
Manchester
Coding Basics

Application Note

 9164A–AUTO–09/09
Manchester Coding Basics

When beginning to work with communication systems, it is important to first under-
stand a few basic terms that are used, Modulation and Coding. These are often used
interchangeably which leads to many errors because they refer to completely different
aspects of the communication. It is very important to observe and fully understand the
application and implementation of these two aspects of communication theory. This
application note will be focused on the Coding and Decoding. But, before we address
this, we need to look at what must be done to send a message or data through our
communication system.

1. Modulation
Modulation refers to the act of adding the message signal to some form of carrier. The
carrier, by definition, is a higher frequency signal whose phase, frequency, amplitude,
or some combination thereof, is varied proportionally to the message. This change
can be detected and recovered (demodulated) at the other end of the communication
channel. There are a number of ways this can be done but for simplicity we will only
look at Amplitude Modulation (AM), On-Off Keying (a variation on AM), and Frequency
Modulation (FM). Modulation is typically carried out in hardware, but that subject is
beyond the scope of this document.

1.1 Amplitude Modulation
In amplitude modulation, the amplitude of the carrier is changed to follow the message
signal. In this case we can see a “ripple” on the carrier, its envelope contains the mes-
sage. This can be demodulated using an extremely simple envelope detector that
captures this ripple as a low frequency response.

1.2 On-Off Keying
This form of modulation takes the amplitude modulation as described above to the
extreme. In this instance, we have only two states: Carrier and No Carrier. This
approach lends itself nicely to the transmission of digital data because the carrier can
be simply switched “on” or “off” depending on the state of the data being sent. The
demodulated output is either high or low depending on the presence of the carrier.

1.3 Frequency Modulation
Frequency modulation is more complicated but provides the benefit of constant output power
independent of the message being sent. With this approach, the frequency of the carrier is not
constant but varies in relation to the message. This requires a much more complicated
demodulation circuit typically implemented using a Phase Lock Loop (PLL).

1.4 Frequency Shift Keying
The relationship between Frequency Shift Keying and Frequency Modulation is analogous to
the relationship between On-Off Keying and Amplitude Modulation in that only two carrier fre-
quencies are used, each corresponding to a digital state. In this case, the benefits of
Frequency Modulation are realized but with less complexity in the demodulation circuit.

2. Coding Techniques
Having reviewed the common modulation techniques in the previous sections, it should be
noted that all of the techniques deal with how the message signal was impressed onto a car-
rier. Modulation did not address how the message signal was created from the data to be sent.
Coding defines how we accurately, efficiently, and robustly construct a message signal from
the data we desire to communicate. Just like modulation, there are a vast number of ways to
code data, each having unique qualities and attributes and each can be chosen to optimize
certain aspects in the desired system. We will briefly cover a few coding methods, NRZ and
BiPhase, before looking at the primary topic of this article, Manchester. Also it should be men-
tioned that we are simply looking at coding digital (binary) information to create the message.
Although coding can be implemented in hardware, we are going to look at how this is achieved
through software. We will assume our encoded/decoded message signal will be present on an
output/input pin of a microcontroller.

2.1 NRZ
NRZ is one of the most basic of coding schemes. In this method the message signal does Not
Return to Zero after each bit frame. This means that the message exactly follows the digital
data structure. For example, a long data string of “1”s will produce a long high period in the
message signal. Transitions only occur in the message when there is a logical bit change (see
Figure 2-1 on page 3).

This is a very easy method to implement on the encoding side but requires the data rate to be
known exactly on the receiving side in order to be decoded. Any mismatch in data clock tim-
ings will result in erroneous data that is only detectable with some error detection such as a
checksum or CRC. Also errors from the communication channel or interference will not be
detected without some form of data integrity checks.
2
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
2.2 BiPhase
BiPhase adds a level of complexity to the coding process but in return includes a way to trans-
fer the bit frame data clock that can be used in the decoding to increase accuracy. BiPhase
coding says that there will be a state transition in the message signal at the end of every bit
frame. In addition, a logical “1” will have an additional transition at the mid-bit (see Figure 2-1
on page 3). This allows the demodulation system to recover the data rate and also synchro-
nize to the bit edge periods. With this clock information, the data stream can be recreated.
This is similar to the method we will describe next.

