CDF

C Reference Manual

Version 3.1, January 18, 2006

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2006

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

i %o 2 0] o1 11 0o USROS 1
1.1 Specifying cdf.h Location in the Compile COMMANGcceviiiiiiieice e 1
111 OPENVIMS SYSTEIMIS ...t ettt steeste e te e e e st esteesteesteeeeeseeaseeeseenseesteesteasaeareesseesseeneeeneeaneesneenneenseenseans 1
1.1.2 UNIX Systems (inCluding MaC OS X))ocuiruiiiiriiiite ittt ettt b neene s 2
1.1.3 Windows NT/2000/XP Systems, Microsoft Visual C++ or Microsoft Visual C++ .Netccccceverenene 2

1.2 Specifying cdf.h Location in the SOUICE Filecocveiciiice e 3

2 N 1 1] o [SS PSP RSSO 5
0 R O o =T AV 1Y RS] (=T o TS 5
2.1.1 Combining the CompPile aNd LiNKccoiuiiiiiiiiiie e et eneenaennenes 6

2.2 Windows NT/2000/XP SYSTEMS, Microsoft Visual C++ or Microsoft Visual C++ .NET.........ccccccerevrennn 6
3 Linking Shared CDF LiDrary ... 7
3.1 DEC VAX & AlIPa (OPENVIMS) ...ttt et sttt st be s ra e st esaeseenaestesnenreanaenaeneeneees 7
3.2 SUN (SOIAIIS) vttt stttk bbb bbb bbb bbbt R bbbtk b et r et 8
3.3 HP 9000 (HP-UX).....ctitiitiiitiiiiietisteieti sttt sttt ettt s st e b s be b e st et e b e st et et e st et e b se et e b eneete b e st e be b eneens 8
I 11 I = o100 I (N D TSP 8
T T B T AN o] - (@ 5] o) OSSOSO 9
TG T I 1] 1 G 0 TSRS 9
3.7 LINUX (PC & POWET PC) ...ttt e bbbt ettt b e bt b e b e Rt e s e e et e b eb e et e beeb e e e enne e 9
3.8 WINAOWS (NT/2000/XP) ...cuveuiiteieiisieieiistesieie sttt sttt ettt be e bbb se s be b e s e st s s be b e neebenbeneebe st eneees 9
I V. - Uod 11 (01~ @ 1 15 OSSOSO 9
4 Programming INTerface ... 11
4.1 L R = (G 14 [o1 oo RS 11
B B T 13 T-To I/ o= S 11
4.3 CDFSEALUS CONSTANTS ...ttt sttt sttt e bbbk h e s e e e b b eh bt b e b e e et et er et e bt et e e e e 11
B4 CDF FOIMEES. ...tttk b bbbt e e bt bbbt e Rt e s b e e e b bt e Rt bt Rt e bt e e e b e b eR e b e Rt e b r s 12
4.5 CDF DA TYPES. . .eciiieireiiitisie sttt b ettt b e bt h bbbt e e R R R bRt e R et R e r Rt 12
4.6 DAt ENCOUINGS ..ottt bbbtk bbbt b bbbt bbbttt 13
A7 DAL DECOGINGS ..ttt etttk ettt bbb bbbtk e h bbbk bbb e bt b e bt ekt b et bbb bt 14
4.8 VAriADIE MAJOITTIESeeeieeieeee e bbbt s et b et b e b et e bt e e et et sb e st e bt e b e e e et s 15
4.9 RECOrd/DIMENSION VaITANCES.ciueiuieiiiieite ittt sttt bttt s e et e b e bt eb e s be bt e b e e e enbeseesbesbesbeebeeneeneeneens 15
o O 0 o (TSt o] TSP USPR 16
o Y o= =] 0 1 TP PU PP POPRTN 16
O R o - 1T J =TT o] o [T SSSRSS 16
10,2 SPAISE ATITAYS ..vveeiuteeiitiestee st e atee s bt essbe e s sbe e st e e ssb e e s s beess bt e e sbeesa bt e e Rt e e nR b e e e R b e e nh b e e e R e e e e R b e e eR b e e e R bt e e e e be et e nnre s 17
A N 1] 01U (o] oSS 17
T T = =T o L@ 1YY, oo 1SS 17
A1 ZIVIOUES ...tttk h bR R R R R R AR R AR bR R bR R AR bbbt b bt ee 17
ST O O (o J OB O oo SRS 18
416 OPEratioNal LIMITScuiiiiiciiieiiet bbb bbbttt bbbttt 18
4.17 Limits of Names and Other CharaCter STHNGScoiiviiriiiirieeee e 18
4.18 Backward File Compatibility With CDF 2.7c.oiiii it b 19
5 Standard Interface (Original).......cccccoiviiiiiieiie e 21
TN A O B L U1 1 1 (- L OO 21

511 EXBMPIE(S) + vttt bbbt bbbk bbb bbb bbb bbbttt 22

5.2 CDFAIENTIYINOUITE ...coviiteietiitect ettt b et b et s bt e st bbbt bbbttt 23
521 =011 o] <] () OSSPSR 23
LT O B L 11) SRRSO 24
531 =011] <] () OSSR PR USSP 25
R O B T 1 1 [o [0SR 26
54.1 e 100101 (=T () USSR 26
LTS T 1 B T 111 N [0 o SRS 27
55.1 T 100] 0] L= () USSR 27
R O B L 111 V| TSP PRV URPRURPPP 28
5.6.1 e 100] 0] L= () S 29
5.7 (1B 111 2 o L 1= PRSPPI 29
57.1 EXBMPIE(S) + vttt bbbtk bbb b bR bbbt b bbbt b et 30
SRR T O B 1o (o1 TSPV PR RPN 30
5.8.1 =011 o] <] () OSSPSR 30
5.9 (OB o] £ 1 (< TSRO PR U R URUUROPOO 31
59.1 100101 (=T () SRS 32
LT O O B Lo 1 1) OSSOSO USTPTRR 32
TN 0 R 1101 o 1= () IS 33
TN R O 1o o o OSSO US ORI 33
TN I R 1211 o] 1= () PSS 34
ST A O B L ¢ o S T TSP T TPV URPRURRPT 34
B.L2. L EXAMPIE(S) vttt sttt ettt bbbt bbb bR bbb bbbt bt 35
5.13 CDFQErVarsRECOIMDALAccuevetirtiriitirieiete sttt ettt b bbb bbbt b b s b e bbb 35
B.LB L EXAMPIE(S) wuveueiteieiiite ettt bbbt bbb bR bR bbb h ettt bt 36
5.14 CDFQEtZVaAIrSRECOIDALA.ecteeieeiieiiiieeite ettt sttt bttt ese e e et e b e s b e s beebe et e e Reemeeeeeabesbesbeebeeneeneennennas 37
TN O R - 1111 o] 1= () OSSOSO P USROS 37
ST LT O B 1140 VT[T OSSOSOV PRURRRTN 38
TN TN B ot 1101 o] 1= () IS 39
LI R O B T o] o[- o ST RPP P TR PRSP 40
TN 0 A ot 1101 o] 1= () IS 40
5.17 CDFPULIVArSRECOIMIDALAecueereeeieieiesiesiesie et sttt re e e s e e et estestesbesseeseeseesaeseeteseesnesneaneeneennennn 41
TN 0 R T 1111 o] 1= () PSSR 41
5.18 CDFPULZVAISRECOIMTDALAcveveeviieiitiiteiete sttt ettt b bbbt b b s bbbt e st bbbt nn e ens 42
B.LB.L EXAMPIE(S) wuveueteieiiite ittt ettt bbb bbb bbbttt b 43
T T O T V7. T {1 [0S OSSPSR 44
T S R - 1111 o] 1= () TSRO PR PR ORTT 44
5,20 CDFVAICIEALEoteeitee ettt ettt b ettt he e bt e s bt e b e e bt e ae e e R s e eb e e b e e ab e e R b e ehbeeb e e ehe e ebeeeeenneeneeabeenbeenbean 45
I R - 1111 o] 1=) OSSOSO PR URURTP 46
LI R O B L T =) OSSR OSPR 47
ST I R 5 11101 o] 1= () IS 47
R O B oY - T o 1Y o 1= (€T SRS UPTRTPRTRN 48
oI R ;1111 o] 1= () SO 48
LI T O B Y - 1 V7o T=T U | SO SSPRR 49
oI 0 R T 1111 o] 1= () I PSS 49
B.24 CDRFVAIINQUITE ...tttk b bbb bbb bR b bR bbbt bbbt bbbttt 50
B.24. 1 EXAMPIE(S) wuveuetirieiiite itttk ettt bbb bbb bbbttt b 51
I T O B Y =1 AN [1] FO OSSP OPRP PRI 51
I R - 1111 o] 1= () USSP URURORTT 52
B.26 CDFVAIPULeeiiiece ettt ettt s bt s bt s bt s et bR bt s Rt R b et sttt n e R et et enen 52
I R - 1111 o] 1= () TSSOSO PR URURORTP 53
5.27 CDFVAIRENEAIME.cctiiieiie ettt b ettt e ke bt e et e e e e he e s he e ebe e bt e s et eR e e eR e e nE e e b e e Re e nbeesnesneeaneeaneenreenneans 54
I R 5 1101 o] 1= () IS 54

6 Standard INterface (NEW) ... 57

6.1 Library INFOIMALION.c.oiuiiiiitiie bbb bbbt bbbt et b bbbttt 57

6.1.1 CDFQEtDAtATYPESIZE ..evieeieeteieeie ettt b et b e et b e bbb bbbt ekt e b et ekt e bt et e sb et et e b neere s 57
LG O R =401 o] (=T) T OO TSSOSO UUTTSRPROR 58
6.1.2 CDFGetLibraryCOPYIIGNTcviiiieeiteieeiie ettt stttk bbbt nb et nn b e b nrere e 58
B.1.2. 1. EXAMIPIE(S) -ttt h bR E bR bR R R R R bRt e Rt Rt bbb et eene et 58
6.1.3 CDFGELLIDIANYVEISION.cviiiiteieeiete ettt b e et b e bbbttt eb ettt ab et et e ebe et e abenrere s 59
LT T O 40T o] (=T () TSRS 59
6.1.4 (OB]] ro LT Y = ST TP P TP PRPRTURPRUPPTN 60
LT O 40T o] (=T () TSSOSO 60

LG T O I PP PRRPS 60
6.2.1 CDFCIOSECDF ...ttt bbbt b bt e e e R b e eb e b e e bt e bt e b e e Rt eh e e e enbenbeebesbesbeebeaneanbeneen 61
LT S =5 110] o] (=T () T OO SO U U TP OSTTSOPROR 61
6.2.2 (OB ol -1 (=104 I PSPPSR 61
B.2.2. 1. EXAMIPIE(S) - ettt ettt bR R bR b e R R R R bRt h e Rt bt E e b e nr e ne et 62
6.2.3 (O o] 1= (=T 0 D TSRS 63
B.2.3. 1. EXAMIPIE(S) - ettt bbb R E bR bR R Rt R R bR e Rt Rt bt b e b et eene et 63
6.2.4 CDFQELICACNESIZE ...tttk bbbtk b e ekt b ekt b etk e sb et et e b e ebeaneneere 63
LT R 3 140T o] (=T () TSSOSO 64
6.2.5 COFGECOMPIESSION ...ttt ettt ekttt ettt b etk b ekt sb et b e s bt e bt sb et e bt sb e st eb e sb e bt ebene e bt ebe e et e abenrere s 64
LT T O 3 1401 o] (=T () TSSOSO 65
6.2.6 CDFgetCompreSSIONCACNESIZEcoviiiiiiiite ettt bbbt b et b nrere s 65
L TG TO c 1a0T o] (=T () TSRS 65
6.2.7 CDFgetComPreSSIONINTOciiiiiiriece ettt b ettt sb e et b et snenrere s 66
LT 0 R 3 120T o] (=T () TSSOSO 66
6.2.8 (01D ae 1= (0] 0) Y/ T] 1| SO TSSO ST U STV PP PRTPTPOPRPRRPN 67
L T R o 1a0T o] (=T () TSSOSO 67
6.2.9 (O8] o T I =TT o[o SR 68
LT T R o 1a0T o] (=T () TSSOSO 68
T2 L I O T o 1= = ot oL T PSS 68
6.2.10.1. T L0010 [=T () OSSR 69

LG T I R O I | o o 1 - SRS SR PR 69
6.2.11.1. T Ta 0] o] [=T () SRR 69
I A O 1o 1= 1 1Y, - o]] 2SS 70
6.2.12.1. T Ta 0] o] [=T () USSR 70
LT T O I | o 1 A= T PSSR PR 70
6.2.13.1. T Ta 0] o] [=T () SRS 71
6.2.14 CDFgetNegtOPOSTPOMOUEcveieierieie ettt e ettt re e e s e e e et e aeseenresneeneeneensees 71
6.2.14.1. T Ta 0] o] [=T () SO RSR 71
6.2.15 CDFgetREaUONIYMOUE. ... cciiieieie ettt ettt sr e te e e s e e e e tenresteaneereeneeneees 72
6.2.15.1. T Ta 0] o] [=T () ST RSR 72
6.2.16 CDFQEtStagBCACNESIZEcuvcvieiiiieiie ettt sttt et st et e s be st e et e e st e s b e b e besbesbesteaneeree e eneees 73
6.2.16.1. T Ta 0] o] [=T () ST 73
oI I A O B 1o 1= AN =) o] PSS 73
6.2.17.1. T Ta 0] o] [=T () ST 74
T R T O 1o 1= v Y/ [0 o L= PSP 74
6.2.18.1. T Ta 0] o] [=T () ST 75
B.2.19 CDFINQUITECDF ..ottt ettt sttt b et s b e et s b et et s b et et e b et et sb e st be st et be b neaes 75
6.2.19.1. G Laa] o] [=T () ISR 76
B.2.20 CDRFOPENCDE ...ttt bbbt h bRt h et b e bt eb e bRt b e e e et et bt bt bt et e n e e 77
6.2.20.1. G Laa] o] [=T () OSSPSR 77
B.2.21 CDFSEICACNESIZE ... cve ettt ettt sttt b et s b et b et b et st e bt e st bbbt ene 78
6.2.21.1. G Laa] o] [=T () ISP 78
6.2.22 CDFSELCOMPIESSIONviitiiuieiieieitestestesteeteeee st etestestestesreeteeseesee e e besbesbestesteassessesteeestestesbessaateaneeseeseeneeses 78
6.2.22.1. G Laa] o] [=T () ISR 79
6.2.23 CDFSetCompresSioNCACRBSIZE........cc.iiiiiieiecieecc ettt re st e tesreere e e e s 79
6.2.23.1. G Laa] o] [=T () ISR 80
B.2.24 CDFSEIDECOUING -...veuveiterteeieeteeteie st sttt ettt ee b e besbe bt bt eae e s e e e e beseeebe e bt eb e et e e seen b e ne e beseeabesbeaneeree e et nee 80

6.2.24.1. G Laa] o] [=T () OSSPSR 80

6.2.25 CDFSEIENCOUING ...ttt bbb et b e bbbt b ettt b et et b ettt 81

6.2.25.1. T L0010 [=T () OSSR 81
I I O B | St o] 04 L OSSR OTRPPRUPTIO 81
6.2.26.1. Nt Ta 0] o] [=T () OSSR 82
B.2.27 CDFSEIMEJOTITY ... cueiviieeiiite sttt sttt ettt bbbt b et b e e bt bt e bbb e bbb et b et bbb bt 82
6.2.27.1. T L0010 [=T () OSSR 83
6.2.28 CDFSetNEGLOPOSTPOMOUEocviiciiiteieie ittt ettt 83
6.2.28.1. e Ta 0] o] [=T () OSSR 83
6.2.29 CDFSEtREAUONIYIMOUEecueeiiieieie ittt sa et sr e te e e en e nn e e steseesreaneereeneeneees 84
6.2.29.1. L Taa] o] [=T () OSSO 84
I 1 O B 1 1= 13 710 [T O 1ol 1T v PSS 84
6.2.30.1. Nt Ta 0] o] [=T () OO TTSUSR 85
B.2.31 CDFSEIZIVIOUE ...ttt et et b ettt b ettt b e e bt bt bt et b et b e bbbt b e 85
6.2.31.1. L Ta 0] o] [=T () OSSR 86
LR IV - o] [OO OSSR ST URPRR 86
6.3.1 (O ol (1SN - T OSSPSR 86
LT T O 40T o] (=T () TSSOSO 87
6.3.2 CDFCONTITMZVAIEXISIENCEvevveiesiesie sttt sttt sttt seesteeneen e e e e seesbentesaeereeneenteneens 87
L I S 1401 o] (=T () TSRS 87
6.3.3 CDFconfirmzVarPadValUBEXISIENCE.cciviiierieiiie ettt ettt b et neere s 88
Lo I T O T 1401 o] (=T () TSSOSO 88
6.3.4 CDFCIBAIEZVAN ... etttk b bbbt b e bt e Rt bbbt e bt e e e s et e s bt ab e st e bt et e e e e e nnea 89
LR I O 1401 o] (=T () TSSOSO 90
6.3.5 CDFARIBIEZVAN ...ttt ettt b et b et b e s bkt s bt ekt s b s e ek e nb bt eb et ebe e b et et e abeneere s 90
LR TS T O 14T o] (=T () TSSOSO 91
6.3.6 (01D o (o] [(=Y A £ T R ToTo] o OO SOUPSOPRPTSOPRRPN 91
(T J T O ot 14T o] [=T () TSRS 92
6.3.7 CDFgetMaXWITENRECNUIMScveiviiieceeieiee sttt e s ettt re e ra e e e e saestesbesressaanaeneeseeneenseneens 92
LT T 0 O 3 14T o] [=T () TSSOSO 93
6.3.8 L@ 1= N (UL = TR 93
(oIS TO O ot 14T o] [=T () TSRS PR 93
6.3.9 CDFQEINUMZVAIS.eieitee ettt sttt ettt es e st e st e teeste e eeeneesseesseesteenteeneeeseeaseenseeteesteenteeseeenneaneeanes 94
(O IR TS R T 14T o] [=T () TSRS 94
LTG0 IO O I o =] A - T N o OSSPSR 95
6.3.10.1. T Ta 0] o] [=T () ST RSR 95
LTI A O B 1o =1 wAY = /Y | oo = {=Todo] (o[- PSS 96
6.3.11.1. T Ta 0] o] [=T () USSR 96
6.3.12 CDFgetzZVarBIOCKINGFACION.c.cieiiieiie sttt st et e et e bt re st e teaneeraen e e s 97
6.3.12.1. T Ta 0] o] [=T () SRS 97
T TN R T O B 1o (-l v A -1 OF: T (1 4= TS 97
6.3.13.1. G Laa] o] [=T () OSSPSR 98
6.3.14 CDFQEtZVarCOMPIESSIONcviieieitestesiesteseseeaeseesteseestestesseateaseesseseessestessestesseessessensessessessesseaseessensenes 98
6.3.14.1. G Laa] o] [=T () TSSOSO 99
LR TN T O B T o[- A Y 4= T B L L - B PRSP PUPPRPRY 99
6.3.15.1. G La 0] o] [=T () TSSOSO 100
R TN I O B T e [-T v =T B L U Y/ o LT PSSO RPN 100
6.3.16.1. G La 0] o] [=T () ISR 101
6.3.17 CDFQEtZVAIDIMSIZESecuectieiieieie i st e s e e et et e st te et e te s beete et et e st e st e besbeeteeReesee e et e sbesbesteeneeneeseennas 101
6.3.17.1. G La 0] o] [=T () ISR 102
6.3.18 CDFQetZVarDIMVarTANCESc..coueiuiiuiiteiiiateeieeie e ste sttt be et esee e e sbeseesbesbesbe et e emeesbesbesbesbesbeebesneeseeneennas 102
6.3.18.1. G La 0] o] [=T () ISP 102
6.3.19 CDFgetzVarMaxAIHOCRECNUMc.iiiiiii ittt ettt se et bbbt ene e e e 103
6.3.19.1. G La 0] o] [=T () ISP 103
6.3.20 CDFgetzVarMaxWItENRECNUMciiiiiiiiie ettt ettt e e bbb e e e e e e nnas 104
6.3.20.1. G La 0] o] [=T () ISP 104
6.3.21 CDFQEIZVAINGITIE.ottt ettt bbbt h et et e s e e bt bt bt e b e e meen b e ne e be st sbeebe e st eneennentas 104
6.3.21.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 105

6.3.22 CDFQEtZVarNUMDIMS .. .ciuiitiiiieieie sttt sttt e et be bt e b e e e eb e be bt et e e mees e e e e besbesbesbeaneeneennennas 105

6.3.22.1. e Ta 0] o] [=T () OSSPSR 105

6.3.23 CDFQetzZVarNUMEIBMENTS.c.ciiiiiiiiiiiiitcrtee ettt 106
6.3.23.1. e Ta 0] o] [=T () ISP SRRSO PR 106
6.3.24 CDFgetzVarNUMRECSWIITIENocviiiiiecr ettt e e e et ene e e eneeneenns 107
6.3.24.1. T L0010 [=T () OSSR 107
6.3.25 CDFQetZVarPadValUE.cveiiieie ettt sttt te e e s e e et et sreete e e eneeneeen 107
6.3.25.1. e Ta 0] o] [=T () SR URPTUS RS PRR 108
6.3.26 CDFQetZVarRECOIIDALAccveieieiiisiesiesie et et st ettt et st e besteeteeseesee e e teseesresteaneeneeneenns 108
6.3.26.1. T Ta 0] o] [=T () OSSR 109
6.3.27 CDFQEtZVarRECVAINANCE.cuiiieiesiesiese ettt e ste st e et re e se et e e s te st e s besaeeteeneesaeseetestesresreaneeneeneenns 109
6.3.27.1. T Ta 0] o] [=T () OSSR 110
6.3.28 CDFQEtZVaArRESEIVEPEITENT.t iitieieeieetiestie e se e ee e s e s e e ste et e e e e eseesteentaesteesaessaesreesreesreaneeaneeanes 110
6.3.28.1. T Ta 0] o] [=T () OSSR 110
R IZAe I OF B 1o Tc WA - TS T=To | I L ST 111
6.3.29.1. T Ta 0] o] [=T () TSP PR 111
LRG0 I O B] o Ay =T 7=l | oo 1SR 112
6.3.30.1. T Ta 0] o] [=T () OO SSSRRSPR 112
6.3.31 CDFgetzVarsMaxWIItEEBNRECNUMcoiiiiiiiie ettt sa e tesbeene e e e e e seesreneas 113
6.3.31.1. T Ta 0] o] [=T () OSSPSR 113
6.3.32 CDFQEtZVarSParsERECOITS.c..civeiveireiteiteeteeeeie e st e s e s e s te s e ateesee s e testesbesbesbeateeseeseeseesbesbesresteaneeseeseenns 114
6.3.32.1. e Ta 0] o] [=T () SO SO PR 114
6.3.33 CDFgetzVarsRecordDatabyNUMDEIScovciiiii it 114
6.3.33.1. Nt Ta 0] o] [=T () OSSR 115
I T O{ B 1o 11, oL T v AV £ Ty D - WSS 116
6.3.34.1. G La 0] o] [=T () ISP 117
6.3.35 CDFNYPEIPUIZVAIDALAccuvevieieie ettt sttt ettt e be b e teebeesae e e besbesbesteeneeneeseennas 118
6.3.35.1. G La 0] o] [=T () TSROSO 119
6.3.36 CDFINQUITEZVAIccuiitiitiiie ettt te e st e ettt e et e st e be s beete e s e e st e e et e besbe et e eRe et e eseentesbesaeeteeneereeneennas 119
6.3.36.1. G La 0] o] [=T () ISP 120
RGO B T o 1| AV £ 14 B - - VPP R PR 121
6.3.37.1. G La 0] o] [=T () ISP 121
6.3.38 CDFPULZVAIRECOIADALAeeueeuieie ittt ettt e bbbttt s e e b et sb e be et enee e eas 122
6.3.38.1. G La 0] o] [=T () ISP 122
6.3.39 CDFPULZVAISEODALA.ccueeiieiiieeite ettt ettt b e be ettt e s b e et e e sb e et e e sbeesbesbeesbeesbeeneenneenes 123
6.3.39.1. G La 0] o] [=T () ISP 123
6.3.40 CDFputzVarsRecordDatabyNUMDEIS..........c.coiiiiiiiieieeieieee et e sbe st see s 124
6.3.40.1. G La 0] o] [=T () ISP 125
6.3.41 CDFTENAMEZVALcotiieiiiie ettt ettt ettt ettt sttt bt e bt e s be e bt e ae e ehe e ebe e eb e et e en b e ebbesb e e st e e sbeenbeeneanneanne 126
6.3.41.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 126
6.3.42 CDFSetzVarAlloCBIOCKRECOITSoiiiiiiiiiiiieie ettt sttt et n s 127
6.3.42.1. EXAMIPIE(S) -ttt bbbt bbb R R h R b b et R bt bbbt be e 127
6.3.43 CDFSEtZVarAIIOCRECOIMS.......c.eiiiiieiti ettt bbbt bbbt bt e e st ene e e e 128
6.3.43.1. EXAMIPIE(S) etttk bbb b bR R bR R b e et h ekt b bttt e b e 128
6.3.44 CDFSetzVarBIOCKINGFACIONcciiiiitiieiti ittt ettt bt se bbb et nne e 128
6.3.44.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 129
6.3.45 CDFSELZVArCACNESIZEottt b e e bbbttt s e e e b et sb e be et enee e nas 129
6.3.45.1. EXAMIPIE(S) -ttt bbbt h b b e R Rt R R bR bRt Rt bbbt ne e 130
6.3.46 CDFSEIZVArCOMPIESSIONeueititiieitirteiieitsteeete sttt bbb bbb bbb bbbt b et e b bt e st be bt 130
6.3.46.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 130
6.3.47 CDFSEtZVArDAIASPEC.eveivieiieiieie ittt b bt b e sr et 131
6.3.47.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 131
6.3.48 CDFSEtZVarDIMVAITANCES......cviiieiiieiiteieetieeeie e see ettt e st e stesae st e sbesseeseeneeseeseesbesbesbeeteaneeseeneenses 132
6.3.48.1. e Ta 0] o] [=T () ISR 132
6.3.49 CDFSEtZVArINITIAIRECS. ... cveieieieiiietieieesie ettt st ettt et e e e es e e e nbenbesbeeteeneeneeneennas 133
6.3.49.1. e Ta 0] o] [=T () OSSPSR 133
6.3.50 CDFSEtZVArPAUVAIUEocueeiierieieie ettt sttt e s e et et sneeteaneeneeneenas 134
6.3.50.1. e Ta 0] o] [=T () OSSPSR 134
6.3.51 CDFSEtZVArRECVAINANCE .. .ecveeveeiieiie ettt ettt sttt et e e sae st e besbeeteeseesee e e besbesaeeteaneeneeneennas 134

6.3.51.1. e Ta 0] o] [=T () ISR 135

6.3.52 CDFSEtZVArRESEIVEPEICENTcciiii ittt e s e e e e s s s e bbb e et s e s s s e bbbt e e e s esssesbbbeeeeeeesaies 135

6.3.52.1. e Ta 0] o] [=T () OSSR 136
6.3.53 CDFSEtZVArSCACNESIZEueeveeriiieiie ittt ettt ettt st st be st et e neeseeseesbestesbeereaneeneeneetes 136
6.3.53.1. T Ta 0] o] [=T () OSSR 136
6.3.54 CDFSEIZVAISEOPOSvitiiiciieiiee sttt bbb r e 137
6.3.54.1. e Ta 0] o] [=T () OSSR 137
6.3.55 CDFSEIZVarSParseRECOITSc.uiuiiiiirtiieiirteieie stttk b et b et 138
6.3.55.1. T Ta 0] o] [=T () USRS 138
6.4 AUTIDULES/ENTIIES ..ottt ettt e e e s e st e be s ee s besbe e st er e e e enteneeabesbeaneereeneenteneens 138
6.4.1 CDFCONTIMMALITEXISTENCE ..eevvieieiee sttt sttt st et ettt e s e sae st e sbestesbesreaneeree e eneenes 139
B.4. 1.1, EXAMPIE(S) ettt ettt b bRk bR b £ R bbb R b e n e bt bt bbb et ebeene s 139
6.4.2 CDFCONTIrMOENTIYEXISIENCEcviitiieiiite ettt bbbttt bbbttt 139
LR R T 1401 o] (=] () TSRV 140
6.4.3 CDFCONTIrMIENTIYEXISTENCE. ...ttt bbbttt 140
LR T O T 1y 0T o] (=T () TSSOSOV 141
6.4.4 CDFCONTIrMZENTIYEXISIENCEviveiteieeie sttt bbbt bbbttt 141
LR O e 1401 o] (=] () TSRV 142
6.4.5 (OB ol -1 £ L PRSP SURTPOTOPRUPIN 142
LR T O T 1401 o] (=] () TSRV 143
6.4.6 0T o [-] [1= L 1 1 GO OO OSSOSO P VTSP 143
LR G T0 O e a1 o] (=] () TSSOSOV 143
6.4.7 O o (] 1= (=Y N 40| =101 Y/ 144
LR R T 1401 o] (=] () TSRS 144
6.4.8 O 0 (T[T (= N i = 1S 145
LR TR O T 1y qT o] (=] () TSSOSOV 145
6.4.9 O8] o [1= (=Y N 44 =1)1 S 146
LR TR O T 1y 0T o] (=T () TSP 146
LR IO O I o 1N 0 = 1 2R 146
6.4.10.1. T Ta 0] o] [=T () OSSR 147
6.4.11 CDFQetAIgENTIYDAATYPE . oeveieeeeeeeetieie e ste e seesteesee e s e sreeste e teeneees e sseestaesteesaeesaessessreesreeneeaneesnes 148
6.4.11.1. e Ta 0] o] [=T () SO SO PR 148
6.4.12 CDFgetAttrgENtrYNUMEIEMENTSc.viiiiie et sn e e e e enns 149
6.4.12.1. e Ta 0] o] [=T () SO SO PR 149
TR T O I 1 o - N A 1 = 11 Y/ 150
6.4.13.1. e Ta 0] o] [=T () SO SO PR 150
6.4.14 CDFQEtAIIMAXGENTIY....ciiiiiiiiiit e s b e be e sab e e s be e sab e e s beeebee s 151
6.4.14.1. Nt Ta 0] o] [=T () OSSR 152
6.4.15 CDFQEtAIMAXIENTIY ...oeiiiii e e bt e e sab e e s baesbe e s beesnree s 152
6.4.15.1. e Ta 0] o] [=T () OO SSRSO PR 152
6.4.16 CDFQRIAIMAXZENIIYeiitiiiiie ettt bbb b et e b e e be e et e e e nba e e be e s beeenbee s 153
6.4.16.1. G La 0] o] [=T () ISR 153
B.4.17 CDRQELALIINGIME ..ottt b et e e e et e e et e e e e e eab e e e s beeaab e e ssbeesabeeabeeenbee s 154
6.4.17.1. G La 0] o] [=T () ISP 154
6.4.18 CDFGELALIINUM. .. .eetietee ettt e e e e ehe e e Rt e s bt e b e e s b e e s e e s b e e nbeenreenreeneenneanes 155
6.4.18.1. G La 0] o] [=T () TSSOSO 155
6.4.19 CORQEtAI T ENIIY DAt T YPE .t itieiiie ittt sttt et b e et b e e s be e e bb e e sbaeenbeeabeeenbee s 155
6.4.19.1. G La 0] o] [=T () ISR 156
6.4.20 CDFgetAttrrENtrYNUMEIEMENLS.......ciiiiicieice sttt sr et neere e e nas 156
6.4.20.1. G La 0] o] [=T () ISR 157
B.4.21 GO GOLALIISCOPE ... eeeieeetee ittt ettt ettt ettt s bt b e bt e b e ek e e be e et e ae e e Rt e ebe e bt e mbeesbeeb e e nb e e nb e e nbeenbeeneenneenes 157
6.4.21.1. G La 0] o] [=T () ISP 158
6.4.22 CDFQELALIIZENINY ...ttt bttt ettt b e e e bt e b e e bt e st e e b e e s beenbeesbeene s e e enes 158
6.4.22.1. G La 0] o] [=T () ISP 159
6.4.23 CDFQetALIZENIIYDAtATYPEeeeieiiii ittt ettt ettt e bt sb ek e e bt sbesbeesbe e sbe e e e e e enes 160
6.4.23.1. G La 0] o] [=T () ISP 160
6.4.24 CDFgetAttrzENtrYNUMEIBIMENTScc.oiiiiiiiiie ettt e bbbt ne e 161
6.4.24.1. EXAMIPIE(S) -ttt bbb b b e R Rt R b b et h e bbbt ne e 161

6.4.25 CDFQEtNUMALIIGENTIIESecueieiieiee ittt ettt bbbt e e e e e b e e besbe bt e b e e st eneenneeas 162

6.4.25.1. e Ta 0] o] [=T () OSSPSR 162

6.4.26 CDFQEtNUMALIIDULES ..ottt sttt s e e e se e s besbesneeteeneeneeneenees 163
6.4.26.1. e Ta 0] o] [=T () ISP SRRSO PR 163
6.4.27 CDFQEtNUMALITENTIIES .o.vecticticiee st e sttt e et besaesteeseesae e e seseesresteaneeneeneenns 163
6.4.27.1. T L0010 [=T () OSSR 164
6.4.28 CDFQEtNUMALIZENTIIES. . ..ecvieiiieiiesie sttt e e et este st st e resse e s e eneesaese e testesneereaneeneeneenes 164
6.4.28.1. e Ta 0] o] [=T () SR URPTUS RS PRR 165
6.4.29 CDFQEtNUMQAIIIDULES ...viiiicecice ettt e s e e b et sne e e e e eneenneneas 165
6.4.29.1. T Ta 0] o] [=T () OSSR 165
6.4.30 CDFQEtNUMVAIIIDULES ...veiiiciecce st e s e e b besne e e neeneennenas 166
6.4.30.1. T Ta 0] o] [=T () OSSR 166
ORI R O I 1 13 To U1 1= A« 1 OSSR 167
6.4.31.1. T Ta 0] o] [=T () OSSR 167
6.4.32 CDFINQUINEALIIGENIIY ..o.viiiceicecece et ettt a et e se e s e e et e tesneereaneeneennenes 168
6.4.32.1. T Ta 0] o] [=T () TSP PR 169
6.4.33 CDFINQUINEALIITENTIY ...oviie ettt ettt e et et se e st e s reeseese e eseeseenreaneeneeneennen 170
6.4.33.1. T Ta 0] o] [=T () OO SSSRRSPR 170
ORI 7 B O B T 13 Vo 0T =Y AN a4 = 1 1 SRS 171
6.4.34.1. T Ta 0] o] [=T () OSSPSR 171
IR LR O B T o101 /N {0 = 11 Y P PP PUOT PPN 172
6.4.35.1. e Ta 0] o] [=T () SO SO PR 173
IR e LI O B T o 11| /N1 1 = 11 PSP OU RPN 173
6.4.36.1. Nt Ta 0] o] [=T () OSSR 174
B.4.37 CDFPULALIIZENTIY ..ottt bbbttt bttt eebe b 175
6.4.37.1. G La 0] o] [=T () ISP 175
5.4.38 CDFTENAMEALLLeeteeeee ettt e bt e e e e a s he e Rt e r e e r e e s b e e b e e nr e e nbeenreenreeneenneenes 176
6.4.38.1. G La 0] o] [=T () TSROSO 176
6.4.39 CDFSEtAUIGENTIYDAASPEC ... veiiiiii ittt et et e e st e e nba e e be e s beeenree s 176
6.4.39.1. G La 0] o] [=T () ISP 177
6.4.40 CDFSELAUITENTIYDAASPEC ... i viiiiriiiiie sttt ettt et e e nb e e e be e st e e e nbaesbe e s beeenree s 177
6.4.40.1. EXAMPIE(S) vttt ettt bbb b bR bbb bR bbbt bbbt 178
B.4.41 CDFSELAIIISCOPE ...utiitertiesteeitee ettt ettt sttt ettt e et et esb e s bt e eb e e ebe et e e ae e ehe e she e bt e bt e mbeesbesbe e ebeenbeenbeenbeebesnneanns 178
6.4.41.1. G La 0] o] [=T () ISP 179
6.4.42 CDFSEtAUIZENTIYDAASPECcoiuiiitietietieiie ettt sttt ettt sb e sb e b e et e beesb e e sbeesbeenesnneenes 179
6.4.42.1. G La 0] o] [=T () ISP 180

7 Internal Interface - CDFIDcoovi i 181
A8 N o=V 1o (=T () TSRO URURTURURUPON 181
7.2 CUurrent ODJECTS/STAES (ITBMS) ...cueiuiiieiitiiieiti ettt bbbttt et b e be b b e sbeebeebe e e anbeneens 183
7.3 RELUMEA STALUS ...eveeeieitiiieeste ettt ettt sttt e et s b e e et e sb et e besbe st ebe st e s e et e st e s e ebeabeneebeebeneereabeneerens 187
A 110 L=l e T4V} Y L= P TOSROSPSSN 187
S TS) 11 -V OSSOSO TSOPRTPRN 187
A T @ o 11) 1SS 188
T A |V (o] = =1] o] PSSR 242
7.7.1 FVArTADIE CIEALIONevie ittt ettt ettt b et b e 243
7.7.2 zVariable Creation (Character DAta TYPE)ccereiierieiiierieiesie ettt ettt re e sbe e sneneere s 243
7.7.3 Hyper Read With SUDSAMPIING.........coiiii e 244
7.7.4 ALLTTOULE RENAMING ...ttt bbbt bbbttt bbb bt b 245
7.7.5 SBOUENTIAT A CCESS. ... ettt ettt ettt b ettt et et e bt s bt s b e bt e b e e e e nb e eb e ebe e bt e b e et enbenbeabesbesbeebeeneaneennens 245
7.7.6 ATEFIDULE FENTIY VWEITES. ... ettt bbbt e bbbttt e s et e b e b b et e neeneenenas 246
7.7.7 MUILIPIE ZVarTADIE WIHTE ...ttt sttt eas 246
7.8 APotential Mistake We Don't Want YOou t0 IMaKEcorueiiiiieiieici et 247
7.9 CUSEOM € FUNCLIONS ... ettt ettt ettt sbe e besbe e besb et ebesbe st ebesbe s e ebenbeseabe st ebeebeseerenbeneerens 248
8 Interpreting CDF Status COEScccoiiiiiiiiiiiieiee e 249

9 EPOCH ULty ROULINESoviiiiiiiieciie et 251

9.1 COMPULEBEPOCH ... e bbbt sn b e ar bbb e e e nne s 251
9.2 e OO [o] £=T: 2o [0 o PSSR 251
0.3 BNCOUEEPOCH ...ttt b e bbbt Rt b e e et e bt e bt e b e e bt eb e e R e e ne e sbeebenbe bt ebe e e enbe e 252
9.4 BNCOUEEPOCHIL ...ttt et b bbbt Rt b et e b e b s bt e b e e beeb e e R e e me e beebesbeebeebeaneenbeneens 252
9.5 BNCOUEEPOCHZ ...ttt bbbt bbb et et e b s bt e b e e b e eb e e R e e me e beebesbeebeebeennenbeneeas 252
0.6 ENCOUEEPOCHS ...ttt b e et b e et e e b et e b e s b et e be s b e e e be st et ebeabe st eteebeseereebeneereas 253
LI A 10 oo [T = o @ 101 o OSSPSR PR 253
9.8 PAFSEEPOCHottt et e bbbt ettt E e bt e be e b bt e br et aeenare et 254
9.9 QLGS o T4 S 254
LSBT o TSt o 11 PR 254
LS00 o TS0 0 14 PR 255
912 COMPULEBEPOCHILOE ...t h bbbt e e ar et n b e nne s 255
LI T o o O 10 o e o =T 12 [0 o PSRRI 255
0.14 eNCOUEEPOCHLE ..ottt sttt sttt ettt st e et e e b et e besbe e ebe e b e e ebesbe st etesbe e eteebeseereabeneerens 256
0.15 eNCOUEBEPOCHLE 1 ..oiciiiiiiiiiiieicie ittt sttt sttt ettt e st e te e b et e beeb et e beeb et ebe st e e etesbe e eteebesenreebenenrens 256
0.16 ENCOUEBEPOCHLE 2ocuiiiieeieiieieie ittt sttt ettt b et et e eb et eteeb et e teebe e e beebe e etesbeseeteebeseereabenenrens 256
0.17 eNCOUEBEPOCHLE 3oiiiiieieiieiete ettt ettt ettt sttt b et et eb et et s b et et e sbe e ebesbe e eteebeneereabeneerens 257
0.18 ENCOUEBEPOCHLE X ..oveiviieiietiiiesietesieeete sttt sttt st s bttt se et st et e beebe e e beabe e ebeabe e ebesbe e ebesbe e ebeabenenreabenenrens 257
0.19 PAISEEPOCHILEoviiiciiiieicie ettt sttt sttt b e et e bt E e bt E e bt E et e be bt te b et e benrereas 258
LSO o 1St o T o 1 S 258
LT R o 1St o 14 o 1 TS 258
LS o 1St o T4 o 1 T TS 259
N 0 0 1= T G USSP 261
N R 1011 10 o [0 To1 T OSSOSO TSRS 261
A2 StAtUS COUES ANU IMBSSAGES. ... c.eiteeiiietirteteete sttt ettt ettt s bt e h bbbt bbbt bbbt b e bbbt b s bt se et enes 261
N o 0 1= T G = J USSP 271
B.1 Standard INterface (OFigiNAl)ooiviiriiiiiiire bbbt 271
B.2 Standard INTErfACE (INBW)oviiiiiiitieieie ittt bbbt b bbbttt 275
2 T T V01 (=T 0 I [(=T - T - OSSR 289
B.4 EPOCH ULIHEY ROULINESviviiviiieiitisieieiisteis ettt sttt ne st nesbesbeneabenbe s e 297

Chapter 1

1 Compiling

Each source file that calls the CDF library or references CDF parameters must include cdf.h. On OpenVMS systems a
logical name, CDF$INC, that specifies the location of cdf.h is defined in the definitions file, DEFINITIONS.COM,
provided with the CDF distribution. On UNIX systems (including Mac OS X) an environment variable, CDF_INC, that
serves the same purpose is defined in the definitions file definitions.<shell-type> where <shell-type> is the type of shell
being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne
shell (sh). This section assumes that you are using the appropriate definitions file on those systems. The location of
cdf.h is specified as described in the appropriate sections for those systems.

