
λ →

∀
=Isa

be
lle

β
α

The Isabelle System Manual

Makarius Wenzel and Stefan Berghofer
TU München

22 May 2012

Contents

1 The Isabelle system environment 1

1.1 Isabelle settings . 1

1.1.1 Bootstrapping the environment 2

1.1.2 Common variables . 3

1.1.3 Additional components 6

1.2 The raw Isabelle process . 7

1.3 The Isabelle tools wrapper 9

2 User interfaces 11

2.1 Plain TTY interaction . 11

2.2 Proof General / Emacs . 11

2.3 Isabelle/jEdit Prover IDE . 12

3 Presenting theories 14

3.1 Generating theory browser information 15

3.2 Browsing theory graphs . 16

3.2.1 Invoking the graph browser 17

3.2.2 Using the graph browser 17

3.2.3 Syntax of graph definition files 19

3.3 Creating Isabelle session directories 20

3.4 Running Isabelle sessions . 21

3.5 Preparing Isabelle session documents 25

3.6 Running LATEX within the Isabelle environment 27

4 Isabelle/Scala development tools 28

4.1 Java Runtime Environment within Isabelle 28

4.2 Scala toplevel . 28

4.3 Scala compiler . 29

i

CONTENTS ii

5 Miscellaneous tools 30

5.1 Displaying documents . 30

5.2 Viewing documentation . 30

5.3 Shell commands within the settings environment 31

5.4 Getting logic images . 31

5.5 Inspecting the settings environment 31

5.6 Installing standalone Isabelle executables 32

5.7 Creating instances of the Isabelle logo 33

5.8 Isabelle’s version of make . 33

5.9 Make all logics . 34

5.10 Printing documents . 34

5.11 Remove awkward symbol names from theory sources 35

5.12 Output the version identifier of the Isabelle distribution 35

5.13 Convert XML to YXML . 36

Chapter 1

The Isabelle system
environment

This manual describes Isabelle together with related tools and user interfaces
as seen from a system oriented view. See also the Isabelle/Isar Reference
Manual [4] for the actual Isabelle input language and related concepts, and
The Isabelle/Isar Implementation Manual [3] for the main concepts of the
underlying implementation in Isabelle/ML.

The Isabelle system environment provides the following basic infrastructure
to integrate tools smoothly.

1. The Isabelle settings mechanism provides process environment variables
to all Isabelle executables (including tools and user interfaces).

2. The raw Isabelle process (isabelle-process) runs logic sessions either
interactively or in batch mode. In particular, this view abstracts over
the invocation of the actual ML system to be used. Regular users rarely
need to care about the low-level process.

3. The main Isabelle tools wrapper (isabelle) provides a generic startup
environment Isabelle related utilities, user interfaces etc. Such tools
automatically benefit from the settings mechanism.

1.1 Isabelle settings

The Isabelle system heavily depends on the settings mechanism. Essen-
tially, this is a statically scoped collection of environment variables, such as
ISABELLE_HOME, ML_SYSTEM, ML_HOME. These variables are not intended to
be set directly from the shell, though. Isabelle employs a somewhat more
sophisticated scheme of settings files — one for site-wide defaults, another
for additional user-specific modifications. With all configuration variables

1

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

in clearly defined places, this scheme is more maintainable and user-friendly
than global shell environment variables.

In particular, we avoid the typical situation where prospective users of a soft-
ware package are told to put several things into their shell startup scripts,
before being able to actually run the program. Isabelle requires none such ad-
ministrative chores of its end-users — the executables can be invoked straight
away. Occasionally, users would still want to put the $ISABELLE_HOME/bin

directory into their shell’s search path, but this is not required.

1.1.1 Bootstrapping the environment

Isabelle executables need to be run within a proper settings environment.
This is bootstrapped as described below, on the first invocation of one of
the outer wrapper scripts (such as isabelle). This happens only once for
each process tree, i.e. the environment is passed to subprocesses according
to regular Unix conventions.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the install utility. Symbolic links are admissible, but a plain copy of
the $ISABELLE_HOME/bin files will not work!

2. The file $ISABELLE_HOME/etc/settings is run as a bash shell script
with the auto-export option for variables enabled.

This file holds a rather long list of shell variable assigments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.
When installing the system, only a few of these may have to be adapted
(probably ML_SYSTEM etc.).

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run in
the same way as the site default settings. Note that the variable
ISABELLE_HOME_USER has already been set before — usually to some-
thing like $USER_HOME/.isabelle/IsabelleXXXX.

Thus individual users may override the site-wide defaults. See also
file $ISABELLE_HOME/etc/user-settings.sample in the distribution.
Typically, a user settings file would contain only a few lines, just the

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

assigments that are really changed. One should definitely not start
with a full copy the basic $ISABELLE_HOME/etc/settings. This could
cause very annoying maintainance problems later, when the Isabelle
installation is updated or changed otherwise.

Since settings files are regular GNU bash scripts, one may use complex shell
commands, such as if or case statements to set variables depending on the
system architecture or other environment variables. Such advanced features
should be added only with great care, though. In particular, external envi-
ronment references should be kept at a minimum.

A few variables are somewhat special:

• ISABELLE_PROCESS and ISABELLE_TOOL are set automatically to the
absolute path names of the isabelle-process and isabelle executa-
bles, respectively.

• ISABELLE_OUTPUT will have the identifiers of the Isabelle distribution
(cf. ISABELLE_IDENTIFIER) and the ML system (cf. ML_IDENTIFIER)
appended automatically to its value.

Note that the settings environment may be inspected with the Isabelle tool
getenv. This might help to figure out the effect of complex settings scripts.

1.1.2 Common variables

This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with ∗.

USER_HOME∗ Is the cross-platform user home directory. On Unix systems this
is usually the same as HOME, but on Windows it is the regular home
directory of the user, not the one of within the Cygwin root file-system.1

ISABELLE_HOME∗ is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell!

1Cygwin itself offers another choice whether its HOME should point to the /home

directory tree or the Windows user home.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is relative to $USER_HOME/.isabelle, under rare
circumstances this may be changed in the global setting file. Typically,
the ISABELLE_HOME_USER directory mimics ISABELLE_HOME to some ex-
tend. In particular, site-wide defaults may be overridden by a private
$ISABELLE_HOME_USER/etc/settings.

ISABELLE_PLATFORM∗ is automatically set to a symbolic identifier for the un-
derlying hardware and operating system. The Isabelle platform identi-
fication always refers to the 32 bit variant, even this is a 64 bit machine.
Note that the ML or Java runtime may have a different idea, depending
on which binaries are actually run.

ISABELLE_PLATFORM64∗ is similar to ISABELLE_PLATFORM but refers to the
proper 64 bit variant on a platform that supports this; the value is
empty for 32 bit. Note that the following bash expression (including
the quotes) prefers the 64 bit platform, if that is available:

"${ISABELLE_PLATFORM64:-$ISABELLE_PLATFORM}"

ISABELLE_PROCESS∗, ISABELLE_TOOL∗ are automatically set to the full path
names of the isabelle-process and isabelle executables, respec-
tively. Thus other tools and scripts need not assume that the
$ISABELLE_HOME/bin directory is on the current search path of the
shell.

