Mod_Survey for Beginners

3.2.X branc

23 Background - Microsoft Internet Explorer

Arkv  Redigera  Viss Favorler VWerktyg  Hisp

=181 x|

| &

(et - () - ﬁ g" ;‘J‘/' sok Favorker @ Mecis {1‘ =

Adress [{&] hitp:/i192, 168.1,254imod_surveyfexampie,survey

=] B3 a8t [Lsckar >

Background Knowledge and Preferences

In the following questionnaire, you will be ashed a number of

T think it s a good thing that services (as an

o o o o @
example hanking) are computerized. Had Ealec

Ipr.EfEl' the yveh to other media when Ilook Tre & © False
for information

.Imfnsna]ly.trythewebﬁrstil'lneed S 8 5 8 8 (8 il
‘ormation

(&] Klar

about your i with comp and yourp in regard fo them. Please answer these questions as
honestly as you can. Four answerswill be treated confidentially.
First a couple of questions about your general background
Are you male or female? © Male
€ Female
How old are you?
Which target group do you helong to? Student or academic
Govemmental
Enterprise
Other
Here follows a number of iors abautyourp. and self-apprei; in regard fo comp

MSc. Joel Palmius
Mid Sweden University

[T [ meemer

Department of Information Technology and Media



Mod_Survey for Beginners: 3.2.x branch
by MSc. Joel Palmius

DocBook Version Edition
Published 2004
Copyright © 2004 Joel Palmius

SOMEFRIGHTS RESERLUED

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/idi/send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.



Table of Contents

IR 1 0T U Tox 1 o] o PSS 1
1.1. What is @ Web QUESHIONNAILE2........ccceiieeereeie et ee s seesnee s 1
1.1.1. The Incentive for Web QUESLIONNALLES..........ccceeiiiiiiieiie e 1
1.1.2. When and How Can Web Questionnaires be Used?..........c.ccooevveeiieeeieeenns 1
1.1.3. When Should Web Questionnaires not be Used?2...........cccccoeveevreecieecieeceee, 2
1.1.4. Scientific Aspects of Web QUESHIONNAILES...........ccccvveririrerene e 2

1.2. WRNAL IS MOU_SUIVEY2........eiieieeeieste ettt ae e b aesae et e sneeneenneenes 3
1.2.1. Where does Mod_Survey Fit IN2........co et 3

1.3. ADOUL thiS MANUAL........oieieecee e et 5
I 20 A o [ o] 110} g - S 5

IR 2 =T ¢4 11 T ] (o0 Y U 5
1.3.3. Not Included in the Manual............cccooiiiiiiiece e 6

2. ADOUL MOO_SUIVEY......ooiiiiieie ettt st st e et e e seesseeseesseensesseeneenneensenneeneas 7
2.1 A BT HISTOMY ..ttt sttt b e b b nneene e 7
2.2. Different Versions of MOG_SUIVEY.........ccooiiiiiiriiiinie et 9
2.3. Mod_Survey’s Goals and Target GrOUP........ccoceeieeiiieeniesee e esree e sse e see e sseesseas 9
2.4. What does MOd_SUIVEY SUPPOLLZ.......ccviiereieerieseesieeee st seestesae e esae e eae e ensesneenees 10
N R = 7= T [0 SRS 10
2.4.2. More advanced data COIECHOMN...........ccccoiiriiiiee s 10
2.4.3. Database iINterCONNECHIVILY...........coiueiieiieeieesie et 11
20 Vo To [0 F= T > 1o o S 11
2.4.5. LayOUut CUSTOMIZATION........eierieieirte ettt 11
2.4.6. Other advanced fRALUIES.......ccco i 11

2. 4.7, SYSTEIM META.......eii it e e st e s e e sb e e e s sae e sbe e e snneennnes 12

2.5. What does Mod_SUrvay0t SUPPOIT?.........oceeieeieieseesieeee st seeste e see e ee e eneesneeneas 12
2.6. Comparing Mod_Survey with Other SYStemS.........ccoveiereereeiese e 12
2.7. Getting ACCESS t0 MOU_SUIVEY.......coiieiiiieie ettt sse e sneeneas 13
3. BasiC WOIK With SUIVEY FllES.........oiiieiie ettt st sne e 15
R I (= o [ 1T =T 0 1= 1SS 15
3.2. WIEING 8 SUIVEY FlE......oieieeeeee ettt bbb 15
3.3. UpPIoading @ SUINVEY FlB......cci ettt 16
3.3.1. Using the wWindows NEtWOLK...........ccoiiiiiiiiieiie e 16
3.3.2. USING SSHISCR ...ttt nne s 16
3.3.3L USING FTR. ettt bbb bbb sbenne s 16
3.3.4. WIItING SUIVEYS ON-SILE.....iiuieiiieieiieeiesieeee et see e see e seesnee s 17

3.4, ACCESSING @ SUINVEY....ccitieiuieiieeitiesieeateesteesteesseeeteesseeaseessteesseesseessseaseesseesseeenseenseesseeanns 17
3.5. AdMINISTratiNng @ SUMVEY.......ciieieiieeiecte e seeste st este s te e ste e ste e s e aesseesesreeneesneenes 18
3.6. DOWNIOAAING DALA.......coeiueeiiieieieie et b e bbb e sbe s ens 18



4.1. What IS @ QUESTIONZ.......cuiieeiieiecieee ettt sae e e et saeenteeneeneeeneenes 19
4.2. Closed Single-Choice QUESTIQNS........ccciiiiriiieiee ettt sree et seeseeene e 19
Nt I = 1@ L@ ] N TP 19
o O o @ ] [ = 20
T I 1 20

4.3. Multiple-ChoiCe QUESTIONS.......ccuiiiiiieeitie ettt st aeesnaeeneens 21
N @ o 1] o @ LU =T (o] LSRRI 22
4.4.1. ONe-liNe tEXT FIEIAS. ....c.eoeeeeeeee s 22
4.4.2. NUMETICAl fIRIAS....cveeee et 22
4.4.3. Multiple-line teXt fIeldS. ... 22
444, ONErfIelUS......ocveeeeeee e 23

TS Tor= 1 [ ST 23
4.5.1. DISCIEETL SCAIES.....ccueeee ettt st st re e seeneesne e 24
4.5.2. CONLINUOUS SCAILS.......oiiiiiiiiiierie ettt 24

I = UL o = PSPPSR 25
4.6.1. The DASIC MATRIX ...ttt s 25
4.6.2. MATRIXES @S SCAIES......ccieieeeiieieeitieiesieee e eee st e e estesseesaesneessesneessesneesseeneens 26

O CIRC TR U1 g 1T g 1= To [T o SRS PTSN 26

4.7. Designing Custom QUESTION TYPES....cciiiiii e e ste et ses et eseesreesreesaeeneens 27
5. Colors, FONtS and DECOTALION.......ccciirierieriie ettt sb e 29
5.1, StatiC LEAA-IN TEXES...eieeieiiesieeiesie et eie sttt sie et sse e sse e sseensesneeeesneeneas 29
IR I 01T 01 PSP 29
5.3, SUYIESNEELS.....cceee e nr e nre e 30
5.3.1. Extending the theme..........cooi e 30
5.3.2. Replacing the theme..........coo e 30

5.4, FONE SEYIES.... ettt a e e neas 31
ST T O] [0 £ TSP RPRURN 31
LT €1 =T o] 1o USRS 31
ST A = = W I 1 31
6. Collecting AULOMALIC DATA........c.cieeierieeiereeiere ettt sre e e sae e 33
6.1. NON-ViISIDIE "QUESHIONS! ...t et e ere e e eareeeneeas 33
6.2. CONSLANT VAIUBS........oiuiiiiiiiiieeeee ettt bbb ens 33
6.3. Fetching Data from the ENVIrONMENL..........cccooiiiriierie s 33
6.4. Date, Time and TiMIND.......coieieereeiereeie ettt sre e e e sreeeesneeneas 34
6.4.1. Measuring reSPONSE tIME.......cccviiieiie et reesnes 34
6.4.2. Inserting date and tiME..........cooeiieieie e 34

7. Surveys wWith more than ONE PAgE.........ccco i 37
7.1. BasiCS Of MUItI-PagINg........cccuiiiieiie ettt s 37
7.2. Unbranching MUlti-Paging..........cccoueiiiiiiiiiie e 37
7.3. How Variables are HandI ..o 38
7.4. Conditional Branching With CASE ..o 39



7.6. How to Fail Miserably with MUItIPAGING.......ccooeereiieeeiereeese e 40

T DY o b= T o (T Tol 0] o] (=] 0 £ SRRSO 43
8.1. Referencing PrevioUS ANSWELS........cc.ccciiieieeieieseesteeeesteseessessessessesseesesseensesseenses 43

8.2. InCluding EXtErNal FIlES........couoiieeeee s 43
8.2.1. Pre-parse iNCIUE. ..ot 43

8.2.2. Display-time INCIUAR..........cceiie e 44

oG T o IS 1] 0] 1= USSR 45

O. RESIICHING ACCESS....cuieiieieieeete ettt sttt sttt a e bbb e b e s b s b e e bt s bbb e s beebenbesbeebenbenaeene e a7
9.1. SettiNg UP USEN FlES......ooioieeeeeeeee e a7

9.2, ACCESS LEVEIS......eeeeeee et 47

9.3. Managing Respondents and UNIQUE ANSWELS........cccccceerereererieeseesesseessesseeseesseenees a7

10. USING DAtA@DASES.......cceeeeiicesice ettt et sre e te e neeenee e 49
10.1. Why Would You Want to Use DatabasesS?2.........cccevvreerineenenienieeiee e seesee e 49
10.2. SEING UP DBl ettt ettt st sne e et e e neenneas 49
10.3. DBI TWeaKs and SYNEAX.......cccciieieeiieeieseee ettt ste e ste et aesresae e enesneennens 49
10.4. Letting Respondends Delay their ANSWELS..........ccooevirirenenesenese e 49

