LAMMPS Users Manual

16 Feb 2016 version

http://lammps.sandia.gov - Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

LAMMPS Users Manual

Table of Contents

LAMMPS DOCUMENEALION. . ..cuvitieereientenieetenteeteeitete sttt et sttt ste bt et ete st ebe et stesetestentesbeessensesbesbeensensene 1
16 FED 2010 VETSION......ertiriieiiiiiniieitetenttettet ettt ettt st ettt sttt ettt st et saesaeeat et sbesbe et e b s bt ebeense b 1
VETSION 0.ttt ettt et et sa ettt st ettt s be et ettt nenaenaes 1

L INEEOAUCHION. ...ttt sttt ettt st e b e bt e et ettt ebe et e b s beebee s e b e 4
1.1 What is LAMMPS ..ottt sttt sttt nae e 4

1.2 LAMMPS fEATUTES.vevieieeiieiiniieitetenit ettt ae bt st e st sbe et eae b 5

1.3 LAMMPS NON-{EALUTEScvventiiieitetenieritetetesie ettt sttt sttt s bt naesne s 8

1.4 Open Source diStriDULION........cc.ivuirteriiririeteterteeetee ettt sae et sre b naesne e 9

1.5 Acknowledgments and CItAtIONS.........cueeuiruieiieie ettt ettt ettt sitesaaesaee e 10

2. GOING STATEEA ...t eteeeteeite ettt et ettt ettt et e e at e e ab e e s e eatesabesatesatesatesatesanesnaesaeesanens 12
2.1 What's in the LAMMPS diStriDUtION.c..coeeieriiniiieiiniinieicicnentcee e 12

2.2 Making LAMMPSoiii ettt ettt st sb e st 13

2.3 Making LAMMPS with optional packages............cccecuirieriiiiiiieiieeieee et 21

2.4 Building LAMMPS via the MaKe.py t0O0L........cccoiiiiiiiiiiiiiiiieete et 25

2.5 Building LAMMPS a8 @ IIDTATY.......cooouiiiiiiieiieeeet et 27

2.6 Running LAMMPS......c..oouiiie ettt sttt s 29

2.7 CommMAaNd-1INE OPLIONS .. .eeeuiiiuiieiiiiiie ettt ettt ettt et ettt et e st e siteeatesateeatessaesaaesaeesnaeeas 30

2.8 LAMMPS SCIEEN OULPULeuiiiiiiiteeiieeite ettt ettt sete st esite ettt st e satesatesatesateeseesaaesanesneeeas 36

2.9 Tips for users of previous LAMMPS VEISIONS.......cccccueruiririeniirinieienenenieeiene et 38

3 COMIMANGS ...ttt et et sttt s e st e st e st saeesaeesanesaeesanesanesanesane e 40
3.1 LAMMPS I0PULE SCIIPL.ttutteuiteiiieiteeite ettt ettt ettt st sttt et st e st eeatesatesatesstesaaesanesneeeas 40
3.2 ParSING TUIBS ...ttt ettt ettt et e ettt et e eieeeatesateeatesseesaaesaaesneeeas 41

3.3 TNPUL SCTIPE SEIUCTUTR. ... ueeeeeeee ettt ettt et ettt et ettt eeateeateeateeateeatesaeesseeeaeesaeesaeessnesanesanesneenas 42

3.4 Commands [iStEd DY CAtBZOTY......ueiuuiiuiiiiieiieiie ettt ettt ettt st st eae 43

3.5 Individual COMMANGS.....c..erueeiiriiriiiietente ettt sttt ettt b e sb et b e ene 44
IR SEY @Sttt ettt ettt ettt ettt ettt et et et e beenbeebe et s 45
COMPULE SEYLES ..ttt ettt ettt ettt ettt et et et e ea bt et e et e et e eateeneeenbeenbeenbeenbeenneensean 46
Pair_SEYLE POLENTIALS.....ceutiiiiiiieee ettt ettt ettt ettt ettt et et et s 46
BoNd_StYle POtENTIALSiitiiiieie ettt ettt et 48
ANGLE_STYIE POLENTIALSeouiiiiiiiie ettt ettt et ettt et e 48
Dihedral_Style POLENTIALS.eouiiiiiiiieieee ettt ettt ettt et ettt 48
ImpProper_style POLENTIALS.cc.eviriiriiririetetit ettt st s 49
KISPACE SOIVETS. ...t st 49

A PACKAZES. ¢ttt ettt et ettt ettt e e bt e bt e bt et ettt e e bt ebe e bt enbeenteentean 50
4.1 Standard PACKAESueiiiiieeie ettt ettt ettt ettt et e ae et s 50
Build instructions for COMPRESS package...........coccioiiiiiiiiiiiiiicieeeeeee e 52
Build instructions for GPU PacKage..........c.eeuiiiiriiiiiiiiieie ettt 52
Build instructions for KIM package..........c.ooouiiiiiiiiiiiiiieieeeee ettt 52
Build instructions for KOKKOS package.........ccoouiiiiiiiiiiiieieeie et 52
Build instructions for KSPACE Package........ccceeuiiiiiiiiieieieeeee e 52
Build instructions for MEAM PaCKaE.......cccueiuiiiiiiiiiiieieeie ettt 52
Build instructions for POEMS package...........cooueiiiiiiiiiiiiiiiieieee et 52
Build instructions for PYTHON package.........cc.ceiuiiiiiiiiiiiiiiiiieee et 52
Build instructions for REAX PacKage.........coouieiiiiiiiiiiiieieeeee ettt 52
Build instructions for VORONOI paCKage........c.ceouiiiiiiiiiiiiieieeie ettt 52
Build instructions for XTC PaCKage........cccueeuiriiriieieeie ettt et 52
4.2 USET PACKAZES. ... euteeieeeite ettt ettt ettt et ettt e bt et e e te e bt e bt enbeenbeenteentean 53

USER-ATC PACKAZE. ...ttt ettt et et ettt ettt et et et e eaeeneean 55

LAMMPS Users Manual

Table of Contents

USER-AWPMD PACKAZE. ...ttt ettt et ettt ettt ettt ettt e e enee s 55
USER-CG-CMM PACKAZE.eeueeeuieeieeieeieete ettt ettt ettt ettt ettt et e te et ebeebeenbeeneeneean 55
USER-COLVARS PACKAZE. ...cuteeuteeieeieeteet ettt ettt ettt ettt ettt ettt et e e enee s 56
USER-CUDA PACKAZE. ...t euteeiteete ettt ettt ettt ettt ettt ettt et e e e te e bt ebeenbeenbeenneeneean 56
USER-DIFFRACTION PACKAZE........couiruieiiniiniieiieientenitetente sttt sttt ae st st saeeaeens 57
USER-DPD PACKAZE. ...ttt ettt ettt ettt ettt et et et enbeenaeeneean 57
USER-DRUDE PACKAZE......ccuetiuiieiteiieieee ettt ettt et ettt ettt et eae e s 58
USER-EFF PACKAZE. ...ttt ettt et ettt ettt et ettt e e et s 58
USER-FEP PACKAZE.c.veiueiiiiiiiiiiiteiee ettt ettt st s 59
USER-HSMD PACKAZE. ...c..eeutiiiiiiiiiiiniiiitctetttte ettt ettt st s 59
USER-INTEL PACKAZE.eiiiiiiiiiiiiiie ettt ettt ettt e 59
USER-LB PACKAZEeeeiiieiiieiieieee ettt ettt et et e 59
USER-MGPT PACKAZE.......eeeuieiiieeieete ettt ettt et ettt ettt et e e enee s 60
USER-MISC PACKAZE. ...ttt ettt et et ettt et ettt ettt e e eae et s 60
USER-MOLFILE PACKAZE.ccoutiiiuiiiiiiiiiieeiteeittestee sttt ettt sttt st et esbteesateesabee e 60
USER-OMP PACKAZE.e ittt ettt ettt ettt et ettt ettt et e e enee s 61
USER-PHONON PACKAZE.eeuteeutteiieiieie ettt ettt ettt ettt ettt ettt ettt et et eaeenee s 61
USER-QMMM PACKAZE.......ccueeeueeeiiteitete ettt ettt et et ettt ettt ettt et et eaeeneean 61
USER-QTB PACKAZE. ...ttt ettt ettt ettt ettt et e e et s 61
USER-REAXC PACKAZE. ... e eueeeuteeiieeie ettt ettt et ettt ettt ettt ettt e e e s 62
USER-SMD PACKAZE. ...ttt ettt ettt et ettt ettt ettt et eaeeneean 62
USER-SMTBQ PACKAZE.ccueteitieiieeie ettt ettt ettt ettt ettt e be et enae et s 63
USER-SPH PACKAZE. ...ttt ettt et et ettt et ettt ettt et eaeenee s 63
5. Accelerating LAMMPS Performance............cocueeueiiiiiiieiiieieeieee ettt 64
5.1 Measuring PEITOITNANCE.eeuteiieiieiteie ettt ettt ettt ettt ettt et et eeeeabeebeenbeeabeeaeeneean 64
5.2 GENETAL SITAEEICSveuteeuieeiteeie ettt ettt ettt ettt ettt e bt et e et e et e eabeeneeeabeenbeenbeenbeenneeneean 65
5.3 Packages with Optimized SEYIES......cc.ieuiiiiiiiiie ettt 66
5.4 Comparison of various accelerator packages.........cccoevueeuirriieiieiieiieeeeee e 68
6. HOW-L0 QISCUSSIONS ..cuvitiiieiieienieeitetente ettt ettt ettt et et sa sttt bt bt et e bt sbeeseenbenbeeseentenaesaeennen 71
6.1 Restarting @ SIMUIATION.c...eotiiiiiiiiie ettt ettt st st siaesaae s 71
6.2 2d SIMUIALIONS. c..c.enviiteiterterteetee ettt ettt ettt et et bbb sbeesa et e b eaeene 73
6.3 CHARMM, AMBER, and DREIDING force fields..........cccceeerimirnenininicnininecieeneeene 73
6.4 Running multiple simulations from one iNPUt SCIIPL........eeoviriiiiiriiiieeie e 74
6.5 Multi-replica STMUIATIONS.co..iiiiiiiiie ettt ettt sttt et st siae e s eae 76
6.6 Granular MOAEIScoveiiriiiiieiereete ettt sttt et et sb st sb e sbe et e b eaeene 76
6.7 TIP3P Water MOGEL.....ceertiriiiiiiiitintetee ettt ettt st b e sbe e be e ene 77
6.8 TIPAP Water MOUEL.....ccuirtiriiiiiiiitiiietee ettt ettt sttt b e st be s ene 78
6.9 SPC Water MOAEL......c.cooiiiiiiiiiiiiiiieese ettt sttt 80
6.10 Coupling LAMMPS t0 Other COAES.couiriiiiiiiiiiiiie ettt 80
6.11 Visualizing LAMMPS SNaPShOLS.......cooiiiiiiiieiieieet et 81
6.12 Triclinic (non-orthogonal) siMulation DOXES..........cccueriiiiiriiiiiiiiieee e 82
6.13 NEMD SIMUIALONS. ..ottt ettt ettt ettt et sttt sbe b esee b e b saeene 86
6.14 Finite-size spherical and aspherical particles..........cccooiiiiiiiiniiiee e 86
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)...........cccccecuervueriennnne 90
6.16 Thermostatting, barostatting, and computing tEMPETALUTE.........c.eevverrerrereerrenereeeenreneeeene 94
0. 17 WaALLS...oiiiiiieitetiit ettt et ettt et et sb ettt bt e bbbt bbb e enee 96
6.18 ElaStiC COMSLANLScoueeutitirtieiieterteeitetente ettt ettt sttt et et st s bt et st ebe et e st e sbeebeenbenbeebeene 97
6.19 Library interface to LAMMPS.........ccccoiiiiiiiiiet et 98

LAMMPS Users Manual

Table of Contents

6.20 Calculating thermal CONAUCTIVILY......cc.coirerieriirieieiertirt ettt 99
6.21 CalCUlating VISCOSILY...ccuveetietietieteeite ettt ettt et e bt e bt e b e b ee bt e bt e bt e beesbeenbeesbeesbeesseenseenns 100
6.22 Calculating a diffusion COBTFICIENL.ccueiruiiriiiiieiieieee e 101
6.23 Using chunks to calculate SyStem Properties..........ceceerueerueeriiereenieeniienienieenieesieesieesieeneeenes 102
6.24 Setting parameters for the kspace_style pppm/disp command...........cccceeveereenienienieneene. 104
6.25 Polarizable MOAEIS........co.eiieiiriiiiiiiiieeeeteee ettt 106
6.26 Adiabatic core/shell MOdEl...........coviviiiiiiiiiiniiicee e 106
6.27 Drude induced diPOLEs........cccueruirieriiriininietintieit ettt sttt ettt 109
7. EXamMPIe PrODICINS......coueiiiiiiiiiiieiie ettt st e st btesb e bt e bt e saeesaee et e as 112
8. Performance & SCalabilify........cccueiiiiiiiiiiiiee et 115
9. AddItIONAL TOOIS...c..eeveeiiiiieiieiteiett ettt ettt sttt sttt a et eanen 116
FR 0010153 92101 o3 (o)) OSSPSR 117
DINATY2EXE EOOL. ...ttt ettt ettt et e at e et e et e st e eat e et e sateeaneeas 117
Ch2IMP TOOL ...ttt ettt h e s he e e at e e bt e s bt e s bt e s bt e sbeesbeesbeenbeeais 117
CRAII EOOL.. ... vttt sttt ettt ettt sa sttt sbe e e b b eaeenee 117
COIVATS TOOIS. ...t sttt 117
CTEALEALOINS LOOL...e.uteuiiiiiiieitite ettt ettt ettt ettt ettt et et be ettt be et e st bt sttt sbeeseebenbeeeeenee 118
data2XMOVIE TOOL..c..eeiiriiriiiiiiirit ettt ettt ettt et ettt ettt a et 118
€amM database LOOL.....cc.ciuiiiiiiiiiiiietccrt et ettt st e 118
€M ZENETALE TOOL...eeiutiiiiiiiiiieitte ettt ettt et et e e st e st e sabeeeabeeebaeesaneesareens 118
BEF LOOL. ettt ettt s h et e 119
EINACS TOOL vttt ettt ettt ettt s b et e bbbt ettt b e b b e na e bbbt bttt nhe e enee 119
FEP TOOL .ttt sttt bbbt e 119
ToPE EOOL. ettt bbb b e sttt ettt e be e enee 119
PP TOOL ittt bbb et sa ettt sbe et et ae e enee 119
KALE TOOL..iieie ettt st sneeaneea 119
IMP2ATC TOOL ..ttt ettt e sb e sttt e b e e b e sabeesaree s 120
Y o) £ o o) ST P RS PRUR 120
IMP2VINA TOOL ...ttt ettt s bt s bt e s ht e e bt e s bt e sbee s bt e sbeesbeesbeenbeens 120
INALIAD TOOL.....e ettt ettt sttt bbbt 120
MECEILE2A LOOL....c.eiieiiieeieeete ettt ettt et et sa st b e sbe et a et 120
MOIEMPIALE TOOL. ... ettt st e et e st e bt e s bt e bt e sbeeebeesbeeas 120
MSI2IMP EOOL. .ttt sttt bt e s bt e bt e saeesbeesbeeas 121
PRONON EOOL.... .ttt et ettt et e e at e et e et e et e esteenteeabeeaeeeas 121
POLYMET DONAING LOOL ...ttt et ettt sttt e e 121
PYMOL_ASPRETE TOOL. .. .iiiiiiiiiiiiiie ettt et et st 121
PYTROI COO0L ..ttt ettt ettt e st e st e ettt e e bt e e baeesabeesabee s 121
TEAX TOOL .ttt st b ettt b et b e bbbt e he bbb et sheeaeen 122
TESLATt2AAtA LOOL..c. e iueiiiiiieii ettt ettt ettt sttt b e ettt et saeeaeen 122
VAL EOOL .ttt sttt b et sttt a e bbbt e enee 122
b 101 - Lo (010) F USRS U RS RRUR 123
XIMOVIE TOOL .. ettt ettt ettt ettt sttt e b e s bt et e bt be e bt et saesbe et e bt sbeeseenbenbeeaeenee 123
10. Modifying & extending LAMMPS......c..oo ettt 124
TO.T ALOIN SEYIES..eeenitieiiiiiiie ettt ettt ettt ettt ettt e sat e sttt e sht e st esabe e e bt e e nbbeesbbeenateesabeesabeeanne 125
10.2 Bond, angle, dihedral, improper potentials............ccoeerieiienienienieniesee e 127
10.3 COMPULE SEYLES .. eeuteeniietietiete ettt ettt ettt e bt e bt e bt e bt e bt e bt e sbeesbeesbee bt enbeesbeesbeesbeenneenns 127
1O.4 DUIMD SEYLES...eeuteeiiiiiiie ettt ettt ettt e st e st e e bt e e sab e e sbteesabeesabeesabeeenne 128
10.5 DUmp CUStOIM OULPUL OPTIOMS.vteutientietietietteteesteesteesteesteesbeesteesteesteesbeesseesbeesbeesseesseenseennes 128

LAMMPS Users Manual

Table of Contents

TO.6 FIX SEYLES. ..ttt ettt et e b e bt e sb e b e e bt e s bt e sb e e bt e bt e nbee bt e sbeesbeenneenns 128
10.7 Input SCIiPt COMMANGS......veeutientieteetieteet et et et et et e bt e bt e sbeesteesbeesbee bt enbeesbeesbeesseenneenaes 130
10.8 KSPACE COMPULALIONS.eeutieitietieteetienteestienttertee bt e bt esteesbeesbeesbeesteesbeesbeesbeenbeesbeesseesseenneenns 131
10.9 MINIMIZAtION SEYIES ...c.virteiiiiiitieiietetere ettt sttt ettt eae s eanen 131
10.10 PairwiSe POEITIALS. ...cc.veeutieiietieteettette ettt ettt ettt ettt et e b et e bt et esbeesbeesneennis 131
TO.TT REZION SEYLES...eeutiiiieiieieete ettt ettt ettt e b et et e st e bt e bt e b e bt e sbeesbeesbeenneenis 132
TO.TT BOAY SEYLES .ttt ettt ettt ettt sb et esbe e sbe e b e b e nbeesbeesbeesbeesneenis 132
10.13 Thermodynamic OULPUL OPLIOMS. ...ce.veeueetiertieteentienteentienteerteesteesteesteesteesseesbeesbeesseesseenneennes 132
10.14 Variable OPLIONS.......eeuieiieiieitete ettt ettt ettt et e bt e sbee bt e sbeesbe e s bt e beenbeesbeesbeesbeesaeennis 133
10.15 Submitting new features for inclusion in LAMMPS........ccccoiiiiiiiineeeeee 133
11. Python interface to LAMMPS ...ttt 136
11.1 Overview of running LAMMPS from Python............oooiiiiiiniinieeeee 136
11.2 Overview of using Python from a LAMMPS SCIIPL.......cccceeiiiniiniinieiienieeeee e 137
11.3 Building LAMMPS as a shared lbrary..........cc.ccooeeriiiiiniinienieneeeece e 138
11.4 Installing the Python wrapper into Python..........c.ccoooiiiiiiiiinineeeeeeeeeee 138
11.5 Extending Python with MPI to run in parallel........c..coceceeininiiiinininiiicneneeeccseeeen 139
11.6 Testing the Python-LAMMPS Interface..........cccceiieriiiiiiiinieniesieseeee e 141
11.7 Using LAMMPS from PythOn........cooooiiiiiiieeeeee e 143
11.8 Example Python scripts that use LAMMPS........cccoiiiieeeee e 146
T2 BITOTS. ettt ettt et ettt et et et ettt e a e sa e ae e eae 149
12.1 COmMMON PIODIEIMScuvivieiieiiiiieiieiteieete ettt ettt ettt ettt sbe ettt ebe e enae b eaeeanes 149
12.2 REPOTTING DUEZS. ettt ettt ettt ettt et e sb e bt e bt e sbe e bt e sbe e s bt e bt e bee bt e sbeesbeesbeenbeenis 150
12.3 EITOT & WAITNEZ NMNESSAZES ..uveeuveenteenteenteeteanteenteesteenteesueenseesseesseesseesseesseesseesseesseesseesseesseennes 150
BITOTS .ttt ettt sttt b e bttt b e et na ettt sbe et be e enee 151
VT IS ettt et ettt e e e et e et e e et e e et e e et e eee e e st e eateeabeeabeeabeeateenteeabeeaneeas 253
13, FULUIe ANd RISTOTY....eeutieiiitiet ettt ettt et e b e b e bt e bt e bt e bt e bt e bt e bt e sbeesbeesaeenbeenas 263
13.1 COMING AtTACTIONS. . .uteeutteutienteetteteete et et ee bt et ee bt e bt esbee bt enbeesbeesbeesbeenbeeseenbeenbeesseesseenneenns 263
13.2 PaSE VETSIOMNS ..ttt ettt ettt ettt sttt et sttt et s be et e e besbe et et ebeeaeententeeaeennen 263
5.3.1 USER-CUDA PACKAZE......ceiuiiiiieiiieieeeie ettt ettt sttt e s e 265
5.3.2 GPU PACKAZE.......everieeiiiiirieeitcteit ettt ettt sttt st 269
5.3.3 USER-INTEL PACKAZE. ... ceiutiiiieiiieiieie ettt st st 273
5.3.4 KOKKOS PACKAZE......ccueiiuiiiiieeiie ettt sttt sttt e st e bt e b e as 278
5.3.5 USER-OMP PACKAZE......ccueiiuiiiiiiiiieieeee ettt st 286
5.3.0 OPT PACKAZE ...c.eetiriiiiiiieieetetete ettt ettt ettt ettt sbe e sbe e ene 289
angle_style charmm COMMAN..........ccccoiiiiiiiiininiieeee ettt 291
angle_style charmm/intel command.............ccceviririiiriininieie et 291
angle_style charmm/kk command..........c.cooceeiiiriniiiiiinini ettt 291
angle_style charmm/omp cOmMmMAand............ccecueriririeriininieierereet ettt 291
angle_style class2 COMMANA.........coccecuiriinirieiiiniiiet ettt ettt st sae s eaeens 293
angle_style class2/0mp COMMANG........cc.cocirieriiriiririiienteee ettt ettt sae e eaeens 293
angle_Coeff COMMANA........cc.iiiiiiii ettt et e bt b e b e sbeesbeesbeesbeeneeeaes 295
angle_style coSINE COMMANG.....c..coeeiiriiririeiintietet ettt ettt ettt ettt sae st nenbesaeeaeens 297
angle_style cosine/omp COMMANG.cccoirteriiriirirteienentetente ettt ettt ettt sae e nenaesaeeaeens 297
angle_style cosine/delta CoOmMmAand............coceerueriririeniininieee ettt e 299
angle_style cosine/delta/omp COMMANd........c..couiririeriiririeienineeteese ettt 299
angle_style cosine/periodic COMMANM..........coiuiiitieiiiiiieieeee ettt ettt ettt e e e 301
angle_style cosine/periodic/omp COMMANG..........coiuiertiirianiieiieiet ettt ettt eesbee s e saeeseee s 301
angle_style cosine/shift COMMAN.........c..coiiiiiiiiiiieee ettt 303