ISABELLE_IDENTIFIER∗ refers to the name of this Isabelle distribution, e.g.
“Isabelle2012”.

ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER∗ specify
the underlying ML system to be used for Isabelle. There
is only a fixed set of admissable ML_SYSTEM names (see the
$ISABELLE_HOME/etc/settings file of the distribution).

The actual compiler binary will be run from the directory ML_HOME,
with ML_OPTIONS as first arguments on the command line. The op-
tional ML_PLATFORM may specify the binary format of ML heap im-
ages, which is useful for cross-platform installations. The value of
ML_IDENTIFIER is automatically obtained by composing the values of
ML_SYSTEM, ML_PLATFORM and the Isabelle version values.

ISABELLE_JDK_HOME needs to point to a full JDK (Java Development Kit)
installation with javac and jar executables. This is essential for
Isabelle/Scala and other JVM-based tools to work properly. Note that

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

conventional JAVA_HOME usually points to the JRE (Java Runtime En-
vironment), not JDK.

ISABELLE_PATH is a list of directories (separated by colons) where Isabelle
logic images may reside. When looking up heaps files, the value of
ML_IDENTIFIER is appended to each component internally.

ISABELLE_OUTPUT∗ is a directory where output heap files should be stored
by default. The ML system and Isabelle version identifier is appended
here, too.

ISABELLE_BROWSER_INFO is the directory where theory browser information
(HTML text, graph data, and printable documents) is stored (see also
§3.1). The default value is $ISABELLE_HOME_USER/browser_info.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitely
by the user. The default value is HOL.

ISABELLE_LINE_EDITOR specifies the default line editor for the tty interface.

ISABELLE_USEDIR_OPTIONS is implicitly prefixed to the command line of
any usedir invocation. This typically contains compilation options for
object-logics — usedir is the basic utility for managing logic sessions
(cf. the IsaMakefiles in the distribution).

ISABELLE_LATEX, ISABELLE_PDFLATEX, ISABELLE_BIBTEX, ISABELLE_DVIPS
refer to LATEX related tools for Isabelle document preparation (see also
§3.6).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isabelle for external utility programs (see also §1.3).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

ISABELLE_DOC_FORMAT specifies the preferred document format, typically
dvi or pdf.

DVI_VIEWER specifies the command to be used for displaying dvi files.

PDF_VIEWER specifies the command to be used for displaying pdf files.

PRINT_COMMAND specifies the standard printer spool command, which is ex-
pected to accept ps files.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

ISABELLE_TMP_PREFIX∗ is the prefix from which any running isabelle-process
derives an individual directory for temporary files. The default is some-
where in /tmp.

1.1.3 Additional components

Any directory may be registered as an explicit Isabelle component. The
general layout conventions are that of the main Isabelle distribution itself,
and the following two files (both optional) have a special meaning:

• etc/settings holds additional settings that are initialized when boot-
strapping the overall Isabelle environment, cf. §1.1.1. As usual, the
content is interpreted as a bash script. It may refer to the component’s
enclosing directory via the COMPONENT shell variable.

For example, the following setting allows to refer to files within the
component later on, without having to hardwire absolute paths:

MY_COMPONENT_HOME="$COMPONENT"

Components can also add to existing Isabelle settings such as
ISABELLE_TOOLS, in order to provide component-specific tools that can
be invoked by end-users. For example:

ISABELLE_TOOLS="$ISABELLE_TOOLS:$COMPONENT/lib/Tools"

• etc/components holds a list of further sub-components of the same
structure. The directory specifications given here can be either absolute
(with leading /) or relative to the component’s main directory.

The root of component initialization is ISABELLE_HOME itself. After initial-
izing all of its sub-components recursively, ISABELLE_HOME_USER is included
in the same manner (if that directory exists). This allows to install private
components via $ISABELLE_HOME_USER/etc/components, although it is of-
ten more convenient to do that programmatically via the init_component

shell function in the etc/settings script of $ISABELLE_HOME_USER (or any
other component directory). For example:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

if [-d "$HOME/screwdriver-2.0"]

then

init_component "$HOME/screwdriver-2.0"

else

1.2 The raw Isabelle process

The isabelle-process executable runs bare-bones Isabelle logic sessions —
either interactively or in batch mode. It provides an abstraction over the
underlying ML system, and over the actual heap file locations. Its usage is:

Usage: isabelle-process [OPTIONS] [INPUT] [OUTPUT]

Options are:

-I startup Isar interaction mode

-P startup Proof General interaction mode

-S secure mode -- disallow critical operations

-T ADDR startup process wrapper, with socket address

-W IN:OUT startup process wrapper, with input/output fifos

-X startup PGIP interaction mode

-e MLTEXT pass MLTEXT to the ML session

-f pass ’Session.finish();’ to the ML session

-m MODE add print mode for output

-q non-interactive session

-r open heap file read-only

-u pass ’use"ROOT.ML";’ to the ML session

-w reset write permissions on OUTPUT

INPUT (default "$ISABELLE_LOGIC") and OUTPUT specify in/out heaps.

These are either names to be searched in the Isabelle path, or

actual file names (containing at least one /).

If INPUT is "RAW_ML_SYSTEM", just start the bare bones ML system.

Input files without path specifications are looked up in the ISABELLE_PATH

setting, which may consist of multiple components separated by colons —
these are tried in the given order with the value of ML_IDENTIFIER appended
internally. In a similar way, base names are relative to the directory specified
by ISABELLE_OUTPUT. In any case, actual file locations may also be given
by including at least one slash (/) in the name (hint: use ./ to refer to the
current directory).

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

Options

If the input heap file does not have write permission bits set, or the -r option
is given explicitely, then the session started will be read-only. That is, the ML
world cannot be committed back into the image file. Otherwise, a writable
session enables commits into either the input file, or into another output heap
file (if that is given as the second argument on the command line).

The read-write state of sessions is determined at startup only, it cannot be
changed intermediately. Also note that heap images may require considerable
amounts of disk space (approximately 50–200 MB). Users are responsible for
themselves to dispose their heap files when they are no longer needed.

The -w option makes the output heap file read-only after terminating. Thus
subsequent invocations cause the logic image to be read-only automatically.

Using the -e option, arbitrary ML code may be passed to the Isabelle session
from the command line. Multiple -e’s are evaluated in the given order.
Strange things may happen when errorneous ML code is provided. Also
make sure that the ML commands are terminated properly by semicolon.

The -u option is a shortcut for -e passing “use "ROOT.ML";” to the ML ses-
sion. The -f option passes “Session.finish();”, which is intended mainly
for administrative purposes.

The -m option adds identifiers of print modes to be made active for this
session. Typically, this is used by some user interface, e.g. to enable output
of proper mathematical symbols.

Isabelle normally enters an interactive top-level loop (after processing the -e

texts). The -q option inhibits interaction, thus providing a pure batch mode
facility.

