![]() |
NFFT
3.3.2
|
00001 /* 00002 * Copyright (c) 2002, 2016 Jens Keiner, Stefan Kunis, Daniel Potts 00003 * 00004 * This program is free software; you can redistribute it and/or modify it under 00005 * the terms of the GNU General Public License as published by the Free Software 00006 * Foundation; either version 2 of the License, or (at your option) any later 00007 * version. 00008 * 00009 * This program is distributed in the hope that it will be useful, but WITHOUT 00010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 00011 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 00012 * details. 00013 * 00014 * You should have received a copy of the GNU General Public License along with 00015 * this program; if not, write to the Free Software Foundation, Inc., 51 00016 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 */ 00018 #include <stdlib.h> 00019 #include <math.h> 00020 #include <limits.h> 00021 #include <complex.h> 00022 00023 #include "nfft3.h" 00024 00025 #ifndef MAX 00026 #define MAX(a,b) (((a)>(b))?(a):(b)) 00027 #endif 00028 00038 static void reconstruct(char* filename,int N,int M,int iteration, int weight) 00039 { 00040 int j,k,l; /* some variables */ 00041 nnfft_plan my_plan; /* plan for the two dimensional nfft */ 00042 solver_plan_complex my_iplan; /* plan for the two dimensional infft */ 00043 FILE* fin; /* input file */ 00044 FILE* finh; 00045 FILE* ftime; 00046 FILE* fout_real; /* output file */ 00047 FILE* fout_imag; /* output file */ 00048 int my_N[3],my_n[3]; /* to init the nfft */ 00049 double t0, t1; 00050 double t,epsilon=0.0000003; /* epsilon is a the break criterium for 00051 the iteration */ 00052 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; /* flags for the infft*/ 00053 double time,min_time,max_time,min_inh,max_inh; 00054 double real,imag; 00055 double *w; 00056 00057 double Ts; 00058 double W; 00059 int N3; 00060 int m=2; 00061 double sigma = 1.25; 00062 00063 w = (double*)nfft_malloc(N*N*sizeof(double)); 00064 00065 ftime=fopen("readout_time.dat","r"); 00066 finh=fopen("inh.dat","r"); 00067 00068 min_time=INT_MAX; max_time=INT_MIN; 00069 for(j=0;j<M;j++) 00070 { 00071 fscanf(ftime,"%le ",&time); 00072 if(time<min_time) 00073 min_time = time; 00074 if(time>max_time) 00075 max_time = time; 00076 } 00077 00078 fclose(ftime); 00079 00080 Ts=(min_time+max_time)/2.0; 00081 00082 min_inh=INT_MAX; max_inh=INT_MIN; 00083 for(j=0;j<N*N;j++) 00084 { 00085 fscanf(finh,"%le ",&w[j]); 00086 if(w[j]<min_inh) 00087 min_inh = w[j]; 00088 if(w[j]>max_inh) 00089 max_inh = w[j]; 00090 } 00091 fclose(finh); 00092 00093 N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0)*4); 00094 00095 00096 W=MAX(fabs(min_inh),fabs(max_inh))*2.0; 00097 00098 fprintf(stderr,"3: %i %e %e %e %e %e %e\n",N3,W,min_inh,max_inh,min_time,max_time,Ts); 00099 00100 /* initialise my_plan */ 00101 my_N[0]=N;my_n[0]=ceil(N*sigma); 00102 my_N[1]=N; my_n[1]=ceil(N*sigma); 00103 my_N[2]=N3; my_n[2]=ceil(N3*sigma); 00104 nnfft_init_guru(&my_plan, 3, N*N, M, my_N,my_n,m, 00105 PRE_PSI| PRE_PHI_HUT| MALLOC_X| MALLOC_V| MALLOC_F_HAT| MALLOC_F ); 00106 00107 /* precompute lin psi if set */ 00108 if(my_plan.nnfft_flags & PRE_LIN_PSI) 00109 nnfft_precompute_lin_psi(&my_plan); 00110 00111 /* set the flags for