LAMMPS Users Manual

Table of Contents

angle_style cosine/shift/omp cOMMANA............coiiiiiiiiiiiiiiee et 303
angle_style cosine/shift/exp COmMMAnd............coiieiiiriiinienieiiee ettt 305
angle_style cosine/shift/exp/omp cOMMAN..........cc.coriiriiiiiiiiinieeeee et 305
angle_style cosine/squared COMMANA........c..coiuiiiiiiiiieniiiiieiee ettt e s e 307
angle_style cosine/squared/omp COMMANC...........eeiuieriiiriieriiiietieeet ettt e e 307
angle_style dipole COMMAN.........coeeiiriiniiieiiniit ettt ettt st sae e eaeens 309
angle_style dipole/omp COMMANC.......c..coiriiriiriniiieieneee ettt st 309
angle_style fourier COMMANG.........cc.eiiuiiiiiieeie ettt ettt ettt b e b e bt e b e b e b e e ees 312
angle_style fourier/omp COMMAN............coiuieitiiriieiieieee ettt ettt ettt sb et e b e seeesbee e e s 312
angle_style fourier/simple COMMANA.........c..eoiiiiiiiiiiieee ettt 314
angle_style fourier/simple/omp COMMANC.........cc.eeiuiiriiinierieie ettt 314
angle_style harmonic COMMAN............coouiiiiiiiiiieiiee ettt ettt e see e 316
angle_style harmonic/intel COMMANA........cc.eoiiiiiiiiiiieieee ettt 316
angle_style harmonic/kk COmMMAnd..........ccoueeiieiiiiiiieiieieeee ettt 316
angle_style harmonic/omp COMMANA........cc.eiiuiiiiiiriieiieieeee ettt ettt st e e 316
angle_style hybrid cOmmMand.............ooooiiiiiiiiiiie ettt 318
angle_Style NONE COMMEANG. ..ottt ettt et et e bt e bt e bt e b e bt e bt e sbeesbeesbeenneeaes 320
angle_style quartic COMMEAN............eoiuiiiuiiieeie ettt ettt ettt et et e bt e bt e b e b e e bt e sbeesbeesbeenneeas 321
angle_style quartic/omp COMMANA.......ccc.iiiiiiiiieiieiietiet ettt ettt et et et esbeesbeeseeesbeeseeeaes 321
angle_style SdK COMMEANA.........cooiiiiiiiie ettt ettt e b e e e as 323
ANZle_SEYLE COMMEAN........iiiiiiiiie ettt ettt et e bt e bt e b et e bt e sbeesbeesbeenseenns 324
angle_style table COMMAN.........c.oiiuiiiiiiiie ettt ettt et sb e bt et e b e b e e as 326
angle_style table/omp COMMANC.........c.eiiiiiiiiieiieie ettt ettt ettt e b e b e e aes 326
atom_mOdify COMMEAN........eiiiiiiiiiiiitiee ettt ettt e et e bt e bt e b e bt e bt e sbeesbeesbeenseenais 329
ALOM_SEYIE COMMEAN.......eiiiiiiiiie ettt ettt et e bt e bt e b et e e bt e sbeesbeesbeenseenns 332
balance COMMANG........cc.eeoiiiiiiiiiiiicrtet ettt sttt et sb sttt sae e eae b saeene 337
BOAY PATTICIES ...ttt ettt s bt s a e bt e e he e bt e bt e bt e sheeshte bt e et eas 342
bond_style class2 COMMEANA........cccueiiiiiiiiiiie ettt ettt et esaae e eas 346
bond_style class2/0mp COMMANA.........c.eeiiiiiiiiiiieie ettt et ettt et eesaee s eas 346
DONA_COETT COMIMEANG. ... oot e e e e e e e e e e e e e e e e e e aaaaaeaes 348
bond_style fene CoOmMMAnd..........cocuoiiiiiiiiiiii ettt 350
bond_style fene/kk command.............cocooiiiiiiiiiiii e e 350
bond_style fene/omp COMMANA..........cocuiiiiiiiiiiei ettt e 350
bond_style fene/expand COMMANA..........cocuiiiiiiiiiiiii et 352
bond_style fene/expand/omp COMMANC..........coouiiiiiiiiiiiiie ettt 352
bond_style harmonic COMMANA..........cocuiiiiiiiiii ettt et s 354
bond_style harmonic/inte] COMMANd..........cccueiiiiiiiiiiiiiiiiie et 354
bond_style harmonic/kk cOmMmMAand.............coouiiiiiiiiiiii e 354
bond_style harmonic/omp COMMANG..........coouiiiiiiiiiiieieee ettt et 354
bond_style harmonic/shift COMMANd..........cccoiiiiiiiiiiiiii e 356
bond_style harmonic/shift/omp command.............ccooiiiiiiiiiiiiiii e 356
bond_style harmonic/shift/cut command............c.ccoooiiiiiiiiiiiii e 358
bond_style harmonic/shift/cut/omp cOmMMmMAaNnd............coceiiiiiiiiiiiiiieeeee e 358
bond_style hybrid COMMANA.........c.coouiiiiiiiii ettt st 360
bond_style MOrse COMMEANA........cccueiiiiiiiiiiie ettt ettt sttt eateeaeeeaaesaeeeas 362
bond_style morse/0mp COMMANA.........c.eeiiiiiiiieiieie ettt ettt et sttt et eeeeaee e eas 362
bond_style NONE COMMANT..........oiiiiiiiiiieiieie ettt ettt sttt et eaeesaee e eas 364
bond_style nonlinear COMMANA..........cccueiiiiiiiiiii ettt ettt et s 365

LAMMPS Users Manual

Table of Contents

bond_style nonlinear/omp COMMANG..........ccouiiiieiiiiiieieeie ettt sttt et see s 365
bond_style qUartic COMMEANA..........cocuiiiiiiiiii ittt ettt sttt saae e 367
bond_style quartic/omp COMMANG..........ccuiiuiiiiiiieii ettt st sttt eatestesaee e eas 367
bond_Style COMMANG......couiiiiiiiiie ettt ettt ettt ettt e et e st e eateeaeeeatesaneeas 369
bond_style table COMMANT..........ooouiiiiiiiiii ettt sttt st et saee s 371
bond_style table/omp COMMAN...........c.eoiiiiiiiiiieeie ettt ettt et 371
DOUNAArY COMMIANC........eiiiiiiiiiiie ettt ettt ettt et e ate et eeateeateeaeeeaaeeaneeas 374
DOX COMMANT. ...c..eiuiiiiiieiietirieet ettt ettt ettt sttt sb et b e e bt ebena e ebe et entesaeeeaennenbesueenee 376
Cchange_bDOX COMMEANA........couiiiiiiiiii ettt st e bt e sat e bt e sb e e sbeesbeesaeesaeenaeeeis 377
Clear COMIMANG........cocuiiiiiiiiiieie ettt s e sae e s s e e e eae 382
comm_MOdiTY COMMANA.......oociiiiiiiiiie ettt sttt e st sae e bt e bt e sbeesaeesaeenaeeais 383
COMM_SEYIE COMMIANA.......eeiiiiiiiii ittt ettt sb e sateshtesaeesbeesb e e sbeesbeesbeesbeenaeees 386
COMPULE COMIMANT.eeuiiiiiiiiiitie ettt ettt ettt ettt e bt e sttt e sabeesabeeeabeeebeeesbbeesbbeesateesabeesabeeenbeeenanes 387
compute ackland/atom COMMAN..........ccccoiririiririiiiie ettt sae e 391
compute angle/local COMMANG.........cccueviiririiiiinineetcee ettt st ea e eanes 393
compute angmom/chunk command............coccecieriiiriiiiiniiieeee e 395
compute basal/atom COMMANC..........ceveriiriririirienieeteee ettt ettt ettt st be e e sae e eanes 397
compute body/local COMMANG........cc.eeciiriririiiirereetcee ettt st sae e eanen 399
compute bond/local COMMEANA...........oiiiiiiiiiiiiie ettt st e st e s e es 401
compute centro/atom COMMEANG.........coutriirieriieieete ettt ettt ettt et esttesbtesaeesbeesbeesbeesbeesaeesaeesaeeas 403
compute chunk/atom COMMANG.........cocuiiiiiiiiiiiiee ettt sttt st e st e it e e as 405
compute cluster/atom COMMEAN........cocuiiiiiiiiiiie ettt sttt st e s e st e i e seeees 414
compute cna/atom COMMEANCL.........iiiiiiiiiiiie ettt e st e st e saeesbeesbeesbeesbeesaeesaeesaeees 416
COMPULE COM COMMANTettiiiiiiiieite ettt ettt ettt st e ettesatesaee e bt e sbtesheesbeesseesbeesbeesbeesbeesaeesaeenneenns 418
compute com/chunk COMMANd..........cocuiiiiiiiiiiiiie e 419
compute coNtact/atom COMMANGcc.utriirierieeiieeite et eite et te et e stte st eesbtesatesteesteesbeesbeesbeesaeesaeesaeesaeenes 421
compute COOrd/atom COMMANT.uiiiiiiiriieiieiie ittt et esetesbeesatesbeesbeesbeesbeesaeesaeenaeenns 422
compute damage/atom COMMANC...........oiiiiiiiiiiie ittt sttt e s e st e i e seeees 424
compute dihedral/local cOmMMANA..........cccuoiiiiiiiiiiii e e 425
compute dilatation/atom COMMAN............couiriiiiiiiiiie ettt sttt st e st e it e e es 426
compute displace/atom COMMANC..........coiiiiiiiiiieiie ettt sttt sttt e st esaee et e seeeas 427
compPUte dPd COMMEANG.........eiiiiiiiiiiiiieitie ettt ettt e st e st e st e st esabeeenbeeenaees 428
compute dpd/atom COMMEAN.........ccuiiiiiiiiieiie ettt sttt sb e bt e s esaeesaeeseeeas 430
compute erotate/asphere COMMEAN............cvuiriiiieiiiiie ettt ettt ee st esbeesaeesaeeseee s 431
compute erotate/rigid COMMANG.........c.uiiiiiiiiiiiie ittt sttt sttt e st e bt e i e naeees 432
compute erotate/SPhere COMMAN..........couiiiiiiiiiiiie ettt sttt e st e i e ees 433
compute erotate/sphere/atom COMMANC..........coouiiiiiieiiiiniieniee ettt ettt e e e e e 434
compute event/displace COMMANG.........couiiiiiiiiiiiie ettt st e st e st e e es 435
COMPULE TEP COMIMANT.eeiiiiiiiiiiieiie ettt ettt st e sb e e shtesbeesbeesbeesbeesbeesbeesbeesbeenneenes 436
COMPULE Zroup/SroUP COMMANeoiiiieriiiiriiiieiie ettt ettt sttt ettt e ettt e sttt e sbbeesateesabeesabeeenbeeenaees 440
COMPULE ZYTAtION COMMEAN.......eiutiiuiiitieeiieeiie ettt ettt e stteeatesaeesaeesbtesaeesbeesbeesbeesbeesbeesbeesaeesaeenneenees 442
compute gyration/chunk command..............coeouiiiiiiiiiiiieie e 444
compute heat/flux COMMANC..........cocuiiiiiiiiie ettt st see e 446
compute hexorder/atom COMMANC.........c.cuiiiiiiiiiiiii ettt st st e s e 450
compute improper/local COMMAN...........c.ooiiiiiiiiiiiiie et 452
compute inertia/Chunk COMMANG...........cooiiiiiiiiii et s 453
COMPULE K& COMMEANT.......eiiiiiiiiiiiiie ettt e st be e b e bt e sbeesaeesaeenaeees 455
compute Ke/atom COMMEAN...........coiiiiiiiiiie ettt sttt e bt e b e sbeesaeeseeeas 456

Vi

LAMMPS Users Manual

Table of Contents

compute ke/atom/eff COMMAN.............ocooiiiiiiiiii e e 457
compute Ke/eff COMMAN.........cccoiiiiiiiiiiiitc ettt 459
compute Ke/rigid COMMANC........cocuiiiiiiiiii ettt sttt st e st e s e et aes 461
compute meso/e/atom COMIMANC.........ueeriiiriiiiiiiiiie ettt ettt e st e sttt e st e sbeesbeeenbeeenaees 462
compute Meso/rho/atom COMMANG.couiiiiiiiiiiiie ettt st e st e s e e es 463
compute meso/t/atom COMMAN......cc.uieiiiiriiiriieiiie ettt ee et e sttt e sibee st esbeeeabeeenbeeenanes 464
compute_mMOdify COMMEAN........ccc.eiiiiiiiiiiie ettt st sae et e e as 465
compPute MSA COMMEANT.....ccuiiiiiiiiiii ettt sht e sbtesaeesbeesb e e sbeesbeesaeesbeenaeenis 466
compute MmSd/chunk COMMANC...........oooiiiiiiiii et et 468
compute MSd/NONZAUSS COMMEANCL........eiriiiiiiiiiieiie ettt sttt et e b ee bt e sbeesbeesaeeseeeais 470
compute omega/chunk COMMANC...........coiiiiiiiiiii et 472
compute orientorder/atom COMMANG.........couiiiirieiieiie ettt sttt ettt sbeesbeesaeesaeeseeenas 474
COMPULE PAIT COMIMANT. ...ttt ettt et e et e s bt e bt e sbtesaeesheesueesbeesbeesbeesbeesaeesaeenseenns 476
compute pair/1ocal COMMEAN.........cccuiiiiiiiiiiiiie ettt ettt st e bt e e e as 478
COMPULE PE COMIMANAeeitiiiiiiieiie ettt enitee ettt et ettt ettt e sttt e sabeesabeeeabeeebeeesbbeesbbeesateesabeesabeeebaeenanes 480
compute pe/cuda COMMEANC........cccuiiiiiiiiie ettt sttt sbe e bt e bt e sbeesaee bt e naeeais 480
COMPULE PE/ALOM COMMANTeiiuiiiiiiieritieritee ettt ettt ettt stt ettt e et e e bt e e sbbeesbbeesateesabeesabeeenbeeenanes 482
compute plasticity/atom COMMEAN........cocuiiiiiiiiiiiie ettt st e st e s e e es 484
COMPULE PreSSUIe COMIMANC.eiiutiiiiiieniieeritte ettt ettt ettt e sttt e et e e bt eebeeesbteesbbeesabeesabeesabeeenbeeenanes 485
compute pressure/cuda COMMEAN.eiiiiiiiiiiiiiie ettt sttt sb e st esbee et e b e seeees 485
compute property/atom COMMANC........cooueeriiiriiiiiiieiitertee ettt et e st e e sttt e sabeesbeeebeeenbeeenaees 488
compute property/chunk COMMEANC..........coceririiriririiiie ettt 491
compute property/10cal COMMANG.........ccceriririiriiririiiineee ettt sttt nae e eanes 493
comMPULe TAE COMMEANG.......couiruiiiiiiiiiii ettt ettt eb et et sbe et beebeenae bt eaeeanes 495
COMPULE TEAUCE COMMEANA.......eeutiuiiiieireientiritet sttt et ettt eet ettt ebe et e bt sbeeseebesbeebeenbenaeeaeennes 498
compute reduce/region COMMANG.........cceririrrirtiririeienteeie ettt sttt ettt eteeste st bt eseentesbeeseessenaeeaeeanes 498
compute SAEd COMMEANG.........eoiiiiiiiiiiitie ettt ettt sbt e bt e sbeesbeesbeesbeesbeesbeesaeesaeenaeenns 501
COMPULE SIICE COMMIANA.....c..eiiiiiiiiiiiii ettt st e st e saeesbeesb e e s bt e sbeesbeesaeenaeees 505
compute smd/contact/radius COMMANC.cocuiiiiiiiiiiiie ettt st 507
compute smd/damage COMMEAN............couiiiiiiiiiiiie ettt sttt st e bt e saee b e seeeas 508
compute smd/hourglass/error COMMAN............ccererieriinirieieninteiete ettt 509
compute smd/internal/energy COMMANG.eoiiiiiiiiiieiieei ettt saee s 510
compute smd/plastic/Strain COMMAN............cocuiiiiiiiiiiiie ettt sttt 511
compute smd/plastic/strain/rate COMMANC...........c.oioiiiiiiiiiiiiii e 512
compute SMA/ThO COMMANT.......ccuiiiiiiiiiiiie ettt sttt ettt sb e s e et e b e e eas 513
compute smd/tlsph/defgrad command.............ccoooiiiiiiiiiiii e 514
compute smd/tISph/dt COMMAN..........ccoiiiiiiiii e e e 515
compute smd/tlsph/num/neighs COMMANA...........coooiiiiiiiiiiii e e 516
compute smd/tlsph/shape cOMMANd..........cocuiiiiiiiiiiiii e e 517
compute smd/tISph/strain COMMANC...........cocuiiiiiiiiiiiie et 518
compute smd/tlsph/strain/rate cCOmMmMAnd...........ccccoeeiiriinirieiiininieieee et 519
compute sSmd/tISph/stress COMMANC...........oiiiiiiiiiiiiiie et st 520
compute SMA/triangle/MESH/VETTICES.co.uiiiiiiiiieiie ettt 521
compute smd/ulsph/num/neighs command...............coooiiiiiiiiiiiiii e 522
compute smd/ulsph/sStrain COMMAN............c.eiiiiiiiiiiieiie ettt 523
compute smd/ulsph/strain/rate COMMAN...........cccueiiiiiiiiiiiieie et 524
compute smd/ulsph/Stress COMMAN..........couiiiiiiiiiiiieie ettt 525
compute SMA/VOl COMMEAN.......cccuiiiiiiiiiiiie ettt sttt sttt e st e b e e e es 526

Vii

LAMMPS Users Manual

Table of Contents

COMPULE SNA/ALOM COMIMANC.coutiiiiienitieniiee ettt ettt ettt ettt e et e et e e sbbeesbbeesateesabeesabeeebeeenaees 527
compute sSnad/atom COMMEANC...........uiiiiiiiiieiie ettt sttt sb e bt e bt e saeesaeeseeeas 527
COMPULE SNAV/ALOM COMMANC....c..utiiiiiiriiieniiie ettt ettt ettt et et e e sab e sbb e e st e sabeesabeeenbeeenanes 527
compute Stress/atom COMMANT.coiutiirtieriiiriie ettt ettt ettt e et e e st e e sibeesabeesabeesabeeenbeeenaees 532
compute force/tally COMMAN............oooiiiiiiiiiie ettt 535
compute heat/flux/tally COMMAN..........cccooiiiiiiiiiiiii et 535
compute pe/tally COMMAN........coceiiiiiiiiiiiiiii ettt st e 535
compute Stress/tally COMMANG...........oiiiiiiiiiiiee et st 535
COMPULE LEMP COMIMANIA. e .tiiutiiiiieeiieenitee ettt ettt ettt e st et e et e ettt ebeeesbbeesbbeesabeesabeesabeeebeeenanes 537
compute temp/cuda COMMANG.......cc.uiiiiriiiieiieeie ettt e sbte st e st e satesbeesbeesbeesbeesaeesaeenaeenas 537
compute temMpP/KK COMMANT.......cccuiiiiiiiiiiiie ettt e s e st e it e e e ais 537
compute temp/asphere COMMANG..........cceriririirinirieene ettt ettt ettt sttt eae e eanes 539
compute temp/body COMMANT.uiiiiiiiiiiiie ettt sttt sttt sbee bt e b e naeees 542
compute temp/Chunk COMMANG.........ooouiiiiiiiiiie ettt st st 544
COMPULE LEMP/COM COMMEANG. ...cuvrieiiieitieritieriie ettt ettt ettt e sttt et e et e e beeebeeesabeesbbeesabeesabeesabeeenbeeenanes 548
COMPULE LEMP/CS COMMEANC.......eiiuiiiiiiiiieiie ettt ettt sb e st esbtesaeesbeesbeesbeesbeesbeesbeeseeeas 550
compute temp/deform COMMANG..........ccoiiiiiiiiiiiiie ettt 552
compute temp/deform/eff comMmAand............coooiiiiiiiiiiiii e 554
compute temp/drude COMMANC..........ooiiiiiiiiiiee ettt st e st e b e e s 555
compute temp/eff COMMANC...........oooiiiiiiiii ettt st 557
compute temp/partial COMMAN.........c..eoueririiiiriinieieee ettt sttt eae et eanes 559
compute temp/partial/cuda COMMANG......c..coceeciiriiririiiiiinirtetee ettt eenes 559
compute temp/profile COMMEAN..........cceiiiiiiiiiii et 561
compute temMp/ramp COMMEAN...........erttriirierieiie ettt eiteeteeteeettesteesstesttesttesttesseesbeesbeesbeesseesneesseenneens 564
compute temp/reZion COMMANC.oouiiiiiiiiiiiie ettt st e st e st e bt e sb e sbeesaeesaeesaeesseenas 566
compute temp/region/eff COmMMANA...........coouiiiiiiiiiiii e 568
compute temp/rotate COMMEAN.........cevevteriirieierterteetetente et ettt eetente st eaeestentesbeeseentesbeeseensenseeaeennen 569
compute temp/SPhere COMMAN.........c.cuiiiiiiiiiiiie ettt sttt e st esaeesaeeseee s 571
COMPULE Tl COMIMANT. ...ttt ettt et e b e b e sbtesbeesbtesbeesbeesbeesbeesbeesaeesbeenneenns 573
compute torque/Chunk COMMANG..........uoiiiiiiiiiiie ettt st 575
COMPULE VACT COMMANG.....euiiiiiiiiiiii ettt sb e st e s bt e s bt e sbeesb e e sbeesbeesbeesbeenaeees 5717
compute vem/chunk cOmMmand..........cocooiiiiiiiiiiiiiieeeeceese e e 579
compute VOronoi/atom COMMANC..........uiiiiiiiiiiiieeiie ettt sttt sttt et sbeesbee bt e saeeneeeas 581
CcOMPULE XIA COMMEAN.......eiuiiiiiiiiiieiiietie ettt et e st et e st esbteshtesbeesbeesbeesbeesbeesaeesaeesaeenneenes 585
create_atomMS COMIMANG.uuu.iiiiiiiiiieee e e e ettt e e e e e e ettt eeeeeeeeeaa e e eeeseeesaasaaaaeseseeeesssesannans 589
create_bONAS COMIMANG.iiiiiiiiiiii ettt e e e e e e et et e e e e e e e e e taa e eeeeeeesaseananans 594
CIeate_DOX COMIMEANGuuueeiiiiiiiiiiiiee et e e e e ettt e e e e e e et et e e e eeeeeeeeaaaa e eeeeseesasesnnnans 596
delete_atomS COMIMANG.iiiiiiiiiiiiee et e e ettt e e e e e e et et e eeeeeeessaaa e eeseseesssesnnnans 598
delete_ DONAS COMIMANG.ot eeeaaaaas 601
dielectric COMMANG........ccuiiiiiiieriiriiet ettt ettt ettt ettt et ettt sbe et et s bt ebeenaenaeeaeeanen 604
dihedral_style charmm command..............cooueiiiiiiiiiiiee et 605
dihedral_style charmm/intel COMMANA..........cccoioiiiiiiiiiiiiieee e e 605
dihedral_style charmm/kk command.............cocoooiiiiiiiiiiiie e e 605
dihedral_style charmm/omp COMMANA..........cccuiiiiiiiiiiiie ettt 605
dihedral_style class2 COMMANC.........cocuiiiiiiiiiiiee et sttt 607
dihedral_style class2/0mp COMMANG.........couiiiiiiiiiiiie ettt sttt sttt e st e e e eis 607
dihedral_ COET COMIMANT........cooi eeas 611
dihedral_style cosine/shift/exp COMMANd............cooouiiiiiiiiiiiiiiie et 613