The CDF file’s offset and size in V 3.0 use the data type off_t (__int64 on Windows)®, instead of 32-bit long. One or
certain predefined macros needs to be defined to the C compiler to make it 64-bit long.

One of two methods may be used to include cdf.h. They are described in the following sections.

1.1 Specifying cdf.h Location in the Compile Command

The first method involves including the following line at/near the top of each source file:
#include "cdf.h"

Since the file name of the disk/directory containing cdf.h was not specified, it must be specified when the source file is
compiled.

1.1.1 OpenVMS Systems

An example of the command to compile a source file on OpenVMS systems would be as follows:

$ CC/INCLUDEFIDIRECTORY=CDF$INC/DEFINE=_LARGEFILE <source-name>

1 We use OFF_T to represent either off_tor __int64 as the 64-bit data type in the following section.

where <source-name> is the name of the source file being compiled. (The .C extension does not have to be specified.)
The object module created will be named <source-name>.0OBJ. Use /DEFINE=_LARGEFILE to make OFF T 64-bit
long.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-
precision floating-point representation of IEEE_FLOAT, you will also have to specify /FLOAT=IEEE_FLOAT on the
CC command line in order to correctly process double-precision floating-point values.

1.1.2 UNIX Systems (including Mac OS X)

An example of the command to compile a source file on UNIX flavored systems would be as follows:

% cc -c -1${CDF_INC} -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE
-D_LARGEFILE_SOURCE <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required). The -c option
specifies that only an object module is to be produced. (The link step is described in Section 2.2.) The object module
created will be named <source-name>.0. Note that in a “makefile” where CDF_INC is imported, $(CDF_INC) would
be specified instead of ${CDF_INC}. The defined Macros, _FILE OFFSET BITS=64,
2_LARGEFILE64_SOURCE and LARGEFILE_SOURCE, are needed to make the data type OFF_T 64-bit long.

1.1.3 Windows NT/2000/XP Systems, Microsoft Visual C++ or Microsoft
Visual C++ .Net

An example of the command to compile a source file on Windows systems using Microsoft Visual C++ would be as
follows. It is extracted from an NMAKE file, generated by Microsoft Visual C++, to compile the CDF library source
code.

C:\> CL /c /nologo /W3 /Gm /GX /Z1 /0d /D "WIN32" /D "_FILE_OFFSET_BITS=64"
/D ""_LARGEFILE_SOURCE"™ /D "_LARGEFILE64_SOURCE"™ /Il<inc-path> <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required) and <inc-path> is
the file name of the directory containing cdf.h. You will need to know where on your system cdf.h has been installed.
<inc-path> may be either an absolute or relative file name.

You may also need to specify the location of system include files. For Microsoft Visual C++ this is usually
accomplished by setting MS-DOS environment variables, e.g., execute VCVARS32.BAT for VC++.

The /c option specifies that only an object module is to be produced. The object module will be named <source-
name>.obj.

The /nologo option specifies that the Copyright message is suppressed.
The /W3 option specifies the warning level for compiling.

The /Gm option specifies that minimal rebuild is enabled.

2 You may not need to define these all three macros on a certain Unix platform. But defining all of them should work
on all compilers that support 64-bit off _t data type.

The /GX option specifies that C++ EH is enabled.

The /ZI option specifies that edit/continue debug information is enabled.

The /Od option specifies that optimization is disbaled.

WIN32, FILE_OFFSET BITS=64, LARGEFILE SOURCE and LARGEFILE64 SOURCE are defined macros.
Consult the documents for Microsoft Visual C++ or contact CDFsupport@listserv.gsfc.nasa.gov for inquiries.

All distributed libraries (static and dynamic) as well as the executables for the toolkit programs for WIN32 are created
by the Microsoft Visual C++.

1.2 Specifying cdf.h Location in the Source File

The second method involves specifying the file name of the directory containing cdf.h in the actual source file. The
following line would be included at/near the top of each source file:

#include "<inc-path>cdf._h"

where <inc-path> is the file name of the directory containing cdf.h. The source file would then be compiled as shown
in Section 1.1 but without specifying the location of cdf.h on the command line (where applicable).

On OpenVMS systems CDF$INC: may be used for <inc-path>. On UNIX, MS-DOS, and Macintosh systems, <inc-
path> must be a relative or absolute file name. (An environment variable may not be used for <inc-path> on UNIX
systems.) You will need to know where on your system the cdf.h file has been installed. on Macintosh systems, file
names are constructed by separating volume/folder names with colons.

Chapter 2

2 Linking

Your applications must be linked with the CDF library.! Both the Standard and Internal interfaces for C applications
are built into the CDF library. On OpenVMS systems, a logical name, CDF3$LIB, which specifies the location of the
CDF library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX
systems (including Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the
definitions file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and
tesh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you
are using the appropriate definitions file on those systems. The location of the CDF library is specified as described in
the appropriate sections for those systems.

2.1 OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY, SYS$LIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

UNIX Systems (including Mac OS X)
An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

1 A shareable version of the CDF library is also available on Open/VMS and some flavors of UNIX. Its use is
described in Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on Window NT/2000/XP. Consult
the Microsoft documentation for details on using a DLL. Note that the DLL for Microsoft is created using Microsoft
VC ++,

% cc <object-File(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.0 is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX
systems may also require that -Ic (the C run-time library), -Im (the math library), and/or -Idl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used.

2.1.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% cc -1${CDF_INC} -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_ SOURCE
-D_LARGEFILE_SOURCE <source-name(s)>.c ${CDF_LIB}/libcdf.a

where <source-name(s)>.c is the name of the source file(s) being compiled/linked. (The .c extension is required.)
Some UNIX systems may also require that -Ic, -Im, and/or -1dl be specified at the end of the command line.

2.2 Windows NT/2000/XP SYSTEMS, Microsoft Visual C++ or
Microsoft Visual C++ .NET

An example of the command to link your application with the CDF library (LIBCDF.LIB) on Windows systems using
Microsoft Visual C++ or Microsoft Visual C++ .NET would be as follows:?

> LINK /nologo /nodefaultlib:libcd /nodefaultlib:libcmt /nodefaultlib:msvert \
/output:where_to.exe <objs> <lib-path>\libcdf.lib

where <objs> is your application's object module(s); <where_to.exe> is the name of the executable file to be created
(with an extension of .exe); and <lib-path> is the file name of the directory containing the CDF library. You will need
to know where on your system the CDF library has been installed. <lib-path> may be either an absolute or relative
directory name that contains libcdf.lib.

Consult the manuals for Microsoft Visual C++ to set up the proper project/workspace to compile/link your applications.

% This example is extracted from an NMAKE file, created by Microsoft Developer Studio, for compiling/linking the
toolkit programs.

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on OpenVMS systems, some flavors of UNIX* and Windows
NT/2000/XP2. The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
DEC VAX & Alpha (OpenVMS) LIBCDF.EXE
Sun (SunOS)? libcdf.so

Sun (Solaris) libcdf.so

HP 9000 (HP-UX)? libcdf.sl

IBM RS6000 (AlX)* libcdf.o

DEC Alpha (OSF/1) libcdf.so

SGi (IRIX 6.x) libcdf.so
Linux (PC & Power PC) libcdf.so
Windows NT/2000/XP dlicdf.dll
Macintosh OS X libcdf.dylib

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

3.1 DECVAX & Alpha (OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDF$LIBCDFEXE/SHAREABLE
SYSS$SLIBRARY :<crtl>/LIBRARY
<Control-zZ>
$ DEASSIGN CDFS$LIBCDFEXE

! On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD _LIBRARY_PATH must be set to include the directory containing libcdf.so or libcdf.sl.

2 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dlicdf.dll.

® Not yet tested. Please contact CDFsupport@Iistserv.gsfc.nasa.gov to coordinate a test.

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

NOTE: On DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYS$SHARE : L IBCDF/SHAREABLE
SYS$LIBRARY :<crtl>/LI1BRARY
<Control-Z>

3.2 SUN (Solaris)

% cc -0 <exe-file> <object-file(s)>.0 ${CDF_LIB}/libcdf.so -lIc -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.3 HP 9000 (HP-UX)*

% cc -0 <exe-file> <object-file(s)>.0 ${CDF_LIB}/libcdf.sl -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.4 IBM RS6000 (AIX)*

% cc -0 <exe-file> <object-file(s)>.o0 -L${CDF_LIB} ${CDF_LIB}/libcdf.o -Ic -Im

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

* Yet to be tested.

35 DEC Alpha (OSF/1)

% cc -o <exe-File> <object-file(s)>.0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

36 SGi (IRIX 6.X)

% cc -o <exe-file> <object-file(s)>.0 ${CDF _LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.7 Linux (PC & Power PC)

% cc -o <exe-file> <object-file(s)>.0 ${CDF _LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 Windows (NT/2000/XP)

% link /out:<exe-file>_exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has

dllcdf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.9 Macintosh OS X

% cc -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.dylib -Im

where <object-file(s)>.0 is your application’s object module(s) (the .0 extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

10

Chapter 4

4 Programming Interface

4.1 Item Referencing

The following sections describe various aspects of the C programming interface for CDF applications. These include
constants and types defined for use by all CDF application programs written in C. These constants and types are
defined in cdf.h. The file cdf.h should be #include'd in all application source files referencing CDF
routines/parameters.

For C applications all items are referenced starting at zero (0). These include variable, attribute, and attribute entry

numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are numbered
starting at zero (0).

4.2 Defined Types

The following typedef's are provided. They should be used when declaring or defining the corresponding items.

CDFstatus All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, are of type CDFstatus. They return a status code indicating the
completion status of the function. The CDFerror function can be used to inquire
the meaning of any status code. Appendix A lists the possible status codes along
with their explanations. Chapter 8 describes how to interpret status codes.

CDFid An identifier (or handle) for a CDF that must be used when referring to a CDF. A
new CDFid is established whenever a CDF is created or opened, establishing a

connection to that CDF on disk. The CDFid is used in all subsequent operations on
a particular CDF. The CDFid must not be altered by an application.

4.3 CDFstatus Constants

These constants are of type CDFstatus.

CDF_OK A status code indicating the normal completion of a CDF function.

11

CDF_WARN

Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4

4.5

CDF Formats

SINGLE_FILE

MULTI_FILE

The CDF consists of only one file. This is the default file format.

The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE
CDF_CHAR
CDF_INT1
CDF_UCHAR
CDF_UINT1
CDF_INT2
CDF_UINT2
CDF_INT4
CDF_UINT4
CDF_REAL4
CDF_FLOAT
CDF_REALS
CDF_DOUBLE
CDF_EPOCH

CDF_EPOCH16

1-byte, signed integer.
1-byte, signed character.
1-byte, signed integer.
1-byte, unsigned character.
1-byte, unsigned integer.
2-byte, signed integer.
2-byte, unsigned integer.
4-byte, signed integer.
4-byte, unsigned integer.
4-byte, floating point.
4-byte, floating point.
8-byte, floating point.
8-byte, floating point.
8-byte, floating point.

two 8-byte, floating point.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

12

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D_FLOAT representation.

ALPHAVMSd _ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg _ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
PC_ENCODING Indicates PC data representation.

NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

13

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point

values will be in Digital's D_FLOAT representation.

ALPHAVMSd _DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D_FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

14

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.
VARY True record or dimension variance.
NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record

variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)

15

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for

a particular data set.
NO_COMPRESSION

RLE_COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

4.11 Sparseness

4.11.1 Sparse Records

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

Gnu's “zip" compression.> There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provides the
most compression but requires the most execution time. Values in-
between provide varying compromises of these two extremes.

The following types of sparse records for variables are supported.

! Disabled for PC running 16-bit DOS/Windows 3.x.

16

NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.?

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE_SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has heen opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation.

READONLYon Turns on read-only mode.
READONLY off Turns off read-only mode.
4.14 zModes

2 Obviously, sparse arrays are not yet supported.

17

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zZMODEoff Turns off zMode.
zZMODEon1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

415 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4,16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the NUL® terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX

systems).
CDF_VAR_NAME_LEN256 Maximum length of a variable name (excluding the NUL terminator).
CDF_ATTR_NAME_LENZ256 Maximum length of an attribute name (excluding the NUL terminator).

% The ASCII null character, 0xO0.

18

CDF_COPYRIGHT_LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).

CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the
NUL terminator).

4,18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.%, 2.6.x, 2.5.%, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new C function,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This function takes an argument to control the bacward file compatibility. Passing a flag
value of BACKWARDFILEon, defined in cdf.h, to the function will cause new files to be backward compatible. The
created files are of version V2.7.2, not V3.*. This option is useful for those who wish to create and share files with
colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the maximum file is limited to 2G
bytes. Passing a flag value of BACKWARDFILEOoff, also defined in cdf.h, will use the default file creation mode and
new files created will not be backward compatible with older libraries. The created files are of version 3.* and thus
their file sizes can be greater than 2G bytes. Not calling this function has the same effect of calling the function with an
argument value of BACKWARDFILEoff.

The following example uses the Internal Interface to create two CDF files: “MY_TEST1.cdf” is a V3.1 file while

“MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface function CDFcreateCDF can be used for the file
creation.

#include "cdf.h"

CDFid id1, id2; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numbDims = 0; /* Number of dimensions. */
long dimSizes[1] = {0}; /* Dimension sizes. */

status = CDFlib (CREATE_, CDF_, “MY_TEST1”, numDims, dimSizes, &id1,
NULL);
if (status !I= CDF_OK) UserStatusHandler (status);

CDFsetFileBackward(BACKWARDFILEon);

status = CDFIlib (CREATE_, CDF_, “MY_TEST2”, numDims, dimSizes, &id2,
NULL_);

if (status '= CDF_OK) UserStatusHandler (status);

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and

19

Windows, or CDF$FILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file comaptibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward function to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

#include "cdf.h"

CDFstatus status; /* Returned status code. */

i‘lag = CDFgetFileBackward();

20

Chapter 5

5 Standard Interface (Original)

The Standard Interface functions desribed in this chapter represents the original Standard Interface functions. As most
of them were developed when CDF was first introduced in early 90°s and they only provide a very limited functionality
within the CDF library. For example, it can not handle zVariables thoroughly and has no access to attribute’s entry
corresponding to the zVariables (zEntries). If you want to create or access zVariables and zEntries, you must use the
newer Standard Interface functions (a new feature in CDF Version 3.1) in Chapter 6 or the Internal Interface described
in Chapter 7.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
they are not as efficient as Internal Interface. If you are not familiar with Internal Interface, the use of Standard
Interace is recommended.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the original Standard Interface functions callable from C applications. Most functions
return a status code of type CDFstatus (see Chapter 8). The Internal Interface is described in Chapter 7. An application
can use either or both interfaces when necessary.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same

function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Standard Interface functions in this chapter are implemented as macros (which call the Internal Interface).

5.1 CDFattrCreate’

CDFstatus CDFattrCreate(/* out -- Completion status code. */

! Same as CDFcreateAttr.

21

CDFid id, /* in-- CDF identifier. */

char *attrName, [* in -- Attribute name. */
long attrScope, /* in-- Scope of attribute. */
long *attrNum); [* out -- Attribute number. */

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the

CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute.

determined with the CDFgetAttrNum function.

51.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each

entry describes some property of the corresponding variable (in this case the units for the data).

#include "cdf.h"

CDFid id; I*
CDFstatus status; *
static char ~ UNITSattrName[] = {"Units"}; I*
long UNITSattrNum; I*
long TITLEattrNum; I*

static long TITLEattrScope = GLOBAL_SCOPE; I*

CDF identifier. */

Returned status code. */
Name of "Units" attribute. */
"Units" attribute number. */
"TITLE" attribute number. */
"TITLE" attribute scope. */

status = CDFattrCreate (id, "TITLE", TITLEattrScope, &TITLEattrNum);

if (status '= CDF_OK) UserStatusHandler (status);
status = CDFattrCreate (id, UNITSattrName, VARIABLE_SCOPE,
if (status '= CDF_OK) UserStatusHandler (status);

22

&UNITSattrnum);

An existing attribute's number may be

52 CDFattrEntrylnquire

CDFstatus CDFattrEntrylnquire(/* out -- Completion status code. */

CDFid id,

long attrNum,
long entryNum,
long *dataType,

long *numElements);

[* in-- CDF identifier. */

[* in -- Attribute number. */

[* in-- Entry number. */

[* out -- Data type. */

/* out -- Number of elements (of the data type). */

CDFattrEntrylnquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrinquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntrylnquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

5.2.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 5.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 4.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable

numbers.

#include "cdf.h"

CDFid
CDFstatus
long

long

char

long

id;
status;
attrN;
entryN;

/* CDF identifier. */

/* Returned status code. */
[* attribute number. */

[* Entry number. */

attrName[CDF_ATTR_NAME_LEN256+1];

attrScope;

/* attribute name, +1 for NUL terminator. */
[* attribute scope. */

23

long maxEntry; [* Maximum entry number used. */
long dataType; [* Data type. */
long numElems; /* Number of elements (of the data type). */

attrN = CDFgetAttrNum (id, "TMP");

if (attrN < CDF_OK) UserStatusHandler (attrN);

status = CDFattrinquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status '= CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {
status = CDFattrEntrylnquire (id, attrN, entryN, &dataType, &numElems);
if (status < CDF_OK) {
if (status 1= NO_SUCH_ENTRY) UserStatusHandler (status);

}

else {

[* process entries */

5.3 CDFattrGet?

CDFstatus CDFattrGet(
CDFid id,

long attrNum,

long entryNum,

void *value);

/* out -- Completion status code. */
/* in-- CDF identifier. */

[* in -- Attribute number. */

[* in-- Entry number. */

/* out -- Attribute entry value. */

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntrylnquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFattrNum (Section
5.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of

2 An original Standard Interface function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is

the preferred name for it.

24

elements (of that data type). The value is read from the CDF and placed into memory at
address value.

53.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

CDFid id; [* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; /* Attribute number. */

long entryN; [* Entry number. */

long dataType; [* Datatype. */

long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */

attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFvarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */

if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFattrEntrylnquire (id, attrN, entryN, &dataType, &numElems);

if (status '= CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (buffer == NULL)...

status = CDFattrGet (id, attrN, entryN, buffer);
if (status '= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0’; /* NUL terminate. */
printf ("Units of PRES_LVL variable: %s\n", buffer);

free (buffer);
}

25

5.4 CDFattrinquire®

CDFstatus CDFattrinquire(

CDFid id,

long attrNum,
char *attrName,
long *attrScope,

long *maxEntry);

/* out -- Completion status code. */

[* in-- CDF identifier. */

[* in -- Attribute number. */

/* out -- Attribute name. */

[* out -- Attribute scope. */

/* out -- Maximum gEntry or rEntry number. */

CDFattrinquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntrylInquire.

The arguments to CDFattrinquire are defined as follows:

id

attrNum

attrName

attrScope

maxEntry

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 5.5).

The attribute's name. This character string must be large enough to hold
CDF_ATTR_NAME_LEN256 + 1 characters (including the NUL terminator).

The scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 7). If no entries exist for the attribute, then
a value of -1 will be passed back.

54.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

#include "cdf.h"

CDFid
CDFstatus
long

long

long
long
long

id; /* CDF identifier. */

status; /* Returned status code. */

numbDims; /* Number of dimensions. */

dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the maximum
number of dimensions). */

encoding; [* Data encoding. */

majority; [* Variable majority. */

maxRec; /* Maximum record number in CDF. */

® An original Standard Interface function. While it is still available in V3.1, CDFinquireAttr is the preferred name for it.

26

long numvars; /* Number of variables in CDF. */

long NUMALtrs; /* Number of attributes in CDF. */
long attrN; [* attribute number. */
char attrName[CDF_ATTR_NAME_LEN256+1];
[* attribute name -- +1 for NUL terminator. */
long attrScope; [* attribute scope. */
long maxEntry; /* Maximum entry number. */

status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority, &maxRec, &numVars, &numaAttrs);

if (status '= CDF_OK) UserStatusHandler (status);
for (attrN = 0; attrN < numAittrs; attrN++) {
status = CDFattrinquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);
else
printf ("%s\n", attrName);

55 CDFattrNum*

long CDFattrNum([* out -- attribute number. */
CDFid id, /* in-- CDF id */
char *attrName); /* in -- Attribute name */

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id

attrName

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The name of the attribute for which to search. This may be at most
CDF_ATTR_NAME_LEN256 characters (excluding the NUL terminator). Attribute names
are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

5.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would

* An original Standard Interface function. While it is still available in V3.1, CDFgetAttrNum is the preferred name for

it.

27

have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

#include "cdf.h"

CDFid id:

CDFstatus status;

/* CDF identifier. */
/* Returned status code. */

status = CDFattrRename (id, CDFattrNum(id,"pressure"), "PRESSURE");
if (status '= CDF_OK) UserStatusHandler (status);

5.6 CDFattrPut

CDFstatus CDFattrPut(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElements,
void *value);

/*
/*
/-k
/*
/*
/*
/*

out -- Completion status code. */
in -- CDF identifier. */

in -- Attribute number. */

in -- Entry number. */

in -- Data type of this entry. */

in -- Number of elements (of the data type). */

in -- Attribute entry value. */

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

28

5.6.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

#include "cdf.h"

#define TITLE_LEN 10 /* Length of CDF title. */

CDFid id; [* CDF identifier. */

CDFstatus status; /* Returned status code. */

long entryNum; /* Entry number. */

long numElements; /* Number of elements (of data type). */
static char title[TITLE_LEN+1] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */
static short TMPvalids = {15,30}; /* Value(s) of VALIDs attribute,

rEntry for rVariable TMP. */

entryNum = 0;
status = CDFattrPut (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF_CHAR, TITLE_LEN, title);
if (status != CDF_OK) UserStatusHandler (status);

numElements = 2;

status = CDFattrPut (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
CDF_INT2, numElements, TMPvalids);

if (status '= CDF_OK) UserStatusHandler (status);

5.7 CDFattrRename®

CDFstatus CDFattrRename(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long attrNum, [* in -- Attribute number. */

char *attrName); /* in-- New attribute name. */

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

® An original Standard Interface function. While it is still available in V3.1, CDFrenameAittr is the preferred name for
it.

29

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 5.5).

attrName The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

5.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

#include "cdf.h"

CDFid id:; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFattrRename (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status '= CDF_OK) UserStatusHandler (status);

5.8 CDFclose

CDFstatus CDFclose(/* out -- Completion status code. */
CDFid id); /* in-- CDF identifier. */

CDFclose closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

58.1 Example(s)

The following example will close an open CDF.

30

#include "cdf.h"

CDFid id;
CDFstatus status;

/* CDF identifier. */
/* Returned status code. */

status = CDFclose (id);
if (status '= CDF_OK) UserStatusHandler (status);

5.9 CDFcreate

CDFstatus CDFcreate(
char *CDFname,
long numDims,

long dimSizes|[],

long encoding,

long majority,

CDFid *id);

/* out -- Completion status code. */

/* in-- CDF file name. */

/* in -- Number of dimensions, rVariables. */
/* in -- Dimension sizes, rVariables. */

/* in-- Data encoding. */

[* in -- Variable majority. */

/* out-- CDF identifier. */

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) 1f you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.v1,...and .z0,z1,...).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_MAX_DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 4.6.

31

majority The majority for variable data. Specify one of the majorities described in Section 4.8.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 5.8).

59.1 Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

static long numDims = 3; /* Number of dimensions, rVariables. */
static long dimSizes[3] = {180,360,10}; [* Dimension sizes, rVariables. */

static long majority = ROW_MAJOR,; [* Variable majority. */

status = CDFcreate (“testl", numDims, dimSizes, NETWORK_ENCODING, majority, &id);
if (status '= CDF_OK) UserStatusHandler (status);

ROW_MAJOR and NETWORK_ENCODING are defined in cdf.h.

5.10 CDFdelete

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in-- CDF identifier. */

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

32

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

5.10.1 Example(s)

The following example will open and then delete an existing CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopen ("test2", &id);

if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);

else {
status = CDFdelete (id);
if (status '= CDF_OK) UserStatusHandler (status);

}
5.11 CDFdoc
CDFstatus CDFdoc(/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
long *version, [* out-- Version number. */
long *release, /* out -- Release number. */
char *Copyright); /* out -- Copyright. */

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF COPYRIGHT _LEN + 1 characters (including the NUL

33

terminator). This string will contain a newline character after each line of the Copyright
notice.

5.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
long version; [* CDF version number. */
long release; /* CDF release number. */

char CopyrightfCDF_COPYRIGHT _LEN+1]; /* Copyright notice -- +1 for NUL terminator. */

status = CDFdoc (id, &version, &release, Copyright);

if (status < CDF_OK) /* INFO status codes ignored */
UserStatusHandler (status);

else {
printf ("CDF V%d.%d\n", version, release);
printf("%s\n", Copyright);

}

5.12 CDFerror®

CDFstatus CDFerror(/* out -- Completion status code. */
CDFstatus status, /* in-- Status code. */
char *message); /* out -- Explanation text for the status code. */

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code. This character string must be large enough to
hold CDF_STATUSTEXT_LEN + 1 characters (including the NUL terminator).

® An original Standard Interface function. While it is still available in V3.1, CDFgetStatusText is the preferred name for
it.

34

5.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

char text[CDF_STATUSTEXT_LEN+1]; /* Explanation text.+1 added for NUL terminator. */

status = CDFopen ("giss_wetl", &id);

if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
CDFerror (status, text);
printf ("ERROR> %s\n", text);

}

5.13 CDFgetrVarsRecordData’

CDFstatus CDFgetrVarsRecordData(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long varsNum, /* in -- The number of variables involved. */
char *varNames[], /* in -- The names of variables involved. */
long recNum, /* in -- The record number. */

void *buffers[]); [* out -- The data holding buffer array. */

CDFgetrVVarsRecordData reads an entire record from a specified record number for a number of the specified
rVVariables in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables,
instead of doing it one variable at a time if calling the lower-level function. The retrieved record data from the
rVariable group is filled into its respective buffer. The specifed variables are identified by their names. Use
CDFgetrVVarsRecordDatabyNumbers function to perform the similar operation by providing the variable numbers,
instead of the names.

The arguments to CDFgetrVarsRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varsNum The number of variables in the operation.
varNames The names of variables in the operation.
recNum The record number.

" An original Standard Interface function.

35

buffers An array of pointers, pointing to data hodling buffers. Each element in the array points to a
buffer that should be large enough to hold an individual record data for an rVariable.

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude, Temperature and
NAME. The record to be read is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar
variable of type int is allocated for its data type CDF INT4. For Longitude, a 1-dimensional array of type float (size
[2]) is allocated for its dimension variances [VARY,NONVARY] and data type CDF REALA4. A similar allocation is
done for Latitude for its [NONVARY,VARY] dimension variances and CDF REAL4 data type. For Temperature,
since its [VARY,VARY] dimension variances and CDF REAL4 data type, a 2-dimensional array of type float is
allocated. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated for its [VARY,NONVARY]
dimension variances and CDF CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 5; /* Number of rVariables to read. */
long varRecNum = 4; /* The record number to read data. */
char *rvarl = "Time", /* Names of the rVariables to read. */

*rVar2 = "Longitude",
*rvar3 = "Latitude",
*rVar4 = "Temperature",
*rvVar5 = "NAME";

char *varNames[5];

void *buffptr[5]; [* Array of buffer pointers. */

int time; /* rVariable: Time; Datatype: INT4. */
/* Dim/Rec Variances: T/FF. */

float longitude[2]; [* rVariable: Longitude; Datatype: REALA4. */
/* Dim/Rec Variances: T/TF. */

float latitute[2]; [* rVariable: Latitude; Datatype: REAL4. */
[* Dim/Rec Variances: T/FT. */

float temperature[2][2]; [* rVariable: Temperature; Datatype: REAL4. */
/* Dim/Rec Variances: T/TT. */

char name[2][10]; /* rVariable: Name; Datatype: CHAR/10. */
/* Dim/Rec Variances: T/TF. */

varNames[0] = rVarl,; /* Name of each rVariable. */

varNames[1] = rVar2;
varNames[2] = rVar3;
varNames[3] = rVar4;
varNames[4] = rVar5;

buffptr[0] = (void *) &time; [* Address of each rVariable buffer. */

buffptr[1] = (void *) &longitude;
buffptr[2] = (void *) &latitude;

36

buffptr[3] = (void *) &temperature;
buffptr[4] = (void *) &name;

status = CDFgetrVarsRecordData(id, numVars, varNames, varRecNum, buffptr);
if (status '= CDF_OK) UserStatusHandler (status);

5.14 CDFgetzVarsRecordData

CDFstatus CDFgetzVarsRecordData(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long numVars, [*in -- Number of zVariables. */

char *varNames[], [*in -- Names of zVariables. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; [* out -- Buffer of pointers for holding data. */

CDFgetzVarsRecordData reads an entire record of the specified record number from the specified zVariables in a CDF.
This function provides an easier and higher level interface to acquire data from a group of variables, instead of reading
data one variable at a time. The retrieved record data from the zVariable group is filled into its respective buffer. The
specifed variables are identified by their names. Use the CDFgetzVarsRecordDatabyNumbers function to perform the
similar operation by providing the variable numbers, instead of the variable names.

The arguments to CDFgetzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.

varNames The names of the zVariables from which to read data.

varRecNum The record number at which to read data.

buffers An array of buffer pointers that point to the data holding areas for the retrieved data for the given
zVariables. Each holding area should be big enough to allow full physical record data to fill.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type
CDF_INTA4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

37

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 4; /* Number of zVariables to read. */

long varRecNum = 5; /* The record number to read data — 6™ record */
char *zVarl = "Longitude”, /* Names of the zVariables to read. */

*zVar2 = "Delta",
*zVar3 = "Time",
*zVard = "Name",;

void *buffptr[4]; /* Array of buffer pointers. */
unsigned int time[3][2]; /* zVariable: Time; Datatype: UINT4. */

/* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
short longitude[3]; [* zVariable: Longitude; Datatype: INT2. */

/* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
int delta[3][2]; /* zVariable: Delta; Datatype: INT4. */

/* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
char name[2][10]; [* zVariable: Name; Datatype: CHAR/10. */

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

varNames[0] = zVarl; /* Name of each zVariable. */
varNames[1] = zVar2;
varNames[2] = zVar3;
varNames[3] = zVar4;

buffptr[0] = (void *) &longitude; [* Address of each zVariable buffer. */
buffptr[1] = (void *) δ

buffptr[2] = (void *) &time;

buffptr[3] = (void *) &name;

status = CDFgetzVarsRecordData(id, numVars, varNames, varRecNum, buffptr);
if (status != CDF_OK) UserStatusHandler (status);

5.15 CDFinquire

CDFstatus CDFinquire([* out -- Completion status code. */

CDFid id, [* in-- CDF identifier */

long *numDims, [* out -- Number of dimensions, rVariables. */

long dimSizes[CDF_MAX_DIMS], [* out -- Dimension sizes, rVariables. */

long *encoding, [* out -- Data encoding. */

long *majority, [* out -- Variable majority. */

long *maxRec, /* out -- Maximum record number in the CDF, rVariables. */
long *numVars, [* out -- Number of rVariables in the CDF. */

long *numAittrs); [* out -- Number of attributes in the CDF. */

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

38

numDims

dimSizes

encoding

majority

maxRec

numVvars

numaAttrs

5.15.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

The number of rVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

#include "cdf.h"

CDFid id;
CDFstatus status;
long numDims;

/* CDF identifier. */
/* Returned status code. */
/* Number of dimensions, rVariables. */

long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes, rVariables (allocate to allow the

long encoding;
long majority;
long maxRec;
long numVars;
long numaAttrs;

maximum number of dimensions). */
[* Data encoding. */
[* Variable majority. */
/* Maximum record number, rVariables. */
/* Number of rVariables in CDF. */
/* Number of attributes in CDF. */

status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority,

&maxRec, &numVars, &numAttrs);

if (status '= CDF_OK) UserStatusHandler (status);

39

5.16 CDFopen

CDFstatus CDFopen(/* out -- Completion status code. */
char *CDFname, /* in-- CDF file name. */
CDFid *id); /* out-- CDF identifier. */

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

5.16.1 Example(s)

The following example will open a CDF named “NOAAL.cdf”.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char CDFname[] = { "NOAAL" }; /* file name of CDF. */

status = CDFopen (CDFname, &id);
if (status '= CDF_OK) UserStatusHandler (status);

40

5.17 CDFputrVarsRecordData®

CDFstatus CDFputrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long numVars, /*in -- Number of rVariables. */

char *varNames[], /*in -- Names of rVariables. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; [* in -- Buffer of pointers for input data. */

CDFputrVarsRecordData is used to write a whole record data at a specific record number for a group of rVariables in a
CDF. It expects that the data buffer for each rVVariable matches up to the full physical record size. Passed record data is
filled into its respective rVariable. This function provides an easier and higher level interface to write data for a group
of variables, instead of doing it one variable at a time if calling the lower-level function. The specifed variables are
identified by their names. Use CDFputrVarsRecordDatabyNumbers function to perform the similar operation by
providing the variable numbers, instead of the names.

