The Canonical Csound Reference
Manual

Version 6.06

Barry Vercoe, MIT Media Lab
et. al.

The Canonical Csound Reference Manual: Version 6.06
by Barry Vercoe and et. al.

Table of Contents

P E A . e XXXii
Prefacetothe Csound Manualccooiiiiiiiiiiiiii e XXXil
History of the Canonical Csound Reference Manualcoooiviiiiiiiiiiiiiiieinns XXXl
(00177 o o101 [1 o= XXXiV
Getting Started With CSOUNGcovuniriiici e e e XXXVi
What'snew in CSOUNA 6.06couuuieiiiiiiieiiiii e XXXVili

L OVEIVIBIW ..ottt et e e e e e e e e e e e et e et a e aans 1
g1 oo (8 o 1 o o PP 4
The Csound COMMANGieiiiii e e e e e aaaas 5

Order Of PreCeABNCEieeiiiiii et 5
Description of the command SYNEaXcceueieiiiiiiiiiiei e 5
Csound COMMANG TINEuuiiiii e 7
Command-line Flags (DY Cat@gory)ccouuuiiiieiiiiiiiiiiin e 17
Csound Environment Variablescoooiiiiiiiiii e 28
Unified File Format for Orchestras and SCOreSooeuiieiiiiiiiniiiiieeiieeeieen 31
(D1 1 (o) o 31
EXAMPIE e 33
Command Line Parameter File (.CSOUNAIC)ccvuvviineiieeiii e 34
SCOrE File PreprOCESSING ... eeeeiieeeiii ettt ettt et eeeans 34
ThE EXIraCt FEAIUEccvniiiii e e 34
Independent Pre-Processing with SCSOrtocoeeiiiiiiiiiiii e, 35

L 1S o T 5o 11 T N 36
CsoUNd'S CONSOIE OULPULvueeeieiiiieeie e e e e e e e e e e e e e e et e e e eanaas 36
HOW CSOUNT WOTKS ...ttt et e e e 37
Amplitude valuesSin CSOUNGuuuiiiiiiiieeiii e 38
REAI-TIMEAUIO ...eniiii e eaas 40
REAITIME 1/O ON LINUX .eeiiiiieee e 40
WINAOWS ..o ettt e e et ettt e e e e ea e 48
IMIBE OSX oottt e et e a et aee 48
Optimizing AUiO /O LateNCYcvveeeii e e e 49
1600] 01T 10171 oo PR 51
Syntax Of the OrChEStraoouviii e 52
OrchestraHeader SEAtemMENtSc.uiiieiiii e 53
Instrument and Opcode Block Statementscccveeiiiiviiiieii e, 53
Ordinary StAEMENES ...oovniei e e e e e e aeas 54
Types, Constants and Variablesccovvviiiiiiiiiiiii e 54
Variable Initializationcooooiiiiiiii e, 55
EXPIESSIONS ...ttt et 55
DirectorieS and FilES 56
NOMENCIALUIE ...t 56
= o (0 PP 57
NEMEA INSEIUMENES ...t e e et eees 57
User Defined Opcodes (UDO)ciiiiinieiiiiie ettt 60
K-REIE VECIOIS ...t e e e e 60
Function Syntax in CSOUNGBcceuuiiiiiiiiia e e 61
The Standard NUMEIC SCOMEccuuiiiii e 62
Preprocessing of Standard SCOIESccuuviiiieiiiiiiiie e e 62
L% 62
TOIMPO e 63

S0 PP 63
SCOME SEALEMENTS ...ttt ettt e e e e e e e ees 64
Next-P and Previous-P SymboISoivniiii e 64
L 1210 1o 65

The Canonical Csound Reference Manual

SCOME MBCIOS ..ceeeiit ettt ettt et e e et et et e e e e eeenas 66
MUIIPIE FIlE SCOME ... e e e 68
Evaluation Of EXPreESSIONScccuuurieiiiiiieeeeiii ettt 69
SUNGS TN P-TIEIAS coeeeee e 70
001 =10 To PP UPTRPTRN 72
CSOUNTAC .o ettt e e e et e e e aaas 73

L0 o 11010 |V P 74
2T TH o [T 0T TS o 1N o P 77
L02STo 1 19 To 1 I 12 78
[1. OPCOUES OVEIVIEIW ...ttt et e ettt e et e et e e e e et eeeeaea s 79
SIONAl GENEFBIONS ..ttt ettt e et et e et e e et e e et e e et e e eanaaeees 83
Additive Synthesig/RESYNINESIS ... c.uiici e 83

2 F S ol @ o] = o] £ S UPPPTPN 83
Dynamic Spectrum OSCHIGLOISvvuuieiiiceee e e e 83

FIM SYNENESIS .o 84
Granular SYNENESIScoeeiiieiii e 84
Hyper Vectorial SynthesiScc.iiiiiii e 85
Linear and Exponential GENEratorscc..vviuuiieunieiiieiieeeee e e 85
ENVEIOPE GENEIAIONS .. cvvieiii et e e e e e e e e eaes 86
Modelsand EMUIBLTIONSooeiiiiieiiiiie e 86
S0 £ 87
RaNdom (NOISE) GENEIBIOISevuueiiiiiieeieiii e et e et et e et e e et eees 88
SaMPIE PlaybacKcooe 89
SOUNAFONES ...ttt et e e 0

o 0 01C 0 IS 011 1S 91
TADIE ACCESS ..t 92
Wave Terrain SYNthESISuuuiii e 93
Waveguide Physical MOAEliNgooeiiriiiiiii e 93
Signal INPUL 8N OULPUL ...t e e e e e e e ean e eees 95
File INpUE 8N OULPULiieeei e 95
S0 7= o1 95

S o 7= 1 oL 95
SOftWAIE BUS ...ttt e e e e e et e e e e e e eanas 96
Printing and DiSPlaYcccevuieiiiiii e 96
SOUNA FilE QUENIES ...t e e 96
SIgNal MOGITIEIS ..o e e 98
Amplitude Modifiers and DynamiC ProCESSINGuuevvurerruerrieerireriierenneeninaens 98
Convolution and MOIPhINGccueeeireiie e 98
DAY et e 98
Panning and SPatialiZationcccouiiiiiiiiiie e 99
REVEIDEIAION ...oeei et 101
SaMPIE LEVEl OPEIALOrS .. ceeniiiiieei et 101

S 7= I T 11 (= 102
SPECIAl EffECLS .vuiiii e 102
StaNdard FIIErS ..o 102
SPECIAliZEA FIITErS ... 104
WAVEGUIAESeiieie et e e ea s 104
Waveshaping and Phase DiStOrtioncceuiiiuiiiiiiiiiiee e 104
INSEIUMENE CONEFOL ...ttt e et e e e e e s 106
ClOCK CONLIO ...ttt eeeaa e eees 106
ConditioNal VAIUESceeeeeeee et eees 106
Duration Control StatemMEeNtSc.uiieiiiiiieiie e 106
FLTK Widgets and GUI CONtrollersc.oviiiiiiiiiiiiii e 106
FLTK CONAINELS ...ttt e ea e eees 109

FLTK VAUBLOIS ..ot 109

Other FLTK WIGQELS ..ovvniei e e e 110

Modifying FLTK Widget APPERIranCec..uuveeieviiieeiiiiineeeeiie e 110

General FLTK Widget-related OpCOdesSccvvvvnieiiiiiieiiiiiieeeeeiineeees 111

The Canonical Csound Reference Manual

INSErUMENE INVOCEEIONiiiiiiie e e s 111
Program FIOW CONntrolooieeiiii i e e e e eae e 112
Real-time Performance CONtroloviieiiiiiiieeir e 113
Initidization and REINItializationc.oiiiiiiiiii e, 113
Sensing and CONLIOLiieiii e e e 114
LB S ettt aes 115
SUb-INSrUMENt CONEIOLiiieii e 116
LI 0= = [1 116
Function Table COoNrolooieieii e e e 117
TabIE QUETTES ... e e 117
Read/WIIte OPEralioNSccvuiiii ettt eea s 117
Table Reading with Dynamic SEleCtionccccoviiiiiiiiiiii e 118
MathematiCal OPEIaLiONSceuueiiiieeie e e e e e e e e e eaeaas 119
AMPlItude CONVEITENSouviiiei e e e e e e e aaas 119
Arithmetic and LOgiC OPEratioNSuuuiiiiiiieiiiii e 119
Comparators and ACCUMUIBLONSuuueieeriieeiiii et e et e et e e eeii e 119
Mathematical FUNCLIONSoouuniiiiiiii e 120
Opcode Equivalents of FUNCLIONSoooeuiiiiiiiieec e 120
RaNAOM FUNCLIONS ..uuiiiiii e 121
TrigoONOMELIIC FUNCLIONScvveieiei e e e e e e 121
Linear AlgebraOpCodescooouuiiiiii e 122
ATTEY OPCOUESeeeiiie ettt et e e e e e e e s 132
PILCN CONVEITENS ...ttt e e e e aen s 139
FUNCLIONS ... et ea s 139
LI (01100 @] oo o L= 139
Real-time MIDI SUPPOIT .. .eeee et e e e e e e e e e e e annas 140
Virtual MIDI Keyboardooeeuuiiiiiiiec e 141
MIDTINPUE ettt e e e e e 144
MIDI MESSAGE OULPULevvviieeieiiieeeeiiie e et e e et e e et e e e et e e e e ea e e e aaen s 144
Generic INPUE @and OULPULoevnieeii e 145
CONVEITEIS ettt et ettt e e et e e e et e et e e e e eees 145
EVENE EXLENAENS .. .ceeieieeei e 145
NOte-ON/NOE-OFf OULPUL ... eeeieieeeeei e 145
MIDI/Score Interoperability OPCOUESccevviiiiiiiiiieeieiie e 146
System Realtime MESSAJES ... ccvuiiii it 147
SHAEN BANKS ... 147
S o Lc o = 0o oo [148
Short-time Fourier Transform (STFT) Resynthesiscccoovvvieviiiiiiiinccineee, 148
Linear Predictive Coding (LPC) ReSynthesisovviiiiiiiiiiiiieii e, 149
Non-standard Spectral PrOCESSINGccvvueeiiriiieeiiiiie et 149
Tools for Real-time Spectral Processing (pvS OpCodes)ccuuvveenieiiieeinneennnn. 149
ATS SPECral PrOCESSINGeevneiiieii ettt 150
LONSOPCOUES . ..vuieiiieei et e e e e e e e e e e e e aanaees 151
Array-based Spectral OPCOUESovvveiiiiieee e 154
S {100 U UPPPTTRUPPPTRRUPPIN 156
String Manipulation OPCOUESccevuniiiiiiiieiiii e 157
String CoNVErSioN OPCOEScuunieieiii et e e ea e eeees 157
VECLONTAl OPCOOES ...ttt et e e e e et e e e e eees 159
Tables Of VECIOIrS OPEIaLOrScvvveieeieeci e e e e e e e e e 159
Operations Between a Vectorial and aScalar Signalcooevvvveveiiiiiineninenn, 159
Operations Between two Vectorial SIgnalsc..vveiiiiiiiiiiiiiiieiieciee 160
Vectorial ENVElOpe GENEIEIONSuuiiiiiiieiiiiie et 160
Limiting and wrapping of vectorial control Signalsccoooveuiiiiiiiiiiiiniinnes 161
Vectoria Control-rate Delay Pathsccccoveeiiiiiiii e 161
Vectorial Random Signal GENEratorscc..vvvevnieiiieeiiieein e eeneeaaeeaenns 161
Zak PatCh SYStOM ... e 163
PIUGIN HOSHING ..t 164
DSSI and LADSPA fOr CSOUNGccuuiiiiiieiiieiiie e e 164

Vi

The Canonical Csound Reference Manual

VST FOF CSOUNM ...t e e e e s 164

OSC AN NEIWOTK ...t e e e ees 166
L S OSSPSR 166
1= Y 5 PR 166
REMOLE OPCOUES ...ttt e e e e 166
MIXEN OPCOAES ...ttt ettt e e e e eaaas 167
Signal FIow Graph OPCOOEScveeiiiiici e e 168
7= o o T O o o0 o - 171
LUB OPCOUES ...ttt ettt et e et e e e e e e e e aa s 174
PYINON OPCOUES ...ttt 179
INEFOTUCTION <..ee et e e eeans 179

(O 0o (= B | 179
IMage ProCeSSING OPCOUES ...o.uuiieeeietieeei e e et e e e e e e et e e et e e et e e et e e et e e et e e eanaeeees 181
Y 1 1 7o o L= 182
MiSCElANEOUS OPCOTESvuieieiii ettt 184
T = = o PP 185
Orchestra Opcodes anNd OPEIaLOrSuieuuaeiieeii et e e e e e eeenns 211
PSP 212
FAEFINE .o 214

T 0o 11 o L= PP 218
BUNAED e 220
FTAED L 221

BT NOEE 223

BN AIME e 224
PP 227
PP PP 229
bSPTIR 231
D UPPRPN 233
S UPPRT PN 235

G PSP 237
S PSPPSR 239
PRSPPI 242
T TP PP 245
S 248
PSPPSR 251
SRR 253

T OO TP TPPPPRTRPPPR 255
LS PPT 257
.. 259

00 SRR N 261

S PP 264
DS N 266
PP 267
PSPPSR 269
TSP 270
P 271
PSPPSR 272

BB e et aae 274

o Y= PSPPI 276

0 U UPPPTPPN 280
BOSYIN e e 283
BOSYNE e 285
BOSYNEZ oo a e aaa 288
AFEOUCK ..o 291
0 293
= Y £ o 295
BIMPAD e 298
AMPADTS . 300

Vii

The Canonical Csound Reference Manual

0] o]0 1o 302
AMPMIAIA oeeee 304
= 0= | 1 306
210) | T 309
= (0] [T 311
= (0] = G 313
= (0] 1= G 315
AN 1S = (o [N 317
ATSAAUNZ oo e 320
PN S U1 == o [323
YN IS 0= 325
AT S N O et 328
F N IS 1= o (== [331
N IS (== (o [N 333
YN S = o A 337
ATSPATTBITAD eeveeeeii e 340
AN IS S 1 Lo 342
0720 T 346
DAL ANCE . eeieiei e 350
DAMDO0O ..o 352
DAIMIOTE] . o.eeee e s 354
o] o101 11 1 1 356
o] o101 | = 361
DELArANG .. oooeei e 364
DEXPINA ..o 367
o]0 714701 XN 369
o] 0] 1116 [o NPT 371
o1 2T AT 374
DIUAT ..o e 376
DIQUATA ... e 380
o] 11 S 381
BOMEZ e 383
BULDD e 385
01111 o) 386
UL e 387
UL D e 388
010111 o] o PP 389
010 |1 =: 1 o] (N 391
BULLEIND e e 393
BULLEN TP e e 395
01011 () I 397
DUZZ e 398
0724 400
(0721 07 <~ 402
CAUCKY e ettt e 404
CAUCKYT .ttt et e e 406
(o= | P 408
(o7 | 410
(0= | 413
(0011 (o X 415
(070 0 (0. {0 1 PP 417
(01 17210 1 o TP 419
ChaNQEA ... e 421
(02 7= [423
(01 171010 1 424
ChebYShEVPOLY ... 425
(01 110 (010)R TR 428
(o 1|0 1T 430

The Canonical Csound Reference Manual

CONCIEAN ... e e 432
ChNEXPOIT .o e 434
CHNEL ..o e 436
CRINMIX e et e e 439
ChNPAIEMS ..o 441
CNNSEL e 442
CRUBD <. 445
o100 o 449
(610 (o (o TR USRI 451
ol P 453
o PSPPSR 455
[0l 1 o PP 458
ClOCK O e e 461
CLOCKON Lot 463
CIMPIXPIOO <.ttt e et e e eeba e eees 465
(0230 0 (o TP 467
[0:0]10] o PP 469
[oi0] 101 o] 0|V AP PTUPTPPTP 471
(00 141 0] == 473
o0 0] 071 1= 05 475
COMPITEONC ..ttt ettt ettt e e e et e e e eeba e aees a77
COMPITESEE .ttt e e e e e et e e eebe e eees 479
(000] 0= ol AT 431
(o] 111 {0 I PO 484
(070 01V] = PSPPI 485
COMVOIVE ..ttt e et e et e et e e et et e e e e et e e e eebe e eeees 486
COPYBZFLAD ..oeve e 490
COPYT2BITAY .ttt ettt ettt ettt e et e e et e e e eeba e eees 492
(001 PP 494
(00155 <o [PPSR 496
(0001350 | o T 498
001553 | 500
001 o 502
o001 0 1Y P 504
(00015721 ool o HO PSPPI 506
(01015 1 01T [P PTUPTPPTP 510
CPSMIAID .o 512
ot 01 2101 1 o] o 514
0101 o P 518
CPSICN e e 521
(0101511 01T PP 524
(00015 [0 LT 527
ot 0111 530
ot 015174 0o 533
(01 010 111 PP 537
(61 010 o) (o2 PP 539
(0l (01557 542
(o0 101 1 1 PSPPI 544
(o1 o o OSSP 547
o 1 ST UPPRTTPN 549
(o1 1220 ST 551
1 USSP 553
11 o PSPPI 556
(o0 < 1 40 To [PP 557
0= 0 USRS 560
aEE .t 563
07 1= 565
0 o USSP 567

The Canonical Csound Reference Manual

(07 1 1o T 569
(0185720 0] 571
0 (o o] o G 573
0 [0 o] o o2 575
0 (oo VPP 577
JE Y oo 579
ElAYL e e 581
EIAYK e e 583
B AT e e 585
E AW oo 587
01 = o TSP 589
01 7= TSP 592
01 7= o U UPPRTPN 595
(01 -0 0 598
EITADX e 600
EITADXW et 602
(015 2700 o ¢ TR PP 605
0 PSPPI 607
(0TS 1o | = 1 609
GISKIN e 612
ISKIN2 .oeeiiiie e e e e e aaa 615
(011 o i TP TP PTTTPPPRTPRPPPPN 619
iSPIAY et 621
(011 (o APPSR 623
(01 o] o 1 O UPPRTPN 625
IVZ e 627
(0 [0] T 1= SR OO TUPPRTTRPPN 629
OWNSAIMP .ttt e et ettt e ettt e e e e et eeeeba e aees 631
(0[] Y7 (= ST PUPPT 633
ASSIBCHVALE ..vviieeiiiiie et e e e e et e e e et e e e b e aae 635
ASSIBUAIO ...ieiteeeiie e aae 637
ASSICHS et 639
0SS T T 641
(0155 T USSP 643
(0 [8 T 0T o) G PP 645
UMIPKZ .ot e et e e et e e 648
0 11 0T 0] G 651
011 0T 0] 654
0115 1 o 657
011 PSPPI 659
011 2 PSPPSR 661
Bl OB e 663
Bl BT e e 665
BN e 667
< 70 669
< 0700 o IO TP PTTTPPPRTPUPPPIN 671
< 01771 o) G PP 674
< 01771 o) S PP 677
< 0] 17 o 679
<o |11 USRS 681
o7 S 683
(Y | PP PP TPPRP 684
L= V7= 1.1 687
2ol (= PP 689
EXITNOW 1.ttt ettt e et e e e e e e e e et e eaeba e aae 691
24 693
EXPCUINVE ..ttt ettt et et et e e e e e e e e e 695
1S4 07 1 1 PP 697

The Canonical Csound Reference Manual

o o 699
EXPPANAT ©..ieeeeei e 701
LS 0 <o PP 703
S0 < = LT 705
LSS o |« PP 707
EXPSEODA ettt 709
(0 o | S PP 711
FAUSTAUTIO .. 713
FAUSICOMPITE ... 714
1= 0 (o 1 PP 715
FALSIOON . e 716
FA Y N e 717
FArEYIONI .o 719
Il OB et 722
1111 o PP 724
LTS = P 726
FHENCHNIS ..o e 728
1= o= PP 730
1111 PP 732
FHEVAII .. 734
FHTAITAY et e 736
LS PP 738
1= 22 PP 740
TP 742
PP 744
BN e e 746
OB e 747
LAY e 749
1= S 0 PP 751
FLBOX ettt 753
FLBUEBANK ...eeeieieei et e e 758
[I o TH 11 (o o TSP 761
o e[0T =T 1 o o 766
[oo Lo PR 769
[I el0] (o 2T TUPTRPPTN 771
FLCOUNE oottt e e e e e e enns 772
FLEXECBULION ... e e e eens 775
L 0 T £ 7= 778
L o 0 o LU 779
FLOIOUPENG ...ttt 781
[e (018« 1= oo [N PTRPPTN 782
FLRIAE «ooveeeee e 783
FLRVSBOX ..ttt 784
FLAVSBOXSEVAIUEuiiiiiieceeei e 785
L Oy ettt 786
FLKEY TN e 789
FLKNOD et 791
FLIBDEL e 796
L I o= o £ = TP 798
FLIMOUSE ...ttt ettt e e e 799
FLOOPET . 801
FIOOPEIZ ..o 803
L1 o S PP PP 805
FLPACK e e 807
I 7= o 4 = o 810
L I 7= o G o P 811
FLPANEL ..o 812
FLPANEIENGoeniii e 815

Xi

The Canonical Csound Reference Manual

FLPANEL €N ..o 816
01011 817
FLPIINTKZ L.t 818
L I o = T 819
L UN e 822
FLSAVESNAD ...eeeeeeeee ettt et 823
o o) PP 828
L IR 0] o 831
FLSCIOH_ N0 ...eeneieei e 832
FLSELATIGN et 833
I 1 2o ST PT 834
L IS (@0 o 836
L IR (o] o2 838
IS 0 839
FLSEIPOSITION ...uiieiieiie e 841
LB SIZE v 842
FLSEISNED .. eeiieeiei e e 843
FLSESNBPGIOUD ... et 845
I I ST SPPR 846
L IR 1= T (@] o 848
FLSEITEXISIZE .oniinii e e 849
L I = Y o UPT PP 850
I Y PSP 853
FLSEIV @ ot 854
FLSNOW ettt 855
FLSIABINK ...t et 856
FLSIHABNKZcovvieceiiee et e e e e e e 860
FLSIABNKGEIHANAIEccvviieeieiiceeee e e 863
FLSIHABNKSELuiiiiiiieeiiie et e et e e et e e e et e e e e aen e 864
FLSIABNKSEIKeiiiiiieeeeii ettt e et e e e 865
FLSIABNK2SEL ... cceeiiieeiiii et e e 867
FLSIABNK2SELKceveieeiiie e 868
FLSlidEr e 871
R - = PSP 877
FLEADSEND ... 882
FLIADS @0 oo 883
= PSP 884
L I = 887
LT T 1 | PP 888
10 o [PP 890
110 o [PP 892
FIUIACONLION ...t e e e e 894
L T =g T = 897
L 70|07 900
FIUIANGLE <.oece e 902
L0 TTo [| PPN 904
FIUIAPrOgramSEIECL ... 907
fluidSetINterpMELhOdoieei e 910
L IR 7 | 912
L IR =Y oo 914
FLVSHOBIK ...t e e e eaas 915
FLVSHABIKZ ...vviciiiice et e e e e e e e e e et e e e e 919
L T4 1 o U UPTRPPTRN 921
TN e 924
FMDELL oo 926
FMMELAl ... 929
TMPEICE] e 932
TMENOAE ..o 934

Xii

The Canonical Csound Reference Manual

FIMVOICE .. e e 937
FIMWUITIE o e eaans 939
0 942
) 72 945
L0 11 L ST 951
0o P 953
0] o PSP 956
FOHOW e 958
FOHOWZ e 960
L0 o | P 962
1107 o1 PP 964
0 | PP 966
OULT ettt 970
OULIT e e 972
L0101 974
FPITNEKS e e 976
L1811 0L T PSP 982
L= PP 984
FraCtAINOISE ... 986
FramEDUITEY ... 988
LS. £ o1 990
L0 210 S 992
FECOMV e e 994
Lo o TP 997
L= PSPPSR 999
L0 7= 1001
FEOBNONCE .. e 1004
L0011 1o RO UPPPPTRUPPPTN 1006
1= o PRSPPI 1008
110 = o PSPPSR 1010
110" | UPPPTSPPRN 1011
L0 oL 1012
L0010 1014
L VL= PP 1016
155z Y/ PSPPI 1018
155 PSPPSR 1019
7= 0 1021
07211 o = 1023
012 1 PP 1025
0= 0SS T PO UPPRTRN 1027
(0 F= 0SS [o [P UPTPTTPPRN 1029
ODUZZ ... 1032
01 = 0 1034
(015 7= 11 - 1Y/ 1036
OENAY ettt 1038
GENAYC ettt et 1042
(015010 |7 QPP TUPTTPPRR 1045
0T (o o 1049
0T 1 0 1051
0157 1052
QOGODED .o 1053
OOT0 et 1055
0=] o TP 1057
0170 2 1059
0] =11 1063
000 = 1068
0 [o PP 1071
REIMON e e 1073

The Canonical Csound Reference Manual

T2 01010 12/ 1075
010 13T (=" R 1078
000 | 1 (TP 1080
9111 o= AP PRTP 1082
RIFEAITY .. 1086
101010 Y 1090
NIEFMOVED .o e e s e e e aas 1093
T EVEID e 1096
1A = TR PREPRP 1098
1S o0 1= ot 1101
1775 1104
0122 TR 1108
V25 1113
I ettt et e e e e e e e e e ea e e e e ea e eaeeaeaeeaeeaeeaeea et e ra et eaeereraaeaaeraaas 1116
P 1117
L0V 1122
oo (o R TP 1124
7] o TR 1126
g =T 1= (= (= T 1128
=T 1= = 1130
IMAGEOELPIXE] ... et 1132
IMAGEIOBA ...t 1134
IMBOESAVE ... ettt ettt et et et e e et e et e et e et e e it et e e aan s 1136
IMBGESELPIXE] ...t 1138
IMIBOESIZE ..eveeeei et e et e e e e e aa 1140
o 1142
11 72 1144
5 o 1145
1 1147
31 TR 1148
11 (3 1151
1 (o240 1152
111 (o2 1153
11 1=: = 1155
1= 1158
11T TR 1160
3 1161
T T 1162
1T PP 1163
] (o PP 1165
1S 1166
LS = 01070 S 1168
INSTIODEL ..o 1171
1 1173
1 P 1175
1= o TR TP 1177
11 1 o IO 1179
10177z 11 1182
1)L 1184
34 1185
= To: (oY AN (o (o] o NPT 1186
JACKOAUAIOINCONNECEviiiieieie et e e ens 1187
N0 0 TN U0 (101 @ 10 | TP 1188
JACKOAUAIOOULCONNECEvieiieieiei ettt e e ee e ens 1189
JACKOFTEEWNEE] ... e 1190
I o 0] 0 1191
ot (o] 1 TP 1193
JACKOMIAIINCONNECE ...t e e ens 1195

Xiv

The Canonical Csound Reference Manual

JACKOMIIOULCONMNECEeiiiiie et e et e e e e e e eees 1196
JACKOMITIOUL ...t e 1197
N 7= ox o\ 0] 1= | 1198
N = o1 | ISP 1199
JACKOTIANSPOMT ... et eeans 1200
[= 0 o PP 1201
L= PP 1203
L= 2SS 1205
JOYSHICK ettt e 1207
JOPIINE e 1210
PP 1212
0 T o 1213
K e e 1215
G 10 1216
[ENAITAY ettt 1217
o S 1219
1T 0 TP 1221
1] L= ST RPN 1223
1T 07 o PSP 1225
1] 07 o | PSPPSR 1227
T (o 1230
1T 0= o o PP 1232
1 0= s TP 1234
T 1S | o 1236
1T 0= | 1238
[OCSENA et 1240
[Tot= T o PSPPSR 1243
L0 ettt 1246
T 1 0 ISP 1248
oo 2 1250
0T 11 1252
o (o1 = 1254
[Fole] o I o =SSP UPPRT 1256
[ol] o I o | RSP PTUPPRTR 1258
ToTe] o = 2P 1260
FoTe] o I L ST UPT PPN 1263
oo =" R 1265
a0 015" o | o 1267
[ole] o115 ="s H PSPPSR 1269
[ole] 031G <o IR TSSO UPPRTRN 1271
[OFBNZ e 1273
TOFISIAA ... e 1276
Lo TS 1370 o] X 1279
0 o] 1282
0o | 1284
oS o | PP 1287
Fo S ol | b TP 1290
[OWPBSSZ ...t 1293
10T = PSP 1295
LT === PSPPSR 1297
o)1 TSP 1299
[DFTESON . 1301
o] T2 S o TP 1303
o 10 10= 1 o RSP PPT 1305
001 o 1 1306
00 1S o1 1308
Fel0 S ol - RSSO UPPRT 1310
Fole S ol 1= TSP UPPRTRN 1312

XV

The Canonical Csound Reference Manual

0 T0 1S 1= 2 1314
0] == 1316
Fol =o)L PSPPSR 1319
[PSNOI .. 1322
[PSNOIAD e 1324
01 Lo TSP 1325
L= == 1326
7= o o L= 1327
TUBL OPCAIL .. 1332
7= 1335
1170 = 1337
0710 (S 1339
7= 0 1343
7= 1070 [1346
00721010 (o | IR 1349
015072 PP 1351
000 11010 = N 1354
172555 T P 1357
107)N 1360
QT ! o1 1362
=) 012 oot U] o P 1364
7= 7€ 0! o1 | 1 0 1366
0020 | [0 1368
007> G 1370
T2 = = 1372
70 o o2 1374
MAEIAY e 1376
000510 =0 1378
00010 =0 | 1380
7= 1 T 1382
MIAGIODEl .. oo 1384
01T ot 1385
0010 [o322 P 1387
0010 1 o 1389
MIdichanNNEI G tEITOUCKH ... e 1391
MIICRN e e 1393
MIdiCONITOICNANGE «..eve e e 1396
011 [o 1 1398
0010 [T (== | 1400
0010 1T o 1402
01T [T T=S = 0 TR 1405
[0 1 101 (=: o) i 1406
00T [T 0] =10 To: o1 1408
00T [T 10) =001 Y 1410
(00101 310) (= 0] [0 Lo AP 1412
MIAINOIEONPCI ... e 1414
00110 [T 0] V2 1416
0010 1 o] o T 1418
01T [0 | 1421
MIdIPITCNDENGeeiee e 1423
MIdiPOIYAFtErtOUCH ... 1425
MIdiProgrameChangeuiiiiiie i 1427
00T T0 1= 011 RPN 1429
000 (= 1210) 1431
0011 1434
01T =1 o1 1436
T gr= 01 ot U o P 1438
00T 7= "ol B 0 1440

XVi

The Canonical Csound Reference Manual

0017210 1442
0T - Y/ 1444
0 011) SR 1446
MIXEISEILEVEL ... e 1448
MIXEFSELEVEL | oveiiiiii e 1451
MIXEIGEILEVELeiieieie e e e e 1452
Y DD 2= 1 1454
Y DS g R (== AV 1456
YLD (O == P 1458
0101070 [1460
000070 1010711) 1463
01000]18 (o 1468
1700 o 1470
0100 =T (o[1472
(1070700 1Y PSP PR 1474
(1070700 1Y/ TSP UPPPTRN 1476
010101 o | 1478
1070201 o PSSP RPPTN 1480
0] 25 1482
0] 10 S 1484
001100 PP 1486
INUITITAD et e e et e e e e e e 1487
110 1489
001 0€= 0 £ 1491
70 0101 £ 1494
0t 07 0 K 1496
(1SS 1 0= o L PSPPSR 1498
01 1501
011 71 72 TP 1504
0TS 1507
§10)= o i 1510
[10]0< 0 [1511
[910]1050] 10 0 2 1512
1011050 10 1 | 1514
100111 o 1516
L T(=.YL=: 1 o 1 1518
10 o 1521
557 1 0o 1523
157> 0 = 1525
1 1 1528
011700 TP 1529
(0701 r= Y/ T PP 1531
00 o 1= 1533
(07 11 0o 1536
OCEMIAID oo e 1538
(oot 10 010 1 2o R 1540
(ooi 1o o [P UPTTPPRR 1543
(o= o U i =, 1546
(o]0 0 L= 0 1548
OSCIINK e 1553
(0= o1 1 1 1558
(0= o1 1 1 1560
(01 o7 | 1 1562
(07 o | 1564
(0= o | 1 1566
(0= o | 112 1568
OSCHTKED e 1570
(01 o 11 £ 1572

The Canonical Csound Reference Manual

(0= o | | [P
OO oo 1574
OOCIS v 1576
s 1578
IS v 1579
OSSN oo 1581
OSCRENM 1585
OUIBZ .o 1587
QUL 1588
QUG 1590
OUICH .o 1592
QU 1595
OUIBL oo 1596
OUICLA oo 1598
ey 1600
SRl o 1602
g 1603
OUIPE oo 1605
QUKL - 1607
OUIKELA oo 1609
g 1610
R, 1612
g 1 1613
QUKD oo 1615
OUIEEA oo 1618
OUIEH oo 1620
QUK v 1621
OUIBIKIL oo 1623
o 1624
Oy 1625
B 1627
o 1629
Qo o 1631
Ly 1633
QUG - 1635
OUISL o 1637
OUISD 1639
OUIS 1641
OUIVBILR .o 1643
UK 1645
e ... 1646
Bt 1647
POGURLE v 1649
D 1651
P2 1653
By 1655
e 1657
Pl 1660
B sy 1662
P EAIC o 1669
O 1673
B 1675
B 1 1677
il 1679
By 1681
B T 1683
ety 1686
oIV o 1689
... 1692

The Canonical Csound Reference Manual

pdclip .o,
Py 1695
Py 1698
PRI 1701
e on B 1704
BN 1706
B 1710
2 1713
B or 1717
OGO 1719
B T 1721
B 1724
By 1728
B o 1729
ey 1 1732
Do T 1735
ety 1737
gy 1740
Bk 1742
By 1744
ooy | 1746
POEL 1749
el 1751
PONMOMIEL oo 1753
B 1756
B 1758
PO 1760
POSKI o 1763
powershape..._..._,_,_,_,_,_,_,:::: .. 1765
e 1767
e © 1769
B 1771
PORIENO o 1773
B 1776
itk S 1778
B 1780
g 1782
g | 1784
B, 1787
g 1789
POt 1791
. 1793
DR 1795
DR 1797
B pay 1800
B 1802
Dok 1805
g 1807
Mg 1809
] 1813
B 1815
DUErP 1818
pvread ... 1821
oy 1823
s 1825
vl 1827
o B 1830
o 1833
.. 1835

XiX

The Canonical Csound Reference Manual

[0V o] o H
by 1837
et B 1839
g e 1841
ety 1842
e 2 1845
B 1847
a1 1849
ey L 1851
e 1853
B 1855
ey 1 1857
gy T 1859
e 1 1862
e 28 1864
e 1866
i 1868
A 1870
By 1872
Ve 1874
e L 1876
e 1878
e 1880
o 1881
B 1882
@ 1884
vamorgh B 1886
el 1888
RO v 1891
By 1893
By 1894
ey T 1897
o 1900
e 1902
B 1904
owarD ... 1906
ety ... 1908
N Gy 1910
T 1911
D iy 1912
Doy 1 1916
D e, 1917
 n Oncodes ... 1920
VI OPOOES vt 1921
Pl o 1923
T 1925
PBIN occrrr 1927
[0 1929
A v 1931
AN oo 1933
sl B 1935
FAOM oo 1937
FAAOMN oo 1939
oo 1942
readclock ... 1945
FOACIOK oo 1948
AL o 1950
FOAMT oo 1952
.. 1954

XX

The Canonical Csound Reference Manual

(7= 0 |02 1957
(7= 0 | ¢C J 1960
FEAAKA ... 1963
(220 1S o0 (<Y 1966
(27210 1S ot (02 o [1968
FECEZ2PON ..o 1970
11 1972
(S 7= < < 1974
LS 1010]1= oo g S PP 1975
(15010377 1976
1< o] 11 01U PT P 1977
(=50 T 1979
(5= 0] 0| 1981
(S-S0] N 1983
(15501 G 1986
(== 0] 0) 4 1988
L5001 TP 1990
(=5 0] A 1992
15 0 1995
(100 S 1997
(/= 1 o TP 1998
(V7= o V22 2000
(V7= 0= o 2001
STV 0 1S oo (= 2003
17474y 2005
1 2007
1 S 2009
100 (o TSP TP 2011
(= T 2012
55 2014
11270 2016
1270 1 2018
(010 o R 2023
FSPIINE < 2025
ot [0t 2027
SLBDIA ..o 2029
£ 724 o) 7 2031
SAMPNOIA ..o 2033
LS 00 7= 1o 1< SO SOPPTTPUPPPRTRUPPPN 2035
(S oz [T 2037
s [g - Y PP PT P 2039
LS o= 0072 1010 0= S 2041
LS o= 1 2042
SCANLADIE .o 2045
Lo [2047
SCNEOKWINEN .o ettt e et e e et re e ens 2049
SChEdKWHENNAMEA ... oot aeens 2052
SCNEAUIE .o e 2054
SCHEAWNEN . 2057
£ o0 (= |1 2059
S 0] £ 1101 PSP UPPPRTRSPPRN 2061
(S 2<.o I TP 2063
1S S G (ST 2065
LS < 110 T 2067
LS 1157 2069
1SS 115 Y 2070
SEITAIBEGIN e e 2074
SEMTAIENG oo s 2076

XXi

The Canonical Csound Reference Manual

SETAFIUSN Looe 2077
SEITAIPIINE oo e 2078
SEMAIREAD ..vui i 2079
1S Y (= PP 2081
SEITAIVVIITE .t 2082
SEOLIMEZ ..ttt e 2084
LSS0 (1] .1 2087
LS (o 1 1 PSPPSR 2090
SEEKSIMIPS .ttt 2092
S0 PP 2094
SEESCOMEIIOS .. evienieu et e et et et et e ettt et et e e et et e e e e et e et e e e e e e e e e aaas 2095
LS] PRSP 2097
S] 1 PRSPPI 2099
SEINSITBM e e 2102
LS TS | PP PPPPPPR 2105
S S I et 2108
LS o L SPPPRPPRN 2110
SFIOOPEY .. 2113
LS 072555 o | 2116
SE LY B e 2119
SEPIAYBIM e 2122
S A et 2125
SEPLYIM e e 2127
LS o)L PPN 2130
LS =S 2132
LS 7= 1< PSPPSR 2134
LS T 1 TSP 2136
SNITEOUL o 2138
LS o 010 o [PP 2140
S] o PSPPSR 2142
LS o o PSPPSR 2144
S 1 1 Y TP UPPTPPT 2146
LS T Y o T PSP UPPPRTRUPPPN 2148
SEGNDEIS oveniii e 2150
S 1o = - PP 2152
LS T (= o1 TSP 2154
LS T (< o1) PSPPSR 2156
SHAErLBLADIE ... 2158
SHAErdBtablEf ...oooveiiie e 2160
LS T (= ¥ PSPPSR 2162
LS T (= 724 PSPPI 2164
SHAErB2LADIE ... 2166
SHAerB2tablEf ..o 2168
SHABIBA .. 2170
SHABIBAS .t 2172
SIderBAtable ..o 2174
SHAErBALADIEf ..ot 2176
LS Lo (< TSP 2178
LS T (< PSPPSR 2180
SHAEIBLADIE ... 2182
SHAEr8LAbIEl ... oo 2184
SIAErKAWEDceeiii 2186
LS 070 oo o R PP 2187
S 010 T2 o T PP 2189
LS 010 V7 o1 2193
LS o0 (= Y PSPPSR 2197
SOCKSENA .eeitii i 2199
SOUNGIN et 2201