LAMMPS Users Manual

Table of Contents

dihedral_style cosine/shift/exp/omp command..............cocueiieriiriinienienie et 613
dihedral_style fourier COMmMEand............cocuiiiiiiiiiiiie et 615
dihedral_style fourier/omp COMMANA..........c.oouiiiiiiiiiiiie ettt 615
dihedral_style harmonic COMMANG............cocuiiiiiiiiiiiie ettt st 617
dihedral_style harmonic/intel command..............ccooouiiiiiiiiiiniiiee e e 617
dihedral_style harmonic/omp COMMAN............cccueiiiiiiiiiiiieiee et 617
dihedral_style heliX cOmMMand...........cocoiiiiiiiiiii ettt 619
dihedral_style helix/omp COMMANA.........ccceriiiiririiiiieecee et 619
dihedral_style hybrid COMMANA............coooiiiiiiiiiiie et 621
dihedral_style multi/harmonic COMMANA...........ccceiiiiiiiiiiieiee et 623
dihedral_style multi/harmonic/omp COMMANG..........couiriiriiiiiiieierte ettt 623
dihedral_style nharmonic COmMMAand..............ooouiiiiiiiiiiiie et 625
dihedral_style nharmonic/omp COMMANC..........cccueiiiiiiiiiiieeieie ettt st 625
dihedral_style NONE COMMANG.......ccuiiiiiiiiiiiieeie ettt sttt sb et e e e bt e it e saeeas 627
dihedral_style oplsS COMMAN.........cccuiiiiiiiiiiiiie ettt st e bt e e e es 628
dihedral_style opls/intel COMMANA............cocuiiiiiiiiiiiii et 628
dihedral_style opls/kk COMMANA.........cceoiiiiiiiiiieiie ettt st 628
dihedral_style opls/omp COMMANA........cccooiiiiiiiiiiiiie et 628
dihedral_style quadratic COMMANA..........cueiiiiiiiiiiiiie ettt st e 630
dihedral_style quadratic/omp COMMANG.c.eruiiiiiiiiieeie ettt st e st e s 630
dihedral_style COMMAN............cocuiiiiiiiiie et sttt st sbee b e et es 632
dihedral_style table COMMANA...........coouiiiiiiiiiie ettt sttt e e 634
dihedral_style table/omp cOmMMANA...........cocuiiiiiiiiiiiii et e 634
dIMEeNSION COMMEANT.eiuiiiiiiiiiiiieite ettt sttt e bt et e s btesbtesbeesbeesbeesbeesbeesbeesaeesbeenseenes 637
displace_atoms COMMANA..........couiiiiiiiiie ettt st st e bt e sbe e bt e sbeesbeesbeesbeesaeesaeenes 638
AUMP COMMEANG. ...ttt ettt ettt e e et e s b e s bt e s bt e sheesbeesbeesbeesbeesbeesbeesaeasaeenneenns 640
dump h5md COMMEANC........ooiiiiiii ettt sttt ettt be e st esaeesaee et eas 640
dUMP IMAZE COMIMANT. ...ttt ettt et e s b et esbtesh e e sbtesbeesbeesbeesbeesbeesaeesaeenseenns 640
dUmMP MOVIE COMMEAN.......eeuiiiuiiiiiieiiieite ettt ettt ettt e sbtesttesbtesbeesbeesbeesbeesbeesaeesaeenneenns 640
dump mMOIfile COMMANG......c.eiiiiiiiiii ettt ettt sbee st esaeesaee b e as 640
dump hS5md COMMANC.......cc.eoiiiiiiiiiee ettt st st aesae e eanen 649
dUMpP IMAZE COMIMANT.eeiiiiiieiie ettt e et e st e bt e sbtesbeesbeesbeesbeesbeesbeesbeesaeesaeenseenns 651
dUmMP MOVIE COMMEAN.......eiuiiiiiiiiieiiietie ettt et e et e st e s b eesbteshtesbeesbeesbeesbeesbeesbeesaeesbeenseennes 651
dump_modify COMMANG........cccoiiiiiiiiiiie ettt ettt sb e bt e bt e saeesaeesaeeas 660
dump mMOIfile COMMANG........eiiiiiiiiiiie ettt sttt sb e st e e e saeesaeesaeeas 671
€CHO COMIMANA......eiiiiiiii ettt ettt s b e s h e ehee s bt e sbte s bt e sbeesbeesbeesbeenaeennis 673
FIX COMMAN......eiiiiiiiie ettt ettt e s b e s he e sbe e e bt e sbtesb e e sbeesbeesatesaeenneens 674
fiX adapt COMMANG.....c..eoiiiiiiiieiiiiiet ettt ettt et sttt ettt sbe et et b e b e e naeeaeeanen 679
fix adapt/fep COMMANC.......c.c.iiiiiiiiiii ettt sb e st e s e saeesaeesaeeais 683
fix addfOrce COMMANG.......ooiiiiiiiieeie ettt et e st be e bt e bt e sbeesaeesaee et eas 687
fix addforce/cuda COMMAN...........cocuiiiiiiiiiiie ettt st st st 687
fix addtorque COMMEANC.......co.eeiiriiiiiiietererce ettt sttt sb et st ea e bt eanen 690
fix append/atoms COMMEANA........cc.eririeriririeterte ettt ettt ettt ettt et sbeese et s bt eseenaenaeeaeennes 692
FIX ALC COMMANA. ...ttt ettt b e s h e sbe e s bt e s bt e s bt e sbeesbeesaeesaeenaeees 694
fiX atOM/SWAP COMMEANT.coueiitiriiitieiieterterteet ettt ettt sttt et sttt et sbesbe e e esbesbeebeenaenaeeaeennen 699
fiX ave/atom COMMAN...........iiiiiiiiiiieiie ettt sb e st s bt e saeesbeesb e e sbeesbeesaeesbeenaeeeis 702
fix ave/chunk COMMAN...........c.oiiiiiiiiii ettt 704
fix ave/correlate COMMANC.........cccuiiiiiiiiie ettt sttt sb e sbeesbeesaeesaeeseeeas 710

LAMMPS Users Manual

Table of Contents

fix ave/correlate/long COMMAN.........c.uiiiiiiiiiiiie ettt e s e st e i e e as 715
fiX ave/hiStO COMMIANA.oiiiieiiiiee ettt e ettt e e e e e et e e e e s e eaaaaeeeeesseensaaeeeeeeenns 718
fix ave/histo/Weight COMMANC.c.oiiiiiiiiiiie ettt st 718
fix ave/spatial COMMEANC........cocuiiiiiiiiie ettt ettt sb e st e s e sae e b e saeeas 723
fix ave/spatial/Sphere COMMANG............cceririiiiiniiiiiceee et 729
fiX aVe/timMeE COMMIANA.........ooiueieiiiie ittt e et e e e et e e e e e et e e e e e e e e e aaaeeeeeessenaaaeeeeesseennaareeeesenans 734
fiX aVefOrce COMMIANA.........ooiiieeiiii ettt e e e e et e e e e e et e e e e e s eenaaaeeeeesseennaaeeeeesenns 739
fix aveforce/cuda COMMANG.............oooouiiiiiiiiiieeeeee et e e e e e e e e et e e e e s seeaaaeeeeeeeens 739
fiX DAlanCe COMIMANG..........oooiuuiiiiiii it e ettt e e e e e e e e e e e et eeeeeesseaaaeeeeessensnaareeeeeenns 741
fiX bond/Dreak COMMANG............vviiiiiiiiiiiiiice ettt e e et e e e e e et e e e e s e eaaaeeeeeseennsaaereeeseens 746
fiX bond/Create COMMAN............ooiiiiiiiiiiiieie ettt e e et e e e e e et e e e e s e eaaaeeeeesseenaaareeeeeenns 749
fiX bONA/SWaP COMMANG.ceiiiiiiiiiiiiie ettt st ht e bt e s bt e sb e e sbeesbeesaeesaeenaeees 753
fiX DOX/TElaX COMMIANA......oiiieiiiiiiiie ettt e e e et e e e e e et e e e e s seaaaeeeeessesnsaaeeeeeeenns 756
fIX COIVATS COMIMANG.........iiiiiiiiiiiee ettt e e e ettt e e e e e e e e e e e e e et e e e e eessenaaaeeeeeseensaaareeeesanans 761
f1X defOrm COMIMANG..........coooiuieiiiie et e ettt e e e e et e e e e e e eaaaeeeeesseenaaaeeeeeseans 763
fiX deform/KK COMIMANG............uviiiiiiiiiiiiie ettt e e e e e e e e eata e e e e e s seenaaaeeeeeeenns 763
fiX dePOSIt COMIMANT.couiiiiiiiiiiie ettt st bt e s bt e s bt e sb e e sbeesbeesaeesaeenaeeeis 771
FIX drag COMMANG.....ceiuiiiiieeiie ettt ettt sb e et e sbe e s ae e s bt e sb e e s bt e sbeesaeesbeenneenis 775
FIX drude COMMANG.......oooiiiiiiiiiiicc ettt e e et e e e e e et eeeeeesseaaaaeeeeessennnaaeeeeesenns 776
fix drude/transform/direct COMMIANA............cooiiurieiiiiiiiieeee e e e e e s e e eaaaereeeeeens 777
fix drude/transform/invVerse COMMANG...........ccocuurriiiiiiiiiiieeee e ee e e e e e e e e e e eeeaaaeeeeeeeens 777
FIX dt/TESEt COMMANL.......coiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e et eeeeeeseeaaaaeeeeessennaaaeeeeesenans 780
fIX field COMMANG.......oooiiiiiiiiiiiie ettt e e ettt e e e e et e e e e s e enaaaeeeeesseensaaeeeeesenns 782
fiX enforce2d COMIMANG.........c.uvvviiiiiieeieeie et e e e e e e e e e eatae e e e e e seenaaaaeeeeeeens 785
fix enforce2d/cuda COMMEANG..........coooiviiiiiie ittt e e e e e e e et e e e e e e eeaaaeeeeeeenns 785
fIX €0S/CV COMIMEANT......oooiiiiiiiiieiiee ettt et e e ettt e e e e e e et e e e e eeaaeeeeeeesesaataeeeeesseenaeaeeeeesanans 786
fiX €0S/table COMMANG........cccuveiiiiiiiectiee et e et e e e e e et e e e e s e eaaaaeeeeesseensaaeeeeesenns 787
fiX eVapOTate COMMEANT.c..eotiiirtiitieiteterte ettt ettt sttt sttt ettt bt et s b ebeenbenbeeaeeanen 789
fiX eXternal COMIMANG..........cooouueiiiiii ittt e e et e e e e e et e e e e s e eaaaeeeeesseenaaaeeeeeeenns 791
fIX frEEZE COMIMAN........ooiiiiiiiiiiiiie et e ettt e e e et e e e e e et e e e e e e s seaaaeeeeessennsaaereeesenns 794
fix freeze/cuda COMMEANG...........ooiiiiiiiiiiiiee et e e e e e e e s e eaaae e e e e s s e eaaaeeeeeseans 794
fIX ZCIMC COMMANG.....c.ueiiiiiieiieitetite ettt ettt ettt s aeebe et sbe bt e st s bt ebee b e bt eaeennen 796
FIX gld COMMEAN....ceiiiiii ettt sb e sbe e b e saeesaee et e as 801
FIX Gl& COMMANG.....c..eiiiiiiie ettt st e st e bt e bt esbeesbeesaeesaeenaeeeis 804
fiX Gravity COMMEAN.cocuiiiiiiiiiiiie ettt ettt sa e st esbe e s bt e sbeesb e e sbeesaeesbeesbeenaeenes 807
fix gravity/cuda COMMANC.........ooouiiiiiiiiie ettt st sb e bt sbee bt e b e et e es 807
fiX gravity/Omp COMIMANG.c..eiiiiiiiiiiiieiie ettt st st eshte s bt e bt e sbeesbeesbeesaeesaeenaeees 807
FIX NEAt COMIMAN.......uviiiiiiiiiiieieie ettt e e e et e e e e e e et eeeeeesseataeeeeesseensaareeeeeenns 810
§ D 0016 10} 10110721 4 o HUR OO 812
§ D 116 [0L aeT0) 1010 0 T2 1 (o KRR PRRRRN 815
FIX IPT COMIMANG....ceetiiie ittt h et s bt e s htesbeesbeesbtesb e e sbeesbeesbeesbeenaeenis 818
fiX [angeVIN COMMIANC.ottt ettt st sbtesae e bt e sbeesbeesbeesaeesbeenaeeas 820
fix langevin/KK COMMANC.........c.oioiiiiiiiiii ettt st e st e s e e as 820
fix langevin/drude COMMANC.........cocuiiiiiiiiie ettt st e e e es 825
fix langevin/eff COMMAN........cc.coiiiiiiiiiii ettt 829
FIX ID/ATUIA COMMANL......ooiiiiiiiiiiiieeeeeeeee et e et e e e e e et e e e e e s eataeeeeesseenaaaeeeeesenns 831
fix Ib/MOmMENTUM COMIMANG.eeiiiiiiiiiiiiieeeeeeitee e eeeeeeee e e e e e e eeaee e e e e e e eeaaeeeeeeessenaaaeeeeesseessaaereeesanans 837
iX 1D/PC COMMANG.....ceeeiiiiieiieitetiteet ettt ettt ettt et et sb e sbe et be b et e naeeaeeanen 839

LAMMPS Users Manual

Table of Contents

fix Ib/rigid/pc/sphere COMMANG.........oouiiiiiiiiiie ettt st 840
fiX 1D/VISCOUS COMMEANT. ...c.uieuieiiitiriieiietenterteet ettt ettt sttt sttt et sbe e bbb et e naeeaeennen 842
fiX 1ineforce COMMAN..........coeeiiiiiiiiiiierece ettt sttt s sb e e nae e eanes 844
fIX MESO COMMEANT.cueiuiiiiitieitetittet ettt ettt ettt ettt ebe et sbesbe et et e bt ebeenbenaeeaeennen 845
fiX MEesO/StatioNAry COMMANG.ciutiiiiriiiie ettt ettt et eshtesbtesaeesbeesbeesbeesbeesaeesaeeneeenas 846
FIX_MOdify COMMANG.....cueiiiiiiiiii ettt sttt sb e bt e b e saee bt e naeeais 847
fiX MOMENtUM COMMEANT......c.eitiiiriiiiieiertireet ettt ettt ettt sbe et be b b e b eaeeenen 848
fIX MOVE COMMEANC......c..eiiiiiiiiieititittet ettt ettt et b sttt sbe et bt b enbe bt eaeeanen 850
FIX TSSE COMMEAN. ..c..entiiiitieitetie ettt ettt et et a sttt sb st et et sbeesaenbesbeeseenee 854
fIX NED COMMANG.....c.ueitiiiiiiieiietcteee ettt ettt ettt ettt ettt sbe et et be e enaenbe e e eanen 857
FIX IIVE COMMANA. ...ttt sttt ettt ettt et a e eb ettt sbe e e e sbe s bt ebeente bt eaeennen 859
fiX nvt/cuda COMMANC.......cc.ioiiiiiiiieicer ettt sttt st ea e bt eaeeanen 859
fiX NVE/ANtE] COMMAN.iotiiiiiiiiiiiet ettt sttt et st s b e e ea e bt eanen 859
fiX NVEKK COMMANG....c..eoiiiiiiiiiiiiie ettt sttt st ea e bt eanen 859
fiIX NVEH/OMP COMMANT.eiitiriiiiiitiitiet ettt ettt ettt sb ettt bt ese et bt ebeenaenaeeaeeanen 859
FIX NPE COMMANA.....eveiieiiiiieieeit ettt et ettt ettt et bt sb ettt sbe e e esbesbeebeenbenaesaeennen 859
fiX npt/cuda COMMEANC.......cc.eoiiiiiiiiieere ettt ettt ettt st be bbbt eanen 859
fiX NPE/ANtE] COMMEAN.ootiriiiiiiiriiei ettt ettt ettt sbe et et b e e eae et eanen 859
fiX NPU/KK COMMANG....c..eouiiiiiiiiiiiiiiei ettt sttt ettt bbbt ea e bt eanen 859
fiX NPY/OMP COMMEANT. ..c..eitiriiiiiitiitiet ettt ettt ettt eb ettt bt esee b s bt ebeenaenaeeaeennen 859
fIX NP COMMAN....c..eiiiiiiiietc ettt sttt st ea b eanen 859
fiX NPh/KK COMMANA.....coiiiiiiiiiiiiie ettt sttt s b e e e b eanes 859
fiX NPh/0MP COMMAN.......couiiiiiiiiiiiiii ettt sttt s sb et ea et eanen 859
fiX NVE/ET COMMANG......coiiiiiiiicii ettt sttt sae s eenen 868
fiX NP/Eff COMMAN.......cociiiiiiii et ettt sttt et e e ais 868
fiX NPh/Eff COMMANG.co.iiiiii ettt st e st e e e as 868
fix nph/asphere COMMAN..........c.c.iiiiiiiiiie ettt ettt st e st e b e e as 871
fix nph/asphere/omp COMMANC..........coouiiiiiiiiieee ettt sttt e st e i e e e ees 871
fiX NPh/bOAY COMMANG......oouiiiiiiiiiii ettt sttt st e s e et e bt e e e as 874
fix NPh/SPhEere COMMAN..........c.ooiiiiiiii e ettt e st e s e e as 876
fix nph/sphere/omp COMMANC............iiiiiiiiie ettt 876
fiX NPRUZ COMMEANC......coiiiiiiiiiiii ettt bbb sae e eanes 879
fiXx NPhuZ/OmP COMMEANT.....c..cociiiiiiiiiiiiric ettt sttt sae e eanen 879
fiX NPt/asphere COMMANC.oouiiiiiii ettt sttt e bt sbee b e sae e bt e neeeees 883
fix npt/asphere/omp COMMAN...........cocuiiiiiiiiiiiie ettt sttt st e et e b e e ees 883
fiX NPt/BOAY COMMEANA.......oiuiiiiiiiiiii ettt st sb e sbee b e saeesaee et eas 886
fiX NPU/SPhEre COMMEANC.eouiiiiiiiiiiieiertere ettt sttt b e bbbt e ea bt eanes 889
fix npt/sphere/omp COMMEANC......c..cc.eiiiiiiririiiiteicetcee ettt st eae et eanen 889
fIX NIVE COMIMANG.....c.eetiiiiiiieieetctete ettt ettt ettt be ettt sbeesee b beebeenaenaeeaeennen 892
fiX nve/cuda COMMEANA......cc.eoiiiiriiriieietee ettt et sttt ettt s b et eaenae e eanes 892
fiX nve/iInte] COMMANT......cc.eoiiiiriiiiii ettt sttt sttt be e eae bt eanes 892
fiX NVE/KK COMMAN......coviiiiiiiiiiiiiie ettt sttt s sb e et sae e eanes 892
fiX NVE/OMP COMMEANT.......eotieiiiiiiiiitieiieterte ettt ettt sttt sttt et st sbe e et sbeeaeenaenbeeaeennen 892
fix nve/asphere COMMANd........c..couiiiiiiiiniiie ettt st ea e b eenes 894
fix nve/asphere/intel COMMANG..........ccueviriiiiiiiriirce ettt 894
fix nve/asphere/noforce COMMAN...........coereeiiriiniriiiiinieeetere ettt 896
fiX NVE/DOAdY COMMEANC......cuiiiiiiiiiiiieiieierteee ettt sttt st ea e bt eanen 897
fiX nve/eff COMMANG......cc.ooiiiiiiiiii ettt sttt eenen 898

