1. Nagios 3

Nagios

Nagios is an opensource monitoring and alertingtool. It consists of several CGI and HTML-Templates.
The actual work is done by Nagios plugins. The only requirements for Nagios plugins are:

- The Nagios host has to be able to execute them. So as far as the environment is working properly
Plugins can be anything: bash-scripts, c/c++ executables, java, perl, python...

+ The plugin's output has to conform the Nagios Plugin Guidelines, see this for more information.

+ The plugin has to return exitcodes.

This makes Nagios pretty flexible and extensible. Furthermore Nagios can be extended by Addons
which enrich its functionality. A nice extension is PNP, it uses Nagios' performance data to build Round
Robin Databases (RRD) to aggregate and store the information and is able to display them in graphs.

Setups

As mentioned before Nagios itself uses plugins to acquire information for alerting/monitoring. The
question is now where these plugins get their information from about remote hosts.

Public Services

One possibility is to get information which is publically available like icmp pings and tcp socket
connections. Icmp pings are used by default when hosts are defined. Tcp connections can be monitored
with the shipped plugin check_tcp or check http respectively.

Private Services

Due to security restrictions more detailed information are not available from the outside of a remote
host. Therefore some plugins have to be deployed on the remote hosts and invoked locally on that
remote machine. For the process of invoking there are several possible ways to go:

SSH

The most secure and most available way to invoke plugins on remote machines is ssh. It is possible to
write a plugin for invoking the remote plugin by ssh. It can look like:

#!/bin/bash

ssh $1@$2 "$3"
exit $7?

It is possible to invoke this script by . /script.sh user remote_machine command
whereas user, remote_machine and command have to be replaced by their actual values respectively.
Furthermore I suggest using "Public Key Authentication" instead of "Password Authentication" (see
here) because it is more secure and needed here.

http://sial.org/howto/openssh/publickey-auth/
http://de.wikipedia.org/wiki/RRDtool
http://www.pnp4nagios.org/start
http://nagiosplug.sourceforge.net/developer-guidelines.html

The Contra for using ssh for invoking commands on remote hosts is the overhead imposed on the
nagios server. Due to this overhead it will scale bad for many monitored machines.

NRPE

NRPE is the Nagios Remote Plugin Executer. Its a deamon which runs on the remote hosts and is able
to execute the plugins there and redirect the output and exit code to the nagios server.

The Contra for this is the fact that NRPE is unlikely to find in Linux Distribution Repositories and has
to be downloaded as source and built for each architecture which is required. Furthermore there is no
real way of security or authorization in the whole communication process between the nagios server
and the distributed NRPE deamons. One attempt is to wrap it in xinetd and define IPs which are
allowed to contact the NRPE deamon, but this is no real security because IPs can be spoofed.

SNMPD

SNMP is the Simple Network Management Protocol and snmpd is the deamon for this. it is possible to
define executeables as information sources for snmp and thats the trick which is used here. The
requirements for using snmpd as the deamon for invoking the plugins is only an installed snmpd which
is available in Linux Distribution Repositories, a configuration file which defines the location of the
plugins to be executed and their names and locations and a net-snmp v3 user on the remote machine.
We need v3 here because that is the version net-snmp learned authentication with. It is possible to
automate these steps with few ressources needed.

The Contra for this is that there is no way to pass arguments to invoking the plugins, so everything has
to be managed on the remote hosts themselves.

NSCA and Cron

A different approach is to use the NSCA tools. They consist of the NSCA server and send_nsca. The
NSCA server runs on the Nagios server and send_nsca is used on the remote machines to transmit the
plugin data to the NSCA server. For this setup it might be appropriate to use cron for regular checks on
the remote machines and to trigger send_nsca when needed.

2. The CCMS-Plugin 0.7.3

The Plugin developed by Jan Dostert und Wolfgang Rosenauer uses the RFCSDK 46B. The current
official release of SAP ERP is 7.10/7.11. Due to these discrepancies there is a problem at the registration
between the plugin and the SAP System. Because passwords were used to be uppercase in older ERP
releases, the old RFCSDK 46B transforms passwords to uppercase automatically during transmission
but passwords of current releases of ERP are case-sensitive. A known workaround was to set up an
uppercase password on the remote SAP System.