The Canonical Csound Reference Manual

S0 oL 2204
LS 7= 11 o [PSPPSRI 2209
LS 07z 1o PPN 2217
LS 07z 11 o | PPN 2221
LS o 1 SRR 2226
SPECAAAM .ot 2230
S 0= oo [2231
S 0= o0 "o T 2232
SPECFTIT e e 2233
SPECRISE ..t 2234
S 0= o1 PP 2235
SPECSCAL ..ttt aaas 2237
LS 0701 o 2238
S0 1 0 2239
ST et 2241
LS £ 011 TSP UPPPRTRSPPRPN 2243
S 01011 PP 2245
SPSENG ettt et e e e aans 2247
LS | 2249
S ST UPPTPPT 2251
LBV A .ot 2253
S) PSPPSR 2255
STKBANAEAWG ..ot a e 2257
STKBEETIIEE ...ttt 2259
STKBIOWBOL ... 2261
STKBIOWHOIE ... 2263
Y I =01 2265
Y 11 2] = 2267
] 1N T 111 = S 2269
STKDIUMIMES o e e e eens 2271
STKFIULE e e 2273
STKFEMVYVOICES ...ttt 2275
STKHEVYME ..., 2277
STKMaNAOIN e e e ees 2279
STKMOUAIBAccvviieiiiie et e e 2281
S 11541 Lo o PP 2283
STKPEICFIUL e e 2285
STKPIUCKE ... 2287
STKRESONGLE ... et e e e ens 2289
STKRNOUEY ...vieiiiii e 2291
Y 16 = (e 0] 1 P 2293
S 116 1= G £ U PR 2295
ST SIMPIE e e 2297
] 16] PSP 2299
STKSUTKEIP et 2301
STKTUDEBEI ... 2303
STKVOICFOMM <t e e e e 2305
STKWHISHE e 2307
Y I L0 [L= 2309
LS 7= | PSPPSRI 2311
SIICNAIK .. e 2313
ST CPY it 2314
SEPCPYK et e aaas 2315
S (o= | PP TP UPT PP 2317
SEFCALK .t 2319
S o1] 0 2321
SEFCIMIPK et e 2323
S L= o] o TP PP 2324

The Canonical Csound Reference Manual

SEFFOMUIT e e e eees 2326
S 0 T 2328
SENOEX .t 2330
SIINAEXK vt 2331
LS 1 = o PSPPSR 2333
SITENK e e 2334
LS4 [1= PSPPSR 2335
SETOWETK .o 2337
LS U] 1o (= PP PPPPR 2338
SITNOEXK ceneeie e e 2340
LS S PPN 2341
SIISUD < 2343
SEFSUBK L. 2345
LS 11 (0 PSPPSR 2346
LS (0o | PSPPSR 2347
LS [(o PP 2348
S 1 (0 PSPPSR 2349
S (U o] 1 ST TPTPP 2350
SEUPPEIK vt 2351
LS T o] PSPPSR 2352
SUDINSEINIT L..eeeee e e 2355
S 0 PP 2356
S0 00T - Y TP UP TP 2358
SV O e e 2360
LS Y0 1 2363
LS00 2366
SYNCPNASOE ettt et eee 2368
SYSEBIM ot 2372
11 USSP 2374
12! o PSPPSR 2377
122! o o PSPPSR 2379
12210 = PSPPI 2381
TAIES Lo 2383
TBDIECOPY ..ottt 2384
1= o L= {1 PPN 2387
TADIEFITENT ooeveee e 2389
1= 0] 1= . 2391
L2210 = PSPPSR 2392
TBDIEICOPY v 2395
(= o= Yo o1 TSSO UPPPPTRUPPPPN 2396
BBDIEIKE e e 2397
TDIBIMIX et e 2400
BBDIBIW Lo e 2402
FBIEKE L. e 2405
LA EIMIX et 2408
BBDIENG e 2410
€2 0] = = PP 2412
L6211 15 o 2415
taDIESHUFTIE L. 2417
BBIBIV e 2419
BADIEWEAL ..t 2422
TDIEIWKE et e 2425
TADIEXKE et 2428
L6210 126 2431
tADMOIPN ..o 2433
tADMOIPNA ... 2435
tADMOIPNEK ... 2437
TADMOIPNI e 2439

The Canonical Csound Reference Manual

L= 0] - Y 2441
162 0= o 2442
161015 0 0 KT 2443
BB2IVS it 2445
16101010 U 1 01T 2446
L= N 2448
16118 0 [2450
1= 21107/ 2452
L= 11 17722 2454
11017/ TP 2456
12010101 S SPPPRPPRN 2459
[(1] o[0T PP TP TPP 2462
L= 00170 o= | 2464
L= 001707 2466
L1 0o T PP 2468
TMEOSEY ..ttt et 2470
101001 10 1 PP 2473
LU LS 1S 2475
L0101 G 2477
L0101 2479
L] 200010 | TP 2482
LUAVZ= T 2484
L1810 T 2486
L0 1N 2488
10011 < 2490
10] =GR 2492
LU= 1010 0] 0 NPT 2494
EFAOSYIN e 2496
L= 1 o [T T TP P TP 2498
L2115 | o 2500
L2115 | 2502
L 05\ 2504
LU0 1L TP 2506
TrRIGNESE . 2508
L (o< S PP 2510
LU0 S = o PP PP 2512
LU0 =110 [2515
L0 07T 2517
L0 101D T 2519
LU o= [T 2521
105 01 i AP 2523
LU o)LL PP 2525
L0 170) 2527
L0 1110) 72 2529
0 o R 2532
00T =11 o 2533
0] {1 TP 2535
01025 0] o PP UPTP 2537
U1 7=T0 1 [0 o P 2539
o 2542
AVZ= o 1 (o) PP 2544
VA e 2546
A7 [o [PPN 2549
(V7= o o 1Y 2551
L2 [0 1Y 2554
172 < 2556
VAIPDESS ..ttt 2558
AV = PP 2561

XXV

The Canonical Csound Reference Manual

V8D e 2563
VBOBPIMOVE ... 2566
VB0 - 2569
VBBDGIMOVE ... 2572
VDBDLO .. 2575
VDBPLOMOVE ... e 2577
VDBDA . 2579
VBBPAMOVE ..o 2582
VDBD8 ... 2585
VBEPBIMOVE ... 2587
VDBPISINIT ... 2590
VDBPZ oo 2592
VOBPZIMOVE . .oeeiii e 2594
VCEIIA e 2596
Lo o TP 2599
Aol 0 2PV PT PPN 2602
{00 X4 PP 2606
VCOZITE e 2608
10 24 1 o PP 2610
VCOMD L.t 2613
L0 PR PRPPRPR 2616
(oo o)V TP PP TPPPPPR 2619
1 L= - YT 2621
1 L= = Y2 TP 2623
1L 1= 2625
[0 L= > 2o 2627
VOBIBYXS oottt 2629
VOBIGYXW .ottt ettt 2631
VOB AYXW - eeee ettt ettt e e e e et e e et e e e e e aans 2633
VOB GYXWS .ottt e e e e a e 2635
VABIAYK .o 2637
VAIVV Lo 2638
VIV T e 2641
VECAEIAY ..o 2643
VBIOC e 2644
LTS o PP VPP UPTPPPRPPRPN 2646
RVZ= 4 o T 2649
RS 0==o 2651
VEXPIV ettt ettt e e e aa e 2653
VEXPOV I ettt ettt 2656
VDS e 2658
1Y o T 2660
11 o= o TSP 2662
1Y PP 2664
VM e e 2667
VIINSEg it 2668
VIOWEES .t ettt et e e et e et e e e e aaas 2670
VL0107 o R VPR UPTPPPRPPP 2672
1Y 0T 1 o PP 2674
10 0 PP 2675
VIMUIE T et et e et e e 2679
1740 218 PP 2681
1720010 Y2 PPN 2684
VOICB ettt ettt ettt ettt ettt e et e e e e aaas 2686
(005 1o £ IR UPPTPPT 2689
(0175 15T 2694
176 L S PR PRPPRPP 2696
L7616 1 VPP 2697

The Canonical Csound Reference Manual

177101 2700
17710 2703
VPOWV T ettt ettt ettt et e aaans 2706
VPVOC ..ottt ettt e e e e e e e e e e e e e e e e 2708
VEANON Lo 2711
[VL = 1o [P PP 2714
(VA =100 T MY =0 (o [T 2717
VSEDANKIOBA ... 2719
LTS L 2720
A2 1 1 PRSP 2722
[V o (o PP PTPT 2724
VSEMITIOUL ...ttt et e e e e eens 2726
VSENMOLE ...ttt ettt ettt e et e e e s 2728
VSEParamSel, VSIParamMOELoveiee e 2730
LT 1 00 PP PP 2732
VSUBV .o 2733
VSUBV I et 2736
1Y = o =1 T 2738
1V = o = PP 2740
VEBDIEK et 2742
VEBIIEA .. et 2744
VEBDIBWI <. 2746
1= o= TP 2747
VEBDIBWE ... 2749
1= o PP 2751
VEBIK e 2753
VBB oot 2755
1Y = o 1 T 2757
1Y = 1 2758
VEBIOWE ..o 2759
R A= T 2760
L V= = PP UPPT PP 2761
WEDSOCKEL ..ottt e e e e e e e e e e e e e e e e 2763
WEIDUIL L. e 2765
WODOW .ttt et e e et et et e e et e et et e e e e aans 2768
WODOWEDEK .. .o 2770
1T 0= 5 2772
1o o - 2774
WOFTULE et 2776
WOPIUCK ettt et e e e 2778
WOPIUCKZ .. e 2781
17170 10 = PP 2783
10 8 10 L= 2785
WHITE Lo e 2788
WIHICOMNECE ..ottt e e e e e e e e e e e eaaes 2790
(VLT e = - PRSP 2792
L EL = L= PP PTP 2795
1L = PP 2796
1T (o PR 2798
1o 2800
G = o - (o TP PRSP 2802
1L C= = 1 PPN 2804
DG > S PP 2806
(1 1 PSPPSR 2808
(0 1| 2810
DG o= 0 7= 2812
D o 1 0 PP 2814
DS 072 L PP 2815

The Canonical Csound Reference Manual

DG 7= 11 [2819
D Q- 110 2823
DY/ PSP UPPPRTRSPPRN 2826
4= o I 2828
= L 1 2830
=100 o [2833
4= SO 2835
. | o 2837
4117 A 2839
4= 717 1 1P 2841
ZE IO e 2844
4| ST 2846
4 .Y A 2848
4 ./ 2850
4 Co: P 2852
40011010 2854
4 S 2856
4117 2858
421 2 2860
Score Statements and GEN ROULINEScvivieiiiii e e aee s 2863
o0 (I = (1 1< 1 2863
a Statement (or Advance SEAtEMENL)ccoeveniieiiiiiieeie e 2864
(OIS 1= 1 1< | 2866
(SIS P (= 1< 1| PP 2868
f Statement (or Function Table Statement)cccovvveiiiiiii i, 2870
i Statement (Instrument or Note Statement)ccevevveiiiiiieii e, 2872
m Statement (Mark SEEEEMENL)coevuiiiiii e 2876
(LIS = 101 01 | 2878
(oS 2 = 011 o | TP 2880
r Statement (Repeat SEAtemeNnt)ooueiiieiii e 2882
LSS = (<111 | 2884
t Statement (Tempo StAtEMENL)oveviiii e e 2886
LV = (1= | 2888
DS = (= 111 1| A 2890
y Statement (Or Seed StAEMENE)oeveiiei e 2892
{ SEALEMENT .. e 2894
S (111 o | 2897
GEN ROULINES ..uiviiiiiieei ettt e e e e e e e e 2897
GEN O L oo, 2901
GENDZ ..o 2904
(] =1\ [0 T 2906
GENDZ ..o 2909
(] =1\ L0 2912
L] N0 2914
GEN T e, 2916
GENDB ..ot 2918
GENDD .ot 2920
(] =1\ 1 L 2923
GEN L oo 2925
GEN L oo 2927
GEN LS oo, 2930
GEN LA oo 2934
GEN LS o 2937
(] =\ 1 T 2942
GEN LT e 2945
GEN LB oo 2947
GEN LD o, 2950
GEN 20 oo e 2952

XXVill

The Canonical Csound Reference Manual

GEN 2L oo 2955
GEN 23 o 2958
GENZ24 oo 2960
GEN 2D oo 2962
GEN 27 e 2964
GEN 28 oo 2966
GENBD e 2969
GEN B o 2971
GEN B2 oo 2972
GEN B o 2974
GEN B e 2977
GENAD oo 2980
GENAL oo 2982
GENAZ o 2984
GENS oo 2986
GENAD oo 2987
GEN DL oo e 2989
GEN 2 e 2992
GENLANN L. 2995
L] N o 2997
L] N L 2999
GENTAIBY et 3001
GENWAVE ...t e 3006
GENPEASYNEN ... 3009
Experimental Orchestra Opcodes and GEN ROULINESccccvvvvviiieiiiieciieeiieeenn, 3012
Experimental OrchestraOpCodesccuuvvviiiiiiieieee e 3012
(o100 7= 7= | 3013
CUBSYINEN .ttt 3016
CUABSITING .ttt e e e 3018
Deprecated Orchestra Opcodes and GEN ROULINEScoeuiviiiiiiiiiiiiiiiiieciieeenn, 3020
Deprecated OrchestraOpCOdESvvvviiiiiieiiiiecie e 3020
BDELAIAND ...t 3021
BDEXPINA . e 3022
BCAUCHY ... 3023
BEXPIANG <.ttt e e e e ee 3024
20 = 1015 PP 3025
=T (00 0] o 1= 3026
BlINTANG ... 3027
BPCAUCKY .. 3028
BIDOISSON ...ttt ettt ettt e s 3029
=100 1 TP 3030
S = PP 3031
1 =0 To [PSP 3033
0 0T =g To [PPSR 3034
o Y11= o 3035
BIOMMAEC ... 3036
BIOMMENC .. 3038
ClOCK e 3040
1= PSP 3041
TDELAIANG ...t 3043
TDEXPINA ... 3044
FCBUICHY . 3045
04 1 P 3046
o1 22 R STUPTRPPT 3047
14 PSP 3048
=2 0 =1 3049
[0 =1 PP UPPRT 3050
11T 2= 4 o PP 3051

The Canonical Csound Reference Manual

........................... 3052
THCICID oo 3
ITHCICZL oo 303
TUICT, o 3
SO oo 3
IMSHIMES oo 300
O o !
O 308
JONAUTZ oo 30
MU oo o
JOULBE oot 3
OUICLA oo e
JOULD e o
JOUIPEL covsivss s Soee
JOUIPD oo o
JOUIIC oo o
IPGALCHY vt sons s Sl
OSSO vosvvsrer v s e
B T 3009
e 3
is32b14 Sodb
SO0 oo 3
32 o 30
ISIBIBA o 3o
(S oo g
IBODY oo ok
HANEIIU oo ok
ADIEIMIX oo 3o
e 30
AN oo 0
UL oo -
WEIDLIL oo 3
KOIAIL oo 3es
KO oo 3o
KCGLCIY oo S
KELMIPZ cescvsens e e 0
L S
KELITIA oo 3088
LMD oo 308
B 3
KIEMZ oo 3
KOELISS orsvvsens o s e
KUIDTANG oo e
T 30
KOULBL oo 3
KOUIGL oo e
KOLLD oo o
KOUIPEE o S
KOUIPE) corssnssmns s s s s s 3
KL v 310
KPOAUCRY ..osscvs oo T
KPOISSON ..o T
PO rresrssans s 3
KIBLIZ e 3
KIBIS vt 3
KIAO oo 31
KIOB oo T
IBOIESEY ..voovs oo 3108
LT = 1o [

XXX

The Canonical Csound Reference Manual

KUNITANA ..o 3110
KWEIDUIL ... 3111
S 07 | o 7= o X 3112
0172 P 3114
010 o VTP 3115
[0]0] o I ST UPT RPN 3117
010 o PSP 3118
01U 3120
S o 0 T 3121
S o100 (01U £S PP 3123
S = o UPPPRSPPRN 3125
Deprecated GEN ROULINEScccuuiiiiiiiiie e 3126
GEN 22 o 3127
The Utility Programsovee e r e e e e e e ean s 3128
1 = o = 3128
SOUNAFIlE FOMMELS.ieeeiiei e 3128
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL)
.. 3129
File QUEries (SNDINFO)uiiiiieii e 3140
File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT,
PV_IMPORT, SDIF2AD, SRCONV) ..iiiiiiiiieeiieie e 3141
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR, MAKEC-
SD, MIXER, SCALE, MKDB)iiiiiiiieeiiiiis e 3157
L0 oo PP PPTPPT 3173
Events, Lists, and OperationSovveunieiiieiiiieceii e e e e e 3173
Writing a Cscore Control Programceeeceeiieei e e e e e e e 3176
Compiling & CSCOre PrOgramcoeeuuneeeiiie ettt 3180
More Advanced EXAMPIESouuiiiiiiiieiei e 3183
(O o= £ P 3186
V. Opcode QUICK REFEIEINCEc.uiiiiiiii e e e 3191
Opcode QUICK REFEIENCEuiviieiiie e e e e e 3193
AL List Of @XAMPIES ..ovniii e 3245
ot O] 1Y 6 Lo o 3284
C. SOUN INENSITY VBIUESoeieiieieeii ettt 3288
D. FOrmMant VaIUBS ... ottt e e e e 3289
E. Modal FrequenCy RATIOSoiieiiiii e e 3294
F. WINAOW FUNCLIONS ... et e et e e 3296
G. SOUNAFONE2 FIlE FOMMEL ...ceeveiieeeii e 3301
H. Csound Double (64-bit) vs. Float (32-Dit)c..uiiiiiiiiiiiiii e 3302
GlOSSANY ..ttt 3304

XXXI

Preface

Table of Contents

Preface to the Csound ManUalcooveiiiiiiiiiic e XXX
History of the Canonical Csound Reference Manualc.ovveiiiiiiiiiiiiinieniieeeeiie, XXXiii
COPYHIGNE NOLICE ..veeieei ettt et e e e XXXIV
Getting Started With CSOUNGcoiiiiiiiii e XXXVi
What'Snew in CSOUN 6.06uuniiiiiiiieiiii e e XXXVili

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different
manner of control. Direct synthesis generates waveforms by sampling a stored function representing a
single cycle; additive synthesis generates the many partials of a complex tone, each with its own loud-
ness envelope; subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses
frequency modulation and waveshaping to give simple signals complex characteristics, while sampling
and storage of anatural sound alowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is
really a computer program that can produce sound, while a score is a body of data which that program
can react to. Whether arise-time characteristic is afixed constant in an instrument, or a variable of each
note in the score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a simple syntax that
invokes complex audio processing routines. A score (see The Sandard Numeric Score) passed to this or-
chestra contains numerically coded pitch and control information, in standard numeric score format. Al-
though many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have a long history of development, beginning with the
Music 4 program written at Bell Telephone Laboratories in the early 1960's by Max Mathews. That initi-
ated the stored table concept and much of the terminology that has since enabled computer music re-
searchers to communicate. Valuable additions were made at Princeton by the late Godfrey Winham in
Music 4B; my own Music 360 (1968) was very indebted to hiswork. With Music 11 (1973) | took a dif-
ferent tack: the two distinct networks of control and audio signal processing stemmed from my intensive
involvement in the preceding years in hardware synthesizer concepts and design. This division has been
retained in Csound.

Because it iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT
it runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI's under 5.0, on IBM PC's un-
der DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single lan-
guage for defining the audio signal processing, and portable audio formats like AIFF and WAV, users
can move easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI converter and
control units, enabling Csound to be run from MIDI score-files and externa keyboards. In 1994 the
sound analysis programs (Ipc, pvoc) were integrated into the main load module, enabling al Csound
processing to be run from a single executable, and Cscore could pass scores directly to the orchestra for

XXXil

Preface

iterative performance. The 1995 release introduced an expanded MIDI set with MIDI-based linseg, but-
terworth filters, granular synthesis, and an improved spectral-based pitch tracker. Of special importance
was the addition of run-time event generating tools (Cscore and MIDI) allowing run-time sensing and
response setups that enable interactive composition and experiment. It appeared that real-time software
synthesis was now showing some real promise.

History of the Canonical Csound Reference
Manual

Thisinitial version of this manual for early versions of Csound was started at MIT by Barry L. Vercoe
and maintained there during the 1980's and start of the 1990's. Some of the manual comes from docu-
ments for programs like Music11 from the 1970's. This original manual was improved and worked on by
Richard Boulanger, John ffitch, Jean Piché and Rasmus Ekman.

This manual led to the Officid Csound Reference Manual, dill located at: ht-
tp:/imww.l akewoodsound.com/csound [http://www.lakewoodsound.com/csound/hypertext/manual .htm],
for Csound version 4.16, November, 1999, which was maintained by David M. Boothe.

A pardlel version of the manual called the Alternative Csound Reference Manual, was developed by
Kevin Conder using DocBook/SGML [http://www.docbook.org/]. This version later became the Canon-
ical version.

When Csound was licenced as LGPL by MIT in 2003, the manua was licenced GFDL and placed on
Sourceforge along with the sources of Csound.

In the winter of 2004, the Canonical Manual was converted to DocBook/XML by Steven Yi to alow for
more people to be able to compile and maintain the manual.

The manual is currently maintained by Andrés Cabrera with continuous contributions from the Csound
Community.

The manua continues to be a community run project that depends on the contributions of developers
and usersto help refine the coverage and accuracy of its contents. All contributions are welcome and ap-
preciated.

Table 1. Other Contributors

Mike Berry

Eli Breder
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Richard Dobson
Mark Dolson
Dan Ellis

Tom Erbe

Bill Gardner
Michael Gogins
Matt Ingalls

XXX

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.docbook.org/
http://www.docbook.org/

Preface

Richard Karpen
Anthony Kozar
Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubacker
Peter Nix

Ville Pulkki
Maurizio Umberto Puxeddu
John Ramsdell
Marc Resibois

Rob Shaw

Paris Smaragdis
Greg Sullivan
Istvan Varga

Bill Verplank
Robin Whittle
Steven Yi

Francois Pinot
Andrés Cabrera
Gareth Edwards
Joachim Heintz
John ffitch

Oeyvind Brandtsegg
Menno Knevel
Felipe Sateler

And many others.

This list is by no means complete. More information can be gathered from the Changelog file in the
manual's sources repository.

Copyright Notice

This version of the Csound Manual ("The Canonical Csound Manual") is released under the GNU Free
Documentation Licence [http://www.gnu.org/licenses/fdl.txt]. Below are listed, for historical purposes,
previous copyrights and requests for credit from previous authors.

Previous copyright notices

Copyright (c) 1986, 1992 by the Massachusetts I nstitute of Technology. All rights reserved.

XXXIV

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cam-
bridge, Massachusetts, with partial support from the System Development Foundation and from Nation-
al Science Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of this license is
available in the examples sub-directory [examples/fdl.ixt] or at: www.gnu.org/licenses/fdl.txt [ht-
tp://www.gnu.org/licenses/fdl.txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference
Manual.

This legal notice is from the Public Csound Reference Manual: “The original Hypertext Edition of the
MIT Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music
at the University of Leeds and Jean Piché of the Faculté de musique de I'Université de Montréal. A Print
Edition, in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknow-
ledge the rights of the authors of the original documentation and programs, as set out above, and further
request that this notice appear wherever this material is held.”

The Public Csound Reference Manud's last known network location was ht-
tp://www.lakewoodsound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundAC Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundAC

Csound is copyright 1991-2008 by Barry Vercoe, John ffitch and others.
CsoundAC is copyright 2001-2008 by Michael Gogins.

Csound and CsoundAC (formerly CsoundVST) are free software; you can redistribute them and/or
modify them under the terms of the GNU Lesser General Public License as published by the Free Soft-
ware Foundation; either version 2.1 of the License, or (at your option) any later version.

Csound and CsoundAC are distributed in the hope that they will be useful, but WITHOUT ANY WAR-
RANTY: ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and

CsoundAC; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Virtual Synthesis Technology

Virtual Synthesis Technology (VST) Plugin interface technology by Steinberg Soft- und Hardware
GmbH.

XXXV

examples/fdl.txt
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound

Preface

Getting Started with Csound

Downloading

In case you don't already have Csound (or have an older version) download the appropriate Csound ver-
son for your plaform from the Sourceforge Csound Download Page [ht-
tp://sourceforge.net/projects/csound/files/]. Installers for Windows have '.exe' extension and for Mac
".dmg'. If the installer's filename ends in '-d' it means the installer has been built with double precision
(64-bit) which provides higher quality output than the ordinary float precision (32-bit). The float ver-
sions provide quicker output, which may be important if you're using Csound in a real-time setting. You
can also download the sources and build them, but this requires more expertise (See the section Building
Csound).

It may also be useful to download the most recent version of this manual, which you will also find there.

Running

Csound can be run in different ways. Since Csound is a command line program (DOS in Windows
terms), just clicking on the csound executable will have no effect. Csound must be called either from the
computer's command line or from a front end. To use Csound from the command line, you must open a
Terminal (Command Prompt or DOS Prompt on Windows, or Terminal on MacOS). Using Csound from
the command line can be difficult if you've never used a terminal, so you may want to try to use one of
the front ends, either QuteCsound, which is included with the latest distributions, or another front end. A
front end is a window-based (not necessarily Windows-based) program that assists running Csound.
Most front ends include text editors with which you can edit csound files, and many include other useful
features.

Whether being run from a front end or being executed from the command line, Csound needs two
things:

» A Csoundfile (".csd' or possibly an.orc' and a'.sco' file)

» A list of command line flags (or configuration options) that configure execution. They determine
things like output filename and format, whether real-time audio and MIDI are enabled, which audio
output to use for real-time audio, the buffer size, the types of messages printed, etc. These options can
be included in the ".csd' file itself, so for the examples included in this manual you shouldn't need to
worry about them. Front end programs often have dialog boxes in which the command line flags can
be set. The complete and very long list of available command flags can be found here, but you might
want to have alook there later...

See the section Configuring if Csound is giving you trouble.

This documentation includes many '.csd' files which you can try out, and which should work directly
from the command line or from any front end. A simple example is oscil.csd [examples/oscil.csd],
which can be found in the examples folder of this documentation. Y our front end should alow you to
load the file, and the front end should have a 'play’ or ‘render’ button that will allow you to hear the file.
If you want to experiment with the file, you're well advised to use the front end's 'Save As..." command
to copy it to some other directory on your hard drive, such as a'csound scores' directory that you create.

Note for MacCsound users

You might need to remove al the lines from the command options slot in order for the
manual examplesto work.

You can aso try the manual examples from the command line. To do this, navigate to the examples dir-

XXXVi

http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
examples/oscil.csd
examples/oscil.csd

Preface

ectory of the manua using something like this on Windows (assuming the manual is located at
c:\Program Files\Csound\manual\):

cd "c:\Program Fil es\ Csound\ doc\ manual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux Terminal. Then type:

csound oscil.csd

The example files are configured to run in real time by default, so with this command you should hear a
two-second sine wave.

Writing your own .csd files

A .csd file looks like this (thisfile is oscils.csd [examples/oscils.csd]):

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtime audio input is needed too
For Non-realtine ouput |eave only the line bel ow
-0 oscils.wav -W;;; for file output any platform

Q/Cscptions>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1

iflg = p4

asig oscils .7, 220, 0, iflg
outs asig, asig

endin
</ Csl nstrunent s>
<CsScor e>

i 1020

i 132 2 ;double precision
e

</ CsScor e>

</ CsoundSynt hesi zer >

Csound's .csd files have three main sections between the <CsSynthesizer> and </CsSynthesizer> tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can also
be set using the .csoundrc file, which you can edit in a text editor, or directly in the command line.
Some front ends also provide ways to specify global or local options.

» Cslnstruments - Contains the instruments or processes available in the file. Instruments are defined
using the instr and endin opcodes. The Cslnstruments section also contains the Orchestra Header,
which defines things like sample rate, the number of samples in a control period, and the number of
output channels.

» CsScore - Contains the 'notes' to be played, and optionally the definition of f-tables. Notes are created

XXXVil

examples/oscils.csd
examples/oscils.csd

Preface

using the i statement, and f-tables are created using the f statement. Several other score statements are
available.

Anything after asemicolon (;) until the end of the line is acomment, and isignored by Csound.

You can write .csd files in any plain text editor, such as Notepad or Textedit. If you use a word pro-
cessor (not recommended), be sure to save the file as plain text (not rich text). Many front ends include
advanced editing capabilities, such as syntax highlighting and auto-completion of code.

You can find an in-depth tutorial on getting started with Csound written by Michael Gogins here [ht-
tp://michael-gogins.com/archives/tutorial .pdf].

What's new in Csound 6.06
Release Notes for Csound 6.06 (2015 September)

A number of bug fixes, some quite major, are included, as well as some new facilities and extensions.

» New opcodes:

getseed reads the state of the PRN generator; opposite of seed opcode.
tabifd — Instantaneous Frequency Distribution, magnitude and phase analysis.
websocket — Read and write signals and arrays using a websocket connection.

framebuffer — Read audio signalsinto 1 dimensiona k-rate arrays and vice-versa with a specified
buffer size.

olabuffer — Sum overlapping frames of audio as k-rate arrays and read as an audio signal

e Orchestra:

Labels are allowed in instrument 0.

* Score:

Maximum string length in scores increased to 1024.

* Modified Opcodes and Gens:

L]

diskin2 array version uses array size to give number of channelsin raw file form.
diskin2 now has the kpitch parameter defaulting to 1 for simple use.

Vibrato f-table in wgflute and wgcar optional, defaulting to sine wave.

schedule now accept string arguments.

urandom now available on OSX platforms.

GEN18 had fencepost problem; largely rewritten.

In poscil family of opcodesit is possible to skip initialisation of phase.

svfilter now can skip initialisation.

XXXViii

Preface

« When opening an input file nchncls i is used rather than nchnls. This is a change that should have
followed the existence of nchnls i

* rtjack module now reports the sampling rate.
» The opcodes rfft, rifft, fft, fftinv, r2c and c2r now havei-rate array versions.
* New optional threshhold parameter in opcodes tradsyn, sinsyn and resyn.
» New thresholding option for partials.
Utilities:
* extract fixed.
 src_conv improved and integrated with -U options.
* fixesin atsa, and heti.
Frontends:
e pnacl:
 Support for 48000 sample rate fixed.
» csound~:

» Changes to the threading system. String channel initiaisation fixed. A number of other bugs
were fixed.

« Emscripten:
» Csound Javascript object can now receive data from the outvalue opcode.
e HTMLS:

* Integrate HTML, JavaScript, and other features of HTML5 with Csound, either by embedding a
Web page as an <html> element in the CSD file for CsoundQt or Csound for Android, or by
hosting Csound in the JavaScript context of a standalone Web browser (Emscripten, PNaCl) or
embedded Web browser (csound.node).

General usage:

« |llI-formatted macros in the orchestra now trapped.

Bugs fixed:

* Use of Windows-style environments for INCDIR etc now works with device numbers.
* vibrato opcode fixed.

« Clicking in real-time sample accurate case fixed.

e Copying of strings now correct; did confuse memory sometimes.

e Bug in pvstanal fixed.

* Rounding error in cpspch fixed.

XXXIX

Preface

* Removed crash on recompiling a named instrument.
« Fix interpolation bug in tablexkt.
 Fix to plltrack when ksmpsis 1.
» System changes.
e The"error" message from STK plugin is now awarning.
* API:
» Redefinition of opcodes and UDOs fixed.
 Platform Specific:
* OSX.
» csnd6.jar link installed in the correct location.
» Java NI linking issues solved.

« fixed link name for libpng in libfltk_image.

Release Notes for Csound 6.05 (2015 April)

As ever there are new facilities and numerous bug-fixes. A major part of this release is the removal of a
number of memory leaks and over use of memory. Naturally these changes are all but invisible, just a
smaller memory foot-print. Note that we track bugs and requests for enhancements via the github issues
system, and these had a significant affect on this release.

» Opcodes:
» The opcode sndload is how deprecated.
* New Gen and Macros:
 Paul Octavian Nasca's padsynth algorithm implemented as a gen.
» Score:
* Fixed string location cal culation bug when processing score lines [fixes #443]
e Options:
* A short-format copyright option is available, with afixed number of well-known licences (CC, etc)
« New command-line option to report MIDI devicesin simple format

* New command-line option to set ksmps

Modified Opcodes and Gens:

 adsynt handles amplitude changes better

xl

Preface

sfont has better checking for corruptions

better checking in physical models for out-of-range frequencies
ftgenonce and others allows string parameters

gausstrig reworked and extended with new features

use of p() function no longer complains overrides the pcnt warning
fix to midirecv

OSCsend cleans up after use improved

fillarray islimited to 1 or 2 dimensional arrays; in fact it failed silently previously for 3D and high-
er.

oscbnk now works when the equaliser is used.

mp3in now works with both mono and stereo input files

flooper & flooper2 now allow stereo tables

Release phase of expsegr fixed

f-tables created by alarge number of arguments could overwrite memory, now fixed
performance of plltrack improved

init of arrays clarified and checked

gen23 corrected to stop an infinite loop

alwayson now starts from score offset; this is part of a fix to the long-standing problem with al-
wayson in CsoundV ST

invalue now checks for output string size and reallocates memory if smaller than default string size
(set at 256 bytes for backwards compatihbility)

Utilities:

The srconv utility has been improved but it does not work well, with groups of noise in otherwise
good output. We recommend the use of Erik de Castro Lopo's Secret Rabbit Code (aka libsampler-
ate) as providing sample rate conversion at high quality. srconv will be removed shortly possibly to
be replaced by an SRC-based utility.

Frontends:

pnacl
» Added interface to alow the use of Csound's MIDI input system.

« Fixed audio input to conform to the latest Pepper API spec.

Bugs fixed:

bugs in fastabi,oscktp, phasorbnk, adsr, xadsr, hrtfer fixed.

bugs in the harmon. harmon2, harmon3 and harmon4 fixed.

xli

Preface

» Csound could crash after aparsing error, a case now removed.

» System changes.
» There are now checks that xin/xout types match those defined as part of UDO definition.
 jack now has atimeout.

* Internal Changes:

« Many defects indicated by coverity fixed or code changed. Should make csound more robust in
edge cases.

» Parser-related changes simplifies allocation of temporary variables, with some new optimisations.
« code for multi-thread rendering improved and stablised vis-a-vis redefinition of instruments.
 Platform Specific:
« i0S.
* Fixed audio callback to work correctly with lightning output and Apple TV.
¢ Android.

* New experimental audio 10 mode: csoundPerformKsmps() is called from the OpenSL ES output
callback. This mode can be optionally enabled by passing a value of "false" to a new second
parameter to the CsoundObj constructor (bool isAsync). The default constructor and the one-
parameter setsthisto "true" (keeping backwards compatibility with existing code).

» The OSC opcodes are included in distribution.

* Android app

» There are new file open and save dialogs that permit the user to access the SD card on the
device, if thereisone, in addition to internal storage.

* Thereisanew "Saveas..." button that permits the user to save the csd as a new file with a new
name.

» Many of the examples in the archive of Android examples are now built into the app and can
be run from the app's menu.

* Includes now the exciter opcode.
* OSX.
* Installation now places csladspa.so rather than csladspa.dylib on disk.
e Linux.

e Linux is now build without FLTK threads. This removes system hangs and is in line with other
builds.

Release Notes for Csound 6.04 (2014 November)

This new version has many extensions and fixes; many new opcodes and significant numbers of internal

xlii

Preface

reworking. Thereis anew frontend and iOS and Android version have seen many improvements.

As ever we track bugs and requests for enhancements via the github issues system. Already proposals
for the next release are being made but the volume of changes require arelease now.

» New opcodes:
» pinker generates high quality pink noise.
< power opcode now works with array arguments.
 exciter opcode, modelled on the calf plugin.
« vactrol opcode simulates an analog envelope follower.
« family of hdf5 opcodes to handle hdf5 format files.
 (experimental undocumented) buchla opcode models the lowgate filter of Buchla.
* New k-rate opcodes acting on arrays:
* transforms: rfft, rifft, fft, fftinv
« complex product: complxprod
 polar - rectangular conversion: rect2pol, pol 2rect, mags, phs
* real - complex: r2c, c2r
 windowing: window
* cepstrum: pvscpes, iceps, ceps
 column/ row access: getrow, getcol, setrow, setcol
» aratedata- k-array copy: shiftin, shiftout
* phase unwraping: unwrap
* New Gen and Macros:
¢ Line numbers corrected in instr statements.
« New control operation, while, for looping.
< A long-standing bug with macros which use the same name for an argument has been corrected.
» Redefinition of an instrument in asingle call to compileisflagged as an error.
e I1D3 header skip for mp3 files now properly implemented.
» Errorsinduced by not defining the location of STK's raw wave files has been removed.
* bug fixed where UDO's could not read strings from pfields.
» Modified Opcodes and Gens:

« stackops opcodes deprecated.

xliii

Preface

lenarray extended to handle multi-dimensional arrays.

ftgenonce accepts string arguments correctly and multiple string arguments.

max and min now have initialisation-time versions.

gen23 improved regarding comments and reporting problems.

in OSCsend the port is now ak-rate value.

socksend now works at k-rate.

anumber of envelope-generating opcodes are now correct in sample-accurate mode.
faust compilation is now lock-protected.

mp3 fixed to allow reinit to be used with it.

In remote opcode the name of the network can be set via the environment variable
CS_NETWORK. Defaults to en0 (OSX) or ethO.

Frontends:

icsound: New frontend icsound is now ready for general use. icsound is a python interface for inter-
active work in the ipython notebook.

csdebugger: A number of changes and improvements have been made, like stepping through active
instruments, better line number use.

General usage:

Jack module now does not stop Csound if autoconnect fails.

Bugs fixed:

atsinnoi fixed.
ftsavek fixed.
sprintf fixed.

gen27 fixed, especialy with extended arguments, as well as fixed a number of errors in extended
score arguments.

Physem opcodes (guiro cabasa, sekere) fixed so second call works.
flooper fixed in mode 2.

OSCsend multiple fixes.

UDO fix for case of local ksmps of 1.

More changes/fixes to dssi code.

xscanu and scanu fixed.

temposcal and mincer fixed.

crash in ftload fixed.

xliv

Preface

» System changes:

In server mode exit is now clean.

Fixes to rtalsamodule.

Pulseaudio rt module fixes.

Fix to remove fluidEngine entries for csound instance (prevents crash on moduleDestroy).

Opcodes called through function calls that returned arrays did not correctly synthesize args as array
types due to not converting the arg specifier to the internal format.

fixed crashing issue during note initialization for tied notes due to goto skipping over code.

fixed incorrect initialization of pfields when note's pfields length were less than instrument expec-
ted (off-by-one).

* Internal Changes:

Added Runtime Type Identification for instrument variables, removed use of XINCODE/
XOUTCO.

fix malloc length in negative number parsing, and improved handling of negative numbers.
writing to circularBuffer is now atomic.
anumber of memory leaks and potential dangerous code have been fixed.

type-inference has been extensively reworked, as have afew parsing areas.

* APl

Added API function for retrieving GEN parameters used for creating atable.

 Platform Specific:

L]

iOS.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundV aueCacheable).

» Updated to remove deprecated code.
* A significant amount of reworking has been done on the code.
Android.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundV a ueCacheable).

« Changes to enable HTML 5 with JavaScript and it is to be hoped WebGL in the Csound6 An-
droid app.

» Enabled change of screen orientation in the Csound6 app without forcing a restart of the app.
» Enabled local storage (useful for saving and restoring widget values, etc.).

Windows.

xlv

Preface

« fixed pointer arithmetic that caused crashing on Windows.

» pyexec changed to use python's file opening functions to prevent crash on Windows.
» OSX.

* CsoundAC now compiles.
 Linux.

* threadlocks bug fix on linux.