Xi

LAMMPS Users Manual

Table of Contents

fiX NVE/IIMIt COMMEANT. ..ottt ettt ettt ettt sbe et bt eaeeaenaeeaeeanen 899
fiX NVE/IINE COMMEANT........irtiriieitiiiriieiteterte ettt ettt sttt ettt et ettt sbe et be b e e bt eaeeanen 901
fiX Nve/NOfOrce COMMAN.......eoviiiriiiiiiiertirieet ettt sttt ettt ea e bt eanen 902
fiX NVE/SPhEre COMMEANT......cc.eiiiriiniiiietertireet ettt sttt ettt b e e b esae e eanen 903
fix nve/sphere/omp COMMANC.cc.iiiiriiririiiieneeteee ettt ettt sttt sae e eenen 903
fIX NVE/IT COMIMAN.eouiiiiiiieiteiit ettt s a et sb e sbe et b b eaenae e eanen 905
fiX NVE/aSphere COMMANG.cccuiriiriiiirirtirceee ettt ettt ettt st st eae b eanen 906
fix nvt/asphere/omp COMMANC..........cccuiriririiiiieneetce ettt ettt a e eanen 906
fiX NVE/DOAY COMMAN.......couiiiiiiiiiiiiiieere ettt sttt st b e b bt eanes 909
fiX NVE/SIIOd COMMEANT.......cviiiiiiiiiiiiei ettt sttt ettt sbe bbbt eanen 911
fix nvt/sllod/inte]l COMMANC........ccoiiiiiiiririeiietee ettt sttt eanen 911
fix nvt/sllod/Omp COMMEANA........cciiiiiiiiriiiieieereetcee ettt st ea et eanen 911
fix nvt/sllod/eff COMMANG........ccoooiiiiiiiiii ettt 914
fiX NVE/SPhETe COMMEANC.eoueiiiiiiiieiieierterce ettt ettt s sb e bt e ea e b eanen 916
fiXx nvt/sphere/omp COMMEANC......c..cc.eiiiriiririiiiriereeteee ettt sttt sttt eae et eanen 916
fiX ONEWAY COMMANG. ...cc.eirtiriieititiniieit ettt sttt ettt ettt ettt sb et e bt sbeeseenbe s bt ebeenaenaeeaeennen 919
fiX orient/fec COMMAN........coiiiiriiriiiieereee ettt ettt st be e e sae e eanen 920
fiX PhONON COMMAN....cc.eiitiiiiiiiiiiitiit ettt sttt et sbe et beebe bbb eanen 924
fiX PIMA COMIMEAN......cueiiiiiiietiti ettt et sttt ettt ese bbb eaenae e eanen 927
fix planeforce COMMANG.........eeuiriiriiiiieriirce ettt sttt st ea e et eanen 931
FIX POBIIIS. ..ttt ettt ettt s h et b e e bt sttt b e et e b e s a e eb et e bt she bt et bt bt et et aeennen 932
fIX POUT COMMANT. ..c..eueiiiitieiieitetite ettt sttt ettt ettt et saeebe et e bt sbeeseenbe s bt ebeenbenaeeaeennen 934
fix press/berendsen COMMANC........cc.eeievieriririiinineeteene ettt ettt ettt sttt be e b saeeaeeanes 938
IX PriNt COMMAN....c..coueiiiiiiiieitcti ettt ettt ettt st ettt sbe et be b esae b eaeeenen 941
fix property/atom COMMEANC........c..couirierieriririerte ettt ettt ettt bbbt eaee b e saeeaeeanen 943
fiX qDMSSt COMMANG......cutitiriieiiiiiitiet ettt ettt et ettt ettt sbe et be b e b e nbeeaeeanen 946
fiX 4eq/POINt COMMEANT.....cuiruieiiiiiitieiietenie ettt ettt sttt ettt eb et sbe e et bt ebeentenaeeaeennen 950
fix qeqg/shielded COMMAN..........ccoiiiiiiiiriiiitc ettt et 950
fiX geq/slater COMMEANA........coeiiiriiiiiieterre ettt ettt bbb e e sae e eanen 950
fix qeq/dynamic COMMEANG..........coeririerieriirirtete ettt ettt ettt sbe bbbt b e e naeeaeeanen 950
fiX qeq/fire COMMANG........couiiuiiiiiiriiii ettt sttt et sttt st ea e bt eenen 950
fiX qeq/comb COMMANG........coeetiriiiiiieiertereet ettt ettt ettt et sbe bbbt et ebe b i ennen 954
fix qeq/comb/OmpP COMMEANG.......cc.eruiriiriiriirieiete ettt ettt ettt sbe et sbeeaeenaenaeeaeeanen 954
fiX 4eq/TeaxX COMIMANC.......couiriiiiiiiitieiieierte ettt ettt et a st sb e st be b enaenaeeaeeanen 956
fiX MMM COMMANG......ccutiiiriieiiitiieet ettt ettt sttt et sa et estesbe bttt beebeenbenaeeaeennen 958
FIX D COMMANA.....cviieeiiiiieitet ettt ettt et sa ettt sbe bbbt b esaenaeeaeeanen 959
fiX 1€aX/bONdS COMMAN......co.eiiiriiriiiieienere ettt sttt sttt e ea e b eanes 962
fix reax/c/bonds COMMEANT.......c..couiririiriiriiiieiet ettt ettt sttt st sbe bbb e sae e eanen 962
fiX reax/c/Species COMMEANd........cc.ciirierieririeiente ettt ettt ettt et sttt ettt sbeeseenbe s bt ebeenaenaeeaeeanen 963
fiX TECENLET COMMANT.......eiitieiieiiitiitieit ettt sttt et et ettt ettt ebe et sbesbe e e ebe s bt ebeenaenaeeaeennen 966
fiX TEStrain COMMAN.....c..eouiriieieriiriiet ettt ettt ettt sttt ettt sbe e sb e be b enaenbeeaeeanen 968
fiX T1ZId COMMAN......eouiiiiiiieiieici ettt sttt et sb et b et ea e bt eenen 971
fiX T1ZId/MVE COMMEANA. ..ottt sttt ettt bbbt et e nae e ennen 971
fiX T1ZId/MVE COMMANC. ..ottt ettt sttt bbb ea e bt eanes 971
fiX T1gId/MPt COMMEANC.......otiiiiiiiiiiiiii ettt ettt st sb e s b et ee e b eanen 971
fixX 1igid/nph COMMAN......couiiiiiiiiiiiiiee ettt bbb sae e eanes 971
fix rigid/small COMMANA.........cocuiriimiiiiieni ettt sttt eanes 971
fix rigid/nve/small COMMAN.........ccoeoiiiiiriiiiiiieece ettt 971

Xii

LAMMPS Users Manual

Table of Contents

fix rigid/nvt/small COMMAN.......c..ccceeiiriiririiiieretce ettt sttt 971
fix rigid/npt/small COMMAN.......c..coeeviiriiriiiiiiiiretcee ettt bbbt 971
fix rigid/nph/small COMMANQ......c..ccceeciiiiiririiiic ettt 971
fiX S2@d/VEK COMMANG.eiiiiiiiiiie ettt sttt e bt s bt sbeesae e b e e ees 982
fiX SEtfOrCe COMMANA........eiiiiiiiiiii ettt st sb e st s esae e bt e bt e as 985
fix setforce/cuda COMMANG.c.cuiiiiiiiiii ettt ettt st e st e e e e e aes 985
fix setforce/Kk COMMANA..........coiiiiiiiie ettt st seeees 985
fiX Shake COMMEAN........ooiiiiiii ettt sttt et e e as 987
fix shake/cuda COMMANC..........coioiiiiiiii ettt st e e e 987
FIX TALEE COMMANG.....cuiiiiiiiiieee ettt sb e st e s bt e s bt e sbtesb e e sbeesbeesbeesaeenaeeeis 987
fix Shardlow COMMAN...........ooiiiiiiiiiii ettt st e st e bt e e e as 991
X SIMA COMMAN........oiiiiiiiiiiiee ettt st sbeesatesbeesb e e bt e sbeesaeesbeenaeeas 993
fix smd/adjust_dt COMMANG...........iiiiiiiiiiie ettt sttt sbee et e e e saeeas 996
fix smd/integrate_tlSph COMMANC.........ccccoiriiiiiriniricee et 997
fix smd/integrate_ulsph COMMANd...........coceririiriniiiiiine ettt et 998
fix smA/MOVve_tri_ SUIT COMMEAN........uuuiieiiiiiiiiiiieeeeeee ettt et e e e e e e e e e e e e e e e e e aaaes 999
fix SMA/SEtVel COMMEAN........oiiiiiiiie ettt ettt ettt et e b e beebeebeeneeas 1001
fix smd/wWall_SUrface COMMEANG...........nee et e e e e e e e e e e e e e aaaaas 1004
FIX SPIING COMMANG ...ttt ettt ettt et et e bt e bt et e e bt e bt enbeebeebeenbeenbeensean 1005
fIX SPIING/TZ COMMANT.eiuiiiiiiiiiee ettt ettt ettt e bt et e bt et e bt e bt e be e bt enbeenbeensean 1007
fixX spring/self COMMANG.......cc.eeouiriiriiiiiiiirtee ettt ettt ettt sae s eaeens 1009
FIX ST COMIMANG.....cueiiiie ittt ettt ettt et e e bt e bt e bt et e e bt enbeebeebeenbeenbeennean 1011
fiX StOre/fOrce COMMEANA.......uiiiiiiiiiie ettt et ettt ettt et e bt ebeebeeneean 1017
fiX StOTe/StAte COMMANT.....ecutiiiiieiiieie ettt ettt ettt ettt e bt e bt e bt et e bt enbeebeebeenbeenbeennean 1018
fix temp/berendSen COMMANT.c.eiiuieiiieiieiiee ettt ettt ettt ettt et e bt et e e beenbeebeebeeneean 1020
fix temp/berendsen/cuda COMMANG........cccuieiuieriieiieiieie ettt ettt ettt et e b ebeebeeneeas 1020
fiX teMP/CSVI COMIMAN......eutiiiiieiiieiie ettt ettt ettt ettt e bt et e bt et e e bt enbeebeebeenbeenbeeneean 1023
fix temp/cSId COMMANA......cc.iiiiiiiiie et ettt ettt ettt e b e b e beeneeas 1023
fiX temp/rescale COMMANG.........coiuiiiiiiiee ettt ettt ettt e b e be e b ebeeneeas 1026
fix temp/rescale/cuda COMMANG.........coouiiiuiiiiiieeeeee ettt et e e b eneean 1026
fix temp/rescale/limit/cuda COMMAN..........c.ooouiiiiiiiiiiiiei et 1026
fix temp/rescale/eff commAand............ccooiiiiiiiiiniiie e 1029
FIX tFMC COMMANG.eeiiiiiiiiiii ettt et ettt ettt et e bt e b ebeeneeas 1031
fix thermal/conductivity COMMANC.cccuiiiiiiiiieiieiieie ettt ettt et e b b eneean 1034
FIX /TS COMIMANA.eiiiiiiiii ettt et ettt e bt et e e bt e bt enbeebe e bt enbeenbeennean 1037
FIX tI/SPIING COMIMANG. ...ttt ettt ettt ettt e bt e bt e bt et e e bt enbeebeebeenbeenbeeneean 1040
FIX tMA COMMAN.......eiiiiiiie ettt ettt ettt et e e bt e beebeebeebeennean 1043
FIX T COMIMANA. ...ttt ettt ettt et e bt e bt e bt et e e bt e beebeebeenbeenbeennean 1045
fixX ttmM/MOd COMMAN.eiiiiiiiii ittt ettt et et e e bt e bt e beebeebeebeennean 1045
fiX tUNE/KSPACE COMMEANC........eiuiiiiiiiiiiie ettt ettt et ettt et e bt e bt e be e bt ebeebeensean 1050
FIX VECLOT COMIMANG.......tiiiiieiie ittt ettt ettt ettt et e bt e bt e bt e bt enbeenbeebeebeenbeenbeensean 1052
X VISCOSIEY COMMEAN.eiiuiiiiiieiiieie ettt ettt ettt e bt e bt et e e bt enbeebeebeenbeenbeensean 1055
FIX VISCOUS COMMEANT.....eiiiiiiiiiiieie ettt ettt et et et e bt et e e bt e bt ebeebeenbeenbeensean 1058
fiXx viscous/cuda COMMANT.........oouiiiiiieeie ettt ettt ettt e b e bt et ebeeneean 1058
fix Wall/Ij93 COMMAN.......cc.ioiiiiiiiiitierceecee ettt sttt et sb et ne e saeeanens 1060
fiX Wall/[j126 COMMANG.....cotiiiiiiieie ettt ettt ettt ettt e bt e beebeebeebeennean 1060
fix Wall/[j1043 COMMAN........ooouiiiiiiieie ettt et ettt ettt et e be e b ebeeneean 1060
fix wall/colloid COMMANG......cccuiiiiiiieie ettt ettt ettt e b e bt e b ebeeneeas 1060

LAMMPS Users Manual

Table of Contents

fix wall/harmonic COMMAN.......c..cceeiiriiririeiereeeet ettt sttt ettt sae s eaeens 1060
fix Wall/Gran COMMANG......cccuiiiiiiiiie ettt et ettt et ettt e beebeebeebeeneean 1065
fix Wall/piSton COMMEANC........coouiiiiiiiiie ettt ettt ettt et e b e bt ebeebeeneean 1068
fix wall/reflect COMMAN.........ccueiiiiriiiiiiriee ettt sttt eaeens 1070
fix wall/reflect/Kk cOmMMANA.......c..cocereiiriririeieeee ettt ettt st 1070
fix Wall/reZion COMMEAN.cccuiiiiiiiiie ettt ettt ettt et e b e e bt ebeebeeneean 1073
fiXx Wall/sTd COMMANT........oouiriiiiiiiiieieer ettt sttt sttt st ettt st e e saeeanens 1077
GIOUP COMUMEAN. .. eneteeniieeiitteeitte et ettt ettt e sttt e eateesate e ettt ettt e sttt e sabeesabeesabeeeabeeebeeenbbeenbbeesabeesabeesnbeeanne 1080
SrOUP2NAX COMIMANT......eeutieiiieiti ettt ettt ettt et et e bt et e e teeabeeabe e bt e beenbeenbeebeebeenbeenbeennean 1084
T COMMAN. ...ttt ettt et et sb ettt b e et sbe et e naesueeaeens 1085
improper_style class2 COMMAN............coouieiuiiiiiiieit ettt et e b bbb neean 1088
improper_style class2/0mp COMMANC.........cc.oiiuiiiiiiiiiee et 1088
improper_coeff COMMANd...........coiiiriiiiiiiieie ettt 1091
improper_style COSSq COMMANG.........cc.coiririiriininieietent ettt sttt et st sae s eaeens 1093
improper_style cossq/omp COMMANG..........cocueruiririeiterinieiere ettt et st enesaesaeeneens 1093
improper_style cvf cOmMMAaNnd..........cocuooiiiiiiiiiiiiicc e 1095
improper_style cvff/intel command............coceeciiririeiininiiieeee e 1095
improper_style cvif/omp command............coceevieririiiiininiieee e 1095
improper_style distance COMMANG........c..coereeriiririeitininietee sttt sttt ne e eaeens 1097
improper_style fourier COMMANd..........ccccoerieriiririeitinen ettt 1098
improper_style fourier/omp COmMMANQ...........cccueririeriiriniiieene ettt 1098
improper_style harmonic COMMANC...........coouiiiiiiiiiiiii et 1100
improper_style harmonic/inte]l COMMANG..........ccoiiiiiiiiiiiieiieeeee e 1100
improper_style harmonic/kk command............ccooiiiiiiiiiiiiiie e 1100
improper_style harmonic/omp COMMANG........c.coouieiiiiiiiiiieie ettt 1100
improper_style hybrid command..............ccooiiiiiiiii e 1102
IMproper_style NONE COMMANC.eoiuiiiiiiiieiee ettt ettt et et et e et ebeebeebeeneean 1103
improper_style ring COMMEAN...........coiieiiiiiieie ettt ettt ettt et et e et e e sbe e bt ebeebeeneeas 1104
improper_style ring/0mp COMMANC.c.ieiuiiiiieiieiiee ettt ettt ettt e beebeebeebeeneeas 1104
IMPrOPer_Style COMMANT.......couiiiiiiiiie ettt ettt ettt et e bt e bt e be e bt ebeebeeneean 1106
improper_style umbrella COMMANG.........cc.oiiuiiiiiiiiiiee et 1108
improper_style umbrella/omp command.............cccoiiiiiiiiiiiiiieeeeee e 1108
INCIUAE COMMEANT........eiuiiiiiieiietcitet ettt sttt sb et et sttt enaesaeeanens 1110
INFO COMMANG ...ttt ettt ettt ettt eb ettt e beeae et e sttt e naesueeanens 1111
JUIMP COMIMANC. ...ttt ettt ettt ettt ettt e et e bt et e e et ea bt eabe e bt e bt en bt embeenbeenbeenbeenbeenseenseensean 1113
kspace_modify COMMANG.......c..coiiiiiiiiiiiiiee ettt b ettt et e sbe e b e b e nbeeneean 1115
kSpace_Style COMMANG.......cc.eoiiiiiiiiiiiee ettt ettt sb e b e b et e bt e bt e sbe e bt ebeenbeeneean 1120
Jabel COMMAN.....c..oitiiiiiiiiieii ettt sttt et sb ettt sb e ettt enenaesaeeanens 1126
JattiCe COMMIANG.coueiuiitiiieiiet ettt ettt et et sttt ettt eb et et bt ebe et e st eaee s entesueennens 1127
LOZ COMMIAN....cneiiiiiiiiiee ettt ettt s bt e st e sttt e bt e e sabeenbbeesabeesabeesnbeeanne 1131
MASS COMIMANG. ...ttt ettt ettt ettt et e et e et e e bt e st eaeesteeseesseenneeneenneen 1132
MIN_MOdify COMMANG.coiuiiiiiiiie ettt et ettt et e bt e bt e beebeebeeneeas 1134
MIN_StY1E COMIMANG.......eiiiiiiiiiii ittt ettt et et e e bt et e e be e bt ebeenbeeneean 1136
MINTMIZE COMIMEANC. ...c.ueiutiiiiiietitittet ettt ettt et ettt st et sb e eb et e bt e bt ebeestesbeeaeennentesueennens 1138
MOIECUIE COMMEAN....c.eeiuiiiiriieitiiittet ettt sttt et sb et et s b e eae e sbe s enestesaeeanens 1142
NED COMMANU. ...ttt ettt et ettt b et e st at et e st e ebeestebe e bt ebsesbesbeeaeennentesueennens 1149
neigh_modify COMMANC........coouiiiiiiii ettt ettt et e b e bt et e b eneean 1155
NEIZhDOT COMMEAN.....c.iiiiiiiiiii ettt ettt ettt ettt e b e ebeebeeneeas 1158

Xiv

LAMMPS Users Manual

Table of Contents

NEWLON COMIMAN....c..eiuiiutitirttetetiet ettt ettt ettt sttt te st e sbt et e st e ebeeseebe s bt ebeenaenbeeaeennentesueentens 1160
NEXE COMIMANA. ... eutiteeitetete ettt ettt sttt ettt e b et et e e bt e et et e st e ebe et e st e ebeestebesbeebnesaenbeeaeensentesueensens 1161
PACKAZE COMMEAN.......ouiiiiiiiiiie et ettt et e bt e bt e bt et e e bt e bt e bt ebeebeebeeneean 1164
pair_style adp COMMAN.........cccciiiiiiiiiiee ettt ettt ettt sb e b e b b neean 1173
pair_style adp/omp COMMANA.........ccuiiiiiiiiieiie ettt ettt ettt et e sbe e b e nbeenbeeneeas 1173
pair_style airebo COMMANA.........ccuiiiiiiiiiiie ettt ettt et e bt e bt ebeenbeeneeas 1176
pair_style airebo/Omp COMMANG.........ccuiiuiiiiiiieiie ettt ettt ettt et e sbe e bt e b enbeenbeeneeas 1176
Pair_style rebo COMMEANA........cciiiiiiiiiiei ettt ettt b et e bt et e b e b ebeenbeeneeas 1176
pair_style rebo/omp COMMANG........cc.uiiiiiiiiiiiieiie ettt ettt et e bt e bt e sbee bt enbeenbeeneeas 1176
pair_style awpmd/cut COMMANG........ccueruieieriiririetenereet ettt et ettt sae st eee st saeeneens 1179
pair_style beck COMMANA...........cooiiiiiiiiiee ettt 1181
pair_style beck/gpu COMMANG.........ccoiiiiiiiiiie ettt 1181
pair_style beck/omp COMMANA..........coiiiiiiiiiie ettt b e eeas 1181
pair_style body COMMAN...........couiiiiiiiiiieee ettt ettt e sbe b e b e nbeeneean 1183
Pair_style bOp COMMANM.........ooiiiiiiii ettt ettt et e sbe e b e b e nbeeneean 1185
pair_style born COMMAN.........ccoeiiiiriiiiiieeree ettt ettt sttt 1192
pair_style born/omp COMMANG........c..couiririeriirinietencreetee ettt ettt et sae e eaeens 1192
pair_style born/gpu COMmMANd.........cc.couirieiiriirinieiene ettt ettt st 1192
pair_style born/coul/long COMMAN...........c.coeririeriinininieeneeeeee ettt 1192
pair_style born/coul/long/cs cCOMMANA.........c..cccerieriiriririeniinineeteese ettt eaeens 1192
pair_style born/coul/long/cuda cOMmANd..........coceecueriririieriininieienene ettt 1192
pair_style born/coul/long/gpu COMMANd........cc.eoeevieriririiniinieeetete ettt ettt st eaeens 1192
pair_style born/coul/long/omp command..............ccerereriereninieniinene ettt 1192
pair_style born/coul/msm COMMANC..........ccoeririeiieniririeeneeeetetee ettt eaeens 1192
pair_style born/coul/msm/omp COMMANA..........ccceeeueriririirininieienene ettt saeeaeens 1192
pair_style born/coul/wolf cOmmMAand............coeririeriininiriieeeeeeee et 1192
pair_style born/coul/wolf/gpu command...........cocecerireriiriininieiiee e 1192
pair_style born/coul/wolf/omp command.............cecerereriinininieniene e 1192
pair_style brownian COmMmANd...........cccoeeeiiriiririenieneneeeese ettt ettt sttt 1196
pair_style brownian/omp COMMANG..........cceeriririerienirerieiene ettt ettt ettt st tesresaeeaeens 1196
pair_style brownian/poly COMMANd..........cceruiririerieniririeieneeeetee ettt st eneens 1196
pair_style brownian/poly/omp COMMANQ...........cocveeierirerieniinineeientene ettt ettt saeeneens 1196
pair_style buck COMMANG........cceeiiiiriiiiiietereee ettt sttt s 1198
pair_style buck/cuda COMMANC..........ccoriiiiriiririeiencreere ettt st 1198
pair_style buck/gpu coOmmMAnA........c..coiririiriirinieene ettt sttt s 1198
pair_style buck/intel cCOmMMANA..........cccooiiiiriiririeieeeeeet et 1198
pair_style buck/kK cOmMmMANd..........cccoiriiiiniiiinieenereeteeree ettt 1198
pair_style buck/omp COMMANA.......c..coiririiriiririeenereetee ettt st 1198
pair_style buck/coul/cut COMMANd...........ccueriiririeiiininirieeee ettt st 1198
pair_style buck/coul/cut/cuda cOmMMAnd............coceevveriririenininieeene ettt 1198
pair_style buck/coul/cut/gpu commAnd.............ceceevveriririenienieneeieene ettt 1198
pair_style buck/coul/cut/inte] COMMANd.........c..covueviiriririiiniinieictcee ettt 1198
pair_style buck/coul/cut/kk cOmmand.........c..coccecveviiriririinininice e 1198
pair_style buck/coul/cut/omp COMMANG.........ccceeeeriiriririeiinieeeteteee ettt eaeens 1198
pair_style buck/coul/long command............c.ccoereeriererinienineneee e 1198
pair_style buck/coul/long/cs command..............cocueeverireriiniininieienene ettt 1198
pair_style buck/coul/long/cuda commAand.............cccevererienininieiinene ettt 1198
pair_style buck/coul/long/gpu comMmAand...........coceecverirerienieninieniinene ettt 1198

