GNU MP

The GNU Multiple Precision Arithmetic Library
Edition 6.1.2
16 December 2016

by Torbjorn Granlund and the GMP development team

This manual describes how to install and use the GNU multiple precision arithmetic library,
version 6.1.2.

Copyright 1991, 1993-2016 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A GNU
Manual”, and with the Back-Cover Texts being “You have freedom to copy and modify this
GNU Manual, like GNU software”. A copy of the license is included in Appendix C [GNU Free
Documentation License|, page 128.

Table of Contents

5.13

GNU MP Copying Conditions 1
1 Introduction to GNU MP 2
1.1 How to use this Manualo i e 2
2 Installing GMP 3
2.1 Build Options 3
2.2 ABIL and IS A ... 8
2.3 Notes for Package Buildso i 11
2.4 Notes for Particular Systems i 12
2.5 Known Build Problems 14
2.6 Performance optimization e 15
3 GMP BasiCs ... 17
3.1 Headers and Librariesttt 17
3.2 Nomenclature and Typeso e 17
3.3 Function CLasSesttt e 18
3.4 Variable Conventionst e 18
3.5 Parameter Conventionsuutit ettt et i 19
3.6 Memory Managementttt 20
3.7 REEIETANCY o o ottt 20
3.8 Useful Macros and Constants, 21
3.9 Compatibility with older versions.......... 21
3.10 Demonstration PrOgramisu ettt ettt e 21
311 EfHCIONCY . oottt 22
312 DebUGGINGo e 24
313 Profiling 26
314 Autocont. . ..o 27
.10 BIACS o oot 28
4 Reporting Bugs................ 29
5 Integer Functions............ 30
5.1 Initialization FUNCIONS e 30
5.2 Assignment FUnctions i 31
5.3 Combined Initialization and Assignment Functions................... 31
5.4 Conversion FUnCtionS. 32
5.5 Arithmetic FUNCtions. e 33
5.6 Division FUNCHIONSottt e 33
5.7 Exponentiation Functions i 35
5.8 Root Extraction Functions 36
5.9 Number Theoretic Functions i i 37
5.10 Comparison FUnctions. e 39
5.11 Logical and Bit Manipulation Functions i, 39
5.12 Input and Output Functions....... ... i i e 40

Random Number Functions i 41

ii GNU MP 6.1.2

5.14 Integer Import and Export ... 42
5.15 Miscellaneous Functions i 43
5.16 Special Functions 44
6 Rational Number Functions................................. 46
6.1 Initialization and Assignment Functions i, 46
6.2 Conversion Functions. i 47
6.3 Arithmetic Functions. i 47
6.4 Comparison Functions. e 48
6.5 Applying Integer Functions to Rationals........... o i i, 48
6.6 Input and Output Functions....... i e 49
7 Floating-point Functions..................................... 50
7.1 Initialization Functions i 50
7.2 Assignment Functions......... ... i 52
7.3 Combined Initialization and Assignment Functions................ 53
7.4 Conversion FUnctions. e 53
7.5 Arithmetic Functions. 54
7.6 Comparison Functions. 55
7.7 Input and Output Functions. e 55
7.8 Miscellaneous FUNCtIonSo o 56
8 Low-level Functions................. 58
8.1 Low-level functions for cryptography..........cco i 65
o\ 1 68
9 Random Number Functions................................. 70
9.1 Random State Initialization i 70
9.2 Random State Seedingcouuu i 71
9.3 Random State Miscellaneousttt 71
10 Formatted Output 72
10.1 Format Stringst e 72
10.2 FUNCEIONS . . oottt et 74
10.3 CH++ Formatted Output. ... e 75
11 Formatted Input 77
11.1 Formatted Input Strings.o e e 7
11.2 Formatted Input Functions. i 79
11.3 C++4 Formatted Inputo 79
12 CH+4 Class Interface................... .. 81
12.1 CH++ Imterface General. 81
12.2 CH++4 Interface Integers.o 82
12.3 C++ Interface RationalS i e 84
12.4 C++ Interface Floats e 85
12.5 C++ Interface Random Numbers............ i e 87
12.6 CH+ Interface Limitationsooii e 88

13 Custom Allocation.............. ... 90

14 Language Bindings................ 92
15 Algorithms 94
15.1 Multiplication. 94
15.1.1 Basecase Multiplication............. i 94
15.1.2 Karatsuba Multiplication........ ... 95
15.1.3 Toom 3-Way Multiplication.........., 96
15.1.4 Toom 4-Way Multiplication............c. i 98
15.1.5 Higher degree Toom’™n’half. 98
15.1.6 FFT Multiplication.o e 98
15.1.7 Other Multiplication e 100
15.1.8 Unbalanced Multiplication......... ... i 100
15.2 Division Algorithms 101
15.2.1 Single Limb Divisiono 101
15.2.2 Basecase Division 101
15.2.3 Divide and Conquer DiviSionoiuiiiii e 102
15.2.4 Block-Wise Barrett Division.......... .o 102
15.2.5 Exact DiviSiOnttt e 102
15.2.6 Exact Remainder. ... 103
15.2.7 Small Quotient DivisSionouuiiiii 104
15.3 Greatest Common DiviSOr.ou i e 104
15.3.1 Binary GOD ... 104
15.3.2 Lehmer’s algorithm. ... 105
15.3.3 Subquadratic GCDt e 105
15.3.4 Extended GCD. 106
15.3.5 Jacobi Symbol 106
15.4 Powering Algorithms 107
15.4.1 Normal Powering. e e 107
15.4.2 Modular POWering.t e e 107
15.5 Root Extraction Algorithms......o i 107
15.5.1 Square Root 107
15.5.2 Nth Root . ..o 108
15.5.3 Perfect Square 108
15.5.4 Perfect Power 109
15.6 Radix CONVETSIONttt ettt ettt et ettt et 109
15.6.1 Binary to Radix. ... e 109
15.6.2 Radix to Binaryo e 110
15.7 Other Algorithms e 110
15.7.1 Prime Testing 110
15.7.2 Factorialo o 111
15.7.3 Binomial Coefficients.......... ... i 112
15.7.4 Fibonacci Numbers.o e 112
15.7.5 Lucas Numbers. 113
15.7.6 Random Numbers........ ... 113
15.8 Assembly Codingcouuiinuii i 113
15.8.1 Code OrganiSationo.uuee ittt 114
15.8.2 Assembly BasiCs.ttt 114
15.8.3 Carry Propagation ... 114
15.8.4 Cache Handling . ..ot e 115
15.8.5 Functional Units e 115
15.8.6 Floating Point. 116
15.8.7 SIMD INStructionscouut ettt e 117

15.8.8 Software Pipelining. 117

iv GNU MP 6.1.2

15.8.9 Loop Unrollingooiiiiii e 117
15.8.10 Writing GuUIdeottt 118

16 Imtermals.......... ... 119
16.1 Integer Internals i 119
16.2 Rational Internals.o i e 119
16.3 Float Internals.o e 120
16.4 Raw Output Internals. e 122
16.5 C++ Interface Internals.o e 122
Appendix A Contributors.................................... 124
Appendix B References................... L. 126
Bl BoOKS .. 126
B2 Papers. .o 126
Appendix C GNU Free Documentation License 128
Concept Index 135

Function and Type Index 139

GNU MP Copying Conditions 1

GNU MP Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it on a free
basis. The library is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of this library that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the GNU MP library, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the GNU MP library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

More precisely, the GNU MP library is dual licensed, under the conditions of the GNU Lesser
General Public License version 3 (see COPYING.LESSERv3), or the GNU General Public License
version 2 (see COPYINGv2). This is the recipient’s choice, and the recipient also has the additional
option of applying later versions of these licenses. (The reason for this dual licensing is to make
it possible to use the library with programs which are licensed under GPL version 2, but which
for historical or other reasons do not allow use under later versions of the GPL).

Programs which are not part of the library itself, such as demonstration programs and the
GMP testsuite, are licensed under the terms of the GNU General Public License version 3 (see
COPYINGv3), or any later version.

2 GNU MP 6.1.2

1 Introduction to GNU MP

GNU MP is a portable library written in C for arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. It aims to provide the fastest possible arithmetic for all
applications that need higher precision than is directly supported by the basic C types.

Many applications use just a few hundred bits of precision; but some applications may need
thousands or even millions of bits. GMP is designed to give good performance for both, by
choosing algorithms based on the sizes of the operands, and by carefully keeping the overhead
at a minimum.

The speed of GMP is achieved by using fullwords as the basic arithmetic type, by using sophis-
ticated algorithms, by including carefully optimized assembly code for the most common inner
loops for many different CPUs, and by a general emphasis on speed (as opposed to simplicity
or elegance).

There is assembly code for these CPUs: ARM Cortex-A9, Cortex-A15, and generic ARM, DEC
Alpha 21064, 21164, and 21264, AMD K8 and K10 (sold under many brands, e.g. Athlon64,
Phenom, Opteron) Bulldozer, and Bobcat, Intel Pentium, Pentium Pro/II/III, Pentium 4, Core2,
Nehalem, Sandy bridge, Haswell, generic x86, Intel IA-64, Motorola/IBM PowerPC 32 and 64
such as POWER970, POWER5, POWERS6, and POWERT7, MIPS 32-bit and 64-bit, SPARC
32-bit ad 64-bit with special support for all UltraSPARC models. There is also assembly code
for many obsolete CPUs.

For up-to-date information on GMP, please see the GMP web pages at
https://gmplib.org/

The latest version of the library is available at
https://ftp.gnu.org/gnu/gmp/

Many sites around the world mirror ‘ftp.gnu.org’, please use a mirror near you, see https://
www.gnu.org/order/ftp.html for a full list.

There are three public mailing lists of interest. One for release announcements, one for general
questions and discussions about usage of the GMP library and one for bug reports. For more
information, see

https://gmplib.org/mailman/listinfo/.

The proper place for bug reports is gmp-bugs@gmplib.org. See Chapter 4 [Reporting Bugs|,
page 29 for information about reporting bugs.

1.1 How to use this Manual

Everyone should read Chapter 3 [GMP Basics|, page 17. If you need to install the library
yourself, then read Chapter 2 [Installing GMP], page 3. If you have a system with multiple
ABIs, then read Section 2.2 [ABI and ISA], page 8, for the compiler options that must be used

on applications.

The rest of the manual can be used for later reference, although it is probably a good idea to
glance through it.

https://gmplib.org/
https://ftp.gnu.org/gnu/gmp/
https://www.gnu.org/order/ftp.html
https://www.gnu.org/order/ftp.html
https://gmplib.org/mailman/listinfo/
mailto:gmp-bugs@gmplib.org

Chapter 2: Installing GMP 3

2 Installing GMP

GMP has an autoconf/automake/libtool based configuration system. On a Unix-like system a
basic build can be done with

./configure
make

Some self-tests can be run with
make check

And you can install (under /usr/local by default) with
make install

If you experience problems, please report them to gmp-bugs@gmplib.org. See Chapter 4 [Re-
porting Bugs|, page 29, for information on what to include in useful bug reports.

2.1 Build Options

All the usual autoconf configure options are available, run ‘. /configure --help’ for a summary.
The file INSTALL. autoconf has some generic installation information too.

Tools ‘configure’ requires various Unix-like tools. See Section 2.4 [Notes for Particular
Systems|, page 12, for some options on non-Unix systems.

It might be possible to build without the help of ‘configure’, certainly all the code
is there, but unfortunately you’ll be on your own.

Build Directory
To compile in a separate build directory, cd to that directory, and prefix the configure
command with the path to the GMP source directory. For example

cd /my/build/dir

/my/sources/gmp-6.1.2/configure
Not all ‘make’ programs have the necessary features (VPATH) to support this. In
particular, SunOS and Slowaris make have bugs that make them unable to build in
a separate directory. Use GNU make instead.

—--prefix and --exec-prefix
The --prefix option can be used in the normal way to direct GMP to install under
a particular tree. The default is ‘/usr/local’.

—-—exec-prefix can be used to direct architecture-dependent files like libgmp.a to
a different location. This can be used to share architecture-independent parts like
the documentation, but separate the dependent parts. Note however that gmp.h is
architecture-dependent since it encodes certain aspects of 1ibgmp, so it will be nec-
essary to ensure both $prefix/include and $exec_prefix/include are available
to the compiler.

-—-disable-shared, -—-disable-static
By default both shared and static libraries are built (where possible), but one or
other can be disabled. Shared libraries result in smaller executables and permit code
sharing between separate running processes, but on some CPUs are slightly slower,
having a small cost on each function call.

Native Compilation, ——build=CPU-VENDOR-0S
For normal native compilation, the system can be specified with ‘--build’. By
default ‘./configure’ uses the output from running ‘./config.guess’. On some

mailto:gmp-bugs@gmplib.org

4 GNU MP 6.1.2

systems ‘./config.guess’ can determine the exact CPU type, on others it will be
necessary to give it explicitly. For example,

./configure --build=ultrasparc-sun-solaris2.7

In all cases the ‘0S’ part is important, since it controls how libtool generates shared
libraries. Running ‘./config.guess’ is the simplest way to see what it should be,
if you don’t know already.

Cross Compilation, --host=CPU-VENDOR-0S
When cross-compiling, the system used for compiling is given by ‘--build’ and the

system where the library will run is given by ‘--host’. For example when using a
FreeBSD Athlon system to build GNU/Linux m68k binaries,

./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu

Compiler tools are sought first with the host system type as a prefix. For example
m68k-mac-linux-gnu-ranlib is tried, then plain ranlib. This makes it possible
for a set of cross-compiling tools to co-exist with native tools. The prefix is the
argument to ‘--host’, and this can be an alias, such as ‘m68k-1linux’. But note
that tools don’t have to be setup this way, it’s enough to just have a PATH with a
suitable cross-compiling cc etc.

Compiling for a different CPU in the same family as the build system is a form of
cross-compilation, though very possibly this would merely be special options on a
native compiler. In any case ‘./configure’ avoids depending on being able to run
code on the build system, which is important when creating binaries for a newer
CPU since they very possibly won’t run on the build system.

In all cases the compiler must be able to produce an executable (of whatever format)
from a standard C main. Although only object files will go to make up libgmp,
‘./configure’ uses linking tests for various purposes, such as determining what
functions are available on the host system.

Currently a warning is given unless an explicit ‘--build’ is used when cross-
compiling, because it may not be possible to correctly guess the build system type
if the PATH has only a cross-compiling cc.

Note that the ‘--target’ option is not appropriate for GMP. It’s for use when
building compiler tools, with ‘--host’ being where they will run, and ‘--target’
what they’ll produce code for. Ordinary programs or libraries like GMP are only
interested in the ‘--host’ part, being where they’ll run. (Some past versions of
GMP used ‘--target’ incorrectly.)

CPU types
In general, if you want a library that runs as fast as possible, you should configure
GMP for the exact CPU type your system uses. However, this may mean the binaries
won’t run on older members of the family, and might run slower on other members,
older or newer. The best idea is always to build GMP for the exact machine type
you intend to run it on.

The following CPUs have specific support. See configure.ac for details of what
code and compiler options they select.

e Alpha: ‘alpha’, ‘alphaevb’, ‘alphaevb6’, ‘alphapcab6’, ‘alphapcab7’,
‘alphaev6’, ‘alphaev67’, ‘alphaev68’ ‘alphaev7’

e Cray: ‘c90’, ‘j90’, ‘t90’, ‘svl’

e HPPA: ‘hppal.0’, ‘hppal.l’, ‘hppa2.0’, ‘hppa2.0n’, ‘hppa2.0w’, ‘hppab4d’

e JTA-64: ‘1a64’, ‘itanium’, ‘itanium2’

e MIPS: ‘mips’, ‘mips3’, ‘mips64’

Chapter 2: Installing GMP 5

e Motorola: ‘m68k’, ‘m68000’, ‘m68010’, ‘m68020°, ‘m68030’, ‘m68040°, ‘m68060’,
‘m68302’, ‘m68360’, ‘m88k’, ‘m88110’

e POWER: ‘power’, ‘powerl’, ‘power2’, ‘power2sc’

e PowerPC: ‘powerpc’, ‘powerpc64’, ‘powerpc401’, ‘powerpc403’, ‘powerpc405’,
‘powerpcb05’, ‘powerpc601’, ‘powerpc602’, ‘powerpc603’, ‘powerpc603e’,
‘powerpc604’, ‘powerpc604e’, ‘powerpc620’, ‘powerpc630’, ‘powerpc740’,
‘powerpc7400’, ‘powerpc7450’, ‘powerpc750’, ‘powerpc801’, ‘powerpc821’,
‘powerpc823’, ‘powerpc860’, ‘powerpc970’

e SPARC: ‘sparc’, ‘sparcv8’, ‘microsparc’, ‘supersparc’, ‘sparcv9’,
‘ultrasparc’, ‘ultrasparc?’, ‘ultrasparc2i’, ‘ultrasparc3’, ‘sparc64’

e x86 family: ‘i386’, ‘i486’, ‘i586’, ‘pentium’, ‘pentiummmx’, ‘pentiumpro’,
‘pentium?’, ‘pentium3’, ‘pentiumd’, ‘k6’, ‘k62’, ‘k63’, ‘athlon’, ‘amd64’,
‘viac3’, ‘viac32’

e Other: ‘arm’, ‘sh’, ‘sh2’, ‘vax’,

CPUs not listed will use generic C code.