2.3 Manchester
Manchester coding is one of the most common data coding methods used today. Similar to
BiPhase, Manchester coding provides a means of adding the data rate clock to the message
to be used on the receiving end. Also Manchester provides the added benefit of always yield-
ing an average DC level of 50%. This has positive implications in the demodulator's circuit
design as well as managing transmitted RF spectrum after modulation. This means that in
modulation types where the power output is a function of the message such as AM, the aver-
age power is constant and independent of the data stream being encoded. Manchester coding
states that there will always be a transition of the message signal at the mid-point of the data
bit frame. What occurs at the bit edges depends on the state of the previous bit frame and
does not always produce a transition. A logical “1” is defined as a mid-point transition from low
to high and a “0” is a mid-point transition from high to low (see Figure 2-1). A more thorough
look at methods to encode and decode data will be shown in detail in the next sections.

Figure 2-1. Encoding Signals

Bit Frame Bit Frame Bit Frame Bit Frame

0 0 0 1

Bit Frame Bit Frame Bit Frame Bit Frame

1 0 1 1

BiPhase

BiPhase

Manchester

NRZ

BiPhase

BiPhase

Manchester

NRZ
3
9164A–AUTO–09/09

3. Manchester Encoding
Encoding is the process of adding the correct transitions to the message signal in relation to
the data that is to be sent over the communication system. The first step is to establish the
data rate that is going to be used. Once this is fixed, then the mid-bit time can be determined
as ½ of the data rate period. In our example we are going to use a data rate of 4 kHz. This pro-
vides a bit period of 1/f = 1/4000 = 0.00025s or 250 µs. Dividing by two gives us the mid-bit
time (which we will label “T”) of 125 µs. Now let's look at how we use this to encode a data
byte of 0xC5 (11000101b). The easiest method to do this is to use a timer set to expire or
interrupt at the T interval. We also need to set up a method to track which ½ bit period we are
currently sending. Once we do this, we can easily encode the data and output the message
signal.

1. Begin with the output signal high.

2. Check if all bits have been sent, If yes, then go to step 7

3. Check the next logical bit to be coded

4. If the bit equals “1”, then call ManchesterOne(T)

5. Else call ManchesterZero(T)

6. Return to step 2

7. Set output signal high and return

3.1 Implementation of ManchesterOne(T)
1. Set the output signal low

2. Wait for mid-bit time (T)

3. Set the output signal high

4. Wait for mid-bit time (T)

5. Return

3.2 Implementation of ManchesterZero(T)
6. Set the output signal high

7. Wait for mid-bit time (T)

8. Set the output signal low

9. Wait for mid-bit time (T)

10. Return

These easy routines will provide an output at the microcontroller pin that exactly encodes the
data into a Manchester message signal at the desired data rate. The accuracy of the data rate
and duty cycle depends on the accuracy of the clock source and the method used to create
the wait times. It is recommended to use a timer/counter, and associated interrupts, as shown
in the sample code provided in the appendix.
4
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
4. Manchester Decoding
Decoding is where most people attempting to work with Manchester have questions. There
are several ways to approach this and each has unique benefits. This section will describe
how to implement two different methods. To start we will look at the steps that are needed for
either methodology.

1. The data rate clock must be either known or discovered (we will assume a known
value)

2. We must synchronize to the clock (distinguish a bit edge from a mid-bit transition)

3. Process the incoming stream and recover the data using the previous two steps

4. Buffer or store this data for further processing.

This provides the basic outline for how we will perform Manchester decoding. All that remains
is to implement this in software. As mentioned, we have two different options for consideration.
One is based on timing while the other utilizes sampling.

4.1 Timing Based Manchester Decode
In this approach we will capture the time between each transition coming from the demodula-
tion circuit. The Input Capture function on a micro-controller is very useful for this because it
will generate an interrupt, precise time measurements, and allow decision processing based
on the elapsed counter value.