Release Notes for Csound 6.03 (2014 May)

This new version has a large number of bug fixes (including clearing many tickets on SourceForge and
GitHub) aswell internal changes to improve performance.
» New opcodes:

e prinks2
: prints a new value every time a control variable changes using a printf() style syntax

* mp3sr, mp3bitrate, and mp3nchnls to get information on mp3 files

« EXPERIMENTAL: CUDA opcodes for partitioned convolution direct convolution and diding
phase vocoding; OpenCL opcode for additive synthesis

e compilecd
to compile instruments from a standard CSD file

e Orchestra:

e The argument for i() is supposed to be a variable not an expression. This is now enforced. (bug
#90)

» Score:
« New score opcode y sets the random seed (for ~) at read time
e Options:
e Therewas abug in CsOptions; the last argument was missed being read(issue #296)

« As command-line options expression-opt and no-expression-opt do nothing in Csound6 a warning
is printed

Modified Opcodes and Gens:

« For ogg output it is possible to specify a VBR (variable block rate) quality.

* dssi4cs code has been extensively reworked to avoid potential memory faults.
« Many array operations now available for i-arrays as well as k-arrays.

« fillarray will work for string arrays

xIvi

Preface

» Displaysof FFT (viadispfft) improved with scaling/zooming options

Signal flow graph opcodes are now working with a-rate array signals.

In alsaRT code the samplerate is taken from the device

 Faust opcode system updated to latest faust API

Utilities:

« fixed bug in Ipanal

csound-~:

e OSX - fix for running with 32-bit cpu architecture

* Windows - csound~ now available for Windows

Emscripten:

¢ Thisisnow generally merged into the code-base

General usage:

» --displays now switches graphs on, as expected

« New commandline option --get-system-sr added to obtain the machine's sample rate
* New command-line option --deviceg[=in|out] gives alist of available audio devices and then exit
Bug fixes:

« fixed the bug when tables were replaced but the size did not change

< A number of bugs in --sample-accurate have been detected and fixed. This includes opcodes out,
outn, and line

¢ A number of bugsin grain3 were fixed

e Bugin str_chanel could cause a crash; fixed

e Small bug in rtjack fixed

« Error in resize opcode corrected

¢ Fixed an unlikely bug in atsa

 Fixed rtauha pause issue

¢ A number of bugs/untidiness fixed in GEN23

* Array bound checks fixed

« strings channels were not correctly set for dynamic-size strings, now fixed

» memory allocation for string formatting in printfsk was fixed, stopping string truncation

 dtrcat safe against overflow

xlvii

Preface

« error in compilation of arrays fixed (issue #293)
¢ GetPvsChannel fixed against a crash
» System Changes:
« turnoff opcode now checks that the instrument being affected is active
* lenarray can accept any array type
« theway of rounding atable number to an integer was changed and is now more as expected

« thereisanew possible section in a csd file called <CsFile...> which is like csFileB but with unen-
coded text.

« UDO compilation now uses the type system. This means that UDOs now alow any array type to be
used

« Improved orchestra parsing speeds with better algorithms
* Internal Changes:

« The whole system has been checked by the Coverity static checker which identified a number of
(mainly minor) problems. These have been reviewed and checked. In particular better use of print-
ing and string copying should prevent overflows

* Thetype and variable system has been extensively rewritten; this allows better array and UDO sup-
port

» Alignment of variables got right in all cases

« Array copying is now using the type system to copy values; fixes issues with copying string arrays,
f-sigs, etc

» Always reset Csound when stopping to ensure state is clean; was not being reset when there was a
compile error, so that next successful run would start with an invalid Csound engine (issue #305)

* API:

« All opcodes etc now use the APl memory allocation operations, so it is possible to replace the
whole memory allocator

» Added csoundCompileCsd to API and associated new compilecsd opcode
 Protected csoundGetSringChannel against null and short strings and added a check for string size

« A number of API functions have had char* changed to const char* which reflect the usage

The performance engine now includes debugging capabilities to alow interrupting rendering and
providing introspection into the engine's state and instrument variables. The following new functions
are available by including the csdebug.h header:

voi d csoundDebuggerInit (CSOUND *csound);

voi d csoundDebugger C ean (CSOUND *csound);

voi d csoundSet | nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr, int skip);

voi d csoundRenovel nstrumnent Breakpoi nt (CSOUND *csound, MYFLT instr);

voi d csoundd ear Br eakpoi nts (CSOUND *csound);

voi d csoundSet Br eakpoi nt Cal | back (CSOUND *csound, breakpoint_cb_t bkpt_cb, void *userdata);
voi d csoundDebugConti nue (CSOUND *csound);

voi d csoundDebugSt op (CSOUND *csound) ;

debug_instr_t *csoundDebugGetlnstrlnstances(CSOUND *csound);

voi d csoundDebugFreel nstrlnstances(CSOUND *csound, debug_instr_t *instr);

xIviii

Preface

debug_variabl e_t *csoundDebugGet Vari abl es(CSOUND *csound, debug_instr_t *instr);
voi d csoundDebugFreeVari abl es(CSOUND *csound, debug_vari abl e_t *varHead);

* Windows;

» Soundfonts in Windows had an internal alignement problem which is fixed

Release Notes for Csound 6.02

This new version has a large number of bug fixes (including clearing all general tickets on Source-
Forge). It also introduces some major new facilities such as use as a server, code to run Csound in a
browser and alarge generalisation of filter opcodes to have parameters changeable at audio rate.

» New opcodes:
 nstance opcode schedules a new instrument instance, storing the instance handle.
* turnoff nw variant to stop a given instrument instance.
« strfromurl to set astring from a URL.
* Orchestra:
« If building supportsit, a#include string can be aURL or afile.

* A space is again permitted between a function name and the opening bracket for all functions al-
lowed in Csound5 (but not in general).

¢ The Csound command can start with an empty CSD in daemon mode (--daemon): do not exit if
CSD/orchestrais not given, is empty or does not compile).

» Score:
« If building supportsit, a#include string can be aURL or afile.
» Modified Opcodes and Gens:

* Many filters generalised to allow k- or a-rate parameters. In particular it includes these:

areson atonex
butterworth filters fofilter
lowres lowresx
Ipf18 mode
moogladder moogvcf
reson resonr
resonx resonz
statevar tonex

¢ The maximum number of presetsin sfont increased to 16384.

e cpsmidinn is now more accurate.

xlix

Preface

max_k now behaves like the documentation. There were cases when it gave strange results.

The vst4cs opcodes have been re-factored. FLTK code has been encapsulated. The build system has
been updated for Csound 6.

In alwayson opcode changes for better handling of pfields, more reliable insert of an instrument in-
stance for repeating or re-started score sections.

The signal flow graph opcodes have replaced OpenMP multi-threading with pthreads, using one-
timeinitialization of static structures.

Frontends:

PNaCl is now supported as a platform, allowing Csound to run under the Chrome browser in all en-
abled operating systems.

Bugs fixed:

L]

adsynt2 opcode fixed.

ftgentmp opcode fixed.

dates opcode fixed.

fixed abug in pvsfilter.

fixed stereo out in temposcal and mincer.
pan2 opcode fixed.

index overflow in randh and randi fixed.

A number of fixes to CsoundV ST: initiaization, score handling, and MIDI driver initialization, so
it now works for Csound 6.

fixed pycalln for no inputs.
fixed/revised setting and use of ksmps and kr in UDOs.
fixed problem in sending a score event from max to csound via csound~ (Ticket #58).

If itype in chn_k was set to 3 and values are set less than 1, Csound6 used to give an INIT Error.
(Ticket #67).

A number of reported seg faults have been dealt with.

xtratim opcode was using incorrect ekr value from csound instead of from instance; when used in
conjunction with setksmps, was causing notes to have very long xtratim set and thus notes were ef-
fectively not getting turned off

System changes:

A server mode is now available, accepting input via UDP (with --port option).
A longstanding bug in extract was detected and fixed. It does suggest that this facility islittle used!

The way the external score generator was coded is substantially changed. In particular this should
fix avery strange bug in Windows.

Preface

» Fixed crashing bug with invalue channel callback due to wrong data object being pulled from
csound host data.

 Fixed bug in UDOs with no local ksmps where kcounter was being used incorrectly.

« Better checking in channels.

o (Experimental) If the environment variable CS_UDO_DIR is set then any filesin the directory that
have an .udo extension are automatically included at the start of the orchestra. This facility needs
review to seeif it iswhat is required.

e (Experimental) There are new cuda GPGPU opcodes (source only): cudasynth (3 versions for ad-
ditive synthesis, additive synthesis of fsigs and phase vocoder resynthesis) and cudanal (a GPGPU
version of pvsanal).

* Internal changes:

e Many attempts at faster code.

« Typeinference and parsing still improving.
* iOS:

 Fixed crash where no csoundSetHostl mplementedMIDIIO is used on iOS and no _RTMIDI vaue
IS set.

» OSX:

 Fixed input device name for auhal.

Release Notes for Csound6

Csound6 is a significant rewrite of much of the code. In particular the APl is not compatible, although
all orc/sco/csd works should still run.

There are new facilities, like sample accuracy and realtime mode, described below.

IMPORTANT: The environment variable to find plugins are called OPCODEGDIR64 or OP-
CODES6DIR (note the 6) so it can co-exist with Csound>S.

Similarly .csoundrc is renamed .csoundér c.

Arrays are nhow mainstream, with syntax and opcode support. They also exist in multidimensional
format. They are created (usually) with init opcode or fillarray.

Ki[] init 4

generates a k-rate 1-D array of length 4. Similarly

a2[][] init 4, 4

creates a square 4x4 a-rate array.

Preface

k2[] fillarray 1, 2, 3, 4

creates a 4-element vector filled with 1,..4, which a so defines the length.
Elements are used viaindexing in [] such as k1[2] or a2[2][3]. One dimensional arrays replace tvars, and

can be used in opcodes like maxtab, mintab and sumtab (see below). Array setting can be done in |eft-
hand side of opcodes, i.e.:

aSi gs[0] vco2 .1, 440
aSigs[1] vco2 .1, 880

The new realtime priority mode can be switched on with by passing the --redtime or setting the
CSOUND_PARAMSfield realtime_mode to 1. This has the following effects:

1. al opcode audio file reading/writing is handled asynchronously by a separate thread.

2. dl init-pass operations are a so performed asynchronously.

Multicore support is totally rewritten using a different algorithm for task-dispatch, which should use less
memory and fewer locks.

» New opcodes:
 faustgen
e array -- many new or revised opcodes -- see Array Opcodes.

« compileorc takes a filename containing a collection of instrument definitions and compiles them,
replacing existing versions. It returns O on success.

« compilestr is like compileorc but takes a string.

* readscore runs the score preprocessor on a string and then schedules new events via the RT event
mechanism, returning O if successful.

* Orchestra

* Note events can start and end in mid-kcycle. As this is an incompatible change it is only invoked
when the command-line option --sample-accurate is specified. Note that this does not work for tied
notes, and use of skipping initialisation has questionable use.

¢ Instruments can run at local ksmps values using set ksnps i ksnps asin Csound 5 UDOs.

» Compilation can be done at any stage, new instruments are added or replace old ones. Running in-
stances of old instrument definitions are not affected. Only limitation is that header constantsin in-
str 0 are read only once at the time of the first compilation. Init-time code can be placed outside in-
struments in the global space, and this will be executed once-only following the compilation. In this
case, score event generation can be completely replaced by orchestra code. See also new opcodes
compileorc and compilestr.

< New syntax operators +=, -=, *= and /=. These are more than syntactic sugar; please use += and -=

Preface

for accumulating reverbs as it gives better multicore behaviour.

« The opcodes add, sub, mul and div have been deleted; use the forms + - * /. Not many people were
aware of these opcodes.

* Any opcode with a single output or with no outputs can be used as a function. Some opcodes might
reguire type annotation to resolve ambiguities, more details on the Function syntax in Csound 6.

* A statement can be broken across lines after a, = or arithmetic operation.

« There are arange of new or recoded operations on k-valued arrays, most restricted to 1 dimensional

arrays (vectors):
kans mnarray ktab returns the smallest value in the
(possi bly) multidinensional array
kans maxarray ktab is like mntab
kabs sunarray ktab returns sumof all values in the array
ktab genarray imn, imax[, inc]

generates vector of values fromimn

to imax by increnments of inc (default 1)
ktab2 maparray ktabl, "sin" maps the k-rate 1l-arg function in

the string to every elenent of the vector
kt ab2 maparray_i ktabl, "sin" naps the i-rate 1l-arg function

in the string to every elenment of the vector
ktab2 slicearray ktabl, istart, iend

returns a slice of ktabl from ktabl[istart]

to ktabl[iend]
copyf2array ktab, kfn copies data froman ftable to a vector
copya2ftab ktab, kfn copies data froma vector to an ftable

Arithmetic on arrays is allowed. In particular addition, subtraction, multiplication, division on a
element-by-element version is provided in arithmetic format. Similar operations between an array
and a scalar are allowed.

« Each instance of any instrument has a scratchpad of 4 values that persist; alows values to carry to
next use of the instrument; hope it may be useful in legato etc.

« If atable number is given as -1 then an internal sine wave equivalenttof. 0 16382 10 1 isused.
Attempts to write to this table will give unpredictable results, but is not policed. The 16382 can be
change by command line option --sine-size=# where the # is rounded up to a power of two.

« A number of oscil opcodes now have the f-table parameter as optional, defaulting to the internal
sine wave. (oscill, oscilli, oscil, oscil3, oscili, foscil, foscil1, loscil, loscil3).

» Score:

« Score lines can have multiple strings.

» Change to escape charactersin score strings -- they do not happen.

 Also note the readscore opcode.
» Modified Opcodes and Gens:

« Thek() function can take an a-rate argument in which caseit isacall to downsamp.
* Utilities

« Hetro/adsyn analysis files can be machine byte-order independent if created with -X. Down side is
alonger file and a little slower loading. The het_export utility will create the independent format

Preface

from the old, and het_import is no longer necessary.

< cvanal and Ipanal will produce machine independent files if -X option is used. The convolve and
Ipread etc opcodes will accept either format. Y ou are encouraged to use the machine independent
form. Analysisfiles produced with -X can be used on other systems.

Frontends

Bugs fixed:

System Changes:

 InLinux and OSX the treatment of localesis now thread-safe and local.
Platform Changes:

API:

New API functions...

* new configuration/parameter setting functions

PUBLI C i nt csoundSet Opti on(CSOUND *csound, char *option);

PUBLI C voi d csoundSet Par ans(CSOUND *csound, CSOUND_PARANMS *p);

PUBLI C voi d csoundGet Par ans(CSOUND *csound, CSOUND_PARAMS *p);

PUBLI C voi d csoundSet Qut put (CSOUND *csound, char *name, char *type,
char *fornat);

PUBLI C voi d csoundSet | nput (CSCUND *csound, char *nane);

PUBLI C voi d csoundSet M DI | nput (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Fi | el nput (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Qut put (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Fi | eQut put (CSOUND *csound, char *nane);

* new parsing/compilation functions

PUBLI C TREE *csoundPar seOr c(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eTree(CSOUND *csound, TREE *root);
PUBLI C i nt csoundConpi | eOr c(CSOUND *csound, const char *str);
PUBLI C i nt csoundReadScor e(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eArgs(CSOUND *, int argc, char **argv);

» new function for starting csound after first compilation

PUBLI C i nt csoundStart(CSOUND *csound);

* new software bus threadsafe getters/setters

PUBLI C MYFLT csoundGet Cont r ol Channel (CSOUND *csound, const char *nane);

PUBLI C voi d csoundSet Cont r ol Channel (CSOUND *csound, const char *name, MYFLT val);
PUBLI C voi d csoundGet Audi oChannel (CSOQUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Audi oChannel (CSOUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet St ri ngChannel (CSOUND *csound, const char *name, char *string);
PUBLI C voi d csoundCet Stri ngChannel (CSOUND *csound, const char *name, char *string);

liv

Preface

* new table threadsafe copy functions

PUBLI C voi d csoundTabl eCopyQut (CSOUND *csound, int table, MYFLT *dest);
PUBLI C voi d csoundTabl eCopyl n(CSOUND *csound, int table, MYFLT *src);

API has been made threadsafe so that performance and control can occur in separate threads (after a
call to csoundSart() or csoundCompile()). Threadsafety is ensure by

1. use of atomic read/writing to control channels
2. spinlocksin audio and string channels

3. mutexes protecting compilation, score events and table access.

e Interna:

e Thebuild system is now cmake (and not scons as in Csound5).

* A number of table access opcodes have been rewritten but should behave the same. Similarly diskin
and diskin2 now use the same code and so diskin should be more stable.

e Theold parser is completely removed.

New internal functionsin Csound

void (*FlushGircul arBuffer)(CSOUND *, void *);
void *(*Fil eOpenAsync) (CSOQUND *, void *, int, const char *, void *,
const char *, int, int, int);
unsi gned int (*ReadAsync)(CSOUND *, void *, MYFLT *, int);
unsigned int (*WiteAsync)(CSOUND *, void *, MYFLT *, int);
int (*FSeekAsync)(CSOUND *, void *, int, int);
char *(*GetString)(CSOUND *, MYFLT);
Extract a string originating froma score-event argunent.

Functions removed

void *(*FileOpen) (CSOUND *, void*, int, const char*, void*, const char*);

The "private" parts of the API have been changed considerably. Also structures like EVTBLK have
changed.

The LINKAGEVFLINKAGE1L macros are renamed as LINK-
AGE_BUILTIN/FLINKAGE_BUILTIN.

Template for a-rate perf-pass opcodes is

int perf_nyopcode(CSOUND *csound, MYOPCODE *p)
{

uint32_t offset p- >h. i nsdshead- >ksnps_of f set ;
uint32_t early p- >h. i nsdshead- >ksnps_no_end;
uint32_t nsnps = CS_KSMPS;

illl"(UNLIKELY(offset)) menset (p->res, '\0', offset*sizeof (MYFLT));
if (UNLIKELY(early)) {

v

Preface

nsnps -= early;
menset (&p->res[nsnps], '\0', early*sizeof (MYFLT));

for (n=of fset; n<nsnps; n++) {

p->res[n] =

return OK;

String variables re-implemented

OENTRY structure has changed and has a new dependency field; please use thisfield asit is required
for multicore semantics. You could set it to -1 and disallow all parallelism, but at least it is safe.

All opcodes that touch audio should take note of sample-accurate code.

A number of previous API functions are removed; OpenFile and OpenFile2 both replaced by new
OpenFile2 with additional argument.

Additions have been made for arg type specifications for opcodes.
* Any-types have been added, as follows:
 '!'signifiesarequired arg of any-type
» "7 signifies an optiona arg of any-type
» "*'ggnifiesavar-arg list of any-type

» Arrays are now specified using "[x]" where x is a type-specifier. The type-specifier can be any of
the of the current specifiers, including any-types. See Opcodes/arrays.c for example usage.

New Type System

A new type system has been added to Csound6, and significant changes have been made to the com-
piler. The previous system for handling types involved depending on the first-letter of a variable's
name every time it was used to determine type. This meant there was a lot of re-checking of types.
Also, adding new types was difficult, as there was a lot of custom code that had to be updated to
check for new type letters.

In Csound6, a separate system of types was added. Types are defined as CS_TYPE's. The creation of
variables from types and the initialisation of memory has been encapsulated within the CS TYPE's.
This change alows easier addition of new types, as well as generic calculations of memory pools,
amongst other things.

The compiler has been modified since Csound5 to now use the type system as an integral part of its
semantic checking phase. Variables are now registered into a CS_VAR_POOL when they are first
defined, with the CS VARIABLE having a reference to its CS TYPE. After first time definition
within the pool, the type information is then looked up in consequent variable lookups, rather than re-
calculated from the variable name. This opens up possibilities for new variable naming and typing
dtrategies, i.e. using "myVar:K" to denote a k-rate arg. This also opens up possibilities for user-
defined types, such as "data myType kval, aval", then using "myVar:myType" to define a var of that
type. (The previousis speculative, and is not an active proposal at thistime.)

The addition of the type system has formalised the static type system that has existed in Csound prior
to Csound6. It has, arguably, ssmplified the code-base in terms of type handling, as well as laid the
ground work for future type-related research to be integrated into Csound.

Ivi

Preface

New in Version 5.19 (2013 January 7)

Thisis mainly a bug-fixing release but with a number of new opcodes and enhanced features.

* New opcodes:
* ipmidi module for MIDI over network.
« ppltrack opcode.
» combinv opcode.
* New Gen and Macros:
 Better checking in GEN28.
» Check rangein outrg, and optionally allow wrapping.
* Orchestra:
¢ Change empty statement to awarning.
* Added line numbers to many input args message (new parser).
» Modified Opcodes and GENSs:
 Better error and warning messages.
 loopseg now checks argument count.
* harmon2/3/4 improved.
« active: added the option to skip the instances in release phase.
« New and more tested implementation of ChordSpace.
» Bug fixed:
* Fix botched optimisation in lowpass filters.
e Chn opcodes fixed in Linux.
* Fix bugin loscil with silence.
» Correct GEN23 when comment does not end in newline.
« Correcting loopseg.
* Number of input and output channels fixed in new parser.
» Fixed GEN43 issue.
 Fixed fout.
 centroid was likely to crash.

¢ Minor bug in printing which lost %.

Ivii

Preface

An uninitialised value in fold fixed.
Uninitalised values in dconv fixed.

Assignment of fsigs now works.

e System Changes:

Avoid seg fault on some user errors.

Faster modal4 opcodes.

Allow cabbage compilation.

Made pfield size dynamic in event message csoundapi~.
The default output format with pipe and double float is AU.
Change to ircam with default format, '-o stdout' and pipe.

Added double float precision for output format.

 Platform Changes:

Linux:

 Spinlocksinitialised (fixes bug in chn opcodes).

OSX:

 Improved selection of devicesin rtauhal module.

» Added acircular buffer interface and lock-free operation to rtauhal.
» Fixed MacOSX installer (creating symlinksto lib_csnd.dylib).
Haiku:

* New platform

Android:

« Using -B now in android to set circular buffer size.

» Added fluid synth opcodes for android.

» Added inputM essage method to CsoundOb;.

* Allow CSDPlayer to beinstalled on SD Card.

iOS:

 Improved audio routing.

 Bottom speaker the default for iOS.

* AP

Added new API function csoundCompileFromStrings().

Iviii

Preface

New in Version 5.18 (2012 August 29)

Thisismainly abug-fixing release but with a number of new opcodes and enhanced features.

» New opcodes:

centroid opcode like pvscent but acting on audio signals

cosseg like linseg but with cosine interpolation

cossegb like linsegb but with cosine interpolation

cossegr like linsegr but with cosine interpolation

joystick to read input values from an external joystick (Linux only)
log2 function for logarithms base 2

platerev opcode to model areverberating square plate

pwd opcode to determine the current working directory

readf opcode to read strings from afile

readfi opcode to read strings from afile on initialisation

vbap opcode like other vbap family but flexible about number of speakers and choice of layouts.

vbapg opcode like vbap but only calculate the gains on the channels.

* New functionality

Changes to <CsOptions> to allow spaces between words, and escaped characters.
fout and fin use a better buffering strategy, and so are faster

It is possible to specify just an orchestra with the --orc flag. This is useful when a score is not
needed.

A new command-line flag --ogg flag has been added for easy use of ogg/vorbis output.
Added alsaseq real-time midi

» Bug fixes and improvements:

dates opcode could crash on 64bit architecture; thisis fixed

Some multicore interlocks were wrong. It is believed that this was not actually a problem, but
would bein the future.

There were cases when a file was doubl e closed, leading to a crash on exit.
Two new features added in partikkel. Panning law for channelmasks can now be set using a func-

tion table (second optional argument to partikkel) and new support opcodes partikkelget and
partikkelset, to access and modify the internal mask indices of partikkel.

lix

Preface

« follow2 was reworked do the i-rate and k-rate calculations are the same.
e pvscent is corrected asit returned half the correct value.

« vbaplsinit can create more than one speaker layout which vbap/vbapg can use. Also much better
diagnostics on incorrect layouts.

* Internal Changes:
¢ Code changed so bison 2.6 can be used.
 Itisassumed that libsndfile version 1.0.19 or later is available.

« |f the score is omitted a near-infinite wait is generated.

New in Version 5.17 (March 2012)

Thisis mainly a bug-fixing release with no major changes, but the number of fixes warrants arelease.

» New opcodes:

 cell opcode, for cellular automata

Modified Opcodes and Gens.

« active now will report total number of active or allocated instruments if argument in zero
« stsend and strecv the TCP socket opcodes reworked to alogical design

« DSSI system now will take up to 9 channels

« FLsavesnap works with other widgets where imin > imax

Utilities:

« csbheats better documented and built by default; also more note lengths available
* Some security holesin utilities fixed
* Bugfixes:
 unirand opcode at a-rate fixed
« Localefix for floating point literalsin orchestra
* transegr fixed
e System Changes:
» Score can now last longer (change to size of time variable)
« Anempty score gives avery long performance time (years and years)

* Android code released

Preface

Changes to use of tmp files; now al are deleted at end of run (previously some were left) and the
environment variable TMPDIR is used.

interaction between Comments, end of line and end of file fixed

Hexadecimal numbers now allowed in orchestra

Empty orchestra now not a crash

change to macro expansion inside a string

avoid infinite loop when eof in malformed score macro

fixed macroname-with-args diagnostics and memory leak

change to preprocessor: {{ }} inside"..." and better diagnostics

fix windows installer so it removes full $INSTDIR\bin from PATH during uninstall: this cleans up
the PATH environment variable when uninstalling on Windows. Previously, it was leaving a trail-
ing "\bin" on the PATH.

CsoundAC MusicModel class more usable by C++ programs

ftcps had been missed as afunction

* Internal Changes:

Many! Some messages quietened, code improvements etc

New in Version 5.16 (February 2012)

The mgjor change is that the new parser is now the default. The old parser is till available in case of dif-
ficulty but the new has been given extensive testing since the start of the year, including complete re-
structuring of macro expansion. A side effect is that the runtime of most orchestras is faster, although
parsing is slower. There are a few optimisations implemented like constant folding in simple cases. Line
numbers and file names are traced better than before.

Some memory leaks also fixed.

» New opcodes:

L]

Opcodes adapted from SuperCollider by Tito Latini: dust, dust2, gausstrig, gendy, gendyc, and
gendyx.

Fractal noise generator by Tito Latini: fractalnoise.
Opcodes for accessing table values by direct indexing, by John ffitch: ptable, ptablei, ptable3, and

ptablew. These opcodes are respectively like table, tablei, table3, and tablew, but they do not re-
quire a power-of-2 table size.

» Modified Opcodes and Gens.

There was a fence post problem in tab opcode that could falsely report a reference out of range.

GEN15 mis-called gens 13 and 14 internally, using uninitialised values voice amplitude. Problem

IXi

Preface

fixed.

« fmbell now takes an optional argument to control the sustain time.

» Change to pvsbasic for tab to table conversions.

 poscil is now polymorphic, allowing k- or a-rate amplitude and frequency.

¢ p() and i() changed when argument at k-rate.
« gend9 deferred now works.
¢ gen23 now available deferred.
« Utilities:

» Checked for use with the new parser in memory files.
+ Frontends:

» Table access added to csoundapi~ via new get/set methods.
» Bug fixes and improvements:

* Many in new parser related to precedence and multicore.

 Better diagnostics when orchestrafile/csd is missing.

» cddfile: fix CsFileB and CsSampleB.

* Fixed score statement 'n'.

 Fixed bug in diskin2 leading to infinite loop.

 Fixed bug causing crossfade noisein hrtfmove.

« Fixed unlikely buffer overflows in some utilities.

¢ Avoid segfault in midicN.

e Bug in mp3in in skip=0 case fixed.

« 'r' score statement fixed with respect to macros.

» sndwarp could segfault.

e System Changes:

» Preprocessor #if #else #endin working.

« #includes depth now limited rather than infinite recursion.

« Redly turn off all displays if --nodisplays or -d is used; fixes bug where using -d or --nodisplays
would still cause the winFLTK.c csoundM odul el nit to setup display callbacks; bug caused with py-
thon TK apps and CsoundYield FLTK being called.

e Memory leak in mp3in and mp3len fixed.

* Internal Changes:

Ixii

Preface

Very, very, very many! And the new parser...

New in Version 5.15 (December 2011)

» New opcodes:

ftab2tab opcode.

tab2pvs opcode.

pvs2tab opcode.

cpumeter opcode, (not really new but now available in OSX)
minmax opcode.

(EXPERIMENTAL) ftresize opcode.

(EXPERIMENTAL) ftresizei opcode.

hrtfearly opcode.

hrtfreverb opcode.

New Gen and Macros

Code to allow GEN49 to be deferred [NB does not seem to work]

» Modified Opcodes and Gens

socksend and sockrecv no longer uses MTFU check and work on Windows
mpulse changed so if next event is at negative time use the absolute value
serial opcode now runs on Windows as will as Un*x

out, out2, outg, outh, outo outx and out32 are now identical opcodes and will take up to as many ar-
guments as nchnls. This replaces the current remapping of opcodes

turnoff2 now polymorphic wrt S and k types (ie accepts instrumnet names)

* Bugsfixed:

GENA42 fixed

jacko: fixed a segfault removing the unused JackSessionl D option
doppler memory leak fixed

transegr fixed in release mode when skipping most of envelope
FL Pack now agrees with manual

max_k now agrees with manual

Ixiti

Preface

hrtfreverb fixed

atsa code now works on Windows in more cases

tabmorph bug fixed

fixed problem with user-defined opcodes having no outputs

Variousfixesto* ... */ comments

e System Changes:

L]

Various licence issues sorted

Lorisisno longer part of the Csound tree

Memory leaks fixed

If no scoreis given adummy that runs for over 100 yearsis created

All score processing takes place in memory without temporary files

String memory now expandable and no size limitation

#if #else #end now in new parser

Adjustmentsto MIDI file precision in output

On OSX move from Coreaudio to AUHAL

Multicore now safe for ZAK, Channels and modifying tables

New coremidi module

Virtual Keyboard improved: 1) Dropdown for choosing base octave (the one that starts with the vir-
tual key mapped to physical key Z). Default value is 5 which is backwards compatible. 2) Shift-X
mappings which add two octaves to X mappings for a total of 4 octaves playable from the physical
keyboard (starting from selected base octave). 3) Control-N / Control-Shift-N mappings to incre-
ment / decrement slider for control N. 4) Mouse wheel now controls sliders.

tsig type for vectors

tsigs and fsigs allowed as argumentsin UDOs

API: Minor version upped

* Internal Changes:

L]

Very, very, very many!

New in Version 5.14 (October 2011)

* New opcodes:

Ixiv

Preface

mp3len opcode.
gnan opcode.

ginf opcode.
exprandi opcode.
cauchyi opcode.
gaussi opcode.
cpumeter opcode.
linsegb opcode.
expseghb opcode.
transegb opcode.
expseghba opcode.
pvsgain opcode.
pvsbufread? opcode.
serial opcodes.

lua opcodes opcodes.
plustab opcode.
multtab opcode.
maxarray opcode.
minarray opcode.
sumarray opcode.

scalearray opcode.

New functionality

beats processor renamed to csbeats and distributed

mkdb utility to provide a catal ogue of plugin libraries/opcodes

ladspa library build in default system

macros are now expanded inside string in the score

therein an until .. do .. od looping syntax (in the new parser only)

SIGPIPE signals are ignored rather than causing Csound to exit

It is possible to use vectors of k-rate values, named t-variable. They are initialised to a fixed sizw

with init adncan be read with a simple [] syntax. assignment to elements is only via =. There are
also afew new opcodes that provide wider functionality.

Ixv

Preface

Bug fixes and improvements:

reading values to fill tables was broken with respect to comments
internal error in wii_datafixed

pvsshift fixed

jacko fixed

gen23 minor fixes

wiimote fixed

atsaadd fixed

compress fixed to work with Odbfs

pvsbufread corrected with respect to position counting

tempo opcode fixed

CsFileB sectionin .csd files had a bug, now fixed

deferred genO1 tables could have wrong size

vbap zak made to work(!)

fixed memory issue in AT Ssinoi

various fixes to cscore

various fixesto partials and tradsyn

transegr could crash in some cases

loris opcodes updated to latest version

date opcode has new base in some platforms to avoid overflow
pvsblur now works over reinit

diskin, diskin2 and soundin now can read up to 40 channels
prints behaves better with rounding

fmpercfl now has working vibrato

atreson now has gain parameter at k-rate

comb opcode made safe if in and out arguments the same
better accuracy in line and expon

OSCsend recovers space previously lost

OSCsend can send atable asablob with the T tag -- experimental and untested.

Ipf18 now has an optional iskip argument

Ixvi

Preface

 i() will also accept an i-rate value in which caseit isano-op
« makecsd revised and extended to have options for MIDI and score processing and licenses
* Ipanal reworked to remove bugs and oddities
e anissuewith noisein asafixed and aclick in portaudio fixed
 portaudio driver changed to be more robust on stop/exit
* Internal Changes:
* Many many changesto the new parser so it is now operational, but should be used with care

e The multicore system is distributed in an experimental mode and should be used with great care.

New in Version 5.13 (January 2011)

» New opcodes:

< median opcode.

filevalid opcode.
 pvstanal, pvswarp, temposcal, pvslock spectral processing opcodes.
e mincer opcode
« fareylen sequence opcodes.
* New functionality
¢ Rea random number generators using /dev/random (Linux only).
» INF macro added to orchestras; z read asinfinity in scores
« init changed to allow multiple initsin on statement
* GEN for support of farey sequences
« maxalloc,cpuprc, active now accept named instruments.
« If normalisation in pow opcodesis zero treat as 1
« inch can take upto 20 inputs and outputs.

 pvscale, pvsvoc and pvsmix now have very good spectral envelope preservation modes (1 = filtered
cepstrum, 2 = true envelope).

* 0scill could be static if the duration was long; now there is a positive minimum increment.
e GEN49 now uses search paths.

* Bug fixes and improvements:

Ixvii

Preface

Count of linesfixed in orchestras, and \ inside strings
Fast tab opcodes made safe from crashes

% in formated printing could crash

Doublefreein fgen fixed

sndwarp quietened (gave too many messages)

gendl deals with positive probabilities

adsynt reworked removing many bugs

adsynt2 phase error fixed

Bug in max number of gens fixed

Better checking in graind

Better checking in adsyn

modulus was wrong in new parser

atonex/tonex did wrong operation

mp3in could repeat sound at end of file

changed opcode initialised to zero

Serious bug in tabmor pha fixed

GENA49 has serious bug removed, so no longer incorrect silences.

partikkel opcode: fixed bug in sub-sample grain placement when using grain rate FM

Internal Changes:

In the new parser only there are operator @ and @@ to round up the next integer to a power of 2 or
powerof2+1

Score sorting made much faster

lineto improved

Named gens allowed

Various printing include instrument name if available

Command option to omit loading alibrary

Number of out channels no longer constrained to be number of in

Many fixes to new parser

More use of Warnings than Messages (allows for them to be switched off)

csoundSetM essageCallback reset if callback set to null

Ixviii

Preface

New in Version 5.12 (January 2010)

» New opcodes:

 transegr isaversion of the transeg opcode which has a release section which is triggered by midi, a
turnoff2 opcode or a negative instrument number i score event.

« ftgenonce generates a function table from within an instrument definition, without duplication of
data.

« passign allows quick initialization of i-rate variables from p-fields

 crossfmimplements crossed fm synthesis.

 loopxseg is like loopseg but with exponentia envelope.

* looptseg is like loopseg but with a flexible envelope like transeg
» Bug fixes and improvements:

 pvshift would overwrite in double mode.

e pan2 case 3 fixed.

« clockon and clockoff now work again.

 cross2 and interp could have divided by zero

« linecount for error messages no longer includes text from .csoundrc

 p5gconnect changed to use a separate thread to avoid timeout problem.

* transeg checks argument count.

« sfload used to be limited to 10 sound fonts and was not policed. Now open-ended.
* Internal Changes:

« \" alowed as an escape in orchestral strings

* New parser fixed on optional arguments

 Better checking of f statement with negative number

« Soundfonts only initialise pitches array once, in the soundfont opcodes.

« Usual collection of gratuitous minor changes, layout and comments

New in Version 5.11 (June 2009)

» New opcodes:

» mp3in alows reading of mp3 files directly in the orchestra.

Ixix

Preface

L]

wiiconnect, wiidata, wiisend, wiirange opcodes by john ffitch to receive and send data to a wiimote
controller.

New opcodes to receive data directly from a p5glove by john ffitch p5gdata
tabsum sums sections of ftables

MixerSetLevel i an init-time only version of Mixer SetLevel

doppler implements a simulation of the doppler effect.

filebit reports the file depth of afile.

The new Sgnal Flow opcodes enable the usage of signal flow graphsin Csound.

New functionality

L]

New panning type for pan2 opcode

New csd score tag <CsExScore>.

New -Maoption for ALSA RT MIDI module which listens to all devices.
Thereisagen49 to read mp3 files

Added rounding bin code to pvscale

Added non-power-of-2 table support for ftload and ftsave

GENZ23 totally rewritten to be more consistent in what constitutes a separator and comments. (Still
no /* */ comments)

Bug fixes and improvements:

L]

New examples for pvs opcodes by Joachim Heintz: pvsarp, pvscent, pvsbandp, pvsbandr, pvsbu-
fread, pvsadsyn, pvsynth, pvsblur, pvscale, pvscross, pvsfilter, pvsfreeze, pvshift, pvsmaska, pvs
morph

Use of automatic numbering of ftables reuses table numbers

seed with positive argument was wrong

sprintf with an empty string printed wrong data

mute now works with both numeric and named instruments

Small fixesin diskin, and in tablexkt

Internal Changes:

L]

SConstruct now builds completely independent shared libraries for Python, Lua, and Java wrap-
pers.

New Parser amost usable
Redrawing of graphs fixed so that only selected ones get redrawn.

RT-alsamore forgiving on near sample rates

Ixx

Preface

It is possible to have the score generated by an external program rather than using standard score
format using <CScore bin="translater"> to call the program translater on the score data

Ipc_export fixed
Removed limit on macro names length

PMAX, the number of arguments to a score event has been reduced by 2, and an overflow system
introduced so GENs can have arbitrary numbers of arguments.

Increased APl versionto 2.1.

New API function pointer |[dmemfile2withCB() which is a version of Idmemfile() allowing a call-
back to be set and called exactly once to process the MEMFIL buffer after it isloaded.

csound->floatsize set; zero in earlier versions

GetChannelLock added

New in Version 5.10 (December 2008)

* New functionality

New option to listen to al MIDI devices using the portmidi realtime module. To enable listening to
all devices use "-+rtmidi=portmidi -Ma".

Dither on output implemented; rectangular and triangular dither available in some cases

GENZ20 type 6 now has option to set variance

» Bug fixes and improvements:

Locale set to C numeric to avoid , versus. problems.
diskin fixed

outo was broken regarding channel 6

pitchamdf fixed

Zilter2 intialization fixed

s32b14 fixed

Fixed other bugs fixed that have not been reported publicly.

* Internal Changes:

The major version of the Csound APl is increased to 2; affected csound.so as well. This means that
Csound 5.10 is incompatible with applications ("front ends’, "clients', or "hosts") that were built
for Csound 5.08 and earlier and that use API version 1.x. These applications will need to be rebuilt
to work with the current and future versions of Csound. Csound front ends written in interpreted
languages such as Python or Java may continue to work without modification. It may aso be pos-
sible to keep both an earlier version of the Csound library and an API 2.0 version on the same ma-
chine together so that new and old Csound-based applications can run side-by-side. These changes

Ixxi

Preface

do not in any way affect the compatibility of Csound orchestras and scores: al old documents
should continue to work as before.

Time now counted internally in samples, overcoming a longstanding bug with rounding of time to
k-rate.

Many internal changes related to branch prediction. Some opcodes are substantially quicker.

New in Version 5.09 (October 2008)

» New opcodes:

New vosim opcode by Rasmus Ekman which recreates the historic VOSIM (VOca SlMulator)
technique.

New dcblock2 opcode by Victor Lazzarini.

New Chua's oscillator model: chuap by Michael Gogins.

New Linear Algebra opcodes by Michagl Gogins. Standard Linear algebra over real and complex
vectors and matrices: elementwise arithmetic, norms, transpose and conjugate, inner products, mat-
rix inverse, LU decomposition, QR decomposition, and QR-based eigenvalue decomposition. In-
cludes copying vectors to and from a-rate signa's, function tables, and f-signals.

