NumPy Reference
Release 1.13.0

Written by the NumPy community

June 10, 2017

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (Nndarray) . . . « v v v v v v i i e e e e e e e e e e e e e 3
1.2 Scalars e e e e e e 47
1.3 Datatypeobjects (ALYDE) . « v v v v v i i i e e e e e e e e e 62
L4 Indexing i i e e e e e e e e e e e e e 76
1.5 Tterating OVer AITAyS v v v v vt e 84
1.6 Standard array subclasses e e 96
1.7 Masked arrays L e e e e e e e e e e 222
1.8 The Array Interface e e 370
1.9 Datetimes and Timedeltas e 374

2 Universal functions (ufunc) 383
2.1 Broadcasting e e e e 383
2.2 Output type determination v v v v v v e e e e e e e e e e e e e e e e e e 384
2.3 Useofinternal buffers e 384
24 Errorhandling L e e e e e e 384
25 CastingRules e 387
2.6 Overriding Ufuncbehavior o e 389
2.7 UfUNC . e e e e e e e e e e e e e 389
2.8 Availableufuncs e 399

3 Routines 405
3.1 Array creation TOULNES . . . v v v v v v v e 405
3.2 Array manipulation TOUtiNeS i e 443
3.3 BInary Operations v it i i e 485
34 String Operations i e e e e e e e e e e e e 494
3.5 C-Types Foreign Function Interface (numpy .ctypeslib) 543
3.6 Datetime Support FUnctions e e e e e e e e e 545
3.7 Datatype roUtiNeS . . . v v v v v v e 551
3.8 Optionally Scipy-accelerated routines (numpy .dual)« v v v vt vt e e 565
3.9 Mathematical functions with automatic domain (numpy.emath) 566
3.10 Floating pointerrorhandling L o 567
3.11 Discrete Fourier Transform (numpy . ££t) e 571
3.12 Financial functions L e e e e 595
3.13 Functional programming v it e e e e e e e e e e e e e e e e e e e 605
3.14 NumPy-specifichelp functions e 612
3.15 Indexing routines e e e e 614
3.16 Inputand output e e e e e e e 649
3.17 Linear algebra (numpy . 1inalg) . . . o v v v v v it et e e e e e e e e e e e e e 670
318 Logic functions o o L e e e e e e e e e e e e e e 710

8

3.19
3.20
3.21
322
3.23
3.24
3.25
3.26
3.27
3.28
3.29

Mathematical functions e e e e e e e e e e e e e e
Matrix library (numpy .mat1ib) o o o o e e e e e e e e e e e
Miscellaneous TOULINES v o vt i e
Padding Arrays e
Polynomials e
Random sampling (numpy . random)o e e e e e e
SELTOULINGS . & . v v v v o o e
Sorting, searching, and counting L e e e e e e e e
SEatiStCS . . o v v o o e
Test Support (numpy . testing)« o v v i i e e e e e e
Window functions e e e

Packaging (numpy .distutils)

4.1
4.2
4.3

Modules in numpy .distutils o o e e e e e e e e e e e e
Building Installable C libraries e e
Conversion of .srcfiles e e e e e

NumPy C-API

5.1
5.2
53
54
55
5.6
5.7
5.8
59

Python Types and C-Structures o ittt e e e e e e e
System configuration e e e e e e e e e e e e e e e e e
Data Type APL e e e e e e
Array APL . . . e e e
Array Iterator APL oL e
UFunc APT . . . o e e
Generalized Universal Function APT
NumPy core libraries o e e e e e e e e e e
C APIDeprecations v v vt v it i e e e e e e e e e e e

NumPy internals

6.1
6.2
6.3

NumPy C Code Explanations i i v i i it e e e e e e e e e e
Internal organization of numpy arrays oL e
Multidimensional Array Indexing Order Issues

NumPy and SWIG

7.1

Testing the numpy.i Typemaps e

Acknowledgements

Bibliography

Index

829

NumPy Reference, Release 1.13.0

Release
1.13

Date
June 10, 2017

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1

NumPy Reference, Release 1.13.0

2 CONTENTS

CHAPTER
ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, efc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

-

{ gad | |
,.| data-type J = array

W,

header TL ‘ ‘

ndarray

Fig. 1.1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe
the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element
of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number
of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray.

https://docs.python.org/dev/library/stdtypes.html#tuple

NumPy Reference, Release 1.13.0

Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python st rings or objects implementing the buffer or array
interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type (x)

<type 'numpy.ndarray'>

>>> x.shape

(2, 3)

>>> x.dtype

dtype ('int32")

The array can be indexed using Python container-like syntax:

>>> # The element of x in the #secondx* row, *thirdx column, namely, 6.
>>> x[1, 2]

For example slicing can produce views of the array:

>>> y = x[:,1]

>>> y

array ([2, 5])

>>> y[0] = 9 # this also changes the corresponding element in x
>>> y

array ([9, 5])
>>> x
array ([[1, 9, 3]

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray An array object represents a multidimensional, homoge-
neous array of fixed-size items.

class numpy .ndarray
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The
parameters given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)

4 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.13.0

shape : tuple of ints
Shape of created array.
dtype : data-type, optional
Any object that can be interpreted as a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {‘C’, ‘F’}, optional
Row-major (C-style) or column-major (Fortran-style) order.
See also:
array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

Notes

There are two modes of creating an array using ___new___
L.If buffer is None, then only shape, dt ype, and order are used.

