NFFT  3.3.2
reconstruct_data_3d.c
00001 /*
00002  * Copyright (c) 2002, 2016 Jens Keiner, Stefan Kunis, Daniel Potts
00003  *
00004  * This program is free software; you can redistribute it and/or modify it under
00005  * the terms of the GNU General Public License as published by the Free Software
00006  * Foundation; either version 2 of the License, or (at your option) any later
00007  * version.
00008  *
00009  * This program is distributed in the hope that it will be useful, but WITHOUT
00010  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00011  * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
00012  * details.
00013  *
00014  * You should have received a copy of the GNU General Public License along with
00015  * this program; if not, write to the Free Software Foundation, Inc., 51
00016  * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  */
00018 #include "config.h"
00019 
00020 #include <math.h>
00021 #include <stdlib.h>
00022 #ifdef HAVE_COMPLEX_H
00023 #include <complex.h>
00024 #endif
00025 
00026 #include "nfft3.h"
00027 
00037 static void reconstruct(char* filename,int N,int M,int Z,int iteration, int weight)
00038 {
00039   int j,k,z,l;                  /* some variables  */
00040   double real,imag;             /* to read the real and imag part of a complex number */
00041   nfft_plan my_plan;            /* plan for the two dimensional nfft  */
00042   solver_plan_complex my_iplan;          /* plan for the two dimensional infft */
00043   FILE* fin;                    /* input file                         */
00044   FILE* fout_real;              /* output file (real part) */
00045   FILE* fout_imag;              /* output file (imag part) */
00046   int my_N[3],my_n[3];          /* to init the nfft */
00047   double epsilon=0.0000003;     /* tmp to read the obsolent z from 700.acs
00048                                    epsilon is a the break criterion for
00049                                    the iteration */
00050   unsigned infft_flags = CGNR | PRECOMPUTE_DAMP;  /* flags for the infft */
00051 
00052   /* initialise my_plan, specific.
00053      we don't precompute psi */
00054   my_N[0]=Z; my_n[0]=ceil(Z*1.2);
00055   my_N[1]=N; my_n[1]=ceil(N*1.2);
00056   my_N[2]=N; my_n[2]=ceil(N*1.2);
00057   nfft_init_guru(&my_plan, 3, my_N, M, my_n, 6,
00058                       PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00059                       MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE,
00060                       FFTW_MEASURE| FFTW_DESTROY_INPUT);
00061 
00062   /* precompute lin psi */
00063   if(my_plan.flags & PRE_LIN_PSI)
00064     nfft_precompute_lin_psi(&my_plan);
00065 
00066   if (weight)
00067     infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
00068 
00069   /* initialise my_iplan, advanced */
00070   solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags );
00071 
00072   /* get the weights */
00073   if(my_iplan.flags & PRECOMPUTE_WEIGHT)
00074   {
00075     fin=fopen("weights.dat","r");
00076     for(j=0;j<M;j++)
00077     {
00078       fscanf(fin,"%le ",&my_iplan.w[j]);
00079     }
00080     fclose(fin);
00081   }
00082 
00083   /* get the damping factors */
00084   if(my_iplan.flags & PRECOMPUTE_DAMP)
00085   {
00086     for(j=0;j<N;j++){
00087       for(k=0;k<N;k++) {
00088         for(z=0;z<N;z++) {
00089         int j2= j-N/2;
00090         int k2= k-N/2;
00091         int z2= z-N/2;
00092         double r=sqrt(j2*j2+k2*k2+z2*z2);
00093         if(r>(double) N/2)
00094           my_iplan.w_hat[z*N*N+j*N+k]=0.0;
00095         else
00096           my_iplan.w_hat[z*N*N+j*N+k]=1.0;
00097         }
00098       }
00099     }
00100   }
00101 
00102   /* open the input file */
00103   fin=fopen(filename,"r");
00104 
00105   /* open the output files */
00106   fout_real=fopen("output_real.dat","w");
00107   fout_imag=fopen("output_imag.dat","w");
00108 
00109   /* read x,y,freal and fimag from the knots */
00110   for(j=0;j<M;j++)
00111   {
00112     fscanf(fin,"%le %le %le %le %le ",&my_plan.x[3*j+1],&my_plan.x[3*j+2], &my_plan.x[3*j+0],
00113     &real,&imag);
00114     my_iplan.y[j] = real + _Complex_I*imag;
00115   }
00116 
00117   /* precompute psi */
00118   if(my_plan.flags & PRE_PSI)
00119     nfft_precompute_psi(&my_plan);
00120 
00121   /* precompute full psi */
00122   if(my_plan.flags & PRE_FULL_PSI)
00123     nfft_precompute_full_psi(&my_plan);
00124 
00125   /* init some guess */
00126   for(k=0;k<my_plan.N_total;k++)
00127     my_iplan.f_hat_iter[k]=0.0;
00128 
00129   /* inverse trafo */
00130   solver_before_loop_complex(&my_iplan);
00131   for(l=0;l<iteration;l++)
00132   {
00133     /* break if dot_r_iter is smaller than epsilon*/
00134     if(my_iplan.dot_r_iter<epsilon)
00135       break;
00136     fprintf(stderr,"%e,  %i of %i\n",sqrt(my_iplan.dot_r_iter),
00137     l+1,iteration);
00138     solver_loop_one_step_complex(&my_iplan);
00139   }
00140 
00141   for(l=0;l<Z;l++)
00142   {
00143     for(k=0;k<N*N;k++)
00144     {
00145       /* write every Layer in the files */
00146       fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[ k+N*N*l ]));
00147       fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[ k+N*N*l ]));
00148     }
00149     fprintf(fout_real,"\n");
00150     fprintf(fout_imag,"\n");
00151   }
00152 
00153   fclose(fout_real);
00154   fclose(fout_imag);
00155 
00156   solver_finalize_complex(&my_iplan);
00157   nfft_finalize(&my_plan);
00158 }
00159 
00160 int main(int argc, char **argv)
00161 {
00162   if (argc <= 6) {
00163     printf("usage: ./reconstruct3D FILENAME N M Z ITER WEIGHTS\n");
00164     return 1;
00165   }
00166 
00167   reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]),atoi(argv[6]));
00168   return 1;
00169 }
00170 /* \} */