Generic C Build

If some of the assembly code causes problems, or if otherwise desired, the generic C
code can be selected with the configure -~-disable-assembly.

Note that this will run quite slowly, but it should be portable and should at least
make it possible to get something running if all else fails.

Fat binary, -—enable-fat

ABI

CC, CFLAGS

Using --enable-fat selects a “fat binary” build on x86, where optimized low level
subroutines are chosen at runtime according to the CPU detected. This means more
code, but gives good performance on all x86 chips. (This option might become
available for more architectures in the future.)

On some systems GMP supports multiple ABIs (application binary interfaces),
meaning data type sizes and calling conventions. By default GMP chooses the
best ABI available, but a particular ABI can be selected. For example

./configure --host=mips64-sgi-irix6 ABI=n32

See Section 2.2 [ABI and ISA], page 8, for the available choices on relevant CPUs,
and what applications need to do.

By default the C compiler used is chosen from among some likely candidates, with
gcc normally preferred if it’s present. The usual ‘CC=whatever’ can be passed to
‘./configure’ to choose something different.

For various systems, default compiler flags are set based on the CPU and compiler.
The usual ‘CFLAGS="-whatever"’ can be passed to ‘./configure’ to use something
different or to set good flags for systems GMP doesn’t otherwise know.

The ‘CC’ and ‘CFLAGS’ used are printed during ‘./configure’, and can be found
in each generated Makefile. This is the easiest way to check the defaults when
considering changing or adding something.

Note that when ‘CC’ and ‘CFLAGS’ are specified on a system supporting multiple
ABIs it’s important to give an explicit ‘ABI=whatever’, since GMP can’t determine
the ABI just from the flags and won’t be able to select the correct assembly code.
If just ‘CC’ is selected then normal default ‘CFLAGS’ for that compiler will be used

(if GMP recognises it). For example ‘CC=gcc’ can be used to force the use of GCC,
with default flags (and default ABI).

CPPFLAGS

GNU MP 6.1.2

Any flags like ‘-D’ defines or ‘-I’ includes required by the preprocessor should be set
in ‘CPPFLAGS’ rather than ‘CFLAGS’. Compiling is done with both ‘CPPFLAGS’ and
‘CFLAGS’, but preprocessing uses just ‘CPPFLAGS’. This distinction is because most
preprocessors won’t accept all the flags the compiler does. Preprocessing is done
separately in some configure tests.

CC_FOR_BUILD

Some build-time programs are compiled and run to generate host-specific data ta-
bles. ‘CC_FOR_BUILD’ is the compiler used for this. It doesn’t need to be in any
particular ABI or mode, it merely needs to generate executables that can run. The
default is to try the selected ‘CC’ and some likely candidates such as ‘cc’ and ‘gec’,
looking for something that works.

No flags are used with ‘CC_FOR_BUILD’ because a simple invocation like ‘cc foo.c’
should be enough. If some particular options are required they can be included as
for instance ‘CC_FOR_BUILD="cc -whatever"’.

C++ Support, -—enable-cxx

C++ support in GMP can be enabled with ‘--enable-cxx’, in which case a C++
compiler will be required. As a convenience ‘--enable-cxx=detect’ can be used
to enable C++ support only if a compiler can be found. The C++ support consists
of a library libgmpxx.la and header file gmpxx.h (see Section 3.1 [Headers and
Libraries], page 17).

A separate libgmpxx.la has been adopted rather than having C++ objects within
libgmp.la in order to ensure dynamic linked C programs aren’t bloated by a depen-
dency on the C++ standard library, and to avoid any chance that the C++ compiler
could be required when linking plain C programs.

libgmpxx.la will use certain internals from 1ibgmp.la and can only be expected to
work with 1ibgmp.la from the same GMP version. Future changes to the relevant
internals will be accompanied by renaming, so a mismatch will cause unresolved
symbols rather than perhaps mysterious misbehaviour.

In general 1ibgmpxx.1la will be usable only with the C++ compiler that built it, since
name mangling and runtime support are usually incompatible between different
compilers.

CXX, CXXFLAGS

When C++ support is enabled, the C++ compiler and its flags can be set with vari-
ables ‘CXX’ and ‘CXXFLAGS’ in the usual way. The default for ‘CXX’ is the first compiler
that works from a list of likely candidates, with g++ normally preferred when avail-
able. The default for ‘CXXFLAGS’ is to try ‘CFLAGS’, ‘CFLAGS’ without ‘-g’, then for
g++ either ‘=g -02’ or ‘-02’, or for other compilers ‘g’ or nothing. Trying ‘CFLAGS’
this way is convenient when using ‘gcc’ and ‘g++’ together, since the flags for ‘gcc’
will usually suit ‘g++’.

It’s important that the C and C++ compilers match, meaning their startup and
runtime support routines are compatible and that they generate code in the same
ABI (if there’s a choice of ABIs on the system). ¢./configure’ isn’t currently able to
check these things very well itself, so for that reason ‘--disable-cxx’ is the default,
to avoid a build failure due to a compiler mismatch. Perhaps this will change in the
future.

Incidentally, it’s normally not good enough to set ‘CXX’ to the same as ‘CC’. Although
gcc for instance recognises foo.cc as C++ code, only g++ will invoke the linker the
right way when building an executable or shared library from C++ object files.

Chapter 2: Installing GMP 7

Temporary Memory, ——enable-alloca=<choice>

GMP allocates temporary workspace using one of the following three methods, which
can be selected with for instance ‘~-enable-alloca=malloc-reentrant’.

e ‘alloca’ - C library or compiler builtin.

e ‘malloc-reentrant’ - the heap, in a re-entrant fashion.

e ‘malloc-notreentrant’ - the heap, with global variables.
For convenience, the following choices are also available. ‘--—disable-alloca’ is the
same as ‘no’.

e ‘yes’ - a synonym for ‘alloca’.

e ‘no’ - a synonym for ‘malloc-reentrant’.

e ‘reentrant’ - alloca if available, otherwise ‘malloc-reentrant’. This is the
default.

e ‘notreentrant’ - alloca if available, otherwise ‘malloc-notreentrant’.

alloca is reentrant and fast, and is recommended. It actually allocates just small
blocks on the stack; larger ones use malloc-reentrant.

‘malloc-reentrant’ is, as the name suggests, reentrant and thread safe, but
‘malloc-notreentrant’ is faster and should be used if reentrancy is not required.
The two malloc methods in fact use the memory allocation functions selected by mp_
set_memory_functions, these being malloc and friends by default. See Chapter 13
[Custom Allocation], page 90.

An additional choice ‘--enable-alloca=debug’ is available, to help when debugging
memory related problems (see Section 3.12 [Debugging], page 24).

FFT Multiplication, --disable-fft

By default multiplications are done using Karatsuba, 3-way Toom, higher degree
Toom, and Fermat FFT. The FFT is only used on large to very large operands and
can be disabled to save code size if desired.

Assertion Checking, -—enable-assert

This option enables some consistency checking within the library. This can be of
use while debugging, see Section 3.12 [Debugging], page 24.

Execution Profiling, --enable-profiling=prof/gprof/instrument

Enable profiling support, in one of various styles, see Section 3.13 [Profiling], page 26.

MPN_PATH Various assembly versions of each mpn subroutines are provided. For a given CPU,
a search is made though a path to choose a version of each. For example ‘sparcv8’
has

MPN_PATH="sparc32/v8 sparc32 generic"
which means look first for v8 code, then plain sparc32 (which is v7), and finally
fall back on generic C. Knowledgeable users with special requirements can specify
a different path. Normally this is completely unnecessary.
Documentation

The source for the document you’re now reading is doc/gmp . texi, in Texinfo format,
see Texinfo.

Info format ‘doc/gmp.info’ is included in the distribution. The usual automake
targets are available to make PostScript, DVI, PDF and HTML (these will require
various TEX and Texinfo tools).

DocBook and XML can be generated by the Texinfo makeinfo program too, see
Section “Options for makeinfo” in Texinfo.

Some supplementary notes can also be found in the doc subdirectory.

8 GNU MP 6.1.2

2.2 ABI and ISA

ABI (Application Binary Interface) refers to the calling conventions between functions, meaning
what registers are used and what sizes the various C data types are. ISA (Instruction Set
Architecture) refers to the instructions and registers a CPU has available.

Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, the latter for com-
patibility with older CPUs in the family. GMP supports some CPUs like this in both ABIs. In
fact within GMP ‘ABI’ means a combination of chip ABI, plus how GMP chooses to use it. For
example in some 32-bit ABIs, GMP may support a limb as either a 32-bit long or a 64-bit long
long.

By default GMP chooses the best ABI available for a given system, and this generally gives
significantly greater speed. But an ABI can be chosen explicitly to make GMP compatible with
other libraries, or particular application requirements. For example,

./configure ABI=32
In all cases it’s vital that all object code used in a given program is compiled for the same ABI.

Usually a limb is implemented as a long. When a long long limb is used this is encoded in the
generated gmp.h. This is convenient for applications, but it does mean that gmp.h will vary, and
can’t be just copied around. gmp.h remains compiler independent though, since all compilers
for a particular ABI will be expected to use the same limb type.

Currently no attempt is made to follow whatever conventions a system has for installing library
or header files built for a particular ABI. This will probably only matter when installing multiple
builds of GMP, and it might be as simple as configuring with a special ‘libdir’, or it might
require more than that. Note that builds for different ABIs need to done separately, with a fresh
./configure and make each.

AMDG64 (‘x86_64")
On AMDG64 systems supporting both 32-bit and 64-bit modes for applications, the
following ABI choices are available.

‘ABI=64" The 64-bit ABI uses 64-bit limbs and pointers and makes full use of
the chip architecture. This is the default. Applications will usually not
need special compiler flags, but for reference the option is

gcc -m64
‘ABI=32’ The 32-bit ABI is the usual i386 conventions. This will be slower, and

is not recommended except for inter-operating with other code not yet
64-bit capable. Applications must be compiled with

gcc -m32
(In GCC 2.95 and earlier there’s no ‘-m32’ option, it’s the only mode.)
‘ABI=x32" The x32 ABI uses 64-bit limbs but 32-bit pointers. Like the 64-bit ABI,

it makes full use of the chip’s arithmetic capabilities. This ABI is not
supported by all operating systems.

gcc -mx32

Chapter 2: Installing GMP 9

HPPA 2.0 (‘hppa2.0%’, ‘hppa64’)
‘ABI=2.0w’
The 2.0w ABI uses 64-bit limbs and pointers and is available on HP-UX
11 or up. Applications must be compiled with
gcc [built for 2.0w]
cc +DD64

‘ABI=2.0n’

The 2.0n ABI means the 32-bit HPPA 1.0 ABI and all its normal calling
conventions, but with 64-bit instructions permitted within functions.
GMP uses a 64-bit long long for a limb. This ABI is available on
hppa64 GNU/Linux and on HP-UX 10 or higher. Applications must be
compiled with

gcc [built for 2.0mn]

cc +DA2.0 +e
Note that current versions of GCC (eg. 3.2) don’t generate 64-bit in-

structions for long long operations and so may be slower than for 2.0w.
(The GMP assembly code is the same though.)

‘ABI=1.0" HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit HPPA
1.0 ABI. No special compiler options are needed for applications.

All three ABIs are available for CPU types ‘hppa2.0w’, ‘hppa2.0’ and ‘hppa64’, but
for CPU type ‘hppa2.0n’ only 2.0n or 1.0 are considered.

Note that GCC on HP-UX has no options to choose between 2.0n and 2.0w modes,
unlike HP cc. Instead it must be built for one or the other ABI. GMP will detect
how it was built, and skip to the corresponding ‘ABI’.

IA-64 under HP-UX (‘ia64*-*-hpux*’, ‘itanium*-*-hpuxx’)
HP-UX supports two ABIs for TA-64. GMP performance is the same in both.

‘ABI=32" In the 32-bit ABI, pointers, ints and longs are 32 bits and GMP uses
a 64 bit long long for a limb. Applications can be compiled without
any special flags since this ABI is the default in both HP C and GCC,
but for reference the flags are

gcc -milp32
cc +DD32

‘ABI=64" In the 64-bit ABI, longs and pointers are 64 bits and GMP uses a long
for a limb. Applications must be compiled with
gcc -mlp64
cc +DD64

On other TA-64 systems, GNU/Linux for instance, ‘ABI=64’ is the only choice.

MIPS under IRIX 6 (‘mips*-*-irix[6789]")
IRIX 6 always has a 64-bit MIPS 3 or better CPU, and supports ABIs 032, n32,

and 64. n32 or 64 are recommended, and GMP performance will be the same in
each. The default is n32.

‘ABI=032’ The 032 ABI is 32-bit pointers and integers, and no 64-bit operations.
GMP will be slower than in n32 or 64, this option only exists to support
old compilers, eg. GCC 2.7.2. Applications can be compiled with no
special flags on an old compiler, or on a newer compiler with

10 GNU MP 6.1.2

gcc -mabi=32
cc -32
‘ABI=n32’ The n32 ABI is 32-bit pointers and integers, but with a 64-bit limb
using a long long. Applications must be compiled with
gcc -mabi=n32
cc -n32

‘ABI=64’ The 64-bit ABI is 64-bit pointers and integers. Applications must be
compiled with
gcc -mabi=64
cc -64
Note that MIPS GNU/Linux, as of kernel version 2.2, doesn’t have the necessary
support for n32 or 64 and so only gets a 32-bit limb and the MIPS 2 code.

PowerPC 64 (‘powerpc64’, ‘powerpc620’, ‘powerpc630’, ‘powerpc970’, ‘powerd’, ‘power5’)
‘ABI=mode64’
The AIX 64 ABI uses 64-bit limbs and pointers and is the default on
PowerPC 64 ‘*-*-aix*’ systems. Applications must be compiled with
gcc -maix64
xlc -q64
On 64-bit GNU/Linux, BSD, and Mac OS X/Darwin systems, the ap-
plications must be compiled with
gcc -m64
‘ABI=mode32’
The ‘mode32’ ABI uses a 64-bit long long limb but with the chip still in
32-bit mode and using 32-bit calling conventions. This is the default for
systems where the true 64-bit ABI is unavailable. No special compiler

options are typically needed for applications. This ABI is not available
under AIX.

‘ABI=32’ This is the basic 32-bit PowerPC ABI, with a 32-bit limb. No special
compiler options are needed for applications.

GMP’s speed is greatest for the ‘mode64’ ABI, the ‘mode32’ ABI is 2nd best. In
‘ABI=32’ only the 32-bit ISA is used and this doesn’t make full use of a 64-bit chip.

Sparc V9 (‘sparc64’, ‘sparcv9’, ‘ultrasparc*’)

‘ABI=64" The 64-bit V9 ABI is available on the various BSD sparc64 ports, recent
versions of Sparc64 GNU/Linux, and Solaris 2.7 and up (when the kernel
is in 64-bit mode). GCC 3.2 or higher, or Sun cc is required. On
GNU/Linux, depending on the default gcc mode, applications must be
compiled with

gcc -m64
On Solaris applications must be compiled with

gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9

cc -xarch=v9
On the BSD sparc64 systems no special options are required, since 64-
bits is the only ABI available.

‘ABI=32’ For the basic 32-bit ABI, GMP still uses as much of the V9 ISA as it
can. In the Sun documentation this combination is known as “v8plus”.

Chapter 2: Installing GMP 11

On GNU/Linux, depending on the default gcc mode, applications may
need to be compiled with

gcc -m32
On Solaris, no special compiler options are required for applications,
though using something like the following is recommended. (gcc 2.8
and earlier only support ‘-mv8’ though.)

gcc -mv8plus

cc -xarch=v8plus

GMP speed is greatest in ‘ABI=64’, so it’s the default where available. The speed
is partly because there are extra registers available and partly because 64-bits is
considered the more important case and has therefore had better code written for
it.

Don’t be confused by the names of the ‘-m’ and ‘-x’ compiler options, they’re called
‘arch’ but effectively control both ABI and ISA.

On Solaris 2.6 and earlier, only ‘ABI=32’ is available since the kernel doesn’t save
all registers.

On Solaris 2.7 with the kernel in 32-bit mode, a normal native build will reject
‘ABI=64’ because the resulting executables won’t run. ‘ABI=64" can still be built if
desired by making it look like a cross-compile, for example

./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64

2.3 Notes for Package Builds
GMP should present no great difficulties for packaging in a binary distribution.

Libtool is used to build the library and ‘-version-info’ is set appropriately, having started
from ‘3:0:0” in GMP 3.0 (see Section “Library interface versions” in GNU Libtool).