New ambisonic opcodes: bformdecl and bformencl. These opcodes deprecate the older bformdec
and bformenc.

New Score control opcodes by Victor Lazzarini: rewindscore and setscorepos.

* New functionality:

L]

The vbap family of opcodes (vbap4, vbap8, vbapl6 and vbapz) now accept k-rate variables for all
their input arguments.

New pulseaudio 1/0O module on Linux.

New optional ienv parameter to generate envelopes for the soundfont opcodes: sfplay, sfplay3, sf-
playm and sfplay3m.

Added 'skip normalisation argument' to "tanh” named GEN routine. (See Named GEN Routines)

Added scheduler priority option on asa.

» Bug fixes and improvements:

L]

Allow scientific notation (aswas in csound4!) in GEN23.

Fixed bug in FLTK initialization. Should make FLTK usage more stable.
Error on /* */ comments in orchestra fixed.

poscil no longer overwrites frequency if variableis shared.

printk and printks check that opcodeisinitialised.

Ixxii

Preface

» Deprecate soundout and soundouts in favour of fout.
« Fixed space opcode to accept non-pow-2 (deferred) tables.
 Fixed pvsmorph bug.
* Internal Changes:
* New parser has #include and argumentless macros.
« Less casting between floats and doublesin float version.
* Includes experimental multicore support.
 buzz opcode rewritten.

« Many other interna changes and small bug fixes.

New in Version 5.08 (February 2008)

» New opcodes:

* imagecreate, imagesize, imagegetpixel, imagesetpixel, imagesave, imageload and imagefree: New
image file processing opcodes by Cesare Marilungo to read/write png images from Csound.

» pvsbandp and pvsbandr by John ffitch, which perform band-pass and band-reject filtering in the
spectral domain on apvssignal.

* New HRTF opcodes by Brian Carty:hrtfmove, hrtfmove2 and hrtfstat.

* New waveshaping opcodes. powershape, polynomial, chebyshevpoly, pdclip, pdhalf, pdhalfy, and
syncphasor

* New jack transport control opcode: jacktransport
* New functionality
e Added --csd-line-nums= command line option to select mode for error line reporting.

« New "no-carry" operator (!) for score language that prevents implicit carrying of p-fields in i-
statements.

» Added --syntax-check-only commandline flag (exclusive with --i-only)
e <Cslicence> tag for CSDs. <CslLicense> is accepted as an alternative to <CsLicence>.
» Bug fixes and improvements:

« Changed order of outputs for hilbert. This change breaks compatibility with previous versions, but
fixes the opcode and now works as documented.

» Messages about |oading opcode plugins modified so can be suppressed with message level flag.

« Magjor changes to score error reporting; now accurately reports the line numbers for the chain of in-
puts for most errors.

Ixxiii

Preface

Corrected pan2 so it agrees with documentation.
<CsVersion> tag works again according to the manual.

Fixed the{ and } score looping statements. Added missing documentation for them and ~, &, |, and
operators in score expressions.

hilbert had its outputs reversed, now correct. Manual example updated.

* Internal Changes:

L]

Change to gettext localisation; French and Columbian-Spanish translations available.

Internal changes to partikkel, interpolation of waveform read and windowing, alowing more pre-
cise pitch synchronous granular synthesis. Updated examples for partikkel.

pvscale: Improved algorithm for SDFT case so no ampltitude variation.

New in Version 5.07 (October 2007)

» New opcodes:

L]

L]

L]

pan2: a stereo panning opcode

cpsmidinn, pchmidinn, octmidinn: converters for MIDI note numbers
fluidSetl nterpMethod: interpolation in fluid sound fonts

sflooper: a soundfont version of flooper2

pvsbuffer and pvsbufread: buffering/reading of fsigs for delays/timescale changes.

* New functionality

L]

SDFT - the Sliding Discrete Fourier Transform -- added seamlessly to pvsanal, etc opcodes if the
overlap is less than the ksmps or less than 10. Some pvsX XX opcodes extended to take a-rate para-
meters when dliding.

New feature (-O null / --logfile=null) that disables all messages and printing to the console.

» Bug fixes and improvements:

partikkel -- particle synthesis had an inadvertent bug, now fixed.
Closing of MIDI input on Windows(MM) failed; now fixed

fluidEngine opcode now takes optional number of channels (range 16-256, default to 256) and
polyphony (range 16-4096, default to 4096) to use.

atsa utility safer when given silence.
ATSaddnz improved checking.

Ambisonics (bformdec, bformenc) has more options for controlled opposites.

Ixxiv

Preface

¢ Bug in turnoff2 fixed.
 het_export: invalid check caused export to fail.
* Internal Changes:
« Improved Windows installer.
e CsoundV ST replaced by CsoundAC, that does not depend on the VST SDK headers.
 Less messages in Windows(MM) startup.

» Pargument type added (k-rate defaults to 1) for opcodein and out types.

New in Version 5.06 (June 2007)

» New granular opcodes: partikkel, partikkelsync and diskgrain.

» New opcode for event dispatch: scoreline.

* Many new opcodes from Gabriel Maldonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, lposcilsa, Iposcilsa2, tabmorph, tabmorpha, tabmorphi, tabmorphak, trandom, vtablelk,
slider8table, diderl6table, slider32table, slider64table, slider8tablef, slider16tablef, dider32tablef,
slider64tablef, sliderKawai and the a-rate version of ctrl7.

* Also from CsoundAV, many new FLTK widget opcodes: FLkeyln, FLslidBnk2, FLvdlidBnk,
FLvdidBnk2, FLmouse, FLxyin, FLhvsBox, FLdidBnkSet, FLslidBnkSetk, FLslidBnk2St,
FLSlidBnk2Setk, FLSidBnkGetHandle,

» New pvs opcodes:. pvsdiskin, pvsmorph,

o eqfil

» New command line options (--m-warnings)to control messages

» cdadspa: aCSD to LADSPA plugin kit.

» And many bug fixes including (but not limited to): fixed k-rate version of system; fixed scaling prob-
lems of vrandh and vrandi; fixed ocasional failure of turnoff; fixed OS X bug; fixed ATScross and
fixed mod.

Csound5GUI now works properly on all platforms and csoundapi~ (pd object) has been updated.

Ixxv

Part |. Overview

Table of Contents

Fp (oo (8 7ol o H PP 4
The CsouNd COMIMANGcuuiiiii et e e e e e e e et e e e e e e aeeaneees 5
Order Of PreCedENCEooieiiiii et 5
Description of the command SYNtaXcc.vevuiiiiiiiiiiie e 5
Csound COMMANG [INEuiiiiiii e 7
Command-line Flags (BY Category)vvveuieeiiieii i e e 17
Csound Environment Variablesccoooiiiiiiiiiiicee e 28
Unified File Format for Orchestras and SCOreSoovevviiiiiiiniiiiieieieeei e 31
Dol 1] o)1) o FR PP 31
EXAMIPIE e 33
Command Line Parameter File (.CSOUNIC)uvvvvnieiiieiii e e e 34
SCOrE File PreprOCESSING . .ovvuiieii i eeie et e e et e e e e e e e e e e anas 34
THEEXIrACt FEAIUEuivniiiie e 34
Independent Pre-Processing With SCSOIoveiiiiiiiiiiiiiiieeii e 35
USING CSOUNG ...ttt ettt ettt e et ettt e e et e e et e et e e e e e et e e ean e eeanaaeees 36
Csound's CONSOIE OULPULuveeeeieei e e e e e e e ees 36
HOW CSOUNT WOTKS ..t e et e et e eees 37
Amplitude valueSin CSOUNGocvuuiiiiieie e e e 38
REAI-TIMEAUIO ...ieniiii e 40
Realtime 1/O 0N LINUXivniiiii e e e 40
WINAOWS ..ttt e et e e et e e et eeeb e eean e 48
IMIBE OSX ittt ettt e e e e e e e e e e e et a et aae 48
Optimizing AUiO /O LAENCY ...ucvvieiii e e 49
(@0 11T 1T o 51
Syntax Of the OFChESIIA ... cceeei e 52
OrchestraHeader SEatemeNtSco.uiiiiiiiii e e 53
Instrument and Opcode BIOCK StAEMENEScoovniiiiiiiiie e 53
Ordinary StALEMENESvvieiiei e e e e e e e e 54
Types, Constants and Variablesccccouiviiiiiiiiiiii e 54
Variable INtaliZationcoooiiiiiiiii e 55
EXPIESSIONS ...ttt et ae 55
DirectorieSand FIlEScoouiiiii e 56
NOMENCIALUIE ...t et eea e eees 56
Y K=o (0 TP USRI 57
NEMEA INSEIUMENES ...ttt et eeeeae e eees 57
User Defined Opcodes (UDOQ)uiveiiiiiieiee e e e e e e e e e eees 60
K-RAE VECIONS .. .eeeeeee e et e e e e e e e e anees 60
Function Syntax in CSOUNBcccuuuuieiiiiiieeiii e 61
The Standard NUMEITC SCOMEieuuiiiiieii ettt et e a e e ean e 62
Preprocessing of Standard SCOrESuvvniiiiiii e 62
L% 62
=110 T 63
S0 £ S 63
SOOI S EIMIENES .. ettt e e e 64
Next-P and Previous-P SymbolSooouiiiiii e 64
L 2]] o P 65
SCOME IMBCIOS ..ttt ettt ettt ettt e et et et e e e e eennas 66
MUIIPIE FIlE SCOIE ... eaes 68
Evaluation Of EXPreESSIONScccuvuiiiiiiiiieeeiii e e 69
SUNGS TN P-FIEIAS e 70
L 001 =10 To PPN 72
CSOUNTAC .o et e e e e e eaaas 73
L0 o 11110 |V PP 74

Overview

T TH o [T T TS o1 o

Csound Links

Introduction

Csound is a unit generator-based, user-programmable computer music system. It was origin-
ally written by Barry Vercoe at the Massachusetts Institute of Technology in 1984 as the
first C language version of this type of software. Since then Csound has received numerous
contributions from researchers, programmers, and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many
varieties of UNIX and Linux, Microsoft DOS and Windows, al versions of the Macintosh
operating system including Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/M SP,
PD, jMax, or Open Sound World), or that use more advanced techniques of software engin-
eering (e.g. Nyquist or SuperCollider). Yet Csound still has the largest and most varied set
of unit generators, is the best documented, runs on the most platforms, and is the easiest to
extend. It is possible to compile Csound using double-precision arithmetic throughout for
superior sound quality. In short, Csound must be considered one of the most powerful mu-
sical instruments ever created.

In addition to this "canonical" version of Csound and CsoundAC, there are other versions of
Csound and other front ends for Csound, many of which can be found at ht-
tp://csound.github.io.

http://csound.github.io
http://csound.github.io

The Csound Command

The command csound is a basic frontend to the system that can be used to generate a sound
output from an orchestra file and a score file (or a unified csd file). It is designed to be
called from a termina or DOS window. In addition to it, there are other front-ends, which
might be simpler to use. The score file can be in one of many different formats, according to
user preference. Trandlation, sorting, and formatting into orchestra-readable numeric text is
handled by various preprocessors; all or part of the score is then sent on to the orchestra. Or-
chestra performance is influenced by command flags, which set the level of displays and
console reports, specify /0 filenames and sample formats, and declare the nature of real-
time sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed
in the following order:
1. Csound's own defaults

2. File defined by the CSOUNDRC environment variable, or .csoundrc file in the HOME
directory

3. A .csoundrc filein the current directory

4. <CsOptions>tagina.csdfile

5. Passed on the Csound command line

The later options in the list will override any earlier ones. As of version 5.01 of Csound,

sample and control rate override flags (-r and -k) specified anywhere override sr, kr, and ks-
mps defined in the orchestra header.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the or-
chestra (.orc) and score (.sco) files or the Unified csd file (containing both orchestra and
score) to process. Command Line Flags to control input and output configuration may ap-
pear anywhere in the command line, either separately or bundled together. A flag taking a
Name or Number will find it in that argument, or in the immediately subsequent one. The
following are thus equivalent commands:

csound -nn8 orchnane -Sxxfilenane scorename
csound -n -m 3 orchnane -x xfilenane -S scorenane

All flags and names are optional. The default values are:

csound -s -otest -bl1024 -B1024 -n¥V -P128 orchnane scorenane

The Csound Command

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in
standard numeric score format, optionally presorted and time-warped. If scorename is omitted, there are
two default options:

1. if real-timeinput is expected (e.g. -L, -M, -iadc or -F), adummy scorefile is substituted consisting of
the single statement 'f 0 3600 (i.e. listen for RT input for one hour)

2. else Csound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it executes, performing vari-
ous syntax and error checks along the way. Once the actual performance has begun, any error messages
will derive from either the instrument loader or the unit generators themselves. A CSound command
may include any rational combination of flag arguments.

Running the examples in this manual from the command

line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag, so you only need to type something
like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

The Csound Command

Csound command line

csound

Description

The csound command executes Csound.
Syntax

csound [flags] [orchname] [scorenang]

csound [flags] [csdfilenane]

Csound command line flags

Listed below are the command line flags available in Csound6 in alphabetical order. Various platform
implementations may not react the same way to different flags! Y ou can view the command line flags
organized by category in Command-line Flags (by Category).

The command line arguments are of 2 types: flags arguments (beginning with a “-”,“--" or “-+"), and

name arguments (such as filenames). Certain flag arguments take a following name or numeric argu-
ment. Flags that start with “--” and “-+” usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE”

-3, --format=24bit Use 24-hit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, MPC, nist, ogg, paf, pvf, raw, sd2, sds, svx, voc,
w64, W64, wav, wavex, WVE, xi. Can aso be used as -
-format=type:format or --format=format:type to set both the file
type (wav, aiff, etc.) and sample format (short, long, float, etc.) at

the same time.
-A, --aiff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -I, or -f flags.
-a, --format=alaw Use a-law audio samples.
-B NUM, - Number of audio sample-frames held in the DAC hardware buf-
-hardwarebufsamps=NUM fer. Thisis athreshold on which software audio 1/O (above) will

wait before returning. A small number reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024

7

The Csound Command

-b NUM, --iobufsamps=NUM

-C, --cscore
-c, --format=schar

--csd-line-nums=NUM

-D, --defer-genl

-d, --nodisplays

-d

--devices

--deviceg[=X]

--displays
--default-paths

--env:NAME=VALUE

on Linux, 4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/O0 on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps* -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

Use Cscore processing of the scorefile.
Use 8-hit signed character audio samples.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Defer GENOL soundfile loads until performance time.

Suppress all displays. See -O if you want to save the log to afile.
Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.
Givesalist of available audio devices and then exits.

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Enables displays, reverting the effect of any previous -d flag.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Set environment variable NAME to VALUE. Note: not al envir-

8

The Csound Command

--env:NAME+=VALUE

--expression-opt

onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and SS

DIR are known to work.

Append VALUE to '} separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS&
DIR). If a file is found in multiple directories, the last will be

used.

Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control
rate is (see also below), etc.; thus, the difference may be less,

but also much more).

e number of a and k-rate temporary variables is significantly re-

duced. This expression

(al

will compile as

#al
#al
#a0

instead of

#a0
#al
#a2

The advantages of less temporary variables are:

+ a2 + a3 + a4)

Add al, a2
Add #a0, a3
Add #a0, a4

Add al, a2
Add #a0, a3
Add #al, a4

; (the result is in #a0)

; (the result is in #a2)

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control

rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifi-

er names

* index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

The Csound Command

-F FILE, --midifile=FILE

-f, --format=float

-G, --postscriptdisplay
-g, --asciidisplay
--get-system-sr

-H#, --heartbeat=NUM

-h, --noheader

--help

-l, --i-only

-i FILE, --input=FILE

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
time is unsafe.

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
prints system sr and exits, requires -o dac.

Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

« NUM =1, arotating bar.

« NUM =2, adot (.)

¢ NUM = 3, filesize in seconds.

* NUM =4, sound abell.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Display on-line help message.

i-time only. Allocate and initiaize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SSDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In the first case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The audio coming in using -i can be received using opcodes like

10

The Csound Command

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_scopyright=integer

: "All rights reserved" (default)

NOUBRWNRO

: "Licenced under BSD"

-+id_date=string

-+id_software=string

-+id_title=string

-+ignore_csopts=integer

-+input_stream=string

-J, --ircam, --format=ircam

- NUM

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

inch.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(Since version 6.05) Simple copyright/licence encoded as an in-
teger. Coding is:

: "Creative Commons Attribution-NonCommercia -NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

. "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

.(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile
(no spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

Pulseaudio input stream name.
Write an IRCAM format soundfile.

Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is more
that the number of requested processes. It also may slow render-
ing down if ksmpsistoo small.

The client name used by Csound, defaults to 'csounds'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel number
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nputl (record left)

11

The Csound Command

-K, --nopeaks
-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

-1, --format=long

-M DEVICE, -
-midi-device=DEVICE

-m NUM, --messagelevel=NUM

csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

Do not generate any PEAK chunks.
Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only valid on *NIX systems which
have pipes. It doesn't work on Windows.

Use long integer audio samples.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed.When using PortMidi, you can use '-
Ma to enable al devices. Thisis also convenient when you don't
have devices as it will not generate an error.

Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0= raw amplitudes, no colours
e 32=dB, no colors

« 64 =dB, out of range highlighted with red

96 = dB, dl colors

e 256 = raw, out of range highlighted with red

12

The Csound Command

e 512 =raw, al colours
The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04.

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
¢ 0= no note amplitude messages
¢ 1= note amplitude messages

--m-range=NUM Message level for out of range messages on standard (terminal)
output.

« 0= no samples out of range message
¢ 1=samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
« 0= no warning messages
e 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1 =dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0= no colouring of amplitude messages
« 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1= print benchnark numbers
-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1,

defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

--midi-deviceg[=X] list midi devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

--midi-key=N Route MIDI note on message key number to pfield N as MIDI
value [0-127].

--midi-key-cps=N Route MIDI note on message key number to pfield N as cycles
per second.

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear
octave.

13

The Csound Command

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as
MIDI value[0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled

on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-+mute_tracks=string (max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

-N, --notify Notify (ring the bell) when score or MIDI track is done.
-n, --nosound No sound. Do all processing, but bypass writing of sound to disk.

This flag does not change the execution in any other way.

--num-threads=NUM Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is more
that the number of requested processes. It also may slow render-
ing down if ksmpsistoo small.

--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--no-expression-opt Disables expression optimization.
-O FILE, --logfile=FILE Log output to file FILE. If FILE is null (i.e. -O null or -
-logfile=null) all printing of messages to the console is disabled.
Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

-0 FILE, --output=FILE Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable SF-
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name devaudio or dac (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

14

The Csound Command

--0g9
--omacro:XXX=YYY

--opcode-lib=LIBNAME

--0rc orchame

--ksmps=N
-+output_stream=string

--port=N

-Q DEVICE

-R, --rewrite

-r NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

--reatime

-+rtaudio=string

-+rtmidi=string

Set output file format to ogg. (csound 5.18 and later)
Set orchestramacro XXX tovalue YYY
Load plugin library LIBNAME.

Set the argument as the orchestrra file. Used when not scoreis re-
quired>. (Csound 5.18 and later).

Set ksmps override to N (6.05 and later).
Pulseaudio output stream name.

Set UDP port on which to listen instruments/orchestra code
(implies --daemon)

Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of al the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchron-
ously by a separate thread.

2. al init-pass operations are also performed asynchronously.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options: Linux: alsa, jack; Windows: mme; Mac OS X: Cor-
eAudio. In addition, null can be used on al platforms, to disable
the use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: asa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

15

The Csound Command

-s, --format=short

--sample-accurate

--sched

--sched=N

-+server=string

-+skip_seconds=float
--smacro:XXX=YYY

--strset

--syntax-check-only

-T, --terminate-on-midi

-t0, --keep-sorted-score

-t NUM, --tempo=NUM

-U UTILITY, --utility=UTILITY

-u, --format=ulaw

--vbr-quality=X

ALSA MIDI devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Use short integer audio samples.

Start and stop instances of instruments at the nearest sample to the
requested time. This is in contrast to traditional Csound which
rounds the times to the nearest k-cycle. Note that this does not
work with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Pulseaudio server name.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Set score macro XXX tovalueYYY

Csound 5. The --strset option allows setting strset string values
from the command line, in the format "--strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and | ater).

Terminate the performance when the end of MIDI fileis reached.

Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Use u-law audio samples.

Set variable bit-rate quality for output to ogg. (Csound 6.03 and

16

The Csound Command

|ater).

-v, --verbose Verbose trandate and run. Prints details of orch translation and
performance, enabling errors to be more clearly located.

-W, --wave, --format=wave WriteaWAYV format soundfile.

-X FILE, --extract-score=FILE Extract a portion of the sorted score, score.srt, using the extract
file FILE (see Extract).

-Z, --dither Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. The default form of the dither is
triangular.

-Z, --dither--triangular, - Switch on dithering of audio conversion from internal floating

-dither--uniform point to 32, 16 and 8-bit formats. In the case of -Z the next digit

should be a 1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

-z NUM, --list-opcodesNUM List opcodesin thisversion:
¢ no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Alphabetically).
The format of acommand is either:

csound [f | ags] [orchname] [scorename]
or

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-
ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags

that start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput

-3, --format=24bit Use 24-hit audio samples.

-8, --format=uchar Use 8-bit unsigned character audio samples.

-A, --aff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
-a, --format=alaw Use a-law audio samples.

17

The Csound Command

-c, --format=schar Use 8-bit signed character audio samples.

-f, --format=float Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

--format=type Set the audio file output format to one of the formats available in
libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx, voc, w64, wav,
wavex and xi. Can aso be used as --format=type:format or -
-format=format:type to set both the file type (wav, aff, etc.) and
sample format (short, long, float, etc.) at the same time.

-h, --noheader No header on output soundfile. Don't write a file header, just bin-
ary samples.
-i FILE, --input=FILE Input soundfile name. If not a full pathname, the file will be

sought first in the current directory, then in that given by the en-
vironment variable SDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character. It depends on the host audio interface wheth-
er a device number or a name should be used. In the first case, an
out of range number usually resultsin an error and listing the val-
id device numbers.

The audio coming in using -i can be received using opcodes like

inch.
-J, --ircam, --format=ircam Write an IRCAM format soundfile.
-K, --nopeaks Do not generate any PEAK chunks.
-1, --format=long Use long integer audio samples.
-n, --nosound No sound. Do all processing, but bypass writing of sound to disk.

This flag does not change the execution in any other way.

-0 FILE, --output=FILE Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable S--
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name dac or devaudio (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range O to 1023, or a device name separated by a : character. It
depends on the host audio interface whether a device number or a
name should be used. In the first case, an out of range number
usualy resultsin an error and listing the valid device numbers.

--0g9 Set output file format to ogg. (Csound 5.18 and later).
--vbr-quality=X Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

18

The Csound Command

-R, --rewrite

-s, --format=short

-u, --format=ulaw

-W, --wave, --format=wave

-Z, --dither

-Z, --dither--triangular, -
-dither--uniform

Output Fileld tags

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_scopyright=integer

NoOURWNREO

: "All rights reserved" (default)
: "Creative Commons Attribution-NonCommercia -NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercial -ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

: "Licenced under BSD"

-+id_date=string

-+id_software=string

-+id_title=string

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Use short integer audio samples.
Use u-law audio samples.
WriteaWAYV format soundfile.

Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. The default form of the dither is
triangular.

Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. In the case of -Z the next digit
should be a1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(Sincle version 6.05) Simple copyright/licence encoded as an in-
teger. Coding is:

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile (no
spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

Realtime Audio I nput/Output

19

The Csound Command

-input=adc[DEVICE]

-0 dac[DEVICE], -
-output=dac[DEVICE]

-+rtaudio=string

--redtime

-+server=string
-+output_stream=string
-+input_stream=string

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

MIDI File Input/Ouput

--deviceg[=X]

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In thefirst case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The name dac or devaudio (you can use -odac or -0 dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually results in an error and listing
the valid device numbers.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options: Linux: asa, jack; Windows. mme;
Mac OS X: CoreAudio. In addition, null can be used on all plat-
forms, to disable the use of any rea time audio plugin.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchron-
ously by a separate thread.

2. al init-pass operations are also performed asynchronously.
Pulseaudio server name.

Pulseaudio output stream name.

Pulseaudio input stream name.

The client name used by Csound, defaults to ‘csoundS'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel number
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1
csound5: i nput 2
csound5: out put 1
csound5: out put 2

(record left)
(record right)
(pl ayback left)
(pl ayback right)

list audio devices (x=out, output devices only; x=in, input; elsein-

20

The Csound Command

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float

-T, --terminate-on-midi

MIDI Realtime I nput/Ouput

-M DEVICE, -
-midi-device=DEVICE

--midi-key=N
--midi-key-cps=N
--midi-key-oct=N
--midi-key-pch=N
--midi-velocity=N
--midi-velocity-amp=N

--midioutfile=FILENAME

-+rtmidi=string

put and output) and exit.

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of al the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

Read MIDI events from device DEVICE. If using ALSA MIDI (-
+rtmidi=alsa), devices are selected by name and not humber. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed. When using PortMidi, you can use '-
Ma to enable al devices. Thisis also convenient when you don't
have devices asit will not generate an error.

Route MIDI note on message key number to pfield N as MIDI
value [0-127].

Route MIDI note on message key number to pfield N as cycles
per second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as
MIDI value [0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):

21

The Csound Command

-Q DEVICE

Display

--csd-line-nums=NUM

-d, --nodisplays

--displays

-G, --postscriptdisplay
-g, --asciidisplay

-H#, --heartbeat=NUM

Linux: asa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

ALSA MIDI devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

< 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.
Enables displays, reverting the effect of any previous -d flag.
Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
Print a heartbeat after each soundfile buffer write:

¢ no NUM, arotating bar.

« NUM =1, arotating bar.

22

The Csound Command

-m NUM, --messagelevel=NUM

--m-amps=NUM

--m-range=NUM

--m-warnings=NUM

--m-dB=NUM

« NUM =2, adot ()
* NUM = 3, filesize in seconds.
* NUM =4, sound a bell.

Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

128 = print benchmark information
And exactly one of these to select note amplitude format:

e 0=raw amplitudes, no colours
¢ 32=dB, no colors

e 64 =dB, out of range highlighted with red

96 = dB, dl colors

« 256 = raw, out of range highlighted with red

e 512 =raw, al colours

The default is 135 (128+4+2+1), which means al messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04

Message level for amplitudes on standard (terminal) output.

< 0= no note amplitude messages

¢ 1= note amplitude messages

Message level for out of range messages on standard (terminal)
output.

* 0= no samples out of range message

¢ 1=samples out of range message

Message level for warnings on standard (terminal) output.

0= no warning messages

¢ 1 =warning messages

Message level for amplitude format on standard (terminal) output.
¢ 0 = absolute amplitude messages

¢ 1 =dB amplitude messages

23

The Csound Command

--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0= no colouring of amplitude messages
¢ 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
1= print benchnark numbers

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-v, --verbose Verbose trandlate and run. Prints details of orch translation and
performance, enabling errors to be more clearly located.

-z NUM, --list-opcodesNUM List opcodesin this version:
* no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

Performance Configuration and Control

-B NUM, - Number of audio sample-frames held in the DAC hardware buf-

-hardwarebufsamps=NUM fer. Thisis athreshold on which software audio I/O (above) will
wait before returning. A small number reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency” value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024
on Linux, 4096 on Mac OS X and 16384 on Windows.

-b NUM, --iobufsamps=NUM Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/0 on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps* -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

24

The Csound Command

-d

-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

--omacro:XXX=YYY

--port=N

-r NUM, --sample-rate=NUM

--sample-accurate

--sched

--sched=N

--smacro: XXX=YYY

--strset

-+skip_seconds=float

-t NUM, --tempo=NUM

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only valid on *NIX systems which
have pipes. It doesn't work on Windows.

Set orchestramacro XXX tovalueYYY

Set UDP port on which to listen instruments/orchestra code
(implies --daemon)

Override the sampling rate (SR) supplied by the orchestra.

Start and stop instances of instruments at the nearest sample to the
requested time. This is in contrast to traditional Csound which
rounds the times to the nearest k-cycle. Note that this does not
work with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Set score macro XXX tovalue YYY

Csound 5. The --strset option alows setting strset string values
from the command line, in the format '--strsetN=VALUE' It is
useful for passing parameters to the orchestra (e.g. file names).

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is

25

The Csound Command

set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

-j NUM, --num-threads=NUM Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is more
that the number of requested processes. It also may slow render-
ing down if ksmpsistoo small.

Miscellaneous

-@FILE Provide an extended command-linein file“FILE"

-C, --cscore Use Cscore processing of the scorefile.

--default-paths Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

-D, --defer-genl Defer GENOL soundfile loads until performance time.

--env:NAME=VALUE Set environment variable NAME to VALUE. Note: not al envir-

onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and SS
DIR are known to work.

--env:NAME+=VALUE Append VALUE to '} separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS&
DIR). If a file is found in multiple directories, the last will be
used.

--expression-opt Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control
rate is (see also below), etc.; thus, the difference may be less,
but also much more).

¢ number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0O, a3
#a0 Add #a0, a4 ; (the result is in #a0)

26

The Csound Command

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of less temporary variables are:

* |ess cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

* large orchestras may load faster due to less different identifi-
er names

* index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable names in a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-

time is unsafe.
--get-system-sr PObtain the machine's sample rate.
--help Display on-line help message.
--devices Givesalist of available audio devices and then exits.
-1, --i-only i-time only. Allocate and initiaize all instruments as per the score,

but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

-+ignore_csopts=integer If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

--ksmps=N Set ksmps override to N (6.05 and later).

-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1,

defaults to 256 allowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

-N, --notify Notify (ring the bell) when score or MIDI track is done.

27

The Csound Command

--no-default-paths
--no-expression-opt

-O FILE, --logfile=FILE

--opcode-lib=LIBNAME

--0rc orchame

--syntax-check-only

-t0, --keep-sorted-score

-U UTILITY, --utility=UTILITY

-X FILE, --extract-score=FILE

Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.

Log output to file FILE. If FILE is null (i.,e. -O null or -
-logfile=null) al printing of messages to the console is disabled.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Load plugin library LIBNAME.

Set the argument as the orchestra file. Used when not score is re-
quired>. (Csound 5.18 and later).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and later).

Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Extract a portion of the sorted score, score.srt, using the extract
file FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

» SFDIR: Default directory for sound files. Used if no full path is given for sound files.

» SSDIR: Default directory for input (source) audio and MIDI files. Used if no full path is given for
sound files. May be used in conjunction with SFDIR to set separate input and output directories.
Please note that MIDI files aswell as audio files are also sought inside SSDIR.

e SADIR: Default directory for analysisfiles. Used if no full path is given for analysisfiles.

* SFOUTYP: Sets the default output file type. Currently only 'WAV', 'AIFF and 'IRCAM' are valid.
Thisflag is checked by the csound executable and the utilities and is used if no file output type is spe-

cified.

* INCDIR: Include directory. Specifies the location of files used by #include statements.

» OPCODEG6DIR: Defines the location of csound opcode plugins for the single precision float (32-hit)

version.

» OPCODE6DIR64: Defines the location of csound opcode plugins for the double precision float

(64-bit) version.

28

The Csound Command

» SNAPDIR: Isused by the FLTK widget opcodes when loading and saving snapshots.

* CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename containing
csound flags must be specified. This variable defaults to .csoundrc if not present.

* CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS pointsto a
directory containing .xmg files.

* CS LANG: Selects alanguage for csound messages.

* RAWWAVE_PATH: Isused by the STK opcodes to find the raw wave files. Only relevant if you are
using STK wrapper opcodes like STKBowed or STKBrass.

» CSNOSTOR: If this environment variable is set to "yes', then any graph displays are closed automat-
icaly at the end of performance (meaning that you possibly will not see much of them in the case of a
short non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to exit,
alowing for viewing the graphs even after the end of score is reached.

* MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note that
MIDI files are sought in SSDIR and SFDIR as well.

* CS OMIT_LIBS: Allows defining a list of plugin libraries that should be skipped. Libraries can be
separated with commas, and don't require the "lib" prefix.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODE6GDIR and OPCODEGDIRG64. It is very import-
ant to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 6.03.1 (double samples) May 10 2014. This
text refersto the double precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely
trandlated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are;

e PATH: The directory containing csound executables should be listed in this variable.

* PYTHONPATH: If you intend to use CsoundVST and python, the directory containing the
_CsoundV ST shared library and the CsoundV ST .py file must be in your PYTHONPATH environment
variable (or the default path python searches in), so that the Python runtime knows how to load these
files.

* LADSPA PATH and DSS_PATH: These environment variables are required if you are using the
dssidcs (LADSPA and DSSI host) plug-in opcodes.

* CSDOCDIR: Specifies the directory where the html help files are located. Though not used by
Csound directly, this environment variable can help front-ends and editors (which implement it) to
find the csound manual.

Setting environment variables

On the command line

29

The Csound Command

Y ou can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env:NAME+=VALUE, where NAME is the environ-
ment variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEGDIR,
OPCODE6DIR64, CSSTRINGS, and CS_LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

Windows

Linux

Mac

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other versions of Windows earlier than Windows XP
and Windows 2000 you set environment variables in the autoexec.bat file. Go to 'My Computer', select
C: drive, right click on autoexec.bat, and select 'Edit’. The statement format is: SET NAME=VALUE .

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profilefile.

~$ export OPCODE6DI R64=/ User s/ you/ your/ Csound6é/ bui | d

in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Note that if users choose one of the above methods, ie editing the .bashrc file then the environment vari-
ables are executed when anew shell is created. This can be problematic if your application implements a
Quartz or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application uses the csound-
APl and sets the environ variables directly) is to create an XML property list file (called a .plist file by
the OS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solu-
tion specifically for the [csoundapi~] object for Pd on OS X. Since Pd uses an OS X native .app style
packaging, and runs off of the Aqua interface, the standard means of supplying environment variables to
Csound do not work. The solution isto set Csound's environment variables for the Aqua environment.

Likely, most users will not have the hidden folder .MacOSX located in their $HOME directory (aka ~/)
This folder must first be created and the Environment.plist added to this folder. The contents of the En-
vironment.plist file should be something like:

<?xm version="1.0" encodi ng=' UTF-8"?>

<! DCCTYPE plist PUBLIC "-//Apple Conputer//DTD PLIST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCCDEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCODEDI R64</ key>

<string>/ Vol unmes/ Ext er nal HIY devel / csound5/ | i b64</string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ stri ng>

<key>SFDl R</ key>

<string>/ Vol umes/ Ext er nal HDY i Tunes/ csoundaudi o</ stri ng>

30

The Csound Command

</dict>
</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>
tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michael Goginsin AXCsound.

Thefileisastructured datafile which uses markup language, similar to any SGML such asHTML. Start
tags (<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text
file.

Structured Data File Format

Mandatory Elements

The first tag in the file must be the start tag <CsoundSynthesizer>. The last tag in the file must be the
end tag </CsoundSynthesizer>. This element is used to alert the csound compiler to the .csd format. All
text before the start tag and after the end tag is ignored by Csound. The tag may also be spelled
<CsoundSynthesiser>.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same requirements, including the
header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)

Csound score statements are put in the Score Element. The statements and syntax in this section are
identical to the Csound score file, and have the same requirements. The Score Element is delimited by
the start tag <CsScore> and the end tag </CsScore>.

As an aternative Csound score statements can also be generated by an external program using the
CsScore scheme with an attribute bin. The lines upto the closing tag </CsScore> are copied to afile and
the external program named is called with that file name and the destination score file. The external pro-
gram should create a standard Csound score.

Optional Elements

31

The Csound Command

Included Base64 Files (<CsFileB>)

Base64-encoded files may be included with the tag <CsFileB filename=filename>, where filename is
the name of the file to be included. The Base64-encoded data should be terminated with a </CsFileB>
tag. For encoding files, the csb64enc and makecsd utilities (included with Csound 5.00 and newer) can
be used. The file will be extracted to the current directory, and deleted at end of performance. If thereis
an aready existing file with the same name, it is not overwritten, but an error will occur instead.

Base64-encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, wherefile-
name is the name of the file containing the MIDI information. There is no matching end tag. This was
added in Csound version 4.07. Note: using this tag is not recommended; use <CsFileB> instead.

Base64-encoded sample files may be included with the tag <CsSampleB filename=filename>, where fi-

lename is the name of the file containing the sample. There is no matching end tag. This was added in
Csound version 4.07. Note: using this tag is not recommended; use <CsFileB> instead.

Included Unencoded Files (<CsFile>)

Unencoded files may be included with the tag < CsFile filename=filename>, where filename is the name
of the file to be included. The data should be terminated with a </CsFile> tag alone on aline. The file
will be extracted to the current directory, and deleted at end of performance. If there is an already exist-
ing file with the same name, it is not overwritten, but an error will occur instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #. #

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as:
#. #

Thiswas added in Csound version 4.09.

Licence Information (<CsLicence> or <CsLicense>)
Licencing details can be included in between the start tag <CsLicence> and the end tag </CsLicence>.

Thereis no format for this information, any text is acceptable. This text will be printed by Csound to the
console when the CSD isrun.

Licence Information (<CsShortLicence> or <CsShortLicense>)

From version 6.05 licencing details can be also included in between the start tag <CsShortLicence> and
the end tag </CsShortLicence>. This offers seven well-known licences, coded as as an integer.

0: "All rights reserved" (default)

32

The Csound Command

: "Creative Commons Attribution-NonCommercia-NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercia -ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

: "Licenced under BSD"

Embedded HTML (<html>)

Any valid HTML code can be embedded in the CSD file. This code should be structured exactly like an
ordinary Web page. This code can contain any valid HTML, JavaScript, Cascading Style Shest,
WebGL, etc., etc. code.

NoOURWNE

In some Csound front ends and programming environments, including at least CsoundQt or Csound for
Android, this page will be parsed, executed, and displayed by a Web browser embedded in the environ-
ment. JavaScript code in this page will have access to aglobal csound object that implements the follow-
ing functions, which are a selected subset of the Csound API. The names, data types, and uses of these
functions are exactly the same as detailed in the Csound API Reference Manual.

[int] getVersion ();

conpil eOrc (orchestra_text)

[doubl e] eval Code (orchestra_expression)
readScore (score_text)

set Cont rol Channel (channel _nanme, nuneric_val ue)
[doubl e] get Control Channel (channel _nane)
message (message_string)

[int] getSr ()

[int] getKsnps ();

[int] getNchnls ()

/1l Not a part of the Csound APl -- called by the environment to detect whether Csound is running
[int] isPlaying ();

The HTML element of the CSD file can be used to create custom user interfaces for the piece, to gener-
ate score events and even orchestra code using JavaSscript, to store presets for widgets, and for many
other purposes. The GameOfLife3D.csd [examplesGameOfLife3D.csd] and Lindenmayer Canvas.csd
[examples/LindenmayerCanvas.csd] examples demonstrate these uses (tested in CsoundQt; running
these examples requires additional resources found in the Csound examples directory in GIT).

Example

Below is asample file, test.csd, which renders a.wav file at 44.1 kHz sample rate containing one second
of a 1 kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and
tone.sco, with the addition of command line flags.

<CsoundSynt hesi zer >
; test.csd - a Csound structured data file

<CsOpt i ons>
-W-d -0 tone.wav
</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenents check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nstrument s>
; originally tone.orc

sr = 44100
kr = 4410
ksnmps = 10

33

examples/GameOfLife3D.csd
examples/GameOfLife3D.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd

The Csound Command

nchnls = 1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endin
</ Csl nstrunent s>

<CsScor e>
; originally tone.sco
f1 0 8192 10 1
il 0 1 20000 1000 ; play one second of one kHz tone
e
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options
in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:

-+rtaudio=portaudio -odac2 -iadc? -+rtmidi=winmme -M1 -Q1 -m0

In this case, csound will generate real-time output and take realtime input from device 2, using the
portaudio driver interface. It will input and output realtime MIDI on interface 1. It will print very few
messages (-m0). These options will be used by default when other options are not given inside the
<CsOptions> of the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated asi, f and t. The time points denote the beginning and end of
the extract in terms of:

[section no.] : [beat no.].

