
GLFW

Reference Manual

API version 2.5
April 15, 2005

c©2002-2004 Marcus Geelnard

Summary

This document is primarily a function reference manual for theGLFW API. For a description of how to
useGLFW you should refer to theGLFW Users Guide.

Trademarks

OpenGL and IRIX are registered trademarks of Silicon Graphics, Inc.
Microsoft, Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Mac OS is a registered trademark of Apple Computer, Inc.
Linux is a registered trademark of Linus Torvalds.
FreeBSD is a registered trademark of Wind River Systems, Inc.
Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.
POSIX is a trademark of IEEE.
Truevision, TARGA and TGA are registered trademarks of Truevision, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

i

Contents

1 Introduction 1

2 GLFW Operation Overview 2
2.1 The GLFW Window . 2
2.2 The GLFW Event Loop. 2
2.3 Callback Functions. 3
2.4 Threads . 3

3 Function Reference 4
3.1 GLFW Initialization and Termination. 4

3.1.1 glfwInit . 4
3.1.2 glfwTerminate . 4
3.1.3 glfwGetVersion. 5

3.2 Window Handling. 6
3.2.1 glfwOpenWindow . 6
3.2.2 glfwOpenWindowHint. 7
3.2.3 glfwCloseWindow . 8
3.2.4 glfwSetWindowCloseCallback. 8
3.2.5 glfwSetWindowTitle . 9
3.2.6 glfwSetWindowSize. 9
3.2.7 glfwSetWindowPos. 10
3.2.8 glfwGetWindowSize. 10
3.2.9 glfwSetWindowSizeCallback. 11
3.2.10 glfwIconifyWindow . 11
3.2.11 glfwRestoreWindow. 12
3.2.12 glfwGetWindowParam. 12
3.2.13 glfwSwapBuffers. 14
3.2.14 glfwSwapInterval. 14
3.2.15 glfwSetWindowRefreshCallback. 15

3.3 Video Modes .16
3.3.1 glfwGetVideoModes. 16
3.3.2 glfwGetDesktopMode. 16

3.4 Input Handling .18
3.4.1 glfwPollEvents. .18
3.4.2 glfwWaitEvents. .18
3.4.3 glfwGetKey. .19
3.4.4 glfwGetMouseButton. 21
3.4.5 glfwGetMousePos. 21
3.4.6 glfwSetMousePos. 22
3.4.7 glfwGetMouseWheel. 22

ii

3.4.8 glfwSetMouseWheel. 23
3.4.9 glfwSetKeyCallback. 23
3.4.10 glfwSetCharCallback. 24
3.4.11 glfwSetMouseButtonCallback. 24
3.4.12 glfwSetMousePosCallback. 25
3.4.13 glfwSetMouseWheelCallback. 26
3.4.14 glfwGetJoystickParam. 26
3.4.15 glfwGetJoystickPos. 27
3.4.16 glfwGetJoystickButtons. 28

3.5 Timing. .29
3.5.1 glfwGetTime .29
3.5.2 glfwSetTime .29
3.5.3 glfwSleep. .29

3.6 Image and Texture Loading. 31
3.6.1 glfwReadImage. .31
3.6.2 glfwFreeImage. .32
3.6.3 glfwLoadTexture2D . 32

3.7 OpenGL Extension Support. 34
3.7.1 glfwExtensionSupported. 34
3.7.2 glfwGetProcAddress. 34
3.7.3 glfwGetGLVersion . 35

3.8 Threads .36
3.8.1 glfwCreateThread. 36
3.8.2 glfwDestroyThread. 36
3.8.3 glfwWaitThread . 37
3.8.4 glfwGetThreadID. 37

3.9 Mutexes. .39
3.9.1 glfwCreateMutex. 39
3.9.2 glfwDestroyMutex. 39
3.9.3 glfwLockMutex. .39
3.9.4 glfwUnlockMutex . 40

3.10 Condition Variables. .41
3.10.1 glfwCreateCond. 41
3.10.2 glfwDestroyCond. 41
3.10.3 glfwWaitCond .41
3.10.4 glfwSignalCond . 42
3.10.5 glfwBroadcastCond. 43

3.11 Miscellaneous. .44
3.11.1 glfwEnable/glfwDisable. 44
3.11.2 glfwGetNumberOfProcessors. 46

iii

List of Tables

3.1 Targets forglfwOpenWindowHint . 13
3.2 Window parameters forglfwGetWindowParam . 13
3.3 Special key identifiers. .20
3.4 Valid mouse button identifiers. 20
3.5 Joystick parameters forglfwGetJoystickParam . 45
3.6 Flags forglfwReadImage . 45
3.7 Flags forglfwLoadTexture2D . 45
3.8 Tokens forglfwEnable/glfwDisable . 45

iv

GLFW Reference Manual API version 2.5 Page 1/47

Chapter 1

Introduction

GLFW is a portable API (Application Program Interface) that handles operating system specific tasks
related toOpenGLTM programming. WhileOpenGLTM in general is portable, easy to use and often
results in tidy and compact code, the operating system specific mechanisms that are required to set up
and manage anOpenGLTM window are quite the opposite.GLFW tries to remedy this by providing
the following functionality:

• Opening and managing anOpenGLTM window.

• Keyboard, mouse and joystick input.

• A high precision timer.

• Multi threading support.

• Support for querying and usingOpenGLTM extensions.

• Image file loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it possible to write
anOpenGLTM application framework in just a few lines of code. TheGLFW API is completely
operating system and platform independent, which makes it very simple to portGLFW based
OpenGLTM applications to a variety of platforms.

Currently supported platforms are:

• Microsoft WindowsR© 95/98/ME/NT/2000/XP/.NET Server.

• Unix R© or Unix-like systems running the X Window SystemTM , e.g. LinuxR©, IRIX R©,
FreeBSDR©, SolarisTM , QNX R© and Mac OSR© X.

• Mac OSR© X (Carbon)1

• AmigaOS1

• MS–DOSR©1

1Only a subset of theGLFW API is supported for this platform at the time of writing.

GLFW Reference Manual API version 2.5 Page 2/47

Chapter 2

GLFW Operation Overview

2.1 The GLFW Window

GLFW only supports one opened window at a time. The window can be either a normal desktop
window or a fullscreen window. The latter is completely undecorated, without window borders, and
covers the entire monitor. With a fullscreen window, it is also possible to select which video mode to
use.

When a window is opened, anOpenGLTM rendering context is created and attached to the entire client
area of the window. When the window is closed, theOpenGLTM rendering context is detached and
destroyed.

Through a window it is possible to receive user input in the form of keyboard and mouse input. User
input is exposed through theGLFW API via callback functions. There are different callback functions
for dealing with different kinds of user input. Also,GLFW stores most user input as internal state that
can be queried through differentGLFW API functions (for instance it is possible to query the position
of the mouse cursor with theglfwGetMousePosfunction).

As for user input, it is possible to receive information about window state changes, such as window
resize or close events, through callback functions. It is also possible to query different kinds of window
information through differentGLFW API functions.

2.2 The GLFW Event Loop

TheGLFW event loop is an open loop, which means that it is up to the programmer to design the loop.
Events are processed by calling specificGLFW functions, which in turn query the system for new input
and window events, and reports these events back to the program through callback functions.

The programmer decides when to call the event processing functions, and when to abort the event loop.

In pseudo language, a typical event loop might look like this:� �
repeat until window is closed
{

poll events
draw OpenGL graphics

}� �

GLFW Reference Manual API version 2.5 Page 3/47

There are two ways to handle events inGLFW :

• Block the event loop while waiting for new events.

• Poll for new events, and continue the loop regardless if there are any new events or not.

The first method is useful for interactive applications that do not need to refresh theOpenGLTM display
unless the user interacts with the application through user input. Typical applications are CAD software
and other kinds of editors.

The second method is useful for applications that need to refresh theOpenGLTM display constantly,
regardless of user input, such as games, demos, 3D animations, screen savers and so on.

2.3 Callback Functions

Using callback functions can be a good method for receiving up to date information about window state
and user input. When a window has been opened, it is possible to register custom callback functions
that will be called when certain events occur.