11. Downloading and UsSIiNg SUMNVEY Data..........cccoerieiirirnienieseeiee e 51
11.1. The Data MOAUIE........cc.ooieeeee et 51
2 I 1= o I 1Y o oI SRS 51
11.3. THE SPSS EXPOLL.....eiiiiiiiieiesiesie ettt sttt st bbb st bbb sne b e snenaeas 51
11.4. Importing Data INt0 EXCEL........coeieiieeeeee e 51
11.5. IMpPorting Data INTO ACCESS......cccuiiieiieeeeiie et esteeseeseseaeesteesre e sae e sbe e ssnaeereenseesneas 51
11.6. Importing Data iNto SPSS........coooi e 51
11.7. Importing Data into MiNITab.........ccoiiiiireee e 51
11.8. Importing Data INTO R........ooiiieiieie et ee s 52
11.9. Importing Data into @ RDBMS..........cco oo 52

D2 (0T o] =] T} 1] o TS 53
12.1. 1 ONlY SEE the SOUICE.......coieiiiieee et 53
12.2. INTEINAI SEIVET EITOL... .o ittt sttt st te e e steeeesae e e e nneeneens 53
12.3. Document Error: NOt FOUNM.........c.ooi et 53
12.4. PermiSSiON DENIEM.......ccoieeese ettt sbenae s 53
12.5. GettiNg MO HeIP... .o 53

13. ACKNOWIEAGEMENTS.... .ottt ettt aeetesaeentesneesreeneenee 55
13.1. ADOUL the AULNOL........coiie e 55
13.2. People Who Contributed t0 MOO_SUINEY......cccvieeieeiere e see e eee st e se e 55

A. Short Installation INSTIUCIONS ........ccviiiiiee e 57
B. Migration GUIde fOr 3.0.X USEIS .....ciiiieiie ettt sttt ene e reenneas 59
C. The GNU General PUDIIC LICENSE......cciiiiiiieieeieste ettt 61
D. Contact, Feedback and More INfOrmation..........ccueviieeeeeiieieie e e s eeraeee e 63



Vi



List of Figures

1-1. SUIVEY LIFECYCIQ...c. ettt et et e e te e esteenaesseeneesnennnens 3

Vii



viii



Chapter 1. Introduction

Welcome to the comprehensive user’s guide to using Mod_Survey. This chapter outlines what web
guestionnaires in general and Mod_Survey in specific is all about, and gives a short introduction to
the contents and layout of the manual.

1.1. What is a Web Questionnaire?

A web questionnaire is a questionnaire the respondent can answer via the web, using his normal
web browser.

1.1.1. The Incentive for Web Questionnaires

Questionnaires is a good way to measure things quantitatively, at least when they work out ok. But
everyone who has done a bigger survey, say a questionnaire with a hundred questions sent to two
hundred persons, knows that the next step in the process might be tedious to say the least.

What you, as a questionnaire researcher, will realise when the respondent answers start to arrive, is
that the digitalization of the paper form requires a lot of resources. In the normal low-budget case,
you will have to manually type in the answers into your statistics program. This effectively limits

the maximum size of many surveys: The resources needed both for sending out paper
guestionnaires and then typing them in becomes overwhelming.

Now, this can be solved with expensive machinery: There are optical readers which can
automatically copy answers from papers into the computer. However, the cheaper alternative is to
use web questionnaires. With a web questionnaire, the costs are no longer related to the size of the
sample. It does not cost more to collect 3000 answers than 2000, since the answers are
automatically stored in the web questionnaires database, immediately ready for analysis.

1.1.2. When and How Can Web Questionnaires be Used?

As more and more potential respondents both have access to and competence enough for using the
Internet, the use of web questionnaires becomes more attractive. In principle, web questionnaires
can be used as a replacement for other forms of surveying as soon as it can be ensured that the
respondents are able to reach and use the web questionnaire via the Internet.

Web questionnaire surveying can be conducted both on known samples and unknown samples.
With a known sample, it is available digitally to the respondents as soon as they have been made
aware of the questionnaire’s URL. This can be distributed to the respondents in many forms: It



could be sent via e-mail or even printed on paper. With an unknown sample it is possible to make a
guestionnaire publically available on the web and let anyone who sees it answer.

1.1.3. When Should Web Questionnaires not be Used?

The great draw-back with web questionnaires is of course its dependency on technology. It does
not lend it self easily to surveying in low-tech groups such as elderly people. Also, the internet
penetration does not necessarily imply good internet competence: There is a technological barrier
to accessing and answering an online survey even for some people who have an internet
connection.

Further, while the online technology makes interesting survey features available, it may also make
some things less stable. The web questionnaire software might contain bugs, the responstimes
might be unbearably long, the respondent’s screen resolution is unknown and the respondent might
have a faulty or old web browser. Web surveying introduces sources of error which are not there
when doing paper-based surveying.

1.1.4. Scientific Aspects of Web Questionnaires

As a researcher you should also be aware that there are statistically significant issues with using
web questionnaires. It is not necessarily so that web questionnaires give less true answers as
compared with paper questionnaires, but they are noticably different.

These issues are called mixed mode problems. The experimental setup for measuring these
differences are as follows: Select a computer-aware population, for example students. Pick two
equal samples from this population. Give one sample a questionnaire printed on paper. Give the
other sample the questionnaire online. The questionnaire is exactly the same on paper and web, the
paper version is optimally a printed version of the web questionnaire. Chances are you will notice a
statistically significant difference in answers.

It is beyond the scope of this manual to describe these phenomena in detail, but as a hint, you
would probably notice that the web questionnaire sample tend to avoid extremes (in a scale from
true to false, they will keep closer to the middle than in the paper sample).

Y Tip

'Y Thereis a lot of interesting litterature concerning the mixed mode issues. Although
most concern other combinations than web/paper, a number of master and bachelor
theses have been written specifically concerning web and paper. Some of these are
available on Mod_Survey’s home page.



Apart from the above, most litterature on questionnaires in general should also apply to web
guestionnaires. Also paper questionnaires need be formulated to fit the target population. The
additional steps of pilot testing the questionnaire would need a web usability test (testing how the
guestionnaire looks on different platforms and different hardware).

1.2. What is Mod_ Survey?

Mod_Survey is a software which enables the use of web questionnaires. Optimally it is installed on
one of your organization’s web servers. With Mod_Survey available, you can conduct any amount
of web questionnaire surveys and have data and responses handled automatically server-side.

The explicit purpose of Mod_Survey is to enable advanced questionnaire technology, even in the
cases where this will lead to a more difficult learning curve. Mod_Survey will be described in more
detail in the next chapter.

1.2.1. Where does Mod_Survey Fit In?

Mod_Survey and other software (such as Cough) related to Mod_Survey handles most of the life
cycle of a web questionnaire, but not everything. Below is an image describing this life cycle. The
grey parts are entirely outside the scope of Mod_Survey. The yellow parts are partially handled by
Mod_Survey or related software. The green parts are entirely handled by Mod_Survey.

Figure 1-1. Survey Lifecycle

Survey Lifecycle

Formulation

Design

Deployment

Display

Data collection

Validation

Data storage

Export

Data analysis

Ouitside scope

Cough
Text editor
Third-part editor

Cough
Shell access
FTP

Mod_Survey

Mod_Survey

Mod_Survey

Mod_Survey

Mod_Survey

Statisticstools
(Mod_Survey)




Please note that for space reasons several important aspects of surveying have been excluded from
this figure. Most notable is the respondent management (such as population, samples, contacting
respondents, reminders and so forth), which would be gray or yellow if placed in the figure.

Formulation: The formulation of the survey is currently entirely outside the scope of Mod_Survey.
The formulation is the scientific base of the questionnaire, things like dependent and independent
variables, indexes, question texts, question order and so forth. Mod_Survey expects you to know
how you want the survey to be formulated before beginning. As a side note, ideas for a formulation
support has been discussed, but there has so far been no attempt at actual implementation. A
support of this kind could look like a standard software wizard ("Which are your independent
variables?", "How many dependent variables do independent variable 1 influence?"...).

Design:Design is partially inside the scope of Mod_Survey. The difference between formulation
and design is that the design is the actual visual appearance in the end. The Cough add-on layer
includes a simple survey editor which can help you with the actual survey layout. Without Cough,
surveys are formulated as XML file via any standard text editor.

DeploymentDeployment is the actual publication of the survey, making it available to the
respondents via the net. In practise this means putting a survey file somewhere on a web server.
This is supported through an upload form in Cough. Without Cough, upload is done via standard
unix tools (such as FTP, SCP...). Without Cough, deployment will require shell access on the
Mod_Survey server.

Display: When deployed, the questionnaire is automatically formatted and displayed in the
respondents web browser, when the respondent requests access to the survey. Technically this is a
transformation from XML to HTML, but the author of the survey does not need to be aware of this
process as Mod_Survey takes care of all the details.

Data collection:When the respondent has filled out the survey and clicks "submit”, Mod_Survey
handles the data input. The survey author does not need to be aware of the details here either, since
everything is handled transparently.

Validation: If requested by the survey author, the collected data can be format validated. Examples
of supported validaton are that a question must be answered, that a submitted value can only be
within a certain span, and that crap characters cannot be submitted. Per default all checking is
disabled. If an error is found, the respondent is notified and is asked to correct the input and
re-submit.

Data storageWhen collected and validated, the data is stored in a central repository. The survey
author does not need to care about this, since it is handled automatically. However, if so wished,
this behavior can be overridden, so that data is saved in a RDBMS or in a text file.

Export: When all answers are collected, the survey author can download the data in a number of
popular formats. Mod_Survey automatically transforms and formats the data to these formats when
requested.



Data analysisMod_Survey has very minor support for data analysis. In practise it is expected that
the survey author wants to download the data and open it in a third-part software such as Excel or
SPSS. The previous step (export) supports formatting data into files possible to open in these
packages.

1.3. About this manual

Before beginning with the manual as such, let’s state some things about its format.

