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COMPUTING THE INTEGRAL CLOSURE OF AN AFFINE

SEMIGROUP

by Winfried Bruns and Robert Koch

1. Introduction. An affine semigroup S is a finitely generated subsemi-
group of a finitely generated free abelian group (or lattice) Zn. (We use the
term ‘semigroup’ as a synonym for ‘monoid’; so all our semigroups have a neu-
tral element 0.) Let L be a sublattice of Zn containing S. Then the integral
closure of S in L is the set

S̄L = {x ∈ L : mx ∈ S for some m ∈ N, m > 0}.

In the special case where L coincides with the group gp(S) of differences of S,
one calls S̄ = S̄L the normalization of S. Obviously S̄L is a subsemigroup of
L.

The integral closure can be described geometrically. Let C(S) be the cone
generated by S in the vector space Rn, i.e., the set of all linear combinations of
elements of S with non-negative real coefficients. It is an elementary fact that
S̄L = C(S) ∩ L. Note that C(S) is finitely generated by rational vectors since
S is so. It follows (and is in fact equivalent) that C(S) is the intersection of
finitely many rational vector halfspaces Hi, i = 1, . . . , r. Moreover, S̄L is itself
finitely generated by Gordan’s lemma.

We call S positive if x,−x ∈ S is possible only for x = 0. It is not hard to
show that a positive affine semigroup can be embedded into a positive orthant
Zs

+ for some s (actually the smallest possible value s = rank gp(S) suffices). It
then follows that every element of S can be written as the sum of irreducible
elements, and since S is finitely generated, it can have only finitely many
irreducibles. The finite set of irreducibles is the unique minimal generating set
of S. We call this set the Hilbert basis, Hilb(S), of S.
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The authors have developed the computer program normaliz [5] for the
computation of Hilb(S̄L) (evidently S̄L is positive if S is). Normaliz has already
proved very useful in various investigations; see Villarreal [10]. In particular
it has played a crucial role in finding a counterexample to the unimodular
covering conjecture and the discrete Carathéodory property of normal affine
semigroups (Bruns and Gubeladze [2], Bruns et al. [3]). It is the purpose of
this article to explain the algorithm used by normaliz. Most likely, all the ideas
involved have appeared elsewhere, and we do not claim originality for them.

Because of the embedding S → Zs
+, each positive affine semigroup can

be graded, i.e., there exists a semigroup homomorphism deg : S → N such
that deg(x) = 0 if and only if x = 0. Then K[S] is a positively graded K-
algebra (under the canonical extension of the degree function, where K is an
arbitrary field). If deg is the restriction of a Z-linear form on L (and it always
is after multiplication by a positive integer), then S is a graded subsemigroup
of S̄L. If, in addition, S is generated by all x ∈ S with deg(x) = 1, then
we say that S is homogeneous with respect to L (and simply homogeneous if
L = gp(S)). In this case normaliz can compute the Hilbert function of S̄L given
by H(S̄L, i) = card{x ∈ S̄L deg(x) = i}. Since S̄L is a finite module over a
homogeneous semigroup. we call it almost homogeneous.

Note that our nomenclature is consistent with its use in commutative al-
gebra. Let K be a field. Upon the choice of a basis e1, . . . , en we can identify
the group algebra K[L] with the Laurent polynomial ring K[X±1

1 , . . . , X±1
n ],

and the semigroup ring K[S] with a monomial subalgebra. Then K[S̄L] is the
integral closure of K[S] in K[L] (or its field of fractions). In particular, K[S̄]
is the normalization of K[S]. The Hilbert function of a graded semigroup S
coincides with the Hilbert function of the semigroup algebra K[S].

Affine semigroup rings are the coordinate rings of (not necessarily normal)
toric varieties, and homogeneous such rings are the homogeneous coordinate
rings of projective toric varieties. Therefore normaliz has applications in com-
mutative algebra and algebraic geometry.

In its present version normaliz requires the generators of S as input and
allows only the choices L = gp(S) or L = Zn. These choices for L cover almost
all potential applications.

