
The XSB System

Version 3.5

Volume 2: Libraries, Interfaces and Packages

xsb

April 22, 2015

Credits

Interfaces have become an increasingly important part of XSB. The interface from C to
Prolog was implemented by David Warren as was the DLL interface; the interface from
Prolog to C (foreign language interface) was developed by Jiyang Xu, Kostis Sagonas
and Steve Dawson. The Oracle interface was written by Hassan Davulcu and Ernie
Johnson. The ODBC took as its starting point the Oracle interface, and was written
by Lily Dong and Baoqiu Cui, and maintained by David Warren. The interface to
POSIX regular expression and wildcard matching as well as the Libwww-based Web
access package was written by Michael Kifer. The interface to Perl pattern matching
routines was written by Michael Kifer and Jin Yu. The SModels interface was written
by Luis F. Castro.

The SLX preprocessor was written by José Júlio Alferes and Luís Moniz Pereira. Unix-
style scripting libraries were written by Terrance Swift, and the ordset library was
written by Richard O’Keefe.

Contents

1 Library Utilities 1

1.1 List Processing . 1

1.1.1 Processing Comma Lists . 3

1.2 Attributed Variables . 3

1.2.1 Lowlevel Interface . 4

1.3 constraintLib: a library for CLP . 7

1.4 Formatted Output . 9

1.5 Low-level Atom Manipulation Predicates . 11

1.6 Script Writing Utilities . 12

1.6.1 Communication with Subprocesses . 14

1.7 Socket I/O . 21

1.8 Arrays . 27

1.9 The Profiling Library . 27

1.10 Gensym . 29

1.11 Random Number Generator . 30

1.12 Loading Separated Files . 31

1.13 Scanning in Prolog . 32

1.14 XSB Lint . 33

1.15 “Pure” Meta-programming in XSB with prolog_db.P 35

1.16 Miscellaneous Predicates . 36

1.17 Other Libraries . 37

1.17.1 Justification . 37

1.17.2 AVL Trees . 37

1.17.3 Ordered Sets: ordsets.P . 37

i

CONTENTS ii

1.17.4 Unweighted Graphs: ugraphs.P . 38

1.17.5 Heaps: heaps.P . 38

2 XSB-ODBC Interface 39

2.1 Introduction . 39

2.2 Using the Interface . 40

2.2.1 Connecting to and Disconnecting from Data Sources 40

2.2.2 Accessing Tables in Data Sources Using SQL 41

2.2.3 Cursor Management . 43

2.2.4 Accessing Tables in Data Sources through the Relation Level 43

2.2.5 Using the Relation Level Interface . 44

2.2.6 Handling NULL values . 45

2.2.7 The View Level Interface . 47

2.2.8 Insertions and Deletions of Rows through the Relational Level 49

2.2.9 Access to Data Dictionaries . 51

2.2.10 Other Database Operations . 51

2.2.11 Transaction Management . 52

2.2.12 Interface Flags . 52

2.2.13 Datalog . 53

2.3 Error messages . 54

2.4 Notes on specific ODBC drivers . 54

3 The New XSB-Database Interface 55

3.1 Introduction . 55

3.2 Configuring the Interface . 55

3.3 Using the Interface . 58

3.3.1 Connecting to and Disconnecting from Databases 58

3.3.2 Querying Databases . 59

3.4 Error Handling . 61

3.5 Notes on specific drivers . 63

4 Introduction to XSB Packages 65

5 Wildcard Matching 66

CONTENTS iii

6 pcre: Pattern Matching and Substitution Using PCRE 68

6.1 Introduction . 68

6.2 Pattern matching . 68

6.3 String Substitution . 69

6.4 Installation and configuration . 70

6.4.1 Configuring for Linux, Mac, and other Unices 70

6.4.2 Configuring for Windows . 70

7 curl: The XSB Internet Access Package 72

7.1 Introduction . 72

7.2 Integration with File I/O . 72

7.2.1 Opening a Web Document . 73

7.2.2 Closing a Web Document . 73

7.3 Low Level Predicates . 74

7.3.1 Loading web documents . 74

7.3.2 Retrieve the properties of a web document 74

7.3.3 Encode Url . 74

7.3.4 Obtaining the Redirection URL . 75

7.4 Installation and configuration . 75

8 sgml and xpath: SGML/XML/HTML Parsers and XPath 76

8.1 Introduction . 76

8.2 Overview of the SGML Parser . 77

8.3 Predicate Reference . 78

8.3.1 Loading Structured Documents . 78

8.3.2 Handling of White Spaces . 81

8.3.3 XML documents . 81

8.3.4 DTD-Handling . 82

8.3.5 Low-level Parsing Primitives . 83

8.3.6 External Entities . 86

8.3.7 Exceptions . 86

8.3.8 Unsupported features . 87

8.3.9 Summary of Predicates . 88

CONTENTS iv

8.4 XPath support . 88

9 rdf: The XSB RDF Parser 91

9.1 Introduction . 91

9.2 High-level API . 91

9.2.1 RDF Object representation . 92

9.2.2 Name spaces . 93

9.2.3 Low-level access . 93

9.3 Testing the RDF translator . 94

10 Constraint Packages 95

10.1 clpr: The CPL(R) package . 95

10.1.1 The CLP(R) API . 96

10.2 The bounds Package . 101

10.2.1 The bounds API . 103

11 Constraint Handling Rules 106

11.1 Introduction . 106

11.2 Syntax and Semantics . 106

11.2.1 Syntax . 106

11.2.2 Semantics . 107

11.3 CHR in XSB Programs . 109

11.3.1 Embedding in XSB Programs . 109

11.3.2 Compilation . 109

11.4 Useful Predicates . 110

11.5 Examples . 110

11.6 CHR and Tabling . 111

11.6.1 General Issues and Principles . 111

11.6.2 Call Abstraction . 112

11.6.3 Answer Projection . 112

11.6.4 Answer Combination . 114

11.6.5 Overview of Tabling-related Predicates . 116

11.7 Guidelines . 116

CONTENTS v

11.8 CHRd . 116

12 XASP: Answer Set Programming with XSB and Smodels 118

12.1 Installing the Interface . 119

12.1.1 Installing the Interface under Unix . 119

12.1.2 Installing XASP under Windows using Cygwin 120

12.2 The Smodels Interface . 122

12.2.1 Using the Smodels Interface with Multiple Threads 125

12.3 The xnmr_int Interface . 125

13 PITA: Probabilistic Inference 128

13.0.1 Installation . 128

13.0.2 Use . 130

14 Other XSB Packages 132

14.1 Programming with FLORA-2 . 132

14.2 Summary of xmc: Model-checking with XSB . 134

14.3 slx: Extended Logic Programs under the Well-Founded Semantics 135

14.4 gapza: Generalized Annotated Programs . 137

Chapter 1

Library Utilities

In this chapter we introduce libraries of some useful predicates that are supplied with XSB. Inter-
faces and more elaborate packages are documented in later chapters. These predicates are available
only when imported them from (or explicitly consult) the corresponding modules.

1.1 List Processing

The XSB library contains various list utilities, some of which are listed below. These predicates
should be explicitly imported from the module specified after the skeletal specification of each
predicate. There are a lot more useful list processing predicates in various modules of the XSB
system, and the interested user can find them by looking at the sources.

append(?List1, ?List2, ?List3) module: basics

Succeeds if list List3 is the concatenation of lists List1 and List2.

member(?Element, ?List) module: basics

Checks whether Element unifies with any element of list List, succeeding more than once if
there are multiple such elements.

memberchk(?Element, ?List) module: basics

Similar to member/2, except that memberchk/2 is deterministic, i.e. does not succeed more
than once for any call.

ith(?Index, ?List, ?Element) module: basics

Succeeds if the Indexth element of the list List unifies with Element. Fails if Index is not
a positive integer or greater than the length of List. Either Index and List, or List and
Element, should be instantiated (but not necessarily ground) at the time of the call.

delete_ith(+Index, +List, ?Element, ?RestList) module: listutil

Succeeds if the Indexth element of the list List unifies with Element, and RestList is List

with Element removed. Fails if Index is not a positive integer or greater than the length of
List.

1

CHAPTER 1. LIBRARY UTILITIES 2

log_ith(?Index, ?Tree, ?Element) module: basics

Succeeds if the Indexth element of the Tree Tree unifies with Element. Fails if Index is not
a positive integer or greater than the number of elements that can be in Tree. Either Index

and Tree, or Tree and Element, should be instantiated (but not necessarily ground) at the
time of the call. Tree is a list of full binary trees, the first being of depth 0, and each one
being of depth one greater than its predecessor. So log_ith/3 is very similar to ith/3 except
it uses a tree instead of a list to obtain log-time access to its elements.

log_ith_bound(?Index, ?Tree, ?Element) module: basics

is like log_ith/3, but only if the Indexth element of Tree is non-variable and equal to
Element. This predicate can be used in both directions, and is most useful with Index
unbound, since it will then bind Index and Element for each non-variable element in Tree

(in time proportional to N ∗ logN , for N the number of non-variable entries in Tree.)

length(?List, ?Length) module: basics

Succeeds if the length of the list List is Length. This predicate is deterministic if List is
instantiated to a list of definite length, but is nondeterministic if List is a variable or has a
variable tail. If List is uninstantiated, it is unified with a list of length Length that contains
variables.

same_length(?List1, ?List2) module: basics

Succeeds if list List1 and List2 are both lists of the same number of elements. No relation
between the types or values of their elements is implied. This predicate may be used to
generate either list (containing variables as elements) given the other, or to generate two lists
of the same length, in which case the arguments will be bound to lists of length 0, 1, 2,

select(?Element, ?L1, ?L2) module: basics

List2 derives from List1 by selecting (removing) an Element non-deterministically.

reverse(+List, ?ReversedList) module: basics

Succeeds if ReversedList is the reverse of list List. If List is not a proper list, reverse/2

can succeed arbitrarily many times. It works only one way.

perm(+List, ?Perm) module: basics

Succeeds when List and Perm are permutations of each other. The main use of perm/2 is
to generate permutations of a given list. List must be a proper list. Perm may be partly
instantiated.

subseq(?Sequence, ?SubSequence, ?Complement) module: basics

Succeeds when SubSequence and Complement are both subsequences of the list Sequence

(the order of corresponding elements being preserved) and every element of Sequence which
is not in SubSequence is in the Complement and vice versa. That is,

length(Sequence) = length(SubSequence) + length(Complement)

for example, subseq([1,2,3,4], [1,3], [2,4]). The main use of subseq/3 is to generate
subsets and their complements together, but can also be used to interleave two lists in all
possible ways.

CHAPTER 1. LIBRARY UTILITIES 3

merge(+List1, +List2, ?List3) module: listutil

Succeeds if List3 is the list resulting from “merging” lists List1 and List2, i.e. the elements
of List1 together with any element of List2 not occurring in List1. If List1 or List2 contain
duplicates, List3 may also contain duplicates.

absmerge(+List1, +List2, ?List3) module: listutil

Predicate absmerge/3 is similar to merge/3, except that it uses predicate absmember/2

described below rather than member/2.

absmember(+Element, +List) module: listutil

Similar to member/2, except that it checks for identity (through the use of predicate ’==’/2)
rather than unifiability (through ’=’/2) of Element with elements of List.

member2(?Element, ?List) module: listutil

Checks whether Element unifies with any of the actual elements of List. The only differ-
ence between this predicate and predicate member/2 is on lists having a variable tail, e.g.
[a, b, c | _]: while member/2 would insert Element at the end of such a list if it did not
find it, Predicate member2/2 only checks for membership but does not insert the Element

into the list if it is not there.

closetail(?List) module: listutil

Predicate closetail/1 closes the tail of an open-ended list. It succeeds only once.

1.1.1 Processing Comma Lists

It is often useful to process comma lists when meta-interpreting or preprocessing. XSB libraries
include the following simple utilities.

comma_to_list(+CommaList,-List) module: basics

Transforms CommaList to List.

comma_append(?CL1,?CL2,?CL3) basics

comma_length(?CommaList,?Length) basics

comma_member(?Element,?CommaList) basics

comma_member(?Element,?CommaList) module: basics

Analogues for comma lists of append/3, length/3, member/2 and memberchk/2, respectively.

1.2 Attributed Variables

Attributed variables are a special data type that associates variables with arbitrary attributes
as well as supports extensible unification. Attributed variables have proven to be a flexible and
powerful mechanism to extend a classic logic programming system with the ability of constraint
solving. Our low-level API for constraints closely resembles that of hProlog [8] and SWI [31].

CHAPTER 1. LIBRARY UTILITIES 4

1.2.1 Lowlevel Interface

Attributes of variables are pairs of attribute module names and values. An attribute module name
can be any atom. A value can be any XSB value (term, variable, atom, . . .). Any variable has
at most one attribute for a particular attribute module. Attribute modules are distinct from XSB
modules: although it is most efficient to keep each handlers for each attribute module in their own
XSB module. c Attributes can be manipulated with the following three predicates (get_attr/3,
put_attr/3 and del_attr/2) defined in the module machine.

get_attr(-Var,+Mod, ?Val) module: machine

Gets the value of the attribute of Var in attribute module Mod. Non-variable terms in Var

cause a type error. Val will be unified with the value of the attribute, if it exists. Otherwise
the predicate fails.

put_attr(-Var,+Mod, ?Val) module: machine

Sets the value of the attribute of Var in attribute module Mod. Non-variable terms in Var

cause a type error. The previous value of the attribute is overwritten, if it exists.

del_attr(-Var, +Mod) module: machine

Removes the attribute of Var in attribute module Mod. Non-variable terms in Var cause a
type error. The previous value of the attribute is removed, if it exists.

One has to extend the default unification algorithm for used attributes by installing a handler
in the following way:

:- install_verify_attribute_handler(+Mod,−AttrV alue,−Target, +Handler, +WarningF lag)

:- install_verify_attribute_handler(+Mod,−AttrV alue,−Target, +Handler)

The predicates install_verify_attribute_handler/5 and install_verify_attribute_handler/4

are defined in module machine. Mod is the attribute Module and Handler is a term with arguments
AttrV alue and Target. The Handler term has to correspond to a handler predicate that takes the
value of the attribute (AttrV alue) and the term that the attributed value is bound to (Target) as
arguments. The argument WarningF lag in the 5-argument version of the predicate can be used
to suppress the warning issued when replacing the verify_attribute_handler for a module. If
the argument is warning_on then the warning is issued if a handler for the module already exists.
Otherwise, the warning is suppressed. The 4-argument version of the predicate does not suppress
the warning.

To get good efficiency, it is usually best to keep the handlers for each attribute module in
separate XSB modules. The handler is called after the unification of an attributed variable with a
term or other attributed variable, if the attributed variable has an attribute in the corresponding
module. The two arguments of the unification are already bound at the time the handler is called,
i.e. the handler is a post-unify handler.

Here, by giving the implementation of a simple finite domain constraint solver (see the file fd.P

below), we show how these lowlevel predicates for attributed variables can be used. In this example,
an attribute in the module fd is used and the value of this attribute is a list of terms.

CHAPTER 1. LIBRARY UTILITIES 5

%% File: fd.P

%%

%% A simple finite domain constrait solver implemented using the lowlevel

%% attributes variables interface.

:- import put_attr/3, get_attr/3, del_attr/2,

install_verify_attribute_handler/4 from machine.

:- import member/2 from basics.

:- install_verify_attribute_handler(fd,AttrValue,Target,fd_handler(AttrValue,Target)).

fd_handler(Da, Target) :-

(var(Target), % Target is an attributed variable

get_attr(Target, fd, Db) -> % has a domain

intersection(Da, Db, [E|Es]), % intersection not empty

(Es = [] -> % exactly one element

Target = E % bind Var (and Value) to E

; put_attr(Target, fd, [E|Es]) % update Var’s (and Value’s)

)

; member(Target, Da) % is Target a member of Da?

).

intersection([], _, []).

intersection([H|T], L2, [H|L3]) :-

member(H, L2), !,

intersection(T, L2, L3).

intersection([_|T], L2, L3) :-

intersection(T, L2, L3).

domain(X, Dom) :-

var(Dom), !,

get_attr(X, fd, Dom).

domain(X, List) :-

List = [El|Els], % at least one element

(Els = [] % exactly one element

-> X = El % implied binding

; put_attr(Fresh, fd, List), % create a new attributed variable

X = Fresh % may call verify_attributes/2

).

show_domain(X) :- % print out the domain of X

var(X), % X must be a variable

get_attr(X, fd, D),

write(’Domain of ’), write(X),

write(’ is ’), writeln(D).

When writing or porting a constraint package, it is usually useful to adjust the way that correct
answer substitutions are shown in the command line. This can be controlled using the following
two predicates:

CHAPTER 1. LIBRARY UTILITIES 6

install_attribute_portray_hook(Module,Attribute,Handler) module: machine
This hook is called by the command-line interpreter when printing out the value of each

variable in a top-level query. When a printing out an attributed variable, any appropriate
handlers are called to portray the constraints represented by the attribute. As an example,
the bounds package (Section 10.2) uses a hook to print out the bounds of variables:

| ?- X in 1..10,Y in 1..10,X + 4 #< Y -3.

X = _h629 { bounds : 1 .. 2 }

Y = _h673 { bounds : 9 .. 10 }

Writing a handler can be as simple as possible or as elaborate as desired. In the case of
bounds the handler is simple:

bounds_attr_portray_hook(bounds(L,U,_)) :- write(L..U).

The hook is installed when the constraint package is loaded by placing in the package loader
directive such as:

:- install_attribute_portray_hook(bounds,Attr,bounds_attr_portray_hook(Attr)).

Note that the hook will be indexed on the module associated with the attribute (in this case
bounds). XSB’s command-line interpreter will unify the second argument of the portray hook
with the attribute, and then call Handler.

install_attribute_constraint_hook(Module,Vars,Names,Handler) module: machine
For some constraint packages, it may not be particularly useful to associate constraints with

variables: instead, the projection of global constraints onto the variables of the top-level
query may be more useful. This is the case in the CLP(R) package (Section 10.1), where the
command-line interaction may look as follows:

| ?- {X = 2*Y,Y >= 7},inf(X,F).

{ X >= 14.0000 }

{ Y = 0.5000 * X }

X = _h8841

Y = _h9506

F = 14.0000

In XSB, the (projection of the) global constraints in CLP(R) are displayed by the following
routines:

clpr_portray_varlist(Vars,Names):-

filter_varlist(Vars,Names,V1,N1),

dump(V1,N1,Constraints),

member(C,Constraints),

console_write(’ { ’), console_write(C),console_writeln(’ } ’),

fail.

clpr_portray_varlist(_V,_N).

filter_varlist([],[],[],[]).

filter_varlist([V1|R1],[N1|R2],[V1|R3],[N1|R4]):-

CHAPTER 1. LIBRARY UTILITIES 7

var(V1),!,

filter_varlist(R1,R2,R3,R4).

filter_varlist([_V1|R1],[_N1|R2],R3,R4):-

filter_varlist(R1,R2,R3,R4).

This predicate sets up a call to the CLP(R) library predicate dump/3, whose constraints it
then writes out to the console. Analogous to the portray hook, the console hook is installed
using the directive:

:- install_constraint_portray_hook(clpr,Vars,Names,clpr_portray_varlist(Vars,Names)).

If the clpr module is loaded, the command line interpreter checks any constraint portray
hooks upon the first success of a top-level goal. It then unifies the second argument Vars

with the variables of the goal, and Names with the names of the variables of the goal which
are then passed on to Handler

1.3 constraintLib: a library for CLP

XSB supports constraint logic programming through its engine-level support of attributed vari-
ables (Section 1.2), and its support for constraint handling rules (CHR) (Chapter 11). The
constraintLib library includes routines for delaying and examining bindings that are commonly
used to implement CHR and other constraint libraries.

When processing constraints, it is often useful to delay a goal based on the instantiation level
of a term or set of terms. For instance a 3 > X + Y should be delayed until both X and Y are
instantiated. However the goal should be reinvoked as soon as possible after both are instantiated
in order to prune search paths that may not be useful to pursue. The predicate when/2 provides a
useful mechanism to delay goals based on instantiation patterns 1.

when(+Condition,Goal) module: constraintLib

Delays the execution of Goal until Condition is satisfied, whereupon Goal will be executed.
Condition can have the form

• ?=(Term1,Term2)

• nonvar(Term)

• ground(Term) 2

• (Condition,Condition)

• (Condition ; Condition)

Example: The following session illustrates the use of when/2 to delay a goal.

1Despite the similar name, this method of delaying is conceptually different from SLG delaying discussed in
Volume 1 of this manual, which is used for resolving cycles of dependencies in computing the well-founded semantics,
and is not based on the state of instantiation of a term.

2To use ground/1 in the condition, it must be imported into the file where it is used.

CHAPTER 1. LIBRARY UTILITIES 8

|?- when(nonvar(X),writeln(test(1-2,nonvar))),writeln(test(1,nonvar)),X = f(_Y).

test(1,nonvar)

test(1 - 2,nonvar)

X = f(_h245)

unifiable(X, Y, -Unifier) module: constraintLib

If X and Y can unify, succeeds unifying Unifier with a list of terms of the form Var =

Value representing a most general unifier of X and Y. unifiable/3 can handle cyclic terms.
Attributed variables are handled as normal variables. Associated hooks are not executed 3.

setarg(+Index,+Term,+Value) module: constraintLib

The predicate setarg/3 provides an efficient but non-logical way to update argument Index

of a Prolog term Term to Value via destructive assignment and without the necessity of
copying Term. setarg/3 should be used sparingly, to ensure both clarity and portability of
code.

Example

|?- X = p(f(1),g(2),r([a])),

writeln(zero(X)),

(set_arg(X,2,g([b])),

writeln(one(X)),

fail

; writeln(two(X))).

zero(p(f(1),g(2),r([a])))

one(p(f(1),g([b]),r([a])))

two(p(f(1),g(2),r([a])))

X = p(f(1),g(2),r([a]))

Error Cases

• Index is a variable

– instantiation_error

• Index neither a variable nor an integer

– type_error(integer,Index)

• Index is less than 0

– domain_error(not_less_than_zero,Index)

• Term is a variable

– instantiation_error

• Term neither a variable nor a compound term

– type_error(compound,Term)

term_variables(+Term,-Variables module: constraintLib

Given any Prolog term Term as input, returns a sorted list of variables in the term.

3In Version 3.5, unifiable/3 is implemented as a Prolog predicate and so is slower than many of the predicates
in this section.

CHAPTER 1. LIBRARY UTILITIES 9

1.4 Formatted Output

format(+String,+Control) module: format

format(+Stream,+String,+Control) module: format

format/2 and format/3 act as a Prolog analog to the C stdio function printf(), allowing
formatted output 4.

Output is formatted according to String which can contain either a format control sequence,
or any other character which will appear verbatim in the output. Control sequences act as
place-holders for the actual terms that will be output. Thus

?- format("Hello ~q!",world).

will print Hello world!.

If there is only one control sequence, the corresponding element may be supplied alone in
Control. If there are more, Control must be a list of these elements. If there are none then
Control must be an empty list. There have to be as many elements in Control as control
sequences in String.

The character ~ introduces a control sequence. To print a ~ just repeat it:

?- format("Hello ~~world!", []).

will output Hello ~world!.

The general format of a control sequence is ~NC. The character C determines the type of the
control sequence. N is an optional numeric argument. An alternative form of N is *. * implies
that the next argument in Arguments should be used as a numeric argument in the control
sequence. For example:

?- format("Hello~4cworld!", [0’x]).

and

?- format("Hello~*cworld!", [4,0’x]).

both produce

Helloxxxxworld!

The following control sequences are available in XSB.

4The format family of predicates is due to Quintus Prolog, by way of Ciao.

CHAPTER 1. LIBRARY UTILITIES 10

• ~a The argument is an atom. The atom is printed without quoting.

• ~Nc (Print character.) The argument is a number that will be interpreted as an UTF-8
code. N defaults to one and is interpreted as the number of times to print the character.

• ~f (Print float). The argument is a float. The float will be printed out by XSB.

• ~d (Print integer). The argument is an integer, and will be printed out by XSB.

• ~Ns (Print string.) The argument is a list of UTF-8 codes. Exactly N characters will be
printed. N defaults to the length of the string. Example:

?- format("Hello ~4s ~4s!", ["new","world"]).

?- format("Hello ~s world!", ["new"]).

will print as

Hello new worl!

Hello new world!

respectively.

• ~i (Ignore argument.) The argument may be of any type. The argument will be ignored.
Example:

?- format("Hello ~i~s world!", ["old","new"]).

will print as

Hello new world!

• ~k (Print canonical.) The argument may be of any type. The argument will be passed
to write_canonical/2). Example:

?- format("Hello ~k world!", a+b+c).

will print as

Hello +(+(a,b),c) world!

• ~q (Print quoted.) The argument may be of any type. The argument will be passed to
writeq/2. Example:

?- format("Hello ~q world!", [[’A’,’B’]]).

will print as

Hello [’A’,’B’] world!

• ~w (write.) The argument may be of any type. The argument will be passed to write/2.
Example:

?- format("Hello ~w world!", [[’A’,’B’]]).

will print as

CHAPTER 1. LIBRARY UTILITIES 11

Hello [A,B] world!

• ~Nn (Print newline.) Print N newlines. N defaults to 1. Example:

?- format("Hello ~n world!", []).

will print as

Hello

world!

1.5 Low-level Atom Manipulation Predicates

XSB has a number of low-level predicates that, despite their names, examine properties of atoms.
The functionality of these predicates is often a subset of the ISO predicate sub_atom/5, but these
predicates are faster, as they are more specialized, and have been written in C.

These predicates are especially powerful when they are combined with pattern-matching facili-
ties provided by the pcre package described in Chapter 6.

It is important to note, that not all string manipulation predicates have been made thread-safe
in Version 3.5. In addition, as noted, the predicates may or may not properly handle (non-ASCII)
UTF-8 characters.

str_sub(+Sub, +Str, ?Pos) module: string
str_sub(+Sub, +Str) module: string

Succeeds if Sub is a substring of Str. In that case, Pos unifies with the position where the
match occurred. Positions start from 0. str_sub/2 is also available, which is equivalent to
having _ in the third argument of str_sub/3 5.

str_match(+Sub, +Str, +Direction, ?Beg, ?End) module: string

This is an enhanced version of the previous predicate. Direction can be forward or reverse

(or any abbreviation of these). If forward, the predicate finds the first match of Sub from
the beginning of Str. If reverse, it finds the first match from the end of the string (i.e.,
the last match of Sub from the beginning of Str). Beg and End must be integers or unbound
variables. (It is possible that one is bound and another is not.) Beg unifies with the offset of
the first character where Sub matched, and End unifies with the offset of the next character
to the right of Sub (such a character might not exist, but the offset is still defined). Offsets
start from 0.

Both Beg and End can be bound to negative integers. In this case, the value represents the
offset from the second character past the end of Str. Thus -1 represents the character next
to the end of Str and can be used to check where the end of Sub matches in Str. In the
following examples

5Currently, str_sub/2 works properly for UTF-8 characters, but str_sub/3 does not.

CHAPTER 1. LIBRARY UTILITIES 12

?- string_match(Sub,Str,forw,X,-1).

?- string_match(Sub,Str,rev,X,-1).

?- string_match(Sub,Str,forw,0,X).

the first checks if the first match of Sub from the beginning of Str is a suffix of Str (because
End represents the character next to the last character in Sub, so End=-1 means that the last
characters of Sub and of Str occupy the same position). If so, X is bound to the offset (from
the end of Str) of the first character of Sub. The second example checks if the last match of
Sub in Str is a suffix of Str and binds X to the offset of the beginning of that match (counted
from the beginning of Str). The last example checks if the first match of Sub is a prefix of
Str. If so, X is bound to the offset (from the beginning of Str) of the last character of Sub 6.

substring(+String, +BeginOffset, +EndOffset, -Result) module: string

String can be an atom or a list of characters, and the offsets must be integers. If EndOffset

is negative, endof(String)+EndOffset+1 is assumed. Thus, -1 means end of string. If
BeginOffset is less than 0, then 0 is assumed; if it is greater than the length of the string,
then string end is assumed. If EndOffset is non-negative, but is less than BeginOffset, then
empty string is returned.

Offsets start from 0.

The result returned in the fourth argument is a string, if String is an atom, or a list of
characters, if so is String.

The substring/4 predicate always succeeds (unless there is an error, such as wrong argument
type).

Here are some examples:

| ?- substring(’abcdefg’, 3, 5, L).

L = de

| ?- substring("abcdefg", 4, -1, L).

L = [101,102]

(i.e., L = ef represented using ASCII codes) 7.

1.6 Script Writing Utilities

Prolog, (in particular XSB!) can be useful for writing scripts. Prolog’s simple syntax and declarative
semantics make it especially suitable for scripts that involve text processing. There are several
ways to access script-writing commands from XSB. The first is to execute the command via the
predicates shell/1 or shell/2. These predicates can execute any command but they do not

6Currently, string_match/5 does not work properly for UTF-8 characters.
7Currently, substring/4 works properly for UTF-8 characters.

CHAPTER 1. LIBRARY UTILITIES 13

provide streamability across UNIX and Windows commands, and they do not return any output of
commands to Prolog. Special predicates are provided to handle cross-platform compatibility and
to bring output into XSB.

Effort has been made to make the these thread-safe; however in Version 3.5, calls to the XSB
script writing utilities go through a single mutex, and may cause contention if many threads seek
to concurrently use sockets.

expand_filename(+FileName,-ExpandedName) module: machine

Expands the file name passed as the first argument and binds the variable in the second
argument to the expanded name. This includes (1) expanding Unix tildes, (2) prepending
FileName to the current directory, and (3) “rectifying” the expanded file name. In rectifi-
cation, the expanded file name is “rectified” so that multiple repeated slashes are replaced
with a single slash, the intervening “./” are removed, and “../” are applied so that the pre-
ceding item in the path name is deleted. For instance, if the current directory is /home, then
abc//cde/..///ff/./b will be converted into /home/abc/ff/b.

Under Windows, this predicates does rectification as described above, (using backslashes when
appropriate), but it does not expand the tildes.

expand_filename_no_prepend(+FileName,-ExpandedName) module: shell

This predicate behaves as expand_filename/2, but only expands tildes and does rectification.
It does not prepend the current working directory to relative file names.

parse_filename(+FileName,-Dir,-Base,-Extension) module: machine

This predicate parses file names by separating the directory part, the base name part, and
file extension. If file extension is found, it is removed from the base name. Also, directory
names are rectified and if a directory name starts with a tilde (in Unix), then it is expanded.
Directory names always end with a slash or a backslash, as appropriate for the OS at hand.

For instance, ∼john///doe/dir1//../foo.bar will be parsed into: /home/john/doe/, foo,
and bar (where we assume that /home/john is what ∼john expands into).

sleep(+Seconds) module: shell

Put XSB to sleep for a given number of seconds.

Error Cases

• Seconds is a variable

– instantiation_error.