1. Set up timer to interrupt on every edge (may require changing edge trigger in the
ISR)

2. ISR routine should flag the edge occurred and store count value

3. Start timer, capture first edge and discard this.

4. Capture next edge and check if stored count value equal 2T (T = ½ data rate)

5. Repeat step 4 until count value = 2T (This is now synchronized with the data clock)

6. Read current logic level of the incoming pin and save as current bit value (1 or 0)

7. Capture next edge

a. Compare stored count value with T

b. If value = T

i. Capture next edge and make sure this value also = T (else error)

ii. Next bit = current bit

iii. Return next bit

c. Else if value = 2T

i. Next bit = opposite of current bit

ii. Return next bit

d. Else

i. Return error

8. Store next bit in buffer

9. If desired number of bits are decoded; exit to continue further processing

10. Else set current bit to next bit and loop to step 7
5
9164A–AUTO–09/09

It should be noted that in practice the value of the timer will not be exactly matched to the T
and 2T times. To allow for this it is necessary to create a window of allowable values around
the desired times. This allows for processing and distortion while still being able to recover the
data correctly. See the software routines in the appendix for actual implementation. The win-
dow can be as large as ±50% of T, but no larger.

Figure 4-1. Timing Base Decode

4.2 Sampling Based Manchester Decode
In this method we do not require the edge transitions to be captured or even acknowledged.
Instead we will simply sample and buffer the state of the input pin at a rate (S) much higher
than the data rate of the message. This requires more memory but also allows the processor
intensive tasks to be undertaken at a less critical time where other interrupts can take prece-
dence without corrupting the decoding. The sampling can be achieved by setting a timer to
expire or interrupt and storing the state of the pin in a large buffer. No special timer features
are required.

1. Set up timer to interrupt every 2T / S

2. SR routine should check and store the state of the microcontroller pin (1 or 0)

3. Repeat step 2 for desired number of bits * S occurrences

4. Process through the captured buffer counting the number of consecutive ones or
zeros

5. When the next logic value changes

a. Check if count >= (S/2); Then skip to step 6

b. Else reset count and loop to step 4

6. Set current bit = logic value in buffer currently pointed too

7. Reset count and count to the next logic change

a. Compare count with (S/2)

b. If count < (S/2)

i. Reset and count to next logic change

ii. Make sure count also < (S/2)

iii. Next bit = current bit

iv. Store next bit in data buffer

1

T T T T T T T T2T 2T 2T

1 1 1 0

0

1

1 0 0

Manchester

Edge Timing

Sync

Decode
0 0
6
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
c. Else if count >= (S/2)

i. Next bit = opposite of current bit

ii. Store next bit in data buffer

d. Else

i. Return error

8. Loop to step 7 until completely through captured data

9. Exit for further data processing

Figure 4-2. Sampling Based Decode

5. Conclusion
Now that we have looked at two different approaches for Manchester decoding, the user must
decide which approach is better suited to his end application. This decision must be made
based on the support functions provided by the microcontroller and the level of priority this
task has in the overall system. Each approach has benefits and drawbacks associated. The
intent of this article is to provide real examples of Manchester decoding that can be applied.
The appendix that follows contains code written for the Atmel® AVR® and is configurable to the
inputs and outputs used in a real application. This should make working with Manchester cod-
ing very simple for the user.

1 1 1 1 0

0

1

6 6 33

0 0

1 0 0

Manchester

Edge Timing

Sync

Decode
7
9164A–AUTO–09/09

6. Appendix: Code Samples
/*

Project : Configuration.h

Date :

Author : Toby Prescott

Company : Atmel

Comments:

Chip type : ATmega128

Program type : Application

Clock frecquency : 8.000000 MHz

Memory model : Small

External SRAM size : 0

Data Stack size : 1024

Revisions:

v1.0 - Started WINAVR

This source code provided via Atmel Corporation ("Atmel"), is a courtesy
to its valued customers and prospective customers and may be used for
limited purposes only.

Copyright (c) 2007 Toby Prescott

 All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, are permitted provided that the following conditions are

 met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

 * Neither the name of the copyright holders nor the names of

 contributors may be used to endorse or promote products derived

 from this software without specific prior written permission.
8
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