2.If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No__init__ method is needed because the array is fully initialized after the ___new___ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier
ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray (shape=(2,2), dtype=float, order='F")
array ([[-1.13698227e+002, 4.25087011e-3037,
[2.88528414e-306, 3.27025015e-309]1) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1l,2,3]),

offset=np.int_ () .itemsize,

dtype=int) # offset = Ilxitemsize, i.e. skip first element
array ([2, 3])

1.1. The N-dimensional array (ndarray) 5

NumPy Reference, Release 1.13.0

Attributes

T Same as self.transpose(), except that self is returned if
self.ndim < 2.

data Python buffer object pointing to the start of the array’s
data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

real The real part of the array.

size Number of elements in the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

shape Tuple of array dimensions.

strides Tuple of bytes to step in each dimension when travers-
ing an array.

ctypes An object to simplify the interaction of the array with
the ctypes module.

base Base object if memory is from some other object.

ndarray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array ([[1l. 1,[3.,4.11)
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.7,
[2., 4.11)
>>> x = np.array ([l.,2.

>>> x
array ([1., 2., 3.,
>>> x.T

array ([1., 2., 3.,

ndarray.data

Python buffer object pointing to the start of the array’s data.

ndarray.dtype

Data-type of the array’s elements.

Parameters
None

Returns

d : numpy dtype object

See also:

numpy.dtype

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Examples

>>> X

array ([[0, 17,
(2, 311)

>>> x.dtype

dtype ('int32")

>>> type (x.dtype)
<type 'numpy.dtype'>

ndarray.flags
Information about the memory layout of the array.

Notes

The £1ags object can be accessed dictionary-like (asin a.flags['WRITEABLE']), or by using low-
ercased attribute names (asin a. flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary
if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.
strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

1.1. The N-dimensional array (ndarray) 7

NumPy Reference, Release 1.13.0

Attributes
C_CONTIGUQ(S data is in a single, C-style contiguous segment.
©)
F_CONTIGUOIKS data is in a single, Fortran-style contiguous segment.
F)
OWN- The array owns the memory it uses or borrows it from another object.
DATA
O)
WRITE- The data area can be written to. Setting this to False locks the data, making it read-only.
ABLE A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
W) view of a writeable array may be subsequently locked while the base array remains

writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED | The data and all elements are aligned appropriately for the hardware.

A)

UP- This array is a copy of some other array. When this array is deallocated, the base array
DATEIF- will be updated with the contents of this array.

COPY

%)

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
(FA)

ndarray.flat
A 1-D iterator over the array.

This is a numpy. f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter
Examples
>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
(4, 5, 611)
>>> x.flat[3]
4
>>> x.T
array ([[1, 47,
[2, 51,

8 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

[3, 611)
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
[3, 3, 311
>>> x. flat[[1,4]1] = 1; x
array ([[3, 1, 31,
(3, 1, 311)

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+03, 0+13])

>>> x.imag

array ([O. , 0.70710678])
>>> x.imag.dtype

dtype ('float64d")

ndarray.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt ([1+03, 0+13])

>>> x.real

array ([1. , 0.70710678])
>>> x.real.dtype

dtype ('float64d")

ndarray.size
Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

ndarray.itemsize
Length of one array element in bytes.

1.1.

The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.13.0

Examples

>>> x = np.array([1l,2,3], dtype=np.float64)
>>> x.itemsize

8
>>>

b

= np.array([1l,2,3], dtype=np.complexl128)
>>> x.itemsize
16

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

ndarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1l, 2, 31])
>>> x.ndim

1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

ndarray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1l, 2, 3, 41)
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array([[0., 0., 0., 0., 0., 0., 0., 0.1,
(o., 0., 0., 0., 0., 0., 0., 0.1,
(o., 0., 0., 0., 0., 0., 0., 0.11)

>>> y.shape = (3, 6)

Traceback (most recent call last):

10 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i [0], i[1], ..., i[n]) inan array a is:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See also:

numpy.lib.stride tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype:np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be

(20, 4).

Examples

>>> y = np.reshape (np.arange (2x3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 7
8, 9, 10, 11
(112, 13, 14, 15
16, 17, 18, 191,
(20, 21, 22, 23111)

>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5x6%«7%8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides

(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])

>>> offset = sum(i » x.strides)

>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

1.1. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.13.0

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See also:

numpy .ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain

data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for

the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b) . ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> X

12

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

array ([[0, 17,
[2, 311)
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01lFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

ndarray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Methods

all([axis, out, keepdims])

Returns True if all elements evaluate to True.

any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

argmax([axis, out])

Return indices of the maximum values along the given
axis.

argmin([axis, out])

Return indices of the minimum values along the given
axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtype[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap(inplace)

Swap the bytes of the array elements

choose(choices|, out, mode])

Use an index array to construct a new array from a set
of choices.

c11ip([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

con j()

Complex-conjugate all elements.