The -I option makes Isabelle enter Isar interaction mode on startup, instead
of the primitive ML top-level. The -P option configures the top-level loop for
interaction with the Proof General user interface, and the -X option enables
XML-based PGIP communication.

The -T or -W option makes Isabelle enter a special process
wrapper for interaction via the Isabelle/Scala layer, see also
~~/src/Pure/System/isabelle_process.scala. The protocol between
the ML and JVM process is private to the implementation.

The -S option makes the Isabelle process more secure by disabling some
critical operations, notably runtime compilation and evaluation of ML source
code.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

Examples

Run an interactive session of the default object-logic (as specified by the
ISABELLE_LOGIC setting) like this:

isabelle-process

Usually ISABELLE_LOGIC refers to one of the standard logic images, which
are read-only by default. A writable session — based on HOL, but output to
Test (in the directory specified by the ISABELLE_OUTPUT setting) — may be
invoked as follows:

isabelle-process HOL Test

Ending this session normally (e.g. by typing control-D) dumps the whole ML
system state into Test (be prepared for more than 100 MB):

The Test session may be continued later (still in writable state) by:

isabelle-process Test

A read-only Test session may be started by:

isabelle-process -r Test

Note that manual session management like this does not provide proper setup
for theory presentation. This would require the usedir utility.

The next example demonstrates batch execution of Isabelle. We retrieve the
Main theory value from the theory loader within ML (observe the delicate
quoting rules for the Bash shell vs. ML):

isabelle-process -e ’Thy_Info.get_theory "Main";’ -q -r HOL

Note that the output text will be interspersed with additional junk messages
by the ML runtime environment. The -W option allows to communicate with
the Isabelle process via an external program in a more robust fashion.

1.3 The Isabelle tools wrapper

All Isabelle related tools and interfaces are called via a common wrapper —
isabelle:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 10

Usage: isabelle TOOL [ARGS ...]

Start Isabelle tool NAME with ARGS; pass "-?" for tool specific help.

Available tools are:

browser - Isabelle graph browser

...

In principle, Isabelle tools are ordinary executable scripts that are run within
the Isabelle settings environment, see §1.1. The set of available tools is
collected by isabelle from the directories listed in the ISABELLE_TOOLS

setting. Do not try to call the scripts directly from the shell. Neither should
you add the tool directories to your shell’s search path!

Examples

Show the list of available documentation of the current Isabelle installation
like this:

isabelle doc

View a certain document as follows:

isabelle doc system

Create an Isabelle session derived from HOL (see also §3.3 and §5.8):

isabelle mkdir HOL Test && isabelle make

Note that isabelle mkdir is usually only invoked once; existing sessions
(including document output etc.) are then updated by isabelle make alone.

Chapter 2

User interfaces

2.1 Plain TTY interaction

The tty tool runs the Isabelle process interactively within a plain terminal
session:

Usage: tty [OPTIONS]

Options are:

-l NAME logic image name (default ISABELLE_LOGIC)

-m MODE add print mode for output

-p NAME line editor program name (default ISABELLE_LINE_EDITOR)

Run Isabelle process with plain tty interaction, and optional line editor.

The -l option specifies the logic image. The -m option specifies additional
print modes. The -p option specifies an alternative line editor (such as the
rlwrap wrapper for GNU readline); the fall-back is to use raw standard input.

Regular interaction is via the standard Isabelle/Isar toplevel loop. The Isar
command exit drops out into the raw ML system, which is occasionally useful
for low-level debugging. Invoking Isar.loop (); in ML will return to the
Isar toplevel.

2.2 Proof General / Emacs

The emacs tool invokes a version of Emacs and Proof General within the reg-
ular Isabelle settings environment (§1.1). This is more robust than starting
Emacs separately, loading the Proof General lisp files, and then attempting
to start Isabelle with dynamic PATH lookup etc.

The actual interface script is part of the Proof General distribution [1]; its
usage depends on the particular version. There are some options available,
such as -l for passing the logic image to be used by default, or -m to tune
the standard print mode. The following Isabelle settings are particularly
important for Proof General:

11

CHAPTER 2. USER INTERFACES 12

PROOFGENERAL_HOME points to the main installation directory of the Proof
General distribution. The default settings try to locate this in a number
of standard places, notably $ISABELLE_HOME/contrib/ProofGeneral.

PROOFGENERAL_OPTIONS is implicitly prefixed to the command line of any
invocation of the Proof General interface script.

XSYMBOL_INSTALLFONTS may contain a small shell script to install the X11
fonts required for the old X-Symbols mode of Proof General. This is
only relevant if the X11 display server runs on a different machine than
the Emacs application, with a different file-system view on the Proof
General installation. Under most circumstances Proof General 3.x is
able to refer to the font files that are part of its distribution, and Proof
General 4.x finds its fonts by different means.

2.3 Isabelle/jEdit Prover IDE

The jedit tool invokes a version of jEdit that has been augmented with some
components to provide a fully-featured Prover IDE (based on Isabelle/Scala):

Usage: isabelle jedit [OPTIONS] [FILES ...]

Options are:

-J OPTION add JVM runtime option (default JEDIT_JAVA_OPTIONS)

-b build only

-d enable debugger

-f fresh build

-j OPTION add jEdit runtime option (default JEDIT_OPTIONS)

-l NAME logic image name (default ISABELLE_LOGIC)

-m MODE add print mode for output

Start jEdit with Isabelle plugin setup and opens theory FILES

(default Scratch.thy).

The -l option specifies the logic image. The -m option specifies additional
print modes.

The -J and -j options allow to pass additional low-level options to the JVM
or jEdit, respectively. The defaults are provided by the Isabelle settings
environment.

The -d option allows to connect to the runtime debugger of the JVM. Note
that the Scala Console of Isabelle/jEdit is more convenient in most practical
situations.

CHAPTER 2. USER INTERFACES 13

The -b and -f options control the self-build mechanism of Isabelle/jEdit.
This is only relevant for building from sources, which also requires an aux-
iliary jedit_build component. Official Isabelle releases already include a
version of Isabelle/jEdit that is built properly.

Chapter 3

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of logic sessions. The global
session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions in leaf positions (usually without a separate image).

The Isabelle tools mkdir and make provide the primary means for managing
Isabelle sessions, including proper setup for presentation. Here the usedir

tool takes care to let isabelle-process process run any additional stages
required for document preparation, notably the tools document and latex.
The complete tool chain for managing batch-mode Isabelle sessions is illus-
trated in figure 3.1.

isabelle mkdir invoked once by the user to create the ini-
tial source setup (common IsaMakefile plus
a single session directory);

isabelle make invoked repeatedly by the user to keep session
output up-to-date (HTML, documents etc.);

isabelle usedir part of the standard IsaMakefile entry of a
session;

isabelle-process run through isabelle usedir;
isabelle document run by the Isabelle process if document prepa-

ration is enabled;
isabelle latex universal LATEX tool wrapper invoked multiple

times by isabelle document; also useful for
manual experiments;

Figure 3.1: The tool chain of Isabelle session presentation

14

CHAPTER 3. PRESENTING THEORIES 15

3.1 Generating theory browser information

As a side-effect of running a logic sessions, Isabelle is able to generate the-
ory browsing information, including HTML documents that show a theory’s
definition, the theorems proved in its ML file and the relationship with its
ancestors and descendants. Besides the HTML file that is generated for ev-
ery theory, Isabelle stores links to all theories in an index file. These indexes
are linked with other indexes to represent the overall tree structure of logic
sessions.

