
Programming with PyCIFRW and PySTARRW

July 16, 2009

PyCIFRW provides facilities for reading, manipulating and writing CIF and STAR files. In addition, CIF files
and dictionaries may be validated against DDL1/2 dictionaries.

1 Installing and Initialising PyCIFRW

As of version 3.3, it is sufficient to install the PyCIFRW “egg” if you have the Python “Easy Install” system. In this
case, running the command ’easy_install pycifrw-version.egg’ will be sufficient. See the PyCIFRW web
page for the most up-to-date instructions.

The more traditional approach: assuming python is installed, you can unpack the distribution into a tem-
porary directory, and then type “python setup.py install” from within this temporary directory. Upon
completion of this command, a number of files will have been placed into the system python packages directory:
CifFile.py, StarFile.py, yapps_compiled_rt.py and YappsStarParser_xx.py. It is then sufficient
to import CifFile.py into your python session or script to access all PyCIFRW functionality:

>>> import CifFile

2 Working with CIF files

2.1 Creating a CifFile object

CIF files are represented in PyCIFRW as CifFile objects. These objects behave identically to Python dictionaries,
with some additional methods. CifFile objects can be created by calling the ReadCif function on a filename or
URL:

>>> cf = CifFile.ReadCif("mycif.cif")
>>> df = CifFile.ReadCif("ftp://ftp.iucr.org/pub/cifdics/cifdic.register")

Errors are raised if CIF syntax/grammar violations are encountered in the input file or line length limits are ex-
ceeded.

A compiled extension (StarScan.so) is available on Linux which increases parsing speed by a factor of three
or more. To use this facility, include the keyword argument scantype=’flex’ in ReadCif/ReadStar com-
mands:

cf = CifFile.ReadCif("mycif.cif",scantype="flex")

1



2.1.1 Grammar options

There are two slightly different variations in CIF file syntax. An early version of the standard allowed non-quoted
data strings to begin with bracket characters (e.g. ’(’). This was disallowed in version 1.1 in order to reserve
such usage for the upcoming DDLm changes. A very few CIF files are produced according to the old standard.
Specification of the particular version to use is possible with the grammar keyword:

cf = CifFile.ReadCif(’oldcif.cif’,grammar=’1.0’) #oldest CIF syntax
cf = CifFile.ReadCif(’normcif.cif’,grammar=’1.1’) #current standard (default)
cf = CifFile.ReadCif(’future.cif’,grammar=’DDLm’) #proposed standard

Note that the DDLm syntax has not been finalised and is subject to change. The most important syntactical addi-
tion in DDLm is the use of nested, bracketed tuple and list expressions, as in Python. The current implementation
in PyCIFRW is one interpretation of the draft documentation, and is likely to change as the draft is finalised.

2.1.2 Creating a new CifFile

A new CifFile object is usually created empty:

cf = CifFile.CifFile()

You will need to create at least one CifBlock object to hold your data:

myblock = CifFile.CifBlock()
cf[’a_block’] = myblock

A CifBlock object may be initialised with another CifBlock, in which case a copy operation is performed,
or with a tuple or list of tuples containing key, value pairs. These are inserted into the new CifBlock using
AddCifItem (see below).

2.2 Manipulating values in a CIF file

2.2.1 Accessing data

The simplest form of access is using standard Python square bracket notation. Data blocks and data names within
each data block are referenced identically to normal Python dictionaries:

my_data = cf[’a_data_block’][’_a_data_name’]

All values are strings with CIF syntactical elements stripped1, that is, no enclosing quotation marks or semicolons
are included in the values. The value associated with a CifFile dictionary key is always a CifBlock object. All
standard Python dictionary methods (e.g. get, update, items, keys) are available for both CifFile and
CifBlock objects. Note also the convenience method first_block, which will reference the first datablock in a
CIF file:

my_data = cf.first_block()

If a data name occurs in a loop, a list of string values is returned for the value of that dataname - the next section
describes ways to access looped data.