Each of the three parts of the argument is optional. The default values for missing i, f or t are:

all instrunents, beginning of score, end of score

34

The Csound Command

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these
phases independently. The command

scot fil enane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in out-
file.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an aready sorted score. An unsorted score should first be sent through Scsort
then piped to the extract program:

scsort < scorefile | extract xfile > score.extract

35

Using Csound

Csound can be operated in a variety of modes and configurations. The original method for
running Csound was as a console program (DOS prompt for Windows, Terminal for Mac
OS X). This, of course, still works. Running csound without any arguments prints out a list
of command-line options, which are more fully explained in the Command Line Flags (by
Category) section. Normally, the user executes something like:

csound nyfile.csd
or separate orchestra (orc) and score (sco) files can be used:
csound mnyorchestra. orc nmyscore.sco

Y ou can find many .csd files in the examples folder. Most opcode entries in this manual also
include smple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is agraphic-
al program that eases the process of running csound, and sometimes provides editing and
composing functions.

Csound also has several ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an
output filename.

» Read and write digital audio using a sound card (real-time rendering) - Using the -odac
and -iadc flags

* Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

» Read and write MIDI using aMIDI interface and controller (real-time control) - Using the
-M and -Q flags.

Csound's Console Output

When Csound runs, it prints atext output to the console, which shows data about the Csound
run. A Console output looks something like this:

time resolution is 0.455 ns
PortMDI real time MDl plugin for Csound
virtual _keyboard real time MD plugin for Csound
Port Audi o real -tine audi o nodul e for Csound
0dBFS | evel = 32768.0
Csound version 5.10 beta (float sanples) Apr 19 2009
libsndfile-1.0.17
Readi ng options from $HOVE/ . csoundrc
Uni fiedCSD: oscil.csd
STARTI NG FI LE
Creating options
Creating orchestra
Creating score
orchnane: /tnp/ csound- XYACV6. or ¢
scorenane: /tnp/csound-1YtLAJ. sco
rtaudi o: ALSA nodul e enabl ed
rtmdi: PortM DI nodul e enabl ed
orch conpiler
17 lines read

instr 1
El apsed tine at end of orchestra conpile: real: 0.129s, CPU. 0.020s
sorting scorg ..

. done

36

How

Using Csound

El apsed tine at end of score sort: real: 0.130s, CPU. 0.020s
Csound version 5.10 beta (float sanples) Apr 19 2009

di spl ays suppressed

0dBFS | evel = 32768.0

orch now | oaded

audi o buffered in 256 sanpl e-frame bl ocks

ALSA input: total buffer size: 1024, period size: 256
readi ng 1024-byte bl ks of shorts from adc (RAW

ALSA output: total buffer size: 1024, period size: 256
writing 1024-byte bl ks of shorts to dac

SECTION 1

ftable 1

new alloc for instr 1

B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Score finished in csoundPerforn()

inactive allocs returned to freespace

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

0 errors in performance

El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

345 1024-byte soundbl ks of shorts witten to dac

Renmovi ng tenmporary file /tnp/csound- CoVcrm srt

Renoving tenporary file /tnp/csound-1YtLAJ.sco ...

Renoving tenporary file /tnp/csound-XYACV6.orc ...

The console output of Csound is quite verbose, particularly before the actual performance (like version,
plugins loaded, etc.). Performance actually started when the console printed:

SECTI ON 1:
In this particular run, the lines:

new alloc for instr 1
B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Show that a single note for instrument 1, that lasted 2 seconds starting at time 0.000, was produced with
an amplitude of 10000 for both channel 1 and 2. An important section of the console output is:

end of score. overall anps: 10000.0 10000.0
overall sanples out of range: 0 0

Which shows the overall amplitude and the number of samples which were clipped because they were
out of range.

Theline:
El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

Shows the clock time and the CPU time it takes for the processor to complete the task. If CPU time is
lower than clock time it means the csd can run in realtime (unless it has some sections which are ex-
tremely CPU intensive). The "real time" figure is the total running time and it is larger because it
acounts for disk access. module loading, etc. (CPU time is strictly number-crunching time). If you have
a sound that lasts for 100s and it takes 5s to generate it offline, it means that you are taking around 5%
of CPU, and that it runs on 0.05 of realtime.

Csound works

Csound processes and generates output using "unit generators" (ugens) called opcodes. These opcodes
are used to define instruments in the orchestra. When you run Csound, the engine loads the base Op-
codes, and the opcodes contained in separate |oadable "opcode libraries’ . It then interprets the orchestra
(through the orchestra reader). The engine sets up an instrument processing chain, which then receives
events from the score or in real-time. The processing chain uses the input/output modules to generate
output. There are modules that can write to file, or generate real-time audio output.

37

Using Csound

[Orchestra reader]

[Input/Output] N : J
" S SO
External libraries

*i Engine] ~Base upcudes]

L T -
=]_| Y Messages |

i

Loadble Ilbraries]dl'

o

The Csound Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound's innermost software buffer, contains ksmps sample frames. Csound processes real-
time control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be (but
does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps sample
frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copies the -b buffer
to the -B "hardware” buffer.

3. -B = The sound card's interna buffer (the "hardware" buffer), in sample frames. Should be (and may
need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b sample
framesin -b are still there for the sound card to keep playing while Csound catches up. But they can
be the same size if you're willing to bet Csound can always keep up with the sound card.

Amplitude values in Csound

Amplitude values in Csound are always relative to a "0dbfs"' value representing the peak available amp-
litude before clipping, in either an AD/DA codec, or in a soundfile with a defined range (which both
WAVE and AIFF are). In the origina Csound, this value was always 32767, corresponding to the bi-
polar range of a 16bit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This
remains the default peak amplitude for Csound, for backward compatibility and you will find some of
this manual's examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled values to whatever output format is be-
ing used, whether 24bit integer, 32bit floats, or even 32bit integers. Put another way, the literal amp-

38

Using Csound

litude values you write in a Csound instrument only match those written literally to the file if the Odbfs
value in Csound corresponds exactly to that of the output sample format. The consequence of this ap-
proach is that you can write a piece with a certain amplitude and have it render correctly and identically
(setting aside of course the better dynamic range of the high-res formats) whether written to an integer
or floats file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with OdBFS always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are a linear scale which show the actual oscillation around 0, so they can
be positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most op-
codes as well. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and
dbfsamp functions. This way, Csound enables the programmer to express al amplitudes in dB - lower
amplitudes will then be represented by negative dB values. This reflects industry practice (e.g. in level
meters in mixers, etc).

For example the same dB level of -6dB (half the amplitude) or -20dB are actually a different linear amp-
litude according to Odbfs like this:

Table 2. dBFSin relation to amplitude

dB_, 0dbfs = 32767 (default) [Odbfs= 1 0dbfs = 1000 (unusual)
0dB 32767 1 1000

-6dB 16384 05 500

-20dB 3276.7 0.1 100

Some Csound users might therefore be minded to express all levelsin dB_., and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express a really quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

The reason for using Odbfs is very ssimple: digital peak equates to maximum level regardless of sample
resolution. If you then define asignal at -110dB you will lose it if rendering to a 16bit file, but retain it
(audibly or not) if rendering to 24bit or better. In other words, there is a fixed ceiling, but a moveable
floor - you can define sounds as quietly as you like (e.g. envelope tails), in a predictable way,and pre-
serve them or not (without changing the orch code at all), depending on the resolution (file or audio i/0)
you render to.

A note on digital amplitude, decibels and dynamic range

A convenient aproximation of dynamic range for a certain digital precision isto calculate
the decibel interval between the minimum value and the maximum value for a sample. As
arule of thumb, 1 bit (doubling of level) is 6dB, so 16bits = 96dB.

39

Using Csound

This is not entirely accurate since audio sample values are represented on a bipolar scale
with positive and negative values, and 1 bit is used for the sign. Therefore, for 16bit integer
samples actually use 1 bit for the sign and 15 hits for the values, so the actual dynamic
range is 90dB.

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-
ends implement these featuresin different ways, but knowledge of them is necessary in some of them.

The -i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file out-
put. You should use - o dac for reatime output and -i adc for realtime input. Naturally, you can use
either one or both if your hardware supports it. You can also specify the hardware you want to use by
appending a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to
use ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version
of Portaudio has been compiled with ASIO support.

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reveal if you have ASIO available if you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizes are -b and -B, respectively. Buffer size is hardware dependant, and some experimenta-
tion may be necessary to find the optimal balance between low latency performance and uninterrupted
audio output. The values given to -b and -B should be powers of two, and the value of -B should be at
least one power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for each platform.

Realtime I/O on LinuXx

Under Linux, the default PortAudio/PortMidi settings will result in higher latency than that which can be
achieved using ALSA and/or JACK. The PortMusic plugins are audio and MIDI servers, which provide

40

Using Csound

an interface to the ALSA drivers, in a manner which is in some respects similar but fundamentally dif-
ferent from that provided by JACK. For amore detailed comparison please refer to:

http://jackaudio.org/faq

Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards"
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the
possible configurations, use the command line utilities "aplay", "arecord" and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.alsa-project.org/pub/utils/
Note

On every boot, the soundcard may have a different hardware order number, especialy
when there are more soundcards in the system. This can be awkward as every time you
have to set the right number again. You can assign a fixed order by adding some linesto /
etc/modprobe.d/al sa-base-conf, for example for a card with theicel712 chip :

ALSA module ordering for soundcard
options snd slots=snd_ice1712

Audio Output

Running the following command:

apl ay -

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[....]
x% | st of PLAYBACK Hardware Devices **
card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]

[..]

If you have more than one card on your system, or if there is more than one device on your card, the list
will of course be more complicated, however in all cases the information that is pertinent is the number/
name of the card/device. In order to use the above soundcard for audio output, the following flag would
be added to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

41

http://jackaudio.org/faq
ftp://ftp.alsa-project.org/pub/utils/

Using Csound

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of au-
dio streams, special care is heeded in setting up of software (-b) and hardware (-B) buffers. If you get a
message from Csound's AL SA driver that looks like the following:

ALSA: -B 8192 not allowed on this device; use 7526 instead

there is a good chance that you may be using dmix. If you are using dmix, the -b and -B settings of
Csound must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for
the Csound project to the sample rate that dmix is set up to. The following formula will determine what
settings to use for Csound given the settings of dmix:

(csound_sr/dm x_sanpl e_rate) * dm x_peri od_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

-b
-B

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding er-
rors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {

type dm x

i pc_key 50557

sl ave {
pcm "hw 0, 0"
period_tinme O
#peri od_si ze 1024
#buf fer _si ze 8192
period_size 1536
buf fer_size 12288

route ALSA software through pcm am x
pcm !default {

type plug

sl ave. pcm "am x"

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the
dmix sample rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 =
4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing ex-

42

MIDI

Using Csound

ample, the flag:

-i adc:hw 0,0

would be added for audio input from Card O Device 0. To use the default card employ one of the follow-
ing flags, with the forementioned warning that this will not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -|

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudio=alsa -i adc:hw. 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudio=alsa -i adc:hw. 0,0 -0 dac:hw 1,1

2 Midi drivers are available;

* Raw Midi.

 AlsaSequencer (since version 5.18).

MIDI Input (Raw Midi driver)

In order to enable your orchestra to receive MIDI input you can use VirMIDI or MIDIThru, whichever
you prefer. Setting up these virtual MIDI ports is a topic that has been covered extensively elsewhere,
see The Linux MIDI how-to [http://www.midi-howto.com/] or browse your distro's documentation or
the ALSA documentation for instructions on how to install and configure either VirMIDI or MIDIThru
(segdummy). Once you have done so run:

amdi -1

for alist of available devices. Typically thiswill look something like the following:

[..]

Device Name
hw:1,0 Virtual Raw MIDI (16 subdevices)

43

http://www.midi-howto.com/
http://www.midi-howto.com/

Using Csound

hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)
hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI

hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li

for alist of available input devices, and:

aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

client O: 'System' [type=kernel]
0 'Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirMIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR2 '

#aconnect -1o

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirmIDI 1-3 '

client 24: 'PCR' [type=kernel]

Using Csound

0'PCR MIDI
1'PCR1 '

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which is listening on the first VirMIDI port. The keyboard has three output ports.
The first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard
and controller messages, and the third (24:2) transmits system exclusive messages. The following com-
mand connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

Remember that Csound acts asaraw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect,
S0 you must connect to a virtual device (like 'virtual raw MIDI' or 'MIDI through’) for persistent connec-
tions, or conect directly to the destination using command line flags.

MIDI Output (Raw Midi driver)

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports, ob-
tained by "amidi -I" as above. In order to connect a Csound synthesizer to the MIDI out port of the key-
board listed above, the following flag would be used:

-Chw. 2, 0,0

MIDI Input and Output (Midi Sequencer driver)

Thisdriver isto be preferred over the Raw Midi driver. It has these advantages:

» Multiple concurrent access.

* Scheduled by priority queues.

» Real-time event dispatching i.e., the role of the Midi Sequencer is to deliver events at the right time
(sequence) to the right destination (device).

The following command will call the Midi Sequencer. Here it listens to midi port 20. The midi output
port is also 20:

-+rtm di =al saseq - M20 - Q0

Csound will automatically create its own ALSA sequencer port. For alist of available devices, use the
following command:

aconnect -i -0

Thiswill create output that will ook something like the following:

client O: 'System' [type=kerndl]

0 Timer '

1'Announce
client 14: 'Midi Through' [type=kernel]

45

Using Csound

0 'Midi Through Port-0'

client 20: 'M Audio Delta 1010’ [type=kernel]
0'M Audio Delta 1010 MIDI'

client 130: '‘Csound' [type=user]
0 'Csound

The output of Csound will contain lineslike:

ALSASEQ: opened MIDI output sequencer
ALSASEQ: created output port 'Csound' 130:0
ALSASEQ: connected to 20:0

ALSASEQ: opened MIDI input sequencer
ALSASEQ: created input port ‘Csound' 130:0
ALSASEQ: connected from 20:0

Scheduling

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve real-
time performance, when using ALSA, however you may hang your system if you do something stupid.
DO NOT use "--sched" if you are using JACK for audio output. JACK controls scheduling for the audio
applications connected to it, and also tries to run at the highest possible priority. If the "--sched" flag is
used, Csound and JACK will be competing rather than cooperating, resulting in extremely poor perform-
ance.

Using JACK

The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -o dac

Additionally, there are some command line options specific to JACK:
JACK Command-line Flags
-+jack_client=[client_name] The client name used by Csound, defaults to ‘csoundS'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actual port name is the channel number
+jack_outportname=[output port appended to the name prefix. Example: with the above default set-
name prefix] tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound5: i nputl (record left)

csound5: i nput 2 (record right)

csound5: out put 1 (pl ayback left)

csound5: out put 2 (pl ayback right)

46

Using Csound

-+jack_sleep time=[dleeptimein Asof Csound version 5.01, this option is deprecated and ignored.
microseconds]

Connecting Csound to other JACK clients

By default, no connections are made (you need to use jack_connect, gjackctl, or a similar utility);
however, the plugin can connect to ports specified as -iadc:portname_prefix' or '-odac:portname_prefix’,
where portname_prefix is the full name of a port without a channel number, such as 'alsa_pcm:capture '
(for -i adc), or ‘asa_pcm:playback ' (for -o dac).

Notes on buffer sizes

Audio datais received from and sent to the JACK server by Csound using aring buffer that is controlled
by the -b and -B flags. -B is the total size of the buffer, while -b is the size of a single period. These val-
ues are rounded so that the total size is an integer multiple of, and greater than the period size. The dif-
ference of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the same time, the -b option should be set to an integer multiple of ks-
mps.

An example of buffer settings for low latency on afast system:

jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &
csound -+rtaudio=jack -b 64 -B 256 [...]

with real time scheduling (as root):

jackd -R -P 90 -d alsa -P -r 48000 -p 64 -
csound --sched=80, 90, 10 -d - +rtaudi o=j ack - b 64 B 192 [...]

To improve performance, use ksmps values like 32 and 64.

The sample rate of the orchestra must be the same as that of the JACK server.

Using Pulseaudio

Support for Pulseaudio [http://www.pulseaudio.org/] was added in Csound 5.09. You can specify the
following settings:

1. Sink names: it's possible to use a number instead of the full name, so -odac:1 would select your
second device (count starts at 0).

2. Server name: it's possible to connect to a specific server by using -+server=<server_string> where
server_string is a name of a server or a more complex server selection string (see pulseaudio.org [ht-
tp://www.pulseaudio.org/] on server strings). This should be network transparent and should allow
connections to remote machines.

3. Stream names: it is possible to label the streams generated by csound, by using -
+output_stream=<stream-name> and -+input_stream=<stream-name>

Here's an example command line:

csound -odac: 1 examples/trapped.csd -+rtaudi o=pul se -+server=unix:/tmp/pul se-victor/native -+output_stream=trapped

47

http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/

Using Csound

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows modul e which provides great stahility, but latency will
usualy be too high for realtime interaction. To activate a realtime module, you can use the -+rtaudio
flag with value of portaudio or winmme. The default value is portaudio, which is activated by default
without specifying it.

You also need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -o dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac2), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and csound will report an error,
and list available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since
Portaudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO
driver emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once
for each driver interface. ASIO will give you the best latency on your system, so if available it should be
your choice for realtime audio output.

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio out-
puts. You can again select the device by its number, and check for available devices using an out of

range number. Note that for input you use 'adc' instead of 'dac’. Make sure you have the appropriate in-
put selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for
MIDI output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can
find the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme

A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Mac OSX

Real-time Audio

OSX users can use either the PortAudio (default),auhal (or coreaudio), or the Jack realtime audio mod-
ules. The auhal module is a native OSX module which provides good latency, but it might not work with

48

http://www.asio4all.com
http://www.asio4all.com

Using Csound

some external hardware. The Jack module can be used for interconnecting with other applications, but
you will need to install the JackOSX software in order to use it. To activate a realtime module, you can
use the -+rtaudio flag with value of portaudio, auhal, or jack. The default value is portaudio, which is
activated by default without specifying it.

You also need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac?), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and Csound will report an error,
and list available devices. This numbering convention works for portaudio and auhal, but for Jack, you
will need to pass the name of the desired output device after acolon (e.g. -odac;system:playback).

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio in-
puts. Y ou can again select the device by its number (or name), and check for available devices using an

out of range number. Note that for input you use 'adc’ instead of ‘dac’. Make sure you have the appropri-
ate input selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on OSX, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. You might need to specify the device number after the flag (e.g. -M2), and again, you can find
the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native coremidi module, which
can be activated with the flag:

-+rtmidi=cmidi

The coremidi module corrently only supports MIDI input.

A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=cmidi -M1 -+rtaudio=auhal -odac3 -iadc3

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final values will be platform and system dependent, and will also depend on the complex-
ity of the audio calculations performed. You need to adjust ksmps in the orchestra, as well as the soft-
ware (-b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmps to a value with a good tradeoff between quality and performance, without adjusting -B at
al.

2. Set -b to anegative power of two of thisvalue.

To get the optimal values, start with something you think is going to be too low, ie -1, and then con-
tinue "upwards", -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b will be

49

Using Csound

the absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS X,
16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then take it
back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be
3/2, or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas
most soundcards are 16 or 24-hit integer. -b is the internal buffer, so it's dealing with the 32 or 64-bit
side of things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-bit side. The csound
default for floatsis-B = 4 * -b. Thisis a sane value for a 16 bit card. Y ou can usualy get away with -B
= 2* -b, but this is the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you
that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte blocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be:

e 16-bit: 1:2
o 24-hit: 2:3

e 32-bit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer has to fill the hardware buffer before returning. If the ratio is high, it will take a long
time, defeating the purpose of setting a small value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it is to decide how long the release on your envelopes
might need to be at maximum (for desired effect), set the release on all envelopes to maximum, give
yourself a generous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then
bring the value of -b down as far as possible.

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll
know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

50

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will
need to configure Csound so that it will run properly on your system. Installers usually per-
form these steps for you automatically.

On all platforms, make sure the directory or directories containing Csound's plugin libraries
are in an OPCODE6DI R O OPCODEGDI R64 environment variable depending on the precision of
the compiled binary. (Note that for csound5 these environment variables were OPCODEDI R
and OPCODEDI R64.)

The Python opcodes currently require at least Python 2.4, which can be downloaded from
www.python.org [http://www.python.org] if it is not already on your system. Y ou can check
if it isavailable by typing 'python' on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the C:\Program
Fi | es\ Csound directory) containing the Csound executables directory are in your PATH vari-
able, or else copy all the executable files to your Windows syst en82 directory. Depending
on your installation method, you might also need to set the oPCODESDI R and OPCODE6DI R64
environment variables. Assuming that Csound is installed to the default location of
C:\ Program Fi | es\ Csound you can use (otherwise set the paths accordingly):

set OPCODE6DI R=C: \ Program Fi | es\ Csound\ pl ugi ns
set OPCODE6DI R64=C: \ Program Fi | es\ Csound\ pl ugi ns64
set PATH=%ATH% C. \ Program Fi | es\ Csound\ bi n

Missing python24.dll or python25.dll

If you get a pop-up about the missing Python library (python24.dIl or py-
thon25.dll) and don't need the python opcodes, just delete C:\Program

Fi | es\ Csound\ pl ugi ns\ py. dl | and C:.\ Program
Fi | es\ Csound\ pl ugi ns64\ py. dl | , and the pop-up about the missing Python
library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories,
typically /usr/1ocal /bin, and the Csound and plugin shared libraries in places like /
usr/local /1ib/csound/ plugins OF /usr/local/lib/csound/pluginse4 and make sure
that oPCODE6DI R and OPCODEGDI R64 environment variable are set correctly.

CsoundAC

CsoundAC requires some additional configuration. On all platforms, CsoundAC requires
that you have Python installed on your computer. The directory containing the _csoundAC
shared library and the CsoundAC. py file must be in your PYTHONPATH environment variable,
so that the Python runtime knows how to load these files.

51

http://www.python.org
http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

» A header section, which specifies global options for instrument performance

* A list of User defined opcodes and instrument blocks containing UDO and instrument
definitions.

The orchestra header, instrument blocks, and UDOs contain Orchestra statements. An or-
chestra statement in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;conments

The label is optional and identifies the basic statement that follows as the potential target of
a go-to operation (see Program Flow Control). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value.
Others take no arguments and only produce a resullt.

Every orchestra statement must be on a single line, however long lines can be wrapped to a
new line using the '\' character. This character indicates that the next line is part of the cur-
rent one, thisway you can split aline for easier reading, like this:

a2 oscbnk kcps, 1.0, kfnmdl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
o, 00 0, 0, O, 0, -1, \
kfnum 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra
code. Comments begin with a semicolon (;) and extend to the end of the line. Comments can
optionally bein C-style, spanning multiple lines like this:

/* Anything in here --------
is a comrent which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. This also is option-
al, i.e. aline may have only alabel or comment or be entirely blank. If present, the basic
statement must be complete on one line, and is terminated by a carriage return and line feed.
The opcode determines the operation to be performed; it usually takes some number of input
values (or arguments, with a maximum value of about 800); and it usually has a result field
variable to which it sends output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

. once at the beginning of each note (at initialization (init) time: i-rate)

. once every performance-time control loop (perf-time control rate, or k-rate)

A W DN

. once each sound sample of every control loop (perf-time audio rate, or a-rate)

52

Syntax of the Orchestra

Orchestra Header Statements

The Orchestra Header contains global information that applies to all instruments and defines aspects of
Csound output. It is sometimes referred to asinstr 0, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an as-
signment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements
belong to a pseudo instrument 0O, an init pass of which is run prior to all other instruments at score time
0. Any ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09)
provided it is an init-time only operation. Statements that are normally placed in an orchestra header are:
 Odbfs

e ctrlinit

* ftgen

o kr

* ksmps

* massign

* nchnls

* pgmassign

. p$t

o seed

o I

e strset

For example, a Csound header may look like:

Sr 44100
kr 4410
ksnmps = 10
nchnls = 2
Odbfs =1

massign 1, 10

Instrument and Opcode Block Statements

An instrument block is comprised of ordinary statements that set values, control the logical flow, or in-
voke the various signal processing subroutines that lead to audio output. Statements that define an in-
strument block are:

e instr

* endin

53

Syntax of the Orchestra

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O
out aout

endi n

Statements that define a user defined opcode (UDO) block are

» opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and arate results), with the sole exception of the init opcode. Most generators and modifiers,
however, produce signals that depend not only on the instantaneous value of their arguments but also on
some preserved internal state. These performance-time units therefore have an implicit init-time com-
ponent to set up that state. The run time of an operation which produces no result is apparent in the op-
code.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Types, Constants and Variables

Constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

Variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. a-rate variables, on the other hand, are arrays or vectors of information.
Though renewed on the same perf-time control pass as k-rate variables, these array cells represent a
finer resolution of time by dividing the control period into sample periods (see ksmps). a-rate variables
are used to store and recall data changing at the audio sampling rate (e.g. output signals of oscillators,
filters, etc.).

Some types of variables can be thought of as signals. For example a-rate and k-rate variables are signals
that have a constant update frequency (see kr and sr). This abstraction is generally quite useful, but be
aware that a-rate signals are actually vectors which are processed at k-rate, i.e. Csound works at k-rate
internally but processes ksmps number samples for each a-rate variable on every control pass.

There are other types of signals that require rates that don't match kr or sr. f-rate and w-rate signals are
used for spectral processing and their rate is determined by the window size and overlap factor.

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from pass to pass (e.g. from initiaization time to performance time)

54

Syntax of the Orchestra

within a single instrument. Local variable names begin with the letter p, i, k, or a. The same local vari-
able name may appear in two or more different instrument blocks without conflict.

Global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are specia reserved symbols. Global variables are used for broadcasting gen-
eral values, for communicating between instruments (semaphores), or for sending sound from one in-
strument to another (e.g. mixing prior to reverberation).

Given these distinctions, there are nine forms of local and global variables:

Table 3. Typesof Variables

Type When Renewable L ocal Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral data|k-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

vector variables k-rate t name

Where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to the init pass through an instrument, while
MIDI controllers are variables which can be updated asynchronously from a MIDI file or MIDI device.

Variable Initialization
Opcodes that let oneinitialize variables are:
e assign
e divz
e init

 tival

Predefined Math Constant Macros

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

55

Syntax of the Orchestra

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper
rate. For instance, if the terms within a sub-expression al change at the control rate or slower, the sub-
expression will be evaluated only at the control rate; that result might then be used in an audio-rate eval-
uation. For example, in

k1l + abs(int(p5) + frac(p5) * 100/12 + sqgrt(kl))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the re-
mainder of the expression evaluated every k-period. The whole might occur in a unit generator argument
position, or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
are optionally full pathnames, whose target directory is fully specified. When not a full path, filenames
are sought in several directories in order, depending on their type and on the setting of certain environ-
ment variables. The latter are optional, but they can serve to partition and organize the directories so that
source files can be shared rather than duplicated in several user directories. The environment variables
can define directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include
filesfor orchestraand score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the first one has the highest precedence.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfiles for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and then
SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not disabled,
files will next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SAD-
IR.

4. MIDI files for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in MFDIR, SSDIR
and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then in the same directory as the orchestra or score file (as appropriate), then finally IN-
CDIR.

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qualifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; res-

56

Syntax of the Orchestra

ults are created at their listed times, then remain available for use as inputs elsewhere. With few excep-
tions, argument rates may not exceed the rate of the result. The validity of inputs is defined by the fol-
lowing:

» arguments with prefix i must be valid at init time;

» arguments with prefix k can be either control or init values (which remain valid);

» arguments with prefix a must be vector inputs;

» arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most op-
codes (such as linen and oscil) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate a command that usually produces an &, k-,

or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators.”

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

o #define

* SNAME

o fHifdef

o #Hifndef

* #end

o #else

 #include

o #undef

Orchestra macros can also be defined using the command line flag --omacro:.
More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros; for score macros, refer to Score Macros.

Named Instruments

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax

57

Syntax of the Orchestra

A named instrument is declared as shown below:

instr Name[, Name2[, Name3[, ...]]]
[...]

endin

A single instrument can have any number of names, and any of these names can be used to call the in-
strument. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument,
so the following declaration is also valid:

instr 100, Nanel, 99, Nane2, 1, 2, 3

An instrument name may consist of any number of letters, digits, and the underscore () character,
however, the first character must not be a digit. Optionally, the instrument name may be prefixed with
the '+' character (see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

 any unused instrument numbers are taken up in ascending order, starting from 1

* the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have ahigher number (except if the '+ modifier is used)

« if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments, the
numbering of these will follow the order of definition, according to the above rule.

Using '+ is mainly useful for global output or effect instruments, that must be performed after the oth-
er instruments.

An example for instrument numbers:
instr 1, 2
endi n

instr Instrl
endi n

instr +Effectl, Instr2
endin

instr 100, Instr3, +Effect2, Instr4, 5
endin

In this example, the instrument numbers are assigned as follows:

Instrl. 3
Effectl: 101
Instr2: 4
Instr3:. 6
Effect2: 102
Instrd4. 7

58

Syntax of the Orchestra

Using Named Instruments

Named instruments can be called by using the name in double quotes as the instrument number (note:
the '+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported

by:
* 'i"and g score events

Notes

1. in score files, unmatched quotes, and spaces or other invalid characters in the strings
should be avoided, otherwise (at least with current version) unpredictable behavior
may occur (this problem does not exist for -L line events). However, there is check-
ing for undefined instruments, and in such cases, the event is simply ignored with a
warning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It is
till possible to sort such scores by using the -t0 option of the main Csound execut-
able)

* real-timeline events (-L)

* event, schedkwhen, subinstr, and subinstrinit opcodes

* massign, pgmassign, prealloc, and mute opcodes
Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:
i nsno nstrnum "nane"

With the above example, nstrnum "Effectl” would return 101. If an instrument with the specified name
does not exist, an init error occurs, and -1 is returned.

Example
- orchestra ----
Sr = 44100
ksmps = 10
nchnls = 1
preal | oc "Si neWave", 20
prealloc "M Dl Si neWave", 20
massign 1, "M DI Si neWave"
gaCQut Send init O
instr +Qutputlnstr
out gaCut Send
cl ear gaQut Send
endi n
instr SineWave
al oscils p4, p5, 0

vincr gaQut Send, al

endi n

59

Syntax of the Orchestra

instr M DI Si neWave

i amp vel oc
inote not num
i cps = cpsoct(inote / 12 + 3)
al oscils ianp * 100, icps, O
vincr gaQut Send, al
endin
- score ----

i "SineWave" 0 2 12000 440
i "Qutputlnstr" 0 3
e

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and en-
dop. The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO looks likethis:

opcode Lowpass, a, akk

setksnmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init 0 ; initialize output
aout = ain*kal + aout*ka2 ; sinmple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers 1
arrate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kval uel, kval ue2

See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) a Csounds.com [ht-
tp://www.csounds.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

K-Rate Vectors

Csound allows the declaration and deployment of one-dimensional vectors or tables. They arelocal to an
instrument, and need to be declared for size (with the init opcode. Individual elements are read as part of
any expression with square brackets to give an index at k-rate. Individual elements can be assigned, and
there are a number of opcodes to query and modify tables.

60

http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/udo/
http://www.csounds.com/udo/

Syntax of the Orchestra

Function Syntax in Csound6

Csound 6 has introduced a new alternative syntax for orchestra code. This is initially an experimental
feature, which has some limitations, as explained below. It will aso alow the introduction of some non-
backwards-compatible language features.

Overview

The main aspect of the new syntax is that some opcodes can be called as functions, and inlined in or-
chestra code. The general form of thisis the expression:

var* = op(exprlist*)

where * indicates optional, var is asingle variable in one of Csound6 types, and exprlist is a comma sep-
arated list of expressions (or asingle expression or variable). These expressions can be placed anywhere
inside instrument or opcode blocks. I-time operations can aso be placed outside instrument blocks. The
functional syntax can be intermixed with standard Csound code.

Here are some examples of these expressions:

al = oscil(p4,p5)
out(vco2(p4*linen(1,0.1,p3,0.1),p5)
outs(oscili(in(),p5), in())

Limitations

The main limitation is that only opcodes with single outputs (or no outputs) are alowed. In addition, op-
codes with multiple optional outputs will not be parsed successfully in this form. An alternative to allow
for these is to wrap them in user-defined opcodes, or just to intermix standard Csound syntax with this
new style.

To resolve opcode ambiguities, we have introduced type annotations, in the form of op:type(exprlist).
For instance the code:

al = oscili(oscili:k(p4,p5), 440)

will choose a control-rate opcode to modulate the amplitude of the audio carrier, rather than an audio
rate one. There will be cases where the type annotation will be required, when the input arguments can-
not be used to determine the correct type of opcode to be applied.

61

The Standard Numeric Score

The score section contains events that instatiate instruments from the orchestra. There are
various score statements that enable complex score building within the csound language.

Currently, the maximum length of the score depends on the platform's architecture; on a
32bit system tisis 2311 control periods; so for example, with kr=1500, you can run a score
for a maximum of about 16.5 days before problems occur due to overflowing signed 32-bit
integer variables. On a 64bit machine the same condition would be just about 9 billion years.
Theinput token 'Z' is read as a number with the value of approximately 25367 years.

Note also that when using single precision floats (i.e. the 'f' installers rather than the 'd'
ones), the accuracy of timing becomes worse after performing for along time.

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s
statement. Before being read by the orchestra, a score is preprocessed one section at atime.
Each section is normally processed by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose pl whole numbers correspond, any pfield
left empty will take its value from the same pfield of the preceding statement. An empty
pfield can be denoted by a single point (.) delimited by spaces. No point is required after the
last nonempty pfield. The output of Carry preprocessing will show the carried values expli-
citly. The Carry Feature is not affected by intervening comments or blank lines; it is turned
off only by anon- i statement or by an i statement with unlike p1 whole number.

Three additional features are available for p2 alone: +, *+x, and *-x. The symbol + in p2 will
be given the value of p2 + p3 from the preceding i statement. This enables note action times
to be automatically determined from the sum of preceding durations. The + symbol can itself
be carried. Itislegal only in p2. E.g.: the statements

i1 o0 .5 100

1. +

|

will result in

i1 o0 .5 100
i1 .5 .5 100
i1 1 .5 100

The symbols *+x and ~-x determine the current p2 by adding or subtracting, respectively, the
value of x from the preceding p2. These may be used in p2 only and are not carried like the
+ symbol. Note also that there should be no spaces following the ~, the +, or the - parts of
these symbols -- the number must come directly after asin ~+2.3. If the example above had
been

62

The Standard Numeric Score

il 0 .5 100
[IEAT o §
i N+l

the result would instead be

i1 0 .5 100
il 1 .5 100
il 2 .5 100

The Carry feature should be used liberally. Its use, especialy in large scores, can greatly reduce input
typing and will simplify later changes.

There can sometimes be circumstances where you do not want "missing” pfields after the last one
entered to be implicitly carried. An example would be an instrument that is designed to take a variable
number of pfields. Beginning with Csound 5.08, you can prevent the implicit carrying of pfields at the
end of an i statement by using the symbol ! (called the "no-carry symbol™). The ! must appear at the end
of an i statement and it cannot be used in pl, p2, or p3, since these pfields are required. Here is an ex-
ample:

1 0 .5 100

This score would be interpreted as

.5 100
5 .5 100
.5 ; no p4
5 ; only pl to p3 are carried here

N
PR O

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the
units required by the orchestra. After time warping, score files will be seen to have orchestra-readable
format demonstrated by the following:

i pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting implies that
score statements may appear in any order within a section.

63

The Standard Numeric Score

Note

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score
file, to produce a new file in orchestra-readable format (see the Tempo example). Pro-
cessing can be invoked either explicitly by the Scsort command, or implicitly by Csound
which processes the score before calling the orchestra. Source-format files and orchestra-
readable files are both in ASCII character form, and may be either perused or further modi-
fied by standard text editors. User-written routines can be used to modify score files before
or after the above processes, provided the final orchestra-readable statement format is not
violated. Sections of different formats can be sequentially batched; and sections of like
format can be merged for automatic sorting.

Score Statements

The statements used in scores are:

» a- Advance score time by a specified amount

* b - Resetsthe clock

* e- Marksthe end of the last section of the score

» f- Causes a GEN subroutineto place valuesin a stored function table

* i - Makesan instrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

* n- Repeats a section

* (- Used to quiet an instrument

* r - Starts arepeated section

* s- Marksthe end of asection

* t- Setsthetempo

» v- Providesfor locally variable time warping of score events

» X - Skip the rest of the current section

* y - Set seed for random numbers, either from pl or, if omitted, the clock

» { - Begins a non-sectional, nestable loop.

} - Ends anon-sectional, nestable loop.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are inter-
preted during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the

64

The Standard Numeric Score

appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played
by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which
can reference others, etc. References must eventually terminate in a real number or a ramp symbol.
Closed loop references should be avoided. np and pp symbols are illegal in p1, p2 and p3 (although they
may reference these). np and pp symbols may be Carried. np and pp references cannot cross a Section
boundary. Any forward or backward reference to a non-existent note-statement will be given the value
zero.

E.g.: the statements

il 0 1 10 np4 pp5
i1 1 1 20

i1 1 1 30

will result in

i1 o0 1 10 20 O
i1 1 1 20 30 20
i1 2 1 30 0 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsor-
ted statements, the operation that interprets these symbolsis acting on afully sorted version of the score.
The tempo operation is applied after the pp and/or np processing.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

100
<

<
400
<
0

RPRRRRRE
ORhWNRO
RPRRRRRE

will result in

100
200
300
400
200

RPRRRRR
ORWNRO
RPRRRRR

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although
they may be referenced by these). Ramp symbols are illegal in pl, p2 and p3. Ramp symbols may be
Carried. Note, however, that while the Carry feature will propagate ramp symbols through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted ver-

65

The Standard Numeric Score

sion of the score. In fact, time-based linear interpolation is based on warped score-time, so that a ramp
which spans a group of accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation
ramp, similar to expon. Using the symbol ~ (atilde) will result in uniform, random distribution between
the first and last values of the ramp. Use of these functions must follow the same rules as the linear ramp
function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can alow for simpler score writing, and provide an elementary alternative to full score genera
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can con-
sist of any combination of letters and numbers. Case is significant. This form islimiting, in that the vari-
able names are fixed. More flexibility can be obtained by using a macro with arguments, described be-
low.

#define NAME(a' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of letters and num-
bers. Within the replacement text, the arguments can be substituted by the form: $A. In fact, the imple-
mentation defines the arguments as simple macros. There may be up to 5 arguments, and the names may
be any choice of letters. Remember that case is significant in macro names.

SNAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The nameis
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not
to terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,

$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax
#define NAME # repl acenment text #
#define NAME(a' b' c') # replacenent text #
SNAME.

#undef NAME

Initialization
replacement text # -- The replacement text is any character string (not containing a#) and can extend

over mutliple lines. The replacement text is enclosed within the # characters, which ensure that addition-
al characters are not inadvertently captured.