Isabelle also generates graph files that represent the theory hierarchy of a
logic. There is a graph browser Java applet embedded in the generated
HTML pages, and also a stand-alone application that allows browsing theory
graphs without having to start a WWW client first. The latter version also
includes features such as generating Postscript files, which are not available
in the applet version. See §3.2 for further information.

The easiest way to let Isabelle generate theory browsing information for ex-
isting sessions is to append “-i true” to the ISABELLE_USEDIR_OPTIONS

before invoking isabelle make (or $ISABELLE_HOME/build). For example,
add something like this to your Isabelle settings file

ISABELLE_USEDIR_OPTIONS="-i true"

and then change into the ~~/src/FOL directory and run isabelle make,
or even isabelle make all. The presentation output will appear
in ISABELLE_BROWSER_INFO/FOL, which usually refers to something like
~/.isabelle/IsabelleXXXX/browser_info/FOL. Note that option -v true

will make the internal runs of usedir more explicit about such details.

Many standard Isabelle sessions (such as ~~/src/HOL/ex) also provide actual
printable documents. These are prepared automatically as well if enabled like
this, using the -d option

ISABELLE_USEDIR_OPTIONS="-i true -d dvi"

Enabling options -i and -d simultaneously as shown above causes an appro-
priate “document” link to be included in the HTML index. Documents (or
raw document sources) may be generated independently of browser informa-
tion as well, see §3.5 for further details.

The theory browsing information is stored in a sub-directory directory deter-
mined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding
to the session identifier (according to the tree structure of sub-sessions by

CHAPTER 3. PRESENTING THEORIES 16

default). A complete WWW view of all standard object-logics and examples
of the Isabelle distribution is available at the usual Isabelle sites:

http://isabelle.in.tum.de/dist/library/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/
http://mirror.cse.unsw.edu.au/pub/isabelle/dist/library/

In order to present your own theories on the web, simply copy the corre-
sponding subdirectory from ISABELLE_BROWSER_INFO to your WWW server,
having generated browser info like this:

isabelle usedir -i true HOL Foo

This assumes that directory Foo contains some ROOT.ML file to load all your
theories, and HOL is your parent logic image (isabelle mkdir assists in
setting up Isabelle session directories. Theory browser information for HOL
should have been generated already beforehand. Alternatively, one may spec-
ify an external link to an existing body of HTML data by giving usedir a
-P option like this:

isabelle usedir -i true -P http://isabelle.in.tum.de/library/ HOL Foo

For production use, the usedir tool is usually invoked in an appropriate
IsaMakefile, via the Isabelle make tool. There is a separate mkdir tool to
provide easy setup of all this, with only minimal manual editing required.

isabelle mkdir HOL Foo && isabelle make

See §3.3 for more information on preparing Isabelle session directories, in-
cluding the setup for documents.

3.2 Browsing theory graphs

The Isabelle graph browser is a general tool for visualizing dependency
graphs. Certain nodes of the graph (i.e. theories) can be grouped together
in “directories”, whose contents may be hidden, thus enabling the user to
collapse irrelevant portions of information. The browser is written in Java,
it can be used both as a stand-alone application and as an applet. Note that
the option -g of isabelle usedir creates graph presentations in batch mode
for inclusion in session documents.

http://isabelle.in.tum.de/dist/library/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/
http://mirror.cse.unsw.edu.au/pub/isabelle/dist/library/

CHAPTER 3. PRESENTING THEORIES 17

3.2.1 Invoking the graph browser

The stand-alone version of the graph browser is wrapped up as an Isabelle
tool called browser:

Usage: browser [OPTIONS] [GRAPHFILE]

Options are:

-b Admin/build only

-c cleanup -- remove GRAPHFILE after use

-o FILE output to FILE (ps, eps, pdf)

When no filename is specified, the browser automatically changes to the
directory ISABELLE_BROWSER_INFO.

The -b option indicates that this is for administrative build only, i.e. no
browser popup if no files are given.

The -c option causes the input file to be removed after use.

The -o option indicates batch-mode operation, with the output written to
the indicated file; note that pdf produces an eps copy as well.

The applet version of the browser is part of the standard WWW theory
presentation, see the link “theory dependencies” within each session index.

3.2.2 Using the graph browser

The browser’s main window, which is shown in figure 3.2, consists of two
sub-windows. In the left sub-window, the directory tree is displayed. The
graph itself is displayed in the right sub-window.

The directory tree window

We describe the usage of the directory browser and the meaning of the dif-
ferent items in the browser window.

• A red arrow before a directory name indicates that the directory is
currently “folded”, i.e. the nodes in this directory are collapsed to one
single node. In the right sub-window, the names of nodes corresponding
to folded directories are enclosed in square brackets and displayed in
red color.

CHAPTER 3. PRESENTING THEORIES 18

Figure 3.2: Browser main window

• A green downward arrow before a directory name indicates that the
directory is currently “unfolded”. It can be folded by clicking on the
directory name. Clicking on the name for a second time unfolds the
directory again. Alternatively, a directory can also be unfolded by
clicking on the corresponding node in the right sub-window.

• Blue arrows stand before ordinary node names. When clicking on such
a name (i.e. that of a theory), the graph display window focuses to the
corresponding node. Double clicking invokes a text viewer window in
which the contents of the theory file are displayed.

The graph display window

When pointing on an ordinary node, an upward and a downward arrow is
shown. Initially, both of these arrows are green. Clicking on the upward
or downward arrow collapses all predecessor or successor nodes, respectively.
The arrow’s color then changes to red, indicating that the predecessor or
successor nodes are currently collapsed. The node corresponding to the col-
lapsed nodes has the name “[....]”. To uncollapse the nodes again, simply
click on the red arrow or on the node with the name “[....]”. Similar to
the directory browser, the contents of theory files can be displayed by double
clicking on the corresponding node.

CHAPTER 3. PRESENTING THEORIES 19

The “File” menu

Due to Java Applet security restrictions this menu is only available in the
full application version. The meaning of the menu items is as follows:

Open . . . Open a new graph file.

Export to PostScript Outputs the current graph in Postscript format, ap-
propriately scaled to fit on one single sheet of A4 paper. The resulting
file can be printed directly.

Export to EPS Outputs the current graph in Encapsulated Postscript for-
mat. The resulting file can be included in other documents.

Quit Quit the graph browser.