Continued on next page |

1.1. The N-dimensional array (ndarray)

13

NumPy Reference, Release 1.13.0

Table 1.3 — continued from previous page

conjugate()

Return the complex conjugate, element-wise.

copy([order])

Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the
given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axis], axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.

dumps() Returns the pickle of the array as a string.

f£111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimension.

get field(dtypel, offset]) Returns a field of the given array as a certain type.

1item(*args) Copy an element of an array to a standard Python scalar
and return it.

itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype,

if possible)

max([axis, out])

Return the maximum along a given axis.

mean([axis, dtype, out, keepdims])

Returns the average of the array elements along given
axis.

mi n([axis, out, keepdims])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a dif-
ferent byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
value of the element in kth position is in the position it
would be in a sorted array.

prod([axis, dtype, out, keepdims])

Return the product of the array elements over the given
axis

ptp([axis, out])

Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode])

Seta.flat[n] = values[n] forall nin indices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

reshape(shapel[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given number
of decimals.

searchsorted(vl, side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

set field(val, dtypel[, offset])

Put a value into a specified place in a field defined by a
data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UP-
DATEIFCOPY, respectively.

sort([axis, kind, order])

Sort an array, in-place.

squeeze([axis])

Remove single-dimensional entries from the shape of a.

std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements
along given axis.

sum([axis, dtype, out, keepdims])

Return the sum of the array elements over the given axis.

Continued on next page |

14

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Table 1.3 — continued from previous page

swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 inter-
changed.

take(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.

tobytes([order]) Construct Python bytes containing the raw data bytes in
the array.

tofile(fid], sep, format]) Write array to a file as text or binary (default).

tolist() Return the array as a (possibly nested) list.

tostring([order]) Construct Python bytes containing the raw data bytes in
the array.

t race([offset, axisl, axis2, dtype, out]) Return the sum along diagonals of the array.

transpose(*axes) Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given
axis.

view([dtype, type]) New view of array with the same data.

ndarray.all (axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy . all for full documentation.
See also:

numpy.all
equivalent function

ndarray .any (axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.
Refer to numpy . any for full documentation.
See also:

numpy . any
equivalent function

ndarray.argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.
Refer to numpy . a rgmax for full documentation.
See also:

numpy.argmax
equivalent function

ndarray .argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.
Refer to numpy . argmin for detailed documentation.
See also:

numpy.argmin
equivalent function

1.1. The N-dimensional array (ndarray) 15

NumPy Reference, Release 1.13.0

ndarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy. argpartition for full documentation.
New in version 1.8.0.
See also:

numpy.argpartition
equivalent function

ndarray.argsort (axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy. argsort for full documentation.
See also:

numpy.argsort
equivalent function

ndarray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional
Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran

order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,

and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’ }, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
 ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.
subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

16 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dt ype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).
Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.571)

>>> x.astype (int)
array ([1, 2, 2])

ndarray .byteswap (inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

['Ox1', '0x100', 'Ox2233']

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intlo)
>>> map (hex, A)
['0x100", 'Ox1', '0x3322"']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'l])

>>> A.byteswap ()

array(['ceg', 'fac'],
dtype='1]S3")

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.13.0

ndarray.choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.
See also:

numpy . choose
equivalent function

ndarray.clip (min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy . c11p for full documentation.
See also:

numpy.clip
equivalent function

ndarray.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.
See also:

numpy . compress
equivalent function

ndarray.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.
See also:

numpy . conjugate
equivalent function

ndarray.conjugate ()
Return the complex conjugate, element-wise.
Refer to numpy . conjugate for full documentation.
See also:

numpy .conjugate
equivalent function

ndarray.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, °’K’}, optional
Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as

closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

18 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

See also:
numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order="F")

>>> y = x.copy()

’>>> x.£1i11(0)

>>> X
array([[0, 0, O],
(0, 0, 011)

>>> vy
array ([[1, 2, 31,
(4, 5, 6]1])

>>> y.flags['C_CONTIGUOUS"']
True

ndarray .cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.
See also:

numpy . cumprod
equivalent function

ndarray.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.
See also:

numpy . cumsum
equivalent function

ndarray.diagonal (offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy. diagonal for full documentation.
See also:

numpy.diagonal
equivalent function

ndarray.dot (b, out=None)
Dot product of two arrays.

Refer to numpy . dot for full documentation.

1.1.

The N-dimensional array (ndarray) 19

NumPy Reference, Release 1.13.0

See also:

numpy . dot
equivalent function

Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) * 2
>>> a.dot (b)
array ([[2., 2.1,

[2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
[8., 8.11)

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

ndarray .dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

ndarray.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fil1(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.7)

ndarray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, °’K’}, optional

20 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

‘C’ means to flatten in row-major (C-style) order. ‘F° means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten « in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.
See also:
ravel
Return a flattened array.
flat

A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten ()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 4])

ndarray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.3]1+%2)
>>> x[1, 1] = 2 + 4.3

>>> x

array ([[1.+1.7, 0.+0.73]

[0.40.3, 2.44.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,

[0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
[0., 4.11)

1.1. The N-dimensional array (ndarray) 21

NumPy Reference, Release 1.13.0

ndarray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

ndarray.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

22 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Notes

Compared to indexing syntax, 1 t emset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples
>>> x = np.random.randint (9, size=(3, 3))
>>> x

array ([[3, 1, 71,
(2, 8, 31,
(8, 5, 311)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[3, 1, 71,
(2, 0, 31,
[8, 5, 911)

ndarray .max (axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy . amax for full documentation.
See also:

numpy .amax
equivalent function

ndarray .mean (axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.
See also:

numpy . mean
equivalent function

ndarray.min (axis=None, out=None, keepdims=False)
Return the minimum along a given axis.
Refer to numpy . amin for full documentation.
See also:

numpy.amin
equivalent function

ndarray.newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

1.1.

