
Building a gretl disk image for OS X
Allin Cottrell, September 2008

Note, Aril 2009. This needs to be totally re-written. We now use the GTK framework built by the R
people, not Fink, when building gretl for OS X.

1 Objective

To build a stand-alone disk image (dmg) of gretl, including a suitably configured version of gnuplot,
for Mac OS X. The final user should be able to download the dmg file, double-click to mount it, and
drag the Gretl.app folder (found “inside” the image) to an Applications folder. You’ll use Fink in
the build process but the final dmg should not be dependent on Fink in any way; it will, however, be
dependent on Apple’s X11.

2 Overview

Here are the basic prerequisites:

• A fully functional installation of OS X.

• Apple’s X11 and the Xcode development package. If these are not already installed, they should
be found on the OS X installation DVDs.

• A basic installation of Fink, including the tools pkg-config and wget.

• Source code for gretl and gnuplot.

• A skeleton for Gretl.app plus some auxiliary scripts.

The Fink executables directory (by default /sw/bin) should be in your path, probably ahead of any
other directories, for the build process.

The method is as follows:

1. Install the Gretl.app skeleton. This provides the “space” into which you’ll install gretl and
gnuplot.

2. Under Fink, install various required third-party packages (including the “dev” or developer com-
ponents). This includes GTK+ and friends (glib, atk, gdk, pango). The glib package should be
version 2.8 or later.

3. Configure and build gnuplot; install gnuplot into the Gretl.app folder.

4. Configure and build gretl; install gretl into the right place inside Gretl.app; delete some extra-
neous files and add some extras.

5. Copy various run-time files from your Fink installation into the appropriate place in Gretl.app
(hence removing the dependency on Fink at run time). Some configuration files have to be modi-
fied slightly for this putpose. This is the trickiest part.

6. Grab the latest gretl documentation and dump it into place.

7. Create a compressed disk image containing Gretl.app.

Steps 1, 2, 3 and 5 only need to be done once; thereafter you can update the disk image with just steps
4, 6 and 7.

The following sections expand on each of the steps.

1

3 The Gretl.app skeleton

I’m making a gzipped tar file available. This is largely an empty directory tree, but it includes some
“generic” files that shouldn’t depend on the particular OS X build platform (though see the final section
below). This should be unzipped in some suitable location; on the OS X system to which I have access
I’ve put it under /Users/allin/dist.

http://ricardo.ecn.wfu.edu/~cottrell/gretl-osx/Gretl.app.tar.gz

4 Required Fink packages

The exact line-up of these packages depends somewhat on the specific OS X variant. If a given package
is available via OS X itself, then you don’t need to, and probably don’t want to, install the corresponding
Fink package. A case in point is libxml2, which is supplied on recent OS X (but was not supplied in
earlier variants); libpng may also be supplied by OS X.

The required packages will (likely) include

gtk+2 gtk+2-dev gmp gmp-shlibs
fftw3 readline5 readline5-shlibs libpng3
libpng-shlibs pdflib pdflib-shlibs

Warning: Apple’s development trajectory has involved, and will no doubt continue to involve, many
incompatible changes to their X11 installation. To some extent, Fink is forced to mirror such changes;
therefore packages are sometimes renamed or removed. You’ll probably have to do some figuring for
yourself with regard to which packages are needed.

You don’t need to install gnuplot under Fink since we’ll be building that ourselves. Libxml2 will
hopefully be supplied by OS X; dlcompat was required at one time, but doesn’t seem to be needed any
longer. I installed mpfr via Fink: this is not strictly required for gretl, but if it’s present it enhances
the functionality of the multiple precision plugin: as of this writing the packages seem to be libmpfr1
and libmpfr1-shlibs.

