
tuProlog Guide

tuProlog version: 2.1

tuProlog IDE version: 2.0

Last Changes date: 2007-04-19

Alma Mater Studiorum, Università di Bologna a Cesena, Italy

Contents

1 What is tuProlog 3

2 Installing tuProlog 5

3 Getting Started 8
3.1 Prolog Programmer Quick Start 8
3.2 Developer Quick Start . 9

4 tuProlog Basics 11
4.1 Structure of a tuProlog Engine 11
4.2 Prolog syntax . 12
4.3 Configuration of a tuProlog Engine 15
4.4 Built-in predicates . 16

4.4.1 Control management 16
4.4.2 Term Unification and Management 17
4.4.3 Knowledge-base management 17
4.4.4 Operators and Flags Management 18
4.4.5 Libraries Management 19
4.4.6 Directives . 19

5 tuProlog Libraries 21
5.1 BasicLibrary . 23

5.1.1 Predicates . 23
5.1.2 Functors . 31
5.1.3 Operators . 31

5.2 ISOLibrary . 33
5.2.1 Predicates . 33
5.2.2 Functors . 34
5.2.3 Operators . 35
5.2.4 Flags . 36

1

5.3 DCGLibrary . 36
5.3.1 Predicates . 37
5.3.2 Operators . 38

5.4 IOLibrary . 38
5.4.1 Predicates . 38

6 Accessing Java from tuProlog 42
6.1 Mapping data structures . 42
6.2 General predicates description 42
6.3 Predicates . 48

6.3.1 Method Invocation, Object and Class Creation 48
6.3.2 Java Array Management 50
6.3.3 Helper Predicates . 51

6.4 Functors . 51
6.5 Operators . 52
6.6 Flags . 52
6.7 Java Library Examples . 52

6.7.1 RMI Connection to a Remote Object 52
6.7.2 Java Swing GUI from tuProlog 53
6.7.3 Database access via JDBC from tuProlog 53
6.7.4 Dynamic compilation 55

7 The IDE 58
7.1 Editing the theory . 60
7.2 Solving goals . 60
7.3 Debug Informations . 67
7.4 Dynamic library management 69

8 Using tuProlog from Java 71
8.1 Getting started . 71
8.2 Basic Data Structures . 72
8.3 Engine, Theories and Libraries 75
8.4 Some more examples of tuProlog usage 78

9 How to Develop New Libraries 82
9.1 Implementation details . 82
9.2 Library Name . 84

2

Chapter 1

What is tuProlog

tuProlog is a Java-based light-weight Prolog for Internet applications and
infrastructures. For this purpose, tuProlog is designed to be easily deploy-
able, light-weight, dynamically configurable, straightforwardly integrated
with Java, and easily interoperable.

Deployability of tuProlog owes a lot to Java. Requirements for tuProlog
installation simply amount to the presence of a standard Java VM, and
a Java invocation upon a single JAR file is everything needed to start a
tuProlog activity.

tuProlog is also designed with minimality in mind. So, the tuProlog core
is a tiny Java object that contains only the most essential properties of a
Prolog engine. Only the required Prolog features (like, say, ISO compliance,
I/O predicates, DCG operators) are then to be added to or removed from a
tuProlog engine according to the contingent application needs.

The obvious counterpart of minimality is then tuProlog configurability.
In fact, a simple yet powerful mechanism is required to load and unload
useful predicates, functors and operators in a tuProlog engine, both statically
and dynamically: this is provided by the notion of tuProlog library. Libraries
can be either defined in the standard tuProlog distribution, or defined ad
hoc by the tuProlog user or developer. A tuProlog library can be built using
either Prolog, or Java, or both languages, and can be either used to configure
a tuProlog engine when this is started up, or loaded (and then unloaded)
dynamically at any time during the engine execution.

Integration with Java is as wide, deep, and clean as possible, so that the
components of a tuProlog application can be developed by choosing at any
step the most suitable paradigm — either declarative/logic or imperative/object-
oriented. From the Prolog side, thanks to the JavaLibrary library, any

3

Java entity (object, class, package) can be represented as a Prolog term,
and exploited from Prolog. So, for instance, Java packages like Swing and
JDBC can be directly used from within Prolog, straightforwardly enhancing
tuProlog with graphics and database access capabilities. From the Java side,
a tuProlog engine can be invoked and used as a simple Java object, possibly
embedded in beans, or exploited in a multi-threaded context, according to
the application needs. Also, a multiplicity of different tuProlog engines can
be used from a Java program at the same time, each one configured with its
own libraries and knowledge base.

Finally, interoperability is developed along two main lines: Internet stan-
dard patterns, and coordination models. So, tuProlog supports interaction
via TCP/IP and RMI, and can be also provided as a CORBA service. In
addition, tuProlog supports tuple-based coordination under many forms.
First, components of a tuProlog application can be organised around Java-
based tuple spaces, logic tuple spaces, and ReSpecT tuple centres [?]. Then,
tuProlog applications can exploit Internet infrastructures providing tuple-
based coordination services, like LuCe [?] and TuCSoN [?].

tuProlog is developed and maintained by the aliCE1 research group at
the Alma Mater Studiorum—Università di Bologna, site of Cesena: it
is built as Open Source software, and released under the LGPL license, thus
allowing also for commercial derivative work.

1See the aliCE home page for further details, at http://www.alice.unibo.it

4

Chapter 2

Installing tuProlog

First, you need to have the tuProlog distribution. You can download it from
the tuProlog web site:

http://tuprolog.alice.unibo.it/

You can find the latest version in the Download section. The distribution file
has the form 2p-X.Y.Z.zip, where X.Y.Z identifies the version of tuProlog:
for instance, the distribution file 2p-2.0.zip contains version 2.0 of the
engine. After the download, unzip the distribution file in a folder of your
choice in the file system; you should obtain the following directory tree:

2p-2.0
|---lib
|---doc
| |---api
|---test
|---src

The lib directory contains the tuProlog Java binaries packaged in the JAR
format:

• 2p.jar contains everything you need to use tuProlog, such as the core
API, the Agent application, libraries, IDE tools and other extensions.

• In addition, you find three other JAR files, provided as helper packages
for users who would like to exploit some specific parts only from the
tuProlog distribution:

5

– tuprolog.jar contains the core API, the Agent application and
default libraries.

– tuprolog-ide.jar contains the IDE tools only.

– tuprolog-extensions.jar contains add-on libraries and other
tuProlog extensions.

The doc directory contains this Guide and the Java documentation about
tuProlog API, collected in the subdirectory api. The test directory contains
the source code of unit and acceptance tests1 for the software, as well as some
demos to illustrate usage of libraries. Finally, the src directory contains the
Java source for the tuProlog engine.

After downloading and unpacking the distribution on your system, you
can install tuProlog in different ways, depending on how you want to use it.

• You may want to use tuProlog from a directory playing the role of
a central repository where you usually install other programs and
third-party libraries.2 In this case, you have to move under the cho-
sen filesystem tree the tuProlog directory you have already extracted.
Then, you need to remember to add the -cp <jar file> option when
invoking the Java interpreter, specifying the path to the 2p.jar file
contained in the lib subdirectory of the distribution. For instance,
suppose that you unzipped the 2p-2.0.zip distribution file in the
/java/tools folder and you need to run your ApplicationClass appli-
cation with tuProlog; then you should invoke the Java interpreter as
follows:

java -cp /java/tools/2p-2.0/lib/2p.jar ApplicationClass

Alternatively, you can add the required tuProlog JAR file to your
CLASSPATH environment variable,3 thus avoiding to specify the -cp
option every time you invoke the interpreter. In this way you can ex-
ploit tuProlog applications simply by invoking the Java intepreter as
follows:

1tuProlog exploits JUnit (see http://www.junit.org/) for its unit testing needs and
FIT (see http://fit.c2.com/) as its acceptance testing framework.

2Predefined examples of such a directory include C:\Program Files in Windows,
/Library/Applications under Mac OS X, /usr/share under most *nix environments.

3Consult your operating system’s manual for details regarding how to set and create
environment variables.

6

java ApplicationClass

You can use the distribution content also by means of the scripts pro-
vided in the bin directory of the distribution; such scripts use the JAR
located in the lib directory.

• You may want to use tuProlog from your current working directory.
In this case, you have to copy the 2p.jar file from the lib subdirec-
tory in the extracted distribution to your working directory. Then,
after you move directly in that directory, by means of a terminal or
command line prompt, you can execute:

java -cp 2p.jar ApplicationClass

which invokes the Java interpreter and let it use the classes from
tuProlog. As previously explained, you can also use the CLASSPATH
environment variable to obtain the same effect.

• You may want to directly use the class files contained in the 2p.jar
archive from the tuProlog distribution. In this case, first copy the
JAR file to your directory of choice; then, unfold it by means of the
jar command provided by the Java distribution. For instance, open
a terminal or a command line prompt from within that directory, and
execute:

jar -xvf 2p.jar

After this operation, you can use tuProlog applications directly from
that directory, with no need to specify any interpreter’s option nor to
exploit the operating system’s environment variables.

7

Chapter 3

Getting Started

The tuProlog distribution offers some tools either to consult and execute
already existing Prolog programs, or to help developing new Prolog theories
and interact with a Prolog engine. Depending on the use you would like
to make of tuProlog, you may want to start exploring the distribution tools
along different directions.

3.1 Prolog Programmer Quick Start

As a Prolog programmer, you would like to start trying tuProlog by running
your already existing Prolog programs. You can execute your programs in
the form of source text files using the tuProlog Agent tool. This tool accepts
as arguments the name of a text file containing a Prolog theory and, option-
ally, the goal to be solved; then it starts the demonstration. Once you have
properly installed tuProlog in the dir directory, you can use the following
template to invoke the Agent tool from the command line:

java -cp dir /2p.jar
alice.tuprolog.Agent PrologTextFile {Goal }

For instance, suppose a text file named hello.pl in your current direc-
tory contains the following line:

go :- write(’hello, world!’), nl.

In order to execute this Prolog program, you can type at the command
prompt:

8

java -cp dir /2p.jar alice.tuprolog.Agent hello.pl go.

Then, the Agent tool tries to prove the goal go with respect to the the-
ory contained in hello.pl. As a result, the string hello, world! should
appear on your standard output.

Also, the goal to be proven can be embedded within the Prolog source
by means of the solve directive. For instance, suppose that the text file
hellogo.pl in your current directory contains the following lines:

:- solve(go).
go :- write(’hello, world!’), nl.

Then, type:

java -cp dir /2p.jar alice.tuprolog.Agent hellogo.pl

Again, this will make hello, world! appear on your standard output.

3.2 Developer Quick Start

The first thing you may want to do as a developer would probably be to take
advantage of the tools embedded in the Graphical User Interface included in
the tuProlog distribution. The GUI can be obtained by issuing the following
command:

java -cp dir /2p.jar alice.tuprologx.ide.GUILauncher

The development environment provided by the GUI makes standard Prolog
features easily accessible, such as asking queries, viewing the current solution
along with the related variable substitution, backtracking, and so on. Also,
it enables you to view and edit the current Prolog theory contained in the
engine, and to spy tuProlog at work during goal demonstrations. Finally,
it also offers a facility to dynamically load and unload predicate libraries
within the tuProlog engine.

It is worth remembering that the file 2p.jar is an executable Java
Archive, so by invoking the command:

java -jar 2p.jar

9

in the dir directory, or by double-clicking it under most operating systems,
the graphic user interface console is automatically spawned.

You may also want to experience a pure interactive environment on a
tuProlog engine. In this case, you need to get the tuProlog prompt using the
command line shell provided within the distribution. To obtain it, just type:

java -cp dir /2p.jar alice.tuprologx.ide.CUIConsole

which starts a tuProlog interpreter to be used via console, in a sort of Com-
mand Line User Interface mode. To exit the tuProlog console, you have to
issue the standard halt. command.

10

Chapter 4

tuProlog Basics

This chapter provides a brief introduction to the basic elements and struc-
ture of the tuProlog engine, covering syntax, programming support, and
built-in predicates directly provided by the engine.

4.1 Structure of a tuProlog Engine

A tuProlog engine has a layered structure, where provided and recognised
predicates are organised into three different categories:

built-in predicates — Predicates embedded in any tuProlog engine are
called built-in predicates. Whatever modification is made to the engine
either before or during execution time, it does not affect the number
and properties of the built-in predicates.

library predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog library are called library predicates. Since libraries can be
loaded and unloaded in tuProlog engines freely at the system start-up,
or dynamically at execution time, the set of the library predicates of
a tuProlog engine is not fixed, and can change from engine to engine,
and in the same engine at different times. tuProlog libraries can be
built by mixing Java and Prolog code. Prolog library predicates can be
overridden by Prolog theory predicates. Both Java and Prolog library
predicates cannot be individually retracted: if you want to remove a
single library predicate from the engine, you need to unload the whole
library containing that predicate.

theory predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog theory are called theory predicates. Since theories can be

11

loaded and unloaded in tuProlog engines freely at the system start-up,
or dynamically at execution time, the set of the theory predicates of
a tuProlog engine is not fixed, and can change from engine to engine,
and in the same engine at different times. tuProlog theories are simple
collections of Prolog clauses.

