
Building a neighbourhood with Dispersy

Boudewijn Schoon

December 19, 2013

Contents

1 Concept 2

2 IP addresses and member identities 3

2.1 Candidate categories . 4
2.2 (Un)veri�ed candidates . 5
2.3 Candidates we can walk towards 5

3 Who to walk to 5

3.1 Dissemination experiments . 6

4 Who to introduce 7

4.1 Candidate exclusion . 9
4.2 Duplicate candidates . 10

5 LAN and WAN address 10

6 WAN address voting 11

6.1 Cleanup old voting data . 12

7 The 5 second rule 12

7.1 Walking in a single overlay . 13
7.2 Walking in multiple overlays 13
7.3 Walk multiplier . 14

8 Transferring the public key 14

1

Figure 1: Peer discovery mechanism

9 Debug output 15

9.1 Bootstrapping . 15
9.2 Building a neighbourhood . 16
9.3 Candidate statistics . 16

1 Concept

This technical report is part of a series describing Dispersy, a library designed
to maintain a distributed overlay with peer discovery, message synchroni-
sation, and rights management. Currently, Dispersy is the peer discovery
mechanism of our BiTorrent-based client, Tribler. This document describes
the peer discovery process using the Dispersy walker.

We designed Dispersy walker taking into consideration the challenges for
peer discovery in P2P systems which are:

� approximately 64% of computers are behind a NAT1,
� distributed systems allow malicious DDoS attacks2,
� high churn rate,
� requirement of little or no state, and
� limited bandwidth resources.
Our peer discovery mechanism illustrated in Figure 1 consists of four

phases:
phase 1: peer A chooses a peer B from its neighbourhood and it sends to

peer B an introduction-request;

1http://pds.twi.tudelft.nl/reports/2010/PDS-2010-007.pdf
2http://events.ccc.de/congress/2010/Fahrplan/events/4210.en.html

2

http://pds.twi.tudelft.nl/reports/2010/PDS-2010-007.pdf
http://events.ccc.de/congress/2010/Fahrplan/events/4210.en.html

phase 2: peer B chooses a peer C from its neighbourhood and sends peer
A an introduction-response containing the address of peer C;

phase 3: peer B sends to peer C a puncture-request containing the address
of peer A;

phase 4: peer C sends peer A a puncture message to puncture a hole in its
own NAT.

These four phases constitute a step, and multiple steps constitute a walk.
By walking, each peer discovers a set of known peers which we de�ne as its
neighbourhood.

The remainder of this document explains the walker mechanism in detail
and gives the reasoning behind our design choices. Section 2 explains how
we handle addresses and identities using candidates, Section 3 explains how
peer A chooses another peer from its neighbourhood, Section 4 explains how
peer B chooses another peer from its neighbourhood, Section 5 explains how
peer B determines peer A's LAN and WAN address, Section 6 explains how
peer A determines its own WAN address, Section 7 explains how the walker
tries to follow the 5 second rule, Section 8 explains public key exchange, and
�nally, Section 9 explains what debug output to expect.

2 IP addresses and member identities

In Dispersy, each peer needs to be able to verify the identities of other peers
because we use a right management mechanism. According to our right
management mechanism, each peer has di�erent access rights based on the
history of rights granted and revoked. To this end, we use public/private
key pairs to allow peers to cryptographically identify themselves. The pub-
lic/private key pair of a peer represents a single Member instance which signs
or veri�es the messages created by the peer itself or other peers, respectively.

Ideally, we want to assign one IP address to each member, and have
this mapping be the same for every peer in the system. However, an IP
address may change between successive sessions or some peers may assign
the same IP address to a Member (i.e. someone behind a symmetric NAT
uses di�erent ports for communication with other peers).

For those reasons, besides a Member (i.e. the cryptographic key) we use
an additional instance, named a Candidate which is a temporary pointer to
the current IP address of the corresponding peer.

In order to provide a mapping between Members and Candidates, we
create for every Candidate a list of Member instances seen at this address.
In other words, once having found a Member at a speci�c IP address, we

3

associate this member with the corresponding Candidate. We note that this
mapping is temporary,

2.1 Candidate categories

Each Candidate maintains time stamps for important events taking place
during a walk, i.e. the last time of an introduction-request. Using these
time stamps, we assign Candidates into four categories: walk, stumble, intro,
and none. These categories determine how we can use Candidates during a
walk. Each Candidate is assigned only to one category, and this category
may change over time.