It is the aim of this note to explain the algorithm used by normaliz. Many
facts which we will use without proof belong to the classical theory of convex
polyhedral cones. See Gale [7] and Gerstenhaber [8].

We do not attempt to describe the potential applications of normaliz. See
the documentation of normaliz, the book [10] of Villarreal, and Bruns, Gube-
ladze, and Trung [4] for more information.
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2. Computing the Hilbert basis. Finiteness of the integral closure.
We start by showing that the integral closure of an affine semigroup S ⊂ Zn,
in a sublattice L of Zn which contains S, is finitely generated, and give a
geometric description of the integral closure. The subcone of Rn generated by
S is denoted by C(S).

Proposition 2.1. (a) (Gordan’s lemma) Let C ⊂ Rn be a finitely gen-
erated rational cone (i.e., generated by finitely many vectors from Qn).
Then Zn ∩ C is an affine semigroup and integrally closed in Zn.

(b) Let S be an affine subsemigroup of the lattice L ⊂ Zn. Then
(i) S̄L = L ∩ C(S);
(ii) there exist z1, . . . , zu ∈ S̄L such that S̄L =

⋃u
i=1(zi + S);

(iii) S̄L is an affine semigroup.

Proof. (a) Note that C is generated by finitely many elements x1, . . . , xm

∈ Zn. Let x ∈ Zn∩C. Then x = a1x1 + · · ·+amxm with non-negative rational
ai. Set bi = baic. Then

(∗) x = (b1x1 + · · ·+ bmxm) + (r1x1 + · · ·+ rmxm), 0 ≤ ri < 1.

The second summand lies in the intersection of Zn with a bounded subset of
C. Thus there are only finitely many choices for it. These elements together
with x1, . . . , xm generate Zn ∩ C. That Zn ∩ C is integrally closed in Zn is
evident.

(b) Set C = C(S), and choose a system x1, . . . , xm of generators of S.
Then every x ∈ L ∩ C has a representation (∗). Multiplication by a common
denominator of r1, . . . , rm shows that x ∈ S̄L. On the other hand, L ∩ C is
integrally closed in L, and so S̄L = L ∩ C.

The elements z1, . . . , zu can now be chosen as those vectors r1x1+· · ·+rmxm

that appear in (∗) and belong to L. Their number is finite since they are all
integral and contained in a bounded subset of Rn. Together with x1, . . . , xm

they certainly generate S̄L as a semigroup.

In principle Proposition 2.1 tells us how to determine the generators of
S̄L: we only need to search these elements in a bounded subset of Zn. How-
ever, it is difficult to generate the candidates in an effective way without some
preparations.

Reduction to a full rank embedding. In the first step we reduce the problem
to computing the integral closure of S in a lattice L′ such that rankL′ =
rank gp(S). (We will write rankS for rank gp(S) in the following.)

Applying the elementary divisor algorithm one finds a basis e1, . . . , en of
Zn and integers α1, . . . , αn such that fi = αiei, i = 1, . . . rankL, is a basis of
L. After a linear transformation we can assume that L = Zn, and that we
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have to compute the integral closure of S in Zn. Henceforth the index L will
be dropped.

The elementary divisor algorithm is applied again in order to find a basis
f1 . . . , fn of LZn and integers β1, . . . .βr, r = rankS, such that β1f1, . . . , βrfr

is a basis of gp(S). The integral closure of S in Zn evidently coincides with
the integral closure of S in L′ = Zf1 + · · ·+Zfr. Consequently we may further
assume that rankS = n.

It is clear that at the end of all the computations the linear transformations
inverse to those above have to be applied in order to rewrite the output in the
coordinates of the input.

The program normaliz allows for L only Zn or gp(S). Therefore one ap-
plication of the elementary divisor algorithm is sufficient: if L = Zn, then
one chooses L′ = Zf1 + · · · + Zfr, and if L = gp(S) one has to take L′ =
Zβ1f1 + · · ·+ Zβrfr.