1This deviates from the current CIF standard, which mandates interpreting unquoted strings as numbers where possible and in the absence
of dictionary definitions to the contrary (International Tables, Vol. G., p24).

2



2.2.2 Tabular (“looped”) data

For the purpose of the following examples, we use the following example CIF file:

data_testblock
loop_
_item_5
_item_7
_item_6
1 a 5
2 b 6
3 c 7
4 d 8

PyCIFRW provides a shortcut to return all values taken by a particular dataname inside a CIF loop (by us-
ing the square bracket notation, identically to non-looped data), but more flexibility is provided by accessing
CifLoopBlock objects.

A CifLoopBlock object can be obtained by calling CifBlock method GetLoop(dataname). This object
provides the same methods as a CifBlock. For example, keys() returns a list of datanames in the loop. Addi-
tionally, loop packets can be accessed by accessing the nth value in the CifLoopBlock object2, and values can be
obtained from these packets as attributes:

>>> lb = cb.GetLoop("_item_5")
>>> lb[0]
[’1’, ’a’, ’5’]
>>> lb[0]._item_7
’a’

An alternative way of accessing loop data uses Python iterators, allowing the following syntax:

>>> for a in lb: print ‘a["_item_7"]‘
’a’ ’b’ ’c’ ’d’

Note that in both the above examples the row packet is a copy of the looped data, and therefore changes to it will
not silently alter the contents of the CifFile object, unlike the lists returned when column-based access is used.

2.2.3 Key-based table row access (from version 3.2)

Rather than relying on a particular row ordering (remembering that row order is not significant in CIF, unlike, for
example, XML) or iterating through all rows looking for a particular row, it is possible to refer to a particular row
based on the values taken by a given data item, using the CifLoopBlock ’GetKeyedPacket’ method:

>>> myrow = lb.GetKeyedPacket(’_item_7’,’c’)
>>> myrow._item_5
’3’

2Warning: row and column order in a CIF loop is arbitrary; while PyCIFRW maintains the row order seen in the input file, there is nothing in the CIF
standards which mandates this behaviour.

3



In this example, the first packet with a value of ’c’ for _item_7 is returned, and packet values can then be accessed
using the dataname as an attribute of the packet. Note that a KeyError is raised if more than one packet matches,
or no packets match, and that the packet returned is a copy of the data read in from the file, and therefore can be
changed without affecting the CifFile object.

2.2.4 Changing or adding data values

If many operations are going to be performed on a single data block, it is convenient to assign that block to a new
variable:

cb = cf[’my_block’]

A new data name and value may be added, or the value of an existing name changed, by straight assignment:

cb[’_new_data_name’] = 4.5
cb[’_old_data_name’] = ’cucumber’

Old values are overwritten silently. Note that values may be strings or numbers.
If a list is given as the value instead of a single string or number, a new loop is created containing this one data

name, looped. If this data name already appeared in a loop, any looped data values which may have co-occurred
in the loop are deleted. As this is not necessarily the desired behaviour, you may wish to access the loop block
using the GetLoop method described above.

Alternatively, the AddCifItem method can be used to add multiple looped and unlooped data items in a
single command. AddCifItem is called with a 2-element tuple argument. The first element of the tuple is either a
single dataname, or a list or tuple of datanames. The second element is either a single value (in the case of a single
name in the first element) or a list, each element of which is a list of values taken by the corresponding dataname
in the first element. A nested tuple of datanames in the first element together with the corresponding nested tuple
of lists in the second element will become a loop block in the Cif file. In general, however, it will be less confusing
if you create a CifLoopBlock object, populate it with data items, and then insert it into a CifBlock object (see
below).

Another method, AddToLoop(dataname,newdata), adds newdata to the pre-existing loop containing
dataname, silently overwriting duplicate data. Newdata should be a Python dictionary of dataname - datavalue
pairs, where datavalue is a list of new/replacement values.

