
Fully Time Deterministic Java™

Jean-Marie Dautelle1

Raytheon, Marlborough, MA, 01752

 To use Java in Real-Time/Safety-Critical systems requires highly efficient predictable
code execution. Techniques to achieve this include Ahead-Of-Time compilation, incremental
Garbage Collection and the use of RTSJ-compliant Virtual Machine. However these are not
sufficient as time-predictability can easily be ruined by the use of the standard library (lazy
initialization, array resizing, etc.). To achieve true time predictability one must have a time
deterministic library. This paper introduces such open source library (called Javolution)
written by the author suitable for embedded or server-side applications and used for safety-
critical application worldwide. Specifically, it will be demonstrated how this new library
enables real-time data distribution (XML based) and allows for direct/immediate data
exchange between Java programs and native C/C++ software.

Nomenclature
JVM = Java™ Virtual Machine
RTSJ = Real-Time Specification for Java™
GC = Garbage Collection
JCP = Java Community Process
StAX = Streaming API for XML

I. Introduction
he term “Real-Time” in the early days of computing meant “capable of simulating a process at a rate that
matched that of the real process itself”. But as computers were used for more than just simulation this term

came with the imperative that an event is reacted to within a strict deadline. What was an interesting “feature” in the
past became a key characteristic of modern day systems not only in the embedded world but for large distributed
systems as well. The NASDAQ stock exchange for example is using real-time Java to prototype their next
generation system2. On the military side, the DDG-1000 next-generation multi-mission destroyer is also “powered”
by real-time Java software. Enhanced productivity, scalability and reliability are the main reasons why mission
critical applications are switching from Ada/C/C++ to Java, saving hundreds thousands of dollars off development
cost in the process3.

T

Unfortunately, the real-time “chain” is as strong as its weakest link. And while most of the hurdles in using Java for
real-time/safety critical systems have been overcome4, still one major issue remains: The standard library itself!
What is the point of having ahead-of-time compilation, real-time garbage collection, a highly time deterministic
operating system if a simple call to add one element to a standard Java collection results in delays of tens of
milliseconds because the collection had resized itself internally?

In this paper we discuss why the standard Java library is not time-predictable (not even RTSJ safe) and why a real-
time Java environment should include a time-deterministic library such as the multi-platform Javolution5 solution.

1 Senior Principal Engineer, Raytheon, Dept. 30047, 1001 Boston Post Road, Marlborough, MA, 01752
 Jean-Marie Dautelle is also an elected member to the Java Executive Committee (http://jcp.org)
2 At JavaOne 2007, NASDAQ’s CIO took the stage to brag on their current system, considered the fasted in the
industry, which process more than 150,000 transactions per second.
3 COTS Journal – July 2006 : “Software Modernization Is Key to Controlling Costs, Complexity”
4 Validating Java™ for Safety-Critical Applications - AIAA 2005-6812
5 Javolution (http://javolution.org) supports J2ME, J2SE/J2EE and even GCJ (GNU Compiler)

American Institute of Aeronautics and Astronautics
1

http:/www.cotsjournalonline.com/home/article.php?id=100531
http://jcp.org/
http://javolution.org/

II. The Standard Java Library
One could argue that the strength of Java is its comprehensive standard library which includes components for

networking, graphical user interfaces, XML processing, logging, database access and many other areas. These
components are well tested, standardized (through the JCP) and available for any conforming implementation. The
problem is that these components had never been intended to be used for safety critical systems. Even to this day,
Sun Java license states explicitly that Java should not be used for the operation of “Nuclear facility”6.

A. Throughput versus Time-Determinism

Because most Java applications were (and still are) server-type applications, throughput was paramount. As long
as 99% of the time the operation was performed very fast, it did not matter that for the remainder 1% of the time the
processing had to encounter significant delays because of:

• Arrays being allocated and copied (e.g. internal resizing of StringBuilder, Vector, ArrayList)

• Sudden burst of computation (e.g. rehashing of HashMap, HashSet).

• Long garbage collection pauses (even with incremental GC) due to memory fragmentation when large
arrays were suddenly allocated.