Callback functions are called from any of the event polling functionsglfwPollEvents, glfwWaitEvents
or glfwSwapBuffers.

Callback functions shouldonlybe used to gather information. Since the callback functions are called
from within the internalGLFW event polling loops, they should not call anyGLFW functions that
might result in considerableGLFW state changes, nor stall the event polling loop for a lengthy period
of time.

In other words, most or allOpenGLTM rendering should be called from the main application event
loop, not from any of theGLFW callback functions. Also, the onlyGLFW functions that may be
safely called from callback functions are the different Get functions (e.g.glfwGetKey, glfwGetTime,
glfwGetWindowParam etc).

2.4 Threads

GLFW has functions for creating threads, which means that it is possible to make multi threaded
applications withGLFW . The thread that calls glfwInit becomes the main thread, and it is
recommended that allGLFW andOpenGLTM functions are called from the main thread. Additional
threads should primarily be used for CPU heavy tasks or for managing other resources, such as file or
sound I/O.

It should be noted that the current implementation ofGLFW is not thread safe, so you should never call
GLFW functions from different threads.1

1Of course, all thread managing functions are thread safe.

GLFW Reference Manual API version 2.5 Page 4/47

Chapter 3

Function Reference

3.1 GLFW Initialization and Termination

Before anyGLFW functions can be used,GLFW must be initialized to ensure proper functionality,
and before a program terminates,GLFW has to be terminated in order to free up resources etc.

3.1.1 glfwInit

C language syntax� �
int glfwInit(void)� �
Parameters
none

Return values
If the function succeeds, GL_TRUE is returned.
If the function fails, GL_FALSE is returned.

Description
The glfwInit function initializesGLFW . No otherGLFW functions may be used before this function
has been called.

Notes
This function may take several seconds to complete on some systems, while on other systems it may
take only a fraction of a second to complete.

3.1.2 glfwTerminate

C language syntax� �
void glfwTerminate(void)� �

GLFW Reference Manual API version 2.5 Page 5/47

Parameters
none

Return values
none

Description
The function terminatesGLFW . Among other things it closes the window, if it is opened, and kills any
running threads. This function must be called before a program exits.

3.1.3 glfwGetVersion

C language syntax� �
void glfwGetVersion(int *major, int *minor, int *rev)� �
Parameters

major
Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

Return values
The function returns the major and minor version numbers and the revision for the currently linked
GLFW library.

Description
The function returns theGLFW library version.

GLFW Reference Manual API version 2.5 Page 6/47

3.2 Window Handling

The main functionality ofGLFW is to provide a simple interface toOpenGLTM window management.
GLFW can open one window, which can be either a normal desktop window or a fullscreen window.

3.2.1 glfwOpenWindow

C language syntax� �
int glfwOpenWindow(int width, int height, int redbits,

int greenbits, int bluebits, int alphabits, int depthbits,
int stencilbits, int mode)� �

Parameters

width
The width of the window. Ifwidth is zero, it will be calculated aswidth = 4

3height, if heightis
not zero. If bothwidthandheightare zero, thenwidthwill be set to 640.

hieght
The height of the window. Ifheightis zero, it will be calculated asheight = 3

4width, if width is
not zero. If bothwidthandheightare zero, thenheightwill be set to 480.

redbits, greenbits, bluebits
The number of bits to use for each color component of the color buffer (0 means default color
depth). For instance, settingredbits=5, greenbits=6, and bluebits=5will generate a 16-bit color
buffer, if possible.

alphabits
The number of bits to use for the alpha buffer (0 means no alpha buffer).

depthbits
The number of bits to use for the depth buffer (0 means no depth buffer).

stencilbits
The number of bits to use for the stencil buffer (0 means no stencil buffer).

mode
Selects which type ofOpenGLTM window to use.modecan be either GLFW_WINDOW, which
will generate a normal desktop window, or GLFW_FULLSCREEN, which will generate a
window which covers the entire screen. When GLFW_FULLSCREEN is selected, the video
mode will be changed to the resolution that closest matches thewidthandheightparameters.

Return values
If the function succeeds, GL_TRUE is returned.
If the function fails, GL_FALSE is returned.

Description
The function opens a window that best matches the parameters given to the function. How well the
resulting window matches the desired window depends mostly on the available hardware and
OpenGLTM drivers. In general, selecting a fullscreen mode has better chances of generating a close
match than does a normal desktop window, sinceGLFW can freely select from all the available video
modes. A desktop window is normally restricted to the video mode of the desktop.

GLFW Reference Manual API version 2.5 Page 7/47

Notes
For additional control of window properties, seeglfwOpenWindowHint .

In fullscreen mode the mouse cursor is hidden by default, and any system screensavers are prohibited
from starting. In windowed mode the mouse cursor is visible, and screensavers are allowed to start. To
change the visibility of the mouse cursor, useglfwEnable or glfwDisablewith the argument
GLFW_MOUSE_CURSOR.

In order to determine the actual properties of an opened window, useglfwGetWindowParam and
glfwGetWindowSize(or glfwSetWindowSizeCallback).

3.2.2 glfwOpenWindowHint

C language syntax� �
void glfwOpenWindowHint(int target, int hint)� �
Parameters

target
Can be any of the constants in the table3.1.

hint
An integer giving the value of the corresponding target (see table3.1).

Return values
none

Description
The function sets additional properties for a window that is to be opened. For a hint to be registered, the
function must be called before callingglfwOpenWindow. When theglfwOpenWindow function is
called, any hints that were registered with theglfwOpenWindowHint function are used for setting the
corresponding window properties, and then all hints are reset to their default values.

Notes
In order to determine the actual properties of an opened window, useglfwGetWindowParam (after the
window has been opened).

GLFW_STEREO is a hard constraint. If stereo rendering is requested, but no stereo rendering capable
pixel formats / visuals are available,glfwOpenWindow will fail.

GLFW_REFRESH_RATE is only supported under Windows.

The GLFW_REFRESH_RATE property should be used with caution. Most systems have default values
for monitor refresh rates that are optimal for the specific system. Specifying the refresh rate can
override these settings, which can result in suboptimal operation. The monitor may be unable to display
the resulting video signal, or in the worst case it may even be damaged!

GLFW Reference Manual API version 2.5 Page 8/47

3.2.3 glfwCloseWindow

C language syntax� �
void glfwCloseWindow(void)� �
Parameters
none

Return values
none

Description
The function closes an opened window and destroys the associatedOpenGLTM context.

3.2.4 glfwSetWindowCloseCallback

C language syntax� �
void glfwSetWindowCloseCallback(GLFWwindowclosefun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called when a user requests that the window should be
closed, typically by clicking the window close icon (e.g. the cross in the upper right corner of a
window under Microsoft Windows). The function should have the following C language
prototype:

int GLFWCALL functionname(void);

Wherefunctionnameis the name of the callback function. The return value of the callback
function indicates wether or not the window close action should continue. If the function returns
GL_TRUE, the window will be closed. If the function returns GL_FALSE, the window will not
be closed.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a window close event.

A window has to be opened for this function to have any effect.

GLFW Reference Manual API version 2.5 Page 9/47

Notes
Window close events are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

TheOpenGLTM context is still valid when this function is called.

Note that the window close callback function is not called whenglfwCloseWindow is called, but only
when the close request comes from the window manager.

Do not call glfwCloseWindow from a window close callback function. Close the window by returning
GL_TRUE from the function.

3.2.5 glfwSetWindowTitle

C language syntax� �
void glfwSetWindowTitle(const char *title)� �
Parameters

title
Pointer to a null terminated ISO 8859-1 (8-bit Latin 1) string that holds the title of the window.

Return values
none

Description
The function changes the title of the opened window.

Notes
The title property of a window is often used in situations other than for the window title, such as the title
of an application icon when it is in iconified state.

3.2.6 glfwSetWindowSize

C language syntax� �
void glfwSetWindowSize(int width, int height)� �
Parameters

width
Width of the window.

height
Height of the window.

Return values
none

GLFW Reference Manual API version 2.5 Page 10/47

Description
The function changes the size of an opened window. Thewidthandheightparameters denote the size of
the client area of the window (i.e. excluding any window borders and decorations).