// List your includes

#include <avr/io.h>

//-----Hardware specific setup -----//

#define IOPORT PORTD

#define IOPIN PIND

#define IODDR DDRD

#define DATAIN PD4

#define DATAOUT PD6

#define DEBUGPORT PORTF

#define DEBUGDDR DDRF

#define DEBUGPIN PF1

#define CODINGTIMERCNT TCNT1

#define CODINGTIMERCTRA TCCR1A

#define CODINGTIMERCTRB TCCR1B

#define CODINGTIMERCTRC TCCR1C

#define CODINGTIMERMSK TIMSK

#define CODINGTIMERFLR TIFR

#define CODINGTIMER_OVF TIMER1_OVF_vect

#define CODINGTIMER_IPC TIMER1_CAPT_vect

#define CODINGTIMER_CMPA TIMER1_COMPA_vect

//---------------------------------//
9
9164A–AUTO–09/09

//------ Define Macros

#define sbi(port,bit) (port |= (1<<bit)) // Set bit in port

#define cbi(port,bit) (port &= ~(1<<bit)) // Clear bit in port

#define tgl(port,bit) (port ^= (1<<bit)) // Toggle bit in port

#define tst(port,bit) (((port)&(1<<(bit)))>>(bit))// Test bit in port

#define DEBUG(state) if(state == CLEAR){cbi(DEBUGPORT,DEBUGPIN);}
else{sbi(DEBUGPORT,DEBUGPIN);}

#define TGLDEBUG() (tgl(DEBUGPORT,DEBUGPIN))

#define CLEAR 0

#define SET 1

#define WRITE 0

#define READ 1

// Error codes

#define SUCCESS0 0

#define SUCCESS1 1

/*

Project : Coding.h

Date : 4/22/2009

Author : Toby Prescott

Company : Atmel

Comments:

/*---*/

#ifndef CODING_H__

#define CODING_H__

// List your includes

#include <avr/io.h>

#include <avr/interrupt.h>

#include "Configuration.h"

// Declare your global function prototypes here

unsigned char Coding_ClkSync(unsigned char numSamples);

void Coding_SetClk(unsigned int clk, unsigned int shortL,
unsigned int shortH, unsigned int longL, unsigned int longH);

unsigned char Coding_ManchesterSync(unsigned char maxSample);

unsigned char Coding_ManchesterEncode(unsigned char numBits);

unsigned char Coding_ManchesterDecode(unsigned char cBit);

unsigned char Coding_BiPhase1Decode(void);

unsigned char Coding_BiPhase2Decode(void);

void Coding_DSP(unsigned char Encoding);

unsigned char Coding_ReadData(unsigned char mode, unsigned int numBits,
unsigned char startBit, unsigned char Encoding);
10
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
void Coding_TimerInit(unsigned int countVal, unsigned char mode);

void Coding_Timer_Stop(void);

unsigned int Coding_Timer_Poll(void);

// Declare your global sturctures here

struct DecodeTiming{

unsigned int ShortL;

unsigned int ShortH;

unsigned int LongL;

unsigned int LongH;

};

// Declare your global definitions here

#define BUFFSIZE 128

#define UPPERTIMINGLMT 5000

#define SAMPLING 0

#define TIMING 1

#define MANCHESTER 0

#define BIPHASE1 1

#define BIPHASE2 2

#define INVERTED

//#define NONINVERTED

// Error codes

#define SyncErr 2

#define BitErr 3

#define TagErr 4

// Declare your global variables (extern) here

extern struct DecodeTiming DecodeReadTime;

extern volatile unsigned char cDataBuff[BUFFSIZE];

/*---*/

#endif // CODING_H__

/*

Project : Coding.c

Date : 4/22/2009

Author : Toby Prescott

Company : Atmel

Comments:

Chip type : ATmega128

Program type : Application

Clock frequency : 8.000000 MHz

Memory model : Small

External SRAM size : 0

Data Stack size : 1024

Revisions:

v1.0 - Started WINAVR
11
9164A–AUTO–09/09

This source code provided via Atmel Corporation ("Atmel"), is a courtesy
to its valued customers and prospective customers and may be used for
limited purposes only.

Copyright (c) 2007 Toby Prescott

All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, are permitted provided that the following conditions are

 met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

 * Neither the name of the copyright holders nor the names of

 contributors may be used to endorse or promote products derived

 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---*/

#include "Coding.h"

volatile unsigned char cDataBuff[BUFFSIZE] = {0}; // Read Data buffer

volatile unsigned char *cDataBuffPtr;

// Runtime values for Reader Timings //

unsigned int clk2T=0;

struct DecodeTiming DecodeReadTime = {0};

volatile unsigned char numSampleBits = 0;

volatile unsigned int RdTime = 0; //Global var used for edgetiming

unsigned char directionFlag = READ;
12
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
// **

// Routine to recover clock and timings

// ***/

unsigned char Coding_ClkSync(unsigned char numSamples)