• Seconds is not an integer

– type_error(integer, Seconds).

sys_pid(-Pid) module: shell

Get Id of the current process.

getenv(+VarName,-VarVal module: machine

Unifies VarVal with the value of VarName in the current shell. If VarName is not an environ-
ment varible, the predicate fails.

Example:

CHAPTER 1. LIBRARY UTILITIES 14

:- import getenv/2 from machine.

yes

| ?- getenv(’HOSTTYPE’,F).

F = intel-pc

putenv(+String) module: machine

If String is of the form VarName=Value, inserts or resets the environment variable VarName.
If VarName does not exist, it is inserted with VarVal. If the VarName does exist, it is reset to
VarVal. putenv/2 always succeeds.

Exceptions:

instantiation_error String is not instantiated at the time of call.

type_error VarName or VarVal is not an atom or a list of atoms.

epoch_seconds(-Seconds) module: machine

Returns the number of seconds since the beginning of the UNIX/POSIX epoch (January 1,
1970) 8. May cause overflow on 32-bit platforms.

1.6.1 Communication with Subprocesses

In the previous section, we have seen several predicates that allow XSB to create other processes.
However, these predicates offer only a very limited way to communicate with these processes. The
predicate spawn_process/5 and friends come to the rescue. It allows a user to spawn any process
(including multiple copies of XSB) and redirect its standard input and output to XSB streams.
XSB can then write to the process and read from it. The section of socket I/O describes yet another
mode of interprocess communication.

In addition, the predicate pipe_open/2 described in this section lets one create any number of
pipes (that do not need to be connected to the standard I/O stream) and talk to child processes
through these pipes. All predicates in this section, except pipe_open/2 and fd2stream/2, must be
imported from module shell. The predicates pipe_open/2 and fd2stream/2 must be imported
from file_io.

spawn_process(+CmdSpec,-StreamToProc,-StreamFromProc,-ProcStderrStream,-ProcId)

Spawn a new process specified by CmdSpec. CmdSpec must be either a single atom or a list
of atoms. If it is an atom, then it must represent a shell command. If it is a list, the first
member of the list must be the name of the program to run and the other elements must be
arguments to the program. Program name must be specified in such a way as to make sure
the OS can find it using the contents of the environment variable PATH. Also note that pipes,
I/O redirection and such are not allowed in command specification. That is, CmdSpec must
represent a single command. (But read about process plumbing below and about the related
predicate shell/5.)

8Uses the Posix call time(0), so the number of seconds will be returned on non-Unix platforms, such as Microsoft.

CHAPTER 1. LIBRARY UTILITIES 15

The next three parameters of spawn_process are XSB I/O stream identifiers for the process
(leading to the subprocess standard input), from the process (from its standard output), and
a stream capturing the subprocess standard error output. The last parameter is the system
process id.

Here is a simple example of how it works.

| ?- import file_flush/2, file_read_line_atom/2 from file_io.

| ?- import file_nl/1 , file_write/2 from xsb_writ.

| ?- spawn_process([cat, ’-’], To, From, Stderr, Pid),

writeln(To,’Hello cat!’), flush_output(To,_), file_read_line_atom(From,Y).

To = 3

From = 4

Stderr = 5

Pid = 14328

Y = Hello cat!

yes

Here we created a new process, which runs the “cat” program with argument “–”. This forces
cat to read from standard input and write to standard output. The next line writes an atom and
newline to the XSB stream To, which is bound to the standard input of the cat process (proc
id 14328). The cat process then copies the input to its standard output. Since standard output
of the cat process is redirected to the XSB stream From in the parent process, the last line in
our program is able to read it and return in the variable Y. Note that in the second line we used
flush_output/2. Flushing the output is extremely important here, because XSB I/O pipe (file)
streams are buffered. Thus, cat might not see its input until the buffer is filled up, so the above
clause might hang. flush_output/2 makes sure that the input is immediately available to the
subprocess.

In addition to the above general schema, the user can tell spawn_process/5 not to open one
of the communication streams or to use one of the existing communication streams. This is useful
when you do not expect to write or read to/from the subprocess or when one process wants to write
to another (see the process plumbing example below). To tell that a certain stream is not needed,
it suffices to bind that stream to an atom. For instance,

| ?- spawn_process([cat, ’-’], To, none, none, _),

nl(To), writeln(To,’Hello cat!’), flush_output(To).

To = 3,

Hello cat!

reads from XSB and copies the result to standard output. Likewise,

CHAPTER 1. LIBRARY UTILITIES 16

| ?- spawn_process(’cat library.tex’, none, From, none, _),

file_read_line_atom(From, S).

From = 4

S = \chapter{Library Utilities} \label{library_utilities}

In each case, only one of the streams is open. (Note that the shell command is specified as an atom
rather than a list.) Finally, if both streams are suppressed, then spawn_process reduces to the
usual shell/1 call (in fact, this is how shell/1 is implemented):

| ?- spawn_process([pwd], none, none).

/usr/local/foo/bar

On the other hand, if any one of the three stream variables in spawn_process is bound to an
already existing file stream, then the subprocess will use that stream (see the process plumbing
example below).

One of the uses of XSB subprocesses is to create XSB servers that spawn subprocesses and
control them. A spawned subprocess can be another XSB process. The following example shows
one XSB process spawning another, sending it a goal to evaluate and obtaining the result:

| ?- spawn_process([xsb], To, From,Err,_),

write(To,’assert(p(1)).’), flush_output(To,_),

write(To,’p(X), writeln(X).’), flush_output(To,_),

file_read_line_atom(From,XX).

XX = 1

yes

| ?-

Here the parent XSB process sends “assert(p(1)).” and then “p(X), writeln(X).” to the
spawned XSB subprocess. The latter evaluates the goal and prints (via “writeln(X)”) to its
standard output. The main process reads it through the From stream and binds the variable XX to
that output.

Finally, we should note that the stream variables in the spawn_process predicate can be used
to do process plumbing, i.e., redirect output of one subprocess into the input of another. Here is
an example:

| ?- open(test,write,Stream),

spawn_process([cat, ’data’], none, FromCat1, none, _),

spawn_process([sort], FromCat1,Stream, none, _).

Here, we first open file test. Then cat data is spawned. This process has the input and standard
error stream blocked (as indicated by the atom none), and its output goes into stream FromCat1.

CHAPTER 1. LIBRARY UTILITIES 17

Then we spawn another process, sort, which picks the output from the first process (since it uses
the stream FromCat1 as its input) and sends its own output (the sorted version of data) to its
output stream Stream. However, Stream has already been open for output into the file test.
Thus, the overall result of the above clause is tantamount to the following shell command:

cat data | sort > test

Important notes about spawned processes:

1. Asynchronous processes spawned by XSB do not disappear (at least on Unix) when they
terminate, unless the XSB program executes a wait on them (see process_control below).
Instead, such processes become defunct zombies (in Unix terminology); they do not do any-
thing, but consume resources (such as file descriptors). So, when a subprocess is known to
terminate, it must be waited on.

2. The XSB parent process must know how to terminate the asynchronous subprocesses it
spawns. The drastic way is to kill it (see process_control below). Sometimes a subprocess
might terminate by itself (e.g., having finished reading a file). In other cases, the parent
and the child programs must agree on a protocol by which the parent can tell the child to
exit. The programs in the XSB subdirectory examples/subprocess illustrate this idea. If
the child subprocess is another XSB process, then it can be terminated by sending the atom
end_of_file or halt to the standard input of the child. (For this to work, the child XSB
must waiting at the prompt).

3. It is very important to not forget to close the streams that the parent uses to communicate
with the child. These are the streams that are provided in arguments 2,3,4 of spawn_process.
The reason is that the child might terminate, but these streams to the standard input of the
child will remain open, since they belong to the parent process. As a result, the parent will
own defunct I/O streams and might eventually run out of file descriptors or streams.

process_status(+Pid,-Status)

This predicate always succeeds. Given a process id, it binds the second argument (which must
be an unbound variable) to one of the following atoms: running, stopped, exited_normally,
exited_abnormally, aborted, invalid, and unknown. The invalid status is given to pro-
cesses that never existed or that are not children of the parent XSB process. The unknown

status is assigned when none of the other statuses can be assigned.

Note: process status (other than running) is system dependent. Windows does not seem to
support stopped and aborted. Also, processes killed using the process_control predicate
(described next) are often marked as invalid rather than exited, because Windows seems
to lose all information about such processes. Process status might be inaccurate in some Unix
systems as well, if the process has terminated and wait() has been executed on that process.

process_control(+Pid,+Operation)

Perform a process control operation on the process with the given Pid. Currently, the only
supported operations are kill (an atom) and wait(Code) (a term). The former causes the

CHAPTER 1. LIBRARY UTILITIES 18

process to exit unconditionally, and the latter waits for process completion. When the process
exits, Code is bound to the process exit code. The code for normal termination is 0.

This predicate succeeds, if the operation was performed successfully. Otherwise, it fails. The
wait operation fails if the process specified in Pid does not exist or is not a child of the parent
XSB process.

The kill operation might fail, if the process to be killed does not exist or if the parent XSB
process does not have the permission to terminate that process. Unix and Windows have
different ideas as to what these permissions are. See kill(2) for Unix and TerminateProcess
for Windows.

Note: under Windows, the programmer’s manual warns of dire consequences if one kills a
process that has DLLs attached to it.

get_process_table(-ProcessList) module: shell

This predicate is imported from module shell. It binds ProcessList to the list of terms,
each describing one of the active XSB subprocesses (created via spawn_process/5). Each
term has the form:

process(Pid,ToStream,FromStream,StderrStream,CommandLine).

The first argument in the term is the process id of the corresponding process, the next three
arguments describe the three standard streams of the process, and the last is an atom that
shows the command line used to invoke the process. This predicate always succeeds.

shell(+CmdSpec,-StreamToProc, -StreamFromProc, -ProcStderr, -ErrorCode)

The arguments of this predicate are similar to those of spawn_process, except for the
following: (1) The first argument is an atom or a list of atoms, like in spawn_process.
However, if it is a list of atoms, then the resulting shell command is obtained by string
concatenation. This is different from spawn_process where each member of the list must
represent an argument to the program being invoked (and which must be the first member
of that list). (2) The last argument is the error code returned by the shell command and not
a process id. The code -1 and 127 mean that the shell command failed.

The shell/5 predicate is similar to spawn_process in that it spawns another process and can
capture that process’ input and output streams. The important difference, however, is that
XSB will ways until the process spawned by shell/5 terminates. In contrast, the process
spawned by spawn_process will run concurrently with XSB. In this latter case, XSB must
explicitly synchronize with the spawned subprocess using the predicate process_control/2

(using the wait operation), as described earlier.

The fact that XSB must wait until shell/5 finishes has a very important implication: the
amount of data the can be sent to and from the shell command is limited (1K is probably
safe). This is because the shell command communicates with XSB via pipes, which have
limited capacity. So, if the pipe is filled, XSB will hang waiting for shell/5 to finish and
shell/5 will wait for XSB to consume data from the pipe. Thus, use spawn_process/5 for
any kind of significant data exchange between external processes and XSB.

CHAPTER 1. LIBRARY UTILITIES 19

Another difference between these two forms of spawning subprocesses is that CmdSpec in
shell/5 can represent any shell statement, including those that have pipes and I/O redi-
rection. In contrast, spawn_process only allows command of the form “program args”. For
instance,

| ?- open(test,write,Stream),

shell(’cat | sort > data’, Stream, none, none, ErrCode)

As seen from this example, the same rules for blocking I/O streams apply to shell/5. Fi-
nally, we should note that the already familiar standard predicates shell/1 and shell/2

(documented in Volume 1) are implemented using shell/5, and shell/5 shares their error
cases.

Notes:

1. With shell/5, you do not have to worry about terminating child processes: XSB waits
until the child exits automatically. However, since communication pipes have limited
capacity, this method can be used only for exchanging small amounts of information
between parent and child.

2. The earlier remark about the need to close I/O streams to the child does apply.

pipe_open(-ReadPipe, -WritePipe)

Open a new pipe and return the read end and the write end of that pipe. If the operation
fails, both ReadPipe and WritePipe are bound to negative numbers. The pipes returned
by the pipe_open/2 predicate are small integers that represent file descriptors used by the
underlying OS. They are not XSB I/O streams, and they cannot be used for I/O directly.
To use them, one must convert them to streams using open/3 or open/4. 9

The best way to illustrate how one can create a new pipe to a child (even if the child has
been created earlier) is to show an example. Consider two programs, parent.P and child.P.
The parent copy of XSB consults parent.P, which does the following: First, it creates a pipe
and spawns a copy of XSB. Then it tells the child copy of XSB to assert the fact pipe(RP),
where RP is a number representing the read part of the pipe. Next, the parent XSB tells the
child XSB to consult the program child.P. Finally, it sends the message Hello!.

The child.P program gets the pipe from predicate pipe/1 (note that the parent tells the
child XSB to first assert pipe(RP) and only then to consult the child.P file). After that,
the child reads a message from the pipe and prints it to its standard output. Both programs
are shown below:

%% parent.P

:- import pipe_open/2 from file_io.

%% Create the pipe and pass it to the child process

9 XSB does not convert pipe file descriptors into I/O streams automatically. Because of the way XSB I/O streams
are represented, they are not inherited by the child process and they do not make sense to the child process (especially
if the child is not another XSB process). Therefore, we must pass the child processes an OS file descriptor instead.
The child then converts these descriptor into XSB I/O streams.

CHAPTER 1. LIBRARY UTILITIES 20

?- pipe_open(RP,WP),

%% WF is now the XSB I/O stream bound to the write part of the pipe

open(pipe(WP),write,WF),

%% ProcInput becomes the XSB stream leading directly to the child’s stdin

spawn_process(nxsb1, ProcInput, block, block, Process),

%% Tell the child where the reading part of the pipe is

fmt_write(ProcInput, "assert(pipe(%d)).\n", arg(RP)),

fmt_write(ProcInput, "[child].\n", _),

flush_output(ProcInput, _),

%% Pass a message through the pipe

fmt_write(WF, "Hello!\n", _),

flush_output(WF, _),

fmt_write(ProcInput, "end_of_file.\n",_), % send end_of_file atom to child

flush_output(ProcInput, _),

%% wait for child (so as to not leave zombies around;

%% zombies quit when the parent finishes, but they consume resources)

process_control(Process, wait),

%% Close the ports used to commuicate with the process

%% Otherwise, the parent might run out of file descriptors

%% (if many processes were spawned)

close(ProcInput), close(WF).

%% child.P

:- import file_read_line_atom/2 from file_io.

:- dynamic pipe/1.

?- pipe(P), open(pipe(P),read,F),

%% Acknowledge receipt of the pipe

fmt_write("\nPipe %d received\n", arg(P)),

%% Get a message from the parent and print it to stdout

file_read_line_atom(F, Line), write(’Message was: ’), writeln(Line).

This produces the following output:

| ?- [parent]. <- parent XSB consults parent.P

[parent loaded]

yes

| ?- [xsb_configuration loaded] <- parent.P spawns a child copy of XSB

[sysinitrc loaded] Here we see the startup messages of

[packaging loaded] the child copy

XSB Version 2.0 (Gouden Carolus) of June 27, 1999

[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]

| ?-

yes

CHAPTER 1. LIBRARY UTILITIES 21

| ?- [Compiling ./child] <- The child copy of received the pipe from

[child compiled, cpu time used: 0.1300 seconds] the parent and then the

[child loaded] request to consult child.P

Pipe 15 received <- child.P acknowledges receipt of the pipe

Message was: Hello! <- child.P gets the message and prints it

yes

Observe that the parent process is very careful about making sure that the child terminates
and also about closing the I/O streams after they are no longer needed.

Finally, we should note that this mechanism can be used to communicate through pipes
with non-XSB processes as well. Indeed, an XSB process can create a pipe using pipe_open

(before spawning a child process), pass one end of the pipe to a child process (which can be
a C program), and use open/3 to convert the other end of the pipe to an XSB stream. The
C program, of course, does not need open/3, since it can use the pipe file handle directly.
Likewise, a C program can spawn off an XSB process and pass it one end of a pipe. The XSB
child-process can then convert this pipe fd to a file using fd2iostream and then talk to the
parent C program.

fd2iostream(+Pipe, -IOstream)

Take a file descriptor and convert it to an XSB I/O stream. This predicate should be used
only for user-defined I/O. Otherwise, use open/{3,4} when possible.

1.7 Socket I/O

The XSB socket library defines a number of predicates for communication over BSD-style sockets.
Most are modeled after and are interfaces to the socket functions with the same name. For detailed
information on sockets, the reader is referred to the Unix man pages (another good source is Unix
Network Programming, by W. Richard Stevens). Several examples of the use of the XSB sockets
interface can be found in the XSB/examples/ directory in the XSB distribution.

XSB supports two modes of communication via sockets: stream-oriented and message-oriented.
In turn, stream-oriented communication can be buffered or character-at-a-time.

To use buffered stream-oriented communication, system socket handles must be converted to
XSB I/O streams using fd2iostream/2. In these stream-oriented communication, messages have
no boundaries, and communication appears to the processes as reading and writing to a file. At
present, buffered stream-oriented communication works under Unix only.

Character-at-a-time stream communication is accomplished using the primitives socket_put/3

and socket_get0/3. These correspond to the usual Prolog put/1 and get0/1 I/O primitives.

In message-oriented communication, processes exchange messages that have well-defined bound-
aries. The communicating processes use socket_send/3 and socket_recv/3 to talk to each other.
XSB messages are represented as strings where the first four bytes (sizeof(int)) is an integer
(represented in the binary network format — see the functions htonl and ntohl in socket docu-

CHAPTER 1. LIBRARY UTILITIES 22

mentation) and the rest is the body of the message. The integer in the header represents the length
of the message body.

Effort has been made to make the socket interface thread-safe; however in Version 3.5, calls to
the XSB socket interface go through a single mutex, and may cause contention if many threads
seek to concurrently use sockets.

We now describe the XSB socket interface. All predicates below must be imported from the
module socket. Note that almost all predicates have the last argument that unifies with the error
code returned from the corresponding socket operation. This argument is explained separately.

General socket calls. These are used to open/close sockets, to establish connections, and set
special socket options.

socket(-Sockfd, ?ErrorCode)

A socket Sockfd in the AF_INET domain is created. (The AF_UNIX domain is not yet
implemented). Sockfd is bound to a small integer, called socket descriptor or socket handle.

socket_set_option(+Sockfd,+OptionName,+Value)

Set socket option. At present, only the linger option is supported. “Lingering” is a situation
when a socket continues to live after it was shut down by the owner. This is used in order
to let the client program that uses the socket to finish reading or writing from/to the socket.
Value represents the number of seconds to linger. The value -1 means do not linger at all.

socket_close(+Sockfd, ?ErrorCode)

Sockfd is closed. Sockets used in socket_connect/2 should not be closed by socket_close/1

as they will be closed when the corresponding stream is closed.

socket_bind(+Sockfd,+Port, ?ErrorCode)

The socket Sockfd is bound to the specified local port number.

socket_connect(+Sockfd,+Port,+Hostname,?ErrorCode)

The socket Sockfd is connected to the address (Hostname and Port). If socket_connect/4

terminates abnormally for any reason (connection refused, timeout, etc.), then XSb closes
the socket Sockfd automatically, because such a socket cannot be used according to the BSD
semantics. Therefore, it is always a good idea to check to the return code and reopen the
socket, if the error code is not SOCK_OK.

socket_listen(+Socket, +Length, ?ErrorCode)

The socket Sockfd is defined to have a maximum backlog queue of Length pending connec-
tions.

socket_accept(+Sockfd,-SockOut, ?ErrorCode)

Block the caller until a connection attempt arrives. If the incoming queue is not empty,
the first connection request is accepted, the call succeeds and returns a new socket, SockOut,
which can be used for this new connection.

CHAPTER 1. LIBRARY UTILITIES 23

Buffered, message-based communication. These calls are similar to the recv and send calls
in C, except that XSB wraps a higher-level message protocol around these low-level functions. More
precisely, socket_send/3 prepends a 4-byte field to each message, which indicates the length of the
message body. When socket_recv/3 reads a message, it first reads the 4-byte field to determine
the length of the message and then reads the remainder of the message.

All this is transparent to the XSB user, but you should know these details if you want to use
these details to communicate with external processes written in C and such. All this means that
these external programs must implement the same protocol. The subtle point here is that different
machines represent integers differently, so an integer must first be converted into the machine-
independent network format using the functions htonl and ntohl provided by the socket library.
For instance, to send a message to XSB, one must do something like this:

char *message, *msg_body;

unsigned int msg_body_len, network_encoded_len;

msg_body_len = strlen(msg_body);

network_encoded_len = (unsigned int) htonl((unsigned long int) msg_body_len);

memcpy((void *) message, (void *) &network_encoded_len, 4);

strcpy(message+4, msg_body);

To read a message sent by XSB, one can do as follows:

int actual_len;

char lenbuf[4], msg_buff;

unsigned int msglen, net_encoded_len;

actual_len = (long)recvfrom(sock_handle, lenbuf, 4, 0, NULL, 0);

memcpy((void *) &net_encoded_len, (void *) lenbuf, 4);

msglen = ntohl(net_encoded_len);

msg_buff = calloc(msglen+1, sizeof(char))); // check if this suceeded!!!

recvfrom(sock_handle, msg_buff, msglen, 0, NULL, 0);

If making the external processes follow the XSB protocol is not practical (because you did not
write these programs), then you should use the character-at-a-time interface or, better, the buffered
stream-based interface both of which are described in this section. At present, however, the buffered
stream-based interface does not work on Windows.

socket_recv(+Sockfd,-Message, ?ErrorCode)

Receives a message from the connection identified by the socket descriptor Sockfd. Binds
Message to the message. socket_recv/3 provides a message-oriented interface. It under-
stands message boundaries set by socket_send/3.

socket_send(+Sockfd,+Message, ?ErrorCode)

Takes a message (which must be an atom) and sends it through the connection specified

CHAPTER 1. LIBRARY UTILITIES 24

by Sockfd. socket_send/3 provides message-oriented communication. It prepends a 4-byte
header to the message, which tells socket_recv/3 the length of the message body.

Stream-oriented, character-at-a-time interface. Internally, this interface uses the same
sendto and recvfrom socket calls, but they are executed for each character separately. This
interface is appropriate when the message format is not known or when message boundaries are
determined using special delimiters.

socket_get0/3 creates the end-of-file condition when it receives the end-of-file character CH_EOF_P

(a.k.a. 255) defined in char_defs.h (which must be included in the XSB program). C programs
that need to send an end-of-file character should send (char)-1.

socket_get0(+Sockfd, -Char, ?ErrorCode)

The equivalent of get0 for sockets.

socket_put(+Sockfd, +Char, ?ErrorCode)

Similar to put/1, but works on sockets.

Socket-probing. With the help of the predicate socket_select/6 one can establish a group of
asynchronous or synchronous socket connections. In the synchronous mode, this call is blocked
until one of the sockets in the group becomes available for reading or writing, as described below.
In the asynchronous mode, this call is used to probe the sockets periodically, to find out which
sockets have data available for reading or which sockets have room in the buffer to write to.

The directory XSB/examples/socket/select/ has a number of examples of the use of the
socket-probing calls.

socket_select(+SymConName,+Timeout,-ReadSockL,-WriteSockL,-ErrSockL,?ErrorCode)

SymConName must be an atom that denotes an existing connection group, which must be
previously created with socket_set_select/4 (described below). ReadSockL, WriteSockL,
ErrSockL are lists of socket handles (as returned by socket/2) that specify the available
sockets that are available for reading, writing, or on which exception conditions occurred.
Timeout must be an integer that specifies the timeout in seconds (0 means probe and exit
immediately). If Timeout is a variable, then wait indefinitely until one of the sockets becomes
available.

socket_set_select(+SymConName,+ReadSockFdLst,+WriteSockFdLst,+ErrorSockFdLst)

Creates a connection group with the symbolic name SymConName (an atom) for subsequent
use by socket_select/6. ReadSockFdLst, WriteSockFdLst, and ErrorSockFdLst are lists
of sockets for which socket_select/6 will be used to monitor read, write, or exception
conditions.

socket_select_destroy(+SymConName)

Destroys the specified connection group.

CHAPTER 1. LIBRARY UTILITIES 25

Error codes. The error code argument unifies with the error code returned by the corresponding
socket commands. The error code -2 signifies timeout for timeout-enabled primitives (see below).
The error code of zero signifies normal termination. Positive error codes denote specific failures, as
defined in BSD sockets. When such a failure occurs, an error message is printed, but the predicate
succeeds anyway. The specific error codes are part of the socket documentation. Unfortunately,
the symbolic names and error numbers of these failures are different between Unix compilers and
Visual C++. Thus, there is no portable, reliable way to refer to these error codes. The only reliably
portable error codes that can be used in XSB programs defined through these symbolic constants:

#include "socket_defs_xsb.h"

#define SOCK_OK 0 /* indicates sucessful return from socket */

#define SOCK_EOF -1 /* end of file in socket_recv, socket_get0 */

#include "timer_defs_xsb.h"

#define TIMEOUT_ERR -2 /* Timeout error code */

Timeouts. XSB socket interface allows the programer to specify timeouts for certain opera-
tions. If the operations does not finish within the specified period of time, the operation is
aborted and the corresponding predicate succeeds with the TIMEOUT_ERR error code. The fol-
lowing primitives are timeout-enabled: socket_connect/4, socket_accept/3, socket_recv/3,
socket_send/3, socket_get0/3, and socket_put/3. To set a timeout value for any of the above
primitives, the user should execute set_timer/1 right before the subgoal to be timed. Note that
timeouts are disabled after the corresponding timeout-enabled call completes or times out. There-
fore, one must use set_timer/1 before each call that needs to be controlled by a timeout mechanism.

The most common use of timeouts is to either abort or retry the operation that times out. For
the latter, XSB provides the sleep/1 primitive, which allows the program to wait for a few seconds
before retrying.

The set_timer/1 and sleep/1 primitives are described below. They are standard predicates
and do not need to be explicitly imported.

set_timer(+Seconds)

Set timeout value. If a timer-enabled goal executes after this value is set, the clock begins
ticking. If the goal does not finish in time, it succeeds with the error code set to TIMEOUT_ERR.
The timer is turned off after the goal executes (whether timed out or not and whether it
succeeds or fails). This goal always succeeds.

Note that if the timer is not set, the timer-enabled goals execute “normally,” without timeouts.
In particular, they might block (say, on socket_recv, if data is not available).

sleep(+Seconds)

Put XSB to sleep for the specified number of seconds. Execution resumes after the Seconds

number of seconds. This goal always succeeds.

CHAPTER 1. LIBRARY UTILITIES 26

Here is an example of the use of the timer:

:- compiler_options([xpp_on]).

#include "timer_defs_xsb.h"

?- set_timer(3), % wait for 3 secs

socket_recv(Sockfd, Msg, ErrorCode),

(ErrorCode == TIMEOUT_ERR

-> writeln(’Socket read timed out, retrying’),

try_again(Sockfd)

; write(’Data received: ’), writeln(Msg)

).

Apart from the above timer-enabled primitives, a timeout value can be given to socket_select/6

directly, as an argument.

Buffered, stream-oriented communication. In Unix, socket descriptors can be “promoted”
to file streams and the regular read/write commands can be used with such streams. In XSB, such
promotion can be done using the following predicate:

fd2ioport(+Pipe, -IOport) module: shell

Take a socket descriptor and convert it to an XSB I/O port that can be used for regular file
I/O.

Once IOport is obtained, all normal I/O primitives can be used by specifying the IOport as their
first argument. This is, perhaps, the easiest and the most convenient way to use sockets in XSB.
(This feature has not been implemented for Windows.)

Here is an example of the use of this feature:

:- compiler_options([xpp_on]).

#include "socket_defs_xsb.h"

?- (socket(Sockfd, SOCK_OK)

-> socket_connect(Sockfd1, 6020, localhost, Ecode),

(Ecode == SOCK_OK

-> fd2ioport(Sockfd, SockIOport),

file_write(SockIOport, ’Hello Server!’)

; writeln(’Can’’t connect to server’)

),

; writeln(’Can’’t open socket’), fail

).

CHAPTER 1. LIBRARY UTILITIES 27

1.8 Arrays

The module array1 provides a simple backtrackable array implementation that requires no copying.
In Version 3.2, this package was changed to make use of the backtrackable destructive assignment
made possible by setarg/3. We note that as of Version 3.2 this library provides simple syntactic
sugar for functor/3, arg/3 and setarg/3 and relies on error messages for these predicates.

array_new(-Array,+Size) module: array

Creates a one dimensional empty array of size Size. All the elements of this array are
variables.

array_elt(+Array, +Index, ?Element) module: array

Succeeds iff Element unifies with the Index-th element of array Array.

array_update(+Array, +Index, +Elem) module: array

Updates the array Array such that the Index-th element of the new array is Elem using
destructive assignement. The implementation is quite efficient in that it avoids the copying
of the entire array.

The following example shows the use of these predicates:

| ?- import array_new/2, array_elt/3, array_update/4 from array.

yes

| ?- array_new(A,3), array_update(A,1,1), array_update(A,2,2),

(array_update(A,3,3), writeln(first(A))

; array_update(A,3,6), writeln(second(A))

; array_update(A,3,7), writeln(third(A))),fail.

first(array(1,2,3))

second(array(1,2,6))

third(array(1,2,7))

no

1.9 The Profiling Library

XSB can provide Prolog-level profiling for Prolog programs, which allows the Prolog programmer
to estimate what proportion of time is spent executing code for each predicate, and also what
modes have been used to call a given predicate. It also helps to find unindexed accesses to dy-
namic predicates which may be the cause of poor performance. To enable profiling, XSB must be
started with the command line parameter of -p. The module xsb_profiling contains the pred-
icate profile_call/1 that invokes profiling. The profiling library should only be used with the
single-threaded engine in Version 3.5.

profile_call(+Goal) module: xsb_profiling

CHAPTER 1. LIBRARY UTILITIES 28

Calls Goal, and when it first succeeds, prints to userout a table of predicate names indicating
for each, the percentage of time spent executing that predicate’s code. Within the table, the
sum of the predicate times for each module is also given. Goal may backtrack, but profiling
is done only for the time to the first success, so it is most appropriate to profile succeeding
deterministic goals 10.

Profiling works by starting another thread that interrupts every 100th of a second and sets a
flag so that the XSB emulator will determine the predicate of the currently executing code. The
printout also includes the total number of interrupts and for each predicate, the raw number of times
its code was determined to be executing. A predicate is printed only if its code was interrupted
at least once. The numbers will be meaningful only for relatively long-running predicates, taking
more than a couple of seconds.

When an interrupt occurs, the next interrupt instruction to be executed – a WAM call, execute,
proceed or trust instruction – will charge its associated predicate by logging that predicate to a
table. The system does not keep track of code addresses for tries (used to represent the results of
completed tables, and trie-indexed asserted code), so for some interrupts the associated executing
predicate cannot be determined. In these cases the interrupt is charged against an “unknown/?”
pseudo-predicate, and this count is included in the output.