If the window is in fullscreen mode, the video mode will be changed to a resolution that closest matches
the width and height parameters (the number of color bits will not be changed).

Notes
TheOpenGLTM context is guaranteed to be preserved after callingglfwSetWindowSize, even if the
video mode is changed.

Changing the size of a fullscreen window is not supported under AmigaOS or DOS, since that would
destroy the associatedOpenGLTM context.

3.2.7 glfwSetWindowPos

C language syntax� �
void glfwSetWindowPos(int x, int y)� �
Parameters

x
Horizontal position of the window, relative to the upper left corner of the desktop.

y
Vertical position of the window, relative to the upper left corner of the desktop.

Return values
none

Description
The function changes the position of an opened window. It does not have any effect on a fullscreen
window.

3.2.8 glfwGetWindowSize

C language syntax� �
void glfwGetWindowSize(int *width, int *height)� �
Parameters

width
Pointer to an integer that will hold the width of the window.

height
Pointer to an integer that will hold the height of the window.

GLFW Reference Manual API version 2.5 Page 11/47

Return values
The current width and height of the opened window is returned in thewidthandheightparameters,
respectively.

Description
The function is used for determining the size of an opened window. The returned values are dimensions
of the client area of the window (i.e. excluding any window borders and decorations).

Notes
Even if the size of a fullscreen window does not change once the window has been opened, it does not
necessarily have to be the same as the size that was requested usingglfwOpenWindow. Therefor it is
wise to use this function to determine the true size of the window once it has been opened.

3.2.9 glfwSetWindowSizeCallback

C language syntax� �
void glfwSetWindowSizeCallback(GLFWwindowsizefun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the window size changes. The
function should have the following C language prototype:

void GLFWCALL functionname(int width, int height);

Wherefunctionnameis the name of the callback function, andwidthandheightare the
dimensions of the window client area.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a window size change event.

A window has to be opened for this function to have any effect.

Notes
Window size changes are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

3.2.10 glfwIconifyWindow

C language syntax� �
void glfwIconifyWindow(void)� �

GLFW Reference Manual API version 2.5 Page 12/47

Parameters
none

Return values
none

Description
Iconify a window. If the window is in fullscreen mode, then the desktop video mode will be restored.

3.2.11 glfwRestoreWindow

C language syntax� �
void glfwRestoreWindow(void)� �
Parameters
none

Return values
none

Description
Restore an iconified window. If the window that is restored is in fullscreen mode, then the fullscreen
video mode will be restored.

3.2.12 glfwGetWindowParam

C language syntax� �
int glfwGetWindowParam(int param)� �
Parameters

param
A token selecting which parameter the function should return (see table3.2).

Return values
The function returns different parameters depending on the value ofparam. Table3.2 lists validparam
values, and their corresponding return values.

Description
The function is used for acquiring various properties of an opened window.

GLFW Reference Manual API version 2.5 Page 13/47

Name Default Description
GLFW_REFRESH_RATE 0 Vertical monitor refresh rate in Hz (only used

for fullscreen windows). Zero means system
default.

GLFW_ACCUM_RED_BITS 0 Number of bits for the red channel of the ac-
cumulator buffer.

GLFW_ACCUM_GREEN_BITS 0 Number of bits for the green channel of the
accumulator buffer.

GLFW_ACCUM_BLUE_BITS 0 Number of bits for the blue channel of the ac-
cumulator buffer.

GLFW_ACCUM_ALPHA_BITS 0 Number of bits for the alpha channel of the
accumulator buffer.

GLFW_AUX_BUFFERS 0 Number of auxiliary buffers.
GLFW_STEREO GL_FALSE Specify if stereo rendering should be sup-

ported (can be GL_TRUE or GL_FALSE).

Table 3.1: Targets forglfwOpenWindowHint

Name Description
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window has focus, else GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED GL_TRUE if window is hardware accelerated, else

GL_FALSE.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz. Zero indicates an unknown

or a default refresh rate.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the accumulator

buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the accumulator

buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else GL_FALSE.

Table 3.2: Window parameters forglfwGetWindowParam

GLFW Reference Manual API version 2.5 Page 14/47

Notes
GLFW_ACCELERATED is only supported under Windows. Other systems will always return
GL_TRUE. Under Windows, GLFW_ACCELERATED means that theOpenGLTM renderer is a 3rd
party renderer, rather than the fallback Microsoft softwareOpenGLTM renderer. In other words, it is
not a real guarantee that theOpenGLTM renderer is actually hardware accelerated.

GLFW_REFRESH_RATE is only supported under Windows, XFree86 and AmigaOS. Other systems
will always return zero (0). With some Windows drivers, zero (0) may be returned, indicating a default
refresh rate.

3.2.13 glfwSwapBuffers

C language syntax� �
void glfwSwapBuffers(void)� �
Parameters
none

Return values
none

Description
The function swaps the back and front color buffers of the window. If GLFW_AUTO_POLL_EVENTS
is enabled (which is the default),glfwPollEvents is called before swapping the front and back buffers.

3.2.14 glfwSwapInterval

C language syntax� �
void glfwSwapInterval(int interval)� �
Parameters

interval
Minimum number of monitor vertical retraces between each buffer swap performed by
glfwSwapBuffers. If interval is zero, buffer swaps will not be synchronized to the vertical
refresh of the monitor (also known as ’VSync off’).

Return values
none

Description
The function selects the minimum number of monitor vertical retraces that should occur between two
buffer swaps. If the selected swap interval is one, the rate of buffer swaps will never be higher than the
vertical refresh rate of the monitor. If the selected swap interval is zero, the rate of buffer swaps is only
limited by the speed of the software and the hardware.

GLFW Reference Manual API version 2.5 Page 15/47

Notes
This function will only have an effect on hardware and drivers that support user selection of the swap
interval.

3.2.15 glfwSetWindowRefreshCallback

C language syntax� �
void glfwSetWindowRefreshCallback(GLFWwindowrefreshfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called when the window client area needs to be
refreshed. The function should have the following C language prototype:

void GLFWCALL functionname(void);

Wherefunctionnameis the name of the callback function.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a window refresh event, which occurs when any
part of the window client area has been damaged, and needs to be repainted (for instance, if a part of the
window that was previously occluded by another window has become visible).

A window has to be opened for this function to have any effect.

Notes
Window refresh events are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

GLFW Reference Manual API version 2.5 Page 16/47

3.3 Video Modes

SinceGLFW supports video mode changes when using a fullscreen window, it also provides
functionality for querying which video modes are supported on a system.

3.3.1 glfwGetVideoModes

C language syntax� �
int glfwGetVideoModes(GLFWvidmode *list, int maxcount)� �
Parameters

list
A vector ofGLFWvidmodestructures, which will be filled out by the function.

maxcount
Maximum number of video modes thatlist vector can hold.

Return values
The function returns the number of detected video modes (this number will never exceedmaxcount).
The list vector is filled out with the video modes that are supported by the system.

Description
The function returns a list of supported video modes. Each video mode is represented by a
GLFWvidmodestructure, which has the following definition:� �
typedef struct {

int Width, Height; // Video resolution
int RedBits; // Number of red bits
int GreenBits; // Number of green bits
int BlueBits; // Number of blue bits

} GLFWvidmode;� �
Notes
The returned list is sorted, first by color depth (RedBits + GreenBits + BlueBits), and then by
resolution (Width×Height), with the lowest resolution, fewest bits per pixel mode first.

3.3.2 glfwGetDesktopMode

C language syntax� �
void glfwGetDesktopMode(GLFWvidmode *mode)� �
Parameters

mode
Pointer to aGLFWvidmodestructure, which will be filled out by the function.

GLFW Reference Manual API version 2.5 Page 17/47

Return values
TheGLFWvidmodestructure pointed to bymodeis filled out with the desktop video mode.

Description
The function returns the desktop video mode in aGLFWvidmodestructure. SeeglfwGetVideoModes
for a definition of theGLFWvidmodestructure.

Notes
The color depth of the desktop display is always reported as the number of bits for each individual color
component (red, green and blue), even if the desktop is not using an RGB or RGBA color format. For
instance, an indexed 256 color display may reportRedBits= 3, GreenBits= 3 andBlueBits= 2, which
adds up to 8 bits in total.