1.3.1. Admonitions

Throughout the manual, four kinds of admonitions will be used: Tip, Caution, Importand and Note.

/

O

) Tip

A "Tip" is a hint about something which might be interesting for you, but which isn’t
entirely necessary to solve the core task at hand.

Caution

A "Caution" is information about something that might possibly lead to damage to the
data. This might be where you might cause data corruption or when something will
hinder respondents from answering the survey.

Important

An "Important” is information about something you must be aware of to be able to
solve the core task. Failing to follow an Important text might cause various problems
for you, but not to the degree that it will damage your data.

Note
A "Note" is information of something that you need be aware of to do an efficient job,
but which can be ignored if you know what you are doing.



1.3.2. Terminology

In the following, a "survey" shall denote one web questionnaire file written using the Mod_Survey
syntax. A questionnaire with several pages is a "survey chain". The "user" is the author of the
survey, usually the analyst. The "respondent” is the person answering the survey. The
"administrator" is the person responsible for the server where Mod_Survey is installed.

1.3.3. Not Included in the Manual

The manual’s purpose is to provide @troductionto Mod_Survey. Most features will be covered
briefly here. However, the manual does not cover the full syntax. More advanced users of
Mod_Survey will likely want to readlod_Survey Syntax Referenagich is a terse no-nonsense
reference to the full syntax.

Further, the manual is directed towardgsersof Mod_Survey. Thus system administrator tasks
such as backups, upgrades and security will not be covered here. These issues are covered in
Mod_Survey Sysadmin Guide

Finally, there is nothing about code structure and about the behind-the-scenes of Mod_Survey. This
information, which might be important for programmers and people who want to extend
Mod_Survey, is available iMod_Survey Programmer’s Guide



Chapter 2. About Mod_ Survey

This chapter provides a brief introduction to Mod_Survey, in order to make the reader aware of
what to expect from it, and perhaps more important what to not expect.

2.1. A Brief History

The history of Mod_Survey started in the autumn 1998. | was studying my third year at the
information systems science program at Mid Sweden University, and was out on the second trainee
period. This time | worked at a local newspaper, and my task was to examine their intranet solution
and suggest improvements for it.

The first problem arising was the data collection. Having earlier conducted a paper questionnaire at
a big company, | knew it was a nuisance having people fill out a form and send it back. Somehow
those papers always got lost or were placed in the bottom of a heap on a desk. Besides, at the
newspaper project we were short on time and resources. | decided that since everyone had access to
their local intranet server, a CGI script would make things considerably easier and more efficient.

As | had been hobby-programming web applications for some time, throwing a custom CGlI script
together did not take a long time, and it was successfully put to use for the data collection part of
the project. It was ugly and crude, but it worked. | found it so convenient that | decided to make the
script a bit more general so | could use it again in later surveys. This was the birth of Mod_Survey
and can be said to be version 0.0, although | hadn’t named the application then.

A year later | had added to and formalized many parts of the script. It could now handle several
surveys and it knew how to save files both as semi-colon delimited fields and in a database. |
named the script "Survey”, and it was used in a couple of projects at the university. For example it
was used in a usability study as a tool for collecting user feedback. As the users in this case were
people with various handicaps and low education, it was shown that web questionnaires were not
limited to perfectly healthy people with a degree in computer science. The code in the script was
still rather un-organized and the questionnaire description format was crude: the surveys were
defined as tab-delimited fields in text files. However, it worked and looked reasonable nice. This
was version 1.0.

After having finished my degree in spring 2000, | continued to work at the university, partly with
various project and partly as a post-graduate student. | and the guy who had done the
handicapped-people thesis continued to tinker with the script. It was restructured from the bottom
and this time implemented in mod_perl. The name was changed from "Survey" to "Mod_Survey".
Things got very much faster and more convenient, but eventually we ran into a dead end, mainly
because of the decision to keep the old tab-delimited fields definition format. This was version 2.0.

While the rewrite was not an unqualified success, it had the good consequence that we were
noticed by a large governmental organization, NIWL, the National Institute for Working Life. As



they conducted really large paper-based surveys and then hired several persons to type the results
into SPSS, they saw the potential of web surveys. In the end they sponsored me and my colleague
to develop the system into a usable application which would be flexible enough to use in their
surveying. | had actually begun thinking about another rewrite, but with the funding we got, the
rewrite could get ambitious.

During the autumn 2000, the code was re-organized again and put in a much better structure. The
definition file format was changed from tab-delimited fields to XML and most basic question types
were implemented. A user of current-date Mod_Survey would recognize most of the way it looked.
In december 2000 Mod_Survey 3.0.0, as it was now officially called, was deployed for NIWL's
survey. The system delivered up to expectation, and a home-page was created for downloading
code and documentation.

As a part of the contract with NIWL, it has been stated that the final Mod_Survey would be
licensed as GPL and copyrighted by me. With the first home-page release on december 12 2000,
Mod_Survey could be said to be an open-source project. However, the project was not announced
publically until april 2001, which was the date when version 3.0.4 appeared on Freshmeat.

The project plodded on with occasional updates. By summer 2002 new features such as
multipaging, multiple-answer CHOICE and the MEMO field had been added. The application was
used here and there and users started to subscribe to the mailing list and occasionally submit code
patches and ideas. Local students started to do projects and theses around web questionnaires in
general. Most notably Cecilia Backstrém and Christina Nilsson did an ambitious study of Mixed
Mode problems.

During the summer, Mathieu Jan of the Sympa crew joined in the Mod_Survey development and
started to send in ambitious updates. He contributed important updates such as the
internationalization layer, and the ability for survey persistence. All in all it took a while to
consolidate the changes, but by early spring 2003, the 3.0.x branch reached its current state with
3.0.14. Since then only minor additions have been made to that branch.

During spring 2003 a gang of italians from Demetra and YaaCs took up the flag and started to send
in ambitious ideas and code changes. Since Mod_Survey had grown in a evolutionary manner and
had gotten a bit cluttered, and since the new ideas required significant changes, Mod_Survey was
branched into what was to become the 3.2.x branch. In the late summer 2003 a first alpha release of
3.2.0 was made available. This contained advanced features such as conditional branching,
scripting and dynamic contents.

An ambitious EU project was planned for developing Mod_Survey further, with participants from
universities and companies in italy and sweden. In the end the application was never sent in, partly
because of economy and partly because of health problems. However, many ideas had arisen
during the discussions and the italian gang, mainly through BugAnt, continued as heavy
contributors to the development.

Development snapshots of 3.2.0 continued to appear during spring 2004 and many
behind-the-scenes infrastructural code aspects were rewritten to be more logical and consistent. By



mid summer a first public beta was released. Mid Sweden University held a summer course in
"Web Questionnaire Design", which used a beta of 3.2.0 as base technology.

At the time of writing, 3.2.0 final is close to release, and chances are that you are using either a late
beta or the final version.

2.2. Different Versions of Mod_Survey

At the time of writing, there are two major versions of Mod_Survey: 3.0.x and 3.2.x. The 3.0.x
branch is the code that have lived more or less in the same state since autumn 2000. It is what most
users of Mod_Survey still use for production use. 3.2.x is the next stable branch of Mod_Survey. It
contains major feature, security and stability upgrades. This is what users are encouraged to use if
they are trying to choose between 3.0.x and 3.2.x.

3.2.x is not backwards-compatible with 3.0.x and following manual is completely based on the
assumption that you are using 3.2.x. The instructions are not relevant for 3.0.x.

Aside from the major versions, the CVS repository also contains a 3.1.x branch which has been
discontinued. There is no reason whatsoever to use this. It is only mentioned here so you know that
you should avoid it.

2.3. Mod_Survey’s Goals and Target Group

Before reading the list of features and details of Mod_Survey, you should probably be aware of
what the goals of Mod_Survey are, and who the intended users are.

From the beginning, the main objective of Mod_Survey has been feature completeness. The ideal
is a survey suite which supports all the advanced questionnaire components and designs the user
could conceivably desire. If an ability is not natively supported, then at least Mod_Survey’s code
base should be clear and logical enough to be extended in an efficient manner.

Ease of learning ("learnability” to use Nielsen’s usability terminology) is a secondary goal. Feature
completeness and richness of advanced features often conflicts with learnability. Complexity of
output will often require complexity of input. Mod_Survey’s main mode of input is currently
through editing files with a certain XML-based tag notation. While being harder to learn than a
traditional GUI, I still feel that the expressive power of this markup would be hard to capture
through a GUI. For the same reason | also write all HTML code by hand rather than using a
WYSIWYG editor such as Dreamweaver or Frontpage.

The focus on expressive power and feature-completeness is interdependent on Mod_Survey’s
target group. The target group is users who need to conduct larger surveys, who needs to have



powerful interactions with statistics suites such as SPSS, and who will need to get their hands dirty
in customizing output and format of their web questionnaires.

Mod_Survey can certainly be used for simpler questionnaires, such as a one-question poll or vote
guestionnaire. It might be considered a bit of overkill, but there’s nothing stopping you from using
it as such.

2.4. What does Mod_ Survey Support?

Features and extensions has been added to Mod_Survey for years, and there are a lot of small
seemingly minor features that most users will never need. These features are documented in the
syntax reference. The following is a list of some of the "larger” features, mainly there to provide
some kind of overview of what to expect from the system.

2.4.1. Basics

Question typesMost basic question types are supported. This includes multiple-answer choice
blocks, multi-line open answers and matrixes.

Data exporting:Once data has been collected, the user can choose to export it into a multitude of

data formats, suitable for import in most major statistics suites. Export formats include but are not
limited to delimited fields, fixed columns, data scripts and tables. Import support has been tested

and found working with suites such as MS Excel, MS Access, MiniTab, SPSS and R.

Answer checking/constraintQuestions can optionally have checking, to make sure that the
respondent has answered a question and/or inputted a correctly formatted answer.

DescriptivesThe export features includes viewing descriptive statistics and frequency tables
calculated from the submitted data.