3.2.3 Syntax of graph definition files

A graph definition file has the following syntax:

graph = { vertex ; }+
vertex = vertex-name vertex-ID dir-name [+] path [< | >] { vertex-ID }∗

The meaning of the items in a vertex description is as follows:

vertex-name The name of the vertex.

vertex-ID The vertex identifier. Note that there may be several vertices with
equal names, whereas identifiers must be unique.

dir-name The name of the “directory” the vertex should be placed in. A
“+” sign after dir-name indicates that the nodes in the directory are
initially visible. Directories are initially invisible by default.

path The path of the corresponding theory file. This is specified relatively
to the path of the graph definition file.

List of successor/predecessor nodes A “<” sign before the list means
that successor nodes are listed, a “>” sign means that predecessor nodes
are listed. If neither “<” nor “>” is found, the browser assumes that
successor nodes are listed.

CHAPTER 3. PRESENTING THEORIES 20

3.3 Creating Isabelle session directories

The mkdir utility prepares Isabelle session source directories, including a
sensible default setup of IsaMakefile, ROOT.ML, and a document directory
with a minimal root.tex that is sufficient to print all theories of the session
(in the order of appearance); see §3.5 for further information on Isabelle
document preparation. The usage of isabelle mkdir is:

Usage: mkdir [OPTIONS] [LOGIC] NAME

Options are:

-I FILE alternative IsaMakefile output

-P include parent logic target

-b setup build mode (session outputs heap image)

-q quiet mode

Prepare session directory, including IsaMakefile and document source,

with parent LOGIC (default ISABELLE_LOGIC=$ISABELLE_LOGIC)

The mkdir tool is conservative in the sense that any existing IsaMakefile

etc. is left unchanged. Thus it is safe to invoke it multiple times, although
later runs may not have the desired effect.

Note that mkdir is unable to change IsaMakefile incrementally — manual
changes are required for multiple sub-sessions. On order to get an initial
working session, the only editing needed is to add appropriate use_thy calls
to the generated ROOT.ML file.

Options

The -I option specifies an alternative to IsaMakefile for dependencies. Note
that “-” refers to stdout, i.e. “-I-” provides an easy way to peek at mkdir’s
idea of make setup required for some particular of Isabelle session.

The -P option includes a target for the parent LOGIC session in the generated
IsaMakefile. The corresponding sources are assumed to be located within
the Isabelle distribution.

The -b option sets up the current directory as the base for a new session
that provides an actual logic image, as opposed to one that only runs several
theories based on an existing image. Note that in the latter case, everything
except IsaMakefile would be placed into a separate directory NAME, rather
than the current one. See §3.4 for further information on build mode vs.
example mode of the usedir utility.

CHAPTER 3. PRESENTING THEORIES 21

The -q option enables quiet mode, suppressing further notes on how to pro-
ceed.

Examples

The standard setup of a single “example session” based on the default logic,
with proper document generation is generated like this:

isabelle mkdir Foo && isabelle make

The theory sources should be put into the Foo directory, and its ROOT.ML

should be edited to load all required theories. Invoking isabelle make again
would run the whole session, generating browser information and the docu-
ment automatically. The IsaMakefile is typically tuned manually later, e.g.
adding source dependencies, or changing the options passed to usedir.

Large projects may demand further sessions, potentially with separate logic
images being created. This usually requires manual editing of the gener-
ated IsaMakefile, which is meant to cover all of the sub-session directo-
ries at the same time (this is the deeper reasong why IsaMakefile is not
made part of the initial session directory created by isabelle mkdir). See
~~/src/HOL/IsaMakefile for a full-blown example.

3.4 Running Isabelle sessions

The usedir utility builds object-logic images, or runs example sessions based
on existing logics. Its usage is:

CHAPTER 3. PRESENTING THEORIES 22

Usage: usedir [OPTIONS] LOGIC NAME

Options are:

-C BOOL copy existing document directory to -D PATH (default true)

-D PATH dump generated document sources into PATH

-M MAX multithreading: maximum number of worker threads (default 1)

-P PATH set path for remote theory browsing information

-Q INT set threshold for sub-proof parallelization (default 50)

-T LEVEL multithreading: trace level (default 0)

-V VARIANT declare alternative document VARIANT

-b build mode (output heap image, using current dir)

-d FORMAT build document as FORMAT (default false)

-f NAME use ML file NAME (default ROOT.ML)

-g BOOL generate session graph image for document (default false)

-i BOOL generate theory browser information (default false)

-m MODE add print mode for output

-p LEVEL set level of detail for proof objects (default 0)

-q LEVEL set level of parallel proof checking (default 1)

-r reset session path

-s NAME override session NAME

-t BOOL internal session timing (default false)

-v BOOL be verbose (default false)

Build object-logic or run examples. Also creates browsing

information (HTML etc.) according to settings.

ISABELLE_USEDIR_OPTIONS=

ML_PLATFORM=x86-linux

ML_HOME=/usr/local/polyml-5.2.1/x86-linux

ML_SYSTEM=polyml-5.2.1

ML_OPTIONS=-H 500

Note that the value of the ISABELLE_USEDIR_OPTIONS setting is implicitly
prefixed to any usedir call. Since the IsaMakefiles of all object-logics
distributed with Isabelle just invoke usedir for the real work, one may control
compilation options globally via above variable. In particular, generation of
HTML browsing information and document preparation is controlled here.

Options

Basically, there are two different modes of operation: build mode (enabled
through the -b option) and example mode (default).

Calling usedir with -b runs isabelle-process with input image LOGIC

and output to NAME, as provided on the command line. This will be a batch

CHAPTER 3. PRESENTING THEORIES 23

session, running ROOT.ML from the current directory and then quitting. It
is assumed that ROOT.ML contains all ML commands required to build the
logic.

In example mode, usedir runs a read-only session of LOGIC and automatically
runs ROOT.ML from within directory NAME. It assumes that this file contains
appropriate ML commands to run the desired examples.

The -i option controls theory browser data generation. It may be explicitly
turned on or off — as usual, the last occurrence of -i on the command line
wins.

The -P option specifies a path (or actual URL) to be prefixed to any non-local
reference of existing theories. Thus user sessions may easily link to existing
Isabelle libraries already present on the WWW.

The -m options specifies additional print modes to be activated temporarily
while the session is processed.

The -d option controls document preparation. Valid arguments are false

(do not prepare any document; this is default), or any of dvi, dvi.gz, ps,
ps.gz, pdf. The logic session has to provide a properly setup document

directory. See §3.5 and §3.6 for more details.

The -V option declares alternative document variants, consisting of
name/tags pairs (cf. options -n and -t of the document tool). The standard
document is equivalent to “document=theory,proof,ML”, which means that
all theory begin/end commands, proof body texts, and ML code will be pre-
sented faithfully. An alternative variant “outline=/proof/ML” would fold
proof and ML parts, replacing the original text by a short place-holder. The
form “name=-,” means to remove document name from the list of variants
to be processed. Any number of -V options may be given; later declarations
have precedence over earlier ones.

The -g option produces images of the theory dependency graph (cf. §3.2)
for inclusion in the generated document, both as session_graph.eps

and session_graph.pdf at the same time. To include this in the fi-
nal LATEX document one could say \includegraphics{session_graph} in
document/root.tex (omitting the file-name extension enables LATEX to se-
lect to correct version, either for the DVI or PDF output path).