5 Building gnuplot

First, why do we bother building gnuplot? Well, briefly, gnuplot is rather integral to gretl, and it’s
preferable to have a gnuplot version that is as functional as possible. We want good PNG support,
provided via libgd. Unfortunately the standard libgd installation on Fink has a problem with finding
TrueType fonts; we can work around this if we build libgd ourselves. In addition, OS X is highly
PDF-oriented, so it’s nice to be able to provide PDF graph support, which I don’t think is in a stock
Fink gnuplot build. Finally, the gnuplot source referenced below is patched so as to provide accurate
bounding box information for PNG files; this improves the quality of mouse-over interaction with
graphs under gretl.

libgd: Grab patched source from

http://ricardo.ecn.wfu.edu/~cottrell/gretl-osx/libgd-2.0.35.tar.gz

Untar and configure with

PREFIX=/Users/allin/misc
export CFLAGS="-O2 -I/sw/include"
export CPPFLAGS=$CFLAGS
export LDFLAGS="-L/usr/X11R6/lib"

2

./configure --prefix=$PREFIX --disable-rpath \
--disable-static --without-jpeg

Then make and make install.

Note that I’m installing to a temporary location outside of Gretl.app. When we’re ready, we’ll just grab
the appropriate dylib file from the lib directory in that temporary tree (here /Users/allin/misc).
Note: if you don’t have gd2 installed via Fink, you’ll have to ensure that pkg-config can find the libgd
you just installed, before building gnuplot. Use something like

export PKG_CONFIG_PATH="$PKG_CONFIG_PATH:/Users/allin/misc/lib/pkgconfig"

Now grab the patched source for CVS gnuplot,

http://ricardo.ecn.wfu.edu/~cottrell/gretl-osx/gnuplot-20080105.tar.gz

Untar and configure with

TOPDIR=/Users/allin/dist
export CFLAGS="-O2 -I/sw/include"
export LDFLAGS="-L/sw/lib -L/usr/X11R6/lib"
./configure --prefix=$TOPDIR/Gretl.app/Contents/Resources

Again, make and make install.

6 Configuring and building gretl

There’s a file myconf in the osx subdirectory of the gretl source. You should use this, or a variant of
it, to configure gretl. Here’s what it looks like:

TOPDIR=/Users/allin/dist
export CFLAGS="-O2 -I/sw/include"
export LDFLAGS=-L/sw/lib
export CPPFLAGS=$CFLAGS
export PKG_CONFIG_PATH="/usr/lib/pkgconfig:/usr/X11R6/lib/pkgconfig:/sw/lib/pkgconfig"
export PATH=$TOPDIR/Gretl.app/Contents/Resources/bin:$PATH
./configure --prefix=$TOPDIR/Gretl.app/Contents/Resources \
--disable-rpath --enable-build-doc --without-gnome

The “export PATH” line is designed to ensure that the version of gnuplot installed at the previous
step is found during the gretl configuration process. This may not be necessary if a version of gnuplot
that supports PNG output is already in your path.

After doing make and make install we run a script named postinst to clear out unnecessary files
and add a few extra things needed for OS X. This is also in the osx subdir of the source.

#!/bin/sh
postinst: run this in the gretl build directory

The directory above Gretl.app
TOPDIR=/Users/allin/dist
PREFIX=$TOPDIR/Gretl.app/Contents/Resources

rm -f $PREFIX/bin/gretl
rm -rf $PREFIX/include

3

rm -rf $PREFIX/share/aclocal
rm -rf $PREFIX/share/info
rm -rf $PREFIX/info
rm -rf $PREFIX/lib/pkgconfig
rm -f $PREFIX/lib/*.la
rm -f $PREFIX/lib/gretl-gtk2/*.la
rm -rf $PREFIX/share/emacs
rm -rf $PREFIX/share/texmf-local

install -m 644 osx/README.pdf $TOPDIR
install -m 755 osx/gretl.sh $PREFIX/bin/gretl
install -m 755 osx/script $PREFIX
uncomment for a PPC build:
install -m 755 osx/Gretl.ppc $TOPDIR/Gretl.app/Contents/MacOS/Gretl

If you’re making a PPC build of gretl then you need to remove the hash-mark comment symbol from
the last line above.