Below, we describe the four categories and the assignment process using
the example of peers A, B, and C from our illustration in Figure 1. When
communicating peers update several time stamps that are used to compute
how long ago an event occurred.

Peer A computes the walk di�erence of peer B by taking the di�er-
ence between the current time and receiving an introduction-response to an
introduction-request from peer B. Peer B computes the stumble di�erence of
peer A by taking the di�erence between the current time and receiving an
introduction-request from peer A. Peer A computes the intro di�erence of
peer C by taking the di�erence between the current time and receiving an
introduction-response introducing peer C.

Using the computed time di�erences a peer assigns all other peers in one
of the four categories:
walk when its walk di�erence is less or equal to the walk lifetime,
stumble when it is not a walk-Candidate and its stuble di�erence is less or

equal to the stumble lifetime,
intro when it is neither a walk or a stumble-Candidate, and its intro di�er-

ence is less or equal to the intro lifetime, and
none when it does not ful�l the criteria for its assignment to one of the

previously mentioned categories.
We set both the walk lifetime and the stumble lifetime equal to 57.5

seconds because most NAT boxes close a punctured `hole' 60 seconds after
receiving the last packet. Moreover, we set the intro lifetime equal to 27.5
seconds because most NAT boxes close a punctured `hole' after 30 seconds
when no packets are received through it1.

4

2.2 (Un)veri�ed candidates

The Dispersy code provides two main methods to obtain available Candidate
instances: the dispersy_yield_candidates method3 returns an iterator with
all walk, stumble, and intro-Candidate instances, in a randomised order.
Note that intro-Candidates are unveri�ed, i.e. we have only heard about
their existence, but did not actually have any contact with them ourselves.

The dispersy_yield_veri�ed_candidates method3 returns an iterator
with all walk and stumble-Candidate instances, in a randomised order. We
call these Candidates veri�ed because we have received a message from them
at most 57.5 seconds ago (i.e. the walk and stumble lifetime).

This means that, unless the peer went o�ine in the mean time, the peer
is still there and the NAT has, most likely, not closed yet. Note that there
are NATs that close within 57.5 seconds1, those will not be reachable.

Because of this, communicating with veri�ed candidates is often better
than using unveri�ed candidates.

2.3 Candidates we can walk towards

A peer is only allowed to walk towards a Candidate when the Candidate is
eligible for a walk namely, it meets the two criteria described below:

1. the category is either walk, stumble, or intro
2. the last time that this peer walked to this speci�c candidate, occurred

at least eligible delay second ago.
We have chosen 27.5 seconds for the eligible delay, with the exception

of bootstrap candidates which require a 57.5 seconds of eligible delay. As
a result, the bootstrap peers are not contacted to frequently. This feature
was initially introduced to reduce the numbers of walks towards trackers in
overlays with few peers.

3 Who to walk to

In phase 1 of the walk (as illustrated in Figure 1), peer A chooses a known
peer B from its neighbourhood and sends it an introduction-request. The
dispersy_get_walk_candidate method3 chooses peer B and returns a Can-
didate instance pointing to it. If there are no available eligible candidates,
this method returns None.

The choice of a Candidate to walk determines the size of the neighbour-
hood of peer A. Based on its walks, peer A is able to know at most 11

3Implemented in the Community class, see dispersy/community.py

5

Candidates because according to our design, a peer takes one step every 5
seconds (see section 7). As a result in a walk lifetime window of 57.5 seconds,
it can take at most 11 steps. Nevertheless, other peers may chose to walk
to peer A. Hence, the incoming walks to peer A, that occurred within the
stumble lifetime window, increase the size of its neighbourhood accordingly.

Assuming that there is at least one eligible Candidate in every category,
the selection strategy can be simpli�ed in the following rules. Peer A chooses
with probability:

� 49.75% to revisit the oldest eligible walk-Candidate,
� 24.825% to visit the oldest eligible stumble-Candidate,
� 24.825% to visit the oldest eligible intro-Candidate, and
� 0.5% to visit a random eligible Candidate from the prede�ned list of
bootstrap candidates.