B. RTSJ Memory Clash

In order to get the garbage collector “out of the picture”, RTSJ provides specific memory areas not affected by
garbage collection such as ImmortalMemory and ScopedMemory. All static instances are allocated in immortal
memory (to be accessible by NoHeapRealtimeThread) and critical threads execute in scoped memory at a higher
priority than the Garbage Collector. But there again using the standard library would be dangerous as memory
allocation might be performed surreptitiously and could result into an IllegalAssignment error. Lets look at the
HashMap class classic example. When a key-value association is performed a new entry object is dynamically
allocated. If the map is static (in immortal memory) it cannot be used by threads in scoped memory and it cannot be
used by threads running in immortal memory either without producing a memory leak when associations are
removed (the standard library counts upon GC to recycle the memory of deleted entries, but GC is forbidden to
touch immortal memory). To summarize, a simple class like Foo below as well as any class using it are unsafe for
real-time threads.

Attempts have been made to automatically identify all No-Heap Safe classes of the standard library7, but the
problem had proven to be hard to solve.

6 Sun Microsystems License Agreement - http://www.java.com/en/download/license.jsp
7 No-Heap Safe Classes by Peter Dible - http://www.rtsj.org/docs/noheapSafe1/Noheapsafeclasses4.html

American Institute of Aeronautics and Astronautics

public class Foo {
 // RTSJ Unsafe - Memory leaks when entries removed.
 // - Error when new entries while in ScopedArea.
 static HashMap<Foo, Bar> map = new HashMap<Foo, Bar>();
}

2

http://www.rtsj.org/docs/noheapSafe1/Noheapsafeclasses4.html
http://www.java.com/en/download/license.jsp

III. The Javolution Library (overview)
The Javolution library provides time-deterministic and

RTSJ-Safe alternative implementations of the standard library
interfaces. The Javolution collections for example implement
the standard collection interfaces and can be used as drop-in
replacement. These collections have additional characteristics
extremely valuable for real-time systems such as thread-safe
without synchronization, support for custom key/value
comparators, direct record iterations (no object creation), etc.
Time-determinism behavior is achieved through incremental
capacity increases instead of full resizing. In other words,
resizing occurs more often but has less impact (on execution
time or memory fragmentation).

An important aspect of Javolution implementation is that all classes are RTSJ-Safe. If an object has to perform
some lazy initialization or increase its capacity this is always done in the same memory area as the object itself.

When high-level components are implemented using Javolution components, these high-level components
inherit from the same real-time characteristics guaranteed by the Javolution components (time determinism and
RTSJ Safety). On the other hand high level components based on standard components might suffer from the same
kind of time unpredictability which plagues the standard library.

IV. Real-Time I/O
Rarely safety critical systems work in isolation. Systems have to communicate with other similar systems, legacy

systems or the hardware. But once again the “server” background of Java led to poor/incomplete support especially
for the embedded domain. The RTSJ allows direct access to physical memory which means that device drivers could
be created and written entirely in Java. But unlike C/C++, Java does not support struct/union which makes writing
such driver difficult and error prone. Unlike C/C++, the storage layout of Java objects is not determined by the
compiler. The layout of objects in memory is deferred to run time and determined by the interpreter (or just-in-time
compiler). This approach allows for dynamic loading and binding; but also makes interfacing with C/C++ code or
the hardware difficult. Javolution addresses this particular issue in the form of two public domain classes: Struct
and Union. These two classes mimic the C struct and union types. They follow the same alignment rules, support the
same features (e.g. bit fields, packing) and they make it extremely easy to convert C header files to Java classes
(one-to-one mapping). Using these classes, embedded systems can map Java objects to physical address in order to
control hardware devices or communicate through shared memory with external applications.

American Institute of Aeronautics and Astronautics
3

public class Foo {
 // RTSJ Safe – New entries are in ImmortalMemory,
 // - Removed entries are recycled internally.
 static FastMap<Foo, Bar> map = new FastMap<Foo, Bar>();
}

class Clock extends Struct { // Hardware clock mapped to memory.
 Unsigned16 seconds = new Unsigned16(5); // unsigned short seconds:5
 Unsigned16 minutes = new Unsigned16(5); // unsigned short minutes:5
 Unsigned16 hours = new Unsigned16(4); // unsigned short hours:4
 . . .
 }

Figure 1: List.add(Object) Execution Time

V. Garbage-Free XML Serialization
Serialization is the process of saving an object onto a storage medium (such as a memory buffer) or to transmit it

across a network connection in a particular form. In order to achieve platform/language neutrality the XML format
had become the standard for such transformation. The Service Oriented Architecture Protocol (SOAP) for example
relies heavily on XML serialization. Unfortunately, this process in Java is extremely messy (generates a lot of
garbage). The Standard XML Readers/Writers are “String” based; the “String” class being immutable; its instances
can only be recycled through garbage collection. This has a serious impact on performance and memory footprint as
well (C/C++ XML parsers are about 2-4x faster because they don’t suffer from this limitation). A solution to this
problem was to slightly modify the StAX specification and use CharSequence instead of String8. This small change
made it possible for XML readers/writers to use character buffers as CharSequence and made Javolution XML
parsing/formatting as fast as its C/C++ counterpart.