the infft*/ 00112 if (weight) 00113 infft_flags = infft_flags | PRECOMPUTE_WEIGHT; 00114 00115 /* initialise my_iplan, advanced */ 00116 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags ); 00117 00118 /* get the weights */ 00119 if(my_iplan.flags & PRECOMPUTE_WEIGHT) 00120 { 00121 fin=fopen("weights.dat","r"); 00122 for(j=0;j<my_plan.M_total;j++) 00123 { 00124 fscanf(fin,"%le ",&my_iplan.w[j]); 00125 } 00126 fclose(fin); 00127 } 00128 00129 /* get the damping factors */ 00130 if(my_iplan.flags & PRECOMPUTE_DAMP) 00131 { 00132 for(j=0;j<N;j++){ 00133 for(k=0;k<N;k++) { 00134 int j2= j-N/2; 00135 int k2= k-N/2; 00136 double r=sqrt(j2*j2+k2*k2); 00137 if(r>(double) N/2) 00138 my_iplan.w_hat[j*N+k]=0.0; 00139 else 00140 my_iplan.w_hat[j*N+k]=1.0; 00141 } 00142 } 00143 } 00144 00145 /* open the input file */ 00146 fin=fopen(filename,"r"); 00147 ftime=fopen("readout_time.dat","r"); 00148 00149 for(j=0;j<my_plan.M_total;j++) 00150 { 00151 fscanf(fin,"%le %le %le %le ",&my_plan.x[3*j+0],&my_plan.x[3*j+1],&real,&imag); 00152 my_iplan.y[j]=real+ _Complex_I*imag; 00153 fscanf(ftime,"%le ",&my_plan.x[3*j+2]); 00154 00155 my_plan.x[3*j+2] = (my_plan.x[3*j+2]-Ts)*W/N3; 00156 } 00157 00158 for(j=0;j<N;j++) 00159 { 00160 for(l=0;l<N;l++) 00161 { 00162 my_plan.v[3*(N*j+l)+0]=(((double) j) -(((double) N)/2.0))/((double) N); 00163 my_plan.v[3*(N*j+l)+1]=(((double) l) -(((double) N)/2.0))/((double) N); 00164 my_plan.v[3*(N*j+l)+2] = w[N*j+l]/W ; 00165 } 00166 } 00167 00168 /* precompute psi */ 00169 if(my_plan.nnfft_flags & PRE_PSI) { 00170 nnfft_precompute_psi(&my_plan); 00171 if(my_plan.nnfft_flags & PRE_FULL_PSI) 00172 nnfft_precompute_full_psi(&my_plan); 00173 } 00174 00175 if(my_plan.nnfft_flags & PRE_PHI_HUT) 00176 nnfft_precompute_phi_hut(&my_plan); 00177 00178 /* init some guess */ 00179 for(k=0;k<my_plan.N_total;k++) 00180 { 00181 my_iplan.f_hat_iter[k]=0.0; 00182 } 00183 00184 t0 = nfft_clock_gettime_seconds(); 00185 00186 /* inverse trafo */ 00187 solver_before_loop_complex(&my_iplan); 00188 for(l=0;l<iteration;l++) 00189 { 00190 /* break if dot_r_iter is smaller than epsilon*/ 00191 if(my_iplan.dot_r_iter<epsilon) 00192 break; 00193 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter), 00194 l+1,iteration); 00195 solver_loop_one_step_complex(&my_iplan); 00196 } 00197 00198 t1 = nfft_clock_gettime_seconds(); 00199 t = t1-t0; 00200 00201 fout_real=fopen("output_real.dat","w"); 00202 fout_imag=fopen("output_imag.dat","w"); 00203 00204 for(k=0;k<my_plan.N_total;k++) { 00205 00206 my_iplan.f_hat_iter[k]*=cexp(2.0*_Complex_I*M_PI*Ts*w[k]); 00207 00208 fprintf(fout_real,"%le ", creal(my_iplan.f_hat_iter[k])); 00209 fprintf(fout_imag,"%le ", cimag(my_iplan.f_hat_iter[k])); 00210 } 00211 00212 00213 fclose(fout_real); 00214 fclose(fout_imag); 00215 00216 00217 /* finalize the infft */ 00218 solver_finalize_complex(&my_iplan); 00219 00220 /* finalize the nfft */ 00221 nnfft_finalize(&my_plan); 00222 00223 nfft_free(w); 00224 } 00225 00226 int main(int argc, char **argv) 00227 { 00228 if (argc <= 5) { 00229 printf("usage: ./reconstruct_data_inh_nnfft FILENAME N M ITER WEIGHTS\n"); 00230 return 1; 00231 } 00232 00233 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5])); 00234 00235 return 1; 00236 } 00237 /* \} */