Performance

66

The Standard Numeric Score

Some care is needed with textual replacement macros, as they can sometimes do strange things. They
take no notice of any meaning, so spaces are significant. This is why, unlike the C programming lan-
guage, the definition has the replacement text surrounded by # characters. Used carefully, this simple
macro system is a powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #i 1#
#defi ne Whoop #i2#

$Flute. 0 10 4000 440
$Wioop. 5 1

Examples

Example 1. SmpleMacro

A note-event has a set of p-fields which are repeated:

e ARGS # 1.01 2.33 138#
.00 1000 $ARGS
.01 1500 $ARGS
02 1200 $ARGS
03 1000 $ARGS

Thiswill get expanded before sorting into:

00 1000 1.01 2.33 138
01 1500 1.01 2.33 138
02 1200 1.01 2.33 138
03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
e ARGS2 # 1.41 10.33 1.00#
00 1000 $ARGS1

01 1500 $ARGS2

02 1200 $ARGS1

03 1000 $ARGS2

fin
01
01
01
01

Example 2. Macroswith arguments

#define ARG(A) # 2.345 1.03 $A 234.9#
il 01 8.00 1000 $ARG 2. 0)

67

The Standard Numeric Score

i1+ 1 8.01 1200 $ARG 3.0)

which expandsto

01
+ 1

00 00

.00 1000 2. 345 1.03 .0 234.9
0

il 2
il .01 1200 2.345 1.03 3. 234.9

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i nclude "fil enane"

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#i nclude "fil enane”

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. Thereis cur-
rently alimit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repeated sections.

s
#i ncl ude :sectionl
; Repeat that

S
#i ncl ude :sectionl

68

The Standard Numeric Score

Alternative methods of doing repeats, usethe r statement, m statement, and n statement.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist
in this area the syntax of arithmetic expressions within square brackets [] has been introduced. Expres-
sions built from the operations +, -, *, /, % ("modulo"), and ~ ("power of") are allowed, together with
grouping with (). Unary minus and plus are aso supported. The expressions can include numbers, and
naturally macros whose values are numeric or arithmetic strings. All calculations are made in floating
point numbers. The usual precedence rules are followed when evaluating: expressions within par-
antheses () are evaluated first and ” is evaluated before *, /, and % which are evaluated before + and -.

In addition to arithmetic operations, the following bitwise logical operators are also available: & (AND),
| (OR), and # (XOR, exclusive-OR). These operators round their operands to the nearest (long) integer
before evaluating. The logical operators have the same precedence as the *, /, and % arithmetic operat-
ors.

Finally, the tilde symbol ™ can be used in an expression wherever a number is permissible to use. Each ~
will evaluate to a random value between zero (0) and one (1).

Example
r3 CNT
il 0 [0.3*$CNT.]
il + [($CNT./3)+0.2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this ex-
pands to

[Bt Bt)
N N
oo oo oo

o
o
©
o
o
o
o
~

69

The Standard Numeric Score

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are

subtly different.

Here are some simple examples of each operator:

1 110 + 220]

. 330 - 55]
44 * 10]
1100 / 2]
54 4]

5660 % 1000]
110 & 220]
110 | 220]
110 # 220]

RRR RRRR RPRRERRRERRRERRRR
+++++++++++0

+ 4+ +

++ +

The @ operator

; evaluates to 330

. 275

. 440

; 550

;625

; 660

;76

; 254

. 178

; random bet ween 0-1
; random bet ween 1-5
; random bet ween 5-100

;12
;6
;11
;21
;4
;0
;13

New in Csound version 3.56 are @x (next power-of-two greater than or equal to X) and @@x (next
power-of-two-plus-one greater than or equal to x).

[@11] will evaluate to 16
[@11] to 17

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Strings in p-fields

Y ou can pass astring as a p-field instead of a number, like this:

i 1010 "A4"

The string can be received by the instrument and further processed using the string opcodes.

Note

Currently only one p-field can contain a string (i.e. no more than one string per line is al-

70

The Standard Numeric Score

lowed). Y ou can overcome this using strset and strget.

71

Front Ends

Front ends are programs that provide some form of user interface for Csound. Within these
programs, Csound is used to generate sound, and familiarity with Csound code is required in
order to use them. Front ends typically add helpful features, such as syntax coloring, graphic
widgets, or tools for algorithmic score generation, that are not part of Csound itself. Most of
these programs were created by a single person, so some of them are not being maintained.
Below is alist (certainly not complete, and perhaps not up to date) of front ends available
for Csound.

Most often, you'll want to download and install Csound itself before downloading and in-
stalling a front end. Some front ends require particular versions of Csound, so if you plan to
use afront end, it's recommended that you verify its compatibility before installing Csound.

CsoundQt

Blue

CsoundQt is a versatile, cross-platform GUI (graphical user interface) which is bundled with
the standard Csound distribution. Created and maintained by Andres Cabrera, QuteCsound
provides a multi-tabbed editor, graphic widgets for real-time sound control, and an opcode
help system that links to this manual. At this writing (2013) CsoundQt is in active develop-
ment, so the version installed in your system when you install Csound may not be the most
current. The most recent version can be found at http://qutecsound.sourceforge.net/.

A cross-platform composition-oriented front end written by Steven Yi in Java. The user in-
terface provides a timeline structured somewhat like a digital multitrack, but differsin that
timelines can be embedded within timelines (polyObjects). This allows for a compositional
organization in time that many users will find intuitive, informative, and flexible. Each in-
strument and score section in a blue project has its own editing window, which makes or-
ganizing large projects easier. Blue can be downloaded a Blue Home Page [ht-
tp://csounds.com/stevenyi/blue].

Cabbage

Cabbage is a Csound frontend that provides users with the means to develop audio plugins
and standalone software across the three major operating systems. While Cabbage makes
use of underlying plugin technologies such as Steinberg's VST SDK, ASIO, etc, Csound is
used to process all incoming and outgoing audio. Cabbage aso provides a growing collec-
tion of GUI widgets ranging from simple sliders to automatable XY -pads. All GUI widgets
in a Cabbage plugin can be controlled via host automation in a plugin host, thereby provid-
ing a quick and effective means of automating Csound instrument parameters in both com-
mercial and non-commercial DAWSs. Cabbage can be downloaded at Cabbage Home Page
[https://github.com/cabbageaudio/cabbage/rel eases).

WinXound

WinXound is a free and open-source Front-End GUI Editor with syntax highlighting for
CSound 6, CSoundAV, CSoundAC, with Python and Lua support, developed by Stefano
Bonetti. It runs on Microsoft Windows, Apple Mac OsX and Linux. You can get it at the
WinXsound Front Page [http://winxound.codeplex.com/].

Winsound

72

http://qutecsound.sourceforge.net/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
http://winxound.codeplex.com/
http://winxound.codeplex.com/

Front Ends

Winsound was formerly part of the main Csound tree. It is now available only as source code. Winsound
isacross-platform FLTK port of Barry Vercoe's original front-end for csound. Some partialy sighted or
unsighted users report success using Winsound with text-to-speech software.

CsoundAC
Python Scripting

Y ou can use CsoundAC as a Python extension module. Y ou can do thisin a standard Python interpreter,
such as Python command line or the Idle Python GUI.

To use CsoundAC in a standard Python interpreter, import CsoundAC.

i mport CsoundAC

The CsoundAC module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C:\ Docunents and Settings\ nkg>python

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore information

>>> jnport CsoundAC

>>> csound. | oad("c:/ projects/csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perform()

BEGAN CppSound: : perform(5, 988ee0)...
BEGAN CppSound: : conpi |l e(5, 988ee0). ..
Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
l'ibsndfile-1.0.10pre6

orchnanme: tenp.orc

scorenane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004
di spl ays suppressed

0dBFS | evel = 32767.0

orch now | oaded

audi o buffered in 16384 sanpl e-frame bl ocks
SFDI R undefined. wusing current directory
witing 131072-byte bl ks of shorts to test.wav
WAV

SECTI ON 1

ENDED CppSound: : conpi | e

ftable 1

ftable 2

ftable 3

ftable 4

73

Front Ends

ftable 5

ftable 6

ftable 7

ftable 8

ftable 9

ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15

ftabl e 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1
B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0
new alloc for instr 1
B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1

B 93.940 .. 94.418 T 98.799 TT281.799 M 477.6 85.0
B 94.418 ..100.000 T107.172 TT290.172 M 118.9 11.5
end of section 4 sect peak anps: 25950.8 26877.4
inactive allocs returned to freespace

end of score. overal |l anps: 32204.8 6
overal | sanples out of range: 0 0
0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed tine = 13.469000 seconds

ENDED CppSound: : perform

1

31469.

>>>

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use
Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. setOrchestra('''sr = 44100

kr = 441

ksmps = 100
nchnls = 2
Odbfs = .1

instr 1,2,3,4,5; FluidSynth General MD
I'; | NITI ALI ZATI ON
; Channel, bank, and program deternmine the preset, that is, the actual sound

i channel pl

i program = p6

i key = p4

ivelocity = p5 + 12

i junk6 = p6

ijunk7 = p7

;. AUDI O

i status = 144

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/ projects/csound5/ sanpl es/ Vi nt ageDr eansWaves-v2. sf 2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''’

csound. set Command(" csound --opcode-1|ib=c:/projects/csound5/fluid.dl| \\
-RWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform)

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, and it aso runs as a VST instrument or effect plugin in

74

Front Ends

VST hosts such as Cubase with the same user interface. CsoundV ST is part of the main csound source
tree, but is not included in standard distributions, due to licensing limitations of Steinberg's VST SDK.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with arow of buttons along the top. Click on the Open...
button to load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the score file
in the respective tabs of the user interface. When all is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Stop button.

VST Plugin

The following instructions are for Cubase 4.0. Y ou would follow roughly similar procedures in other
hosts.

Use the Devices menu, Plug-1n Information dialog, VST Plug-Ins tab, VST 2.x Plug-in Paths dialog, Add
button to add your csound/ bi n directory to Cubase's plugin path. Y ou can have multiple directories sep-
arated by semicolons. Then select the CsoundV ST path and click on the Set as Shared Folder button.
Quit Cubase, and start it again.

Use the File menu, New Project dialog to create a new song.

Use the Project menu, Add Track submenu, to add anew MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select CsoundVST from the list that pops up.
Click on the e (for edit) button to open the CsoundVST dialog.

On the Settings page, check the Instrument box in the VST Plugin group, and the Classic box in the
Csound performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a
Csound csd file suitable for MIDI performance, such as csound/ exanpl es/ CsoundVsT. csd. Click on the
OK button to load the file. You can also open and import a suitable . orc and . sco file as described
above.

In any event, the command line in the Classic Csound command line text box must specify -
+rtmdi=null -M,and should read something like this:

csound -f -h -+rtmdi=null -M -d -n -n¥ --mdi-key-oct=4 --mdi-velocity=5 tenp.orc tenp.sco

Click on the VST Instruments dialog's on/off button to turn it on. This should compile the Csound or-
chestra.

In the Cubase Track Inspector, click on the out: Not Assigned label and select CsoundVST from the list
that pops up.

On the ruler at the top of the Arrangement window, select the loop end point and drag it to the end of
your part, then click on the loop button to enable looping.

75

Front Ends

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.
Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

Y ou can assign up to 16 channels to a single CsoundV ST plugin.

76

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are
a Csound developer or need to develop Csound plugins, you should try to use one of the pre-
compiled distributions from http://www.sourceforge.net/projects/csound.

Detailed and up to date information about building Csound from source can be found in the
BUILD.md [https://github.com/csound/csound/blob/develop/BUILD.md] file in the
Csoundb6 sources.

77

http://www.sourceforge.net/projects/csound
https://github.com/csound/csound/blob/develop/BUILD.md
https://github.com/csound/csound/blob/develop/BUILD.md

Csound Links

Csound's "home page" can be found at http://csound.github.io.

Another Csound page, maintained by Richard Boulanger, can be found at ht-
tp://csounds.com.

The Csound source code is maintained by John ffitch and others a ht-
tp://www.sourceforge.net/projects/csound. The most recent versions and precompiled pack-
ages for most platforms aso can be downloaded here [ht-
tp://sourceforge.net/proj ect/showfiles.php?group_id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch of Bath University,
UK. To have your name put on the mailing list send an empty message to: csound-sub-
scribe@lists.bath.ac.uk [mailto:csound-subscribe@lists.bath.ac.uk]. You can aso subscribe
to the digest (1 message per day) by sending an empty email to: csound-di-
gest-subscribe@lists.bath.ac.uk [mailto:csound-digest-subscribe@lists.bath.ac.uk]. Posts
sent to csound@lists.bath.ac.uk [mailto:csound@lists.bath.ac.uk] go to all subscribed mem-
bers of the list. You can browse the csound mailing list archives here [ht-
tp://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php]

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more
information on this list, go to http://lists.sourceforge.net/lists/listinfo/csound-devel. Posts
sent to csound-devel @lists.sourceforge.net [mailto:csound-devel @lists.sourceforge.net] go
to al subscribed members of thelist.

78

http://csound.github.io
http://csounds.com
http://csounds.com
http://www.sourceforge.net/projects/csound
http://www.sourceforge.net/projects/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound-digest-subscribe@lists.bath.ac.uk
mailto:csound@lists.bath.ac.uk
mailto:csound@lists.bath.ac.uk
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://agentcities.cs.bath.ac.uk/%7ebwillkie/list_arch.php
http://lists.sourceforge.net/lists/listinfo/csound-devel
mailto:csound-devel@lists.sourceforge.net
mailto:csound-devel@lists.sourceforge.net

Part Il. Opcodes Overview

Table of Contents

S o g TS 1 - o] £ T PP TUPPR 83
Additive SyntheSiS/RESYNtNESISiiiiii e 83
BaSiC OSCHIALOS .. .cceieeiie e 83
Dynamic Spectrum OSCIHIatorsovuiii e 83
S04 1= 84
Granular SYNNESISccuniie e e 84
Hyper Vectorial SYNtheSIScoouuiiiiiiiic e 85
Linear and Exponential GENEIratorscceuuurieiiiiiiieeeiiie et e e e 85
ENVEIOPE GENEIALONS ... ettt e e e e e e eaes 86
Models and EMUIBLIONSoiieniiiiiiii e 86
PRIASOIS ettt 87
RaNdom (NOISE) GENEYBIOISvvvueveiieei e e e e e e e e e e e e e e e e ean e eeees 88
Sample Playbackccooueiiii 89
SOUNAFONES ...ttt e e e e e et e e e e aeas 90
SCANNEA SYNENESIS ...t aaas 91
TADIE ACCESS ..o 92
Wave Terrain SYNthESISuuiii e e e e e e 93
Waveguide Physical MOEiNgccouuiiiiiiiiiiicci e e e 93

Signal INPUE N OULPULeeeeeie et e et e e e e e eeaans 95
File INPut @aNd OUEPULcovuieieiiie ettt e e e 95
SIGNAL TNPUL . e e et 95
IS o = I 1 o1 | 95
SOfIWEAIE BUS ...ttt et e e et e e et e eeenens 96
Printing and DiSplayuvevveiiii e 96
SOUNd Fil@ QUENTES ... et e e e e 96

SIgNAl MOGITIEIS ..o ettt e e e eaans 98
Amplitude Modifiers and DynamiC ProCeSSINGceuuueeeueieunieeiaaeiiaeeeiaeeines 98
Convolution and MOrphingccoveiiiiiii e 98
5 1= - 98
Panning and SpatialiZationcccviiiiiiiiiin e 99
RS 1= - 1o o 101
SaMpPle LeVEl OPEIEIOISceieveieiiiiii et 101
SIgNAl LIMITEIS .ot e e e 102
SPECIAl EffECtS ..o 102
Standard FIIEErS ...oovviiiii e 102
SPECIAliZEA FilTEr'S .vvieee e 104
WEVEGUITES ...ttt et e 104
Waveshaping and Phase DiStOrtioncceuuieiiiiiiieiiiiineeen e 104

INSEFUMENT CONEIOL ...t e e e e e e e e eaas 106
ClOCK CONLIOL ... et 106
ConditioNal VEIUEScoveviieiiii e e 106
Duration Control StAatEMENESuiiiiiiiiieeeiii e 106
FLTK Widgetsand GUI CONtrollerscooouuiiiiiiiiieiiiii e 106
FLTK CONAINELS ...ietieeeieeeii ettt e e e et e et e et eeeaeeean e 109
FLTK VAIUBLOS ..ottt e e et e e e et eeeaaan e 109
Other FLTK WIAGELS ...oevvvieeiiiiie et et eeeeii e e e 110
Modifying FLTK Widget APPEAranCeccuuvevviieiiiieeiiieeeiieeeiieeeiaeeeieeaaaees 110
General FLTK Widget-related OpCOTEScvvvniveiiieiii v e 111
INSErUMENt INVOCATION ...veeieie e e 111
Program FIOW CONrOlooiiiiiiiiii e 112
Real-time Performance CONtrolviiuiiiiiiiiee e 113
Initialization and REINItializationc..oiiiiiiiiiii e, 113
Sensing and CONLIOLiiieiiii e e e e e e e e eaes 114

Opcodes Overview

SEACKS vttt ettt 115
SUb-iNStrUMENt CONLIOLeiiei e 116
TIMEREAAING ...oeeii e e 116
FUNCtion Table CONIOlo.u.iiee e e e 117
TaDIE QUENTES ..eeiei e 117
Read/WIte OPEralioNSccuuueiiiiiii et ea s 117
Table Reading with Dynamic SEleCtionccccuiviiiiiiiiiiicc e, 118
MathematiCal OPEIELIONScveuuieeiiiet et e e e e e e e e e e e e e et e e e e e e eeaeeaenaees 119
AMPLITUAE CONVEITEIS ...ttt 119
Arithmetic and LOgiC OPEratioNSc.uuuivieiiieeiiiie e 119
Comparators and ACCUMUIALONSiiuuniiii it 119
Mathematical FUNCLIONSoouuniiiiiiii e 120
Opcode Equivalents of FUNCLIONSocevuiiiiiiiiii e e 120
RaNdOM FUNCLIONSuiiiiiiiie e 121
TrigoONOMELNIC FUNCLIONScovviiiiiiiiie e 121
Linear AlgebraOpCodesccouuuiiiiiiiie e 122
ATTAY OPCOUES ...cenitieiit ettt et e e e e et e et e e e e eenn s 132
PIICN CONVEITENS ...ttt ettt et ettt e e e e ean e 139
FUNCEIONS L.ttt e et e e e aa s 139
LI 10110 @) 0o o L= 139
Real-tiMe MIDI SUPPOIT «....uieeeeii ettt e e 140
Virtual MIDI Keyboardooceeuuiiiiiiiiieeiiii e 141
MIDETNPUE <.t e e e et 144
MIDI MESSAE OULPUL ..eeneeteeteei ettt ettt e e e e e eenns 144
Generic INPUL and OULPULovvneiieeee e e e e e e e e e e e eees 145
CONVEITEIS ettt ettt et ettt e e et et e et e e e e e e enes 145
Y B A =0 (= £ 145
NOte-ON/NOE-OFf OULPUL ... eeierieeeeeii et 145
MIDI/Score Interoperability OPCOUEScevuiiiiiiiiiiiiii e 146
System RealtiMeMESSAGEScvuiiveii e 147
SHAEN BANKS ... 147
S0 1c ot = 005 o 148
Short-time Fourier Transform (STFT) Resynthesis ... 148
Linear Predictive Coding (LPC) ReSynthesiscooeeviiiiiiiiiiiiieeiiieeeeiie 149
Non-standard Spectral ProCESSINGcccvuiiiniiiiiiaiii e 149
Tools for Real-time Spectral Processing (pvS Opcodes)c.veevnvveiieeenneennnn. 149
ATS SPECHral PrOCESSING ...ucvvviieii e e e e e e e e e 150
[0 1@ oo 1= 151
Array-based SpPectral OPCOUESuiiiiiiiieiiii e 154
S L1010 TP UPPPTTRPPPIN 156
String Manipulation OPCOOESceuiiiiiiiieeii e 157
String CONVErSioN OPCOESc.uneeneiiiee ittt eees 157
VA= v (= @ oo o L= 159
Tables Of VECIOIrS OPEIaLOrSuiveeiieiieee e ee e e e e e e e e 159
Operations Between aVectorial and aScalar Signalcooevvvviiiiiiieiiiinnene, 159
Operations Between two Vectorial SIgnalsvveieiiiiiiiiiinieiiieceeieees 160
Vectorial ENVElOPe GENEIratorsSc.uiieuiiiiiieiee e 160
Limiting and wrapping of vectorial control Signalsccoooeeiiiiiiniiiiniinnes 161
Vectorial Control-rate Delay Pathsc.ccooviviiiiiiiiii e, 161
Vectorial Random Signal GENEratorsc..vveevveeiieeiieein e eeeieeraeeeannns 161
ZAK PalCN SYSLEIM ... 163
PLUGIN HOSHING ..ttt e e e e e 164
DSSI and LADSPA fOr CSOUNGuiieiiiiiiiiiiiii et 164
VST FOr CSOUNG ...t 164
OSC AN NEIWOTK ... ettt e et e e et e e eeta s aeaees 166
L0 1 PP 166
N 1= Y0 5 166
REMOLE OPCOUES ...ttt 166

Opcodes Overview

DS S oo o === 167
Signal FIow Graph OPCOOEScveeeiiiiei e e e e e eeees 168
JACKO OPCOUES ...ttt ettt eaaaas 171
LUB OPCOUES ...ttt ettt ettt e et e e et b e e et e e e e e e e 174
PYthoN OPCOOESceieeie ettt e et e e e e ea e 179

INEFOTUCTION ...ttt aaes 179

OFChESLFA SYNEAX ..evvveeii e e e e e e e e e e e e eees 179
IMage ProCeSSING OPCOUES ...vvvuuiieieiii i eeei e et e e e e e e e e e e e e e et e e et e e e e e et e e e e e e eeannas 181
ST OPCOUES ...ttt ettt ettt ettt e ettt e e ettt e e e e et e e e eete e e e eebaaeaees 182
MiSCElANEOUS OPCOTESvtieeiiii ettt ettt ettt e e e e e ne s 184

82

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;

e adsyn
* adsynt
 adsynt2
* hsboscil

See the section Spectral processing for more information and further additive/resynthesis
opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with ‘i* implement linear inter-
polation and those that end with '3' implement cubic interpol ation)

* Ogcillator Banks: oscbhnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

* Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

Oscillators can also be constructed from generic table read opcodes. See the Table Read/
Write operations section.

LFOs

* |fo
e Vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators.
Also see the section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:

83

Signal Generators

* Harmonic spectra: buzz and gbuzz

* Impulse generator: mpulse

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-
cillators:

* vco2init

* vCo2ft

» vco2ift

FM Synthesis

The FM synthesis opcodes are:

 foscil
» foscili

e crossfm, crossfmi, crosspm, crosspmi, crossfmpm, and crossfmpmi.

FM instrument models

o fmb3
o fmbell
o fmmetal
o fmpercfl
 frmrhode
» fmvoice

e fmwurlie

Granular Synthesis

The granular synthesis opcodes are:

 diskgrain
* fof

Signal Generators

» fof2

» fog

e grain

e grain2

e grain3

e granule
* partikkel
* partikkelsync
e sndwarp
 sndwarpst
* syncgrain
* syncloop

e vosim

Hyper Vectorial Synthesis
* vphaseseg

* hvsl
e hvs2

* hvs3

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:

* expon
* expcurve
* expseg
* expsega
* expsegr

85

Signal Generators

» gaindider
* jspline
* line

* linseg

* linsegr
 logcurve
* loopseg
* loopsegp
¢ Ipshold
* |psholdp
* rspline
» scale

* transeg

Envelope Generators

The following envel ope generators are available:

e adsr

e madsr
e Mxadsr
o xadsr
* linen
* linenr
e envipx
o envipxr

Consult the Linear and exponential generators section for additional methods to create envelopes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK
toolkit by Perry Cook):

* bamboo

86

Signal Generators

* barmodel
» cabasa
 crunch

o dripwater
 gogobel

e guiro

* mandol

* marimba

* moog

* sandpaper
* sekere

* shaker

» deighbells
o stix
 tambourine
* vibes

* voice
Also, see the STK Opcodes section for information on the STK opcodes.

Other models and emulations

* lorenz

» planet

e prepiano

» Fractal Number (Mandelbrot set) generator: mandel
 chuap

* gendy

» gendyc

* gendyx

A section on physical modeling using the waveguide principles can be found here: Waveguide Physical
Modeling

Phasors

87

Signal Generators

The opcodes that generate a moving phase value:

 ephasor
» phasor
 phasorbnk

* syncphasor

These opcodes are useful in combination with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:

* betarnd
* bexprnd
 cauchy
 cuserrnd
* duserrnd
* dust

* dust2

» exprand
« fractalnoise
* gauss

e gausstrig
* linrand
* noise

* pcauchy
 pinkish
 pinker

* poisson
* rand
 randh

e randi

88

Signal Generators

e rnd31

* random

* randomh

* randomi

* trirand

* unirand

e urd

* weibull

o jitter

o jitter2

* trandom

See seed which sets the global seed value for al x-class noise generators, as well as other opcodes that
use arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See al so functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:

* bbcutm
* bbcuts
« flooper
* flooper2
* loscil

* loscil3
* loscilx
* |phasor
* |poscil
* |poscil3
* |poscila
* |poscilsa

* |poscilsa2

89

Signal Generators

 sndloop
¢ waveset

See also the Sgnal Input section for other ways to input sound.

Soundfonts

Fluid Opcodes
The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidSetlnterpMethod for setting interpolation method for a channel in a
FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning presets from a
SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a FluidSynth engine's
MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth engine's MIDI chan-
nel, fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI channel. fluid-
Control for playing and controlling loaded Soundfonts (using 'raw' MIDI messages), fluidOut for receiv-
ing audio from a single FluidSynth engine, and fluidAllOut for receiving audio from al FluidSynth en-
gines.
o fluidAIIOut
* fluidCCi
 fluidCCk
« fluidControl
« fluidEngine
o fluidLoad
* fluidNote
* fluidOut
* fluidProgramSelect

o fluidSetlnterpMethod

"Old" Soundfont opcodes
These opcodes can aso use soundfonts to generate sound. sfplay etc. were created for one purpose -- to
use the samples in SoundFonts. The fluid opcodes were created for another purpose -- to use Sound-
Fonts more or less the way they were designed to be used, i.e. using keyboard mappings, layers, internal
processing, etc.
o dilist
o dfinstr
o sfinstr3

e sfinstr3m

90

Signal Generators

o dfinstrm
* sfload

» sfpassign
» Sfplay

» sfplay3
» sfplay3m
 sfplaym
* sflooper
o Sfplist

* Sfpreset

Scanned Synthesis

Scanned synthesis is a variant of physical modeling, where a network of masses connected by springsis
used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and setsit in
motion. The opcode scans follows a predefined path (trgjectory) around the network and outputs the de-
tected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentialy, this offers the pos-
sibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the ef-
fect of “molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

AlWIN| P

Whenever two masses are connected, the point they defineis 1. If two masses are not connected, then
the point they define is 0. For example, a unidirectional string has the following connections: (1,2),
(2,3), (3,4). If it is bidirectional, it aso has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix

appears:

1 2 3 4
1 0 1 0 0
2 0 0 1 0

91

Signal Generators

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCI|I file using GEN23. The actual ASCII fileis cre-
ated from the table model row by row. Therefore the ASCII file for the example table shown above be-
comes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example
in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, center-
ing, and damping can cause the system to “blow up” and the most interesting sounds to emerge from
your loudspeakers!

The supplement to this manual contains atutorial on scanned synthesis. The tutorial, examples, and oth-
er information on scanned synthesisis available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research
between 1998 and 2000.

Opcodes that implement scanned synthesis are:

 scanhammer
e scans

» scantable

» scanu

* Xscanmap

e Xscans

s Xscansmap

* XSCcanu

Table Access

The opcodes that access tables are;

e oscill
e oscilli

e osciln

92

Signal Generators

* OsCilx
* table
* table3
o table

Opcodes ending in 'i' implement linear interpolation and opcodes ending in ‘3" implement cubic interpol-
ation.

The following opcodes implement fast table reading/writing without boundary checks:

* tab

+ tab_i
* tabw
o tabw_i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

Note

Although tables with a size which is not a power of two can be created using a negative
size (see f score statement), some opcodes will not accept them.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisis wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:

* pluck
 repluck

* wgbow
 wgbowedbar
* wgbrass

* wgclar

* wgflute

» wgpluck

93

Signal Generators

» wgpluck2
e wguidel

* wguide2

94

Signal Input and Output
File Input and Output

The opcodes for file input and output are;

* File open/close: fiopen and ficlose.

* File output: dumpk, dumpk2, dumpk3, dumpk4, fout, fouti, foutir foutk and hdfSwrite
 Fileinput: readk, readk2, readk3, readk4, fin, fini and fink

« Utilities for use with the fout opcodes: clear, vincr

 Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronousinput: in, in32, inch, inh, ino, ing, inrg, ins and inx
* File streaming: diskin, diskin2 soundin and hdf5read

» User defined channel input: invalue

 Streaming input: soundin

» Webhsocket input: websocket

* Direct to zak input: inz

See the section Software Bus for input and output through the API.

The mp3in alows reading of mp3 files, which are currently not supported by ordinary read-
ing methods inside Csound.

Signal Output

The opcodes that write audio signals are;

» Synchronous output: out, out32, outc, outch, outh, outo, outrg, outq, outql, outq2, outg3,
outgd, outs,outsl, outs2 outx and hdf5Swrite

* Streaming output: soundout and soundouts

» User defined channel output: outvalue

« Direct from zak output: outz

95

Signal Input and Output

» Websocket output: websocket

The opcode monitor can be used for monitoring the complete output of csound (the output spout frame).

See the section Software Bus for input and output through the API.

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the
Csound API.

The opcodes to use the software bus are;

e chn_k

» chn_a

e chn_S
 chnclear
* chnexport
o chnmix

» chnparams

Printing and Display

Opcodes for printing and displaying values are:

o dispfft
 display
« flashtxt
e print
o printf
e printf_i
o printk
e printk2
* printks

e prints

Sound File Queries

96

Signal Input and Output

The opcodes that query information about files are:

« filelen

filenchnls
« filepeak

o filesr

filevalid

97

Signal Modifiers

Amplitude Modifiers and Dynamic pro-
cessing

The opcodes that modify amplitude are:

 balance
s compress
* clip
» dam
e gain

The opcode 0dbfs facilitates the use of amplitude by removing the need to use of explicit
sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:

» convolve also caled convie
* Cross2
* dconv
* ftconv
 ftmorf

* pconvolve

Delay
Fixed delays

» delay
e delayl
o delayk

98

Signal Modifiers

Delay Lines

o delayr
e delayw
» deltap
 deltap3
* deltapi
 deltapn
 deltapx

 deltapxw

Variable delays

* vdelay

» vdelay3

* vdelayx

» vdelayxs
» vdelayxq
» vdelayxw
* vdelayxwq
 vdelayxws

Multitap delays

» multitap

Panning and Spatialization

Amplitude spatialization

* locsend
* locsig

.pan

99

Signal Modifiers

* pan2
¢ space
» spdist
* spsend

3D spatialization with simulation of room acoustics

» gpat3d
 gpat3di
* gpat3dt

Vector Base Amplitude Panning

* vbapl6

* vbapl6move
* vbap4

* vbapdmove
* vbap8

* vbap8move
* vbaplsinit

* Vbapz

* vbapzmove

Binaural spatialization

e hrtfer
e hrtfmove
e hrtfmove2

e hrtfstat

Ambisonics

» bformdec

100

Signal Modifiers

» bformenc

Reverberation

The opcodes one can use for reverberation are:

» alpass

» babo

+ comb

* freeverb

* nestedap

» nreverb (also called reverb?)
* reverb

* reverbsc

* valpass

* vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

o ak)

* denorm
o diff

e downsamp
+ fold

* (k)

* integ

* interp
k(i)
 ntrpol

» samphold

* upsamp

101

Signal Modifiers

* vaget

* vaset

Signal Limiters

Opcodes that can be used to limit signals are:

o limit
e mirror

cWrap

Special Effects

Opcodes that generate special effects are:

* distort
* distortl
* exciter
« flanger
* harmon
e phaserl

» phaser2

Standard Filters

Resonant Low-pass filters

» areson
* lowpass?
* lowres
* lowresx
» |pfl8

» moogvcf

» moogladder

102

Signal Modifiers

e reson
e resonr
* resonx
e resony
e resonz
* rezzy

* statevar
o sVilter
o thvcf

* viowres

* barez

Standard filters

» Hi-passfilters: atone, atonex
* Low-passfilters: tone, tonex
» Biquad filters: biquad and biquada.

» Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are aso called butbp, butbr, buthp,
butlp)

» Generd filters: clfilt

Control signal filters

» aresonk
 atonek
* lineto
* port

* portk

* resonk
* resonxk
* tlineto

o tonek

103

Signal Modifiers

Specialized Filters
High pass filters

» dcblock

» dcblock2

Parametric EQ

* pareq
* rbjeq
o edfil

Other filters

e nifilt
o filter2
o fofilter
o hilbert
* mode

o Zilter2

Waveguides

The opcodes that use waveguides to modify asignal are:

e streson
» wguidel

* wguide2

Waveshaping and Phase Distortion

These opcodes can perform dynamic waveshaping or phaseshaping (ak.a. phase distortion). They differ
from traditional table-based methods of waveshaping by directly calculating the transfer function with
one or more variable parameters for affecting the amount or results of the shaping. Most of these op-
codes could be used on either an audio signal (for waveshaping) or a phasor (for phaseshaping) but tend
to work best for one of these applications.

104

Signal Modifiers

These opcodes are good for waveshaping:

* chebyshevpoly
» clip

* distort

* distortl
 polynomial

* powershape

These opcodes are good for phaseshaping:

* pdclip
* pdhalf
* pdhalfy

105

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:

* clockoff
» clockon
These clocks count CPU time. There are 32 independent clocks available. You can use the

opcode readclock to read current values of a clock. See Time Reading for other timing op-
codes.

Conditional Values

The opcodes for conditiona valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:

* ihold

* turnoff
* turnoff2
e turnon

For other realtime instrument control see Real-time Performance Control and Instrument In-
vocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestra
in real-time. They are derived from the open-source library FLTK (Fast Light Tool Kit).
Thislibrary is one of the fastest graphic libraries available, supports OpenGL and should be
source compatible with different platforms (Windows, Linux, Unix and Mac OS). The sub-
set of FLTK implemented in Csound provides the following types of objects:

Containers FLTK Containers are widgets that contain other widgets such as pan-
els, windows, etc. Csound provides the following container objects:
e Panels
e Scroll areas

* Pack

106

Instrument Control

Tabs

Groups

Valuators The most useful objects are named FLTK Valuators. These objects alow the user
to vary synthesis parameter values in real-time. Csound provides the following
valuator objects:

Sliders
Knobs
Rollers
Text fields
Joysticks

Counters

Other widgets There are other FTLK widgets that are not valuators nor containers:

Buttons
Button banks
Labels

Keyboard and Mouse sensing

Also there are some other opcodes useful to modify the widget appearance:

» Updating widget value.

 Setting primary and selection colors of awidget.

 Setting font type, size and color of widgets.

* Resizing awidget.

 Hiding and showing awidget.

There are also these general opcodes that allow the following actions:

* Running the widget thread: FLrun

» Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.

* Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap

Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section of

107

Instrument Control

an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must
not be crossed. After defining al containers, a widget thread must be run by using the special FLrun op-
code that takes no arguments.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform
; Audi 0 out Audio in No messages
- odac -iadc -d ;3 RT audio 1/0
; For Non-realtinme ouput |eave only the line bel ow
; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nstrunent s>
chkkhkkkkhkhkhk Ak kA kA hkhkhkhkhkkkk ok ok ok k
sr=48000

kr =480

ksnps=100

nchnl s=1

;*** |t is recommended to put alnpst all GU code in the
;*** header section of an orchestra

FLpanel "Panel 1", 450, 550 ;***** start of contal ner
; some wi dgets shoul d contained here
FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required
instr 1
; put sone synthesis code here
endin
rhkkkkkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk
</ Csl nst runent s>
<CsScor e>
f 0 3600 ;dummy table for realtine input
e

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a dider inside each of them:

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/midi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc ; -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the line bel ow
-0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

Pkkkkkhkkhkkhkhkhhkhhkhhkhhkhkhkkkk ok kK

Sr=48000
kr =480
ksmps=100
nchnl s=1
FLpanel "Panel 1", 450, 550, 100, 100 ; ***** start of contail ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;****x end of container
FLpanel "Panel 2", 450, 550, 100, 100 ; ***** start of contal ner
gk2,i hb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50

108

Instrument Control

FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required

instr 1

gkl and gk2 variables that contain the output of val uator
; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl
printk2 gk2 ;print the values of the valuators whenever they change
endi n

Pkkkkkkkhkkhkkkhhkhhkhhkhhkhkhkkkk ok kK

</ Csl nst runent s>

<CsScor e>

f 0 3600 ;dummy table for realtinme input
e

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since there is no need of polling. (This differs from other MIDI based controller opcodes.) So you can
use any number of windows and valuators without degrading the real-time performance.

FLTK Containers

The opcodes for FLTK containers are:

* FLgroup

» FLgroupEnd
* FLpack

» FLpackend
* FLpand

* FLpanelEnd
* FLscrall

* FLscrollEnd
» FLtabs

» FLtabsEnd
FLTK Valuators
The opcodes for FLTK valuators are:

* FLcount
* FLjoy
* FLknob

109

Instrument Control

e FLroller
» FLdlider

* FLtext

Other FLTK Widgets

Other FLTK widget opcodes are:

* FLbox

» FLbutBank

* FLbutton

» FLexecButton

* FLkeyln

» FLhvsBox

» FLhvsBoxSetValue
* FLmouse

* FLprintk

e FLprintk2

e FLdidBnk

» FLdidBnk2

* FLdidBnkGetHandle
» FLdlidBnkSet

e FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvkeybd

* FLvdlidBnk

» FLvslidBnk2

* FlLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:

110

Instrument Control

* FLcolor

* FLcolor2

* FLhide

* FLlabel

* FLsetAlign

* FLsetBox

* FLsetColor

* FLsetColor2
* FLsetFont

* FLsetPosition
* FlLsetSze

* FlLsetText

* FLsetTextColor
* FlLsetTextSze
* FlLsetTextType
o Flsetval_j

» FlLsetVval

e FLshow

General FLTK Widget-related Opcodes

The general FLTK widget-related opcodes are:

e FLgetsnap
» FLloadsnap
* FLrun
 FLsavesnap
e FLsetsnap
* FLupdate

e FLsetShapGroup

Instrument Invocation

111

Instrument Control

The opcodes one can use to create score events from within a orchestra are:

* event

e event |

e scoreline i

» scoreline

* schedule

¢ schedwhen

* schedkwhen

* schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Instruments definitions can be removed using the remove opcode.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:

* cggoto
* cigoto
* ckgoto
* cngoto
» esaf
* ese

* endif
+ goto
o if

* igoto
» kgoto
* tigoto

o timout

Opcodes to create looping constructions are:

112

Instrument Control

» loop_ge
* loop_gt
* loop_le
* loop_It

* until

+ while

. Warning

Some of these opcodes work at i-rate even if they contain k- or a- rate comparisons. See
the Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are:

e active
e cpuprc
» maxalloc
» prealloc

* jacktransport

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:

e init
* tival
e passign

. p%t
The opcodes that can generate another initialization pass are:

e reinit

113

Instrument Control

* rigoto

e rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for a named instrument.

Note

Note that a instrument may modify the p3 (duration) parameter at initialisation time. For
example statements like

iattack = 0.02

irelease = 0.04

isustain = p3

p3 = iattack + isustain + irel ease

arevalid.

Sensing and Control
TCL/TK widgets

 button
» checkbox
e control

o setctrl

Keyboard and mouse sensing

* sensekey (also called sense)

'Xyln

Envelope followers

» follow

follow2
. pea_k

* I'mS

114

Instrument Control

Tempo and Pitch estimation

* ptrack
e pitch
e pitchamdf

« tempest

Tempo and Sequencing

* tempo

» miditempo
* tempoval

* seqgtime

* seqgtime2

* trigger

* trigseq

* timedseq

 changed

System

* getcfg

Score control

* rewindscore

* setscorepos

Stacks

Csound implements a global stack that can be accessed with the following opcodes:

115

Instrument Control

o stack

* pop
* push

* pop_f
* push f

Sub-instrument Control
These opcodes | et one define and use a sub-instrument:

 subinstr

e subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are:

readclock
* rtclock
 timeinstk
* timeinsts
 times

o timek

Y ou can obtain the system date using:

» date - Returns the number seconds since 1 January 1970.