XV

LAMMPS Users Manual

Table of Contents

pair_style buck/coul/long/intel COMMAN..........ccceevveriririiiriininieicree ettt 1198
pair_style buck/coul/long/kk cOmmand.............coceceriririieniniinieiinne e 1198
pair_style buck/coul/long/omp COMMAN..........cocueviiriririeriininieteene ettt eaeens 1198
pair_style buck/coul/msm cOMMAN...........ccccririeriiririniinieneeectece ettt 1198
pair_style buck/coul/msm/omp cOmMmMAaNd.............cccerirerienininierieneneet ettt eaeens 1198
pair_style buck/long/coul/long comMmand...........c.ccerieriiiiinianienieee et 1202
pair_style buck/long/coul/long/omp cOMMANd..........cooieiiiiiirierienieieieteee et 1202
pair_style lj/charmm/coul/charmm command.............cccooiiiiiiiiniinieieeee e 1205
pair_style lj/charmm/coul/charmm/cuda command............c..ccooieriiriiniinienieneereeeeee e 1205
pair_style lj/charmm/coul/charmm/omp command.............c.cccceeriiriiniinienienieneese e 1205
pair_style lj/charmm/coul/charmm/implicit command...........c.ccceceeriiniiniinienieneeeeeeeeeeeeeen 1205
pair_style lj/charmm/coul/charmm/implicit/cuda command..........c..cccceerierienieniienienienieneeeeeen 1205
pair_style lj/charmm/coul/charmm/implicit/omp command...........c..cceoeerierienienieeneenienieneeeeeeen 1205
pair_style lj/charmm/coul/long command.............ccocueriiiiiiiiiienieieee et 1205
pair_style lj/charmm/coul/long/cuda command..............cccoeiiiiiiniiniiniiieeee e 1205
pair_style lj/charmm/coul/long/gpu command...........c.ceoeeiieriinienienieieteee et 1205
pair_style lj/charmm/coul/long/intel command..............ccouiiiiiiiniiinieniieeeeee e 1205
pair_style lj/charmm/coul/long/opt command............c..ccuerierienienienieieteeese et 1205
pair_style lj/charmm/coul/long/omp command..............coueiierienienienienieeee et 1205
pair_style lj/charmm/coul/msm command.............ccocueiiiiiiiiinieniee e 1205
pair_style lj/charmm/coul/msm/omp cOmMmand..............ccuerierienienienienieceeesee e 1205
pair_style 1j/class2 COMMANC..........cceririiiiniiririeeneneeeeee ettt st eaeens 1209
pair_style lj/class2/cuda command............c.coererierieninirieneneeeetetese ettt 1209
pair_style 1j/class2/gpu COMMANG..........ceecveriiririeienereeieeee ettt st eaeens 1209
pair_style 1j/class2/kk cOMMANA........ccooiriiriiririeieneieeieeee ettt st 1209
pair_style 1j/class2/omp COMMANG...........cccueriiririiiiininieieene ettt eaeens 1209
pair_style lj/class2/coul/cut COMMANA.........cceririeriiriririeieneeectete ettt eaeens 1209
pair_style lj/class2/coul/cut/cuda command.............coccoerieriininieiiinineeeeieneee e 1209
pair_style lj/class2/coul/cut/kk command.............cecerererieneninieniinene ettt 1209
pair_style lj/class2/coul/cut/omp cOmmANd...........cceviririiniininieiiniene ettt 1209
pair_style lj/class2/coul/long cOmMmMANd..........ccccoceevierirerienieniniciceee ettt 1209
pair_style lj/class2/coul/long/cuda command...........c..coceecuerienirieniininieieneneeeeene e 1209
pair_style lj/class2/coul/long/gpu command.............cocererierienirieniinineeeeeneeeeeene e 1209
pair_style lj/class2/coul/long/kk command............cceeererienieninieniinineeecteneeeeese et 1209
pair_style lj/class2/coul/long/omp command............cocererierienerienienineeieeneeeeene et 1209
PaAIr_COCTE COMMANG.eiiiiiiiiiiie ettt et b et e bt e bt e bt e sbeebeebeeneean 1212
pair_style colloid COMMANC........c.oiiiiiiiiiiieeie ettt ettt b e b e b e b eneean 1214
pair_style colloid/gpu COMMAN.........couiiuiiiiiiie ettt sttt sb e e b b eneeas 1214
pair_style colloid/omp COMMAN........ccuiiiiiiiiieiie ittt ettt sttt e sbe b e b e nbeeneean 1214
pair_style comb COMMEANT.cceeiiriiriirieieteieeeet ettt ettt et ettt et sae sttt e st sbeennens 1219
pair_style comb/OmpP COMMANA.........ccuiririiriirinietenereeteteee ettt sttt ettt sttt st te st saeeneens 1219
pair_style comb3 COMMANT........ccceeriiriiriiiiriiririetene ettt ettt ettt sae st ne e b ennens 1219
pair_style coul/cut COMMANA..........oiiiiiiiiiiiiie ettt ettt sb e sb e nbeebeeneean 1223
pair_style coul/cut/gpu COMMAN...........cceiiiiiiiiieiieiee ettt sttt e sb e b e b e b eneean 1223
pair_style coul/cut/Kk COMMANA.........cccooiiiiiiiiiiie ettt 1223
pair_style coul/cut/omp COMMANG.ccuiiiiiieiieiieieier ettt ettt ettt ettt et e b enbeenbeeneeas 1223
pair_style coul/debye COMMANG..........ccuiiuiiiiiiiiiie ettt 1223
pair_style coul/debye/gpu COMMANA...........cciiiiiiiiiiiiieiiee ettt 1223

XVi

LAMMPS Users Manual

Table of Contents

pair_style coul/debye/Kk COMMANA.........ccoiiiiiiiiiiiiiee ettt 1223
pair_style coul/debye/omp cOMMAN.........c.coiiiiieiiiniiiieiie ettt 1223
pair_style coul/dsf cOmMMANA..........cccooiiiiiiiiiee e 1223
pair_style coul/dsf/gpu commMand...............cociiiiiiiiiiiiii s 1223
pair_style coul/dsf/kk cOmMmMAaNd.............coiiiiiiiiiiiiee s 1223
pair_style coul/dsf/omp cOmMMANd...........cccooiiiiiiiiiiiiiee ettt 1223
pair_style coul/Iong COMMANC..........ooiiiiiiiiiiie ettt et e be e b e b e b eneean 1223
pair_style coul/long/cs COMMEANA............oiiiiiiiiiiie ettt sb e b b eneeas 1223
pair_style coul/long/omp COMMANG........ccueiiiiiiiieiieiieie ettt ettt ettt sbe e e b e b eneean 1223
pair_style coul/long/gpu COMMAN.........cceiiiiiiiiieiieiie ettt ettt et sb e sb e b e nbeeneean 1223
pair_style coul/long/kk cOmMmMAN...........cocuiiiiiiiiiiiieiee e 1223
pair_style coul/msm COMMANA...........ooiiiiiiiiiieiie ittt ettt et e bt e bt e bt e b esbeenbeeneeas 1223
pair_style coul/msm/omp COMMAN...........ccuiriirierienieiieert ettt ettt ettt sb e sbeeneeenbeeneeas 1223
pair_style coul/streitz COmMMAN.............oiueiiiiiiiiienieie ettt ettt ettt et e bt e b e sbeeneean 1223
pair_style coul/Wolf COMMAN........ccuiiiiiiiiiiie ettt be e 1223
pair_style coul/Wolf/KK COMMANG...........oiiiiiiiiiiie ettt 1224
pair_style coul/wolf/omp COMMANA...........coiiiiiiiiiiieiee ettt 1224
pair_style tip4Ap/Cut COMMANG.........couiiiiiiiiieite ittt ettt e sttt b et e bt e bt e bee bt ebeebeeneean 1224
pair_style tip4p/long COMMANG..........coiiiiiiiiiiie ittt ettt ettt e bt e bt e bee b enbeenbeeneean 1224
pair_style tip4p/cut/omp COMMEANC.........ccuiiiiiiiiieiieie ettt sttt sb e e b e nbeeneeas 1224
pair_style tip4p/long/omp COMMAN...........cciiiiiiiieiieiieiieert ettt ettt e sttt enbeenbeeneeas 1224
pair_style coul/diel COMMANd.........c..coiriiiiriirinieecree ettt 1229
pair_style coul/diel/omp COMMAN...........ccueriririeiieniririeere ettt ettt ettt 1229
pair_style born/coul/long/cs COMMAN...........cceerieiiiniiiiiieiiere ettt 1231
pair_style buck/coul/long/cs COMMANC..........ccoiiiieiieniiiieiie ettt 1231
pair_style lj/cut/dipole/cut COMMANA..........cceiiiiiiiiiiieie ettt 1233
pair_style lj/cut/dipole/cut/gpu cOMMANd..........cccieiiiiiiiiiiieiierie ettt 1233
pair_style lj/cut/dipole/cut/omp COMMANC.........ccciiiiiriiiiiiieiieniereee et 1233
pair_style 1j/st/dipole/sf command..............ooiiiiiiiiiiiiie s 1233
pair_style 1j/st/dipole/sf/gpu command..............cooiiiiiiiiiiiiie e 1233
pair_style lj/st/dipole/sf/omp cOMMANd...........ceeiiiiiiiiiiiieeeee e 1233
pair_style lj/cut/dipole/long coOmMmand............ccccerieiiiiiiiiiiieiee e 1233
pair_style lj/long/dipole/long command.............ccceerieriiiiinieniienie ettt 1233
pair_style dpd COMMANA.........cciiiiiiii ettt ettt et e be e bt e nbeenbeeneean 1240
pair_style dpd/gpu COMMANd..........couiiiiiiiiiiie ettt ettt et e b e sb e b b neeas 1240
pair_style dpd/omp COMMANG.........ccuiiiiiiiiiiiie ettt ettt ettt e sbe e b e b e nbeeneeas 1240
pair_style dpd/tstat COMMAN............eooiiiiiiiiiie ettt ettt e b e bbb eean 1240
pair_style dpd/tstat/gpu COMMANA..........coiiiiiiiiiie ettt ettt sttt sb e b e b eeean 1240
pair_style dpd/tstat/Omp COMMEANA..........cceiiiiiieiieiieiei ettt ettt et e sb e b enbeenbeeneeas 1240
pair_style dpd/conservative COMMAN...........ccoueerierierienieiierttentee ettt et e sttt e b e b e neeeneeas 1244
pair_style dpd/fdt COMMANA............ooiiiiiiiie et 1246
pair_style dpd/fdt/energy CoOmMmand............cccuovieiiiiiiniiiie et 1246
pair_style dSmC COMMANG.....c..ccieiiiiriiiieietereee ettt et ettt sae bt be e sbeennens 1249
PAIr_Style €am COMMANT........coiiiiiiiiiieii ettt et e bt b e b et e bt e bt e sbe e bt ebeebeeneean 1251
pair_style eam/cuda COMMANG........cceiiiiiiiiiiie ettt ettt ettt ettt e sbeesbeenbeebeeneeas 1251
pair_style eam/gpu COMMAN.........ccoeiiiiiiiiiiie ettt ettt ettt ettt e sbeesbeenbeebeeneean 1251
pair_style eam/KK COMMANA...........ooiiiiiiiiieiie ettt ettt 1251
pair_style eam/omp COMMAN............cooiiiiiiiiiieiie ettt ettt sb et e bt e bt e sbee bt ebeenbeeneeas 1251

LAMMPS Users Manual

Table of Contents

pair_style eam/opt COMMANA.ooiiiiiiiiiieiie ettt ettt et e bt e st e sbeesbeebeenbeeneeas 1251
pair_style eam/alloy COMMANA...........ooiiiiiiiiiie ettt sb e be b eneeas 1251
pair_style eam/alloy/cuda COMMAN...........ooiiiiiiieiieieie ettt 1251
pair_style eam/alloy/gpu cOmMMAnd............cccueiiiiiiiiinieiie ettt 1251
pair_style eam/alloy/kk cOmMmMANd...........ccoiiiiiiiiiiiii e 1251
pair_style eam/alloy/omp COMMAN...........ccceeiiiiiiiiinieie ettt ettt be e 1251
pair_style eam/alloy/opt COMMANA..........cceiiiiiiiiieiieiee ettt be e 1251
pair_style eam/cd COMMANA............ooiiiiiiiiiiiie ettt ettt eean 1251
pair_style eam/cd/Oomp COMMANA..........eoiuiiiiiiiiiie ettt ettt ettt sbe e b e b enbeeneeas 1251
pair_style eam/fs COMMANC.........ccuiiiiiiiiiee ettt ettt et b e sbeebeenbeeneean 1251
pair_style eam/fs/cuda COMMAN........ccueiiiiiiiiiiie ettt ettt sb e b b eean 1251
pair_style eam/fs/gpu COMMAN.........cccueiuiiiiiiiiiie ettt ettt 1251
pair_style eam/fs/Kk COMMANA...........ooiiiiiiiiie ettt 1251
pair_style eam/fs/omp COMMAN............coiiiiiiiiiieiieie ettt e b e sb e b e b eneean 1251
pair_style eam/fs/Opt COMMANA..........ooiiiiiiiiiieiie ettt ettt et sb e b e nbeeneean 1251
pair_style edip COMMAN...........ccoiiiiiiiiieie ettt ettt ettt b e b e b e b eneean 1258
pair_style eff/cut COMMANA.........c.oiiiiiiiiie ettt 1261
PaIr_style eim COMMANM.........ooiiiiiiieiie ettt ettt e bttt e b et e bt e bt e sbee bt ebeenbeeneean 1266
pair_style eim/omp COMMANG.........ccuiiiiiiiiiiiie ettt et et et e bt e bt et e bt e sbeesbeesbeebeebeeneeas 1266
PaIr_style auss COMMIANA.coiiiiiiiiiiiei ettt ettt e bt e b e sb et e bt e bt e sbe e bt ebeebeeneeas 1270
pair_style gauss/gpu COMMAN...........coiiiuiiiiiiieiie ettt ettt ettt sb et e bt e bt e beesbeenbeenbeeneeas 1270
pair_style gauss/Omp COMMANG.couiiuiiiiiiieiieiietie ettt ettt et et e bt et e bt e bt e sbee bt enbeenbeeneeas 1270
pair_style gauss/Cut COMMAN.cooiiiiiiiiiiie ittt ettt ettt sb et e bt e bt e beesbeenbeenbeeneeas 1270
pair_style gauss/cut/omp COMMANC.........c.ooiiiiiiiieiieie ettt sttt b e sbeenbeenbeeneeas 1270
pair_style gayberne COMMANG.........c.uoiiiiiiiiiiie ettt ettt e sb e b e b e sbeeneean 1273
pair_style gayberne/gpu COmMMAnd.............ooiiiiiiieiienieie ettt 1273
pair_style gayberne/intel command............ccccoooiiiiiiiiiiiiiie s 1273
pair_style gayberne/omp COMMAN............cccuiiiiiieiiiiieiieiiet ettt sttt sb e eean 1273
pair_style gran/hooke COMMANA...........cooiiiiiiiiiiie ettt 1277
pair_style gran/cuda COMMANA..........coiiiiiiiiiiieie ettt ettt ettt et e bt e sbeenbeenbeeneeas 1277
pair_style gran/omp COMMANG........ccuiiiiiiiiiiiie ittt ettt sb et e bt e bt e sbeesbeebeenbeeneean 1277
pair_style gran/hooke/history COMMAN............covierieniiiiinierierie ettt 1277
pair_style gran/hooke/history/omp cOmMmand............cooueriiiiaiienienienieie e 1277
pair_style gran/hertz/history COMMANC..........ccouterieriinieiieiiertiert ettt et bee e eeeas 1277
pair_style gran/hertz/history/omp COMMANd...........cceeriiiiiniierienienienieeiesteei ettt 1277
pair_style 1j/gromacs COMMANA..........cccuiiiiiiiiieiie ettt sttt sb e sb e e b eneean 1281
pair_style lj/gromacs/cuda COMMANG..........cceiiiiiiiiiiiieie ettt 1281
pair_style 1j/gromacs/gpu COMMAN...........ccceeiiiiieiieniiiieiert ettt et e e 1281
pair_style 1j/gromacs/omp COMMAN..........ccceeiierieriinieiieiiert ettt ettt sbe e b e neeeneean 1281
pair_style lj/gromacs/coul/gromacs command...............ccoeerierienienienienieneeee et 1281
pair_style lj/gromacs/coul/gromacs/cuda command.............cceceerieiienienienienieneese e 1281
pair_style lj/gromacs/coul/gromacs/omp COMMANA..........ccceeruierierienienieniieneenee e esieeseeenieeneeeeeas 1281
pair_style hbond/dreiding/lj COMMANA...........cceiiiiiiiiiiiieieie et 1284
pair_style hbond/dreiding/lj/omp commMand..............ccouerierierienienienieiestesee et 1284
pair_style hbond/dreiding/morse COMMAN...........ceiierieiiirienienie ettt 1284
pair_style hbond/dreiding/morse/omp COMMANA............cceiiierienienienienieriereesee et 1284
pair_style hybrid COmMMANC..........ccccouiriiiiiiriiiie ettt st 1289
pair_style hybrid/omp cOmmand.............ceceriririeiiinininieieneeeetcteee ettt 1289

LAMMPS Users Manual

Table of Contents

pair_style hybrid/overlay cOmmand.............ccccoerieviiniiiriinineecee et 1289
pair_style hybrid/overlay/omp command.............cccccoererieniininieniinineeeceneeeeene e 1289
pair_style Kim COMMANd.......cc.coiriiiiriiiiiieicreete ettt ettt st s 1295
pair_style 1cbop COMMANA........cc.coiiriiriiiiiieicreeee ettt st 1297
pair_style line/lj COMMANC..........cocuiriiriiiiiiiieeese ettt st 1299
pair_style Jist COMMANA.ooiiiiiiii ettt ettt et be e bt e b e beeneean 1301
pair_style 1j/cut COMMEANC..........coiiiiiiiiee ettt ettt e b e b e b e b eneean 1304
pair_style lj/cut/cuda cOmMmMANd...........ccooiiiiiiiiiiie et 1304
pair_style 1j/cut/gpu COMMAN...........cooiiiiiiiiieiie ettt ettt 1304
pair_style lj/cut/inte]l COMMANG...........ooiiiiiiiiiieiie ettt ettt b e be e 1304
pair_style 1j/cut/kk cOmMmand...........ccoooiiiiiiiiiieiie et 1304
pair_style 1j/cut/opt COMMANA.........ccoiiiiiiiiiiie ettt e sb e be e b eneean 1304
pair_style 1j/cut/omp COMMANG..........coiiiiiiiiiiie ittt ettt ettt sb e sb e b e b eneean 1304
pair_style lj/cut/coul/cut COMMAN.........ccuiiiiiiiiieiieiee ettt ettt be e b eneeas 1304
pair_style lj/cut/coul/cut/cuda command...............ccocieriiiiiniiiienieee e 1304
pair_style lj/cut/coul/cut/gpu cOMMANA..........cceiiiiiiiiiiiieie et 1304
pair_style lj/cut/coul/cut/omp cOMMANA.........ccceeiiiiiiiiiiiiieiere et 1304
pair_style lj/cut/coul/debye command...............ccoeeiiiiiiiiiiiiiiee e 1304
pair_style lj/cut/coul/debye/cuda command...............ooiiiiiiiiiiiniiiieeeeeee e 1304
pair_style lj/cut/coul/debye/gpu command............cccooriiiiiiiiiienieeee e 1304
pair_style lj/cut/coul/debye/kk command..............ccccueriiiiiiiiniinieee e 1304
pair_style lj/cut/coul/debye/omp command............c.coeeiiiiiiiiiienienieeeee e 1304
pair_style lj/cut/coul/dst cOMMANd...........coiiiiiiiieiiiiee ettt 1304
pair_style lj/cut/coul/dst/gpu command.............cooieriiiiiiiiiieee e 1304
pair_style lj/cut/coul/dst/kk cOMMAN............coeeiieiiiiiiiii e 1304
pair_style lj/cut/coul/dst/omp command............cccceeriiriiiiiiiiiieeeee e 1304
pair_style lj/cut/coul/long COMMANG...........ooiiiiiiiiiieieieer ettt ee e 1304
pair_style lj/cut/coul/long/cs COMMANA..........cceiiiiiiiiiiiieiier ettt ettt 1305
pair_style lj/cut/coul/long/cuda cOmMmMand.............cccuerieiienierienieniee et 1305
pair_style lj/cut/coul/long/gpu COMMEANA...........cerieiiiriiiiiiieriieriee sttt 1305
pair_style lj/cut/coul/long/intel command.............ceoieriiiiiniiiienieieee e 1305
pair_style lj/cut/coul/long/opt COMMANC........cc.eeiiiiiiriiiieiiei ettt be e 1305
pair_style lj/cut/coul/long/omp COMMAN..........cccuerieriiiiiiieiienie ettt 1305
pair_style lj/cut/coul/msm COMMANd..........ccccoiieiieiiinieiieierie ettt ettt eean 1305
pair_style lj/cut/coul/msm/gpu COMMANA..........cooieiiiniiiiiiieieriee et 1305
pair_style lj/cut/coul/msm/omp COMMANC.........ccciiiiiiiiiiiiieierie et 1305
pair_style lj/cut/tip4p/cut COMMANA...........coiiiiiiiieiieieie ettt et be e eeeas 1305
pair_style lj/cut/tip4p/cut/omp COMMANA..........ceiiiiiirieiieiiertieree sttt et et nbee e eeas 1305
pair_style lj/cut/tip4p/long cOMMAN.........cceeiiirieriiiieiieier ettt 1305
pair_style lj/cut/tip4p/long/omp COMMANA........ccciriiiriiiiiriierierie sttt 1305
pair_style lj/cut/tip4p/long/opt COMMANG..........ceoieriiriiiiiiriieiieree sttt ettt e e e 1305
pair_style 1J96/cut COMMANG........ccceoiiriiriiiiiiririeerereeee ettt ettt st sae e eaeens 1310
pair_style 1j96/cut/cuda cOmMMANA.........ceocueriiririeiineneeeeee ettt st 1310
pair_style 1j96/cut/gpu COMMAN..........coviiiiiiriiieieneieeteeee ettt st eaeens 1310
pair_style 1j96/cut/omp COMMANC.........ccceeiiriiririeieneieeteeee ettt st eanens 1310
pair_style 1j/cubic cOmMMANd...........cocuoiiiiiiiiiieiie ettt 1312
pair_style 1j/cubic/gpu COMMANA........cccooiiiiiiiieiie ettt 1312
pair_style 1j/cubic/omp COMMANC.........coooiiiiiiiiiie ettt 1312