{

unsigned int clkT=0;

unsigned int tmp=0, average=0, sample=0;

directionFlag = READ; // Set direction for timer interrupt

Coding_TimerInit(0x00, TIMING); // Initiate timer w/ edge2edge
measurement

Coding_Timer_Poll(); // Wait for edge

clkT = Coding_Timer_Poll(); // Set initial measurment as T time

 do

 {

 tmp = Coding_Timer_Poll(); // Catch next edge time

if(tmp < UPPERTIMINGLMT) // Check if edge time is useable

 {

 if(tmp < (clkT*0.5)){clkT = tmp;} // Time below limit
else if((tmp >= (clkT*0.5)) && (tmp <= (clkT*1.5)))

 {

 average += tmp; // Accumulate

 sample++; // Inc sample count

 clkT = (average/sample); // Average

 }

 else if((tmp >= (clkT*1.5)) && (tmp <= (clkT*2.5)))

 {

 average += (tmp/2); // Accumulate but sample/2

 sample++; // Inc sample count

 clkT = (average/sample); // Average

 }

else

 {

 clk2T = 128; // Force default to 2T = 256us

 break;

 }

}

else

{

clkT = 128; // Force default to
2T = 256us

break;

}

 }while(sample < numSamples); // Repeat while < sample size
13
9164A–AUTO–09/09

Coding_Timer_Stop(); // Stop timer

clk2T = (clkT*2); // Compute 2T time

DecodeReadTime.ShortL = (int)(clk2T*0.25); // Compute low T limit

DecodeReadTime.ShortH = (int)(clk2T*0.75); // Compute high T limit

DecodeReadTime.LongL = (int)(clk2T*0.75); // Compute low 2T limit

DecodeReadTime.LongH = (int)(clk2T*1.25); // Compute high 2T limit

if(sample == numSamples){return SUCCESS0;}

else{return TagErr;}

}

// **

// Routine to set clock and timings

// ***/

void Coding_SetClk(unsigned int clk, unsigned int shortL,
unsigned int shortH, unsigned int longL, unsigned int longH)

{

clk2T = clk; // Force 2T time

DecodeReadTime.ShortL = shortL; // Force low T limit

DecodeReadTime.ShortH = shortH; // Force high T limit

DecodeReadTime.LongL = longL; // Force low 2T limit

DecodeReadTime.LongH = longH; // Force high 2T limit

}

// **

// Routine to encode a Manchester data stream

// Pass in the number of bits to send

// Pulls from cDataBuff

// ***/

unsigned char Coding_ManchesterEncode(unsigned char numBits)

{

volatile unsigned int cNumBits = 0,i;

cDataBuffPtr = &cDataBuff[0]; // Place pointer at beginning of
buffer

directionFlag = WRITE; // Set direction for timer interrupt

Coding_TimerInit((clk2T/2), SAMPLING); // Init timer w/ periodic
interrupt

for(i=0; i<numBits; i++) // Repeat until all bits sent

 {

if(cNumBits == 8) // When full byte is read

 {

 cDataBuffPtr++; // Increment pointer to next byte in
buffer

 if(cDataBuffPtr == &cDataBuff[0]){i=numBits+1;}
cNumBits = 0; // Clear bit counter

 }
14
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
if((*cDataBuffPtr & 0x80) == 0x80) // Check bit value, process logic
one

{

cbi(IOPORT,DATAOUT); // Set I/O low

Coding_Timer_Poll(); // Catch next interrupt

sbi(IOPORT,DATAOUT); // Set I/O high

Coding_Timer_Poll(); // Catch next interrupt

}

else

{

sbi(IOPORT,DATAOUT); // Set I/O high

Coding_Timer_Poll(); // Catch next interrupt

cbi(IOPORT,DATAOUT); // Set I/O low

Coding_Timer_Poll(); // Catch next interrupt

}

*cDataBuffPtr = *cDataBuffPtr<<1; // Shift buffer to get next bit

cNumBits++; // Increment number of bits sent

}

return 0;

}

// **

// Routine to synchronize to manchester edge

// ***/

unsigned char Coding_ManchesterSync(unsigned char maxSample)

{

unsigned char i=0;

unsigned int tmp;

unsigned char cOutput = SyncErr;

directionFlag = READ; // Set direction for timer interrupt

Coding_TimerInit(0x00, TIMING); // Init timer w/ edge-2-edge
measurement

tmp = Coding_Timer_Poll(); // Wait for edge

while(i++ < maxSample) // Repeat until sample size is meet

{

tmp = Coding_Timer_Poll(); // Catch next edge time

if(tmp > UPPERTIMINGLMT){break;} // Check if edge time is useable

else if((tmp >= DecodeReadTime.LongL) &&
(tmp <= DecodeReadTime.LongH))