The N-dimensional array (ndarray) 23

NumPy Reference, Release 1.13.0

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. new_order codes
can be any of:

* ‘S’ - swap dtype from current to opposite endian
» {‘<’, 'L’} - little endian

e {*>’, ‘B’} - big endian

e {‘=", ‘N’} - native order

o {°I, I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

ndarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.
See also:

numpy.nonzero
equivalent function

ndarray.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.
order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be

24 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:
numpy.partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
array ([1, 2, 3, 41)

ndarray .prod (axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy . prod for full documentation.
See also:

numpy . prod
equivalent function

ndarray .ptp (axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . pt p for full documentation.
See also:

numpy . ptp
equivalent function

ndarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.
See also:

numpy . put
equivalent function

1.1. The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.13.0

ndarray.ravel ([order])
Return a flattened array.

Refer to numpy . ravel for full documentation.
See also:
numpy . ravel
equivalent function
ndarray. flat
a flat iterator on the array.
ndarray.repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See also:

numpy . repeat
equivalent function

ndarray.reshape (shape, order="C")
Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.
See also:

numpy . reshape
equivalent function

ndarray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed. PyPy only: will always raise if the data memory must be changed,
since there is no reliable way to determine if references or views to it exist.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

26 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples
Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:
>>> a = np~array([[01 11, [2, 31], order='C")
>>> a.resize((2, 1))
>>> a
array ([[0],
[111)
>>> a = np.array([[0, 11, [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 11, [2, 311])

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1l, 1), refcheck=False)

>>> a
array ([[0]])
>>> ¢
array ([[0]])

ndarray.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

1.1. The N-dimensional array (ndarray) 27

NumPy Reference, Release 1.13.0

See also:

numpy . around
equivalent function

ndarray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted
See also:

numpy . searchsorted
equivalent function

ndarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place val into a‘s field defined by dt ype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.
dtype : dtype object

Data-type of the field in which to place val.
offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See also:
getfield
Examples
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.],

[0., 1., 0.1,

[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

(3, 3, 31,

(3, 3, 311)
>>> x
array ([[1.00000000e+000, 1.48219694e-323, 1.48219694e-3237,

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323]
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]
>>> x.setfield(np.eye(3), np.int32)

>>> x

array ([[1., 0., 0.7,
[0., 1., 0.1,
[0., 0., 1.11)

1)

28 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

ndarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> v

array ([[3, 1, 71,
(2, 0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):

1.1. The N-dimensional array (ndarray) 29

NumPy Reference, Release 1.13.0

File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

ndarray.sort (axis=-1, kind="quicksort’, order=None)

Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in

the dtype, to break ties.
See also:
numpy . sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,1]1])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 3],
(1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x",
)

>>> a.sort (order="y'
>>> a

's1Y), ('y', int) 1)

30

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

array([('c', 1), ('a', 2)1,
dtype=[('x"', '|s1"), ('y', '<id4")])

ndarray . squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.
See also:

numpy . squeeze
equivalent function

ndarray.std (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.
Refer to numpy . std for full documentation.
See also:

numpy . std
equivalent function

ndarray . sum (axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.
See also:

numpy . sum
equivalent function

ndarray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.
See also:

numpy . swapaxes
equivalent function

ndarray.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.
See also:

numpy . take
equivalent function

ndarray.tobytes (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

1.1. The N-dimensional array (ndarray) 31

NumPy Reference, Release 1.13.0

New in version 1.9.0.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311)

>>> x.tobytes|()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

ndarray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str
Separator between array items for text output. If “’ (empty), a binary file is written,
equivalentto file.write (a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

ndarray.tolist ()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

32 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1l, 21])

>>> a.tolist ()

[1, 2]

>>> a = np.array ([[1, 21, [3, 41])
>>> list (a)

[array ([1, 2]1), array([3, 4]1)]

>>> a.tolist ()

(1, 21, I3, 411

ndarray.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311)

>>> x.tobytes ()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

ndarray .trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.
See also:

numpy . trace
equivalent function

ndarray.transpose (*axes)
Returns a view of the array with axes transposed.

1.1.