* dates- Returns as a string the date and time specified.

Y ou can also set up counters using clockoff and clockon.

116

Function Table Control

Refer to the f score statement, ftgen, ftgentmp, ftgenonce and the GEN Routines section for
information on creating tables.

Tables can be removed from memory using the ftfree opcode.

Tables by default, require a size which is a power of two. However tables with any size can
be generated by specifying the size as a hegative number (see f score statement).

Note

Not all opcodes accept tables whose size is not a power of two, as this may be
arequirement for internal processing.
For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:

» For tables|loaded from a sound file (using GENO1): ftchnls, ftcps,ftlen, ftiptimand ftsr

 For any table: nsamp, ftlen, tableng

The opcode tabsum cal culates the sum of valuesin atable.

Read/Write Operations

Opcodes that read and write to atable are:

« ftloadk

* ftload

* ftsavek

* ftsave

* tablecopy
* tablegpw

* tableicopy
* tableigpw
* tableimix

o tableiw

117

Function Table Control

* tablemix
* tablera

* tablew

* tablewa

* tablewkt

* tabmorph
* tabmorpha
* tabmorphak
* tabmorphi
* tabrec

* tabplay

o ftmorf

Table values can be accessed within expressions using the tb family of opcodes.

Many oscillators are in fact specialized table readers. See the Basic oscillators section.

Table Reading with Dynamic Selection

Opcodes that let one dynamically (at k-rate) select tables are:
* tableikt

* tablekt
* tablexkt

118

Mathematical Operations
Amplitude Converters

Opcodes to convert between different amplitude measurements are:

e ampdb
o ampdbfs
o db

» dbamp
 dbfsamp

Use rms to find the rms value of a signal. See also Odbfs for another way to handle amp-
litudes in csound.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operationsare -, +, &&, ||, *, /, *, and %.

See the Conditional Values section and the if family of opcodes for usage of logical operat-
ors.

Comparators and Accumulators

The following opcodes perform comparisons between signals at a-rate or k-rate, find max-
ima or minima, or accumulate the results of several computations or comparisons:
* max

o max_k

* maxabs

* maxabsaccum

* maxaccum

* min

e minabs

* minabsaccum

e minaccum

* vincr

e clear

119

Mathematical Operations

Mathematical Functions

Opcodes that perform mathematical functions are:

+ abs

» cell

o exp

* floor

» frac

e int

* log

* logl0

* logbtwo
* pow

» powershape
* powoftwo

e round

* gort

Opcode Equivalents of Functions

Opcodes that perform the equivalent of mathematical functions are:

* chebyshevpoly
o divz

e mac

* maca
 polynomial

* pow
 product

s sum

e taninv2

120

Mathematical Operations

Random Functions

Opcodes that perform random functions are:

e birnd

e rnd

See the section Random (Noise) Generators for opcodes that generate random signals.

Trigonometric Functions

Opcodes that perform trigonometric functions are:

* cos, cosh and cosinv
* sin, sinh and sininv

 tan, tanh, taninv, and taninv2.

121

Mathematical Operations

Linear Algebra Opcodes

Linear Algebra Opcodes — Scalar, vector, and matrix arithmetic on real and complex values.

Description

These opcodes implement many linear algebra operations, from scalar, vector, and matrix arithmetic up
to and including QR based eigenvalue decompositions. The opcodes are designed for digital signal pro-
cessing, and of course other mathematical operations, in the Csound orchestra language.

The numerical implementation uses the gmm++ library from home.gna.org/getfenygmm intro [ht-
tp://home.gna.org/getfem/gmm_intro].

. Warning

For applications with f-sig variables, array arithmetic must be performed only when the f-
sig is "current," because f-rate is some fraction of k-rate; currency can be determined with
thela k_current_f opcode.

For applications using assignments between real vectors and a-rate variables, array arith-
metic must be performed only when the vectors are "current”, because the size of the vec-
tor may be some integral multiple of ksmps; currency can be determined by means of the
la_k_current_vr opcode.

Table4. Linear Algebra Data Types

Mathematical Type Code Corresponding Csound Type or
Types

real scalar r i-rate or k-rate variable

complex scalar C pair of i-rate or k-rate variables,
e.g. "kr, ki"

real vector vr i-rate variable holding address of
array

real vector a arate variable

real vector t function table number

complex vector vC i-rate variable holding address of
array

complex vector f fsig variable

real matrix mr i-rate variable holding address of
array

complex matrix mc i-rate variable holding address of
array

All arrays are O-based; the first index iterates rows to give columns, the second index iterates columns to
give elements.

All arrays are general and dense; banded, Hermitian, symmetric and sparse routines are not implemen-
ted.

122

http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro

Mathematical Operations

An array can be of type code vr, vc, mr, or mc and is stored in an i-rate object. In orchestra code, an ar-
ray is passed asa MYFLT i-rate variable that contains the address of the array object, which is actually
stored in the allocator opcode instance. Although array variables are i-rate, of course their values and
even shapes may change at i-rate or k-rate.

All operands must be pre-allocated; except for the creation opcodes, no opcode ever alocates any ar-
rays. Thisistrue even if the array appears on the | eft-hand side of an opcode! However, some operations
may reshape arrays to hold results.

Arrays are automatically deallocated when their instrument is deallocated.

Not only for more efficient performance, but also to make it easier to remember opcode names, the per-
formance rate, output value types, operation names, and input value types are deterministically encoded
into the opcode name:

1. "Ia" for "linear algebra opcode family".

2. "i" or "k" for performance rate.

3. Type code(s) (see above table) for output value(s), but only if the type is not implicit from the input
values.

4. Operation name: common mathematical name (preferred) or abbreviation.

5. Type code(s) for input values, if not implicit.

For additional details, see the gmm-++ documentation a ht-
tp://downl oad.gna.org/getfem/doc/gmmuser.pdf.

Syntax

Array Creation

ivr la_i_vr_create irows

Create areal vector with irows rows.

ive la_i_vc_create irows

Create a complex vector with irows rows.

i la_i_nr_create irows, icolums [, odiagonal]

Create areal matrix with irows rows and icolumns columns, with an optional value on the diagonal.

imc la_i_nt_create irows, icolums [, odiagonal _r, odiagonal _i]

Create a complex matrix with irows rows and icolumns columns, with an optional complex value on the
diagonal.

Array Introspection

i rows la_i_size_vr ivr

Return the number of rowsin real vector ivr.

123

Mathematical Operations

i rows la_i_size_vc ive

Return the number of rows in complex vector ivc.

irows, icolums la_i_size_nr i

Return the number of rows and columnsin real matrix imr.

irows, icolumms la_i_size_nt inmc

Return the number of rows and columns in complex matrix imc.

kfiscurrent la_k_current _f fsig

Return 1if fsig is current, that is, if the value of fsig will change on the next kperiod.

kvri scurrent la_k_current _vr ivr

Return 1 if the real vector ivr is current, that is, if Csound's current audio sample frame stands at index 0
of the vector.

la_i_print_vr ivr

Print the value of real vector ivr.

la_i_print_vc ive

Print the value of complex vector ivc.

la_i_print_nr i

Print the value of real matrix imr.

la_i _print_nt inc

Print the value of complex matrix imc.

Array Assignment and Conversion

ivr la_i _assign_vr ivr

Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at i-rate.

ivr la_k_assign_vr ivr

Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at k-

rate.

ive la_i _assign_vc ive
ive la_k_assign_vc ivr
inr la_i _assign_nr inr
i la_k_assign_nr i

124

Mathematical Operations

ivr

ivr

ivr

ive

asig

i tabl enum

i tabl enum

fsig

la_i_assign_nt inmc

la_k_assign_nt inr

Warning
Assignments to vectors from tables or fsigs may resize the vectors.

Assignments to vectors from a-rate variables, or to a-rate variables from vectors, will be
performed incrementally, one chunk of ksmps elements per kperiod. Therefore, array arith-
metic on such vectors should only be performed when the vectors are current, as determ-
ined by thela k_currrent_vr opcode.

la_k_assign_a asi g
la_i_assign_t i t abl enunber
la_k_assign_t i t abl enunber
la_k_assign_f fsig
la_k_a_assign ivr
la_i_t_assign ivr
la_k_t_assign ivr
la_k_f_assign ive

Fill Arrays with Random Elements

ivr

ivr

ive

ive

Array Element Access

ivr

kvr

la_i _randomvr [ifill _fraction]
la_k_randomvr [kfill _fraction]
la_i _randomvc [ifill_fraction]
la_k_random vc [kfill _fraction]
la_i _random nr [ifill_fraction]
la_k_random nr [kfill _fraction]
la_i _randomnt [ifill _fraction]
| a_k_random nt [kfill _fraction]
la_i_vr_set irow, ivalue

la_k_vr_set krow, kval ue

125

Mathematical Operations

ive

kve

ke

i val ue
kval ue
ivalue_r, ivalue_i
kval ue_r, kval ue_i
i val ue
kval ue
ivalue_r,

ival ue_i

kval ue_r, kval ue_i

Single Array Operations

inr

la_i_vc_set

la_k_vc_set

la_i nr_set

la_k nr_set

la_i _nt_set

la_k_nt_set

la_i_get_vr

la_k_get _vr

la_i _get_vc

la_k_get_vc

la_i_get_m

la_k_get_nmr

la_i_get_nt

la_k_get_nt

la_i _transpose_nr

la_k_transpose_nr

la_i _transpose_nt

la_k_transpose_nt

la_i _conjugate_vr

| a_k_conjugate_vr

la_i _conjugate_vc

| a_k_conjugate_vc

la_i _conjugate_nr

la_k_conjugate_nr

la_i _conjugate_nt

I a_k_conjugate_nt

irow,

kr ow,

irow,

kr ow,

irow,

kr ow,

ivr,

ivr,

ivc,

ivalue_r, ivalue_i
kval ue_r, kval ue_i
i colum, ival ue
kcol um, ival ue
i colum, ivalue_r,
kcol um, kval ue_r,
irow

kr ow

irow

kr ow

irow, icolum

krow, kcol um

irow, icolum

krow, kcol um

ival ue_i

kval ue_i

126

Mathematical Operations

Scalar Operations

kr

kr

la_i _nornl_vr

la_k_norml_vr

la_i _norml_vc

la_k_norml_vc

la_i _norml_nr

la_k_norml_nr

la_i _norml_nt

la_k_norml_nt

la_i _norm euclid_vr

la_k_norm euclid_vr

la_i_normeuclid_vc

la_k_normeuclid_vc

la_i _norm euclid_nr

la_k_normeuclid_nr

la_i_normeuclid_nt

la_k_normeuclid_nt

la_i _distance_vr

la_k_di stance_vr

la_i _distance_vc

| a_k_di stance_vc

I a_i _norm max

I a_k_nor m nmax

I a_i _norm max

I a_k_nor m nmax

la_i _norm.inf_vr

la_k_norm.inf_vr

ive

nmr

mr

nmc

nmvc

ivr

127

Mathematical Operations

kr

la_i _norm.inf_vc

la_k_norm.inf_vc

la_i_norminf_nr

la_k_norm.inf_nr

la_i_norm.inf_nt

la_k_norm.inf_nc

la_i_trace_nr

la_k_trace_nr

la_i_trace_nt

la_k _trace_nt

la_i _lu_det
la_k_lu_det
la_i _lu_det
la_k_lu_det

Elementwise Array-Array Operations

ivr

ive

ivr

ive

ivr

ive

la_i_add_vr

la_k_add_vc

la_i_add_nr

la_k_add_nt

la_i _subtract_vr

la_k_subtract_vc

la_i_subtract_nr

la_k_subtract _nc

la_i_multiply_vr

la_k_multiply_vc

la_i _multiply_nr

la_k_multiply_nc

ive

ive

ivr_b

ivc_b

128

Mathematical Operations

ivr la_i_divide_vr ivr_a, ivr_b
ive la_k_divide_vc ivc_a, ivc_b
i la_i _divide_nr inr_a, inr_b
imc la_k_divide_nt inmc_a, inc_b

ir la_i _dot _vr ivr_a, ivr_b
kr la_k_dot _vr ivr_a, ivr_b
ir, ii la_i _dot_vc ivc_a, ivc_b
kr, Ki la_k_dot _vc ivc_a, ivc_b
i la_i_dot_nmr inr_a, inr_b
i la_k_dot_nr inr_a, inr_b
inc la_i_dot_nt inc_a, inc_b
inmc la_k_dot_nt inc_a, inc_b
ivr la_i_dot_nr _vr inr_a, ivr_b
ivr la_k_dot_nr_vr im_a, ivr_b
ive la_i_dot_nt_vc inmc_a, ivc_b
ive la_k_dot _nt_vc inc_a, ivc_b

Matrix Inversion

inr, icondition la_i_invert_nr i
inr, kcondition la_k_invert_nr i
inmc, icondition la_i_invert_nt inmc
imc, kcondition la_k_invert_nt imc

Matrix Decompositions and Solvers

ivr I a_i _upper_sol ve_nr inr [, j_1_diagonal]
ivr | a_k_upper_sol ve_nr inr [, j_1 diagonal]
ive la_i _upper_sol ve_nt imc [, j_1_diagonal]
ive | a_k_upper_solve_nt imc [, j_1 diagonal]

129

Mathematical Operations

ivr la_i _| oner_sol ve_nr inr [, j_1_ diagonal]
ivr la_k_I ower _sol ve_nr inr [, j_1_diagonal]
ive la_i _| oner_solve_nt inmc [, j_1 diagonal]
ive la_k_| oner_solve_nt imc [, j_1 diagonal]
inr, ivr_pivot, isize la_i _lu_factor_nr inr
inr, ivr_pivot, ksize la_k_lu_factor_nmr inm
imc, ivr_pivot, isize la_i _lu_factor_nt imc
inmc, ivr_pivot, ksize la_k _lu_factor_nt imc
ivr_x la_i _lu_solve_nr inr, ivr_b
ivr_x la_k lu_solve_ nmr inr, ivr_b
ive_x la_i _lu_solve_nt imc, ivec_b
ivec_x la_k_lu_solve_nt inmc, ive_b
inr_q, im_r la_i_qr_factor_m i
inr_qg, inr_r la_k_qgr_factor_nr inr
imc_q, inmc_r la_i_qgr_factor_nt imc
inc_qg, inc_r la_k_qgr_factor_nt inmc
ivr_eig_vals la_i_qr_eigen_nr inr, i_tolerance
ivr_eig_vals la_k_qgr_eigen_nr inr, k_tolerance
ivr_eig_vals la_i_qr_eigen_nt inmc, i_tolerance
ivr_eig_vals la_k_qr_eigen_nc inc, k_tol erance
. Warning

Matrix must be Hermitian in order to compute eigenvectors.
ivr_eig_vals, inr_eig_ vecs la_i_qgr_symeigen_nr inr, i_tolerance

ivr_eig_vals, im_eig_vecs la_k gr_symeigen_nr inr, k_tolerance

ivc_eig_vals, inc_eig vecs la_i_qgr_symeigen_nc int, i_tolerance

ivc_eig_vals, inc_eig_vecs la_k gr_symeigen_nc int, k_tolerance

130

Mathematical Operations

Credits

Michael Gogins

New in Csound version 5.09

131

Mathematical Operations

Array Opcodes

Array Opcodes

Variable Name

An array must be created (viainit or fillarray) as kMyName plus ending brackets. The brackets determ-
ine the dimensions of the array. So,

KArr[] init 10

creates aone-dimensional array of length 10, whereas

KArr[][] init 10, 10

creates atwo-dimensional array with 10 rows and 10 columns.

After theinitalization of the array, referring to the array as awhole is done without any brackets. Brack-
etsare only used if an element isindexed:

KArr[] init 10 ;Wi th brackets because of initialization
kLen = lenarray(kArr) ;Wi t hout brackets
kFirstEl = kArr[0] ;indexing with brackets

The same syntax is used for asimple copy viathe '=" operator:

KArr1

[] fi
kArr2[] =

Ilarray 1, 2, 3, 4, 5
kArri1 ;creates kArr2 as copy of kArrl

k-rate

Note that most array operations are currently k-rate only. So like any other k-rate opcode, an operation
on arrays will be automatically repeated every k-cycle. For instance, this code will repeat re-writing the
array with different random values every k-cycle, aslong as the instrument runs:

KArr[] init 10

klndx =0

until klndx == lenarray(kArr) do
kArr [kl ndx] rnd31 10, O
klndx += 1

od

If you want to avoid this, you must organizeit in one of the usual ways, for instance by using atrigger:

132

Mathematical Operations

KArr[] init 10
kTrig metro 1

if kTrig == 1 then ;do the follow ng once a second
klndx =0
until klndx == |l enarray(kArr) do
kArr[klndx] rnd31 10, O
kl ndx += 1
od
endi f

Creation/Initialization

The usual way to create an array iswith init:

KArr[] init 10 ;creates one-dinensional array with length 10
kKArr[][] init 10, 10 ;creates two-dinmensional array

A one-dimensional array can also be created and filled with distinct values by the opcode fillarray. This
line creates a vector with length 4 and putsin the numbers[1, 2, 3, 4]:

kArr[] fillarray 1, 2, 3, 4

Length

The function lenarray(kArr) reports the length of an array. See example for function lenarray.

Copy Arrays to/from Tables

copyf2array kArr, kfn

copies data from an ftable to a vector.

copya2ftab kArr, kfn

copies data from a vector to an function table.

See examples for opcodes copyf2array and copya2ftab.

Array Operations: Math

+, -, * /on a Number

If the four basic math operators are used between an array and a scalar (number), the operation is ap-
plied to each element. The safest way to do thisisto store the result in anew array:

133

Mathematical Operations

KArr1[

] larray 1, 2, 3
KArr2[]

fil
= kArrl + 10 ;(kArr2 is now [11, 12, 13])

Here is an example of array/scalar operations. It uses the file array scalar_math.csd [examplesar-
ray_scalar_math.csd].

Example 3. Example of array operations

<CsoundSynt hesi zer >
<CsOpti ons>

-n -nl28

</ CsOpti ons>

<Csl nstrunent s>

instr 1

;create array and fill wth nunbers 1..10
kArr1[] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

;print content
printf "%", 1, "\nlnitial content:\n"
kndx = 0
until kndx == lenarray(kArrl) do
printf "KArr[%] = %\n", kndx+1l, kndx, KkArr1[kndx]
kndx += 1
od

;add 10
kArr2[] = kArrl + 10

;print content
printf "9%", 1, "\nAfter adding 10:\n"
0

kndx =
until kndx == lenarray(kArr2) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr2[kndx]
kndx += 1
od

;subtract 5
kArr3[] = kArr2 - 5

;print content
printf "%", 1, "\nAfter subtracting 5:\n"
0

kndx =
until kndx == | enarray(kArr3) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KkArr3[kndx]
kndx += 1
od

ymultiply by -1.5

kArr4[] = kArr3 * -1.5

;print content

printf "os", 1, "\nAfter multiplying by -1.5:\n"
= 0

kndx =
until kndx == lenarray(kArr4) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr4[kndx]
kndx += 1
od
;divide by -3/2
kArr5[] = kArrd | -(3/2)

;print content
printf "%", 1, "\nAfter dividing by -3/2:\n"
0

kndx =
until kndx == | enarray(kArr5) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KkArr5[kndx]
kndx += 1
od

134

examples/array_scalar_math.csd
examples/array_scalar_math.csd
examples/array_scalar_math.csd

Mathematical Operations

;turnoff
t ur nof f
endin

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

+, -, ¥,/ on a Second Array

If the four basic math operators are used between two arrays, the operation is applied element by ele-
ment. The result can be straightforward stored in a new array:

kArr1[] fillarray 1, 2, 3
kArr2[] fillarray 10, 20, 30
kArr3[] = kArrl + kArr2 ;(kArr3 is now [11, 22, 33])

Here is an example of array operations. It uses the file array array math.csd [examplesar-
ray_array_math.csd].

Example 4. Example of array operations

<CsoundSynt hesi zer >
<CsOpti ons>

-n -nl28

</ CsOpti ons>

<Csl nstrument s>

instr 1
;create array and fill with nunbers 1..10 resp .1..1
kArr1[] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
kArr2[] fillarray 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

;print contents
printf "%", 1, "\nkArrl:\n"
kndx

= 0
until kndx == lenarray(kArrl) do
printf "KArrl[%l] = %\n", kndx+1, kndx, KkArr1[kndx]
1

kndx +=
od
printf "%", 1, "\nkArr2:\n"
kndx =

= 0
until kndx == | enarray(kArr2) do
printf "kArr2[9%] = %\n", kndx+1l, kndx, KkArr2[kndx]
kndx += 1
od

;add arrays
kArr3[] = kArrl + KArr2

;print content
printf "o%", 1, "\nkArrl + kArr2:\n"
0

kndx =
until kndx == | enarray(kArr3) do
printf "kArr3[%] = %\n", kndx+1l, kndx, KkArr3[kndx]
kndx += 1
od

;subtract arrays
kArr4[] = kArrl - KArr2

;print content
printf "9%", 1, "\nkArrl - KArr2:\n"
kndx = 0

135

examples/array_array_math.csd
examples/array_array_math.csd
examples/array_array_math.csd

Mathematical Operations

until kndx == | enarray(kArr4) do
printf "kArr4[%] = % \n", kndx+1l, kndx, KArr4[kndx]
kndx += 1
od
;ymultiply arrays
kArr5[] = kArrl * KArr2

;print content
printf "9%", 1, "\nkArrl * kArr2:\n"
kndx = 0
until kndx == |l enarray(kArr5) do
printf "kArr5[9%] = %\n", kndx+1l, kndx, kArr5[kndx]
kndé +=1
o

;divide arrays
kArr6[] = kArrl / KArr2

;print content
printf "o%", 1, "\nkArrl / kArr2:\n"
0

kndx =
until kndx == | enarray(kArr6) do
printf "kArr5[%] = %\n", kndx+1l, kndx, KkArr6[kndx]
kndx += 1
od
;turnoff
t ur nof f
endin
</ Csl nstrunent s>
<CsScor e>
i 10.1

</ CsScor e>
</ CsoundSynt hesi zer >

Map a Function to an Array

kArrRes maparray kArrSrc, "fun"

maps the k-rate 1-arg function in the string to every element of the vector.

Possible functions are for instance abs, ceil, exp, floor, frac, int, log, 10910, round, sgrt. Thisisasimple
example:

kArrSrc[] fillarray 1, 2, 3, 4, 5
kArrRes[] init 5
kArr Res maparray KkArrSrc, "sqrt"

See example for opcode maparray.

Array Operations: min, max, sum, scale, slice

Minimum and Maximum

kMn [, kM nlndx] mnarray kArr

136

Mathematical Operations

returns the smallest value in an array, and optionally its index.

kMax [, kMaxl ndx] naxarray kArr

returns the largest value in an array, and optionally its index. See examples for opcodes minarray and
maxarray.

Sum

kSum sumarray KArr

returns the sum of all valuesin kArr. See example for opcode sumarray.

Scale

scal earray kArr, kM n, kMax

scales all valuesin kArr between kMin and kM ax.

kArr[] fillarray 1, 3, 9, 6
1,

5,
scal earray kArr, 3

changes kArr to [1, 1.5, 3, 2, 2.25]. See example for opcode scalearray.

Slice

slicearray kArr, iStart, iEnd

returns a dlice of kArr from index iSart to index iEnd (included).

The array for receiving the slice must have been created in advance:

kArr[] fillarray 1, 2, 3, 4, 5 6, 7, 8, 9

KArrl[] init 5

KArr2[] init 4

kArr1 slicearray kArr, 0, 4 (1, 2, 3, 4, 5]
kArr2 slicearray kArr, 5, 8 ;[6, 7, 8, 9]

See example for opcode slicearray.

Arrays in UDOs

The dimension of an input array must be declared in two places:

137

Mathematical Operations

» ask[] or K[][] in the type input list
» askName[], kName[][] etc in the xin list.

For instance :

opcode FirstEl, k, Kk[]
;returns the first element of vector KArr
KArr[] xin
xout kArr[0]
endop

Hereisan example of an array in an UDO. It usesthe file array_udo.csd [examples/array_udo.csd].

Example 5. Example of an array in an UDO

<CsoundSynt hesi zer >
<CsOpti ons>

-nnl28

</ CsOpti ons>

<Csl nstrument s>

opcode FirstEl, k, K[]

;returns the first elenent of vector KArr
KArr[] xin
xout KkArr[O0]

endop

instr 1
kArr[] fillarray 6, 3, 9, 5, 1
kFirst FirstEl KkArr
printf "kFirst = %\n", 1, kFirst
turnof f

endin

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

This manual page has been written by Joachim Heintz.
July 2013

New in Csound 6.00

138

examples/array_udo.csd
examples/array_udo.csd

Pitch Converters

Functions

Opcodes that provide common pitch functions are:

 cent

e cpsmidinn
¢ cpsoct

* cpspch

* octave

* octcps

+ octmidinn
 octpch

e pchmidinn
* pchoct

* semitone

Tuning Opcodes

Opcodes that provide tuning functions are:

* cps2pch
» cpsxpch
* cpstun

* cpstuni

139

Real-time MIDI Support

Csound supports realtime MIDI input and output, as well asinput from MIDI files. Realtime
MIDI input is activated using the -M (or --midi-device=DEVICE) command line flag. You
must specify the device number or name after the -M. For example to use device number 2,
you would use something like:

csound -M2 myrtmidi.csd

Y ou can find out the available devices by using an out of range device:

csound -M99 myrtmidi.csd

Note

This will only work if the MIDI module can be accessed by device number.
For alsa, you must first find the device name using:

cat /proc/asound/cards

Y ou must then use something like:

csound -+rtmidi=alsa-M hw:3 myrtmidi.csd

Realtime MIDI output is activated using -Q, using device number or names as shown above.

You can aso load aMIDI file using the -F or --midifile=FILE command line flag. The MIDI
fileisread in realtime, and behaves as if it was being performed or received in realtime. So
the csound program is not aware if MIDI input comes from a MIDI file or directly from a
MIDI interface.

Once redltime MIDI input and/or output has been activated, opcodes like MIDI Input and
MIDI Output will have effect.

When MIDI input is enabled (with -M or -F), each incoming noteon message will generate a
note event for an instrument which has the same number as the channel of the event (This
means that MIDI controlled instruments are polyphonic by default, since each note will gen-
erate a new instance of the instrument.) If you have 1 instrument only, Csound works in
omni mode, ie. it responds to al channelsinto that single instrument. If you have more than
oneinstrument and instrs 1 - 16 , then by default instr 1 -> chn 1, instr 2 -> chn 2, unlessyou
alter the mapping (see massign and pgmassign to change this behavior). If you have more
than one instrument, but instr N in between 1 - 16 is missing, then chn N will be routed by
default to the lowest order instrument.

See the MIDI/Score Interoperability opcodes for information on designing instruments
which can be used from the score or driven by MIDI.

There are several redtime MIDI modules available, you must use the -+rtmidi flag (See -
+rtmidi), to specify the module. The default module is portmidi which provides adequate
MIDI 1/0 on al platforms, however for improved performance and reliability some platform
specific modules are also provided.

140

Real-time MIDI Support

Currently the midi modules available are:

e alsa- Tousethe ALSA midi system (Linux only)

* winmme - To use the windows MME system (Windows only)

portmidi - To use the portmidi system (all platforms). Thisisthe default setting.

* virtual - To useavirtual graphical keyboard (See below) as MIDI input (all platforms)

Tip

When csound runs, it will process the score and then quit. If there are no events in the
score, Csound will exit immediately. If you want to use only MIDI events instead of score
events, you need to tell Csound to run for a certain amount of time. This can be done with
adummy f-statement like "f 0 3600".

Virtual MIDI Keyboard

P F—a =1
2 s 7 4ol
3 4[] B 4[]
[+ 4 [[] o 4o
5 shlnen - F
Channel[ll &Bank[Bank 1 |Program | Acoustic Grand ~|

All Motes Off

Virtual MIDI keyboard.

The virtual MIDI keyboard module (activated using -+rtmidi=virtual on the command line flags)
provides a way of sending realtime MIDI information to Csound without the need of a MIDI device. It
can send note information, control changes, bank and program changes on a specified channel. The
MIDI information from the virtual keyboard is processed by Csound in exactly the same way as MIDI
information that comes from the other MIDI drivers, so if your Csound orchestra is designed to work
with hardware MIDI devices, thiswill also work.

For the device flag (-M), the virtual keyboard uses this to take in the name of a keyboard mapping files.
Like al MIDI drivers, a device must be given to activate the driver. If you would like to just use the de-
fault settings of the keyboard, simply passing in O (i.e. -M0) and the virtual keyboard will use its default
settings. If instead of the 0 a name of afileis given, the keyboard will attempt to load the file as a key-
board mapping. If the file could not be opened or read correctly, the default settings will be used.

Keyboard Mapping files allow the user to customize the name and number of banks as well as the name
and number of programs per bank. The following example keyboard mapping (named keyboard.map)
has inline comments on the file format. Thisfile is also available with the Csound source distribution in

141

Real-time MIDI Support

the InOut/virtual_keyboard folder.

Cust om Keyboard Map for Virtual Keyboard
Steven Yi

USACE

When using the Virtual Keyboard, you can supply a filename for a napping
of banks and programs via the -Mflag, for exanple:

csound -+rtmdi=virtual -Meyboard.map nmy_project.csd
| NFORVATI ON ON THE FORVAT

ines that start with '# are comrents

ines that have [] start new bank definitions,

he contents are bankNumrbankName, w th bankNums[1, 16384]
ines following bank statenments are program definitions

n the format programNumepr ogranNanme, with programNun¥[1, 128]
ankNunmbers and progranNunbers are defined in this file
tarting with 1, but are converted to midi values (starting
with 0) when read

NOTES

-1
-1
t
-1
i
-b
S

-if an invalid bank definition is found, all program
defintions that follow will be ignored until a new
valid bank definition is found

-if a valid bank is defined by no valid progranms found
for that bank, it will default to General M DI program
definitions

-if an invalid programdefinition is found, it will be
i gnored

=My Bank]
Test Patch 1
Test Patch 2
Test Patch 30

Test Patch 1(bank2)
Test Patch 2(bank2)
Test Patch 30(bank3)

My

M

=My

=My Bank2]
My

M

=My

The ten dliders up top are by default set to MIDI Controller number 1-10 though they can be changed to

whatever one wishes to use. The controller numbers and values of each slider are set per channel, so one
may use different settings and values for each channel.

By default there are 128 banks and for each bank 128 patches defaulting to General Midi names. The
MIDI bank standard uses 14-bit resolution to support 16384 possible banks, but the bank numbers by
default are 0-127. To use values higher than 127, one should use a custom keyboard map and set the de-
sired bank number value for the bank name. The virtual keyboard will correctly transmit the bank num-
ber as MSB and L SB with controller numbers 0 and 32.

Beyond the input available from interacting with the GUI via mouse, one may also trigger off MIDI
notes by using the ASCII keyboard when the virtual keyboard window is focused. The layout is done
much like a tracker and offers two octaves and a major third to trigger, starting from Middle-C (MIDI
note 60). The ASCII keyboard MIDI note values are given in the following table.

Table5. ASCII Keyboard MIDI Note Values

Keyboard Key MIDI Value
z 60
s 61
X 62
d 63

142

Real-time MIDI Support

Keyboard Key MIDI Value

64

65

66
67

68
69

S| TST|oKQQ|(<|oO

70

71

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

oflwls[N[a]3[—

CINI<|[O| |01 =

T | O|O0|© —

Here's an example of usage of the virtual MIDI keyboard. It uses the file virtual.csd [examples/virtu-
al.csd].

<CsoundSynt hesi zer >
<CsOpti ons>
; Sel ect audio/mdi flags here according to platform
; Audi o out Audio in Virtual M Dl -M) is needed anyway
- odac -iadc -+rtmdi=virtual -M
</ CsOpti ons>
<Csl nst rument s>
By Mark Jamerson 2007

sr=44100
ksnmps=10
nchnl s=2

massign 1,1
prealloc 1,10

instr 1 ;Mdi FMsynth
inote cpsmdi
i vel oc anmpmi di 10000
idur = 2

xtratim1l

kgate oscil 1,10,2

143

examples/virtual.csd
examples/virtual.csd
examples/virtual.csd

Real-time MIDI Support

anoi se noi se 100*i note, .99
acps sanphol d anoi se, kgate
aosc oscili 1000, acps, 1
aout = aosc

Use controller o control vol une

; er 7toc
kvol ctrl7 1, 7, 0.2, 1
outs kvol * aout, kvol * aout
endi n

</ Csl nstrunent s>

<CsScor e>

f0 3600

f1 0 1024 10 1

f2 016 7180 8

f3 01024 101 .5 .6 .3 .2 .5

e
</ CsScor e>
</ CsoundSynt hesi zer >

MIDI input

The following opcodes can receive MIDI information:

e MIDI information for any instruments: aftouch, chanctrl and polyaft, pchbend.

* MIDI information for MIDI-triggered instruments: veloc , midictrl and notnum. See also Converters.
e MIDI Controller input for any instrument: ctrl7, ctrl14 and ctrl21.

* MIDI Controller input for MIDI-triggered instruments only: midic7, midic14 and midic21.

« MIDI controller value initialization: initc7, initc14, initc21 and ctrlinit.

* Generic MIDI input: midiin.

massign can be used to specify the csound instrument to be triggered by a particular MIDI channel. pg-
massign can be use to assign a csound instrument to a specific MIDI program.

MIDI Message Output

Opcodes that produce MIDI output are:

e mdelay
e nrpn

* outiat
* outic
* outicl4
 outipat
e outipb

* outipc

144

Real-time MIDI Support

* outkat
» outkc
* outkcl4
* outkpat
 outkpb
 outkpc

» midiout

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Converters

The following opcodes can convert MIDI information from a MIDI-triggered instrument instance:

* MIDI note number to frequency converters. cpsmidi, cpsmidib, cpstmid, octmidi, octmidib, pchmidi
and pchmidib.

* MIDI velocity to amplitude converters: ampmidi and ampmidid.

Event Extenders

Opcodes that let one extend the duration of an event are:

* release

e xtratim

Note-on/Note-off Output

Opcodes to output MIDI note on or off messages are:

* midion
* midion2
* moscil
* noteoff
* noteon

» noteondur

145

Real-time MIDI Support

» noteondur?2

MIDI/Score Interoperability opcodes

The following opcodes can be used to design instruments that work interchangably for real-time MIDI
and score events:

» midichannelaftertouch

e midichn

» midicontrolchange

* mididefault

» midinoteoff

» midinoteoncps

» midinoteonkey

* midinoteonoct

» midinoteonpch

» midipitchbend

» midipolyaftertouch

» midiprogramchange.

Adapting a scor e-activated Csound instrument.

To adapt an ordinary Csound instrument designed for score activation for score/MIDI in-
teroperability:

Change al linen, linseg, and expseg opcodes to linenr, linsegr, and expsegr, respect-
ively, except for a de-clicking or damping envelope. This will not materially change
score-driven performance.

Add the following lines at the beginning of the instrument definition:

: Ensures that a MDl-activated instrunment

; will have a positive p3 field.

m di default 60, p3

; Puts M DI key translated to cycles per

; second into p4, and M DI velocity into p5
m di not eoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other op-
tions, and the choice of p-fieldsis arbitrary.

146

Real-time MIDI Support

MIDI Realtime Input/Ouput command line options

New MIDI 1/0 flagsin Csound 5.02, can replace most uses of these MIDI interop opcodes,
and make usage easier.

System Realtime Messages

Opcodes for System Realtime MIDI messages are: mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are:

+ dider8
* slider8f
* dliderl6
* dlider16f
* dlider32
* dlider32f
+ dlidere4
* dlider64f
+ sl6bl4
* S32b14

 diderKawai
Opcodes for storing slider banks of MIDI controls to tables are:

+ dlider8table

» dlider8tablef

+ dliderl6table
» dlider16tablef
+ dlider32table
» dlider32tablef
+ dlider64table
» dlider64tablef

147

Spectral Processing

See the section Additive Synthesis/Resynthesis for the basic resynthesis opcodes.

Short-time Fourier Transform (STFT) Re-

synthesis

Use of PVOC-EX files with the old Csound pvoc
opcodes

All the original pvoc opcodes can now read a PVOC-EX file, as well as the
native non-portable file format. As the PVOC-EX file uses a double-size ana
lysis window, users may find that this gives a useful improvement in quality,
for some sounds and processes, despite the fact that the resynthesis does not
use the same window size.

Apart from the window size parameter, the main difference between the origin-
al .pv format and PVOC-EX is in the amplitude range of anaysis frames.
While rescaling is applied, so that no significant difference in output level is
experienced, whichever file format is used, some dight loss of amplitude can
gtill arise, as the double window usage itself modifies frame amplitudes, of
which the resynthesis code is unaware. Note that all the original pvoc opcodes

expect a mono analysis file, and multi-channel PVOC-EX files will accord-
ingly be rejected.

Opcodes the implement STFT resynthesis are;

* mincer

* temposcal
* tableseg
e pvadd

* pvbufread
* pvCross
* pvinterp
¢ pvoc

* pvread

* tableseg
* tablexseg

 vpvoc

Use the utility PVANAL to generate pv analysisfiles.

148

Spectral Processing

Linear Predictive Coding (LPC) Resynthesis

Thelinear predictive coding resynthesis opcodes are:

* |pfreson
* Ipinterp
* |pread

* |preson

* |pslot
LPC analysisfiles can be created using the LPANAL utility.

Non-standard Spectral Processing

These units generate and process non-standard signal data types, such as down-sampled time-domain
control signals and audio signals, and their frequency-domain (spectral) representations. The data types
(d-, w-) are self-defining, and the contents are not processable by any other Csound units.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing (pvs
opcodes)

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality,
and fast performance, enabling high-quality analysis and resynthesis (together with transformations) to
be applied in real-time to live signals. The original Csound phase vocoder remains unaltered; the new
opcodes use an entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by
Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) also use this pvoc engine. CARL
pvoc is aso the basis for the phase vocoder included in the Composer's Desktop Project. A few small
but important modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysisfile format. Thisisafully portable (cross-platform) open file
format, supporting three analysis formats, and multi-channel signals. Currently only the standard
amplitude+frequency format has been implemented in the opcodes, but the file format itself supports
amplitude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original
Csound pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases)
to read PVOC-EX files aswell asthe original (non-portable) format.

Full details of the structure of a PVOC-EX file are avalable via the website: ht-
tp://www.cs.bath.ac.uk/~j pff/NOS-DREAM/researchdev/pvocex/pvocex.html. This site also gives
details of the freely available console programs pvocex and pvocex2 which can be used to create
PVOC-EX filesin al supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this docu-
ment it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes

149

http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html

ATS

Spectral Processing

pvsanal and pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthes-
is, independently of the orchestra control-rate. The only reguirement is that the control-rate kr be
higher than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <=
overlap, where overlap is the distance in samples between analysis frames, as specified for pvsanal.
As overlap istypically at least 128, and more usually 256, this is not an onerous restriction in prac-
tice. The opcode pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase vo-
coder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthet-
ic fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental.
Thus the fsig enables the creation of a true streaming plugin framework for frequency domain sig-
nals. With the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities
such as pitch scaling are duplicated in each opcode; and in many cases the opcodes are parameter-
rich. The separation of analysis and synthesis stages by means of the fsig encourages the develop-
ment of a wide range of simple building-block opcodes implementing one or two functions, with
which more elaborate processes can be constructed.

Thisisvery much a preliminary and experimental release, and it is possible that the precise definition of
the opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes
are opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. Thisis at least
in part in order to keep the opcodes simple at this stage, and also because they highlight important
design issues on which no decision has yet been made, and on which opinions from users are sought.

One important point about the new signal type is that because the analysis rate is typically much lower
than kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and
also maintain a frame counter, so that frames are read and written at the correct times; this process is
generaly transparent to the user. However, it means that k-rate signals only act on an fsig at the analysis
rate, not at each k-cycle. The opocde pvsftw returns ak-rate flag that is set when new fsig datais valid.