XiX

LAMMPS Users Manual

Table of Contents

pair_style lj/expand commMand..............coouiriiiiiiieiieee ettt 1314
pair_style lj/expand/cuda cOmmand............ccccooiiiiiiiiniiiie e 1314
pair_style lj/expand/gpu COMMANA.........cceoiiiiiiiieiieieie ettt et be e 1314
pair_style lj/expand/omp COMMANA............coiiiiiiiiiiiieie ettt 1314
pair_style lj/long/coul/Iong COMMANA........cceiiiiiiiiieiieiiet ettt ettt et e e 1316
pair_style lj/long/coul/long/omp commMand..............cceeueriirienienienienienieeeee ettt 1316
pair_style lj/long/coul/long/opt COMMANA.........ccoiiiiiiiiiiiiieienie ettt 1316
pair_style 1j/long/tip4p/long COMMAN...........cceerieriiriiiieiieriieree ettt et e e 1316
pair_style 1j/sf COMMANd.........cccoiiiiiiiieee ettt ettt 1320
pair_style 1j/st/omp COMMANA.............oooiiiiiiiiiiee e 1320
pair_style 1j/smooth COMMAN............coiiiiiiiiiiie ettt 1322
pair_style lj/smooth/cuda cOMMANA...........cccoiiiiiiiiiiiieeee ettt 1322
pair_style 1j/smooth/omp COMMANG.........ccoiiiiiiiieiieiee ettt 1322
pair_style lj/smooth/linear COMMANA..........cccciiiiiiiiiiiieiiee ettt 1324
pair_style lj/smooth/linear/omp COMMANC.........cccueriiriiiiiiieieriertee ettt 1324
pair_style 1j/cut/Soft COMMAN...........eoiiiiiiiiiie ettt 1326
pair_style 1j/cut/soft/omp COMMANA............oooiiiiiiiiiiiiee et 1326
pair_style lj/cut/coul/cut/soft cOMMANA...........ccceiiiiiiiiiiiieee e 1326
pair_style lj/cut/coul/cut/soft/omp COMMANC..........ccceeriiiiiiiiiieieieee e 1326
pair_style lj/cut/coul/long/soft COMMANA...........cccceeriiriiiiiiieeieeeee e 1326
pair_style lj/cut/coul/long/soft/omp cOMMANA..........ccoueriiiiiriienierierie ettt 1326
pair_style lj/cut/tip4p/long/soft COMMANA..........ccceeiiiiiiiiiiieieiee et 1326
pair_style lj/cut/tip4p/long/soft/omp cOmMMANd..........cceeriiriiriinienienieieeeee et 1326
pair_style lj/charmm/coul/long/soft command...........c..oooueiiiiiiniiinienieieeee e 1326
pair_style lj/charmm/coul/long/soft/omp command..............cccceerierieniinienienieneeseeeeeeee e 1326
pair_style coul/cut/Soft COMMAN...........ccueiiiiiiiieiieiee ettt be e 1326
pair_style coul/cut/soft/omp COMMANC..........ccoiiiiiiiiiiiiiei ettt be e 1326
pair_style coul/long/soft COMMAN.........cceiiiiiiiiieiieiee ettt 1326
pair_style coul/long/soft/omp cOmMMANA............cooieiiiiiiiiiiieieie e 1326
pair_style tip4p/long/soft COMMANA............oiiiiiiiiiiieiee ettt 1326
pair_style tip4p/long/soft/omp COMMANA..........coiiiiiiiiiiiiie ettt 1326
pair_style lubricate COMMANA.........cccoiiiiiiiiiiie ettt ettt e be b eneean 1331
pair_style lubricate/omp COMMAN.........ccuiiiiiiiiieiieieiieeert ettt sttt et sbe b e e eeas 1331
pair_style lubricate/poly COMMAN.........ccuiiiiiiiiieiieieie ettt ettt sb e e b e b eneean 1331
pair_style lubricate/poly/omp COMMANA.........c..ceriiiiiiiiiiiieiere et 1331
pair_style lubricatelU cOmMMANA..........cocooiiiiiiiiiiie ettt 1335
pair_style lubricateU/poly cOmMMAand...........cccovieiieriinieiieieie ettt 1335
pair_style j/mdf command............cccooiriiiiiniiniii e 1339
pair_style buck/mdf cOmMMANA...........ccooiiiiiiiiiniiicee e 1339
pair_style lennard/mdf command.............ccccoeririiiiniiiiii e 1339
pair_style meam COMMAN.........c..uiiiiiiiiiiiieiie ettt ettt b et e bt e bt e b e bt ebeenbeeneean 1342
PAIT_Style MEAM/SPIINE.......eiiiiiiiiiitieiie ettt e bt e b e b et e bt e bt e sbe e bt ebeebeeneeas 1348
pair_style meam/sSpliNe/OM......cciiiiiiiiiieee ettt ettt ettt e b e bbb eean 1348
PAIr_Style MEAM/SW/SPIINE.co.iiiiiiiiiiiiie ettt ettt ettt et sb e sb e b e nbeeneean 1351
pair_style meam/sw/SPINE/OMIP..........couiiiiiiiiieiie ettt ettt ettt e sbe e b et e b eneean 1351
pair_style MmgpPt COMMEANC.......cceiiiiiiiiiiiee ettt ettt e bt et e bt et e bt e bt ebeenbeeneean 1354
pair_style mie/Cut COMMANG...........couiiiiiiiiietie ettt et e bt et e bt et e bt e bt e sbeesbeebeebeeneean 1357
pair_style mie/cut/Zpu COMMANC.cccuiiiiiiiiieiie ettt ettt sttt e sbe b e b e b eneeas 1357

XX

LAMMPS Users Manual

Table of Contents

pair_modify COMMANM.......ccucoiiiiiiiitieit ettt ettt ettt et et ettt saesbe e ebesaesaeennens 1359

Use Of SPECIAl KEYWOTT........eiuiiiiieieiie ettt ettt ettt ettt e bbb eneean 1361
pair_style morse COMMAN.........c.uiiiiiiiiiiiieite ettt ettt ettt b et e bt e bt e sbee bt enbeebeeneean 1363
pair_style morse/cuda COMMANA.........cccuiiiiiiiiiiiie ettt et b e sbeeneeas 1363
pair_style morse/gpu COMMANA..........coiiiiiiiiiieiie ettt ettt b et e bt e bt e sbee bt ebeenbeeneeas 1363
pair_style morse/omp COMMANA.........ccuiiiiiiiiieiie ittt ettt e bt e bt e sbe e be e b ebeenbeeneeas 1363
pair_style morse/opt COMMAN...........coiiiuiiiiiiieiie ettt et et et e bt et e bt e bt e sbe e bt enbeenbeeneeas 1363
pair_style nb3b/harmonic COMMANA...........ccciiiiiiiiiiiieie ettt 1365
pair_style nb3b/harmonic/omp COMMANC..........ceiieriiiiiiiiiieieree ettt 1365
pair_style nm/cut COMMANC........ccuiiiiiiiiiiiee ettt ettt b et e bt e bt e bt e bt enbeenbeeneeas 1367
pair_style nm/cut/coul/cut COMMANd..........ccceiiiiiieiiiniiie ettt ettt sbee b 1367
pair_style nm/cut/coul/long COMMANG...........coiiiiieiienieiieriert ettt ettt e e eneeas 1367
pair_style nm/cut/omp COMMANG........ccuiiuiiiiiiieiie ittt ettt e bt e bt e bt e bt e sbeesbeenbeenbeeneeas 1367
pair_style nm/cut/coul/cut/omp COMMANC.........cccciiiiiiiiiiiiieiere et 1367
pair_style nm/cut/coul/long/omp COMMANA...........cccieriiiiiiienienieriee ettt 1367
PAIr_Style NONE COMMANA.......oiuiiiiiiiiiiiiie ettt et e bt e b e b et e bt e bt e beenbeebeenbeeneean 1370
pair_style peri/pmb COMMEANA.........cccuiiiiiiiiiiie ettt ettt b e e b e b eneean 1371
pair_style peri/pmb/omp COMMANC........ccuiiiiiiiiieiieie ettt ettt b e sbe e b e b eneeas 1371
pair_style peri/Ips COMMAN...........couiiiiiiiiieiie ettt ettt ettt ettt e sbe e bt ebeenbeeneeas 1371
pair_style peri/Ips/omp COMMANC...........oiiiiiiiiiiie ettt ettt ettt sbe e b ebeeneeas 1371
pair_style peri/ves COMMEANG..........couiiiiiiiiieiie ettt et et e bt e bt et e bt e bt e sbeesbeebeebeeneeas 1371
pair_style peri/eps COMMEANG..........couiiiiiuiiiieitie ettt et ettt b et e bt e bt e sbee bt enbeebeeneeas 1371
pair_style polymorphic COMMANG...........ooiiiiiiiiiieiieiee ettt 1375
PAIr_style qUIP COMMEANC.......coiiiiiiiiiiie ettt ettt b et e bt e bt e bt e sbeebeebeennean 1381
Pair_style reax COMMAN........c..ceiiiiiiiiiiieiie ettt ettt et e bt e b e bt et e bt e sbeesbe e bt ebeebeeneean 1383
pair_style reax/c COMMAN.........co.uiiiiiiiiieiieie ettt ettt et e bt e bt et e bt e bt e b e bt ebeenbeeneean 1386
pair_style resquared COMMANG........c..couiriereriiririetene ettt ettt et ettt sae st st enesaesbeennens 1391
pair_style resquared/gpu COMMANA...........ccueriiririerieninerietene ettt ettt st be st saeeneens 1391
pair_style resquared/Omp COMMANA.........ccueruiririeriininirieteneeeetente sttt ettt st besresaeeaeens 1391
pair_style 1j/sdk COMMANA.c.coceeriiriiniiieieieese ettt sttt 1395
pair_style 1j/sdk/Zpu cOmMANd..........ccooiriiriiiirieieneneeeese ettt 1395
pair_style 1j/sdk/kk command............coooieieriiriniiiiinieeeseeectee et 1395
pair_style 1j/sdk/omp COMMANA.........cceriiiiriiriiieienereeeeee ettt st 1395
pair_style lj/sdk/coul/long command...........c.ccocereerierirerienienineceese ettt 1395
pair_style lj/sdk/coul/long/gpu cOMmMANd..........coceecveriririeniininieieniene ettt eanens 1395
pair_style lj/sdk/coul/long/omp COMMANG.........coceevueriririiriininieieneste ettt saeeaeens 1395
pair_style smd/hertz cCOmMmMAnd..........c..ooveveriiriiieiiincreeeee ettt st 1398
pair_style smd/tISph COMMANG........cc.coiriiiiriiririeecreeee ettt st eaeens 1399
pair_style smd/tri_surface COMMANA..........cccooiiiiiiiiinieiieie ettt 1400
pair_style smd/ulsph COMMANG..........coiiiiiiiiiie ettt be e 1401
pair_style smtbq COMMAN...........cooiiiiiiiiiieie ettt ettt eean 1403
PAIr_Style SNAP COMMANG.......coiuiiiiiiitieiieet ettt ettt e st e bt e bt e b et e bt e sbeesbeesbeebeenbeeneean 1408
Pair_style SOft COMMANM.........oiiiiiiiiiie ettt ettt b e sb e sbe e b e beeneean 1411
pair_style soft/gpu COMMANd..........couiiiiiiiiiiiie ettt ettt e sb e sb e b e sbeeneean 1411
pair_style soft/Omp COMMANG.........ccuiiiiiiiiieitie ettt ettt ettt e b e b ebeenbeeneeas 1411
pair_style sph/heatconduction COMMANA...........ccoieiiiiiiiieiier ettt 1413
pair_style sph/idealgas COMMANA...........couiiiiiiiiieiieiee ettt ettt be b eeeas 1414
pair_style sph/lj COMMANA.........cooiiiiiiiiiie ettt ettt e b e bt e nbeenbeeneean 1416

XXi

LAMMPS Users Manual

Table of Contents

pair_style sph/rhosum COMMANA.............ooiiiiiiiiiii et 1418
pair_style sph/taitwater COMMANG...........cecveriiririerienineeietene ettt ettt et sbe et ene e saeeneens 1419
pair_style sph/taitwater/morris COMMANC..........coiiiiiiriiiieiierierie ettt ettt e e eeeas 1421
PAIT_Style STP COMMIANA.ottt ettt ettt e bt b e b et e bt e bt e bt e bt ebeebeeneeas 1423
PAIT_StYIE COMMANG.eiiiiiiiiiie ittt et e bt e b e b et e bt e bt e sbe e bt ebeenbeensean 1426
PAIT_StYIE SW COMMANG......eiitiiiiiiitiiitie ettt sb et e bt e b e b et e bt e bt e sbe e bt ebeebeeneean 1430
pair_style sw/cuda COMMANG..........couiiiiiiiieiie ettt ettt e bt et e b e bt enbeenbeeneeas 1430
Pair_style SW/ZPU COMMEANA........couiiiiiiiiieiieee ettt ettt sb et e bt et e b e bt ebeenbeeneeas 1430
pair_style sw/intel COMMANd..........ccuiiiiiiiiiiie ettt ettt 1430
pair_style sSW/KK COMMANG.........cooiiiiiiiiiiee ettt ettt e b e b e b nbeeneeas 1430
pair_style SW/omp COMMANG..........oiiiiiiiiiiieitie ittt ettt ettt b et e bt e bt e sbee bt enbeenbeeneeas 1430
pair_style table COMMANA..........coiiiiiiiiiiee ettt ettt et e sbeesbeenbeenbeeneeas 1434
pair_style table/gpu COMMAN............ooiiiiiiiiiieiie ettt ettt 1434
pair_style table/kk COMMANA..........cocuiiiiiiiiiie ettt 1434
pair_style table/omp COMMAN...........cocuiiiiiiiiiiiie ettt sttt b e sbe e b b eneeas 1434
pair_style tersoff COMMANA.........cc.oiiiiiiiiiie ettt 1438
pair_style tersoff/table COMMAN............ooiiiiiiiiiie et 1438
PAIT_StYLE terSOTT/CUA.ceiiiiiiie ettt et b et be e b neean 1438
PAIT_SEYLE tETSOTT/ZPU. ..ttt ettt ettt e sb e sb e b e beeneean 1438
PAIT_StYLE tETSOTT/INIEL.....ceiiiiiiie ettt ettt sb e b bt e b e beeneean 1438
PAIT_SEYLE tETSOTT/KK ...ttt ettt e b e sb e b e beeneean 1438
PAIT_StYLE teTSOTT/OMIP ... ittt ettt ettt e bt sb e b ebeeneean 1438
pair_style tersoff/table/omp COMMANA...........ccoiiiiiiiiiiiiie et 1438
pair_style tersoff/mod COMMANG...........coooiiiiiiiiiie ettt e 1443
pair_style tersoff/mod/kk cOmMmMAaNd...........cccoiiiiiiiiiniiiee e 1443
pair_style tersoff/mod/omp commMand............c..coiieriiriiiiiiieee e 1443
pair_style tersoff/zbl COMMANC...........coiiiiiiiiieiie ettt 1447
pair_style tersoff/zbl/Kk cOmMMAaNd..........cc.ooiiiiiiiiiiieiee et 1447
pair_style tersoff/zbl/omp coOmMmand..............ccoiiiiiiiiiiiiieeee e 1447
pair_style thole COMMANd...........ccoiiiiiiiiiie ettt be b eneean 1453
pair_style tri/lj COMMAN...........ccoiiiiiiiiieee ettt b et ettt e b e b e b e b eeean 1455
pair_style vashishta COmMMANd............c.coiiiiiiiiiiie ettt 1457
pair_style vashishta/omp COMMANA............cooiiiiiiiiiiiiee e 1457
PAIT_WIILE COMIMANGeitiiitiiiiieitie ettt et e et e bt e bt e st e e sbee s bt e sbe e bt e bt e bt enbee bt enbeebeenbeenbeensean 1461
pair_style yukawa COMMANG...........ooiiiiiiiiieiie ettt ettt e be e b e be e b eneean 1463
pair_style yukawa/gpu COMMANA........cc.coiiiiiiiiiiie ettt b e 1463
pair_style yukawa/omp COMMAN..........ccuiiiiiiiiieiieieee ettt ettt 1463
pair_style yukawa/colloid coOmmand.............ccooiiiiiiiiniiiiiieeseeree et 1465
pair_style yukawa/colloid/gpu cOMMANA..........cooiiiiiiiiiieieiieriereie ettt 1465
pair_style yukawa/colloid/omp cOMMANA.........ccciiiiiiiiiiiiieiieriee et 1465
pair_style Zbl COMMIANA..........ooiiiiiiiie ettt ettt ettt et e b e sbeebeebeeneean 1468
pair_style zbl/gpu COMMAN...........couiiiiiiiiiiie ettt ettt b et eean 1468
pair_style zbl/omp COMMANG..........ccuiiiiiiiiiiiie ettt ettt e b e bt e nbeenbeeneean 1468
PATtIEION COMIMANG ... ittt e et e b e sb e b e s bt e sbeesbeeebe e bt e bt e bt e bt e bt enbeebeenbeenbeensean 1471
PIA COMMEAN.......eeiiiiee ettt h e b e b e s bt e bt e sb e e bt e bt e bt e bt e bt e nbee bt enbeenbeensean 1473
PIINE COMMEAN. ...ttt ettt e st e b e b e b e e s bt e sb e e s bt e ebe e bt e bt e bt e bt enbeebeebeenbeenbeensean 1478
PTOCESSOIS COMIMANT.eiutiettitieetieetieeite et et et e sttesttestee s bt e bt e st eesbeesbeesbee bt e bt e beenbee bt enbeebeenbeenbeensean 1480
PYthON COMMIANA. ...ttt sb e b e b et e bt e bt e be e beebeebeeneean 1485

LAMMPS Users Manual

Table of Contents

QUIL COMIMANG. ..ottt et ettt ettt ea et e sb e eb et e bt s bt ebe et e sbeeaeennentesueennens 1492
read _data COMMANG.........oooiiiiiiiiiii e a e e e e et e e eeeeeeeeeeseeeeeaeeaeaaeeeeeeaeeaenas 1493
read_dUump COMMANG.coiiiiiiiie ettt e bt b e b et e bt e bt e sbe e bt ebeebeeneeas 1509
TEAA_TESTATT COMIMANT. ... oot e e e et e aaaaaaaees 1514
TEZION COMIMAN ...ttt ettt et e s bt e st e e bt e bt e bt e sbeesbeesb e e bt e bt e bt enbee bt e bt enbeebeenbeenbeensean 1518
TEPlICAtE COMMEAN.oiiiieiiiiiiiie ettt b et e b e bt e b e bt e bt e bt e bt e ebee bt ebeebeensean 1523
TETUN COMIMEANC....eiiiiiiitiiiiiee et e e e ettt e e e e e et eeeeeeeeaaaaeeeeeeseeaaaaeeeeeseesaaaeeeeesssanssaeseeeeeeannraeneeens 1525
reset_tiMEeSteP COMIMANT.....c.eiiuiiitiiitieiie ittt ettt ettt et e st e bt e bt e bt e bt e bt e bt e bt enbeebeebeenbeensean 1528
F S 821 AeT0) 101 0F:1 1 Le IO SRR 1529
TUN COMIMEANT.....tiiiiiiiiiiiieiiee ettt e e e e e et e e e e e e ee et aaeeeeesseeaaaaeeeeeseesnaaaeeeeesssenssaeseeeeseannraeneeens 1532
TUN_SEYI& COMMEAN.....c..iiiiiiiiiie ettt b et e bt e bt e b e b ebeebeeneean 1535
SEE COMIMANC. .. .ueiiiiiiiiiiiiiiteiiee ettt et et e e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeesasesssssssssssssssssesasessssssssenerenenees 1539
SHEIL COMMEANT......evviiiiiiiieeeee et e e et e e e e e e et e e e e e s eeaaaeeeeessesnaaeeeeeseeans 1545
special_bonds COMMEAN...........oooiiiiiiiii ettt et ettt et ettt eneea 1547
R 00§ D10} 101 0F21 o 6 RO 1551
L2270 IT0) 001 00 21 1 (o IR SRR 1553
EEIMPET COMIMANT. ...ttt ettt ettt et et et e et e e s bt e bt enbe e bt enbeenbeenteebeenbeenbeenseensean 1558
110150 0010 IR w10} 1011 0F2Y o ¢ AU PP 1561
thermo_modify COMMANG.c.ooiuiiiiiiieie ettt ettt ettt et e b e b ebeeneean 1562
thermo_Style COMMANG.c.eoiuiiiiiie ettt et e b et e e bt et e bt e beebeebeennean 1565
HIMNET COMIMANT......cuuviiiieiieieieeeee et e e e e e ettt e e e e e eaaeeeeeeeseenaaaaeeeeesseassaaeeeeessassaaseeeesseennsereeeeeeaans 1570
tIMESLEP COMIMANG.....eueeiutieitieiieeite ettt ettt ettt ettt et e et e et e et e e beeabeenbe e bt enbeenbeenteebeenbeanbeenbeensean 1572
Tutorial for Thermalized Drude oscillators in LAMMPS.........couuiiiiiiii e 1573
UNCOMPULE COMIMATIA. c...eiiiiiiiiiieitie ettt ettt sttt ettt e sttt e sabeesabeeeabeeeabeeebeeesbbeesbbeesmbeesabeesbeeanne 1580
UNAUMP COMIMAN. ...ttt ettt ettt e bt e bt et e et e esteenbeeabe e bt enbeenbeenbeenbeebeenbeenseensean 1581
UNTIX COMIMANG......ccoiiiiiiiiiieieeeee et e et e e e e e et e e e e e e e eeaaaaeeeeesseenaareeeesseennaeseeeeseaans 1582
UNIES COMIMEANG......ciiiiiiiiiiee ittt e e e e e ettt e e e e e e eeeeeeeeeeaaaaeeeeesseassaaeeeeessessaaneeeesseannaeeeeeeeeaans 1583
Variable COMIMANG.oooiiiiiiiiiii et e e e e e e e e e et e e e e e s e e eaaaaeeeesseennaaseeeeeeaans 1587

IMAth OPETALOTS......cueeniiieeiietinte ettt sttt ettt sttt sb et e e st sbe et et sbeebeeaenbeeaeennen 1593

Y BT 0T S0 e el T0) o SRR 1594

Group and Region FUNCHONS.cccoiiiiiiiiiiiieicicectceec et 1596

SPECial FUNCHOMNS. ...cviiuiiiiiiiiieieiec ettt sttt ettt sae b eneens 1596

FEAtUIe FUNCHONScoiiiiiiieiee ettt e e e e et e e e e e et e e e e e e s seaaaareeeesseenaaneeeeeeeans 1597

Atom Values and VECLOTS........oooiiiiiiiiieieeeeee e ee e e e e e e e e e e e eeeeeeeaeaeaaeeeeeas 1598

ComPULE REFETEICES. ... eeuieuiiiiiiiiieiiieee sttt ettt 1598

D G RS (S (1 (o= PR 1599

Variable REFEIEICES.vveiiiiiiiieiieeeee ettt e e e e e e e e et e e s s e aaaaeeeeeeens 1599
VEIOCILY COMIMANG.eiiutiiitieiie ettt et ettt ettt e bt e bt e bt e beenbeenbeebeebeenbeenbeensean 1604
WIILE_ AAtA COMIMANG. ..ottt eaaa e e e e e e eeeeaaaas 1608
WIILE_dUMP COMMEAN.utiiuiiiiiieiieeite ettt ettt ettt e bt et ebe e bt et e e beenbeenbeebeebeenbeenbeensean 1610
WIILE_TESTATT COMMUANT. ... ettt e aeeeeeeeeeeeaaans 1612

XXiii

LAMMPS Documentation
16 Feb 2016 version
Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run LAMMPS. It is also in the
file src/version.h and in the LAMMPS directory name created when you unpack a tarball, and at the top of the
first page of the manual (this page).