Note that lists (and other listlike objects except packets) returned by PyCIFRW actually point to the list cur-
rently inside the CifBlock object, and therefore any modification to them will modify the stored list. While this is
often the desired behaviour, if you intend to manipulate such a list in other parts of your program while preserving
the original CIF information, you should first copy the list to avoid destroying the loop structure:

mysym = cb[’_symmetry_ops’][:]
mysym.append(’x-1/2,y+1/2,z’)

Changing item order The ChangeItemOrder method allows the order in which data items appear in the
printed file to be changed:

mycif[’testblock’].ChangeItemOrder(’_item_5’,0)

will move _item_5 to the beginning of the datablock. When changing the order inside a loop block, the loop
block’s method must be called i.e.:

4



aloop = mycif[’testblock’].GetLoop(’_loop_item_1’)
aloop.ChangeItemOrder(’_loop_item_1’,4)

Note also that the position of a loop within the file can be changed in this way as well, simply by passing the
CifLoopBlock object as the first argument:

mycif[’testblock’].ChangeItemOrder(aloop,0)
will move the loop block to the beginning of the printed datablock.

2.2.5 Adding and removing table rows (new in 3.2)

It is possible to add a new row into a loop using AddPacket(packet):

template = aloop.GetKeyedPacket(’_item_7’,’d’)
template._item_5 = ’5’
template._item_7 = ’e’
template._item_6 = ’9’
aloop.AddPacket(template)

Note we use an existing packet as a template in this example. If you wish to create a packet from scratch, you
should instantiate a StarPacket:

import StarFile #installed with PyCIFRW
newpack = StarFile.StarPacket()
newpack._item_5 = ’5’
...
aloop.AddPacket(newpack)

Note that an error will be raised when calling AddPacket if the packet attributes do not exactly match the item
names in the loop.

A packet may be removed using the RemoveKeyedPacket method, which chooses the packet to be removed
based on the value of the given dataname:

aloop.RemoveKeyedPacket(’_item_7’,’a’)

Examples using loops Note that the above methods are used for adding, accessing and removing rows (“pack-
ets”) in pre-existing loops. The following examples show how to perform column-based access.

Adding/replacing a single item with looped values:

cb[’_symmetry’] = [’x,y,z’,’-x,-y,-z’,’x+1/2,y,z’]

results in an output fragment

loop_
_symmetry
x,y,z
-x,-y,-z
x+1/2,y,z

5



Adding a complete loop:

cb.AddCifItem(([[’_example’,’_example_detail’]],
[[[’123.4’,’4567.8’],
[’small cell’,’large cell’]]]))

results in an output fragment:

loop_
_example
_example_detail
123.4 ’small cell’
4567.8 ’large cell’

Appending a new dataname to a pre-existing loop:

cb.AddToLoop(
’_example’,{’_comment’:["not that small","Big and beautiful"]}

)

changes the previous output to be

loop_
_example
_example_detail
_comment
123.4 ’small cell’ ’not that small’
4567.8 ’large cell’ ’Big and beautiful’

Changing pre-existing data in a loop:

cb.AddToLoop(’_comment’,{’_example’:[’12.2’,’12004’]})

changes the previous example to

loop_
_example
_example_detail
_comment
12.2 ’small cell’ ’not that small’
12004 ’large cell’ ’Big and beautiful’

2.3 Writing Cif Files

The CifFile method WriteOut returns a string which may be passed to an open file descriptor:

>>>outfile = open("mycif.cif")
>>>outfile.write(cf.WriteOut())

6



An alternative method uses the built-in Python str() function:

>>>outfile.write(str(cf))

WriteOut takes an optional argument, comment, which should be a string containing a comment which will be
placed at the top of the output file. This comment string must already contain # characters at the beginning of
lines:

>>>outfile.write(cf.WriteOut("#This is a test file"))

Two additional keyword arguments control line length in the output file: wraplength and maxoutlength. Lines
in the output file are guaranteed to be shorter than maxoutlength characters, and PyCIFRW will additionally
insert a line break if putting two data values or a dataname/datavalue pair together on the same line would exceed
wraplength. In other words, unless data values are longer than maxoutlength characters long, no line breaks
will be inserted in the output file. By default, wraplength = 80 and maxoutlength = 2048.