The GMP 4 series will be upwardly binary compatible in each release and will be upwardly
binary compatible with all of the GMP 3 series. Additional function interfaces may be added
in each release, so on systems where libtool versioning is not fully checked by the loader an
auxiliary mechanism may be needed to express that a dynamic linked application depends on a
new enough GMP.

An auxiliary mechanism may also be needed to express that 1ibgmpxx.la (from --enable-cxx,
see Section 2.1 [Build Options|, page 3) requires 1libgmp.la from the same GMP version, since
this is not done by the libtool versioning, nor otherwise. A mismatch will result in unresolved
symbols from the linker, or perhaps the loader.

When building a package for a CPU family, care should be taken to use ‘--host’ (or ‘--build’)
to choose the least common denominator among the CPUs which might use the package. For
example this might mean plain ‘sparc’ (meaning V7) for SPARCs.

For x86s, ——enable-fat sets things up for a fat binary build, making a runtime selection of
optimized low level routines. This is a good choice for packaging to run on a range of x86 chips.

Users who care about speed will want GMP built for their exact CPU type, to make best use
of the available optimizations. Providing a way to suitably rebuild a package may be useful.
This could be as simple as making it possible for a user to omit ‘--build’ (and ‘--host’) so
‘./config.guess’ will detect the CPU. But a way to manually specify a ‘--build’ will be
wanted for systems where ‘. /config.guess’ is inexact.

On systems with multiple ABIs, a packaged build will need to decide which among the choices
is to be provided, see Section 2.2 [ABI and ISA]|, page 8. A given run of ‘./configure’ etc will

12 GNU MP 6.1.2

only build one ABI. If a second ABI is also required then a second run of ‘./configure’ etc
must be made, starting from a clean directory tree (‘make distclean’).

As noted under “ABI and ISA”, currently no attempt is made to follow system conventions
for install locations that vary with ABI, such as /usr/1lib/sparcv9 for ‘ABI=64’ as opposed to
/usr/1ib for ‘ABI=32’. A package build can override ‘libdir’ and other standard variables as
necessary.

Note that gmp.h is a generated file, and will be architecture and ABI dependent. When attempt-
ing to install two ABIs simultaneously it will be important that an application compile gets the
correct gmp.h for its desired ABI. If compiler include paths don’t vary with ABI options then
it might be necessary to create a /usr/include/gmp.h which tests preprocessor symbols and
chooses the correct actual gmp.h.

2.4 Notes for Particular Systems

AIX 3 and 4
On systems ‘*-*-aix[34]%’ shared libraries are disabled by default, since some
versions of the native ar fail on the convenience libraries used. A shared build can
be attempted with

./configure --enable-shared --disable-static

Note that the ‘--disable-static’ is necessary because in a shared build libtool
makes libgmp.a a symlink to 1ibgmp.so, apparently for the benefit of old versions
of 1d which only recognise . a, but unfortunately this is done even if a fully functional
1d is available.

ARM On systems ‘arm*-*-x’, versions of GCC up to and including 2.95.3 have a bug in
unsigned division, giving wrong results for some operands. GMP ‘. /configure’ will
demand GCC 2.95.4 or later.

Compaq C++
Compaq C++ on OSF 5.1 has two flavours of iostream, a standard one and an old
pre-standard one (see ‘man iostream_intro’). GMP can only use the standard one,
which unfortunately is not the default but must be selected by defining __USE_STD_
I0STREAM. Configure with for instance

./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM

Floating Point Mode
On some systems, the hardware floating point has a control mode which can set
all operations to be done in a particular precision, for instance single, double or
extended on x86 systems (x87 floating point). The GMP functions involving a
double cannot be expected to operate to their full precision when the hardware is

in single precision mode. Of course this affects all code, including application code,
not just GMP.

FreeBSD 7.x, 8.x, 9.0, 9.1, 9.2
m4 in these releases of FreeBSD has an eval function which ignores its 2nd and 3rd
arguments, which makes it unsuitable for .asm file processing. ‘./configure’ will
detect the problem and either abort or choose another m4 in the PATH. The bug
is fixed in FreeBSD 9.3 and 10.0, so either upgrade or use GNU m4. Note that
the FreeBSD package system installs GNU m4 under the name ‘gm4’, which GMP
cannot guess.

FreeBSD 7.x, 8.x, 9.x
GMP releases starting with 6.0 do not support ‘ABI=32’ on FreeBSD /amd64 prior to
release 10.0 of the system. The cause is a broken 1imits.h, which GMP no longer
works around.

Chapter 2: Installing GMP 13

MS-DOS and MS Windows
On an MS-DOS system DJGPP can be used to build GMP, and on an MS Windows
system Cygwin, DJGPP and MINGW can be used. All three are excellent ports of
GCC and the various GNU tools.

http://www.cygwin.com/
http://www.delorie.com/djgpp/
http://www.mingw.org/

Microsoft also publishes an Interix “Services for Unix” which can be used to build
GMP on Windows (with a normal ‘./configure’), but it’s not free software.

MS Windows DLLs
On systems ‘*—*-cygwinx’, “*—*-mingwx’ and ‘*-*-pw32%’ by default GMP builds
only a static library, but a DLL can be built instead using

./configure --disable-static --enable-shared

Static and DLL libraries can’t both be built, since certain export directives in gmp.h
must be different.

A MINGW DLL build of GMP can be used with Microsoft C. Libtool doesn’t install
a .1ib format import library, but it can be created with MS 1lib as follows, and
copied to the install directory. Similarly for 1ibmp and libgmpxx.

cd .libs
1lib /def:1libgmp-3.dll.def /out:libgmp-3.lib

MINGW uses the C runtime library ‘msvert.dll’ for I/O, so applications wanting
to use the GMP I/O routines must be compiled with ‘cl /MD’ to do the same. If
one of the other C runtime library choices provided by MS C is desired then the
suggestion is to use the GMP string functions and confine I/O to the application.

Motorola 68k CPU Types
‘m68k’ is taken to mean 68000. ‘m68020° or higher will give a performance boost on
applicable CPUs. ‘m68360° can be used for CPU32 series chips. ‘m68302’ can be
used for “Dragonball” series chips, though this is merely a synonym for ‘m68000°.

NetBSD 5.x
m4 in these releases of NetBSD has an eval function which ignores its 2nd and 3rd
arguments, which makes it unsuitable for .asm file processing. ‘./configure’ will
detect the problem and either abort or choose another m4 in the PATH. The bug
is fixed in NetBSD 6, so either upgrade or use GNU m4. Note that the NetBSD
package system installs GNU m4 under the name ‘gm4’, which GMP cannot guess.

OpenBSD 2.6
m4 in this release of OpenBSD has a bug in eval that makes it unsuitable for .asm
file processing. ‘./configure’ will detect the problem and either abort or choose
another m4 in the PATH. The bug is fixed in OpenBSD 2.7, so either upgrade or use
GNU m4.

Power CPU Types

In GMP, CPU types ‘power*’ and ‘powerpc*’ will each use instructions not available
on the other, so it’s important to choose the right one for the CPU that will be used.
Currently GMP has no assembly code support for using just the common instruction
subset. To get executables that run on both, the current suggestion is to use the
generic C code (--disable-assembly), possibly with appropriate compiler options
(like ‘-mcpu=common’ for gcc). CPU ‘rs6000’ (which is not a CPU but a family of
workstations) is accepted by config.sub, but is currently equivalent to ——disable-
assembly.

http://www.cygwin.com/
http://www.delorie.com/djgpp/
http://www.mingw.org/

14 GNU MP 6.1.2

Sparc CPU Types
‘sparcv8’ or ‘supersparc’ on relevant systems will give a significant performance
increase over the V7 code selected by plain ‘sparc’.

Sparc App Regs
The GMP assembly code for both 32-bit and 64-bit Sparc clobbers the “application
registers” g2, g3 and g4, the same way that the GCC default ‘-mapp-regs’ does
(see Section “SPARC Options” in Using the GNU Compiler Collection (GCC)).

This makes that code unsuitable for use with the special V9 ‘-mcmodel=embmedany’
(which uses g4 as a data segment pointer), and for applications wanting to use those
registers for special purposes. In these cases the only suggestion currently is to build
GMP with --disable-assembly to avoid the assembly code.

SunOS 4 /usr/bin/mé lacks various features needed to process .asm files, and instead
‘./configure’ will automatically use /usr/5bin/m4, which we believe is always
available (if not then use GNU m4).

x86 CPU Types
‘i586’, ‘pentium’ or ‘pentiummmx’ code is good for its intended P5 Pentium chips,
but quite slow when run on Intel P6 class chips (PPro, P-II, P-III). ‘i386’ is a
better choice when making binaries that must run on both.

x86 MMX and SSE2 Code
If the CPU selected has MMX code but the assembler doesn’t support it, a warning
is given and non-MMX code is used instead. This will be an inferior build, since the
MMX code that’s present is there because it’s faster than the corresponding plain
integer code. The same applies to SSE2.

Old versions of ‘gas’ don’t support MMX instructions, in particular version 1.92.3
that comes with FreeBSD 2.2.8 or the more recent OpenBSD 3.1 doesn’t.

Solaris 2.6 and 2.7 as generate incorrect object code for register to register movq
instructions, and so can’t be used for MMX code. Install a recent gas if MMX code
is wanted on these systems.

2.5 Known Build Problems
You might find more up-to-date information at https://gmplib.org/.

Compiler link options
The version of libtool currently in use rather aggressively strips compiler options
when linking a shared library. This will hopefully be relaxed in the future, but for
now if this is a problem the suggestion is to create a little script to hide them, and
for instance configure with

./configure CC=gcc-with-my-options

DJGPP (‘*-*-msdosdjgpp*’)
The DJGPP port of bash 2.03 is unable to run the ‘configure’ script, it exits
silently, having died writing a preamble to config.log. Use bash 2.04 or higher.

‘make all’ was found to run out of memory during the final 1ibgmp.1la link on one
system tested, despite having 64Mb available. Running ‘make 1ibgmp.la’ directly
helped, perhaps recursing into the various subdirectories uses up memory.

GNU binutils strip prior to 2.12
strip from GNU binutils 2.11 and earlier should not be used on the static libraries
libgmp.a and libmp.a since it will discard all but the last of multiple archive mem-
bers with the same name, like the three versions of init.o in libgmp.a. Binutils
2.12 or higher can be used successfully.

https://gmplib.org/

Chapter 2: Installing GMP 15

The shared libraries 1ibgmp.so and libmp.so are not affected by this and any
version of strip can be used on them.

make syntax error
On certain versions of SCO OpenServer 5 and IRIX 6.5 the native make is unable to
handle the long dependencies list for 1ibgmp.la. The symptom is a “syntax error”
on the following line of the top-level Makefile.

libgmp.la: $(libgmp_la_OBJECTS) $(1ibgmp_la_DEPENDENCIES)

Either use GNU Make, or as a workaround remove $(1libgmp_la_DEPENDENCIES)
from that line (which will make the initial build work, but if any recompiling is done
libgmp.la might not be rebuilt).

MacOS X (‘*-*-darwinx’)
Libtool currently only knows how to create shared libraries on MacOS X using the
native cc (which is a modified GCC), not a plain GCC. A static-only build should
work though (‘--disable-shared’).

NeXT prior to 3.3
The system compiler on old versions of NeXT was a massacred and old GCC, even
if it called itself cc. This compiler cannot be used to build GMP, you need to get
a real GCC, and install that. (NeXT may have fixed this in release 3.3 of their
system.)

POWER and PowerPC
Bugs in GCC 2.7.2 (and 2.6.3) mean it can’t be used to compile GMP on POWER
or PowerPC. If you want to use GCC for these machines, get GCC 2.7.2.1 (or later).

Sequent Symmetry
Use the GNU assembler instead of the system assembler, since the latter has serious
bugs.

Solaris 2.6 The system sed prints an error “Output line too long” when libtool builds
libgmp.la. This doesn’t seem to cause any obvious ill effects, but GNU sed is
recommended, to avoid any doubt.

Sparc Solaris 2.7 with gcc 2.95.2 in ‘ABI=32’
A shared library build of GMP seems to fail in this combination, it builds but
then fails the tests, apparently due to some incorrect data relocations within gmp_
randinit_lc_2exp_size. The exact cause is unknown, ‘--disable-shared’ is rec-
ommended.

2.6 Performance optimization

For optimal performance, build GMP for the exact CPU type of the target computer, see
Section 2.1 [Build Options], page 3.

Unlike what is the case for most other programs, the compiler typically doesn’t matter much,
since GMP uses assembly language for the most critical operation.

In particular for long-running GMP applications, and applications demanding extremely large
numbers, building and running the tuneup program in the tune subdirectory, can be important.
For example,

cd tune
make tuneup
. /tuneup

will generate better contents for the gmp-mparam.h parameter file.

16 GNU MP 6.1.2

To use the results, put the output in the file indicated in the ‘Parameters for ...’ header.
Then recompile from scratch.

The tuneup program takes one useful parameter, ‘-f NNN’, which instructs the program how long
to check FFT multiply parameters. If you're going to use GMP for extremely large numbers,
you may want to run tuneup with a large NNN value.

Chapter 3: GMP Basics 17

3 GMP Basics

Using functions, macros, data types, etc. not documented in this manual is strongly discouraged.
If you do so your application is guaranteed to be incompatible with future versions of GMP.

3.1 Headers and Libraries

All declarations needed to use GMP are collected in the include file gmp.h. It is designed to
work with both C and C++ compilers.

#include <gmp.h>

Note however that prototypes for GMP functions with FILE * parameters are only provided if
<stdio.h> is included too.

#include <stdio.h>
#include <gmp.h>

Likewise <stdarg.h> is required for prototypes with va_list parameters, such as gmp_vprintf.
And <obstack.h> for prototypes with struct obstack parameters, such as gmp_obstack_
printf, when available.

All programs using GMP must link against the 1ibgmp library. On a typical Unix-like system
this can be done with ‘~1gmp’, for example

gcc myprogram.c -lgmp

GMP C++ functions are in a separate libgmpxx library. This is built and installed if C++ support
has been enabled (see Section 2.1 [Build Options|, page 3). For example,

g++ mycxxprog.cc -lgmpxx -lgmp
GMP is built using Libtool and an application can use that to link if desired, see GNU Libtool.

If GMP has been installed to a non-standard location then it may be necessary to use ‘-1’ and
‘-1’ compiler options to point to the right directories, and some sort of run-time path for a
shared library.

3.2 Nomenclature and Types

In this manual, integer usually means a multiple precision integer, as defined by the GMP
library. The C data type for such integers is mpz_t. Here are some examples of how to declare
such integers:

mpz_t sum;
struct foo { mpz_t x, y; };

mpz_t vec[20];

Rational number means a multiple precision fraction. The C data type for these fractions is
mpqg_t. For example:

mpq_t quotient;

Floating point number or Float for short, is an arbitrary precision mantissa with a limited
precision exponent. The C data type for such objects is mpf_t. For example:

mpf_t fp;

18 GNU MP 6.1.2

The floating point functions accept and return exponents in the C type mp_exp_t. Currently
this is usually a long, but on some systems it’s an int for efficiency.

A limb means the part of a multi-precision number that fits in a single machine word. (We chose
this word because a limb of the human body is analogous to a digit, only larger, and containing
several digits.) Normally a limb is 32 or 64 bits. The C data type for a limb is mp_limb_t.

Counts of limbs of a multi-precision number represented in the C type mp_size_t. Currently
this is normally a long, but on some systems it’s an int for efficiency, and on some systems it
will be long long in the future.

Counts of bits of a multi-precision number are represented in the C type mp_bitcnt_t. Currently
this is always an unsigned long, but on some systems it will be an unsigned long long in the
future.

Random state means an algorithm selection and current state data. The C data type for such
objects is gmp_randstate_t. For example:

gmp_randstate_t rstate;

Also, in general mp_bitcnt_t is used for bit counts and ranges, and size_t is used for byte or
character counts.

3.3 Function Classes

There are six classes of functions in the GMP library:

1. Functions for signed integer arithmetic, with names beginning with mpz_. The associated
type is mpz_t. There are about 150 functions in this class. (see Chapter 5 [Integer Func-
tions|, page 30)

2. Functions for rational number arithmetic, with names beginning with mpq_. The associated
type is mpg_t. There are about 35 functions in this class, but the integer functions can be
used for arithmetic on the numerator and denominator separately. (see Chapter 6 [Rational
Number Functions|, page 46)

3. Functions for floating-point arithmetic, with names beginning with mpf_. The associated
type is mpf_t. There are about 70 functions is this class. (see Chapter 7 [Floating-point
Functions], page 50)

4. Fast low-level functions that operate on natural numbers. These are used by the functions
in the preceding groups, and you can also call them directly from very time-critical user
programs. These functions’ names begin with mpn_. The associated type is array of mp_
limb_t. There are about 60 (hard-to-use) functions in this class. (see Chapter 8 [Low-level
Functions], page 58)

5. Miscellaneous functions. Functions for setting up custom allocation and functions for gen-
erating random numbers. (see Chapter 13 [Custom Allocation], page 90, and see Chapter 9
[Random Number Functions], page 70)

3.4 Variable Conventions

GMP functions generally have output arguments before input arguments. This notation is by
analogy with the assignment operator. The BSD MP compatibility functions are exceptions,
having the output arguments last.