The -D option causes the generated document sources to be dumped at lo-
cation PATH; this path is relative to the session’s main directory. If the -C

option is true, this will include a copy of an existing document directory as
provided by the user. For example, isabelle usedir -D generated HOL

CHAPTER 3. PRESENTING THEORIES 24

Foo produces a complete set of document sources at Foo/generated. Sub-
sequent invocation of isabelle document Foo/generated (see also §3.5) will
process the final result independently of an Isabelle job. This decoupled mode
of operation facilitates debugging of serious LATEX errors, for example.

The -p option determines the level of detail for internal proof objects, see
also the Isabelle Reference Manual [2].

The -q option specifies the level of parallel proof checking: 0 no proofs, 1
toplevel proofs (default), 2 toplevel and nested Isar proofs. The option -Q

specifies a threshold for -q2: nested proofs are only parallelized when the
current number of forked proofs falls below the given value (default 50),
multiplied by the number of worker threads (see option -M).

The -t option produces a more detailed internal timing report of the session.

The -v option causes additional information to be printed while running the
session, notably the location of prepared documents.

The -M option specifies the maximum number of parallel worker threads used
for processing independent tasks when checking theory sources (multithread-
ing only works on suitable ML platforms). The special value of 0 or max refers
to the number of actual CPU cores of the underlying machine, which is a
good starting point for optimal performance tuning. The -T option deter-
mines the level of detail in tracing output concerning the internal locking and
scheduling in multithreaded operation. This may be helpful in isolating per-
formance bottle-necks, e.g. due to excessive wait states when locking critical
code sections.

Any usedir session is named by some session identifier. These accumu-
late, documenting the way sessions depend on others. For example, consider
Pure/FOL/ex, which refers to the examples of FOL, which in turn is built
upon Pure.

The current session’s identifier is by default just the base name of the LOGIC

argument (in build mode), or of the NAME argument (in example mode). This
may be overridden explicitly via the -s option.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-
logics as a model for your own developments. For example, see
~~/src/FOL/IsaMakefile. The Isabelle mkdir tool creates IsaMakefiles
with proper invocation of usedir as well.

CHAPTER 3. PRESENTING THEORIES 25

3.5 Preparing Isabelle session documents

The document utility prepares logic session documents, processing the sources
both as provided by the user and generated by Isabelle. Its usage is:

Usage: document [OPTIONS] [DIR]

Options are:

-c cleanup -- be aggressive in removing old stuff

-n NAME specify document name (default ’document’)

-o FORMAT specify output format: dvi (default), dvi.gz, ps,

ps.gz, pdf

-t TAGS specify tagged region markup

Prepare the theory session document in DIR (default ’document’)

producing the specified output format.

This tool is usually run automatically as part of the corresponding Isabelle
batch process, provided document preparation has been enabled (cf. the -d

option of the usedir tool). It may be manually invoked on the generated
browser information document output as well, e.g. in case of errors encoun-
tered in the batch run.

The -c option tells the document tool to dispose the document sources after
successful operation. This is the right thing to do for sources generated by an
Isabelle process, but take care of your files in manual document preparation!

The -n and -o option specify the final output file name and format, the
default is “document.dvi”. Note that the result will appear in the parent of
the target DIR.

The -t option tells LATEX how to interpret tagged Isabelle command re-
gions. Tags are specified as a comma separated list of modifier/name
pairs: “+foo” (or just “foo”) means to keep, “-foo” to drop, and “/foo”
to fold text tagged as foo. The builtin default is equivalent to the
tag specification “+theory,+proof,+ML,+visible,-invisible”; see also
the LATEX macros \isakeeptag, \isadroptag, and \isafoldtag, in
~~/lib/texinputs/isabelle.sty.

Document preparation requires a properly setup “document” directory within
the logic session sources. This directory is supposed to contain all the files
needed to produce the final document — apart from the actual theories which
are generated by Isabelle.

For most practical purposes, the document tool is smart enough to create
any of the specified output formats, taking root.tex supplied by the user as

CHAPTER 3. PRESENTING THEORIES 26

a starting point. This even includes multiple runs of LATEX to accommodate
references and bibliographies (the latter assumes root.bib within the same
directory).

In more complex situations, a separate IsaMakefile for the document
sources may be given instead. This should provide targets for any admissible
document format; these have to produce corresponding output files named
after root as well, e.g. root.dvi for target format dvi.

When running the session, Isabelle copies the content of the original
document directory into its proper place within ISABELLE_BROWSER_INFO,
according to the session path and document variant. Then, for any processed
theory A some LATEX source is generated and put there as A.tex. Further-
more, a list of all generated theory files is put into session.tex. Typically,
the root LATEX file provided by the user would include session.tex to get a
document containing all the theories.

The LATEX versions of the theories require some macros defined in
~~/lib/texinputs/isabelle.sty. Doing \usepackage{isabelle} in
root.tex should be fine; the underlying Isabelle latex tool already includes
an appropriate path specification for TEX inputs.

If the text contains any references to Isabelle symbols (such as \<forall>)
then isabellesym.sty should be included as well. This package contains a
standard set of LATEX macro definitions \isasymfoo corresponding to \<foo>,
see [3] for a complete list of predefined Isabelle symbols. Users may invent
further symbols as well, just by providing LATEX macros in a similar fashion
as in ~~/lib/texinputs/isabellesym.sty of the distribution.

For proper setup of DVI and PDF documents (with hyperlinks and book-
marks), we recommend to include ~~/lib/texinputs/pdfsetup.sty as well.

As a final step of document preparation within Isabelle, isabelle

document -c is run on the resulting document directory. Thus the ac-
tual output document is built and installed in its proper place (as linked by
the session’s index.html if option -i of usedir has been enabled, cf. §3.1).
The generated sources are deleted after successful run of LATEX and friends.
Note that a separate copy of the sources may be retained by passing an
option -D to the usedir utility when running the session.

CHAPTER 3. PRESENTING THEORIES 27

3.6 Running LATEX within the Isabelle envi-

ronment

The latex utility provides the basic interface for Isabelle document prepa-
ration. Its usage is:

Usage: latex [OPTIONS] [FILE]

Options are:

-o FORMAT specify output format: dvi (default), dvi.gz, ps,

ps.gz, pdf, bbl, idx, sty, syms

Run LaTeX (and related tools) on FILE (default root.tex),

producing the specified output format.

Appropriate LATEX-related programs are run on the input file, according to
the given output format: latex, pdflatex, dvips, bibtex (for bbl), and
makeindex (for idx). The actual commands are determined from the settings
environment (ISABELLE_LATEX etc.).

The sty output format causes the Isabelle style files to be updated from
the distribution. This is useful in special situations where the document
sources are to be processed another time by separate tools (cf. option -D of
the usedir utility).

The syms output is for internal use; it generates lists of symbols that are
available without loading additional LATEX packages.