{

//2T time found, check starting logic value

if(tst(IOPIN,DATAIN) == 0){cOutput = SUCCESS0;}
else{cOutput = SUCCESS1;}

break;

}

15
9164A–AUTO–09/09

}

return cOutput;

}

// **

// Routine to decode a Manchester bit

// Pass in the previous bit logic value

// ***/

unsigned char Coding_ManchesterDecode(unsigned char cBit)

{

unsigned char cOutput = BitErr;

unsigned int tmp;

tmp = Coding_Timer_Poll(); // Catch next edge time

if(tmp < UPPERTIMINGLMT) // Check if edge time is useable

{

// Check edge time and determine next Logic value //

 if((tmp > DecodeReadTime.LongL) && (tmp < DecodeReadTime.LongH))

 {cOutput = cBit ^ 0x01;} // invert cBit for logical change

 else if(tmp > DecodeReadTime.ShortL && tmp < DecodeReadTime.ShortH)
// Next edge time is short

 {

 tmp = Coding_Timer_Poll();

 if(tmp > DecodeReadTime.ShortL &&
tmp < DecodeReadTime.ShortH)

{cOutput = cBit;} // bit stays the same
else{cOutput = BitErr;} // Un-paired short time

}

 else {cOutput = BitErr;} // Edge time outside limits

}

return cOutput;

}

// **

// Routine to decode a BiPhase1 bit

// ***/

unsigned char Coding_BiPhase1Decode(void)

{

 unsigned char cOutput = BitErr;

 unsigned int tmp;

 tmp = Coding_Timer_Poll(); // Catch next edge time

 if(tmp < UPPERTIMINGLMT) // Check if edge time is useable

 {

// Check edge time and determine next Logic value //

if(tmp > DecodeReadTime.LongL &&
tmp < DecodeReadTime.LongH)
16
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
{cOutput = 0;}

else if(tmp > DecodeReadTime.ShortL && tmp < DecodeReadTime.ShortH)

{

 tmp = Coding_Timer_Poll();

 if(tmp > DecodeReadTime.ShortL && tmp < DecodeReadTime.ShortH)

 {cOutput = 1;}

else

{

 cOutput = BitErr; // Un-paired short time between
}

}

else {cOutput = BitErr;} // Edge time outside limits

}

return cOutput;

}

// **

// Read Routine Using the U2270

// **

void Coding_DSP(unsigned char Encoding)

{

unsigned char count=0, cLong=0, cShort=0;

unsigned char i, logicFlag, cNumBit=0, syncFlag=0;

unsigned char tmpData,j, bitVal=0;

volatile unsigned char *cDSPBuffPtr = &cDataBuff[0];

cDataBuffPtr = &cDataBuff[0]; // Place pointer at beginning
 of buffer

if((*cDSPBuffPtr & 0x80) == 0x80){logicFlag = 1;} // Initialize logic
flag

else{logicFlag = 0;}

for(j=0; j<BUFFSIZE; j++) // Process entire buffer

{

tmpData = *cDSPBuffPtr++; // Pull out working byte

for(i=0; i<8; i++) // Process entire byte

{

if(!syncFlag)

{

if(logicFlag == 1 && (tmpData & 0x80) == 0x80){count++;}

else if(logicFlag == 0 && (tmpData & 0x80) == 0x00){count++;}

else

{

logicFlag = logicFlag^0x01; // Current flag inverted

if(count > 4)
17
9164A–AUTO–09/09

{

syncFlag=1; // 2T sync found

bitVal = logicFlag;

}

count=1; // Reset count

}

}

else

{

if(logicFlag == 1 && (tmpData & 0x80) == 0x80){count++;}

else if(logicFlag == 0 && (tmpData & 0x80) == 0x00){count++;}

else

{

// Check if count below threshold, inc short

if(count <=4){cShort++;}

else{cLong++;} // else inc long

count=1; // Reset count

logicFlag = logicFlag^0x01; // Current flag inverted

if(cLong == 1)

