int theorem, 3, 6, 26
Int_absorb theorem, 19
Int_assoc theorem, 19
Int_commute theorem, 19
INT_D theorem, 17
Int_def theorem, 15
INT_E theorem, 17
Int_greatest theorem, 18
INT_I theorem, 17
Int_lower1 theorem, 18
Int_lower2 theorem, 18
Int_Un_distrib theorem, 19
Int_Union theorem, 19
IntD1 theorem, 17
IntD2 theorem, 17
IntE theorem, 17
INTER constant, 12
Inter constant, 12
INTER1 constant, 12
INTER1_def theorem, 15
INTER_def theorem, 15
Inter_def theorem, 15

Inter_greatest theorem, 18
Inter_lower theorem, 18
Inter_Un_distrib theorem, 19
InterD theorem, 17
InterE theorem, 17
InterI theorem, 17
IntI theorem, 17
inv constant, 19
inv_def theorem, 19

last constant, 28
LEAST constant, 6, 7, 24
Least constant, 4
Least_def theorem, 9
length constant, 28
less_induct theorem, 26
Let constant, 4, 7
let symbol, 5
Let_def theorem, 7, 9
Lin_Arith.tac, 27
linorder class, 6, 26
List theory, 27, 28
list type, 27–30

map constant, 28
max constant, 6, 24
mem symbol, 28
mem_Collect_eq theorem, 15
min constant, 6, 24
minus class, 3
mod symbol, 25
mod_geq theorem, 25
mod_less theorem, 25
mono constant, 6
mp theorem, 8

n_not_Suc_n theorem, 25
Nat theory, 24, 26
nat type, 24–26
nat type, 24–27
nat theorem, 3, 6
nat_induct theorem, 25

INDEX 46

nat_rec constant, 26
NatArith theory, 26
Not constant, 4
not_def theorem, 9
not_sym theorem, 10
notE theorem, 10
notI theorem, 10
notnotD theorem, 11
null constant, 28

o symbol, 4, 18
o_def theorem, 9
of symbol, 7
or_def theorem, 9
Ord theory, 6
ord class, 6, 7, 24
order class, 6

Pair constant, 22
Pair_eq theorem, 22
Pair_inject theorem, 22
PairE theorem, 22
plus class, 3
plus_ac0 class, 6
Pow constant, 12
Pow_def theorem, 15
PowD theorem, 17
power class, 3
PowI theorem, 17
primrec symbol, 26
priorities, 1
Prod theory, 23

range constant, 12, 40
range_def theorem, 15
rangeE theorem, 17, 40
rangeI theorem, 17
real theorem, 3, 6, 26
recdef, 36–39
recursion

general, 36–39
refl theorem, 8

res_inst_tac, 6
rev constant, 28

search
best-first, 41

Set theory, 14, 15
set constant, 28
set type, 14
set_diff_def theorem, 15
setsum constant, 6
show_sorts, 6
show_types, 6
Sigma constant, 22
Sigma_def theorem, 22
SigmaE theorem, 22
SigmaI theorem, 22
simplification

of case, 34
of if, 20
of conjunctions, 20

size constant, 35
smp_tac, 9
snd constant, 22
snd_conv theorem, 22
SOME symbol, 4
some_equality theorem, 8, 11
someI theorem, 8
spec theorem, 11
split constant, 22
split theorem, 22
split_all_tac, 23
split_if theorem, 11, 21
split_list_case theorem, 27
split_split theorem, 22
ssubst theorem, 9, 10
stac, 20
strip_tac, 9
subset_def theorem, 15
subset_refl theorem, 16
subset_trans theorem, 16
subsetCE theorem, 16, 18

INDEX 47

subsetD theorem, 16, 18
subsetI theorem, 16
subst theorem, 8
Suc constant, 25
Suc_not_Zero theorem, 25
Sum theory, 24
sum.split_case theorem, 24
sum_case constant, 24
sum_case_Inl theorem, 24
sum_case_Inr theorem, 24
sumE theorem, 24
surj constant, 18, 19
surj_def theorem, 19
surjective_pairing theorem, 22
surjective_sum theorem, 24
swap theorem, 11
swap_res_tac, 41
sym theorem, 10

take constant, 28
takeWhile constant, 28
term class, 3
times class, 3
tl constant, 28
tracing

of unification, 6
trans theorem, 10
True constant, 4
True_def theorem, 9
True_or_False theorem, 8
TrueI theorem, 10
Trueprop constant, 4

UN symbol, 12, 13, 15
Un symbol, 12
Un1 theorem, 18
Un2 theorem, 18
Un_absorb theorem, 19
Un_assoc theorem, 19
Un_commute theorem, 19
Un_def theorem, 15

UN_E theorem, 17
UN_I theorem, 17
Un_Int_distrib theorem, 19
Un_Inter theorem, 19
Un_least theorem, 18
Un_upper1 theorem, 18
Un_upper2 theorem, 18
UnCI theorem, 17, 18
UnE theorem, 17
UnI1 theorem, 17
UnI2 theorem, 17
unification

incompleteness of, 6
Unify.trace_types, 6
UNION constant, 12
Union constant, 12
UNION1 constant, 12
UNION1_def theorem, 15
UNION_def theorem, 15
Union_def theorem, 15
Union_least theorem, 18
Union_Un_distrib theorem, 19
Union_upper theorem, 18
UnionE theorem, 17
UnionI theorem, 17
unit_eq theorem, 24

	Syntax definitions
	Higher-Order Logic
	Syntax
	Types and overloading
	Binders
	The let and case constructions

	Rules of inference
	A formulation of set theory
	Syntax of set theory
	Axioms and rules of set theory
	Properties of functions

	Simplification and substitution
	Case splitting

	Types
	Product and sum types
	The type of natural numbers, nat
	Numerical types and numerical reasoning
	The type constructor for lists, list

	Datatype definitions
	Basics
	Defining datatypes

	Old-style recursive function definitions
	Example: Cantor's Theorem

