NFFT  3.3.2
reconstruct_data_inh_3d.c
00001 /*
00002  * Copyright (c) 2002, 2016 Jens Keiner, Stefan Kunis, Daniel Potts
00003  *
00004  * This program is free software; you can redistribute it and/or modify it under
00005  * the terms of the GNU General Public License as published by the Free Software
00006  * Foundation; either version 2 of the License, or (at your option) any later
00007  * version.
00008  *
00009  * This program is distributed in the hope that it will be useful, but WITHOUT
00010  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00011  * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
00012  * details.
00013  *
00014  * You should have received a copy of the GNU General Public License along with
00015  * this program; if not, write to the Free Software Foundation, Inc., 51
00016  * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  */
00018 #include <stdlib.h>
00019 #include <math.h>
00020 #include <limits.h>
00021 #include <complex.h>
00022 
00023 #include "nfft3.h"
00024 
00025 #ifndef MAX
00026 #define MAX(a,b) (((a)>(b))?(a):(b))
00027 #endif
00028 
00035 static void reconstruct(char* filename,int N,int M,int iteration , int weight)
00036 {
00037   int j,k,l;
00038   double t0, t1;
00039   double time,min_time,max_time,min_inh,max_inh;
00040   double t,real,imag;
00041   double w,epsilon=0.0000003;     /* epsilon is a the break criterium for
00042                                    the iteration */;
00043   mri_inh_3d_plan my_plan;
00044   solver_plan_complex my_iplan;
00045   FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime;
00046   int my_N[3],my_n[3];
00047   int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00048                       MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE;
00049   unsigned infft_flags = CGNR | PRECOMPUTE_DAMP;
00050 
00051   double Ts;
00052   double W;
00053   int N3;
00054   int m=2;
00055   double sigma = 1.25;
00056 
00057   ftime=fopen("readout_time.dat","r");
00058   finh=fopen("inh.dat","r");
00059 
00060   min_time=INT_MAX; max_time=INT_MIN;
00061   for(j=0;j<M;j++)
00062   {
00063     fscanf(ftime,"%le ",&time);
00064     if(time<min_time)
00065       min_time = time;
00066     if(time>max_time)
00067       max_time = time;
00068   }
00069 
00070   fclose(ftime);
00071 
00072   Ts=(min_time+max_time)/2.0;
00073 
00074 
00075   min_inh=INT_MAX; max_inh=INT_MIN;
00076   for(j=0;j<N*N;j++)
00077   {
00078     fscanf(finh,"%le ",&w);
00079     if(w<min_inh)
00080       min_inh = w;
00081     if(w>max_inh)
00082       max_inh = w;
00083   }
00084   fclose(finh);
00085 
00086   N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
00087   /* N3 has to be even */
00088   if(N3%2!=0)
00089     N3++;
00090 
00091   W= MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double) m)/N3);
00092 
00093   my_N[0]=N;my_n[0]=ceil(N*sigma);
00094   my_N[1]=N; my_n[1]=ceil(N*sigma);
00095   my_N[2]=N3; my_n[2]=ceil(N3*sigma);
00096 
00097   /* initialise nfft */
00098   mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00099                       FFTW_MEASURE| FFTW_DESTROY_INPUT);
00100 
00101   if (weight)
00102     infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
00103 
00104   /* initialise my_iplan, advanced */
00105   solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags );
00106 
00107   /* get the weights */
00108   if(my_iplan.flags & PRECOMPUTE_WEIGHT)
00109   {
00110     fw=fopen("weights.dat","r");
00111     for(j=0;j<my_plan.M_total;j++)
00112     {
00113         fscanf(fw,"%le ",&my_iplan.w[j]);
00114     }
00115     fclose(fw);
00116   }
00117 
00118   /* get the damping factors */
00119   if(my_iplan.flags & PRECOMPUTE_DAMP)
00120   {
00121     for(j=0;j<N;j++){
00122       for(k=0;k<N;k++) {
00123         int j2= j-N/2;
00124         int k2= k-N/2;
00125         double r=sqrt(j2*j2+k2*k2);
00126         if(r>(double) N/2)
00127           my_iplan.w_hat[j*N+k]=0.0;
00128         else
00129           my_iplan.w_hat[j*N+k]=1.0;
00130       }
00131     }
00132   }
00133 
00134   fp=fopen(filename,"r");
00135   ftime=fopen("readout_time.dat","r");
00136 
00137   for(j=0;j<my_plan.M_total;j++)
00138   {
00139     fscanf(fp,"%le %le %le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1],&real,&imag);
00140     my_iplan.y[j]=real+ _Complex_I*imag;
00141     fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]);
00142 
00143     my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3;
00144   }
00145   fclose(fp);
00146   fclose(ftime);
00147 
00148 
00149   finh=fopen("inh.dat","r");
00150   for(j=0;j<N*N;j++)
00151   {
00152     fscanf(finh,"%le ",&my_plan.w[j]);
00153     my_plan.w[j]/=W;
00154   }
00155   fclose(finh);
00156 
00157 
00158   if(my_plan.plan.flags & PRE_PSI) {
00159     nfft_precompute_psi(&my_plan.plan);
00160   }
00161   if(my_plan.plan.flags & PRE_FULL_PSI) {
00162       nfft_precompute_full_psi(&my_plan.plan);
00163   }
00164 
00165   /* init some guess */
00166   for(j=0;j<my_plan.N_total;j++)
00167   {
00168     my_iplan.f_hat_iter[j]=0.0;
00169   }
00170 
00171   t0 = nfft_clock_gettime_seconds();
00172 
00173   /* inverse trafo */
00174   solver_before_loop_complex(&my_iplan);
00175   for(l=0;l<iteration;l++)
00176   {
00177     /* break if dot_r_iter is smaller than epsilon*/
00178     if(my_iplan.dot_r_iter<epsilon)
00179     break;
00180     fprintf(stderr,"%e,  %i of %i\n",sqrt(my_iplan.dot_r_iter),
00181     l+1,iteration);
00182     solver_loop_one_step_complex(&my_iplan);
00183   }
00184 
00185   t1 = nfft_clock_gettime_seconds();
00186   t = t1-t0;
00187 
00188   fout_real=fopen("output_real.dat","w");
00189   fout_imag=fopen("output_imag.dat","w");
00190 
00191   for (j=0;j<N*N;j++) {
00192     /* Verschiebung wieder herausrechnen */
00193     my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*M_PI*Ts*my_plan.w[j]*W);
00194 
00195     fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j]));
00196     fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j]));
00197   }
00198 
00199   fclose(fout_real);
00200   fclose(fout_imag);
00201   solver_finalize_complex(&my_iplan);
00202   mri_inh_3d_finalize(&my_plan);
00203 }
00204 
00205 
00206 int main(int argc, char **argv)
00207 {
00208   if (argc <= 5) {
00209 
00210     printf("usage: ./reconstruct_data_inh_3d FILENAME N M ITER WEIGHTS\n");
00211     return 1;
00212   }
00213 
00214   reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
00215 
00216   return 1;
00217 }
00218 /* \} */