GMP lets you use the same variable for both input and output in one call. For example, the
main function for integer multiplication, mpz_mul, can be used to square x and put the result
back in x with

Chapter 3: GMP Basics 19

mpz_mul (x, X, X);

Before you can assign to a GMP variable, you need to initialize it by calling one of the special
initialization functions. When you're done with a variable, you need to clear it out, using one
of the functions for that purpose. Which function to use depends on the type of variable. See
the chapters on integer functions, rational number functions, and floating-point functions for
details.

A variable should only be initialized once, or at least cleared between each initialization. After
a variable has been initialized, it may be assigned to any number of times.

For efficiency reasons, avoid excessive initializing and clearing. In general, initialize near the
start of a function and clear near the end. For example,

void
foo (void)
{
mpz_t n;
int i;

mpz_init (n);
for (i = 1; i < 100; i++)
{
mpz_mul (n, ...);
mpz_fdiv_q (n, ...);

}
mpz_clear (n);

}

3.5 Parameter Conventions

When a GMP variable is used as a function parameter, it’s effectively a call-by-reference, meaning
if the function stores a value there it will change the original in the caller. Parameters which
are input-only can be designated const to provoke a compiler error or warning on attempting
to modify them.

When a function is going to return a GMP result, it should designate a parameter that it sets,
like the library functions do. More than one value can be returned by having more than one
output parameter, again like the library functions. A return of an mpz_t etc doesn’t return the
object, only a pointer, and this is almost certainly not what’s wanted.

Here’s an example accepting an mpz_t parameter, doing a calculation, and storing the result to
the indicated parameter.

void
foo (mpz_t result, const mpz_t param, unsigned long n)
{
unsigned long 1i;
mpz_mul_ui (result, param, n);
for (i = 1; i < n; i++)
mpz_add_ui (result, result, ix7);

int
main (void)

{

20 GNU MP 6.1.2

mpz_t r, n;

mpz_init (r);

mpz_init_set_str (n, "123456", 0);
foo (r, n, 20L);

gmp_printf ("%Zd\n", r);

return O;

}

foo works even if the mainline passes the same variable for param and result, just like the
library functions. But sometimes it’s tricky to make that work, and an application might not
want to bother supporting that sort of thing.

For interest, the GMP types mpz_t etc are implemented as one-element arrays of certain struc-
tures. This is why declaring a variable creates an object with the fields GMP needs, but then
using it as a parameter passes a pointer to the object. Note that the actual fields in each mpz_t
etc are for internal use only and should not be accessed directly by code that expects to be
compatible with future GMP releases.

3.6 Memory Management

The GMP types like mpz_t are small, containing only a couple of sizes, and pointers to allocated
data. Once a variable is initialized, GMP takes care of all space allocation. Additional space is
allocated whenever a variable doesn’t have enough.

mpz_t and mpq_t variables never reduce their allocated space. Normally this is the best policy,
since it avoids frequent reallocation. Applications that need to return memory to the heap at
some particular point can use mpz_realloc?2, or clear variables no longer needed.

mpf _t variables, in the current implementation, use a fixed amount of space, determined by the
chosen precision and allocated at initialization, so their size doesn’t change.

All memory is allocated using malloc and friends by default, but this can be changed, see
Chapter 13 [Custom Allocation|, page 90. Temporary memory on the stack is also used (via
alloca), but this can be changed at build-time if desired, see Section 2.1 [Build Options|, page 3.
3.7 Reentrancy

GMP is reentrant and thread-safe, with some exceptions:

e If configured with --enable-alloca=malloc-notreentrant (or with --enable-
alloca=notreentrant when alloca is not available), then naturally GMP is not
reentrant.

e mpf_set_default_prec and mpf_init use a global variable for the selected precision. mpf _
init2 can be used instead, and in the C++ interface an explicit precision to the mpf_class
constructor.

e mpz_random and the other old random number functions use a global random state and are
hence not reentrant. The newer random number functions that accept a gmp_randstate_t
parameter can be used instead.

e gmp_randinit (obsolete) returns an error indication through a global variable, which is not
thread safe. Applications are advised to use gmp_randinit_default or gmp_randinit_lc_
2exp instead.

e mp_set_memory_functions uses global variables to store the selected memory allocation
functions.

e If the memory allocation functions set by a call to mp_set_memory_functions (or malloc
and friends by default) are not reentrant, then GMP will not be reentrant either.

Chapter 3: GMP Basics 21

o If the standard I/O functions such as fwrite are not reentrant then the GMP I/O functions
using them will not be reentrant either.

e [t’s safe for two threads to read from the same GMP variable simultaneously, but it’s not safe
for one to read while another might be writing, nor for two threads to write simultaneously.
It’s not safe for two threads to generate a random number from the same gmp_randstate_t
simultaneously, since this involves an update of that variable.

3.8 Useful Macros and Constants

const int mp_bits_per_limb [Global Constant]
The number of bits per limb.

__GNU_MP_VERSION [Macro]
__GNU_MP_VERSION_MINOR [Macro]
__GNU_MP_VERSION_PATCHLEVEL [Macro]

The major and minor GMP version, and patch level, respectively, as integers. For GMP 1i.j,
these numbers will be i, j, and 0, respectively. For GMP 1i.j.k, these numbers will be i, j, and
k, respectively.

const char * const gmp_version [Global Constant]
The GMP version number, as a null-terminated string, in the form “i.j.k”. This release is
"6.1.2". Note that the format “i.j” was used, before version 4.3.0, when k was zero.

__GMP_CC [Macro]
__GMP_CFLAGS [Macro]
The compiler and compiler flags, respectively, used when compiling GMP, as strings.

3.9 Compatibility with older versions

This version of GMP is upwardly binary compatible with all 5.x, 4.x, and 3.x versions, and
upwardly compatible at the source level with all 2.x versions, with the following exceptions.

e mpn_gcd had its source arguments swapped as of GMP 3.0, for consistency with other mpn
functions.

e mpf_get_prec counted precision slightly differently in GMP 3.0 and 3.0.1, but in 3.1 re-
verted to the 2.x style.

e mpn_bdivmod, documented as preliminary in GMP 4, has been removed.

There are a number of compatibility issues between GMP 1 and GMP 2 that of course also
apply when porting applications from GMP 1 to GMP 5. Please see the GMP 2 manual for
details.

3.10 Demonstration programs

The demos subdirectory has some sample programs using GMP. These aren’t built or installed,
but there’s a Makefile with rules for them. For instance,

make pexpr
./pexpr 687975+10

The following programs are provided

e ‘pexpr’ is an expression evaluator, the program used on the GMP web page.

e The ‘calc’ subdirectory has a similar but simpler evaluator using lex and yacc.

22 GNU MP 6.1.2

e The ‘expr’ subdirectory is yet another expression evaluator, a library designed for ease of
use within a C program. See demos/expr/README for more information.

e ‘factorize’is a Pollard-Rho factorization program.

e ‘isprime’ is a command-line interface to the mpz_probab_prime_p function.

e ‘primes’ counts or lists primes in an interval, using a sieve.

e ‘gcn’ is an example use of mpz_kronecker_ui to estimate quadratic class numbers.

e The ‘perl’ subdirectory is a comprehensive perl interface to GMP. See
demos/perl/INSTALL for more information. Documentation is in POD format in
demos/perl/GMP.pm.

As an aside, consideration has been given at various times to some sort of expression evaluation
within the main GMP library. Going beyond something minimal quickly leads to matters like
user-defined functions, looping, fixnums for control variables, etc, which are considered outside
the scope of GMP (much closer to language interpreters or compilers, See Chapter 14 [Language
Bindings|, page 92.) Something simple for program input convenience may yet be a possibility,
a combination of the expr demo and the pexpr tree back-end perhaps. But for now the above
evaluators are offered as illustrations.

3.11 Efficiency

Small Operands
On small operands, the time for function call overheads and memory allocation can
be significant in comparison to actual calculation. This is unavoidable in a general
purpose variable precision library, although GMP attempts to be as efficient as it
can on both large and small operands.

Static Linking
On some CPUs, in particular the x86s, the static 1ibgmp.a should be used for
maximum speed, since the PIC code in the shared libgmp.so will have a small
overhead on each function call and global data address. For many programs this
will be insignificant, but for long calculations there’s a gain to be had.

Initializing and Clearing
Avoid excessive initializing and clearing of variables, since this can be quite time
consuming, especially in comparison to otherwise fast operations like addition.

A language interpreter might want to keep a free list or stack of initialized variables
ready for use. It should be possible to integrate something like that with a garbage
collector too.

Reallocations
An mpz_t or mpq_t variable used to hold successively increasing values will have
its memory repeatedly realloced, which could be quite slow or could fragment
memory, depending on the C library. If an application can estimate the final size
then mpz_init2 or mpz_realloc2 can be called to allocate the necessary space from
the beginning (see Section 5.1 [Initializing Integers|, page 30).

It doesn’t matter if a size set with mpz_init2 or mpz_realloc?2 is too small, since all
functions will do a further reallocation if necessary. Badly overestimating memory
required will waste space though.

2exp Functions
It’s up to an application to call functions like mpz_mul_2exp when appropriate.
General purpose functions like mpz_mul make no attempt to identify powers of two
or other special forms, because such inputs will usually be very rare and testing
every time would be wasteful.

Chapter 3: GMP Basics 23

ui and si Functions
The ui functions and the small number of si functions exist for convenience and
should be used where applicable. But if for example an mpz_t contains a value that
fits in an unsigned long there’s no need extract it and call a ui function, just use
the regular mpz function.

In-Place Operations
mpz_abs, mpq_abs, mpf_abs, mpz_neg, mpq_neg and mpf_neg are fast when used for
in-place operations like mpz_abs (x,x), since in the current implementation only a
single field of x needs changing. On suitable compilers (GCC for instance) this is
inlined too.

mpz_add_ui, mpz_sub_ui, mpf_add_ui and mpf_sub_ui benefit from an in-place
operation like mpz_add_ui(x,x,y), since usually only one or two limbs of x will
need to be changed. The same applies to the full precision mpz_add etc if y is small.
If y is big then cache locality may be helped, but that’s all.

mpz_mul is currently the opposite, a separate destination is slightly better. A call
like mpz_mul (x,x,y) will, unless y is only one limb, make a temporary copy of x
before forming the result. Normally that copying will only be a tiny fraction of the
time for the multiply, so this is not a particularly important consideration.

mpz_set, mpq_set, mpq_set_num, mpf_set, etc, make no attempt to recognise a
copy of something to itself, so a call like mpz_set (x,x) will be wasteful. Naturally
that would never be written deliberately, but if it might arise from two pointers to
the same object then a test to avoid it might be desirable.
if (x !'=y)
mpz_set (x, y);

Note that it’s never worth introducing extra mpz_set calls just to get in-place op-
erations. If a result should go to a particular variable then just direct it there and
let GMP take care of data movement.

Divisibility Testing (Small Integers)
mpz_divisible_ui_p and mpz_congruent_ui_p are the best functions for testing
whether an mpz_t is divisible by an individual small integer. They use an algorithm
which is faster than mpz_tdiv_ui, but which gives no useful information about the
actual remainder, only whether it’s zero (or a particular value).

However when testing divisibility by several small integers, it’s best to take a re-
mainder modulo their product, to save multi-precision operations. For instance to
test whether a number is divisible by any of 23, 29 or 31 take a remainder modulo
23 x 29 x 31 = 20677 and then test that.

The division functions like mpz_tdiv_q_ui which give a quotient as well as a re-
mainder are generally a little slower than the remainder-only functions like mpz_
tdiv_ui. If the quotient is only rarely wanted then it’s probably best to just take
a remainder and then go back and calculate the quotient if and when it’s wanted
(mpz_divexact_ui can be used if the remainder is zero).

Rational Arithmetic
The mpq functions operate on mpq_t values with no common factors in the numerator
and denominator. Common factors are checked-for and cast out as necessary. In
general, cancelling factors every time is the best approach since it minimizes the
sizes for subsequent operations.

However, applications that know something about the factorization of the values
they’re working with might be able to avoid some of the GCDs used for canonical-
ization, or swap them for divisions. For example when multiplying by a prime it’s
enough to check for factors of it in the denominator instead of doing a full GCD.

24

GNU MP 6.1.2

Or when forming a big product it might be known that very little cancellation will
be possible, and so canonicalization can be left to the end.

The mpg_numref and mpg_denref macros give access to the numerator and denom-
inator to do things outside the scope of the supplied mpq functions. See Section 6.5
[Applying Integer Functions|, page 48.

The canonical form for rationals allows mixed-type mpg_t and integer additions or
subtractions to be done directly with multiples of the denominator. This will be
somewhat faster than mpq_add. For example,

/* mpq increment */
mpz_add (mpq_numref (q), mpq_numref(q), mpq_denref(q));

/* mpq += unsigned long */
mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL);

/* mpq -= mpz */
mpz_submul (mpq_numref(q), mpq_denref(q), z);

Number Sequences

Functions like mpz_fac_ui, mpz_fib_ui and mpz_bin_uiui are designed for calcu-
lating isolated values. If a range of values is wanted it’s probably best to call to get
a starting point and iterate from there.

Text Input/Output

Hexadecimal or octal are suggested for input or output in text form. Power-of-
2 bases like these can be converted much more efficiently than other bases, like
decimal. For big numbers there’s usually nothing of particular interest to be seen
in the digits, so the base doesn’t matter much.

Maybe we can hope octal will one day become the normal base for everyday use, as
proposed by King Charles XII of Sweden and later reformers.

3.12 Debugging

Stack Overflow

Depending on the system, a segmentation violation or bus error might be the only
indication of stack overflow. See ‘--enable-alloca’ choices in Section 2.1 [Build
Options|, page 3, for how to address this.

In new enough versions of GCC, ‘-fstack-check’ may be able to ensure
an overflow is recognised by the system before too much damage is done, or
‘-fstack-limit-symbol’ or ‘-fstack-limit-register’ may be able to add
checking if the system itself doesn’t do any (see Section “Options for Code
Generation” in Using the GNU Compiler Collection (GCC)). These options must
be added to the ‘CFLAGS’ used in the GMP build (see Section 2.1 [Build Options],
page 3), adding them just to an application will have no effect. Note also they’re a
slowdown, adding overhead to each function call and each stack allocation.

Heap Problems

The most likely cause of application problems with GMP is heap corruption. Fail-
ing to init GMP variables will have unpredictable effects, and corruption arising
elsewhere in a program may well affect GMP. Initializing GMP variables more than
once or failing to clear them will cause memory leaks.

In all such cases a malloc debugger is recommended. On a GNU or BSD system
the standard C library malloc has some diagnostic facilities, see Section “Allocation
Debugging” in The GNU C Library Reference Manual, or ‘man 3 malloc’. Other
possibilities, in no particular order, include

Chapter 3: GMP Basics 25

http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/
http://dmalloc.com/

http://www.perens.com/FreeSoftware/ (electric fence)
http://packages.debian.org/stable/devel/fda
http://www.gnupdate.org/components/leakbug/
http://people.redhat.com/ otaylor/memprof/
http://www.cbmamiga.demon. co.uk/mpatrol/

The GMP default allocation routines in memory . c also have a simple sentinel scheme
which can be enabled with #define DEBUG in that file. This is mainly designed for
detecting buffer overruns during GMP development, but might find other uses.

Stack Backtraces
On some systems the compiler options GMP uses by default can interfere with
debugging. In particular on x86 and 68k systems ‘~fomit-frame-pointer’ is used
and this generally inhibits stack backtracing. Recompiling without such options
may help while debugging, though the usual caveats about it potentially moving a
memory problem or hiding a compiler bug will apply.

GDB, the GNU Debugger
A sample .gdbinit is included in the distribution, showing how to call some undocu-
mented dump functions to print GMP variables from within GDB. Note that these
functions shouldn’t be used in final application code since they’re undocumented
and may be subject to incompatible changes in future versions of GMP.

Source File Paths

GMP has multiple source files with the same name, in different directories. For
example mpz, mpq and mpf each have an init.c. If the debugger can’t already
determine the right one it may help to build with absolute paths on each C file.
One way to do that is to use a separate object directory with an absolute path to
the source directory.

cd /my/build/dir

/my/source/dir/gmp-6.1.2/configure
This works via VPATH, and might require GNU make. Alternately it might be possible
to change the .c.lo rules appropriately.

Assertion Checking
The build option --enable-assert is available to add some consistency checks to
the library (see Section 2.1 [Build Options|, page 3). These are likely to be of limited
value to most applications. Assertion failures are just as likely to indicate memory
corruption as a library or compiler bug.

