
CP2K Artificial Benchmark

The first code sample given for LIBXSMM was a performance reproducer exercising the same set of kernels usually
generated for CP2K’s SMM library. The code sample attempted to model the way “matrix stacks” are processed in
CP2K, however there are two different code paths in CP2K: (1) the “main” code path used when processing stacks
on the host-side, and (2) a code path targeting offload devices. Beside of the host-sided parallelization via MPI
(and perhaps OpenMP), the secondly mentioned code path relies on an additional level of parallelization (which is
obviously necessary to drive a potentially highly parallel offload device). Also, the additional level of parallelism is
not exactly “nested” in the sense that it participates on sharing the same resources as the host-side. In fact, this
“artificial benchmark” (cp2k code sample) is modeling a code path as utilized in the secondly mentioned case (offload
device).

Dispatch (Microbenchmark)

This code sample attempts to benchmark the performance of the dispatch mechanism. This mechanism is relevant
when replacing GEMM calls (see Call Wrapper section of the reference documentation), or generally when calling
LIBXSMM’s libxsmm_?gemm functions.

Command Line Interface (CLI)

• Optionally takes the number of dispatches to be performed
• Measures the duration needed to find the requested kernel
• Excludes the time needed to generate the kernel
• Shows time needed in relation to an empty function call

NEK Sample Collection

This directory contains kernels taken from Nek{Box,5000}. They aim to represent most of the matrix-matrix work-
loads.

Please note that the mxm_std.f source code is protected by an (US) GOVERNMENT LICENSE, and under the
copyright of the University of Chicago.

stpm
Small tensor-product multiple (stpm) replicates the axhelm kernel, which computes the Laplacian with spectral
elements.
Usage:
./stpm m n k size1 size

The elements are m-by-n-by-k, mode picks the LIBXSMM interface used, and size scales the number of spectral
elements.

rstr
Restriction operator transforms elements from one size to another. This occurs in multi-grid, the convection operator,
and, when the sizes are the same, the local Schwarz solves. Usage:
./rstr m n k mm nn kk size1 size

The input elements are m-by-n-by-k and the output elements are mm-by-nn-by-kk. When m=mm, n=nn, k=kk, this
half of a Schwarz solve.

Scratch Memory Allocation (Microbenchmark)

This code sample aims to benchmark the performance of the scratch memory allocation. This facility is a viable option
to satisfy the need for temporary memory when using the DNN domain of LIBXSMM (small convolutions). Although
any kind of readable/writable buffer can be bound to a convolution handle, LIBXSMM’s libxsmm_aligned_scratch
features a thread-safe linear allocator mechanism which can help to lower allocation overhead.

https://github.com/hfp/libxsmm#call-wrapper
https://github.com/hfp/libxsmm/blob/master/samples/nek/mxm_std.f


SMM Sample Collection

This collection of code samples exercises different memory streaming cases when performing the matrix multiplication
Cm x n = alpha · Am x k · Bk x n + beta · Cm x n: (1) streaming the matrices A, B, and C which is usually referred
as batched matrix multiplication, (2) streaming the inputs A and B but accumulating C within cache, (3) streaming
the A and C matrices while B is kept in cache, (4) streaming the B and C matrices while A is kept in cache, and
(4) not streaming any of the operands but repeating the very same multiplication until the requested number of matrix
multiplications has been completed.

Beside of measuring the duration of a test case, the performance is presented in GFLOPS/s. As an alternative
metric, the memory bandwidth is given (the artificial “cached” case omits to present the cache-memory bandwidth).
The “pseudo-performance” given in FLOPS/cycle is an artificial scoring, it not only uses a non-standard formula for
calculating the FLOPS (2 * M * N * K - M * N rather than 2 * M * N * K) but also relies on pseudo clock cycles:
$ ./specialized.sh 32
m=32 n=32 k=32 size=87381 memory=2048.0 MB (DP)

Batched (A,B,C)...
pseudo -perf.: 10.7 FLOPS/cycle
performance: 23.9 GFLOPS/s
bandwidth: 11.1 GB/s
duration: 239 ms

Streamed (A,B)...
pseudo -perf.: 13.4 FLOPS/cycle
performance: 29.9 GFLOPS/s
bandwidth: 7.0 GB/s
duration: 192 ms

Streamed (A,C)...
pseudo -perf.: 12.3 FLOPS/cycle
performance: 27.4 GFLOPS/s
bandwidth: 6.4 GB/s
duration: 209 ms

Streamed (B,C)...
pseudo -perf.: 14.8 FLOPS/cycle
performance: 33.0 GFLOPS/s
bandwidth: 7.7 GB/s
duration: 173 ms

Cached...
pseudo -perf.: 23.2 FLOPS/cycle
performance: 51.8 GFLOPS/s
duration: 111 ms

Finished

There are two sub collections of samples codes: (1) a collection of C++ code samples showing either BLAS, Compiler-
generated code (inlined code), LIBXSMM/dispatched, LIBXSMM/specialized functions to carry out the multiplica-
tion, and (2) a Fortran sample code showing BLAS versus LIBXSMM including some result validation.