The arguments to CDFputrVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVvars The number of the rVariables in the group involved this write operation.

varNames The names of the rVVariables involved for which to write a whole record data.

varRecNum The record number at which to write the whole record data for the group of rVariables.

buffers An array of buffer pointers that point to the data holding areas for the output data for the given
rVariables. Each buffer should hold a full physical record data.

5.17.1 Example(s)

The following example will write an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar 1-dimensional
array is provided for Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

/* Dim/Rec Variances: T/TF. */

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numVars = 5; /* Number of rVariables to write. */

® An original Standard Interface function.

41

long varRecNum = 4; /* The record number to write data. */
char *rVarl = "Time", /* Names of the rVariables to write. */
*rVar2 = "Longitude”,
*rVar3 = "Latitude",
*rVar4 = "Temperature",
*rvVar5 = "NAME";
void *buffptrs[5]; [* Array of buffer pointers. */
int time = {123} /* rVariable: Time; Datatype: INT4. */
/* Dim/Rec Variances: T/FF. */
float longitude[2] = [* rVariable: Longitude; Datatype: REALA4. */
{11.1, 22.2}; /* Dim/Rec Variances: T/TF. */
float latitute[2] = I* rVariable: Latitude; Datatype: REAL4. */
{-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */
float temperature[2][2] = [* rVariable: Temperature; Datatype: REAL4. */
{100.0, 200.0, /* Dim/Rec Variances: T/TT. */
300.0, 400.0%;
char name[2][10] = /* rVariable: NAME; Datatype: CHAR/10. */

/* Dim/Rec Variances: T/TF. */

{1,'3,'5,'7,'9,'2,'4,'6', '8, 0,
IZ‘! IZ‘! Iy'! 'Y|! lel 'XI! IW‘! IWI! IV'I lVI};

varNames[0] = rVarl,;

/* Name of each rVariable. */

varNames[1] = rVar2;
varNames[2] = rVar3,;
varNames[3] = rVar4;
varNames[4] = rVar5;
buffptr[0] = (void *) &time; /* Address of each rVariable buffer. */
buffptr[1] = (void *) &longitude;

buffptr[2] = (void *) &latitude;

buffptr[3] = (void *) &temperature;

buffptr[4] = (void *) &name;

status = CDFputrVarsRecordData(id, numVars, varNames, varRecNum, buffptrs);
if (status '= CDF_OK) UserStatusHandler (status);

Note that each physical record represents data values in a record without those from the non-variant dimensional

elements. This function can be a replacement for the similar functionality provided from the Internal Interface as
<PUT_, rVARs_RECDATA_>.

5.18 CDFputzVarsRecordData’

CDFstatus CDFputzVarsRecordData(
CDFid id,

/* out -- Completion status code. */
[* in-- CDF identifier. */

long numVars, /*in -- Number of zVariables. */

char *varNames[], [*in -- Names of zVariables. */

long recNum, /*in -- Record number. */

void *buffers[]; [* in -- Buffer of pointers for input data. */

® An original Standard Interface function.

42

CDFputzVarsRecordData is used to write a whole record data at a specific record number for a group of zVariables in a
CDF. It expects that the data buffer for each zVariable matches up to the full physical record size. Passed record data is
filled into its respective zVariable. Use CDFputzVarsRecordDatabyNumbers function to perform the similar operation
by providing the variable numbers, instead of the names.

The arguments to CDFputzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVvars The number of the zVariables in the group involved this write operation.

varNames The names of the zVariables involved for which to write a whole record data.

recNum The record number at which to write the whole record data for the group of zVariables.

buffers An array of buffer pointers that point to the data holding areas for the output data for the given

zVariables. Each buffer should hold a full physical record.

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta and Name. The record to be written is 5. For Longitude, a 1-dimensional array of
type short (size [3]) is provided for its dimension variance [VARY] and data type CDF_INT2. For Delta, a 2-
dimensional array of type int (size [3,2]) is provided as its dimension variances are [VARY,VARY] with data type
CDF_INT4. For Time, it is 2-dimensional of type unsigned int (sizes [3,2]) for its dimension variances
[VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is provided
due to its [VARY] dimension variances and CDF_CHAR data type with the number ofelement 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 4; /* Number of zVariables to write. */
long varRecNum =5; [* The record number to write data. */
char *zVarl = "Longitude”, /* Names of the zVariables to write. */

*zVar2 = "Delta",
*zVar3 = "Time",
*zVard = "Name";

void *buffptrs[4]; [* Array of buffer pointers. */
short longitude[3] = [* zVariable: Longitude; Datatype: INT2. */
{50, 100, 125}; /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
int delta[3][2] = [* zVariable: Delta; Datatype: INT4. */
{-100, -200, /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
-400, -800,
-1000, -2000};
unsigned int time[3][2] = /* zVariable: Time; Datatype: UINT4. */
{123, 234, /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */

43

345, 456,
567, 789},
char name[2][10] = [* zVariable: Name; Datatype: CHAR/10. */
/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */
{a, v, 'c,d, e, 'f,'g, ",
‘A, 'BY,'C,'D', 'E','F,'G", 'H', I, U}

varNames[0] = zVarl; /* Name of each zVariable. */
varNames[1] = zVar2;
varNames[2] = zVar3;
varNames[3] = zVar4;

buffptr[0] = (void *) &longitude; /* Address of each zVariable buffer. */
buffptr[1] = (void *) δ

buffptr[2] = (void *) &time;

buffptr[3] = (void *) &name;

status = CDFputzVarsRecordData(id, numVars, varNames, varRecNum, buffptrs);
if (status != CDF_OK) UserStatusHandler (status);

This function can be a replacement for the similar functionality
provided from the Internal Interface as <PUT _, zZVARs_RECDATA >.

5.19 CDFvarClose®

CDFstatus CDFvarClose(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long varNum); [* in -- rVariable number. */

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

5.19.1 Example(s)

19 An original Standard Interface function, handling rVariables only.

44

The following example will close an open rVariable in a multi-file CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFvarClose (id, CDFvarNum (id, “Flux”));
if (status '= CDF_OK) UserStatusHandler (status);

5.20 CDFvarCreate!

CDFstatus CDFvarCreate(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

char *varName, [* in -- rVariable name. */

long dataType, [* in-- Datatype. */

long numElements, /* in-- Number of elements (of the data type). */
long recVariance, /* in-- Record variance. */

long dimVariances[], [* in -- Dimension variances. */

long *varNum); [* out -- rVariable number. */

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varName The name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 4.5.

numElements The number of elements of the data type at each value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The rVariable's record variance. Specify one of the variances defined in Section 4.9.

1 An original Standard Interface function, handling rVariables only.

45

dimVariances The rVariable's dimension variances. Each element of dimVariances specifies the

varNum

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVVariable. An existing rVariables's number
may be determined with the CDFvarNum or CDFgetVarNum function.

5.20.1 Example(s)

The following example will create several rVariables in a CDF. In this case EPOCH is a 0-dimensional, LATITUDE
and LONGITUDE are 2-diemnational, and TEMPERATURE is a 1-dimensional.

#include "cdf.h"

CDFid
CDFstatus
static long
static long
static long
static long
static long
static long
static long
static long
long

long

long

long
static long
static long
static long

id; /* CDF identifier. */

status; /* Returned status code. */
EPOCHrecVary = {VARY}; /* EPOCH record variance. */
LATrecVary = {NOVARY}; /* LAT record variance. */
LONrecVary = {NOVARY}; /* LON record variance. */
TMPrecVary = {VARY}; /* TMP record variance. */
EPOCHdimVarys[1] = {NOVARY}; /* EPOCH dimension variances. */
LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
TMPdimVarys[2] = {VARY,VARY}; [* TMP dimension variances. */
EPOCHvarNum; /* EPOCH zVariable number. */
LATvarNum; [* LAT zVariable number. */
LONvarNum; /* LON zVariable number. */
TMPvarNum; [* TMP zVariable number. */
EPOCHdimSizes[1] = {3}; /* EPOCH dimension sizes. */
LATLONdimSizes[2] = {2,3} /* LAT/LON dimension sizes. */
TMPdimSizes[1] = {3}; /* TMP dimension sizes. */

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1,

EPOCHTrecVary, EPOCHdimVarys, &EPOCH varNum);

if (status '= CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1,

LATrecVary, LATdimVarys, &LATvarNum);

if (status '= CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LONGITUDE", CDF_INT2, 1,

LONrecVary, LONdimVarys, &LONvarNum);

if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1,

TMPrecVary, TMPdimVarys, &TMPvarNum);

if (status '= CDF_OK) UserStatusHandler (status);

46

5.21 CDFvarGet'

CDFstatus CDFvarGet(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in-- Record number. */
long indices[], /* in-- Dimension indices. */
void *value); /* out -- Value. */

CDFvarGet is used to read a single value from an rVariable.
The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

5.21.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; [* rVariable number. */
long recNum; [* The record number. */
long indices[2]; /* The dimension indices. */
double valuel, value2; [* The data values. */

varNum = CDFvarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....");
recNum = OL,;

'2 An original Standard Interface function, handling rVariables only.

47

indices[0] = OL;
indices[1] = OL;

status = CDFvarGet (id, varNum, recNum, indices, &valuel);
if (status '= CDF_OK) UserStatusHandler (status);

indices[0] = 1L;
indices[1] = 1L;

status = CDFvarGet (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);

5.22 CDFvarHyperGet"

CDFstatus CDFvarHyperGet(
CDFid id,

long varNum,

long recStart,

long recCount,

long recinterval,

long indices[],

long counts|[],

long intervals([],

void *buffer);

/*
/*
/*
/*
/-k
/*
/*
/*
/*
/-k

out -- Completion status code. */

in -- CDF identifier. */

in -- rVariable number. */

in -- Starting record number. */

in -- Number of records. */

in -- Subsampling interval between records. */
in -- Dimension indices of starting value. */
in -- Number of values along each dimension. */

in -- Subsampling intervals along each dimension. */
out -- Buffer of values. */

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to

CDFvarGet.

#include "cdf.h"

CDFid id;

CDFstatus status;

float tmp[180][91][10]
long varN;

long recStart = 13;
long recCount = 1;

/* CDF identifier. */

/* Returned status code. */
/* Temperature values. */
/* rVariable number. */
/* Record number. */

/* Record counts. */

3 An original Standard Interface function, handling rVariables only.

48

long recinterval = 1, /* Record interval. */

static long indices[3] = {0,0,0}; /* Dimension indices. */
static long counts[3] = {180,91,10}; /* Dimension counts. */
static long intervals[3] = {1,1,1}; /* Dimension intervals. */

varN = CDFgetVarNum (id, "Temperature");

if (varN < CDF_OK) UserStatusHandler (varN);

status = CDFgetHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp);
if (status '= CDF_OK) UserStatusHandler (status);

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

5.23 CDFvarHyperPut"

CDFstatus CDFvarHyperPut(/* out -- Completion status code. */

CDFid id, [*in-- CDF identifier. */

long varNum, [*in -- rVariable number. */

long recStart, [* in -- Starting record number. */

long recCount, [*in -- Number of records. */

long recinterval, [*in -- Interval between records. */

long indices[], /* in -- Dimension indices of starting value. */

long counts], /* in -- Number of values along each dimension. */

long intervals([], /*in -- Interval between values along each dimension. */
void *buffer); [* in -- Buffer of values. */

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

5.23.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvarHyperPut rather than numerous calls to CDFvarPut.

#include "cdf.h"

CDFid id; [* CDF identifier. */

“ An original Standard Interface function, handling rVariables only.

49

CDFstatus status; /* Returned status code. */

short lat; [* Latitude value. */

short lats[181]; /* Buffer of latitude values. */
long varN; [* rVariable number. */

long recStart = O; /* Record number. */

long recCount = 1; /* Record counts. */

long recinterval = 1; /* Record interval. */

static long indices[2] = {0,0}; /* Dimension indices. */
static long counts[2] = {1,181}; /* Dimension counts. */

static long intervals[2] = {1,1}; /* Dimension intervals. */

varN = CDFvarNum (id, "LATITUDE");
if (varN < CDF_OK) UserStatusHandler (varN);
for (lat = -90; lat <= 90; lat ++)

lats[90+lat] = lat;

status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status '= CDF_OK) UserStatusHandler (status);

5.24 CDFvarlnquire

CDFstatus CDFvarlnquire([* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long varNum, /* in -- rVariable number. */

char varName, /* out -- rVariable name. */

long *dataType, [* out -- Datatype. */

long *numElements, [* out -- Number of elements (of the data type). */
long *recVariance, /* out -- Record variance. */

long dimVariances|CDF_MAX_DIMS]); [* out -- Dimension variances. */

CDFvarlnquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that
data type).

The arguments to CDFvarlnquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 5.25).

varName The rVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LEN256 + 1 characters (including the NUL terminator).

dataType The data type of the rVariable. The data types are defined in Section 4.5.

50

numElements The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The record variance. The record variances are defined in Section 4.9.

dimVariances The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 4.9.

For O-

dimensional rVariables this argument is ignored (but a placeholder is necessary).

5.24.1 Example(s)

The following example returns about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name

returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR_NAME_LEN256+1]; /* rVariable name, +1 for NUL terminator. */
long dataType; /* Data type of the rVariable. */

long numeglems; /* Number of elements (of data type). */

long recVary; /* Record variance. */

long dimVarys[CDF_MAX_DIMS]; /* Dimension variances (allocate to allow the

maximum number of dimensions). */

status = CDFvarlnquire (id, CDFgetVarNum(id,"HEAT_FLUX"), varName, &dataType,

&numElems, &recVary, dimVarys);
if (status '= CDF_OK) UserStatusHandler (status);

5.25 CDFvarNum?®

long CDFvarNum([* out -- Variable number. */
CDFid id, /* in-- CDF identifier. */
char *varName); /* in -- Variable name. */

CDFvarNum is used to determine the number associated with a given variable name.

If the variable is found,

CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

15 An original Standard Interface function. It used to handle only rVariables. It has been extended to include zVariables.

While it is still available in V3.1, CDFgetVarNum is the preferred name for it.

51

The returned variable number should be used in the functions of the same variable type, rVVariable or zVariable. If it is
an rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varName The name of the variable to search. This may be at most CDF_VAR_NAME_LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

5.25.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR_NAME_LEN256+1]; /* Variable name. */

long dataType; [* Data type of the rVariable. */

long numElements; /* Number of elements (of the data type). */
long recVariance; /* Record variance. */

long dimVariances| CDF_MAX_DIMS]; [* Dimension variances. */

status = CDFvarlnquire (id, CDFvarNum(id,"LATITUDE"), varName, &dataType,
&numElements, &recVariance, dimVariances);
if (status '= CDF_OK) UserStatusHandler (status);

In this example the rVVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 5.24.

5.26 CDFvarPut®

CDFstatus CDFvarPut(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long varNum, /* in -- rVariable number. */

'® An original Standard Interface function, handling rVariables only.

52

long recNum, [* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in-- Value. */

CDFvarPut writes a single data value to an rVVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record numberat which to write.

indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index. For O-dimensional variables, this
argument is ignored (but must be present).

value The data value to write.

5.26.1 Example(s)

The following example will write two data values (1* and 5™ elements) of a 2-dimensional rVariable (2 by 3) named
MY _VAR to record number 0.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; [* rVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */

double valuel, value2; /* The data values. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*“....”);

recNum = 0L;

indices[0] = OL;

indices[1] = OL;

valuel = 10.1;

status = CDFvarPut (id, varNum, recNum, indices, &valuel);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = 1L;

indices[1] = 1L;

value2 = 20.2;

status = CDFvarPut (id, varNum, recNum, indices, &value?2);
if (status '= CDF_OK) UserStatusHandler (status);

53

5.27 CDFvarRename'’

CDFstatus CDFvarRename(/* out -- Completion status code. */

CDFid id,
long varNum,

char *varName);

/* in-- CDF identifier. */
/* in -- rVariable number. */
/* in-- New name. */

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

varName The new rVariable name. The maximum length of the new name is

CDF_VAR_NAME_LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

5.27.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; [* rVariable number. */

varNum = CDFvarNum (id, "TEMPERATURE");
if (varNum < CDF_OK) {
if (varNum !'= NO_SUCH_VAR) UserStatusHandler (varNum);

}
else {

status = CDFvarRename (id, varNum, "TMP");

if (status '= CDF_OK) UserStatusHandler (status);
}

' An original Standard Interface function, handling rVariables only.

54

55

Chapter 6

6 Standard Interface (New)

The following sections describe the new Standard Interface functions callable from C applications that were added to
CDF library since Version 3.1. Most functions return a status code of type CDFstatus (see Chapter 8). The Internal
Interface is described in Chapter 7. An application can use either or both interfaces when necessary.

The original Standard Interface only provided a very limited functionality within the CDF library. For example, it
could not handle zVariables and vAttribute zEntries (they were only accessible via the Internal Interface). Since V3.1,
the Standard Interface has been expanded to include many new operations that are previously only available through
the Internal Interface. The new functions in this chapter that deal with variables and variable attribute entries are only
applicable to zVariables and variable attribute’s zEntries, not rVariables and rEntries. If you need to deal with
rVVariables for some reason (no need to use rVariables at all unless you are dealing with a CDF file that only contains
rVVariables), use the appropriate original Standard Interface routines in Chapter 5 or the Internal Interface in Chapter 7.
Read Chapter 5 to understand why zVariables are recommended over the rVariables.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same
function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Standard Interface functions in this chapter are implemented as macros (which call the Internal Interface).

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information suh as the current library version number and Copyright notice.

6.1.1 CDFgetDataTypeSize

CDFstatus CDFgetDataTypeSize (/* out -- Completion status code. */
long dataType, [* in-- CDF data type. */
long *numBytes); /* out -- Number of bytes for the given CDF type. */

57

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.
The arguments to CDFgetDataTypeSize are defined as follows:
dataType The CDF supported data type.

numBytes The size of dataType.

6.1.1.1. Example(s)

The following example returns the size of the data type CDF_INT4 that is 4 bytes.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
long numBytes; /* Number of bytes. */

status = CDFgetDataTypeSize((long)CDF_INT4, &nhumBytes);
if (status '= CDF_OK) UserStatusHandler (status);

6.1.2 CDFgetLibraryCopyright

CDFstatus CDFgetLibraryCopyright (/* out -- Completion status code. */
char *Copyright); /* out -- Library Copyright. */

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

Copyright The Copyright notice. This character string must be large enough to hold
CDF_COPYRIGHT_LEN + 1 characters (including the NUL terminator).

6.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

#include "cdf.h"

58

char Copyright{CDF_COPYRIGHT_LEN+1]; [* CDF library Copyright. */

status = CDFgetLibraryCopyright(Copyright);
if (status '= CDF_OK) UserStatusHandler (status);

6.1.3 CDFgetLibraryVersion

CDFstatus CDFgetLibraryVersion (/* out -- Completion status code. */

long *version, [* out -- Library version. */

long *release, /* out -- Library release. */

long *increment, [* out -- Library increment. */
char *sublncrement); /* out -- Library sub-increment. */

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version The library version number.

release The library release number.
increment The library incremental number.
sublncrement The library sub-incremental character.

6.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

#include "cdf.h"

long version; [* CDF library version number. */

long release; /* CDF library release number. */

long increment; /* CDEF library incremental number. */

char sublncrement; [* CDF library sub-incremental character. */

status = CDFgetLibraryVersion(&version, &release, &increment, &sublncrement);
if (status '= CDF_OK) UserStatusHandler (status);

59

6.1.4 CDFgetStatusText

CDFstatus CDFstatusText(/* out -- Completion status code. */
CDFstatus status, /* in -- The status code. */
char *message); /* out -- The status text description. */

CDFgetStatusText is identical to the original Standard Interface function CDFerror (see section 5.12), and the use of
this function is strongly encouraged over CDFerror as it might not be supported in the future. This function is used to
inquire the text explanation of a given status code. Chapter 8 explains how to interpret status codes and Appendix A

lists all of the possible status codes.
The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code. This character string must be large enough to

hold CDF_STATUSTEXT_LEN + 1 characters (including the NUL terminator).

6.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

char textfCDF_STATUSTEXT_LEN+1]; /* Explanation text.+1 added for NUL terminator. */

status = CDFopenCDF ("giss_wetl", &id);

if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
CDFgetStatusText (status, text);
printf ("ERROR> %s\n", text);

}
CDFcloseCDF (id);

6.2 CDF

The functions in this section provide CDF file-specific operatons. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

60

6.2.1 CDFcloseCDF

CDFstatus CDFcloseCDF (/* out -- Completion status code. */
CDFid id); /* in-- CDF identifier. */

CDFcloseCDF closes the specified CDF. This function is identical to the original Standard Interface function
CDFclose (see section 5.8), and the use of this function is strongly encouraged over CDFclose as it might not be
supported in the future. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the case of a
multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

6.2.1.1. Example(s)

The following example will close an open CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopenCDF ("giss_wetl", &id);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFcloseCDF (id);
if (status 'I= CDF_OK) UserStatusHandler (status);

6.2.2 CDFcreateCDF

CDFstatus CDFcreateCDF(/* out -- Completion status code. */
char *CDFname, [* in-- CDF file name. */
CDFid *id); /* out-- CDF identifier. */

CDFcreateCDF creates a CDF file. This function, a new and simple form of CDFcreate (see section 5.9 for details)
without the encoding and majority arguments, works just like the CDF creation function from the Internal Interface.

61

The created CDF will use the default encoding (HOST_ENCODING) and majority (ROW_MAJOR), specified in the
configuration file of your CDF distribution. A CDF cannot be created if it already exists. (The existing CDF will not
be overwritten.) If you want to overwrite an existing CDF, you can either manually delete the file or open it with
CDFopenCDF ,delete it with CDFdeleteCDF, and then recreate it with CDFcreateCDF. If the existing CDF is
corrupted, the call to CDFopenCDF will fail. (An error code will be returned.) In this case you must delete the CDF at
the command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format,
delete all of the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 5 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.8).

6.2.2.1. Example(s)

The following example creates a CDF named “testl.cdf” with the default encoding and majority.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFcreateCDF (“testl", &id);
if (status '= CDF_OK) UserStatusHandler (status);

CDFclose (id);

62

6.2.3 CDFdeleteCDF

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in-- CDF identifier. */

CDFdeleteCDF deletes the specified CDF. This function is identical to the original Standard Interface function
CDFdelete (see section 5.10), and the use of this function is strongly encouraged over CDFdelete as it might not be
supported in the future. The CDF files deleted include the dotCDF file (having an extension of .cdf), and if a multi-file
CDF, the variable files (having extensions of .v0,.v1,...and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopenCDF ("test2", &id);

if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);

else {
status = CDFdeleteCDF (id);
if (status '= CDF_OK) UserStatusHandler (status);

}

6.2.4 CDFgetCacheSize

CDFstatus CDFgetCacheSize (/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long *numBuffers); [* out -- CDF’s cache buffers. */

63

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

numBuffers The number of cache buffers.

6.2.4.1. Example(s)

The following example returns the cache buffers for the open CDF file.

#include "cdf.h"

CDFid id: /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; [* CDF’s cache buffers. */

status = CDFgetCacheSize (id, &numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.5 CDFgetCompression

CDFstatus CDFgetCompression (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long *compressionType, /* out -- CDF’s compression type. */
long compressionParmsl], [* out -- CDF’s compression parameters. */

long *compressionPercentage); /* out -- CDF’s compressed percentage. */

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 4.10.

The arguments to CDFgetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.

compressionParms The paramters of the compression.

64

compressionPercentage The compression rate.

6.2.5.1. Example(s)

The following example returns the compression information of the open CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long compressionType; [* CDF’s compression type. */

long compressionParms[CDF_MAX_PARMS] /* CDF’s compression parameters. */
long compressionPercentage; /* CDF’s compression rate. */

status = CDFgetCompression (id, &compression, compressionParms, &compressionPercentage);
if (status '= CDF_OK) UserStatusHandler (status);

if (compressionType == NO_COMPRESSION) {

6.2.6 CDFgetCompressionCacheSize

CDFstatus CDFgetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long *numBuffers); /* out -- CDF’s compressed cache buffers. */

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching schme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.6.1. Example(s)

65

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; [* CDF’s compression cache buffers. */

status = CDFgetCompressionCacheSize (id, &numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.7 CDFgetCompressioninfo

CDFstatus CDFgetCompressioninfo (/* out -- Completion status code. */

char *CDFname, /* in-- CDF name. */

long *cType, /* out -- CDF compression type. */

long cParms[]. /* out -- CDF compression parameters. */
OFF_T *cSize. /* out -- CDF compressed size. */
OFF_T *uSize); [* out -- CDF decompressed size. */

CDFgetCompressioninfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressioninfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.

cType The CDF compression type.

cParms The CDF compression parameters.

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

6.2.7.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

#include "cdf.h"

66

CDFstatus status; /* Returned status code. */

long cType; /* Compression type. */

long cParms[CDF_MAX_PARMS]; /* Compression paramters. */
OFF_T cSize; [* Compressed file size. */
OFF_T uSize; /* Decompressed file size. */

status = CDFgetCompressioninfo(*“MY_TEST”, &cType, cParms, &cSize, &uSize);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.8 CDFgetCopyright

CDFstatus CDFgetCopyright ([* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */

char *Copyright); [* out -- Copyright notice. */
CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Copyright CDF Copyright. This character string must be large enough to hold
CDF_COPYRIGHT_LEN + 1 characters (including the NUL terminator).

6.2.8.1. Example(s)

The following example returns the Copyright in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

char Copyright{fCDF_COPYRIGHT_LEN+1]; /* CDF’s Copyright. */

status = CDFgetCopyright (id, Copyright);
if (status '= CDF_OK) UserStatusHandler (status);

67

6.2.9 CDFgetDecoding

CDFstatus CDFgetDecoding (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long *decoding); [* out -- CDF decoding. */

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 4.7.

The arguments to CDFgetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

6.2.9.1. Example(s)

The following example returns the decoding for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long decoding; /* Decoding. */

status = CDFgetDecoding(id, &decoding);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.10 CDFgetEncoding

CDFstatus CDFgetEncoding (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long *encoding); [* out -- CDF encoding. */

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 4.6.

The arguments to CDFgetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

68

6.2.10.1. Example(s)

The following example returns the data encoding used for the given CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */

status = CDFgetEncoding(id, &encoding);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.11 CDFgetFormat

CDFstatus CDFgetFormat (/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
long *format); [* out -- CDF format. */

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.
The arguments to CDFgetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

6.2.11.1. Example(s)

The following example returns the file format of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; [* Format. */

69

status = CDFgetFormat(id, &format);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.12 CDFgetMajority

CDFstatus CDFgetMajority (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *majority); [* out -- Variable majority. */

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDFgetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

6.2.12.1. Example(s)

The following example returns the majority of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long majority; [* Majority. */

status = CDFgetMajority (id, &majority);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.13 CDFgetName

CDFstatus CDFgetName (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
char *name); /* out -- CDF name. */

70

CDFgetName returns the file name of the specified CDF.
The arguments to CDFgetName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

6.2.13.1. Example(s)

The following example returns the name of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char name[CDF_PATHNAME_LEN]; /* Name of the CDF. */

status = CDFgetName (id, name);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.14 CDFgetNegtoPosfpOMode

CDFstatus CDFgetNegtoPosfpOMode (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *negtoPosfp0); /* out -- -0.0 to 0.0 mode. */

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 function to set
the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

6.2.14.1. Example(s)

71

The following example returns the —0.0 to 0.0 mode of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long negtoPosfpo0; /* -0.0to 0.0 mode. */

status = CDFgetNegtoPosfpOMode (id, &negtoPosfp0);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.15 CDFgetReadOnlyMode

CDFstatus CDFgetReadOnlyMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *readOnlyMode); /* out -- CDF read-only mode. */

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 4.13.

The arguments to CDFgetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode (READONLYon or READONLY off).

6.2.15.1. Example(s)

The following example returns the read-only mode for the given CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */

status = CDFgetReadOnlyMode (id, &readMode);
if (status != CDF_OK) UserStatusHandler (status);

72

6.2.16 CDFgetStageCacheSize

CDFstatus CDFgetStageCacheSize(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *numBuffers); [* out -- The stage cache size. */

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scatch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.16.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */

status = CDFgetStageCacheSize (id, &numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.17 CDFgetVersion

CDFstatus CDFgetVersion(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long *version, [* out -- CDF version. */

long *release, /* out -- CDF release. */

long *increment); [* out -- CDF increment. */

73

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

version The CDF version number.

release The CDF release number.

increment The CDF increment number.

6.2.17.1. Example(s)

In the following example, a CDF’s version/release is acquired.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long version; [* CDF version. */

long release; [* CDF release */

long increment; [* CDF increment. */

status = CDFgetVersion (id, &version, &release, &increment);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.18 CDFgetzMode

CDFstatus CDFgetzMode(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long *zMode); /* out-- CDF zMode. */

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 4.14.
The arguments to CDFgetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

74

6.2.18.1. Example(s)

In the following example, a CDF’s zMode is acquired.

#include "cdf.h"

CDFid
CDFstatus
long

/* CDF identifier. */
/* Returned status code. */
/* CDF zMode. */

status = CDFgetzMode (id, &zMode);
if (status '= CDF_OK) UserStatusHandler

6.2.19 CDFinquireCDF

CDFstatus CDFinquireCDF(I*
CDFid id, *
long *numDims, I*
long dimSizes[CDF_MAX_DIMS], I*
long *encoding, I*
long *majority, I*
long *maxrRec, I*
long *numrVars, I*
long *maxzRec, I*
long *numzVars, I*
long *numAittrs); I*

(status);

out --

Completion status code. */

in -- CDF identifier */

out --
out --
out --
out --
out --
out --
out --
out --
out --

Number of dimensions for rVariables. */

Dimension sizes for rVariables. */

Data encoding. */

Variable majority. */

Maximum record number among rVariables in the CDF. */
Number of rVariables in the CDF. */

Maximum record number among zVariables in the CDF. */
Number of zVariables in the CDF. */

Number of attributes in the CDF. */

CDFinquireCDF returns the basic characteristics of a CDF. This function expands the original Standard Interface
function CDFinquire by acquiring extra information regarding the zVariables. Knowing the variable majority can be
used to optimize performance and is necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id

numDims

dimSizes

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

The dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension
sizes in the same CDF file must be the same). dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but

must be present).

75

encoding
majority

maxrRec

numrVars

maxzRec

numzVars

numaAttrs

6.2.19.1. Example(s)

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

#include "cdf.h"

CDFid id;
CDFstatus status;
long numDims;

/* CDF identifier. */
/* Returned status code. */
/* Number of dimensions, rVariables. */

long dimSizes[CDF_MAX_DIMS]; [* Dimension sizes, rVariables (allocate to allow the

long encoding;
long majority;
long maxrRec;
long numrVars;
long maxzRec;
long numzVars;
long numaAttrs;

maximum number of dimensions). */
[* Data encoding. */
[* Variable majority. */
/* Maximum record number, rVariables. */
/* Number of rVariables in CDF. */
/* Maximum record number, zVariables. */
/* Number of zVariables in CDF. */
/* Number of attributes in CDF. */

status = CDFinquireCDF (id, &nhumDims, dimSizes, &encoding, &majority,

&maxrRec, &numrVars, &maxzRec, &numzVars, &numAttrs);

if (status '= CDF_OK) UserStatusHandler (status);

76

6.2.20 CDFopenCDF

CDFstatus CDFopenCDF(/* out -- Completion status code. */
char *CDFname, [* in-- CDF file name. */
CDFid *id); /* out-- CDF identifier. */

CDFopenCDF opens an existing CDF. This function is identical to the original Standard Interface function CDFopen
(see section 5.16), and the use of this function is strongly encouraged over CDFopen as it might not be supported in the
future. The CDF is initially opened with only read access. This allows multiple applications to read the same CDF
simultaneously. When an attempt to modify the CDF is made, it is automatically closed and reopened with read/write
access. The function will fail if the application does not have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

6.2.20.1. Example(s)

The following example will open a CDF named “NOAAL.cdf”.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

static char CDFname[] = { "NOAAL" }; /* file name of CDF. */

status = CDFopenCDF (CDFname, &id);
if (status '= CDF_OK) UserStatusHandler (status);

77

6.2.21 CDFsetCacheSize

CDFstatus CDFsetCacheSize (/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long numBuffers); [* in-- CDF’s cache buffers. */

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of he scache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.21.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300
for a single-file format CDF on Unix systems.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long cacheBuffers; /* CDF’s cache buffers. */

cacheBuffers = 500L;
status = CDFsetCacheSize (id, cacheBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.22 CDFsetCompression

CDFstatus CDFsetCompression (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long compressionType, /* in-- CDF’s compression type. */
long compressionParmsl]); /* in-- CDF’s compression parameters. */

CDFsetCompression specifies the compression type and paramters for a CDF. This compression refers to the CDF, not
of any variables. The compressions are described in Section 4.10.

The arguments to CDFsetCompression are defined as follows:

78

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

compressionParms The compression paramters.

6.2.22.1. Example(s)

The following example uses GZIP.9 to compress the CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionType; [* CDF’s compression type. */

long compressionParms[CDF_MAX_PARMS] /* CDF’s compression parameters. */

compressionType = GZIP_COMPRESSION,;

compressionParms[0] = 9L;

status = CDFsetCompression (id, compression, compressionParms);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.23 CDFsetCompressionCacheSize

CDFstatus CDFsetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
long compressionNumBuffers); /* in-- CDF’s compressed cache buffers. */

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers The number of cache buffers.

79

6.2.23.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

#include "cdf.h"

CDFid id; [* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionNumBuffers; [* CDF’s compression cache buffers. */

compressionNumBuffers = 100L;
status = CDFsetCompressionCacheSize (id, compressionNumBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.24 CDFsetDecoding

CDFstatus CDFsetDecoding (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long decoding); /* in-- CDF decoding. */

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 4.7.

The arguments to CDFsetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of a CDF.

6.2.24.1. Example(s)

The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long decoding; /* Decoding. */

80

decoding = NETWORK_DECODING;
status = CDFsetDecoding (id, decoding);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.25 CDFsetEncoding

CDFstatus CDFsetEncoding (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long encoding); /* in-- CDF encoding. */

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 4.6.

The arguments to CDFsetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

6.2.25.1. Example(s)

The following example sets the encoding to HOST_ENCODING for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */

encoding = HOST_ENCODING;
status = CDFsetEncoding(id, encoding);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.26 CDFsetFormat

CDFstatus CDFsetFormat (/* out -- Completion status code. */

81

CDFid id, /* in -- CDF identifier. */
long format); /* in-- CDF format. */

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 4.4.

The arguments to CDFsetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

6.2.26.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format. */

format = MULTI_FILE;
status = CDFsetFormat(id, format);
if (status != CDF_OK) UserStatusHandler (status);

6.2.27 CDFsetMajority

CDFstatus CDFsetMajority (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long majority); [* in-- CDF variable majority. */

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 4.8.

The arguments to CDFsetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

82

6.2.27.1. Example(s)

The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long majority; I* Majority. */

majority = COLUMN_MAJOR,;
status = CDFsetMajority (id, majority);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.28 CDFsetNegtoPosfpOMode

CDFstatus CDFsetNegtoPosfpOMode (/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
long negtoPosfp0); /* in-- -0.0 to 0.0 mode. */

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
4.15.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

6.2.28.1. Example(s)

The following example sets the —0.0 to 0.0 mode to ON for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long negtoPosfpo0; /* -0.0to 0.0 mode. */

83

negtoPosfp0 = NEGtoPOSfpOon;
status = CDFsetNegtoPosfpOMode (id, negtoPosfp0);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.29 CDFsetReadOnlyMode

CDFstatus CDFsetReadOnlyMode(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */

long readOnlyMode); /* in-- CDF read-only mode. */

CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 4.13.
The arguments to CDFsetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode.

6.2.29.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */

readMode = READONLY off;
status = CDFsetReadOnlyMode (id, readMode);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.30 CDFsetStageCacheSize

CDFstatus CDFsetStageCacheSize(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long numBuffers); /* in -- The stage cache size. */

84

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scatch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.30.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */

numBufffers = 10L;
status = CDFsetStageCacheSize (id, numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.2.31 CDFsetzMode

CDFstatus CDFsetzMode(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long zMode); /* in-- CDF zMode. */

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 4.14 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVVariables or 2) rVVariables and zVariables. If you want to treat rVariables as zVariables, it’s highly
recommended to set the value of zMode to zZMODEoN2.

The arguments to CDFsetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

85

zMode The CDF zMode.

6.2.31.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long zMode; [* CDF zMode. */

zMode = zMODEoN2;
status = CDFsetzMode (id, zMode);
if (status '= CDF_OK) UserStatusHandler (status);

6.3 Variable

The functions in this section provides CDF variable-specific functions. A variable is identified by its unique name in a
CDF or a variable number. Before you can perform any operation on a variable, the CDF in which it resides in must be
opened.

6.3.1 CDFclosezVar

CDFstatus CDFclosezVar(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
long varNum) [* in -- zVariable number. */

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

86

varNum The variable number for the open zVariable’s file. This identifier must have been initialized by a call
to CDFcreatezVar or CDFgetVarNum.

6.3.1.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; [* zVariable number. */

varNum = CDFgetVarNum (id, “VAR_NAME1");
if (varNum < CDF_OK) QuitError(.......);

status = CDFclosezVar (id, varNum);
if (status != CDF_OK) UserStatusHandler (status);

6.3.2 CDFconfirmzVarExistence

CDFstatus CDFconfirmzVarExistence(/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
Char *varName); [* in-- zVariable name. */

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The zVariable name to check.