Profiling does not give the context from which the predicate is called, so you may want to make
renamed copies of basic predicates to use in particular circumstances to determine their times.

Predicates compiled with the “optimize” option may provide misleading results under profiling.
Note that all system predicates (including those in basics) are compiled with the “optimize” option,
by default. That option causes tail-recursive predicates to use a “jump” instruction rather than
an “execute” instruction to make the recursive call, and so an interrupt in such a loop will not be
charged until the next interrupt instruction is executed. If much time is spent in the recursion, this
might not be for a long time, and the interrupt might ultimately be charged to another predicate.
(If an interrupt has not been charged by the time of the next interrupt, it is lost.)

Profiling is currently available under Windows, Mac OS X, and Linux. However, for the profiling
algorithm to provide a good estimation, the thread that wakes and sets the interrupt flag must be
of high priority and given the CPU when it wants it. Accordingly, the estimates may be better or
worse depending on the scheduling strategy of a given platform 11.

The profiling module also provides support for determining when a dynamic predicate is invoked
in a mode that isn’t supported by any index. The XSB programmer can set a flag that will cause
a message to be printed when a dynamic predicate is invoked, no index is applicable, and there are
more than 20 potentially matching clauses. See profile_unindexed_calls/1 below for details.

profile_mode_call(+Goal) module: xsb_profiling

10This includes tabled subgoals under Local Evaluation, as such as goal will only succeed after deriving all of its
answers.

11Windows and Mac OS X 10.6 provide good estimates. Some Linuxes however, do not charge about 20% of their
interrupts due to thread scheduling issues. This loss of interrupts makes the profile estimate inefficient, but does not
bias the estimate. We haven’t figured out how to get priority scheduling for interrupts on all machines, so if you want
profiling to work more efficiently, maybe you can help figure out how to get appropriate scheduling.

CHAPTER 1. LIBRARY UTILITIES 29

Calls the goal Goal and constructs a table of the modes in which the predicate is called and
the number of times it is called in that mode. Modes are simply “b” for ground and “f” for
variable. Counts are kept in a table with entries of the form Pred(Md1,Md2,..,Mdn) where
Pred is the name of the called predicate and the Mdi are either ’f’ or ’b’, indicating free or
bound for the corresponding argument. The table can be printed using profile_mode_dump/0

and can be cleared using profile_mode_init/0.

profile_mode_dump module: xsb_profiling

Prints out the counts of calls in particular modes as accumulated using
profile_mode_call(+Goal).

profile_mode_init module: xsb_profiling

Clears the table that accumulates counts of calls in particular modes (done by
profile_mode_call(+Goal).

profile_unindexed_calls(+Par) module: xsb_profiling

Sets the kind of unindexed profiling to perform. If Par is off, no unindexed logging will be
done. This is the default. If Par is once each call to a dynamic predicate that cannot use
any index (and would backtrack through more than 20 clauses) will generate a log message
to userout. Each unindexed call to a predicate will be logged only once; after logging is
done, the log instruction is changed to a branch, so it will never produce another log message
for that dynamic code. If Par is on, logging is done as for once, except every unindexed
call to any dynamic predicate will be logged; i.e. the logging instruction is not changed after
logging. If Par is a predicate specification (of the form Pred/Arity, Module:Pred/Arity, Term,
or Module:Term), only unindexed calls to the indicated goal will be logged, and when each
is logged a back-trace will be printed. This allows the programmer to find the location of an
unindexed call.

1.10 Gensym

The Gensym library provides a convenient way to generate unique integers or constants.

prepare(+Index) module: gensym

Sets the initial integer to be used for generation to Index. Thus, the command ?- prepare(0)

would cause the first call to gennum/1 to return 1. Index must be a non-negative integer.

gennum(-Var) module: gensym

Unifies Var with a new integer.

CHAPTER 1. LIBRARY UTILITIES 30

gensym(+Atom,-Var) module: gensym

Generates a new integer, and concatenates this integer with Atom, unifying the result with
Var. For instance a call ?- gensym(foo,Var) might unify Var with foo32.

1.11 Random Number Generator

The following predicates are provided in module random to generate random numbers (both integers
and floating numbers), based on the Wichmann-Hill Algorithm [30, 19]. The random number
generator is entirely portable, and does not require any calls to the operating system. As noted
below, it does require 3 seeds, each of which must be an integer in a given range. These seeds are
thread-specific: thus different threads may generate independent sequences of random numbers.

random(-Number) module: random

Binds Number to a random float in the interval [0.0, 1.0). Note that 1.0 will never be
generated.

random(+Lower,+Upper,-Number) module: random

Binds Number to a random integer in the interval [Lower,Upper) if Lower and Upper are
integers. Otherwise Number is bound to a random float between Lower and Upper. Upper will
never be generated.

getrand(?State) module: random

Tries to unify State with the term rand(X,Y,Z) where X,Y,and Z are integers describing the
state of the random generator.

setrand(rand(+X,+Y,+Z)) module: random

Sets the state of the random generator. X,Y, and Z must be integers in the ranges [1,30269),
[1,30307), [1,30323), respectively.

datime_setrand module: random

This simple initialization utility sets the random seed triple based on a function of the current
day, hour, minute and second.

randseq(+K, +N, -RandomSeq) module: random

Generates a sequence of K unique integers chosen randomly in the range from 1 to N.
RandomSeq is not returned in any particular order.

randset(+K, +N, -RandomSet) module: random

Generates an ordered set of K unique integers chosen randomly in the range from 1 to N. The
set is returned in reversed order, with the largest element first and the smallest last.

gauss(-G1,-G2) module: ramdom

Generates two random numbers that are normally distributed with mean 0 and standard
deviation 1. It uses the polar form of the Box-Muller transformation [5] of uniform random
variables as generated by random/1.

CHAPTER 1. LIBRARY UTILITIES 31

weibull(K,Lambda,X) module: ramdom

Generates a random number for the Weibull distribution:

f(x; k, λ) =
k

λ
(
x

λ
)k−1e−(x/λ)h

based on the transformation
x = λ(−ln(U))1/k

of a uniformly distributed ranom variable produce by random/1

exponential(K,X) module: ramdom

Generates a random number for the exponential distribution:

f(x; k, λ) =
e−(x/λ)h

λ

based on the transformation
x = λ(−ln(U))

of a uniformly distributed ranom variable produce by random/1. This is the same as the
Weibull distribution with k = 1.

1.12 Loading Separated Files

A common file format uses comma separated values, the so-called csv files. The XSB module,
proc_files, supports the loading of files in this, and similar, formats to define Prolog predicates.

load_csv(+FileName,+PredSpec) module: proc_files

load_csv/2 takes a file name and a predicate specification, and reads a csv-formatted file
into memory, defining the indicated dynamic predicate. The simplest form of PredSpec is
PredName/Arity. In this case the arity must equal the number of fields in the csv file, and
the predicate must be dynamic. Each line in the file will define one fact of the predicate
PredName/Arity. Fields in the file enclosed in double quotes will be treated as single fields
(and thus can contain commas and new-lines.) The dynamic predicate will be emptied before
the facts from the file are added. Each field will be loaded as an atom (including fields that
contain just integers.)

Alternatively, PredSpec may be of the form predName(TypeSpec1,...,TypeSpecN), where
predName is the name of the dynamic predicate to be defined by the file contents, and each
TypeSpecI indicates the type of the corresponding field in the file. The permitted values of
TypeSpec are:

atom The corresponding field value will become an atom in the loaded fact.

integer The corresponding field value will be converted to an integer in the loaded fact.

float The corresponding field value will be converted to a float in the loaded fact.

CHAPTER 1. LIBRARY UTILITIES 32

term The corresponding field must contain a Prolog term in canonical form, and it will be
converted to that term in the loaded fact.

__ (A variable) Treated as atom.

load_dsv(+FileName,+PredSpec,+Options) module: proc_files

This predicate supports the loading of more general forms of files with value-separated fields.
The FileName and PredSpec parameters are exactly as in load_csv/2, as described just
above. Options is a list of options. (With an empty list, load_dsv acts as load_csv/2.) The
options are:

separator=”Sep” which indicates that the character(s) Sep will be used as the field separator. There may
be one or more characters.

delimiter=”C” which indicates that the single character C will be used as the field delimiter (the default
being “”””, and I’ve yet to find a situation in which I want to change it.)

titles which indicates that the first line of the file should be ignored and not contribute a fact
to the dynamic predicate.

1.13 Scanning in Prolog

Scanners, (sometimes called tokenizers) take an input string, usually in UTF-8 or similar format,
and produce a scanned sequence of tokens. The requirements that various applications have for
scanning differ in small but important ways – a character that is special to one application may be
part of the token of another; or some applications may want lower case text converted to upper-
case test. The stdscan.P library provides a simple scanner written in XSB that can be configured
in several ways. While useful, this scanner is not intended to be as powerful as general-purpose
scanners such as lex or flex.

scan(+List,-Tokens) module: stdscan

Given as input a List of character codes, scan/2 scans this list producing a list of atoms
constituting the lexical tokens. Its parameters are set via set_scan_pars/1.

Tokens produced are either a sequence of letters and/or numbers or consist of a single special
character (e.g. (or)). Whitespaces may occur between tokens.

scan(+List,+FieldSeparator,-Tokens) module: stdscan

Given as input a List of character codes, along with a character code for a field separator,
scan/3 scans this list producing a list of list of atoms constituting the lexical tokens in
each field. scan/3 thus can be used to scan tabular information. Its parameters are set via
set_scan_pars/1.

CHAPTER 1. LIBRARY UTILITIES 33

set_scan_pars(+List) module: stdscan

set_scan_pars(+List) is used to configure the tokenizer to a particular need. List is a list
of parameters including the following:

• whitespace. The default action of the scanner is to return a list of tokens, with any
whitespace removed. If whitespace is a parameter, then the scanner returns the to-
ken ” when it finds whitespace separating two tokens (unless the two tokens are letter
sequences; since two letter sequences can be two tokens ONLY if they are separated
by whitespace, such an indication of whitespace would be redundant.) Including the
parameter no_whitespace undoes the effect of previously including whitespace.

• upper_case The default action of the parser is to treat lowercase letter differently from
uppercase letters. This parameter should be set if conversion to uppercase should be done
when producing a token that does not consist entirely of letters (e.g. one with mixed
letters and digits). Including the parameter no_case undoes the effect of previously
including upper_case.

• upper_case_in_lit The default action of the parser is to treat lowercase letter differ-
ently from uppercase letters. This parameter should be set if conversion to uppercase
should be done when producing a token that consists entirely of letters. Including the
parameter no_case_in_lit undoes the effect of previously including upper_case.

• whitespace(Code) adds Code as a whitespace code. By default, all ASCII codes less
than or equal to 32 are regarded as whitespace.

• letter(Code) adds Code as a letter constituting a token. By default, ASCII codes for
characters a–z and A–Z are regarded as letters.

• special_char(Code) adds Code as a special character. By default, ASCII codes for the
following characters are regarded as special characters:

| { } [] " % $ & ’ () * + , - . / : ; < = > ? @ \ ^ _ ~ ‘

get_scan_pars(-List) module: stdscan

get_scan_pars/1 returns a list of the currently active parameters.

1.14 XSB Lint

The xsb_lint_impexp.P file contains a simple tool to analyze import/exports and definitions
and uses of predicates. It tries to find possible inconsistencies, producing warnings when it finds
them and generating document_import/document_export declarations that might be useful. It
can be used after a large multi-file, multi-module XSB program has been written to find possible
inconsistencies in (or interesting aspects of) how predicates are defined and used.

XSB source files that contain an export compiler directive are considered as modules. Predi-
cates defined in modules, but not exported, are local to that module. When compiling a module,
the XSB compiler generates useful warnings when predicates are used but not defined or defined

CHAPTER 1. LIBRARY UTILITIES 34

but not used. All predicates that are defined in source files that do not contain an export directive
are compiled to be defined in a global module, called usermod, and no warning messages are gen-
erated. The user may add document_export and document_import compiler directives (exactly
analogous to the export and import directives) to non-module source files. These directives are
ignored by the compiler for its compilation, but cause the define-use analysis to be done and any
warning messages to be issued, if appropriate. This allows a user to get the benefit of the define-use
analysis without using modules. (See Volume 1, Chapter 3 for more details.)

The xsb_lint_impexp utility processes both modules and regular XSB source files that contain
document_export statements. xsb_lint_impexp is not itself a module. To use it, [xsb_lint_impexp]

must be consulted, which will define the checkImpExps/{1,2} and add_libraries/1 predicates
in usermod.

add_libraries(+DirectoryNameList)

add_libraries/1 takes a list of directory names and adds them to the library_directory/1

predicate. This causes the XSB system to look for XSB source code files in these directories.
To use checkImpExps/{1,2}, all the directories that contain files (or modules) referenced
(recursively) in the files to be processed must be in the library_directory/1 predicate.
This predicate can be used to add a number of directories at once.

checkImpExps(+Options,+FileNameList)

checkImpExps/1 reads all the XSB source files named in the list FileNameList, and all files
they reference (recursively), and produces a listing that describes properties of how they
reference predicates.

Options is a list of atoms (from the following list) indicating details of how checkImpExps

should work.

1. used_elsewhere: Print a warning message in the case of a predicate defined in a file,
not used there, but used elsewhere (in a file in FileNameList). This can be useful to
see whether it might be better to move the predicate definition to another file, but it
produces many warnings for predicates in multi-use libraries.

2. unused: Print a warning message in the case of a predicate that is exported but never
used. This can be useful to see if predicate is not used anywhere, and thus could be
deleted. Again this produces many warnings for predicates in multi-use libraries.

3. all_files: By default, only predicates in files that contain a :- document_export or
:- export declaration are processed. This option causes predicates of all files (and
modules) to be processed.

4. all_symbol_uses: Treat all non-predicate uses of symbols (even constants) as predicate
uses for the purpose of generating imports.

5. no_symbol_uses: Don’t treat any non-predicate uses of symbols as predicate uses for
the purpose of generating imports.

We further explain the final two options, which allow the user to determine more precisely
what uses of a symbol are considered as uses of it as the predicate symbol. All uses of
symbols that appear in a “predicate context", i.e., in the body of a rule or in a meta-predicate

CHAPTER 1. LIBRARY UTILITIES 35

argument position of a use of a meta-predicate, are considered uses of that predicate symbol.
The default is also to allow nonconstant symbols appearing in any other context to also count
as uses of that symbol as that predicate symbol. This is useful for programs that define their
own meta-predicates.

checkImpExps(+FileNameList)

checkImpExps/1 is currently equivalent to checkImpExps([],FileNameList).

1.15 “Pure” Meta-programming in XSB with prolog_db.P

The prolog_db library provides predicates that support a form of “pure” meta-programming in
XSB. A programmer can create a term data structure that represents a Prolog database (i.e., a set
of rules, and herein called a Prolog DB), and then ask for a goal to be proved in such a Prolog DB.

A Prolog DB is kept as a trie, which is a ground Prolog term. Each level in the trie is
implemented by a hash table, and hash tables are expanded and contracted as necessary. A
set of clauses is canonically represented, i.e., no matter what sequence of assert_in_db’s and
retractall_in_db’s one uses to construct a particular set of clauses, the resulting Prolog DBs (i.e.
Prolog terms) are identical.

A Prolog DB represents an unordered set of clauses. The order in which clauses are returned
from clause_in_db (and thus for call_in_db) is indeterminate, and may change from one call to
the next (due to possible expansion or contraction of a hash table in the representation of a Prolog
DB.)

A Prolog DB that is obtained from another Prolog DB by adding or deleting a single clause
differs from it in only log subterms (unless a hash table has been resized). This means that it is
efficient to intern these DB’s, and to table them (as intern).

The predicates provided by the Prolog DB interface are as follows:

empty_db(-EmptyPrologDB)

empty_db/1 returns an empty Prolog DB. It is used to create an initial Prolog DB to pass to
the other in_db predicates.

assert_in_db(+Clause,+DB0,-DB)

assert_in_db/3 adds the clause, Clause, to the Prolog DB, DB0, and returns a new Prolog
DB, DB. A Prolog DB is a set of clauses, so asserting a clause that is already in DB0 just
returns that same database. No ordering of clauses is preserved, so cuts do not make sense
and cannot be used in clauses. (The if-then else (’->’/3) should be used instead.)

retractall_in_db(+ClauseHead,+DB0,-DB)

retractall_in_db/3 removes all clauses whose heads unify with ClauseHead from DB0 re-
turning DB. If no clauses in DB0 unify, then DB0 is returned unchanged.

clause_in_db(?ClauseHead,?ClauseBody,+DB)

clause_in_db/3 returns all clauses in DB whose heads and bodies unify with ClauseHead

and ClauseBody, respectively. (Note that, unlike clause/2 in Prolog, clause_in_db can be

CHAPTER 1. LIBRARY UTILITIES 36

called with ClauseHead as a variable.) Note also that the order of clauses is not preserved
and is indeterminate.

call_in_db(?Goal,+DB)

call_in_db/2 calls Goal in DB and returns all instances of Goal provable by rules in DB.
Clauses must not contain cuts (!). They can contain most Prolog constructs, including and,
or, if-then-else, \+, calls to standard predicates, and calls explicitly modified by a module
name. Such calls will be satisfied by calling the goal in the indicated module. So in this case
one can think of a Prolog DB as being extended by the code in any module.

load_in_db(+FileName,+DB0,-DB)

load_in_db/3 reads the clauses from the file named FileName and asserts them into database
DB0 returning DB.

load_in_db(+FileName,-DB)

load_in_db/2 reads the clauses from the file named FileName and asserts them into an empty
database returning DB.

union_db(+DB1,+DB2,-DB3)

union_db/3 returns in DB3 the union of the sets of clauses in DB1 and DB2.

1.16 Miscellaneous Predicates

term_hash(+Term,+HashSize,-HashVal) module: machine

Given an arbitrary Prolog term, Term, that is to be hashed into a table of HashSize buckets,
this predicate returns a hash value for Term that is between 0 and HashSize -1.

pretty_print(+ClausePairs) module: pretty_print

pretty_print(+Stream,+ClausePairs) module: pretty_print

The input to pretty_print/1, ClausePairs, can be either a list of clause pairs or a single
clause pair. A clause pair is either a Prolog clause (or declaration) or a pair:

(Clause,Dict)

Where Dict is a list of the form A = V where V is a variable in Clause and A is the string to
be used to denote the variable 12.

By default, pretty_print/1 outputs atomic terms using writeq/1, but specialized output
can be configured via asserting in usermod a term of the form

user_replacement_hook(Term,Call)

which will use Call to output an atomic literal A whenever A unifies with Term. For example,
pretty printing weight constraints in XSB’s XASP package is done via the hook

12Thus the list of variable names returned by read_term/{2,3} can be used directly in Dict.

CHAPTER 1. LIBRARY UTILITIES 37

user_replacement_hook(weight_constr(Term),output_weight_constr(Term))

which outputs a weight constraint in a (non-Prolog) syntax that is used by several ASP
systems.

module_of_term(+Term,?Module) module: machine

Given a term Term, module_of_term/2 returns the module of its main functor symbol in
Module. If the module cannot be determined wither unknown1 or unknown2 is returrned,
depending on the reason the module name cannot be determined.

1.17 Other Libraries

Not all XSB libraries are fully documented. We provide brief summaries of some of these other
libraries.

1.17.1 Justification

By Hai-Feng Guo

Most Prolog debuggers, including XSB’s, are based on a mechanism that allows a user to trace
the evaluation of a goal by interrupting the evaluation at call, success, retry, or failure of various
subgoals. While this has proved an excellent mechanism for evaluating SLD(NF) executions, it is
difficult at best to use such a mechanism during a tabled evaluation. This is because, unlike with
SLD(NF), SLG requires answers to be returned to tabled subgoals at various times (depending on
whether batched or local evaluation is used), negative subgoals to be sometimes be delayed and/or
simplified, etc.

One approach to understanding tabled evaluation better is to abstract away the procedural
aspects of debugging and to use the tables produced by an evaluation to construct a justification
after the evaluation has finished. The justification library does just this using algorithms described
in [14].

1.17.2 AVL Trees

By Mats Carlsson

AVL trees provide a mechanism to maintain key value pairs so that loop up, insertion, and
deletion all have complexity O(log n). This library contains predicates to transform a sorted list to
an AVL tree and back, along with predicates to manipulate the AVL trees.

1.17.3 Ordered Sets: ordsets.P

By Richard O’Keefe

CHAPTER 1. LIBRARY UTILITIES 38

(Summary from code documentation) ordset.P provides an XSB port of the widely used ordset
library, whose summary we paraphrase here. In the ordset library, sets are represented by ordered
lists with no duplicates. Thus {c,r,a,f,t} is represented as [a,c,f,r,t]. The ordering is defined by
the @< family of term comparison predicates, which is the ordering used by sort/2 and setof/3.
The benefit of the ordered representation is that the elementary set operations can be done in time
proportional to the sum of the argument sizes rather than their product. Some of the unordered
set routines, such as member/2, length/2, or select/3 can be used unchanged.

1.17.4 Unweighted Graphs: ugraphs.P

By Mats Carlsson

XSB also includes a library for unweighted graphs. This library allows for the representation
and manipulation of directed and non-directed unlabelled graphs, including predicates to find the
transitive closure of a graph, maximal paths, minimal paths, and other features. This library
represents graphs as an ordered set of their edges and does not use tabling. As a result, it may be
slower for large graphs than similar predicates based on a datalog representatoin of edges.

1.17.5 Heaps: heaps.P

By Richard O’Keefe

(Summary from code documentation). A heap is a labelled binary tree where the key of each
node is less than or equal to the keys of its sons. The point of a heap is that we can keep on
adding new elements to the heap and we can keep on taking out the minimum element. If there
are N elements total, the total time is O(Nlg(N)). If you know all the elements in advance, you
are better off doing a merge-sort, but this file is for when you want to do say a best-first search,
and have no idea when you start how many elements there will be, let alone what they are.

A heap is represented as a triple t(N, Free, Tree) where N is the number of elements in the
tree, Free is a list of integers which specifies unused positions in the tree, and Tree is a tree made
of t terms for empty subtrees and t(Key,Datum,Lson,Rson) terms for the rest The nodes of the
tree are notionally numbered like this:

1

2 3

4 6 5 7

8 12 10 14 9 13 11 15

..

The idea is that if the maximum number of elements that have been in the heap so far is M ,
and the tree currently has K elements, the tree is some subtreee of the tree of this form having
exactly M elements, and the Free list is a list of K −M integers saying which of the positions in
the M -element tree are currently unoccupied. This free list is needed to ensure that the cost of
passing N elements through the heap is O(Nlg(M)) instead of O(NlgN). For M say 100 and N
say 104 this means a factor of two.

Chapter 2

XSB-ODBC Interface

By Baoqiu Cui, Lily Dong, and David S. Warren 1.

2.1 Introduction

The XSB-ODBC interface is subsystem that allows XSB users to access databases through ODBC
connections. This is mostly of interest to Microsoft Windows users. The interface allows XSB
users to access data in any ODBC compliant database management system (DBMS). Using this
uniform interface, information in different DBMS’s can be accessed as though it existed as Prolog
facts. The XSB-ODBC interface provides users with three levels of interaction: an SQL level, a
relation level and a view level. The SQL level allows users to write explicit SQL statements to be
passed to the interface to retrieve data from a connected database. The relation level allows users
to declare XSB predicates that connect to individual tables in a connected database, and which
when executed support tuple-at-a-time retrieval from the base table. The view level allows users to
use a complex XSB query, including conjunction, negation and aggregates, to specify a database
query. A listing of the features that the XSB-ODBC interface provides is as follows:

• Concurrent access from multiple XSB processes to a single DBMS

• Access from a single XSB process to multiple ODBC DBMS’s

• Full data access and cursor transparency including support for

– Full data recursion through XSB’s tabling mechanism (depending on the capabilities of
the underlying ODBC driver.

– Runtime type checking

– Automatic handling of NULL values for insertion, deletion and querying

• Full access to data source including

1This interface was partly based on the XSB-Oracle Interface by Hassan Davulcu, Ernie Johnson and Terrance
Swift.

39

CHAPTER 2. XSB-ODBC INTERFACE 40

– Transaction support

– Cursor reuse for cached SQL statements with bind variables (thereby avoiding re-parsing
and re-optimizing).

– Caching compiler generated SQL statements with bind variables and efficient cursor
management for cached statements

• A powerful Prolog / SQL compiler based on [9].

• Full source code availability

• Independence from database schema by the relation level interface

• Performance as SQL by employing a view level

• No mode specification is required for optimized view compilation

We use the Hospital database as our example to illustrate the usage of XSB-ODBC interface in
this manual. We assume the basic knowledge of Microsoft ODBC interface and its ODBC adminis-
trator throughout the text. Please refer to “Inside WindowsT M 95” (or more recent documentation)
for information on this topic.

2.2 Using the Interface

The XSB-ODBC module is a module and as such exports the predicates it supports. In order to
use any predicate defined below, it must be imported from odbc_call. For example, before you
can use the predicate to open a data source, you must include:

:- import odbc_open/3 from odbc_call.

2.2.1 Connecting to and Disconnecting from Data Sources

Assuming that the data source to be connected to is available, i.e. it has an entry in ODBC.INI file
which can be checked by running Microsoft ODBC Administrator, it can be connected to in the
following way:

| ?- odbc_open(data_source_name, username, passwd).

If the connection is successfully made, the predicate invocation will succeed. This step is
necessary before anything can be done with the data sources since it gives XSB the opportunity to
initialize system resources for the session.

This is an executable predicate, but you may want to put it as a query in a file that declares a
database interface and will be loaded.

To close the current session use:

CHAPTER 2. XSB-ODBC INTERFACE 41

| ?- odbc_close.

and XSB will give all the resources it allocated for this session back to the system.

If you are connecting to only one data source at a time, the predicates above are sufficient.
However, if you want to connect to multiple data sources at the same time, you must use extended
versions of the predicates above. When connecting to multiple sources, you must give an atomic
name to each source you want to connect to, and use that name whenever referring to that source.
The names may be chosen arbitrarily but must be used consistently. The extended versions are:

| ?- odbc_open(data_source_name, username, passwd, connectionName).

and

| ?- odbc_close(connectionName).

A list of existing Data Source Names and descriptions can be obtained by backtracking through
odbc_data_sources/2. For example:

| ?- odbc_data_sources(DSN,DSNDescr).

DSN = mycdf

DSNDescr = MySQL driver;

DSN = mywincdf

DSNDescr = TDS driver (Sybase/MS SQL);

2.2.2 Accessing Tables in Data Sources Using SQL

There are several ways that can be used to extract information from or modify a table in a data
source. The most basic way is to use predicates that pass an SQL statement directly to the ODBC
driver. The basic call is:

| ?- odbc_sql(BindVals,SQLStmt,ResultRow).

where BindVals is a list of (ground) values that correspond to the parameter indicators in the
SQL statement (the ’?’s); SQLStmt is an atom containing an SQL statement; and ResultRow is a
returned list of values constituting a row from the result set returned by the SQL query. Thus for
a select SQL statement, this call is nondeterministic, returning each retrieved row in turn.

The BindVals list should have a length corresponding to the number of parameters in the
query, in particular being the empty list ([]) if SQLStmt contains no ’?’s. If SQLStmt is not a select
statement returning a result set, then ResultRow will be the empty list, and the call is deterministic.
Thus this predicate can be used to do updates, DDL statements, indeed any SQL statement.

CHAPTER 2. XSB-ODBC INTERFACE 42

SQLStmt need not be an atom, but can be a (nested) list of atoms which flattens (and concate-
nates) to form an SQL statement.

BindVals is normally a list of values of primitive Prolog types: atoms, integers, or floats.
The values are converted to the types of the corresponding database fields. However, complex
Prolog values can also be stored in a database field. If a term of the form term(VAL) appears
in the BindVal list, then VAL (a Prolog term) will be written in canonical form (as produced by
write_canonical) to the corresponding database field (which must be CHAR or BYTE). If a term
of the form string(CODELIST) appears in BindVal, then CODELIST must be a list of ascii-codes (as
produced by atom_codes) and these codes will be converted to a CHAR or BYTE database type.

ResultRow for a select statement is normally a list of variables that will nondeterministically be
bound to the values of the fields of the tuples returned by the execution of the select statement. The
Prolog types of the values returned will be determined by the database types of the corresponding
fields. A CHAR or BYTE database type will be returned as a Prolog atom; an INTEGER database
field will be returned as a Prolog integer, and similarly for floats. However, the user can request
that CHAR and BYTE database fields be returned as something other than an atom. If the
term string(VAR) appears in ResultRow, then the corresponding database field must be CHAR
or BYTE, and in this case, the variable VAR will be bound to the list of ascii-codes that make up
the database field. This allows an XSB programmer to avoid adding an atom to the atom table
unnecessarily. If the term term(VAR) appears in ResultRow, then the corresponding database field
value is assumed to be a Prolog term in canonical form, i.e., can be read by read_canonical/1.
The corresponding value will be converted into a Prolog term and bound to VAR. This allows a
programmer to store complex Prolog terms in a database. Variables in such a term are local only
to that term.

When connecting to multiple data sources, you should use the form:

| ?- odbc_sql(ConnectionName,BindVals,SQLStmt,ResultRow).

For example, we can define a predicate, get_test_name_price, which given a test ID, retrieves
the name and price of that test from the test table in the hospital database:

get_test_name_price(Id,Nam,Pri) :-

odbc_sql([Id],’SELECT TName,Price FROM Test WHERE TId = ?’, [Nam,Pri]).

The interface uses a cursor to retrieve this result and caches the cursor, so that if the same
query is needed in the future, it does not need to be re-parsed, and re-optimized. Thus, if this
predicate were to be called several times, the above form is more efficient than the following form,
which must be parsed and optimized for each and every call:

get_test_name_price(Id,Nam,Pri) :-

odbc_sql([],[’SELECT TName,Price FROM Test WHERE TId = ’’’,Id,’’’’], [Nam,Pri]).

Note that to include a quote (’) in an atom, it must be represented by using two quotes.

There is also a predicate:

CHAPTER 2. XSB-ODBC INTERFACE 43

| ?- odbc_sql_cnt(ConnectionName,BindVals,SQLStmt,Count).

This predicate is very similar to odbc_slq/4 except that it can only be used for UPDATE,
INSERT, and DELETE SQL statements. The first three arguments are just as in odbc_slq/4; the
fourth must be a variable in which is returned the integer count of the number of rows affected by
the SQL operation.

2.2.3 Cursor Management

The XSB-ODBC interface is limited to using 100 open cursors. When XSB systems use database
accesses in a complicated manner, management of open cursors can be a problem due to the
tuple-at-a-time access of databases from Prolog, and due to leakage of cursors through cuts and
throws. Often, it is more efficient to call the database through set-at-a-time predicates such as
findall/3, and then to backtrack through the returned information. For instance, the predicate
findall_odbc_sql/4 can be defined as:

findall_odbc_sql(ConnName,BindVals,SQLStmt,ResultRow):-

findall(Res,odbc_sql(ConnName,BindVals,SQLStmt,Res),Results),

member(ResultRow,Results).