Even though they may seem similar, library and theory predicates are han-
dled differently in a tuProlog engine.

First of all, they are conceptually different. In fact, while theory pred-
icates should be used to axiomatically represent domain knowledge at the
time the proof is performed, library predicates should more or less be used to
represent what is required (procedural knowledge, utility predicates) in or-
der to actually and effectively perform a (number of) proof(s) in the domain
of interest: therefore, library predicates represent more “stable” knowledge,
which is encapsulated once and for all (at least approximately) within a
library container.

Since library and theory predicates are also structurally different, they
are handled differently by the engine, and represented differently in the
run-time: correspondingly, they have different level of observation when
monitoring or debugging a working tuProlog engine. As a consequence,
developer tools provided by tuProlog IDE typically show in a separate way
the theory axioms or predicates and the loaded libraries or predicates. In
addition, the debugging phase typically neglects library predicates (which,
as mentioned above, are also conceived as more stable and well-tested),
while the effect of the theory predicates is dutifully put in evidence during
controlled execution.

4.2 Prolog syntax

The term syntax supported by tuProlog engine is basically ISO compliant,1

and accounts for several elements:

Comments and Whitespaces – Whitespaces consist of blanks (including
tabs and formfeeds), end-of-line marks, and comments. A whitespace
can be put before and after any term, operator, bracket, or argu-
ment separator, as long as it does not break up an atom or number
or separate a functor from the opening parenthesis that introduces
its argument lists. For instance, atom p(a,b,c) can be written as

1Currently ISO exceptions, ISO I/O predicates and some ISO directives are not sup-
ported.

12

p(a , b , c), but not as p (a,b,c)). Two types of comments are
supported: one type begins with /* and ends with */, the other be-
gins with % and ends at the end of the line. Nested comments are not
allowed.

Variables — A variable name begins with a capital letter or the underscore
mark (), and consists of letters, digits, and/or underscores. A single
underscore mark denotes an anonymous variable.

Atoms — There are four types of atoms: (i) a series of letters, digit, and/or
underscores, beginning with a lower-case letter; (ii) a series of one or
more characters from the set {#, $, &, *, +, -, ., /, :, <, =, >, ?, @, ^,
~}, provided it does not begin with /*; (iii) The special atoms [] and
{}; (iv) a single-quoted string.

Numbers — Integers and float are supported. The formats supported for
integer numbers are decimal, binary (with 0b prefix), octal (with 0o
prefix), and hexadecimal (with 0x prefix). The character code format
for integer numbers (prefixed by 0’) is supported only for alphanu-
meric characters, the white space, and characters in the set {#, $, &, *,
+, -, ., /, :, <, =, >, ?, @, ^, ~}. The range of integers is -2147483648
to 2147483647; the range of floats is -2E+63 to 2E+63-1. Floating
point numbers can be expressed also in the exponential format (e.g.
-3.03E-05, 0.303E+13). A minus can be written before any number
to make it negative (e.g. -3.03). Notice that the minus is the sign-
part of the number itself; hence -3.4 is a number, not an expression
(by contrast, - 3.4 is an expression).

Strings — A series of ASCII characters, embedded in quotes ’ or ". Within
single quotes, a single quote is written double (e.g, ’don’’t forget’).
A backslash at the very end of the line denotes continuation to the next
line, so that:
’this is \
an single line’
is equivalent to ’this is a single line’ (the line break is ignored).
Within a string, the backslash can be used to denote special characters,
such as \n for a newline, \r for a return without newline, \t for a tab
character, \\ for a backslash, \’ for a single quote, \" for a double
quote.

Compounds — The ordinary way to write a compound is to write the
functor (as an atom), an opening parenthesis, without spaces between

13

them, and then a series of terms separated by commas, and a closing
parenthesis: f(a,b,c). This notation can be used also for functors
that are normally written as operators, e.g. 2+2 = ’+’(2,2). Lists
are defined as rightward-nested structures using the operator ’.’; so,
for example:
[a] = ’.’(a,[])
[a,b] = ’.’(a,’.’(b,[]))
[a,b|c] = ’.’,(a,’.’(b,c))
There can be only one | in a list, and no commas after it. Also curly
brackets are supported: any term enclosed with { and } is treated as
the argument of the special functor ’{}’: {hotel} = ’{}’(hotel),
{1,2,3}=’{}’(1,2,3). Curly brackets can be used in the Definite
Clause Grammars theory.

Operators — Operators are characterised by a name, a specifier, and a
priority. An operator name is an atom, which is not univocal: the
same atom can be an operator in more than one class, as in the case
of the infix and prefix minus signs. An operator specifier is a string
like xfy, which gives both its class (infix, postfix and prefix) and its
associativity: xfy specifies that the grouping on the right should be
formed first, yfx on the left, xfx no priority. An operator priority is
a non-negative integer ranging from 0 (max priority) and 1200 (min
priority).

Operators can be defined by means of either the op(Priority, Specifier,
Name) predicate or the :- op(Priority, Specifier, Name). direc-
tive. No predefined operators are directly given by the raw tuProlog
engine, whereas a number of them is provided through libraries.

Commas — The comma has three functions: it separates arguments of
functors, it separates elements of lists, and it is an infix operator of
priority 1000. Thus (a,b) (without a functor in front) is a compound,
equivalent to ’,’(a,b).

Parenthesis – Parenthesis are allowed around any term. The effect of
parenthesis is to override any grouping that may otherwise be im-
posed by operator priorieties. Operators enclosed in parenthesis do
not function as operators; thus 2(+)3 is a syntax error.

14

4.3 Configuration of a tuProlog Engine

Prolog developers have four different means to configure a tuProlog engine
in order to fit their application needs. In fact, a tuProlog can be suitably
configured by means of:

Theories — A tuProlog theory is represented by a text, consisting of a
sequence of clauses and/or directives. Clauses and directives are ter-
minated by a dot, and are separated by a whitespace character. Theo-
ries can be loaded or unloaded by means of suitable library predicates,
which are described in Chapter 5.

Directives — A directive can be given by means of the :-/1 predicate,
which is natively supported by the engine, and can be used to config-
ure and use a tuProlog engine (set prolog flag/1, load library/1,
consult/1, solve/1), format and syntax of read-terms2 (op/3). Di-
rectives are described in detail in the following sections.

Flags — A tuProlog engine allows the dynamic definition of flags (or prop-
erties) describing some aspects of libraries and their predicates and
evaluable functors. A flag is identified by a name (an alphanumeric
atom), a list of possible values, a default value, and a boolean value
specifying if the flag value can be modified. Dynamically, a flag value
can be changed (if modifiable) with a new value included in the list of
possible values.

Libraries — A tuProlog engine can be dynamically extended by loading
or unloading libraries. Each library can provide a specific set of pred-
icates, functors, and a related theory, which also allows new flags and
operators to be defined. Libraries can be either pre-defined (see Chap-
ter 5) or user-defined (see Chapter 9). A library can be loaded by
means of the predicate load library (Prolog side), or by means of
the method loadLibrary of the tuProlog engine (Java side).

Currently tuProlog does not support exception management: actually, an
exception causes the predicate/functor in which it occurred to fail and be
false.

2As specified by the ISO standard, a read-term is a Prolog term followed by an end
token, composed by an optional layout text sequence and a dot.

15

4.4 Built-in predicates

This section contains a comprehensive list of the built-in predicates provided
by the tuProlog engine, that is, those predicates defined directly in its core.

Following an established convention in built-in argument template de-
scription, which takes root into an imperative interpretation, the symbol +
in front of an argument means an input argument, - means output argu-
ment, ? means input/output argument, @ means input argument that must
be bound.

4.4.1 Control management

• true/0
true is true.

• fail/0
fail is false.

• ’,’/2
’,’(First,Second) is true if and only if both First and Second are
true.

• !/0
! is true. All choice points between the cut and the parent goal are
removed. The effect is a commitment to use both the current clause
and the substitutions found at the point of the cut.

• ’$call’/1
’$call’(Goal) is true if and only if Goal represents a goal which is
true. It is not opaque to cut.
Template: call(+callable term)

• halt/0
halt terminates a Prolog demonstration, exiting the Prolog processor
and returning to the system that invoked the processor.

• halt/1
halt(X) terminates a Prolog demonstration, exiting the Prolog pro-
cessor and returning to the systems that invoked the processor passing
the value of X as a message.
Template: halt(+int)

16

4.4.2 Term Unification and Management

• is/2
is(X, Y) is true iff X is unifiable with the value of the expression Y.
Template: is(?term, @evaluable)

• ’=’/2
’=’(X, Y) is true iff X and Y are unifiable.
Template: ’=’(?term, ?term)

• ’\=’/2
’\=’(X, Y) is true iff X and Y are not unifiable.
Template: ’\=’(?term, ?term)

• ’$tolist’/2
’$tolist’(Compound, List) is true if Compound is a compound term,
and in this case List is list representation of the compound, with the
name as first element and all the arguments as other elements.
Template: ’$tolist’(@struct, -list)

• ’$fromlist’/2
’$fromlist’(Compound, List) is true if Compound unifies with the
list representation of List.
Template: ’$fromlist’(-struct, @list)

• copy term/2
copy term(Term1, Term2) is true iff Term2 unifies with the a renamed
copy of Term1.
Template: copy term(?term, ?term)

• ’$append’/2
’$append’(Element, List) is true if List is a list, with the side
effect that the Element is appended to the list.
Template: ’$append’(+term, @list)

4.4.3 Knowledge-base management

• ’$find’/2
’$find’(Clause, ClauseList) is true if ClauseList is a list, and
Clause is a clause, with the side effect that all the clauses of the
database matching Clause are appended to the list.
Template: ’$find’(@clause, @list)

17

• abolish/1
abolish(PI) completely wipes out the dynamic predicate matching
the predicate indicator PI.
Template: abolish(@term)

• asserta/1
asserta(Clause) is true, with the side effect that the clause Clause
is added to the beginning of database.
Template: asserta(@clause)

• assertz/1
assertz(Clause) is true, with the side effect that the clause Clause
is added to the end of the database.
Template: assertz(@clause)

• ’$retract’/1
’$retract’(Clause) is true if the database contains at least one
clause unifying with Clause. As a side effect, the clause is removed
from the database. It is not re-executable.
Template: ’$retract’(@clause)

4.4.4 Operators and Flags Management

• op/3
op(Priority, Specifier, Operator) is true. It always succeeds,
modifying the operator table as a side effect. If Priority is 0, then
Operator is removed from the operator table; else, Operator is added
to the operator table, with priority (lower binds tighter) Priority
and associativity determined by Specifier. If an operator with the
same Operator symbol and the same Specifier already exists in the
operator table, the predicate modifies its priority according to the
specified Priority argument.
Template: op(+integer, +specifier, @atom or atom list)

• flag list/1
flag list(FlagList) is true and FlagList is the list of the flags
currently defined in the engine.
Template: flag list(-list)

• set prolog flag/2
set prolog flag(Flag, Value) is true, and as a side effect associates
Value with the flag Flag, where Value is a value that is within the

18

implementation defined range of values for Flag.
Template: set prolog flag(+flag, @nonvar)

• get prolog flag/2
get prolog flag(Flag, Value) is true iff Flag is a flag supported by
the engine and Value is the value currently associated with it. Note
that get prolog flag/2 is not re-executable.
Template: get prolog flag(+flag, ?term)

4.4.5 Libraries Management

• load library/1
load library(LibraryName) is true if LibraryName is the name of
a tuProlog library available for loading. As side effect, the specified
library is loaded by the engine. Actually LibraryName is the full name
of the Java class providing the library.
Template: load library(@string)

• unload library/1
unload library(LibraryName) is true if LibraryName is the name of
a library currently loaded in the engine. As side effect, the library is
unloaded from the engine. Actually LibraryName is the full name of
the Java class providing the library.
Template: unload library(@string)

4.4.6 Directives

Directives are used in Prolog text only as queries to be immediately executed
when loading it. When a corresponding predicate with the same procedure
name as a directive exists, they perform the same actions. Their arguments
will satisfy the same constraints as those required for an errorless execution
of the corresponding predicate, otherwise their behaviour is undefined.

In tuProlog, directives are not composable: each query must contain one
and only one directive. When you need to use multiple directives, you must
employ multiple queries as well.