6.3.2.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

87

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFconfirmzVarExistence (id, “MY_VAR™);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.3 CDFconfirmzVarPadValueExistence

CDFstatus CDFconfirmzVarPadValueExistence(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long varNum) /* in -- zVariable number. */
CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

6.3.3.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */

varNum = CDFgetVarNum(id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

status = CDFconfirmzVarPadValueExistence (id, varNum);
if (status '= NO_PADVALUE_SPECIFIED) {

88

6.3.4 CDFcreatezVar

CDFstatus CDFcreatezVar(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

char *varName, [* in-- zVariable name. */

long dataType, /* in-- Data type. */

long numElements, /* in -- Number of elements (of the data type). */
long numDims, /* in-- Number of dimensions. */

long dimSizes|[], /* in -- Dimension sizes */

long recVariance, /* in-- Record variance. */

long dimVariances|[], /* in -- Dimension variances. */

long *varNum); [* out -- zVariable number. */

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id

varName

dataType

numElements

numDims

dimSizes

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The name of the zVariable to create. This may be at most CDF_ VAR_NAME_LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

The data type of the new zVariable. Specify one of the data types defined in Section 4.5.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF_MAX_DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional zVariables this
argument is ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 4.9.

The zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

The number assigned to the new zVariable. This number must be used in subsequent

CDF function calls when referring to this zVariable. An existing zVariables's number
may be determined with the CDFgetVarNum function.

89

6.3.4.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and
LON are 2-diemnational, and TMP is a 1-dimensional.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */
static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys[1] = {NOVARY}; /* EPOCH dimension variances. */
static long LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
static long LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
static long TMPdimVarys[2] = {VARY,VARY}, [* TMP dimension variances. */
long EPOCHvarNum; [* EPOCH zVariable number. */
long LATvarNum; /* LAT zVariable number. */
long LONvarNum; /* LON zVariable number. */
long TMPvarNum; [* TMP zVariable number. */
staticlong ~ EPOCHdimSizes[1] = {3}; /* EPOCH dimension sizes. */
staticlong ~ LATLONdimSizes[2] = {2,3} /* LAT/LON dimension sizes. */

staticlong TMPdimSizes[1] = {3}; /* TMP dimension sizes. */

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, OL, EPOCHdimSizes, EPOCHrecVary,
EPOCHdimVarys, &EPOCH varNum);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1, 2L, LATLONdimSizes,LATrecVary,
LATdimVarys, &LATvarNum);

if (status '= CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "LONGITUDE", CDF_INT2, 1, 2L, LATLONdimSizes, LONrecVary,
LONdimVarys, &LONvarNum);

if (status !I= CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "TEMPERATURE", CDF _REAL4, 1, 1L, TMPdimSizes, TMPrecVary,

TMPdimVarys, & TMPvarNum);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.5 CDFdeletezVar

CDFstatus CDFdeletezVar(/* out -- Completion status code. */

90

CDFid id, /* in-- CDF identifier. */
long varNum); /* in -- zVariable identifier. */

CDFdeletezVar deletes the specified zVariable from a CDF.
The arguments to CDFdeletezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to be deleted.

6.3.5.1. Example(s)

The following example deletes the zVariable named MY_VAR in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; [* zVariable number. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

status = CDFdeletezVar (id, varNum);

if (status '= CDF_OK) UserStatusHandler (status);

6.3.6 CDFdeletezVVarRecords

CDFstatus CDFdeletezVVarRecords(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long varNum, [* in-- zVariable identifier. */
long startRec, /* in -- Starting record number. */
long endRec); /* in -- Ending record number. */

CDFdeletezVVarRecords deletes a range of data records from the specified zVariable in a CDF.
The arguments to CDFdeletezVVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.

91

startRec The starting record number to delete.

endRec The ending record number to delete.

6.3.6.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; [* zVariable number. */
long startRec; /* Starting record number. */
long endRec; /* Ending record number. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

startRec = 10L;

endRec = 20L;

status = CDFdeletezVarRecords (id, varNum, startRec, endRec);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.7 CDFgetMaxWrittenRecNums

CDFstatus CDFgetMaxWrittenRecNums (/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long *rVarsMaxNum, [* out -- Maximum record number among all rVariables. */
long *zVarsMaxNum); [* out -- Maximum record number among all zVariables. */

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

rvVarsMaxNum The maximum record number among all rVariables.

92

zVarsMaxNum The maximum record number among all zVariables.

6.3.7.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long rVarsMaxNum; /* Maximum record number among all rVariables. */
long zVVarsMaxNum; /* Maximum record number among all zVariables. */

status = CDFgetMaxWrittenRecNums (id, &rVarsMaxNum, &zVarsMaxNum);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.8 CDFgetNumrVars

CDFstatus CDFgetNumrVars (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long *numVars); [* out -- Total number of rVariables. */
CDFgetNumrVars returns the total number of rVVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of rVariables.

6.3.8.1. Example(s)

The following example returns the total number of rVariables in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */

93

CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

status = CDFgetNumrVars (id, &numVars);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.9 CDFgetNumzVars

CDFstatus CDFgetNumzVars (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long *numVars); [* out -- Total number of zVariables. */
CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of zVariables.

6.3.9.1. Example(s)

The following example returns the total number of zVariables in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

status = CDFgetNumzVars (id, &numVars);
if (status '= CDF_OK) UserStatusHandler (status);

94

6.3.10 CDFgetVarNum*

long CDFgetVarNum(/* out -- Variable number. */

CDFid id, [* in-- CDF identifier. */

char *varName); /* in-- Variable name. */

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than
zero (0). The returned variable number should be used in the functions of the same variable type, rVariable or
zVariable. If it is an rVariable, functions dealing with r\Variables should be used. Similarly, functions for zVariables
should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName The name of the variable to search. This may be at most CDF_VAR_NAME_LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

6.3.10.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zZVariable.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR_NAME_LEN256+1]; /* Variable name. */

long dataType; /* Data type of the zVariable. */

long numElements; /* Number of elements (of the data type). */
long numDims; /* Number of dimensions. */

long dimSizes[CDF_MAX_DIMS]; [* Dimension sizes. */

long recVariance; /* Record variance. */

long dimVariances| CDF_MAX_DIMS]; [* Dimension variances. */

status = CDFinquirezVar (id, CDFgetVarNum(id,"LATITUDE"), varName, &dataType,
&numElements, &numDims, dimSizes , &recVariance, dimVariances);
if (status '= CDF_OK) UserStatusHandler (status);

! Expaned from the original Standard Interface function CDFvarNum that returns the rVariable number. Since no two
variables, either rVVariable or zVariable, can have the same name, this function now returns the variable number for the
given rVariable or zVariable name (if the variable name exists in a CDF).

95

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 6.3.36.

6.3.11 CDFgetzVarAllocRecords

CDFstatus CDFgetzVarAllocRecords(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long *numRecs); [* out -- Allocated number of records. */

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of allocated records.

6.3.11.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; [* zVariable number. */
long numRecs; [* The allocated records. */

;/arNum = CDFgetVarNum (id, “MY_VAR");
if (varNum < CDF_OK) Quit (*“....”);

status = CDFgetzVarAllocRecords (id, varNum, &numRecs);
if (status '= CDF_OK) UserStatusHandler (status);

96

6.3.12 CDFgetzVarBlockingFactor

CDFstatus CDFgetzVarBlockingFactor(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long *bf); [* out -- Blocking factor. */

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor will be
used.

6.3.12.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */

long bf; /* The blocking factor. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarBlockingFactor (id, varNum, &bf);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.13 CDFgetzVVarCacheSize

CDFstatus CDFgetzVarCacheSize(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long *numBuffers); /* out -- Number of cache buffers. */

97

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching schme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

6.3.13.1. Example(s)

The following example returns the number of cache buffers for zVVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numBuffers; /* The number of cache buffers. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarCacheSize (id, varNum, &numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.14 CDFgetzVarCompression

CDFstatus CDFgetz\VVarCompression(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long varNum, [* in -- Variable number. */

long *cType, /* out -- Compression type. */

long cParms[], /* out -- Compression parameters. */
long *cPct); /* out -- Compression percentage. */

CDFgetzVVarCompression returns the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for a description of the CDF supported compression types/parameters.

The arguments to CDFgetzVVarCompression are defined as follows:

98

varNum
cType
cParms

cPct

6.3.14.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The zVariable number.

The compression type.

The compression parameters.

The percentage of the uncompressed size of zVariable’s data values needed to store the
compressed value. It’s the compression rate for that chunk of the variable data.

The following example returns the compression inofmation for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id;
long varNum;
long cType;

[* CDF identifier. */
[* zVariable number. */
/* The compression type. */

long cParms[CDF_MAX_PARMS]; [* The compression parameters. */

long cPct;

/* The compression percentage. */

varNum = CDFgetVarNum (id, “MY_VAR");
if (varNum < CDF_OK) Quit (“....”);

status = CDFgetzVVarCompression (id, varNum, &cType, cParms, &cPct);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.15 CDFgetzVarData

CDFstatus CDFgetzVarData(I*

CDFid id,
long varNum,
long recNum,
long indices[],
void *value);

/*
/*
/*
/*
/*

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

in -- Record number. */

in -- Dimension indices. */

out -- Data value. */

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

99

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

6.3.15.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record O from zVariable
“MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; /* zVariable number. */
long recNum; /* The record number. */
long indices[2]; [* The dimension indices. */

double valuel, value2; /* The data values. */

varNum = CDFgetVarNum (id, “MY_VAR");

if (varNum < CDF_OK) Quit (“....");

recNum = OL;

indices[0] = OL;

indices[1] = OL;

status = CDFgetzVarData (id, varNum, recNum, indices, &valuel);
if (status '= CDF_OK) UserStatusHandler (status);

indices[0] = 1L;

indices[1] = 1L;

status = CDFgetzVarData (id, varNum, recNum, indices, &value?2);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.16 CDFgetzVarDataType

CDFstatus CDFgetzVVarDataType(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *dataType); [* out -- Data type. */

100

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 4.5 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The data type.

6.3.16.1. Example(s)

The following example returns the data type of zVVariable “MY_VAR” ina CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */

long dataType; [* The data type. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (“....");

status = CDFgetzVarDataType (id, varNum, &dataType);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.17 CDFgetzVarDimSizes

CDFstatus CDFgetzVVarDimSizes(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long dimSizes[]); [* out -- Dimension sizes. */

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVVarDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

101

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

6.3.17.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id: /* CDE identifier. */
long dimSizes|CDF_MAX_DIMS]; [* The dimension sizes. */

status = CDFgetzVarDimSizes (id, CDFgetVarNum(id, “MY_VAR?”), dimSizes);
if (status != CDF_OK) UserStatusHandler (status);

6.3.18 CDFgetzVarDimVariances

CDFstatus CDFgetzVVarDimVariances(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long dimVarys[]); [* out -- Dimension variances. */

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 4.9.

The arguments to CDFgetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

6.3.18.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

#include "cdf.h"

102

CDFid id; /* CDF identifier. */
long dimVarys[2]; /* The dimension variances. */

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys);
if (status != CDF_OK) UserStatusHandler (status);

6.3.19 CDFgetzVarMaxAllocRecNum

CDFstatus CDFgetzVVarMaxAllocRecNum(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */

long varNum, [* in -- Variable number. */

long *maxRec); [* out -- Maximum allocated record number. */

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.
The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The number of records allocated.

6.3.19.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status '= CDF_OK) UserStatusHandler (status);

103

6.3.20 CDFgetzVarMaxWrittenRecNum

CDFstatus CDFgetzVVarMaxWrittenRecNum (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long varNum, [* in -- Variable number. */

long *maxRec); [* out -- Maximum written record number. */

CDFgetzVarMaxWrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.
The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The maximum written record number.

6.3.20.1. Example(s)

The following example returns the maximum record number written for the zZVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.21 CDFgetzVarName

CDFstatus CDFgetzVVarName(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long varNum, [* in-- Variable number. */
char *varName); [* out -- Variable name. */

CDFgetzVVarName returns the name of the specified zVariable, by its number, in a CDF.
The arguments to CDFgetzVVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

104

varNum The zVariable number.

varName The name of the variable.

6.3.21.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

#include "cdf.h"

CDFid id; [* CDF identifier. */
long varNum; [* zVariable number. */
char varName[CDF_VAR_NAME_LEN256]; /* The name of the variable. */

varNum = 1L,
status = CDFgetzVVarName (id, varNum, varName);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.22 CDFgetzVarNumbDims

CDFstatus CDFgetzZVarNumDims(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numDims); [* out -- Number of dimensions. */

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.
The arguments to CDFgetzVarNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

numDims The number of dimensions.

6.3.22.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

105

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numDims; /* The dimensionality of the variable. */

status = CDFgetzVarNumDims (id, CDFgetVarNum(id, “MY_VAR”), &humDims);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.23 CDFgetzZVarNumElements

CDFstatus CDFgetzVVarNumElements(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numElems); /* out -- Number of elements. */

CDFgetzVVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).
The arguments to CDFgetzVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numElems The number of elements.

6.3.23.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numElems; /* The number of elements. */

status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR?”), &numElems);
if (status '= CDF_OK) UserStatusHandler (status);

106

6.3.24 CDFgetzVarNumRecsWritten

CDFstatus CDFgetzVarNumRecsWritten(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long *numRecs); /* out -- Number of written records. */

CDFgetzVarNumRecs returns the number of records written for the specified zVariable in a CDF. This number may
not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of written records.

6.3.24.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numRecs; /* The number of written records. */

status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR?”), &numRecs);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.25 CDFgetzVarPadValue

CDFstatus CDFgetzVarPadValue(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
void *value); [* out -- Pad value. */

107

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVVarPadValue or something similar from the Internal Interface function, the
informational status code NO_PADVALUE_SPECIFIED will be returned and the default pad value for the variable’s
data type will be placed in the pad value buffer provided.

The arguments to CDFgetzVarPadvalue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

6.3.25.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

#include "cdf.h"

CDFid id: /* CDE identifier. */
int padValue; /* The pad value. */

status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), &padValue);
if (status '= NO_PADVALUE_SPECIFIED) {

6.3.26 CDFgetzVarRecordData

CDFstatus CDFgetzVVarRecordData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long recNum, /* in -- Record number. */
void *buffer); [* out -- Record data. */

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

108

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

6.3.26.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; [* zVariable number. */

int *bufferl; [* The data holding buffer — dynamical allocation. */
int buffer2[2][3]; [* The data holding buffer — static allocation. */
long size;

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

status = CDFgetDataTypeSize (CDF_INT4, &size);

bufferl = (int *) malloc(2*3*(int)size);

status = CDFgetzVarRecordData (id, varNum, 2L, bufferl);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFgetzVarRecordData (id, varNum, 5L, buffer2);
if (status '= CDF_OK) UserStatusHandler (status);

free (bufferl);

6.3.27 CDFgetzVarRecVariance

CDFstatus CDFgetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long *recVary); /* out -- Record variance. */

CDFgetzVarRecVariance returns the record variance of the specified zVariable in a CDF. The record variances are
described in Section 4.9.

The arguments to CDFgetzVarRecVariance are defined as follows:

109

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

6.3.27.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long *recVary; /* The record variance. */

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), &recVary);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.28 CDFgetzVVarReservePercent

CDFstatus CDFgetzVVarReservePercent(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long *percent); [* out -- Reserve percentage. */

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

6.3.28.1. Example(s)

110

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

#include "cdf.h"

CDFid id; [* CDF identifier. */
long *percent; [* The compression reserve percentage. */

status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), &percent);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.29 CDFgetzVarSeqData

CDFstatus CDFgetzVVarSeqData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
void *value); [* out -- Data value. */

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSegPos function to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data.

value The buffer to store the value.

6.3.29.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; [* The variable number from which to read data */
int valuel, value2; [* The data value. */

111

long indices[2]; /* The indices in a record. */
long recNum; [* The record number. */

recNum = 2L;

indices[0] = OL;

indices[1] = OL;

status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &valuel);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &value?2);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.30 CDFgetzVarSeqPos

CDFstatus CDFgetzVVarSeqPos(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *recNum, /* out -- Record number. */
long indices[]); [* out -- Indices in a record. */

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential calue is maintained for each zVariable individually. Use CDFsetzVarSeqPos
function to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional zVariable, this argument is ignored, but must be presented.

6.3.30.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY_VAR in a CDF.

#include "cdf.h"

112

CDFid id; /* CDF identifier. */
long recNum; /* The record number. */
long indices[2]; /* The indices. */

status = CDFgetzVarSeqPos (id, CDFgetVarNum(id, “MY_VAR?”), &recNum, indices);
if (status != CDF_OK) UserStatusHandler (status);

6.3.31 CDFgetzVarsMaxWrittenRecNum

CDFstatus CDFgetzVVarsMaxWrittenRecNum(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *recNum); [* out -- Maximum record number. */

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zVariable may be acquired using the CDFgetzVarMaxWrittenRecNum function call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written recod number.

6.3.31.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long recNum; /* The maximum record number. */

status = CDFgetzVarsMaxWrittenRecNum (id, &recNum);
if (status != CDF_OK) UserStatusHandler (status);

113

6.3.32 CDFgetzVarSparseRecords

CDFstatus CDFgetzVarSparseRecords(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- The variable number. */
long *sRecordsType); [* out -- The sparse records type. */

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 4.11.1 for the
description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

6.3.32.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long sRecordsType; /* The sparse records type. */

status = CDFgetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR”), &sRecordsType);
if (status != CDF_OK) UserStatusHandler (status);

6.3.33 CDFgetzVarsRecordDatabyNumbers

CDFstatus CDFgetzVarsRecordDatabyNumbers(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long numVars, /*in -- Number of zVariables. */

long varNums[], [*in -- zVariables’ numbers. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; [* out -- Buffer of pointers for holding data. */

114

CDFgetzVarsRecordDatabyNumbers reads an entire record of the specified record number from the specified zVariable
numbers in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables,
instead of doing it one variable at a time if calling the lower-level function. The retrieved record data from the
zVariable group is filled into its respective buffer. The specifed variables are identified by their variable numbers. Use
the CDFgetzVarsRecordData function to perform the same operation by providing the variable names, instead of the
variable numbers.

The arguments to CDFgetzVarsRecordDatabyNumbers are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.

varNums The zVariables’ numbers from which to read data.

varRecNum The record number at which to read data.

buffers An array of buffer pointers that point to the data holding areas for the retrieved data for the given
zVariables. Each holding area should be big enough to allow full physical record data to fill.

6.3.33.1. Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type
CDF_INTA4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 4; /* Number of zVariables to read. */
long varRecNum = 5; /* The record number to read data. */
char *zVarl = "Longitude”, /* Names of the zVariables to read. */

*zVar2 = "Delta",
*zVar3 = "Time",
*zVar4d = "Name";

long varNums[4];
void *buffptrs[4]; [* Array of buffer pointers. */
unsigned int time[3][2]; /* zVariable: Time; Datatype: UINT4. */
/* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
short longitude[3]; [* zVariable: Longitude; Datatype: INT2. */
/* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
int delta[3][2]; /* zVariable: Delta; Datatype: INT4. */

/* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */

115

char name[2][10]; [* zVariable: Name; Datatype: CHAR/10. */
/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

varNums[0] = CDFgetVarNum(id, zVVarl); /* Number of each zVariable. */
varNums[1] = CDFgetVarNum(id, zVVar2);
varNums[2] = CDFgetVarNum(id, zVar3);
varNums[3] = CDFgetVarNum(id, zVar4);

buffptrs[0] = (void *) &longitude; [* Address of each zVariable buffer. */
buffptrs[1] = (void *) δ

buffptrs[2] = (void *) &time;

buffptrs[3] = (void *) &name;

status = CDFgetzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffptrs);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.34 CDFhyperGetzVarData

CDFstatus CDFhyperGetzVarData(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long varNum, [* in-- zVariable number. */

long recStart, /* in -- Starting record number. */

long recCount, /* in -- Number of records. */

long recinterval, /* in -- Reading interval between records. */

long indices[], /* in -- Dimension indices of starting value. */
long counts|[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Reading intervals along each dimension. */
void *buffer); /* out -- Buffer of values. */

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this function because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recinterval) should be 0, 5, and 1,
respectively.

The arguments to CDFhyperGetzVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start reading.

recCount The number of records to read.

116

recinterval

indices

counts

intervals

buffer

The reading interval between records (e.g., an interval of 2 means read every other record).

The dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For O-dimensional zVariable, this argument is
ignored (but must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value.

6.3.34.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes [180,91,10] and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the data type
is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

#include "cdf.h"

CDFid
CDFstatus
float

long

long

long

long
static long
static long
static long

id; /* CDF identifier. */

status; /* Returned status code. */
tmp[180][91][10]; [* Temperature values. */

varN; [* zVariable number. */

recStart = 13; [* Start record number. */

recCount = 3; /* Number of records to read */
recinterval = 1; /* Record interval — read every record */
indices[3] = {0,0,0}; /* Dimension indices. */

counts[3] = {180,91,10}; /* Dimension counts. */

intervals[3] = {1,1,1}; /* Dimension intervals — read every value*/

varN = CDFgetVarNum (id, "Temperature");

if (varN < CDF_OK) UserStatusHandler (varN);

status = CDFhyperGetzVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, tmp);
if (status '= CDF_OK) UserStatusHandler (status);

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

117

6.3.35 CDFhyperPutzVarData

CDFstatus CDFhyperPutzVarData(/* out -- Completion status code. */

CDFid id,

long varNum,
long recStart,
long recCount,
long reclnterval,
long indices[],
long counts|[],
long intervals|[],
void *buffer);

[* in-- CDF identifier. */

[* in-- zVariable number. */

[* in -- Starting record number. */

/* in -- Number of records. */

/* in -- Writing interval between records. */

/* in -- Dimension indices of starting value. */

/* in -- Number of values along each dimension. */
/* in -- Writing intervals along each dimension. */
[* in -- Buffer of values. */

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this function because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11™ record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,

and 1, respectively.

The arguments to CDFhyperPutzVarData are defined as follows:

id

varNum

recStart

recCount

reclnterval

indices

counts

intervals

buffer

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start writing.

The number of records to write.

The interval between records for writing (e.g., an interval of 2 means write every other record).
The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

The number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariable this argument is ignored (but must
be present).

For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.

For 0-dimensional zVariable this argument is ignored (but must be present).

The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

118

6.3.35.1. Example(s)

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with
dimension sizes [181]. The dimension variances are [VARY], and the data type is CDF_INT2. This example is similar
to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than numerous calls
to CDFputzVarData.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */
short lats[181]; /* Buffer of latitude values. */
long varN; [* zVariable number. */
long recStart = 0; /* Record number. */
long recCount = 2; /* Record counts. */

long recinterval = 1; /* Record interval. */
static long indices[] = {0}; /* Dimension indices. */
static long counts[] = {181}; /* Dimension counts. */
static long intervals[] = {1}; /* Dimension intervals. */

varN = CDFgetVarNum (id, "LATITUDE");
if (varN < CDF_OK) UserStatusHandler (varN); /* If less than zero (0), not a zVariable number but
rather a
warning/error code. */
for (lat = -90; lat <= 90; lat ++)
lats[90+lat] = lat;

status = CDFhyperPutzVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, lats);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.36 CDFinquirezVar

CDFstatus CDFinquirezVar(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long varNum, [* in -- zVariable number. */

char varName, [* out -- zVariable name. */

long *dataType, [* out -- Data type. */

long *numElements, [* out -- Number of elements (of the data type). */
long *numDims, [* out -- Number of dimensions. */

long dimSizes|[], /* out -- Dimension sizes */

long *recVariance, /* out -- Record variance. */

long dimVariances[]); /* out -- Dimension variances. */

119

CDFinquirezVar is used to inquire about the specified zVariable. This function would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName

dataType

numElements

numDims

dimSizes

recVariance

dimVariances

6.3.36.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 6.3.10).

The zVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LEN256 + 1 characters (including the NUL terminator).

The data type of the zVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 4.9. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about an zVariable named HEAT_FLUX in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR_NAME_LEN256+1]; /* zVariable name, +1 for NUL terminator. */
long dataType; [* Data type of the zVariable. */

long numElems; /* Number of elements (of data type). */

long recVary; /* Record variance. */

long numbDims; /* Number of dimensions. */

long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the

maximum number of dimensions). */

120

long dimVarys[CDF_MAX_DIMS]; /* Dimension variances (allocate to allow the
maximum number of dimensions). */

status = CDFinquirezVar(id, CDFgetVarNum(id,"HEAT_FLUX"), varName, &dataType,
&numElems, &numDims, dimSizes, &recVary, dimVarys);
if (status !I= CDF_OK) UserStatusHandler (status);

6.3.37 CDFputzVarData

CDFstatus CDFputzVarData(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in -- Data value. */

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

6.3.37.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; [* zVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */

double valuel, value2; /* The data values. */

121

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

recNum = OL;

indices[0] = OL;

indices[1] = OL;

valuel = 10.1;

status = CDFputzVarData (id, varNum, recNum, indices, &valuel);
if (status '= CDF_OK) UserStatusHandler (status);

indices[0] = 1L;

indices[1] = 1L;

value2 = 20.2;

status = CDFputzVarData (id, varNum, recNum, indices, &value?);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.38 CDFputzVarRecordData

CDFstatus CDFputzVarRecordData(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long recNum, /* in -- Record number. */

void *buffer); /* in -- Record data. */

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

6.3.38.1. Example(s)

The following example will write two full records (numbered 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2
by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

#include "cdf.h"

122

CDFid id: /* CDF identifier. */

long varNum; [* zVariable number. */

int *bufferl; [* The data holding buffer — dynamical allocation. */
int buffer2[2][3]; /* The data holding buffer — static allocation. */

long size;

intij;

varNum = CDFgetVarNum (id, “MY_VAR");
if (varNum < CDF_OK) Quit (“....”);
status = CDFgetDataTypeSize (CDF_INT4, &size);
bufferl = (int *) malloc(2*3*(int)size);
for (i=0; i<6; i++) *(((int *) bufferl)+i) = I;
status = CDFputzVarRecordData (id, varNum, 2L, bufferl);
if (status '= CDF_OK) UserStatusHandler (status);
for (i=0; i<2; I++)

for (j=0; j<3; j++)

buffer2[i][j] = i*j;

status = CDFputzVarRecordData (id, varNum, 5L, buffer2);
if (status '= CDF_OK) UserStatusHandler (status);

free (bufferl);

6.3.39 CDFputzVarSegData

CDFstatus CDFputzVarSegData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* in -- Data value. */

CDFputzVarSegData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos function to set the current sequential value (position).

The arguments to CDFputzVarSegData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The buffer holding the data value.

6.3.39.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4.

123

#include "cdf.h"

CDFid id; [* CDF identifier. */

long varNum; /* The variable number. */
int valuel, value2; [* The data value. */

long indices[2]; [* The indices in a record. */
long recNum; [* The record number. */
recNum = 2L;

indices[0] = OL;

indices[1] = OL;

status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status '= CDF_OK) UserStatusHandler (status);

status = CDFputzVarSeqData (id, varNum, &valuel);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFputzVarSeqData (id, varNum, &value2);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.40 CDFputzVarsRecordDatabyNumbers?

CDFstatus CDFputzVarsRecordDatabyNumbers(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long numVars, /*in -- Number of zVariables. */

long varNums[], [*in -- zVariables’s numbers. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; /* in -- Buffer of pointers for input data. */

CDFputzVarsRecordDatabyNumbers is used to write a whole record data at a specific record number for a group of
zVariables in a CDF. It expects that the data buffer for each zVariable matches up to the full physical record size.
Passed record data is filled into its respective zVariable. This function provides an easier and higher level interface to
write data for a group of variables, instead of doing it one variable at a time if calling the lower-level function. The
specifed variables are identified by their variable numbers. Use CDFputzVarsRecordData function to perform the
similar operation by providing the variable names, instead of the numbers.

The arguments to CDFputzVarsRecordDatabyNumbers are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this write operation.

varNums The zVariables’s numbers in the group involved this write operation.

2 An original Standard Interface function.

124

varRecNum The record number at which to write the whole record data for the group of zVariables.

buffers An array of buffer pointers that point to the data holding areas for the output data for the given
zVariables. Each buffer should hold a full physical record data.

6.3.40.1. Example(s)

The following example will write an entire single record data for a group of zVariables. The CDF's zVariables are 2-
dimensional with sizes [2,2]. The zVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar 1-dimensional
array is provided for Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

/* Dim/Rec Variances: T/TF. */

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numVars = 5; /* Number of zVariables to write. */
long varRecNum = 4; /* The record number to write data. */
char *zVarl ="Time", /* Names of the zVariables to write. */
*zVar2 = "Longitude",
*zVar3 = "Latitude",
*zVar4 = "Temperature",
*zVar5 = "NAME";
long varNums[5];
void *buffptrs[5]; [* Array of buffer pointers. */
int time = {123} [* zVariable: Time; Datatype: INT4. */
/* Dim/Rec Variances: T/FF. */
float longitude[2] = [* zVariable: Longitude; Datatype: REALA4. */
{11.1, 22.2}; /* Dim/Rec Variances: T/TF. */
float latitute[2] = [* zVariable: Latitude; Datatype: REAL4. */
{-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */
float temperature[2][2] = [* zVariable: Temperature; Datatype: REALA4. */
{100.0, 200.0, /* Dim/Rec Variances: T/TT. */
300.0, 400.0%;
char name[2][10] = [* zVariable: NAME; Datatype: CHAR/10. */

/* Dim/Rec Variances: T/TF. */

{1,'3,'5,'7,'9,'2,'4,'6', '8, 0,
IZ‘! IZ‘! Iy'! 'Y|! IXII 'XI! IW‘! IWI! IV'I lVI};

varNums[0] = CDFgetVarNum(id, zVarl);
varNums[1] = CDFgetVarNum(id, zVar2);
varNums[2] = CDFgetVarNum(id, zVar3);
varNums[3] = CDFgetVarNum(id, zVar4);
varNums[4] = CDFgetVarNum(id, zVVar5);

/* Number of each zVariable. */

buffptrs[0] = (void *) &time; /* Address of each zVariable buffer. */

125

buffptrs[1] = (void *) &longitude;
buffptrs[2] = (void *) &latitude;
buffptrs[3] = (void *) &temperature;
buffptrs[4] = (void *) &name;

status = CDFputzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffptrs);
if (status != CDF_OK) UserStatusHandler (status);

6.3.41 CDFrenamezVar

CDFstatus CDFrenamezVar(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long varNum, /* in -- zVariable number. */

char *varName); /* in-- New name. */

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.

varName The new zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters

(excluding the NUL terminator). Variable names are case-sensitive.

6.3.41.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather a warning/error
code.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; [* zVariable number. */

varNum = CDFgetVarNum (id, "TEMPERATURE");
if (varNum < CDF_OK) {

if (varNum !'= NO_SUCH_VAR) UserStatusHandler (varNum);
}

else {

126

status = CDFrenamezVar (id, varNum, "TMP");
if (status 1= CDF_OK) UserStatusHandler (status);

6.3.42 CDFsetzVVarAllocBlockRecords

CDFstatus CDFsetzVarAllocBlockRecords(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long firstRec, /* in -- First record numner. */
long lastRec); /* in -- Last record number. */

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allcoate.

6.3.42.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long firstRec, lastRec; /* The first/last record numbers. */

firstRec = 10L;

lastRec = 19L;

status = CDFsetzVVarAllocBlockRecords (id, CDFgetVarNum(id, “MY_VAR?”), firstRec, lastRec);
if (status '= CDF_OK) UserStatusHandler (status);

127

6.3.43 CDFsetzVVarAllocRecords

CDFstatus CDFsetzVarAllocRecords(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long varNum, [* in -- Variable number. */

long numRecs); /* in -- Number of records. */

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of records to allcoate.

6.3.43.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numRecs; [* The number of records. */

numRecs = 100L,;
status = CDFsetzVarAllocRecords (id, CDFgetVarNum(id, “MY_VAR”), numRecs);
if (status != CDF_OK) UserStatusHandler (status);

6.3.44 CDFsetzVarBlockingFactor

CDFstatus CDFsetzVarBlockingFactor(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long varNum, [* in -- Variable number. */
long bf); /* in -- Blocking factor. */

128

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

6.3.44.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id: /* CDE identifier. */
long bf; /* The blocking factor. */
bf = 100L:

status = CDFsetzVarBlockingFactor (id, CDFgetVarNum(id, “MY_VAR”), bf);
if (status != CDF_OK) UserStatusHandler (status);

6.3.45 CDFsetzVVarCacheSize

CDFstatus CDFsetzVarCacheSize(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching schme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

129

numBuffers The number of cache buffers.

6.3.45.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBuffers; /* The number of cache buffers. */

numBuffers = 10L;
status = CDFsetzVarCacheSize (id, CDFgetVarNum(id, “MY_VAR”), numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.46 CDFsetzVarCompression

CDFstatus CDFsetzVVarCompression(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long varNum, [* in -- Variable number. */

long cType, /* in -- Compression type. */

long cParmsl]); /* in -- Compression parameters. */

CDFsetzVVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 4.10 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetzVVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
cType The compression type.
cParms The compression parameters.

6.3.46.1. Example(s)

The following example sets the compression to GZIP.9 for zVariable “MY_VAR” in a CDF.

130

#include "cdf.h"

CDFid id; /* CDF identifier. */
long cType; /* The compression type. */
long cParms[CDF_MAX_PARMS]; [* The compression parameters. */

cType = GZIP_COMPRESSION;

cParms[0] = 9L;

status = CDFsetzVVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), cType, cParms);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.47 CDFsetzVVarDataSpec

CDFstatus CDFsetzVarDataSpec(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long datyeType) /* in -- Data type. */

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent to the old data type and any values (including the pad value) have been
written. Data specifications are considered equivalent if the data types are equivalent. Refer to the CDF User’s Guide
for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The new data type.

6.3.47.1. Example(s)

The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable
“MY_VAR” in a CDF.

#include "cdf.h"
CDFid id: /* CDF identifier. */

131

long dataType; [* The data type. */

dataType = CDF_INT2;
status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType);
if (status 'I= CDF_OK) UserStatusHandler (status);

6.3.48 CDFsetzVVarDimVariances

CDFstatus CDFsetzVarDimVariances(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long varNum, [* in -- Variable number. */

long dimVarys[]); /* in -- Dimension variances. */

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 4.9.

The arguments to CDFsetzVVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

6.3.48.1. Example(s)

The following example resets the dimension variances to true (VARY) and false (NOVARY) for zVariable
“MY_VAR?”, a 2-dimensional variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */

long dimVarys[2]; /* The dimension variances. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

dimVarys[0] = VARY;

dimVarys[1] = NOVARY;

status = CDFsetzVVarDimVariances (id, varNum, dimVarys);
if (status '= CDF_OK) UserStatusHandler (status);

132

6.3.49 CDFsetzVarlnitialRecs

CDFstatus CDFsetzVarlnitialRecs(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long numRecs); /* in -- Number of records. */

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarlnitialRecs are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The initially written records.

6.3.49.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum; [* zVariable number. */
long numRecs /* The number of records. */

varNum = CDFgetVarNum (id, “MY_VAR");

if (varNum < CDF_OK) Quit (*“....”);

numRecs = 100L;

status = CDFsetzVarlnitialRecs (id, varNum, numRecs);
if (status '= CDF_OK) UserStatusHandler (status);

133

6.3.50 CDFsetzVVarPadValue

CDFstatus CDFsetzVarPadValue(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long varNum, [* in -- Variable number. */
void *value); [* in -- Pad value. */

CDFsetzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFsetzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

6.3.50.1. Example(s)

The following example sets the pad value to —-9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
int padValue; [* The pad value. */

padValue = -9999L;
status = CDFsetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), &padValue);
if (status != CDF_OK) UserStatusHandler (status);

6.3.51 CDFsetzVVarRecVariance

CDFstatus CDFsetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long varNum, [* in -- Variable number. */

long recVary); /* in -- Record variance. */

CDFsetzVVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 4.9.

134

The arguments to CDFsetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

6.3.51.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long recVary; /* The record variance. */

recVary = VARY;
status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.52 CDFsetzVVarReservePercent

CDFstatus CDFsetzVarReservePercent(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, [* in -- Variable number. */
long percent); /* in -- Reserve percentage. */

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

135

6.3.52.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long percent; [* The reserve percentage. */

percent = 10L;
status = CDFsetzVVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.53 CDFsetzVVarsCacheSize

CDFstatus CDFsetzVarsCacheSize(/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetzVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

6.3.53.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.
#include "cdf.h"

CDFid id; /< CDF identifier. */
long numBuffers; /* The number of cache buffers. */

136

numBuffers = 10L;
status = CDFsetzVVarsCacheSize (id, numBuffers);
if (status '= CDF_OK) UserStatusHandler (status);

6.3.54 CDFsetzVarSeqPos

CDFstatus CDFsetzVarSeqPos(/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
long indices[]); /* in -- Indices in a record. */

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential calue is maintained for each zVariable individually. Use CDFgetzVarSegPos
function to get the current sequential value.

The arguments to CDFsetzVarSegPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional zVariable, this argument is ignored, but must be presented.

6.3.54.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum; [* The variable number. */
long recNum; /* The record number. */
long indices[2]; /* The indices. */

recNum = 2L,

indices[0] = OL;
indices[1] = OL;
status = CDFsetzVarSeqPos (id, varNum, recNum, indices);

137

if (status '= CDF_OK) UserStatusHandler (status);

6.3.55 CDFsetzVarSparseRecords

CDFstatus CDFsetzVarSparseRecords(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, [* in -- The variable number. */
long sRecordsType); [* in -- The sparse records type. */

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section
4.11.1 for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

sRecordsType The sparse records type.