Extreme rays, faces and facets. Let C ⊂ Rn be a finitely generated cone. We
can assume that dimC = n, replacing Rn by the vector subspace generated by
C if necessary. (Above we have computed such an embedding in the discrete
case.) Let H be a vector subspace of dimension n − 1. It determines two
halfspaces. If C is contained in one of these (closed) halfspaces, then F = C∩H
is called a face of C. The dimension of a face is the dimension of the vector
subspace that it generates. Faces of dimension n − 1 are called facets. It is
often useful to count C as a face of C.

From the algebraic and also from the computational point of view a sub-
space H is the kernel of a linear form φ, uniquely determined up to a nonzero
constant factor. Replacing φ by −φ if necessary, we can always assume that C
is contained in the positive halfspace associated with φ (or H).

An extreme ray is a halfline starting in 0 that is contained in a 1-dimensional
face. Evidently each 1-dimensional face is either an extreme ray or the union
of two extreme rays. In particular, if C does not contain a full line (and this
will be the case later on), then we can identify 1-dimensional faces and extreme
rays.

Proposition 2.2. Let C be a finitely generated cone.
(a) A subset X of C is a minimal generating set if and only if 0 /∈ X and

X contains exactly one element from each extreme ray.
(b) There is exactly one irredundant representation of C as the intersection

of vector halfspaces, namely that by the positive halfspaces associated
with the facets of C.

For each facet F the linear form σF defining the half-space in (b) is unique
up to a positive factor, and we may speak of σF as the support form associated
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with the facet F . If C is rational, then there is a natural choice for σF , and we
always use it in the rational case: σF is rational (since its kernel is generated
by rational vectors), and it has a unique multiple with coprime integral coef-
ficients. (Normaliz always clears denominators and removes common divisors
during its computations.) Next we discuss how to compute the σF .

The dual cone algorithm. For a cone C ⊂ Rn one defines the dual (or polar)
cone by

C∗ = {φ ∈ (Rn)∗ : φ(x) ≥ 0 for all x ∈ C}.
The following proposition justifies this term.

Proposition 2.3. Let C be a cone in Rn.
(a) The bidual cone C∗∗ is the topological closure of C in Rn (which we

identify with its bidual (Rn)∗∗ via the natural isomorphism).
(b) If C is finitely generated (rational), then C∗ is finitely generated (ratio-

nal). Moreover, C∗∗ = C.

Proof. (a) Since linear forms are continuous, the topological closure Ĉ is
contained in C∗∗ = {x ∈ Rn : φ(x) ≥ 0 for all φ ∈ C∗}.

For the converse inclusion consider x ∈ C∗∗. Evidently Ĉ is convex. If
x /∈ Ĉ, then the Hahn-Banach separation theorem yields a linear form φ and
a real number α such that φ(x) < α and φ(y) > α for all y ∈ Ĉ. This is
impossible if φ(z) < 0 for some z ∈ Ĉ, since βz ∈ Ĉ for all β ≥ 0. Thus
φ ∈ C∗, and we obtain a contradiction.

(b) If C is finitely generated, then C is closed, and so C∗∗ = C by (a). It
remains to show that C∗ is finitely generated if C is. The dual cone algorithm,
outlined below, will show this. If C is rational, then it finds rational generators
for C∗.

Corollary 2.4. Let the cone C be the intersection of finitely many (ra-
tional) halfspaces. Then it is finitely generated (and rational).

In fact, C is closed, and we can apply Proposition 2.3. The corollary
indicates why finitely generated cones appear in linear optimization where
constraints are given by linear inequalities.

Let x1, . . . , xm ∈ Rn. We want to find the dual cone of C = R+x1 +
· · · + R+xm. We can assume that Rn is generated by x1, . . . , xm as a vector
space. (For the data for which we want to use the algorithm this assumption
is satisfied after we have passed to a full rank embedding.)