C/C++ Code Samples: Command Line Interface (CLI)

• Optionally takes the M, N, and K parameter of the GEMM in this order
• If only M is supplied, the N and K “inherit” the M-value
• Shows the performance of each of the streaming cases
• Example I: ./specialized.sh 16 8 9
• Example II: ./specialized.sh 16

Fortran Code Sample: Command Line Interface (CLI)

• Optionally takes the M, N, and K parameter of the GEMM in this order

• Optional problem size (in MB) of the workload; M/N/K must have been supplied

• Optional total problem size (in MB) implying the number of repeated run

• If only M is supplied, the N and K are “inheriting” the M-value

• Shows the performance of each of the streaming cases

• Example I: ./smm.sh 16 8 9 1024 16384

• Example II: ./smm.sh 16

https://github.com/hfp/libxsmm/blob/master/include/libxsmm_timer.h


SPECFEM Sample

This sample contains a dummy example from a spectral-element stiffness kernel taken from SPECFEM3D_GLOBE.

It is based on a 4th-order, spectral-element stiffness kernel for simulations of elastic wave propagation through the
Earth. Matrix sizes used are (25,5), (5,25) and (5,5) determined by different cut-planes through a three dimensional
(5,5,5)-element with a total of 125 GLL points.

Usage Step-by-Step
This example needs the LIBXSMM library to be built with static kernels, using MNK=“5 25” (for matrix size (5,25),
(25,5) and (5,5)).

1. In LIBXSMM root directory, compile the library with:

• general default compilation:
make MNK="5 25" ALPHA=1 BETA=0

additional compilation examples are:

• compilation using only single precision version & aggressive optimization:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3

• for Sandy Bridge CPUs:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1

• for Haswell CPUs:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=2

• for Knights Corner (KNC) (and thereby creating a Sandy Bridge version):
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1 \
OFFLOAD=1 KNC=1

• installing libraries into a sub-directory workstation/:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1 \
OFFLOAD=1 KNC=1 \
PREFIX=workstation/ install -minimal

1. Compile this example code by typing:

• for default CPU host:
cd sample/specfem
make

• for Knights Corner (KNC):
cd sample/specfem
make KNC=1

• additionally, adding some specific Fortran compiler flags, for example:
cd sample/specfem
make FCFLAGS="-O3 -fopenmp" [...]

Note that steps 1 & 2 could be shortened:

• by specifying a “specfem” make target in the LIBXSMM root directory:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1 specfem

• for Knights Corner, this would need two steps:
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1 OFFLOAD=1 KNC=1
make OPT=3 specfem_mic

Run the performance test:

https://github.com/geodynamics/specfem3d_globe


• for default CPU host:
./specfem.sh

• for Knights Corner (KNC):
./specfem.sh -mic

Results
Using Intel Compiler suite: icpc 15.0.2, icc 15.0.2, and ifort 15.0.2

Sandy Bridge - Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

• library compilation by (root directory):
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=1

• single threaded example run:
cd sample/specfem
make; OMP_NUM_THREADS=1 ./specfem.sh

Output:
===============================================================
average over 15 repetitions

timing with Deville loops = 0.1269
timing with unrolled loops = 0.1737 / speedup = -36.87 %
timing with LIBXSMM dispatch = 0.1697 / speedup = -33.77 %
timing with LIBXSMM prefetch = 0.1611 / speedup = -26.98 %
timing with LIBXSMM static = 0.1392 / speedup = -9.70 %

===============================================================

Haswell - Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz

• library compilation by (root directory):
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 AVX=2

• single threaded example run:
cd sample/specfem
make; OMP_NUM_THREADS=1 ./specfem.sh

Output:
===============================================================
average over 15 repetitions

timing with Deville loops = 0.1028
timing with unrolled loops = 0.1385 / speedup = -34.73 %
timing with LIBXSMM dispatch = 0.1408 / speedup = -37.02 %
timing with LIBXSMM prefetch = 0.1327 / speedup = -29.07 %
timing with LIBXSMM static = 0.1151 / speedup = -11.93 %

===============================================================

• multi-threaded example run:
cd sample/specfem
make OPT=3; OMP_NUM_THREADS=24 ./specfem.sh

Output:
OpenMP information:

number of threads = 24

[...]

===============================================================
average over 15 repetitions

timing with Deville loops = 0.0064
timing with unrolled loops = 0.0349 / speedup = -446.71 %
timing with LIBXSMM dispatch = 0.0082 / speedup = -28.34 %
timing with LIBXSMM prefetch = 0.0076 / speedup = -19.59 %
timing with LIBXSMM static = 0.0068 / speedup = -5.78 %

===============================================================



Knights Corner - Intel Xeon Phi B1PRQ-5110P/5120D

• library compilation by (root directory):
make MNK="5 25" ALPHA=1 BETA=0 PRECISION=1 OPT=3 OFFLOAD=1 KNC=1

• multi-threaded example run:
cd sample/specfem
make FCFLAGS="-O3 -fopenmp -warn" OPT=3 KNC=1; ./specfem.sh -mic

Output:
OpenMP information:

number of threads = 236

[...]