6.3.55.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long sRecordsType; /* The sparse records type. */

sRecordsType = PAD_ SPARSERECORDS;
status = CDFsetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR”), sRecordsType);
if (status '= CDF_OK) UserStatusHandler (status);

6.4 Attributes/Entries

138

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

6.4.1 CDFconfirmAttrExistence

CDFstatus CDFconfirmAttrExistence(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */
char *attrName) [* in -- Attribute name. */

CDFconfirmAttrExistence confirms whether an atrribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, an error is returned.

The arguments to CDFconfirmAttrExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName The attribute name to check.

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR_NAMEL” is in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFconfirmAttrExistence (id, “ATTR_NAME1”);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.2 CDFconfirmgEntryExistence

CDFstatus CDFconfirmgEntryExistence(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, /* in-- Attribute number. */
long entryNum); [* in-- gEntry number. */

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned.

139

The arguments to CDFconfirmgEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (global) attribute number.

entryNum The gEntry number.

6.4.2.1. Example(s)

The following example checks the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; [* gEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 1L,

status = CDFconfirmgEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.3 CDFconfirmrEntryExistence

CDFstatus CDFconfirmrEntryExistence(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute number. */
long entryNum); [* in -- rEntry number. */

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.

140

entryNum The rEntry number.

6.4.3.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; /* rEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR");

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFconfirmrEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.4 CDFconfirmzEntryExistence

CDFstatus CDFconfirmzEntryExistence(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in -- Attribute number. */
long entryNum); [* in -- zEntry number. */

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The zEntry number.

141

6.4.4.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id,; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; [* zEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFconfirmzEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.5 CDFcreateAttr

CDFstatus CDFcreateAttr(/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */

char *attrName, /* in -- Attribute name. */

long attrScope, [* in -- Scope of attribute. */

long *attrNum); [* out -- Attribute number. */

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the original Standard Interface
function CDFattrCreate. An attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute to create. This may be at most COF_ATTR_NAME_LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

142

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char UNITSattrName[] = {"Units"}; /* Name of "Units" attribute. */
long UNITSattrNum; [* "Units" attribute number. */
long TITLEattrNum; [* "TITLE" attribute number. */

static long TITLEattrScope = GLOBAL_SCOPE; [* "TITLE" attribute scope. */

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, &TITLEattrNum);

if (status '= CDF_OK) UserStatusHandler (status);

status = CDFcreateAttr (id, UNITSattrName, VARIABLE _SCOPE, &UNITSattrnum);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.6 CDFdeleteAttr

CDFstatus CDFdeleteAttr(/* out -- Completion status code. */
CDFid id, [* in-- CDF identifier. */
long attrNum); [* in -- Attribute identifier. */

CDFdeleteAttr deletes the specified attribute from a CDF.
The arguments to CDFdeleteAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to be deleted.

6.4.6.1. Example(s)

The following example deletes an existing attribute named MY_ATTR from a CDF.

#include "cdf.h"

143

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) UserStatusHandler (status);
status = CDFdeleteAttr (id, attrNum);

if (status '= CDF_OK) UserStatusHandler (status);

6.4.7 CDFdeleteAttrgEntry

CDFstatus CDFdeleteAttrgEntry(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum); [* in-- gEntry identifier. */

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number from which to delete an attribute entry.

entryNum The gEntry number to delete.

6.4.7.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; /* gEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 5L;

status = CDFdeleteAttrgEntry (id, attrNum, entryNum);

144

if (status '= CDF_OK) UserStatusHandler (status);

6.4.8 CDFdeleteAttrrEntry

CDFstatus CDFdeleteAttrrEntry(/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum); [* in-- rEntry identifier. */

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The rEntry number.

6.4.8.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; /* rEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR1”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFdeleteAttrrEntry (id, attrNum, entryNum);
if (status 'I= CDF_OK) UserStatusHandler (status);

145

6.4.9 CDFdeleteAttrzEntry

CDFstatus CDFdeleteAttrzEntry(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum); [* in-- zEntry identifier. */

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number to be deleted that is the zVariable number.

6.4.9.1. Example(s)

The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable
MY_VARL.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; [* zEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARL1");

if (entryNum < CDF_OK) QuitError(....);

status = CDFdeleteAttrzEntry (id, attrNum, entryNum);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.10 CDFgetAttrgEntry

146

CDFstatus CDFgetAttrgEntry (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum, [* in -- gEntry number. */
void *value); /* out -- gEntry data. */

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrgEntry is used to read a
global attribute entry from a CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling
CDFgetAttrgEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The global attribute entry number.

value The value read. This buffer must be large enough to hold the value. The function

CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

6.4.10.1. Example(s)

The following example displays the value of the global attribute called HISTORY. Note that the CDF library does not
automatically NUL terminate character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries
(or variable values).

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; [* Attribute number. */

long entryN; [* Entry number. */

long dataType; [* Data type. */

long numeglems; /* Number of elements (of data type). */
void *puffer; [* Buffer to receive value. */

attrN = CDFattrNum (id, "HISTORY");

if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error
code. */
entryN = 0;

status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);
if (status != CDF_OK) UserStatusHandler (status);

147

if (dataType == CDF_CHAR) {
buffer = (char *) malloc (numElems + 1);
if (buffer == NULL)...

status = CDFgetAttrgEntry (id, attrN, entryN, buffer);
if (status '= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0’; /* NUL terminate. */
printf ("Units of PRES_LVL variable: %s\n", buffer);

free (buffer);
}

6.4.11 CDFgetAttrgentryDataType

CDFstatus CDFgetAttrgEntryDataType (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum, /* in-- gEntry number. */
long *dataType); [* out -- gEntry data type. */

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 4.5.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.

dataType The data type of the gEntry.

6.4.11.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

#include "cdf.h"
CDFid id: /* CDF identifier. */

148

CDFstatus status; /* Returned status code. */

long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */

long dataType; /* gEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 2L;

status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, &dataType);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.12 CDFgetAttrgeEntryNumElements

CDFstatus CDFgetAttrgEntryNumElements (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long attrNum, [* in-- Attribute identifier. */

long entryNum, [* in -- gEntry number. */

long *numElems); /* out -- gEntry’s number of elements. */

CDFgetAttrgentryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.
entryNum The gEntry number.

numElems The number of elements of the gEntry.

6.4.12.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” ina CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; /* gEntry number. */

149

long numElements; [* gEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR?”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 2L;

status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, &numElements);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.13 CDFgetAttrrEntry

CDFstatus CDFgetAttrrEntry (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum, /* in-- Entry number. */
void *value); /* out-- Entry data. */

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrrEntry is used to read an
rVariable attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntrylnquire before calling
CDFinquireAttrrEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The rVariable attribute entry number that is the rVVariable number from which the attribute is
read.

value The entry value read. This buffer must be large enough to hold the value. The function

CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

6.4.13.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

150

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; [* Attribute number. */

long entryN; [* Entry number. */

long dataType; [* Data type. */

long numElems; /* Number of elements (of data type). */
void *puffer; [* Buffer to receive value. */

attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error
code. */
entryN = CDFvarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */
if (entryN < CDF_OK) UserStatusHandler (entryN); [* 1f less than zero (0), then it must be a warning/error
code. */
status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);
if (status '= CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
buffer = (char *) malloc (numElems + 1);
if (ouffer == NULL)...

status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
if (status 1= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "0’ /* NUL terminate. */
printf ("Units of PRES_LVL variable: %s\n", buffer);

free (buffer);
}

6.4.14 CDFgetAttrMaxgEntry

CDFstatus CDFgetAttrMaxgEntry (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long *maxEntry); /* out-- The last gEntry number. */

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.

151

maxEntry The last gEntry number.

6.4.14.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */

long maxEntry; [* The last gEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxgEntry (id, attrNum, &maxEntry);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.15 CDFgetAttrMaxrEntry

CDFstatus CDFgetAttrMaxrEntry (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long *maxEntry); [* out -- The maximum rEntry number. */

CDFgetAttrMaxrEntry returns the last rEntry number (rVVariable number) to which the given variable attribute is
attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last rEntry number (rVVariable number) to which attrNum is attached..

6.4.15.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

152

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */

long maxEntry; [* The last rEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxrEntry (id, attrNum, &maxEntry);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.16 CDFgetAttrMaxzEntry

CDFstatus CDFgetAttrMaxzEntry (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long *maxEntry); [* out -- The maximum zEntry number. */

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

6.4.16.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY_ATTR ina CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

153

long attrNum; /* Attribute number. */
long maxEntry; [* The last zEntry number that is the last zVariable added */

attrNum = CDFgetAttrNum (id, “MY_ATTR?”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxzEntry (id, attrNum, &maxEntry);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.17 CDFgetAttrName

CDFstatus CDFgetAttrName (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
char *attrName); /* out -- The attribute name. */

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the attribute.

attrName The name of the attribute.

6.4.17.1. Example(s)

The following example retrieves the name of the attribute numbere 2, if it exists, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
char attrName[CDF_ATTR_NAME_LEN256]; /* The attribute name. */
attrNum = 2L;

status = CDFgetAttrName (id, attrNum, attrName);
if (status != CDF_OK) UserStatusHandler (status);

154

6.4.18 CDFgetAttrNum

long CDFgetAttrNum (/* out -- Attribute number. */
CDFid id, [* in-- CDF identifier. */
char *attrName); [* in-- The attribute name. */

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is

found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero

(0).
The arguments to CDFgetAttrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR_NAME_LEN256 characters (excluding the NUL terminator). Attribute names
are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

6.4.18.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being
used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFrenameAttr (id, CDFgetAttrNum(id,"pressure™), "PRESSURE");
if (status I= CDF_OK) UserStatusHandler (status);

6.4.19 CDFgetAttrrEntryDataType

CDFstatus CDFgetAttrrEntryDataType (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum, /* in -- rEntry number. */
long *dataType); [* out -- rEntry data type. */

155

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 4.5.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

dataType The data type of the rEntry.

6.4.19.1. Example(s)

The following example gets the data type for the entry of rVariable “MY_VARL” in the (variable) attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; /* rEntry number. */

long dataType; /* rEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR");

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARL1”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, &dataType);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.20 CDFgetAttrrEntryNumElements

CDFstatus CDFgetAttrrEntryNumElements (/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long attrNum, [* in-- Attribute identifier. */

long startRec, /* in -- rEntry number. */

long *numElems); [* out -- rEntry’s number of elements. */

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

156

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

numElems The number of elements of the rEntry.

6.4.20.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; [* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrNum; /* Attribute number. */

long entryNum; /* rEntry number. */

long numElements; /* rEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARL1");

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, &numElements);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.21 CDFgetAttrScope

CDFstatus CDFgetAttrScope (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute number. */
long *attrScope); /* out -- Attribute scope. */

CDFgetAttrScope returns the attribute scope (GLOBAL_SCOPE or VARIABLE_SCOPE) of the specified attribute in
a CDF. Refer to Section 4.12 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

157

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

attrScope The scope of the attribute.

6.4.21.1. Example(s)

The following example gets the scope of the attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */

long attrScope; [* Attribute scope. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrScope (id, attrNum, &attrScope);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.22 CDFgetAttrzEntry

CDFstatus CDFgetAttrzEntry(/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long attrNum, [* in -- Variable attribute number. */
long entryNum, /* in-- Entry number. */

void *value); [* out -- Entry value. */

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this function in order to determine the data type and number of elements (of that
data type) for dynamical space allocation for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number. This number may be determined with a call to
CDFgetAttrNum.

158

entryNum The variable attribute entry number that is the zVariable number from which the attribute
entry is read

value The entry value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

6.4.22.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES_LVL zVariable (but only if the data
type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate character data (when the data
type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; [* Attribute number. */

long entryN; [* Entry number. */

long dataType; [* Datatype. */

long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */

attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);

entryN = CDFgetVarNum (id, "PRES_LVL"); /* The zEntry number is the zVariable number. */

if (entryN < CDF_OK) UserStatusHandler (entryN); /* 1f less than zero (0), then it must be a warning/error
code. */

status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &numElems);

if (status '= CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (ouffer == NULL)...

status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
if (status 'I= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0’; /* NUL terminate. */
printf ("Units of PRES_LVL variable: %s\n", buffer);
free (buffer);

}

159

6.4.23 CDFgetAttrzEntryDataType

CDFstatus CDFgetAttrzEntryDataType (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */
long attrNum, [* in-- Attribute identifier. */
long entryNum, [* in-- zEntry number. */
long *dataType); [* out -- zEntry data type. */

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 4.5.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

dataType The data type of the zEntry.

6.4.23.1. Example(s)

The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VARL1 in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; [* Attribute number. */
long entryNum; [* zEntry number. */

long dataType; [* zEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR");

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR1”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, &dataType);
if (status '= CDF_OK) UserStatusHandler (status);

160

6.4.24 CDFgetAttrzEntryNumElements

CDFstatus CDFgetAttrzEntryNumElements (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long attrNum, [* in-- Attribute identifier. */

long entryNum, [* in-- zEntry number. */

long *numElems); [* out -- zEntry’s number of elements. */

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number that is the zZVariable number.

numElems The number of elements of the zEntry.

6.4.24.1. Example(s)

The following example returns the number of elements for attribute named MY _ATTR for the zVariable MY_VARL1 in
a CDF

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrNum; [* Attribute number. */

long entryNum; [* zEntry number. */

long numElements; [* zEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR");

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR1”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, &numElements);
if (status '= CDF_OK) UserStatusHandler (status);

161

6.4.25 CDFgetNumAttrgEntries

CDFstatus CDFgetNumAttrgEntries (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */

long attrNum, [* in-- Attribute number. */

long *entries); [* out -- Total gEntries. */

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a
CDF.

The arguments to CDFgetNumALttrgEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Number of gEntries for attrNum.

6.4.25.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; /* Attribute number. */
long numEntries; /* Number of entries. */
int i

attrNum = CDFgetAttrNum(id, “MUY_ATTR");

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrgEntries (id, attrNum, &numEntries);
if (status '= CDF_OK) UserStatusHandler (status);

for (i=0; i < numEntries; i++) {

/* process an entry */

162

6.4.26 CDFgetNumAttributes

CDFstatus CDFgetNumAttributes (/* out -- Completion status code. */

CDFid id, [* in-- CDF identifier. */

long *numAittrs); [* out -- Total number of attributes. */
CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAittributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The total number of global and variable attributes.

6.4.26.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numaAttrs; /* Number of attributes. */

status = CDFgetNumAttributes (id, &numAittrs);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.27 CDFgetNumAttrrEntries

CDFstatus CDFgetNumAttrrEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, [* in -- Attribute number. */

long *entries); /* out -- Total rEntries. */

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

163

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total rEntries.

6.4.27.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; [* Attribute number. */
long entries; /* Number of entries. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrrEntries (id, attrNum, &entries);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.28 CDFgetNumAttrzEntries

CDFstatus CDFgetNumAttrzEntries (/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long attrNum, [* in-- Attribute number. */

long *entries); [* out -- Total zEntries. */

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.

The arguments to CDFgetNumALttrzEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total zEntries.

164

6.4.28.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; /* Attribute number. */
long entries; /* Number of entries. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrzEntries (id, attrNum, &entries);
if (status != CDF_OK) UserStatusHandler (status);

6.4.29 CDFgetNumgAttributes

CDFstatus CDFgetNumgAttributes (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *numAittrs); [* out -- Total number of global attributes. */

CDFgetNumgAttributes returns the total number of global attributes in a CDF.
The arguments to CDFgetNumgAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numaAttrs The number of global attributes.

6.4.29.1. Example(s)

The following example returns the total number of global attributes in a CDF.

#include "cdf.h"

165

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numaAttrs; /* Number of global attributes. */

status = CDFgetNumgAttributes (id, &numaAittrs);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.30 CDFgetNumvAttributes

CDFstatus CDFgetNumvAttributes (/* out -- Completion status code. */
CDFid id, [* in -- CDF identifier. */
long *numAittrs); [* out -- Total number of variable attributes. */

CDFgetNumvAittributes returns the total number of variable attributes in a CDF.
The arguments to CDFgetNumvAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The number of variable attributes.

6.4.30.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numaAttrs; /* Number of variable attributes. */

status = CDFgetNumvAttributes (id, &numaAttrs);
if (status '= CDF_OK) UserStatusHandler (status);

166

6.4.31 CDFinquireAttr

CDFstatus CDFinquireAttr([* out -- Completion status code. */

CDFid id,

long attrNum,

char *attrName,
long *attrScope,
long *maxgEntry,
long *maxrEntry,
long *maxzEntry);

/* in-- CDF identifier. */
[* in -- Attribute number. */
[* out -- Attribute name. */
[* out -- Attribute scope. */
[* out-- Maximum gEntry number. */
/* out-- Maximum rEntry number. */
[* out-- Maximum zEntry number. */

CDFinquireAttr is used to inquire information about the specified attribute. This function expands the original Standard
Interface function CDFattrinquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id

attrNum

attrName

attrScope

maxgEntry

maxrEntry

maxzEntry

6.4.31.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

The attribute’s name that corresponds to attrNum. This character string must be large
enough to hold CDF_ATTR_NAME_LEN256 + 1 characters (including the NUL
terminator).

The scope of the attribute (GLOBAL_SCOPE or VARIABLE_SCOPE). Attribute scopes
are defined in Section 4.12.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If
no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(rEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the function CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

#include "cdf.h"

167

CDFid id: /* CDF identifier. */

CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the maximum
number of dimensions). */
long encoding; [* Data encoding. */
long majority; [* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numvars; /* Number of variables in CDF. */
long NUMALtrs; /* Number of attributes in CDF. */
int attrN; [* attribute number. */
char attrName[CDF_ATTR_NAME_LEN256+1];
[* attribute name -- +1 for NUL terminator. */
long attrScope; [* attribute scope. */
long maxgEntry, maxrEntry, maxzEntry; /* Maximum entry numbers. */

status = CDFinquireCDF (id, &numDims, dimSizes, &encoding, &majority, &maxRec,
&numVars, &numAttrs);
if (status '= CDF_OK) UserStatusHandler (status);

for (attrN = 0; attrN < (int)numAttrs; attrN++) {
status = CDFinquireAttr (id, (long)attrN, attrName, &attrScope, &maxgEntry, &maxrEntry, &maxzEntry);
if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);
else
printf ("%s\n", attrName);

6.4.32 CDFinquireAttrgEntry

CDFstatus CDFinquireAttrgEntry (/* out -- Completion status code. */

CDFid id, /* in-- CDF identifier. */

long attrNum, [* in -- Attribute number. */

long entryNum, [* in-- Entry number. */

long *dataType, [* out -- Datatype. */

long *numElements); /* out -- Number of elements (of the data type). */

This function is identical to the original Standard Interface function CDFattrEntrylnquire. CDFinquireAttrgEntry is
used to inquire information about a global attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

168

entryNum The entry number to inquire.

dataType The data type of the specified entry. The data types are defined in Section 4.5.

NumElements The number of elements of the data type. For character data types (CDF_CHAR and

6.4.32.

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; [* attribute number. */
long entryN; [* Entry number. */
char attrName[CDF_ATTR_NAME_LEN256+1];
[* attribute name, +1 for NUL terminator. */
long attrScope; [* attribute scope. */
long maxEntry; /* Maximum entry number used. */
long dataType; [* Data type. */
long numeglems; /* Number of elements (of the data type). */

attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN); [* If less than zero (0), then it must be a

warning/error code. */

status = CDFattrinquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status '= CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {

status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);
if (status < CDF_OK) {
if (status 'I= NO_SUCH_ENTRY) UserStatusHandler (status);
}
else {
[* process entries */

169

6.4.33 CDFinquireAttrrEntry

CDFstatus CDFinquireAttrrEntry (/* out -- Completion status code. */

/* in-- CDF identifier. */

[* in -- Attribute number. */

/* in-- Entry number. */

[* out -- Datatype. */

long *numElements); [* out -- Number of elements (of the data type). */

CDFid id,

long attrNum,
long entryNum,
long *dataType,

This function is identical to the original Standard Interface function CDFattrEntrylnquire. CDFinquireAttrrEntry is

used to inquire about an rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

id

attrNum

entryNum

dataType

NumElements

The identifier of the CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire.

CDFgetAttrNum.

The entry number to inquire.

This number may be determined with a call to

This is the rVariable number (the rVariable being

described in some way by the rEntry).

The data type of the specified entry. The data types are defined in Section 4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string. For all other data types

this is the number of elements in an array of that data type.

6.4.33.1. Example(s)

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then

retrieves and displays the value of the UNITS attribute.

#include "cdf.h"

CDFid
CDFstatus
long

long

char

long

long

id;

status;
attrN;
entryN;
*buffer;
dataType;
numElems;

attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);

entryN = CDFgetVarNum(id, "Temperature™)
if (entryN < CDF_OK) UserStatusHandler (entryN);

170

/*
/*
/*
/*

/*
/*

CDF identifier. */
Returned status code. */
Attribute number. */
Entry number. */

Data type. */
Number of elements (of the data type). */

[* If less than zero (0), then it must be a
warning/error code. */

status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);

if (status >= CDF_OK) {

if (dataType == CDF_CHAR) {
buffer = (char *) malloc (humElems + 1);
if (buffer == NULL)...

status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
if (status '= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0’; /* NUL terminate. */
printf ("Units of Temperature : %s\n", buffer);

free (buffer);

6.4.34 CDFinquireAttrzEntry

CDFstatus CDFinquireAttrzEntry (/* out -- Completion status code. */

CDFid id,

long attrNum,
long entryNum,
long *dataType,

long *numElements);

/* in-- CDF identifier. */

[* in -- (Variable) Attribute number. */

[* in-- zEntry number. */

/* out -- Data type. */

[* out -- Number of elements (of the data type). */

CDFinquireAttrzEntry is used to inquire about a zZVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

NumElements

6.4.34.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number for which to inquire an entry. This number may be
determined with a call to CDFgetAttrNum (see Section 6.4.18).

The entry number to inquire. This is the zVariable number (the zVariable being
described in some way by the zEntry).

The data type of the specified entry. The data types are defined in Section 4.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

171

#include "cdf.h"

CDFid id;
CDFstatus status;

long attrN;

long entryN;
char *puffer;
long dataType;
long numElems;

/* CDF identifier. */

/* Returned status code. */
[* attribute number. */

[* Entry number. */

[* Datatype. */
/* Number of elements (of the data type). */

attrN = CDFgetAttrNum (id, "UNITS");

if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFgetVarNum(id, "Temperature™)

if (entryN < CDF_OK) UserStatusHandler (entryN);

status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &nhumElems);

if (status >= CDF_OK) {

if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (buffer == NULL)...

status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
if (status '= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0’;

/* NUL terminate. */

printf ("Units of Temperature : %s\n", buffer);

free (buffer);

6.4.35 CDFputAttrgEntry

CDFstatus CDFputAttrgEntry(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElements,

void *value);

/*
/*
/*
/*
/*
/*
/*

out -- Completion status code. */

in-- CDF identifier. */

in -- Attribute number. */

in -- Attribute entry number. */

in -- Data type of this entry. */

in -- Number of elements in the entry (of the data type). */
in -- Attribute entry value. */

CDFputAttrgEntry is used to write a global attribute entry. The entry may or may not already exist. If it does exist, it
is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry. A global attribute can have one or more attribute entries.

The arguments to CDFputAttrgEntry are defined as follows:

172

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The attribute entry number.

dataType The data type of the specified entry. Specify one of the data types defined in Section
4.5,

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

6.4.35.1. Example(s)

The following example writes a global attribute entry to the global attribute called TITLE.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long entryNum; [* Attribute entry number. */

static char title[] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */
entryNum = 0;

status = CDFputAttrgEntry (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF_CHAR, strlen(title), title);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.36 CDFputAttrrEntry

CDFstatus CDFputAttrrEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, [* in -- Attribute number. */

long entryNum, [* in — Attribute entry number. */

long dataType, [* in -- Data type. */

long numElems, /* in -- Number of elements in the entry. */
void *value); /* in -- Attribute entry value. */

173

This function is identical to the original Standard Interface function CDFattrPut. CDFputAttrrEntry is used to write
rVariable’s attribute entry. The entry may or may not already exist. If it does exist, it is overwritten. The data type

and number of elements (of that

data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

6.4.36.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The attribute entry number that is the rVariable number to which this attribute entry
belongs.

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes to the variable scope attribute VALIDs for the entry that corresponds to the rVariable

TMP.

#include "cdf.h"

CDFid id;

CDFstatus status;

long entryNum;
long numElements;

static short TMPvalids =

numElements = 2;

/* CDF identifier. */

/* Returned status code. */

/* Entry number. */

/* Number of elements (of data type). */

{15,30}; /* Value(s) of VALIDs attribute,
rEntry for rVariable TMP. */

status = CDFputAttrrEntry (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),

CDF_INT2, numElements, TMPvalids);

if (status '= CDF_OK) UserStatusHandler (status);

174

6.4.37 CDFputAttrzEntry

CDFstatus CDFputAttrzEntry(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElements,

void *value);

/* out -- Completion status code. */

/* in-- CDF identifier. */

/* in -- Attribute number. */

[* in-- Attribute entry number. */

/* in -- Data type of this entry. */

/* in -- Number of elements in the entry (of the data type). */
/* in -- Attribute entry value. */

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an

existing entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

6.4.37.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 6.4.18).

The entry number that is the zVariable number to which this attribute entry belongs.

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

#include "cdf.h"

CDFid id;
CDFstatus status;
long numElements;

static short TMPvalids =

numElements = 2;

/* CDF identifier. */
/* Returned status code. */
/* Number of elements (of data type). */

{15,30}; /* Value(s) of VALIDs attribute,
zEntry for zVariable TMP. */

175

status = CDFputAttrzEntry (id, CDFgetAttrNum(id,"VVALIDs"), CDFgetVarNum(id,"TMP"),
CDF_INT2, numElements, TMPvalids);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.38 CDFrenameAttr

CDFstatus CDFrenameAttr(/* out -- Completion status code. */
CDFid id, /* in-- CDF identifier. */

long attrNum, [* in -- Attribute number. */

char *attrName); /* in-- New attribute name. */

This function is identical to the original Standard Interface function CDFattrRename. CDFrenameAttr renames an
existing attribute.

6.4.38.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFrenameAttr (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status '= CDF_OK) UserStatusHandler (status);

6.4.39 CDFsetAttrgEntryDataSpec

CDFstatus CDFsetAttrgEntryDataSpec (/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long attrNum, [* in -- Attribute number. */
long entryNum, [* in-- gEntry number. */
long dataType) /* in-- Datatype. */

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

176

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.
dataType The new data type.

6.4.39.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a
CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* gEntry number. */

long dataType; [* The new data type */

entryNum = 2L
dataType = CDF_UINT2;
numeElems = 1L;

status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR?”), entryNum, dataType);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.40 CDFsetAttrrEntryDataSpec

CDFstatus CDFsetAttrrEntryDataSpec (/*

CDFid id, *
long attrNum, I*
long entryNum, I*
long dataType, *
long numElements); I*

out -- Completion status code. */
in -- CDF identifier. */

in -- Attribute number. */
in -- rEntry number. */
in -- Data type. */

in -- Number of elements. */

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

177

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The rEntry number.
dataType The new data type.
numElements The new number of elements.

6.4.40.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF. It will change it’s original data type from CDF_INT2 to CDF_UINT2.

#include "cdf.h"

CDFid id; [* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType, numElements; /* Data type and number of elements. */

dataType = CDF_UINT2;

numElems = 1L;

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”), CDFgetVarNum(id, “MY_VAR?”),
dataType, numElems);

if (status '= CDF_OK) UserStatusHandler (status);

6.4.41 CDFsetAttrScope

CDFstatus CDFsetAttrScope (/* out -- Completion status code. */

CDFid id, [* in -- CDF identifier. */
long attrNum, [* in-- Attribute number. */
long scope); /* in -- Attribute scope. */

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

178

scope The new attribute scope. The wvalue should be either VARIABLE _SCOPE or
GLOBAL_SCOFPE.

6.4.41.1. Example(s)

The following example changes the scope of the global attribute named MY_ATTR to a variable attribute
(VARIABLE_SCOPE).

#include "cdf.h"

CDFid id; [* CDF identifier. */
CDFstatus status; /* Returned status code. */
long scope; /* New attribute scope. */

scope = VARIABLE_SCOPE;
status = CDFsetAttrScope (id, CDFgetAttrNum(id, “MY_ATTR"), scope);
if (status '= CDF_OK) UserStatusHandler (status);

6.4.42 CDFsetAttrzEntryDataSpec

CDFstatus CDFsetAttrzEntryDataSpec (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, [* in -- Attribute number. */
long entryNum, [* in -- zEntry number. */
long dataType) /* in-- Data type. */

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.

The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The zEntry number that is the zVariable number.
dataType The new data type.

179

6.4.42.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute nhamed MY_ATTR that is
associated with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType; /* Data type and number of elements. */

dataType = CDF_UINT2;

numElems = 1L;

status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR"),
CDFgetVarNum(id, “MY_VAR?”), dataType);

if (status != CDF_OK) UserStatusHandler (status);

180

Chapter 7

7 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFIlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 7.6.
The function prototype for CDFIib is as follows:

CDFstatus CDFlib (long function, ...);

This function prototype is found in the include file cdf.h.

7.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

#include "cdf.h"

CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
static char CDFname[] = {"testl"}; /* File name of the CDF. */

long numDims = 2; /* Number of dimensions. */

static long dimSizes[2] = {100,200}; /* Dimension sizes. */

long encoding = HOST_ENCODING; [* Data encoding. */

181

long
long

majority = ROW_MAJOR,; [* Variable data majority. */
format = SINGLE_FILE; /* Format of CDF. */

status = CDFcreate (CDFname, numDims, dimSizes, encoding, majority, &id);
if (status !I= CDF_OK) UserStatusHandler (status);

status = CDFlib (PUT__, CDF_FORMAT _, format, NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFlib is then used to change the format to single-file (which must be done before any variables are created in

the CDF).

The arguments to CDFlib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL_

The first function to be performed. In this case an item is going to be put to the “current”
CDF (anew format). PUT_ is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.> This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

The item to be put. in this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_function.
NULL _indicates the end of the call to CDFlib. Specifying NULL_at the end of the
argument list is required because not all compilers/operating systems provide the ability
for a called function to determine how many arguments were passed in by the calling
function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations

would be the same.)

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,

PUT__, CDF_ENCODING_, encoding,
CDF_MAJORITY_, majority,
CDF_FORMAT _, format,

NULL);

if (status '= CDF_OK) UserStatusHandler (status);

The purpose of each argument is as follows:

! In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

182

CREATE_ The first function to be performed. In this case something will be created.

CDF_ The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

CDFname The file name of the CDF.

numbDims The number of dimensions in the CDF.

dimSizes The dimension sizes.

id The identifier to be used when referencing the created CDF in subsequent
operations.

PUT_ This argument could have been one of two things. Another item to create or a new

CDF_ENCODING_

encoding

CDF_MAJORITY_

function to perform. In this case it is another function to perform - something will
be put to the CDF.

The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

The encoding to be put to the CDF.

This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

majority The majority to be put to the CDF.

CDF_FORMAT _ Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL_ This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL_function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDFIlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

183

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>? operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly
selected.?

rVVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR_ > or <SELECT_,rVAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,zZVAR_> or <SELECT_,zVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,ATTR_> or <SELECT_,ATTR_NAME_>
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT ,gENTRY_> operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT_,rENTRY_> operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

ZEntry number (state)
A VAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zENTRY_> operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,rVARs_RECNUMBER_> operation. Note that the current record

% This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
® In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

184

number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT _,rVARs RECCOUNT _> operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

record interval, rVVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECINTERVAL_>
operation. Note that the current record interval for rVVariables is maintained for a CDF (not each rVariable) - it
applies to all of the r\Variables in that CDF.

dimension indices, rVVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones 1.1,.). They may then be explicitly selected using the
<SELECT_,rVARs_DIMINTERVALS_ > operation. Note that the current dimension intervals for rVVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT _,zZVAR_RECNUMBER_> operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

185

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR_RECCOUNT_> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zZVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT_,zVAR_DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT _,zZVAR_DIMCOUNTS_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT _,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)
A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)
When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT _,CDF_STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.*

* The CDF library now maintains the current status code from one call to the next of CDFlib.

186

7.3 Returned Status

CDFlib returns a status code of type CDFstatus. Since more than one operation may be performed with a single call to
CDFlib, the following rules apply:

1. The first error detected aborts the call to CDFIlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error
, warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,
PUT_, CDF_FORMAT _, format,
CDF_MAJORITY_, majority,
CREATE_, ATTR_, attrName, scope, &attrNum,
r'VAR_, varName, dataType, numElements,
recVary, dimVarys, &varNum,
NULL_);

Note that the functions (CREATE_, PUT_, and NULL) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding
functions.
The following example shows the same call to CDFlib without the proper indentation.
status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id, PUT__,
CDF_FORMAT _, format, CDF_MAJORITY_, majority, CREATE_,
ATTR_, attrName, scope, &attrNum, rVAR_, varName, dataType,
numElements, recVary, dimVarys, &varNum, NULL);

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

187

CDFlib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFlib is as follows:
status = CDFIlib (fncl, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,
fnc2, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,

fncN, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,
NULL_);
where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required

argument for the operation. The NULL_function must be used to end the call to CDFlib. The completion status, status,
is returned.

7.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.

CONFIRM_ Used to confirm the value of an item.

CREATE_ Used to create an item.

DELETE_ Used to delete an item.

GET_ Used to get (read) something from an item.

NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT_ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT _
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 7.2.

<CLOSE_,CDF_>

Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.

188

There are no required arguments.
The only required preselected object/state is the current CDF.

<CLOSE_,rVAR_>
Closes the current rVVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_ATTR_>
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: long *attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: char *attrName

The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>
Confirms the current CDF. Required arguments are as follows:

out: CDFid *id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS_>
Confirms the accessability of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.

There are no required arguments.

The only required preselected object/state is the current CDF.

189

<CONFIRM_,CDF_CACHESIZE >
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
out: long *numBuffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>
Confirms the decoding for the current CDF. Required arguments are as follows:

out: long *decoding
The decoding. The decodings are described in Section 4.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>
Confirms the file name of the current CDF. Required arguments are as follows:

out: char CDFname[CDF_PATHNAME_LEN+1]
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: long *mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: long *mode
The read-only mode. The read-only modes are described in Section 4.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS_>
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT _,CDF_STATUS_> operation).
Required arguments are as follows:

out: CDFstatus *status

The status code.

190

The only required preselected object/state is the current status code.

<CONFIRM_,zMODE_>
Confirms the zMode for the current CDF. Required arguments are as follows:

out: long *mode
The zMode. The zModes are described in Section 4.14.

The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS_CACHESIZE_>

Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The

Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required

arguments are as follows:

out: long *numBuffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.
<CONFIRM_,CURGENTRY_EXISTENCE_>

Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).

If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<CONFIRM_,CURrENTRY_EXISTENCE_>

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).

If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_EXISTENCE_>

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).

If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

191

out: long *entryNum
The gEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,gENTRY_EXISTENCE_>

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<CONFIRM_,rENTRY_>
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rENTRY_EXISTENCE_>
Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does

not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: long entryNum
The rEntry number.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: long *varNum
rVVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the

caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

192

The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_EXISTENCE_>
Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: long *percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_SEQPOS >
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: long *recNum
Record number.

out: long indicesfCDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VARs_DIMCOUNTS_>

Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

193

out: long counts[CDF_MAX_DIMS]
Dimension counts. Each element of counts receives the corresponding dimension count.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs_DIMINDICES_>
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: long indices|CDF_MAX_DIMS]
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VARs_DIMINTERVALS_>
Confirms the current dimension intervals for all rVVariables in the current CDF. For O-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: long intervalsfCDF_MAX_DIMS]
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECCOUNT_>
Confirms the current record count for all rVVariables in the current CDF. Required arguments are as follows:

out: long *recCount
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,r'VARs_RECINTERVAL_>
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: long *reclnterval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,r'VARs_RECNUMBER_>
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: long *recNum
Record number.
The only required preselected object/state is the current CDF.

<CONFIRM_,STAGE_CACHESIZE_>

194

Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: long *numBuffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,ZENTRY_>
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR_>
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: long *varNum
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: long *numBuffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMCOUNTS_>

Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

195

out: long counts[CDF_MAX_DIMS]
Dimension counts. Each element of counts receives the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINDICES_>
Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: long indices|CDF_MAX_DIMS]
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINTERVALS_>
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: long intervalsfCDF_MAX_DIMS]
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_EXISTENCE_>
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECCOUNT >
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
out: long *recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

196

<CONFIRM_,zZVAR_RECINTERVAL_>
Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
out: long *reclnterval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECNUMBER_>
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: long *recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: long *percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_SEQPQOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: long *recNum
Record number.

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_ATTR_>
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: char *attrName

Name of the attribute to be created. This can be at most CDF_ATTR_NAME_LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

197

in: long scope
Scope of the new attribute. Specify one of the scopes described in Section 4.12.
out: long *attrNum
Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.
The only required preselected object/state is the current CDF.
<CREATE_,CDF_>
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:
in: char *CDFname
File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

in: long numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX_DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: long dimSizes]]

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For O-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: CDFid *id
CDF identifier to be used in subsequent operations on the CDF.
A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be

changed with the corresponding <PUT_,CDF_FORMAT >, <PUT_,CDF_ENCODING >, and
<PUT_,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.
<CREATE_,r'VAR_>
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name

must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

198

in: char *varName

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: long dataType

Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

out: long *varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>
A new zVariable will be created in the current CDF. A variable (rVVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in:

char *varName

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

in: long dataType

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long numDims

199

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.
in: long dimSizes]]
The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).
in: long recVary
Record variance. Specify one of the variances described in Section 4.9.
in: long dimVarys[]
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).
out: long *varNum
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zZVAR_NUMBER_> operation.
The only required preselected object/state is the current CDF.
<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes
which numerically follow the attribute being deleted are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.
There are no required arguments.
The required preselected objects/states are the current CDF and its current attribute.
<DELETE_,CDF_>
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.
<DELETE_,gENTRY_>
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<DELETE_,[ENTRY_>

200

Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,rVAR_>

Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also

deleted (from each vAttribute). The rVariables which numerically follow the rVariable being deleted are

immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also

immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This

operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,rVAR_RECORDS_>

Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has

sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the

records following the range of deleted records are immediately renumbered beginning with the number of the

first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: long firstRecord
The record number of the first record to be deleted.
in: long lastRecord
The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zZENTRY_>

Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does

not affect the current zEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,zZVAR_>

Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also

deleted (from each vAttribute). The zVariables which numerically follow the zVariable being deleted are

immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also

immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This

operation is only allowed on single-file CDFs.