7 Copying Fink run-time files

As mentioned above, this is a bit tricky. The general idea is that we want to identify all the files
provided by Fink that are necessary to support gretl and/or gnuplot, and copy these into the right
places under Gretl.app. To keep the disk image as compact as possible, we want to try to ensure
that we copy only those files that are really necessary. This includes all shared libraries that are not
provided by OS X itself; it also includes some additional run-time files required by GTK+.

Libraries: You can do most of the work on the libraries by running libs.sh from the osx subdirectory
of the gretl source. This finds dependencies that live in /sw/lib using otool -L (think ldd on Linux)
and copies the files into place. Here’s libs.sh:

TOPDIR=/Users/allin/dist
PKGDIR="$TOPDIR/Gretl.app/Contents/Resources"

cd $PKGDIR

otool -L ./bin/gretl_x11 | awk ’{ print $1 }’ | grep /sw/lib > liblist
otool -L ./bin/gretlcli | awk ’{ print $1 }’ | grep /sw/lib >> liblist
otool -L ./bin/gnuplot | awk ’{ print $1 }’ | grep /sw/lib >> liblist

for f in ‘cat liblist | uniq‘ ; do
cp $f ./lib

done

rm liblist

But having done this, we may need to add a few things: libgd.2.dylib from the custom build of gd2
(see section 5), libmpfr.1.dylib from Fink (if available) to support the gretl plugin. On the other
hand, if libiconv.2.dylib has been picked up from the Fink installation it’s possible this can be
deleted: libiconv.2.dylib is provided by OS X, so provided that the minor version is recent enough we
don’t need to package it.

Other files:

Besides the basic dylibs, we need to borrow from Fink some module files that live under lib, and
configuration files under etc (the installation for both sets of files will be relative to Gretl.app/

4

Contents/Resources). I’ll illustrate with my current setup; filenames may differ slightly if the GTK
version differs.

Under lib:

lib/gtk-2.0/2.4.0/immodules/
lib/gtk-2.0/2.4.0/loaders/libpixbufloader-png.so
lib/gtk-2.0/2.4.0/loaders/libpixbufloader-xpm.so
lib/pango/1.4.0/modules/pango-basic-fc.so
lib/pango/1.4.0/modules/pango-basic-x.so

The immodules directory is empty; we don’t need any input modules. (The directory may be redun-
dant, I’m not sure.) The GTK loaders directory and the pango modules directory contain a small
subset of the full content of those directories under Fink; this is all we need to support gretl.

Second, config files under etc:

etc/gtk-2.0/gtk.immodules
etc/gtk-2.0/gdk-pixbuf.loaders
etc/pangorc
etc/pango/pango.modules
etc/pango/pangox.aliases

The first of these is an empty file; the second is an edited version of the corresponding Fink file. We
need to use relative paths to the loaders, as in

GdkPixbuf Image Loader Modules file
"../lib/gtk-2.0/2.4.0/loaders/libpixbufloader-png.so"
"png" 1 "gtk20" "The PNG image format"
"image/png" ""
"png" ""
"\211PNG\r\n\032\n" "" 100

"../lib/gtk-2.0/2.4.0/loaders/libpixbufloader-xpm.so"
"xpm" 0 "gtk20" "The XPM image format"
"image/x-xpixmap" ""
"xpm" ""
"/* XPM */" "" 100

(Only the paths to the .so files need to be changed.)

The third file, etc/pangorc, tells pango where to find the other files. Its content should be as follows:

[Pango]
ModuleFiles=../etc/pango/pango.modules
ModulesPath=../lib/pango/1.4.0/modules
[PangoX]
Aliasfiles=../etc/pango/pangox.aliases

The content of pango.modules is again edited to use relative paths:

Pango Modules file
#
../lib/pango/1.4.0/modules/pango-basic-fc.so Basic...
../lib/pango/1.4.0/modules/pango-basic-x.so Basic...

5

As for pangox.aliases, I’m not sure it’s needed, but anyway I think it can be copied straight.