Applications using the low-level mpn functions, however, will benefit from --enable-
assert since it adds checks on the parameters of most such functions, many of which
have subtle restrictions on their usage. Note however that only the generic C code
has checks, not the assembly code, so --disable-assembly should be used for
maximum checking.

Temporary Memory Checking
The build option --enable-alloca=debug arranges that each block of temporary
memory in GMP is allocated with a separate call to malloc (or the allocation
function set with mp_set_memory_functions).

This can help a malloc debugger detect accesses outside the intended bounds, or
detect memory not released. In a normal build, on the other hand, temporary
memory is allocated in blocks which GMP divides up for its own use, or may be
allocated with a compiler builtin alloca which will go nowhere near any malloc
debugger hooks.

http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/
http://dmalloc.com/
http://www.perens.com/FreeSoftware/
http://packages.debian.org/stable/devel/fda
http://www.gnupdate.org/components/leakbug/
http://people.redhat.com/~otaylor/memprof/
http://www.cbmamiga.demon.co.uk/mpatrol/

26

GNU MP 6.1.2

Maximum Debuggability

Checker

Valgrind

To summarize the above, a GMP build for maximum debuggability would be

./configure --disable-shared --enable-assert \
--enable-alloca=debug --disable-assembly CFLAGS=-g

For C++, add ‘--enable-cxx CXXFLAGS=-g’.

The GCC checker (https://savannah.nongnu.org/projects/checker/) can be
used with GMP. It contains a stub library which means GMP applications compiled
with checker can use a normal GMP build.

A build of GMP with checking within GMP itself can be made. This will run very
very slowly. On GNU /Linux for example,

./configure --disable-assembly CC=checkergcc

--disable-assembly must be used, since the GMP assembly code doesn’t support
the checking scheme. The GMP C++ features cannot be used, since current versions
of checker (0.9.9.1) don’t yet support the standard C++ library.

Valgrind (http://valgrind.org/) is a memory checker for x86, ARM, MIPS,
PowerPC, and S/390. It translates and emulates machine instructions to do strong
checks for uninitialized data (at the level of individual bits), memory accesses
through bad pointers, and memory leaks.

Valgrind does not always support every possible instruction, in particular ones re-
cently added to an ISA. Valgrind might therefore be incompatible with a recent
GMP or even a less recent GMP which is compiled using a recent GCC.

GMP’s assembly code sometimes promotes a read of the limbs to some larger size,
for efficiency. GMP will do this even at the start and end of a multilimb operand,
using naturally aligned operations on the larger type. This may lead to benign reads
outside of allocated areas, triggering complaints from Valgrind. Valgrind’s option
‘--partial-loads-ok=yes’ should help.

Other Problems

Any suspected bug in GMP itself should be isolated to make sure it’s not an appli-
cation problem, see Chapter 4 [Reporting Bugs|, page 29.

3.13 Profiling

Running a program under a profiler is a good way to find where it’s spending most time and
where improvements can be best sought. The profiling choices for a GMP build are as follows.

‘-—disable-profiling’

The default is to add nothing special for profiling.

It should be possible to just compile the mainline of a program with -p and use prof
to get a profile consisting of timer-based sampling of the program counter. Most of
the GMP assembly code has the necessary symbol information.

This approach has the advantage of minimizing interference with normal program
operation, but on most systems the resolution of the sampling is quite low (10
milliseconds for instance), requiring long runs to get accurate information.

‘-—enable-profiling=prof’

Build with support for the system prof, which means ‘-p’ added to the ‘CFLAGS’.

This provides call counting in addition to program counter sampling, which allows
the most frequently called routines to be identified, and an average time spent in
each routine to be determined.

https://savannah.nongnu.org/projects/checker/
http://valgrind.org/

Chapter 3: GMP Basics 27

The x86 assembly code has support for this option, but on other processors the
assembly routines will be as if compiled without ‘-p’ and therefore won’t appear in
the call counts.

On some systems, such as GNU/Linux, ‘-p’ in fact means ‘-pg’ and in this case

‘-—enable-profiling=gprof’ described below should be used instead.

‘-—enable-profiling=gprof’
Build with support for gprof, which means ‘~pg’ added to the ‘CFLAGS’.
This provides call graph construction in addition to call counting and program
counter sampling, which makes it possible to count calls coming from different loca-
tions. For example the number of calls to mpn_mul from mpz_mul versus the number
from mpf_mul. The program counter sampling is still flat though, so only a total
time in mpn_mul would be accumulated, not a separate amount for each call site.
The x86 assembly code has support for this option, but on other processors the
assembly routines will be as if compiled without ‘-pg’ and therefore not be included
in the call counts.
On x86 and m68k systems ‘-pg’ and ‘~fomit-frame-pointer’ are incompatible, so
the latter is omitted from the default flags in that case, which might result in poorer
code generation.
Incidentally, it should be possible to use the gprof program with a plain
‘-—enable-profiling=prof’ build. But in that case only the ‘gprof -p’ flat profile
and call counts can be expected to be valid, not the ‘gprof -q’ call graph.

‘-—enable-profiling=instrument’
Build with the GCC option ‘~finstrument-functions’ added to the ‘CFLAGS’ (see
Section “Options for Code Generation” in Using the GNU Compiler Collection
(GCQ)).

This inserts special instrumenting calls at the start and end of each function, allowing
exact timing and full call graph construction.
This instrumenting is not normally a standard system feature and will require sup-
port from an external library, such as
http://sourceforge.net/projects/fnccheck/
This should be included in ‘LIBS’ during the GMP configure so that test programs
will link. For example,
./configure --enable-profiling=instrument LIBS=-1fc
On a GNU system the C library provides dummy instrumenting functions, so pro-

grams compiled with this option will link. In this case it’s only necessary to ensure
the correct library is added when linking an application.

The x86 assembly code supports this option, but on other processors the assembly
routines will be as if compiled without ‘-finstrument-functions’ meaning time
spent in them will effectively be attributed to their caller.

3.14 Autoconf

Autoconf based applications can easily check whether GMP is installed. The only thing to be
noted is that GMP library symbols from version 3 onwards have prefixes like __gmpz. The
following therefore would be a simple test,

AC_CHECK_LIB(gmp, __gmpz_init)

This just uses the default AC_CHECK_LIB actions for found or not found, but an application that
must have GMP would want to generate an error if not found. For example,

http://sourceforge.net/projects/fnccheck/

28 GNU MP 6.1.2

AC_CHECK_LIB(gmp, __gmpz_init, ,
[AC_MSG_ERROR([GNU MP not found, see https://gmplib.org/]1)])

If functions added in some particular version of GMP are required, then one of those can be
used when checking. For example mpz_mul_si was added in GMP 3.1,

AC_CHECK_LIB(gmp, __gmpz_mul_si, ,
[AC_MSG_ERROR(
[GNU MP not found, or not 3.1 or up, see https://gmplib.org/]1)]1)

An alternative would be to test the version number in gmp.h using say AC_EGREP_CPP. That
would make it possible to test the exact version, if some particular sub-minor release is known
to be necessary.

In general it’s recommended that applications should simply demand a new enough GMP rather
than trying to provide supplements for features not available in past versions.

Occasionally an application will need or want to know the size of a type at configuration or
preprocessing time, not just with sizeof in the code. This can be done in the normal way
with mp_limb_t etc, but GMP 4.0 or up is best for this, since prior versions needed certain ‘~D’
defines on systems using a long long limb. The following would suit Autoconf 2.50 or up,

AC_CHECK_SIZEQOF (mp_limb_t, , [#include <gmp.h>])

3.15 Emacs

C-h C-i (info-lookup-symbol) is a good way to find documentation on C functions while
editing (see Section “Info Documentation Lookup” in The Emacs Editor).

The GMP manual can be included in such lookups by putting the following in your .emacs,

(eval-after-load "info-look"
’(let ((mode-value (assoc ’c-mode (assoc ’symbol info-lookup-alist))))
(setcar (nthcdr 3 mode-value)
(cons ’ ("(gmp)Function Index" nil "~ -.*x " "\\>")
(nth 3 mode-value)))))

Chapter 4: Reporting Bugs 29

4 Reporting Bugs

If you think you have found a bug in the GMP library, please investigate it and report it. We
have made this library available to you, and it is not too much to ask you to report the bugs
you find.

Before you report a bug, check it’s not already addressed in Section 2.5 [Known Build Problems],
page 14, or perhaps Section 2.4 [Notes for Particular Systems]|, page 12. You may also want to
check https://gmplib.org/ for patches for this release.

Please include the following in any report,

e The GMP version number, and if pre-packaged or patched then say so.

e A test program that makes it possible for us to reproduce the bug. Include instructions on
how to run the program.

e A description of what is wrong. If the results are incorrect, in what way. If you get a crash,
say so.

e If you get a crash, include a stack backtrace from the debugger if it’s informative (‘where’
in gdb, or ‘$C’ in adb).

e Please do not send core dumps, executables or straces.

e The ‘configure’ options you used when building GMP, if any.

e The output from ‘configure’, as printed to stdout, with any options used.

e The name of the compiler and its version. For gcc, get the version with ‘gcc -v’, otherwise
perhaps ‘what ‘which cc’, or similar.

e The output from running ‘uname -a’.

e The output from running ‘./config.guess’, and from running ‘./configfsf.guess’
(might be the same).

e If the bug is related to ‘configure’, then the compressed contents of config.log.

e If the bug is related to an asm file not assembling, then the contents of config.m4 and the
offending line or lines from the temporary mpn/tmp-<file>.s.

Please make an effort to produce a self-contained report, with something definite that can be
tested or debugged. Vague queries or piecemeal messages are difficult to act on and don’t help
the development effort.

It is not uncommon that an observed problem is actually due to a bug in the compiler; the GMP
code tends to explore interesting corners in compilers.

If your bug report is good, we will do our best to help you get a corrected version of the library;
if the bug report is poor, we won’t do anything about it (except maybe ask you to send a better
report).

Send your report to: gmp-bugs@gmplib.org.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

https://gmplib.org/
mailto:gmp-bugs@gmplib.org

30 GNU MP 6.1.2

5 Integer Functions
This chapter describes the GMP functions for performing integer arithmetic. These functions
start with the prefix mpz_.

GMP integers are stored in objects of type mpz_t.

5.1 Initialization Functions

The functions for integer arithmetic assume that all integer objects are initialized. You do that
by calling the function mpz_init. For example,

{
mpz_t integ;
mpz_init (integ);

mpz_add (integ, ...);

mpz_sub (integ, ...);

/* Unless the program is about to exit, do ... */
mpz_clear (integ);

}

As you can see, you can store new values any number of times, once an object is initialized.

void mpz_init (mpz_t x) [Function]
Initialize x, and set its value to 0.

void mpz_inits (mpz_t x, ...) [Function]
Initialize a NULL-terminated list of mpz_t variables, and set their values to 0.

void mpz_init2 (mpz_t x, mp_bitcnt_t n) [Function]
Initialize x, with space for n-bit numbers, and set its value to 0. Calling this function instead
of mpz_init or mpz_inits is never necessary; reallocation is handled automatically by GMP
when needed.

While n defines the initial space, x will grow automatically in the normal way, if necessary,
for subsequent values stored. mpz_init2 makes it possible to avoid such reallocations if a
maximum size is known in advance.

In preparation for an operation, GMP often allocates one limb more than ultimately needed.
To make sure GMP will not perform reallocation for x, you need to add the number of bits
inmp_limb_t to n.

void mpz_clear (mpz-t x) [Function]
Free the space occupied by x. Call this function for all mpz_t variables when you are done
with them.

void mpz_clears (mpz.t x, ...) [Function]
Free the space occupied by a NULL-terminated list of mpz_t variables.

void mpz_realloc2 (mpz_t x, mp_bitcnt_t n) [Function]
Change the space allocated for x to n bits. The value in x is preserved if it fits, or is set to
0 if not.

Chapter 5: Integer Functions 31

Calling this function is never necessary; reallocation is handled automatically by GMP when
needed. But this function can be used to increase the space for a variable in order to avoid
repeated automatic reallocations, or to decrease it to give memory back to the heap.

5.2 Assignment Functions

These functions assign new values to already initialized integers (see Section 5.1 [Initializing
Integers|, page 30).

void mpz_set (mpz_t rop, const mpz_t op) [Function]
void mpz_set_ui (mpz-t rop, unsigned long int op) [Function]
void mpz_set_si (mpz-t rop, signed long int op) [Function]
[}
[}
[]

void mpz_set_d (mpz_t rop, double op) Function
void mpz_set_q (mpz_t rop, const mpq-t op) Function
void mpz_set_f (mpz_t rop, const mpf-t op) Function
Set the value of rop from op.
mpz_set_d, mpz_set_q and mpz_set_f truncate op to make it an integer.
int mpz_set_str (mpz_t rop, const char *str, int base) [Function]

Set the value of rop from str, a null-terminated C string in base base. White space is allowed
in the string, and is simply ignored.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, Ob and OB for binary, O for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns

—1.

void mpz_swap (mpz_t ropl, mpz_t rop2) [Function]
Swap the values ropl and rop2 efficiently.

5.3 Combined Initialization and Assignment Functions

For convenience, GMP provides a parallel series of initialize-and-set functions which initialize the
output and then store the value there. These functions’ names have the form mpz_init_set. ..

Here is an example of using one:

{
mpz_t pie;
mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10);
mpz_sub (pie, ...);
mpz_clear (pie);
}
Once the integer has been initialized by any of the mpz_init_set... functions, it can be used

as the source or destination operand for the ordinary integer functions. Don’t use an initialize-
and-set function on a variable already initialized!

32 GNU MP 6.1.2

void mpz_init_set (mpz_t rop, const mpz_t op) [Function]

void mpz_init_set_ui (mpz_t rop, unsigned long int op) [Function]

void mpz_init_set_si (mpz_-t rop, signed long int op) [Function]

void mpz_init_set_d (mpz_t rop, double op) [Function]
Initialize rop with limb space and set the initial numeric value from op.

int mpz_init_set_str (mpz.-t rop, const char *str, int base) [Function]

Initialize rop and set its value like mpz_set_str (see its documentation above for details).

If the string is a correct base base number, the function returns 0; if an error occurs it returns
—1. rop is initialized even if an error occurs. (IL.e., you have to call mpz_clear for it.)

5.4 Conversion Functions

This section describes functions for converting GMP integers to standard C types. Functions
for converting to GMP integers are described in Section 5.2 [Assigning Integers|, page 31 and
Section 5.12 [I/O of Integers|, page 40.

unsigned long int mpz_get_ui (const mpz_t op) [Function]
Return the value of op as an unsigned long.

If op is too big to fit an unsigned long then just the least significant bits that do fit are
returned. The sign of op is ignored, only the absolute value is used.

signed long int mpz_get_si (const mpz_t op) [Function]
If op fits into a signed long int return the value of op. Otherwise return the least significant
part of op, with the same sign as op.

If op is too big to fit in a signed long int, the returned result is probably not very useful.
To find out if the value will fit, use the function mpz_fits_slong_p.

double mpz_get_d (const mpz_t op) [Function]
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent from the conversion is too big, the result is system dependent. An infinity is
returned where available. A hardware overflow trap may or may not occur.

double mpz_get_d_2exp (signed long int *exp, const mpz_t op) [Function]
Convert op to a double, truncating if necessary (i.e. rounding towards zero), and returning
the exponent separately.

The return value is in the range 0.5 < |d| < 1 and the exponent is stored to *exp. d *2°7 is
the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in
The GNU C Library Reference Manual).

char * mpz_get_str (char *str, int base, const mpz_t op) [Function]
Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or
from —2 to —36.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Chapter 5: Integer Functions 33

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 90). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being
mpz_sizeinbase (op, base) + 2. The two extra bytes are for a possible minus sign, and the
null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

5.5 Arithmetic Functions

void mpz_add (mpz_t rop, const mpz_t opl1, const mpz_t op2) [Function]
void mpz_add_ui (mpz.-t rop, const mpz_t opl, unsigned long int opZ2) [Function]
Set rop to opl + op2.

void mpz_sub (mpz_t rop, const mpz_t opl, const mpz_t op2) [Function]
void mpz_sub_ui (mpz.-t rop, const mpz_t op1, unsigned long int opZ2) [Function]
void mpz_ui_sub (mpz_-t rop, unsigned long int opl, const mpz_t opZ2) [Function]

Set rop to opl — op2.

void mpz_mul (mpz_t rop, const mpz_t opl1, const mpz_t op2) [Function]
void mpz_mul_si (mpz.t rop, const mpz_t opl, long int op2) [Function]
void mpz_mul_ui (mpz_-t rop, const mpz_t opl, unsigned long int op2) [Function]

Set rop to opl x op2.

void mpz_addmul (mpz_-t rop, const mpz_t opl, const mpz_t op2) [Function]
void mpz_addmul_ui (mpz_t rop, const mpz_t opl, unsigned long int op2) [Function]
Set rop to rop + opl x op2.

void mpz_submul (mpz_-t rop, const mpz_t opl, const mpz_t op2) [Function]
void mpz_submul_ui (mpz_t rop, const mpz_t opl, unsigned long int op2) [Function]
Set rop to rop — opl x op2.

void mpz_mul_2exp (mpz-t rop, const mpz_t opl, mp_bitcnt_t op2) [Function]
Set rop to opl x 2°P2. This operation can also be defined as a left shift by op2 bits.

void mpz_neg (mpz_t rop, const mpz_t op) [Function]
Set rop to —op.

void mpz_abs (mpz-t rop, const mpz_t op) [Function]
Set rop to the absolute value of op.