3. Changes

Since Nagios 3.0b1 there is a config-option in nagios/etc/cgi.cfg which enables/disables html escape.

An Excerpt from the cgi.cfg:

ESCAPE HTML TAGS

This option determines whether HTML tags in host and service
status output is escaped in the web interface. If enabled,

your plugin output will not be able to contain clickable links.

escape_html_tags=1

Since the Plugin in Version 0.7.3 is used to print links and other html structures its recommended to
adjust this setting in your configuration.

Because of the new Plugin-Output-Guidelines, which should be implemented if one wants his
performancedata to be recognized by nagios and therefor pnp, its not possible to produce some html
structures like table or div. These were used in version 0.7.3. More information are available on
http://nagios.sourceforge.net/docs/3 0/pluginapi.html. So as of the output of the CCMS-Plugins is
guideline compliant and can be recorded by addons.

To solve the password problem from section 2, the shipped sap_moni.so was statically linked against
the RFCSDK 7.11 library. Its appropriate to note here that the RFCSDK 7.11 will be the last one
without an API-Change. Newer versions of the RFCSDK will be called NetWeaver RFCSDK and wont
be compatible with older versions. Furthermore librfc.a was removed instead librfccm.so was used.

The Makefile of version 0.7.3 has produced "Position independant Executables" which is
unnecessary and impacts the execution runtime in a negative way. This was corrected. For more
information about gcc - fPIC I suggest http://blog.flameeyes.eu/2008/12/07/again-pic-and-
executables-this-time.

Furthermore an issue with a missing prototype header was fixed in several plugins causing strange
Segmentation Faults on 64Bit architectures.

The CCMS-Plugin is compileable and tested on x86, x86_64, 1a64, ppc64 and s390.

Last but not leased a reported bug concerning unexpected returncodes was fixed, compare
https://sourceforge.net/tracker/index.php?func=detail&aid=2548272&group id=114459&atid=668390.

4. How to get started

In this section I will show you how to perform after the download of the CCMS-Plugin to get it working
with Nagios.

Unpacking and Installing

tar xzf sap-ccms-plugin-0.7.x
cd sap-ccms-plugin-0.7.x/src
make

By now everything should be compiled. The executables link dynamically against librfccm.so and
sap_moni.so. These files are located in S rc should be placed somewhere the system can find them. I
suggest copying them to /usr/lib.

Furthermore there are several configuration files in sap-ccms-plugin-0.7.x/config:

agent.cfg

https://sourceforge.net/tracker/index.php?func=detail&aid=2548272&group_id=114459&atid=668390
http://blog.flameeyes.eu/2008/12/07/again-pic-and-executables-this-time
http://blog.flameeyes.eu/2008/12/07/again-pic-and-executables-this-time
http://nagios.sourceforge.net/docs/3_0/pluginapi.html
http://www.pnp4nagios.org/pnp/de/start

+ login.cfg
« moni_tr.cfg
+ ssh_config

These should be copied to /etc/sapmon and made accessible for nagios.

The Configurationfiles

For the beginning only /etc/sapmon/login.cfgand /etc/sapmon/agent.cfg are
interesting. Lets have a look at the first one.

cat /etc/sapmon/login.cfg

[LOGIN LNX]
LOGIN=-d <SID> -u <username> -p <password> -h <hostname|ip> -s <instance-number> -
c <client>

This configuration file defines a handle called "LNX" (due to [LOGIN_LNX]) and the parameters
needed to perform a RFC-Call into that SAP-System. Fill in the values of the System that you want to
monitor. Whereas instance-number is a two digit number which will be used to concatenate the
port where the rfc-call will be issued to. client is a three digit number. Feel free to adjust the handle
(LNX) to match your System-ID.

cat /etc/sapmon/agent.cfg

[EMPLATE 0]

DESCRIPTION="Free Swap"

MONI SET NAME=SAP CCMS Admin Workplace
MONI NAME="Operating System"

MAX TREE DEPTH=0

PATTERN_ 0="**\Swap Space\Freespace""