As a convenience, therefore, the predicates findall_odbc_sql/3 and findall_odbc_sql/4 are
defined in the ODBC interface.

2.2.4 Accessing Tables in Data Sources through the Relation Level

While all access to a database is possible using SQL as described above, the XSB-ODBC interface
supports higher-level interaction for which the user need not know or write SQL statements; that
is done as necessary by the interface. With the relation level interface, users can simply declare
a predicate to access a table and the system generates the necessary underlying code, generating
specialized code for each mode in which the predicate is called.

To declare a predicate to access a database table, a user must use the odbc_import/2 interface
predicate.

The syntax of odbc_import/2 is as follows:

| ?- odbc_import(’TableName’(’FIELD1’, ’FIELD2’, ..., ’FIELDn’), ’PredicateName’).

where ’TableName’ is the name of the database table to be accessed and ’PredicateName’ is the
name of the XSB predicate through which access will be made. ’FIELD1’, ’FIELD2’, ... , ’FIELDn’

are the exact attribute names(case sensitive) as defined in the database table schema. The chosen
columns define the view and the order of arguments for the database predicate ’PredicateName’.

For example, to create a link to the Test table through the ’test’ predicate:

CHAPTER 2. XSB-ODBC INTERFACE 44

| ?- odbc_import(’Test’(’TId’,’TName’,’Length’,’Price’),test).

yes

When connecting to multiple data sources, you should use the form:

| ?- odbc_import(ConnectionName,

’TableName’(’FIELD1’, ’FIELD2’, ..., ’FIELDn’),

’PredicateName’).

2.2.5 Using the Relation Level Interface

Once the links between tables and predicates have been successfully established, information can
then be extracted from these tables using the corresponding predicates. Continuing from the above
example, now rows from the table Test can be obtained:

| ?- test(TId, TName, L, P).

TId = t001

TName = X-Ray

L = 5

P = 100

Backtracking can then be used to retrieve the next row of the table Test.

Records with particular field values may be selected in the same way as in Prolog; no mode
specification for database predicates is required. For example:

| ?- test(TId, ’X-Ray’, L, P).

will automatically generate the query:

SELECT rel1.TId, rel1.TName, rel1.Length, rel1.Price

FROM Test rel1

WHERE rel1.TName = ?

and

| ?- test(’NULL’(_), ’X-Ray’, L, P).

generates: (See Section 2.2.6)

SELECT NULL , rel1.TName, rel1.Length, rel1.Price

FROM Test rel1

WHERE rel1.TId IS NULL AND rel1.TName = ?

CHAPTER 2. XSB-ODBC INTERFACE 45

During the execution of this query the bind variable ? will be bound to the value ’X-Ray’.

Of course, the same considerations about cursors noted in Section 2.2.3 apply to the relation-
level interface. Accordingly, the ODBC interface also defines the predicate odbc_import/4 which
allows the user to specify that rows are to be fetched through findall/3. For example, the call

odbc_import(’Test’(’TId’,’TName’,’Length’,’Price’),test,[findall(true)]).

will behave as described above but will make all database calls through findall/3 and return rows
by backtracking through a list rather than maintaining open cursors.

Also as a courtesy to Quintus Prolog users we have provided compatibility support for some
PRODBI predicates which access tables at a relational level 2.

| ?- odbc_attach(PredicateName, table(TableName)).

eg. invoke

| ?- odbc_attach(test2, table(’Test’)).

and then execute

| ?- test2(TId, TName, L, P).

to retrieve the rows.

2.2.6 Handling NULL values

The interface treats NULL’s by introducing a single valued function ’NULL’/1 whose single value
is a unique (Skolem) constant. For example a NULL value may be represented by

’NULL’(null123245)

Under this representation, two distinct NULL values will not unify. On the other hand, the search
condition IS NULL Field can be represented in XSB as Field = ’NULL’(_)

Using this representation of NULL’s the following protocol for queries and updates is established.

Queries

| ?- dept(’NULL’(_),_,_).

Generates the query:

2This predicate is obsolescent and odbc_import/{2,3,4} should be used instead.

CHAPTER 2. XSB-ODBC INTERFACE 46

SELECT NULL , rel1.DNAME , rel1.LOC

FROM DEPT rel1

WHERE rel1.DEPTNO IS NULL;

Hence, ’NULL’(_) can be used to retrieve rows with NULL values at any field.

’NULL’/1 fails the predicate whenever it is used with a bound argument.

| ?- dept(’NULL’(null2745),_,_). → fails always.

Query Results

When returning NULL’s as field values, the interface returns NULL/1 function with a unique integer
argument serving as a skolem constant.

Notice that the above guarantees the expected semantics for the join statements. In the following
example, even if Deptno is NULL for some rows in emp or dept tables, the query still evaluates the
join successfully.

| ?- emp(Ename,_,_,_,Deptno),dept(Deptno,Dname,Loc)..

Inserts

To insert rows with NULL values you can use Field = ’NULL’(_) or Field = ’NULL’(null2346).
For example:

| ?- emp_ins(’NULL’(_), ...). → inserts a NULL value for ENAME

| ?- emp_ins(’NULL’(’bound’), ...) → inserts a NULL value for ENAME.

Deletes

To delete rows with NULL values at any particular FIELD use Field = ’NULL’(_), ’NULL’/1 with
a free argument. When ’NULL’/1 ’s argument is bound it fails the delete predicate always. For
example:

| ?- emp_del(’NULL’(_), ..). → adds ENAME IS NULL to the generated SQL

statement

| ?- emp_del(’NULL’(’bound’), ...). → fails always

The reason for the above protocol is to preserve the semantics of deletes, when some free
arguments of a delete predicate get bound by some preceding predicates. For example in the
following clause, the semantics is preserved even if the Deptno field is NULL for some rows.

| ?- emp(_,_,_,_,Deptno), dept_del(Deptno).

CHAPTER 2. XSB-ODBC INTERFACE 47

2.2.7 The View Level Interface

The view level interface can be used to define XSB queries which include only imported database
predicates (by using the relation level interface) described above and aggregate predicates (defined
below). When these queries are invoked, they are translated into complex database queries, which
are then executed taking advantage of the query processing ability of the DBMS.

One can use the view level interface through the predicate odbc_query/2:

| ?- odbc_query(’QueryName’(ARG1, ..., ARGn), DatabaseGoal).

All arguments are standard XSB terms. ARG1, ARG2, ..., ARGn define the attributes to be retrieved
from the database, while DatabaseGoal is an XSB goal (i.e. a possible body of a rule) that defines
the selection restrictions and join conditions.

The compiler is a simple extension of [9] which generates SQL queries with bind variables and
handles NULL values as described in Section 2.2.6. It allows negation, the expression of arithmetic
functions, and higher-order constructs such as grouping, sorting, and aggregate functions.

Database goals are translated according to the following rules from [9]:

• Disjunctive goals translate to distinct SQL queries connected through the UNION operator.

• Goal conjunctions translate to joins.

• Negated goals translate to negated EXISTS subqueries.

• Variables with single occurrences in the body are not translated.

• Free variables translate to grouping attributes.

• Shared variables in goals translate to equi-join conditions.

• Constants translate to equality comparisons of an attribute and the constant value.

• Nulls are translated to IS NULL conditions.

For more examples and implementation details see [9].

In the following, we show the definition of a simple join view between the two database predicates
Room and Floor.

Assuming the declarations:

| ?- odbc_import(’Room’(’RoomNo’,’CostPerDay’,’Capacity’,’FId’),room).

| ?- odbc_import(’Floor’(’FId’,’’,’FName’),floor).

use

CHAPTER 2. XSB-ODBC INTERFACE 48

| ?- odbc_query(query1(RoomNo,FName),

(room(RoomNo,_,_,FId),floor(FId,_,FName))).

yes

| ?- query1(RoomNo,FloorName).

Prolog/SQL compiler generates the SQL statement:

SELECT rel1.RoomNo , rel2.FName FROM Room rel1 , Floor rel2

WHERE rel2.FId = rel1.FId;

Backtracking can then be used to retrieve the next row of the view.

| ?- query1(’101’,’NULL’(_)).

generates the SQL statement:

SELECT rel1.RoomNo, NULL

FROM Room rel1 , Floor rel2

WHERE rel1.RoomId = ? AND rel2.FId = rel1.FId AND rel2.FName IS NULL;

The view interface also supports aggregate functions such as sum, avg, count, min and max.
For example

| ?- odbc_import(’Doctor’(’DId’, ’FId’, ’DName’,’PhoneNo’,’ChargePerMin’),doctor).

yes

| ?- odbc_query(avgchargepermin(X),

(X is avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^

doctor(A1,A2, A3,A4,ChargePerMin)))).

yes

| ?- avgchargepermin(X).

SELECT AVG(rel1.ChargePerMin)

FROM doctor rel1;

X = 1.64

yes

A more complicated example is the following:

CHAPTER 2. XSB-ODBC INTERFACE 49

| ?- odbc_query(nonsense(A,B,C,D,E),

(doctor(A, B, C, D, E),

not floor(’First Floor’, B),

not (A = ’d001’),

E > avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^

(doctor(A1, A2, A3, A4, ChargePerMin))))).

| ?- nonsense(A,’4’,C,D,E).

SELECT rel1.DId , rel1.FId , rel1.DName , rel1.PhoneNo , rel1.ChargePerMin

FROM doctor rel1

WHERE rel1.FId = ? AND NOT EXISTS

(SELECT *

FROM Floor rel2

WHERE rel2.FName = ’First Floor’ and rel2.FId = rel1.FId

) AND rel1.Did <> ’d001’ AND rel1.ChargePerMin >

(SELECT AVG(rel3.ChargePerMin)

FROM Doctor rel3

);

A = d004

C = Tom Wilson

D = 516-252-100

E = 2.5

All database queries defined by odbc_query/{2,3} can be queried with any mode.

Note that at each call to a database relation or rule, the communication takes place through
bind variables. The corresponding restrictive SQL query is generated, and if this is the first call
with that adornment, it is cached. A second call with same adornment would try to use the same
database cursor if still available, without reparsing the respective SQL statement. Otherwise, it
would find an unused cursor and retrieve the results. In this way efficient access methods for
relations and database rules can be maintained throughout the session.

If connecting to multiple data sources, use the form:

:- odbc_query(connectionName,’QueryName’(ARG1, ..., ARGn), DatabaseGoal).

2.2.8 Insertions and Deletions of Rows through the Relational Level

Insertion and deletion operations can also be performed on an imported table. The two pred-
icates to accomplish these operations are odbc_insert/2 and odbc_delete/2. The syntax of
odbc_insert/2 is as follows: the first argument is the declared database predicate for insertions

CHAPTER 2. XSB-ODBC INTERFACE 50

and the second argument is some imported data source relation. The second argument can be de-
clared with some of its arguments bound to constants. For example after Room is imported through
odbc_import:

|?- odbc_import(’Room’(’RoomNo’,’CostPerDay’,’Capacity’,’FId’), room).

yes

Now we can do

| ?- odbc_insert(room_ins(A1,A2,A3),(room(A1,A2,A3,’3’))).

yes

| ?- room_ins(’306’,’NULL’(_),2).

yes

This will insert the row: (’306’,NULL, 2,’3’) into the table Room. Note that any call to room_ins/7

should have all its arguments bound.

See Section 2.2.6) for information about NULL value handling.

The first argument of odbc_delete/2 predicate is the declared delete predicate and the second
argument is the imported data source relation with the condition for requested deletes, if any. The
condition is limited to simple comparisons. For example assuming Room/3 has been imported as
above:

| ?- odbc_delete(room_del(A), (room(’306’,A,B,C), A > 2)).

yes

After this declaration you can use:

| ?- room_del(3).

to generate the SQL statement:

DELETE From Room rel1

WHERE rel1.RoomNo = ’306’ AND rel1.CostPerDay = ? AND ? > 2

;

Note that you have to commit your inserts or deletes to tables to make them permanent. (See
section 2.2.11).

CHAPTER 2. XSB-ODBC INTERFACE 51

These predicates also have the form in which an additional first argument indicates a connection,
for use with multiple data sources.

Also, some ODBC drivers have been found that do not accept the form of SQL generated for
deletes. In these cases, you must use the lower-level interface: odbc_sql.

2.2.9 Access to Data Dictionaries

The following utility predicates provide users with tools to access data dictionaries 3. A brief
description of these predicates is as follows:

odbc_show_schema(accessible(Owner)) Shows the names of all accessible tables that are
owned by Owner. (This list can be long!) If Owner is a variable, all tables will be shown,
grouped by owner.

odbc_show_schema(user) Shows just those tables that belongs to user.

odbc_show_schema(tuples(’Table’)) Shows all rows of the database table named ’Table’.

odbc_show_schema(arity(’Table’)) The number of fields in the table ’Table’.

odbc_show_schema(columns(’Table’)) The field names of a table.

For retrieving above information use:

• odbc_get_schema(accessible(Owner),List)

• odbc_get_schema(user,List)

• odbc_get_schema(arity(’Table’),List)

• odbc_get_schema(columns(’Table’),List)

The results of above are returned in List as a list.

2.2.10 Other Database Operations

odbc_create_table(’TableName’,’FIELDs’) FIELDS is the field specification as in SQL.

eg. odbc_create_table(’MyTable’, ’Col1 NUMBER,

Col2 TEXT(50),

Col3 TEXT(13)’).

odbc_create_index(’TableName’,’IndexName’, index(_,Fields)) Fields is the list of columns
for which an index is requested. For example:

3Users of Quintus Prolog may note that these predicates are all PRODBI compatible.

CHAPTER 2. XSB-ODBC INTERFACE 52

odbc_create_index(’Doctor’, ’DocKey’, index(_,’DId’)).

odbc_delete_table(’TableName’) To delete a table named ’TableName’

odbc_delete_view(’ViewName’) To delete a view named ’ViewName’

odbc_delete_index(’IndexName’) To delete an index named ’IndexName’

2.2.11 Transaction Management

Depending on how the transaction options are set in ODBC.INI for data sources, changes to the
data source tables may not be committed (i.e., the changes become permanent) until the user
explicitly issues a commit statement. Some ODBC drivers support autocommit, which, if on,
means that every update operation is immediately committed upon execution. If autocommit is
off, then an explicit commit (or rollback) must be done by the program to ensure the updates
become permanent (or are ignored.).

The predicate odbc_transaction/1 supports these operations.

odbc_transaction(autocommit(on)) Turns on autocommit, so that all update operations will
be immediately committed on completion.

odbc_transaction(autocommit(off)) Turns off autocommit, so that all update operations will
not be committed until explicitly done so by the program (using one of the following opera-
tions.)

odbc_transaction(commit) Commits all transactions up to this point. (Only has an effect if
autocommit is off).

odbc_transaction(rollback) Rolls back all update operations done since the last commit point.
(Only has an effect if autocommit is off).

2.2.12 Interface Flags

Users are given the option to monitor control aspects of the ODBC interface by setting ODBC flags
via the predicatesset_odbc_flag/2 and odbc_flag/2.

The first aspect that can be controlled is whether to display SQL statements for SQL queries.
This is done by the show_query flag. For example:

| ?- odbc_flag(show_query,Val).

Val = on

CHAPTER 2. XSB-ODBC INTERFACE 53

Indicates that SQL statements will now be displayed for all SQL queries, and is the default value
for the ODBC interface. To turn it off execute the command set_odbc_flag(show_query,on).

The second aspect that can be controlled is the action taken upon ODBC errors. Three possible
actions may be useful in different contexts and with different drivers. First, the error may be
ignored, so that a database call succeeds; second the error cause the predicate to fail, and third the
error may cause an exception to be thrown to be handled by a catcher (or the default system error
handler, see Volume 1).

| ?- odbc_flag(fail_on_error, ignore) Ignores all ODBC errors, apart from writing a warn-
ing. In this case, it’s the users’ users’ responsibility to check each of their actions and do
error handling.

| ?- odbc_flag(fail_on_error, fail) Interface fails whenever error occurs.

| ?- odbc_flag(fail_on_error, throw) Throws an error-term of the form error(odbc_error,Message,Backtrace)

in which Message is a textual description of the ODBC error, and Backtrace is a list of the
continuations of the call. These continuations may be printed out by the error handler.

The default value of fail_on_error is on.

2.2.13 Datalog

Users can write recursive Datalog queries with exactly the same semantics as in XSB using im-
ported database predicates or database rules. For example assuming odbc_parent/2 is an imported
database predicate, the following recursive query computes its transitive closure.

:- table(ancestor/2).

ancestor(X,Y) :- odbc_parent(X,Y).

ancestor(X,Z) :- ancestor(X,Y), odbc_parent(Y,Z).

This works with drivers that support multiple open cursors to the same connection at the same
time. (Sadly, some don’t.) In the case of drivers that don’t support multiple open cursors, one can
often replace each odbc_import-ed predicate call

...,predForTable(A,B,C),...

by

...,findall([A,B,C],predForTable(A,B,C),PredList),

member([A,B,C],PredList)...

and get the desired effect.

CHAPTER 2. XSB-ODBC INTERFACE 54

2.3 Error messages

ERR - DB: Connection failed For some reason the attempt to connect to data source failed.

• Diagnosis: Try to see if the data source has been registered with Microsoft ODBC
Administrator, the username and password are correct and MAXCURSORNUM is not
set to a very large number.

ERR - DB: Parse error The SQL statement generated by the Interface or the first argument to
odbc_sql/1 or odbc_sql_select/2 can not be parsed by the data source driver.

• Diagnosis: Check the SQL statement. If our interface generated the erroneous statement
please contact us at xsb-contact@cs.sunysb.edu.

ERR - DB: No more cursors left Interface run out of non-active cursors either because of a
leak or no more free cursors left.

• Diagnosis: System fails always with this error. odbc_transaction(rollback) or odbc_transaction(commit)
should resolve this by freeing all cursors.

ERR - DB: FETCH failed Normally this error should not occur if the interface running prop-
erly.

• Diagnosis: Please contact us at xsb-contact@cs.sunysb.edu

2.4 Notes on specific ODBC drivers

MyODBC The ODBC driver for MySQL is called MyODBC, and it presents some partic-
ularities that should be noted.

First, MySQL, as of version 3.23.55, does not support strings of length greater than
255 characters. XSB’s ODBC interface has been updated to allow the use of the BLOB
datatype to encode larger strings.

More importantly, MyODBC implements SQLDescribeCol such that, by default, it re-
turns actual lengths of columns in the result table, instead of the formal lengths in the
tables. For example, suppose you have, in table A, a field f declared as “VARCHAR
(200)”. Now, you create a query of the form “SELECT f FROM A WHERE ...” If,
in the result set, the largest size of f is 52, that’s the length that SQLDescribeCol will
return. This breaks XSB’s caching of query-related data-structures. In order to prevent
this behavior, you should configure your DSN setup so that you pass “Option=1” to
MyODBC.

Chapter 3

The New XSB-Database Interface

By Saikat Mukherjee, Michael Kifer and Hui Wan

3.1 Introduction

The XSB-DB interface is a package that allows XSB users to access databases through various
drivers. Using this interface, information in different DBMSs can be accessed by SQL queries.
The interface defines Prolog predicates which makes it easy to connect to databases, query them,
and disconnect from the databases. Central to the concept of a connection to a database is the
notion of a connection handle. A connection handle describes a particular connection to a database.
Similar to a connection handle is the notion of a query handle which describes a particular query
statement. As a consequence of the handles, it is possible to open multiple database connections (to
the same or different databases) and keep alive multiple queries (again from the same or different
connections). The interface also supports dynamic loading of drivers. As a result, it is possible to
query databases using different drivers concurrently 1.

Currently, this package provides drivers for ODBC, a native MySQL driver, and a driver for
the embedded MySQL server.

3.2 Configuring the Interface

Generally, each driver has to be configured separately, but if the database packages such as ODBC,
MySql, etc., are installed in standard places then the XSB configuration mechanism will do the job
automatically.

Under Windows, first make sure that XSB is configured and built correctly for Windows, and
that it runs. As part of that building process, the command

makexsb_wind

1In Version 3.5, this package has not been ported to the multi-threaded engine.

55

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 56

must have been executed in the directory XSB\build. It will normally configure the ODBC driver
without problems. For the MySQL driver one has to edit the file

packages\dbdrivers\mysql\cc\NMakefile.mak

to indicate where MySQL is installed. To build the embedded MySQL driver under Windows, the
file

packages\dbdrivers\mysqlenbedded\cc\NMakefile.mak

might need to be edited. Then you should either rebuild XSB using the makexsb_wind command
or by running

nmake /f NMakefile.mak

in the appropriate directories (dbdrivers\mysql\cc or dbdrivers\mysqlenbedded\cc). Note that
you need a C++ compiler and nmake installed on your system for this to work.2

Under Unix, the configure script will build the drivers automatically if the –with-dbdrivers

option is specified. If, however, ODBC and MySQL are not installed in their standard places, you
will have to provide the following parameters to the configure script:

• –with-odbc-libdir=LibDIR – LibDIR is the directory where the library libodbc.so lives on
your system.

• –with-odbc-incdir=IncludeDIR – IncludeDIR is the directory where the ODBC header
files, such as sql.h live.

• –with-mysql-libdir=MySQLlibdir – MySQLlibdir is the directory where MySQL’s shared
libraries live on your system.

• –with-mysql-incdir=MySQLincludeDir – MySQLincludeDir is the directory where MySQL’s
header files live.

If you are also using the embedded MySQL server and want to take advantage of the corresponding
XSB driver, you need to provide the following directories to tell XSB where the copy of MySQL
that supports the embedded server is installed. This has to be done only if that copy is not in a
standard place, like /usr/lib/mysql.

• –with-mysqlembedded-libdir=MySQLlibdir – MySQLlibdir is the directory where MySQL’s
shared libraries live on your system. This copy of MySQL must be configured with support
for the embedded server.

• –with-mysqlembedded-incdir=MySQLincludeDir – MySQLincludeDir is the directory where
MySQL’s header files live.

2 http://www.microsoft.com/express/vc/

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 57

Under Cygwin, the ODBC libraries come with the distribution; they are located in the directory
/cygdrive/c/cygwin/lib/w32api/ and are called odbc32.a and odbccp32.a. (Check if your
installation is complete and has these libraries!) Otherwise, the configuration of the interface
under Cygwin is same as in unix (you do not need to provide any ODBC-specific parameters to
the configure script under Cygwin).

If at the time of configuring XSB some database packages (e.g., MySQL) are not installed on
your system, you can install them later and configure the XSB interface to them then. For instance,
to configure the ODBC interface separately, you can type

cd packages/dbdrivers/odbc

configure

Again, if ODBC is installed in a non-standard location, you might need to supply the options
–with-odbc-libdir and –with-odbc-incdir to the configure script. Under Cygwin ODBC is
always installed in a standard place, and configure needs no additional parameters.

Under Windows, separate configuration of the XSB-DB interfaces is also possible, but you need
Visual Studio installed. For instance, to configure the MySQL interface, type

cd packages\dbdrivers\mysql\cc

nmake /f NMakefile.mak

As before, you might need to edit the NMakefile.mak script to tell the compiler where the required
MySQL’s libraries are. You also need the file packages\dbdrivers\mysql\mysql_init.P with the
following content:

:- export mysql_info/2.

mysql_info(support, ’yes’).

mysql_info(libdir, ’’).

mysql_info(ccflags, ’’).

mysql_info(ldflags, ’’).

Similarly, to configure the ODBC interface, do

cd packages\dbdrivers\odbc\cc

nmake /f NMakefile.mak

You will also need to create the file packages\dbdrivers\odbc\odbc_init.P with the following
contents:

:- export odbc_info/2.

odbc_info(support, ’yes’).

odbc_info(libdir, ’’).

odbc_info(ccflags, ’’).

odbc_info(ldflags, ’’).

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 58

3.3 Using the Interface

We use the student database as our example to illustrate the usage of the XSB-DB interface in
this manual. The schema of the student database contains three columns viz. the student name,
the student id, and the name of the advisor of the student.

The XSB-DB package has to be first loaded before using any of the predicates. This is done by
the call:

| ?- [dbdrivers].

Next, the driver to be used for connecting to the database has to be loaded. Currently, the
interface has support for a native MySQL driver (using the MySQL C API), and an ODBC driver.
For example, to load the ODBC driver call:

| ?- load_driver(odbc).

Similarly, to load the mysql driver call:

| ?- load_driver(mysql).

or

| ?- load_driver(mysqlembedded).

3.3.1 Connecting to and Disconnecting from Databases

There are two predicates for connecting to databases, db_connect/5 and db_connect/6. The
db_connect/5 predicate is for ODBC connections, while db_connect/6 is for other (non-ODBC)
database drivers.

| ?- db_connect(+Handle, +Driver, +DSN, +User, +Password).

| ?- db_connect(+Handle, +Driver, +Server, +Database, +User, +Password).

The db_connect/5 predicate assumes that an entry for a data source name (DSN) exists in the
odbc.ini file. The Handle is the connection handle name used for the connection. The Driver is
the driver being used for the connection. The User and Password are the user name and password
being used for the connection. The user is responsible for giving the name to the handle. To
connect to the data source mydb using the user name xsb and password xsb with the odbc driver,
the call is as follows:

| ?- db_connect(ha, odbc, mydb, xsb, xsb).

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 59

where ha is the user-chosen handle name (a Prolog atom) for the connection.

The db_connect/6 predicate is used for drivers other than ODBC. The arguments Handle,
Driver, User, and Password are the same as for db_connect/5. The Server and Database

arguments specify the server and database to connect to. For example, for a connection to a
database called test located on the server wolfe with the user name xsb, the password foo, and
using the mysql driver, the call is:

| ?- db_connect(ha, mysql, wolfe, test, xsb, foo).

where ha is the handle name the user chose for the connection.

If the connection is successfully made, the predicate invocation will succeed. This step is
necessary before anything can be done with the data sources since it gives XSB the opportunity to
initialize system resources for the session.

To close a database connection use:

| ?- db_disconnect(Handle).

where handle is the connection handle name. For example, to close the connection to above mysql
database call:

| ?- db_disconnect(ha).

and XSB will give all the resources it allocated for this session back to the system.

3.3.2 Querying Databases

The interface supports two types of querying. In direct querying, the query statement is not
prepared while in prepared querying the query statement is prepared before being executed. The
results from both types of querying are retrieved tuple at a time. Direct querying is done by the
predicate:

| ?- db_query(ConnectionHandle, QueryHandle, SQLQueryList, ReturnList).

ConnectionHandle is the name of the handle used for the database connection. QueryHandle is
the name of the query handle for this particular query. For prepared queries, the query handle is
used both in order to execute the query and to close it and free up space. For direct querying, the
query handle is used only for closing query statements (see below). The SQLQueryList is a list of
terms which is used to build the SQL query. The terms in this list can have variables, which can be
instantiated by the preceding queries. The query list is scanned for terms, which are encoded into
Prolog atoms and the result is then concatenated; it must form a valid SQL query. (The treatment
of terms is further discussed below.) ReturnList is a list of variables each of which correspond to

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 60

a return value in the query. It is upto the user to specify the correct number of return variables
corresponding to the query. Also, as in the case of a connection handle, the user is responsible for
giving the name to the query handle. For example, a query on the student database to select all
the students for a given advisor is accomplished by the call:

| ?- X = adv,

db_query(ha, qa, [’select T.name from student T where T.advisor = ’,X], [P]),

fail.

where ha and qa are respectively the connection handle and query handle name the user chose.

Observe that the query list is composed of the SQL string and a ground value for the advisor.
The return list is made of one variable corresponding to the student name. The failure drive loop
retrieves all the tuples.

Preparing a query is done by calling the following predicate:

| ?- db_prepare(ConnectionHandle, QueryHandle, SQLQueryList).

As before, ConnectionHandle and QueryHandle specify the handles for the connection and the
query. The SQLQueryList is a list of terms which build up the query string. The placeholder ‘?’
is used for values which have to be bound during the execution of the statement. For example, to
prepare a query for selecting the advisor name for a student name using our student database:

| ?- db_prepare(ha, qa, [’select T.advisor from student T where T.name = ?’]).

A prepared statement is executed using the predicate:

| ?- db_prepare_execute(QueryHandle, BindList, ReturnList).

The BindList contains the ground values corresponding to the ‘?’ in the prepared statement.
The ReturnList is a list of variables for each argument in a tuple of the result set.

For direct querying, the query handle is closed automatically when all the tuples in the result
set have been retrieved. In order to explicitly close a query handle, and free all the resources
associated with the handle, a call is made to the predicate:

| ?- db_statement_close(QueryHandle).

where QueryHandle is the query handle for the statement to be closed.

Storing and retrieving terms and NULL values. The interface is also able to transparently
handle Prolog terms. Users can both save and retrieve terms in string fields of the tables by passing
the term as a separate element in the query list and making sure that it is enclosed in quotes in
the concatenated result. For instance,

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 61

?- db_query(handle,qh,[’insert into mytbl values(11,22,’,p(a),’);’],[]).

The above statement inserts p(a) as a term into the third column of the table mytbl. Under the
hood, it is inserted as a special string, but when retrieved, this term is decoded back into a Prolog
term. For this to work, the third column of mytbl must be declared as a character string (e.g.,
CHAR(50)). Important to note is that p(a) has to appear as a list element above and not be quoted
so that Prolog will recognize it as a term.

The NULL value is represented using the special 0-ary term ’NULL’() when retrieved. When
you need to store a null value, you can use either the above special term or just place NULL in the
appropriate place in the SQL INSERT statement. For instance,

?- db_query(handle,qh1,[’insert into mytbl values(11,22,NULL);’],[]).

?- db_query(handle,qh2,[’insert into mytbl values(111,222,’,’NULL’(),’);’],[]).

However, when retrieved from a database, a NULL is always represented by the term ’NULL’() (and
not by the atom ’NULL’).

3.4 Error Handling

Each predicate in the XSB-DB interface throws an exception with the functor

xsb_error(database(Number), Message)

where Number is a string with the error number and Message is a string with a slightly detailed
error message. It is upto the user to catch this exception and proceed with error handling. This
is done by the throw-catch error handling mechanism in XSB. For example, in order to catch the
error which will be thrown when the user attempts to close a database connection for a handle (ha)
which does not exist:

| ?- catch(db_disconnect(ha),

xsb_error(database(Number), Message), handler(Number, Message)).

It is the user’s responsibility to define the handler predicate which can be as simple as printing
out the error number and message or may involve more complicated processing.

A list of error numbers and messages that are thrown by the XSB-DB interface is given below:

• XSB_DBI_001: XSB_DBI ERROR: Driver already registered
This error is thrown when the user tries to load a driver, using the load_driver predicate,
which has already been loaded previously.

• XSB_DBI_002: XSB_DBI ERROR: Driver does not exist
This error is thrown when the user tries to connect to a database, using db_connect, with a
driver which has not been loaded.

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 62

• XSB_DBI_003: XSB_DBI ERROR: Function does not exist in this driver
This error is thrown when the user tries to use a function support for which does not exist
in the corresponding driver. For example, this error is generated if the user tries to use
db_prepare for a connection established with the mysql driver.