Examples

Invoking isabelle latex by hand may be occasionally useful when debug-
ging failed attempts of the automatic document preparation stage of batch-
mode Isabelle. The abortive process leaves the sources at a certain place
within ISABELLE_BROWSER_INFO, see the runtime error message for details.
This enables users to inspect LATEX runs in further detail, e.g. like this:

cd ~/.isabelle/IsabelleXXXX/browser_info/HOL/Test/document

isabelle latex -o pdf

Chapter 4

Isabelle/Scala development
tools

Isabelle/ML and Isabelle/Scala are the two main language environments for
Isabelle tool implementations. There are some basic command-line tools to
work with the underlying Java Virtual Machine, the Scala toplevel and com-
piler. Note that Isabelle/jEdit (§2.1) provides a Scala Console for interactive
experimentation within the running application.

4.1 Java Runtime Environment within

Isabelle

The Isabelle java utility is a direct wrapper for the Java Runtime Environ-
ment, within the regular Isabelle settings environment (§1.1). The command
line arguments are that of the underlying Java version. It is run in -server

mode if possible, to improve performance (at the cost of extra startup time).

The java executable is the one within ISABELLE_JDK_HOME, according to the
standard directory layout for official JDK distributions. The class loader
is augmented such that the name space of Isabelle/Pure.jar is available,
which is the main Isabelle/Scala module.

For example, the following command-line invokes the main method of class
isabelle.GUI_Setup, which opens a windows with some diagnostic infor-
mation about the Isabelle environment:

isabelle java isabelle.GUI_Setup

4.2 Scala toplevel

The Isabelle scala utility is a direct wrapper for the Scala toplevel; see also
java above. The command line arguments are that of the underlying Scala
version.

28

CHAPTER 4. ISABELLE/SCALA DEVELOPMENT TOOLS 29

This allows to interact with Isabelle/Scala in TTY mode like this:

isabelle scala

scala> isabelle.Isabelle_System.getenv("ISABELLE_HOME")

scala> isabelle.Isabelle_System.find_logics()

4.3 Scala compiler

The Isabelle scalac utility is a direct wrapper for the Scala compiler; see
also scala above. The command line arguments are that of the underlying
Scala version.

This allows to compile further Scala modules, depending on existing
Isabelle/Scala functionality. The resulting class or jar files can be added
to the CLASSPATH via the classpath Bash function that is provided by the
Isabelle process environment. Thus add-on components can register them-
selves in a modular manner, see also §1.1.3.

Note that jEdit (§2.3) has its own mechanisms for adding plugin components,
which needs special attention since it overrides the standard Java class loader.

Chapter 5

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

5.1 Displaying documents

The display utility displays documents in DVI or PDF format:

Usage: display [OPTIONS] FILE

Options are:

-c cleanup -- remove FILE after use

Display document FILE (in DVI format).

The -c option causes the input file to be removed after use. The program
for viewing dvi files is determined by the DVI_VIEWER setting.

5.2 Viewing documentation

The doc utility displays online documentation:

Usage: doc [DOC]

View Isabelle documentation DOC, or show list of available documents.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as the first argument in order to have the corresponding
document displayed.

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations. The program for viewing dvi files
is determined by the DVI_VIEWER setting.

30

CHAPTER 5. MISCELLANEOUS TOOLS 31

5.3 Shell commands within the settings envi-

ronment

The env utility is a direct wrapper for the standard /usr/bin/env command
on POSIX systems, running within the Isabelle settings environment (§1.1).

The command-line arguments are that of the underlying version of env. For
example, the following invokes an instance of the GNU Bash shell within the
Isabelle environment:

isabelle env bash

5.4 Getting logic images

The findlogics utility traverses all directories specified in ISABELLE_PATH,
looking for Isabelle logic images. Its usage is:

Usage: findlogics

Collect heap file names from ISABELLE_PATH.

The base names of all files found on the path are printed — sorted and with
duplicates removed. Also note that lookup in ISABELLE_PATH includes the
current values of ML_SYSTEM and ML_PLATFORM. Thus switching to another
ML compiler may change the set of logic images available.

5.5 Inspecting the settings environment

The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the getenv utility:

Usage: getenv [OPTIONS] [VARNAMES ...]

Options are:

-a display complete environment

-b print values only (doesn’t work for -a)

-d FILE dump complete environment to FILE

(null terminated entries)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-

CHAPTER 5. MISCELLANEOUS TOOLS 32

ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.

Option -d produces a dump of the complete environment to the specified
file. Entries are terminated by the ASCII null character, i.e. the C string
terminator.

Examples

Get the ML system name and the location where the compiler binaries are
supposed to reside as follows:

isabelle getenv ML_SYSTEM ML_HOME

ML_SYSTEM=polyml

ML_HOME=/usr/share/polyml/x86-linux

The next one peeks at the output directory for Isabelle logic images:

isabelle getenv -b ISABELLE_OUTPUT

/home/me/isabelle/heaps/polyml_x86-linux

Here we have used the -b option to suppress the ISABELLE_OUTPUT= prefix.
The value above is what became of the following assignment in the default
settings file:

ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"

Note how the ML_IDENTIFIER value got appended automatically to each path
component. This is a special feature of ISABELLE_OUTPUT.

5.6 Installing standalone Isabelle executables

By default, the main Isabelle binaries (isabelle etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
install utility:

CHAPTER 5. MISCELLANEOUS TOOLS 33

Usage: install [OPTIONS]

Options are:

-d DISTDIR use DISTDIR as Isabelle distribution

(default ISABELLE_HOME)

-p DIR install standalone binaries in DIR

Install Isabelle executables with absolute references to the current

distribution directory.

The -d option overrides the current Isabelle distribution directory as deter-
mined by ISABELLE_HOME.

The -p option installs executable wrapper scripts for isabelle-process,
isabelle, Isabelle, containing proper absolute references to the Isabelle
distribution directory. A typical DIR specification would be some directory
expected to be in the shell’s PATH, such as /usr/local/bin. It is important
to note that a plain manual copy of the original Isabelle executables does not
work, since it disrupts the integrity of the Isabelle distribution.

5.7 Creating instances of the Isabelle logo

The logo utility creates any instance of the generic Isabelle logo as an En-
capsuled Postscript file (EPS):

Usage: logo [OPTIONS] NAME

Create instance NAME of the Isabelle logo (as EPS).

Options are:

-o OUTFILE set output file (default determined from NAME)

-q quiet mode

You are encouraged to use this to create a derived logo for your Isabelle
project. For example, isabelle logo Bali creates isabelle_bali.eps.

5.8 Isabelle’s version of make

The Isabelle make utility is a very simple wrapper for ordinary Unix make:

CHAPTER 5. MISCELLANEOUS TOOLS 34

Usage: make [ARGS ...]

Compile the logic in current directory using IsaMakefile.

ARGS are directly passed to the system make program.

Note that the Isabelle settings environment is also active. Thus one may
refer to its values within the IsaMakefile, e.g. $(ISABELLE_OUTPUT). Fur-
thermore, programs started from the make file also inherit this environment.
Typically, IsaMakefiles defer the real work to the usedir utility.