• :- op/3
op(Priority, Specifier, Operator) adds Operator to the opera-
tor table, with priority (lower binds tighter) Priority and associativ-
ity determined by Specifier.
Template: op(+integer, +specifier, @atom or atom list)

19

• :- flag/4
flag(FlagName, ValidValuesList, DefaultValue, IsModifiable)
adds to the engine a new flag, identified by the FlagName name,
which can assume only the values listed in ValidValuesList with
DefaultValue as default value, and that can be modified if IsModifiable
is true.
Template: flag(@string, @list, @term, @true, false)

• :- initialization/1
initialization(Goal) sets the starting goal to be executed just after
the theory has been consulted.
Template: initialization(@goal)

• :- solve/1
Synonym for initialization/1.
Template: solve(@goal)

• :- load library/1
load library(LibraryName) is a valid directive if true if LibraryName
is the name of a tuProlog library available for loading. This directive
loads the specified library in the engine. Actually LibraryName is the
full name of the Java class providing the library.
Template: load library(@string)

• :- consult/1
consult(Filename) loads immediately the theory contained in the file
specified by Filename.
Template: consult(@string)

20

Chapter 5

tuProlog Libraries

Libraries are the means by which tuProlog achieves its fundamental charac-
teristics of minimality and configurability. The engine is by design choice a
minimal, purely-inferential core: as such, it only includes a few built-in pred-
icates, intended as predicates statically defined inside the core, to establish
the foundation which the mechanisms of the engine are based on. Instead,
each and every other piece of functionality, in the form of predicates, func-
tors, flags and operators, is delivered by libraries, and can be added to or
subtracted from the engine at any time. Thus, a tuProlog engine can be
dynamically extended by loading (and unloading) any number of libraries.
Each library can provide a specific set of predicates, functors and a related
theory, which can be used to define new flags and operators. Besides built-in
and library predicates, new functionalities can also be added to an engine
by feeding it with a user-defined Prolog theory.

Libraries can be loaded at any time in the tuProlog engine, both from
the Java side, by means of the loadLibrary method of the Prolog ob-
ject representing a tuProlog engine, and from the Prolog side, using the
load library/1 predicate. For example, suppose you want to exploit some
features defined in a library whose name is ExampleLibrary. If, on the
Java side, you want to load the library immediately afterwards building a
tuProlog engine, you would write the following code, using the fully qualified
Java class name for the library:

Prolog engine = new Prolog();
try {

engine.loadLibrary("com.example.ExampleLibrary");
} catch (InvalidLibraryException e) {
}

21

If, on the other hand, you just want to load the library on the Prolog side
for those clauses which actually make use of its predicates, you would write
the following code, using just the name of the library, which can be different
from its fully qualified class name:

% println/1 is defined in ExampleLibrary
run_test(Test, Result) :- run(Test, Result),

load_library("ExampleLibrary"),
println(Result).

Correspondingly, means for unloading libraries are provided, in the form
of the unloadLibrary method of the Prolog class on the Java side, and
the unload library/1 predicate on the Prolog side. It must be noted that
predicates for loading or unloading libraries are also available in the form
of directives: they perform the same actions, but as directives they are
immediately executed when the Prolog text containing them is feeded to
the engine.

Since the core comes as a pure inferential engine, tuProlog includes in
its distribution some standard libraries which are loaded by default into
the engine at construction time. While it is possible to create an engine
with no default libraries preloaded, those standard libraries provide the fun-
damental bricks of a Prolog engine, in the form of basic functionalities,
ISO compliant predicates and evaluable functors, I/O predicates and pred-
icates for interoperability and integration between Java and Prolog. More
user-defined libraries can be then loaded or unloaded, thus exploiting the
dynamic configurability of tuProlog engines which can be reconfigured on
the fly enriching or reducing the set of available functionalities by need.

The standard libraries are:

BasicLibrary (class alice.tuprolog.lib.BasicLibrary) — provides com-
mon Prolog predicates and functors, and operators. No I/O predicates
are included.

DCGLibrary (class alice.tuprolog.lib.DCGLibrary) — provides sup-
port for Definite Clause Grammar, an extension of context free gram-
mars used for describing natural and formal languages.

IOLibrary (class alice.tuprolog.lib.IOLibrary) — provides some ba-
sic and classic I/O predicates.

ISOLibrary (class alice.tuprolog.lib.ISOLibrary) — provides pred-
icates and functors that are part of the built-in section in the ISO
standard [?], and are not provided by previous libraries.

22

JavaLibrary (class alice.tuprolog.lib.JavaLibrary) — provides pred-
icates and functors to create, access and deploy (existent or new) Java
resources, like objects and classes.

The description of each library is provided by discussing in the order: pred-
icates, functors, operators and flags defined by the library. For each library
the dependencies with other libraries are specified: that is, which other li-
braries are required in order to provide the correct computational behaviour.

5.1 BasicLibrary

Library Dependencies: none.
This library provides common Prolog built-in predicates, functors, and

operators. No I/O predicates are included.
Please note that in the following string means a single or double quoted

string, as detailed in Chapter 4; expr means an evaluable expression, that
is a term that can be interpreted as a value by some library functors.

5.1.1 Predicates

Here follows a list of predicates implemented by this library, grouped by
category.

Type Testing

• constant/1
constant(X) is true iff X is a constant value.
Template: constant(@term)

• number/1
number(X) is true iff X is an integer or a float.
Template: number(@term)

• integer/1
integer(X) is true iff X is an integer.
Template: integer(@term)

• float/1
float(X) is true iff X is an float.
Template: float(@term)

23

• atom/1
atom(X) is true iff X is an atom.
Template: atom(@term)

• compound/1
compound(X) is true iff X is a compound term, that is neither atomic
nor a variable.
Template: compound(@term)

• var/1
var(X) is true iff X is a variable.
Template: var(@term)

• nonvar/1
nonvar(X) is true iff X is not a variable.
Template: nonvar(@term)

• atomic/1
atomic(X) is true iff X is atomic (that is is an atom, an integer or a
float).
Template: atomic(@term)

• ground/1
ground(X) is true iff X is a ground term.
Template: ground(@term)

• list/1
list(X) is true iff X is a list.
Template: list(@term)

Term Creation, Decomposition and Unification

• ’=..’/2 : univ
’=..’(Term, List) is true if List is a list consisting of the functor
and all arguments of Term, in order.
Template: ’=..’(?term, ?list)

• functor/3
functor(Term, Functor, Arity) is true if the term Term is a com-
pound term, Functor is its functor, and Arity (an integer) is its arity;
or if Term is an atom or number equal to Functor and Arity is 0.
Template: functor(?term, ?term, ?integer)

24

• arg/3
arg(N, Term, Arg) is true if Arg is the Nth arguments of Term (count-
ing from 1).
Template: arg(@integer, @compound, -term)

• text term/2
text term(Text, Term) is true iff Text is the text representation of
the term Term.
Template: text term(?text, ?term)

• text concat/3
text concat(TextSource1, TextSource2, TextDest) is true iff TextDest
is the text resulting by appending the text TestSource2 to TextSource1˙
Template: text concat(@string, @string, -string)

• num atom/2
num atom(Number, Atom) succeeds iff Atom is the atom representation
of the number Number
Template: number codes(+number, ?atom)
Template: number codes(?number, +atom)

Occurs Check

When the process of unification takes place between a variable S and a
term T , the first thing a Prolog engine should do before proceeding is to
check that T does not contain any occurences of S. This test is known as
occurs check [?] and is necessary to prevent the unification of terms such
as s(X) and X, for which no finite common instance exists. Most Prolog
implementations omit the occurs check from their unification algorithm for
reasons related to speed and efficiency: tuProlog is no exception. However,
they provide a predicate for occurs check augmented unification, to be used
when the programmer wants to never incur on an error or an undefined
result during the process.

• unify with occurs check/2
unify with occurs check(X, Y) is true iff X and Y are unifiable.
Template: unify with occurs check(?term, ?term)

Expression and Term Comparison

• expression comparison (generic template: pred(@expr, @expr)):
’=:=’, ’=\=’, ’>’, ’<’, ’>=’, ’=<’;

25

• term comparison (generic template: pred(@term, @term)):
’==’, ’\==’, ’@>’, ’@<’, ’@>=’, ’@=<’.

Finding Solutions

• findall/3
findall(Template, Goal, List) is true if and only if List unifies
with the list of values to which a variable X not occurring in Template
or Goal would be instantiated by successive re-executions of
call(Goal), X = Template
after systematic replacement of all variables in X by new variables.
Template: findall(?term, +callable term, ?list)

• bagof/3
bagof(Template, Goal, Instances) is true if Instances is a non-
empty list of all terms such that each unifies with Template for a
fixed instance W of the variables of Goal that are free with respect to
Template. The ordering of the elements of Instances is the order in
which the solutions are found.
Template: bagof(?term, +callable term, ?list)

• setof/3
setof(Template, Goal, List) is true if List is a sorted non-empty
list of all terms that each unifies with Template for a fixed instance
W of the variables of Goal that are free with respect to Template.
Template: setof(?term, +callable term, ?list)

Control Management

• (->)/2 : if-then
’->’(If, Then) is true if and only if If is true and Then is true for
the first solution of If.

• (;)/2 : if-then-else
’;’(Either, Or) is true iff either Either or Or is true.

• call/1
call(Goal) is true if and only if Goal represents a goal which is true.
It is opaque to cut.
Template: call(+callable term)

26

• once/1
once(Goal) finds exactly one solution to Goal. It is equivalent to
call((Goal, !)) and is opaque to cuts.
Template: once(@goal)

• repeat/0
Whenever backtracking reaches repeat, execution proceeds forward
again through the same clauses as if another alternative has been
found.
Template: repeat

• ’\+’/1 : not provable
’\+’(Goal) is the negation predicate and is opaque to cuts. That is,
’\+’(Goal) is like call(Goal) except that its success or failure is the
opposite.
Template: ’\+’(@goal)

• not/1
The predicate not/1 has the same semantics and implementation as
the predicate \+/1.
Template: not(@goal)

Clause Retrival, Creation and Destruction

Every Prolog engine lets programmers modify its logic database during ex-
ecution by adding or deleting specific clauses. The ISO standard [?] dis-
tinguishes between static and dynamic predicates: only the latter can be
modified by asserting or retracting clauses. While typically the dynamic/1
directive is used to indicate whenever a user-defined predicate is dynami-
cally modifiable, tuProlog engines work differently, establishing two default
behaviors: library predicates are always of a static kind; every other user-
defined predicate is dynamic and modifiable at runtime. The following
list contains library predicates used to manipulate the knowledge base of
a tuProlog engine during execution.

• clause/2
clause(Head, Body) is true iff Head matches the head of a dynamic
predicate, and Body matches its body. The body of a fact is considered
to be true. Head must be at least partly instantiated.
Template: clause(@term, -term)

27

• assert/1
assert(Clause) is true and adds Clause to the end of the database.
Template: assert(@term)

• retract/1
retract(Clause) removes from the knowledge base a dynamic clause
that matches Clause (which must be at least partially instantiated).
Gives multiple solutions upon backtracking.
Template: retract(@term)

• retractall/1
retractall(Clause) removes from the knowledge base all the dy-
namic clauses matching with Clause (which must be at least partially
instantiated).
Template: retractall(@term)

Operator Management

• current op/3
current op(Priority, Type, Name) is true iff Priority is an inte-
ger in the range

0, 1200

, Type is one of the fx, xfy, yfx, xfx values and Name is an atom, and
as side effect it adds a new operator to the engine operator list.
Template: current op(?integer, ?term, ?atom)

Flag Management

• current prolog flag/3
current prolog flag(Flag,Value) is true if the value of the flag
Flag is Value
Template: current prolog flag(?atom,?term)

Actions on Theories and Engines

• set theory/1
set theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of setting it as
the new theory of the engine.
Template: set theory(@string)

28

• add theory/1
add theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of appending it
to the current theory of the engine.
Template: add theory(@string)

• get theory/1
get theory(TheoryText) is true, and TheoryText is the text repre-
sentation of the current theory of the engine.
Template: get theory(-string)

• agent/1
agent(TheoryText) is true, and spawns a tuProlog agent with the
knowledge base provided as a Prolog textual form in TheoryText (the
goal is described in the knowledge base).
Template: agent(@string)

• agent/2
agent(TheoryText, Goal) is true, and spawn a tuProlog agent with
the knowledge base provided as a Prolog textual form in TheoryText,
and solving the query Goal as a goal.
Template: agent(@string, @term)

Spy Events

During each demonstration, the engine notifies to interested listeners so-
called spy events, containing informations on its internal state, such as the
current subgoal being evaluated, the configuration of the execution stack
and the available choice points. The different kinds of spy events currently
corresponds to the different states which the virtual machine realizing the
tuProlog’s inferential core can be found into. Init events are spawned when-
ever the machine initialize a subgoal for execution; Call events are generated
when a choice must be made for the next subgoal to be executed; Eval events
represent actual subgoal evaluation; finally, Back events are notified when
a backtracking occurs during the demonstration process.

• spy/0
spy is true and enables the notification of spy events occurring inside
the engine.
Template: spy

29

• nospy/0
nospy is true and disables the notification of the spy events inside the
engine.
Template: nospy

Auxiliary predicates

The following predicates are provided by the library’s theory.