RandomizationQuestion blocks of the matrix type can be randomized internally both over rows
and columns (or both at the same time).

2.4.2. More advanced data collection

Date and time:Date and time features include both timestamping an answer, and measuring the
time it took for a respondent to answer a survey.

Server interconnectionEnvironment variables set by the Apache server can be added to the data.
This makes it possible to, for example, record the IP or the browser application of the respondent.

10



Completely custom question#f:the available question types are not sufficient, the user can design
completely custom questions which can use the whole spectrum of HTML and JavaScript.

2.4.3. Database interconnectivity

Optional DBI backend:Answers can optionally be recorded in any DBI-compatible database
manager, such as PostgreSQL, Oracle or MySQL.

Importing database fieldsData can be fetched from any DBI-compatible database manager, and
can appear both in respondent-visible output, or as submitted together with the respondent’s
answers.

2.4.4. Modularization

Conditional branching and routingThe respondent can be routed to different questions based on
previous answers. The routing supports advanced aggregate boolean expressions.

Linking and fragmentsFragments (such as a page header) can be broken out from the survey
design and placed in separate files for run-time inclusion into the surveys.

Enabling and extending export3:he data exports modules can be individually enabled or disabled
or added to. Each possible data export is written as a separate file building on a powerful API.

2.4.5. Layout customization
Themes:There are several layout- and color themes following the base installation.
StylesheetsMost aspects of the layout can be customized through specifying external stylesheets.

Graphics and extra HTML:Extra html tags for boldfacing words or inserting images can be added
in the respondent-visible output.

2.4.6. Other advanced features

Dynamic contentsRespondent-visible output can be automatically modified depending on earlier
answers, for example in order to include the respondent’s name or prefix titling with "Mr" or "Mrs".

11



Perl scripting: It is possible to include perl "snippets" in the survey files, to extend their functions
with hand-written perl scripts.

Mailing data copies:It is possible to automatically mail copies of all respondent answers to
several email addresses.

Detailed access restrictionAccess to various aspects of a survey (such as answering, data export
or administration) can be set both on a user and a host basis.

2.4.7. System meta

Apache-basedMod_Survey is an extension module to Apache, the world’s most popular web
server software.

Free: Mod_Survey is open-source and is thus free both in regards to content and cost.

2.5. What does Mod_ Surveynot support?

There are also a number of features of surveying which is either in queue for addition, or outside
the scope of Mod_Survey.

No GUI for editing surveysThe first thing new users will discover is that there is no graphical
user interface for editing survey files. Users are expected to write surveys in Mod_Survey'’s tag
markup using any text editor of choice. (A GUI is/will be a part of Cough, an add-on layer to
Mod_Survey, but will probably never be a part of Mod_Survey as such)

Persistance:Data persistence has been supported in earlier versions of Mod_Survey but has not
yet been ported to the latest version. Data persistence is the respondent option of saving data
temporarily in order to return later to finish the survey.

Second-tier data modificationThere is no functionality for modifying submitted data.
Mod_Survey is a data collection tool, and modifying already submitted data is currently outside
the scope. However, in the long term this is a planned feature.

Random order between questiorRandomization is only supported inside matrix blocks. Apart
from that the order of questions cannot be randomized (this is planned for the immediate future).

Population managementThere is no functionality for selecting samples or keeping track of a
population. This is outside the scope of Mod_Survey as such, but is planned for inclusion in Cough.

12



2.6. Comparing Mod_Survey with Other Systems

Mod_Survey is not unique in providing the ability to deploy web questionnaires. There are many
systems doing this. These systems can be categorizes in four categories: Embedded poll systems,
survey hosters, forms APIs and web questionnaire suites.

Embedded poll systems:
Survey hosters:
Forms APIs:

Web questionnaire suites:

2.7. Getting Access to Mod_Survey

This manual presupposed that Mod_Survey is already installed on a server you have access to. You
need login information to that server, and you can likely get these from your local system
administrator. As soon as you have access to such a server, and are able to place files in the web
tree somehow, then you are ready to go.

Note that while the above in most cases means that you need shell access (the ability to log in via a
console prompt) this is not entirely necessary. Many deploy survey files by saving them on a
network drive via the common windows network. Your system administrator will know which of
these approaches is the most convenient for you.

13



14



Chapter 3. Basic Work with Survey Files

The following instructions should enable you to perform the basic tasks needed for writing and
using a survey.

Note

The following instructions do not take the Cough add-on layer into account. Many of
these tasks are much easier when using Cough, which is summarily described in a later
chapter in this manual. However, even if you are going to use Cough, the following
sections are useful to read and understand. Thus it is recommended that you skim them
through before starting with Cough.

3.1. Requirements

Before you begin writing survey files, you will need a server running apache and mod_survey.
Further you need some kind of access to it. If you are able to put a normal homepage on the server,
you should have access good enough to put survey files on it too.

To write the survey files you can use any text editor, ranging from notepad in windows to vi in
unix. Many text editors have syntax highlighting for XML, which might come in handy when
writing survey files.

3.2. Writing a Survey File

Once you have made sure you fulfill the basic requirements, you are ready to start writing your first
survey file. To begin with, start your favorite text editor, or if lack of one, start notepad in windows.

A basic survey file consists of tags, making it look a bit like a HTML page. Every survey starts and
ends with SURVEY tags. A first survey might look like this:

<SURVEY TITLE="My first survey">
<TEXT NAME="name" CAPTION="What is your name?" />
</SURVEY>

In the example we have created a survey with the title "My first survey". It has one question, a open
answer text field with the question text "What is your name?". When furter treated, we will refer to
this question using the id "name".

15



You will here not that tags come in two different forms. You have bothoghentags which are
written in the form <TAG>..</TAG>, and thelosedtags which are written in the form <TAG .. />.
The difference between this is that the open tags may contain other tags, while the closed can not.

Once you have made sure that the survey file seems properly written, you should save it to disk.
Save it with the name "first.survey" (and make sure you do not save it as "first.survey.txt" or
"first.txt", it is important that it ends with ".survey").

With the file saved on disk you have essentially done what is required to define a very basic survey.
Next is to deploy it online.

3.3. Uploading a Survey File

To deploy your survey file, you need to place it somewhere in the web tree. This means it should be
placed on the server in a directory that the Apache web server software can find. Usually, this is is
a sub-directory of your home directory. The sub-directory’s name varies, but is usually called
"www" or "public_html".

3.3.1. Using the windows network

If you are on a windows machine and have access to a network drive mapped to your home
directory on the server, things become very easy. Imagine that your home directory is mapped as
H:. Now simply move the file you saved (“first.survey") to the www subdirectory on the network
drive, usually H:\www\.

Even if the network drive is not mapped, you might be able to save files to the web server via the
windows network. Imagine that your server is called "webserver.domain.com”, and that your
username is "joepal". Now open a file window (double-click on "my computer"), and write
"\Wwebserver.domain.com\joepal” in the address field. With some luck you will see the contents of
your home directory pop up, and there find a sub-directory called "www" or "public_html". Simply
move the file your saved to this sub-directory.

3.3.2. Using SSH/SCP

(to be written)

16



3.3.3. Using FTP

(to be written)

3.3.4. Writing surveys on-site

(to be written)

3.4. Accessing a Survey

Survey files are accessed in the same way as common web pages. The server will take care of the
formatting, and present the respondent with a web questionnaire.

Supposing you have successfully placed your survey file in the web tree, you can now direct your
browser to it, to see how it looks online. Start your browser (Internet Explorer, Mozilla or what
browser you use), and edit the address field. Suppose your server address is
"webserver.domain.com”, that your user name is "joepal”, and that your survey file is still called
"first.survey". Then accessing the survey could be done through writing the following in the
address field of your browser:

http://webserver.domain.com/~joepal/first.survey

Now, several things might happen when you access the survey. The best is if you see a web page
containing one text input field and the question "What is your name?", along with two buttons
("Submit" and "Clear"). This would mean that everything works and that you have successfully
deployed your first survey. However, one of a number of errors might also occur:

Page says Error 404, not foundhis means both that Mod_Survey is not installed, and that your
survey file was not found. See below.

Source of survey is displayed rather than a questionndings means that Mod_Survey is not
installed on the web server. You will need to speak with your system administrator to solve this.

Page says Document error, not foudod _Survey works, but your survey file could not be found.
Chances are that you either misspelled the name or put the survey file in the wrong place.

Other Document erroMMod_Survey works and your survey was found, but it contained an error,
probably some small spelling mistake. The error message should be detailed enough to tell you
what the mistake was.

17



3.5. Administrating a Survey

Once deployed, the survey should more or less take care of itself. However, each survey has an
administrative page where you can, for example, remove all submitted data. Note that most
administrative functions are switched off per default, for security reasons. For now, we will only
see how to access the administrative page, but later on you may wish to read the chapter
"Restricting Access" to see how to enable the administrative functions.

All functions of a survey are reached by adding arguments to the survey. The most common
functions are "admin", which we will demonstrate here, and "data" which will be demonstrated in
the next section. Actually, simply viewing a survey is the function "display”, although if not
specified, the system will assume that this is what you wanted.

To see the administrative page of a survey, you need to specify that the desired action is "admin":

http://webserver.domain.com/~joepal/first.survey?action=admin
Note that we are still using the same address, but have added "?action=admin" to it. With some
luck, you will be presented a menu with several options when having entered this.

The menu options should be quite self-explanatory, so we will be satisfied with the above for now.

3.6. Downloading Data

Once some respondents have answered the survey, you will likely want to download the submitted
data to, for example, view it in a statistics program.

Reaching the data function works in the same way as accessing the administrative function. You
will simply have to specify that the desired action is "data":

http://webserver.domain.com/~joepal/first.survey?action=data

Again, you will be presented with a menu. This time you will get the option of downloading the
data in any of several possible formats. The data downloading is described in more detail in the
chapter "Downloading and Using Survey Data".