There are no required arguments.

201

The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zZVAR_RECORDS_ >
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: long firstRecord
The record number of the first record to be deleted.
in: long lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,ATTR_MAXQgENTRY_>
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<GET_ATTR_MAXrENTRY_>

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not

necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of -1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_MAXZzENTRY >

Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not

necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

202

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_ATTR_NAME_>
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: char attrName[CDF_ATTR_NAME_LEN256+1]
Attribute name.
The required preselected objects/states are the current CDF and its current attribute.
<GET_,ATTR_NUMBER_>
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

out: long *attrNum
The attribute number.
The only required preselected object/state is the current CDF.
<GET_,ATTR_NUMgENTRIES >
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: long *numEntries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<GET_,ATTR_NUMTrENTRIES_>
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: long *numEntries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NUMZzENTRIES_>
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily

correspond with the maximum zEntry number used. Required arguments are as follows:

out: long *numEntries

203

The number of zEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_SCOPE_>
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: long *scope
Attribute scope. The scopes are described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.
<GET_,CDF_COMPRESSION_>
Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not
of any compressed variables. Required arguments are as follows:
out: long *cType
The compression type. The types of compressions are described in Section 4.10.
out: long cParms[CDF_MAX_ PARMS]
The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET_,CDF_COPYRIGHT_>
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:
out: char CopyrightfCDF_COPYRIGHT_LEN+1]
CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>
Inquires the data encoding of the current CDF. Required arguments are as follows:

out: long *encoding
Data encoding. The encodings are described in Section 4.6.
The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT_>
Inquires the format of the current CDF. Required arguments are as follows:

204

out: long *format
CDF format. The formats are described in Section 4.4.
The only required preselected object/state is the current CDF.
<GET_,CDF_INCREMENT_>
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: long *increment
Incremental number.
The only required preselected object/state is the current CDF.
<GET_,CDF_INFO_>
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in: char *CDFname
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: long *cType
The CDF compression type. The types of compressions are described in Section 4.10.
out: long cParms[CDF_MAX_PARMS]
The compression parameters. The compression parameters are described in Section 4.10.
out: OFF_T° *cSize
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: OFF_T° *uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

<GET_,CDF_MAJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: long *majority

® It is type long for V2.6 and V2.7.

205

Variable majority. The majorities are described in Section 4.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS_>
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMIVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: long *numVars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: long *numVars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_RELEASE_ >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: long *release

206

Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION_>
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: long *version
Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE_>
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: long dataType
Data type.
out: long *numBytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_DATA >
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY_DATATYPE_>

Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).

Required arguments are as follows:

out: long *dataType
Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<GET_,gENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

207

out: long *numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.

<GET_,LIB_COPYRIGHT_>
Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: char Copyright{CDF_COPYRIGHT_LEN+1
CDF library Copyright text.
There are no required preselected objects/states.

<GET_,LIB_INCREMENT_>
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: long *increment
Incremental number.
There are no required preselected objects/states.

<GET_,LIB_RELEASE_>
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: long *release
Release number.
There are no required preselected objects/states.

<GET_,LIB_SubINCREMENT_>
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: char *subincrement
Subincremental character.
There are no required preselected objects/states.

<GET_,LIB_VERSION >
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: long *version
Version number.
There are no required preselected objects/states.

<GET_,[ENTRY_DATA_>

208

Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_DATATYPE_>
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: long *dataType
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_rENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is

the number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,rVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: long *nextRecord
The number of the next allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,fVAR_ALLOCATEDTO >

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

209

in: long startRecord
The record number at which to begin searching for the last allocated record.
out: long *nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r'VAR_BLOCKINGFACTOR_>®
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: long *blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_COMPRESSION_>
Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: long *cType
The compression type. The types of compressions are described in Section 4.10.
out: long cParms[CDF_MAX_ PARMS]
The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_DATA_ >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR_DATATYPE_>
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

® The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

210

out: long *dataType
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r VAR_DIMVARYS_>
Inquires the dimension variances of the current rVVariable (in the current CDF). For O-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r'VAR_HYPERDATA >

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments

are as follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.
<GET_,rVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:
out: long *varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r'VAR_MAXREC_>
Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: long *varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NAME_>
Inquires the name of the current rVVariable (in the current CDF). Required arguments are as follows:

211

out: char varName[CDF_VAR_NAME_LEN256+1
Name of the rVariable.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nNINDEXENTRIES_>
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXLEVELS_>
Inquires the number of index levels for the current rVVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXRECORDS_>
Inquires the number of index records for the current rVVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_NUMallocRECS_>
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: long *numRecords
Number of allocated records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,r VAR_NUMBER_>
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current

rVariable. Required arguments are as follows:

in: char *varName

212

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

out: long *varNum
The rVariable number.
The only required preselected object/state is the current CDF.
<GET_,r'VAR_NUMELEMS_>
Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:
out: long *numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_NUMRECS >
Inquires the number of records written for the current rVVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,rVAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:
out: long *numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_PADVALUE >
Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT_,rVAR PADVALUE >), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_RECVARY_>
Inquires the record variance of the current rVVariable (in the current CDF). Required arguments are as follows:

out: long *recVary
Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

213

<GET_,r'VAR_SEQDATA >
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:
out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.
<GET_,rVAR_SPARSEARRAYS_ >
Inquires the sparse arrays type/parameters of the current rVVariable (in the current CDF). Required arguments are
as follows:
out: long *sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
out: long sArraysParms[CDF_MAX_PARMS]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.

out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_SPARSERECORDS_>
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:
out: long *sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVARs_DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: long dimSizes[CDF_MAX_DIMS]
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The only required preselected object/state is the current CDF.

<GET_,rVARs_MAXREC_>

214

Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVVariable may be inquired using the <GET_,rVAR_MAXREC_> operation. Required arguments are
as follows:

out: long *maxRec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>
Inquires the number of dimensions for the rVVariables in the current CDF. Required arguments are as follows:

out: long *numDims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA_>
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: long numVars
The number of rVariables from which to read. This must be at least one (1).
in: long varNumsJ]

The rVariables from which to read. This array, whose size is determined by the value of humVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer

The buffer into which the full-physical r\Variable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful if using C
struct objects to receive multiple full-physical rVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. ’
<GET_,STATUS_TEXT_ >
Inquires the explanation text for the current status code. Note that the current status code is NOT the status from

the last operation performed. Required arguments are as follows:

out: char text[CDF_STATUSTEXT LEN+1

" A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

215

Text explaining the status code.
The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA_>

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF)
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_DATATYPE_>

Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this

is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zZVAR_ALLOCATEDFROM_>

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.
out: long *nextRecord

The number of the next allocated record.

216

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: long startRecord
The record number at which to begin searching for the last allocated record.
out: long *nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_BLOCKINGFACTOR_>®
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: long *blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_COMPRESSION_>
Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]
The compression parameters. The compression parameters are described in Section 4.10.
out: long *cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA >
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

® The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

217

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zZVAR_DATATYPE_>
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *dataType
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: long dimSizes|CDF_MAX_DIMS]
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMVARYS >
Inquires the dimension variances of the current zVariable (in the current CDF). For O-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimVarys|CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:
out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: long *varMaxRecAlloc

Maximum record number allocated.

218

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: long *varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NAME_>
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF_VAR_NAME_LEN256+1
Name of the zVariable.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXENTRIES >
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXLEVELS >
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXRECORDS >
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

219

<GET_,zVAR_NUMallocRECS_>

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter

in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: long *numRecords
Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER_>

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

out: long *varNum
The zVariable humber.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *numDims
Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMRECS_>

Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET _,zZVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: long *numRecords

220

Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_PADVALUE_>
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT_,zZVAR _PADVALUE >), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_RECVARY_>
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *recVary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_SEQDATA_>

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zZVAR_SPARSEARRAYS_>
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: long *sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

out: long sArraysParms[CDF_MAX_PARMS]

The sparse arrays parameters. The sparse arrays parameters are described in Sec-
tion 4.11.

out: long *sArraysPct

221

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: long *sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVARs_MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET_,zZVAR_MAXREC_> operation. Required arguments are
as follows:

out: long *maxRec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,zZVARs_RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: long numVars
The number of zVariables from which to read. This must be at least one (1).
in: long varNumsJ]

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful if using C
struct objects to receive multiple full-physical zVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs_RECNUMBER_>, that allows the

222

current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). *

<NULL_>
Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.
<OPEN ,CDF_>
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:
in: char *CDFname
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: CDFid *id
CDF identifier to be used in subsequent operations on the CDF.
There are no required preselected objects/states.
<PUT_,ATTR_NAME_>
Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: char *attrName

New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the
NUL terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: long scope
New attribute scope. Specify one of the scopes described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.
<PUT_,CDF_COMPRESSION_>
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

% A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

223

in: long cParms[]
The compression parameters. The compression parameters are described in Section 4.10.
The only required preselected object/state is the current CDF.
<PUT_,CDF_ENCODING_>
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:
in: long encoding
New data encoding. Specify one of the encodings described in Section 4.6.
The only required preselected object/state is the current CDF.
<PUT_,CDF_FORMAT_>
Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:
in: long format
New CDF format. Specify one of the formats described in Section 4.4.
The only required preselected object/state is the current CDF.
<PUT_,CDF_MAJORITY_>
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:
in: long majority
New variable majority. Specify one of the majorities described in Section 4.8.
The only required preselected object/state is the current CDF.
<PUT_,gENTRY_DATA >
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: long dataType
Data type of the gEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

224

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<PUT_,gENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: long dataType
New data type of the gEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a VAttribute.
<PUT_,rENTRY_DATA >
Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: long dataType
Data type of the rEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: void *value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,rENTRY_DATASPEC >
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the rEntry. Specify one of the data types described in Section 4.5.

225

in: long numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,r'VAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: long firstRecord
The first record number to allocate.
in: long lastRecord
The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: long nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>*
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_COMPRESSION >
Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

% The item rVAR_BLOCKINGFACTOR was previously named r'VAR_EXTENDRECS .

226

in: long cParms[]
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rIVAR_DATA >
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:
in: void *value
Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: long dataType
New data type. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rIVAR_DIMVARYS >
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For O-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rIVAR_HYPERDATA >

Writes one or more values to the current rVariable (in the current CDF). The values are written based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments

are as follows:

in: void *buffer

227

Values. The values starting at memory address buffer are written to the CDF.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,

record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT_,rVAR_INITIALRECS_>
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:
in: long nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_NAME_>
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:
in: char *varName

New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_PADVALUE_>
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:
in: void *value
Pad value. The pad value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,IVAR_RECVARY_>
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: long recVary
New record variance. Specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VAR_SEQDATA >

228

Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVVariable, the rVariable is
extended as necessary. Required arguments are as follows:
in: void *value
Value. The value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.
<PUT_,rVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: long sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
in: long sArraysParms[]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_SPARSERECORDS >
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:
in: long sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVARs_RECDATA >
Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:
in: long numVars
The number of rVariables to which to write. This must be at least one (1).

in: long varNumsJ]

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer
The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable

records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful if using C

229

struct objects to store multiple full-physical rVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a sturct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. **

<PUT_,zZENTRY_DATA >
Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: long dataType
Data type of the zEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: void *value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zZENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: long dataType
New data type of the zEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only

applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

1 A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

230

in: long firstRecord
The first record number to allocate.
in: long lastRecord
The last record number to allocate.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are
allocated beginning at record number O (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: long nRecords
Number of records to allocate.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_BLOCKINGFACTOR_>*
Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: long blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_COMPRESSION_>
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:
in: long cType
The compression type. The types of compressions are described in Section 4.10.
in: long cParms|]
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR DATA >
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:
in: void *value

Value. The value is written to the CDF from memory address value.

2 The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

231

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zZVAR_DATASPEC >
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: long dataType
New data type. Specify one of the data types described in Section 4.5.
in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DIMVARYS_>
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For O-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_INITIALRECS >
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: long nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_HYPERDATA_>
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

232

in: void *buffer
Values. The values starting at memory address buffer are written to the CDF.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<PUT_,zVAR_NAME_>

Renames the current zVariable (in the current CDF). A variable (rVVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_PADVALUE_>
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: void *value
Pad value. The pad value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_RECVARY_>
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: long recVary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_SEQDATA_ >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:
in: void *value
Value. The value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential

value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.

233

<PUT_,zVAR_SPARSEARRAYS_ >

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

in: long sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
in: long sArraysParms[]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: long sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVARs_RECDATA_>
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: long numVars
The number of zVariables to which to write. This must be at least one (1).
in: long varNumsJ]

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful if using C
struct objects to store multiple full-physical zVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zZVAR_RECNUMBER_>). **

3 A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

234

<SELECT_ATTR_>
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: long attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT_,ATTR_NAME_>
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT _,ATTR_>) is more e_cient. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>
Explicitly selects the current CDF. Required arguments are as follows:

in: CDFid id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_>
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.
<SELECT_,CDF_CACHESIZE_>
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:
in: long numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING_>
Selects a decoding (for the current CDF). Required arguments are as follows:

in: long decoding
The decoding. Specify one of the decodings described in Section 4.7.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: long mode

235

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: long mode
The read-only mode. Specify one of the read-only modes described in Section 4.13.
The only required preselected object/state is the current CDF.
<SELECT_,CDF_SCRATCHDIR_>

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the the CDF$TMP logical name (on OpenVMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: char *scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_>
Selects the current status code. Required arguments are as follows:

in: CDFstatus status
CDF status code.
There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

in: long mode
The zMode. Specify one of the zModes described in Section 4.14.
The only required preselected object/state is the current CDF.
<SELECT_,COMPRESS_CACHESIZE_>
Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,gENTRY_>

236

Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:
in: long entryNum
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_>
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum
rEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,rENTRY_NAME_>
Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY_>) is more e_cient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_>
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum
rVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,rVAR_CACHESIZE >
Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_NAME_>
Explicitly selects the current rVVariable (in the current CDF) by name. NOTE: Selecting the current rVVariable

by number (see <SELECT _,rVAR_>) is more e_cient. Required arguments are as follows:

in: char *varName

237

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT_,rVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: long percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: long recNum
Record number.
in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMCOUNTS_>
Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: long counts[]
Dimension counts. Each element of counts specifies the corresponding dimension count.
The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMINDICES_>

Selects the current dimension indices for all rVVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

238

in: long indices[]
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMINTERVALS_>
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: long intervals[]
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: long recCount
Record count.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: long reclnterval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: long recNum
Record number.
The only required preselected object/state is the current CDF.
<SELECT_,STAGE CACHESIZE_>
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
in: long numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zZENTRY_>
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

239

in: long entryNum
zEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,zZENTRY_NAME_>
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT_,zZENTRY_>) is more e_cient. Required arguments are
as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_>
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,zVAR_CACHESIZE_>
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_DIMCOUNTS_ >
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
in: long counts[]
Dimension counts. Each element of counts specifies the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_DIMINDICES_>
Selects the current dimension indices for the current zVariable in the current CDF. For O-dimensional

zVariables this operation is not applicable. Required arguments are as follows:

in: long indices[]

240

Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: long intervals[]
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME_>
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT ,zZVAR_>) is more e_cient. Required arguments are as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT_,zZVAR_RECCOUNT _>
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
in: long recCount
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_RECINTERVAL >
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
in: long reclnterval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
in: long recNum
Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RESERVEPERCENT >

241

Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: long percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: long recNum
Record number.

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT_,zVARs_RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:
in: long recNum

Record number.

The only required preselected object/state is the current CDF.

7.7 More Examples

Several more examples of the use of CDFIlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

242

7.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
long dimVarys[2]; [* Dimension variances. */

long varNum; [* rVariable number. */

Float padValue = -999.9; [* Pad value. */

dimVarys[0] = VARY;
dimVarys[1] = VARY;
status = CDFlib (CREATE_, rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY, dimVarys, &varNum,
PUT__, rVAR_PADVALUE_, &padValue,
r'VAR_INITIALRECS , (long) 500,
r'VAR_BLOCKINGFACTOR_, (long) 50,
NULL_);
if (status !I= CDF_OK) UserStatusHandler (status);

7.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */

long dimVarys[1]; [* Dimension variances. */

long varNum; [* zVariable number. */

long numDims = 1, /* Number of dimensions. */

static long dimSizes[1] = { 20 }; /* Dimension sizes. */

long numElems = 10; /* Number of elements (characters in this case). */
static char padValug = "**xxkkskkk, [* Pad value. */

dimVarys[0] = VARY;
status = CDFlib (CREATE_, zVAR_, "Station", CDF_CHAR, numElems, numDims,
dimSizes, NOVARY, dimVarys, &varNum,

243

PUT__, zVAR_PADVALUE_, padValue,
NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);

7.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF_UINT2. It is assumed that the
current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
unsigned short values[50][100]; [* Buffer to receive values. */
long recCount = 1; /* Record count, one record per hyper get. */
long recinterval = 1; /* Record interval, set to one to indicate contiguous records
(really meaningless since record count is one). */
static long indices[2] = {0,0}; /* Dimension indices, start each read at 0,0 of the array. */
static long counts[2] = {50,100}; /* Dimension counts, half of the values along
each dimension will be read. */
static long intervals[2] = {2,2}; /* Dimension intervals, every other value along
each dimension will be read. */
long recNum; /* Record number. */
long maxRec; /* Maximum rVariable record number in the CDF - this was

determined with a call to CDFinquire. */

status = CDFlib (SELECT_, rVAR_NAME_, "BRIGHTNESS",
rVARs_ RECCOUNT _, recCount,
r'VARs RECINTERVAL _, recinterval,
r'VARs_DIMINDICES , indices,
r'VARs_DIMCOUNTS_, counts,
r'VARs_DIMINTERVALS , intervals,

NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);

for (recNum = 0; recNum <= maxRec; recNum++) {
status = CDFlib (SELECT_, rVARs_RECNUMBER_, recNum,
GET_, rVAR_HYPERDATA_, values,
NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);

[* process values */

244

7.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

#include "cdf.h"
CDFstatus status; /* Status returned from CDF library. */

status = CDFlib (SELECT_, ATTR_NAME_, "Tmp",
PUT__, ATTR_NAME, "TMP",
NULL);

if (status '= CDF_OK) UserStatusHandler (status);

7.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current
CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
long varNum; [* zVariable number. */

long recNum = 0; /* Record number, start at first record. */
static long indices[2] = {0,0}; /* Dimension indices. */

float value; /* Value read. */

double sum = 0.0; /* Sum of all values. */

long count = 0; /* Number of values. */

float ave; /* Average value. */

status = CDFlib (GET_, zVAR_NUMBER_, "FLUX", &varNum,
NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);
status = CDFlib (SELECT_, zVAR_, varNum,
zZVAR_SEQPOS_, recNum, indices,
GET_, zVAR_SEQDATA _, &value,

245

NULL);

while (status_>= CDF_OK) {
sum += value;
count++;
status = CDFlib (GET_, zZVAR_SEQDATA , &value,
NULL);

}
if (status '= END_OF_VAR) UserStatusHandler (status);

ave = sum / count;

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
static float scale[2] = {-90.0,90.0}; /* Scale, minimum/maximum. */

status = CDFlib (SELECT_, rENTRY_NAME_, "LATITUDE",
ATTR_NAME_, "FIELDNAM",
PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
"Latitude
SELECT_, ATTR_NAME_, "SCALE",
PUT__, rENTRY_DATA_, CDF_REALA4, (long) 2, scale,
SELECT_, ATTR_NAME_, "UNITS",
PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
"Degrees north
NULL_);
if (status 'I= CDF_OK) UserStatusHandler (status);

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

#include "cdf.h"

246

CDFstatus status; /* Status returned from CDF library. */

short time; /* "Time' value. */

char vectorA[3]; /* “vectorA' values. */

double vectorB[5]; [* “vectorB' values. */

long recNumber; /* Record number. */

char buffer[45]; [* Buffer of full-physical records. */
long varNumbers[3]; [* Variable numbers. */

status = CDFlib (GET_, zVAR_NUMBER_, "vectorB", &varNumbers[0],
zZVAR_NUMBER_, "time", &varNumbers[1],
zVAR_NUMBER _, "vectorA", &varNumbers[2],
NULL_);
if (status 1= CDF_OK) UserStatusHandler (status);

for (recNumber = 0; recNumber < 100; recNumber++) {
/* read values from input file */

memmove (&buffer[0], vectorB, 40);

memmove (&buffer[40], &time, 2);

memmove (&buffer[42], vectorA, 3);

status = CDFlib (SELECT_, zVARs_ RECNUMBER _, recNumber,
PUT__, zVARs_RECDATA , 3L, varNumbers, buffer,
NULL);

if (status 1= CDF_OK) UserStatusHandler (status);

Note that it would be more e_cient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

7.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a C
application. Please don't do something like the following:

#include "cdf.h"

CDFid id; [* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
long varNum; [* zVariable number. */

status = CDFlib (SELECT_, CDF_, id,

247

GET_, zVAR_NUMBER_, "EPOCH", &varNum,
SELECT_, zVAR_, varNum, /* _ERROR! */
NULL_);

if (status 'I= CDF_OK) UserStatusHandler (status);

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET_,zZVAR_NUMBER_> operation. ~What actually happens is that the zVariable number passed to the
<SELECT_,zZVAR_> operation is undefined. This is because the C compiler is passing varNum by value rather than
reference.® Since the argument list passed to CDFIib is created before CDFIib is called, varNum does not yet have a
value. Only after the <GET_,zZVAR_NUMBER_> operation is performed does varNum have a valid value. But at that
point it's too late since the argument list has already been created. In this type of situation you would have to make two
calls to CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

7.9 Custom C Functions

Most of the Standard Interface functions callable from C applications are implemented as C macros that call CDFlib
(Internal Interface). For example, the CDFcreate function is actually defined as the following C macro:

#define CDFcreate(CDFname,numDims,dimSizes,encoding,majority,id) \
CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, id, \
PUT__, CDF_ENCODING , encoding, \
CDF_MAJORITY_, majority, \
NULL)

These macros are defined in cdf.h. Where your application calls CDFcreate, the C compiler (preprocessor) expands the
macro into the corresponding call to CDFlib.

The exibility of CDFlib allows you to define your own custom CDF functions using C macros. For instance, a function
that returns the format of a CDF could be defined as follows:

#define CDFinquireFormat(id,format) \
CDFlib (SELECT_, CDF_, id, \
GET_, CDF_FORMAT _, format, \
NULL)

Your application would call the function as follows:

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format of CDF. */

status = CDFinquireFormat (id, &format);
if (status 'I= CDF_OK) UserStatusHandler (status);

 Fortran programmers can get away with doing something like this because everything is passed by reference.

248

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type CDFstatus. The symbolic names for these codes are defined in cdf.h
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

CDFstatus status;

status = CDFfunction (...); [* any CDF function returning CDFstatus */
if (status '= CDF_OK) {
UserStatusHandler (status, ...);

,

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

#include <stdio.h>

#include "cdf.h"

void UserStatusHandler (status)
CDFstatus status;

{
char message[CDF_STATUSTEXT LEN+1];

249

if (status < CDF_WARN) {
printf ("An error has occurred, halting...\n");
CDFerror (status, message);
printf ("%s\n", message);
exit (status);
}
else {
if (status < CDF_OK) {
printf (“Warning, function may not have completed as expected...\n");
CDFerror (status, message);
printf ("%s\n", message);
}
else {
if (status _> CDF_OK) {
printf (“Function completed successfully, but be advised that...\n");
CDFerror (status, message);
printf ("%s\n", message);
}
}
}

return;

}

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

250

Chapter 9

9 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are included in
the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter
in the CDF User's Guide describes EPOCH values.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

9.1 computeEPOCH

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

double computeEPOCH(/* out -- CDF_EPOCH value returned. */

long year, /* in -- Year (AD, e.g., 1994). */
long month, [* in -- Month (1-12). */

long day, /* in -- Day (1-31). */

long hour, /* in -- Hour (0-23). */

long minute, /* in -- Minute (0-59). */

long second, /* in -- Second (0-59). */

long msec); /* in -- Millisecond (0-999). */

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is O (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of O through 86400000.

9.2 EPOCHbreakdown

251

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

void EPOCHbreakdown(

double epoch, /* in -- The CDF_EPOCH value. */
long *year, /* out -- Year (AD, e.g., 1994). */
long *month, /* out -- Month (1-12). */

long *day, [* out -- Day (1-31). */

long *hour, [* out -- Hour (0-23). */

long *minute, [* out -- Minute (0-59). */

long *second, /* out -- Second (0-59). */

long *msec); /* out -- Millisecond (0-999). */

9.3 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

void encodeEPOCH(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH_STRING_LEN+1]); [* out -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

9.4 encodeEPOCH1

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).
void encodeEPOCH1(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH1_STRING_LEN+1]); [* out -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

9.5 encodeEPOCH?2

encodeEPOCH?2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmess where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCH2(

252

double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH2_STRING_LEN+1]); [* out -- The alternate date/time character string. */

EPOCH2_STRING_LEN is defined in cdf.h.

9.6 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).
void encodeEPOCH3(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH3_STRING_LEN+1]); [* out -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

9.7 encodeEPOCHXx

encodeEPOCHXx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

void encodeEPOCHXx(

double epoch; /* in -- The CDF_EPOCH value. */
char format[EPOCHx_FORMAT_MAX]; /* in ---The format string. */
char encoded[EPOCHx_STRING_MAX]); [* out -- The custom date/time character string. */

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan',"Feb',...,"Dec’) <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

253

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

9.8 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 9.3. If an illegalfield is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH_STRING_LEN+1]); [* in -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

9.9 parseEPOCH1

parseEPOCH1 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 function described in Section 9.4. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCHI1(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH1_STRING_LEN+1]); [* in -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

9.10 parseEPOCH?2

parseEPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH?2 function described in Section 9.5. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH2(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH2_STRING_LEN+1]); [* in -- The alternate date/time character string. */

254

EPOCH2_STRING_LEN is defined in cdf.h.

9.11 parseEPOCH3

parseEPOCH3 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCHS3 function described in Section 9.6. If an illegalfield is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH3([* out -- CDF_EPOCH value returned. */
char epString[EPOCH3_STRING_LEN+1]); [* in -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

9.12 computeEPOCH16

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

double computeEPOCH16(/* out -- status code returned. */

long vyear, /* in -- Year (AD, e.g., 1994). */
long month, /* in -- Month (1-12). */

long day, [* in -- Day (1-31). */

long hour, /* in -- Hour (0-23). */

long minute, /* in -- Minute (0-59). */

long second, /* in -- Second (0-59). */

long msec, /* in -- Millisecond (0-999). */
long microsec, /* in -- Microsecond (0-999). */
long nanosec, /* in -- Nanosecond (0-999). */
long picosec, /* in -- Picosecond (0-999). */
double epoch[2]); [* out -- CDF_EPOCH16 value returned */

9.13 EPOCH16breakdown

EPOCHZ16breakdown decomposes a CDF_EPOCH16 value into the individual components.

void EPOCH16breakdown(

double epoch[2], [* in -- The CDF_EPOCH16 value. */
long *year, /* out -- Year (AD, e.g., 1994). */
long *month, /* out -- Month (1-12). */

long *day, [* out -- Day (1-31). */

long *hour, [* out -- Hour (0-23). */

long *minute, /* out -- Minute (0-59). */

long *second, /* out -- Second (0-59). */

long *msec, /* out -- Millisecond (0-999). */

long *microsec, /* out -- Microsecond (0-999). */

255

long *nanosec, /* out -- Nanosecond (0-999). */
long *picosec); /* out -- Picosecond (0-999). */

9.14 encodeEPOCH16

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16(
double epoch[2]; [* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_STRING_LEN+1)); [* out -- The date/time character string. */

EPOCH16_STRING_LEN is defined in cdf.h.

9.15 encodeEPOCHI16 1

encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

void encodeEPOCH16_1(
double epoch[2]; [* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_1 STRING_LEN +1]); [* out -- The date/time character string. */

EPOCH16_1_STRING_LEN is defined in cdf.h.

9.16 encodeEPOCH16 2

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCH16_2(
double epoch[2]; [* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_2 STRING_LEN+1)); [* out -- The date/time character string. */

EPOCH16_2_STRING_LEN is defined in cdf.h.

256

9.17 encodeEPOCH16 3

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16_3(
double epoch; /* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_3_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH16_3 STRING_LEN is defined in cdf.h.

9.18 encodeEPOCH16 x

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

void encodeEPOCH16_x(

double epoch[2]; [* in -- The CDF_EPOCH16 value. */
char format[EPOCHx_FORMAT_MAX]; [* in ---The format string. */
char encoded[EPOCHx_STRING_MAX]); /* out -- The date/time character string. */

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan’,"Feb',...,’Dec’) <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msec Millisecond (000-999) <msec.3>
usec Microsecond (000-999) <usec.3>
nsec Nanosecond (000-999) <nsec.3>
psec Picosecond (000-999) <psec.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

257

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .
<dom.02>-<month>-<year> <hour>:<min>;<sec>.<msec>.<usec>.<nsec>.<psec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

9.19 parseEPOCHI16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegalfield is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16(/* out -- The status code returned. */
char epString[EPOCH16_STRING_LEN+1], /* in -- The date/time character string. */
double epoch[2]); [* out -- The CDF_EPOCH16 value returned */

EPOCH16_STRING_LEN is defined in cdf.h.

9.20 parseEPOCH16 1

parseEPOCH16_1 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_1 function. If an illegalfield is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_1([* out -- The status code returned. */
char epString[EPOCH16_1 STRING_LEN+1], [* in -- The date/time character string. */
double epoch[2]); [* out -- The CDF_EPOCH16 value returned */

EPOCH16_1_STRING_LEN is defined in cdf.h.

9.21 parseEPOCH16 2

parseEPOCH16_2 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_2 function. If an illegalfield is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_2([* out -- The status code returned. */
char epString[EPOCH16_2 STRING_LEN +1], /* in -- The date/time character string. */
double epoch[2]); [* out -- The CDF_EPOCH16 value returned */

EPOCH16_2_STRING_LEN is defined in cdf.h.

258

9.22 parseEPOCH16 3

parseEPOCH16_3 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_3 function. If an illegalfield is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_3([* out -- The status code returned. */
char epString[EPOCH16_3 STRING_LEN +1], /* in -- The date/time character string. */
double epoch[2]); [* out -- The CDF_EPOCH16 value returned */

EPOCH16_3_STRING_LEN is defined in cdf.h.

259

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF _error (for Fortran) can be
used within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD_ALLOCATE_RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

261

BAD_ATTR_NAME

BAD_ATTR_NUM

BAD_BLOCKING_FACTOR!

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_COMPRESSION_PARM

BAD_DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

BAD_DIM_INTERVAL

BAD_DIM_SIZE

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

lllegal dimension size specified. A dimension size must be at
least one (1). [Error]

! The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

262

BAD_ENCODING

BAD_ENTRY_NUM

BAD_FNC_OR_ITEM

BAD_FORMAT

BAD_INITIAL_RECS

BAD_MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0_MODE

BAD_NUM_DIMS

BAD_NUM_ELEMS

BAD_NUM_VARS

BAD_READONLY_MODE

BAD_REC_COUNT

BAD_REC_INTERVAL

BAD_REC_NUM

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. =~ The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(2). [Error]

Illegal number of variables in a record access operation. [Error]

lllegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

263

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS_PARM

BAD_VAR_NAME

BAD_VAR_NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessable (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for FortrAn applications.
[Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value

(excluding the pad value) has already been written to that
variable.