• member/2
member(Element, List) is true iff Element is an element of the list
List
Template: member(?term, +list)

• length/2
length(List, NumberOfElements) is true in three different cases: (1)
if List is instantiated to a list of determinate length, then Length will
be unified with this length; (2) if List is of indeterminate length and
Length is instantiated to an integer, then List will be unified with a
list of length Length and in such a case the list elements are unique
variables; (3) if Length is unbound then Length will be unified with
all possible lengths of List.
Template: member(?list, ?integer)

• append/3
append(What, To, Target) is true iff Target list can be obtained by
appending the To list to the What list
Template: append(?list, ?list, ?list)

• reverse/2
reverse(List, ReversedList) is true iff ReversedList is the re-
verse list of List
Template: reverse(+list, -list)

• delete/3
delete(Element, ListSource, ListDest) is true iff ListDest list
can be obtained by removing the element Element from the list ListSource.
Template: delete(@term, +list, -list)

• element/3
element(Position, List, Element) is true iff Element is the Positionth
element of the list List (starting the count from 1).
Template: element(@integer, +list, -term)

30

• quicksort/3
quicksort(List, ComparisonPredicate, SortedList) is true iff SortedList
is the list List sorted by the comparison predicate ComparisonPredicate.
Template: element(@list, @pred, -list)

5.1.2 Functors

Functors for expression evaluation (with usual semantics):

• unary: +, -, ~, +

• binary: +, -, *, \, **, <<, >>, /\, \/

5.1.3 Operators

31

Name Assoc. Prio.

:- fx 1200
:- xfx 1200
?- fx 1200
; xfy 1100
-> xfy 1050
, xfy 1000
not fy 900
\+ fy 900
= xfx 700
\= xfx 700
== xfx 700
\== xfx 700
@> xfx 700
@< xfx 700
@=< xfx 700
@>= xfx 700
=:= xfx 700
=\= xfx 700
> xfx 700
< xfx 700
>= xfx 700
=< xfx 700
is xfx 700
=.. xfx 700
+ yfx 500
- yfx 500
/\ yfx 500
\/ yfx 500
∗ yfx 400
/ yfx 400
// yfx 400
>> yfx 400
<< yfx 400
>> yfx 400
∗∗ xfx 200
^ xfy 200
\\ fx 200
- fy 200

32

5.2 ISOLibrary

Library Dependencies: BasicLibrary.
This library contains almost1 all the built-in predicates and functors that

are part of the ISO standard and that are not part directly of the tuProlog
core engine or other core libraries. Moreover, some features are added, not
currently ISO, such as the support for definite clause grammars (DCGs).

5.2.1 Predicates

Here follows a list of predicates implemented by this library, grouped by
category.

Type Testing

• bound/1
bound(Term) is a synonym for the ground/1 predicate defined in Ba-
sicLibrary.
Template: bound(+term)

• unbound/1
unbound(Term) is true iff Term is not a ground term.
Template: unbound(+term)

Atoms Processing

• atom length/2
atom length(Atom, Length) is true iff the integer Length equals the
number of characters in the name of atom Atom.
Template: atom length(+atom, ?integer)

• atom concat/3
atom concat(Start, End, Whole) is true iff the Whole is the atom
obtained by concatenating the characters of End to those of First.
If Whole is instantiated, then all decompositions of Whole can be ob-
tained by backtracking.
Template: atom concat(?atom, ?atom, +atom)
Template: atom concat(+atom, +atom, -atom)

1Currently ISO exceptions, ISO I/O predicates and some ISO directives are not sup-
ported.

33

• sub atom/5
sub atom(Atom, Before, Length, After, SubAtom) is true iff SubAtom
is the sub atom of Atom of length Length that appears with Before
characters preceding it and After characters following. It is re-executable.
Template: sub atom(+atom, ?integer, ?integer, ?integer, ?atom)

• atom chars/2
atom chars(Atom,List) succeeds iff List is a list whose elements are
the one character atoms that in order make up Atom.
Template: atom chars(+atom, ?character list)
Template: atom chars(-atom, ?character list)

• atom codes/2
atom codes(Atom, List) succeeds iff List is a list whose elements
are the character codes that in order correspond to the characters
that make up Atom.
Template: atom codes(+atom, ?character code list)
Template: atom chars(-atom, ?character code list)

• char code/2
char code(Char, Code) succeeds iff Code is a the character code that
corresponds to the character Char.
Template: char code(+character, ?character code)
Template: char code(-character, +character code)

• number chars/2
number chars(Number, List) succeeds iff List is a list whose ele-
ments are the one character atoms that in order make up Number.
Template: number chars(+number, ?character list)
Template: number chars(-number, ?character list)

• number codes/2
number codes(Number, List) succeeds iff List is a list whose ele-
ments are the codes for the one character atoms that in order make
up Number.
Template: number codes(+number,?character code list)
Template: number codes(-number,?character code list)

5.2.2 Functors

• Trigonometric functions: sin(+expr), cos(+expr), atan(+expr).

34

• Logarithmic functions: exp(+expr), log(+expr), sqrt(+expr).

• Absolute value functions: abs(+expr), sign(+Expr).

• Rounding functions: floor(+expr), ceiling(+expr), round(+expr),
truncate(+expr), float(+expr), float integer part(+expr), float fractional part(+expr).

• Integer division functions: div(+expr, +expr), mod(+expr, +expr),
rem(+expr, +expr).

5.2.3 Operators

Name Assoc. Prio.
mod yfx 400
div yfx 300
rem yfx 300
sin fx 200
cos fx 200
sqrt fx 200
atan fx 200
exp fx 200
log fx 200

35

5.2.4 Flags

Flag Name Possible Values Default Value

bounded true true
max integer 2147483647 2147483647
min integer -2147483648 -2147483648
integer rounding function down down
char conversion off off
debug off off
max arity 2147483647 2147483647
undefined predicates fail fail
double quotes atom atom

5.3 DCGLibrary

Library Dependencies: BasicLibrary.
This library provides support for Definite Clause Grammar [?], also

known as DCG,2 an extension of context free grammars that have proven
useful for describing natural and formal languages, and that may be con-
veniently expressed and executed in Prolog. Note that this library is not
loaded by default when a tuProlog engine is created.

A Definite Clause Grammar rule has the general form:

Head --> Body

with the declarative interpretation that a possible form for Head is Body. A
non-terminal symbol may be any term other than a variable or a number.
A terminal symbol may be any term. In order to distinguish terminals from
nonterminals, a sequence of one or more terminal symbols is written within
a grammar rule as a Prolog list, with the empty sequence written as the
empty list []. The body can contain also executable blocks – interpreted
according to normal Prolog rule – enclosed by the { and } parenthesis. A
simple example of DCG follows:

2The DCG formalism is not defined as an ISO standard at the time of writing this
document.

36

sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb, noun_phrase.
noun_phrase --> [charles].
noun_phrase --> [linda].
verb --> [loves].

So, you can verify that a phrase is correct according to the grammar simply
by the query:

?- phrase(sentence, [charles, loves, linda]).

But also:

?- phrase(sentence, [Who, loves, linda]).

which would give, according to the grammar, two solutions, Who bound to
charles, and Who bound to linda.

5.3.1 Predicates

The classic built-in predicates provided for parsing DCG sentences are:

• phrase/2
phrase(Category, List) is true iff the list List can be parsed as
a phrase (i.e. sequence of terminals) of type Category. Category
can be any term which would be accepted as a nonterminal of the
grammar (or in general, it can be any grammar rule body), and must
be instantiated to a non-variable term at the time of the call. This
predicate is the usual way to commence execution of grammar rules.
If List is bound to a list of terminals by the time of the call, then
the goal corresponds to parsing List as a phrase of type Category;
otherwise if List is unbound, then the grammar is being used for
generation.
Template: phrase(+term, ?list)

• phrase/3
phrase(Category, List, Rest) is true iff the segment between the
start of list List and the start of list Rest can be parsed as a phrase
(i.e. sequence of terminals) of type Category. In other words, if the
search for phrase Phrase is started at the beginning of list List, then
Rest is what remains unparsed after Category has been found. Again,
Category can be any term which would be accepted as a nonterminal

37

of the grammar (or in general, any grammar rule body), and must be
instantiated to a non variable term at the time of the call.
Template: phrase(+term, ?list, ?rest)

5.3.2 Operators

Name Assoc. Prio.
--> xfx 1200

5.4 IOLibrary

Library Dependencies: BasicLibrary.
The IOLibrary defines classic Prolog built-ins predicates to enable inter-

action between Prolog programs and external resources, typically files and
I/O channels.

5.4.1 Predicates

Here follows a list of predicates implemented by this library, grouped by
category.

General I/O

• see/1
see(StreamName) is used to create/open an input stream; the predi-
cate is true iff StreamName is a string representing the name of a file to
be created or accessed as input stream, or the string stdin selecting
current standard input as input stream.
Template: see(@atom)

• seen/0
seen is used to close the input stream previously opened; the predicate
is true iff the closing action is possible.
Template: seen

• seeing/1
seeing(StreamName) is true iff StreamName is the name of the stream

38

currently used as input stream.
Template: seeing(?term)

• tell/1
tell(StreamName) is used to create/open an output stream; the pred-
icate is true iff StreamName is a string representing the name of a file
to be created or accessed as output stream, or the string stdout se-
lecting current standard output as output stream.
Template: tell(@atom)

• told/0
told is used to close the output stream previously opened; the predi-
cate is true iff the closing action is possible.
Template: told

• telling/1
telling(StreamName) is true iff StreamName is the name of the stream
currently used as input stream.
Template: telling(?term)

• put/1
put(Char) puts the character Char on current output stream; it is
true iff the operation is possible.
Template: put(@char)

• get0/1
get0(Value) is true iff Value is the next character (whose code can
span on the entire ASCII codes) available from the input stream, or -1
if no characters are available; as a side effect the character is removed
from the input stream.
Template: get0(?charOrMinusOne)

• get/1
get(Value) is true iff Value is the next character (whose code can
span on the range 32..255 as ASCII codes) available from the input
stream, or -1 if no characters are available; as a side effect the character
(with all the characters that precede this one not in the range 32..255)
is removed from the input stream.
Template: get(?charOrMinusOne)

• tab/1
tab(NumSpaces) inserts NumSpaces space characters (ASCII code 32)

39

on output stream; the predicate is true iff the operation is possible.
Template: tab(+integer)

• read/1
read(Term) is true iff Term is Prolog term available from the input
stream. The term must ends with the . character; if no valid terms
are available, the predicate fails. As a side effect, the term is removed
from the input stream.
Template: read(?term)

• write/1
write(Term) writes the term Term on current output stream. The
predicate fails if the operation is not possible.
Template: write(@term)

• print/1
print(Term) writes the term Term on current output stream, removing
apices if the term is an atom representing a string. The predicate fails
if the operation is not possible.
Template: print(@term)

• nl/0
nl writes a new line control character on current output stream. The
predicate fails if the operation is not possible.
Template: nl

I/O and Theories Helpers

• text from file/2
text from file(File, Text) is true iff Text is the text contained in
the file whose name is File.
Template: text from file(+string, -string)

• agent file/1
agent file(TheoryFileName) is true iff TheoryFileName is an acces-
sible file containing a Prolog knowledge base, and as a side effect it
spawns a tuProlog agent provided with that knowledge base.
Template: agent file(+string)

• solve file/2
solve file(TheoryFileName, Goal) is true iff TheoryFileName is
an accessible file containing a Prolog knowledge base, and as a side

40

effect it solves the query Goal according to that knowledge base.
Template: solve file(+string, +goal)

• consult/1
consult(TheoryFileName) is true iff TheoryFileName is an accessible
file containing a Prolog knowledge base, and as a side effect it consult
that knowledge base, by adding it to current knowledge base.
Template: consult(+string)

Random Generation of Numbers

The random generation of number can be regarded as a form of I/O.

• rand float/1
rand float(RandomFloat) is true iff RandomFloat is a float random
number generated by the engine between 0 and 1.
Template: rand float(?float)

• rand int/2
rand int(Seed, RandomInteger) is true iff RandomInteger is an in-
teger random number generated by the engine between 0 and Seed.
Template: rand int(?integer, @integer)

41

Chapter 6

Accessing Java from tuProlog

One of the main advantages of tuProlog open architecture is that any Java
component can be directly accessed and used from Prolog, in a simple and
effective way, by means of the JavaLibrary library: this delivers all the
power of existing Java components and packages to tuProlog sources. In
this way, all Java packages involving interaction (such as Swing, JDBC, the
socket package, RMI) are immediately available to increase the interaction
abilities of tuProlog: “one library for all libraries” is the basic motto.

6.1 Mapping data structures

Complete bi-directional mapping is provided between Java primitive types
and tuProlog data types. By default, tuProlog integers are mapped into
Java int or long as appropriate, while byte and short types are mapped
into tuProlog’s Int instances. Only Java double numbers are used to map
tuProlog reals, but float values returned as result of method invocations
or field accesses are handled properly anyway, without any loss of informa-
tion. Boolean Java values are mapped into specific tuProlog Term constants.
Java chars are mapped into Prolog atoms, but atoms are mapped into Java
Strings by default. The any variable () can be used to specify the Java
null value.

6.2 General predicates description

The library offers the following predicates:

(i) the java object/3 predicate is used to create a new Java object of
the specified class, according to the syntax:

42

Table 6.1: Class used to explain JavaLibrary built-in behaviour.