Testing: Once you’ve got all this stuff in place (remember, you only need to do it once!) you have to
check that Gretl.app is really self-contained. This means running gretl with Fink disabled. To help
with this I use two little scripts, as follows:

disable Fink
sudo mv /sw /hidden.sw
hash -r

enable Fink
sudo mv /hidden.sw /sw
hash -r

The hash -r command is required to ensure that common utilities such as cp, which are present in
both /bin and /sw/bin, are found after the switch.

I recommend starting the test by running ./gretl in the bin directory under Gretl.app/Contents/
Resources: then if there’s stuff missing you’ll hear about it on stderr. Once that’s working, try
launching gretl via the Gretl.app icon.

8 Documentation files

The canonical PDF documentation for gretl is available from ricardo.ecn.wfu.edu:

TOPDIR=/Users/allin/dist
DOCDIR=$TOPDIR/Gretl.app/Contents/Resources/share/gretl/doc
rm -f gretl-guide.pdf
wget http://ricardo.ecn.wfu.edu/pub/gretl/manual/PDF/gretl-guide.pdf
cp gretl-guide.pdf $DOCDIR
rm -f gretl-ref.pdf
wget http://ricardo.ecn.wfu.edu/pub/gretl/manual/PDF/gretl-ref.pdf
cp gretl-ref.pdf $DOCDIR

That is, you grab the current PDF files and drop them into the right place under Gretl.app.

9 Creation of dmg

Once everything’s in place, we create the final compressed .dmg file. This is actually quite straight-
forward; below is a shell script to do the job. There’s a copy in the gretl source package, in the osx
subdirectory (called dmg.sh). Obviously, you’ll need to edit the line that defines TOPDIR; hopefully the
rest should be portable.

This script should be run from some “neutral” location outside of the distribution tree; you don’t want
to get a recursive thing going, whereby the dmg is included within itself. I run dmg.sh from ~/bin.

#!/bin/bash

the directory above Gretl.app
TOPDIR=/Users/allin/dist

HERE=‘pwd‘
KB=‘du -ks $TOPDIR | awk ’{ print $1 }’‘
KB=$((KB+1024))

6

hdiutil create -size ${KB}k tmp.dmg -layout NONE
MYDEV=‘hdid -nomount tmp.dmg‘
sudo newfs_hfs -v gretl $MYDEV
hdiutil eject $MYDEV
hdid tmp.dmg
cd $TOPDIR && \
/sw/bin/cp -a Gretl.app /Volumes/gretl && \
/sw/bin/cp -a README.pdf /Volumes/gretl
cd $HERE
hdiutil eject $MYDEV
hdiutil convert -format UDZO tmp.dmg -o gretl.dmg && rm tmp.dmg

This script uses the -a flag to the cp command: that is not supported by /bin/cp under OS X, but it
is supported by Fink’s /sw/bin/cp.

10 Extra: ScriptExec stuff

Something else should be mentioned. To make Gretl.app into a proper OS X Application “bundle” we
use the ScriptExec apparatus from gimp.app, at http://gimp-app.sourceforge.net/. This appara-
tus allows for launching gretl from an icon, and automatic startup of X11.

The Gretl.app skeleton mentioned above contains all the files generated in association with Scrip-
tExec as built on OS X 10.4.11. So with any luck you should not have to mess with this. On the other
hand it’s possible that the files generated on Tiger don’t work properly with Leopard (or higher), so it
may be worth regenerating them.

An account of how to do this (for gimp, but mutatis mutandis for gretl) is given at the gimp.app URL
above. I can’t add much to what’s said there as I have no expertise in Xcode and I worked by trial and
error, but here are a few hints.

The basic idea is that you have to build ScriptExec as an Xcode project, then copy the generated bits
and pieces into place under Gretl.app.

The built executable,

ScriptExec/build/Deployment/ScriptExec.app/Contents/MacOS/ScriptExec

should be copied as

Gretl.app/Contents/MacOS/Gretl

Two builds of this program can be found in the osx subdir of the gretl code, namely Gretl.ppc (for
the PPC architecture) and Gretl.intel.

A copy of my gretlized version of the ScriptExec source is at

http://ricardo.ecn.wfu.edu/~cottrell/gretl-osx/ScriptExec.tar.gz

7