¢ If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most current
version of LAMMPS.

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

¢ There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel computers. It
was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from the DOE.
It is an open-source code, distributed freely under the terms of the GNU Public License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has
more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html
http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://freecode.com/projects/htmldoc

2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions
. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
. Packages
4.1 Standard packages
4.2 User packages
. Accelerating LAMMPS performance
5.1 Measuring performance
5.2 Algorithms and code options to boost performace
5.3 Accelerator packages with optimized styles
5.3.1 USER-CUDA package
5.3.2 GPU package
5.3.3 USER-INTEL package
5.3.4 KOKKOS package
5.3.5 USER-OMP package
5.3.6 OPT package
5.4 Comparison of various accelerator packages
. How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Finite-size spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
6.22 Calculating a diffusion coefficient
6.23 Using chunks to calculate system properties
6.24 Setting parameters for pppm/disp
6.25 Polarizable models
6.26 Adiabatic core/shell model
6.27 Drude induced dipoles

. Example problems
. Performance & scalability
. Additional tools
. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Body styles
10.13 Thermodynamic output options
10.14 Variable options
10.15 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Overview of running LAMMPS from Python
11.2 Overview of using Python from a LAMMPS script
11.3 Building LAMMPS as a shared library
11.4 Installing the Python wrapper into Python
11.5 Extending Python with MPI to run in parallel
11.6 Testing the Python-LAMMPS interface
11.7 Using LAMMPS from Python
11.8 Example Python scripts that use LAMMPS
12. Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages
13. Future and history
13.1 Coming attractions
13.2 Past versions

S O o0

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS to
be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over the
years.

1.1 What is LAMMPS

1.2 LAMMPS features

1.3 LAMMPS non-features

1.4 Open source distribution

1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a
variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section_perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License, which
means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom types,
boundary conditions, or diagnostics. See Section_modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section_history for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs. See
this section for more information on LAMMPS funding and individuals who have contributed to LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, molecules,
or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or boundary
conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby particles. The lists
are optimized for systems with particles that are repulsive at short distances, so that the local density of particles
never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition techniques to partition the
simulation domain into small 3d sub-domains, one of which is assigned to each processor. Processors

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.sandia.gov

communicate and store "ghost" atom information for atoms that border their sub-domain. LAMMPS is most
efficient (in a parallel sense) for systems whose particles fill a 3d rectangular box with roughly uniform density.
Papers with technical details of the algorithms used in LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section_modify, which describes how you can add it to LAMMPS.

General features

® runs on a single processor or in parallel

e distributed-memory message-passing parallelism (MPI)

e spatial-decomposition of simulation domain for parallelism

¢ open-source distribution

¢ highly portable C++

e optional libraries used: MPI and single-processor FFT

¢ GPU (CUDA and OpenCL), Intel(R) Xeon Phi(TM) coprocessors, and OpenMP support for many code
features

e cagsy to extend with new features and functionality

¢ runs from an input script

¢ syntax for defining and using variables and formulas

¢ syntax for looping over runs and breaking out of loops

¢ run one or multiple simulations simultaneously (in parallel) from one script

® build as library, invoke LAMMPS thru library interface or provided Python wrapper

e couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both

Particle and model types
(atom style command)

® atoms

e coarse-grained particles (e.g. bead-spring polymers)

¢ united-atom polymers or organic molecules

¢ all-atom polymers, organic molecules, proteins, DNA
® metals

¢ granular materials

e coarse-grained mesoscale models

¢ finite-size spherical and ellipsoidal particles

¢ finite-size line segment (2d) and triangle (3d) particles
¢ point dipole particles

¢ rigid collections of particles

¢ hybrid combinations of these

Force fields
(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)
® pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2

(COMPASS), hydrogen bond, tabulated
¢ charged pairwise potentials: Coulombic, point-dipole

¢ manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method
(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB, SNAP,
Streitz-Mintmire, 3-body polymorphic

¢ long-range interactions for charge, point-dipoles, and LJ dispersion: Ewald, Wolf, PPPM (similar to
particle-mesh Ewald)

¢ polarization models: QEq, core/shell model, Drude dipole model

e charge equilibration (QEq via dynamic, point, shielded, Slater methods)

¢ coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO

® mesoscopic potentials: granular, Peridynamics, SPH

¢ electron force field (eFF, AWPMD)

¢ bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

¢ angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

¢ dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

¢ improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)

¢ polymer potentials: all-atom, united-atom, bead-spring, breakable

¢ water potentials: TIP3P, TIP4P, SPC

¢ implicit solvent potentials: hydrodynamic lubrication, Debye

¢ force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

¢ access to KIM archive of potentials via pair kim

¢ hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation

¢ overlaid potentials: superposition of multiple pair potentials

Atom creation
(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

¢ read in atom coords from files

e create atoms on one or more lattices (e.g. grain boundaries)
¢ delete geometric or logical groups of atoms (e.g. voids)

¢ replicate existing atoms multiple times

¢ displace atoms

Ensembles, constraints, and boundary conditions
(fix command)

¢ 2d or 3d systems

¢ orthogonal or non-orthogonal (triclinic symmetry) simulation domains
¢ constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators

¢ thermostatting options for groups and geometric regions of atoms

e pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
¢ simulation box deformation (tensile and shear)

¢ harmonic (umbrella) constraint forces

¢ rigid body constraints

¢ SHAKE bond and angle constraints

® Monte Carlo bond breaking, formation, swapping

¢ atom/molecule insertion and deletion

¢ walls of various kinds

¢ non-equilibrium molecular dynamics (NEMD)

¢ variety of additional boundary conditions and constraints

http://openkim.org

Integrators
(run, run_style, minimize commands)

¢ velocity-Verlet integrator

¢ Brownian dynamics

¢ rigid body integration

¢ energy minimization via conjugate gradient or steepest descent relaxation
¢ rRESPA hierarchical timestepping

¢ rerun command for post-processing of dump files

Diagnostics
e see the various flavors of the fix and compute commands

Output
(dump, restart commands)

¢]og file of thermodynamic info

¢ text dump files of atom coords, velocities, other per-atom quantities

® binary restart files

e parallel I/O of dump and restart files

® per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
e user-defined system-wide (log file) or per-atom (dump file) calculations

e spatial and time averaging of per-atom quantities

¢ time averaging of system-wide quantities

¢ atom snapshots in native, XYZ, XTC, DCD, CFG formats

Multi-replica models

nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering

Pre- and post-processing

¢ Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.

¢ Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Specialized features
These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

¢ static and dynamic load-balancing

¢ generalized aspherical particles

¢ stochastic rotation dynamics (SRD)

¢ real-time visualization and interactive MD

¢ calculate virtual diffraction patterns

¢ atom-to-continuum coupling with finite elements

¢ coupled rigid body integration via the POEMS library

* QM/MM coupling

¢ path-integral molecular dynamics (PIMD) and this as well

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

® Monte Carlo via GCMC and tfMC and atom swapping
¢ Direct Simulation Monte Carlo for low-density fluids
¢ Peridynamics mesoscale modeling

¢ Lattice Boltzmann fluid

¢ targeted and steered molecular dynamics

¢ two-temperature electron model

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting particles.
Many of the tools needed to pre- and post-process the data for such simulations are not included in the LAMMPS
kernel for several reasons:

¢ the desire to keep LAMMPS simple
¢ they are not parallel operations

e other codes already do them

¢ limited development resources

Specifically, LAMMPS itself does not:

¢ run thru a GUI

¢ build molecular systems

¢ assign force-field coefficients automagically

¢ perform sophisticated analyses of your MD simulation
¢ visualize your MD simulation

¢ plot your output data

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are described
in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses some
of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and assign
force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices (fcc,
bec, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond
coeff, angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to LAMMPS input format, or write their own code
to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or AMBER or
other molecular builders to setup such problems and dump its information to a file. You can then reformat the file
as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their own
analysis tools or re-format them for input into other programs, including visualization packages. If you are

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

convinced you need to compute something on-the-fly as LAMMPS runs, see Section_modify for a discussion of
how you can use the dump and compute and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the computations
are not parallel, so it is often better to leave such analysis to post-processing codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this section. It
creates xyz projection views of atomic coordinates and animates them. We find it very useful for debugging
purposes. For high-quality visualization we recommend the following packages:

e VMD

¢ AtomEye
¢ PyMol

® Raster3d
® RasMol

Other features that LAMMPS does not yet (and may never) support are discussed in Section_history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited to
the problems you want to model. They can also be used in conjunction with LAMMPS to perform complementary
modeling tasks.

e CHARMM
e AMBER

e NAMD

e NWCHEM
e DL_POLY
¢ Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological molecules.
CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism; NAMD and
NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code. DL_POLY
includes potentials for a variety of biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better. You
can send email to the developers on any of these items.

¢ Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your WWW
site.

¢ [f you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

¢ If you find a bug, Section_errors 2 describes how to report it.

¢ If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if you
like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with links and
attributions back to you.

¢ Create a new Makefile.machine that can be added to the src/MAKE directory.

¢ The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

e LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

¢ The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

® You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added to
the page. No promises.

¢ Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA, LDRD,
ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of the
LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is not

listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool pictures
or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW site.

10

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

The core group of LAMMPS developers is at Sandia National Labs:

¢ Steve Plimpton, sjplimp at sandia.gov
¢ Aidan Thompson, athomps at sandia.gov
¢ Paul Crozier, pscrozi at sandia.gov

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

¢ Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list
responder, USER-CG-CMM and USER-OMP packages

¢ Roy Pollock (LLNL), Ewald and PPPM solvers

¢ Mike Brown (ORNL), brownw at ornl.gov, GPU package

® Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential

¢ Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics

¢ Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

® Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum
coupling

¢ Jlya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD

¢ Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package

¢ Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force
field

¢ Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and
granular/fluid coupling

¢ Metin Aktulga (LBL), hmaktulga at Ibl.gov, USER-REAXC package for C version of ReaxFF

¢ Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.thg.de, USER-SPH package

¢ John Carpenter (Mayo Clinic, formerly at Cray Research)

® Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
¢ Steve Lustig (Dupont)

¢ Jim Belak (LLNL)

As discussed in Section_history, LAMMPS originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original version of LAMMPS were the following:

11

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download a LAMMPS tarball you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README [text file
LICENSE [the GNU General Public License (GPL)

bench benchmark problems

doc documentation

examples [simple test problems
potentials [embedded atom method (EAM) potential files

src source files

tools pre- and post-processing tools

Note that the download page also has links to download Windows exectubles and installers, as well as pre-built
executables for a few specific Linux distributions. It also has instructions for how to download/install LAMMPS
for Macs (via Homebrew), and to download and update LAMMPS from SVN and Git repositories, which gives
you the same files that are in the download tarball.

The Windows and Linux executables for serial or parallel only include certain packages and bug-fixes/upgrades
listed on this page up to a certain date, as stated on the download page. If you want an executable with
non-included packages or that is more current, then you'll need to build LAMMPS yourself, as discussed in the
next section.

Skip to the Running LAMMPS sections for info on how to launch a LAMMPS Windows executable on a
Windows box.

12

http://lammps.sandia.gov
http://lammps.sandia.gov/download.html
http://lammps.sandia.gov/bug.html

2.2 Making LAMMPS

This section has the following sub-sections:

® Read this first

¢ Steps to build a LAMMPS executable

¢ Common errors that can occur when making LAMMPS
¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

If you want to avoid building LAMMPS yourself, read the preceeding section about options available for
downloading and installing executables. Details are discussed on the download page.

Building LAMMPS can be simple or not-so-simple. If all you need are the default packages installed in
LAMMPS, and MPI is already installed on your machine, or you just want to run LAMMPS in serial, then you
can typically use the Makefile.mpi or Makefile.serial files in src/MAKE by typing one of these lines (from the src
dir):

make mpi
make serial

Note that on a facility supercomputer, there are often "modules" loaded in your environment that provide the
compilers and MPI you should use. In this case, the "mpicxx" compile/link command in Makefile.mpi should just
work by accessing those modules.

It may be the case that one of the other Makefile.machine files in the src/MAKE sub-directories is a better match
to your system (type "make" to see a list), you can use it as-is by typing (for example):

make stampede
If any of these builds (with an existing Makefile.machine) works on your system, then you're done!
If you want to do one of the following:

¢ use optional LAMMPS features that require additional libraries

¢ use optional packages that require additional libraries

¢ use optional accelerator packages that require special compiler/linker settings

¢ run on a specialized platform that has its own compilers, settings, or other libs to use

then building LAMMPS is more complicated. You may need to find where auxiliary libraries exist on your
machine or install them if they don't. You may need to build additional libraries that are part of the LAMMPS
package, before building LAMMPS. You may need to edit a Makefile.machine file to make it compatible with
your system.

Note that there is a Make.py tool in the src directory that automates several of these steps, but you still have to
know what you are doing. Section 2.4 below describes the tool. It is a convenient way to work with
installing/un-installing various packages, the Makefile.machine changes required by some packages, and the
auxiliary libraries some of them use.

13

http://lammps.sandia.gov/download.html

Please read the following sections carefully. If you are not comfortable with makefiles, or building codes on a
Unix platform, or running an MPI job on your machine, please find a local expert to help you. Many compilation,
linking, and run problems that users have are often not really LAMMPS issues - they are peculiar to the user's
system, compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a line
of LAMMPS source code), then please post the issue to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar machine Makefile
included in the scc/MAKE/MACHINES directory, then send it to the developers and we can include it in the
LAMMPS distribution.

Steps to build a LAMMEPS executable:
Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many systems and machines. See the
src/MAKE/README file for a quick overview of what files are available and what sub-directories they are in.

The src/MAKE dir has a few files that should work as-is on many platforms. The src/MAKE/OPTIONS dir has
more that invoke additional compiler, MPI, and other setting options commonly used by LAMMPS, to illustrate
their syntax. The src/MAKE/MACHINES dir has many more that have been tweaked or optimized for specific
machines. These files are all good starting points if you find you need to change them for your machine. Put any
file you edit into the src/MAKE/MINE directory and it will be never be touched by any LAMMPS updates.

>From within the src directory, type "make" or "gmake". You should see a list of available choices from
src/MAKE and all of its sub-directories. If one of those has the options you want or is the machine you want, you
can type a command like:

make mpi

or

make serial_icc
or

gmake mac

Note that the corresponding Makefile.machine can exist in scc/MAKE or any of its sub-directories. If a file with
the same name appears in multiple places (not a good idea), the order they are used is as follows:
stc/MAKE/MINE, src/MAKE, stc/MAKE/OPTIONS, srtc/MAKE/MACHINES. This gives preference to a file
you have created/edited and put in scc/MAKE/MINE.

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like Imp_mpi or Imp_g++_serial or Imp_mac is produced, then you're done;
it's your lucky day.

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below.

Step 1

14

http://lammps.sandia.gov/mail.html

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing Makefile.* in src/MAKE or one of its sub-directories as a starting point. The
only portions of the file you need to edit are the first line, the "compiler/linker settings" section, and the
"LAMMPS-specific settings" section. When it works, put the edited file in scc/MAKE/MINE and it will not be
altered by any future LAMMPS updates.

Step 2

Change the first line of Makefile.foo to list the word "foo" after the "#", and whatever other options it will set.
This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems. You
can also use mpicxx which will typically be available if MPI is installed on your system, though you should check
which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable. You should not need to do this if you use mpicxx.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ and Intel icc works with -D. If your
compiler can't create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm,
which uses different rules that do not involve dependency files. Note that when you build LAMMPS for the first
time on a new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the Makefile
doing its normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options that
are currently recogized are:

¢ -DLAMMPS_GZIP

¢ -DLAMMPS_JPEG

e -DLAMMPS_PNG

¢ -DLAMMPS_FFMPEG

e -DLAMMPS_MEMALIGN

e -DLAMMPS_XDR

¢ -DLAMMPS_SMALLBIG

s -DLAMMPS_BIGBIG

¢ -DLAMMPS_SMALLSMALL
¢ -DLAMMPS_LONGLONG_TO_LONG
¢ -DPACK_ARRAY

¢ -DPACK_POINTER

e -DPACK_MEMCPY

15

http://www.intel.com/software/products/noncom

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It
requires that your machine supports the "popen()" function in the standard runtime library and that a gzip
executable can be found by LAMMPS during a run.

NOTE: on some clusters with high-speed networks, using the fork() library calls (required by popen()) can
interfere with the fast communication library and lead to simulations using compressed output or input to hang or
crash. For selected operations, compressed file I/O is also available using a compression library instead, which are
provided in the COMPRESS package. From more details about compiling LAMMPS with packages, please see
below.

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. For JPEG
files, you must also link LAMMPS with a JPEG library, as described below. If you use -DLAMMPS_PNG, the
dump image command will be able to write out PNG image files. For PNG files, you must also link LAMMPS
with a PNG library, as described below. If neither of those two defines are used, LAMMPS will only be able to
write out uncompressed PPM image files.

If you use -DLAMMPS_FFMPEG, the dump movie command will be available to support on-the-fly generation
of rendered movies the need to store intermediate image files. It requires that your machines supports the "popen"
function in the standard runtime library and that an FFmpeg executable can be found by LAMMPS during the run.

NOTE: Similar to the note above, this option can conflict with high-speed networks, because it uses popen().

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when large

chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector instructions of
modern CPUS, since dynamically allocated memory has to be aligned on larger than default byte boundaries (e.g.
16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in XTC
format. This is only necessary if your platform does have its own XDR files available. See the Restrictions section
of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within LAMMPS, as specified in src/lmptype.h. The only reason to use the BIGBIG setting is to enable
simulation of huge molecular systems (which store bond topology info) with more than 2 billion atoms, or to track
the image flags of moving atoms that wrap around a periodic box more than 512 times. Normally, the only reason
to use SMALLSMALL is if your machine does not support 64-bit integers, though you can use SMALLSMALL
setting if you are running in serial or on a desktop machine or small cluster where you will never run large
systems or for long time (more than 2 billion atoms, more than 2 billion timesteps). See the Additional build tips
section below for more details on these settings.

Note that two packages, USER-ATC and USER-CUDA are not currently compatible with -DLAMMPS_BIGBIG.
Also the GPU package requires the lib/gpu library to be compiled with the same setting, or the link will fail.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for faster
parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default. See the
kspace_style command for info about PPPM. See Step 6 below for info about building LAMMPS with an FFT
library.

16

Step 5

The 3 MPI variables are used to specify an MPI library to build LAMMPS with. Note that you do not need to set
these if you use the MPI compiler mpicxx for your CC and LINK setting in the section above. The MPI wrapper
knows where to find the needed files.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If MPI is
installed on your system in the usual place (under /ust/local), you also may not need to specify these 3 variables,
assuming /ust/local is in your path. On some large parallel machines which use "modules" for their compile/link
environements, you may simply need to include the correct module in your build environment, before building
LAMMPS. Or the parallel machine may have a vendor-provided MPI which the compiler has no trouble finding.

Failing this, these 3 variables can be used to specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be downloaded
from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI packages should
also work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which is likely to be faster than a self-installed MPICH or OpenMPI, so find out how
to build and link with it. If you use MPICH or OpenMPI, you will have to configure and build it for your
platform. The MPI configure script should have compiler options to enable you to use the same compiler you are
using for the LAMMPS build, which can avoid problems that can arise when linking LAMMPS to the MPI
library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. See scc/MAKE/Makefile.serial for
how to specify the 3 MPI variables in this case. You will also need to build the STUBS library for your platform
before making LAMMPS itself. Note that if you are building with src/MAKE/Makefile.serial, e.g. by typing
"make serial", then the STUBS library is built for you.