5.6 Division Functions

Division is undefined if the divisor is zero. Passing a zero divisor to the division or modulo
functions (including the modular powering functions mpz_powm and mpz_powm_ui), will cause an
intentional division by zero. This lets a program handle arithmetic exceptions in these functions
the same way as for normal C int arithmetic.

void mpz_cdiv_q (mpz-t q, const mpz_t n, const mpz_t d) [Function]
void mpz_cdiv_r (mpz_t r, const mpz_t n, const mpz_t d) [Function]
void mpz_cdiv_qr (mpz_t q, mpz_t r, const mpz_t n, const mpz_t d) [Function]

34

unsigned long int mpz_cdiv_q_ui (mpz_-t q, const mpz_t n,
unsigned long int d)

unsigned long int mpz_cdiv_r_ui (mpz_-t r, const mpz_t n,
unsigned long int d)

unsigned long int mpz_cdiv_qr_ui (mpz_-t q, mpz_t r, const mpz_t n,

unsigned long int d)
unsigned long int mpz_cdiv_ui (const mpz_t n, unsigned long int d)
void mpz_cdiv_q_2exp (mpz-t q, const mpz_t n, mp_bitcnt_t b)
void mpz_cdiv_r_2exp (mpz-t r, const mpz_t n, mp_bitcnt_t b)

void mpz_fdiv_q (mpz-t q, const mpz_t n, const mpz_t d)

void mpz_fdiv_r (mpz_t r, const mpz_t n, const mpz_t d)

void mpz_fdiv_qr (mpz-t q, mpz_t r, const mpz_t n, const mpz_t d)

unsigned long int mpz_fdiv_q_ui (mpz_-t q, const mpz_t n,
unsigned long int d)

unsigned long int mpz_fdiv_r_ui (mpz_t r, const mpz_t n,
unsigned long int d)

unsigned long int mpz_fdiv_qr_ui (mpz-t q, mpz_t r, const mpz_t n,

unsigned long int d)
unsigned long int mpz_fdiv_ui (const mpz_t n, unsigned long int d)
void mpz_fdiv_q_2exp (mpz-t q, const mpz_t n, mp_bitcnt_t b)
void mpz_fdiv_r_2exp (mpz_-t r, const mpz_t n, mp_bitcnt_t b)

void mpz_tdiv_q (mpz-t q, const mpz_t n, const mpz_t d)

void mpz_tdiv_r (mpz_t r, const mpz_t n, const mpz_t d)

void mpz_tdiv_qr (mpz-t q, mpz_t r, const mpz_t n, const mpz_t d)

unsigned long int mpz_tdiv_q_ui (mpz_-t q, const mpz_t n,
unsigned long int d)

unsigned long int mpz_tdiv_r_ui (mpz_-t r, const mpz_t n,
unsigned long int d)

unsigned long int mpz_tdiv_qr_ui (mpz_-t q, mpz_t r, const mpz_t n,

unsigned long int d)
unsigned long int mpz_tdiv_ui (const mpz_t n, unsigned long int d)
void mpz_tdiv_q_2exp (mpz-t q, const mpz_t n, mp_bitcnt_t b)
void mpz_tdiv_r_2exp (mpz.-t r, const mpz_t n, mp_bitcnt_t b)

GNU MP 6.1.2

[Function]
[Function]
[Function]

[Functlon}
[}
[}
[Functlon}
[|
[}
[Functlon}
[Function]

[Function]

[Functlon}
[|
[]
[Functlon}
[}
[|
[Functlon}
[Function]
[Function]
[Function]

[Function]
[Function]

Divide n by d, forming a quotient g and/or remainder r. For the 2exp functions, d = 2°. The

rounding is in three styles, each suiting different applications.

e cdiv rounds q up towards 400, and r will have the opposite sign to d. The c stands for

“ceil”.

e fdiv rounds q down towards —oo, and r will have the same sign as d. The f stands for

“floor”.

e tdiv rounds g towards zero, and r will have the same sign as n.
“truncate”.

In all cases q and r will satisfy n = qd + r, and r will satisfy 0 < |r| < |d]|.

The t stands for

The q functions calculate only the quotient, the r functions only the remainder, and the qr
functions calculate both. Note that for qr the same variable cannot be passed for both q and

r, or results will be unpredictable.

For the ui variants the return value is the remainder, and in fact returning the remainder is
all the div_ui functions do. For tdiv and cdiv the remainder can be negative, so for those

the return value is the absolute value of the remainder.

Chapter 5: Integer Functions 35

For the 2exp variants the divisor is 2°. These functions are implemented as right shifts and
bit masks, but of course they round the same as the other functions.

For positive n both mpz_fdiv_q_2exp and mpz_tdiv_q_2exp are simple bitwise right shifts.
For negative n, mpz_fdiv_q_2exp is effectively an arithmetic right shift treating n as twos
complement the same as the bitwise logical functions do, whereas mpz_tdiv_q_2exp effec-
tively treats n as sign and magnitude.

void mpz_mod (mpz_t r, const mpz_t n, const mpz_t d) [Function]
unsigned long int mpz_mod_ui (mpz_t r, const mpz_t n, [Function]
unsigned long int d)
Set r to n mod d. The sign of the divisor is ignored; the result is always non-negative.

mpz_mod_ui is identical to mpz_fdiv_r_ui above, returning the remainder as well as setting
r. See mpz_fdiv_ui above if only the return value is wanted.

void mpz_divexact (mpz_t q, const mpz_t n, const mpz_t d) [Function]

void mpz_divexact_ui (mpz-t q, const mpz_t n, unsigned long d) [Function]
Set q to n/d. These functions produce correct results only when it is known in advance that
d divides n.

These routines are much faster than the other division functions, and are the best choice
when exact division is known to occur, for example reducing a rational to lowest terms.

int mpz_divisible_p (const mpz_t n, const mpz_t d) [Function]
int mpz_divisible_ui_p (const mpz_t n, unsigned long int d) [Function]
int mpz_divisible_2exp_p (const mpz_t n, mp_bitcnt_t b) [Function]

Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible_2exp_p by 2°.

n is divisible by d if there exists an integer q satisfying n = gqd. Unlike the other division
functions, d = 0 is accepted and following the rule it can be seen that only 0 is considered
divisible by 0.

int mpz_congruent_p (const mpz_t n, const mpz_t ¢, const mpz_t d) [Function]

int mpz_congruent_ui_p (const mpz_t n, unsigned long int ¢, unsigned long [Function]
int d)

int mpz_congruent_2exp_p (const mpz_t n, const mpz_t ¢, mp_bitcnt_t b) [Function]

Return non-zero if n is congruent to ¢ modulo d, or in the case of mpz_congruent_2exp_p
modulo 2°.

n is congruent to ¢ mod d if there exists an integer q satisfying n = ¢ 4+ qd. Unlike the other
division functions, d = 0 is accepted and following the rule it can be seen that n and c are
considered congruent mod 0 only when exactly equal.

5.7 Exponentiation Functions

void mpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const mpz_t [Function]
mod)
void mpz_powm_ui (mpz_t rop, const mpz_t base, unsigned long int exp, [Function]

const mpz_t mod)
Set rop to base®*? mod mod.

Negative exp is supported if an inverse base™! mod mod exists (see mpz_invert in Section 5.9

[Number Theoretic Functions|, page 37). If an inverse doesn’t exist then a divide by zero is
raised.

36 GNU MP 6.1.2

void mpz_powm_sec (mpz_t rop, const mpz_t base, const mpz_t exp, const [Function]
mpz_t mod)
Set rop to base® mod mod.

It is required that exp > 0 and that mod is odd.

This function is designed to take the same time and have the same cache access patterns
for any two same-size arguments, assuming that function arguments are placed at the same
position and that the machine state is identical upon function entry. This function is intended
for cryptographic purposes, where resilience to side-channel attacks is desired.

void mpz_pow_ui (mpz-t rop, const mpz_-t base, unsigned long int exp) [Function]
void mpz_ui_pow_ui (mpz-t rop, unsigned long int base, unsigned long int [Function]
exp)

Set rop to base®”. The case 0° yields 1.

5.8 Root Extraction Functions

int mpz_root (mpz-t rop, const mpz_t op, unsigned long int n) [Function]
Set rop to | ¢/op], the truncated integer part of the nth root of op. Return non-zero if the
computation was exact, i.e., if op is rop to the nth power.

void mpz_rootrem (mpz-t root, mpz_t rem, const mpz_t u, unsigned long int [Function]
n)
Set root to | {/u], the truncated integer part of the nth root of u. Set rem to the remainder,
(u — root™).

void mpz_sqrt (mpz_t rop, const mpz_t op) [Function]
Set rop to |\/op|, the truncated integer part of the square root of op.

void mpz_sqrtrem (mpz-t ropl, mpz_t rop2, const mpz_t op) [Function]
Set ropl to |,/op], like mpz_sqrt. Set rop2 to the remainder (op — rop1?), which will be
zero if op is a perfect square.

If ropl and rop2 are the same variable, the results are undefined.

int mpz_perfect_power_p (const mpz_t op) [Function]
Return non-zero if op is a perfect power, i.e., if there exist integers a and b, with b > 1, such
that op = a’.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of
op are accepted, but of course can only be odd perfect powers.

int mpz_perfect_square_p (const mpz_t op) [Function]
Return non-zero if op is a perfect square, i.e., if the square root of op is an integer. Under
this definition both 0 and 1 are considered to be perfect squares.

Chapter 5: Integer Functions 37

5.9 Number Theoretic Functions

int mpz_probab_prime_p (const mpz_t n, int reps) [Function]
Determine whether n is prime. Return 2 if n is definitely prime, return 1 if n is probably
prime (without being certain), or return 0 if n is definitely non-prime.

This function performs some trial divisions, then reps Miller-Rabin probabilistic primality
tests. A higher reps value will reduce the chances of a non-prime being identified as “probably
prime”. A composite number will be identified as a prime with a probability of less than
477°r¢_ Reasonable values of reps are between 15 and 50.

void mpz_nextprime (mpz-t rop, const mpz_t op) [Function]
Set rop to the next prime greater than op.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s
adequate, the chance of a composite passing will be extremely small.

void mpz_gcd (mpz_t rop, const mpz_t opl, const mpz_t op2) [Function]
Set rop to the greatest common divisor of opl and op2. The result is always positive even if
one or both input operands are negative. Except if both inputs are zero; then this function
defines ged(0,0) = 0.

unsigned long int mpz_gcd_ui (mpz_t rop, const mpz_t opl, unsigned [Function]
long int op2)
Compute the greatest common divisor of opl and op2. If rop is not NULL, store the result
there.

If the result is small enough to fit in an unsigned long int, it is returned. If the result does
not fit, 0 is returned, and the result is equal to the argument opl. Note that the result will
always fit if op2 is non-zero.

void mpz_gcdext (mpz-t g, mpz_t s, mpz_t t, const mpz_t a, const mpz_t b) [Function]
Set g to the greatest common divisor of a and b, and in addition set s and t to coefficients
satisfying as + bt = g. The value in g is always positive, even if one or both of a and b
are negative (or zero if both inputs are zero). The values in s and t are chosen such that
normally, |s| < |b|/(2g) and |t| < |a|/(2g), and these relations define s and t uniquely. There
are a few exceptional cases:

If |a| = |b|, then s = 0, t = sgn(b).

Otherwise, s = sgn(a) if b= 0 or |b| = 2g, and t = sgn(b) if a =0 or |a| = 2g.

In all cases, s = 0 if and only if g = |b|, i.e., if b divides a or a= b = 0.

If ¢t is NULL then that value is not computed.
void mpz_lcm (mpz_t rop, const mpz_t opl1, const mpz_t op2) [Function]
void mpz_lcm_ui (mpz-t rop, const mpz_t opl, unsigned long op2) [Function]

Set rop to the least common multiple of opl and op2. rop is always positive, irrespective of
the signs of opl and op2. rop will be zero if either opl or op2 is zero.

int mpz_invert (mpz_t rop, const mpz_t opl1, const mpz_t op2) [Function]
Compute the inverse of opl modulo op2 and put the result in rop. If the inverse exists, the
return value is non-zero and rop will satisfy 0 < rop < |op2| (with rop = 0 possible only

38 GNU MP 6.1.2

when |op2| = 1, i.e., in the somewhat degenerate zero ring). If an inverse doesn’t exist the
return value is zero and rop is undefined. The behaviour of this function is undefined when
op2 is zero.

int mpz_jacobi (const mpz_t a, const mpz_t b) [Function]
Calculate the Jacobi symbol (%). This is defined only for b odd.

int mpz_legendre (const mpz_t a, const mpz_t p) [Function]
Calculate the Legendre symbol (%) This is defined only for p an odd positive prime, and
for such p it’s identical to the Jacobi symbol.

int mpz_kronecker (const mpz_t a, const mpz_t b) [Function]
int mpz_kronecker_si (const mpz_t a, long b) [Function]
int mpz_kronecker_ui (const mpz_t a, unsigned long b) [Function]
int mpz_si_kronecker (long a, const mpz_t b) [Function]
int mpz_ui_kronecker (unsigned long a, const mpz_t b) [Function]

Calculate the Jacobi symbol (%) with the Kronecker extension (£) = (2) when a odd, or

(%) = 0 when a even.

When b is odd the Jacobi symbol and Kronecker symbol are identical, so mpz_kronecker_ui
etc can be used for mixed precision Jacobi symbols too.

For more information see Henri Cohen section 1.4.2 (see Appendix B [References|, page 126),
or any number theory textbook. See also the example program demos/qcn.c which uses
mpz_kronecker_ui.

mp_bitcnt_t mpz_remove (mpz_t rop, const mpz_t op, const mpz_t f) [Function]
Remove all occurrences of the factor f from op and store the result in rop. The return value
is how many such occurrences were removed.

void mpz_fac_ui (mpz-t rop, unsigned long int n) [Function]
void mpz_2fac_ui (mpz-t rop, unsigned long int n) [Function]
void mpz_mfac_uiui (mpz_t rop, unsigned long int n, unsigned long int m) [Function]

Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui
computes the double-factorial n!!, and mpz_mfac_uiui the m-multi-factorial n!(™).

void mpz_primorial_ui (mpz-t rop, unsigned long int n) [Function]
Set rop to the primorial of n, i.e. the product of all positive prime numbers < n.

void mpz_bin_ui (mpz-t rop, const mpz_t n, unsigned long int k) [Function]
void mpz_bin_uiui (mpz_t rop, unsigned long int n, unsigned long int k) [Function]
Compute the binomial coefficient (Z) and store the result in rop. Negative values of n are

supported by mpz_bin_ui, using the identity (7") = (—1)* (”+:_1), see Knuth volume 1
section 1.2.6 part G.

void mpz_fib_ui (mpz_-t fn, unsigned long int n) [Function]

void mpz_fib2_ui (mpz-t fn, mpz_t fnsubl, unsigned long int n) [Function]
mpz_fib_ui sets fn to to F),, the n’th Fibonacci number. mpz_fib2_ui sets fn to F,,, and
fnsubl to F,,_;.

These functions are designed for calculating isolated Fibonacci numbers. When a sequence of
values is wanted it’s best to start with mpz_fib2_ui and iterate the defining F,,; = F,,+F,,_1
or similar.

Chapter 5: Integer Functions 39

void mpz_lucnum_ui (mpz-t 1n, unsigned long int n) [Function]

void mpz_lucnum2_ui (mpz_t 1n, mpz_t 1nsubl, unsigned long int n) [Function]
mpz_lucnum_ui sets In to to L,, the n’th Lucas number. mpz_lucnum?_ui sets In to L,,, and
Insubl to L,,_;.

These functions are designed for calculating isolated Lucas numbers. When a sequence of
values is wanted it’s best to start with mpz_lucnum2_ui and iterate the defining L, =
L, + L,_; or similar.

The Fibonacci numbers and Lucas numbers are related sequences, so it’s never necessary
to call both mpz_fib2_ui and mpz_lucnum2_ui. The formulas for going from Fibonacci to
Lucas can be found in Section 15.7.5 [Lucas Numbers Algorithm]|, page 113, the reverse is
straightforward too.