18



Chapter 4. Writing Questions

The most basic use of Mod_Survey is to present a questionnaire online. Most basic questionnaire
object types are supported. This chapter summarizes the basic question objects.

4.1. What is a Question?

A "question" in Mod_Survey’s sense is a subset of the possible "variables" or "objects”, namely the
objects that have a lead-in question text, and a field for the respondent to answer the question.

Thus, aquestions what would be called a question on a paper questionnaire. Each question is
represented as\ariable, or in other words a field with the ability to get different values depending

on what the respondent answers. Note that there can also be variables that do not have questions:
For example, recording the IP address of the respondent is a variable, but not a question, since the
respondent is never formally asked for it. Ahjectis a tag in the survey source. An object can

contain several variables and/or questions (as in the case of MATRIX), or contain a single
variable/question, or contain no variable at all. Objects can be purely passive or only affect layout.

A question objecis anobjectwhich contains one or momrguestionsand one or morgariables
This chapter only deals with question objects.

4.2. Closed Single-Choice Questions

There are three basic question objects for defining closed single-choice questions: The
BOOLEAN, the CHOICE and the LIST.

The BOOLEAN is a question with a true/false answer, represented as a checkbox.

The CHOICE is a list of possible answers presented as a column of radio buttons and labels. All
possible answers are always visible.

The LIST is a list of possible answers presented either in a listbox or in a drop-down menu. If the
number of possible answers is larger than the height of the listbox, the respondent can scroll down
to find more answers.

4.2.1. BOOLEAN

The BOOLEAN is one of the simplest question types available in the repertoire. It consists of a
lead-in question text and a checkbox, which can either be checked or unchecked. Thus the
BOOLEAN always represent a true/false condition.

19



One example of a question for which the BOOLEAN would be fit is the standard "Yes, | want to be
notified via e-mail™:

<BOOLEAN NAME="mail" CAPTION="Yes, | want to be notified via e-mail" />

It is also possible to set the initial state of the checkbox via the CHECKED parameter, which can
either be "yes" or "no" (defaulting to "no").

4.2.2. CHOICE

The CHOICE is one of the most versatile components available. In its simple state is represents
choice between a limited set of options. The CHOICE also supports multiple-select and open
answers, but these features will be treated further down.

The CHOICE is different to the BOOLEAN in the way that it is an "open" tag, meaning it contains
subtags. Each possible option is represented as a CHOICEELEMENT tag. A very easy example
would be the close-to-obligatory question about whether the respondent is male or female:

<CHOICE NAME="gender" CAPTION="Are you male or female?">
<CHOICEELEMENT VALUE="0" CAPTION="male" />
<CHOICEELEMENT VALUE="1" CAPTION="female" />
</CHOICE>

CHOICE do also, as most but not all objects, support the MUSTANSWER parameter. Setting the
MUSTANSWER parameter to "yes" will force the respondent to choose one of the options. If
MUSTANSWER is "no" (default) then the result will be given the value of the parameter
ILLEGALVAL (defaulting to "-1").

4.2.3. LIST

While the CHOICE is intended for a limited set of options, resulting in an integer representation,
the LIST is usable for giving the respondent a larger list of options, represented as strings. The
LIST ends up as either a "listbox" or as a "combobox", thus only displaying a limited set of options
at a time but giving the user the ability to scroll down to find more options.

For example, a LIST could be used in a question about which department an employee belongs to
on a company. For space reasons, the following only includes three departments, but there would
not be a problem to add a hundred more.

20



<LIST NAME="dept" CAPTION="Where do you work?">
<LISTELEMENT CAPTION="ITM" />
<LISTELEMENT CAPTION="SHV" />
<LISTELEMENT CAPTION="SOA" />

</LIST>

The number of options presented at a time is decided by the VISIBLELEN parameter, defaulting to
"5". If setto "1", the LIST will end up as a "combobox".

In the above the LISTELEMENT tags get the value of their CAPTIONS, but it is also possible to
set a VALUE parameter explicitly in the same way as in the CHOICEELEMENT. This might be a
good idea if the options in the LIST are represented as long strings.

Y Tip

¥ This might be a good place to re-iterate that this manual only deals with the basics of
Mod_Survey syntax and markup. The question objects mentioned here contain many
more features than the ones listed above. For example it is possible to randomize
options, state if a variable should be alphanumerical or numerical, and so on. After
having understood the basics, it might be a good idea to thumb through the
"Mod_Survey syntax reference".

4.3. Multiple-Choice Questions

There are two ways to represent multiple-answer questions in Mod_Survey: Via the MULTI
parameter in CHOICE, and via the MULTI parameter in MATRIX. The MATRIX tag is treated
further down.

In its most basic form, the CHOICE only allows one answer, but if the MULTI is set to "yes", it
will allow multiple answers. One example could be the following:

<CHOICE NAME="pizza" CAPTION="Add what ingredients on my pizza:" MULTI="yes">
<CHOICEELEMENT VALUE="1" CAPTION="Olives" />
<CHOICEELEMENT VALUE="2" CAPTION="Curry" />
<CHOICEELEMENT VALUE="3" CAPTION="Bearnaise" />
<CHOICEELEMENT VALUE="4" CAPTION="Banana" />
</CHOICE>

21



The respondent will be presented with a number of checkboxes and can check the ones he thinks
applies. Note that the MUSTANSWER/ILLEGALVAL behavior (see above) still applies.

4.4. Open Questions

The manual has so far only dealt with closed question, questions where the survey author has
pre-determined all possible answers. However, it is often useful to let the user add completely free
answers. A question which allows textual input is called an "open" question.

4.4.1. One-line text fields

The most basic open question is the one-line text field, which can be used to, for example, ask the
respondent about his name:

<TEXT NAME="name" CAPTION="What is your name?" />

This will display a text input field, into which the respondent can enter up to 80 characters. The
maximum length of the field can be varied with the MAXLEN parameter (which defaults to "80").

4.4.2. Numerical fields

One special case of open answers are format-checked text input fields which are used for querying
for numerical answers. These are also handled by the TEXT object. For example, it can be used to
ask the respondent for his age:

<TEXT NAME="age" CAPTION="How old are you?" NUMERICAL="yes" />

In the above, the NUMERICAL parameter has been set to "yes", telling the system to perform
format checking on the answer. It is also possible to set, for example, maximum and minimum
allowed answers.

4.4.3. Multiple-line text fields

Sometimes a one-line text field is too limited. Of course, there is nothing stopping the survey
author from setting the MAXLEN parameter to quite a large number. However, a small input field

22



psychologically implies that the answer should be short.

To fetch more verbose answers from the respondent, it is thus useful to allow a larger text field,
which allows line-feeds:

<MEMO NAME="comment" CAPTION="Please add your thoughts about the above" />

The MEMO object does not have any size limitation, which may lead to very long answers being
accepted. This might be cumbersome in data analysis, but most data exports allow for filtering out
MEMO fields when downloading data.

4.4.4. Otherfields

It is often useful to combine closed questions with an open option. In Mod_Survey, the CHOICE
object supports being combined with an open answer. This can be used when none of the options
applies, or when the respondents wants to add another option.

As an example we an extend the pizza question from a previous section:

<CHOICE NAME="pizza" CAPTION="Add what ingredients on my pizza:"

MULTI="yes" OTHERFIELD="Other, please specify:" >
<CHOICEELEMENT VALUE="1" CAPTION="Olives" />
<CHOICEELEMENT VALUE="2" CAPTION="Curry" />
<CHOICEELEMENT VALUE="3" CAPTION="Bearnaise" />
<CHOICEELEMENT VALUE="4" CAPTION="Banana" />

</CHOICE>

In the above, the respondent would be presented with a list of checkboxes, and a text field.

4.5. Scales

Scales can be represented in two ways in two ways: Discreet and continuous. This is an important
decision for the survey designer, as it has a serious impact on applicable methods for data analysis.

The discreet scales are handled by CHOICE, LIST and MATRIX. A discreet scale is a scale with
answers which can be compared and put in ascending or descending order, but which are not
continuous. A non-discreet scale is handled by LICKERT, and is a continuous variable which is
applicable for data analysis such as means and distributions.

23



Note

The spelling of the LICKERT object is indeed LICKERT with "ck". The most common
spelling in literature is "likert scale", without the "c". When starting the work of
Mod_Survey | had a statistics book which either used a very odd spelling or misspelled
the word. Now, several years later the "ck" spelling is so ingrained in the system that it

would be a pain to change it.

4.5.1. Discreet scales

A discreet scale is simply a set of options arranged according to value. A question regarding
frequency of an event might be a discreet scale, if available answers are given in the form of "less
than once a week" and "once a year". Since the scale is not continuous, data analyses such as

means and distributions are not applicable.

Syntactically, there is no difference between a CHOICE or LIST defining a discreet scale, and a
CHOICE or LIST defining any other question. To continue the event question example, it could

look like this as a CHOICE:

<CHOICE NAME="often" CAPTION="How often do you read mail?">
CAPTION="Very, very often" />

<CHOICEELEMENT VALUE="0"

<CHOICEELEMENT VALUE="1"

<CHOICEELEMENT VALUE="2"

<CHOICEELEMENT VALUE="3"

<CHOICEELEMENT VALUE="4"

<CHOICEELEMENT VALUE="5"
</CHOICE>

Or as a list;

CAPTION="Once
CAPTION="Once
CAPTION="Once
CAPTION="Once
CAPTION="Very,

every ten minutes” />

an hour" />
a day" />
a week" />

very seldom" />

<LIST NAME="often" CAPTION="How often do you read mail?">

<LISTELEMENT

<LISTELEMENT

<LISTELEMENT

<LISTELEMENT

<LISTELEMENT

<LISTELEMENT
</LIST>

VALUE="0"
VALUE="1"
VALUE="2"
VALUE="3"
VALUE="4"
VALUE="5"

Matrices also very often define discreet scales, but they will be treated in the section about matrices

further down.