We first search for n vectors among x1 . . . , xm that form a basis of Rn,
say x1 . . . , xn. For each i = 1, . . . , n we compute a linear form φi such that
φi(xi) > 0, φi(xj) = 0 for j 6= i. Clearly φi is uniquely determined up to a
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positive factor. One also checks immediately that φ1, . . . , φn is a basis of (Rn)∗

and generate the dual cone of C0 = R+x1 + · · ·+ R+xn.
This initialization is useful because it simultaneously starts a triangulation

of the cone C. This triangulation will be needed for the computation of the
Hilbert basis. We now describe how the dual cone changes if we enlarge C by
another generator.

Proposition 2.5. Let x1, . . . , xm, y ∈ Rn be such that x1, . . . , xm generate
Rn as a vector space. Suppose that φ1, . . . , φt generate the dual cone of C =
R+x1 + · · · + R+xm. For each pair (i, j), i, j = 1, . . . , t, with φi(y) > 0 and
φj(y) < 0 we set

ψij = φi(y)φj − φj(y)φi.

Then the dual cone of C̃ = C + R+y is generated by the ψij and all φi with
φi(y) ≥ 0.

For the proof see Burger [6]. A geometric explanation follows after the
next proposition.

The generating set of C∗ specified by Proposition 2.5 contains a minimal
system of generators, and because of Proposition 2.3 it consists exactly of a
set of support forms σF , F running through the facets of C. It is not difficult
to find this minimal generating set:

Proposition 2.6. With the notation of Proposition 2.5, suppose that
φ1, . . . .φt are the support forms of C, and denote by Hi the hyperplane given
by the vanishing of φi. Then the support forms of C̃ are given by the φi with
φi(y) ≥ 0 and those ψij such that Hi ∩Hj ∩ C is not contained in one of the
hyperplanes Hk, k 6= i, j.

Let us say that a subset X of C is visible from y if for each x ∈ X the
line segment from y to x intersects C exactly in x. It is geometrically evident
that one finds the facets of C̃ by taking first those facets of C that do not
separate y from C, and second those hyperplanes that pass through y and the
(n − 2)-dimensional faces of C that bound the part of C that is visible from
y. Exactly these hyperplanes are specified by the two propositions above: an
(n− 2)-dimensional face is contained in exactly two facets, and it bounds the
visible area if exactly one of these facets is visible from C.

Once the dual cone (equivalently, the support forms) of C have been com-
puted, we can decide whether C is positive, i.e., 0 is the only element x ∈ C
such that −x ∈ C, too.

Proposition 2.7. Let C ⊂ Rn be an n-dimensional cone, and S ⊂ Zn an
affine semigroup.

(a) C is positive if and only if C∗ has dimension n.
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(b) S is positive if and only if C(S) is positive.
(c) If S is positive, then it has a unique minimal generating set, given by

its finitely many irreducible elements.

Proof. (a) It is obvious that x,−x ∈ C if and only if φ(x) = 0 for all
φ ∈ C∗, and such an element x 6= 0 exists if and only if dim(C∗) < n.

(b) This is trivial.
(c) Let σ1, . . . , σs be the support forms of C(S). Then we consider the

homomorphism σ : Rn → Rs, σ(x) = (σ1(x), . . . , σs(x)). Because of (a) and
(b) σ is injective, and it maps S isomorphically onto a subsemigroup of Zs

+.
We can assume that S ⊂ Zs

+. Then it follows easily that each element x of
S is the sum of irreducible elements, for example by induction on the sum of
the components of x. Therefore S is generated by its irreducible elements, and
since S has a finite system of generators and every system of generators must
contain the irreducibles, their number is finite.

At this point normaliz tests whether S is positive. If not, it stops. It would
not be difficult to extend the program in such a way that it covers the general
case. Let U be the kernel of the homomorphism σ : Zn → Zs. Then the
image T of S in Zn/U is a positive affine semigroup. It is enough to lift the
Hilbert basis of T̄ back to Zn, because S̄ is generated by U and preimages of
the Hilbert basis of T̄ . (We are still assuming that S ⊂ Zn has rank n.)