// a sample Java class (a counter)
public class Counter {

public String name;
private long value = 0;

public Counter(){}
public Counter(String aName){ name=aName; }

public void setValue(long val){ value=val; }
public long getValue() { return value; }
public void inc() { value++; }

static public String getVersion() { return "1.0"; }
}

java object(ClassName, ArgumentList, ObjectRef)

ClassName is a Prolog atom bound to the name of the proper Java
class (e.g. ‘Counter’, ‘java.io.FileInputStream’), while the pa-
rameter ArgumentList is a Prolog list used to supply the required
arguments to the class constructor: the empty list matches the default
constructor. Also Java arrays can be instantiated, by appending [] at
the end of the ClassName string. The reference to the newly-created
object is bound to ObjectRef , which is typically a ground Prolog
term; alternatively, an unbound term may be used, in which case the
term is bound to an automatically-generated Prolog atom ’$obj-N ’,
where N is a progressive integer. In both cases, these atoms are in-
terpreted as object references – and therefore used to operate on the
Java object from Prolog – only in the context of JavaLibrary’s pred-
icates. The predicate fails whenever ClassName does not identify a
valid Java class, or the constructor does not exists, or arguments in
ArgumentList are not ground, or ObjectRef already identifies an ob-
ject in the system.

According to the default behaviour of java object, when a ground
term is bound to a Java object by means of the predicate, the binding
is kept for the full time of the demonstration (even in the case of

43

backtracking). This behaviour can be changed, getting the bindings
created by the java object undone by backtracking, by changing the
value of the flag java object backtrackable to true (the default is
false).

(ii) the <-/2 predicate is used to invoke a method on a Java object ac-
cording to a send-message pattern:

ObjectRef <- MethodName (Arguments)

ObjectRef <- MethodName (Arguments) returns Term

ObjectRef is an atom interpreted as a Java object reference as ex-
plained above, while MethodName is the Java name of the method to
be invoked, along with its Arguments . The returns keyword is used
to retrieve the value returned from non-void Java methods and bind it
to a Prolog term: if the type of the returned value can be mapped onto
a primitive Prolog data type (a number or a string), Term is unified
with the corresponding Prolog value; if, instead, it is a Java object
other than the ones above, Term is handled as ObjectRef in the case
of java object/3. Static methods can be invoked using the compound
term class(ClassName) in the place of ObjectRef . If MethodName
does not identify a valid method for the object (class), or arguments
in ArgumentList are not valid (because of a wrong signature or not
ground values) the predicate fails.

(iii) the . infix operator is used, in conjunction with the set / get pseudo-
method pair, to access the public fields of a Java object. The syntax
is based on the following constructs:

ObjectRef . Field <- set(GroundTerm)
ObjectRef . Field <- get(Term)

As usual, ObjectRef is the Prolog identifier for a Java object. The
first construct set the public field Field to the specified GroundTerm ,
which may be either a value of a primitive data type, or a reference
to an existing object: if GroundTerm is not ground, the infix predi-
cate fails. The second construct retrieves the value of the public field
Field , where Term is handled once again as ObjectRef in the case
of java object/3. As for methods, static fields of classes can be ac-
cessed using the compound term class(ClassName) in the place of

44

ObjectRef . Some helper predicates are provided to access Java array
elements:
java array set(ArrayRef,Index,Object)
java array set Basic Type(ArrayRef,Index,Value)
to set elements,
java array get(ArrayRef,Index,Object)
java array get Basic Type(ArrayRef,Index,Value)
to get elements,
java array length(ArrayObject,Size) to get the array length.
It is worth to point out that the set and get formal pseudo-methods
above are not methods of some class, but just part of the construct of
the . infix operator, according to a JavaBeans-like approach.

(iv) the as infix operator is used to explicitly specify (i.e., cast) method
argument types:

ObjectRef as ClassName

By writing so, the object represented by ObjectRef is considered to
belong to class Classname : both ObjectRef and Classname have
the usual meaning explained above. The operator works also with
primitive Java types, specified as Classname (for instance, myNumber
as int). The purpose of this predicate is both to provide methods
with the exact Java types required, and to solve possible overloading
conflicts a-priori.

(v) The java class/4 predicate makes it possible to create and load a new
Java class from a source text provided as an argument, thus supporting
dynamic compilation of Java classes:

java class(SourceText, FullClassName, ClassPathList,
ObjectRef)

SourceText is a string representing the text source of the Java class,
FullClassName is the full Java class name, and ClassPathList is
a (possibly empty) Prolog list of class paths that may be required
for a successful dynamic compilation of this class. ObjectRef is a
reference to an instance of the class java.lang.Class that represents
the newly-created class. The predicate fails whenever SourceText

contains errors, or the class cannot be located in the package hierarchy
as specified, or ObjectRef already identifies an object in the system.

45

Generally, exceptions thrown by method or constructor calls cannot be ex-
plicitly managed and cause the failure of the related predicate.

To taste the flavour of JavaLibrary, let us consider the example below
(refer to Table 6.1 for Counter class definition):

?- java_object(’Counter’,[’MyCounter’],myCounter),
myCounter <- setValue(5),
myCounter <- inc,
myCounter <- getValue returns Value,
write(X),

class(’Counter’) <- getVersion return Version,

myCounter.name <- get(Name),
class(’java.lang.System’) . out <- get(Out),
Out <- println(Name),

myCounter.name <- set(’MyCounter2’),

java_object(’Counter[]’,[10],ArrayCounters),
java_array_set(ArrayCounters,0,myCounter).

Here, a Counter object is created providing the MyCounter name as con-
structor argument: the reference to the new object is bound to the Prolog
atom myCounter. This reference is then used for method invocation via the
<- operator, calling the setValue(5) method (which is void and therefore
returns nothing) first, incrementing the counter (no arguments are specified)
and invoking the getValue method just after. Since getValue returns an
integer value, the returns operator retrieves the method result (hopefully,
5) and binds it to the X Prolog variable, which is printed via the Prolog
write/1 predicate. Of course, if the Prolog variable X is already bound
to 5, the predicate succeeds as well, while fails if X is bound to anything
else. Then, the static method getVersion is called, retrieving the version
of the class Counter, and printed using the method println provided by
the static out field in the java.lang.System class. The name public field of
myCounter object is then accessed, setting the MyCounter2 value. Finally,
an array of 10 counters is created, and the myCounter object assigned to its
first element.

The key point here is that the only requirement for this example to run is
the presence of the Counter.class file in the proper position in the file sys-
tem, according to Java naming conventions: no other auxiliary information
is needed – no headers, no pre-compilations, etc. This enables the seamless

46

Table 6.2: tuProlog Creating a Swing GUI. Note the Prolog value used to
represent the Java null value

% using a Swing component from a tuProlog program

test open file dialog(FileName) :-

java object(’javax.swing.JFileChooser’, [], Dialog),

Dialog <- showOpenDialog(),

Dialog <- getSelectedFile returns File,

File <- getName returns FileName.

reuse and exploitation of the large amount of available Java libraries and
resources, starting from the standard ones, such as Swing to manage GUI
components, JDBC to access databases, RMI and CORBA for distributed
computing, and so on. Table 6.2 shows an example, where Java Swing API
is exploited to graphically choose a file from Prolog: a Swing JFileChooser
dialog is instantiated and bound to the Prolog variable Dialog (a univocal
Prolog atom of the form ’$obj N’, to be used as the object reference, is
automatically generated and bounded to the variable) which is then used to
invoke methods showOpenDialog and getSelectedFile of JFileChooser’s
interface. Further examples about exploiting standard Java libraries from
tuProlog can be found in [?].

Besides the Prolog predicates, JavaLibrary embeds the register func-
tion, which, unlike the previous functionalities, is to be used on the Java
side. Its purpose is to associate an existing Java object obj to a Prolog
identifier ObjectRef , according to the syntax:

boolean register(Struct ObjectRef, Object obj) throws
InvalidObjectIdException;

ObjectRef is a ground term (otherwise an exception is raised) that repre-
sents the Java object obj in the context of JavaLibrary’s predicates: the
function returns false if the object represented by obj is already regis-
tered under a different ObjectRef . As an example of use, let us consider
the following case:1

Prolog core = new Prolog();
Library lib = core.loadLibrary("alice.tuprolog.lib.JavaLibrary");

1An explicit cast to tuprolog.lib.JavaLibrary is needed because loadLibrary re-
turns a reference to a generic Library, while the register primitive is defined in
JavaLibrary only.

47

((alice.tuprolog.lib.JavaLibrary)lib).register(new Struct("stdout"),
System.out);

Here, the Java object System.out is registered for use in tuProlog under the
name stdout. So, within the scope of the core engine, a Prolog program
can now contain

stdout <- println(’What a nice message!’)

as if stdout was a pre-defined tuProlog identifier.

6.3 Predicates

Here follows a list of predicates implemented by this library, grouped in
categories corresponding to the functionalities they provide.

6.3.1 Method Invocation, Object and Class Creation

• java object/3
java object(ClassName, ArgList, ObjId) is true iff ClassName is
the full class name of a Java class available on the local file system,
ArgList is a list of arguments that can be meaningfully used to in-
stantiate an object of the class, and ObjId can be used to reference
such an object; as a side effect, the Java object is created and the
reference to it is unified with ObjId. It is worth noting that ObjId
can be a Prolog variable (that will be bound to a ground term) as well
as a ground term (not a number). According to the value of the flag
java object retractable, the binding that is established between
the ObjId term and the Java object is not destroyed with backtrack-
ing (false value, default case) or destroyed (true value). Template:
java object(+full class name,+list,?obj id)

• java object bt/3
java object bt(ClassName, ArgList, ObjId) has the same behaviour
of java object/3 when the value of java object backtrackable is
true.
Template: java object bt(+full class name,+list,?obj id)

• java object nb/3
java object nb(ClassName, ArgList, ObjId) has the same behaviour
of java object/3 when the value of java object backtrackable is
false.
Template: java object nb(+full class name,+list,?obj id)

48

• destroy object/1
destroy object(ObjId) is true and as a side effect the binding be-
tween ObjId and a Java object, possibly established, by previous pred-
icates is destroyed.
Template: destroy object(@obj id)

• java class/4
java class(ClassSourceText, FullClassName, ClassPathList, ObjId)
is true iff ClassSouceText is a source string describing a valid Java
class declaration, a class whose full name is FullClassName, accord-
ing to the classes found in paths listed in ClassPathList, and ObjId
can be used as a meaningful reference for a java.lang.Class object
representing that class; as a side effect the described class is (possibly
created and) loaded and made available to the system.
Template: java class(@java source,@full class name,@list,?obj id)

• java call/3
java call(ObjId, MethodInfo, ObjIdResult) is true iff ObjId is
a ground term currently referencing a Java object, which provides a
method whose name is the functor name of the term MethodInfo and
possible arguments the arguments of MethodInfo as a compound, and
ObjIdResult can be used as a meaningful reference for the Java object
that the method possibly returns. As a side effect the method is called
on the Java object referenced by the ObjId and the object possibly
returned by the method invocation is referenced by the ObjIdResult
term. The anonymous variable used as argument in the MethodInfo
structure is interpreted as the Java null value.
Template: java call(@obj id,@method signature,?obj id)

• ’<-’/2
’<-’(ObjId, MethodInfo) is true iff ObjId is a ground term currently
referencing a Java object, which provides a method whose name is
the functor name of the term MethodInfo and possible arguments the
arguments of MethodInfo as a compound. As a side effect the method
is called on the Java object referenced by the ObjId. The anonymous
variable used as argument in the MethodInfo structure is interpreted
as the Java null value.
Template: ’<-’(@obj id,@method signature)

• return/2
return(’<-’(ObjId,MethodInfo),ObjIdResult) is true iff ObjId is

49

a ground term currently referencing a Java object, which provides a
method whose name is the functor name of the term MethodInfo and
possible arguments the arguments of MethodInfo as a compound, and
ObjIdResult can be used as a meaningful reference for the Java object
that the method possibly returns. As a side effect the method is called
on the Java object referenced by the ObjId and the object possibly
returned by the method invocation is referenced by the ObjIdResult
term. The anonymous variable used as argument in the MethodInfo
structure is interpreted as the Java null value.
It is worth noting that this predicate is equivalent to the java call
predicate.
Template: return(’<-’(@obj id,@method signature),?obj id)

6.3.2 Java Array Management

• java array set/3
java array set(ObjArrayId,Index,ObjId) is true iff ObjArrayId is
a ground term currently referencing a Java array object, Index is a
valid index for the array and ObjId is a ground term currently refer-
encing a Java object that could inserted as an element of the array
(according to Java type rules). As side effect, the object referenced
by ObjId is set in the array referenced by ObjArrayId in the po-
sition (starting from 0, following the Java convention) specified by
Index. The anonymous variable used as ObjId is interpreted as the
Java null value. This predicate can be used for arrays of Java ob-
jects: for arrays whose elements are Java primitive types (such as int,
float, etc.) the following predicates can be used, with the same se-
mantics of java array set but specifying directly the term to be set
as a tuProlog term (according to the mapping described previously):

java array set int(ObjArrayId,Index,Integer)
java array set short(ObjArrayId,Index,ShortInteger)
java array set long(ObjArrayId,Index,LongInteger)
java array set float(ObjArrayId,Index,Float)
java array set double(ObjArrayId,Index,Double)
java array set char(ObjArrayId,Index,Char)
java array set byte(ObjArrayId,Index,Byte)
java array set boolean(ObjArrayId,Index,Boolean)