This entry defines a template with the handle "0" (due to [TEMPLATE_OQ]). Please notice that you
should start handle-names with a digit. The description is just for documentation. The MONI variables
are important. These describe which data you want to receive. To get an impression of how the data is
organized log in the remote SAP System and use the transaction RZ20. You will see a list of nodes,
these are the Monitor Sets ("MONI_SET_NAME"). Once you expand one of these nodes, you will see
the actual Monitor ("MONI_NAME"). You can navigate inside a Monitor by double clicking it. Having
entered a Monitor there is again a tree with nodes. These are Monitorobjects and Monitorattributes.
Back to the config file. MAX_TREE_DEPTH describes how many subnodes you want to receive by a
given Monitor Name, "0" indicates all entries.

With PATTERN 0 you can submit a regular expression which will be used to filter the results. You can
find these patterns in the RZ20 when you navigate in the monitor down to a leaf, mark it and click on
Properties. In the first line of the appearing window there will be written the pattern used to access
this leaf/entry.

First RFC Call with a plugin

As of now you should have understood the principles of the configuration and should be ready for a
first plugin-run. These plugins are - as you might have realized yet - simple executables written in C. So
you dont need Nagios to test them, its possible to run them in a shell.

Open a shell and navigate to the S rc subdirectory. There should be several executables starting with
check sap*

Issue
.check_sap

The output will be:
Agent

Syntax: ./check sap <Template> <RFC-Template>

<Template> defined in /etc/sapmon/agent.cfg
<RFC-Template> defined in /etc/sapmon/login.cfg

We will use the Template "0" and the RFC-Template you have just created - assuming its still called
”1]’1X"_
Issue:

./check sap 0 lnx

If everything went well you will see something like:
Freespace=5149MB;50.000000;25.000000;0;

Creating a Nagios User in the System

You were using a SAP_ALL account to get these data by now. For a productive usage this is not
appropriate.

Creating User

So navigate to SUO1 and create a new User without any Roles or Profiles so far.

Analyzing Authority Objects

It's good practice to use as less privileges as needed for security reasons. The first thing to do for this is
to find out which privileges the Plugin needs to perform its task. One possible approach is to activate
Auth-Tracing in the SAP-System by navigating to Transaction STO1. On this GUI you select

+ Authorization Check
« RFC Call

And afterwards click on Trace On. Rerun the plugin and deactivate the Trace again by clicking on
Trace Off in the Transaction STO1.

To get to your results click on Analysis in the same Transaction, fill in the appropriate user and
time-interval and start this report. Having done this you will get a list with tables. Search for green lines
which have a matching timestamp on them and have S RFC as Object. Those other values in the
Object column are the Authorization Objects you will need to perform that specific RFC-Call -
including S RFC.

Creating the needed Role
Now that you have the authorization objects located its time to set up a SAP Role with these.

- Navigate to Transaction PFCG enter a new role-name and click on the button Role right of the
input-field.

+ In the new screen which appears now, you can add some descriptive text and jump to tabs like
Authorization and User. There are more tabs but only the latter two are of interest. Lets
first have a look at the Authorization tab.

- Having the Authorization tab open there is a button on the bottom labeled with Expert
Mode for Profile Generation, clickit.

« In the next screen click on Manually which should be in the first row of the screen.

+ Fill in the authorization objects recorded by the Auth-Trace. And press the check.

+ You will see some new rows on the screen with a yellow triangle next to their title, click on that
triangle to set all attributes to "*". It will happen automatically after you clicked and confirmed.
This step might take a while.

« Once this is done click on Save, the Disc-Symbol in the menubar, and on Generate, the red-
white circle beneath the screen title. Make sure the the Status says generated.

- Hit the Back button to go back to the Profilescreen. The Authorization tab should have a
green icon by now.

« The next step is to add the nagios-user you have created previously to this profile by clicking on
the User tab and entering his name in the table.

- After hitting "Enter" the icon next to the User tab turns yellow and the icon next to the button
User comparison turns red.

+ Click this button to synchronize the just altered data in the user's database.