• XSB_DBI_004: XSB_DBI ERROR: No such connection handle
This error is thrown when the user tries to use a connection handle which has not been
created.

• XSB_DBI_005: XSB_DBI ERROR: No such query handle
This error is thrown when the user tries to use a query handle which has not been created.

• XSB_DBI_006: XSB_DBI ERROR: Connection handle already exists
This error is thrown when the user tries to create a connection handle in db_connect using
a name which already exists as a connection handle.

• XSB_DBI_007: XSB_DBI ERROR: Query handle already exists
This error is thrown when the user tries to create a query handle, in db_query or db_prepare,
using a name which already exists as a query handle for a different query.

• XSB_DBI_008: XSB_DBI ERROR: Not all parameters supplied
This error is thrown when the user tries to execute a prepared statement, using db_prepare_execute,
without supplying values for all the parameters in the statement.

• XSB_DBI_009: XSB_DBI ERROR: Unbound variable in parameter list
This error is thrown when the user tries to execute a prepared statement, using db_prepare_execute,
without binding all the parameters of the statement.

• XSB_DBI_010: XSB_DBI ERROR: Same query handle used for different queries
This error is thrown when the user issues a prepare statement (db_prepare) using a query
handle that has been in use by another prepared statement and which has not been closed.
Query handles must be closed before reuse.

• XSB_DBI_011: XSB_DBI ERROR: Number of requested columns exceeds the
number of columns in the query
This error is thrown when the user db_query specifies more items to be returned in the last
argument than the number of items in the SELECT statement in the corresponding query.

• XSB_DBI_012: XSB_DBI ERROR: Number of requested columns is less than
the number of columns in the query
This error is thrown when the user db_query specifies fewer items to be returned in the last
argument than the number of items in the SELECT statement in the corresponding query.

• XSB_DBI_013: XSB_DBI ERROR: Invalid return list in query
Something else is wrong with the return list of the query.

• XSB_DBI_014: XSB_DBI ERROR: Too many open connections
There is a limit (200) on the number of open connections.

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 63

• XSB_DBI_015: XSB_DBI ERROR: Too many registered drivers
There is a limit (100) on the number of database drivers that can be registered at the same
time.

• XSB_DBI_016: XSB_DBI ERROR: Too many active queries
There is a limit (2000) on the number of queries that can remain open at any given time.

3.5 Notes on specific drivers

Note: in most distributions of Linux, with all of these drivers you need to install both the runtime
version of the corresponding packages as well as the development version. For instance, for the
unixodbc driver, these packages will typically have the names unixodbc and unixodbc-dev. For the
MySQL driver, the packages would typically be named libmysqlclient and libmysqlclient-dev.
For the embedded MySQL driver, the relevant package would be libmysqld-pic and libmysqld-dev.

ODBC Driver

The ODBC driver has been tested in Linux using the unixodbc driver manager. It currently
supports the following functionality: (a) connecting to a database using a DSN, (b) direct querying
of the database, (c) using prepared statements to query the database, (d) closing a statement
handle, and (d) disconnecting from the database. The ODBC driver has also been tested under
Windows and Cygwin.

MySQL Driver

The MySQL driver provides access to the native MySQL C API. Currently, it has support for the
following functionality: (a) connecting to a database using db_connect, (b) direct querying of the
database, (c) using prepared statements to query the database, (d) closing a statement handle, and
(e) disconnecting from the database.

The MySQL driver has been tested under Linux and Windows.

Driver for the Embedded MySQL Server

This driver provides access to the Embedded MySQL Server Library libmysqld. Currently, it has
support for the following functionality: (a) connecting to a database db_connect, (b) direct query-
ing of the database, (c) using prepared statements to query the database, (d) closing a statement
handle, and (e) disconnecting from the database.

The MySQL driver for Embedded MySQL Server has been tested under Linux.

In order to use this driver, you will need:

• MySQL with Embedded Server installed on your machine. If your don’t have a precompiled
binary distribution of MySQL, which was configured with libmysqld support (the embed-

CHAPTER 3. THE NEW XSB-DATABASE INTERFACE 64

ded server library), you will need to build MySQL from sources and configure it with the
–with-embedded-server option.

• append to /etc/my.cnf (or /etc/mysql/my.cnf – whichever is used on your machine) or
∼/.my.cnf:

[mysqlembedded_driver_SERVER]

language = /usr/share/mysql/english

datadir =

You will probably need to replace /usr/share/mysql/english with a directory appropriate
for your MySQL installation.

You might also need to set the datadir option to specify the directory where the databases
managed by the embedded server are to be kept. This has to be done if there is a possibility
of running the embedded MySQL server alongside the regular MySQL server. In that case,
the datadir directory of the embedded server must be different from the datadir directory of
the regular server (which is likely to be specified using the datadir option in /etc/my.cnf or
/etc/mysql/my.cnf. This is because specifying the same directory might lead to a corruption
of your databases. See http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html

for further details on running multiple servers.

Please note that loading the embedded MySQL driver increases the memory footprint of XSB.
This additional memory is released automatically when XSB exits. If you need to release the
memory before exiting XSB, you can call driverMySQLEmbedded_lib_end after disconnecting
from MySQL. Note that once driverMySQLEmbedded_lib_end is called, no further connections
to MySQL are allowed from the currently running session of XSB (or else XSB will exit abnor-
mally).

Chapter 4

Introduction to XSB Packages

An XSB package is a piece of software that extends XSB functionality but is not critical to pro-
gramming in XSB. Around a dozen packages are distributed with XSB, ranging from simple meta-
interpreters to complex software systems. Some packages provide interfaces from XSB to other
software systems, such as Perl, SModels or Web interfaces (as in the libwww package). Others,
such as the CHR and Flora packages, extend XSB to different programming paradigms.

Each package is distributed in the $XSB_DIR/packages subdirectory, and has two parts: an
initialization file, and a subdirectory in which package source code files and executables are kept.
For example, the xsbdoc package has files xsbdoc.P, xsbdoc.xwam, and a subdirectory, xsbdoc.
If a user doesn’t want to retain xsbdoc (or any other package) he or she may simply remove the
initialization files and the associated subdirectory without affecting the core parts of the XSB
system.

Several of the packages are documented in this manual in the various chapters that follow.
However, many of the packages contain their own manuals. For these packages, we provide only a
summary of their functionality in Chapter 14.

65

Chapter 5

Wildcard Matching

By Michael Kifer

XSB has an efficient interface to POSIX wildcard matching functions. To take advantage of this
feature, you must build XSB using a C compiler that supports POSIX 2.0 (for wildcard matching).
This includes GCC and probably most other compilers. This also works under Windows, provided
you install Cygnus’ CygWin and use GCC to compile 1.

The wildmatch package provides the following functionality:

1. Telling whether a wildcard, like the ones used in Unix shells, match against a given string.
Wildcards supported are of the kind available in tcsh or bash. Alternating characters (e.g.,
“[abc]” or “[^abc]”) are supported.

2. Finding the list of all file names in a given directory that match a given wildcard. This facility
generalizes directory/2 (in module directory), and it is much more efficient.

3. String conversion to lower and upper case.

To use this package, you need to type:

| ?- [wildmatch].

If you are planning to use it in an XSB program, you need this directive:

:- import glob_directory/4, wildmatch/3, convert_string/3 from wildmatch.

The calling sequence for glob_directory/4 is:

glob_directory(+Wildcard, +Directory, ?MarkDirs, -FileList)

1This package has not yet been ported to the multi-threaded engine.

66

CHAPTER 5. WILDCARD MATCHING 67

The parameter Wildcard can be either a Prolog atom or a Prolog string. Directory is also an
atom or a string; it specifies the directory to be globbed. MarkDirs indicates whether directory
names should be decorated with a trailing slash: if MarkDirs is bound, then directories will be so
decorated. If MarkDirs is an unbound variable, then trailing slashes will not be added.

FileList gets the list of files in Directory that match Wildcard. If Directory is bound to an
atom, then FileList gets bound to a list of atoms; if Directory is a Prolog string, then FileList

will be bound to a list of strings as well.

This predicate succeeds is at least one match is found. If no matches are found or if Directory

does not exist or cannot be read, then the predicate fails.

The calling sequence for wildmatch/3 is as follows:

wildmatch(+Wildcard, +String, ?IgnoreCase)

Wildcard is the same as before. String represents the string to be matched against Wildcard.
Like Wildcard, String can be an atom or a string. IgnoreCase indicates whether case of letters
should be ignored during matching. Namely, if this argument is bound to a non-variable, then
the case of letters is ignored. Otherwise, if IgnoreCase is a variable, then the case of letters is
preserved.

This predicate succeeds when Wildcard matches String and fails otherwise.

The calling sequence for convert_string/3 is as follows:

convert_string(+InputString, +OutputString, +ConversionFlag)

The input string must be an atom or a character list. The output string must be unbound. Its
type will “atom” if so was the input and it will be a character list if so was the input string. The
conversion flag must be the atom tolower or toupper.

This predicate always succeeds, unless there was an error, such as wrong type argument passed
as a parameter.

Chapter 6

pcre: Pattern Matching and
Substitution Using PCRE

By Mandar Pathak

6.1 Introduction

This package employs the PCRE library to enable XSB perform pattern matching and string
substitution based on Perl regular expressions.

6.2 Pattern matching

The pcre package provides two ways of doing pattern matching: first-match mode and bulk-match
mode. The syntax of the pcre:match/4 predicate is:

?- pcre:match(+Pattern, +Subject, -MatchList, +Mode).

To find only the first match, the Mode parameter must be set to the atom one. To find all
matches, the Mode parameter is set to the atom bulk. The result of the matching is returned as a
list of the form:

match(Match,Prematch,Postmatch,[Subpattern1, Subpattern2,. . .])

The Pattern and the Subject arguments of pcre:match must be XSB atoms. If there is a
match in the subject, then the result is returned as a list of the form shown above. Match refers
to the substring which matched the entire pattern. Prematch contains part of the subject-string
that precedes the matched substring. Postmatch contains part of the subject following the matched
substring. The list of subpatterns (the 4-th argument of the match data structure) corresponds to
the substrings which matched the parenthesized expressions in the given pattern. For example:

68

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 69

?- pcre:match(’(\d{5}-\d{4})\ [A-Z]{2}’,

’Hello12345-6789 NYwalk’, X, ’one’).

X = [match(12345-6789 NY,Hello,walk,[12345-6789])]

In this example, the match was found for substring ‘12345-6789 NY’. The prematch is ‘Hello’
and the postmatch is ‘walk’. The substring ‘12345-6789’ matched the parenthesized expression
(\d{5}−\d{4}) and hence it is returned as part of the subpatterns list. Consider another example:

?- pcre:match(’[a-z]+@[a-z]+\.(com|net|edu)’,

’a@b.com@c.net@d.edu’, X, ’bulk’).

X = [match(a@b.com,,@c.net@d.edu,[com]),

match(com@c.net,a@b.,@d.edu,[net]),

match(om@c.net,a@b.c,@d.edu,[net]),

match(m@c.net,a@b.co,@d.edu,[net]),

match(net@d.edu,a@b.com@c.,,[edu]),

match(et@d.edu,a@b.com@c.n,,[edu]),

match(t@d.edu,a@b.com@c.ne,,[edu])]

This example uses the bulk match mode of the pcre_match/4 to find all possible matches
which resemble a very basic email address. In case there is no prematch or postmatch to a matched
substring, an empty string is returned.

In general, there can be any number of parenthesized subtatterns in a given pattern and the
subpattern match-list in the 4-th argument of the match data structure can have 0, 1, 2, or more
elements.

6.3 String Substitution

The pcre package also provides a way to perform string substitution via the pcre:substitute/4

predicate. It has the following syntax:

?- pcre:substitute(+Pattern, +Subject, +Substitution, -Result).

Pattern is the regular expression against which Subject is matched. Each match found is then
replaced by the Substitution, and the result is returned in the variable Result. Here, Pattern,
Subject and Substitution have to be XSB atoms whereas Result must be an unbound variable. The
following example illustrates the use of this predicate:

?- pcre:substitute(’is’,’This is a Mississippi issue’, ’was’, X).

X = Thwas was a Mwasswassippi wassue

Note that the predicate pcre:substitute/4 always works in a bulk mode. If one needs to
substitute only one occurrence of a pattern, this is easy to do using the pcre:match/4 predicate.
For instance, if one wants to replace the third occurrence of “is” in the above string, we could
issue the query

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 70

?- pcre:match(’is’,’This is a Mississippi issue’,X,bulk).

take the third element in the returned list, which is

match(is,’This is a M’,’sissippi issue’,[])

and then concatenate the 2-nd argument with “was” and with the 3-d argument of that match data
structure.

More examples of the use of the pcre package can be found in

$XSBDIR/examples/pcretest.P

6.4 Installation and configuration

XSB’s pcre package requires that the PCRE library is installed. For Windows, the PCRE library files
are included with the installation. For Linux and Mac, the libpcre and libpcre-dev packages
must be installed using the distribution’s package manager.

6.4.1 Configuring for Linux, Mac, and other Unices

If a particular Linux distribution does not include these libraries they must be downloaded and
built manually. Please visit

http://www.pcre.org/

to download the latest distribution and follow the instructions given with the package.

To configure pcre on Linux, Mac, or on some other Unix variant, switch to the XSB/build

directory and type:

cd ../packages/pcre

./configure

./makexsb

6.4.2 Configuring for Windows

Configuring pcre on Windows requires creating the DLL for Windows. To create the DLL, open
the Visual C++ command prompt, switch to the root XSB directory, and type:

cd packages\pcre\cc

nmake /f NMakefile.mak

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 71

This builds the DLL required by XSB’s pcre package on Windows. To ensure that the build
went ahead smoothly, open the directory

{XSB_DIR}\config\x86-pc-windows\bin

and verify that the file pcre4pl.dll exists there.

Once the package has been configured, it must be loaded before it can be used:

?- [pcre].

Chapter 7

curl: The XSB Internet Access
Package

By Aneesh Ali

7.1 Introduction

The curl package is an interface to the libcurl library, which provides access to most of the
standard Web protocols. The supported protocols include FTP, FTPS, HTTP, HTTPS, SCP,
SFTP, TFTP, TELNET, DICT, LDAP, LDAPS, FILE, IMAP, SMTP, POP3 and RTSP. Libcurl
supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload,
proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, Kerberos4), file
transfer resume, http proxy tunneling etc.

The curl package accepts input in the form of URLs and Prolog atoms. To load the curl

package, the user should type

?- [curl].

The curl package is integrated with file I/O of XSB in a transparent fashion and for many purposes
Web pages can be treated just as yet another kind of a file. We first explain how Web pages can
be accessed using the standard file I/O feature and then describe other predicates, which provide
a lower-level interface.

7.2 Integration with File I/O

The curl package is integrated with XSB File I/O so that a web page can be opened as any other
file.Once a Web page is opened, it can be read or written just like the a normal file.

72

CHAPTER 7. CURL: THE XSB INTERNET ACCESS PACKAGE 73

7.2.1 Opening a Web Document

Web documents are opened by the usual predicates see/1, open/3, open/4.

see(url(+Url))

see(url(+Url,Options))

open(url(+Url), +Mode, -Stream)

open(url(+Url), +Mode, -Stream, +Options)

Url is an atom that specifies a URL. Stream is the file stream of the open file. Mode can be

read to create an input stream or write, to create an output stream. For reading, the
contents of the Web page are cached in a temporary file. For writing, a temporary empty file
is created. This file is posted to the corresponding URL at closing.

The Options parameter is a list that controls loading. Members of that list can be of the
following form:

redirect(Bool)
Specifies the redirection option. The supported values are true and false. If true, any
number of redirects is allowed. If false, redirections are ignored. The default is true.

secure(CrtName)
Specifies the secure connections (https) option. CrtName is the name of the file holding
one or more certificates to verify the peer with.

auth(UserName, Password)
Sets the username and password basic authentication.

timeout(Seconds)
Sets the maximum time in seconds that is allowed for the transfer operation.

user_agent(Agent)
Sets the User-Agent: header in the http request sent to the remote server.

7.2.2 Closing a Web Document

Web documents opened by the predicates see/1, open/3, and open/4 above must be closed by
the predicates close/2 or close/3. The data written to the stream is first posted to the URL. If
that succeeds, the stream is closed. ???? And if it does not suceed????

close(+Stream, +Source)

close(+Stream, +Source, +Options)
Source can be of the form url(url). Stream is a file stream. Options is a list of options
supported normally for close.

CHAPTER 7. CURL: THE XSB INTERNET ACCESS PACKAGE 74

7.3 Low Level Predicates

This section describes additional predicates provided by the curl packages, which extend the
functionality provided by the file I/O integration.

7.3.1 Loading web documents

Web documents are loaded by the predicate load_page/5, which has many options. The param-
eters of this predicate are described below.

load_page(+Source, +Options, -Properties, -Content, -Warn)
Source can be of the form url(url) or an atom url (check!!!). The document is returned in
Content. Warn is bound to a (possibly empty) list of warnings generated during the process.

Properties is bound to a list of properties of the document. They include Directory name,
File name, File suffix, Page size, and Page time. The load_page/5 predicate caches a copy
of the Web page that it fetched from the Web in a local file, which is specified by the above
properties Directory name, File name, and File suffix. The remaining two parameters indicate
the size and the last modification time of the fetched Web page. The directory and the file
name The Options parameter is the same as in the URL opening predicates.

7.3.2 Retrieve the properties of a web document

The properties of a web document are loaded by the predicates url_properties/3 and url_properties/2.

url_properties(+Url, +Options, -Properties)
The Options and Properties are same as in load_page/5.

url_properties(+Url, -Properties)
What are the default options???

7.3.3 Encode Url

Sometimes it is necessary to convert a URL string into something that can be used, for example,
as a file name. This is done by the following predicate.

encode_url(+Source, -Result)
Source has the form url(url) or an atom url, where url is an atom. (check!!!) Properties
is bound to a list of properties of the URL: the encoded Directory Name, the encoded File
Name, and the Extension of the URL.

CHAPTER 7. CURL: THE XSB INTERNET ACCESS PACKAGE 75

7.3.4 Obtaining the Redirection URL

If the originally specified URL was redirected, the URL of the page that was actually fetched by
load_page/5 can be found with the help of the following predicate:

get_redir_url(+Source, -UrlNew)
Source can be of the form url(url), file(filename) or a string.

7.4 Installation and configuration

The curl package of XSB requires that the libcurl package is installed. For Windows, the libcurl

library files are included with the installation. For Linux and Mac, the libcurl and libcurl-dev

packages need to be installed using the distribution’s package manager. In some Linux distributions,
libcurl-dev might be called libcurl-gnutls-dev or libcurl-openssl-dev. In addition, the
release number might be attached. For instance, libcurl4 and libcurl4-openssl-dev.

If a particular Linux distribution does not include the above packages and for other Unix
variants, the libcurl package must be downloaded and built manually. See

http://curl.haxx.se/download.html

To configure curl on Linux, Mac, or on some other Unix variant, switch to the XSB/build directory
and type

cd XSB/packages/curl

./configure

./makexsb

5

http://curl.haxx.se/download.html

Chapter 8

sgml and xpath: SGML/XML/HTML
Parsers and XPath

By Rohan Shirwaikar

8.1 Introduction

This suite of packages consists of the sgml package, which can parse XML, HTML, XHTML, and
even SGML documents and the xpath package, which supports XPath queries on XML documents.
The sgml package is an adaptation of a similar package in SWI Prolog and a port of SWI’s codebase
with some minor changes. The xpath package provides an interface to the popular libxml2 library,
which supports XPath and XML parsing, and is used in Mozilla based browsers. At present, the
XML parsing capabilities of libxml2 are not utilized explicitly in XSB, but such support might be
provided in the future. The sgml package does not rely on libxml2 1.

Installation and configuration. The sgml package does not require any installation steps under
Unix-based systems or under Cygwin. Under native Windows, if you downloaded XSB from CVS,
you need to compile the package as follows:

cd XSB\packages\sgml\cc

nmake /f NMakefile.mak

You need MS Visual Studio for that. If you downloaded a prebuilt version of XSB, then the sgml

package should have already been compiled for you and no installation is required.

The details of the xpath package and the corresponding configuration instructions appear in
Section 8.4.

1This package has not yet been tested for thread-safety

76

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 77

8.2 Overview of the SGML Parser

The sgml package accepts input in the form of files, URLs and Prolog atoms. To load the sgml

parser, the user should type

?- [sgml].

at the prompt. If test.html is a file with the following contents

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title>Demo</title>

</head>

<body>

<h1 align=center>This is a demo</h1>

<p>Paragraphs in HTML need not be closed.

<p>This is called ‘omitted-tag’ handling.

</body>

</html>

then the following call

?- load_html_structure(file(’test.html’), Term, Warn).

will parse the document and bind Term to the following Prolog term:

[element(html,

[],

[element(head,

[],

[element(title,

[],

[’Demo’

])

]),

element(body,

[],

[’\n’,

element(h1,

[align = center

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 78

],

[’This is a demo’

]),

’\n\n’,

element(p,

[],

[’Paragraphs in HTML need not be closed.\n’

]),

element(p,

[],

[’This is called ‘omitted-tag\’ handling.’

])

])

])

].

The XML document is converted into a list of Prolog terms of the form element(Name,Attributes,Content).
Each term corresponds to an XML element. Name represents the name of the element. Attributes
is a list of attribute-value pairs of the element. Content is a list of child-elements and CDATA. For
instance,

<aaa>fooo<bbb>foo1</bbb></aaa>

will be parsed as

element(aaa,[],[fooo, element(bbb,[],[foo1])])

Entities (e.g. <) are returned as part of CDATA, unless they cannot be represented. See
load_sgml_structure/3 for details.

8.3 Predicate Reference

8.3.1 Loading Structured Documents

SGML, HTML, and XML documents are parsed by the predicate load_structure/4, which has
many options. For convenience, a number of commonly used shorthands are provided to parse
SGML, XML, HTML, and XHTML documents respectively.

load_sgml_structure(+Source, -Content, -Warn)

load_xml_structure(+Source, -Content, -Warn)

load_html_structure(+Source, -Content, -Warn)

load_xhtml_structure(+Source, -Content, -Warn)

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 79

The parameters of these predicates have the same meaning as those in load_structure/4, and
are described below.

The above predicates (in fact, just load_xml_structure/3 and load_html_structure/3) are
the most commonly used predicates of the sgml package. The other predicates described in this
section are needed only for advanced uses of the package.

load_structure(+Source, -Content, +Options, -Warn)
Source can have one of the following forms: url(url), file(file name), string(’document as
a Prolog atom’). The parsed document is returned in Content. Warn is bound to a (possibly
empty) list of warnings generated during the parsing process. Options is a list of parameters
that control parsing, which are described later.

The list Content can have the following members:

A Prolog atom
Atoms are used to represent character strings, i.e., CDATA.

element(Name, Attributes, Content)
Name is the name of the element tag. Since SGML is case-insensitive, all element names
are returned as lowercase atoms.

Attributes is a list of pairs the form Name=Value, where Name is the name of an at-
tribute and Value is its value. Values of type CDATA are represented as atoms. The
values of multi-valued attributes (NAMES, etc.) are represented as a lists of atoms.
Handling of the attributes of types NUMBER and NUMBERS depends on the setting of
the number(+NumberMode) option of set_sgml_parser/2 or load_structure/3 (see
later). By default the values of such attributes are represented as atoms, but the
number(...) option can also specify that these values must be converted to Prolog
integers.

Content is a list that represents the content for the element.

entity(Code)
If a character entity (e.g., Α) is encountered that cannot be represented in the
Prolog character set, this term is returned. It represents the code of the encountered
character (e.g., entity(913)).

entity(Name)
This is a special case of entity(Code), intended to handle special symbols by their
name rather than character code. If an entity refers to a character entity holding a single
character, but this character cannot be represented in the Prolog character set, this term
is returned. For example, if the contents of an element is Α < Β then it
will be represented as follows:

[entity(’Alpha’), ’ < ’, entity(’Beta’)]

Note that entity names are case sensitive in both SGML and XML.

sdata(Text)
If an entity with declared content-type SDATA is encountered, this term is used. The
data of the entity instantiates Text.

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 80

ndata(Text)
If an entity with declared content-type NDATA is encountered, this term is used. The
data instantiates Text.

pi(Text)
If a processing instruction is encountered (<?...?>), Text holds the text of the processing
instruction. Please note that the <?xml ...?> instruction is ignored and is not treated
as a processing instruction.

The Options parameter is a list that controls parsing. Members of that list can be of the
following form:

dtd(?DTD)
Reference to a DTD object. If specified, the <!DOCTYPE ...> declaration supplied with
the document is ignored and the document is parsed and validated against the provided
DTD. If the DTD argument is a variable, then a the variable DTD gets bound to the
DTD object created out of the DTD supplied with the document.

dialect(+Dialect)
Specify the parsing dialect. The supported dialects are sgml (default), xml and xmlns.

space(+SpaceMode)
Sets the space handling mode for the initial environment. This mode is inherited by
the other environments, which can override the inherited value using the XML reserved
attribute xml:space. See Section 8.3.2 for details.

number(+NumberMode)
Determines how attributes of type NUMBER and NUMBERS are handled. If token is specified
(the default) they are passed as an atom. If integer is specified the parser attempts to
convert the value to an integer. If conversion is successful, the attribute is represented
as a Prolog integer. Otherwise the value is represented as an atom. Note that SGML
defines a numeric attribute to be a sequence of digits. The - (minus) sign is not allowed
and 1 is different from 01. For this reason the default is to handle numeric attributes as
tokens. If conversion to integer is enabled, negative values are silently accepted and the
minus sign is ignored.

defaults(+Bool)
Determines how default and fixed attributes from the DTD are used. By default, defaults
are included in the output if they do not appear in the source. If false, only the
attributes occurring in the source are emitted.

file(+Name)
Sets the name of the input file for error reporting. This is useful if the input is a stream
that is not coming from a file. In this case, errors and warnings will not have the file name
in them, and this option allows one to force inclusion of a file name in such messages.

line(+Line)
Sets the starting line-number for reporting errors. For instance, if line(10) is specified
and an error is found at line X then the error message will say that the error occurred
at line X+10. This option is used when the input stream does not start with the first
line of a file.

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 81

max_errors(+Max)
Sets the maximum number of errors. The default is 50. If this number is reached, the
following exception is raised:

error(limit_exceeded(max_errors, Max), _)

8.3.2 Handling of White Spaces

Four modes for handling white-spaces are provided. The initial mode can be switched using the
space(SpaceMode) option to load_structure/3 or set_sgml_parser/2. In XML mode, the
mode is further controlled by the xml:space attribute, which may be specified both in the DTD
and in the document. The defined modes are:

space(sgml)
Newlines at the start and end of an element are removed. This is the default mode for the
SGML dialect.

space(preserve)
White space is passed literally to the application. This mode leaves all white space handling
to the application. This is the default mode for the XML dialect.

space(default)
In addition to sgml space-mode, all consecutive whitespace is reduced to a single space-
character.

space(remove)
In addition to default, all leading and trailing white-space is removed from CDATA objects.
If, as a result, the CDATA becomes empty, nothing is passed to the application. This mode is
especially handy for processing data-oriented documents, such as RDF. It is not suitable for
normal text documents. Consider the HTML fragment below. When processed in this mode,
the spaces surrounding the three elements in the example below are lost. This mode is not
part of any standard: XML 1.0 allows only default and preserve.

Consider adjacent bold and <it>italic</it> words.

The parsed term will be [’Consider adjacent’,element(b,[],[bold]),element(ul,[],

[and]),element(it,[],[italics]),words].

8.3.3 XML documents

The parser can operate in two modes: the sgml mode and the xml mode, as defined by the
dialect(Dialect) option. HTML is a special case of the SGML mode with a particular DTD.
Regardless of this option, if the first line of the document reads as below, the parser is switched
automatically to the XML mode.

<?xml ... ?>

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 82

Switching to XML mode implies:

• XML empty elements
The construct <element attribute ... attribute/> is recognized as an empty element.

• Predefined entities
The following entities are predefined: < (<), > (>), & (&), ' (’) and "

(").

• Case sensitivity
In XML mode, names of tags and attributes are case-sensitive, except for the DTD reserved
names (i.e. ELEMENT, etc.).

• Character classes
In XML mode, underscore (_) and colon (:) are allowed in names.

• White-space handling
White space mode is set to preserve. In addition, the XML reserved attribute xml:space
is honored; it may appear both in the document and the DTD. The remove extension (see
space(remove) earlier) is allowed as a value of the xml:space attribute. For example, the
DTD statement below ensures that the pre element preserves space, regardless of the default
processing mode.

<!ATTLIST pre xml:space nmtoken #fixed preserve>

XML Namespaces

Using the dialect xmlns, the parser will recognize XML namespace prefixes. In this case, the names
of elements are returned as a term of the format

URL:LocalName

If an identifier has no namespace prefix and there is no default namespace, it is returned as a
simple atom. If an identifier has a namespace prefix but this prefix is undeclared, the namespace
prefix rather than the related URL is returned.

Attributes declaring namespaces (xmlns:ns=url) are represented in the translation as regular
attributes.

8.3.4 DTD-Handling

The DTD (Document Type Definition) are internally represented as objects that can be created,
freed, defined, and inspected. Like the parser itself, it is filled by opening it as a Prolog output
stream and sending data to it. This section summarizes the predicates for handling the DTD.

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 83

new_dtd(+DocType, -DTD, -Warn)
Creates an empty DTD for the named DocType. The returned DTD-reference is an opaque
term that can be used in the other predicates of this package. Warn is the list of warnings
generated.

free_dtd(+DTD, -Warn)
Deallocate all resources associated to the DTD. Further use of DTD is invalid. Warn is the
list of warnings generated.

open_dtd(+DTD, +Options, -Warn)
This opens and loads a DTD from a specified location (given in the Options parameter (see
next). DTD represents the created DTD object after the source is loaded. Options is a list
options. Currently the only option supported is source(location), where location can be of one
of these forms:

url(url)
file(fileName)

string(’document as a Prolog atom’).

dtd(+DocType, -DTD, -Warn)
Certain DTDs are part of the system and have known doctypes. Currently, ’HTML’ and
’XHTML’ are the only recognized built-in doctypes. Such a DTD can be used for parsing
simply by specifying the doctype. Thus, the dtd/3 predicate takes the doctype name, finds
the DTD associated with the given doctype, and creates a dtd object for it. Warn is the list
of warnings generated.

dtd(+DocType, -DTD, +DtdFile -Warn)

The predicate parses the DTD present at the location DtdFile and creates the correspond-
ing DTD object. DtdFile can have one of the following forms: url(url), file(fileName),
string(’document as a Prolog atom’).