The desktop video mode is the video mode used by the desktop,not the current video mode (which may
differ from the desktop video mode if theGLFW window is a fullscreen window).

GLFW Reference Manual API version 2.5 Page 18/47

3.4 Input Handling

GLFW supports three channels of user input: keyboard input, mouse input and joystick input.

Keyboard and mouse input can be treated either as events, using callback functions, or as state, using
functions for polling specific keyboard and mouse states. Regardless of which method is used, all
keyboard and mouse input is collected using window event polling.

Joystick input is asynchronous to the keyboard and mouse input, and does not require event polling for
keeping up to date joystick information. Also, joystick input is independent of any window, so a
window does not have to be opened for joystick input to be used.

3.4.1 glfwPollEvents

C language syntax� �
void glfwPollEvents(void)� �
Parameters
none

Return values
none

Description
The function is used for polling for events, such as user input and window resize events. Upon calling
this function, all window states, keyboard states and mouse states are updated. If any related callback
functions are registered, these are called during the call toglfwPollEvents.

Notes
glfwPollEvents is called implicitly fromglfwSwapBuffers if GLFW_AUTO_POLL_EVENTS is
enabled (default). Thus, ifglfwSwapBuffers is called frequently, which is normally the case, there is
no need to callglfwPollEvents.

3.4.2 glfwWaitEvents

C language syntax� �
void glfwWaitEvents(void)� �
Parameters
none

Return values
none

GLFW Reference Manual API version 2.5 Page 19/47

Description
The function is used for waiting for events, such as user input and window resize events. Upon calling
this function, the calling thread will be put to sleep until any event appears in the event queue. When
events are ready, the events will be processed just as they are processed byglfwPollEvents.

If there are any events in the queue when the function is called, the function will behave exactly like
glfwPollEvents (i.e. process all messages and then return, without blocking the calling thread).

Notes
It is guaranteed thatglfwWaitEvents will wake up on any event that can be processed by
glfwPollEvents. However,glfwWaitEvents may wake up on events that arenot processed or reported
by glfwPollEvents too, and the function may behave differently on different systems. Do no make any
assumptions about when or whyglfwWaitEvents will return.

3.4.3 glfwGetKey

C language syntax� �
int glfwGetKey(int key)� �
Parameters

key
A keyboard key identifier, which can be either an uppercase printable ISO 8859-1 (Latin 1)
character (e.g. ’A’, ’3’ or ’.’), or a special key identifier. Table3.3 lists valid special key
identifiers.

Return values
The function returns GLFW_PRESS if the key is held down, or GLFW_RELEASE if the key is not
held down.

Description
The function queries the current state of a specific keyboard key. The physical location of each key
depends on the system keyboard layout setting.

Notes
The constant GLFW_KEY_SPACE is equal to 32, which is the ISO 8859-1 code for space.

Not all key codes are supported on all systems. Also, while some keys are available on some keyboard
layouts, they may not be available on other keyboard layouts.

For systems that do not distinguish between left and right versions of modifier keys (shift, alt and
control), the left version is used (e.g. GLFW_KEY_LSHIFT).

A window must be opened for the function to have any effect, andglfwPollEvents, glfwWaitEvents or
glfwSwapBuffersmust be called before any keyboard events are recorded and reported by
glfwGetKey.

GLFW Reference Manual API version 2.5 Page 20/47

Name Description
GLFW_KEY_SPACE Space
GLFW_KEY_ESC Escape
GLFW_KEY_Fn Function keyn (n can be in the range 1..25)
GLFW_KEY_UP Cursor up
GLFW_KEY_DOWN Cursor down
GLFW_KEY_LEFT Cursor left
GLFW_KEY_RIGHT Cursor right
GLFW_KEY_LSHIFT Left shift key
GLFW_KEY_RSHIFT Right shift key
GLFW_KEY_LCTRL Left control key
GLFW_KEY_RCTRL Right control key
GLFW_KEY_LALT Left alternate function key
GLFW_KEY_RALT Right alternate function key
GLFW_KEY_TAB Tabulator
GLFW_KEY_ENTER Enter
GLFW_KEY_BACKSPACE Backspace
GLFW_KEY_INSERT Insert
GLFW_KEY_DEL Delete
GLFW_KEY_PAGEUP Page up
GLFW_KEY_PAGEDOWN Page down
GLFW_KEY_HOME Home
GLFW_KEY_END End
GLFW_KEY_KP_n Keypad numeric keyn (n can be in the range 0..9)
GLFW_KEY_KP_DIVIDE Keypad divide (÷)
GLFW_KEY_KP_MULTIPLY Keypad multiply (×)
GLFW_KEY_KP_SUBTRACT Keypad subtract (−)
GLFW_KEY_KP_ADD Keypad add (+)
GLFW_KEY_KP_DECIMAL Keypad decimal (. or ,)
GLFW_KEY_KP_EQUAL Keypad equal (=)
GLFW_KEY_KP_ENTER Keypad enter

Table 3.3: Special key identifiers

Name Description
GLFW_MOUSE_BUTTON_LEFT Left mouse button (button 1)
GLFW_MOUSE_BUTTON_RIGHT Right mouse button (button 2)
GLFW_MOUSE_BUTTON_MIDDLE Middle mouse button (button 3)
GLFW_MOUSE_BUTTON_n Mouse buttonn (n can be in the range 1..8)

Table 3.4: Valid mouse button identifiers

GLFW Reference Manual API version 2.5 Page 21/47

3.4.4 glfwGetMouseButton

C language syntax� �
int glfwGetMouseButton(int button)� �
Parameters

button
A mouse button identifier, which can be one of the mouse button identifiers listed in table3.4.

Return values
The function returns GLFW_PRESS if the mouse button is held down, or GLFW_RELEASE if the
mouse button is not held down.

Description
The function queries the current state of a specific mouse button.

Notes
A window must be opened for the function to have any effect, andglfwPollEvents, glfwWaitEvents or
glfwSwapBuffersmust be called before any mouse button events are recorded and reported by
glfwGetMouseButton.

GLFW_MOUSE_BUTTON_LEFT is equal to GLFW_MOUSE_BUTTON_1.
GLFW_MOUSE_BUTTON_RIGHT is equal to GLFW_MOUSE_BUTTON_2.
GLFW_MOUSE_BUTTON_MIDDLE is equal to GLFW_MOUSE_BUTTON_3.

3.4.5 glfwGetMousePos

C language syntax� �
void glfwGetMousePos(int *xpos, int *ypos)� �
Parameters

xpos
Pointer to an integer that will be filled out with the horizontal position of the mouse.

ypos
Pointer to an integer that will be filled out with the vertical position of the mouse.

Return values
The function returns the current mouse position inxposandypos.

Description
The function returns the current mouse position. If the cursor is not hidden, the mouse position is the
cursor position, relative to the upper left corner of the window and limited to the client area of the
window. If the cursor is hidden, the mouse position is a virtual absolute position, not limited to any
boundaries except to those implied by the maximum number that can be represented by a signed integer
(normally -2147483648 to +2147483647).

GLFW Reference Manual API version 2.5 Page 22/47

Notes
A window must be opened for the function to have any effect, andglfwPollEvents, glfwWaitEvents or
glfwSwapBuffersmust be called before any mouse movements are recorded and reported by
glfwGetMousePos.

3.4.6 glfwSetMousePos

C language syntax� �
void glfwSetMousePos(int xpos, int ypos)� �
Parameters

xpos
Horizontal position of the mouse.

ypos
Vertical position of the mouse.

Return values
none

Description
The function changes the position of the mouse. If the cursor is visible (not disabled), the cursor will be
moved to the specified position, relative to the upper left corner of the window client area. If the cursor
is hidden (disabled), only the mouse position that is reported byGLFW is changed.

3.4.7 glfwGetMouseWheel

C language syntax� �
int glfwGetMouseWheel(void)� �
Parameters
none

Return values
The function returns the current mouse wheel position.

Description
The function returns the current mouse wheel position. The mouse wheel can be thought of as a third
mouse axis, which is available as a separate wheel or up/down stick on some mice.