24

CAPTION="Very, very often" />
CAPTION="Once
CAPTION="Once
CAPTION="Once
CAPTION="Once
CAPTION="Very, very seldom" />

every ten minutes” />
an hour" />

a day" />

a week" />



4.5.2. Continuous scales

A continuous scale is a position between two extremes, for example an answer between "Agree
totally" and "disagree completely”. A continuous scale is usually implemented as a LICKERT in
Mod_Survey. A basic example could be:

<LICKERT NAME="know" CAPTION="I know a lot about computers" />

...which will result in a five-step scale between True and False. The values to the left and to the
right of the scale are regulated with LEFTTAG and RIGHTTAG respectively, and the number of
steps with STEPS.

Note also, that with some care and designing you could formulate a CHOICE or LIST question as
a continuous scale. It is mainly an effort of providing possible answers which would fit as scale
positions.

4.6. Matrices

A MATRIX is different from the question objects we have seen so far in the way that gescd

guestions sharing format and layout, rather than a single question. Matrices are often used in
guestionnaires when the possible answers to a set of questions are always the same. Using a matrix
relieves the respondent of having to read through the possible alternatives for each questions,

which may make the respondent feel that the questionnaire is easier to overview and fill out.

4.6.1. The basic MATRIX

The basic MATRIX is a set of rows (MATRIXROW) defining questions, and columns
(MATRIXCOLUMN) defining possible answers. The MATRIX has a NAME parameter, but the
variables will be the rows automatically named as the NAME parameter with a number added. One
easy example would be:

<MATRIX NAME="color" CAPTION="Which color do you want...">
<MATRIXROW CAPTION="..the border to be?" />
<MATRIXROW CAPTION="..the background to be?" />
<MATRIXROW CAPTION="..the foreground to be?" />
<MATRIXROW CAPTION="..the text to be?" />
<MATRIXCOLUMN CAPTION="Red" VALUE="1" />
<MATRIXCOLUMN CAPTION="Green" VALUE="2" />
<MATRIXCOLUMN CAPTION="Blue" VALUE="3" />
<MATRIXCOLUMN CAPTION="Yellow" VALUE="4" />

25



</MATRIX>

This would leave us with a four by four matrix with the variables colorO1 .. color04, and the
possible answer values 1 .. 4.

O Important

¢ Mod_Survey currently imposes a length restriction on variable names. No variable
name can be longer than 8 characters. Since MATRIX automatically adds two
characters for numbers, this means that the NAME parameter can only contain six
characters.

4.6.2. MATRIXes as scales

Defining a discreet scale in a MATRIX is of course mainly a matter of formulating relevant answer
alternatives. Consider, for example, the following:

<MATRIX NAME="fpsjuk" CAPTION="During the last 12 months | have had...">
<MATRIXCOLUMN VALUE="4" CAPTION="Often" />
<MATRIXCOLUMN VALUE="3" CAPTION="Quite often" />
<MATRIXCOLUMN VALUE="2" CAPTION="Sometimes" />
<MATRIXCOLUMN VALUE="1" CAPTION="Seldom" />
<MATRIXCOLUMN VALUE="0" CAPTION="Never" />
<MATRIXROW CAPTION="trouble with neck or back" />
<MATRIXROW CAPTION="trouble with muscles or limbs" />
<MATRIXROW CAPTION="allergical trouble" />
<MATRIXROW CAPTION="dry skin or dry mucous membranes" />
<MATRIXROW CAPTION="cold or other respiratory infections" />

</MATRIX>

Continuous scales might of course be a bit more problematic, but there is nothing stopping you
from using 1,2,3..N as CAPTIONSs in the columns.

4.6.3. Further reading

The MATRIX block supports many advanced features, such as randomizing rows and/or columns,
defining variables among the columns, multiple-answers restricted against either or both axes and
more. Please refer to the syntax reference for more information about this.

26



4.7. Designing Custom Question Types

If you are not satisfied with the available set of question objects, Mod_Survey also supports
defining completely custom question objects. In these you simply state which variables they define,
and then draw the question with HTML of your own. One example would be asking for a direction:

<CUSTOM VARIABLES="cul" ESCAPED="no">
<b>| want to go...</b><br /><br />
<table width="300" height="300" cols="3" rows="3" border="1">
<tr>
<td>&nbsp;</td>
<td>
<center>
<input type="radio" name="cul" value="n" /><br />North
</center>
</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>
<input type="radio" name="cul" value="e" /> West
</td>
<td>&nbsp;</td>
<td>
East <input type="radio" name="cul" value="e" />
</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>
<center>
South<br /><input type="radio" name="cul" value="s" />
</center>
</d>
<td>&nbsp;</td>
</tr>
</table>
</CUSTOM>

27



0 Important
@ Using the ESCAPED="no" setting makes writing the survey files by hand a lot easier,

but it also breaks XML compatibility. If you ever plan to open your survey file in an
XML editor, you should use ESCAPED="yes" and escape all HTML markup (ie <

should be written &It;).

If your CUSTOM block defines a set of variables, the VARIABLES parameter should include a
comma-separated list of them.

28



Chapter 5. Colors, Fonts and Decoration

(to be written)

5.1. Static Lead-in Texts

It is very often useful to have a static lead-in text in a questionnaire, such as a title or a few lines
with instructions. Writing such static text is done through using CUSTOM but without setting its
VARIABLES parameter. As seen in the previous section about CUSTOM, any HTML markup can
be used. For example:

<CUSTOM ESCAPED="no" >
<h1>My survey</hl>
Please don't lie to me when answering this survey.
<br />
<br />
<hr />
<br />
</CUSTOM>

Advanced users may also use the CUSTOM blocks for influencing the style of following standard
guestion objects, but that is an altogether higher school of HTML.

5.2. Themes

Mod_Survey will do most of the layouting for you, and if you don't specifically ask for something
else, the layout will be made to look like the rest of Mod_Survey (ie the Data menu and the Admin
menu). However, the default layout theme "cloud" is just one of many others.

If you want to try looking at other themes, you can change the THEME parameter of the SURVEY
tag. Available themes are as of writing this text:

cloud (default) Theme which boxes questions for redability.

formal Plain gray, black and white theme made for looking formal.
slate Clean black and white, no decoration whatsoever

invert Same as slate but white on black.

rose Pink and red theme with larger fonts.

The theme can also be overridden when displaying the survey file. If you normally call the survey
at:

29



http://127.0.0.1/mysurvey.survey
You can explicitly say you want an other theme than the one specified in the survey file:

http://127.0.0.1/mysurvey.survey?action=display&themeoverride=rose

If you are uncertain about how things look in the respondents’ web browsers, it might be a good
thing to provide links with different theme overrides.

5.3. Stylesheets

The theme engine of Mod_Survey is entirely based on style sheets. In practise what happens when
you specify the THEME parameter, is that one of the corresponding css files will be linked as a
stylesheet. These stylesheet are all available in the Mod_Survey web root, in the system sub
directory. For example, you could read the Cloud theme file (cloud.css) via:

http://127.0.0.1/mod_survey/system/cloud.css

..assuming your server is at 127.0.0.1 and that your browser do not attempt to do anything strange
when displaying CSS files.

5.3.1. Extending the theme

The SURVEY tag sports a STYLESHEET parameter through which you can specify a stylesheet
of your own. The order of the inclusion is that the theme stylesheet will be linked to first, and the
STYLESHEET stylesheet second.

5.3.2. Replacing the theme

While adding new styles will be sufficient for most people, it can also be useful to completely
override the THEME andnly use styles of your own. To disable the inclusion of the THEME
stylesheet, set THEME to "external”. Then specify a STYLESHEET of your own. The easiest way
to make a new stylesheet is probably to copy the one you think look best of the available theme
sheets and then modify it.

The formulation of good theme stylesheets for Mod_Survey is by no means any exact science. All
visible components are divided into DIV tags, and the advanced user will probably want to look at

30



the HTML source output to figure out which styles to define or change.

5.4. Font Styles

You can easily specify font styles for any part of the visible output, for example if you want to
boldface a word in a sentence. For example

<TEXT NAME="subj" CAPTION="What is your {b})main{/b} subject?" />

The supported styles are bold ({b}..{/b}), underline ({u}..{/u}) and italics ({i}..{/i}).

5.5. Colors

In the same way that you can specify font styles, you can also change the color of parts of the
output. For example:

<TEXT NAME="col" CAPTION="This sentence contains {red}red text{/red}." />

All colors follow the same pattern, ie {color}..{/color}. The defined colors are red, green, blue,
yellow, purple, cyan, black and white.

5.6. Graphics

Almost any visible output, such as a CAPTION, an element in a CHOICE or a static lead-in text
can also contain graphics. These are in practise linked-in images, which in HTML would be
specified with the <IMG> tag. In Mod_Survey you use the {image} markup:

<TEXT NAME="smile" CAPTION="This is a smiley: {imagelhappy.png{/image}" />

31



5.7. Extra HTML

Finally, it is also possible to instert completely custom HTML markup in any visible output, but it
must be escaped. This makes writing it a bit cumbersome, but altogether possible. For example, let
us assume that you want to insert a break-row (<BR>) tag in a caption:

<TEXT NAME="ql" CAPTION="Question 1: {[}br /{]}How are you?" />

In other words, a < is written as {[} and a > as {]}. Other notable escape codes are {} for ", and
{A} for &. A full reference of codes are available in the syntax reference.

32



Chapter 6. Collecting Automatic Data

(to be written)

6.1. Non-Visible "Questions"

So far, we have mainly dealt with question objects that are visible to the respondent, or in other
words "questions". However, not all variables need to be set by the respondent explicitly. In several
instances, it can be useful to collect information from the respondent automatically, or even
without his knowledge.

Some basic examples of such automatic data is to store a timestamp of when the questionnaire was
submitted, to record from which IP the answers came, or perhaps even which browser the
respondent used.