With such clean (no garbage generated) serialization/deserialization engine, XML could then be used for time
critical communications (no GC interruption).

VI. Separation of Concerns
Separation of concerns is very powerful programming principle and easier than it looks. Basically, it could be

summarized as the "pass the buck principle". If you don't know what to do with some information, just give it to
someone else who might know. A frequent example is the catching of exceptions too early (with some logging
processing) instead of throwing a checked exception. Unfortunately, within the standard library they are still plenty
of cases where the separation of concerns is not as good as it could be. For example logging! Using the standard
logging, the code has to know which logger to log to? Why?

Javolution has a rather simple solution to this problem: "Context Programming"! It basically says that every
thread has a context which can be customized by someone else (the one who knows what to do). Then, your code
looks a lot cleaner and is way more flexible as you don't have to worry about logging, security, performance etc. in
your low level methods

Separation of concerns greatly facilitates writing safety-critical application because it allows for different
behavior based upon the thread criticality while still running the same code!

Javolution has few out-of-the-box contexts already:

• LocalContext - To define locally scoped environment settings.
• ConcurrentContext - To take advantage of concurrent algorithms on multi-processors systems.
• AllocatorContext - To control object allocation, e.g. StackContext to allocate on the stack
• LogContext - For thread-based or object-based logging capability.
• PersistentContext - To achieve persistency across multiple program execution.
• SecurityContext - To address application-level security concerns.
• TestContext - To address varied aspect of testing such as performance and regression.

8 A String being a CharSequence this change has very little impact on existing StAX code.

American Institute of Aeronautics and Astronautics
4

void myMethod() {
 ...
 LogContext.info("Don't know where this is going to be logged to");
 ...
}

VII. Performance and Regression Tests
Too often unit tests focus on one aspect: "Validation". But although a code modification might not break your

application; it may very well impact the performance significantly (for the better or the worst). External elements
(JVM, O/S, memory available) are also likely to affect performance. For hard real-time applications missing a
“deadline” can be seen as a critical failure. It is therefore extremely important to not only be able to measure the
performance of your code but also to be able to detect automatically (regression tests) when any change you made in
your code or runtime environment breaks your timing assumptions.

To facilitate such regression, Javolution provides a specialized context, the TimeContext capable of measuring
and verifying the minimum/average/maximum execution time of any test case.

 }

Developers may create others types of contexts such as the memory context to check the memory footprint. By
running the same test suite but within varied contexts, developers can focus on any particular aspect of interest such
as behavior, performance, memory usage, etc.

VIII. Conclusion
Ensuring bounded response time is of interest to any interactive application even non real-time. But for safety

critical applications it is crucial. As we have seen in this paper using a RTSJ VM is not enough. One may hope that
more and more consideration will be given to time-determinism when implementing Java specifications.
Fortunately, the community effort has already started with Javolution and the creation of the JSR-302 - Safety
Critical Technology. The Javolution project has proven to be quite popular9 and is currently being leveraged by
developers from many reputable companies (Raytheon, Sun, IBM, Lockeed Martin, Thales, BEA, Blockbuster, etc.)

Finally, it should be noted that real-time is not incompatible with high performance. In many instances
Javolution classes are faster than their standard counterparts, proving that you can be both real-time and real-fast!

9 The Javolution web site has more than 1000+ visits a day and 2000+ library downloads a month.

American Institute of Aeronautics and Astronautics
5

class MyTestCase extends TestCase() {
 ...
 public void validate() {
 long ns = TimeContext.getMaximumTime("ns");
 TimeContext.assertTrue(ns < 100); // Error if execution time is
 ... // more than 100 ns.
 }
}

	A. Throughput versus Time-Determinism
	B. RTSJ Memory Clash