These values may be set on a per block/loop basis by calling the SetOutputLength method of the loop or
block.

The order of output of items within a CifFile or CifBlock is specified using the ChangeItemOrder
method (see above). The default order is the order that items were inserted or read in to the CifFile/CifBlock.

3 Dictionaries and Validation

3.1 Dictionaries

DDL dictionaries may also be read into CifFile objects. For this purpose, CifBlock objects automatically
support save frames (used in DDL2 dictionaries), which are accessed using the saves key. The value of this key
is a collection of CifBlock objects indexed by save frame name, and available operations are similar to those
available for a CifFile, which is also a collection of CifBlocks.

A CifDic object hides the difference between DDL1 dictionaries, where all definitions are separate data blocks,
and DDL2 dictionaries, where all definitions are in save frames of a single data block. A CifDic is initialised with
a single file name or CifFile object, and will accept the grammar keyword:

cd = CifFile.CifDic("cif_core.dic",grammar=’1.1’)

Definitions are accessed using the usual notation, e.g. cd[’_atom_site_aniso_label’]. Return values are
always CifBlock objects. Additionally, the CifDic object contains a number of instance variables derived from
dictionary global data:

dicname The dictionary name + version as given in the dictionary

diclang ’DDL1’,’DDL2’, or ’DDLm’

typedic A Python dictionary matching the typecode to a compiled regular expression

CifDic objects provide a large number of validation functions, which all return a Python dictionary which con-
tains at least the key result. result takes the values True, False or None depending on the success, failure or
non-applicability of each test. In case of failure, additional keys are returned depending on the nature of the error.

7



3.2 Validation

A top level function is provided for convenient validation of CIF files:

CifFile.validate("mycif.cif",dic = "cif_core.dic")

This returns a tuple (valid_result, no_matches). valid_result and no_matches are Python dictio-
naries indexed by block name. For valid_result, the value for each block is itself a dictionary indexed by
item_name. The value attached to each item name is a list of (check_function, check_result) tuples,
with check_result a small dictionary containing at least the key result. All tests which passed or were not
applicable are removed from this dictionary, so result is always False. Additional keys contain auxiliary infor-
mation depending on the test. Each of the items in no_matches is a simple list of item names which were not
found in the dictionary.

If a simple validation report is required, the function validate_report can be called on the output of the
above function, printing a simple ASCII report. This function can be studied as an example of how to process the
structure returned by the ’validate’ function.

A somewhat nicer interface to validation is provided in the ValidationResult class (thanks to Boris Dusek),
which is initialised with the return value from validate:

val_report = ValidationResult(validate("mycif.cif",dic="cif_core.dic"))

This class provides the report method, producing a human-readable report, as well as Boolean methods which
return whether or not the block is valid or if items appear in the block that are not present in the dictionary -
is_valid and has_no_match_items respectively.

3.2.1 Limitations on validation

1. (DDL2 only) When validating data dictionaries themselves, no checks are made on group and subgroup
consistency (e.g. that a specified subgroup is actually defined).

2. (DDL1 only) Some _type_construct attributes in the DDL1 spec file are not machine-readable, so values
cannot be checked for consistency

3.3 ValidCifFile objects

A ValidCifFile object behaves identically to a CifFile object with the additional characteristic that it is valid
against the given dictionary object. Any attempt to set a data value, or add or remove a data name, that would
invalidate the object raises a ValidCifFile error. This class is slow, experimental and it is relatively easy to get
around the validity checks; it is probably more efficient to construct a complete file and then run a validity check.