8.3.5 Low-level Parsing Primitives

The following primitives are used only for more complex types of parsing, which might not be
covered by the load_structure/4 predicate.

new_sgml_parser(-Parser, +Options, -Warn)
Creates a new parser. Warn is the list of warnings generated. A parser can be used one or
multiple times for parsing documents or parts thereof. It may be bound to a DTD or the
DTD may be left implicit. In this case the DTD is created from the document prologue or (if
it is not in the prologue) parsing is performed without a DTD. The Options list can contain
the following parameters:

dtd(?DTD)
If DTD is bound to a DTD object, this DTD is used for parsing the document and

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 84

the document’s prologue is ignored. If DTD is a variable, the variable gets bound to a
created DTD. This DTD may be created from the document prologue or build implicitly
from the document’s content.

free_sgml_parser(+Parser, -Warn)
Destroy all resources related to the parser. This does not destroy the DTD if the parser was
created using the dtd(DTD) option. Warn is the list of warnings generated during parsing
(can be empty).

set_sgml_parser(+Parser, +Option, -Warn)
Sets attributes to the parser. Warn is the list of warnings generated. Options is a list that
can contain the following members:

file(File)
Sets the file for reporting errors and warnings. Sets the linenumber to 1.

line(Line)
Sets the starting line for error reporting. Useful if the stream is not at the start of the
(file) object for generating proper line-numbers. This option has the same meaning as
in the load_structure/4 predicate.

charpos(Offset)
Sets the starting character location. See also the file(File) option. Used when the
stream does not start from the beginning of a document.

dialect(Dialect)
Set the markup dialect. Known dialects:

sgml

The default dialect. This implies markup is case-insensitive and standard SGML
abbreviation is allowed (abbreviated attributes and omitted tags).

xml

This dialect is selected automatically if the processing instruction <?xml ...> is
encountered.

xmlns

Process file as XML file with namespace support.

qualify_attributes(Boolean)
Specifies how to handle unqualified attributes (i.e., without an explicit namespace) in
XML namespace (xmlns) dialect. By default, such attributes are not qualified with
namespace prefixes. If true, such attributes are qualified with the namespace of the
element they appear in.

space(SpaceMode)
Define the initial handling of white-space in PCDATA. This attribute is described in Sec-
tion 8.3.2.

number(NumberMode)
If token is specified (the default), attributes of type number are represented as a Prolog
atom. If integer is specified, such attributes are translated into Prolog integers. If the

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 85

conversion fails (e.g., due to an overflow) a warning is issued and the value is represented
as an atom.

doctype(Element)
Defines the top-level element of the document. If a <!DOCTYPE ...> declaration has been
parsed, this declaration is used. If there is no DOCTYPE declaration then the parser can be
instructed to use the element given in doctype(_) as the top level element. This feature
is useful when parsing part of a document (see the parse option to sgml_parse/3).

sgml_parse(+Parser, +Options, -Warn)
Parse an XML file. The parser can operate in two input and two output modes. Output is a
structured term as described with load_structure/4.

Warn is the list of warnings generated. A full description of Options is given below.

document(+Term)
A variable that will be unified with a list describing the content of the document (see
load_structure/4).

source(+Source)
Source can have one of the following forms: url(url), file(fileName), string(’document
as a Prolog atom’). This option must be given.

content_length(+Characters)
Stop parsing after the given number of Characters. This option is useful for parsing
input embedded in envelopes, such as HTTP envelopes.

parse(Unit)
Defines how much of the input is parsed. This option is used to parse only parts of a
file.

file

Default. Parse everything upto the end of the input.

element

The parser stops after reading the first element. Using source(Stream), this implies
reading is stopped as soon as the element is complete, and another call may be issued
on the same stream to read the next element.

declaration

This may be used to stop the parser after reading the first declaration. This is useful
if we want to parse only the doctype declaration.

max_errors(+MaxErrors)
Sets the maximum number of errors. If this number is exceeded, further writes to the
stream will yield an I/O error exception. Printing of errors is suppressed after reaching
this value. The default is 100.

syntax_errors(+ErrorMode)
Defines how syntax errors are handled.

quiet
Suppress all messages.

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 86

print
Default. Print messages.

8.3.6 External Entities

While processing an SGML document the document may refer to external data. This occurs in
three places: external parameter entities, normal external entities and the DOCTYPE declaration.
The current version of this tool deals rather primitively with external data. External entities can
only be loaded from a file.

Two types of lines are recognized by this package:

DOCTYPE doctype file

PUBLIC "Id " file

The parser loads the entity from the file specified as file. The file can be local or a URL.

8.3.7 Exceptions

Exceptions are generated by the parser in two cases. The first case is when the user specifies wrong
input. For example when specifying

load_structure(string(’<m></m>’), Document, [line(xyz)], Warn)

The string xyz is not in the domain of line. Hence in this case a domain error exception will be
thrown.

Exceptions are generated when XML being parsed is not well formed. For example if the input
XML contains

’<m></m1>’

exceptions will be thrown.

In both cases the format of the exception is

error(sgml(error term), error message)

warning(sgml(warning term), warning message)

where error term or warning term can be of the form

• pointer to the parser instance,

• line at which error occurred,

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 87

• error code.

• functor(argument), where functor and argument depend on the type of exception raised. For
example,

resource-error(no-memory) — if memory is unavailable

permission-error(file-name) — no permission to read a file

A system-error(description) –- internal system error

type-error(expected,actual) — data type error

domain-error(functor,offending-value) — the offending value is not in the domain
of the functor. For instance, in load_structure(string(’<m></m>’), Document,

[line(xyz)], Warn), xyz is not in the domain of line.

existence-error(resource) — resource does not exist

limit-exceeded(limit,maxval) — value exceeds the limit.

8.3.8 Unsupported features

The current parser is rather limited. While it is able to deal with many serious documents, it omits
several less-used features of SGML and XML. Known missing SGML features include

• NOTATION on entities
Though notation is parsed, notation attributes on external entity declarations are not repre-
sented in the output.

• NOTATION attributes
SGML notations may have attributes, declared using <!ATTLIST #NOT name attrib>. Those
data attributes are provided when you declare an external CDATA, NDATA, or SDATA entity.
XML does not support external CDATA, NDATA, or SDATA entities, nor any of the other
uses to which data attributes are put in SGML.

• SGML declaration
The ‘SGML declaration’ is fixed, though most of the parameters are handled through indi-
rections in the implementation.

• The RANK feature
It is regarded as obsolete.

• The LINK feature
It is regarded as too complicated.

• The CONCUR feature
Concurrent markup allows a document to be tagged according to more than one DTD at the
same time. It is not supported.

• The Catalog files
Catalog files are not supported.

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 88

In the XML mode, the parser recognizes SGML constructs that are not allowed in XML. Also
various extensions of XML over SGML are not yet realized. In particular, XInclude is not imple-
mented.

8.3.9 Summary of Predicates

dtd/2 Find or build a DTD for a document type
free_dtd/1 Free a DTD object
free_sgml_parser/1 Destroy a parser
load_dtd/2 Read DTD information from a file
load_structure/4 Parse XML/SGML/HTML data into Prolog term
load_sgml_structure/3 Parse SGML file into Prolog term
load_html_structure/3 Parse HTML file into Prolog term
load_xml_structure/3 Parse XML file into Prolog term
load_xhtml_structure/3 Parse XHTML file into Prolog term
new_dtd/2 Create a DTD object
new_sgml_parser/2 Create a new parser
open_dtd/3 Open a DTD object as an output stream
set_sgml_parser/2 Set parser options (dialect, source, etc.)
sgml_parse/2 Parse the input
xml_name/1 Test atom for valid XML name
xml_quote_attribute/2 Quote text for use as an attribute
xml_quote_cdata/2 Quote text for use as PCDATA

8.4 XPath support

XPath is a query language for addressing parts of an XML document. In XSB, this support is pro-
vided by the xpath package. To use this package the libxml2 XML parsing library must be installed
on the machine. It comes with most Linux distributions, since it is part of the Gnome desktop,
or one can download it from http://xmlsoft.org/. It is available for Linux, Solaris, Windows, and
MacOS. Note that both the library itself and the .h files of that library must be installed. In some
Linux distributions, the .h files might reside in a separate package from the package that contains
the actual library. For instance, the library (libxml2.so) might be in the package called libxml2

(which is usually installed by default), while the .h files might be in the package libxml2-dev

(which is usually not in default installations).

On Unix-based systems (and MacOS), the package might need to be configured at the time
XSB is configured using XSB’s configure script found in the XSB’s build directory. Normally,
if libxml2 is installed by a Linux package manager, nothing special is required: the package
will be configured by default. If the library is in a non-standard place, then the configure op-
tion –with-xpath-dir=directory-of-libxml2 must be given. It must specify the directory where
lib/*/libxml2.so (or libxml2.dylib in Mac) and include/libxml2 can be found.

Examples: If libxml2 is in a default location, then XSB can be configured simply like this:

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 89

./configure

Otherwise, use

./configure --with-xpath-dir=/usr/local

if, for example, libxml2.so is in /usr/local/lib/i386-linux-gnu/libxml2.so and the included
.h files are in /usr/local/include/libxml2/*.

On Windows and under Cygwin, the libxml2 library is already included in the XSB distribution
and does not need to be downloaded. If you are using a prebuilt XSB distribution for Windows,
then you do not need to do anything—the package has already been built for you.

For Cygwin, you only need to run the ./configure script without any options. This needs to
be done regardless of whether you downloaded XSB from CVS or a released prebuilt version.

If you downloaded XSB from CVS and want to use it under native Windows (not Cygwin),
then you would need to compile the XPath package, and you need Microsoft’s Visual Studio. To
compile the package one should do the following:

cd packages\xpath\cc

nmake /f NMakefile.mak

The following section assumes that the reader is familiar with the syntax of XPath and its
capabilities. To load the xpath package, type

:-[xpath].

The program needs to include the following directive:

:- import parse_xpath/4 from xpath.

XPath query evaluation is done by using the parse_xpath predicate.

parse_xpath(+Source, +XPathQuery, -Output, +NamespacePrefixList)
Source is a term of the format url(url), file(filename) or string(’XML-document-as-a-
string’). It specifies that the input XML document is contained in a file, can be fetched from
a URL, or is given directly as a Prolog atom.

XPathQuery is a standard XPath query which is to be evaluated on the XML document in
Source.

Output gets bound to the output term. It represents the XML element returned after the
XPath query is evaluated on the XML document in Source. The output term is of the form
string(’XML-document’). It can then be parsed using the sgml package described earlier.

NamespacePrefixList is a space separated list of pairs of the form prefix = namespace. This
specifies the namespace prefixes that are used in the XPath query.

For example if the xpath expression is ’/x:html/x:head/x:meta’ where x is a prefix that
stands for ’http://www.w3.org/1999/xhtml’, then x would have to be defined as follows:

CHAPTER 8. SGML AND XPATH: SGML/XML/HTML PARSERS AND XPATH 90

?- parse_xpath(url(’http://w3.org’), ’/x:html/x:head/x:meta’, O4,

’x=http://www.w3.org/1999/xhtml’).

In the above, the xpath query is ’/x:html/x:head/x:meta’ and the prefix has been defined
as ’x=http://www.w3.org/1999/xhtml’.

Chapter 9

rdf: The XSB RDF Parser

By Aneesh Ali

9.1 Introduction

RDF is a W3C standard for representing meta-data about documents on the Web as well as
exchanging frame-based data (e.g. ontologies). RDF has a formal data model defined in terms of
triples. In addition, a graph model is defined for visualization and an XML serialization for exchange.
This chapter describes the API provided by the XSB RDF parsing package. The package and its
documentation are adaptations from SWI Prolog.

9.2 High-level API

The RDF translator is built in Prolog on top of the sgml2pl package, which provides XML parsing.
The transformation is realized in two passes. It is designed to operate in various environments and
therefore provides interfaces at various levels. First we describe the top level, which parses RDF-
XML file into a list of triples. These triples are not asserted into the Prolog database because it is
not necessarily the final format the user wishes to use and it is not clear how the user might want
to deal with multiple RDF documents. Some options are using global URI’s in one pool, in Prolog
modules, or using an additional argument.

load_rdf(+File, -Triples)
Same as load_rdf(+File, -Triples, []).

load_rdf(+File, -Triples, +Options)
Read the RDF-XML file File and return a list of Triples. Options is a list of additional
processing options. Currently defined options are:

base_uri(BaseURI)
If provided, local identifiers and identifier-references are globalized using this URI. If

91

CHAPTER 9. RDF: THE XSB RDF PARSER 92

omitted, local identifiers are not tagged.

blank_nodes(Mode)
If Mode is share (default), blank-node properties (i.e. complex properties without iden-
tifier) are reused if they result in exactly the same triple-set. Two descriptions are shared
if their intermediate description is the same. This means they should produce the same
set of triples in the same order. The value noshare creates a new resource for each blank
node.

expand_foreach(Boolean)
If Boolean is true, expand rdf:aboutEach into a set of triples. By default the parser
generates rdf(each(Container), Predicate, Subject).

lang(Lang)
Define the initial language (i.e. pretend there is an xml:lang declaration in an enclosing
element).

ignore_lang(Bool)
If true, xml:lang declarations in the document are ignored. This is mostly for compat-
ibility with older versions of this library that did not support language identifiers.

convert_typed_literal(:ConvertPred)
If the parser finds a literal with the rdf:datatype=Type attribute, call ConvertPred(+Type,
+Content, -Literal). Content is the XML element contents returned by the XML parser
(a list). The predicate must unify Literal with a Prolog representation of Content ac-
cording to Type or throw an exception if the conversion cannot be made.

This option serves two purposes. First of all it can be used to ignore type declarations
for backward compatibility of this library. Second it can be used to convert typed literals
to a meaningful Prolog representation (e.g., convert ’42’ to the Prolog integer 42 if the
type is xsd:int or a related type).

namespaces(-List)
Unify List with a list of NS=URL for each encountered xmlns:NS=URL declaration
found in the source.

entity(+Name, +Value)
Overrule entity declaration in file. As it is common practice to declare namespaces using
entities in RDF/XML, this option allows changing the namespace without changing the
file. Multiple such options are allowed.

The Triples list is a list of the form rdf(Subject, Predicate, Object) triples. Subject is ei-
ther a plain resource (an atom), or one of the terms each(URI) or prefix(URI) with the
usual meaning. Predicate is either a plain atom for explicitly non-qualified names or a term
NameSpace:Name. If NameSpace is the defined RDF name space it is returned as the atom
rdf. Object is a URI, a Predicate or a term of the form literal(Value) for literal values.
Value is either a plain atom or a parsed XML term (list of atoms and elements).

9.2.1 RDF Object representation

The Object (3rd) part of a triple can have several different types. If the object is a resource it
is returned as either a plain atom or a term NameSpace:Name. If it is a literal it is returned as

CHAPTER 9. RDF: THE XSB RDF PARSER 93

literal(Value), where Value can have one of the form below.

• An atom
If the literal Value is a plain atom is a literal value not subject to a datatype or xml:lang

qualifier.

• lang(LanguageID, Atom)
If the literal is subject to an xml:lang qualifier LanguageID specifies the language and Atom
the actual text.

• A list
If the literal is an XML literal as created by parseType="Literal", the raw output of the
XML parser for the content of the element is returned. This content is a list of element(Name,
Attributes, Content) and atoms for CDATA parts as described with the sgml package.

• type(Type, StringValue)
If the literal has an rdf:datatype=Type a term of this format is returned.

9.2.2 Name spaces

RDF name spaces are identified using URIs. Unfortunately various URI’s are in common use to refer
to RDF. The RDF parser therefore defines the rdf_name_space/1 predicate as multifile, which
can be extended by the user. For example, to parse Netscape OpenDirectory (http://www.mozilla.org/rdf/doc/inference.html

given in the structure.rdf file (http://rdf.dmoz.org/rdf/structure.rdf.u8.gz), the follow-
ing declarations are used:

:- multifile

rdf_parser:rdf_name_space/1.

rdf_parser:rdf_name_space(’http://www.w3.org/TR/RDF/’).

rdf_parser:rdf_name_space(’http://directory.mozilla.org/rdf’).

rdf_parser:rdf_name_space(’http://dmoz.org/rdf’).

The above statements will then extend the initial definition of this predicate provided by the parser:

rdf_name_space(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).

rdf_name_space(’http://www.w3.org/TR/REC-rdf-syntax’).

9.2.3 Low-level access

The predicates load_rdf/2 and load_rdf/3 described earlier are not always sufficient. For exam-
ple, they cannot deal with documents where the RDF statement is embedded in an XML document.
It also cannot deal with really large documents (e.g. the Netscape OpenDirectory project, currently
about 90 MBytes), without requiring huge amounts of memory.

http://www.mozilla.org/rdf/doc/inference.html
http://rdf.dmoz.org/rdf/structure.rdf.u8.gz

CHAPTER 9. RDF: THE XSB RDF PARSER 94

For really large documents, the sgml2pl parser can be instructed to handle the content of a
specific element (i.e. <rdf:RDF>) element-by-element. The parsing primitives defined in this section
can be used to process these one-by-one.

xml_to_rdf(+XML, +BaseURI, -Triples)
Process an XML term produced by sgml’s load_structure/4 using the dialect(xmlns)

output option. XML is either a complete <rdf:RDF> element, a list of RDF-objects (container
or description), or a single description of container.

9.3 Testing the RDF translator

A test-suite and a driver program are provided by rdf_test.P in the XSB/examples/rdf direc-
tory. To run these tests, load this file into Prolog and execute test_all. The test files found
in the directory examples/rdf/suite are then converted into triples. The expected output is
in examples/rdf/expectedoutput. One can also run the tests selectively, using the following
predicates:

suite(+N)
Run test N using the file suite/tN.rdf and display its RDF representation and the triples.

test_file(+File)
Process File and display its RDF representation and the triples.

Chapter 10

Constraint Packages

Constraint packages are an important part of modern logic programming, but approaches to con-
straints differ both in their semantics and in their implementation. At a semantic level, Constraint
Logic Programming associates constraints with logical variables, and attempts to determine solu-
tions that are inconsistent with or entailed by those constaints. At an implementational level, the
constraints can either be manipulated by accessing attributed variables or by adding constraint han-
dling rules to a program. The former approach of attributed variables can be much more efficient
than constraint handling rules (which are themselves implemented through attributed variables)
but are much more difficult to use than constraint handling rules. These variable-based approaches
differ from that of Answer Set Programming in which a constraint problem is formulated as a set
of rules, which are consistent if a stable model can be constructed for them.

XSB supports all of these approaches. Two packages based on attributed variables are presented
in this chapter: CLP(R) and the bounds package, which provides a simple library for handling finite
domains. XSB’s CHR package is described in Chapter 11, and XSB’s Answer Set Programming
Package, XASP is described in Chapter 12.

Before describing the individual packages, we note that these packages can be freely used with
variant tabling, the mechanisms for which handle attributed variables. However in Version 3.5,
calling a predicate P that is tabled using call subsumption will raise an error if the call to P
contains any constrained variables (attributed variables).

10.1 clpr: The CPL(R) package

The CLP(R) library supports solutions of linear equations and inequalities over the real numbers
and the lazy treatment of nonlinear equations 1. In displaying sets of equations and disequations,
the library removes redundancies, performs projections, and provides for linear optimization. The
goal of the XSB port is to provide the same CLP(R) functionality as in other platforms, but also
to allow constraints to be used by tabled predicates. This section provides a general introduction

1The CLP(R) package is based on the clpqr package included in SWI Prolog version 5.6.49. This package was
originally written by Christian Holzbaur and ported to SWI by Leslie De Konick. Terrance Swift ported the package
to XSB and and wrote this XSB manual section.

95

CHAPTER 10. CONSTRAINT PACKAGES 96

to the CLP(R) functionality available in XSB, for further information on the API described in Sec-
tion 10.1.1 see http://www.ai.univie.ac.at/clpqr, or the Sicstus Prolog manual (the CLP(R)
library should behave similarly on XSB and Sicstus at the level of this API).

The clpr package may be loaded by the command [clpr]. Loading the package imports
exported predicates from the various files in the clpr package into usermod (see Volume 1, Section
3.3) so that they may be used in the interpreter. Modules that use the exported predicates need
to explicitly import them from the files in which they are defined (e.g. bv, as shown below).

XSB’s tabling engine supports the use of attributed variables (Section 1.2), which in turn have
been used to port real constraints to XSB under the CLP(R) library of Christian Holzbauer [15].
Constraint equations are represented using the Prolog syntax for evaluable functions (Volume 1,
Section 6.2.1). Formally:

ConstraintSet –> C | C , C

C –> Expr =:= Expr equation
| Expr = Expr equation
| Expr < Expr strict inequation
| Expr > Expr strict inequation
| Expr =< Expr nonstrict inequation
| Expr >= Expr nonstrict inequation
| Expr =/= Expr disequation

Expr –> variable Prolog variable
| number floating point number
| + Expr
| - Expr
| Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr
| abs(Expr)

‘ | sin(Expr)

| cos(Expr)

| tan(Expr)

| pow(Expr,Expr) raise to the power
| exp(Expr,Expr) raise to the power
| min(Expr,Expr) minimum of two expressions
| max(Expr,Expr) maximum of two expressions
| #(Expr) symbolic numerical constants

10.1.1 The CLP(R) API

From the command line, it is usually easiest to load the clpr package and call the predicates below
directly from usermod (the module implicitly used by the command line). However, when calling

CHAPTER 10. CONSTRAINT PACKAGES 97

:- import {}/1 from clpr.

root(N, R) :-

root(N, 1, R).

root(0, S, R) :- !, S=R.

root(N, S, R) :-

N1 is N-1,

{ S1 = S/2 + 1/S },

root(N1, S1, R).

Figure 10.1: Example of a file with a CLP(R) predicate

any of these predicates from compiled code, they must be explicitly imported from their modules
(e.g. {} must be explicitly imported from clpr). Figure 10.1.1 shows an example of how this is
done. ‘

{+Constraints} module: clpr

When the CLP(R) package is loaded, inclusion of equations in braces ({}) adds Constraints

to the constraint store where they are checked for satisfiability.

Example:

| ?- [clpr].

[clpr loaded]

[itf loaded]

[dump loaded]

[bv_r loaded]

[nf_r loaded]

yes

| ?- {X = Y+1, Y = 3*X}.

X = -0.5000

Y = -1.5000;

yes

Error Cases

• Constraints is not instantiated

– instantiation_error

• Constraints is not an equation, an inequation or a disequation

– domain_error(’constraint relation’,Rel)

• Constraints contains an expression Expr that is not a numeric expression

– domain_error(’numeric expression’,Expr)

CHAPTER 10. CONSTRAINT PACKAGES 98

entailed(+Constraint) module: clpr

Succeeds if Constraint is logically implied by the current constraint store. entailed/1 does
not change the constraint store.

Example:

| ?- {A =< 4},entailed(A =\= 5).

{ A =< 4.0000 }

yes

Error Cases

• Constraints is not instantiated

– instantiation_error

• Constraints is not an equation, an inequation or a disequation

– domain_error(’constraint relation’,Rel)

inf(+Expr,-Val) clpr

sup(+Expr,-Val) clpr

minimize(Expr) clpr

maximize(Expr) module: clpr

These four related predicates provide various mechanisms to compute the maximum and
minimum of expressions over variables in a constraint store. In the case where the expression
is not bounded from above over the reals sup/2 and maximize/1 will fail; similarly if the
expression is not bounded from below inf/2 and minimize/1 will fail.

Examples:

| ?- {X = 2*Y,Y >= 7},inf(X,F).

{ X >= 14.0000 }

{ Y = 0.5000 * X }

X = _h8841

Y = _h9506

F = 14.0000

| ?- {X = 2*Y,Y >= 7},minimize(X).

X = 14.0000

Y = 7.0000

| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000

Y = 7.0000

| ?- {X = 2*Y,Y =< 7},sup(X-2,Z).

{ X =< 14.0000 }

{ Y = 0.5000 * X }

CHAPTER 10. CONSTRAINT PACKAGES 99

X = _h8975

Y = _h9640

Z = 12.0000

yes

| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000

Y = 7.0000

yes

inf(+Expr,-Val, +Vector, -Vertex) clpr

sup(+Expr,-Val, +Vector, -Vertex) module: clpr

These predicates work like inf/2 and sup/2 with the following addition. Vector is a list
of Variables, and for each variable V in Vector, the value of V at the extremal point Val is
returned in corresponding position in the list Vertex.

Example:

| ?= { 2*X+Y =< 16, X+2*Y =< 11,X+3*Y =< 15, Z = 30*X+50*Y},

sup(Z, Sup, [X,Y], Vertex).

{ X + 3.0000 * Y =< 15.0000 }

{ X + 0.5000 * Y =< 8.0000 }

{ X + 2.0000 * Y =< 11.0000 }

{ Z = 30.0000 * X + 50.0000 * Y }

X = _h816

Y = _h869

Z = _h2588

Sup = 310.0000

Vertex = [7.0000,2.0000]

bb_inf(+IntegerList,+Expr,-Inf,-Vertex, +Eps) module: clpr

Works like inf/2 in Expr but assumes that all the variables in IntegerList have inte-
gral values. Eps is a positive number between 0 and 0.5 that specifies how close an ele-
ment of IntegerList must be to an integer to be considered integral – i.e. for such an X,
abs(round(X) - X) < Eps. Upon success, Vertex is instantiated to the integral values of
all variables in IntegerList. bb_inf/5 works properly for non-strict inequalities only.

Example:

| ?- {X > Y + Z,Y > 1, Z > 1},bb_inf([Y,Z],X,Inf,Vertex,0).

{ Z > 1.0000 }

{ Y > 1.0000 }

{ X - Y - Z > 0.0000 }

X = _h14286

Y = _h10914

Z = _h13553

CHAPTER 10. CONSTRAINT PACKAGES 100

Inf = 4.0000

Vertex = [2.0000,2.0000]

yes

Error Cases

• IntegerList is not instantiated

– instantiation_error

bb_inf(+IntegerList,+Expr,-Inf) module: clpr

Works like bb_inf/5, but with the neighborhood, Eps, set to 0.001.

Example

|?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf)

{ Z > 1.0000 }

{ Y > 1.0000 }

{ X - Y - Z >= 0.0000 }

X = _h14289

Y = _h10913

Z = _h13556

Inf = 4.

yes

dump(+Variables,+NewVars,-CodedVars module: dump

For a list of variables Variables and a list of variable names NewVars, returns in CodedVars

the constraints on the variables, without affecting the constraint store.

Example:

| ?- {X > Y+1, Y > 2},

dump([X,Y], [x,y], CS).

{ Y > 2.0000 }

{ X - Y > 1.0000 }

X = _h17748

Y = _h17139

CS = [y > 2.0000,x - y > 1.0000];

Error Cases

• Variables is not instantiated to a list of variables

– instantiation_error

projecting_assert(+Clause) module: dump

In XSB, when a subgoal is tabled, the tabling system automatically determines the relevant
projected constraints for an answer and copies them into and out of a table. However,

CHAPTER 10. CONSTRAINT PACKAGES 101

when a clause with constrained variables is asserted, this predicate must be used rather
than assert/1 in order to project the relevant constraints. This predicate works with either
standard or trie-indexed dynamic code.

Example:

| ?- {X > 3},projecting_assert(q(X)).

{ X > 3.0000 }

X = _h396

yes

| ?- listing(q/1).

q(A) :-

clpr : {A > 3.0000}.

yes

| ?- q(X),entailed(X > 2).

{ X > 3.0000 }

X = _h358

yes

| ?- q(X),entailed(X > 4).

no

10.2 The bounds Package

Version 3.5 of XSB does not support a full-fledged CLP(FD) package. However it does support a
simplified package that maintains an upper and lower bound for logical variables. bounds can thus
be used for simple constraint problems in the style of finite domains, as long as these problems that
do not rely on too heavily on propagation of information about constraint domains 2

Perhaps the simplest way to explain the functionality of bounds is by example. The query

|?- X in 1..2,X #> 1.

first indicates via X in 1..2 that the lower bound of X is 1 and the higher bound 2, and then
constrains X, which is not yet bound, to be greater than 1. Applying this latter constraint to X

forces the lower bound to equal the upper bound, instantiating X, so that the answer to this query
is X = 2.

Next, consider the slightly more complex query

|?- X in 1..3,Y in 1..3,Z in 1..3,all_different([X,Y,Z]),X = 1, Y = 2.

2The bounds package was written by Tom Schrijvers, and ported to XSB from SWI Prolog version 5.6.49 by
Terrance Swift, who also wrote this manual section.

CHAPTER 10. CONSTRAINT PACKAGES 102

all_different/3 constraints X, Y and Z each to be different, whatever their values may be. Ac-
cordingly, this constraint together with the bound restrictions, implies that instantiating X and Y
also causes the instantiation of Z. In a similar manner, the query

|?- X in 1..3,Y in 1..3,Z in 1..3,sum([X,Y,Z],#=,9),

onstrains the sum of the three variables to equal 9 – and in this case assigns them a concrete value
due to their domain restrictions.

In many constraint problems, it does not suffice to know whether a set of constraints is satisfi-
able; rather, concrete values may be needed that satisfy all constraints. One way to produce such
values is through the predicate labelling/2

|?- X in 1..5,Y in 1..5,X #< Y,labeling([max(X)],[X,Y]))

In this query, it is specified that X and Y are both to be instantiated not just by any element of their
domains, but by a value that assigns X to be the maximal element consistent with the constraints.
Accordingly X is instantiated to 4 and Y to 5.

Because constraints in bounds are based on attributed variables which are handled by XSB’s
variant tabling mechanisms, constrained variables can be freely used with variant tabling as the
folowing fragment shows:

table_test(X):- X in 2..3,p(X).

:- table p/1.

p(X):- X in 1..2.

?- table_test(Y).

Y = 2

For a more elaborate example, we turn to the SEND MORE MONEY example, , in which
the problem is to assign numbers to each of the letters S,E,N,D,M,O,R,Y so that the number
SEND plus the number MORE equals the number MONEY. Borrowing a solution from the SWI
manual [31], the bounds package solves this problem as:

send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-

Digits = [S,E,N,D,M,O,R,Y],

Carries = [C1,C2,C3,C4],

Digits in 0..9,

Carries in 0..1,

M #= C4,

O + 10 * C4 #= M + S + C3,

N + 10 * C3 #= O + E + C2,

E + 10 * C2 #= R + N + C1,

Y + 10 * C1 #= E + D,

M #>= 1,

S #>= 1,

all_different(Digits),

label(Digits).

CHAPTER 10. CONSTRAINT PACKAGES 103

In many cases, it may be useful to test whether a given constraint is true or false. This can
be done by unifying a variable with the truth value of a given constraint – i.e. by reifying the
constraint. As an example, the query

|?- X in 1..10, Y in 1..10,Z in 0..1,X #< Y, X #= Y #<=> Z,label([Z]).

sets the bounded variable Z to the truth value of X #= Y, or 0 3.

A reader familiar with the finite domain library of Sicstus [18] will have noticed that the syntax
of bounds is consistent with that library. It is important to note however, bounds maintains only
the upper and lower bounds of a variables as its attributes, (along, of course with constraints on
those variables) rather than an explicit vector of permissable values. As a result, bounds may not
be suitable for large or complex constraint problems.