264

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL_ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

CDF_READ_ERROR

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification wherethe
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Unsufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_PATHNAME_LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

265

CDF_WRITE_ERROR

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOT_COMPRESS

EMPTY_COMPRESSED_CDF

END_OF VAR

FORCED_PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_EPOCH_VALUE

ILLEGAL_FOR_SCOPE

ILLEGAL_IN_zMODE

ILLEGAL_ON_V1_CDF

MULTI_FILE_FORMAT

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

An error occured while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occured while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm choosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal componet is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

266

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modi_ed, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF

User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

267

NOT_A_CDF_OR_NOT_SUPPORTED

PRECEEDING_RECORDS_ALLOCATED

READ_ONLY_DISTRIBUTION

READ_ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR

SCRATCH_READ_ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME_ALREADY_ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED_OPERATION
VAR_ALREADY_CLOSED

VAR_CLOSE_ERROR

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modi_ed by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]
Error detected while trying to close variable file. Check that

sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

268

VAR_CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL_RECORD_DATA

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF_VAR_NAME_LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
suffient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

269

Appendix B

B.1 Standard Interface (Original)

CDFstatus CDFattrCreate (id, attrName, attrScope, attrNum)

CDFid id; /*in */
char *attrName; [*in*/
long attrScope; /*in*/
long *attrNum; /* out */

CDFstatus CDFattrEntrylnquire (id, attrNum, entryNum, dataType, numElements)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; [*in*/
long *dataType; /* out */
long *numElements; /* out */

CDFstatus CDFattrGet (id, attrNum, entryNum, value)

CDFid id; /*in */
long attrNum; [*in*/
long entryNum; [*in*/
void *value; /* out */

CDFstatus CDFattrinquire (id, attrNum, attrName, attrScope, maxEntry)

CDFid id; [*in*/
long attrNum; [*in*/
char *attrName; [* out */
long *attrScope; [* out */
long *maxEntry; [* out */

long CDFattrNum (id, attrName)
CDFid id; [*in*/
char *attrName; /*in*/

CDFstatus CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; [*in*/
long dataType; [*in*/
long numElements; [*in*/
void *value; [*in*/

CDFstatus CDFattrRename (id, attrNum, attrName)
CDFid id; I*in*/
long attrNum; [*in*/

271

char *attrName; /*in*/

CDFstatus CDFclose (id)

CDFid id; [*in*/
CDFstatus CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

char *CDFname; [*in*/
long numbDims; [*in*/
long dimSizes|[]; [*in*/
long encoding; [*in*/
long majority; [*in*/
CDFid *id; [* out */
CDFstatus CDFdelete (id)

CDFid id; [*in*/
CDFstatus CDFdoc (id, version, release, text)

CDFid id; [*in*/
long *version; /* out */
long *release; /* out */
char text{CDF_DOCUMENT_LEN+1]; /* out */
CDFstatus CDFerror (status, message)

CDFstatus status; [*in*/
char message[CDF_STATUSTEXT_LEN+1]; [* out */
CDFstatus CDFgetrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; [*in */
long numvars; [*in */
char *varNames[]; [*in */
long varRecNum; [*in */
void *buffer(]; /* out */
CDFstatus CDFgetzVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; [*in */
long numVars; [*in */
char *varNames[]; [*in */
long varRecNum; [*in */
void *buffer(]; /* out */

CDFstatus CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec,
numVars, numaAttrs)

CDFid id; [*in*/

long *numDims; [* out */
long dimSizes[CDF_MAX_DIMS]; /* out */
long *encoding; /* out */
long *majority; [* out */
long *maxRec; /* out */
long *numVars; /* out */
long *numAiLtrs; /* out */

CDFstatus CDFopen (CDFname, id)
char *CDFname; /*in*/
CDFid *id; /* out */

CDFstatus CDFputrVarsRecordData (id, numVars, varNames, varRecNum, buffer)

272

CDFid id; in

long numVars; [*in */
char *varNames[]; [*in */
long varRecNum; [*in */
void *puffer(]; [*in */
CDFstatus CDFputzVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; [*in */
long numvars; [*in */
char *varNames[]; [*in */
long varRecNum; [*in */
void *puffer(]; [*in */
CDFstatus CDFvarClose (id, varNum)

CDFid id; [*in*/
long varNum; [*in*/

CDFstatus CDFvarCreate (id, varName, dataType, numElements, recVariances,
dimVariances, varNum)

CDFid id; [*in*/
char ~ *varName; I*in>*/
long dataType; [*in*/
long numElements; [*in*/
long recVariance; [*in*/
long dimVariances[]; [*in*/
long *varNum; /* out */

CDFstatus CDFvarGet (id, varNum, recNum, indices, value)

CDFid id; [*in*/
long varNum; [*in*/
long recNum; /*in*/
long indices|[]; [*in*/
void *value; [* out*/

CDFstatus CDFvarHyperGet (id, varNum, recStart, recCount, recinterval,
indices, counts, intervals, buffer)

CDFid id; [*in*/
long varNum; [*in*/
long recStart; [*in*/
long recCount; [*in*/
long recinterval; /*in*/
long indices|[]; [*in*/
long counts|[]; [*in*/
long intervals[]; [*in*/
void *puffer; /* out */

CDFstatus CDFvarHyperPut (id, varNum, recStart, recCount, recinterval,
indices, counts, intervals, buffer)

CDFid id; [*in*/
long varNum; [*in*/
long recStart; /*in*/
long recCount; [*in*/
long recinterval; /*in*/
long indices|[]; [*in*/
long counts|[]; [*in*/
long intervals[]; [*in*/

273

void *buffer; /*in*/

CDFstatus CDFvarlnquire (id, varNum, varName, dataType, numElements,
recVariance, dimVariances)

CDFid id; [*in*/
long varNum; [*in*/
char *varName; [* out */
long *dataType; /* out */
long *numElements; /* out */
long *recVariance; /* out */
long dimVariances| CDF_MAX_DIMS]; /* out */
long CDFvarNum (id, varName)

CDFid id; [*in*/
char *varName; [*in*/

CDFstatus CDFvarPut (id, varNum, recNum, indices, value)

CDFid id; [*in*/
long varNum; [*in*/
long recNum; [*in*/
long indices|[]; [*in*/
void *value; [*in*/

CDFstatus CDFvarRename (id, varNum, varName)

CDFid id; /*in */
long varNum; [*in*/
char *varName; /*in*/

274

B.2 Standard Interface (New)

CDFstatus CDFcloseCDF (id)

CDFid *id; [*in>*/
CDFstatus CDFclosezVar (id, varNum)

CDFid id; 1*in>*/
long varNum; [*in*/

CDFstatus CDFconfirmAttrExistence (id, attrName)
CDFid id; [*in*/
char *attrName; [*in*/

CDFstatus CDFconfirmgEntryExistence (id, attrNum, entryNum)

CDFid id; I*in>*/
long attrNum; [*in*/
long entryNum; [*in*/

CDFstatus CDFconfirmrEntryExistence (id, attrNum, entryNum)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; [*in*/

CDFstatus CDFconfirmzEntryExistence (id, attrNum, entryNum)

CDFid id; /*in */
long attrNum; [*in*/
long entryNum; /*in*/

CDFstatus CDFconfirmzVarExistence (id, varNum)

CDFid id; [*in*/
long varNum; [*in*/
CDFstatus CDFconfirmzVarPadValueExistence (id, varNum)

CDFid id; [*in*/
long varNum; [*in*/

CDFstatus CDFcreateAttr (id, attrName, scope, attrNum)

CDFid id; [*in*/
char *attrName; [*in*/
long scope; [*in*/
long *attrNum; /* out */

CDFstatus CDFcreateCDF (CDFname, numDims, dimSizes, id)
char *CDFname; [*in*/
CDFid *id,; [* out */

CDFstatus CDFcreatezVar (id, varName, dataType, numElements, numDims,
dimSizes, recVary, dimVarys, varNum)

CDFid id; /*in */
char *varName; [*in*/
long dataType; [*in*/
long numElements; [*in*/

275

long numDims;
long dimSizes[];
long recVary;
long dimVarys[];
long *varNum;

CDFstatus CDFdeleteCDF (id)
CDFid *id;

CDFstatus CDFdeleteAttr (id, attrNum)
CDFid id;
long attrNum;

CDFstatus CDFdeleteAttrgEntry (id, attrNum, entryNum)
CDFid id;

long attrNum;

long entryNum;

CDFstatus CDFdeleteAttrrEntry (id, attrNum, entryNum)
CDFid id;

long attrNum;

long entryNum;

CDFstatus CDFdeleteAttrzEntry (id, attrNum, entryNum)
CDFid id;

long attrNum;

long entryNum;

CDFstatus CDFdeletezVar (id, varNum)
CDFid id;
long varNum;

CDFstatus CDFdeletez\VarRecords (id, varNum, startRec, endRec)

CDFid id;

long varNum;
long startRec;
long endRec;

CDFstatus CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

CDFid id;

long attrNum;
long entryNum;
long *dataType;

[*in*/
/*in*/
/*in*/
/*in*/
/* out */

1*in>*/

in>/
in>/

I*in*/
r*in>*/
r*in>*/

I*in>*/
I*in>*/
I*in>*/

I*in>*/
I*in*/
I*in*/

I*in>*/
I*in>*/

I*in>*/
I*in>*/
I*in*/
I*in*/

[*in */
[*in */
[*in */
/* out */

CDFstatus CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

CDFid id;

long attrNum;
long entryNum;
long *numElems;

CDFstatus CDFgetAttrgEntry (id, attrNum, entryNum, value)

CDFid id;

long attrNum;
long entryNum;
void *value;

276

[*in */
[*in */
[*in */
/* out */

I*in */
[*in */
[*in */
/* out */

CDFstatus CDFgetAttrrEntry (id, attrNum, entryNum, value)

CDFid id; /*in */
long attrNum; [*in */
long entryNum; [*in */
void *value; /* out */

CDFstatus CDFgetAttrMaxgEntry (id, attrNum, entryNum)

CDFid id; [*in */
long attrNum; [*in */
long *entryNum; [* out */

CDFstatus CDFgetAttrMaxrEntry (id, attrNum, entryNum)

CDFid id; /*in */
long attrNum; [*in */
long *entryNum; [* out */

CDFstatus CDFgetAttrMaxzEntry (id, attrNum, entryNum)

CDFid id; [*in */
long attrNum; [*in */
long *entryNum; /* out */

CDFstatus CDFgetAttrName (id, attrNum, attrName)

CDFid id; [*in */
long attrNum; [*in */
char *attrName; [* out */
long CDFgetAttrNum (id, attrName) /* out */
CDFid id; [*in */
char *attrName; [*in */

CDFstatus CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

CDFid id; [*in */
long attrNum; [*in */
long entryNum; [*in */
long *dataType; [* out */
CDFstatus CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)

CDFid id; [*in */
long attrNum; [*in */
long entryNum; [*in */
long *numElems; /* out */

CDFstatus CDFgetAttrScope (id, attrNum, scope)

CDFid id; [*in */
long attrNum; [*in */
long *SCope; [* out */

CDFstatus CDFgetAttrzEntry (id, attrNum, entryNum, value)

CDFid id; [*in */
long attrNum; [*in */
long entryNum; [*in */
void *value; * out*/

CDFstatus CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)
CDFid id; [*in */
long attrNum; [*in */

277

long entryNum; [*in */

long *dataType; [* out */
CDFstatus CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

CDFid id; [*in */
long attrNum; [*in */
long entryNum; [*in */
long *numElems; /* out */

CDFstatus CDFgetCacheSize (id, numBuffers)
CDFid id; [*in */
long *numBuffers; [* out */

CDFstatus CDFgetCompression (id, compressionType, compressionParms,
compressionPercent)

CDFid id; [*in */

long *compressionType; /* out */
long compressionParms[]; /* out */
long *compressionPercent; /* out */

CDFstatus CDFgetCompressionCacheSize (id, numBuffers)
CDFid id; [*in */
long *numBuffers; [* out */

CDFstatus CDFgetCompressioninfo (cdfName, compressionType, compressionParms,
compressionSize, uncompressionSize)

char *cdfName; [*in */
long *compressionType; /* out */
long compressionParms[]; /* out */
OFF_T *compressionSize; /* out */
OFF_T *uncompressionSize; /* out */

CDFstatus CDFgetCopyright (id, Copyright)

CDFid id; [*in */
char *Copyright; /* out */
CDFstatus CDFgetDataTypeSize (dataType, numBytes)

long dataType; [*in */
long *numBytes; [* out */

CDFstatus CDFgetDecoding (id, decoding)

CDFid id; [*in */
long *decoding; /* out */
CDFstatus CDFgetEncoding (id, encoding)

CDFid id; [*in */
long *encoding; /* out */
CDFstatus CDFgetFormat (id, format)

CDFid id; [*in */
long *format; [* out */

CDFstatus CDFgetLibraryCopyright (Copyright)
char *Copyright; /* out */

CDFstatus CDFgetLibraryVersion (version, release, increment, sublncrement)

278

long *version; [* out */

long *release; [* out */
long *increment; /* out */
char *sublncrement; /* out */

CDFstatus CDFgetMajority (id, majority)
CDFid id; [*in */
long *majority; /* out */

CDFstatus CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)

CDFid id; I*in */
long *maxRecrVars; [* out */
long *maxReczVars; [*out */

CDFstatus CDFgetName (id, name)
CDFid id; [*in */
char *name; /*out */

CDFstatus CDFgetNegtoPosfpOMode (id, negtoPosfp0)

CDFid id; [*in */
long *negtoPosfpO; /* out */
CDFstatus CDFgetNumAttrgEntries (id, attrNum, entries)

CDFid id; [*in */
long atrNum; /*in */
long *entries; /* out */

CDFstatus CDFgetNumAttributes (id, numAttrs)
CDFid id; /*in */
long *numAittrs; [* out */

CDFstatus CDFgetNumAttrrEntries (id, attrNum, entries)

CDFid id; I*in */
long atrNum; [*in */
long *entries; /* out */

CDFstatus CDFgetNumAttrzEntries (id, attrNum, entries)

CDFid id; [*in */
long atrNum; [*in */
long *entries; /* out */

CDFstatus CDFgetNumgAttributes (id, numAttrs)
CDFid id; [*in */
long *numAittrs; [* out */

CDFstatus CDFgetNumvAttributes (id, numAttrs)
CDFid id; /*in */
long *numaAittrs; I* out */

CDFstatus CDFgetNumrVars (id, humVars)
CDFid id; [*in */
long *numrVars; /* out */

CDFstatus CDFgetNumzVars (id, numVars)

CDFid id; [*in */
long *numzVars; [* out */

279

CDFstatus CDFgetReadOnlyMode (id, mode)
CDFid id; [*in */
long *mode; [* out */

CDFstatus CDFgetStageCacheSize (id, numBuffers)
CDFid id; [*in */
long *numBuffers; /* out */

CDFstatus CDFgetStatusText (status, text)
CDFstatus status; /*in */
char *text; /*out */

long CDFgetVarNum (id, varName)
CDFid id; [*in */
char *varName; /*in */

CDFstatus CDFgetVersion (id, version, release, increment)

CDFid id; [*in */

long *version; [* out */
long *release; /* out */
long *increment; /* out */

CDFstatus CDFgetzMode (id, zMode)
CDFid id; /*in */
long *zMode; /* out */

CDFstatus CDFgetzVVarAllocRecords (id, varNum, allocRecs)

CDFid id; [*in */
long varNum; [*in */
long *allocRecs; /* out */

CDFstatus CDFgetzVarBlockingFactor (id, varNum, bf)

CDFid id; [*in */
long varNum; [*in */
long *bf; [* out */
CDFstatus CDFgetzVVarCacheSize (id, varNum, numBuffers)

CDFid id; [*in */
long varNum; [*in */
long *numBuffers; /* out */

CDFstatus CDFgetzVVarCompression (id, varNum, cType, cParms, cPercent)

CDFid id; [*in */
long varNum; [*in */
long *CcType; [* out */
long cParms[]; [* out */
long *cPercent; /* out */

CDFstatus CDFgetzVarData (id, varNum, recNum, indices, value)

CDFid id; [*in */
long varNum; [*in */
long recNum; [*in */
long indices|[]; [*in */
void *value; [* out */

280

CDFstatus CDFgetzVVarDataType (id, varNum, dataType)
CDFid id;

long varNum;

long *dataType;

CDFstatus CDFgetzVVarDimSizes (id, varNum, dimSizes)
CDFid id;

long varNum;

long dimSizes|[];

CDFstatus CDFgetzVarDimVariances (id, varNum, dimVarys)
CDFid id;

long varNum;

long dimVarys[];

CDFstatus CDFgetzVVarMaxAllocRecNum (id, varNum, maxRec)
CDFid id;

long varNum;

long *maxRec;

CDFstatus CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)
CDFid id;

long varNum;

long *maxRec;

CDFstatus CDFgetzVVarName (id, varNum, varName)
CDFid id;

long varNum;

char *varName;

CDFstatus CDFgetzVarNumDims (id, varNum, numDims)
CDFid id;

long varNum;

long *numDims;

CDFstatus CDFgetzVarNumElements (id, varNum, numElems)
CDFid id;

long varNum;

long *numElems;

CDFstatus CDFgetzVarNumRecsWritten (id, varNum, numRecs)
CDFid id;

long varNum;

long *numRecs;

CDFstatus CDFgetzVVarPadValue (id, varNum, padValue)
CDFid id;

long varNum;

void *padValue;

CDFstatus CDFgetzVVarRecordData (id, varNum, recNum, buffer)
CDFid id;

long varNum;

long recNum;

void *buffer;

281

[*in */
[*in */
/* out */

/*in */
/*in */
/* out */

[*in */
[*in */
/* out */

/*in */
[*in */
/* out */

/*in */
[*in */
/*out */

[*in */
[*in */
/* out */

/*in */
/*in */
I*out */

/*in */
[*in */
/* out */

[*in */
/*in */
/* out */

[*in */
[*in */
/* out */

I*in */
[*in */
[*in */
/* out */

CDFstatus CDFgetzVVarRecVariance (id, varNum, recVary)
CDFid id;

long varNum;

long *recVary;

CDFstatus CDFgetzVarReservePercent (id, varNum, percent)
CDFid id;

long varNum;

long *percent;

CDFstatus CDFgetzVarSeqData (id, varNum, value)
CDFid id;

long varNum;

void *value;

CDFstatus CDFgetzVVarSeqPos (id, varNum, recNum, indices)
CDFid id;

long varNum;

long *recNum;

long indices|[];

CDFstatus CDFgetzVVarsMaxWrittenRecNum (id, recNum)
CDFid id;
long *recNum,;

CDFstatus CDFgetzVarSparseRecords (id, varNum, sRecords)
CDFid id;

long varNum;

long *sRecords;

CDFstatus CDFgetzVarsRecordDatabyNumbers (id, numVars, varNums,
varRecNum, buffers)

CDFid id;

long numvars;
long varNums[];
long varRecNum;
void *puffers]];

[*in */
[*in */
/* out */

/*in */
/*in */
/* out */

[*in */
[*in */
/* out */

[*in */
I*in */
/* out */
/*out */

[*in */
/*out */

[*in */
[*in */
/* out */

/*in */
[*in */
[*in */
[*in */
/* out */

CDFstatus CDFhyperGetzVarData (id, varNum, recNum, reCount, recinterval,

indices, counts, intervals, buffer)
CDFid id;
long varNum;
long recNum;
long recCount;
long recinterval;
long indices[];
long counts|[];
long intervals[];
void *buffer;

CDFstatus CDFhyperPutzVarData (id, varNum, recNum, reCount, recinterval,
indices, counts, intervals, buffer)

CDFid id;

long varNum;
long recNum;
long recCount;

282

[*in */
/*in */
/*in */
/*in */
/*in */
[*in */
[*in */
[*in */
/* out */

[*in */
[*in */
/*in */
/*in */

long recinterval; [*in */

long indices[]; [*in */
long countsf[]; [*in */
long intervals[]; [*in */
void *puffer; [*in*/

CDFstatus CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry,

maxzEntry)
CDFid id; [*in*/
long attrNum; [*in*/
char *attrName; [* out */
long *attrScope; /* out */
long *maxgEntry; [* out */
long *maxrEntry; /* out */
ong *maxzEntry; /* out */

CDFstatus CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; [*in*/
long *dataType; /* out */
long *numElems; [* out */

CDFstatus CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; /*in*/
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

CDFid id; [*in*/
long attrNum; [*in*/
long entryNum; [*in*/
long *dataType; [* out */
long *numElems; [* out */

CDFstatus CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec,
numrVars, maxzRec, numzVars, numAttrs)

CDFid id; [*in*/

long *numDims; /* out */
long dimSizes[CDF_MAX_DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */
long *maxrRec; /* out */
long *numrVars; [* out */
long *maxzRec; /* out */
long *numzVars; [* out */
long *numALtrs; /* out */

CDFstatus CDFinquirezVar (id, varNum, varName, dataType, numElems,
numDims, dimSizes, recVary, dimVarys)

CDFid id; [*in*/
long varNum; [*in*/
char *varName; [* out */
long *dataType; /* out */

283

long *numElems;
long *numDims;
long dimSizes[];
long *recVary;
long dimVarys[];

CDFstatus CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems,

value)
CDFid id;
long attrNum;
long entryNum;
long dataType;
long numElems;
void *value;

CDFstatus CDFopenCDF (CDFname, id)
char *CDFname;
CDFid *id;

CDFstatus CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems,

value)
CDFid id;
long attrNum;
long entryNum;
long dataType;
long numElems;
void *value;

CDFstatus CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems,

value)
CDFid id;
long attrNum;
long entryNum;
long dataType;
long numElems;
void *value;

CDFstatus CDFputzVarData (id, varNum, recNum, indices, value)
CDFid id;

long varNum;

long recNUm;

long indices|[];

void *value;

CDFstatus CDFputzVarRecordData (id, varNum, recNum, values)
CDFid id;

long varNum;

long recNUm;

void *values;

CDFstatus CDFputzVarSegData (id, varNum, value)
CDFid id;

long varNum;

void *value;

CDFstatus CDFputzVarsRecordDatabyNumbers (id, numVars, varNums,

284

/* out */
/* out */
/* out */
/* out */
/* out */

/*in
/*in
/*in
/*in
/*in
/*in

*/
*/
*/
*/
*/
*/

/*in*/
/* out */

/*in
/*in
/*in
/*in
/*in
/*in

/*in
/*in
/*in
/*in
/*in
/*in

/*in
/*in
/*in
/*in
/*in

/*in
/*in
/*in
/*in

/*in
/*in
/*in

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

varRecNum, buffers)
CDFid id;
long numvars;
long varNumsl[];
long varRecNum;
void *buffers]];

CDFstatus CDFrenameAttr (id, attrNum, attrName)
CDFid id;

long attrNum;

char *attrName;

CDFstatus CDFrenamezVar (id, varNum, varName)
CDFid id;

long varNum;

char *varName;

CDFstatus CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id;

long attrNum;

long entryNum;

long dataType;

CDFstatus CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id;

long attrNum;

long entryNum;

long dataType;

CDFstatus CDFsetAttrScope (id, attrNum, scope)

CDFid id;
long attrNum;
long scope;

CDFstatus CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id;

long attrNum;

long entryNum;

long dataType;

CDFstatus CDFsetCacheSize (id, numBuffers)
CDFid id;
long numBuffers;

CDFstatus CDFsetCompression (id, compressionType, compressionParms)
CDFid id;

long compressionType;

long compressionParms[];

CDFstatus CDFsetCompressionCacheSize (id, numBuffers)
CDFid id;
long numBuffers;

CDFstatus CDFsetDecoding (id, decoding)

CDFid id;
long decoding;

285

/*in
/*in
/*1in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in
/*in

/*in
/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in
/*in

/*in
/*in

/*in
/*in
/*in

/*in
/*in

/*in
/*in

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/

CDFstatus CDFsetEncoding (id, encoding)
CDFid id;
long encoding;

CDFstatus CDFsetFormat (id, format)
CDFid id;
long format;

CDFstatus CDFsetMajority (id, majority)
CDFid id;
long majority;

CDFstatus CDFsetNegtoPosfpOMode (id, negtoPosfp0)
CDFid id;
long negtoPosfp0;

CDFstatus CDFsetReadOnlyMode (id, readOnly)
CDFid id;
long readOnly;

CDFstatus CDFsetStageCacheSize (id, numBuffers)
CDFid id;
long numBuffers;

CDFstatus CDFsetzMode (id, zMode)
CDFid id;
long zMode;

CDFstatus CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)

CDFid id;

long varNum;
long firstRec;
long lastRec;

CDFstatus CDFsetzVarAllocRecords (id, varNum, numRecs)
CDFid id;

long varNum;

long numRecs;

CDFstatus CDFsetzVarBlockingFactor (id, varNum, bf)
CDFid id;

long varNum;

long bf;

CDFstatus CDFsetzVarCacheSize (id, varNum, numBuffers)
CDFid id;

long varNum;

long numBuffers;

CDFstatus CDFsetzVarCompression (id, varNum, compressionType,
compressionParms)

CDFid id;

long varNum;

long compressionType;

long compressionParms[];

286

/*in
/*in

/*in
/*in

/*in
/*in

/*in
/*in

/*in
/*in

/*in
/*in

/*in
/*in

/*in
/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in
/*in

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

CDFstatus CDFsetzVarDataSpec (id, varNum, dataType)
CDFid id;

long varNum;

long dataType;

CDFstatus CDFsetzVarDimVariances (id, varNum, dimVarys)
CDFid id;

long varNum;

long dimvarysl];

CDFstatus CDFsetzVarlnitialRecs (id, varNum, initialRecs)
CDFid id;

long varNum;

long initialRecs;

CDFstatus CDFsetzVarPadValue (id, varNum, padValue)
CDFid id;

long varNum;

void *padValue;

CDFstatus CDFsetzVarRecVariance (id, varNum, recVary)
CDFid id;

long varNum;

long recVary,

CDFstatus CDFsetzVarReservePercent (id, varNum, reservePercent)
CDFid id;

long varNum;

long reservepercent;

CDFstatus CDFsetzVarsCacheSize (id, numBuffers)
CDFid id;
long numBuffers;

CDFstatus CDFsetzVarSeqPos (id, varNum, recNum, indices)
CDFid id;

long varNum;

long recNum;

long indices|[];

CDFstatus CDFsetzVarSparseRecords (id, varNum, sRecords)
CDFid id;

long varNum;

long sRecords;

287

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in
/*in

/*in
/*in

/*in

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

*/

[*in*/
[*in*/

/*in

/*in

*/

*/

I*in>*/
I*in>*/

B.3 Internal Interface

CDFstatus CDFlib (op, ...)

289

long op; [*in*/
CLOSE_
CDF_
r'VAR_
ZVAR_
CONFIRM_
ATTR_ long *attrNum /* out */
ATTR_EXISTENCE_ char *attrName [* in*/
CDF_ CDFid *id I* out */
CDF_ACCESS_
CDF_CACHESIZE_ long *numBuffers /* out*/
CDF_DECODING _ long *decoding /* out */
CDF_NAME_ char CDFname[CDF_PATHNAME_LEN+1]
[* out*/

CDF_NEGtoPOSfp0_MODE _ long *mode /* out */
CDF_READONLY_MODE_ long *mode /* out*/
CDF_STATUS CDFstatus *status [* out */
CDF_zMODE _ long *mode [* out */
COMPRESS_CACHESIZE _ long *numBuffers /* out */
CURQENTRY_EXISTENCE_
CURIENTRY_EXISTENCE_
CURZENTRY_EXISTENCE _
gENTRY_ long *entryNum [* out */
gENTRY_EXISTENCE_ long entryNum /* in*/
rENTRY_ long *entryNum /* out */
rENTRY_EXISTENCE long entryNum /* in*/
r'VAR_ long *varNum /* out */
r'VAR_CACHESIZE _ long *numBuffers /* out */
r'VAR_EXISTENCE char *varName [* in*/
r'VAR_PADVALUE_
r'VAR_RESERVEPERCENT _ long *percent /* out*/
r'VAR_SEQPOS_ long *recNum [* out*/

long indices] CDF_MAX_DIMS] /* out*/
r'VARs_DIMCOUNTS _ long counts[CDF_MAX_DIMS] [* out*/
r'VARs_DIMINDICES _ long indices] CDF_MAX_DIMS] /* out*/
r'VARs_DIMINTERVALS long intervals[CDF_MAX_DIMS] I* out*/
r'VARs_RECCOUNT _ long *recCount /* out */
r'VARs_RECINTERVAL _ long *recinterval /* out */
r'VARs RECNUMBER _ long *recNum /* out */
STAGE_CACHESIZE long *numBuffers /* out */
ZENTRY_ long *entryNum /* out */
ZENTRY_EXISTENCE _ long entryNum /* in*/
ZVAR_ long *varNum [* out*/
zZVAR_CACHESIZE_ long *numBuffers /* out*/
ZVAR_DIMCOUNTS long counts|CDF_MAX_DIMS] /* out */
zVAR_DIMINDICES _ long indices]CDF_MAX_DIMS] [* out*/
zZVAR_DIMINTERVALS _ long intervals[CDF_MAX_DIMS] [* out*/
ZVAR_EXISTENCE_ char *varName I* in*/

ZVAR_PADVALUE_
ZVAR_RECCOUNT_
ZVAR_RECINTERVAL _
zZVAR_RECNUMBER _

zZVAR_RESERVEPERCENT_

ZVAR_SEQPOS_

CREATE_

ATTR_

CDF_

'VAR_

ZVAR_

DELETE_

GET_

ATTR_
CDF_

gENTRY_
rENTRY _

'VAR_
'VAR_RECORDS_

ZENTRY_
ZVAR_
ZVAR_RECORDS_

ATTR_MAXgENTRY _
ATTR_MAXIENTRY
ATTR_MAXZENTRY_
ATTR_NAME_

ATTR_NUMBER_

ATTR_NUMgENTRIES_

long *recCount I* out */
long *recinterval /* out */
long *recNum /* out */
long *percent /* out */
long *recNum /* out */
long indices] CDF_MAX_DIMS] /* out */
char *attrName [* in*/
long scope [* in*/
long *attrNum [* out*/
char *CDFname [* in*/
long numDims [* in*/
long dimSizes]] [* in*/
CDFid *id [* out*/
char *varName [* in*/
long dataType [* in*/
long numElements [* in*/
long recVary [* in*/
long dimVarys][] [* in*/
long *varNum [* out*/
char *varName [* in*/
long dataType [* in*/
long numElements [* in*/
long numDims I* in*/
long dimSizes]] I* in*/
long recVary [* in*/
long dimVarys|] [* in*/
long *varNum [* out */
long firstRecord [*in*/

long lastRecord /*in*/

long firstRecord [*in*/

long lastRecord [*in*/

long *maxEntry [* out */
long *maxEntry /* out */
long *maxEntry /* out */
char attrName[CDF_ATTR_NAME_LEN256+1]

[* out*/
char *attrName [* in*/
long *attrNum [* out */
long *numEntries /* out */

290

ATTR_NUMIrENTRIES_ long *numEntries [* out*/

ATTR_NUMZzENTRIES _ long *numEntries /* out*/
ATTR_SCOPE_ long *scope /* out */
CDF_COMPRESSION _ long *cType [* out*/
long cParms[CDF_MAX_PARMS] [* out*/
long *cPct /* out */
CDF_COPYRIGHT_ char Copyright{CDF_COPYRIGHT_LEN+1]
[* out*/
CDF_ENCODING _ long *encoding [* out */
CDF_FORMAT _ long *format /* out */
CDF_INCREMENT _ long *increment /* out */
CDF_INFO_ char *name [* in*/
long *cType [* out*/
long cParms[CDF_MAX_PARMS] [* out*/
OFF_T *cSize /* out*/
OFF_T *uSize /* out*/
CDF_MAJORITY _ long *majority /* out */
CDF_NUMATTRS _ long *numAttrs /* out */
CDF_NUMgATTRS _ long *numAttrs /* out */
CDF_NUMTrVARS _ long *numVars [* out */
CDF_NUMVATTRS _ long *numAttrs [* out */
CDF_NUMzVARS _ long *numVars /* out */
CDF_RELEASE _ long *release /* out*/
CDF_VERSION_ long *version [* out*/
DATATYPE_SIZE_ long dataType [* in*/
long *numBytes [* out */
gENTRY_DATA _ void *value /* out*/
gENTRY_DATATYPE_ long *dataType /* out*/
gENTRY_NUMELEMS _ long *numElements /* out */
LIB_COPYRIGHT_ char Copyright{CDF_COPYRIGHT_LEN+1]
[* out*/
LIB_INCREMENT _ long *increment /* out */
LIB_RELEASE long *release /* out */
LIB_subINCREMENT_ char *subincrement /* out*/
LIB_VERSION_ long *version [* out*/
rENTRY_DATA_ void *value I* out */
rENTRY_DATATYPE_ long *dataType /* out */
rENTRY_NUMELEMS long *numElements /* out*/
r'VAR_ALLOCATEDFROM _ long startRecord [* in*/
long *nextRecord /* out */
r'VAR_ALLOCATEDTO_ long startRecord /* in*/
long *lastRecord /* out */
r'VAR_BLOCKINGFACTOR_ long *blockingFactor /* out */
r'VAR_COMPRESSION _ long *cType /* out */
long cParms[CDF_MAX_PARMS] /* out */
long *cPct /* out*/
r'VAR_DATA_ void *value I* out */
r'VAR_DATATYPE_ long *dataType I* out */
r'VAR_DIMVARYS_ long dimVarys[CDF_MAX_DIMS] [* out*/
r'VAR_HYPERDATA _ void *buffer [* out*/
r'VAR_MAXallocREC _ long *maxRec /* out*/
r'VAR_MAXREC _ long *maxRec /* out */
r'VAR_NAME_ char varName[CDF_VAR_NAME_LEN256+1] /* out*/
r'VAR_NINDEXENTRIES _ long *numEntries /* out */
r'VAR_nINDEXLEVELS _ long *numLevels /* out */
r'VAR_nINDEXRECORDS long *numRecords [* out */

291

rVAR_NUMallocRECS_
r'VAR_NUMBER _

'VAR_NUMELEMS_
r'VAR_NUMRECS_
'VAR_PADVALUE_
'VAR_RECVARY _
'VAR_SEQDATA_
'VAR_SPARSEARRAYS_

'VAR_SPARSERECORDS_
'VARs_DIMSIZES
'VARs_MAXREC
'VARs_NUMDIMS_
'VARs_RECDATA_

STATUS_TEXT_
ZENTRY_DATA_
ZENTRY_DATATYPE_
ZENTRY_NUMELEMS_
ZVAR_ALLOCATEDFROM_

zZVAR_ALLOCATEDTO_

zZVAR_BLOCKINGFACTOR_
zVAR_COMPRESSION_

ZVAR_DATA_
zZVAR_DATATYPE_
zVAR_DIMSIZES_
ZVAR_DIMVARYS_
zVAR_HYPERDATA _
zZVAR_MAXallocREC_
ZVAR_MAXREC_
zZVAR_NAME_
zVAR_nINDEXENTRIES_
ZVAR_nINDEXLEVELS_
zVAR_nINDEXRECORDS_
zVAR_NUMallocRECS_
zVAR_NUMBER_

zZVAR_NUMDIMS_
zZVAR_NUMELEMS_
zZVAR_NUMRECS_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS _
ZVARs_MAXREC_
ZVARs_RECDATA _

long
char
long
long
long
void
long
void
long
long
long
long
long
long
long
long
long
void
char
void
long
long
long
long
long
long
long
long
long
long
void
long
long
long
void
long
long
char
long
long
long
long
char
long
long
long
long
void
long
void
long
long
long
long
long
long

292

*numRecords
*varName
*varNum
*numElements
*numRecords
*value
*recVary
*value
*sArraysType

sArraysParms[CDF_MAX_PARMS]

*sArraysPct

*sRecordsType
dimSizes[CDF_MAX_DIMS]
*maxRec

*numDims

numVars

varNums[]

*buffer

text[CDF_STATUSTEXT_LEN+1]

*value

*dataType

*numElements

startRecord

*nextRecord

startRecord

*lastRecord

*blockingFactor

*cType
cParms[CDF_MAX_PARMS]
*cPct

*value

*dataType
dimSizes[CDF_MAX_DIMS]
dimVarys[CDF_MAX_DIMS]
*puffer

*maxRec

*maxRec

varName[CDF_VAR_NAME_LEN256+1]

*numEntries
*numLevels
*numRecords
*numRecords
*varName
*varNum
*numDims
*numElements
*numRecords
*value
*recVary
*value
*sArraysType

sArraysParms[CDF_MAX_PARMS]

*sArraysPct
*sRecordsType
*maxRec
numVars

/* out*/
[*in*/
/* out */
/* out */
/* out */
/* out*/
/* out*/
/* out*/
/* out*/
/* out*/
/* out >/
/* out*/
/* out*/
/* out */
/* out */
/*in*/
/*in*/
/* out*/
/* out */
/* out*/
/* out >/
/* out >/
/* in*/
/* out*/
/* in*/
/* out */
/* out */
/* out */
/* out*/
/* out*/
/* out */
/* out*/
/* out*/
I* out*/
/* out*/
/* out*/
/* out */
/* out */
/* out */
/* out*/
/* out*/
/* out*/
/*in*/
/* out >/
/* out >/
/* out >/
/* out*/
/* out*/
/* out */
/* out */
/* out */
/* out*/
/* out*/
/* out*/
/* out*/
/* in*/

NULL_

OPEN_

PUT

CDF_

ATTR_NAME_
ATTR_SCOPE_
CDF_COMPRESSION_

CDF_ENCODING_
CDF_FORMAT _
CDF_MAJORITY_
gENTRY_DATA

gENTRY_DATASPEC_

rENTRY_DATA_

rENTRY_DATASPEC_
r'VAR_ALLOCATEBLOCK_

r'VAR_ALLOCATERECS_
r'VAR_BLOCKINGFACTOR_
r'VAR_COMPRESSION_

'VAR_DATA_
'VAR_DATASPEC_

'VAR_DIMVARYS_
'VAR_HYPERDATA _
'VAR_INITIALRECS_
'VAR_NAME_
r'VAR_PADVALUE_
'VAR_RECVARY _
'VAR_SEQDATA_
'VAR_SPARSEARRAYS_

r'VAR_SPARSERECORDS_
'VARs_RECDATA_

ZENTRY_DATA_

ZENTRY_DATASPEC_
ZVAR_ALLOCATEBLOCK _

ZVAR_ALLOCATERECS_
ZVAR_BLOCKINGFACTOR_

long varNumsl[]
void *buffer

char *CDFname
CDFid *id

char *attrName
long scope

long cType

long cParmsl[]
long encoding

long format

long majority
long dataType

long numElements
void *value

long dataType

long numElements
long dataType

long numElements
void *value

long dataType

long numElements
long firstRecord
long lastRecord
long numRecords
long blockingFactor
long cType

long cParms[]
void *value

long dataType

long numElements
long dimVarys[]
void *buffer

long nRecords
char *varName
void *value

long recVary
void *value

long sArraysType
long sArraysParmsl]
long sRecordsType
long numVars
long varNumsJ[]
void *buffer

long dataType

long numElements
void *value

long dataType

long numElements
long firstRecord
long lastRecord
long numRecords
long blockingFactor

293

/* in*/
I* out*/

/% in*/
/* out*/

in>/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
in/
r*in*/
I*in*/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
in>/
in>/
r*in>*/
r*in>*/
in>/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
in>/
r*in>*/
in>/
in>/
in>/
I*in>*/
in/
in/
in>/
in/
r*in>*/
r*in>*/
in>/
r*in>*/
r*in>*/
in>/
in>/
in/
r*in>*/
in>/
r*in>*/
in>/
r*in>*/
r*in>*/
r*in>*/

zVAR_COMPRESSION_

ZVAR_DATA_
ZVAR_DATASPEC_

ZVAR_DIMVARYS_
ZVAR_INITIALRECS_
ZVAR_HYPERDATA_
ZVAR_NAME_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS _
ZVARs_RECDATA _

SELECT_

ATTR_
ATTR_NAME_

CDF_

CDF_CACHESIZE_
CDF_DECODING_
CDF_NEGtoPOSfp0_MODE_
CDF_READONLY_MODE._
CDF_SCRATCHDIR_
CDF_STATUS_
CDF_zMODE_
COMPRESS_CACHESIZE_
gENTRY_

rENTRY _

rENTRY_NAME_

'VAR_

r'VAR_CACHESIZE_
'VAR_NAME_
r'VAR_RESERVEPERCENT _
r'VAR_SEQPOS_

'VARs_CACHESIZE_
'VARs_DIMCOUNTS_
rVARs_DIMINDICES_
rVARs_DIMINTERVALS_
'VARs_RECCOUNT _
rVARs_RECINTERVAL _
rVARs_RECNUMBER _
STAGE_CACHESIZE_
ZENTRY _
ZENTRY_NAME_

ZVAR_
ZVAR_CACHESIZE_
zZVAR_DIMCOUNTS_
ZVAR_DIMINDICES_
ZVAR_DIMINTERVALS_
ZVAR_NAME_
ZVAR_RECCOUNT _

long cType
long cParmsl[]
void *value
long dataType

long numElements

long dimVarys|[]
long nRecords
void *buffer
char *varName
void *value

long recVary
void *value

long sArraysType

long sArraysParmsl]
long sRecordsType

long numVars
long varNums[]
void *buffer

long attrNum
char *attrName
CDFid id

long numBuffers
long decoding
long mode

long mode

char *dirPath
CDFstatus status
long mode

long numBuffers
long entryNum
long entryNum
char *varName
long varNum
long numBuffers
char *varName
long percent
long recNum
long indices[]
long numBuffers
long counts]]
long indices[]
long intervals[]
long recCount
long reclnterval
long recNum
long numBuffers
long entryNum
char *varName
long varNum
long numBuffers
long counts]]
long indices[]
long intervals[]
char *varName
long recCount

294

in>/
r*in>*/
r*in*/
in>/
r*in*/
in>/
in>/
in>/
in>/
in>/
r*in>*/
in/
in>/
I*in>*/
r*in*/
r*in*/
r*in>*/
r*in>*/

r*in>*/
in>/
in>/
r*in>*/
r*in>*/
in>/
I*in>*/
in/
in/
in>/
r*in>*/
r*in>*/
r*in>*/
in>/
in>/
in>/
in/
I*in>*/
I*in>*/
in>/
r*in>*/
in>/
in>/
in>/
in>/
r*in>*/
in>/
in>/
in>/
in/
I*in*/
I*in>*/
r*in>*/
r*in>*/
r*in>*/
in>/
in>/

ZVAR_RECINTERVAL _
zZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

ZVARs_CACHESIZE_
ZVARs_RECNUMBER _

long reclnterval
long recNum
long percent
long recNum
long indices[]
long numBuffers
long recNum

295

in>/
in>/
r*in>*/
r*in>*/
r*in>*/
r*in>*/
in>/

B.4 EPOCH Utility Routines

double computeEPOCH (year, month, day, hour, minute, second, msec)

long year; [*in*/
long month; [*in*/
long day; [*in*/
long hour; [*in*/
long minute; [*in*/
long second; [*in*/
long msec; [*in*/