Additional keywords for initialisation are:

dic A CifDic object to use in validation

diclist A list of CifFile objects or filenames to be merged into a CifDic object (see below)

mergemode Choose merging method (one of ’strict’,’overlay’, ’replace’)

8



3.4 Merging dictionaries

PyCIFRW provides a top-level function to merge DDL1/2 dictionary files. It takes a list of CIF filenames or
CifFile objects, and a mergemode keyword argument. CIF files are merged from left to right, that is, the second
file in the list is merged into the first file in the list and so on.

For completeness we list the arguments of the CifFile merge method, which actually performs the merging
operation:

new_block_set (first argument, no keyword) The new dictionary to be merged into the current dictionary

mode merging mode to use (’strict’, ’overlay’ or ’replace’)

single_block a two element list [oldblockname, newblockname], where oldblockname in the current file
is merged with newblockname in the new file. This is useful when blocknames don’t match

idblock This block is ignored when merging - useful when merging DDL1 dictionaries in strict mode, in which
case the on_this_dictionary block would cause an error.

3.4.1 Limitations on merging

In overlay mode, the COMCIFS recommendations require that, when both definitions contain identical unlooped
attributes which can be looped, the merging process should construct those loops and include both sets of data in
the new loop.

This is not yet implemented in PyCIFRW, as it involves checking the DDL1/DDL2 spec to determine which
attributes may be looped together.

4 Working with STAR files

4.1 Creating STAR files

Star files are created entirely analogously to CIF files, using the StarFile object or ReadStar function.

4.2 Manipulating values

The usual square bracket notation applies, as for CifFile and CifBlock objects. StarFiles are built out of
StarBlock objects in exactly the same way as CifFile objects are built out of CifBlock objects. StarBlock
objects can contain any number of LoopBlock objects, which represent STAR loop blocks. Crucially, these
LoopBlock objects may contain nested loops, which are also LoopBlock objects. Loops are inserted into a
LoopBlock by calling the insert_loop method, and may be nested to an arbitrary level.

4.2.1 Iterators

Any LoopBlock object has two iterator methods: recursive_iter and flat_iterator. On each call of the
iterator created by a recursive_iter call, a StarList is returned with single-valued attributes corresponding
to a single set of values. If there are multiple trees of nested loops in a LoopBlock, each tree is iterated over
separately, as there is no reason that looped values inside a second loop block would have any relationship with
values inside a first loop block. This iterator will thus return all possible sets of values for the LoopBlock.

9



The flat_iterator method does not dig down into nested loops. Instead, iterators created from it return
a new LoopBlock with key-value pairs corresponding to a single top-level packet; nested loops are included,
but they also have only data corresponding to the selected top-level packet available. This iterator thus iterates
through the top-level packets, collapsing the nesting level by one.

The default iterator (that used in list comprehensions and for loops) for CifBlocks (as opposed to StarBlocks)
is recursive_iter.

5 Example programs

A program which uses PyCIFRW for validation, validate_cif.py, is included in the distribution in the Pro-
grams subdirectory. It will validate a CIF file (including dictionaries) against one or more dictionaries which may
be specified by name and version or as a filename on the local disk. If name and version are specified, the IUCr
canonical registry or a local registry is used to find the dictionary and download it if necessary.

5.1 Usage

python validate_cif.py [options] ciffile

5.2 Options

–version show version number and exit

-h,–help print short help message

-d dirname directory to find/store dictionary files

-f dictname filename of locally-stored dictionary

-u version dictionary version to resolve using registry

-n name dictionary name to resolve using registry

-s store downloaded dictionary locally (default True)

-c fetch and use canonical registry from IUCr

-r registry location of registry as filename or URL

-t The file to be checked is itself a DDL2 dictionary

6 Further information

The source files are in a literate programming format (noweb) with file extension .nw. HTML documentation gen-
erated from these files and containing both code and copious comments is included in the downloaded package.
Details of interpretation of the current standards as relates to validation can be found in these files.

10