Notes
A window must be opened for the function to have any effect, andglfwPollEvents, glfwWaitEvents or
glfwSwapBuffersmust be called before any mouse wheel movements are recorded and reported by
glfwGetMouseWheel.

GLFW Reference Manual API version 2.5 Page 23/47

3.4.8 glfwSetMouseWheel

C language syntax� �
void glfwSetMouseWheel(int pos)� �
Parameters

pos
Position of the mouse wheel.

Return values
none

Description
The function changes the position of the mouse wheel.

3.4.9 glfwSetKeyCallback

C language syntax� �
void glfwSetKeyCallback(GLFWkeyfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time a key is pressed or released. The
function should have the following C language prototype:

void GLFWCALL functionname(int key, int action);

Wherefunctionnameis the name of the callback function,keyis a key identifier, which is an
uppercase printable ISO 8859-1 character or a special key identifier (see table3.3), andaction is
either GLFW_PRESS or GLFW_RELEASE.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a keyboard key event. The callback function is
called every time the state of a single key is changed (from released to pressed or vice versa). The
reported keys are unaffected by any modifiers (such as shift or alt).

A window has to be opened for this function to have any effect.

Notes
Keyboard events are recorded continuously, but only reported whenglfwPollEvents, glfwWaitEvents
or glfwSwapBuffers is called.

GLFW Reference Manual API version 2.5 Page 24/47

3.4.10 glfwSetCharCallback

C language syntax� �
void glfwSetCharCallback(GLFWcharfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time a printable character is generated by
the keyboard. The function should have the following C language prototype:

void GLFWCALL functionname(int character, int action);

Wherefunctionnameis the name of the callback function,characteris a Unicode (ISO 10646)
character, andaction is either GLFW_PRESS or GLFW_RELEASE.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a keyboard character event. The callback function
is called every time a key that results in a printable Unicode character is pressed or released. Characters
are affected by modifiers (such as shift or alt).

A window has to be opened for this function to have any effect.

Notes
Character events are recorded continuously, but only reported whenglfwPollEvents, glfwWaitEvents
or glfwSwapBuffers is called.

Control characters, such as tab and carriage return, are not reported to the character callback function,
since they are not part of the Unicode character set. Use the key callback function for such events (see
glfwSetKeyCallback).

The Unicode character set supports character codes above 255, so never cast a Unicode character to an
eight bit data type (e.g. the C language ’char’ type) without first checking that the character code is less
than 256. Also note that Unicode character codes 0 to 255 are equal to ISO 8859-1 (Latin 1).

3.4.11 glfwSetMouseButtonCallback

C language syntax� �
void glfwSetMouseButtonCallback(GLFWmousebuttonfun cbfun)� �

GLFW Reference Manual API version 2.5 Page 25/47

Parameters

cbfun
Pointer to a callback function that will be called every time a mouse button is pressed or released.
The function should have the following C language prototype:

void GLFWCALL functionname(int button, int action);

Wherefunctionnameis the name of the callback function,buttonis a mouse button identifier (see
table3.4on page20), andaction is either GLFW_PRESS or GLFW_RELEASE.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a mouse button event.

A window has to be opened for this function to have any effect.

Notes
Mouse button events are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

GLFW_MOUSE_BUTTON_LEFT is equal to GLFW_MOUSE_BUTTON_1.
GLFW_MOUSE_BUTTON_RIGHT is equal to GLFW_MOUSE_BUTTON_2.
GLFW_MOUSE_BUTTON_MIDDLE is equal to GLFW_MOUSE_BUTTON_3.

3.4.12 glfwSetMousePosCallback

C language syntax� �
void glfwSetMousePosCallback(GLFWmouseposfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the mouse is moved. The function
should have the following C language prototype:

void GLFWCALL functionname(int x, int y);

Wherefunctionnameis the name of the callback function, andx andy are the mouse coordinates
(seeglfwGetMousePosfor more information on mouse coordinates).

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

GLFW Reference Manual API version 2.5 Page 26/47

Description
The function selects which function to be called upon a mouse motion event.

A window has to be opened for this function to have any effect.

Notes
Mouse motion events are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

3.4.13 glfwSetMouseWheelCallback

C language syntax� �
void glfwSetMouseWheelCallback(GLFWmousewheelfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the mouse wheel is moved. The
function should have the following C language prototype:

void GLFWCALL functionname(int pos);

Wherefunctionnameis the name of the callback function, andposis the mouse wheel position.

If cbfunis NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a mouse wheel event.

A window has to be opened for this function to have any effect.

Notes
Mouse wheel events are recorded continuously, but only reported whenglfwPollEvents,
glfwWaitEvents or glfwSwapBuffers is called.

3.4.14 glfwGetJoystickParam

C language syntax� �
int glfwGetJoystickParam(int joy, int param)� �

GLFW Reference Manual API version 2.5 Page 27/47

Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, wheren is in the range 1 to 16.

param
A token selecting which parameter the function should return (see table3.5).

Return values
The function returns different parameters depending on the value ofparam. Table3.5 lists validparam
values, and their corresponding return values.

Description
The function is used for acquiring various properties of a joystick.

Notes
The joystick information is updated every time the function is called.

No window has to be opened for joystick information to be valid.

3.4.15 glfwGetJoystickPos

C language syntax� �
int glfwGetJoystickPos(int joy, float *pos, int numaxes)� �
Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, wheren is in the range 1 to 16.

pos
An array that will hold the positional values for all requested axes.

numaxes
Specifies how many axes should be returned.

Return values
The function returns the number of actually returned axes. This is the minimum ofnumaxesand the
number of axes supported by the joystick. If the joystick is not supported or connected, the function will
return 0 (zero).

Description
The function queries the current position of one or more axes of a joystick. The positional values are
returned in an array, where the first element represents the first axis of the joystick (normally the X
axis). Each position is in the range -1.0 to 1.0. Where applicable, the positive direction of an axis is
right, forward or up, and the negative direction is left, back or down.

If numaxesexceeds the number of axes supported by the joystick, or if the joystick is not available, the
unused elements in theposarray will be set to 0.0 (zero).

GLFW Reference Manual API version 2.5 Page 28/47

Notes
The joystick state is updated every time the function is called, so there is no need to callglfwPollEvents
or glfwWaitEvents for joystick state to be updated.

UseglfwGetJoystickParam to retrieve joystick capabilities, such as joystick availability and number of
supported axes.

No window has to be opened for joystick input to be valid.

3.4.16 glfwGetJoystickButtons

C language syntax� �
int glfwGetJoystickButtons(int joy, unsigned char *buttons,

int numbuttons)� �
Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, wheren is in the range 1 to 16.

buttons
An array that will hold the button states for all requested buttons.

numbuttons
Specifies how many buttons should be returned.

Return values
The function returns the number of actually returned buttons. This is the minimum ofnumbuttonsand
the number of buttons supported by the joystick. If the joystick is not supported or connected, the
function will return 0 (zero).

Description
The function queries the current state of one or more buttons of a joystick. The button states are
returned in an array, where the first element represents the first button of the joystick. Each state can be
either GLFW_PRESS or GLFW_RELEASE.

If numbuttonsexceeds the number of buttons supported by the joystick, or if the joystick is not
available, the unused elements in thebuttonsarray will be set to GLFW_RELEASE.

Notes
The joystick state is updated every time the function is called, so there is no need to callglfwPollEvents
or glfwWaitEvents for joystick state to be updated.

UseglfwGetJoystickParam to retrieve joystick capabilities, such as joystick availability and number of
supported buttons.

No window has to be opened for joystick input to be valid.

GLFW Reference Manual API version 2.5 Page 29/47

3.5 Timing

3.5.1 glfwGetTime

C language syntax� �
double glfwGetTime(void)� �
Parameters
none

Return values
The function returns the value of the high precision timer. The time is measured in seconds, and is
returned as a double precision floating point value.

Description
The function returns the state of a high precision timer. Unless the timer has been set by the
glfwSetTime function, the time is measured as the number of seconds that have passed sinceglfwInit
was called.

Notes
The resolution of the timer depends on which system the program is running on. The worst case
resolution is somewhere in the order of10 ms, while for most systems the resolution should be better
than1 µs.

3.5.2 glfwSetTime

C language syntax� �
void glfwSetTime(double time)� �
Parameters

time
Time (in seconds) that the timer should be set to.