If one category is empty, the probabilities of choosing a peer from this
category becomes 0. In Table 1, we present the probability of choosing
categories when some of these categories are empty. The �rst column has-

WSIB shows in binary form if there is at least one walk, stumble, intro,
or bootstrap candidate available by setting the corresponding bit equal to
1. For example, 1000 means that the only available candidates are walk
candidates.

Malicious peers can easily pollute our neighbourhood by walking towards
a peer from multiple distinct addresses and adding an arbitrary number of
stumble-Candidates to its neighbourhood. To avoid such a neighbourhood
pollution, we assume that a successfully visited peer is safe. Hence, half
of the time we revisit such a peer (i.e. from the walk category) while the
remaining 50% is evenly spread between the intro category and the risky
stumble category. Method dispersy_get_walk_candidate implements this
design.

3.1 Dissemination experiments

During experiments that want to focus on dissemination speed, it is possible
to only visit bootstrap-Candidates during the bootstrap process. Otherwise
there is a 0.5% chance each step to visit a bootstrap peer and not get any new
data (since the bootstrap peers do not participate in data dissemination).

Approximately 450 bootstrap peers4 will be unnecessarily visited in a 15
minute experiment where 500 peers disseminate data. When this is undesir-
able, perhaps because you do not want to explain why certain steps do not

4one peer takes 12 steps per minute, 500 peers take 90,000 steps in 15 minutes, 0.5%
will be towards bootstrap peers, i.e. 450 steps.

6

Table 1: Chance to select a category based depending on which categories
has eligible candidates.

has-
WSIB walk stumble intro boot none

0000 100%
0001 100%
0010 100%
0011 99.5% 0.5%
0100 100%
0101 99.5% 0.5%
0110 50% 50%
0111 49.75% 49.75% 0.5%
1000 100%
1001 99.5% 0.5%
1010 50% 50%
1011 49.75% 49.75% 0.5%
1100 50% 50%
1101 49.75% 49.75% 0.5%
1111 49.75% 24.825% 24.825% 0.5%

yield any new data, the �le minimal_bootstrap.di� will remove the 0.5%
chance to visit a bootstrap peer. This will result in the combinations shown
in Table 2.

4 Who to introduce

In phase 2 of the walk, peer B chooses a known peer C from its neighbour-
hood and introduces it to peer A. The dispersy_get_introduce_candidate
method3 chooses peer C from the veri�ed available candidates and returns
it, or, when no candidates are available, it returns None.

Using dispersy_get_introduce_candidate returns a veri�ed candidate
in semi round robin fashion. To this end each Community maintains two
dynamic iterators3 _walked_candidates and _stumbled_candidates which
iterate over all walk-Candidates and stumble-Candidates in round-robin, re-
spectively.

In Figure 2, we present the selection process of a Candidate. In most
cases, this process is simpli�ed in the following steps:

1. choose either the walk-Candidate or stumble-Candidate iterator,

7

Figure 2: Peer discovery mechanism

8

Table 2: Suggested chance to select a category based depending on which
categories has eligible candidates.

has-
WSIB walk stumble intro boot none

0000 100%
0001 100%
0010 100%
0011 100%
0100 100%
0101 100%
0110 50% 50%
0111 50% 50%
1000 100%
1001 100%
1010 50% 50%
1011 50% 50%
1100 50% 50%
1101 50% 50%
1111 50% 25% 25%

2. select the next Candidate in the iterator if it is not excluded, otherwise
go back to step 1.

4.1 Candidate exclusion

Peer B can not introduce peer C to A when:
� C and A are the same Candidate,
� C and A are both behind a NAT and they are not within the same
LAN,

� C is behind a tunnel while A is not behind a tunnel. Peer C is behind a
tunnel when all messages it sends have a FFFFFFFF pre�x. In this case,
it can only receive messages with this pre�x. Tunnelling has been in-
troduced to Dispersy at the end of 2012 so that tra�c is send through
libswift. Dispersy recognises the FFFFFFFF pre�x without using lib-
swift. However, older Dispersy clients cannot recognise this pre�x and
they see it as a part of the message. Since older and newer versions of
Dispersy are not distinguishable, we are currently considering all peers
to use an older version of Dispersy.