{

cLong = 0;

 if(Encoding == MANCHESTER) // Decode Manchester

{bitVal = bitVal^0x01;}

 else if(Encoding == BIPHASE1) // Decode BiPhase

{bitVal = 0;}

if(bitVal == 1)

{

*cDataBuffPtr = *cDataBuffPtr << 1;

*cDataBuffPtr = *cDataBuffPtr | 0x01;

}

else if(bitVal == 0)

{

*cDataBuffPtr = *cDataBuffPtr << 1;

}

cNumBit++;

}

else if(cShort == 2)

{

cShort = 0;

 if(Encoding == MANCHESTER){;}
else if(Encoding == BIPHASE1){bitVal = 1;}

if(bitVal == 1)
18
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
{

*cDataBuffPtr = *cDataBuffPtr << 1;

*cDataBuffPtr = *cDataBuffPtr | 0x01;

}

else if(bitVal == 0)

{

*cDataBuffPtr = *cDataBuffPtr << 1;

}

cNumBit++;

}

 if(cNumBit == 8) // When full byte is read

 {

 cDataBuffPtr++; // Inc ptr to next byte
cNumBit = 0; // Clear bit counter

}

}

}

 tmpData = tmpData << 1; // Shift working byte to next
bit

}

}

}

// **

// Read Routine Using

// Pass in the number of Tag Type, data encoding, and type of synch.

// Pass in the number of bits being sent and the data buffer

// ***/

unsigned char Coding_ReadData(unsigned char mode, unsigned int numBits,
unsigned char startBit, unsigned char Encoding)

{

unsigned char cBit = 2;

volatile unsigned char cError = SUCCESS0;

unsigned char cQuit = 0;

unsigned int cNumBits = 0, cNumBytes = 0,i;

cBit = startBit;

if(mode == SAMPLING)

{

 directionFlag = READ; // Set direction for timer
interrupt

cDataBuff[BUFFSIZE-1] = 0x00; // Clear buffer end byte

 Coding_TimerInit((clk2T/6), mode); // Init timer w/ periodic
interrupt

 do
19
9164A–AUTO–09/09

 {

 }

 while(cDataBuff[BUFFSIZE-1] == 0x00);// Buffer end byte accessed

 Coding_Timer_Stop(); // Stop Timer

 Coding_DSP(Encoding); // Run DSP processing on samples.

}

else

{

 cBit = Coding_ManchesterSync(100);

 if(cBit == SUCCESS0 || cBit == SUCCESS1)

 {

 while(!cQuit)

 {

 for(i=0; i<(numBits*2)+10;i++)

 {

 if(cNumBits == 8) // When full byte is read

{

cDataBuffPtr++; // Increment pointer to next
byte in buffer

cNumBits = 0; // Clear bit counter

cNumBytes++; // Increment byte counter

}

if(Encoding == MANCHESTER) // Decode the next bit

(Manchester)

{cBit = Coding_ManchesterDecode(cBit);}

else if(Encoding == BIPHASE1) // Decode the next bit
(BiPhase)

{cBit = Coding_BiPhase1Decode();}

 if(cBit == 1)

 {

 *cDataBuffPtr = *cDataBuffPtr << 1;

 *cDataBuffPtr = *cDataBuffPtr | 0x01;

 }

 else if(cBit == 0)

 {

 *cDataBuffPtr = *cDataBuffPtr << 1;

 }

 else{break;}

 cNumBits++; // Increment number of
bits read

 }

 cQuit = 1;

}

if((cNumBits+(8*cNumBytes)) == (numBits*2)+10){cError = 0;}

else{cError = BitErr;}
20
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
 }

 else{cError = SyncErr;}

 Coding_Timer_Stop();

}

if(cError != 0){for(i=0; i < BUFFSIZE; i++){cDataBuff[i]=0x00;}} //Reset
Buffer

return cError; // Return error code (zero = successfull)

}

// **

// * RFIDTimer Initialization of for Read Routine

// **

void Coding_TimerInit(unsigned int countVal, unsigned char mode)

{

 CODINGTIMERMSK = 0x00; //Disable TC1 interrupts

 cDataBuffPtr = &cDataBuff[0]; // Place pointer at beginning of
buffer

OCR1A = countVal;

 CODINGTIMERCNT = 0x00; //Load TC1 count value

 if(mode == TIMING)

{

 sbi(CODINGTIMERMSK,TICIE1); // Timer1 Input Capture &
Interrupt Enable

 sbi(CODINGTIMERMSK,TOIE1);