5.10 Comparison Functions

int mpz_cmp (const mpz_t opl, const mpz_t op2) [Function]
int mpz_cmp_d (const mpz_t opl, double op2) [Function]
int mpz_cmp_si (const mpz_t opl, signed long int op2) [Macro]
int mpz_cmp_ui (const mpz_t opl, unsigned long int op2) [Macro]

Compare opl and op2. Return a positive value if op1 > op2, zero if opl = op2, or a negative
value if opl < op2.

mpz_cmp_ui and mpz_cmp_si are macros and will evaluate their arguments more than once.
mpz_cmp_d can be called with an infinity, but results are undefined for a NaN.

int mpz_cmpabs (const mpz_t opl, const mpz_t op2) [Function]
int mpz_cmpabs_d (const mpz_t op1, double op2) [Function]
int mpz_cmpabs_ui (const mpz_t opl1, unsigned long int op2) [Function]

Compare the absolute values of opl and op2. Return a positive value if |opl| > |op2|, zero
if |opl| = |op2|, or a negative value if |opl| < |op2|.

mpz_cmpabs_d can be called with an infinity, but results are undefined for a NaN.

int mpz_sgn (const mpz_t op) [Macro]
Return +1 if op > 0, 0 if op =0, and —1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

5.11 Logical and Bit Manipulation Functions

These functions behave as if twos complement arithmetic were used (although sign-magnitude
is the actual implementation). The least significant bit is number 0.

void mpz_and (mpz_t rop, const mpz_t opl1, const mpz_t op2) [Function]
Set rop to opl bitwise-and op2.

void mpz_ior (mpz_t rop, const mpz_t opl, const mpz_t op2) [Function]
Set rop to opl bitwise inclusive-or op2.

void mpz_xor (mpz-t rop, const mpz_t opl, const mpz_t op2) [Function]
Set rop to opl bitwise exclusive-or op2.

void mpz_com (mpz_t rop, const mpz_t op) [Function]
Set rop to the one’s complement of op.

40 GNU MP 6.1.2

mp_bitcnt_t mpz_popcount (const mpz_t op) [Function]
If op > 0, return the population count of op, which is the number of 1 bits in the binary
representation. If op < 0, the number of 1s is infinite, and the return value is the largest
possible mp_bitcnt_t.

mp_bitcnt_t mpz_hamdist (const mpz_t opl, const mpz_t op2) [Function]
If opl and op2 are both > 0 or both < 0, return the hamming distance between the two
operands, which is the number of bit positions where opl and op2 have different bit values.
If one operand is > 0 and the other < 0 then the number of bits different is infinite, and the
return value is the largest possible mp_bitcnt_t.

mp_bitcnt_t mpz_scanO (const mpz_t op, mp_bitent_t starting_bit) [Function]

mp_bitcnt_t mpz_scanl (const mpz_t op, mp_bitent_t starting_bit) [Function]
Scan op, starting from bit starting_bit, towards more significant bits, until the first 0 or 1 bit
(respectively) is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then the largest possible mp_bitcnt_t is returned. This will happen
in mpz_scan0 past the end of a negative number, or mpz_scanl past the end of a nonnegative
number.

void mpz_setbit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Set bit bit_index in rop.

void mpz_clrbit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Clear bit bit_index in rop.

void mpz_combit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Complement bit bit_index in rop.

int mpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index) [Function]
Test bit bit_index in op and return 0 or 1 accordingly.

5.12 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream,
of mpz numbers. Passing a NULL pointer for a stream argument to any of these functions will
make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before gmp.h, since that
will allow gmp.h to define prototypes for these functions.

See also Chapter 10 [Formatted Output|, page 72 and Chapter 11 [Formatted Input], page 77.
size_t mpz_out_str (FILE *stream, int base, const mpz_t op) [Function]

Output op on stdio stream stream, as a string of digits in base base. The base argument may
vary from 2 to 62 or from —2 to —36.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Return the number of bytes written, or if an error occurred, return 0.

Chapter 5: Integer Functions 41

size_t mpz_inp_str (mpz_t rop, FILE *stream, int base) [Function]
Input a possibly white-space preceded string in base base from stdio stream stream, and put
the read integer in rop.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, Ob and OB for binary, O for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Return the number of bytes read, or if an error occurred, return 0.

size_t mpz_out_raw (FILE *stream, const mpz_t op) [Function]
Output op on stdio stream stream, in raw binary format. The integer is written in a portable
format, with 4 bytes of size information, and that many bytes of limbs. Both the size and
the limbs are written in decreasing significance order (i.e., in big-endian).

The output can be read with mpz_inp_raw.
Return the number of bytes written, or if an error occurred, return 0.

The output of this can not be read by mpz_inp_raw from GMP 1, because of changes necessary
for compatibility between 32-bit and 64-bit machines.

size_t mpz_inp_raw (mpz_t rop, FILE *stream) [Function]
Input from stdio stream stream in the format written by mpz_out_raw, and put the result in
rop. Return the number of bytes read, or if an error occurred, return 0.

This routine can read the output from mpz_out_raw also from GMP 1, in spite of changes
necessary for compatibility between 32-bit and 64-bit machines.

5.13 Random Number Functions

The random number functions of GMP come in two groups; older function that rely on a global
state, and newer functions that accept a state parameter that is read and modified. Please see
the Chapter 9 [Random Number Functions|, page 70 for more information on how to use and
not to use random number functions.

void mpz_urandomb (mpz_t rop, gmp_randstate_t state, mp_bitcnt_t n) [Function]
Generate a uniformly distributed random integer in the range 0 to 2" — 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization|, page 70) before invoking this function.

void mpz_urandomm (mpz_t rop, gmp_randstate_t state, const mpz_t n) [Function]
Generate a uniform random integer in the range 0 to n — 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 70) before invoking this function.

void mpz_rrandomb (mpz_t rop, gmp_randstate_t state, mp_bitcnt_t n) [Function]
Generate a random integer with long strings of zeros and ones in the binary representation.
Useful for testing functions and algorithms, since this kind of random numbers have proven
to be more likely to trigger corner-case bugs. The random number will be in the range 2"~}
to 2™ — 1, inclusive.

42 GNU MP 6.1.2

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 70) before invoking this function.

void mpz_random (mpz-t rop, mp_size.t max_size) [Function]
Generate a random integer of at most max_size limbs. The generated random number doesn’t
satisfy any particular requirements of randomness. Negative random numbers are generated
when max_size is negative.

This function is obsolete. Use mpz_urandomb or mpz_urandomm instead.

void mpz_random2 (mpz_t rop, mp_size_t max_size) [Function]
Generate a random integer of at most max_size limbs, with long strings of zeros and ones
in the binary representation. Useful for testing functions and algorithms, since this kind of
random numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max_size is negative.

This function is obsolete. Use mpz_rrandomb instead.

5.14 Integer Import and Export

mpz_t variables can be converted to and from arbitrary words of binary data with the following
functions.

void mpz_import (mpz-t rop, size_t count, int order, size_t size, int [Function]
endian, size_t nails, const void *op)
Set rop from an array of word data at op.

The parameters specify the format of the data. count many words are read, each size bytes.
order can be 1 for most significant word first or -1 for least significant first. Within each
word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are skipped,
this can be 0 to use the full words.

There is no sign taken from the data, rop will simply be a positive integer. An application
can handle any sign itself, and apply it for instance with mpz_neg.

There are no data alignment restrictions on op, any address is allowed.

Here’s an example converting an array of unsigned long data, most significant element first,
and host byte order within each value.

unsigned long a[20];
/* Initialize z and a */
mpz_import (z, 20, 1, sizeof(al[0]), 0, 0, a);

This example assumes the full sizeof bytes are used for data in the given type, which is
usually true, and certainly true for unsigned long everywhere we know of. However on Cray
vector systems it may be noted that short and int are always stored in 8 bytes (and with
sizeof indicating that) but use only 32 or 46 bits. The nails feature can account for this,
by passing for instance 8*sizeof (int)-INT_BIT.

void * mpz_export (void *rop, size_t *countp, int order, size_t size, int [Function]
endian, size_t nails, const mpz_t op)
Fill rop with word data from op.

The parameters specify the format of the data produced. Each word will be size bytes and
order can be 1 for most significant word first or -1 for least significant first. Within each

Chapter 5: Integer Functions 43

word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are unused
and set to zero, this can be 0 to produce full words.

The number of words produced is written to *countp, or countp can be NULL to discard the
count. rop must have enough space for the data, or if rop is NULL then a result array of
the necessary size is allocated using the current GMP allocation function (see Chapter 13
[Custom Allocation], page 90). In either case the return value is the destination used, either
rop or the allocated block.

If op is non-zero then the most significant word produced will be non-zero. If op is zero then
the count returned will be zero and nothing written to rop. If rop is NULL in this case, no
block is allocated, just NULL is returned.

The sign of op is ignored, just the absolute value is exported. An application can use mpz_sgn
to get the sign and handle it as desired. (see Section 5.10 [Integer Comparisons|, page 39)

There are no data alignment restrictions on rop, any address is allowed.

When an application is allocating space itself the required size can be determined with a
calculation like the following. Since mpz_sizeinbase always returns at least 1, count here
will be at least one, which avoids any portability problems with malloc(0), though if z is
zero no space at all is actually needed (or written).

numb = 8%*size - nail;
count = (mpz_sizeinbase (z, 2) + numb-1) / numb;
p = malloc (count * size);

5.15 Miscellaneous Functions

int mpz_fits_ulong_p (const mpz_t op) [Function]

int mpz_fits_slong_p (const mpz_t op) [Function]

int mpz_fits_uint_p (const mpz_t op) [Function]

int mpz_fits_sint_p (const mpz_t op) [Function]

int mpz_fits_ushort_p (const mpz_t op) [Function]

int mpz_fits_sshort_p (const mpz_t op) [Function]
Return non-zero iff the value of op fits in an unsigned long int, signed long int, unsigned
int, signed int, unsigned short int, or signed short int, respectively. Otherwise, re-
turn zero.

int mpz_odd_p (const mpz_t op) [Macro]

int mpz_even_p (const mpz_t op) [Macro]
Determine whether op is odd or even, respectively. Return non-zero if yes, zero if no. These
macros evaluate their argument more than once.

size_t mpz_sizeinbase (const mpz_t op, int base) [Function]
Return the size of op measured in number of digits in the given base. base can vary from 2
to 62. The sign of op is ignored, just the absolute value is used. The result will be either
exact or 1 too big. If base is a power of 2, the result is always exact. If op is zero the return
value is always 1.

This function can be used to determine the space required when converting op to a string. The
right amount of allocation is normally two more than the value returned by mpz_sizeinbase,
one extra for a minus sign and one for the null-terminator.

44 GNU MP 6.1.2

It will be noted that mpz_sizeinbase(op,2) can be used to locate the most significant 1 bit
in op, counting from 1. (Unlike the bitwise functions which start from 0, See Section 5.11
[Logical and Bit Manipulation Functions], page 39.)

5.16 Special Functions

The functions in this section are for various special purposes. Most applications will not need
them.

void mpz_array_init (mpz-t integer_array, mp_size_t array_size, [Function]
mp_size_t fixed_num_bits)
This is an obsolete function. Do not use it.

void * _mpz_realloc (mpz_t integer, mp_size_t new_alloc) [Function]
Change the space for integer to new_alloc limbs. The value in integer is preserved if it fits,
or is set to 0 if not. The return value is not useful to applications and should be ignored.

mpz_realloc? is the preferred way to accomplish allocation changes like this. mpz_realloc2
and _mpz_realloc are the same except that _mpz_realloc takes its size in limbs.

mp_limb_t mpz_getlimbn (const mpz_t op, mp_size_t n) [Function]
Return limb number n from op. The sign of op is ignored, just the absolute value is used.
The least significant limb is number 0.

mpz_size can be used to find how many limbs make up op. mpz_getlimbn returns zero if n
is outside the range 0 to mpz_size (op)-1.

size_t mpz_size (const mpz_t op) [Function]
Return the size of op measured in number of limbs. If op is zero, the returned value will be
zZero.

const mp_limb_t * mpz_limbs_read (const mpz_t x) [Function]
Return a pointer to the limb array representing the absolute value of x. The size of the array
is mpz_size(x). Intended for read access only.

mp_limb_t * mpz_limbs_write (mpz-t x, mp_size_t n) [Function]

mp_limb_t * mpz_limbs_modify (mpz_t x, mp_size_t n) [Function]
Return a pointer to the limb array, intended for write access. The array is reallocated as
needed, to make room for n limbs. Requires n > 0. The mpz_limbs_modify function returns
an array that holds the old absolute value of x, while mpz_limbs_write may destroy the old
value and return an array with unspecified contents.

void mpz_limbs_finish (mpz_t x, mp_size_t s) [Function]
Updates the internal size field of x. Used after writing to the limb array pointer returned
by mpz_limbs_write or mpz_limbs_modify is completed. The array should contain |s| valid
limbs, representing the new absolute value for x, and the sign of x is taken from the sign of
s. This function never reallocates x, so the limb pointer remains valid.

void foo (mpz_t x)
{
mp_size_t n, 1i;
mp_limb_t *xp;

n = mpz_size (x);

Chapter 5: Integer Functions 45

xp = mpz_limbs_modify (x, 2*n);
for (i = 0; i < n; i++)
xp[ln+i] = xpln-1-i];
mpz_limbs_finish (x, mpz_sgn (x) < 0 7 - 2%n : 2%n);

}

mpz_srcptr mpz_roinit_n (mpz_t x, const mp_limb_t *xp, mp_size_t xs) [Function]
Special initialization of x, using the given limb array and size. x should be treated as read-
only: it can be passed safely as input to any mpz function, but not as an output. The array
xp must point to at least a readable limb, its size is |xs|, and the sign of x is the sign of xs.
For convenience, the function returns x, but cast to a const pointer type.

void foo (mpz_t x)

{
static const mp_limb_t y[3] = { 0x1, 0x2, 0x3 };
mpz_t tmp;
mpz_add (x, x, mpz_roinit_n (tmp, y, 3));

}

mpz_t MPZ_ROINIT_N (mp-_limb_t *xp, mp_size_t xs) [Macro]
This macro expands to an initializer which can be assigned to an mpz_t variable. The
limb array xp must point to at least a readable limb, moreover, unlike the mpz_roinit_n
function, the array must be normalized: if xs is non-zero, then xp[|xs| —1] must be non-zero.
Intended primarily for constant values. Using it for non-constant values requires a C compiler
supporting C99.

void foo (mpz_t x)
{
static const mp_limb_t yal3] = { Ox1, 0x2, 0x3 };
static const mpz_t y = MPZ_ROINIT_N ((mp_limb_t *) ya, 3);

mpz_add (x, x, y);
}

46 GNU MP 6.1.2

6 Rational Number Functions

This chapter describes the GMP functions for performing arithmetic on rational numbers. These
functions start with the prefix mpq_.

Rational numbers are stored in objects of type mpq_t.

All rational arithmetic functions assume operands have a canonical form, and canonicalize their
result. The canonical form means that the denominator and the numerator have no common
factors, and that the denominator is positive. Zero has the unique representation 0/1.

Pure assignment functions do not canonicalize the assigned variable. It is the responsibility of
the user to canonicalize the assigned variable before any arithmetic operations are performed on
that variable.

void mpq_canonicalize (mpq-t op) [Function]
Remove any factors that are common to the numerator and denominator of op, and make
the denominator positive.

6.1 Initialization and Assignment Functions

void mpq_init (mpq-t x) [Function]
Initialize x and set it to 0/1. Each variable should normally only be initialized once, or at
least cleared out (using the function mpq_clear) between each initialization.

void mpq_inits (mpq-t x, ...) [Function]
Initialize a NULL-terminated list of mpgq_t variables, and set their values to 0/1.

void mpq_clear (mpq-t x) [Function]
Free the space occupied by x. Make sure to call this function for all mpq_t variables when
you are done with them.

void mpq_clears (mpq-t x, ...) [Function]
Free the space occupied by a NULL-terminated list of mpq_t variables.

void mpq_set (mpq-t rop, const mpq-t op) [Function]
void mpq_set_z (mpq-t rop, const mpz_t op) [Function]
Assign rop from op.

void mpq_set_ui (mpq-t rop, unsigned long int op1, unsigned long int op2) [Function]

void mpq_set_si (mpq-t rop, signed long int op1, unsigned long int op2) [Function]
Set the value of rop to opl/op2. Note that if opl and op2 have common factors, rop has to
be passed to mpq_canonicalize before any operations are performed on rop.

int mpq_set_str (mpq-t rop, const char *str, int base) [Function]
Set rop from a null-terminated string str in the given base.

The string can be an integer like “41” or a fraction like “41/152”. The fraction must be
in canonical form (see Chapter 6 [Rational Number Functions|, page 46), or if not then
mpqg_canonicalize must be called.

The numerator and optional denominator are parsed the same as in mpz_set_str (see
Section 5.2 [Assigning Integers|, page 31). White space is allowed in the string, and is simply
ignored. The base can vary from 2 to 62, or if base is 0 then the leading characters are used:

Chapter 6: Rational Number Functions 47

0x or OX for hex, Ob or OB for binary, 0 for octal, or decimal otherwise. Note that this is done
separately for the numerator and denominator, so for instance 0xEF/100 is 239/100, whereas
0xEF/0x100 is 239/256.