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)

double epoch; [* in*/
long *year; [* out*/
long *month; [* out*/
long *day; [* out */
long *hour; [* out */
long *minute; [* out */
long *second; /* out */
long *msec; /* out */

void encodeEPOCH (epoch, epString)

double epoch; [* in*/
char epString[EPOCH_STRING_LEN+1]; /* out */
void encodeEPOCH1 (epoch, epString)

double epoch; [* in*/
char epString[EPOCH1_STRING_LEN+1]; /* out*/
void encodeEPOCH2 (epoch, epString)

double epoch; /* in*/
char epString[EPOCH2_STRING_LEN+1]; /* out */
void encodeEPOCH3 (epoch, epString)

double epoch; [* in*/
char epString[EPOCH3_STRING_LEN+1]; /* out*/
void encodeEPOCHXx (epoch, format, epString)

double epoch; [* in*/
char format[EPOCHx_FORMAT_MAX+1]; [* in*/
char epString[EPOCHx_STRING_MAX+1]; I* out*/

double parseEPOCH (epString)
char epString[EPOCH_STRING_LEN+1]; [*in*/

double parseEPOCH1 (epString)
char epString[EPOCH1_STRING_LEN+1]; [*in*/

double parseEPOCH2 (epString)
char epString[EPOCH2_STRING_LEN+1]; I*in*/

double parseEPOCH3 (epString)
char epString[EPOCH3_STRING_LEN+1]; /*in*/

297

double computeEPOCH16 (year, month, day, hour, minute, second, msec, microsec, hanosec, picosec)

long vyear; [*in*/
long month; [*in*/
long day; [*in*/
long hour; [*in*/
long minute; [*in*/
long second; [*in*/
long msec; [*in*/
long microsec; [*in*/
long nanosec; [*in*/
long picosec; [*in*/
double epoch[2]; [* out */
void EPOCH16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
double epoch[2]; [* in*/
long *year; /* out */
long *month; [* out */
long *day; /* out */
long *hour; [* out */
long *minute; [* out */
long *second; [* out */
long *msec; I* out */
long *microsec; I* out */
long *nanosec; I* out */
long *picosec; [* out */

void encodeEPOCH16 (epoch, epString)

double epoch[2]; I* in*/
char epString[EPOCH16_STRING_LEN +1]; /* out */
void encodeEPOCH16_1 (epoch, epString)

double epoch[2]; [* in*/
char epString[EPOCH16_1 STRING_LEN+1]; [* out*/
void encodeEPOCH16_2 (epoch, epString)

double epoch[2]; [* in*/
char epString[EPOCH16_2_STRING_LEN+1]; /* out*/
void encodeEPOCH16_3 (epoch, epString)

double epoch[2]; /* in*/
char epString[EPOCH16_3 STRING_LEN+1]; /* out */
void encodeEPOCH16 x (epoch, format, epString)

double epoch[2]; [* in*/
char format[EPOCHx_FORMAT_ MAX+1]; [* in*/
char epString[EPOCHx_STRING_MAX+1]; [* out*/
double parseEPOCH16 (epString, epoch)

char epString[EPOCH16__ STRING_LEN+1]; [*in*/

double epoch[2]; [* out */
double parseEPOCH16 1 (epString)

char epString[EPOCH16_1 STRING_LEN+1]; [*in*/

double epoch[2]; [* out */

298

double parseEPOCH16_2 (epString)

char epString[EPOCH16_2_STRING_LEN+1]; /*in*/
double epoch[2]; [* out */
double parseEPOCH16_3 (epString)

char epString[EPOCH16_3 STRING_LEN+1]; /*in*/
double epoch[2]; /* out */

299

Index

ALPHAOSF1_DECODING.......cccceitiiiiriirereeieesenenenene
ALPHAOSF1_ENCODING......
ALPHAVMSd_DECODING
ALPHAVMSd_ENCODING
ALPHAVMSg_DECODING
ALPHAVMSg_ENCODING

ALPHAVMSi_DECODING
ALPHAVMSi_ENCODING
attribute
INQUITING oo 26
number
INQUITING 1o 27
FENAMING ..ottt 29
attributes
Checking eXiStENCEcoveieiiere e 140
CrEALING ...t 21, 144, 202
CUITENE .ttt b e 188
CONFIFMING .o 194
selecting
DY NAME ..o
by number ...
AElETING ... 205
entries
(o1 5] | O 188, 189
CONFirming.....cccevvevveineiercee e 196, 197, 200
selecting
DY NAME....ocviiie 243, 245
by NUMDBErcccviiiiieec e 242,245
data specification
ChaNgiNgcocoviiieei e 231, 236
data type
INQUITING. ..o 212, 214, 221
number of elements
INQUITING. ..o 213, 214, 221
deleting .o..ooveieeeeece e 205, 206
existence, determining..........ccoceeceeervennen, 196, 197, 200
global entry
checking exiSteNCe........ccocvvireieiiinenceeeee 141
INQUITING c.eeeeeie e 23
maximum
INQUITING ..o 207
number of
inquiring
reading.............
WHEING cveveccee
existence, determiningcccocevenerenniencneneseee 194
NAMING ..vevveiieieeieeee
inquiring
renaming
number of
INQUITING 1o 38,211
numbering

301

INQUITING oo s 208
scopes
ChANGING ..o 229
CONSEANES ... 17
GLOBAL_SCOPEcocoiiiiiiiecceee e 17
VARIABLE_SCOPEcocoviiiiiiiinneieeees 17
INQUITING oo 26, 169, 209
Attributes
entries
global entry
eleting...c.oceiveieieeee e 146
=T o 110 To RSSO 148
Attributes
ElEtiNG ..oveeeieecee 145
entries
rVVariable entry
eleting.....cceieeeee e 147
entries
global entries
number of
INQUITING .o 164
global entry
data specification
FESELHING .ot 179
data type
INQUITING ©veviee e 150, 158
INQUITING . e 171
last entry number
INQUITING oo 153
number of elements
INQUITING «.eeeeee e 151, 159
WITTING e 175
rEntries
number of
INQUITING et 166
rVVariable entry
checking exiStenCeccceveieieiiie e 142
data specification
FESELHING .o 180
INQUITING .o 172
last entry number
INQUITING ©eeeeeee e 154
FEAUING ..t 152
WIEEING et 176
zEntries
number of
INQUITING ceeeeeeee e 167
zVariable entry
checking exiStenCeccooeveeeeiiienceecc e 143
data specification
FESEHHING voveveieece e 182
data type

INQUIFING. v 162

deleting...........
inquiring
last entry number
INQUITING. .ot 155
number of elements
INQUITING. ..o 163
FEAAING. .. e ettt 161
writing
INQUITING .o
name
INQUITING oo e 156
number
INQUITING 1.veivecee e 157
number of
inquiring
renaming
scope
INQUITING c.veveee e 160
FESELEING vovveieeieee e 181
CDF
cache size
compression
FESELHING ..o 79
ClOSING .ttt 30
Copyright
inquiring
creating
deleting
opening
set
MAJOTTLY oot 82
CDF getNegtoPosfpOMOdeccoeveneiecieincceeeeeie 71

CDF library
copy right notice

MaxX 1ength ..o 19
[1=T: o 10T OSSR 213
internal iNterface ..o 185
modes
-0.0t0 0.0
CONFIMMING . 195
constants
NEGtoPOSfpOoff
NEGtoPOSfpOon
SEIECHING .ot
decoding
CONFIFMING ..vviviieiciccec s 195
constants
ALPHAOSF1_DECODING.......cccoceevreriririanne 14
ALPHAVMSd_DECODING........ccccccervrrrinnen. 14
ALPHAVMSg_DECODING............... .14
ALPHAVMSi_DECODING................ .14
DECSTATION_DECODING ... 14
HOST_DECODINGcccooreirriennn .14
HP_DECODINGccovovviiirieiriciennn .14
IBMRS_DECODINGcccoevrirrnnne .14
MAC_DECODINGc.cccoevvriririennn .14
NETWORK_DECODING................... .14
NeXT_DECODING.......ccccoreerirrereeiereeereens 14
PC_DECODING......cccooerieeirieiieeessesieeenas
SGi_DECODING
SUN_DECODING......ccoectiiiiirieencienisieiesieies 14

302

VAX_DECODING.....cccoceitrerrerirerieeneseeneenes 14
SEIECHING «.veviieeeeieee et 241
read-only
CONFIMMING...ccviiieicc e 195
constants
READONLYOff ...t 17
READONLYON ..ot 17
SEIECHING ..o 17, 241
zMode
CONFIFMING ..o 195
constants
ZMODEOSf ..ot 18
ZMODEONL......ooiiiiiicieecee e 18
ZMODEONZ......ociiiiiicieeece e 18
SEIECHING 1.t 18, 242
shared CDF library..........ccoccooiiniiiiiine e 7
standard interface (NeW).......ccccooeoeiniiniiene e 57
standard interface (Original)cccoooviiieniiniceicne 21
version
INQUITING oo s 213
CDF setNegtoPOSTPOMOUE.cceiveieieirieiesieieies e 83
CDFS$INC
CDF$LIB
COAFN 1,11
CDF_ATTR_NAME_LENccooiiiiiienee e 18
CDF _BYTE ..ot 12
CDF_CHAR ..ottt 12
CDF_COPYRIGHT_LEN.....cccoiiiiiieiee e 19
CDF_DOUBLE........ccooiiiitiiietniec s 12
CDF_EPOCH.....ciiiiiiiiee e 12
CDF_EPOCHIL6......ciiiiiiieieicieisiee e 12
CDF_error or CDFEITONccvviieeiieieciee e 269
CDF _FLOAT ..ttt 12
(01] o | LS
CDF_INT1
CDF_INT2
CDF_INTA oottt 12
CDF_LIB .o 5
CDF_MAX_DIMS ...ttt 18
CDF_MAX_PARMS ..ottt 18
CDF_OK .ottt 11
CDF_PATHNAME_LENcoooiiirreneenerec e 18
CDF _REALA ...t 12
CDF_REALS ..ottt 12
CDF_STATUSTEXT_LEN ...ccooiiiieeieeresee e 19
CDF_UCHAR ..ottt s 12
CDF_UINT1
CDF_UINT2
CDF_UINT4
CDF_VAR_NAME_LENcccooiiiireneenree e 18
CDF_WARN ...ttt 12
CDFRArCrEateccveveeeeiceiie e 21
CDFAtrENtry INQUITE ..c..ovveeeeeeiecie e 23
CDRALIGEL.....ccviieiceeieeeeee e 24
CDFArINQUITE ..o 26
CDFAINUM. ..o 27
CDFAIPUL ... 28
CDFAttrRENAME. ..ot 29
CDFCIOSE. ..ttt
CDFcloseCDF
CDFclosezVar
CDFconfirmAHtrEXIStENCE.c.voveirveiiieirecee e 140

CDFconfirmgENtryEXIStENCEeccevverieeeiniene e 141
CDFconfirmrEntryExistence
CDFconfirmzEntryExistence
CDFconfirmzVarEXistenceccocevvevveveenenenne
CDFconfirmzVarPadValueExistence
CDFCIEALEcvivviciiiiciicc e
CDFCIEatEALLI ...t
CDFcreateCDF
CDFcreatezVar
CDFAEIe ... e
CDFAEIEtEALLI ... s
CDFdeleteAttrgEntry
CDFdeleteAttrrEntry
CDFdeleteAttrzEntry.......
CDFdeleteCDF............
CDFdeletezVar................
CDFdeletezVVarRecords......
CDFAOC ..o
CDFerrorccc....
CDFQetALIgENTIY ..o
CDFgetAttrgENtryDataTYPeoocvvverriiievieneeie e
CDFgetAttrMaxrEntry
CDFQetAttrMaxzENtrycccccovvviiniiieiiniesiec e
CDFgetAttrName
CDFgetAttrNum.......
CDFgetAttrrEntry
CDFgetAttrrEntryDataTypecooevvevenierieneeiee
CDFgetAttrrEntryNumElements
CDFQEtALISCOPE . .eovvevecieeie ettt
CDFgetAttrzEntry
CDFgetAttrzEntryDataType.......cccccevvviereneenenne.
CDFgetAttrzEntryNumElements
CDFgetCacheSizeccoeeeeeieireie e
CDFgetCOmMPresSiONcc.cveeeuerierereenie e
CDFgetCompressionCacheSize
CDFgetCompressionInfo..........cccooeieieneinieiencieseeeeee
CDFgetCopyrightccooeieeeecese e
CDFgetDataTypeSize..... .
CDFgetDecoding............
CDFgetEncoding
CDFgetFormat............c.......
CDFgetLibraryCopyright ...
CDFgetLibraryVersion.......
CDFgetMajoritycccevvevrnne.
CDFgetMaxWrittenRecNums ...
CDFQEtNAME.eoiviiieiesieie e
CDFgetNUMAHIGENTIIES. ...cvcveiieieviceecr e
CDFgetNumAttributes
CDFgetNumAttrrEntries
CDFgetNumAttrzEntries
CDFgetNumgAttributes
CDFgetNumrVars...............
CDFgetNumvAttributes
CDFgetNumzVars..............
CDFgetReadOnlyMode.......
CDFgetrVarsRecordData
CDFgetStageCacheSize......
CDFgetStatusText e
CDFGetVarNUMcoceiiiiiieie e
CDFQEtVEISION.cciiiieieieee e
CDFgetzMode
CDFgetzVarAlloCRECOrdS.........ccccvievierieicicescceseeies

303

CDFgetzVarBlockingFactor.............ccoeveiiiieneieicceee
CDFgetzVarCacheSize............
CDFgetzVarCompression ...
CDFgetzVarData.................
CDFgetzVarDataType......
CDFgetzVarDimSizes.............
CDFgetzVarDIimVarianCesc.ccoceeeirenenenieieienenens
CDFgetzVarMaxAIHoCRECNUMcccccviiiiinirieeici
CDFgetzVarMaxWrittenRecNum
CDFQetzVarName.........coceiiiieieneeie e
CDFgetzVarNUMDIMS........ccooiierieieiecee e
CDFgetzVarNumElements..........
CDFgetzVarNumRecsWritten.....
CDFgetzVarPadValue..........
CDFgetzVarRecordData
CDFgetzVarRecVariance........
CDFgetzVarReservePercent....
CDFgetzVarSegData...............
CDFgetzVarSeqPos.........ccccocvvvnrernnne
CDFgetzVarsMaxWrittenReCNUMcccocevreeriieinnne. 114
CDFgetzVarSparseRecOrds........ccovvvveeeieesesesieieiesveseenns 115
CDFgetzVarsRecordData

CDFinquire.............
CDFinquireAttr................
CDFinquireAttrgEntry
CDFinquireAttrrEntry
CDFinquireAttrzEntry......
CDFinquireCDF............
CDFINQUITEZVAT ...c.eiiiieieeeic et
CDFIID. et
CDFopen
CDFOPENCDF ..o
CDFPULATIIGENTIY ...t
CDFputAttrrEntry
CDFputAttrzEntry................
CDFputrVVarsRecordData
CDFputzVarData..................
CDFputzVarRecordData
CDFputzVarSegData............
CDFputzVarsRecordData......................
CDFputzVarsRecordDatabyNumbers ...
CDFrenameAttr........ocoovviiiiiii s 178
CDFrenamezVarccocovviivininiiniiessss s 127
CDFs
compression
INQUITING oo 64, 66
CDFs
-0.0 to 0.0 mode
INQUITING oot 71
-0.0 to 0.0 Mode
TESEHHING 1.veveieieeeee e 83
accessing
browsing
cache buffers
confirmingccoevveveincnceene 194, 196, 197, 199, 200
selecting........ccoveveeee. 241, 242, 243, 244, 245, 246, 248
cache size
compression

INQUITING .. 65
inquiring
resetting
stage

INQUITING ..o 73
resetting

ClOSING ...ttt

compression
INQUITING .o 209, 215, 222
FESELEING o 78
SPECITYING .o 229

COMPression types/parameters........cocvveeereeeeenereereenenne 16

copy right notice
max length........
reading.........

corrupted.......
creating
current..............
confirming ...
SEIECHING ..ot 241
decoding
INQUITING 1vevecece e 68
FESELEING v 80

AelEtING ... 205

encoding
changing
constants

ALPHAOSF1_ENCODINGcccecvuenee.
ALPHAVMSd_ENCODING
ALPHAVMSg_ENCODING
ALPHAVMSIi_ENCODING..........ccocvuee.
DECSTATION_ENCODING
HOST_ENCODING......ccccoiriieiininneeeieieeene
HP_ENCODING........ccoceoiiiiirriiceei e
IBMRS_ENCODING
MAC_ENCODING.......cccotrriririiienineieee e
NETWORK_ENCODINGccccoouriririinirieieieenen.
NeXT_ENCODING
PC_ENCODING.ccorrriiriiininee
SGi_ENCODING.......ccoctntmrrrirereiiririnns
SUN_ENCODING.....ccoctninrniirereciiiieas
VAX_ENCODING
default.......ocoooeoiiiiii
inquiring ...
FESEEING vvvveeiee e
format
ChangiNg .cvooveieecce e 229
constants
MULTI_FILE.....ooiiiiiiiiirceec e 12
SINGLE_FILE ..ot 12
default..........c.c.e..
inquiring
inquiring
resetting
global attributes
number of
INQUITING .. 168

INQUITING e 75

majority
INQUITING ©.eeeeeee e 70

name
INQUITING 1vevecec e 70

304

NAMING .t
nulling................
OpeNing
overwriting
read-only mode
INQUITING oot e 72
TESEITING ..o e 84
record number
maximum written for zVariables and rVariables........ 92
rVariables
number of
INQUITING oo 93
scratch directory
SPECITYING oovviviiicie e 241
variable attributes
number of
INQUITING .o 168
version
INQUITING oo 33, 73, 210, 212
zMode
INQUITING oo 74
TESEHHING 1.veveiei e 85
zVariables
number of
INQUITTNG oo 94
CDFsetAttrgENtryDataSPecoovvevereeiieniecierie e 179
CDFSetAttrrENtryDataSpec........coveveeevreneiereeeeesenee 180
CDFSELAIISCOPE ..ot 181
CDFsetAttrzEntryDataSpeccoccvvvevieiienenieniseesieseens 182
CDFSEtCaChESIZE. ... 78
CDFSEtCOMPIESSION. ...ttt 78
CDFsetCompressionCacheSize.cocovvveveieneneinineniens 79
CDFSEtDECOUING ...t 80
CDFSEtENCOUING ...t 81
CDFsetFormat
CDFSEtMAJOIITY....ecveveieiieiieiiee st 82
CDFsetReadONlyMOdecccoviiieiiieieieise e 84
CDFsetStageCacheSize........covcviviviiieieiciie e 84
CDFSEtZMOUE ...t s 85
CDFsetzVarAllocBIockRecords..........ccoevvivevieiveieenieannn 128
CDFsetzVarAlloCReCOrds.........cccvcveieiieviesieeiese e 129
CDFsetzVarBlockingFactorcccccoveiieienencinence 130
CDFsetzVarCacheSizecccvevveveeveieiieie e 131
CDFsetzVarCompresSion.........ccoevveveeeieeseniereereneseeseens 131
CDFsetzVarDataSpec.........covvvveiereriienieeniesiesicsee e 132
CDFsetzVarDIimVarianCes.ccouoeernverineeneeneseeneenes 133
CDFsetzVarInitialReCs.ccovvviriiiiiinceeecee 134
CDFsetzVarPadValue
CDFsetzVarRecVariancecccceeevevevveresessiesesieeseannns 136
CDFsetzVarReservePercentcocvvvveveesieeereeseesienesenens 137
CDFsetzVarsCacheSizeccceveeeecieiveiese e 138
CDFSEtZVarSEgPOSc.vevieeiiriieie st 138
CDFsetzVarSparseRECOIdScvveveereieienerieeeeeeseeseenns 139
CDRSTALUS ...ttt 11
CDFVArCIOSE.oviveiiieiesieie et 44
CDRVAICIreateocveeiiieiieesiee et esiee st siee e 45
CDRVAIGELvi et 47
CDFVArHYPEIGeLc.eieeeeceieiereee e 48
CDFVArHYPEIPUL.........ooiiiieet e 49
CDFVANINQUITE ..o 50
CDFvarNum

CDRVAIPULccveiiiec et

CDFVArRENAME ...ttt 54

closing
zVar inamulti-file CDF ... 86
COLUMN_MAJOR ...15
COoMPIlING....civiiiicic e 1
compression
CDF
INQUITING «.eeeiee s
specifying
LY PES/PArAMELETS ..ot 16
variables
INQUITING ©eeee s 215, 222
reserve percentage
confirming
selecting
specifying
computeEPOCH.......
computeEPOCH16
Data type
size
INQUITING 1vevecccec e 57
data types
CONSEANTS. ..ot 12
CDF _BYTE ..ottt 12
CDF_CHAR.......... .12
CDF_DOUBLE..... .12
CDF_EPOCH........ .12
CDF_EPOCH16..... 12
CDF_FLOAT12
CDF_INTL.......... .12
CDF_INT2....... .12
CDF_INTA4....... .12
CDF_REALA ...ttt 12
CDF_REALSB ...t 12
CDF_UCHAR
CDF_UINTZL oottt 12
CDF_UINT2..o ittt 12
CDF_UINT4....
inquiring size
DECSTATION_DECODING
DECSTATION_ENCODING
definitions file ...
DEFINITIONS.COM
dimensions

eNCOUEEPOCHL6 L.....cccoviiiiiiiiciee e 265
eNCOEEPOCHLE6_2.......ccoiiiiieiiieie s 265
enCOdEEPOCHL6_3.......c.ooiiiiciee s 266
eNCOAEEPOCHLE X...ocviveieiiiieiisienie e 266
eNCOAEEPOCH2........c.ooiieece s 261
enCOEEPOCHS........ooice s 261
ENCOAEEPOCHX ...t 261
EPOCH

COMPULING ettt

decomposing....

eNCOAING. ..o

PAISING....eevieieeieite e 262, 263, 267, 268

utility routines

COMPUEEEPOCHcviiiiiiiiici e 259

305

COMPULEEPOCHILG ..o
encodeEPOCH.............
encodeEPOCHLI.......
encodeEPOCH]16........
encodeEPOCH16_1
encodeEPOCH16_2
encodeEPOCH16_3
eNCOUEEPOCHLE X..covvvviieiiiiiesieciesie e 266
encodeEPOCH?2
encodeEPOCH3
encodeEPOCHXx
EPOCH16breakdowncccoeeveeneieneieeecsese e 264
EPOCHbreakdowncocovvvenineiiniiieensene 260
ParsEEPOCHccoviiiiiciei e 262
ParseEPOCHLcccoiiiiiiiie e 263
ParseEPOCHILGccovviiiiiieecee e 267
ParseEPOCHL6_1coviiiiiiieiieeecee e 267
ParseEPOCHL6_2cccoeeeiiiieiieee e 268
ParseEPOCHL6_3 ... 268
ParseEPOCH2ocoiiiiiiie e 263
ParseEPOCHS ..o 263
EPOCH16breakdown....
EPOCHDreakdown...........ccccoiiiiniiiieiieeeee e 260
examples
attribute
CheCK EXISLENCE.......eeveieeieeieeeeiese e 141
nUMBbEr Fretrieval ... 157
check gENtry exXiStenCecccovevveeneiiiecenee 142
check rENntry exiStenCecocvevieieiiiiie e 142
check zENntry existence..........ccoevvevveviieieseseiesee s 143
check ZVar eXiSteNnCecocverereeeininese e 87
check zVariable pad value existence..........c.ccoceeeeviinnenn 88
closing
CDF et
rVariable
zVar inamulti-file CDF.........cccoooiviiceee 87
creating
ALFIDULE o
CDF....cccooune.
rVariable
zVariable
deleting
ALTTDULE ..o
(01 5] =
global attribute entry...........
rVariable attribute entry..........ccocooeiiiiiiiiiccee,
ZVAriable ..o
zVariable attribute entry
zVariable data recordscoccooeveieiniencnencece
get
attribute NAME ..o 156
ALLrIDULE SCOPE....oveieeieieet et 160
CDF
COMPIESSION 1.viiviieierietieie et ees 65
COMPression Cache Sizecccvevvevvevvieievicieeeene, 65
AeCOTING...cviiiiiiieice e 68
FOrMAL. ... 69
entry data tyPe ...ooveeveeeeeee e 158
number of global attribute entries..........c.ccccecevenncnee. 164
get
attr entry
ata tYPE . 162

attribute
last gENtry NUMDENccoooiiiiicicee e
last rEntry number....
last zEntry number ...
number of elements..
number of rEntries........
number of ZENtries ...
attribute information ...
cache buffer size for temporary CDF file
CACNE SIZE....cniiiieiiiei s
CDF
-0.0t0 0.0 MOE ...ooveieeic e
compression information
Copyright
Copyright
decoding............
library Versioncccccooeveneinincnenene
majority

read-only Mmode.........ccovevevieieieiiieseee e

zModecocveee
data type size
global attribute entry information............c.ccoccveieneee 171
max record number for all ZVars........ccccccoeevevnenen. 114
max record numbers

zVariables and rVariables
number of global attributes.............c.cccceeunee
number of rVariables.........c.ccccovevveiveceenenne.
number of variable attributes
number of zZVariables..........ccoeevvviieiiieeiie e
rEntry

number of elementsS.........cccccveveeiceecee e, 159
rVariable

rVariable attribute entry info ... 173
ZVar dimenSioN SIZESccovvevveiveeiieiireecree e 102
zVar maximum number of records allocated............ 104
zVariable
blocking factor
cache size

data tyPe ..o

dimension VarianCeS........cccvvvveeeerecieseseeiresreennas
dimensionalitycccoevveviiiiineiicce e
max record number...

number of records written

pad value.........

read position......

record variance.........

sparse record type......

zVariable attribute entry information........................ 174
inquiring

OENtry data type.....coooeveeeee e 150

OENLIY SIZE v 151
inquiring

AUMDULE. ... 26

BINEMY o 23
aAttribute NUMDBETevveveece e 27

CDF et e 34,39,76
FOrMAL. ..o 254
CDF VEISION ..ot 74
error code explanation textccoceeervervceiinnne. 35, 60
PVariable.. ... 51
Variable
NUMDEN ...t 95
variable NUMDET ... 52
ZVariable ..o 121
Internal INterface.......cocvvvevevevceeeeeeee e 185, 248
interpreting
SEALUS COUBS ...vvveviiiiirie e 257
opening
CDF et 40, 77
read
multiple zVariables’ data............ccoccooerereinininnn. 116
multiple zVariables’ data..........ccccoevvriinicincinene, 37
zVariable
multiple values or records.........ccocvvvvvivervcnnnnn. 118
one record
ONE VAIUE ..ot
reading
attribute
global attribute entry
rvariable entry ...
reading
attribute entry ... 25, 161
rVariable values
NYPEE e 48, 250
rVariables full record.........c.ccocooeiiiinnicc 36
zVariable values
SEQUENTIAL ..o 251
renaming
ALTTDULE .o
attributes
rVariable
zVariable
reset
AttribULE SCOPE....ovieeiiciiciieec e 182
gEntry data specificationccccooveniieiniencnnn 180
rEntry data specification............cccooiovniieiciiiennnn. 181
zEntry data specificationcccccocvvieniiincinnennn 182
set
CDF
COMPIESSION 1.vviviiiieiietieie ettt 79
set
CDF
-0.0t0 0.0 MOMEeovveieieiece e 83
CACNE SIZE ..eiiiiiciee e 78
COMPression Cache SIiZecooveveveivenerieieeeeee 80
ENCOAING . ..cveveiiieieeete e 81
FOMAL.....ceiicc e 82
MAJOTIEY 1vvevreieiteiteieie e 83
read-only Mmode ..o 84
temporary file cache Size..........cccoeeiviiiincinnn, 85
ZIMOGE ..o 86
zVariable
blocking factorccccvveieviiciire e 130

cache size
COMPIESSION .ttt 132

COMPression reserve percentage........coocoeveeeeeae. 137
data specification...........ccoccorvviiieiennnnn
number of initial records
PAA VAIUE ..ot 136
position...............
record variance...
SPAISE FECONT. ...cviieieiieiesieeie e 140
set CDF
AECOTING . 80
setting
zVariable
dimension VarianCes...........coceverveieeneseniereeenns 134
Status NANAIErcccoovvviicci 257
writing
attribute

zEntry
rVariable
multiple records/Valuesccocovereeneeeienienenne. 49
TVANADIES ..ot
rVariables full record....
zVariable data..........cccoevvv e,
zVariable full record.........coevvveeviiiiiiciece e,
zVariable full record..........coovvveveeiicieecec e,
zVariable values
hyperccccoovvennn.
multiple variable
zVariable
allocate records
allocate records
function prototypes

getAttrgEntryNUmMEIEMENtScoooviereieicere e 151

getAttrMaxgEntry

GLOBAL_SCOPE

HOST_DECODING.......cccoiiiireesiee s 14

HOST_ENCODING.......cccoveiiriisies s 13

HP_DECODING......... .14

HP_ENCODING............. ...13

IBMRS_DECODING .14

IBMRS_ENCODING ...13

INCIUAE TIlES ... 1

inquiring
CDF information.........ccovevvveieiiiieecee e 33

interfaces
INEEINAL....oiiiiiiececce e 185
Standard (NEW) ...c..cveviivireiieiceee e 57
Standard (Original)

Internal INterfacecoecvveeiiiiiicc e,
COMMON MISLAKES.......eeeveeiriecie ettt
CUINt ODJECES/STALES. ... e 188

Fo L] o1V (T 188
attribute eNtriesSccoovvveeveeceece e 188, 189
CDF e 188
records/dimensionscccocvevveeveeireireeneenn, 189, 190, 191
sequential value ... 190, 191
STALUS COUB ..vvivviecreecie et 191
VaNADIES......ccveeicie e 188
EXAMPIES ..t 185, 248
INdentation/Styleccccooeeiiiiiieeee e 192
Operations
status codes, retUrNed.......ccccvivvevieieeieeirece e 191

307

SYNEAX ..ttt 192
argument list........cooeeiiiie e 192
HMITAtIONS ... 192

lDCAT.A oo 5
DCAFID .o 6
LIBCDF.OLBccociiiiiiieiciiicsrte e 5
Library

error text
INQUITING .o 60

Library

Copyright
INQUITING oo e 58

version
INQUITING oot 59

limits

Attribute NAMEocoic e 18

COPYIIGNE tEXE ... e 19

AIMENSIONS ... e 18

explanation/status teXt........cccerereieerini e

FIlE NAME e

PAFAMELELS. ...t

variable name

Limits Of NAMES......ooiiiiiiiiee e
JINKING .
shareable CDF library ... 7
MAC_DECODING.......cccoiiriminieitiienenissieeieee e 14
MAC_ENCODING.......ccotriiirieinceseesee e 13
MULTI_FILE ..ottt 12
NEGtOPOSTPOOTT ..o 18
NEGLOPOSTPOON.....ciiviiiieiciiciece et 18
NETWORK_DECODINGccccootiinirireiecieensenenne 14
NETWORK_ENCODINGcccceotiininiirireieeirneieiene 13
NeXT_DECODING......ccccoireiiiiinnseeie et 14
NO_SPARSEARRAYS ... 17
NO_SPARSERECORDS........ocoiiiiiininieieieee e 17
NOVARY ..ttt 15
PAD_SPARSERECORDS........cccccvitiniriirieeeieninssenenee 17
PArSEEPOCHcooiiiiiiiii e 262
ParseEPOCHL ..ot 263
ParsEEPOCHILGcoeeiiiiiii e 267
ParseEPOCHL6 1ccoiiiiiiieeece e 267
PArSEEPOCHIL6_2cocviiiiiiiereee e 268
ParseEPOCHL6_3.......coiiiiiiiieeee e 268
PArSEEPOCH2ccviiiiitiie e 263
ParsEEPOCHS ..ot 263
PC_DECODING.....
PC_ENCODING.ceiiiiririsicisisiei e 13
PREV_SPARSERECORDS........ccconnniniireieeinenessieieene 17
programming interface

customizing

typedef
CDFid
CDFstatus

reading

multiple rVariables’ data............ccccooeiiiiiiienciieen

multiple zVariables’ data.....

READONLYOFf ...
READONLYON ...ttt
ROW_MAUIOR ...ttt
rVariables

CTEALING ...ttt 45
full record
reading
writing
hyper values
ACCESSING .nvenveueeteeti ettt sttt 48
WITTING 1o 49
FENAMING ..ttt see e ene e 54
single value
ACCESSING .euververiereetirtestereeseerestesteseesteseeneereseeseeseeseeseens 47
WITEING ©veiiiee e 52
scratch directory
specifying.............
SGi_DECODING
SGi_ENCODING
SINGLE_FILE ..o
sparse arrays
INQUITING ..

SPECITYING....iiviiieiee e

sparse records
INQUITING ... e 219, 227
SPECITYING....eivieiieiic e 235, 239

CONFIFMING .. 195
SEIECHING ...ceeeeeeete e 242
LT (o] PP U U UROTTPPRPPROPON 269
explanation text
INQUITING ©.veiveee e
max length ...
informational....
interpreting........ccccooeeenene
status handler, example.....
WArNING ...ocoveeeeecieniee
SUN_DECODING.......
SUN_ENCODING.........
VARIABLE_SCOPE
variables
ClOSING ..ot 193,194
compression
CONFIFMING .o 198, 202
INQUITING .o 209, 215, 222
SEIECHING ... ittt 243, 247
SPECITYING 1o 232, 237
tYPES/PArAMELErS ... 16
CIEALING vvvevreiesie ettt 203, 204
CUITENT ..ttt 188
CONFIFMING .o 197, 200
selecting
DY NAME ..o 243, 247
by NUMDbEr ... 243, 246
data specification
Changingooceveiiiiiee 232, 237
data type

308

INQUIFING .o 50, 216, 223
number of elements
inquiring
deleting
dimension counts
CUITENT vttt 189, 191
CONFINMING...coviiiiiiee e 198, 200
SEIECHING v 244, 246
dimension indices, starting
(o0 (11 189, 190
CONFIrMING...ccoiiiiiee e 199, 201
SEIECHING ..vvveveieie e 244, 246
dimension intervals
current
confirming....
SEIECHING ..
dimensionality
INQUITING e 38, 220, 225
existence, determiningcccceevvvererereisceiennns 197, 201
majority
changing
considering
constants
COLUMN_MAUIOR.......ccoiiiiireiee e 15
ROW_MAJOR...........
default..........c.........

TENAMING ..ttt 233, 238
number
INQUITING oo 51
number of
INQUITING oo e 38
number of, INQUITING ..o 211
numbering
INQUITING oot
pad value
confirming
inquiring
specifying
reading
record count
CUTENT 1ttt
CONFIrMING. ..o 199, 201
SEIECHING .vvvveiveviie e 245, 247
record interval
(o8 £ 1111 S 189, 190
CONFINMING...ccviiiiieece e 199, 202
SEIECHING .. 245, 247
record number, starting
current
confirming....
SEIECHING .vveveivieie e
records
allocated
INQUIrING ..o
SPECITYING....eiiiiieee e
blocking factor
INQUITING .

SPECITYING ..o

deleting ...coveeeeecee e 206, 207

indexing
INQUITING e 217, 225
initial
WIHEING 1o 233, 238
maximum
INQUINING ...coveiiecec 38, 217, 220, 224, 227
number of
INQUITING ..o 218, 226
SPIAISE ..ttt ettt 16
INQUITING oo 219, 227
SPECITYING ..oveiiiiec e 235, 239
sparse arrays
inquiring
EYPES ettt
variances
CONSEANTS ...ttt 15
NOVARY.... .15
VARY oottt 15
dimensional
INQUITING oo 216, 223
SPECITYING ..oiveiviieeee e 233, 238
record
changing
inquiring
WITEING e
Variables
number
INQUITING 1veveccce e 95
VARY ...cccovvne ...15
VAX_DECODING14
VAX_ENCODING13
ZMODEOST ... 18
ZIMODEONL ..o s 18
ZIMODEONZ ..ottt s 18
zVariables
data records
eletiNg .c.voveiceeece e 91
zVariables
blocking factor
INQUITING c.eeeiie e 97
FESELEING oo 130
cache size
INQUITING e 98
resetting
ChECK EXISENCE ..o 87
compression
INQUITING c.eeviei e 99
reserve percentage
INQUITING ..o 111
FESELHING ..t 137
resetting
CTEALING ..vvveieeie e see ettt
data specification
TESELEING voveieieeee e 132
data type
INQUITING c.eevieie e 101
elBtING ..o 91

309

dimension sizes

INQUITING e s 102
dimension variances

inquiring

resetting
dimensionality

INQUITING oo 106
full record

(=T 1o 1o o OSSPSR 37

WITTING v 42
INQUITING. e 120
name

INQUITING oo 105
number of elements

INQUITING oo 107
pad value

checking eXiStENCE........ccveeririieeeee e 88
pad value

INQUITING oo s

TESEHHING 1.veveeeeeee e
1eading data..........oveveieiieie e
reading multiple values or records....
reading ONE FECONMcccvrirverieieieciee st
reading record

multiple zVariables...........cooooioiiiiiiiieeee, 115
record numbers

allocated records

INQUITING v 96
maximum
INQUITING 1o 103
written records
maximum
INQUITING .o 104
rVariables and zVariables...........ccccoceiiinennne 114
number of
INQUITING e 107
record variance
INQUITING oot 110
TESEHHING 1.veveier et 136
records
AlloCAtION ...
writing initially
renamingccoceeeeeeee
sequential data
reading one Value.........ccccoeveviieiiiienee e 112
sequential position
INQUITING oo 113
TESETHING ..ot 138
sparse records type
INQUITING .o 115
FESETHING ..veeeeeet e 139
writing
multiple values or records
WIEING data...cviicicicicece e
writing record
multiple variables ...,
writing record data...........

writing sequential data