Return values
none

Description
The function sets the current time of the high precision timer to the specified time. Subsequent calls to
glfwGetTime will be relative to this time. The time is given in seconds.

3.5.3 glfwSleep

C language syntax� �
void glfwSleep(double time)� �

GLFW Reference Manual API version 2.5 Page 30/47

Parameters

time
Time, in seconds, to sleep.

Return values
none

Description
The function puts the calling thread to sleep for the requested period of time. Only the calling thread is
put to sleep. Other threads within the same process can still execute.

Notes
There is usually a system dependent minimum time for which it is possible to sleep. This time is
generally in the range 1ms to 20ms, depending on thread sheduling time slot intervals etc. Using a
shorter time as a parameter toglfwSleepcan give one of two results: either the thread will sleep for the
minimum possible sleep time, or the thread will not sleep at all (glfwSleepreturns immediately). The
latter should only happen when very short sleep times are specified, if at all.

GLFW Reference Manual API version 2.5 Page 31/47

3.6 Image and Texture Loading

In order to aid texture file loading,GLFW has basic support for loading images from files.

3.6.1 glfwReadImage

C language syntax� �
int glfwReadImage(const char *name, GLFWimage *img, int flags)� �
Parameters

name
A null terminated ISO 8859-1 string holding the name of the file that should be read.

img
Pointer to a GLFWimage struct, which will hold the information about the loaded image (if the
read was successful).

flags
Flags for controlling the image reading process. Valid flags are listed in table3.6

Return values
The function returns GL_TRUE if the image was loaded successfully. Otherwise GL_FALSE is
returned.

Description
The function reads an image from the file specified by the parameternameand returns the image
information and data in a GLFWimage structure, which has the following definition:� �
typedef struct {

int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;� �
WidthandHeightgive the dimensions of the image.Formatspecifies anOpenGLTM pixel format,
which can be GL_LUMINANCE or GL_ALPHA (for gray scale images), GL_RGB or GL_RGBA.
BytesPerPixelspecifies the number of bytes per pixel.Data is a pointer to the actual pixel data.

By default the read image is rescaled to the nearest larger2m × 2n resolution using bilinear
interpolation, if necessary, which is useful if the image is to be used as anOpenGLTM texture. This
behavior can be disabled by setting the GLFW_NO_RESCALE_BIT flag.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the first pixel inimg->Data is the lower left corner of
the image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left corner.

For single component images (i.e. gray scale),Format is set to GL_ALPHA if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwiseFormat is set to GL_LUMINANCE.

GLFW Reference Manual API version 2.5 Page 32/47

Notes
glfwReadImagesupports the Truevision Targa version 1 file format (.TGA). Supported pixel formats
are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color + alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

Please note thatOpenGLTM 1.0 does not support single component alpha maps, so do not use images
with Format = GL_ALPHA directly as textures underOpenGLTM 1.0.

3.6.2 glfwFreeImage

C language syntax� �
void glfwFreeImage(GLFWimage *img)� �
Parameters

img
Pointer to a GLFWimage struct.

Return values
none

Description
The function frees any memory occupied by a loaded image, and clears all the fields of the GLFWimage
struct. Any image that has been loaded by theglfwReadImagefunction should be deallocated using
this function, once the image is not needed anymore.

3.6.3 glfwLoadTexture2D

C language syntax� �
int glfwLoadTexture2D(const char *name, int flags)� �
Parameters

name
An ISO 8859-1 string holding the name of the file that should be loaded.

flags
Flags for controlling the texture loading process. Valid flags are listed in table3.7.

Return values
The function returns GL_TRUE if the texture was loaded successfully. Otherwise GL_FALSE is
returned.

GLFW Reference Manual API version 2.5 Page 33/47

Description
The function reads an image from the file specified by the parameternameand uploads the image to
OpenGLTM texture memory (using theglTexImage2Dfunction).

If the GLFW_BUILD_MIPMAPS_BIT flag is set, all mipmap levels for the loaded texture are
generated and uploaded to texture memory.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the origin of the texture is the lower left corner of the
loaded image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left
corner.

For single component images (i.e. gray scale), the texture is uploaded as an alpha mask if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwise it is uploaded as a luminance texture.

Notes
glfwLoadTexture2D supports the Truevision Targa version 1 file format (.TGA). Supported pixel
formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color +
alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

The read texture is always rescaled to the nearest larger2m × 2n resolution using bilinear interpolation,
if necessary, sinceOpenGLTM requires textures to have a2m × 2n resolution.

If the GL_SGIS_generate_mipmap extension, which is usually hardware accelerated, is supported by
theOpenGLTM implementation it will be used for mipmap generation. Otherwise the mipmaps will be
generated byGLFW in software.

SinceOpenGLTM 1.0 does not support single component alpha maps, alpha map textures are converted
to RGBA format underOpenGLTM 1.0 when the GLFW_ALPHA_MAP_BIT flag is set and the loaded
texture is a single component texture. The red, green and blue components are set to 1.0.

GLFW Reference Manual API version 2.5 Page 34/47

3.7 OpenGL Extension Support

One of the great features ofOpenGLTM is its support for extensions, which allow independent vendors
to supply non-standard functionality in theirOpenGLTM implementations. Using extensions is
different under different systems, which is whyGLFW has provided an operating system independent
interface to querying and usingOpenGLTM extensions.

3.7.1 glfwExtensionSupported

C language syntax� �
int glfwExtensionSupported(const char *extension)� �
Parameters

extension
A null terminated ISO 8859-1 string containing the name of anOpenGLTM extension.

Return values
The function returns GL_TRUE if the extension is supported. Otherwise it returns GL_FALSE.

Description
The function does a string search in the list of supportedOpenGLTM extensions to find if the specified
extension is listed.

Notes
An OpenGLTM context must be created before this function can be called (i.e. anOpenGLTM window
must have been opened withglfwOpenWindow).

In addition to checking forOpenGLTM extensions,GLFW also checks for extensions in the operating
system “glue API”, such as WGL extensions under Windows and glX extensions under the X Window
System.

3.7.2 glfwGetProcAddress

C language syntax� �
void * glfwGetProcAddress(const char *procname)� �
Parameters

procname
A null terminated ISO 8859-1 string containing the name of anOpenGLTM extension function.

Return values
The function returns the pointer to the specifiedOpenGLTM function if it is supported, otherwise
NULL is returned.

GLFW Reference Manual API version 2.5 Page 35/47

Description
The function acquires the pointer to anOpenGLTM extension function. Some (but not all)OpenGLTM

extensions define new API functions, which are usually not available through normal linking. It is
therefore necessary to get access to those API functions at runtime.

Notes
An OpenGLTM context must be created before this function can be called (i.e. anOpenGLTM window
must have been opened withglfwOpenWindow).

Some systems do not support dynamic function pointer retrieval, in which caseglfwGetProcAddress
will always return NULL.

3.7.3 glfwGetGLVersion

C language syntax� �
void glfwGetGLVersion(int *major, int *minor, int *rev)� �
Parameters

major
Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

Return values
The function returns the major and minor version numbers and the revision for the currently used
OpenGLTM implementation.

Description
The function returns theOpenGLTM implementation version. This is a convenient function that parses
the version number information from the string returned by calling
glGetString(GL_VERSION) . TheOpenGLTM version information can be used to determine
what functionality is supported by the usedOpenGLTM implementation.

Notes
An OpenGLTM context must be created before this function can be called (i.e. anOpenGLTM window
must have been opened withglfwOpenWindow).

GLFW Reference Manual API version 2.5 Page 36/47

3.8 Threads

A thread is a separate execution path within a process. All threads within a process share the same
address space and resources. Threads execute in parallel, either virtually by means of time-sharing on a
single processor, or truly in parallel on several processors. Even on a multi-processor system,
time-sharing is employed in order to maximize processor utilization and to ensure fair scheduling.
GLFW provides an operating system independent interface to thread management.