- After some confirming the Authorization and the User tab should have green icons. If so
you successfully created a nagios-user, if not revise the steps above.

Testing the newly created User with the Plugin

To confirm that the newly created user performs well with the plugin, you should test it now. Before
doing this, log in as the new user to change your initial password to something meaningful. Having
logged in you can also verify your role with transaction SUO1 by entering the new user name and
navigating to the role/profile tab on the next screen.

As long as everything is fine go on with this document, if you encounter any problems revise the steps
above.

Assuming you could log in as the new nagios user and verify your profile/role, open /etc/sapmon/
login. cfg and alter your username and password to match the newly created credentials.
Rerun the Plugin. There should be a similar output as before.

Setting up Nagios 3

In the following I assume you have installed Nagios to /usr/local. As of now the plugins work and
are ready to be imported in Nagios 3. Therefore copy the plugins you want to use to
/usr/local/nagios/libexec

The plugins are:

check_sap
check_sap_cons
check_sap_cpu_load
check_sap_instance
check_sap_instance_cons
check_sap_multiple
check_sap_mult_no_thr
check_sap_system
check_sap_system_cons

In the following I will explain to you how to set up the check_sap_cpu_load plugin in Nagios 3. The
other plugins have a similar configuration.

Command Definitions

First of all Nagios needs to know how to access the plugin, so add this definition to
/usr/local/nagios/etc/objects/commands.cfg
define command{
command name check sap cpu_ load
command line $USER1$/check sap cpu load $ARG1l$
}

Here we declare the nagios-internal-command check_sap_cpu_load which is accessible by
$USER1$/check_sap_cpu_load $ARG1S$, whereas SUSER1$ is /usr/local/nagios/libexec or
respectively. As you see we pass the RFC-Handle dynamically by $ARG1$ which is the first argument
that will be passed to the internal-nagios-command. You can address each argument by the digit in
$ARGxS.

Host and Service Definitions

To structure the configuration files create the directory /usr/local/nagios/etc/servers and
add the following line to your /usr/local/nagios/etc/nagios.cfg

cfg dir=/usr/local/nagios/etc/servers

This tells Nagios to parse every cfg in this directory. Thats where we are going put the host- and
servicedefinitions to.

/usr/local/nagios/etc/servers/hosts.cfg

define host {
use linux-server
host name 1sXXXX
address XXX.XXX.XXX.XXX

}

Whereas the address directive is not necessary. Nagios can resolve the hostname. At this stage the
host IsXXXX is known to Nagios. In the following step we are going to set up a service check
depending on the check_sap_cpu_load plugin.

/usr/local/nagios/etc/servers/service.cfg

define service {
use local-service
host name 1sXXXX
service description CPU Load
check command check sap cpu load!lnx

}

This definition tells Nagios to inherit configurations from local - service (which in turn can be
found in /usr/local/nagios/etc/objects/templates. cfqg) add this service to the host
IsXXXX, call this service "CPU Load" and check thsi service with the intern-command

check sap cpu load!lnx.

I hope the context between the commands . cTg and this cfg gets more clear now. According to
commands.cfg, check sap cpu load!lnx gets mapped to
$USER1$/check sap cpu load 0 lnx whereas $USERIS is
/usr/local/nagios/libexec. Furthermore $ARG1S$ is "Inx" in this case, so the delimiter for
arguments is "!".

You can now navigate to the webfrontend of your nagios-monitor and there should be the host and the
service we just defined.

	1. Nagios 3
	Nagios
	Setups
	Public Services
	Private Services
	SSH
	NRPE
	SNMPD
	NSCA and Cron

	2. The CCMS-Plugin 0.7.3
	3. Changes
	4. How to get started
	Unpacking and Installing
	The Configurationfiles
	First RFC Call with a plugin
	Creating a Nagios User in the System
	Creating User
	Analyzing Authority Objects
	Creating the needed Role

	Testing the newly created User with the Plugin
	Setting up Nagios 3
	Command Definitions
	Host and Service Definitions
	/usr/local/nagios/etc/servers/hosts.cfg
	/usr/local/nagios/etc/servers/service.cfg