9

Figure 3: Determine the LAN or WAN address of a peer

4.2 Duplicate candidates

It is possible that peer B introduces an already known peer to peer A. We
could have excluded the known peers by having peer A sending a list of
known peers that peer B can exclude. However, we decided not to do this
because:

1. it would increase the size of the introduction-request,
2. it would give peer B information about peer A,
3. the larger the overlay, the smaller the chance that peer B will introduce

a peer that peer A already knows.

5 LAN and WAN address

In phase 2 of the walk, peer B determines the LAN and WAN address
of peer A by using the UDP header (i.e. the sock_addr) of the incoming
introduction-request combined with the WAN and LAN address as reported
by A, as it is illustrated by Figure 3.

We implement this in method estimate_lan_and_wan_addresses using
a simple rule: when peer B sees that the corresponding message originates
from its LAN, it decides that peer A's LAN address is the sock_addr. If
the message originates outside its LAN, then peer A's WAN address is the
sock_addr[fn::The word 'estimate' is for historical reasons since this code
was not able to make this decision as cleanly as is described here.].

10

Dispersy determines whether an address originates within its own LAN or
not by checking if it corresponds with one of its local interfaces, with regards
to its netmask. We do this using the _get_interface_addresses method5 and
the Interface instances that it returns.

Peer B uses the result of this estimation to update the lan_address and
wan_address properties6 of the Candidate instance pointing to peer A. These
values are also added to the introduction-response, allowing peer A to assess
its own WAN address, as discusses in Section 6.

6 WAN address voting

In phase 2 of the walk, peer A receives an introduction-response containing
the LAN and WAN address that peer B believes it has. This dial back allows
peer A to determine how other peers perceive it, and thereby whether a NAT
is a�ecting its address.

When peer A is not a�ected by a NAT the voting will provide it with its
own address. This is useful when peer A and B are both within the same
LAN while peer C is not. In this case peer A will send an introduction-
request (which includes the WAN address determined by voting) to peer B,
peer B will inform peer C of both A's LAN (as determined by the UDP
header) and WAN address (as reported by A), allowing peer C to determine
that peer A is not within its LAN address, hence it will use peer A's reported
WAN address to puncture its own NAT.

When a NAT a�ects peer A the voting will provide information about
the type of NAT, i.e. the connection type, that it is behind, as described
below. This connection type e�ects who a peer introduces when receiving
an introduction-request, see section 4.

Most of the magic happens in the wan_address_vote method5 and goes
roughly as follows:

1. remove whatever B voted for before,
2. if the address is valid and B is outside our LAN then add the vote
3. select the new address as our WAN address if it has equal or more

votes than our current WAN address. Note that changing our WAN
address also makes us re-evaluate our LAN address;

4. determine our connection type based on the following rules:
public when all votes have been for the same address and our LAN

and WAN addresses are the same,

5Implemented in the Dispersy class, see dispersy/dispersy.py
6Implemented in the WalkCandidate class, see dispersy/candidate.py

11

symmetric-NAT when we have votes for more than one di�erent
addresses, and

unknown in all other cases.

6.1 Cleanup old voting data

To allow for changes in the connectivity, i.e. when running on a roaming
machine that changes IP addresses periodically, we must remove older votes,
by calling the wan_address_unvote method5, that may no longer apply.

Dispersy does this by periodically (every �ve minutes) checking for ob-
solete Candidate instances. Where we consider a Candidate to be obsolete
when the last walk, stumble, or intro was more than lifetime seconds ago,
where lifetime is three minutes. This means that it can take anywhere be-
tween �ve and eight minutes before removing old votes.

7 The 5 second rule

When we decided on the design of the walker we took into account the
following factors:

1. a signi�cant number of NAT devices close a port 60 seconds after re-
ceiving the last packet though it7, and

2. taking a step involves performing the bloom �lter synchronisation.
Synchronisation is not described in this report.

Obviously when we take more steps the neighbourhood will contain more
walk and intro-Candidates (and since other peers also take more steps the
neighbourhood will also, on average, contain more stumble-Candidates).
This would advocate taking as many steps as possible.