Computing the triangulation. A cone is simplicial if it is generated by a
linearly independent set of vectors. By a triangulation of a cone C we mean a
decomposition into a family ∆ of finitely many simplicial subcones such that
the intersection of δ, ε ∈ ∆ is a face of both δ and ε. A triangulation ∆ is
uniquely determined by those δ ∈ ∆ such that dim δ = dimC. Therefore the
triangulation can be described by a list of n-tuples of vectors in Rn, where
each n-tuple contains the generators of an n-dimensional simplicial cone.

Let C ⊂ Rn be a cone of dimension n, given by generators x1, . . . , xm.
In the computation of the dual cone C∗ we have started with a simplicial
subcone C0 generated by a linearly independent subset of {x1, . . . , xm}. It
has a trivial triangulation by its faces (including C0 itself). Therefore it is
enough to describe how to pass from a triangulation of C to a triangulation of
C̃ generated by x1, . . . , xm, y.

If y is contained in C, then we can (and do) simply keep the triangulation
δ. So suppose that y /∈ C. Let ∆ be a triangulation of C. Then we obtain a
triangulation of C̃ by joining ∆ with the set of all cones δ+ R+y where δ ∈ ∆
is visible from y.

The new n-dimensional simplicial subcones are generated by y and the
(n− 1)-dimensional visible cones δ′ of ∆. Such a subcone is visible if and only
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if it lies in a facet F of C that is visible from y, and the visible facets F are
characterized by the fact that σF (y) < 0. This makes it easy for normaliz to
find the new n-dimensional members of the triangulation, since the support
forms of C are known. (However, note that a facet of C itself is not simplicial
in general, and even if it is: ∆ may subdivide it, if the given generating set of
C is not minimal.)

At this point we can also discuss how to find the irreducible elements of S̄,
and thus Hilb(S̄), once a system of generators x1, . . . , xm 6= 0 of S̄ is known:
xi is irreducible if xi − xj /∈ S̄ for all j 6= i. This criterion holds for arbitrary
S. However, the condition xi − xj /∈ S is difficult to verify in general. For S̄ it
is easy: we simply test whether the condition σF (xi − xj) ≥ 0 is violated for
at least one facet F .

Suppose further that we have found a system of generators for the semi-
group δ ∩Zn for each δ in a triangulation of C(S). Then the union of all these
systems obviously generates S̄. We have already constructed a triangulation
∆, and each δ ∈ ∆ is specified by a set of integral, linearly independent vectors
generating δ. It only remains to find the generators of S̄ if S is simplicial.

Simplicial cones. Let x1, . . . , xn be linearly independent elements of Zn and
let C be the cone spanned by them and S the affine semigroup they generate.
Then each y ∈ S̄ = C ∩ Zn has a representation

y = (a1x1 + · · ·+anxn)+ (q1x1 + · · ·+ qnxn), ai ∈ Z+, qi ∈ Q, 0 ≤ qi < 1.

We collect the second summands in the set

par(x1, . . . , xn) = Zn ∩ {q1x1 + · · ·+ qnxn : qi ∈ Q, 0 ≤ qi < 1}.

The notation par (introduced by Sebö [9]) is suggested by the fact that the
elements of par(x1, . . . , xn) are exactly the lattice points in the semi-open par-
allelepiped spanned by x1, . . . , xn.

Lemma 2.8. The set par(x1, . . . , xn) contains exactly one representative
from each residue class of Zn modulo U = Zx1 + · · ·+ Zxn. Therefore

card par(x1, . . . , xn) = card(Zn/U) = |det(x1, . . . , xn)|.

Moreover, S̄ is the disjoint union of the sets z + S, z ∈ par(x1, . . . , xn).