3.8.1 glfwCreateThread

C language syntax� �
GLFWthread glfwCreateThread(GLFWthreadfun fun, void *arg)� �
Parameters

fun
A pointer to a function that acts as the entry point for the new thread. The function should have
the following C language prototype:

void GLFWCALL functionname(void *arg);

Wherefunctionnameis the name of the thread function, andarg is the user supplied argument
(see below).

arg
An arbitrary argument for the thread.arg will be passed as the argument to the thread function
pointed to byfun. For instance,arg can point to data that is to be processed by the thread.

Return values
The function returns a thread identification number if the thread was created successfully. This number
is always positive. If the function fails, a negative number is returned.

Description
The function creates a new thread, which executes within the same address space as the calling process.
The thread entry point is specified with thefunargument.

Once the thread functionfun returns, the thread dies.

Notes
Even if the function returns a positive thread ID, indicating that the thread was created successfully, the
thread may be unable to execute, for instance if the thread start address is not a valid thread entry point.

3.8.2 glfwDestroyThread

C language syntax� �
void glfwDestroyThread(GLFWthread ID)� �

GLFW Reference Manual API version 2.5 Page 37/47

Parameters

ID
A thread identification handle, which is returned byglfwCreateThread or glfwGetThreadID .

Return values
none

Description
The function kills a running thread and removes it from the thread list.

Notes
This function is a very dangerous operation, which may interrupt a thread in the middle of an important
operation, and its use is discouraged. You should always try to end a thread in a graceful way using
thread communication, and useglfwWaitThread in order to wait for the thread to die.

3.8.3 glfwWaitThread

C language syntax� �
int glfwWaitThread(GLFWthread ID, int waitmode)� �
Parameters

ID
A thread identification handle, which is returned byglfwCreateThread or glfwGetThreadID .

waitmode
Can be either GLFW_WAIT or GLFW_NOWAIT.

Return values
The function returns GL_TRUE if the specified thread died after the function was called, or the thread
did not exist, in which caseglfwWaitThread will return immediately regardless ofwaitmode. The
function returns GL_FALSE ifwaitmodeis GLFW_NOWAIT, and the specified thread exists and is still
running.

Description
If waitmodeis GLFW_WAIT, the function waits for a thread to die. Ifwaitmodeis GLFW_NOWAIT,
the function checks if a thread exists and returns immediately.

3.8.4 glfwGetThreadID

C language syntax� �
GLFWthread glfwGetThreadID(void)� �
Parameters
none

GLFW Reference Manual API version 2.5 Page 38/47

Return values
The function returns a thread identification handle for the calling thread.

Description
The function determines the thread ID for the calling thread. The ID is the same value as was returned
by glfwCreateThread when the thread was created.

GLFW Reference Manual API version 2.5 Page 39/47

3.9 Mutexes

Mutexes are used to securely share data between threads. A mutex object can only be owned by one
thread at a time. If more than one thread requires access to a mutex object, all but one thread will be put
to sleep until they get access to it.

3.9.1 glfwCreateMutex

C language syntax� �
GLFWmutex glfwCreateMutex(void)� �
Parameters
none

Return values
The function returns a mutex handle, or NULL if the mutex could not be created.

Description
The function creates a mutex object, which can be used to control access to data that is shared between
threads.

3.9.2 glfwDestroyMutex

C language syntax� �
void glfwDestroyMutex(GLFWmutex mutex)� �
Parameters

mutex
A mutex object handle.

Return values
none

Description
The function destroys a mutex object. After a mutex object has been destroyed, it may no longer be
used by any thread.

3.9.3 glfwLockMutex

C language syntax� �
void glfwLockMutex(GLFWmutex mutex)� �

GLFW Reference Manual API version 2.5 Page 40/47

Parameters

mutex
A mutex object handle.

Return values
none

Description
The function will acquire a lock on the selected mutex object. If the mutex is already locked by another
thread, the function will block the calling thread until it is released by the locking thread. Once the
function returns, the calling thread has an exclusive lock on the mutex. To release the mutex, call
glfwUnlockMutex .

3.9.4 glfwUnlockMutex

C language syntax� �
void glfwUnlockMutex(GLFWmutex mutex)� �
Parameters

mutex
A mutex object handle.

Return values
none

Description
The function releases the lock of a locked mutex object.

GLFW Reference Manual API version 2.5 Page 41/47

3.10 Condition Variables

Condition variables are used to synchronize threads. A thread can wait for a condition variable to be
signaled by another thread.

3.10.1 glfwCreateCond

C language syntax� �
GLFWcond glfwCreateCond(void)� �
Parameters
none

Return values
The function returns a condition variable handle, or NULL if the condition variable could not be
created.

Description
The function creates a condition variable object, which can be used to synchronize threads.

3.10.2 glfwDestroyCond

C language syntax� �
void glfwDestroyCond(GLFWcond cond)� �
Parameters

cond
A condition variable object handle.

Return values
none

Description
The function destroys a condition variable object. After a condition variable object has been destroyed,
it may no longer be used by any thread.

3.10.3 glfwWaitCond

C language syntax� �
void glfwWaitCond(GLFWcond cond, GLFWmutex mutex, double timeout)� �

GLFW Reference Manual API version 2.5 Page 42/47

Parameters

cond
A condition variable object handle.

mutex
A mutex object handle.

timeout
Maximum time to wait for the condition variable. The parameter can either be a positive time (in
seconds), or GLFW_INFINITY.

Return values
none

Description
The function atomically unlocks the mutex specified bymutex, and waits for the condition variablecond
to be signaled. The thread execution is suspended and does not consume any CPU time until the
condition variable is signaled or the amount of time specified by timeout has passed. If timeout is
GLFW_INFINITY, glfwWaitCond will wait forever forcondto be signaled. Before returning to the
calling thread,glfwWaitCond automatically re-acquires the mutex.

Notes
The mutex specified bymutexmust be locked by the calling thread before entrance toglfwWaitCond .

A condition variable must always be associated with a mutex, to avoid the race condition where a thread
prepares to wait on a condition variable and another thread signals the condition just before the first
thread actually waits on it.

3.10.4 glfwSignalCond

C language syntax� �
void glfwSignalCond(GLFWcond cond)� �
Parameters

cond
A condition variable object handle.

Return values
none

Description
The function restarts one of the threads that are waiting on the condition variablecond. If no threads are
waiting oncond, nothing happens. If several threads are waiting oncond, exactly one is restarted, but it
is not specified which.

GLFW Reference Manual API version 2.5 Page 43/47

Notes
When several threads are waiting for the condition variable, which thread is started depends on
operating system scheduling rules, and may vary from system to system and from time to time.

3.10.5 glfwBroadcastCond

C language syntax� �
void glfwBroadcastCond(GLFWcond cond)� �
Parameters

cond
A condition variable object handle.

Return values
none

Description
The function restarts all the threads that are waiting on the condition variablecond. If no threads are
waiting oncond, nothing happens.

Notes
When several threads are waiting for the condition variable, the order in which threads are started
depends on operating system scheduling rules, and may vary from system to system and from time to
time.

GLFW Reference Manual API version 2.5 Page 44/47

3.11 Miscellaneous

3.11.1 glfwEnable/glfwDisable

C language syntax� �
void glfwEnable(int token)
void glfwDisable(int token)� �
Parameters

token
A value specifying a feature to enable or disable. Valid tokens are listed in table3.8.

Return values
none

Description
glfwEnable is used to enable a certain feature, whileglfwDisable is used to disable it. Below follows a
description of each feature.

GLFW_AUTO_POLL_EVENTS
When GLFW_AUTO_POLL_EVENTS is enabled,glfwPollEvents is automatically called each time
thatglfwSwapBuffers is called.

When GLFW_AUTO_POLL_EVENTS is disabled, callingglfwSwapBufferswill not result in a call to
glfwPollEvents. This can be useful ifglfwSwapBuffersneeds to be called from within a callback
function, since callingglfwPollEvents from a callback function is not allowed.

GLFW_KEY_REPEAT
When GLFW_KEY_REPEAT is enabled, the key and character callback functions are called repeatedly
when a key is held down long enough (according to the system key repeat configuration).

When GLFW_KEY_REPEAT is disabled, the key and character callback functions are only called once
when a key is pressed (and once when it is released).

GLFW_MOUSE_CURSOR
When GLFW_MOUSE_CURSOR is enabled, the mouse cursor is visible, and mouse coordinates are
relative to the upper left corner of the client area of theGLFW window. The coordinates are limited to
the client area of the window.