The N-dimensional array (ndarray) 33

NumPy Reference, Release 1.13.0

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], 1[1], ... i[n-2], i[n-1]), then a.transpose () .shape
(i[n-11, i[n-21, ... i[1l]1, i[01).
Parameters

axes : None, tuple of ints, or n ints
» None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 2], [3, 41])
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)

ndarray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy . var for full documentation.
See also:

numpy.var
equivalent function

ndarray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or intl6. The default, None,
results in the view having the same data-type as a. This argument can also be specified

34

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the t ype parameter).

type : Python type, optional
Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.
Notes
a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intlé6)

>>> print (type(y))

<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(l, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2],
[3, 4]], dtype=int38)
>>> xv.mean (0)
array ([2., 3.7)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print (x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array ([1], dtype=int8)

Views share data:

1.1. The N-dimensional array (ndarray) 35

NumPy Reference, Release 1.13.0

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3]1,[4,5,6]], dtype=np.intl6)

>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view(dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.

>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)]1,

[(4, 5)]11, dtype=[('width', '<i2'"'), ('length', '<i2'")])

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array [selection]. Similar syntax is also used
for accessing fields in a structured array.

See also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an indexing scheme that maps N integers into the location of an
item in the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes
each item takes and how the bytes are interpreted is defined by the dara-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. NumPy is flexible, and ndarray objects can accommodate any
strided indexing scheme. In a strided scheme, the N-dimensional index (ng,n1,...,ny_1) corresponds to the offset
(in bytes):

N—-1
Noffset = § SNk
k=0

from the beginning of the memory block associated with the array. Here, sj, are integers which specify the st rides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

k—1 N-1
selumn — jtemsize H dj, &)V = itemsize H d;.
§=0 j=k+1

where d; = self.shape[j].

36 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the
above strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index [k] == 0. This means that in the formula for
the offset ny, = 0 and thus spn; = 0 and the value of s;, = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any
array with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self and self.squeeze () always have the same contiguity and aligned flags value. This
also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of
self.itemsize.

Note: Points (1) and (2) are not yet applied by default. Beginning with NumPy 1.8.0, they are applied consistently
only if the environment variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy was built.
Eventually this will become the default.

You can check whether this option was enabled when your NumPy was built by looking at the value of np.
ones ((10,1), order='C').flags.f_contiguous. If this is True, then your NumPy has relaxed strides
checking enabled.

Warning: It does not generally hold that sel1f.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1.4 Array attributes
Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed

attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.

ndarray.shape Tuple of array dimensions.

ndarray.strides Tuple of bytes to step in each dimension when traversing
an array.

\ Continued on next page |

1.1. The N-dimensional array (ndarray) 37

https://docs.python.org/dev/glossary.html#term-contiguous

NumPy Reference, Release 1.13.0

Table 1.4 — continued from previous page

ndarray.ndim Number of array dimensions.
ndarray.data Python buffer object pointing to the start of the array’s data.
ndarray.size Number of elements in the array.
ndarray.itemsize Length of one array element in bytes.
ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

Data type

See also:

Data type objects

The data type object associated with the array can be found in the dt ype attribute:

ndarray.dtype Data-type of the array’s elements.

Other attributes

ndarray.T Same as self.transpose(), except that self is returned if
self.ndim < 2.

ndarray.real The real part of the array.

ndarray.imag The imaginary part of the array.

ndarray.flat A 1-D iterator over the array.

ndarray.ctypes An object to simplify the interaction of the array with the

ctypes module.

Array interface

See also:

The Array Interface.

__array_interface__ | Python-side of the array interface
__array_struct___ C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the
ctypes module.

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin,
argpartition, argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag,
max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var.

38 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Array conversion

ndarray. item(*args)

Copy an element of an array to a standard Python scalar
and return it.

ndarray.tolist()

Return the array as a (possibly nested) list.

ndarray.itemset(*args)

Insert scalar into an array (scalar is cast to array’s dtype, if
possible)

ndarray.tostring([order])

Construct Python bytes containing the raw data bytes in the
array.

ndarray.tobytes([order])

Construct Python bytes containing the raw data bytes in the
array.

ndarray.tofile(fid], sep, format])

Write array to a file as text or binary (default).

ndarray . dump(file)

Dump a pickle of the array to the specified file.

ndarray.dumps()

Returns the pickle of the array as a string.

ndarray.astype(dtypel, order, casting, ...

D

Copy of the array, cast to a specified type.

ndarray.byteswap(inplace)

Swap the bytes of the array elements

ndarray.copy([order])

Return a copy of the array.

ndarray.view([dtype, type])

New view of array with the same data.

ndarray.getfield(dtypel, offset])

Returns a field of the given array as a certain type.

ndarray.setflags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UP-
DATEIFCOPY, respectively.

ndarray. fill(value)

Fill the array with a scalar value.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

ndarray.reshape(shapel, order])

Returns an array containing the same data with a new
shape.

ndarray. resize(new_shapel, refcheck])

Change shape and size of array in-place.

ndarray.transpose(*axes)

Returns a view of the array with axes transposed.

ndarray.swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

ndarray.flatten([order])

Return a copy of the array collapsed into one dimension.

ndarray . ravel([order])

Return a flattened array.

ndarray.squeeze([axis])

Remove single-dimensional entries from the shape of a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray . take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given
indices.

ndarray. put(indices, values[, mode])

Seta.flat[n] = values[n] forall nin indices.

ndarray. repeat(repeats[, axis])

Repeat elements of an array.

ndarray.choose(choices[, out, mode])

Use an index array to construct a new array from a set of
choices.

ndarray . sort([axis, kind, order])

Sort an array, in-place.