6.2. Constant Values

The simplest form of automatic data is the CONSTANT object. This is used to store a constant
field, which is not possible for the respondent to influence. This could for example contain the
latest revision of the questionnaire file:

<CONSTANT NAME="revision" VALUE="2004-09-13 / JP" />

With this set, each record would contain a string field called "revision" which would have the value
of the CONSTANT'’s VALUE parameter (as of the time when the respondent submitted his
answers). Changing the VALUE parameter only influences new records, old records keep the value
as it was when they were submitted.

6.3. Fetching Data from the Environment

One of the more interesting features of the automatic data collection is the reading of environment
variables through the ENV tag. The ENV tag in itself is rather simple, it only specifies a name and
a field. However, apache sets a multitude of environment variables automatically, and these are all
available to the ENV tag.

Keeping a reference of all environment variables set by apache is beyond the scope of this manual
(see apache’s documentation instead), but the following examples might be enlightening:

33



<ENV NAME="ip" FIELD="REMOTE_ADDR" />
<ENV NAME="browser" FIELD="HTTP_USER_AGENT" />
<ENV NAME="server" FIELD="SERVER_NAME" />

The above would create three string variables. "ip" would contain the IP address of the respondent.
"browser" would contain information about the respondent’s web browser. "server” would contain
the name of the server running the Mod_Survey software (perhaps not all that useful).

6.4. Date, Time and Timing

There are two tags related to time and timing in Mod_Survey: TIMER and DATETIME. The first
measures the time it takes for the respondent to fill out a survey page, while the second inserts a
timestamp.

6.4.1. Measuring response time

To measure the time it took to fill out a survey page, use the following:

<TIMER NAME="pltime" />

The resulting value is an integer value representing the time in seconds it took between the load of
the page and the submit of data.

6.4.2. Inserting date and time

The DATETIME tag is the all-round date- and timestamping tool. It supports inserting date and
time information in a number of formats. In its most basic use, it inserts date and time in common
central-european format:

<DATETIME NAME="now" />

This would result in a string looking like "2004-12-04 13:48:50". This is probably what most
people would want to use. However, this format might make it difficult to, for example, measure
the time between two different respondents. Consider then the following:

<DATETIME NAME="now" FORMAT="#e" MAXLEN="20" />

34



This will result in "now" getting the value of "seconds since epoch”, which is 1970-01-01 00:00.
The equivalent of the previous date example would be roughly "1102251173".

Y Tip
The syntax reference contains a list of valid format codes. There are currently about 12
of these available.

35



36



Chapter 7. Surveys with more than One
Page

One of the more interesting features of web surveying, is the possibility to route respondents to
only the questions relevant to them. In a paper questionnaire, you would typically formulate
guestion in the form "if yes on the above question, how often did this happen”. With a web
guestionnair you have the option to simply not show this question if the respondent answered "no".

In Mod_Survey routing is handled between "survey pages". All you have seen so far is contained
within one survey page. The following expands this to allow you to display several pages in an
optionally non-linear manner.

7.1. Basics of Multi-Paging

All multi-page surveys begin with one page, written in the same manner as you have seen so far. If
nothing is added to it, it is considered a single-page survey, so in order to enable multipaging we
have to add aouting tag The routing tag determines which page should be the next to display

once the current page has been answered.

There are currently four types of routing tags: unbranching ("ROUTE"), simple conditional
("CASEROUTE"), complex conditional ("IFROUTE") and random route ("RANDOMROUTE").
The first three will be treated below, while the random route will be treated in the chapter about
randomization.

Finally, to tie things together, the last page in the chain must have a SEQUENCE tag, containing a
list of which pages the respondent could possibly have seen.

In multipaging, no data is saved in the intermediary pages: All data is pushed to the last page.
Thus, to access data, you should add ?action=tddtee URL of the last page in the chain

Note
To summarize: 1, All pages but the last must contain a routing tag. 2, The last page
must contain a SEQUENCE tag. 3, Data is considered to be saved in the last page.

7.2. Unbranching Multi-Paging

The most basic form of multipaging is the straight route, with no branches. In this, all pages are

37



displayed in order and no pages are skipped. Imagine that this is pagel.survey:

<SURVEY TITLE="First page">
<TEXT NAME="name" CAPTION="What is your name?" />
<ROUTE CONTINUE="page2.survey" />

</SURVEY>

And that this is page2.survey:

<SURVEY TITLE="Second page">
<TEXT NAME="email" CAPTION="What is your email address?" />
<SEQUENCE SELFINCLUDE="yes">
<FILE FILENAME="pagel.survey" />
<FILE FILENAME="page2.survey" />
</SEQUENCE>
</SURVEY>

With this we have set up a very simple multi-page sequence. The first page contains the question
"what is your name?", and once answered, the second page is displayed. This page contains the
guestion "What is your email address?".

Technically, the first page specifies how to continue with the ROUTE tag, which always contains
the parameter CONTINUE. The second page lists all possible parts of the page sequence in the
SEQUENCE tag. The SELFINCLUDE says that we intend to include the page containing the
SEQUENCE tag in the list for readability.

7.3. How Variables are Handled

Before continuing with the more complex types of routing, we will want to know how variable data
might end up. Basically, on a single-page survey a variable can end up in two ways: answered or
not answered. Implicitly "not answered" could be expanded into "seen but not answered".

In branching multipaging, there is a third possibility: that a variable was not answered simply
because the respondent was never routed to the page containing the variable. Thus the variable can
also have the state "unanswered because not seen".

The practical values for these states will vary depending on your survey settings. The defaults for
the two not-answered options is "-1" for "seen but not answered". This is changeable through
setting ILLEGALVAL in each relevant question. Note that is MUSTANSWER="yes" in a question,
it will never get ILLEGALVAL. The default for "unanswered because not seen" is 999, and is set
globally through the NOTDISPLAYEDVAL parameter of the SURVEY tag.

38



Not all data exports attach any significance to these values, but for example the SPSS export will
explicitly export "system-missing" for these values so that they are excluded from calculations.

7.4. Conditional Branching with CASE

If you have a simple decisive variable, such as a true/false, yes/no or male/female relation, then the
CASEROUTE can be applied easily. The CASEROUTE routing tag is relevant when there are a
finite number of discreet options, such as the result of CHOICE or LIST. Imagine that you want to
ask different questions to men and women:

<CHOICE CAPTION="Are you male of female?" NAME="sex">
<CHOICEELEMENT CAPTION="male" VALUE="0" />
<CHOICEELEMENT CAPTION="female" VALUE="1" />
</CHOICE>
<CASEROUTE SWITCH="sex" DEFAULT="error.html">
<CASE VALUE="0" CONTINUE="male.survey" />
<CASE VALUE="1" CONTINUE="female.survey" />
</CASEROUTE>

With this, the next page would be "male.survey" if the respondent answered male, and
"female.survey" is the respondent answered female. If none of the options were chosen, the next
page would be "error.html".

It is recommended, but not necessary, that all routed end up in the same final page (see also the
section on how to fail with multipaging). This last page should contain a SEQUENCE tag as seen
in the previous section. This tag should kdltpossiblepages.

7.5. Conditional Branching with IF

If you want to do more complex routing, such as on the combination of two different variables,
then the IFROUTE is for you. The IFROUTE is able to specify a number of boolean conditions
which should be fulfilled for a routing to happen. For example, imagine that you want to ask
different questions to men, women, boys and girls, in essence route on both age and sex:

<TEXT NAME="age" CAPTION="age" NUMERICAL="yes" MUSTANSWER="yes" />
<CHOICE CAPTION="gender" NAME="gender" MUSTANSWER="yes">
<CHOICEELEMENT CAPTION="male" VALUE="0" />
<CHOICEELEMENT CAPTION="female" VALUE="1" />
</CHOICE>

39



<IFROUTE DEFAULT="error.htm|">

<IF THEN="male0-15.survey">
<LESSTHAN VARIABLE="age" VALUE="16" />
<EQUALS VARIABLE="gender" VALUE="0" />

</IF>

<IF THEN="female0-15.survey">
<LESSTHAN VARIABLE="age" VALUE="16" />
<EQUALS VARIABLE="gender" VALUE="1" />

</IF>

<IF THEN="malel6-25.survey">
<LESSTHAN VARIABLE="age" VALUE="26" />
<MORETHAN VARIABLE="age" VALUE="15" />
<EQUALS VARIABLE="gender" VALUE="0" />

</IF>

<IF THEN="femalel6-25.survey">
<LESSTHAN VARIABLE="age" VALUE="26" />
<MORETHAN VARIABLE="age" VALUE="15" />
<EQUALS VARIABLE="gender" VALUE="1" />

</IF>

</IFROUTE>

Here we can see that we can end up in five different places depending on the answers of two
variables (if none of the four boolean combinations is fulfilled, we end up in "error.html"), There
are a number of possible boolean conditions. These can be found in the syntax reference.

7.6. How to Fail Miserably with Multipaging

The above has demonstrated some of the capabilities available in regards to multipaging. It might
be tempting to make very complex routing chains where a number of question blocks are hidden or
shown depending on answers. Technically, this is no problem, as long as you are able to specify
what you want to happen.

However, you should consider if there is a really good purpose with doing a branching
multipaging? Does it really make the questionnaire easier to answer for the respondent?

Further, if you have several very similar questions, you might want to consider reformulating them
so that they end up being the same variable. This might make data analysis a lot easier.

Finally, you will likely want to think carefully before you make routes that end up in different final
destinationsYou will get one data respository per possible final destinafidnus, things will be a
lot easier for you if you manage to route all respondents to the same final page.

From my own experience, | know it can be frustrating to have collected a lot of data in several
repositories just to find out that they really should be treated as one material and thus be merged in

40



the final statistics program, something which of course then was a lot of unnecessary work. Having
made a sane routing, | would have gotten all data in one place from the start.

41



42



Chapter 8. Dynamic Contents

The dynamic contents consists of a number of things, which here has been arbitrarily grouped into
a chapter. The following is only a brief introduction, since particularly the perl snippet

functionality can be used to make very advanced extensions to the surveying functionality.
Describing this would be beyond the scope of this manual.