When GLFW_MOUSE_CURSOR is disabled, the mouse cursor is invisible, and mouse coordinates are
not limited to the drawing area of the window. It is as if the mouse coordinates are recieved directly
from the mouse, without being restricted or manipulated by the windowing system.

GLFW Reference Manual API version 2.5 Page 45/47

Name Return value
GLFW_PRESENT GL_TRUE if the joystick is connected, else GL_FALSE.
GLFW_AXES Number of axes supported by the joystick.
GLFW_BUTTONS Number of buttons supported by the joystick.

Table 3.5: Joystick parameters forglfwGetJoystickParam

Name Description
GLFW_NO_RESCALE_BIT Do not rescale image to closest2m × 2n resolution
GLFW_ORIGIN_UL_BIT Specifies that the origin of theloadedimage should be in

the upper left corner (default is the lower left corner)
GLFW_ALPHA_MAP_BIT Treat single component images as alpha maps rather than

luminance maps

Table 3.6: Flags forglfwReadImage

Name Description
GLFW_BUILD_MIPMAPS_BIT Automatically build and upload all mipmap levels
GLFW_ORIGIN_UL_BIT Specifies that the origin of theloadedimage should be in

the upper left corner (default is the lower left corner)
GLFW_ALPHA_MAP_BIT Treat single component images as alpha maps rather than

luminance maps

Table 3.7: Flags forglfwLoadTexture2D

Name Controls Default
GLFW_AUTO_POLL_EVENTS Automatic event polling when

glfwSwapBuffers is called
Enabled

GLFW_KEY_REPEAT Keyboard key repeat Disabled
GLFW_MOUSE_CURSOR Mouse cursor visibility Enabled in win-

dowed mode. Dis-
abled in fullscreen
mode.

GLFW_STICKY_KEYS Keyboard key “stickiness” Disabled
GLFW_STICKY_MOUSE_BUTTONS Mouse button “stickiness” Disabled
GLFW_SYSTEM_KEYS Special system key actions Enabled

Table 3.8: Tokens forglfwEnable/glfwDisable

GLFW Reference Manual API version 2.5 Page 46/47

GLFW_STICKY_KEYS
When GLFW_STICKY_KEYS is enabled, keys which are pressed will not be released until they are
physically released and checked withglfwGetKey. This behavior makes it possible to catch keys that
were pressed and then released again between two calls toglfwPollEvents, glfwWaitEvents or
glfwSwapBuffers, which would otherwise have been reported as released. Care should be taken when
using this mode, since keys that are not checked withglfwGetKey will never be released. Note also that
enabling GLFW_STICKY_KEYS does not affect the behavior of the keyboard callback functionality.

When GLFW_STICKY_KEYS is disabled, the status of a key that is reported byglfwGetKey is always
the physical state of the key. Disabling GLFW_STICKY_KEYS also clears the sticky information for
all keys.

GLFW_STICKY_MOUSE_BUTTONS
When GLFW_STICKY_MOUSE_BUTTONS is enabled, mouse buttons that are pressed will not be
released until they are physically released and checked withglfwGetMouseButton. This behavior
makes it possible to catch mouse buttons which were pressed and then released again between two calls
to glfwPollEvents, glfwWaitEvents or glfwSwapBuffers, which would otherwise have been reported
as released. Care should be taken when using this mode, since mouse buttons that are not checked with
glfwGetMouseButtonwill never be released. Note also that enabling
GLFW_STICKY_MOUSE_BUTTONS does not affect the behavior of the mouse button callback
functionality.

When GLFW_STICKY_MOUSE_BUTTONS is disabled, the status of a mouse button that is reported
by glfwGetMouseButton is always the physical state of the mouse button. Disabling
GLFW_STICKY_MOUSE_BUTTONS also clears the sticky information for all mouse buttons.

GLFW_SYSTEM_KEYS
When GLFW_SYSTEM_KEYS is enabled, pressing standard system key combinations, such as
ALT+TABunder Windows, will give the normal behavior. Note that whenALT+TAB is issued under
Windows in this mode so that theGLFW application is deselected whenGLFW is operating in
fullscreen mode, theGLFW application window will be minimized and the video mode will be set to
the original desktop mode. When theGLFW application is re-selected, the video mode will be set to
theGLFW video mode again.

When GLFW_SYSTEM_KEYS is disabled, pressing standard system key combinations will have no
effect, since those key combinations are blocked byGLFW . This mode can be useful in situations when
theGLFW program must not be interrupted (normally for games in fullscreen mode).

3.11.2 glfwGetNumberOfProcessors

C language syntax� �
int glfwGetNumberOfProcessors(void)� �
Parameters
none

Return values
The function returns the number of active processors in the system.

GLFW Reference Manual API version 2.5 Page 47/47

Description
The function determines the number of active processors in the system.

Notes
Systems with several logical processors per physical processor, also known as SMT (Symmetric Multi
Threading) processors, will report the number of logical processors.

	1 Introduction
	2 GLFW Operation Overview
	2.1 The GLFW Window
	2.2 The GLFW Event Loop
	2.3 Callback Functions
	2.4 Threads

	3 Function Reference
	3.1 GLFW Initialization and Termination
	3.1.1 glfwInit
	3.1.2 glfwTerminate
	3.1.3 glfwGetVersion

	3.2 Window Handling
	3.2.1 glfwOpenWindow
	3.2.2 glfwOpenWindowHint
	3.2.3 glfwCloseWindow
	3.2.4 glfwSetWindowCloseCallback
	3.2.5 glfwSetWindowTitle
	3.2.6 glfwSetWindowSize
	3.2.7 glfwSetWindowPos
	3.2.8 glfwGetWindowSize
	3.2.9 glfwSetWindowSizeCallback
	3.2.10 glfwIconifyWindow
	3.2.11 glfwRestoreWindow
	3.2.12 glfwGetWindowParam
	3.2.13 glfwSwapBuffers
	3.2.14 glfwSwapInterval
	3.2.15 glfwSetWindowRefreshCallback

	3.3 Video Modes
	3.3.1 glfwGetVideoModes
	3.3.2 glfwGetDesktopMode

	3.4 Input Handling
	3.4.1 glfwPollEvents
	3.4.2 glfwWaitEvents
	3.4.3 glfwGetKey
	3.4.4 glfwGetMouseButton
	3.4.5 glfwGetMousePos
	3.4.6 glfwSetMousePos
	3.4.7 glfwGetMouseWheel
	3.4.8 glfwSetMouseWheel
	3.4.9 glfwSetKeyCallback
	3.4.10 glfwSetCharCallback
	3.4.11 glfwSetMouseButtonCallback
	3.4.12 glfwSetMousePosCallback
	3.4.13 glfwSetMouseWheelCallback
	3.4.14 glfwGetJoystickParam
	3.4.15 glfwGetJoystickPos
	3.4.16 glfwGetJoystickButtons

	3.5 Timing
	3.5.1 glfwGetTime
	3.5.2 glfwSetTime
	3.5.3 glfwSleep

	3.6 Image and Texture Loading
	3.6.1 glfwReadImage
	3.6.2 glfwFreeImage
	3.6.3 glfwLoadTexture2D

	3.7 OpenGL Extension Support
	3.7.1 glfwExtensionSupported
	3.7.2 glfwGetProcAddress
	3.7.3 glfwGetGLVersion

	3.8 Threads
	3.8.1 glfwCreateThread
	3.8.2 glfwDestroyThread
	3.8.3 glfwWaitThread
	3.8.4 glfwGetThreadID

	3.9 Mutexes
	3.9.1 glfwCreateMutex
	3.9.2 glfwDestroyMutex
	3.9.3 glfwLockMutex
	3.9.4 glfwUnlockMutex

	3.10 Condition Variables
	3.10.1 glfwCreateCond
	3.10.2 glfwDestroyCond
	3.10.3 glfwWaitCond
	3.10.4 glfwSignalCond
	3.10.5 glfwBroadcastCond

	3.11 Miscellaneous
	3.11.1 glfwEnable/glfwDisable
	3.11.2 glfwGetNumberOfProcessors