10.2.1 The bounds API

Note that bounds does not perform error checking, but instead relies on the error checking of
lower-level comparison and arithmetic operators.

in(-Variable,+Bound) bounds

Adds the constraint Bound to Variable, where Bound should be of the form Low..High, with
Low and High instantiated to integers. This constraint ensures that any value of Variable

must be greater than or equal to Low and less than or equal to High. Unlike some finite-
domain constraint systems, it does not materialize a vector of currently allowable values for
Variable.

Variables that have not had their domains explicitly constrained are considered to be in the
range min_integer..max_integer.

#>(Expr1,Expr2) bounds

#<(Expr1,Expr2) bounds

#>=(Expr1,Expr2) bounds

#=<(Expr1,Expr2) bounds

#=(Expr1,Expr2) bounds

#=(Expr1,Expr2) bounds

Ensures that a given relation holds between Expr1 and Expr2. Within these constraints,
expressions may contain the functions +/2, -/2, */2, +/2, +/2, +/2, mod/2, and abs/1 in
addition to integers and variables.

#<=>(Const1,Const2) bounds

#=>(Const1,Const2) bounds

#<=(Const1,Const2) bounds

Constrains the truth-value of Const1 to have the speficied logical relation (“iff”, “only-if” or
“if”) to Const2, where Const1 and Const2 have one of the six relational operators above.

3The current version of the bounds package does not always seem to propagate entailment into the values of reified
variables.

CHAPTER 10. CONSTRAINT PACKAGES 104

all_different(+VarList) bounds

VarList must be a list of variables: constrains all variables in VarList to have different
values.

sum(VarList,Op,?Value) bounds

VarList must be a list of variables and Value an integer or variable: constrains the sum of
all variables in VarList to have the relation Op to Value (see preceding example).

labeling(+Opts,+VarList bounds

This predicate succeeds if it can assign a value to each variable in VarList such that no con-
straint is violated. Note that assigning a value to each constrained variable is equivalent to
deriving a solution that satisfies all constraints on the variables, which may be intractible de-
pending on the constraints. Opts allows some control over how value assignment is performed
in deriving the solution.

• leftmost Assigns values to variables in the order in which they occur. For example the
query:

|?- X in 1..4,Y in 1..3,X #< Y,labeling([leftmost],[X,Y]),writeln([X,Y]),fail.

[1,2]

[1,3]

[2,3]

no

instantiates X and Y to all values that satisfy their constraints, and does so by consid-
ering each value in the domain of X, checking whether it violates any constraints, then
considering each value of Y and checking whether it violates any constraints.

• ff This “first-fail” strategy assignes values to variables based on the size of their domains,
from smallest to largest. By adopting this strategy, it is possible to perform a smaller
search for a satisfiable solution because the most constrained variables may be considered
first (though the bounds of the variable are checked rather than a vector of allowable
values).

• min and max This strategy labels variables in the order of their minimal lower bound or
maximal upper bound.

• min(Expr) and max(Expr) This strategy labels the variables so that their assignment
causes Expr to have a minimal or maximal value. Consider for example how these
strategies would affect the labelling of the preceding query:

|?- X in 1..4,Y in 1..3,X #< Y,labeling([min(Y)],[X,Y]),writeln([X,Y]),fail.

[1,2]

no

|?- X in 1..4,Y in 1..3,X #< Y,labeling([max(X)],[X,Y]),writeln([X,Y]),fail.

[2,3]

no

label(+VarList) bounds

Shorthand for labeling([leftmost],+VarList).

CHAPTER 10. CONSTRAINT PACKAGES 105

indomain(?Var) bounds

Unifies Var with an element of its domain, and upon sucessive backttrakcing, with all other
elements of its domain.

serialized(+BeginList,+Durations bounds
serialized/2 can be useful for scheduling problems. As input it takes a list of variables

or integers representing the beginnings of temporal events, along with a list of non-negative
intergers indicating the duration of each event in BeginList. The effect of this predicate is
to constrain each of the events in BeginList to have a start time such that their durations
do not overlap. As an example, consier the query

|?- X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),label([X,Y]),writeln((X,Y)),fail.

In this query event X is taken to have duration of 8 units, while event Y is taken to have
duration of 1 unit. Executing this query will instantiate X and Y to many different values,
such as (1,9), (1,10), and (2,10) where X is less than Y, but also (10,1), (10,2) and many
others where Y is less than X. Refining the query as

X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),X #< Y,label([X,Y]),writeln((X,Y)),fail.

removes all solutions where Y is less than X.

lex_chain(+List) bounds
lex_chain/1 takes as input a list of lists of variables and integers, and enforces the constraint
that each element in a given list is less than or equal to the elements in all succeeding lists.
As an example, consider the query

|?- X in 1..3,Y in 1..3,lex_chain([[X],[2],[Y]]),label([X,Y]),writeln([X,Y]),fail.

[1,2]

[1,3]

[2,2]

[2,3]

lex_chain/1 ensures that X is less than or equal to 2 which is less than or equal to Y.

Chapter 11

Constraint Handling Rules

11.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice bottom-up language embedded in XSB. It
is designed for writing constraint solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking,
abduction, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap, hPro-
log), Haskell and Java. The XSB CHR system is based on the hProlog CHR system.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on XSB-specific elements. For a more thorough review of CHR we refer the reader to
[13]. More background on CHR can be found at [12].

In Section 11.2 we present the syntax of CHR in XSB and explain informally its operational
semantics. Next, Section 11.3 deals with practical issues of writing and compiling XSB programs
containing CHR. Section 11.4 provides a few useful predicates to inspect the constraint store and
Section 11.5 illustrates CHR with two example programs. How to combine CHR with tabled
predicates is covered in Section 11.6. Finally, Section 11.7 concludes with a few practical guidelines
for using CHR.

11.2 Syntax and Semantics

11.2.1 Syntax

The syntax of CHR rules in XSB is the following:

rules --> rule, rules.

rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

106

CHAPTER 11. CONSTRAINT HANDLING RULES 107

name --> xsb_atom, [atom(’@’)].

name --> [].

actual_rule --> simplification_rule.

actual_rule --> propagation_rule.

actual_rule --> simpagation_rule.

simplification_rule --> constraints, [atom(’<=>’)], guard, body.

propagation_rule --> constraints, [atom(’==>’)], guard, body.

simpagation_rule --> constraints, [atom(’\’)], constraints, [atom(’<=>’)],

guard, body.

constraints --> constraint, constraint_id.

constraints --> constraint, [atom(’,’)], constraints.

constraint --> xsb_compound_term.

constraint_id --> [].

constraint_id --> [atom(’#’)], xsb_variable.

guard --> [].

guard --> xsb_goal, [atom(’|’)].

body --> xsb_goal.

pragma --> [].

pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.

actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], xsb_variable, [atom(’)’)].

Additional syntax-related terminology:

• head: the constraints in an actual_rule before the arrow (either <=> or ==>)

11.2.2 Semantics

In this subsection the operational semantics of CHR in XSB are presented informally. They do not
differ essentially from other CHR systems.

CHAPTER 11. CONSTRAINT HANDLING RULES 108

When a constraint is called, it is considered an active constraint and the system will try to
apply the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head they are
looked for among the suspended constraints, which are called passive constraints in this context.
If the necessary passive constraints can be found and all match with the head of the rule and the
guard of the rule succeeds, then the rule is committed and the body of the rule executed. If not
all the necessary passive constraint can be found, the matching fails or the guard fails, then the
body is not executed and the process of trying and executing simply continues with the following
rules. If for a rule, there are multiple constraints in the head, the active constraint will try the rule
sequentially multiple times, each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule,
or after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other
way it may interact again with the rules, is when a variable appearing in the constraint becomes
bound to either a non-variable or another variable involved in one or more constraints. In that case
the constraint is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

• simplification:

The simplification rule removes the constraints in its head and calls its body.

• propagation:

The propagation rule calls its body exactly once for the constraints in its head.

• simpagation:

The simpagation rule removes the constraints in its head after the \ and then calls its body.
It is an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

Namely, in the simpagation form:

constraints1\constraints2 <=> body

The constraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions as
documentation for the programmer.

CHAPTER 11. CONSTRAINT HANDLING RULES 109

Pragmas The semantics of the pragmas are:

• passive/1: the constraint in the head of a rule with the identifier specified by the passive/1
pragma can only act as a passive constraint in that rule.

Additional pragmas may be released in the future.

11.3 CHR in XSB Programs

11.3.1 Embedding in XSB Programs

Since chr is an XSB package, it must be explicitly loaded before being used.

?- [chr].

CHR rules are written in a tt .chr file. They should be preceded by a declaration of the
constraints used:

:- constraints ConstraintSpec1, ConstraintSpec2, ...

where each ConstraintSpec is a functor description of the form name/arity pair. Ordinary code
may be freely written between the CHR rules.

The CHR constraints defined in a particular .chr file are associated with a CHR module. The
CHR module name can be any atom. The default module is user. A different module name can
be declared as follows:

:- chr_module(modulename).

One should never load different files with the same CHR module name.

11.3.2 Compilation

Files containing CHR rules are required to have a .chr extension, and their compilation has two
steps. First the .chr file is preprocessed into a .P file containing XSB code. This .P file can then
be loaded in the XSB emulator and used normally.

load_chr(File) chr_pp

load_chr/1 takes as input a file name whose extension is either .chr or that has no extension.
It preprocesses File if the times of the CHR rule file is newer than that of the corresponding
Prolog file, and then consults the Prolog file.

preprocess(File,PFile) chr_pp

preprocess/2 takes as input a file name whose extension is either .chr or that has no
extension. It preprocesses File if the times of the CHR rule file is newer than that of the
corresponding Prolog file, but does not consult the Prolog file.

CHAPTER 11. CONSTRAINT HANDLING RULES 110

11.4 Useful Predicates

The chr module contains several useful predicates that allow inspecting and printing the content
of the constraint store.

show_store(+Mod) chr

Prints all suspended constraints of module Mod to the standard output.

suspended_chr_constraints(+Mod,-List) chr

Returns the list of all suspended CHR constraints of the given module.

11.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2, which is a less-than-or-equal
constraint.

:- chr_module(leq).

:- export cycle/3.

:- import length/2 from basics.

:- constraints leq/2.

reflexivity @ leq(X,X) <=> true.

antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

cycle(X,Y,Z):-

leq(X,Y),

leq(Y,Z),

leq(Z,X).

• The program below implements a simple finite domain constraint solver.

:- chr_module(dom).

:- import member/2 from basics.

:- constraints dom/2.

CHAPTER 11. CONSTRAINT HANDLING RULES 111

dom(X,[]) <=> fail.

dom(X,[Y]) <=> X = Y.

dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

intersection([],_,[]).

intersection([H|T],L2,[H|L3]) :-

member(H,L2), !,

intersection(T,L2,L3).

intersection([_|T],L2,L3) :-

intersection(T,L2,L3).

These and more examples can be found in the examples/chr/ folder accompanying this XSB
release.

11.6 CHR and Tabling

The advantage of CHR in XSB over other Prolog systems, is that CHR can be combined with
tabling. Hence part of the constraint solving can be performed once and reused many times. This
has already shown to be useful for applications of model checking with constraints.

However the use of CHR constraints is slightly more complicated for tabled predicates. This
section covers how exactly to write a tabled predicate that has one or more arguments that also
appear as arguments in suspended constraints. In the current release the CHR-related parts of the
tabled predicates have to be written by hand. In a future release this may be substituted by an
automatic transformation.

11.6.1 General Issues and Principles

The general issue is how call constraints should be passed in to the tabled predicate and how answer
constraints are passed out of the predicate. Additionally, in some cases care has to be taken not to
generate infinite programs.

The recommended approach is to write the desired tabled predicate as if no additional code is
required to integrate it with CHR. Next transform the tabled predicate to take into account the
combination of tabling and CHR. Currently this transformation step has to be done by hand. In
the future we hope to replace this hand coding with programmer declarations that guide automated
transformations.

Hence we depart from an ordinary tabled predicate, say p/1:

:- table p/1.

p(X) :-

... /* original body of p/1 */.

CHAPTER 11. CONSTRAINT HANDLING RULES 112

In the following we will present several transformations or extensions of this code to achieve a
particular behavior. At least the transformation discussed in subsection 11.6.2 should be applied
to obtain a working integration of CHR and tabling. Further extensions are optional.

11.6.2 Call Abstraction

Currently only one type of call abstraction is supported: full constraint abstraction, i.e. all con-
straints on variables in the call should be removed. The technique to accomplish this is to replace
all variables in the call that have constraints on them with fresh variables. After the call, the
original variables should be unified with the new ones.

In addition, the call environment constraint store should be replaced with an empty constraint
store before the call and on return the answer store should be merged back into the call environment
constraint store.

The previously mentioned tabled predicate p/1 should be transformed to:

:- import merge_answer_store/1,

get_chr_store/1,

set_chr_store/1,

get_chr_answer_store/2

from chr.

:- table tabled_p/2.

p(X) :-

tabled_p(X1,AnswerStore),

merge_answer_store(AnswerStore),

X1 = X.

tabled_p(X,AnswerStore) :-

get_chr_store(CallStore),

set_chr_store(_EmptyStore)

orig_p(X),

get_chr_answer_store(chrmod,AnswerStore),

set_chr_store(CallStore).

orig_p(X) :-

... /* original body of p/1 */.

This example shows how to table the CHR constraints of a single CHR module chrmod. If
multiple CHR modules are involved, one should add similar arguments for the other modules.

11.6.3 Answer Projection

To get rid of irrelevant constraints, most notably on local variables, the answer constraint store
should in some cases be projected on the variables in the call. This is particularly important for

CHAPTER 11. CONSTRAINT HANDLING RULES 113

programs where otherwise an infinite number of answers with ever growing answer constraint stores
could be generated.

The current technique of projection is to provide an additional project/1 constraint to the CHR
solver definition. The argument of this constraint is the list of variables to project on. Appropriate
CHR rules should be written to describe the interaction of this project/1 constraint with other
constraints in the store. An additional rule should take care of removing the project/1 constraint
after all such interaction.

The project/1 constraint should be posed before returning from the tabled predicate.

If this approach is not satisfactory or powerful enough to implement the desired projection op-
eration, you should resort to manipulating the underlying constraint store representation. Contact
the maintainer of XSB’s CHR system for assistance.

Example Take for example a predicate p/1 with a less than or equal constraint leq/2 on variables
and integers. The predicate p/1 has local variables, but when p returns we are not interested in
any constraints involving local variables. Hence we project on the argument of p/1 with a project
constraint as follows:

:- import memberchk/2 from lists.

:- import merge_answer_store/1,

get_chr_store/1,

set_chr_store/1,

get_chr_answer_store/2

from chr.

:- table tabled_p/2.

:- constraints leq/2, project/1.

... /* other CHR rules */

project(L) \ leq(X,Y) <=>

(var(X), \+ memberchk(X,L)

; var(Y), \+ memberchk(Y,L)

) | true.

project(_) <=> true.

p(X) :-

tabled_p(X1,AnswerStore),

merge_answer_store(AnswerStore),

X1 = X.

tabled_p(X,AnswerStore) :-

get_chr_store(CallStore),

set_chr_store(_EmptyStore)

orig_p(X),

project([X]),

CHAPTER 11. CONSTRAINT HANDLING RULES 114

get_chr_answer_store(chrmod,AnswerStore),

set_chr_store(CallStore).

orig_p(X) :-

... /* original body of p/1 */.

The example in the following subsection shows projection in a full application.

11.6.4 Answer Combination

Sometimes it is desirable to combine different answers to a tabled predicate into one single answer
or a subset of answers. Especially when otherwise there would be an infinite number of answers. If
the answers are expressed as constraints on some arguments and the logic of combining is encoded
as CHR rules, answers can be combined by merging the respective answer constraint stores.

Another case where this is useful is when optimization is desired. If the answer to a predicate
represents a valid solution, but an optimal solution is desired, the answer should be represented
as constraints on arguments. By combining the answer constraints, only the most constrained, or
optimal, answer is kept.

Example An example of a program that combines answers for both termination and optimisation
is the shortest path program below:

:- chr_module(path).

:- import length/2 from lists.

:- import merge_chr_answer_store/1,

get_chr_store/1,

set_chr_store/1,

get_chr_answer_store/2

from chr.

breg_retskel(A,B,C,D) :- ’_$builtin’(154).

:- constraints geq/2, plus/3, project/1.

geq(X,N) \ geq(X,M) <=> number(N), number(M), N =< M | true.

reflexivity @ geq(X,X) <=> true.

antisymmetry @ geq(X,Y), geq(Y,X) <=> X = Y.

idempotence @ geq(X,Y) \ geq(X,Y) <=> true.

transitivity @ geq(X,Y), geq(Y,Z) ==> var(Y) | geq(X,Z).

plus(A,B,C) <=> number(A), number(B) | C is A + B.

plus(A,B,C), geq(A,A1) ==> plus(A1,B,C1), geq(C,C1).

plus(A,B,C), geq(B,B1) ==> plus(A,B1,C1), geq(C,C1).

CHAPTER 11. CONSTRAINT HANDLING RULES 115

project(X) \ plus(_,_,_) # ID <=> true pragma passive(ID).

project(X) \ geq(Y,Z) # ID <=> (Y \== X ; var(Z))| true pragma passive(ID).

project(_) <=> true.

path(X,Y,C) :-

tabled_path(X,Y,C1,AS),

merge_chr_answer_store(AS),

C = C1.

:- table tabled_path/4.

tabled_path(X,Y,C,AS) :-

’_$savecp’(Breg),

breg_retskel(Breg,4,Skel,Cs),

copy_term(p(X,Y,C,AS,Skel),p(OldX,OldY,OldC,OldAS,OldSkel)),

get_chr_store(GS),

set_chr_store(_GS1),

orig_path(X,Y,C),

project(C),

(get_returns(Cs,OldSkel,Leaf),

OldX == X, OldY == Y ->

merge_chr_answer_store(OldAS),

C = OldC,

get_chr_answer_store(path,MergedAS),

sort(MergedAS,AS),

(AS = OldAs ->

fail

;

delete_return(Cs,Leaf)

)

;

get_chr_answer_store(path,UnsortedAS),

sort(UnsortedAS,AS)

),

set_chr_store(GS).

orig_path(X,Y,C) :- edge(X,Y,C1), geq(C,C1).

orig_path(X,Y,C) :- path(X,Z,C2), edge(Z,Y,C1), plus(C1,C2,C0), geq(C,C0).

edge(a,b,1).

edge(b,a,1).

edge(b,c,1).

edge(a,c,3).

edge(c,a,1).

The predicate orig_path/3 specifies a possible path between two nodes in a graph. In tabled_path/4

multiple possible paths are combined together into a single path with the shortest distance. Hence
the tabling of the predicate will reject new answers that have a worse distance and will replace the
old answer when a better answer is found. The final answer gives the optimal solution, the shortest
path. It is also necessary for termination to keep only the best answer. When cycles appear in the

CHAPTER 11. CONSTRAINT HANDLING RULES 116

graph, paths with longer and longer distance could otherwise be put in the table, contributing to
the generation of even longer paths. Failing for worse answers avoids this infinite build-up.

The predicate also includes a projection to remove constraints on local variables and only retain
the bounds on the distance.

The sorting canonicalizes the answer stores, so that they can be compared.

11.6.5 Overview of Tabling-related Predicates

merge_answer_store(+AnswerStore) chr

Merges the given CHR answer store into the current global CHR constraint store.

get_chr_store(-ConstraintStore) chr

Returns the current global CHR constraint store.

set_chr_store(?ConstraintStore) chr

Set the current global CHR constraint store. If the argument is a fresh variable, the current
global CHR constaint store is set to be an empty store.

get_chr_answer_store(+Mod,-AnswerStore) chr

Returns the part of the current global CHR constraint store of constraints in the specified
CHR module, in the format of an answer store usable as a return argument of a tabled
predicate.

11.7 Guidelines

In this section we cover several guidelines on how to use CHR to write constraint solvers and how
to do so efficiently.

• Set semantics: The CHR system allows the presence of identical constraints, i.e. multiple
constraints with the same functor, arity and arguments. For most constraint solvers, this is
not desirable: it affects efficiency and possibly termination. Hence appropriate simpagation
rules should be added of the form:

constraint\constraint <=> true

• Multi-headed rules: Multi-headed rules are executed more efficiently when the constraints
share one or more variables.

11.8 CHRd

An alternate implementation of CHR can be found in the CHRd package. The main objective of
the CHRd package is to optimize processing of constraints in the environment where termination is
guaranteed by the tabling engine, (and where termination benefits provided by the existing solver

CHAPTER 11. CONSTRAINT HANDLING RULES 117

are not critical). CHRd takes advantage of XSB’s tabling to simplify CHR’s underlying storage
structures and solvers. Specifically, we entirely eliminate the thread-global constraint store in favor
of a distributed one, realized as a collection of sets of constraints entirely associated with program
variables. This decision limits the applicability of CHRd to a restricted class of CHR programs,
refered to as direct-indexed CHR,in which all constraints in the head of a rule are connected
by shared variables. Most CHR programs are direct-indexed, and other programs may be easily
converted to fall into this class. Another advance of CHRd is its set-based semantics which removes
the need to maintain the propagation history, thus allowing further simplicity in the representation
of the constraints. The CHRd package itself is described in [22], and both the semantics of CHRd
and the class of direct-indexed CHR are formally defined in [23].

Chapter 12

XASP: Answer Set Programming
with XSB and Smodels

By Luis Castro, Terrance Swift, David S. Warren 1

The term Answer Set Programming (ASP) describes a paradigm in which logic programs are
interpreted using the (extended) stable model semantics. While the stable model semantics is
quite elegant, it has radical differences from traditional program semantics based on Prolog. First,
stable model semantics applies only to ground programs; second stable model semantics is not
goal-oriented – determining whether a stable model is true in a program involves examining each
clause in a program, regardless of whether the goal would depends on the clause in a traditional
evaluation 2.

Despite (or perhaps because of) these differences, ASP has proven to be a useful paradigm
for solving a variety of combinatorial programs. Indeed, determining a stable model for a logic
program can be seen as an extension of the NP-complete problem of propositional satisfiability, so
that satisfiability problems that can be naturally represented as logic programs can be solved using
ASP.

The current generation of ASP systems are very efficient for determining whether a program has
a stable model (analogous to whether the program, taken as a set of propositional axioms, is satisfi-
able). However, ASP systems have somewhat primitive file-based interfaces. XSB is a natural com-
plement to ASP systems. Its basis in Prolog provides a procedural counterpart for ASP, as described
in Chapter 5 of Volume 1 of this manual; and XSB’s computation of the Well-founded semantics
has a well-defined relationship to stable model semantics. Furthermore, deductive-database-like
capabilities of XSB allow it to be an efficient and flexible grounder for many ASP problems.

The XASP package provides various mechanisms that allow tight linkage of XSB programs to
the Smodels [20] stable model generator. The main interface is based on a store of clauses that can

1 Thanks to Barry Evans for helping resuscitate the XASP installation procedure, and to Gonçalo Lopes for the
installation procedure on Windows.

2In Version 3.5, the Smodels API has not been tested with the multi-threaded engine, and Smodels itself is not
thread-safe.

118

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 119

be incrementally asserted or deleted by an XSB program. Clauses in this store can make use of all of
the cardinality and weight constraint syntax supported by Smodels, in addition to default negation.
When the user decides that the clauses in a store are a complete representation of a program whose
stable model should be generated, the clauses are copied into Smodels buffers. Using the Smodels
API, the generator is invoked, and information about any stable models generated are returned.
This use of XASP is roughly analogous to building up a constraint store in CLP, and periodically
evaluating that store, but integration with the store is less transparent in XASP than in CLP.
In XASP, clauses must be explicitly added to a store and evaluated; furthermore clauses are not
removed from the store upon backtracking, unlike constraints in CLP.

The XNMR interpreter provides a second, somewhat more implicit use of XASP. In the XNMR
interface a query Q is evaluated as is any other query in XSB. However, conditional answers
produced for Q and for its subgoals, upon user request, can be considered as clauses and sent
to Smodels for evaluation. In backtracking through answers for Q, the user backtracks not only
through answer substitutions for variables of Q, but also through the stable models produced for
the various bindings.

12.1 Installing the Interface

Installing the Smodels interface of XASP sometimes can be tricky for two reasons. First, XSB
must dynamically load the Smodels library, and dynamic loading introduces platform dependencies.
Second since Smodels is written in C++ and XSB is written in C, the load must ensure that names
are properly resolved and that C++ libraries are loaded, steps that may addressed differently by
different compilers 3. However, by following the steps outlined below in the section for Unix or
Windows, XASP should be running in a matter of minutes.

12.1.1 Installing the Interface under Unix

In order to use the Smodels interface, several steps must be performed.

1. Creating a library for Smodels. Smodels itself must be compiled as a library. Unlike previous
versions of XSB, which required a special configuration step for Smodels, Version 3.5 requires
no special confiuration, since XSB includes source code for Smodels 2.33 as a subdirectory
of the $XSBDIR/packages/xasp directory (denoted $XASPDIR). We suggest making Smodels
out of this directory 4. Thus, to make the Smodels library

(a) Change directory to $XASPDIR/smodels

(b) On systems other than OS X, type

make lib

3XSB’s compiler can automatically call foreign compilers to compile modules written in C, but in Version 3.5 of
XSB C++ modules must be compiled with external commands, such as the make command shown below.

4Although distributed with XSB, Smodels is distributed under the GNU General Public License, a license that is
slightly stricter than the license XSB uses. Users distributing applications based on XASP should be aware of any
restrictions imposed by GNU General Public License.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 120

on OS X, type 5

make -f Makefile.osx lib

If the compilation step ran successfully, there should be a file libsmodels.so (or libsomodels.dylib

on MacOS X or libsmodels.dll on Windows...) in $XASPDIR/smodels/.libs

(c) Change directory back to $XASPDIR

2. Compiling the XASP files Next, platform-specific compilation of XASP files needs to be
performed. This can be done by consulting prologMake.P and executing the goal

?- make.

It is important to note that under Version 3.5, code compiled by the single threaded engine will
only be executable by the single threaded engine, and code compiled by the multi-threaded
engine will only be executable by the multi-threaded engine.

3. Checking the Installation To see if the installation is working properly, cd to the subdirectory
tests and type:

sh testsuite.sh <$XSBDIR>

If the test suite succeeded it will print out a message along the lines of

PASSED testsuite for /Users/terranceswift/XSBNEW/XSB/config/powerpc-apple-darwin7.5.1/bin/xsb

12.1.2 Installing XASP under Windows using Cygwin

To install XASP under Windows, you must use Version 3.5 of XSB or later and Version 2.31 or
later of Smodels 6. You should also have a recent version of Cygwin (e.g. 1.5.20 or later) with
all the relevant development packages installed, such as devel, make, automake, patchtools, and
possibly x11 (for makedepend) Without an appropriate Cygwin build environment many of these
steps will simply fail, sometimes with quite cryptic error messages.

1. Patch and Compile Smodels First, uncompress smodels-2.31.tar.gz in some directory, (for
presentation purposes we use /cygdrive/c/smodels-2.31 — that is, c:\smodels-2.31).
After that, you must apply the patch provided with this package. This patch enables the
creation of a DLL from Smodels. Below is a sample session (system output omitted) with the
required commands:

$ cd /cygdrive/c/smodels-2.31

$ cat $XSB/packages/xasp/patch-smodels-2.31 | patch -p1

$ make lib

5A special makefile is needed for OS X since the GNU libtool is called glibtool on this platform.
6This section was written by Goncalo Lopes.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 121

After that, you should have a file called smodels.dll in the current directory, as well as a file
called smodels.a. You should make the former "visible" to Windows. Two alternatives are
either (a) change the PATH environment variable to contain c:\smodels-2.31, or (b) copy
smodels.dll to some other directory in your PATH (such as c:\windows, for instance). One
simple way to do this is to copy smodels.dll to $XSB/config/i686-pc-cygwin/bin, after
the configure XSB step (step 2), since that directory has to be in your path in order to make
XSB fully functional.

2. Configure XSB. In order to properly configure XSB, you must tell it where the Smodels
sources and library (the smodels.a file) are. In addition, you must compile XSB such that
it doesn’t use the Cygwin DLL (using the -mno-cygwin option for gcc). The following is a
sample command:

$ cd $XSB/build

$./configure --enable-no-cygwin -with-smodels="/cygdrive/c/smodels-2.31’’

You can optionally include the extended Cygwin w32 API using the configuration option
--with-includes=<PATH_TO_API>, (this allows XSB’s build procedure to find makedepend

for instance), but you’ll probably do fine with just the standard Cygwin apps.

There are some compiler variables which may not be automatically set by the configure script
in xsb_config.h, namely the configuration names and some activation flags. To correct this,
do the following:

(a) cd to $XSB/config/i686-pc-cygwin

(b) open the file xsb_config.h and add the following lines:

#define CONFIGURATION "i686-pc-cygwin"

#define FULL_CONFIG_NAME "i686-pc-cygwin"

#define SLG_GC

(Still more flags may be needed depending on Cygwin configuration)

After applying these changes, cd back to the $XSB/build directory and compile XSB:

$./makexsb

Now you should have in $XSB/config/i686-pc-cygwin/bin directory both a xsb.exe and
a xsb.dll.

3. Compiling XASP. First, go to the XASP directory and execute the makelinks.sh script in
order to make the headers and libraries in Smodels be accessible to XSB, i.e.:

$ cd $XSB/packages/xasp

$ sh makelinks.sh /cygdrive/c/smodels-2.31

Now you must copy the smoMakefile from the config directory to the xasp directory and
run both its directives:

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 122

$ cp $XSB/config/i686-pc-cygwin/smoMakefile .

$ make -f smoMakefile module

$ make -f smoMakefile all

At this point, you can consult xnmr as you can with any other package, or xsb with the
xnmr command line parameter, like this: (don’t forget to add XSB bin directory to the $PATH

environment variable)

$ xsb xnmr

Lots of error messages will probably appear because of some runtime load compiler, but if
everything goes well you can ignore all of them since your xasppkg will be correctly loaded
and everything will be functioning smoothly from there on out.

12.2 The Smodels Interface

The Smodels interface contains two levels: the cooked level and the raw level. The cooked level
interns rules in an XSB clause store, and translates general weight constraint rules [24] into a normal
form that the Smodels engine can evaluate. When the programmer has determined that enough
clauses have been added to the store to form a semantically complete sub-program, the program
is committed. This means that information in the clauses is copied to Smodels and interned using
Smodels data structures so that stable models of the clauses can be computed and examined. By
convention, the cooked interface ensures that the atom true is present in all stable models, and
the atom false is false in all stable models. The raw level models closely the Smodels API, and
demands, among other things, that each atom in a stable sub-program has been translated into a
unique integer. The raw level also does not provide translation of arbitrary weight constraint rules
into the normal form required by the Smodels engine. As a result, the raw level is significantly
more difficult to directly use than the cooked level. While we make public the APIs for both the
raw and cooked level, we provide support only for users of the cooked interface.