However, every step also has a cost associated to it, the majority being
in the bloom �lter synchronisation. At the time we wanted every step to
perform a synchronisation, and given that some peers might receive multiple
incoming steps around the same time, we decided on a reserved value of 5
seconds. We expect this to be su�cient to perform one synchronisation for
ourselves and, in the worst case, multiple incoming synchronisations.

Nowadays we have introduced mechanisms to reduce the workload by not
always performing a bloom �lter synchronisation, hence the 5 second rule is
not strictly necessary anymore, however, the code contains constants derived
from 5 seconds, making it di�cult to change (see 7.3).

7Do not confuse with NAT devices closing a port 30 seconds after puncturing it without
receiving any packets through it

12

7.1 Walking in a single overlay

In the worst case, creating a bloom �lter is one of the most CPU intensive
parts of Dispersy. Below, we present an example of a naive approach where
we simply schedule 5 seconds between each step. For simplicity, we will
assume that it takes 1 second to create a bloom �lter.

The schematic below shows a time line with + every 5 seconds when a
step should take place. It shows that creating the bloom �lter is causing
walker X to take a step once every 6 seconds instead of every 5 seconds.
Furthermore, a large delay caused by task T increases the gap between steps
even further, resulting in only 7 steps instead of 10 which is the expected
number of steps.

delayed steps

+----+----+----+----+----+----+----+----+----+ (time line)

TT TT TT (task T)

X X X X X X X (steps overlay X)

7.2 Walking in multiple overlays

The previous naive approach causes the gap between walks to be larger than
the intended 5 seconds, this in turn results in fewer walks, hence slower
data dissemination and fewer available candidates. The gap between walks
will only get larger when we need to maintain multiple overlays at the same
time. In this case the naive approach would result in both overlays X and
Y walking immediately after one another, causing a spike in CPU tra�c, as
seen in the schematic below.

delayed steps with multiple overlays

+----+----+----+----+----+----+----+----+----+ (time line)

TT TT TT (task T)

X X X X X X X (steps overlay X)

Y Y Y Y Y Y Y (steps overlay Y)

We address both of these problems by what we call a self healing walker,
implemented in the _candidate_walker method5. This walker takes into ac-
count both the number of overlays and the time between walks in individual
overlays. The self healing walker has two major features:

� predicting the time when the next walk should occur to remove the
delays the naive approach would introduce

13

� allowing more than one step in a single overlay within 5 seconds, as
seen in the schematic below where the lowercase x and y are within 5
seconds of the previous step taken in its overlay.

self healing walker

+----+----+----+----+----+----+----+----+----+ (time line)

TT TT TT (task T)

X X X x X X x X X x (steps overlay X)

Y Y Y y Y Y y Y Y (steps overlay Y)

To preserve resources, Dispersy will tell a community not to perform a
bloom �lter synchronisation (while still performing the walk to maintain the
neighbourhood) when the previous step was less than 4.5 seconds ago. Since
this will usually occur under heavy CPU load, the bene�t is that it will
reduce the load since synchronisation is the most expensive part of taking a
step.

When we detect that the previous walk in an overlay was more than
5 seconds ago, a walk reset will occur to ensure we do not walk to often.
This is especially useful when a computer running Dispersy goes into sleep
mode, when it wakes up the walk may be hours behind, the walk reset will
ensure that Dispersy doesn't try to catch up with the sleeping time by taking
thousands of steps.

7.3 Walk multiplier

Sometimes it can be useful to change the 5 seconds delay between steps into
something else. The problem is that all derived values must be appropriately
changed. The best way to do this is to multiply all these values with the
same constant.

The �le walk_multiplier.di� will modify all these constants (as known at
October 2013). Changing the WALK_MULTIPLIER constant6 to 2 will result in
a step every 10.0 seconds, i.e. slowing down the walker. Conversely, changing
the constant to 0.5 will result in a step every 2.5 seconds, i.e. speeding up
the walker.

8 Transferring the public key

The signed walker messages introduction-request and introduction-response
used in Section 1 do not contain the public key of the signer, we transfer this
key using a missing-identity request and a identity message response.

14

Figure 4: Peer dispersy mechanism between unknown peers

Luckily this is only needed for public keys that we do not yet have, hence
the �rst time that we encounter a peer the walk actually follows Figure 4.