Continued on next page \

1.1. The N-dimensional array (ndarray)

39

NumPy Reference, Release 1.13.0

Table 1.10 — continued from previous page

ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.

ndarray.partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that
value of the element in kth position is in the position it
would be in a sorted array.

ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.

ndarray.searchsorted(v], side, sorter]) Find indices where elements of v should be inserted in a to
maintain order.

ndarray.nonzero() Return the indices of the elements that are non-zero.

ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.

ndarray.diagonal([offset, axisl, axis2]) Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

* If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a O-dimensional array or array scalar. (An array scalar is

an instance of the types/classes float32, float64,

containing precisely one array scalar.)

etc., whereas a O-dimensional array is an ndarray instance

e If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created

along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

10, 1
’ 131
. 16,
’ 19/
22,
25,
>>> x.sum(axis=0)
array ([[27, 30, 3371,

[36, 39, 427,

[45, 48, 5111)
>>> # for sum, axis is the first keyword,
>>> # specifying only its value

so we may omit 1it,

>>> x.sum(0), x.sum(l), x.sum(2)
(array ([[27, 30, 331,

[36, 39, 427,

[45, 48, 5111),
array([[9, 12, 157,

[36, 39, 427,

[63, 66, 6911),
array ([[3, 12, 211,

[30, 39, 48],

[57, 66, 7511))
40 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data

type in which case casting will be performed.

ndarray.

argmax([axis, out])

Return indices of the maximum values along the given axis.

ndarray.

min([axis, out, keepdims])

Return the minimum along a given axis.

ndarray.

argmin([axis, out])

Return indices of the minimum values along the given axis
of a.

ndarray.

ptp([axis, out])

Peak to peak (maximum - minimum) value along a given
axis.

ndarray.

c11p([min, max, out])

Return an array whose values are limited to [min, max].

ndarray.

conj()

Complex-conjugate all elements.

ndarray.

round([decimals, out])

Return a with each element rounded to the given number
of decimals.

ndarray.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

ndarray.

sum([axis, dtype, out, keepdims])

Return the sum of the array elements over the given axis.

ndarray.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the given
axis.

ndarray.

mean([axis, dtype, out, keepdims])

Returns the average of the array elements along given axis.

ndarray.

var([axis, dtype, out, ddof, keepdims])

Returns the variance of the array elements, along given
axis.

ndarray.

std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements along
given axis.

ndarray.

prod([axis, dtype, out, keepdims])

Return the product of the array elements over the given axis

ndarray.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the
given axis.

ndarray.

alI([axis, out, keepdims])

Returns True if all elements evaluate to True.

ndarray.

any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

1.1.6 Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield
ndarray objects as results.

Each of the arithmetic operations (+,

- %, /, //, %, divmod (), ** or pow (), <<, >>, &, *, |, ~) and the

comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in
NumPy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray._ 1t_ X.__lt_ (y) <==>x<y
ndarray.__le Xx.__le_ (y) <==>x<=y
ndarray.__gt___ X.__ gt (y)<==>x>y
ndarray.__ge___ X.__ge_ (y) <==>x>=y
ndarray.__eq X.__eq__(y) <==>x==
ndarray.__ne___ X.__ne__(y) <==>x!l=y

ndarray.__1lt

X.__lt_ (y) <==>x<y

1.1. The N-

dimensional array (ndarray)

41

NumPy Reference, Release 1.13.0

ndarray._ le_
X.__le_ (y) <==>x<=y

ndarray.__gt___
X.__ gt (y)<==>x>y

ndarray.__ge_
X.__ge_ (y) <==>x>=y

ndarray.__eq
X_Cq_(y) <==> X==y

ndarray.__ne_
X.__ne_ (y) <==>x!=y

Truth value of an array (bool):

ndarray._ _nonzero_ X.__nonzero_ () <==>x1=0

ndarray.__nhonzero_
X.__nonzero_ () <==>x1=0

Note: Truth-value testing of an array invokes ndarray._ _nonzero__, which raises an error if the number of
elements in the array is larger than 1, because the truth value of such arrays is ambiguous. Use . any () and .al1l ()
instead to be clear about what is meant in such cases. (If the number of elements is O, the array evaluates to False.)

Unary operations:

ndarray.__neqg.__ X.__neg_ () <==>-x
ndarray.__pos__ X.__pos__() <==>+x
ndarray.__abs__ () <==> abs(x)

ndarray.__invert__ X.__invert_ () <==>~X

ndarray.__neg___
X.__neg_ () <==>-x

ndarray.__pos___
X.__pos__() <==>+x

ndarray._ _abs__ () <==> abs(x)

ndarray._ _invert_
X.__invert_ () <==> ~X

Arithmetic:
ndarray.__add__ X.__add__(y) <==>x+y
ndarray.__ sub___ X.__sub__(y) <==>x-y
ndarray.__mul___ X.__mul__(y) <==> x*y
ndarray._ _div__ X.__div__(y) <==>x/ly
ndarray._ truediv.___ X.__truediv__(y) <==> x/y
ndarray.___floordiv___ x.__floordiv__(y) <==>x/ly
ndarray.__mod__ X.__mod__(y) <==>x%y