===============================================================
average over 15 repetitions

timing with Deville loops = 0.0164
timing with unrolled loops = 0.6982 / speedup = -4162.10 %
timing with LIBXSMM dispatch = 0.0170 / speedup = -3.89 %
timing with LIBXSMM static = 0.0149 / speedup = 9.22 %

===============================================================

Wrapped DGEMM

This code sample is calling DGEMM and there is no dependency on the LIBXSMM API as it only relies on LAPACK-
/BLAS interface. Two variants are linked when building the source code: (1) code which is dynamically linked against
LAPACK/BLAS, (2) code which is linked using --wrap=symbol as possible when using a GNU GCC compatible tool
chain. For more information, see the Call Wrapper section of the reference documentation.

The code will execute in three flavors when running dgemm-test.sh: (1) code variant which is dynamically linked against
the originally supplied LAPACK/BLAS library, (2) code variant which is linked using the wrapper mechanism of the
GNU GCC tool chain, and (3) the first code but using the LD_PRELOAD mechanism (available under Linux).

Command Line Interface (CLI)

• Optionally takes the number of repeated DGEMM calls
• Shows the performance of the workload (wall time)

XGEMM: Tiled GEMM Routines

Overview
This sample code calls the libxsmm_?gemm_omp routines provided by the LIBXSMM extension library (libxsmmext). These
routines are meant for big(ger) xGEMM routines, and thereby provide an OpenMP-based parallelization.

The driver program (xgemm.c) currently accepts all typical GEMM arguments (except for the transposition specifier):
m, n, k, lda, ldb, ldc, alpha, and beta. All arguments are optional (or will inherit defaults from previously specified
arguments). Matrix transposition as part of the libxsmm_?gemm_omp routines will become available in an upcoming
release of LIBXSMM. Please also note that unsupported Alpha or Beta values will cause a fall back to the related
BLAS routine. The single-precision matrix multiplications require to change the REAL_TYPE in xgemm.c.
./xgemm.sh 2000

OpenTuner
To tune the tile sizes (“block sizes”) internal to LIBXSMM, the OpenTuner extensible framework for program au-
totuning can be used. A tuning script (xgemm_opentuner.py) is provided, which optionally accepts a list of grouped
parameters as command line arguments. The syntax of the arguments is per LIBXSMM’s MNK build-option, and
expands to “triplets” specifying the matrix shapes. For instance, four matrix multiplications of square-matrices can
be benchmarked and tuned using the following command.

https://github.com/hfp/libxsmm#call-wrapper
http://opentuner.org/


./xgemm_opentuner.py 1024,1280,1536,1792

To start a tuning experiment for a new set of arguments, it is highly recommended to start from scratch. Otherwise
the population of previously generated tuning results is fetched from a database and used to tune an unrelated range
of matrix shapes.
rm -rf opentuner.db

The script tunes the geometric mean of the performance for each of the requested triplets. However, the optimizer
not only maximizes the performance but also minimizes the value of M * N * K (which also helps to prune duplicated
results due to an additional preference). As a limitation of the current implementation, the multiplication kernels are
not accompanied by copy-kernels (and not accompanied by transpose kernels). This negatively impacts performance
on power-of-two matrix shapes (POT) due to trashing the LLC. However, it has been found, that tuning for POT
shapes likely achieves superior performance when compared to tuning for non-POT shapes of the same range.
rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 192,256,320,512,768

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 1024,1280,1536,1792

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 2048,2304,2560,2816

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 3072,3328,3584,3840

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 4096,4416,4736

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 5120,5440,5760

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 6144,6464,6784

rm -rf opentuner.db
./xgemm_opentuner.py --no-dups 7168,7488,7808

Above, the series of matrix multiplications from 192-8K is separately tuned in eight ranges. The tuning script uses
the environment variables LIBXSMM_M, LIBXSMM_N, and LIBXSMM_K which are internal to LIBXSMM. These variables are
used to request a specific tiling-scheme within LIBXSMM’s libxsmm_?gemm_omp routines.


	CP2K Artificial Benchmark
	Dispatch (Microbenchmark)
	NEK Sample Collection
	stpm
	rstr

	Scratch Memory Allocation (Microbenchmark)
	SMM Sample Collection
	SPECFEM Sample
	Usage Step-by-Step
	Results
	Sandy Bridge - Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
	Haswell - Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
	Knights Corner - Intel Xeon Phi B1PRQ-5110P/5120D


	Wrapped DGEMM
	XGEMM: Tiled GEMM Routines
	Overview
	OpenTuner