Proof. The first statement is evident, and it implies the first equation.
The second equation results from the elementary divisor theorem. That S̄ is
the union of the sets z + S has been shown in Proposition 2.1, and that the
union is disjoint follows immediately from the fact that the z ∈ par(x1, . . . , xn)
represent different residue classes.
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In the language of commutative algebra: let K be a field; then par(x1, . . . ,
xn) is a basis of the free K[S]-module K[S̄], and K[S] is actually a polynomial
ring over K.

Together with x1, . . . , xn the set par(x1, . . . , xn) certainly generates S̄.
Therefore it is enough to find an efficient method for producing par(x1, . . . , xn)
from x1, . . . , xn.

First one applies the elementary divisor algorithm to find a basis u1 . . . , un

of Zn, and positive integers λ1, . . . , λn such that λ1u1, . . . , λnun is a basis
of gp(S). Clearly d = det(x1, . . . , xn) = λ1 · · ·λn, and dZn ⊂ gp(S), since
Zn/ gp(S) is a direct sum of n cyclic groups of orders λ1, . . . , λn.

The residue classes of Zn modulo gp(S) are represented by the vectors

e = b1u1 + · · ·+ bnun, bi = 0, . . . , λi − 1, i = 1, . . . , n.

Each such vector e has a representation e = a1x1 + · · · + anxn with rational
coefficients ai. Now we set qi = ai − baic, so that e′ = q1x1 + · · · + qnxn

represents the residue class of e and belongs to par(x1, . . . , xn). Note that d is
a suitable common denominator for the ai, since dZn ⊂ gp(S). Therefore one
can keep all the coefficients integral by first passing to de and dividing by d at
the end.

3. Computing the Hilbert series. Suppose that A is a positively
graded affine semigroup; one has fixed a homomorphism deg : gp(A) → Z
such that deg(A) ⊂ Z+ and 0 is the only element of A having degree 0. Then
the set Ak = {x ∈ A : deg x = k} is finite for each k ∈ Z+, and we can define
the Hilbert function

H(A, k) = cardAk, k ∈ Z+,

of A. The Hilbert series of A is the formal power series

HA(T ) =
∞∑

k=0

(cardAk)T k.

If K is a field, then the semigroup algebra K[A] inherits the grading, and the
Hilbert series of A is just the Hilbert series of K[A]. Therefore HA(T ) has all
the properties that are known for Hilbert series of positively graded K-algebras
(see [1, Chap. 4]). In particular, HA(T ) represents a rational function,

HA(T ) =
Q(T )

(1− T d1) · · · (1− T dn)

where Q(T ) is a polynomial, n = rankA, and d1, . . . , dn are positive integers.
The situation further simplifies if A is almost homogeneous. This means

that there exists an affine subsemigroup A0 ⊂ A which is generated by elements
of degree 1 and over which A is a finite module, i.e., there exist x1, . . . , xm ∈ A



68

such that A =
⋃m

i=1(A0 + xi). Then K[A] is a finitely generated module over
K[A0], and therefore HA(T ) can be represented in the form

HA(T ) =
Q(T )

(1− T )n
.

For k � 0 the Hilbert function H(A, k) is given by a polynomial, the Hilbert
polynomial PA(k). It is a polynomial of degree n − 1 with leading coefficient
e(A)/(n− 1)!, where e(A) = Q(1) is the multiplicity of A.

In normaliz the role of A0 is played by the given affine semigroup S and
that of A is played by the integral closure S̄. (We assume, as before, that
S ⊂ Zn, rankS = n, and the integral closure is taken with respect to Zn.) We
want to compute the Hilbert series of S̄. In principle this would be possible for
the general case, but so far it has only been implemented in the almost homo-
geneous case (simply called “homogeneous” in the normaliz documentation),
and from now on we restrict ourselves to this case.

Normaliz has computed a triangulation ∆ of the cone C generated by S
such that each simplicial cone δ ∈ ∆ is generated by elements of S, and by
assumption these have degree 1 in S̄. The triangulation defines a disjoint
decomposition

C =
⋃
δ∈∆

relint(δ),

where relint(δ) is the interior of δ relative to the vector subspace of Rn gener-
ated by δ. We set

ωδ = relint(δ) ∩ Zn.