Template: java array set(@obj id,@positive integer,+obj id)

• java array get/3

50

java array get(ObjArrayId, Index, ObjIdResult) is true iff ObjArrayId
is a ground term currently referencing a Java array object, Index is a
valid index for the array, and ObjIdResult can be used as a meaning-
ful reference for a Java object contained in the array. As a side effect,
ObjIdResult is unified with the reference to the Java object of the
array referenced by ObjArrayId in the Index position. This predicate
can be used for arrays of Java objects: for arrays whose elements are
Java primitive types (such as int, float, etc.) the following predi-
cates can be used, with the same semantics of java array get but
binding directly the array element to a tuProlog term (according to
the mapping described previously):

java array get int(ObjArrayId,Index,Integer)
java array get short(ObjArrayId,Index,ShortInteger)
java array get long(ObjArrayId,Index,LongInteger)
java array get float(ObjArrayId,Index,Float)
java array get double(ObjArrayId,Index,Double)
java array get char(ObjArrayId,Index,Char)
java array get byte(ObjArrayId,Index,Byte)
java array get boolean(ObjArrayId,Index,Boolean)

Template: java array get(@obj id,@positive integer,?obj id)

• java array length/2
java array length(ObjArrayId, ArrayLength) is true iff ArrayLength
is the length of the Java array referenced by the term ObjArrayId.
Template: java array length(@term,?integer)

6.3.3 Helper Predicates

• java object string/2
java object string(ObjId,String) is true iff ObjId is a term refer-
encing a Java object and PrologString is the string representation of
the object (according to the semantics of the toString method pro-
vided by the Java object).
Template: java object string(@obj id,?string)

6.4 Functors

No functors are provided by the JavaLibrary library.

51

6.5 Operators

Name Assoc. Prio.

<- xfx 800
returns xfx 850
as xfx 200
. xfx 600

6.6 Flags

Flag Name Possible Values Default Value

java object backtrackable true,false false

6.7 Java Library Examples

The following examples are designed to show JavaLibrary’s ease of use and
flexibility.

6.7.1 RMI Connection to a Remote Object

Here we connect via RMI to a remote Java object. In order to allow the
reader to try this example with no need of other objects, we connect to the
remote Java object identified by the name ’prolog’, which is an RMI server
bundled with the tuProlog package, and can be spawned by typing:

java -Djava.security.all=policy.all alice.tuprologx.runtime.rmi.Daemon

Then, we invoke the object method whose signature is
SolveInfo solve(String goal);

?- java_object(’java.rmi.RMISecurityManager’,[],Manager),
class(’java.lang.System’) <- setSecurityManager(Manager),
class(’java.rmi.Naming’) <- lookup(’prolog’) returns Engine,
Engine <- solve(’append([1],[2],X).’) returns SolInfo,
SolInfo <- success returns Ok,
SolInfo <- getSubstitution returns Sub,

52

Sub <- toString returns SubStr, write(SubStr), nl,
SolInfo <- getSolution returns Sol,
Sol <- toString returns SolStr, write(SolStr), nl.

The Java version of the same code would be:

System.setSecurityManager(new RMISecurityManager());
PrologRMI core=(PrologRMI)Naming.lookup("prolog");
SolveInfo info=core.solve("append([1],[2],X).");
boolean ok=info.success();
String sub=info.getSubstiturion();
System.out.println(sub);
String sol=info.getSolution();
System.out.println(sol);

6.7.2 Java Swing GUI from tuProlog

What about creating Java GUI components from the tuProlog environment?
Here is a little example, where a standard Java Swing open file dialog win-
dows is popped up:

open_file_dialog(FileName):-
java_object(’javax.swing.JFileChooser’, [], Dialog),
Dialog <- showOpenDialog(_) returns Result,
write(Result),
Dialog <- getSelectedFile returns File,
File <- getName returns FileName,
class(’java.lang.System’) . out <- get(Out),
Out <- println(’you want to open file ’),
Out <- println(FileName).

6.7.3 Database access via JDBC from tuProlog

This example shows how to access a database via the Java standard JDBC
interface from tuProlog. The program computes the minimum path between
two cities, fetching the required data from the database called ‘distances’.
The entry point of the Prolog program is the find path predicate.

find_path(From, To):-
init_dbase(’jdbc:odbc:distances’, Connection,’’,’’),
exec_query(Connection,
’SELECT city_from, city_to, distance FROM distances.txt’,
ResultSet),

assert_result(ResultSet),
findall(pa(Length,L), paths(From,To,L,Length), PathList),
current_prolog_flag(max_integer, Max),

53

min_path(PathList, pa(Max,_), pa(MinLength, MinList)),
outputResult(From, To, MinList, MinLength).

paths(A, B, List, Length):-
path(A, B, List, Length, []).

path(A, A, [], 0, _).
path(A, B, [City|Cities], Length, VisitedCities):-

distance(A, City, Length1),
not(member(City, VisitedCities)),
path(City, B, Cities, Length2, [City|VisitedCities]),
Length is Length1 + Length2.

min_path([], X, X) :- !.
min_path([pa(Length, List) | L], pa(MinLen, MinList), Res):-

Length < MinLen, !,
min_path(L, pa(Length,List), Res).

min_path([_|MorePaths], CurrentMinPath, Res) :-
min_path(MorePaths, CurrentMinPath, Res).

writeList([]) :- !.
writeList([X|L]) :- write(’,’), write(X), !, writeList(L).

outputResult(From, To, [], _) :- !,
write(’no path found from ’), write(From),
write(’ to ’), write(To), nl.

outputResult(From, To, MinList, MinLength) :-
write(’min path from ’), write(From),
write(’ to ’), write(To), write(’: ’),
write(From), writeList(MinList),
write(’ - length: ’), write(MinLength).

% Access to Database

init_dbase(DBase, Username, Password, Connection) :-
class(’java.lang.Class’) <- forName(’sun.jdbc.odbc.JdbcOdbcDriver’),
class(’java.sql.DriverManager’) <- getConnection(DBase, Username, Password)

returns Connection,
write(’[Database ’), write(DBase), write(’ connected]’), nl.

exec_query(Connection, Query, ResultSet):-
Connection <- createStatement returns Statement,
Statement <- executeQuery(Query) returns ResultSet,
write(’[query ’), write(Query), write(’ executed]’), nl.

54

Table 6.3: Predicate java class performing dynamic compilation of Java
code in tuProlog.

?- Source = ’public class Counter { ...}’,
java class(Source, ’Counter’,[], counterClass),

counterClass <- newInstance returns myCounter,

myCounter <- setValue(5),

myCounter <- getValue returns X,

write(X).

assert_result(ResultSet) :-
ResultSet <- next returns Valid, Valid == true, !,
ResultSet <- getString(’city_from’) returns From,
ResultSet <- getString(’city_to’) returns To,
ResultSet <- getInt(’distance’) returns Dist,
assert(distance(From, To, Dist)),
assert_result(ResultSet).

assert_result(_).

6.7.4 Dynamic compilation

As already said, the java class predicate performs dynamic compilation,
creating an instance of a Java Class class that represents the public class
declared in the source text provided as argument. The created Class in-
stance, referenced by a Prolog term, can be used to create instances via the
newInstance method, to retrieve specific constructors via the getConstructor
method, to analyze class methods and fields, and for other above-mentioned
meta-services: a sketch is reported in Table 6.3. The java class arguments
in the example specify, besides the source text and the binding variable, the
full class name (Counter), which is necessary to locate the class in the pack-
age hierarchy, and possibly a list of class paths required for a successful
compilation (if any).

Table 6.4 shows a more complex example, where a Java source is retrieved
via FTP and then exploited first to create a new (previously unknown)
class, and then a new instance of that class. (The FTP service is provided
by a shareware Java library.) Though a lot remains to explore, java class
features seem quite interesting: in perspective one might think, for instance,
of a Prolog intelligent agent that dynamically acquires information on a Java

55

Table 6.4: A new Java class is compiled and used after being retrieved via
FTP.

% A user whose name is ’myName’ and whose password is ’myPwd’ gets the content of the file

% ’Counter.java’ from the server whose IP address is ’srvAddr’, creates the corresponding

% Java class and exploits it to instantiate and deploy an object

test:-

get remote file(’alice/tuprolog/test’, ’Counter.java’, srvAddr, myName, myPwd, Content),

% creating the class

java class(Content, ’Counter’,[], CounterClass),

% instantiating (and using) an object of such a class

CounterClass <- newInstance returns MyCounter,

MyCounter <- setValue(303),

MyCounter <- inc,

MyCounter <- inc,

MyCounter <- getValue returns Value,

write(Value), nl.

% +DirName: Directory on the server where the file is located

% +FileName: Name of the file to be retrieved

% +FTPHost: IP address of the FTP server

% +FTPUser: User name of the FTP client

% +FTPPwd: Password of the FTP client

% -Content: Content of the retrieved file

get remote file(DirName, FileName, FTPHost, FTPUser, FTPPwd, Content):-

java object(’com.enterprisedt.net.ftp.FTPClient’, [FTPHost], Client), % get file

Client <- login(FTPUser, FTPPwd),

Client <- chdir(DirName),

Client <- get(FileName) returns Content,

Client <- quit.

56

resource, and then autonomously builds up, at run-time, the proper Java
machinery enabling efficient interaction with the resource.

57

Chapter 7

The IDE

The tuProlog system comes with a simple application providing an user
friendly integrated development environment to interact with a tuProlog
engine, manipulate its knowledge base, make queries and explore solutions.
In addition, means to dynamically manage the loading and unloading of
tuProlog libraries are provided. After a proper installation of the tuProlog
distribution, the application is spawned by launching the executable class
alice.tuprologx.ide.GUILauncher. The console user interface version,
providing a command-line shell, can be accessed by launching the executable
class alice.tuprologx.ide.CUIConsole.

The main window of the tuProlog IDE is shown in Figure 7.1. It is
divided in two sections:

• an editing area on the middle, providing means to edit the engine’s
current theory;

• a console on the bottom, providing means to ask queries and display
their solutions.

In the main window there also are: a toolbar at the top, providing
facilities to manage theories, such as load, save as well as create a new
theory, to load and unload libraries into and from the tuProlog engine, and
to view in a separate window the debug informations activated by means of
the spy/0 predicate; and a status bar at the very bottom, providing status
informations for the IDE and the engine.

58

Figure 7.1: tuProlog IDE.

59

7.1 Editing the theory

The editing area is subdivided in two logical panes. The first is a text area
where the theory can be edited. It provides some form of syntax highlighting
for comments, string and list literals, predefined predicates. Undo and Redo
actions are supported through the usual Ctrl+Z and Ctrl+Shift+Z key
bindings.

The second is a control area, where two buttons are provided to get the
text of the engine’s current theory into the edit area and to set the current
text contained in the editor pane as a new theory for the engine, and two
buttons are provided for mouse-clicking support of Undo and Redo actions.
An apposite action for restoring the content of the editor pane to the engine’s
current theory is needed because whenever that theory gets modified by
other means, such as calling the consult/1 predicate, the changes are not
automatically reflected in the text area. On the left side of the control area,
there also is an indicator of the line where the caret is currently positioned
in the edit area. Informations about the result of the action issued by the
control area are provided in the status bar at the very bottom of the IDE’s
window. For instance, when setting an invalid theory to the engine because
of syntax errors, details about where the error is located are provided; in
the example shown in Figure 7.2, a syntax error is found and the related
message is displayed in the status bar (note that the information about the
line where the error is detected could concern not the exact line, but the
next one). In Figure 7.3 instead, the error is corrected and the Set Theory
operation succeeds.

7.2 Solving goals

The console on the bottom of the tuProlog IDE’s window is subdivided in
two logical panes:

• a query pane composed by a textfield where queries can be inserted
and a request for solving can be triggered by pressing the Enter key.

• an answer pane, where answers and output informations are visualized,
and control buttons are provided to iterate through possibly multiple
solutions. Answers to Prolog queries are composed by both bindings
and solutions. The output tab provides a read-only view on the stan-
dard output where informations are possibly written by Prolog pro-

60

Figure 7.2: A syntax error is found when setting the content of the editor
area as the new engine’s theory.

61

Figure 7.3: The syntax error is removed and the Set Theory operation suc-
ceeds.