ndarray.__divmod__(y)<==>divmod(x, y)
\ Continued on next page |

42 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Table 1.15 — continued from previous page

ndarray.__pow__(y[, z]) <==> pow(Xx, yl[, z])

ndarray._ 1lshift___ x.__lIshift_ (y) <==> x<<y
ndarray.__rshift___ X.__rshift__(y) <==> x>>y
ndarray.__and__ X.__and__(y) <==> x&y
ndarray.__or__ X.__or__(y)<==>xly
ndarray._ Xor.___ X.__Xor__(y) <==>x"y

ndarray.__add___
X.__add__(y) <==>x+y

ndarray.__sub___
X.__sub__(y) <==>x-y

ndarray.__mul___
X.__mul__(y) <==> x*y

ndarray.__div

X.__div__(y) ;=> x/ly

ndarray.__truediv___
X.__truediv__(y) <==>x/y

ndarray._ floordiv___
X.__floordiv__(y) <==>x/ly

ndarray.__mod

X.__mod__(y) <==> x%y

ndarray.__divmod__ (y) <==> divmod(x, y)

ndarray._ pow__ (y/, z]) <==> pow(x, y[, z])

ndarray._ lshift_
X.__Ishift__ (y) <==> x<<y

ndarray.__rshift_
X.__rshift_ (y) <==>x>>y

ndarray._ and___
X.__and__(y) <==> x&y

ndarray.__or___
X.__or__(y) <==>xly

ndarray.__ xor

X.__xor__(y) <==>x"y

Note:

¢ Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

* The three division operators are all defined; div is active by default, t ruediv is active when __ future__

division is in effect.

* Because ndarray is a built-in type (written in C), the __r {op}___ special methods are not directly defined.

e The functions called to implement many arithmetic special methods for arrays can be modified using

set_numeric_ops.

1.1. The N-dimensional array (ndarray)

43

https://docs.python.org/dev/library/functions.html#pow
https://docs.python.org/dev/library/__future__.html#module-__future__

NumPy Reference, Release 1.13.0

Arithmetic, in-place:

ndarray.__iadd__ X.__ladd__(y) <==>x+=y
ndarray.__isub___ X.__isub__(y) <==> x-=y
ndarray.__imul__ X.__imul__(y) <==> x*=y
ndarray.__idiv__ X.__idiv__(y) <==>x/=y
ndarray.__itruediv__ X.__itruediv__(y) <==>x/y
ndarray.__ifloordiv__ x.__ifloordiv__(y) <==>x/ly
ndarray.__imod__ X.__imod__(y) <==> x%=y
ndarray.__ipow__ X.__ipow__(y) <==> x**=y
ndarray.__ilshift___ X.__ilshift__(y) <==> x<<=y
ndarray._ irshift_ x.__irshift__(y) <==>x>>=y
ndarray.__iand___ X.__iand__(y) <==> x&=y
ndarray._ _ior___ X.__lor__(y) <==>xl=y
ndarray.__1xor___ X.__ixor__(y) <==>x"=y

ndarray._ _iadd___
X.__iadd__(y) <==> x+=y

ndarray.__isub___
X.__isub__(y) <==>x-=y

ndarray._ _imul___
X.__imul__(y) <==> x*=y

ndarray._ _didiv___
X.__idiv__(y) <==>x/=y

ndarray._ _itruediv___
X.__itruediv__(y) <==>x/y

ndarray.__ifloordiv___
x.__ifloordiv__(y) <==> x/ly

ndarray._ _imod_
X.__imod__(y) <==> x%=y

ndarray.__ipow___
X.__ipow__(y) <==> x**=y

ndarray._ ilshift_
X.__ilshift_ (y) <==> x<<=y

ndarray.__irshift_
X.__irshift__(y) <==> x>>=y

ndarray._ iand
X.__land__(y) <==> x&=y

ndarray ior
X.__lor__(y) <==>xl=y
ndarray.__ixor_

X.__ixor__(y) <==>x"=y

44

Chapter 1. Array objects

NumPy Reference, Release 1.13.0

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore, for
mixed precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose a
ones ((3,3)). Then, a += 37 is different than a =
tion, a += 3 casts the result to fit back in a, whereas a

a + 37: while they both perform the same computa-
a + 37 re-binds the name a to the result.

Matrix Multiplication:

ndarray._ matmul_

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP465. NumPy 1.10.0 has a preliminary

implementation of @ for testing purposes. Further documentation can be found in the matmul documentation.

1.1.7 Special methods

For standard library functions:

ndarray.___copy.__ ([order])

Return a copy of the array.

ndarray.__deepcopy__(() -> Deep copy of array.)

Used if copy.deepcopy is called on an array.

ndarray.__reduce_ ()

For pickling.

ndarray.__setstate__(version, shape, dtype, ...)

For unpickling.

ndarray.__copy__ ([order])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

ndarray.__deepcopy__ () — Deep copy of array.
Used if copy.deepcopy is called on an array.

ndarray._ reduce__ ()
For pickling.

ndarray.__setstate__ (version, shape, dtype, isfortran, rawdata)

For unpickling.