8.1. Referencing Previous Answers

One thing which has a certain usability effect on respondents, is the functionality of personalizing

the questions. Imagine that a respondent already has answered that he is male, and that his name is
Joel. In consequent questions, we could now very well address him with his name and with "mr.".
Imagine that pagel.survey looks like this:

<SURVEY TITLE="dynamics part 1" >
<TEXT NAME="name" CAPTION="My name is" />
<CHOICE NAME="gender" CAPTION="I am a">
<CHOICEELEMENT VALUE="0" CAPTION="man" />
<CHOICEELEMENT VALUE="1" CAPTION="woman" />
</CHOICE>
<ROUTE CONTINUE="page2.survey" />
</SURVEY>

Then we can write a question in page?2.survey, looking like this:

<CHOICE NAME="grown" CAPTION="{!gender/0:Mr,1:Mrs!} {$name$}, do you consider yourself a gro\
<CHOICEELEMENT VALUE="0" CAPTION="yes" />
<CHOICEELEMENT VALUE="1" CAPTION="no" />

</CHOICE>

Here we can see three different ways of referencing previous variables. The first {!..!} is a
selectionwhich outputs a different value depending on the value of a variable (in this case
"gender"). The second {$..$} references th@ueof a variable, in this case "name". The thirst
{%..%]} references theaption or labelcorresponding to a value of a variable.

8.2. Including External Files

Sometimes it is convenient to include external fragments into your survey file. This can be done
pre-parseor display-time

43



8.2.1. Pre-parse include

Including a file pre-parse means that is is included before the survey file is interpreted. The survey
system will then treat the linked fragment as if it was a part of the survey file. Imaging that your
company has a lot of surveys which include the same question. Rather than writing this question in
each and every survey, it is linked to, so that a change in the central place can propagate to all the
surveys.

For example, this common question could be on which department you are working, in a file called
"/central/survey/dept.question™:

<LIST NAME="dept" CAPTION="Where do you work?">
<LISTELEMENT CAPTION="sales" />
<LISTELEMENT CAPTION="marketing" />
<LISTELEMENT CAPTION="development" />
<LISTELEMENT CAPTION="maintainance" />
<LISTELEMENT CAPTION="support" />
<LISTELEMENT CAPTION="human-resource" />

</LIST>

Then the fragment could be linked into a survey file looking like this:

<SURVEY TITLE="A company question">
<TEXT NAME="name" CAPTION="What is your name?" />
{@/central/survey/dept.question@}

</SURVEY>

File names can be absolute or relative

8.2.2. Display-time include

In some instances, you do not want to include markup that should be interpreted. You might simply
want to break out long chunks of text to be placed outside the survey to make it easier to edit. For
example, imagine that you want to ask a respondent if he agrees to a license file (which is here
placed in "/central/surveyl/license.txt"):

<SURVEY TITLE="EULA">
<CUSTOM ESCAPED="no">
<pre>
{v/central/surveyl/license.txta}
</pre>
</CUSTOM>

44



<CHOICE NAME="eula" CAPTION="Do you agree to the above?">
<CHOICEELEMENT VALUE="0" CAPTION="No" />
<CHOICEELEMENT VALUE="1" CAPTION="Yes" />
</CHOICE>
</SURVEY>

This would simply paste the contents of the linked file into the visible output. This is generally
faster than a pre-parse include, although neither should incur any significant overhead.

8.3. Perl Snippets

Another feature of dynamic contents is the internal perl scripting. In essence, this is a perl script
embedded in the survey file, which can be run before parse, at display time or at submit time. This
can be used for implementing more advanced behavior in the survey. However, an overview of perl
scripting is outside the scope of this manual.

The syntax reference contains information about the necessary markup, but you will probably not
want to experiment with this unless you know what you are doing.

45



46



Chapter 9. Restricting Access

(to be written)

9.1. Setting up User Files

(to be written)

9.2. Access Levels

(to be written)

9.3. Managing Respondents and Unique Answers

(to be written)

a7



48



Chapter 10. Using Databases

(to be written)

10.1. Why Would You Want to Use Databases?

(to be written)

10.2. Setting Up DBI

(to be written)

10.3. DBI Tweaks and Syntax

(to be written)

10.4. Letting Respondends Delay their Answers

(to be written)

49



50



Chapter 11. Downloading and Using Survey
Data

(to be written)

11.1. The Data Module

(to be written)

11.2. The HTML Export

(to be written)

11.3. The SPSS Export

(to be written)

11.4. Importing Data into Excel

(to be written)

11.5. Importing Data into Access

(to be written)

11.6. Importing Data into SPSS

(to be written)

51



11.7. Importing Data into MiniTab

(to be written)

11.8. Importing Data into R

(to be written)

11.9. Importing Data into a RDBMS

(to be written)

52



Chapter 12. Troubleshooting

(to be written)

12.1. 1 Only See the Source

(to be written)

12.2. Internal Server Error

(to be written)

12.3. Document Error;: Not Found

(to be written)

12.4. Permission Denied

(to be written)

12.5. Getting More Help

(to be written)

53



54



Chapter 13. Acknowledgements

(to be written)

13.1. About the Author

(to be written)

13.2. People Who Contributed to Mod_Survey

(to be written)

55



56



Appendix A. Short Installation Instructions

(to be written)

57



58



Appendix B. Migration Guide for 3.0.x Users

(to be written)

59



60



Appendix C. The GNU General Public
License

(to be written)

61



62



Appendix D. Contact, Feedback and More
Information

(to be written)

63



64



	ModSurvey for Beginners
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	1.1. What is a Web Questionnaire?
	1.1.1. The Incentive for Web Questionnaires
	1.1.2. When and How Can Web Questionnaires be Used?
	1.1.3. When Should Web Questionnaires not be Used?
	1.1.4. Scientific Aspects of Web Questionnaires

	1.2. What is ModSurvey?
	1.2.1. Where does ModSurvey Fit In?

	1.3. About this manual
	1.3.1. Admonitions
	1.3.2. Terminology
	1.3.3. Not Included in the Manual


	Chapter 2. About ModSurvey
	2.1. A Brief History
	2.2. Different Versions of ModSurvey
	2.3. ModSurvey's Goals and Target Group
	2.4. What does ModSurvey Support?
	2.4.1. Basics
	2.4.2. More advanced data collection
	2.4.3. Database interconnectivity
	2.4.4. Modularization
	2.4.5. Layout customization
	2.4.6. Other advanced features
	2.4.7. System meta

	2.5. What does ModSurvey not support?
	2.6. Comparing ModSurvey with Other Systems
	2.7. Getting Access to ModSurvey

	Chapter 3. Basic Work with Survey Files
	3.1. Requirements
	3.2. Writing a Survey File
	3.3. Uploading a Survey File
	3.3.1. Using the windows network
	3.3.2. Using SSH/SCP
	3.3.3. Using FTP
	3.3.4. Writing surveys onsite

	3.4. Accessing a Survey
	3.5. Administrating a Survey
	3.6. Downloading Data

	Chapter 4. Writing Questions
	4.1. What is a Question?
	4.2. Closed SingleChoice Questions
	4.2.1. BOOLEAN
	4.2.2. CHOICE
	4.2.3. LIST

	4.3. MultipleChoice Questions
	4.4. Open Questions
	4.4.1. Oneline text fields
	4.4.2. Numerical fields
	4.4.3. Multipleline text fields
	4.4.4. Otherfields

	4.5. Scales
	4.5.1. Discreet scales
	4.5.2. Continuous scales

	4.6. Matrices
	4.6.1. The basic MATRIX
	4.6.2. MATRIXes as scales
	4.6.3. Further reading

	4.7. Designing Custom Question Types

	Chapter 5. Colors, Fonts and Decoration
	5.1. Static Leadin Texts
	5.2. Themes
	5.3. Stylesheets
	5.3.1. Extending the theme
	5.3.2. Replacing the theme

	5.4. Font Styles
	5.5. Colors
	5.6. Graphics
	5.7. Extra HTML

	Chapter 6. Collecting Automatic Data
	6.1. NonVisible "Questions"
	6.2. Constant Values
	6.3. Fetching Data from the Environment
	6.4. Date, Time and Timing
	6.4.1. Measuring response time
	6.4.2. Inserting date and time


	Chapter 7. Surveys with more than One Page
	7.1. Basics of MultiPaging
	7.2. Unbranching MultiPaging
	7.3. How Variables are Handled
	7.4. Conditional Branching with CASE
	7.5. Conditional Branching with IF
	7.6. How to Fail Miserably with Multipaging

	Chapter 8. Dynamic Contents
	8.1. Referencing Previous Answers
	8.2. Including External Files
	8.2.1. Preparse include
	8.2.2. Displaytime include

	8.3. Perl Snippets

	Chapter 9. Restricting Access
	9.1. Setting up User Files
	9.2. Access Levels
	9.3. Managing Respondents and Unique Answers

	Chapter 10. Using Databases
	10.1. Why Would You Want to Use Databases?
	10.2. Setting Up DBI
	10.3. DBI Tweaks and Syntax
	10.4. Letting Respondends Delay their Answers

	Chapter 11. Downloading and Using Survey Data
	11.1. The Data Module
	11.2. The HTML Export
	11.3. The SPSS Export
	11.4. Importing Data into Excel
	11.5. Importing Data into Access
	11.6. Importing Data into SPSS
	11.7. Importing Data into MiniTab
	11.8. Importing Data into R
	11.9. Importing Data into a RDBMS

	Chapter 12. Troubleshooting
	12.1. I Only See the Source
	12.2. Internal Server Error
	12.3. Document Error: Not Found
	12.4. Permission Denied
	12.5. Getting More Help

	Chapter 13. Acknowledgements
	13.1. About the Author
	13.2. People Who Contributed to ModSurvey

	Appendix A. Short Installation Instructions
	Appendix B. Migration Guide for 3.0.x Users
	Appendix C. The GNU General Public License
	Appendix D. Contact, Feedback and More Information