62

grams, by means of the I/O predicates provided by the IOLibrary.1

Goals are asked through the query input box, and answers (bindings
and solutions) are provided in the related text area. Query and answers
are traced in a proper chronological history, that can be explored by means
of Up and Down arrow keys from the query input textfield. When open
alternatives are found solving a goal, the Next and Accept buttons are en-
abled in the answer pane to interact with the engine, in order to let the
user specify if the current solution is accepted or if other alternatives need
to be explored. Note that the theory currently contained in the edit area
does not have to be explicitly feeded to the Prolog engine before it could be
possible to solve queries against that theory’s knowledge base. In fact, any
time a goal is asked to be solved, the theory contained in the edit area is
automatically feeded to the engine if its knowledge base has been modified
since the last solved goal. (This obviously happens also on the first time a
query is asked.) However, whenever the engine’s theory is modified by other
means than the editor, it does need to be explicitly acquired and presented
to the programmer in the text area. In fact, if the theory in the engine is
augmented by a call to the predicate consult/1 issued from a query, for ex-
ample, the contents of the newly consulted theory will not be automatically
inserted in the editor: when the programmer needs an up-to-date view of
the knowledge base contained in the underlying tuProlog engine, its display
has to be explicitly triggered by means of the GetTheory button, available
in the editing area.

An example of the user interaction involving multiple solutions is shown
in the following sequence of figures: in Figure 7.4, the user issued the query
test color(test, X)., using the knowledge base written in the edit area
(a solution to the Map Coloring problem,2 with a test map composed of four
areas). The first solution is displayed, and multiple open alternatives can
be explored: in Figure 7.5, the user asked to get the next possible solution
by pressing the Next button, and another solution is provided; finally, in
Figure 7.6, the user, after having explored the first two solutions, accepts
the third one by pressing the Accept button. During the resolution of a goal,
all the theory-related buttons are disabled, included the Library Manager
button, since each library can have its theory to be feeded into the engine.

1The information written on standard output by methods invoked on Java objects from
the JavaLibrary – for instance using the stdout object – are not displayed on this view.

2The problem is to color a planar map so that no two adjoining regions have the same
color. A famous conjecture was proved in 1976 showing that four colors are sufficient to
color any planar map.

63

Figure 7.4: The user issued a query test color(test, X). and the first
solution is displayed.

64

Figure 7.5: The user issued a Next command and got another solution.

65

Figure 7.6: The user accepted the third solution by pressing the Accept
button.

66

Near to the Next and Accept buttons, a Stop button is found, providing
the user with a means to halt the engine if a computation takes too long or
a bug in the knowledge base feeded to the engine results in an infinite loop.
Such a bug is contained in the following theory:

p(a).
p(b) :- p(b).
p(c).

When solving a goal like p(b) or asking for the second solution to the query
p(X), the tuProlog engine will be trapped in an infinite loop due to the
particular recursive nature of the second clause in the feeded theory. By
pressing the Stop button, which is enabled only during computations, the
user will be able to halt the engine and perform the necessary changes to
the knowledge base before issuing another query, instead of being forced to
close and reopen the IDE.

Finally, a Clear button is provided, with the aim of allowing the user to
clear the output tab when it gets overfull with informations. The button is
enabled only when the output informations tab is selected.

7.3 Debug Informations

By pressing the View Debug Information button, a new window is opened,
providing a view on the spy information possibly supplied by the engine
during a goal demonstration: such informations concern basic steps of the
engine computation and state. In order to activate the spy information noti-
fication, the spy/0 built-in predicate (provided by the BasicLibrary) must
be issued; nospy/0 can be used to stop this notification. As an example,
Figure 7.7 shows the content of the spy information view after the execution
of a goal involving the activation of spy information inspection. The debug
information view also provides notification of warnings possibly issued by
the engine, produced by events such as the attempt at redefining a library
predicate.

It is worth noting that the text area of the debug information view is read
only, but the text contained can be selected and copied to an external editor
in order to be modified. The view can be cleared using the Clear button at
its bottom, and can be closed by acting on the usual closing window button.

67

Figure 7.7: Debug Information View after the execution of a goal.

68

Figure 7.8: The Library Manager dialog.

7.4 Dynamic library management

A tuProlog engine can be extended by loading any number of libraries, each
provinding a specific set of built-in predicates and functors, and a related
theory. The tuProlog IDE allows a dynamic management of libraries through
a GUI dialog, which can be displayed by pressing the Open Library Manager
button in the toolbar. The Library Manager dialog is shown in Figure 7.8.

This dialog displays a list of the libraries currently loaded into the
tuProlog engine. For a new instance of the engine, that list will typically
contain the four standard libraries coming with the application core, that
is BasicLibrary, IOLibrary, ISOLibrary, JavaLibrary, along with their
current status. The user can add a library to the Library Manager simply
by providing the fully qualified name of the library’s class in the textfield
on the top of the dialog, then pressing the Add button: the added library
will be displayed with an initial Unload status. The user can further select
the status of each library in the list, and commit changes to the tuProlog
engine by pressing the OK button, or dismiss the dialog by pressing the
Cancel button.

The library manager is also capable of updating itself accordingly to the
events of libraries load and unload fired by the tuProlog engine. Such events
are triggered by the use of the load_library/1 and unload_library/1
predicates or directives in query issued or theories feeded to the engine. So, if
an user asks to solve the goal load_library(’TestLibrary’), test(X).,
for example, the manager would immediately reflect the change occurred

69

in the engine’s libraries pool, adding a new entry if TestLibrary had not
been previously loaded or, if necessary, changing the library’s entry status
to show the result of the loading action.

Both the action of adding a library to the manager and the action of
loading a library into the engine can fail. If, for example, the classname
provided does not identify a tuProlog library (i.e. it identifies a class not
extending the alice.tuprolog.Library class) or the identified class does
not exist, an appropriate message will appear in the status bar at the bottom
of the dialog. When adding or loading a library, please remember that every
class needed by that library must be in the classpath in order to have the
library correctly added to the manager’s list or loaded into the engine.

70

Chapter 8

Using tuProlog from Java

8.1 Getting started

Let’s begin with your first Java program using tuProlog.

import alice.tuprolog.*;

public class Test2P {
public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();
SolveInfo info = engine.solve("append([1],[2,3],X).");
System.out.println(info.getSolution());

}
}

In this first example a tuProlog engine is created, and asked to solve a query,
provided in a textual form. This query in the Java environment is equivalent
to the query

?- append([1],[2,3],X).

in a classic Prolog environment, and accounts for finding the list that is
obtained by appending the list [2,3] to the list [1] (append is included in
the theory provided by the alice.tuprolog.lib.BasicLibrary, which is
downloaded by the default when instantiating the engine).

By properly compiling and executing this simple program 1, the string
1save the program in a file called Test2P.java, then compile it with javac -classpath

tuprolog.jar Test2P.java and then execute it with java -cp .;tuprolog.jar

Test2P.java

71

append([1],[2,3],[1,2,3]) – that is the solution of out query – will be
displayed on the standard output.
Then, let’s consider a little bit more involved example:

public class Test2P {
public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();
SolveInfo info = engine.solve("append(X,Y,[1,2]).");
while (info.isSuccess()){

System.out.println("solution: "+info.getSolution()+
" - bindings: "+info);

if (engine.hasOpenAlternatives()){
info=engine.solveNext();

} else {
break;

}
}

}
}

In this case, all the solutions of a query are retrieved and displayed, with
also the variable bindings:

solution: append([],[1,2],[1,2]) - bindings: Y / [1,2] X / []
solution: append([1],[2],[1,2]) - bindings: Y / [2] X / [1]
solution: append([1,2],[],[1,2]) - bindings: Y / [] X / [1,2]

8.2 Basic Data Structures

All Prolog data objects are mapped onto Java objects: Term is the base class
for Prolog untyped terms such as atoms and compound – represented by the
Struct class –, Prolog variables (Var class) and Prolog typed terms such as
numbers (Int, Long, Float, Double classes). In particular:

• Term – this abstract class represents a generic Prolog term, and it
is the root base class of tuProlog data structures, defining the basic
common services, such as term comparison, term unification and so
on. It is worth noting that it is an abstract class, so no direct Term
objects can be instantiated;

72

• Var – this class (derived from Term) represents tuProlog variables. A
variable can be anonymous, created by means of the default construc-
tor, with no arguments, or identified by a name, that must starts with
an upper case letter or an underscore;

• Struct – this class (derived from Term) represents un-typed tuProlog
terms, such as atoms, lists and compound terms; Struct objects are
characterised by a functor name and a list of arguments (which are
Terms themselves), while Var objects are labelled by a string repre-
senting the Prolog name. Atoms are mapped as Structs with functor
with a name and no arguments; Lists are mapped as Struct objects
with functor ‘.’, and two Term arguments (head and tail of the list);
lists can be also built directly by exploiting the 2-arguments construc-
tor, with head and tail terms as arguments. Empty list is constructed
by means of the no-argument constructor of Struct (default construc-
tor).

• Number – this abstract class represents typed, numerical Prolog terms,
and it is the base class of tuProlog number classes;

• Int, Long, Double, Float – these classes (derived from Number)
represent typed numerical tuProlog terms, respectively integer, long,
double and float numbers. Following the Java conventions, the default
type for integer number is Int (integer, not long, number), and for
Double (and so double), for floating point number.

Some examples of term creation follow:

// constructs the atom vodka
Struct drink = new Struct("vodka");

// constructs the number 40
Term degree = new alice.tuprolog.Int(40);

// constructs the compound degree(vodka,40)
Term drinkDegree = new Struct("degree",

new Struct("vodka"),
new Int(40));

// second way to constructs the compound degree(vodka,40)
Struct drinkDegree2 = new Struct("degree", drink, degree);

// constructs the compound temperature(’Rome’,25.5)

73

Struct temperature = new Struct("temperature",
new Struct("Rome"),
new alice.tuprolog.Float(25.5));

// constructs the compound equals(X,X)
Struct t1 = new Struct("equals",new Var("X"),new Var("X"));
t1.resolveTerm();

// mother(John,Mary)
Struct father = new Struct(new Struct("John"),new Struct("Mary")));

// father(John,_)
Term father = new Struct(new Struct("John"),new Var());

// p(1,_,q(Y,3.03,’Hotel’))
Term t2 = new Struct("p",

new Int(1),
new Var(),
new Struct("q",

new Var("Y"),
new Float(3.03f),
new Struct("Hotel")));

// long_number(130373303303)
Term t3 = new alice.tuprolog.Long(130373303303h);

// double_precision_number(1.7625465346573)
Term t4 = new alice.tuprolog.Double(1.7625465346573);

// an empty list
Struct empty = new Struct();

// the list [303]
Struct l = new Struct(

new Int(303), new Struct());

// the list [1,2,apples]
Struct alist = new Struct(

new Int(1),
new Struct(

new Int(2),
new Struct("apples")));

// fruits([apple, orange | _])
Term list2 = new Struct("fruits", new Struct(

74

new Struct("apple",
new Struct("orange"),
new Var())));

// complex_compound(1,_,q(Y,3.03,’Hotel’,k(Y,X)),[303,13,_,Y])
Term t5 = Term.parse("complex_compound(1,_,q(Y,3.03,’Hotel’,k(Y,X)),[303,13,_,Y])");

The name of the tuProlog number classes (Int, Float, Long, Double) follows
the name of the primitive Java data type they represents. Note that due
to class name clashes (for instance between classes java.lang.Long and
alice.tuprolog.Long), it could be necessary to use the full class name to
identify tuProlog classes.

8.3 Engine, Theories and Libraries

Then, the other main classes that make tuProlog Core API concern tuProlog
engines, theories and libraries. In particular:

• Prolog – this class represent tuProlog engines. This class provides a
minimal interface that enables users to:
– set/get the theory to be used for demonstrations;
– load/unload libraries;
– solve a goal, represented either by a Term object or by a textual
representation (a String object) of a term.
A tuProlog engine can be instantiated either with some standard de-
fault libraries loaded, by means of the default constructor, or with a
starting set of libraries, which can be empty, provided as argument
to the constructor (see Java Documentation for details). Accordingly,
a raw, very lightweight, tuProlog engine can be created by specifying
an empty set of library, providing natively a very small set of built-in
primitives (see the User’s Guide for details);

• Theory – this class represent tuProlog theories. A theory is represented
by a text, consisting of a series of clauses and/or directives, each fol-
lowed by ’.’ and the whitespace. Instances of this class are built either
from a textual representation, directly provided as a string or taken by
any possible input stream, or from a list of terms representing Prolog
clauses;

• Library – this class represents tuProlog libraries; A tuprolog engine
can be dynamically extended by loading (and unloading) any num-

75

ber of libraries; each library can provide a specific set of of built-ins
predicates, functors and a related theory. A library can be loaded
by means of the built-in by means of the method loadLibrary of
the tuProlog engine. Some standard libraries are provided in the
alice.tuprolog.lib package and loaded by the default instantiation
of a tuProlog engine: alice.tuprolog.lib.BasicLibrary, providing
basic and well-known Prolog built-ins, alice.tuprolog.lib.IOLibrary
providing classic Prolog I/O predicates, alice.tuprolog.lib.ISOLibrary
providing some ISO predicates/functors not directly provided by the
BasicLibrary and IOLibrary, and the alice.tuprolog.lib.JavaLibrary,
which enables the creation and usage of Java objects from tuProlog
programs, in particular enabling the reuse of any existing Java re-
sources.