The return value is 0 if the entire string is a valid number, or —1 if not.

void mpq_swap (mpq-t ropl, mpq_t rop2) [Function]
Swap the values ropl and rop2 efficiently.

6.2 Conversion Functions

double mpq_get_d (const mpq-t op) [Function]
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent from the conversion is too big or too small to fit a double then the result is
system dependent. For too big an infinity is returned when available. For too small 0.0 is
normally returned. Hardware overflow, underflow and denorm traps may or may not occur.

void mpq_set_d (mpq-t rop, double op) [Function]
void mpq_set_f (mpq-t rop, const mpf_t op) [Function]
Set rop to the value of op. There is no rounding, this conversion is exact.

char * mpq_get_str (char *str, int base, const mpq-t op) [Function]
Convert op to a string of digits in base base. The base may vary from 2 to 36. The string
will be of the form ‘num/den’, or if the denominator is 1 then just ‘num’.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 90). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being

mpz_sizeinbase (mpq_numref(op), base)
+ mpz_sizeinbase (mpq_denref(op), base) + 3

The three extra bytes are for a possible minus sign, possible slash, and the null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

6.3 Arithmetic Functions

void mpq_add (mpq-t sum, const mpq-t addendl, const mpq-t addendZ2) [Function]
Set sum to addendl + addend?.

void mpq_sub (mpq-t difference, const mpq-t minuend, const mpq-t [Function]
subtrahend)
Set difference to minuend — subtrahend.
void mpq_mul (mpq_t product, const mpq_t multiplier, const mpq_t [Function]
multiplicand)

Set product to multiplier x multiplicand.

void mpq_mul_2exp (mpq-t rop, const mpq_t opl, mp_bitcnt_t op2) [Function]
Set rop to opl x 2°P2,

48 GNU MP 6.1.2

void mpq_div (mpq-t quotient, const mpq_-t dividend, const mpq-t [Function]
divisor)
Set quotient to dividend/divisor.

void mpq_div_2exp (mpq-t rop, const mpq-t opl, mp_bitcnt_t op2) [Function]
Set rop to opl/2°P2.

void mpq_neg (mpq-t negated_operand, const mpq-t operand) [Function]
Set negated_operand to —operand.

void mpq_abs (mpq-t rop, const mpq-t op) [Function]
Set rop to the absolute value of op.

void mpq_inv (mpq-t inverted_number, const mpq-t number) [Function]
Set inverted_number to 1/number. If the new denominator is zero, this routine will divide
by zero.

6.4 Comparison Functions

int mpq_cmp (const mpq-t opl, const mpq-t op2) [Function]

int mpq_cmp_z (const mpq-t opl, const mpz_t op2) [Function]
Compare opl and op2. Return a positive value if opl > op2, zero if opl = op2, and a
negative value if opl < op2.

To determine if two rationals are equal, mpq_equal is faster than mpq_cmp.

int mpq_cmp_ui (const mpq_t opl, unsigned long int num2, unsigned long int [Macro]
den2)
int mpq_cmp_si (const mpq-t opl, long int num2, unsigned long int denZ2) [Macro]

Compare opl and num2/den2. Return a positive value if opl > num2/den2, zero if opl =
num?2/den2, and a negative value if opl < num2/den2.

num?2 and den2 are allowed to have common factors.

These functions are implemented as a macros and evaluate their arguments multiple times.

int mpq_sgn (const mpq_-t op) [Macro]
Return +1 if op > 0, 0 if op =0, and —1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

int mpq_equal (const mpq-t opl, const mpq-t op2) [Function]
Return non-zero if opl and op2 are equal, zero if they are non-equal. Although mpq_cmp can
be used for the same purpose, this function is much faster.

6.5 Applying Integer Functions to Rationals

The set of mpq functions is quite small. In particular, there are few functions for either input
or output. The following functions give direct access to the numerator and denominator of an

mpq_t.

Note that if an assignment to the numerator and/or denominator could take an mpq_t out
of the canonical form described at the start of this chapter (see Chapter 6 [Rational Number
Functions|, page 46) then mpqg_canonicalize must be called before any other mpq functions are
applied to that mpq_t.

Chapter 6: Rational Number Functions 49

mpz_t mpq_numref (const mpq-t op) [Macro]

mpz_t mpq_denref (const mpq-t op) [Macro]
Return a reference to the numerator and denominator of op, respectively. The mpz functions
can be used on the result of these macros.

void mpq_get_num (mpz.t numerator, const mpq-t rational) [Function]
void mpq_get_den (mpz-t denominator, const mpq-t rational) [Function]
void mpq_set_num (mpq-t rational, const mpz_t numerator) [Function]
void mpq_set_den (mpq-t rational, const mpz_t denominator) [Function]

Get or set the numerator or denominator of a rational. These functions are equivalent to
calling mpz_set with an appropriate mpq_numref or mpq_denref. Direct use of mpq_numref
or mpq_denref is recommended instead of these functions.

6.6 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream,
of mpq numbers. Passing a NULL pointer for a stream argument to any of these functions will
make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before gmp.h, since that
will allow gmp.h to define prototypes for these functions.

See also Chapter 10 [Formatted Output], page 72 and Chapter 11 [Formatted Input], page 77.

size_t mpq_out_str (FILE *stream, int base, const mpq_t op) [Function]
Output op on stdio stream stream, as a string of digits in base base. The base may vary from
2 to 36. Output is in the form ‘num/den’ or if the denominator is 1 then just ‘num’.

Return the number of bytes written, or if an error occurred, return 0.

size_t mpq_inp_str (mpq-t rop, FILE *stream, int base) [Function]
Read a string of digits from stream and convert them to a rational in rop. Any initial white-
space characters are read and discarded. Return the number of characters read (including
white space), or 0 if a rational could not be read.

The input can be a fraction like ‘17/63’ or just an integer like ‘123’. Reading stops at the
first character not in this form, and white space is not permitted within the string. If the
input might not be in canonical form, then mpq_canonicalize must be called (see Chapter 6
[Rational Number Functions|, page 46).

The base can be between 2 and 36, or can be 0 in which case the leading characters of the
string determine the base, ‘0x’ or ‘0X’ for hexadecimal, ‘0’ for octal, or decimal otherwise.
The leading characters are examined separately for the numerator and denominator of a
fraction, so for instance ‘0x10/11’ is 16/11, whereas ‘0x10/0x11’ is 16/17.

50 GNU MP 6.1.2

7 Floating-point Functions

GMP floating point numbers are stored in objects of type mpf_t and functions operating on
them have an mpf_ prefix.

The mantissa of each float has a user-selectable precision, in practice only limited by available
memory. Each variable has its own precision, and that can be increased or decreased at any
time. This selectable precision is a minimum value, GMP rounds it up to a whole limb.

The accuracy of a calculation is determined by the priorly set precision of the destination
variable and the numeric values of the input variables. Input variables’ set precisions do not
affect calculations (except indirectly as their values might have been affected when they were
assigned).

The exponent of each float has fixed precision, one machine word on most systems. In the
current implementation the exponent is a count of limbs, so for example on a 32-bit system this
means a range of roughly 2768719476768 , 968719476736 o on a 64-bit system this will be much
greater. Note however that mpf_get_str can only return an exponent which fits an mp_exp_t
and currently mpf_set_str doesn’t accept exponents bigger than a long.

Each variable keeps track of the mantissa data actually in use. This means that if a float is
exactly represented in only a few bits then only those bits will be used in a calculation, even if
the variable’s selected precision is high. This is a performance optimization; it does not affect
the numeric results.

Internally, GMP sometimes calculates with higher precision than that of the destination variable
in order to limit errors. Final results are always truncated to the destination variable’s precision.

The mantissa is stored in binary. One consequence of this is that decimal fractions like 0.1
cannot be represented exactly. The same is true of plain IEEE double floats. This makes both
highly unsuitable for calculations involving money or other values that should be exact decimal
fractions. (Suitably scaled integers, or perhaps rationals, are better choices.)

The mpf functions and variables have no special notion of infinity or not-a-number, and appli-
cations must take care not to overflow the exponent or results will be unpredictable.

Note that the mpf functions are not intended as a smooth extension to IEEE P754 arithmetic.
In particular results obtained on one computer often differ from the results on a computer with
a different word size.

New projects should consider using the GMP extension library MPFR (http://mpfr.org)
instead. MPFR provides well-defined precision and accurate rounding, and thereby naturally
extends IEEE P754.

7.1 Initialization Functions

void mpf_set_default_prec (mp_bitcnt_t prec) [Function]
Set the default precision to be at least prec bits. All subsequent calls to mpf_init will use
this precision, but previously initialized variables are unaffected.

mp_bitcnt_t mpf_get_default_prec (void) [Function]
Return the default precision actually used.

An mpf_t object must be initialized before storing the first value in it. The functions mpf_init
and mpf_init2 are used for that purpose.

http://mpfr.org

Chapter 7: Floating-point Functions 51

void mpf_init (mpf-t x) [Function]
Initialize x to 0. Normally, a variable should be initialized once only or at least be cleared,
using mpf_clear, between initializations. The precision of x is undefined unless a default
precision has already been established by a call to mpf_set_default_prec.

void mpf_init2 (mpf.-t x, mp_bitcnt_t prec) [Function]
Initialize x to 0 and set its precision to be at least prec bits. Normally, a variable should be
initialized once only or at least be cleared, using mpf_clear, between initializations.

void mpf_inits (mpf.-t x, ...) [Function]
Initialize a NULL-terminated list of mpf _t variables, and set their values to 0. The precision
of the initialized variables is undefined unless a default precision has already been established
by a call to mpf_set_default_prec.

void mpf_clear (mpf-t x) [Function]
Free the space occupied by x. Make sure to call this function for all mpf_t variables when

you are done with them.

void mpf_clears (mpf.t x, ...) [Function]
Free the space occupied by a NULL-terminated list of mpf_t variables.

Here is an example on how to initialize floating-point variables:

{
mpf_t x, y;
mpf_init (x); /* use default precision */
mpf_init2 (y, 256); /* precision at least 256 bits */
/* Unless the program is about to exit, do ... */
mpf_clear (x);
mpf_clear (y);

}

The following three functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

mp_bitcnt_t mpf_get_prec (const mpf-t op) [Function]
Return the current precision of op, in bits.

void mpf_set_prec (mpf.-t rop, mp_bitcnt_t prec) [Function]
Set the precision of rop to be at least prec bits. The value in rop will be truncated to the
new precision.

This function requires a call to realloc, and so should not be used in a tight loop.

void mpf_set_prec_raw (mpf-t rop, mp_bitcnt_t prec) [Function]
Set the precision of rop to be at least prec bits, without changing the memory allocated.

prec must be no more than the allocated precision for rop, that being the precision when rop
was initialized, or in the most recent mpf_set_prec.

The value in rop is unchanged, and in particular if it had a higher precision than prec it will
retain that higher precision. New values written to rop will use the new prec.

52 GNU MP 6.1.2

Before calling mpf _clear or the full mpf_set_prec, another mpf_set_prec_raw call must be
made to restore rop to its original allocated precision. Failing to do so will have unpredictable
results.

mpf_get_prec can be used before mpf_set_prec_raw to get the original allocated precision.
After mpf_set_prec_raw it reflects the prec value set.

mpf_set_prec_raw is an efficient way to use an mpf_t variable at different precisions during
a calculation, perhaps to gradually increase precision in an iteration, or just to use various
different precisions for different purposes during a calculation.

7.2 Assignment Functions

These functions assign new values to already initialized floats (see Section 7.1 [Initializing Floats],
page 50).

void mpf_set (mpf.t rop, const mpf_t op) Function]
void mpf_set_ui (mpf_t rop, unsigned long int op) Function
void mpf_set_si (mpf.t rop, signed long int op) Function

[
Funcion)
void mpf_set_d (mpf.-t rop, double op) [Function]
[}
[}

void mpf_set_z (mpf.-t rop, const mpz_t op) Function

void mpf_set_q (mpf.-t rop, const mpq-t op) Function
Set the value of rop from op.

int mpf_set_str (mpf.t rop, const char *str, int base) [Function]

Set the value of rop from the string in str. The string is of the form ‘M@N’ or, if the base is 10
or less, alternatively ‘MeN’. ‘M’ is the mantissa and ‘N’ is the exponent. The mantissa is always
in the specified base. The exponent is either in the specified base or, if base is negative, in
decimal. The decimal point expected is taken from the current locale, on systems providing
localeconv.

The argument base may be in the ranges 2 to 62, or —62 to —2. Negative values are used to
specify that the exponent is in decimal.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value; for
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

White space is allowed in the string, and is simply ignored. [This is not really true; white-
space is ignored in the beginning of the string and within the mantissa, but not in other
places, such as after a minus sign or in the exponent. We are considering changing the
definition of this function, making it fail when there is any white-space in the input, since
that makes a lot of sense. Please tell us your opinion about this change. Do you really want
it to accept "3 14" as meaning 314 as it does now?]

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns
—1.

void mpf_swap (mpf-t ropl, mpf_t rop2) [Function]
Swap ropl and rop2 efficiently. Both the values and the precisions of the two variables are
swapped.

Chapter 7: Floating-point Functions 53

7.3 Combined Initialization and Assignment Functions

For convenience, GMP provides a parallel series of initialize-and-set functions which initialize the
output and then store the value there. These functions’ names have the form mpf_init_set. ..

Once the float has been initialized by any of the mpf_init_set... functions, it can be used as
the source or destination operand for the ordinary float functions. Don’t use an initialize-and-set
function on a variable already initialized!

void mpf_init_set (mpf.t rop, const mpf-t op) [Function]

void mpf_init_set_ui (mpf.t rop, unsigned long int op) [Function]

void mpf_init_set_si (mpf.t rop, signed long int op) [Function]

void mpf_init_set_d (mpf-t rop, double op) [Function]
Initialize rop and set its value from op.

The precision of rop will be taken from the active default precision, as set by mpf_set_
default_prec.

int mpf_init_set_str (mpf.-t rop, const char *str, int base) [Function]
Initialize rop and set its value from the string in str. See mpf_set_str above for details on
the assignment operation.

Note that rop is initialized even if an error occurs. (L.e., you have to call mpf_clear for it.)

The precision of rop will be taken from the active default precision, as set by mpf_set_
default_prec.

7.4 Conversion Functions

double mpf_get_d (const mpf_t op) [Function]
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent in op is too big or too small to fit a double then the result is system dependent.
For too big an infinity is returned when available. For too small 0.0 is normally returned.
Hardware overflow, underflow and denorm traps may or may not occur.

double mpf_get_d_2exp (signed long int *exp, const mpf_t op) [Function]
Convert op to a double, truncating if necessary (i.e. rounding towards zero), and with an
exponent returned separately.

The return value is in the range 0.5 < |d| < 1 and the exponent is stored to *exp. d x 27
is the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in
The GNU C Library Reference Manual).

long mpf_get_si (const mpf_t op) [Function]

unsigned long mpf_get_ui (const mpf.t op) [Function]
Convert op to a long or unsigned long, truncating any fraction part. If op is too big for
the return type, the result is undefined.

See also mpf_fits_slong_p and mpf_fits_ulong_p (see Section 7.8 [Miscellaneous Float
Functions], page 56).

54 GNU MP 6.1.2

char * mpf_get_str (char *str, mp_exp-t *expptr, int base, size_t [Function]
n_digits, const mpf_t op)
Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or
from —2 to —36. Up to n_digits digits will be generated. Trailing zeros are not returned.
No more digits than can be accurately represented by op are ever generated. If n_digits is 0
then that accurate maximum number of digits are generated.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 90). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of n_digits + 2 bytes, that being enough for
the mantissa, a possible minus sign, and a null-terminator. When n_digits is 0 to get all
significant digits, an application won’t be able to know the space required, and str should be
NULL in that case.

The generated string is a fraction, with an implicit radix point immediately to the left of the
first digit. The applicable exponent is written through the expptr pointer. For example, the
number 3.1416 would be returned as string "31416" and exponent 1.

When op is zero, an empty string is produced and the exponent returned is 0.

A pointer to the result string is returned, being either the allocated block or the given str.

7.5 Arithmetic Functions

void mpf_add (mpf-t rop, const mpf_t opl, const mpf-t op2) [Function]
void mpf_add_ui (mpf_t rop, const mpf_t opl, unsigned long int op2) [Function]
Set rop to opl + op2.

void mpf_sub (mpf-t rop, const mpf_-t op1, const mpf-t op2) [Function]
void mpf_ui_sub (mpf_t rop, unsigned long int op1, const mpf_t op2) [Function]
void mpf_sub_ui (mpf.-t rop, const mpf_t op1, unsigned long int op2) [Function]

Set rop to opl — op2.

void mpf_mul (mpf-t rop, const mpf_-t opl, const mpf-t op2) [Function]
void mpf_mul_ui (mpf.-t rop, const mpf-t opl, unsigned long int op2) [Functi