It follows that
HS̄(T ) =

∑
δ∈∆

Hωδ
(T ),

where the terms on the right hand side are defined in an obvious way.
Therefore, in order to compute HS̄(T ), two tasks have to be carried out,

namely
1. the decomposition of C into the cones δ ∈ ∆, and
2. the computation of Hωδ

(T ) for each δ.
The most time consuming part of normaliz is step 1 above because of the

extreme combinatorial complexity of triangulations in general. For the com-
putation of the Hilbert basis it is enough to consider the maximal simplicial
cones in ∆, and it would be foolish to insist on a disjoint decomposition. (Some
vectors are tested more than once for being members of the Hilbert basis if
they belong to two or more maximal simplicial subcones. But this effect is
negligible.) However, for the Hilbert series one cannot avoid the disjoint de-
composition. We have recently implemented an essential improvement of the
decomposition algorithm.
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For step 2 we denote by x1, . . . , xr the linearly independent degree 1 ele-
ments of S that generate δ. The semigroup Sδ they generate is free, and so
HSδ

(T ) = 1/(1− T )r. Furthermore one has a disjoint decomposition

ωδ =
⋃

x∈par′(x1,...,xr)

(x+ Sδ)

where

par′(x1, . . . , xr) = Zn ∩ {q1x1 + · · ·+ qrxr : qi ∈ Q, 0 < qi ≤ 1}.
Therefore

Hωδ
(T ) =

∑r
k=1 card(Bk)T k

(1− T )r
,

where Bk = {x ∈ par′(x1, . . . , xr) : deg x = k}.

Remark 3.1. (a) Often one is only interested in a single numerical invari-
ant, namely the multiplicity e(S̄). (It coincides with the multiplicity of S if
gp(S) = Zn; in general one has e(S̄) = e(S) · card(Zn/ gp(S)).) The different
maximal simplices in the triangulation intersect each other only in lower di-
mensional cones, so that the leading coefficient of the Hilbert polynomial can
be calculated without taking care of the lower dimensional cones. Then

e(S̄) =
∑

δ∈∆,dim δ=n

e(S̄δ)

where S̄δ = δ∩Zn. Let x1, . . . , xn be the linearly independent degree 1 genera-
tors of δ. Then Sδ = Z+x1 + · · ·+Z+xn is a free affine semigroup and therefore
of multiplicity 1. The integral closure S̄δ is a free Sδ-module (as already ob-
served), and therefore its multiplicity coincides with the number of elements
in its basis par(x1, . . . , xn). To sum up,

e(S̄δ) = card(par(x1, . . . , xn)) = |det(x1, . . . , xn)|.
Therefore it is not necessary to compute the Hilbert basis in order to find the
multiplicity. We offer the option -v for normaliz. It restricts all computations
to multiplicities and those data which determine the triangulation.

The letter v has been chosen since the multiplicity of S can be interpreted
as the normalized volume of the polytope spanned by the generators of S in
the hyperplane of degree 1 elements. Thus normaliz -v can be used for the
computation of volumes of lattice polytopes.

(b) It is not necessary to compute par′(x1, . . . , xr) separately. In fact y ∈
par′(x1, . . . , xr) if and only if (x1 + · · ·+xr)− y ∈ par(x1, . . . , xr). We use this
observation as follows.

The n-dimensional simplicial cones δ ∈ ∆ are scanned for the computa-
tion of the Hilbert basis. Suppose that δ is spanned by the degree 1 elements
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x1 . . . , xn. Then the elements x ∈ par(δ) are computed since they are candi-
dates for the Hilbert basis. We can write x = q1xi1 +· · ·+qrxir with 0 < qi < 1.
For each subset J ⊂ {1, . . . , n} with {i1, . . . , ir} ⊂ J the vector

∑
j∈J xj − x

belongs to par′(xj : j ∈ J), and all the vectors necessary for the computation
of the Hilbert function are produced by this method.
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