• SolveInfo – this class represents the result of a demonstration and
instances of these class are returned by the solve methods the Prolog
engines; in particular SolveInfo objects provide services to test the
success of the demonstration (isSuccess method), to access to the
term solution of the query (getSolution method) and to access the
list of the variable with their bindings.

Some notes about tuProlog terms and the services they provide:

• the static parse method provides a quick way to get a term from its
string representation;

• tuProlog terms provides directly methods for unification and match-
ing:
public boolean unify(Term t)

public boolean match(Term t)

Terms that have been subject to unification outside a demonstra-
tion context (that is invoking directly these methods, and not passing
through the solving service of an engine) should not be used then in
queries to engines;

• some services are provided to compare terms, according to the Prolog
rules, and to check their type; in particular the standard Java method
equals has the same semantics of the method isEqual which follows
the Prolog comparison semantics;

• some services makes it possible to copy a term as it is or to get a
renamed copy of the term (copy and getRenamedCopy); it is worth

76

noting that the design of tuProlog promotes a stateless usage of terms;
in particular, it is good practice not to reuse the same terms in different
demonstration contexts, as part of different queries;

• the method getTerm is useful in the case of variables, providing the
term linked possibly considering all the linking chain in the case of
variables referring other variables;

• when a term is created by means of the proper constructor, consider
as example:

Struct myTerm = new Struct("p", new Var("X"), new Int(1), new Var("X"))

it is not resolved, in the sense that possible variable terms with the
same name in the term do not refer each other; so in the example the
first and the third argument of the compound myTerm point to differ-
ent variable objects. A term is resolved the first time it is involved in
a matching or unification context;

Some notes about tuProlog engines, theories, libraries and the services they
provide:

• tuProlog engines support natively some directives, that can be defined
by means of the :-/1 predicate in theory specification. Directives are
used to specify properties of clauses and of the engine (solve/1, ini-
tialization/1, set prolog flag/1, load library/1, consult/1), format and
syntax of read-terms (op/3, char conversion/2).

• tuProlog engines support natively the dynamic definition and manage-
ment of flags (or property), used to describe some aspects of libraries
and their built-ins. A flag is identified by a name (an alphanumeric
atom), a list of possible values, a default value and a boolean value
specifying if the flag value can be modified. Refer to the User’s guide
for details about flags defined by libraries;

• tuProlog engines are thread-safe. The methods that could create prob-
lems in being used in a multi-threaded context are now synchronised;

• tuProlog engines have no (static) dependencies with each other, mul-
tiple engines can be created independently as simple objects on the
same Java virtual machine, each with its own configuration (theory
and loaded libraries). Moreover, accordingly to the design of tuProlog

77

system in general, engines are very lightweight, making suitable the
use of multiple engines in the same execution context.

• tuProlog engines can be serialised and stored as a persistent object
or sent through the network. This is true also for engines with pre-
loaded standard libraries: in the case that other libraries are loaded,
these must be serializable in order to have the engine serializable;

8.4 Some more examples of tuProlog usage

Creation of an engine (with default libraries pre-loaded):

import alice.tuprolog.*;

...

Prolog engine=new Prolog();

Creation of an engine specifying only the BasicLibrary as pre-loaded li-
brary:

import alice.tuprolog.*;

...

Prolog engine=new Prolog(new String[]{"alice.tuprolog.lib.BasicLibrary"});

Creation and loading of a theory from a string:

String theory_text = "my_append([],X,X).\n"+

"my_append([X|L1],L2,[X|L3]):-my_append(L1,L2,L3).\n";

Theory theory = new Theory(theory_text);

try {

engine.setTheory(theory);

} catch(InvalidTheoryException ex){

}

Creation and loading of a theory from an input stream:

Theory theory = new Theory(new FileInputStream("test.pl");

try {

engine.setTheory(theory);

} catch(InvalidTheoryException ex){

}

Goal demonstration (provided as a string):

78

// ?- append(X,Y,[1,2,3]).

try {

SolveInfo info = engine.solve("my_append(X,Y,[1,2,3]).");

Term solution = info.getSolution();

} catch(MalformedGoalException ex){

...

} catch(NoSolutionException ex){

...

}

Goal demonstration (provided as a Term):

try {

Term goal = new Struct("p",new Int(1),new Var("X"));

try {

// ?- p(1,X).

SolveInfo info = engine.solve(goal);

Term solution = info.getSolution();

} catch (NoSolutionException ex){

}

} catch (InvalidVarNameException ex){\

}

Getting another solution:

try {

SolveInfo info = engine.solve(goal);

} catch(NoMoreSolutionException ex)

Loading a library:

try {

engine.loadLibrary(’alice.tuprologx.lib.TucsonLibrary’);

} catch(InvalidLibraryException ex){

}

Here, a complete example of interaction with a tuProlog engine is shown
(refer to the Java Documentation for details about interfaces):

import alice.tuprolog.*; import java.io.*;

public class Test2P {

public static void main (String args[]) {

Prolog engine=new Prolog();

try {

// solving a goal

SolveInfo info=engine.solve(new Struct("append",

new Var("X"),

79

new Var("Y"),

new Struct(new Term[]{new Struct("hotel"),

new Int(303),

new Var()})));

// note we could use strings:

// SolveInfo info=engine.solve("append(X,Y,[hotel,303,_]).");

// test for demonsration success

if (info.isSuccess()){

// acquire solution and substitution

Term sol=info.getSolution();

System.out.println("Solution: "+sol);

System.out.println("Bindings: "+info);

// open choice points?

if (engine.hasOpenAlternatives()){

// ask for another solution

info=engine.solveNext();

if (info.isSuccess()){

System.out.println("An other substitution: "+info);

}

}

}

// other frequent interactions

// setting a new theory in the engine

String theory = " p(X,Y):-q(X),r(Y).\n"+

" q(1).\n"+

" r(1).\n"+

" r(2).\n";

engine.setTheory(new Theory(theory));

SolveInfo info2=engine.solve("p(1,X).");

System.out.println(info2);

// retrieving the theory from a file

FileOutputStream os=new FileOutputStream("test.pl");

os.write(theory.getBytes());

os.close();

engine.setTheory(new Theory(new FileInputStream("test.pl")));

info2=engine.solve("p(X,X).");

System.out.println(info2.getSolution());

} catch (Exception ex){

ex.printStackTrace();

}

}

}

80

With the program execution, the following string are displayed on the
standard output:

Solution: append([],[hotel,303,_],[hotel,303,_])
Bindings: Y /[hotel,303,_] X / []
An other substitution: Y / [303,_] X / [hotel]
X / 1
p(1,1)

81

Chapter 9

How to Develop New
Libraries

Libraries are tuProlog’s way to achieve the desired characteristics of mini-
mality, dynamic configurability, and straightforward Prolog-to-Java integra-
tion. Libraries are reflection-based, and can be written both in Prolog and
Java: other languages may be used indirectly, via JNI (Java Native Inter-
face). At the tuProlog side, exploiting a library written in Java requires no
pre-declaration of the new built-ins, nor any other special mechanism: all is
needed is the presence of the corresponding .class library file in the proper
location in the file system.

9.1 Implementation details

Syntactically, a library developed in Java must extend the base abstract
class alice.tuprolog.Library, provided within the tuProlog package, and
define new predicates and/or evaluable functors and/or directives in the
form of methods, following a simple signature convention. In particular,
new predicates must adhere to the signature:

public boolean <pred name > <N >(T1 arg1, T2 arg2, ...,Tn argN)

while evaluable functors must follow the form:

public Term <eval funct name > <N >(T1 arg1, T2 arg2, ...,Tn argN)

and directives must be provided with the signature:

public void <dir name > <N >(T1 arg1, T2 arg2, ..., Tn argN)

82

where T1, T2, ... Tn are Term or derived classes, such as Struct, Var,
Long, etc., defined in the tuProlog package, constituting the Java counter-
parts of the corresponding Prolog data types. The parameters represent the
arguments actually passed to the built-in predicate, functor, or directive.

A library defines also a new piece of theory, which is collected by the
Prolog engine through a call to the library method String getTheory().
By default, this method returns an empty theory: libraries which need to
add a Prolog theory must override it accordingly. Note that only the exter-
nal representation of a library’s theory is constrained to be in String form;
the internal implementation can be freely chosen by the library designer.
However, using a Java String for wrapping a library’s Prolog code guar-
antees self-containment while loading libraries through remote mechanisms
such as RMI.

Table 9.1: Predicate and functor definitions in Java and their use in a
tuProlog program.

// sample library % tuProlog test

program

import alice.tuprolog.*;

public class TestLibrary extends Library { test :-
// builtin functor sum(A,B) N is sum(5,6),
public Term sum 2(Number arg0, Number arg1){ println(N).
float arg0 = arg0.floatValue();
float arg1 = arg1.floatValue();
return new Float(arg0+arg1);

}
// builtin predicate println(Message)

public boolean println 1(Term arg){
System.out.println(arg);
return true;

}
}

Table 9.1 shows a couple of examples about how a predicate (such as
println/1) and an evaluable functor (such as sum/2) can be defined in
Java and exploited from tuProlog. The Java method sum 2, which imple-

83

ments the evaluable functor sum/2, is passed two Number terms (5 and 6)
which are then used (via getTerm) to retrieve the two (float) arguments to
be summed. In the same way, method println 1, which implements the
predicate println/1, receives N as arg, and retrieves its actual value via
getTerm: since this is a predicate, a boolean value (true in this case) is
returned.

The developer of a library may face two corner case as far as method
naming is concerned: the first happens when the name of the predicate,
functor or directive she is defining contains a symbol which cannot legally
appear in a Java method’s name; the second occurs when he has to define
a predicate and a directive with the same Prolog signature, which Java
would not be able to tell apart because it cannot distinguish signatures
of methods differing for their return type only. To overcome this kind of
issues, a synonym map can be constructed under the form of an array of
String arrays, and returned by the appropriate getSynonymMap method,
defined as abstract by the Library class. In both the cases described above,
another name must be chosen for the Prolog executable element the library’s
developer want to define: then, by means of the synonym map, that fake
name can be associated with the real name and the type of the element, be
it a predicate, a functor or a directive. For example, if a definition for an
evaluable functor representing addition is needed, but the symbol + cannot
appear in a Java method’s name, a method called add can be defined and
associated to its original Prolog name and its function by inserting the array
{"+", "add", "functor"} in the synonym map.

9.2 Library Name

By default, the name of the library coincides with the full class name of the
class implementing it. However, it is possible to define explicitly the name
of a library by overriding the getName method, and returning as a string
the real name. For example:

package acme;
import alice.tuprolog.*;
public class MyLib_ver00 extents Library {

public String getName(){
return "MyLibrary";

}
...

}

84

This class defines a library called MyLibrary. It can be loaded into a
Prolog engine by using the loadLibrary method on the Java side, or a
load library built-in predicate on the Prolog side, specifying the full class
name (acme.MyLib ve00). It can be unloaded then dynamically using the
unloadLibrary method (or the corresponding unload library built-in),
specifying instead the library name (MyLibrary).

85

	1 What is tuProlog
	2 Installing tuProlog
	3 Getting Started
	3.1 Prolog Programmer Quick Start
	3.2 Developer Quick Start

	4 tuProlog Basics
	4.1 Structure of a tuProlog Engine
	4.2 Prolog syntax
	4.3 Configuration of a tuProlog Engine
	4.4 Built-in predicates
	4.4.1 Control management
	4.4.2 Term Unification and Management
	4.4.3 Knowledge-base management
	4.4.4 Operators and Flags Management
	4.4.5 Libraries Management
	4.4.6 Directives

	5 tuProlog Libraries
	5.1 BasicLibrary
	5.1.1 Predicates
	5.1.2 Functors
	5.1.3 Operators

	5.2 ISOLibrary
	5.2.1 Predicates
	5.2.2 Functors
	5.2.3 Operators
	5.2.4 Flags

	5.3 DCGLibrary
	5.3.1 Predicates
	5.3.2 Operators

	5.4 IOLibrary
	5.4.1 Predicates

	6 Accessing Java from tuProlog
	6.1 Mapping data structures
	6.2 General predicates description
	6.3 Predicates
	6.3.1 Method Invocation, Object and Class Creation
	6.3.2 Java Array Management
	6.3.3 Helper Predicates

	6.4 Functors
	6.5 Operators
	6.6 Flags
	6.7 Java Library Examples
	6.7.1 RMI Connection to a Remote Object
	6.7.2 Java Swing GUI from tuProlog
	6.7.3 Database access via JDBC from tuProlog
	6.7.4 Dynamic compilation

	7 The IDE
	7.1 Editing the theory
	7.2 Solving goals
	7.3 Debug Informations
	7.4 Dynamic library management

	8 Using tuProlog from Java
	8.1 Getting started
	8.2 Basic Data Structures
	8.3 Engine, Theories and Libraries
	8.4 Some more examples of tuProlog usage

	9 How to Develop New Libraries
	9.1 Implementation details
	9.2 Library Name