9 Debug output

Dispersy uses the standard Python logger to output di�erent message lev-
els, i.e. DEBUG, INFO, WARNING, and ERROR. When enabling DEBUG
messages the logger in dispersy/endpoint.py will log all incoming and out-
going packets, including their name when possible. This can give valuable
information when something does not follow the expected behavior.

9.1 Bootstrapping

To bootstrap an overlay, each node contacts one of the bootstrap servers.
If nodes have never encountered this bootstrap server before, they need to
exchange public keys. This results in the following DEBUG output:

dispersy-introduction-request -> 130.161.211.245:6422 132 bytes

dispersy-missing-identity <- 130.161.211.245:6422 51 bytes

dispersy-identity -> 130.161.211.245:6422 177 bytes

15

dispersy-introduction-response <- 130.161.211.245:6422 126 bytes

dispersy-missing-identity -> 130.161.211.245:6422 51 bytes

dispersy-identity <- 130.161.211.245:6422 141 bytes

9.2 Building a neighbourhood

After have walked for some steps, each node builds its neighbourhood. Be-
low we see that we contact someone at 74.96.92.***:7759. Nodes no longer
need to exchange public keys, but only the incoming puncture message from
84.209.251.***:7759 is from someone not yet encountered, hence we exchange
identities immediately.

dispersy-introduction-request -> 74.96.92.***:7759 132 bytes

dispersy-introduction-response <- 74.96.92.***:7759 144 bytes

dispersy-puncture <- 84.209.251.***:7759 125 bytes

dispersy-missing-identity -> 84.209.251.***:7759 51 bytes

dispersy-identity <- 84.209.251.***:7759 177 bytes

9.3 Candidate statistics

Dispersy provides a logger with the name dispersy-stats-detailed-candidates.
When enabling DEBUG level messages for this logger, it will output a sum-
mary of its neighbourhood every �ve seconds. The example below is the
summary as seen shortly after contacting 74.96.92.***:7759, see below:

--- 8164f55c2f828738fa779570e4605a81fec95c9d Community ---

4.7s E intro unknown {192.168.1.35:7759 84.209.251.***:7759}

9.7s E intro unknown {192.168.25.100:7759 177.157.54.***:7759}

14.8s E intro unknown {192.168.0.3:34728 188.242.194.***:34728}

19.9s E intro unknown {192.168.3.101:7759 67.33.160.***:7759}

24.4s E intro unknown {192.168.178.21:7759 188.154.8.***:7759}

5.0s walk unknown {192.168.1.18:7759 74.96.92.***:7759}

10.0s walk unknown {192.168.0.100:7761 84.251.49.***:7761}

15.0s walk symmetric-NAT {178.164.145.6:7759 94.21.97.***:7759}

20.0s walk unknown {192.168.1.27:7759 87.18.61.***:16409}

25.0s walk symmetric-NAT {90.165.123.***:7759}

30.0s E walk unknown {192.168.1.172:7759 76.115.137.***:7759}

35.0s E walk unknown {192.168.2.3:7759 97.91.131.***:7759}

45.0s E walk unknown {192.168.1.51:7749 109.208.189.***:7749}

50.0s E walk unknown {192.168.0.3:7759 180.145.124.***:7759}

55.0s E walk unknown {192.168.0.2:7759 83.153.18.***:7759}

16

The summary shows that the Candidate at 74.96.92.***:7759 is currently
a walk-Candidate with age 5.0 seconds, i.e. we sent the introduction-request
5.0 seconds ago.

Furthermore, there is an intro-Candidate at 84.209.251.***:7759, which
is the introduced Candidate from when we received a response to this walk
4.7 seconds ago. Note that this Candidate has the character E which signi�es
that this Candidate is eligible for a walk.

17

	Concept
	IP addresses and member identities
	Candidate categories
	(Un)verified candidates
	Candidates we can walk towards

	Who to walk to
	Dissemination experiments

	Who to introduce
	Candidate exclusion
	Duplicate candidates

	LAN and WAN address
	WAN address voting
	Cleanup old voting data

	The 5 second rule
	Walking in a single overlay
	Walking in multiple overlays
	Walk multiplier

	Transferring the public key
	Debug output
	Bootstrapping
	Building a neighbourhood
	Candidate statistics