The basic IsaMakefile convention is that the default target builds the actual
logic, including its parents if appropriate. The images target is intended to
build all local logic images, while the test target shall build all related
examples. The all target shall do images and test.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-
logics as a model for your own developments. For example, see
~~/src/FOL/IsaMakefile.

5.9 Make all logics

The makeall utility applies Isabelle make to any Isabelle component (cf.
§1.1.3) that contains an IsaMakefile:

Usage: makeall [ARGS ...]

Apply isabelle make to all components with IsaMakefile (passing ARGS).

The arguments ARGS are just passed verbatim to each make invocation.

5.10 Printing documents

The print utility prints documents:

CHAPTER 5. MISCELLANEOUS TOOLS 35

Usage: print [OPTIONS] FILE

Options are:

-c cleanup -- remove FILE after use

Print document FILE.

The -c option causes the input file to be removed after use. The printer
spool command is determined by the PRINT_COMMAND setting.

5.11 Remove awkward symbol names from

theory sources

The unsymbolize utility tunes Isabelle theory sources to improve readabil-
ity for plain ASCII output (e.g. in email communication). Most notably,
unsymbolize replaces awkward arrow symbols such as \<Longrightarrow>

by ==>.

Usage: unsymbolize [FILES|DIRS...]

Recursively find .thy/.ML files, removing unreadable symbol names.

Note: this is an ad-hoc script; there is no systematic way to replace

symbols independently of the inner syntax of a theory!

Renames old versions of FILES by appending "~~".

5.12 Output the version identifier of the

Isabelle distribution

The version utility displays Isabelle version information:

Usage: isabelle version [OPTIONS]

Options are:

-i short identification (derived from Mercurial id)

Display Isabelle version information.

The default is to output the full version string of the Isabelle distribution,
e.g. “Isabelle2012: May 2012.

The -i option produces a short identification derived from the Mercurial id
of the ISABELLE_HOME directory.

CHAPTER 5. MISCELLANEOUS TOOLS 36

5.13 Convert XML to YXML

The yxml tool converts a standard XML document (stdin) to the much sim-
pler and more efficient YXML format of Isabelle (stdout). The YXML format
is defined as follows.

1. The encoding is always UTF-8.

2. Body text is represented verbatim (no escaping, no special treatment
of white space, no named entities, no CDATA chunks, no comments).

3. Markup elements are represented via ASCII control characters X = 5
and Y = 6 as follows:

XML YXML
<name attribute=value . . .> XYnameYattribute=value. . .X
</name> XYX

There is no special case for empty body text, i.e. <foo/> is treated like
<foo></foo>. Also note that X and Y may never occur in well-formed
XML documents.

Parsing YXML is pretty straight-forward: split the text into chunks separated
by X, then split each chunk into sub-chunks separated by Y. Markup chunks
start with an empty sub-chunk, and a second empty sub-chunk indicates close
of an element. Any other non-empty chunk consists of plain text. For exam-
ple, see ~~/src/Pure/PIDE/yxml.ML or ~~/src/Pure/PIDE/yxml.scala.

YXML documents may be detected quickly by checking that the first two
characters are XY.

Bibliography

[1] D. Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] L. C. Paulson. The Old Isabelle Reference Manual.
http://isabelle.in.tum.de/doc/ref.pdf.

[3] M. Wenzel. The Isabelle/Isar Implementation.
http://isabelle.in.tum.de/doc/implementation.pdf.

[4] M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

37

http://proofgeneral.inf.ed.ac.uk/
http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

bash (executable), 2, 3
browser (tool), 17

display (tool), 30
doc (tool), 30
document (tool), 14, 23, 25
DVI VIEWER (setting), 5

emacs (tool), 11
env (tool), 31

findlogics (tool), 31

getenv (tool), 31

HTML, 22

install (tool), 32
isabelle (executable), 1, 2
isabelle-process (executable), 1, 7, 14
ISABELLE BIBTEX (setting), 5
ISABELLE BROWSER INFO (set-

ting), 5, 15
ISABELLE DOC FORMAT (set-

ting), 5
ISABELLE DOCS (setting), 5
ISABELLE DVIPS (setting), 5
ISABELLE HOME (setting), 2, 3
ISABELLE HOME USER (setting),

4
ISABELLE IDENTIFIER (setting),

4
ISABELLE JDK HOME (setting), 4
ISABELLE LATEX (setting), 5
ISABELLE LINE EDITOR (set-

ting), 5
ISABELLE LOGIC (setting), 5

ISABELLE OUTPUT (setting), 3, 5
ISABELLE PATH (setting), 5
ISABELLE PDFLATEX (setting), 5
ISABELLE PLATFORM (setting), 4
ISABELLE PLATFORM64 (set-

ting), 4
ISABELLE PROCESS (setting), 3,

4
ISABELLE TMP PREFIX (setting),

6
ISABELLE TOOL (setting), 3
ISABELLE TOOLS (setting), 5, 6
ISABELLE USEDIR OPTIONS

(setting), 5, 15, 22

java (tool), 28
jedit (tool), 12

latex (tool), 14, 27
logo (tool), 33

make (tool), 14, 33
makeall (tool), 34
mkdir (tool), 14, 16, 20, 24
ML HOME (setting), 4
ML IDENTIFIER (setting), 4
ML OPTIONS (setting), 4
ML PLATFORM (setting), 4
ML SYSTEM (setting), 4

PDF VIEWER (setting), 5
print (tool), 34
PRINT COMMAND (setting), 5
PROOFGENERAL HOME (set-

ting), 12

38

INDEX 39

PROOFGENERAL OPTIONS (set-
ting), 12

rlwrap (executable), 11

scala (tool), 28
scalac (tool), 29
settings, 1

theory browsing information, 15
theory graph browser, 16
tty (tool), 5, 11

unsymbolize (tool), 35
usedir (tool), 5, 14, 16, 21, 25, 26, 34
USER HOME (setting), 3

version (tool), 35

XSYMBOL INSTALLFONTS (set-
ting), 12

yxml (tool), 36

	The Isabelle system environment
	Isabelle settings
	Bootstrapping the environment
	Common variables
	Additional components

	The raw Isabelle process
	The Isabelle tools wrapper

	User interfaces
	Plain TTY interaction
	Proof General / Emacs
	Isabelle/jEdit Prover IDE

	Presenting theories
	Generating theory browser information
	Browsing theory graphs
	Invoking the graph browser
	Using the graph browser
	Syntax of graph definition files

	Creating Isabelle session directories
	Running Isabelle sessions
	Preparing Isabelle session documents
	Running LaTeX within the Isabelle environment

	Isabelle/Scala development tools
	Java Runtime Environment within Isabelle
	Scala toplevel
	Scala compiler

	Miscellaneous tools
	Displaying documents
	Viewing documentation
	Shell commands within the settings environment
	Getting logic images
	Inspecting the settings environment
	Installing standalone Isabelle executables
	Creating instances of the Isabelle logo
	Isabelle's version of make
	Make all logics
	Printing documents
	Remove awkward symbol names from theory sources
	Output the version identifier of the Isabelle distribution
	Convert XML to YXML