 }

else{sbi(CODINGTIMERMSK,OCIE1A);} // Timer/Counter1 Output
Compare A

CODINGTIMERFLR |= 0x27; //clear interrupt flags for TC1

CODINGTIMERCTRA = 0x00; //Normal mode

cbi(CODINGTIMERCTRB,ICES1); //Look for Falling Edge on ICP1

CODINGTIMERCTRB |= (1<<CS11); //prescale = clock source / 8
//exactly 1 us for every timer
step

CODINGTIMERCTRC = 0x00; //Normal mode

}
21
9164A–AUTO–09/09

// **

// * Shutdown RFIDTimer

// **

void Coding_Timer_Stop(void)

{

CODINGTIMERMSK &= ~0x27; //Disable TC1 interrupts

CODINGTIMERCTRA = 0x00;

CODINGTIMERCTRB = 0x00; //No clock source / Timer
Stopped

CODINGTIMERCTRC = 0x00;

CODINGTIMERFLR |= 0x27; //clear interrupt flags for TC1

}

// **

// * Read Edge Time

// **

unsigned int Coding_Timer_Poll(void)

{

asm("sei"); // Turn on global Interrupts

RdTime = 0; // Clear timing measurement

while(RdTime == 0){} // Wait for interrupt to
generate measurement

return RdTime;

}

// **

// * RFIDTimer Output Compare Interrupt Routine

// **

ISR(CODINGTIMER_CMPA)

{

CODINGTIMERCNT = 0x0000; //Reset TC1 Count value

RdTime = 1; //Set Read Time = 1 (Timer
Match)

if(directionFlag == READ) //Only process level sampling
on Read

{

if(numSampleBits == 8) //Complete byte

{

numSampleBits = 0; //Reset bit counter

cDataBuffPtr++; //Inc buffer ptr

}

*cDataBuffPtr = *cDataBuffPtr<<1; //Shift in new bit

if(tst(IOPIN,DATAIN) == 1) //Check logic level

{

*cDataBuffPtr = *cDataBuffPtr|0x01; //Store one

}

22
9164A–AUTO–09/09

Manchester Coding Basics

Manchester Coding Basics
numSampleBits++; //Inc bit count

}

}

//

// * RFIDTimer Overflow Interrupt Routine

// **

ISR(CODINGTIMER_OVF)

{

CODINGTIMERCNT = 0x0000; //Reset TC1 Count value

RdTime = 0xFFFF; //Set Read Time = 0xFFFF
(overflow)

}

// **

// * RFIDTimer Input Capture Interrupt Routine

// **

ISR(CODINGTIMER_IPC)

{

CODINGTIMERCNT = 0x0000; //Reset TC1 Count value

tgl(CODINGTIMERCTRB,ICES1); //change edge on ICP1 (XOR)

RdTime = ICR1;

}

7. TESTBENCH Section
asm("sei"); // Turn on global Interrupts

// *** Manchester Encoding ***

Coding_SetClk(256, 30, 210, 210, 350);

cDataBuff[0] = 0xFF;

cDataBuff[1] = 0xFE;

cDataBuff[2] = 0x6A;

tmp = Coding_ManchesterEncode(24);

// ***************************

// *** Manchester Decoding ***

Coding_ClkSync(30);

//tmp = Coding_ReadData(SAMPLING, 128, tmp, MANCHESTER);

tmp = Coding_ReadData(TIMING, 128, tmp, MANCHESTER);

if(tmp == SUCCESS0 || tmp == SUCCESS1)

{

// Process Data

}

// ***************************
23
9164A–AUTO–09/09

9164A–AUTO–09/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054
Saint-Quentin-en-Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
auto_control@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1. Modulation
	1.1 Amplitude Modulation
	1.2 On-Off Keying
	1.3 Frequency Modulation
	1.4 Frequency Shift Keying

	2. Coding Techniques
	2.1 NRZ
	2.2 BiPhase
	2.3 Manchester

	3. Manchester Encoding
	3.1 Implementation of ManchesterOne(T)
	3.2 Implementation of ManchesterZero(T)

	4. Manchester Decoding
	4.1 Timing Based Manchester Decode
	4.2 Sampling Based Manchester Decode

	5. Conclusion
	6. Appendix: Code Samples
	7. TESTBENCH Section