Because of the nature of the overlap-add system, the use of these opcodes incurs a small but significant
delay, or latency, determined by the window size (max(ifftsizeiwinsize)). This is typicaly around
23msecs. In thisfirst release, the delay is dightly in excess of the theoretical minimum, and it is hoped
that it can be reduced, as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, pvsftr, pvsftw,
pvsinfo, pvsmaska, and pvsynth.

In addition there are a number of opcodes available as plugins in Csound5,and in the core for Csound6.
These are pvstanal, pvsdiskin, pvscent, pvsdemix, pvsfreeze, pvsbuffer, pvsbufread, pvsbufread?2,
pvscale, pvshift, pvsifd, pvsinit, pvsin, pvsout, pvsosc, pvshin, pvsdisp, pvsfwrite, pvslock, pvsmix, pvs-
mooth, pvsfilter, pvsblur, pvstencil, pvsarp, pvsvoc, pvsmorph, pvsbandp, pvsbandr, pvswarp, pvsgain,
pvs2tab, tab2pvs.

A number of opcodes are designed to generate and process streaming partials tracks data. these are par-
tials, treross, trfilter, trsplit, trmix, trscale, trshift, trlowest, trhighest tradsyn, sinsyn, resyn, binit

See the Stacks section for information on the stack opcodes which can stack f-signals.

Spectral Processing

These opcodes can read, transform and resynthesize ATS analysis files. Please note that you need the
ATS application to produce analysisfiles. From the ATS Reference Manual:

150

Spectral Processing

"ATS is a software library of functions for spectral Analysis, Transformation, and Synthesis of sound
based on a sinusoidal plus critical-band noise model. A sound in ATSis a symbolic object representing
a spectral model that can be sculpted using a variety of transformation functions.”

For more information on ATS visit: http://www-ccrma.stanford.edu/~juan/AT S.html.
ATS analysisfiles can be produced using the ATS software or the csound utility ATSA.

The opcodes for ATS processing are:

» ATSinfo: reads data out of the header of an ATSfile.

» ATSread, ATSreadnz, ATSbufread, ATSnterpread, ATSpartialtap: read data from an ATS file or buf-
fer.

e ATSadd, ATSaddnz, ATScross, ATSsinnoi: Resynthesize sound.

Credits

Author: Alex Norman
Seattle,Washington
2004

Loris Opcodes
Note

These opcodes are an optional component of Csound5. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The Loris family of opcodes wraps: lorisread which imports a set of bandwidth-enhanced partials from
a SDIF-format data file, applying control-rate frequency, amplitude, and bandwidth scaling envelopes,
and stores the modified partials in memory; lorismorph, which morphs two stored sets of bandwidth-en-
hanced partials and stores a new set of partials representing the morphed sound. The morph is performed
by linearly interpolating the parameter envelopes (frequency, amplitude, and bandwidth, or noisiness) of
the bandwidth-enhanced partials according to control-rate frequency, amplitude, and bandwidth morph-
ing functions, and lorisplay, which renders a stored set of bandwidth-enhanced partials using the method
of Bandwidth-Enhanced Additive Synthesis implemented in the Loris software, applying control-rate
frequency, amplitude, and bandwidth scaling envelopes.

For more information about sound morphing and manipulation using Loris and the Reassigned Band-
width-Enhanced Additive Model, visit the Loris web site at www.cerlsoundgroup.org/Loris [ht-
tp://www.cerlsoundgroup.org/Loris].

Examples

Example 6. Play the partials wihtout modification

Play the partials in clarinet.sdif
: fromO to 3 sec with 1 ns fadetine

151

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris

Spectral Processing

; and no frequency , anplitude, or
bandwi dt h nodi fication

instr 1

ktime linseg 0, p3, 3.0 ; linear time function fromO to 3 seconds
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001
asig | orispl ay 1, 1, 1, 1
out asig
endin

Example 7. Add tuning and vibrato

Play the partials in clarinet.sdif

fromO to 3 sec with 1 ns fadetine

addi ng tuning and vibrato, increasing the
"breat hi ness"” (noi siness) and overal
anpl i tude, and adding a highpass filter.

nstr 2
ktime linseg 0, p3, 3.0 ; linear time function fromO to 3 seconds

; conpute frequency scale for tuning
; (original pitch was G#4)

ifscale = cpspch(p4)/ cpspch(8.08)

; make a vibrato envel ope

kvenv l'inseg 0, p3/6, 0, p3/6, .02, p3/3, .02, p3/6, O, p3/6, O

kvi b osci | kvenv, 4, 1 ; table 1, sinusoid

kbwenv linseg 1, p3/6, 1, p3/6, 2, 2*p3/3, 2
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001

al | orispl ay 1, ifscal etkvib, 2, kbwenv

a2 at one al, 1000 ; highpass filter, cutoff 1000 Hz
out a2

endin

The instrument in the first example synthesizes a clarinet tone from beginning to end using partials de-
rived from reassigned bandwidth-enhanced analysis of athree-second clarinet tone, stored in afile, cl a-

rinet. sdi f. Theinstrument in Example 2 adds tuning and vibrato to the clarinet tone synthesized by in-
str 1, boosts its amplitde and noisiness, and applies a highpass filter to the result. The following score
can be used to test both of the instruments described above.

; make sinusoid in table 1
f 1 0 4096 10 1

play instr 1

; strt dur

i1 0 3

i1 + 1

i1 + 6

s

; play instr 2

; strt dur ptch
i 2 1 3 8. 08
i 2 3.5 1 8. 04
i 2 4 6 8. 00
i 2 4 6 8. 07

Example 8. Morph partials

Morph the partials in clarinet.sdif into the

152

Spectral Processing

partials in flute.sdif over the duration of

the sustained portion of the two tones (from

.2 to 2.0 seconds in the clarinet, and from

.5 to 2.1 seconds in the flute). The onset

and decay portions in the norphed sound are
specified by paraneters p4 and p5, respectively.
The morphing time is the time between the

onset and the decay. The clarinet partials are
shfited in pitch to match the pitch of the flute
tone (D above nmiddle C).

instr 1

i onset = p4
i decay = p5
itmorph = p3 - (ionset + idecay)
ipshift = cpspch(8.02)/cpspch(8.08)
; clarinet tine function, norph from.2 to 2.0 seconds
kt cl linseg 0, ionset, .2, itnorph, 2.0, idecay, 2.1
; flute time function, morph from.5 to 2.1 seconds
ktfl l'inseg 0, ionset, .5, itmorph, 2.1, idecay, 2.3
krur ph linseg 0, ionset, 0, itnorph, 1, idecay, 1
| ori sread ktcl, "clarinet.sdif", 1, ipshift, 2, 1, .001
| ori sread ktfl, "flute.sdif", 2, 1, 1, 1, .001
lorisnorph 1, 2, 3, knurph, knurph, kmurph
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Example 9. More morphing

; Morph the partials in tronbone.sdif into the

; partials in neow. sdif. The start and end tines

; for the norph are specified by paraneters p4
and p5, respectively. The norph occurs over the
second of four pitches in each of the sounds

; from.75 to 1.2 seconds in the flutter-tongued

; tronbone tone, and from1l.7 to 2.2 seconds in

the cat's nmeow. Different norphing functions are

; used for the frequency and anplitude envel opes

; so that the partial anplitudes nake a faster
transition fromtronbone to cat than the frequencies
(The bandwi dt h envel opes use the sanme norphing
function as the anplitudes.)

instr 2

i onset = p4
i mor ph = p5 - p4
irel ease = p3 - p5
kttbn l'inseg 0, ionset, .75, inmorph, 1.2, irelease, 2.4
kt meow |inseg 0, ionset, 1.7, inmorph, 2.2, irelease, 3.4
knfreq l'inseg 0, ionset, 0, .75*i nmorph, .25, .25%i nmorph, 1, irelease, 1
kmanp l'inseg 0, ionset, 0, .75*inmorph, .9, .25% nmorph, 1, irelease, 1
| orisread kttbn, "trombone.sdif", 1, 1, 1, 1, .001
| orisread kt meow, "meow sdif", 2, 1, 1, 1, .001
lorisnorph 1, 2, 3, knfreq, kmanp, kmanp
asig | ori spl ay 3, 1, 1, 1
out asi g
endi n

The instrument in the first morphing example performs a sound morph between a clarinet tone and a
flute tone using reassigned bandwidth-enhanced partials stored incl arinet. sdi f and fl ute. sdi f.

The morph is performed over the sustain portions of the tones, 2. seconds to 2.0 seconds in the case of
the clarinet tone and .5 seconds to 2.1 seconds in the case of the flute tone. The time index functions,
ktcl and ktfl, align the onset and decay portions of the tones with the specified onset and decay times for
the morphed sound, specified by parameters p4 and p5, respectively. The onset in the morphed soundsis

153

Spectral Processing

purely clarinet partial data, and the decay is purely flute data. The clarinet partials are shifted in pitch to
match the pitch of the flute tone (D above middle C).

The instrument in the second morphing example performs a sound morph between a flutter-tongued
trombone tone and a cat's meow using reassigned bandwidth-enhanced partials stored in t r onbone. sdi f
and neow. sdi f . The datain these SDIF files have been channelized and distilled to establish correspond-
ences between partials.

The two sets of partials are imported and stored in memory locations labeled 1 and 2, respectively. Both
of the original sounds have four notes, and the morph is performed over the second note in each sound
(from .75 to 1.2 seconds in the flutter-tongued trombone tone, and from 1.7 to 2.2 seconds in the cat's
meow). The different time index functions, kttbn and ktmeow, align those segments of the source and
target partial sets with the specified morph start, morph end, and overall duration parameters. Two dif-
ferent morphing functions are used, so that the partial ammplitudes and bandwidth coefficients morph
quickly from the trombone values to the cat'ssmeow values, and the frequencies make a more gradual
transition. The morphed partials are stored in a memory location labeled 3 and rendered by the sub-
sequent lorisplay instruction. They could also have been used as a source for another morph in a three-
way morphing instrument. The following score can be used to test both of the instruments described
above.

play instr 1
strt dur onset decay

1 0 3 .25 .15
1 + 1 .10 .10
1 + 6 1. 1.

B ==

; play instr 2
; strt dur norph_start nmor ph_end
i 2 0 4 .75 2.75

e

Credits

This implementation of the Loris unit generators was written by Kelly Fitz (loris@cerlsoundgroup.org
[mailto:loris@cerlsoundgroup.org]).

It is patterned after a prototype implementation of the lorisplay unit generator written by Corbin Cham-
pion, and based on the method of Bandwidth-Enhanced Additive Synthesis and on the sound morphing

algorithms implemented in the Loris library for sound modeling and manipulation. The opcodes were
further adapted as a plugin for Csound 5 by Michael Gogins.

Array-based spectral opcodes

Note

These opcodes are designed to work with k-rate arrays for spectral data manipulation.

o fftinv,
o rfft,
* rifft,

154

mailto:loris@cerlsoundgroup.org
mailto:loris@cerlsoundgroup.org

Spectral Processing

pvs2array,
pvsfromarray,
cmplxprod,
rect2pol,

pol 2rect,
window,

r2c,

c2r,

mags, and

phs.

155

Strings

String variables are variables with a name starting with S or gS (for alocal or global string
variable, respectively), and can store any string with a maximum length defined by the -
+max_str_len command line flag (255 characters by default). These variables can be used as
input argument to any opcode that exepcts a quoted string constant, and can be manipul ated
at initialization or performance time with the opcodes listed below.

It isaso possible to use string p-fields. The string p-field can be used by many orchestra op-
codes directly, or it can be copied to a string variable first:

al di skin2 p5, 1

Sname strget p5
al di skin2 Snanme, 1

Strings within Csound can be expressed using traditional double quotes (" "), an aso using
{{ }}. The second method is useful to alow ';' and '$ characters within the string without
having to used ASCII codes.

Note

String variables and related opcodes are not available in Csound versions older
than 5.00.
Strings can aso be linked to a number using strset and strget.
Csound 5 also has improvements in parsing string constants. It is possible to specify a multi-
line string by enclosing it within {{ and }} instead of the usual double quote characters (note
that the length of string constantsis not limited, and is not affected by the -+max_str_len op-
tion), and the following escape sequences are automatically converted:
» \adert bell
* \b backspace
* \nnew line
 \r carriage return
o \ttab
» \asingle'\' character
« \nnn the character of which the ASCII code (in octal) is nnn

It can be useful together with the system opcode:

instr 1
; csound5 lets you nake a string with [ine returns inside double brackets
system {{ ps
date
cd ~/ Deskt op
pwd
Is -1

156

Strings

whoi s csounds. com

H}

endi n

And the python opcodes, among others:

pyruni {{
I mport random

pool = [(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber_from pool (n, p):
I f randomrandom() < p:
i = int(randomrandonm() * |en(pool))
pool [i] =n
return random choi ce(pool)

H}

String Manipulation Opcodes

These opcodes perform operations on string variables (note: most of the opcodes run at init time only,
and have a version with a "k" suffix that runs at both init and performance time; exceptions to this rule
include puts and strget):

* strepy and strepyk - Assignsto astring variable.

* dtrcat and strcatk - Concatenates strings, and stores the result in avariable.

* stremp and strempk - Compares strings.

» strget - Assignsto astring variable, from strset table at the specified index, or string score p-field.

* strlen and strlenk - Returns the length of a string.

* sprintf - printf-style formatted output conversion, storing the result in a string variable.

 sprintfk - printf-style formatted output conversion, storing the result in a string variable at k-rate.

* puts- Prints astring constant or variable.

* strindex and strindexk - Returns the first occurence of a string in another string.

* strrindex and strrindexk - Returns the last occurence of a string in another string.

* strsub and strsubk - Returns a substring of the input string.

String Conversion Opcodes

These opcodes convert string variables (note: most of the opcodes run at init time only, and have a ver-
sion with a "k" suffix that runs at both init and performance time; exceptions to this rule include puts
and strget):

« strtod and strtodk - Converts string value to a floating point value at i-rate.

* dtrtol and strtolk - Converts string value to signed integer at i-rate.

 strchar and strchark - Returns the ASCII code of a character in a string.

157

Strings

* strlower and strlowerk - Converts a string to lower case.

* strupper and strupperk - Converts a string to upper case.

158

Vectorial Opcodes

The vectorial opcode family is designed to allow sections of f-tables to be treated as vectors
for diverse operations on them.

Tables of vectors operators

The following Vectoria opocodes support read/write access to arrays of vectors (or arrays of
arrays):

* vtablel
 vtablelk
* vtablek
* vtablea
* vtablewi
o vtablewk
* vtablewa
* vtabi

* vtabk

*+ vtaba
 vtabwi
 vtabwk

» vtabwa

Operations Between a Vectorial and a
Scalar Signal

These opcodes perform numeric operations between a vectorial control signal (hosted inside
afunction table), and a scalar signal. Result is a new vector that overrides old values of the
table. There are k-rate and i-rate versions of the opcodes.

All these operators are designed to be used together with other opcodes that operate with
vectorial signals such as vcella, adsynt, adsynt?, etc.

Operations Between a Vectoria and a Scalar Signal:

» vadd

o vmult

159

Vectoria Opcodes

* Vpow
* vexp

e vadd i
o vmult_i
* VpPOW_i

o vexp i

Operations Between two Vectorial Signals

These opcodes perform operations between two vectors, that is, each element of the first vector is pro-
cessed with the corresponding element of the other vector. The result is a new vector that overrides the
old values of the source vector.

Operations Between two Vectorial Signals:

* vaddv
* vsubv
o vmultv
o vdiw

* Vpowv
* vexpv
* vcopy
* vmap

e vadadv i
e vaubv i
o vmultv_i
o vdiw_i
* VPOWV_i
e vexpv_i
* vcopy_i

All these operators are designed to be used together with other opcodes that operate with vectorial sig-
nals such as veella, adsynt, adsynt2, etc.

Vectorial Envelope Generators

160

Vectoria Opcodes

The opcodes to generate vectors containing envelopes are vliinseg and vexpseg.

These opcodes are similar to linseg and expseg, but operate with vectorial signals instead of with scalar
signals.

Output is a vector hosted by an f-table (that must be previously allocated), while each break-point of the

envelope is actually a vector of values. All break-points must contain the same number of elements
(ielements).

These operators are designed to be used together with other opcodes that operate with vectorial signals
such as vcella, adsynt, adsynt2, etc.

Limiting and wrapping of vectorial control sig-
nals

The opcodes to perform limiting and wrapping of elements within a vector are:

o vlimit

e vwrap

e vmirror

These opcodes are similar to limit, wrap and mirror, but operate on a vector instead of a scalar signal.
The old values of the vector contained in an f-table are over-written if they are out of min/max interval.
If you want to keep the original values of the input vector, use the vcopy opcode to copy it in another ta-
ble.

All these opcodes work at k-rate.

All these operators are designed to be used together with other opcodes that operate with vectorial sig-
nals such as vcella, adsynt, adsynt2 etc.

Vectorial Control-rate Delay Paths

Vectoria Control-rate Delay Paths:

» vdelayk
* vport

 vecdelay

Vectorial Random Signal Generators

These opcodes generate vectors of random numbers to be stored in tables. They generate a sort of 'vec-
torial band-limited noise'. All these opcodes work at k-rate.

Vectorial random signal generators: vrandh and vrandi.

161

Vectoria Opcodes

Cellular automata vectors can be generated using: vcella.

162

Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak sys-
tem can be thought of as a global array of variables. These opcodes are useful for perform-
ing flexible patching or routing from one instrument to another. The system is similar to a
patching matrix on a mixing console or to a modulation matrix on a synthesizer. It is also
useful whenever an array of variablesis required.

The zak system isinitialized by the zakinit opcode, which is usually placed just after the oth-
er global initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of
memory, one area for i- and k-rate patching, and the other area for a-rate patching. The za-
kinit opcode may only be called once. Once the zak space is initialized, other zak opcodes
can be used to read from, and write to the zak memory space, as well as perform various
other tasks.

Zak channels count from 0, so if you define 1 channel, the only valid channel is channel 0.

Opcodes for the zak patch system are:

 Audio Rate: zacl, zakinit, zamod, zar, zarg, zaw and zawm.
» Control Rate: zkcl, zZkmod, zkr, zkw, and zkwm.

» Atinitialization: zir, ziw and zZiwm

163

Plugin Hosting

Csound currently hosts external plugins using dssi4cs (for LADSPA plugins) on Linux and
vst4cs (for VST plugins) on Windows and Mac OS X.

DSSI and LADSPA for Csound

dssi4cs enables the use of DSSI and LADSPA plugin effects and synthesizers within Csound
on Linux. The following opcodes are available:

* dssiinit - Loads a plugin.

* dssiactivate - Activates or deactivates a plugin if it has this facility

 dssilist - Lists al available plugins found in the LADSPA_PATH and DSSI_PATH global
variables.

* dssiaudio - Process audio using a Plugin.

e dssictls- Send control information to a plugin's control port.

Seethe entry for dssiinit for a usage example.

Note

Currently only LADSPA plugins are supported, but DSSI support is planned.

VST for Csound

vst4cs enables the use of VST plugin effects and synthesizers within Csound. The following
opcodes are available:

* vdtinit - Loads a plugin.

* vstaudio, vstaudiog - Returns a plugin's output.

 vstmidiout - Sends MIDI datato a plugin.

* vstparamset, vstparamget - Sends and receives automation data to and from the plugin.

* vstnote - Sends a MIDI note with definite duration.

* vstinfo - Outputs the Parameter and Program names for a plugin.

* vstbankload - Loads an . f xb Bank.

» vstprogset - SetsaProgramin an . f xb Bank.

* vstedit - Opens the GUI editor for the plugin, when available.

164

Plugin Hosting

Credits

By: Andres Cabreraand Michael Gogins
Uses code from Hermann Seib's VSTHost and Thomas Grill's vst~ object.

VST isatrademark of Steinberg Media Technologies GmbH. VST Plug-In Technology by Steinberg.

165

OSC and Network
OSC

OSC enables interaction between different audio processes, and in particular between
Csound and other synthesis engines. The following opcodes are available:

* OSCinit - Start an OSC listener thread.
» OClisten - Receive OSC messages.
» OSCsend - Send an OSC message.

Credits

By: John ffitch with the liblo library as inspiration and support.

Network

The following opcodes can stream or receive audio through UDP:;

» sockrecv

» socksend

Remote Opcodes

The Remote opcodes enable transmission of score or MIDI events through a network, so re-
mote instances (or a different local instance) can process them. The following opcodes are
available:

* insglobal - Used to implement a remote orchestra.

* insremot - Used to implement aremote orchestra.

» midiglobal - Used to implement aremote MIDI orchestra

e midiremot - Used to implement a remote MIDI orchestra.

» remoteport - Defines the port for use with the remote system.

166

Mixer Opcodes

The Mixer family of opcodes provides a global mixer for Csound. The Mixer opcodes in-
clude MixerSend for sending (that is, mixing in) an arate signal from any instrument to a
channel of a mixer buss, MixerReceive for receiving an arate signa from a channel of any
mixer buss in any instrument, MixerSetLevel (krate) and MixerSetLevel i (irate) for con-
trolling the level of the signal sent from a particular send to a particular buss, Mixer GetLevel
for reading (at krate) the level for sending a signal from a particular send to a particular
buss, and MixerClear for resetting the busses to zero before the next kperiod of a perform-
ance.

167

Signal Flow Graph Opcodes

These opcodes enable the use of signal flow graphs (AKA asynchronous data flow graphs)
in Csound orchestras. Signals flow from the outlets of source instruments and are summed in
the inlets of sink instruments. Signals may be krate, arate, or frate. Any number of outlets
may be connected to any number of inlets. When a new instance of an instrument is instanti-
ated during performance, the declared connections also are automatically instantiated.

Signal flow graphs simplify the construction of complex mixers, signal processing chains,
and the like. They also simplify the re-use of "plug and play" instrument definitions and
even entire sub-orchestras, which can simply be #included and then "plugged in" to existing
orchestras.

Note that inlets and outlets are defined in instruments without reference to how they are con-
nected. Connections are defined in the orchestra header. It is this separation that enables
plug-in instruments.

Inlets must be named. Instruments may be named or numbered, but in either case each
source instrument must be defined in the orchestra before any of its sinks. Naming instru-
ments makes it easier to connect outlets and inlets in any higher-level orchestra to inlets and
outletsin any lower-level #included orchestra.

The signal flow graph opcodes include: outleta, for sending an arate signal from any instru-
ment out a named port. outletk, for sending a krate signal from any instrument out a named
port. outletkid, similar to outletk, but receiving a krate signal only from an identified in-
stance of a port. outletf, for sending an frate signal from any instrument out a named port. in-
leta, for receiving an arate signal through a named port. inletk, for receiving a krate signal
through a named port. inletkid, similiar to inletk, but transmitting asignal only between inlet
and outlet opcodes . inletf, for receiving an frate signal through a named port. connect, for
routing the signal from a named outlet in a source instrument to a named inlet in a sink in-
strument. alwayson for permanently activating an instrument from the orchestra header,
without need of a score statement, e.g. for use as an effect processor receiving inputs from a
number of sources. ftgenonce for instantiating function tables from within instrument defini-
tions, without need for f-statements in the score or ftgen opcodes in the orchestra header.

A typical scenario for the use of these opcodes would be something like this. A set of instru-
ments would be defined, each in its own orchestra file, and each instrument would define in-
let ports, outlet ports, and function tables within itself. Such instruments are completely self-
contained. Then, a set of effects processors, such as equalizers, reverbs, compressors, and so
on, would also be defined, each in its own file. Then, a customized master orchestra would
#include the instruments and effects to be used, route the outputs of some instruments into
one equalizer and the outputs of other effects into another equalizer, then route the outputs
of both equalizersinto areverb, the output of the reverb into a compressor, and the output of
the compressor into a stereo output soundfile.

Example

Here is an example of the signa flow graph opcodes. It uses the file signalflowgraph.csd
[examples/signal flowgraph.csd].

Example 10. Example of the signal flow graph opcodes.

<CsoundSynt hesi zer >
<CsOpti ons>

168

examples/signalflowgraph.csd
examples/signalflowgraph.csd

Signal Flow Graph Opcodes

; Select audio/mdi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc -d ;5 RT audio 1/0

; For Non-realtime ouput |eave only the Iine bel ow
;-0 nmadsr.wav -W;;; for file output any platform
</ CsOpti ons>

<Csl nstrunent s>

/* Witten by M chael CGogins */

; Initialize the global variables
sr = 44100

ksmps = 100

nchnls = 2

; Connect up the instrunents to create a signal flow graph

connect "Si npl eSi ne", "leftout", "Reverberator", "leftin"
connect "Si npl eSi ne", "rightout", "Reverberator", "rightin"
connect " Mogy", "leftout”, "Reverberator", "leftin"
connect "Mbogy", "rightout", "Reverberator", "rightin"
connect "Reverberator", "leftout", " Conpr essor", "leftin"
connect "Reverberator", "rightout", " Conpr essor", "rightin"
connect "Conpressor", "leftout", " Soundfil e", "leftin"

connect "Conpressor", "rightout", " Soundfil e", "rightin"

; Turn on the "effect” units in the signal flow graph

al wayson "Reverberator", 0.91, 12000
al wayson " Conpressor"
al wayson "Soundfile"

instr SinpleSine
i hz = cpsm di nn(p4)
i ampl i tude = anpdb(p5)
print ihz, ianplitude
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i sine ftgenonce 0, 0, 4096, 10

al oscili ianplitude, ihz, isine
aenv madsr 0.05, 0.1, 0.5, 0.2
asignal = al * aenv

; Stereo audio outlet to be routed in the orchestra header
outleta "leftout", asignal * 0.25
outleta "rightout", asignal * 0.75

endin

instr Moogy
i hz = cpsm di nn(p4)
i anpl i tude = anpdb(p5)
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i sine ftgenonce 0, 0, 4096, 10
asignal vco ianplitude, ihz, 1, 0.5, isine
kfco I'ine 200, p3, 2000
krez init 0.9
asi gnal noogvcf asignal, kfco, krez, 100000
; Stereo audio outlet to be routed in the orchestra header
outleta "leftout", asignal * 0.75
outleta "rightout", asignal * 0.25
endi n

instr Reverberator
; Stereo input.
aleftin inleta "leftin"
arightin inleta "rightin"
idelay = p4
icutoff = p5
al eftout, arightout reverbsc aleftin, arightin, idelay, icutoff
; Stereo output
outleta "leftout", aleftout
outleta "rightout", arightout
endin

instr Conpressor
; Stereo input
aleftin inleta "leftin"
arightin inleta "rightin"
kt hreshol d = 25000
icompl = 0.5
icomp2 = 0.763

169

Signal Flow Graph Opcodes

irtime = 0.1

iftime = 0.1

al eftout damaleftin, kthreshold, iconmpl, iconp2, irtine, iftine
ari ghtout dam arightin, kthreshold, iconpl, iconp2, irtime, iftime

9
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout", arightout
endin

instr Soundfile
; Stereo input.
aleftin inleta "leftin"
arightin inleta "rightin"
outs aleftin, arightin
endi n

</ Csl nst runent s>

<CsScor e>

; Not necessary to activate "effects" or create f-tables in the score!
; Overlapping notes to create new i nstances of instrunents.
i "SinpleSine" 1 5 60 85

i "SinpleSine" 2 5 64 80

i "Mogy" 3 5 67 75

i "Mogy" 4 5 71 70

el

</ CsScor e>

</ CsoundSynt hesi zer >

170

Jacko Opcodes

These opcodes enable the use of Jack ports from within Csound orchestras and instruments.
Ports can receive or send audio or MIDI data, and send note data.

The Jacko opcodes do not replace the Jack driver and Jack command-line options for
Csound, nor do the Jacko opcodes work with them (hence the name "Jacko" instead of
"Jack"). The Jacko opcodes are an independent facility that offers greater flexibility in signal
routing.

In addition, the Jacko opcodes can work with the Jack system in "freewheeling” mode,
which enables the use of Jack-enabled external synthesizers, such as Aeolus or Pianoteqg, to
render Csound pieces either faster or, even more importantly, slower than real time. Thisis
extremely useful for rendering complex pieces without dropouts using instruments, such as
Aeolus, that may not be available except through Jack.

The Jacko opcodes include: Jackolnit, for initializing the current instance of Csound as a
Jack client. Jackolnfo, for printing information about the Jack daemon, its clients, their
ports, and their connections. JackoFreewhedl, for turning Jack's freewheeling mode on or
off. JackoAudiolnConnect, for creating a connection from an external Jack audio output port
to a Jack port in Csound. JackoAudioOutConnect, for creating a connection from a Jack port
in Csound to an external Jack audio input port. JackoMidilnConnect, for creating a connec-
tion from an external Jack MIDI port. MIDI events from Jack are received by Csound's reg-
ular MIDI opcodes and MIDI interop system. JackoMidiOutConnect, for creating a connec-
tion from a Jack port in Csound to an externa Jack MIDI input port. JackoOn, for turning
Jack ports in Csound on or off. JackoAudioln, for receiving audio from a Jack input port in
Csound, which in turn has received the audio from its connected external port. JackoAudi-
oOut, for sending audio to a Jack output port in Csound, which in turn will send the audio on
to its connected external port. JackoMidiOut, for sending MIDI channel messages to a Jack
output port in Csound, which in turn will send the MIDI on to its connected external port.
JackoNoteOut, for sending a note (with duration) to a Jack output port in Csound, which in
turn will send the note on to its connected external port. JackoTransport, for controlling the
Jack transport.

A typical scenario for the use of the Jacko opcodes would be something like this.

Example

Here is an example of the Jacko opcodes. It uses the file jacko.csd [examples/jacko.csd].

Example 11. Example of the Jacko opcodes.

<CsoundSynt hesi zer >

<CsOpti ons>

csound -nR55 -MD -+rtmidi=null -RW --mdi-key=4 --mdi-velocity=5 -0 jacko_test.wav
</ CsOpti ons>

<Csl nstrunent s>

NOTE: this csd nust be run after starting "aeolus -t".

Sr = 48000
; The control rate nust be BOTH a power of 2 (for Jack)
; AND go evenly into sr. This is about the only one that works

ksnps = 128
nchnl s =2
Odbfs =1

171

examples/jacko.csd
examples/jacko.csd

Jacko Opcodes

Jackol ni t "default", "csound"

To use ALSA midi ports, use "jackd -Xseq"

and use "jack_lsp -A -c" or aliases from Jackl nfo,
probably together with information fromthe sequencer
to figure out the dam port nanes

JackoM di | nConnect "al sa_pcmin-131-0-Master", "mdiin"
JackoAudloIn(bnnect "aeol us:out.L", "leftin"
JackoAudi ol nConnect "aeol us:out.R', "rightin"
JackoM di Qut Connect "mdiout", "aeolus:Mdi/in"

; Note that Jack enabl es audio to be output to a regul ar
; Csound soundfile and, at the sane tine, to a sound
; card inreal tine to the systemclient via Jack

JackoAudi oQut Connect "leftout", "system playback_1"
JackoAudi oQut Connect "rightout", "system playback_2"
Jackol nfo

Turni ng freewheeling on seens automatically
to turn system playback off. This is good

JackoFreewheel 1

JackoOn
al wayson "jackin"
instr 1
i channel ;,,,,,,,,,,,,,,,,,bi,l,,,,,,,,,,,,
itime = p2
iduration = p3
i key = p4
ivelocity = p5
JackoNot eQut "mdiout", ichannel, ikey, ivelocity
print itime, iduration, ichannel, ikey, 1velocity
endi n
instr jackin
JackoTransport 3, 1.0 T
al ef t JackoAudi ol n "leftin"
ari ght JackoAudi ol n "rightin"

; Aeolus uses MDI controller 98 to control stops

; Only 1 data value byte is used, not the 2 data

; bytes often used w th NRPNs.

; The format for control node is 01lm0ggg:

; mm 10 to set stops, 0, ggg group (or Division, 0 based)
; The format for stop sel ection i s 000bbbbb:

; bbbbb for button nunber (0 based).

; Mode to enable stops for Divison |: b1100010 (98
; [this controller VALUE is a pure coincidence])

JackoM di Qut "mdiout", 176, 0, 98, 98
; Stops: Principal 8 (0), Principal 4 (1) , Flote 8 (8) , Flote 2 (10)

JackoM di Qut "mdiout", 176, 0, 98, 0
JackoM di Qut "mdiout", 176, 0, 98, 1
JackoM di Qut "mdiout”, 176, 0, 98, 8
JackoM di Qut "mdiout”, 176, 0, 98, 10

Sends audi o com ng in from Aeol us out

not only to the Jack system out (sound card)
but also to the output soundfile

Note that in freewheeling node, "leftout"
and "rightout" sinply go silent

JackoAudi oQut "leftout", aleft
JackoAudi oQut "rightout", aright
outs aright, aleft
endin

</ Csl nstrunent s>

<CsScor e>

f 0 30

i 11 30 60 60

172

Jacko Opcodes

i 12 30 64 60

i 1330 71 60

e 2

</ CsScor e>

</ CsoundSynt hesi zer >
Credits

By: Michael Gogins 2010

173

Lua Opcodes

The purposes of the Lua opcodes are:

1. Make it possible to write Csound code in a user-friendly, high-level language with full
lexical scoping, structures and classes, and support for functional programming, using
LuallT (the Lua programming language, implemented with a just-in-time compiler and
foreign function interface).

2. Require the installation of no third party software packages, or at least a minimum install-
ation; also, require no build system or external compilation.

3. Runreally fast; typically, amost as fast as compiled C code, and several times faster than
user-defined opcodes.

Using the Lua opcode family, you can interact with the Luainterpreter and just-in-time com-
piler (luajit) embedded in Csound as follows:

1. Execute any arbitrary block of Lua code (the lua_exec opcode),

2. Define an opcode in Lua taking any number or type of parameters, and returning any
number or type of parameters (the lua_opdef opcode),

3. Call aLuaopcode at i-rate (the lua_iopcall opcode),
4. Call aLuaopcode at i-rate and k-rate (the lua_ikopcall opcods), or

5. Call aLuaopcode at i-rate and a-rate (the lua_iaopcall opcode).

Luais Portuguese for "moon." And Lua (http://www.lua.org) is a lightweight, efficient dy-
namic programming language, designed for embedding in C/C++ and extending with C/
C++. Lua has a stack-based calling mechanism and provides a toolkit of features (tables,
metatables, anonymous functions, and closures) with which many styles of object-oriented
and functional programming may be implemented. Luas syntax is only slightly harder than
Python's.

Lua is dready one of the fastest dynamic languages; yet LuallT by Mike Pal (ht-
tp://lugjit.org) goes much further, giving Lua a just-in-time optimizing trace compiler for In-
tel architectures. LuaJlT includes an efficient foreign function interface (FFI) with the abil-
ity to define C arrays, structures, and other types in Lua. The speed of Luall T/FFI ranges
from several times asfast as Lua, to faster (in some contexts) than optimized C.

Example

Here is an example of a Lua opcode, implementing a Moog ladder filter. For purposes of
comparison, a user-defined opcode and the native Csound opcode that compute the same
sound using the same algorithm also are shown, and timed.. The example uses the file
luamoog.csd [examples/luamoog.csd].

Example 12. Example of a Lua opcode.

174

http://www.lua.org
http://luajit.org
http://luajit.org
examples/luamoog.csd
examples/luamoog.csd

Lua Opcodes

<CsoundSynt hesi zer >
<Csl nstrunment s>

sr = 48000
ksmps = 100
nchnls = 1
gi began rtclock
| ua_opdef "moogl adder", {{
local ffi = require("ffi")

local math = require("math")
local string = require("string"
I ocal csoundApi = ffi.load(' csound64.dll.5.2")
ffi.cdef[[
int csoundGet Ksnps(void *)
doubl e csoundGet Sr(void *)
struct noogl adder _t {
doubl e *out;
doubl e *inp
doubl e *freq
doubl e *res
doubl e *istor
doubl e sr;
doubl e ksnps
doubl e t her mal
doubl e f;
doubl e fc;
doubl e fc2
doubl e fc3
doubl e fcr
doubl e acr
doubl e tune
doubl e res4
doubl e i nput;
doubl e i;
doubl e j;
doubl e k
doubl e kk
doubl e stg[6];
doubl e del ay[6] ;
doubl e tanhstg[6] ;

11

| ocal noogl adder _ct = ffi.typeof (' struct noogl adder_t *')

functi on noogl adder _i ni t (csound, opcode, cargunents)
local p = ffi.cast(npogl adder_ct, cargunents)
p. sr = csoundApi . csoundCet Sr (csound)
p. ksnps = csoundApi . csoundGet Ksnps(csound)
I1f p.istor[0] == 0 then
for i =0, 5 do
p.delay[i] = 0.0
en
for i =0, 3 do
p.tanhstg[i] = 0.0
end
end
return O
end

function noogl adder _kontrol (csound, opcode, cargunents)
local p = ffi.cast(nmoogl adder_ct, cargunents)
-- transistor thermal voltage
p.thermal = 1.0 / 40000.0
If p.res[0] < 0.0 then
p.res[0] = 0.0

en
-- sr is half the actual filter sanpling rate
p.fc = p.freq[0] / p.sr

p.f =p.fc/ 2.0

p.fc2 = p.fc * p.fc

p.fc3 = p.fc2 * p.fc

p.fer = 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
p.acr = -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968

-- filter tuning

p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4 = 4.0 * p.res[0] * p.acr

175

Lua Opcodes

-- Nested 'for' loops crash, not sure why.
-- Local loop variables also are problematic
-- Lomer I evel 1 oop constructs don't crash

p.i =0
while p.i < p.ksnps do
p.j] =0
while p.j < 2 do
p.k =0
while p.k < 4 do
if p.k == 0 then
p.input = p.inp[p.i] - p.resd4 * p.delay[5]
p.stg[p.k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.thermal) - p.tanhstg[p
e
p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)
If p.k <3 then
p. kk = p.tanhstg[p. k]
el se
p. kk = math.tanh(p.del ay[p. k] * p.thermal)
end
J p.stg[p. k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)
en
p. del ay[p k] = p.stg[p. k]
p.k = p. k 1
end
-- 1/ 2-sanpl e delay for phase conpensation
p. delay[5] = (p. stg[3] + p.delay[4]) * 0.5
p.delay[4] = p stg[3]
p-J =p.J *
end
p.out[p.i] = p.delay[5]
p.i =p.i +1
end
return O
end
1}
/*

Mbogl adder - An inproved inplenmentati on of the Mog | adder filter

DESCRI PTI ON

This is an new digital inplenentation of the Mog |adder filter based on the work of Antti Huovil ai nen
described in the paper \"Non-Linear Digital |nplenentation of the Mog Ladder Filter\" (Proceedings of
This inplenmentation is probably a nore accurate digital representation of the original analogue filter
This is version 2 (revised 14/ DEC/04), with inproved anplitude/resonance scaling and frequency correct

SYNTAX
ar Modogl adder asig, kcf, kres

PERFORMANCE

asig - input signal

kcf - cutoff frequency (Hz)
kres - resonance (0 - 1).

CREDI TS
Victor Lazzarini
*/
opcode noogl adderu, a, akk
asig, kcf, kres Xin
set ksnps 1
i pi = 4 * taninv(1)
/* filter delays */
azl init 0
az2 init 0
az3 init 0
az4 init 0
azb init 0
ay4 init 0
anf init 0
if kres > 1 then
kres = 1
el sei f kres < 0 then
kres = 0
endi f
/* twice the \' thernal vol tage of a transistor\' */
i 2v 40000
/* sr is half the actum filter sanpling rate */
kfc = kef/sr
kf = kcf/ (sr*2)

/* frequency & anplltude correction */

176

Lua Opcodes

kfcr
kacr

/* filter tuning
k2vg
/* cascade of 4 1st order sections

*/

1.8730 * (kfch3) + 0.4955 * (kfch2)