Parameters
version : int

optional pickle version. If omitted defaults to O.

shape : tuple
dtype : data-type
isFortran : bool

rawdata : string or list

1.1. The N-dimensional array (ndarray)

45

NumPy Reference, Release 1.13.0

a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__((S,...)

ndarray.__array__ (.. Returns either a new reference to self if dtype is not given
or a new array of provided data type if dtype is different
from the current dtype of the array.

ndarray.__array_wrap__ (..)

ndarray.__new__ (S,..) — anew object with type S, a subtype of T

ndarray.__array__ (ldtype) — reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap__ (obj) — Object of same type as ndarray object a.

Container customization: (see /ndexing)

ndarray.__len__ () <==>len(x)

ndarray.__getitem X.__getitem__(y) <==>x[y]
ndarray._ _setitem X.__setitem__(i, y) <==> x[i]=y
ndarray.__contains___ X.__contains__(y) <==>yinx

ndarray._ len_ () <==>len(x)

ndarray.__getitem
x.__getitem__(y) <==>x[y]

ndarray.__ setitem_
X.__setitem__(i, y) <==> x[i]=y

ndarray.__contains___
X.__contains__(y) <==>yin X

Conversion; the operations complex, int, long, float, oct, and hex. They work only on arrays that have one
element in them and return the appropriate scalar.

ndarray._ _int__ () <==>int(x)

ndarray.__long__ () <==>long(x)

ndarray._ float_ () <==>float(x)

ndarray.__oct__ () <==> oct(x)

ndarray._ _hex__ () <==>hex(x)

ndarray.__int__ () <==> int(x)

ndarray.__long__ () <==> long(x)

ndarray._ float__ () <==> float(x)

46 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#oct
https://docs.python.org/dev/library/functions.html#hex

NumPy Reference, Release 1.13.0

ndarray.__oct__ () <==> oct(x)

ndarray._ _hex () <==> hex(x)

String representations:

ndarray._ str__ () <==> str(x)

ndarray.__repr.__ () <==>repr(x)

ndarray._ _str__ () <==> str(x)

ndarray.__repr__ () <==> repr(x)

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays.! This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance (val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance (val, np.complexfloating) will return True if val is a complex valued type, while
isinstance(val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as
well as from the generic array scalar type:

Array scalar type | Related Python type
int_ IntType (Python 2 only)
float_ FloatType

complex__ ComplexType

bytes_ BytesType

unicode_ UnicodeType

I However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Scalars a7

NumPy Reference, Release 1.13.0

¥ ¥ IR 2 \

bool_ object_ ' number : | flexible :

ﬁ integer j r inexact j + characte void

isignedintegﬁ iunsignedintege;r flnatingé iccmple:-:ﬂcatind str_
;I —-I _] unicode |
> byte ™ ubyte | half

> short — ushort | I single > csingle

> intc - uintc P float > complex;

N Ly it L3/ tongfioat — clongfloat

—» longlong — ulonglong

Fig. 1.2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types
intp and uintp which just point to the integer type that holds a pointer for the platform. All the number types can
be obtained using bit-width names as well.

48 Chapter 1. Array objects

NumPy Reference, Release 1.13.0

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int__ type (the bool_ is not even a number type). This is
different than Python’s default implementation of boo1 as a sub-class of int.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer
a fixed-width integer type.

Tip: The default data type in NumPy is float_.

In the tables below, plat form? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in

the same way.

Booleans:

Type Remarks

Character code

bool_ | compatible: Python bool | '?2'
bool8 | 8bits

Integers:
byte compatible: C char 'b!
short compatible: C short 'h'
intc compatible: C int it
int_ compatible: Python int "1
longlong | compatible: C long long 'q'
intp large enough to fit a pointer | 'p'
int8 8 bits
intlé 16 bits
int32 32 bits
int64 64 bits

Unsigned integers:

ubyte compatible: C unsigned char | 'B'
ushort compatible: C unsigned short | "H'
uintc compatible: C unsigned int I
uint compatible: Python int '
ulonglong | compatible: C long long Q!
uintp large enough to fit a pointer 'p!
uints8 8 bits

uintlé 16 bits

uint32 32 bits

uint64 64 bits

Floating-point numbers:

1.2. Scalars

49

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

NumPy Reference, Release 1.13.0

half 'e!
single compatible: C float £
double compatible: C double

float_ compatible: Python float | 'd’
longfloat | compatible: Clong float | 'g'
floatlé 16 bits

float32 32 bits

floato4 64 bits

float96 96 bits, platform?

floatl28 128 bits, platform?

Complex floating-point numbers:

csingle 'F!
complex_ compatible: Python complex | 'D'
clongfloat 'G'

complex64 two 32-bit floats
complex128 | two 64-bit floats
complex192 | two 96-bit floats, platform?
complex256 | two 128-bit floats, platform?

Any Python object:

| object_ | any Python object ['O" |

Note: The data actually stored in object arrays (i.e., arrays having dtype ob ject_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python 11 st s, in the sense that their conten