As mentioned above Smodels extends normal programs to allow weight constraints, which can
be useful for combinatorial problems. However, the syntax used by Smodels for weight constraints
does not follow ISO Prolog syntax so that the XSB syntax for weight constraints differs in some
respects from that of Smodels. Our syntax is defined as follows, where A is a Prolog atom, N a
non-negative integer, and I an arbitrary integer.

• GeneralLiteral ::= WeightConstraint | Literal

• WeightConstraint ::= weightConst(Bound,WeightList,Bound)

• WeightList ::= List of WeightLiterals

• WeightLiteral ::= Literal | weight(Literal,N)

• Literal ::= A | not(A)

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 123

• Bound ::== I | undef

Thus an example of a weight constraint might be:

• weightConst(1,[weight(a,1),weight(not(b),1)],2)

We note that if a user does not wish to put an upper or lower bound on a weight constraint, she
may simply set the bound to undef or to an integer less than 0.

The intuitive semantics of a weight constraint weightConst(Lower,WeightList,Upper), in
which List is is list of WeightLiterals that it is true in a model M whenever the sum of the weights
of the literals in the constraint that are true in M is between the lower Lower and Upper. Any
literal in a WeightList that does not have a weight explicitly attached to it is taken to have a weight
of 1.

In a typical session, a user will initialize the Smodels interface, add rules to the clause store until
it contains a semantically meaningful sub-problem. He can then specify a compute statement if
needed, commit the rules, and compute and examine stable models via backtracking. If desired, the
user can then re-initialize the interface, and add rules to or retract rules from the clause store until
another semantically meaningful sub-program is defined; and then commit, compute and examine
another stable model 7.

The process of adding information to a store and periodically evaluating it is vaguely reminiscent
of the Constraint Logic Programming (CLP) paradigm, but there are important differences. In
CLP, constraints are part of the object language of a Prolog program: constraints are added to or
projected out of a constraint store upon forward execution, removed upon backwards execution, and
iteratively checked. When using this interface, on the other hand, an XSB program essentially acts
as a compiler for the clause store, which is treated as a target language. Clauses must be explicitly
added or removed from the store, and stable model computation cannot occur incrementally –
it must wait until all clauses have been added to the store. We note in passing that the xnmr

module provides an elegant but specialized alternative. xnmr integrates stable models into the
object language of XSB, by computing ""relevant"" stable models from the the residual answers
produced by query evaluation. It does not however, support the weighted constraint rules, compute
statements and so on that this module supports.

Neither the raw nor the cooked interface currently supports explicit negation.

Examples of use of the various interfaces can be found in the subdirectory intf_examples

smcInit

Initializes the XSB clause store and the Smodels API. This predicate must be executed before
building up a clause store for the first time. The corresponding raw predicate, smrInit(Num),
initializes the Smodels API assuming that it will require at most Num atoms.

smcReInit

Reinitializes the Smodels API, but does not affect the XSB clause store. This predicate is

7Currently, only normal rules can be retracted.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 124

provided so that a user can reuse rules in a clause store in the context of more than one
sub-program.

smcAddRule(+Head,+Body)

Interns a ground rule into the XSB clause store. Head must be a GeneralLiteral as defined
at the beginning of this section, and Body must be a list of GeneralLiterals. Upon interning,
the rule is translated into a normal form, if necessary, and atoms are translated to unique
integers. The corresponding raw predicates, smrAddBasicRule/3, smrAddChoiceRule/3,
smrAddConstraintRule/4, and smrAddWeightRule/3 can be used to add raw predicates im-
mediately into the SModels API.

smcRetractRule(+Head,+Body)

Retracts a ground (basic) rule from the XSB clause store. Currently, this predicate cannot
retract rules with weight constraints: Head must be a Literal as defined at the beginning of
this section, and Body must be a list of GeneralLiterals.

smcSetCompute(+List)

Requires that List be a list of literals – i.e. atoms or the default negation of atoms). This
predicate ensures that each literal in List is present in the stable models returned by Smodels.
By convention the cooked interface ensures that true is present and false absent in all stable
models. After translating a literal it calls the raw interface predicates smrSetPosCompute/1

and smrSetNegCompute/1

smcCommitProgram

This predicate translates all of the clauses from the XSB clause store into the data structures
of the Smodels API. It then signals to the API that all clauses have been added, and initializes
the Smodels computation. The corresponding raw predicate, smrCommitProgram, performs
only the last two of these features.

smComputeModel

This predicate calls Smodels to compute a stable model, and succeeds if a stable model
can be computed. Upon backtracking, the predicate will continue to succeed until all stable
models for a given program cache have been computed. smComputeModel/0 is used by both
the raw and the cooked levels.

smcExamineModel(+List,-Atoms)

smcExamineModel/(+List,-Atoms) filters the literals in List to determine which are true in
the most recently computed stable model. These true literals are returned in the list Atoms.
smrExamineModel(+N,-Atoms) provides the corresponding raw interface in which integers
from 0 to N, true in the most recently computed stable model, are input and output.

smEnd

Reclaims all resources consumed by Smodels and the various APIs. This predicate is used
by both the cooked and the raw interfaces.

print_cache

This predicate can be used to examine the XSB clause store, and may be useful for debugging.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 125

12.2.1 Using the Smodels Interface with Multiple Threads

If XASP has been compiled under the multi-threaded engine, the Smodels interface will be fully
thread-safe: this means that Smodels and all interface predicates described in this section can be
used concurrently by different threads. In multi-threaded XASP, each XSB thread can initialize
and query its own instance of Smodels, and build up its own private clause store at both the cooked
and raw levels (shared clause stores are not yet available). Figure 12.1 provides a simple example
of how this can be done. For each thread that will generate stable models, a message queue is
created that will be used to communicate back results. Two threads are then created and these
threads concurrently add rules to their private clause stores, call Smodels, and send the results
back to the calling thread using the appropriate message queue. Of course the example here is just
one of many possible: answers could be returned using different configurations of message queues,
through shared tables, through shared asserted code, and so on.

12.3 The xnmr_int Interface

. This module provides the interface from the xnmr module to Smodels. It does not use the
sm_int interface, but rather directly calls the Smodels C interface, and can be thought of as a
special-purpose alternative to sm_int.

init_smodels(+Query)

Initializes smodels with the residual program produced by evaluating Query. Query must be
a call to a tabled predicate that is currently completely evaluated (and should have a delay
list)

atom_handle(?Atom,?AtomHandle)

The handle of an atom is set by init_smodels/1 to be an integer uniquely identifying each
atoms in the residual program (and thus each atom in the Herbrand base of the program for
which the stable models are to be derived). The initial query given to init_smodels has the
atom-handle of 1.

in_all_stable_models(+AtomHandle,+Neg)

in_all_stable_models/2 returns true if Neg is 0 and the atom numbered AtomHandle re-
turns true in all stable models (of the residual program set by the previous call to init_smodels/1).
If Neg is nonzero, then it is true if the atom is in NO stable model.

pstable_model(+Query,-Model,+Flag)

returns nondeterministically a list of atoms true in the partial stable model total on the
atoms relevant to instances of Query, if Flag is 0. If Flag is 1, it only returns models in
which the instance of Query is true.

a_stable_model

This predicate invokes Smodels to find a (new) stable model (of the program set by the previ-
ous invocation of init_smodels/1.) It will compute all stable models through backtracking.
If there are no (more) stable models, it fails. Atoms true in a stable model can be examined
by in_current_stable_model/1.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 126

:- ensure_loaded(xasp).

:- import smcInit/0, smcAddRule/2, smcCommitProgram/0 smcSetCompute/1,

smComputeModel/0, smcExamineModel/1, smEnd/0 from sm_int.

:- import thread_create/1 from thread.

:- import thread_get_message/2, thread_send_message/2, message_queue_create/1 from mutex_xsb.

test:-

message_queue_create(Queue1),

message_queue_create(Queue2),

thread_create(test1(Queue1)),

thread_create(test2(Queue2)),

read_models(Queue1),

read_models(Queue2).

test1(Queue) :-

smcInit,

smcAddRule(a1,[]),

smcAddRule(b1,[]),

smcAddRule(d1,[a1,not(c1)]),

smcAddRule(c1,[b1,not(d1)]),

smcCommitProgram,

write(’All Solutions: ’),nl,

(smComputeModel,

smcExamineModel(Model),

thread_send_message(Queue,solution(program1,Model)),

fail

;

thread_send_message(Queue,no_more_solutions),

smEnd).

test2(Queue) :-

smcInit,

smcAddRule(a2,[]),

smcAddRule(b2,[]),

smcAddRule(d2,[a2,not(c2)]),

smcAddRule(c2,[b2,not(d2)]),

smcCommitProgram,

write(’All Solutions: ’),nl,

(smComputeModel,

smcExamineModel(Model),

thread_send_message(Queue,solution(program2,Model)),

fail

;

thread_send_message(Queue,no_more_solutions),

smEnd).

read_models(Queue):-

repeat,

thread_get_message(Queue,Message),

(Message = no_more_solutions ->

true

; writeln(Message),

fail).

Figure 12.1: Using the Smodels Interface with Multi-Threading

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 127

in_current_stable_model(?AtomHandle)

This predicate is true of handles of atoms true in the current stable model (set by an
invocation of a_stable_model/0.)

current_stable_model(-AtomList)

returns the list of atoms true in the current stable model.

print_current_stable_model

prints the current stable model to the stream to which answers are sent (i.e stdfbk)

Chapter 13

PITA: Probabilistic Inference

By Fabrizio Riguzzi

“Probabilistic Inference with Tabling and Answer subsumption” (PITA) [21] is a package for
uncertain reasoning. In particular, it allowsvarious forms of Probabilistic Logic Programming
and Possibilistic Logic Programming. It accepts the language of Logic Programs with Annotated
Disjunctions (LPADs)[28, 29] and CP-logic programs [26, 27].

An example of LPAD/CP-logic program is

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5) ← toss(Coin),¬biased(Coin).

(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4) ← toss(Coin), biased(Coin).

(fair(Coin) : 0.9) ∨ (biased(Coin) : 0.1).

toss(Coin).

The first clause states that if we toss a coin that is not biased it has equal probability of landing
heads and tails. The second states that if the coin is biased it has a slightly higher probability of
landing heads. The third states that the coin is fair with probability 0.9 and biased with probability
0.1 and the last clause states that we toss a coin with certainty.

PITA computes the probability of queries by tranforming the input program into a normal logic
program and then calling a modified version of the query on the transformed programs.

13.0.1 Installation

PITA uses GLib 2.0 and CUDD. GLib is a standard GNU package so it is easy to install it using
the package management software of your Linux distribution.

To install CUDD, follow the instructions at http://vlsi.colorado.edu/~fabio/CUDD/ to
get the package (or get directly from ftp://vlsi.colorado.edu/pub/cudd-2.4.2.tar.gz), for
example cudd-2.4.2.tar.gz. After decompressing, you will have a direcory cudd-2.4.2 with
various subdirectories. Compile CUDD following the included instructions.

128

http://www.gtk.org/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
ftp://vlsi.colorado.edu/pub/cudd-2.4.2.tar.gz

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 129

To install PITA with XSB, run XSB configure in the build directory with option –with-pita=DIR

where DIR is the folder where CUDD is.

Syntax

Disjunction in the head is represented with a semicolon and atoms in the head are separated from
probabilities by a colon. For the rest, the usual syntax of Prolog is used. For example, the CP-logic
clause

h1 : p1 ∨ . . . ∨ hn : pn ← b1, . . . , bm,¬c1, . . . ,¬cl

is represented by

h1:p1 ; ... ; hn:pn :- b1,...,bm,\+ c1,....,\+ cl

No parentheses are necessary. The pi are numeric expressions. It is up to the user to ensure that
the numeric expressions are legal, i.e. that they sum up to less than one.

If the clause has an empty body, it can be represented like this

h1:p1 ; ... ;hn:pn.

If the clause has a single head with probability 1, the annotation can be omitted and the clause
takes the form of a normal prolog clause, i.e.

h1:- b1,...,bm,\+ c1,...,\+ cl.

stands for

h1:1 :- b1,...,bm,\+ c1,...,\+ cl.

The body of clauses can contain a number of built-in predicates including:

is/2 >/2 </2 >=/2 =</2 =:=/2 =\=/2 true/0 false/0

=/2 ==/2 \=/2 \==/2 length/2 member/2

The coin example above thus is represented as (see file coin.cpl in subdirecoty examples)

heads(Coin):1/2 ; tails(Coin):1/2:-

toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4:-

toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.

toss(coin).

Subdirectory examples contains other example programs.

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 130

13.0.2 Use

Probabilistic Logic Programming

First write your program in a file with extension .cpl. If you want to use inference on LPADs load
PITA in XSB with

:- [pita].

load you program, say coin.cpl, with

:- load(coin).

and compute the probability of query atom heads(coin) by

:- prob(heads(coin),P).

load(file) reads file.cpl, translates it into a normal program, writes the result in file.P and
loads file.P.

PITA offers also the predicate parse(infile,outfile) which translates the LPAD in infile

into a normal progam and writes it to outfile.

Moreove, you can use prob(goal,P,CPUTime,WallTime) that returns the probability of goal P

together with the CPU and wall time used.

In case the modeling assumptions of PRISM hold, i.e.:

• the probability of a conjunction (A, B) is computed as the product of the probabilities of A
and B (independence assumption),

• the probability of a disjunction (A; B) is computed as the sum of the probabilities of A and
B (exclusiveness assumption),

you can perform faster inference with an optimized version of PITA in package pitaindexc.P. It
accepts the same commands of pita.P. pitaindexc.P simulates PRISM and does not need CUDD
and GLib.

If you want to compute the Viterbi path and probability of a query (the Viterbi path is the
explanation with the highest probability) as with the predicate viterbif/3 of PRISM, you can use
package pitavitind.P.

The package pitacount.P can be used to count the explanations for a query, provided that the
independence assumption holds. To count the number of explanations for a query use

:- count(heads(coin),C).

pitacount.P does not need CUDD and GLib.

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 131

Possibilistic Logic Programming

PITA can be used also for answering queries to possibilistic logic program [10], a form of logic
progamming based on possibilistic logic [11]. The package pitaposs.P provides possibilistic infer-
ence. You have to write the possibilistic program as an LPAD in which the rules have a single head
whose annotation is the lower bound on the necessity of the clauses. To compute the highest lower
bound on the necessity of a query use

:- poss(heads(coin),P).

pitaposs.P does not need CUDD and GLib.

Chapter 14

Other XSB Packages

Many of the XSB packages are maintained somewhat independently of XSB and have their own
manuals. For these packages: Flora2, XMC, xsbdoc and Cold Dead Fish we provide summaries; full
information can be obtained in the packages themselves. In addition, we provide full documentation
here for two of the smaller packages, slx and GAP.

14.1 Programming with FLORA-2

Flora-2 is a sophisticated object-oriented knowledge base language and application development
platform. It is implemented as a set of run-time libraries and a compiler that translates a unified
language of F-logic [16], HiLog [7], and Transaction Logic [4, 3] into tabled Prolog code.

Applications of Flora-2 include intelligent agents, Semantic Web, ontology management, in-
tegration of information, and others.

The programming language supported by Flora-2 is a dialect of F-logic with numerous ex-
tensions, which include a natural way to do meta-programming in the style of HiLog and logical
updates in the style of Transaction Logic. Flora-2 was designed with extensibility and flexibility
in mind, and it provides strong support for modular software design through its unique feature of
dynamic modules. Other extensions, such as the versatile syntax of Florid path expressions, are
borrowed from Florid, a C++-based F-logic system developed at Freiburg University.1 Extensions
aside, the syntax of Flora-2 differs in many important ways from Florid, from the original ver-
sion of F-logic, as described in [16], and from an earlier implementation of Flora. These syntactic
changes were needed in order to bring the syntax of Flora-2 closer to that of Prolog and make it
possible to include simple Prolog programs into Flora-2 programs without choking the compiler.
Other syntactic deviations from the original F-logic syntax are a direct consequence of the added
support for HiLog, which obviates the need for the “@” sign in method invocations (this sign is
now used to denote calls to Flora-2 modules).

Flora-2 is distributed in two ways. First, it is part of the official distribution of XSB and
thus is installed together with XSB. Second, a more up-to-date version of the system is available

1 See http://www.informatik.uni-freiburg.de/∼dbis/florid/ for more details.

132

CHAPTER 14. OTHER XSB PACKAGES 133

on Flora-2 ’s Web site at

http://flora.sourceforge.net

These two versions can be installed at the same time and used independently (e.g., if you want to
keep abreast with the development of Flora-2 or if a newer version was released in-between the
releases of XSB). The installation instructions are somewhat different in these two cases. Here we
only describe the process of configuring the version Flora-2 included with XSB.

Installing Flora-2 under UNIX. To configure a version of Flora-2 that was downloaded
as part of the distribution of XSB, simply configure XSB as usual:

cd XSB/build

configure

makexsb

and then run

makexsb packages

If you downloaded XSB from its CVS repository earlier and are updating your copy using the
cvs update command, then it might be a good idea to also do the following:

cd packages/flora2

makeflora clean

makeflora

Installing Flora-2 in Windows. First, you need Microsoft’s nmake. Then use the following
commands to configure Flora-2 (assuming that XSB is already installed and configured):

cd flora2

makeflora clean

makeflora path-to-prolog-executable

Also make sure that the packages directory contains a shortcut called flora2.P to the file
packages\flora2\flora2.P.

Running Flora-2 . Flora-2 is fully integrated into the underlying XSB engine, including its
module system. In particular, Flora-2 modules can invoke predicates defined in other Prolog
modules, and Prolog modules can query the objects defined in Flora-2 modules.

Due to certain problems with XSB, Flora-2 runs best when XSB is configured with local
scheduling, which is the default XSB configuration. However, with this type of scheduling, many
Prolog intuitions that relate to the operational semantics do not work. Thus, the programmer

CHAPTER 14. OTHER XSB PACKAGES 134

must think “more declaratively” and, in particular, to not rely on the order in which answers are
returned.

The easiest way to get a feel of the system is to start Flora-2 shell and begin to enter queries
interactively. The simplest way to do this is to use the shell script

.../flora2/runflora

where “...” is the directory where Flora-2 is downloaded. For instance, to invoke the version
supplied with XSB, you would type something like

~/XSB/packages/flora2/runflora

At this point, Flora-2 takes over and F-logic syntax becomes the norm. To get back to the
Prolog command loop, type Control-D (Unix) or Control-Z (Windows), or

| ?- _end.

If you are using Flora-2 shell frequently, it pays to define an alias, say (in Bash):

alias runflora=’~/XSB/packages/flora2/runflora’

Flora-2 can then be invoked directly from the shell prompt by typing runflora. It is even
possible to tell Flora-2 to execute commands on start-up. For instance,

foo> runflora -e "_help."

will cause the system to execute the help command right after after the initialization. Then the
usual Flora-2 shell prompt is displayed.

Flora-2 comes with a number of demo programs that live in

.../flora2/demos/

The demos can be run issuing the command “_demo(demo-filename).” at the Flora-2 prompt,
e.g.,

flora2 ?- _demo(flogic_basics).

There is no need to change to the demo directory, as flDemo knows where to find these programs.

14.2 Summary of xmc: Model-checking with XSB

No documentation yet available.

CHAPTER 14. OTHER XSB PACKAGES 135

the Ciao [6] system’s lpdoc which has been adapted to generate a reference manual automatically
from one or more XSB source files. The target format of the documentation can be Postscript,
HTML, PDF, or nicely formatted ASCII text. xsbdoc can be used to automatically generate a
description of full applications, library modules, README files, etc. A fundamental advantage of
using xsbdoc to document programs is that it is much easier to maintain a true correspondence
between the program and its documentation, and to identify precisely to what version of the
program a given printed manual corresponds. Naturally, the xsbdoc manual is generated by xsbdoc

itself.

The quality of the documentation generated can be greatly enhanced by including within the
program text:

• assertions (indicating types, modes, etc. ...) for the predicates in the program, via the
directive pred/1; and

• machine-readable comments (in the “literate programming” style).

The assertions and comments included in the source file need to be written using the forthcoming
XSB assertion language, which supports most of the features of Ciao’s assertion language within a
simple and (hopefully) intuitive syntax.

xsbdoc is distributed under the GNU general public license.

Unlike lpdoc, xsbdoc does not use Makefiles, and instead maintains information about how to
generate a document within Prolog format files. As a result, xsbdoc can in principle be run in any
environment that supports the underlying software, such as XSB, LATEX, dvips and so on. It has
been tested on Linux and Windows running with Cygwin.

14.3 slx: Extended Logic Programs under the Well-Founded Se-
mantics

As explained in the section Using Tabling in XSB, XSB can compute normal logic programs accord-
ing to the well-founded semantics. In fact, XSB can also compute Extended Logic Programs, which
contain an operator for explicit negation (written using the symbol -) in addition to the negation-
by-failure of the well-founded semantics (\+ or not). Extended logic programs can be extremely
useful when reasoning about actions, for model-based diagnosis, and for many other uses [2]. The
library, slx provides a means to compile programs so that they can be executed by XSB accord-
ing to the well-founded semantics with explicit negation [1]. Briefly, WFSX is an extension of the
well-founded semantics to include explicit negation and which is based on the coherence principle
in which an atom is taken to be default false if it is proven to be explicitly false, intuitively:

−p⇒ not p.

This section is not intended to be a primer on extended logic programming or on WFSX
semantics, but we do provide a few sample programs to indicate the action of WFSX. Consider the
program

CHAPTER 14. OTHER XSB PACKAGES 136

s:- not t.

t:- r.

t.

r:- not r.

If the clause -t were not present, the atoms r, t, s would all be undefined in WFSX just as
they would be in the well-founded semantics. However, when the clause t is included, t becomes
true in the well-founded model, while s becomes false. Next, consider the program

s:- not t.

t:- r.

-t.

r:- not r.

In this program, the explicitly false truth value for t obtained by the rule -t overrides the
undefined truth value for t obtained by the rule t:- r. The WFSX model for this program will
assign the truth value of t as false, and that of s as true. If the above program were contained in
the file test.P, an XSB session using test.P might look like the following:

> xsb

| ?- [slx].

[slx loaded]

yes

| ?- slx_compile(’test.P’).

[Compiling ./tmptest]

[tmptest compiled, cpu time used: 0.1280 seconds]

[tmptest loaded]

| ?- s.

yes

| ?- t.

no

| ?- naf t.

yes

| ?- r.

no

| ?- naf r.

no

| ?- und r.

CHAPTER 14. OTHER XSB PACKAGES 137

yes

In the above program, the query ?- t. did not succeed, because t is false in WFSX: accordingly
the query naf t did succeed, because it is true that t is false via negation-as-failure, in addition to
t being false via explicit negation. Note that after being processed by the SLX preprocessor, r is
undefined but does not succeed, although und r will succeed.

We note in passing that programs under WFSX can be paraconsistent. For instance in the
program.

p:- q.

q:- not q.

-q.

both p and q will be true and false in the WFSX model. Accordingly, under SLX preprocessing,
both p and naf p will succeed.

slx_compile(+File) module: slx

Preprocesses and loads the extended logic program named File. Default negation in File

must be represented using the operator not rather than using tnot or \+. If L is an objective
literal (e.g. of the form A or −A where A is an atom), a query ?- L will succeed if L is true
in the WFSX model, naf L will succeed if L is false in the WFSX model, and und L will
succeed if L is undefined in the WFSX model.

14.4 gapza: Generalized Annotated Programs

Generalized Annotated Programs (GAPs) [17] offer a powerful computational framework for han-
dling paraconsistency and quantitative information within logic programs. The tabling of XSB
is well-suited to implementing GAPs, and the gap library provides a meta-interpreter that has
proven robust and efficient enough for a commercial application in data mining. The current
meta-interpreter is limited to range-restricted programs.

A description of GAPs along with full documentation for this meta-interpreter is provided in
[25] (currently also available at http://www.cs.sunysb.edu/∼tswift). Currently, the interface
to the GAP library is through the following call.

meta(?Annotated_atom) module: gap

If Annotated_atom is of the form Atom:[Lattice_type,Annotation] the meta-interpreter
computes bindings for Atom and Annotation by evaluating the program according to the
definitions provided for Lattice_type.

Bibliography

[1] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic rea-
soning. Journal of Automated Reasoning, 14:93–147, 1995.

[2] J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111. Springer-Verlag
LNAI, 1996.

[3] A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer Science,
133:205–265, October 1994.

[4] A. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki and
G. Saake, editors, Logics for Databases and Information Systems, chapter 5, pages 117–166.
Kluwer Academic Publishers, March 1998.

[5] G. Box and M. Muller. A note on the generation of random normal deviates. The Annals of
Mathematical Statistics, 29(2):610–611, 1958.

[6] F. Bueno, D. Cabenza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla. The
ciao prolog system, reference manual. Technical report, School of Computer Science, Technical
University of Madrid, 2003. Available from http://www.clip.dia.fi.upm.es/.

[7] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic program-
ming. Journal of Logic Programming, 15(3):187–230, February 1993.

[8] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation. Report
CW 350, Department of Computer Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[9] C. Draxler. Prolog to SQL compiler, Version 1.0. Technical report, CIS Centre for Information
and Speech Processing Ludwig-Maximilians-University, Munich, 1992.

[10] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In ICLP, pages
581–595, 1991.

[11] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of logic in artificial intelligence and logic programming,vol.
3, pages 439–514. Oxford University Press, 1994.

[12] T. Fruehwirth. Thom Fruehwirth’s Constraint Handling Rules website.
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

138

http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html

BIBLIOGRAPHY 139

[13] T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot,
editors, Special Issue on Constraint Logic Programming, volume 37, October 1998.

[14] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justi-
fication. In International Conference on Logic Programming, volume 2237 of Lecture Notes in
Computer Science, pages 150–165. Springer, 2001.

[15] C. Holzbaur. Ofai clp(q,r) manual, edition 1.3.3. Technical report, Austrian Research Institute
for Artificial Intelligence, 1995.

[16] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42:741–843, July 1995.

[17] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and
its applications. Journal of Logic Programming, 12(4):335–368, 1992.

[18] T. I. S. Laboratory. SICStus Prolog User’s Manual Version 3.12.5. Swedish Institute of
Computer Science, 2006.

[19] A. McLeod. A remark on algorithm AS 183. Applied Statistics, 34:198–200, 1985.

[20] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the 4th
International Conference on Logic Programing and Nonmonotonic Reasoning, volume 1265 of
LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

[21] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic programs
with annotated disjunctions. In Logic Programming, 26th International Conference, 2010.

[22] B. Sanna-Starosta. Chrd: A set-based solver for constraint hanlding rules. available at
www.cs.msu.edu/˜bss/chr-d, 2006.

[23] B. Sanna-Starosta and C. Ramakrishnan. Compiling constraint handling rules for efficient
tabled evaluation. available at www.cs.msu.edu/˜bss/chr-d, 2006.

[24] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model seman-
tics. Artificial Intelligence, 138:181–234, 2002.

[25] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240,
1999.

[26] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information about a
probabilistic process. In Proceedings of the 10th European Conference on Logics in Artificial
Intelligence, LNAI. Springer, September 2006.

[27] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic
events and its relation to logic programming. Theory Pract. Log. Program., 9(3):245–308, 2009.

[28] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions. Technical Report
CW386, K. U. Leuven, 2003.

BIBLIOGRAPHY 140

[29] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions.
In International Conference on Logic Programming, volume 3131 of LNCS, pages 195–209.
Springer, 2004.

[30] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An efficient and portable pseudo-random
number generator. Applied Statistics, 31:188–190, 1982.

[31] J. Wielemaker. SWI Prolog version 5.6: Reference Manual. University of Amsterdam, 2007.

	Library Utilities
	List Processing
	Processing Comma Lists

	Attributed Variables
	Lowlevel Interface

	constraintLib: a library for CLP
	Formatted Output
	Low-level Atom Manipulation Predicates
	Script Writing Utilities
	Communication with Subprocesses

	Socket I/O
	Arrays
	The Profiling Library
	Gensym
	Random Number Generator
	Loading Separated Files
	Scanning in Prolog
	XSB Lint
	``Pure'' Meta-programming in XSB with prolog_db.P
	Miscellaneous Predicates
	Other Libraries
	Justification
	AVL Trees
	Ordered Sets: ordsets.P
	Unweighted Graphs: ugraphs.P
	Heaps: heaps.P

	XSB-ODBC Interface
	Introduction
	Using the Interface
	Connecting to and Disconnecting from Data Sources
	Accessing Tables in Data Sources Using SQL
	Cursor Management
	Accessing Tables in Data Sources through the Relation Level
	Using the Relation Level Interface
	Handling NULL values
	The View Level Interface
	Insertions and Deletions of Rows through the Relational Level
	Access to Data Dictionaries
	Other Database Operations
	Transaction Management
	Interface Flags
	Datalog

	Error messages
	Notes on specific ODBC drivers

	The New XSB-Database Interface
	Introduction
	Configuring the Interface
	Using the Interface
	Connecting to and Disconnecting from Databases
	Querying Databases

	Error Handling
	Notes on specific drivers

	Introduction to XSB Packages
	Wildcard Matching
	pcre: Pattern Matching and Substitution Using PCRE
	Introduction
	Pattern matching
	String Substitution
	Installation and configuration
	Configuring for Linux, Mac, and other Unices
	Configuring for Windows

	curl: The XSB Internet Access Package
	Introduction
	Integration with File I/O
	Opening a Web Document
	Closing a Web Document

	Low Level Predicates
	Loading web documents
	Retrieve the properties of a web document
	Encode Url
	Obtaining the Redirection URL

	Installation and configuration

	sgml and xpath: SGML/XML/HTML Parsers and XPath
	Introduction
	Overview of the SGML Parser
	Predicate Reference
	Loading Structured Documents
	Handling of White Spaces
	XML documents
	DTD-Handling
	Low-level Parsing Primitives
	External Entities
	Exceptions
	Unsupported features
	Summary of Predicates

	XPath support

	rdf: The XSB RDF Parser
	Introduction
	High-level API
	RDF Object representation
	Name spaces
	Low-level access

	Testing the RDF translator

	Constraint Packages
	clpr: The CPL(R) package
	The CLP(R) API

	The bounds Package
	The bounds API

	Constraint Handling Rules
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in XSB Programs
	Embedding in XSB Programs
	Compilation

	Useful Predicates
	Examples
	CHR and Tabling
	General Issues and Principles
	Call Abstraction
	Answer Projection
	Answer Combination
	Overview of Tabling-related Predicates

	Guidelines
	CHRd

	XASP: Answer Set Programming with XSB and Smodels
	Installing the Interface
	Installing the Interface under Unix
	Installing XASP under Windows using Cygwin

	The Smodels Interface
	Using the Smodels Interface with Multiple Threads

	The xnmr_int Interface

	 PITA: Probabilistic Inference
	Installation
	Use

	Other XSB Packages
	 Programming with FLORA-2
	Summary of xmc: Model-checking with XSB
	 slx: Extended Logic Programs under the Well-Founded Semantics
	gapza: Generalized Annotated Programs