To build the STUBS library from the src directory, type "make mpi-stubs”, or from the src/STUBS dir, type
"make". This should create a libmpi_stubs.a file suitable for linking to LAMMPS. If the build fails, you will need
to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.c provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs) when
running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the kspace_style
command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can also
leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form

17

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org
http://kissfft.sf.net

-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW?2 library.
Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW?2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make. Note that on some platforms FFTW?2 has
been pre-installed, and uses renamed files indicating the precision it was compiled with, e.g. sfftw.h, or dfftw.h
instead of fftw.h. In this case, you can specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB you must also manually specify the correct
library, namely -Isfftw or -l1dfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with PPPM,
which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and related
PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always need to be
performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory
use and parallel communication costs for transposing 3d FFT data. Note that single precision FFTs have only
been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which LAMMPS uses when writing out
JPEG or PNG files via the dump image command. These can be left blank if you do not use the
-DLAMMPS_JPEG or -DLAMMPS_PNG switches discussed above in Step 4, since in that case JPEG/PNG
output will be disabled.

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so and has an associated header file
jpeglib.h. Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

A standard PNG library usually goes by the name libpng.a or libpng.so and has an associated header file png.h.
Whichever PNG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, and you have pre-built any other needed libraries (e.g. MPI, FFT,
etc) all you need to do from the src directory is type something like this:

make foo

18

http://www.fftw.org

or
gmake foo

You should get the executable Imp_foo when the build is complete.

Errors that can occur when making LAMMPS:

NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very explicitly what the
problem is. The error message should give you a hint as to which of the steps above has failed, and what you need
to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and linker need to
find the appropriate files and those files need to be compatible with LAMMPS source files. When a make fails,
there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated
Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make —-f Makefile.list linux
gmake —-f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not support
"long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips:
(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-machine" will delete *.o object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or -DLAMMPS_BIGBIG or
-DLAMMPS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the LMP_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DLAMMPS_SMALLBIG which allows for systems with up to 2763 atoms and 263 timesteps
(about 9e18). The atom limit is for atomic systems which do not store bond topology info and thus do not require
atom IDs. If you use atom IDs for atomic systems (which is the default) or if you use a molecular model, which
stores bond topology info and thus requires atom IDs, the limit is 2231 atoms (about 2 billion). This is because the

19

IDs are stored in 32-bit integers.

Likewise, with this setting, the 3 image flags for each atom (see the dump doc page for a discussion) are stored in
a 32-bit integer, which means the atoms can only wrap around a periodic box (in each dimension) at most 512
times. If atoms move through the periodic box more than this many times, the image flags will "roll over", e.g.
from 511 to -512, which can cause diagnostics like the mean-squared displacement, as calculated by the compute
msd command, to be faulty.

To allow for larger atomic systems with atom IDs or larger molecular systems or larger image flags, compile with
-DLAMMPS_BIGBIG. This stores atom IDs and image flags in 64-bit integers. This enables atomic or molecular
systems with atom IDS of up to 263 atoms (about 9¢18). And image flags will not "roll over" until they reach
2720 = 1048576.

If your system does not support 8-byte integers, you will need to compile with the -DLAMMPS_SMALLSMALL
setting. This will restrict the total number of atoms (for atomic or molecular systems) and timesteps to 231
(about 2 billion). Image flags will roll over at 29 = 512.

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else LAMMPS will generate
a run-time error. As far as we know, the settings defined in src/lmptype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2731 atoms per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms of CPU
secs/timestep.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the src/MAKE/MACHINES/Makefile.mac and Makefile.mac_mpi
files.

Building for Windows:

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows executable.
See the Running LAMMPS section for instructions on running these executables on a Windows box.

The pre-built executables hosted on the LAMMPS download page are built with a subset of the available
packages; see the download page for the list. These are single executable files. No examples or documentation in
included. You will need to download the full source code package to obtain those.

As an alternative, you can download "daily builds" (and some older versions) of the installer packages from
rpm.lammps.org/windows.html. These executables are built with most optional packages and the download
includes documentation, some tools and most examples.

If you want a Windows version with specific packages included and excluded, you can build it yourself.

One way to do this is install and use cygwin to build LAMMPS with a standard unix style make program, just as
you would on a Linux box; see scc/MAKE/MACHINES/Makefile.cygwin.

20

http://lammps.sandia.gov/download.html
http://rpm.lammps.org/windows.html

2.3 Making LAMMPS with optional packages
This section has the following sub-sections:

¢ Package basics

¢ Including/excluding packages

¢ Packages that require extra libraries

¢ Packages that require Makefile.machine settings

Note that the following Section 2.4 describes the Make.py tool which can be used to install/un-install packages
and build the auxiliary libraries which some of them use. It can also auto-edit a Makefile.machine to add settings
needed by some packages.

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages.

You can see the list of all packages by typing "make package" from within the src directory of the LAMMPS
distribution. This also lists various make commands that can be used to manipulate packages.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will simply list the styles and
commands known to your executable, and immediately exit.

There are two kinds of packages in LAMMPS, standard and user packages. More information about the contents
of standard and user packages is given in Section_packages of the manual. The difference between standard and
user packages is as follows:

Standard packages, such as molecule or kspace, are supported by the LAMMPS developers and are written in a
syntax and style consistent with the rest of LAMMPS. This means we will answer questions about them, debug
and fix them if necessary, and keep them compatible with future changes to LAMMPS.

User packages, such as user-atc or user-omp, have been contributed by users, and always begin with the user
prefix. If they are a single command (single file), they are typically in the user-misc package. Otherwise, they are
a a set of files grouped together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you may need to contact the contributor directly to get help. Information on
how to submit additions you make to LAMMPS as single files or either a standard or user-contributed package
are given in this section of the documentation.

Some packages (both standard and user) require additional auxiliary libraries when building LAMMPS. See more
details below.

Including/excluding packages:

21

To use (or not use) a package you must include it (or exclude it) before building LAMMPS. From the src
directory, this is typically as simple as:

make yes-colloid
make g++

or

make no-manybody
make g++

NOTE: You should NOT include/exclude packages and build LAMMPS in a single make command using
multiple targets, e.g. make yes-colloid g++. This is because the make procedure creates a list of source files that
will be out-of-date for the build if the package configuration changes within the same command.

Some packages have individual files that depend on other packages being included. LAMMPS checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

If you will never run simulations that use the features in a particular packages, there is no reason to include it in
your build. For some packages, this will keep you from having to build auxiliary libraries (see below), and will
also produce a smaller executable which may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,

MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories, no
packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the USER-ATC
package. You can also type "make yes-standard", "make no-standard", "make yes-std", "make no-std", "make

yes-user”, "make no-user”, "make yes-all" or "make no-all" to include/exclude various sets of packages. Type
"make package" to see the all of the package-related make options.

NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the main src
directory and sub-directories with the package name (e.g. scc/KSPACE, src/USER-ATC), so that the files are seen
or not seen when LAMMPS is built. After you have included or excluded a package, you must re-build
LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing
LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" or "make pu" will overwrite src files with files from the package sub-directories if
the package has been included. It should be used after a patch is installed, since patches only update the files in
the package sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the
package sub-directories with src files.

Typing "make package-status" or "make ps" will show which packages are currently included. Of those that are
included, it will list files that are different in the src directory and package sub-directory. Typing "make
package-diff" lists all differences between these files. Again, type "make package" to see all of the
package-related make options.

Packages that require extra libraries:

22

A few of the standard and user packages require additional auxiliary libraries. Many of them are provided with
LAMMPS, in which case they must be compiled first, before LAMMPS is built, if you wish to include that
package. If you get a LAMMPS build error about a missing library, this is likely the reason. See the
Section_packages doc page for a list of packages that have these kinds of auxiliary libraries.

The lib directory in the distribution has sub-directories with package names that correspond to the needed
auxiliary libs, e.g. lib/gpu. Each sub-directory has a README file that gives more details. Code for most of the
auxiliary libraries is included in that directory. Examples are the USER-ATC and MEAM packages.

A few of the lib sub-directories do not include code, but do include instructions (and sometimes scripts) that
automate the process of downloading the auxiliary library and installing it so LAMMPS can link to it. Examples
are the KIM, VORONOI, USER-MOLFILE, and USER-SMD packages.

The lib/python directory (for the PYTHON package) contains only a choice of Makefile.lammps.* files. This is
because no auxiliary code or libraries are needed, only the Python library and other system libs that should
already available on your system. However, the Makefile.lammps file is needed to tell LAMMPS which libs to
use and where to find them.

For libraries with provided code, the sub-directory README file (e.g. lib/atc/README) has instructions on how
to build that library. Typically this is done by typing something like:

make —-f Makefile.g++

If one of the provided Makefiles is not appropriate for your system you will need to edit or add one. Note that all
the Makefiles have a setting for EXTRAMAKE at the top that specifies a Makefile.lammps.* file.

If the library build is successful, it will produce 2 files in the lib directory:

libpackage.a
Makefile.lammps

The Makefile.lammps file will be a copy of the EXTRAMAKE file setting specified in the library Makefile.* you
used.

Note that you must insure that the settings in Makefile.lammps are appropriate for your system. If they are not,
the LAMMPS build will fail.

As explained in the lib/package/README files, the settings in Makefile.lammps are used to specify additional
system libraries and their locations so that LAMMPS can build with the auxiliary library. For example, if the
MEAM package is used, the auxiliary library consists of F90 code, built with a Fortran complier. To link that
library with LAMMPS (a C++ code) via whatever C++ compiler LAMMPS is built with, typically requires
additional Fortran-to-C libraries be included in the link. Another example are the BLAS and LAPACK libraries
needed to use the USER-ATC or USER-AWPMD packages.

For libraries without provided code, the sub-directory README file has information on where to download the
library and how to build it, e.g. lib/voronoi/README and lib/smd/README. The README files also describe
how you must either (a) create soft links, via the "In" command, in those directories to point to where you built or
installed the packages, or (b) check or edit the Makefile.lammps file in the same directory to provide that
information.

Some of the sub-directories, e.g. lib/voronoi, also have an install.py script which can be used to automate the

process of downloading/building/installing the auxiliary library, and setting the needed soft links. Type "python
install.py" for further instructions.

23

As with the sub-directories containing library code, if the soft links or settings in the
lib/package/Makefile.lammps files are not correct, the LAMMPS build will typically fail.

Packages that require Makefile.machine settings

A few packages require specific settings in Makefile.machine, to either build or use the package effectively.
These are the USER-INTEL, KOKKOS, USER-OMP, and OPT packages. The details of what flags to add or
what variables to define are given on the doc pages that describe each of these accelerator packages in detail:

e USER-INTEL package
¢ KOKKOS package

¢ USER-OMP package

® OPT package

Here is a brief summary of what Makefile.machine changes are needed. Note that the Make.py tool, described in
the next Section 2.4 can automatically add the needed info to an existing machine Makefile, using simple
command-line arguments.

In stc/MAKE/OPTIONS see the following Makefiles for examples of the changes described below:

® Makefile.intel_cpu

® Makefile.intel_phi

® Makefile.kokkos_omp
® Makefile.kokkos_cuda
® Makefile.kokkos_phi
® Makefile.omp

For the USER-INTEL package, you have 2 choices when building. You can build with CPU or Phi support. The
latter uses Xeon Phi chips in "offload" mode. Each of these modes requires additional settings in your
Makefile.machine for CCFLAGS and LINKFLAGS.

For CPU mode (if using an Intel compiler):
¢ CCFLAGS: add -fopenmp, -DLAMMPS_MEMALIGN=64, -restrict, -xHost, -fno-alias, -ansi-alias,
-override-limits
¢ LINKFLAGS: add -fopenmp
For Phi mode add the following in addition to the CPU mode flags:

¢ CCFLAGS: add -DLMP_INTEL_OFFLOAD and
e LINKFLAGS: add -offload

And also add this to CCFLAGS:

-offload-option,mic,compiler, "-fp-model fast=2 -mGLOB_default_function_attrs=\"gather_scatter_loop_u
For the KOKKOS package, you have 3 choices when building. You can build with OMP or Cuda or Phi support.

Phi support uses Xeon Phi chips in "native" mode. This can be done by setting the following variables in your

Makefile.machine:

¢ for OMP support, set OMP = yes
e for Cuda support, set OMP = yes and CUDA = yes

24

¢ for Phi support, set OMP = yes and MIC = yes
These can also be set as additional arguments to the make command, e.g.
make g++ OMP=yes MIC=yes
Building the KOKKOS package with CUDA support requires a Makefile machine that uses the NVIDIA "nvcc"
compiler, as well as an appropriate "arch" setting appropriate to the GPU hardware and NVIDIA software you

have on your machine. See src/MAKE/OPTIONS/Makefile.kokkos_cuda for an example of such a machine
Makefile.

For the USER-OMP package, your Makefile.machine needs additional settings for CCFLAGS and LINKFLAGS.

¢ CCFLAGS: add -fopenmp and -restrict
¢ LINKFLAGS: add -fopenmp

For the OPT package, your Makefile.machine needs an additional settings for CCFLAGS.

¢ CCFLAGS: add -restrict

2.4 Building LAMMPS via the Make.py tool

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of the
build process. It is particularly useful for working with the accelerator packages, as well as other packages which
require auxiliary libraries to be built.

The goal of the Make.py tool is to allow any complex multi-step LAMMPS build to be performed as a single
Make.py command. And you can archive the commands, so they can be re-invoked later via the -r (redo) switch.
If you find some LAMMPS build procedure that can't be done in a single Make.py command, let the developers
know, and we'll see if we can augment the tool.

You can run Make.py from the src directory by typing either:

Make.py —-h
python Make.py -h

which will give you help info about the tool. For the former to work, you may need to edit the first line of
Make.py to point to your local Python. And you may need to insure the script is executable:

chmod +x Make.py

Here are examples of build tasks you can perform with Make.py:

Install/uninstall packages Make.py -p no-lib kokkos omp intel

Build specific auxiliary libs Make.py -a lib-atc lib-meam

Make.py -p cuda gpu -gpu mode=double
arch=31 -a lib-all

Create a Makefile from scratch with compiler and MPI settings [Make.py -m none -cc g++ -mpi mpich -a file

Build libs for all installed packages

Augment Makefile.serial with settings for installed packages = [Make.py -p intel -intel cpu -m serial -a file
Add JPG and FFTW support to Makefile.mpi Make.py -m mpi -jpg -fft fftw -a file
Build LAMMPS with a parallel make using Makefile.mpi Make.py -j 16 -m mpi -a exe

25

Build LAMMPS and libs it needs using Makefile.serial with Make.py -p gpu intel -intel cpu -a lib-all file
accelerator settings serial

The bench and examples directories give Make.py commands that can be used to build LAMMPS with the
various packages and options needed to run all the benchmark and example input scripts. See these files for more
details:

¢ bench/README

¢ bench/FERMI/README

¢ bench/KEPLER/README

¢ bench/PHI/README

¢ examples/README

¢ examples/accelerate/ README
¢ examples/accelerate/make.list

All of the Make.py options and syntax help can be accessed by using the "-h" switch.
E.g. typing "Make.py -h" gives

Syntax: Make.py switch args
switches can be listed in any order
help switch:
-h prints help and syntax for all other specified switches
switch for actions:
-a lib-all, lib-dir, clean, file, exe or machine
list one or more actions, in any order
machine is a Makefile.machine suffix, must be last if used
one-letter switches:

-d (dir), -3 (jmake), -m (makefile), -o (output),

-p (packages), -r (redo), -s (settings), -v (verbose)
switches for libs:

-atc, —-awpmd, -colvars, -—-cuda

-gpu, -meam, -—-poems, —-gmmm, -reax

switches for build and makefile options:
-intel, -kokkos, -cc, -mpi, -fft, -Jjpg, -png

Using the "-h" switch with other switches and actions gives additional info on all the other specified switches or
actions. The "-h" can be anywhere in the command-line and the other switches do not need their arguments. E.g.
type "Make.py -h -d -atc -intel" will print:

-d dir
dir = LAMMPS home dir
if -d not specified, working dir must be lammps/src

—atc make=suffix lammps=suffix2
all args are optional and can be in any order
make = use Makefile.suffix (def = g++)
lammps = use Makefile.lammps.suffix2 (def = EXTRAMAKE in makefile)

—intel mode
mode = cpu or phi (def = cpu)
build Intel package for CPU or Xeon Phi

Note that Make.py never overwrites an existing Makefile.machine. Instead, it creates

src/MAKE/MINE/Makefile.auto, which you can save or rename if desired. Likewise it creates an executable
named src/lmp_auto, which you can rename using the -o switch if desired.

26

The most recently executed Make.py commmand is saved in src/Make.py.last. You can use the "-r" switch (for
redo) to re-invoke the last command, or you can save a sequence of one or more Make.py commands to a file and
invoke the file of commands using "-r". You can also label the commands in the file and invoke one or more of
them by name.

A typical use of Make.py is to start with a valid Makefile.machine for your system, that works for a vanilla
LAMMPS build, i.e. when optional packages are not installed. You can then use Make.py to add various settings
(FFT, JPG, PNG) to the Makefile.machine as well as change its compiler and MPI options. You can also add
additional packages to the build, as well as build the needed supporting libraries.

You can also use Make.py to create a new Makefile.machine from scratch, using the "-m none" switch, if you also
specify what compiler and MPI options to use, via the "-cc" and "-mpi" switches.

2.5 Building LAMMPS as a library

LAMMPS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling LAMMPS to other codes. See this section for more
info on wrapping and running LAMMPS from Python.

Static library:

To build LAMMPS as a static library (*.a file on Linux), type

make foo mode=1lib

where foo is the machine name. This kind of library is typically used to statically link a driver application to
LAMMPS, so that you can insure all dependencies are satisfied at compile time. This will use the ARCHIVE and
ARFLAGS settings in srtc/MAKE/Makefile.foo. The build will create the file liblammps_foo.a which another
application can link to. It will also create a soft link liblammps.a, which will point to the most recently built static
library.

Shared library:

To build LAMMPS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make foo mode=shlib

where foo is the machine name. This kind of library is required when wrapping LAMMPS with Python; see
Section_python for details. This will use the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo
and perform the build in the directory Obj_shared_foo. This is so that each file can be compiled with the -fPIC
flag which is required for inclusion in a shared library. The build will create the file liblammps_foo.so which
another application can link to dyamically. It will also create a soft link liblammps.so, which will point to the
most recently built shared library. This is the file the Python wrapper loads by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with LAMMPS, such as the dummy MPI
library in src/STUBS or any package libraries in lib/packages, since they are always built as shared libraries using
the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the shared library
build will generate an error. This means you will need to install a shared library version of the auxiliary library.
The build instructions for the library should tell you how to do this.

27

Here is an example of such errors when the system FFTW or provided lib/colvars library have not been built as
shared libraries:

/usr/bin/1ld: /usr/local/lib/libfftw3.a(mapflags.o): relocation
R_X86_64_32 against "~ .rodata' can not be used when making a shared
object; recompile with -fPIC

/usr/local/lib/libfftw3.a: could not read symbols: Bad value

/usr/bin/1d: ../../lib/colvars/libcolvars.a(colvarmodule.o) :
relocation R_X86_64_32 against “__ _pthread_key_create' can not be used
when making a shared object; recompile with —-fPIC
../../lib/colvars/libcolvars.a: error adding symbols: Bad value

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /ust/local/lib/libmpich.so.

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/liblammps.so or src/liblammps_g++.so (for
example) to a place the system can find it by default, such as /ust/local/lib, or you may wish to add the LAMMPS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/lammps/src

Calling the LAMMPS library:

Either flavor of library (static or shared) allows one or more LAMMPS objects to be instantiated from the calling
program.

When used from a C++ program, all of LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
LAMMPS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 10 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h define the C-style API for using LAMMPS as a library. See Section_howto
19 of the manual for a description of the interface and how to extend it for your needs.

28

http://www-unix.mcs.anl.gov/mpi

2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from standard input. Thus if you run the LAMMPS executable
by itself, e.g.

Imp_linux

it will simply wait, expecting commands from the keyboard. Typically you should put commands in an input
script and use /O redirection, e.g.

Imp_linux <in.file

For parallel environments this should also work. If it does not, use the '-in' command-line switch, e.g.
Imp_linux -in in.file

This section describes how input scripts are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src

make linux

cp lmp_linux ../bench

cd ../bench

mpirun -np 4 lmp_linux —-in in.1lj

See this page for timings for this and the other benchmarks on various platforms. Note that some of the example
scripts require LAMMPS to be built with one or more of its optional packages.

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the non-MPI
(serial) or the MPI (parallel) version of the executable. Download and save the version you have chosen.

For the non-MPI version, follow these steps:

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

® Move to the directory where you have saved Imp_win_no-mpi.exe (e.g. by typing: cd "Documents").

¢ At the command prompt, type "Imp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

¢ Download and install MPICH2 for Windows.

¢ You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

29

http://lammps.sandia.gov/bench.html
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

* Move to the directory where you have saved Imp_win_mpi.exe (e.g. by typing: cd "Documents").

¢ Then type something like this: "mpiexec -localonly 4 Imp_win_mpi -in in.]j", replacing in.lj with the
name of your LAMMPS input script.

¢ Note that you may need to provide smpd with a passphrase (it doesn't matter what you type).

¢ In this mode, output may not immediately show up on the screen, so if your input script takes a long time
to execute, you may need to be patient before the output shows up. :1 Alternatively, you can still use this
executable to run on a single processor by typing something like: "lmp_win_mpi -in in.]j".

The screen output from LAMMPS is described in a section below. As it runs, LAMMPS also writes a log.lammps
file with the same information.

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on its own and not
under mpirun). If that happens, LAMMPS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section_errors for a discussion of the various kinds of errors
LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should get
identical answers on any number of processors and on any machine. In practice, numerical round-off can cause
slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

e -c or -cuda

® ¢ or -echo

¢ -h or -help

® -jor-in

e -k or -kokkos
e -l or -log

® _nc or -nocite
® -pk or -package
® -p or -partition
e -pl or -plog

® -ps or -pscreen
® _r or -restart

® 10 or -reorder
® _sC Or -screen
e _sf or -suffix

® _y or -var

For example, Imp_ibm might be launched as follows:

30

mpirun -np 16 lmp_ibm -v f tmp.out -1 my.log —-sc none -in in.alloy
mpirun -np 16 lmp_ibm -var f tmp.out -log my.log —-screen none -in in.alloy

Here are the details on the options:

—-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. Even if LAMMPS is built
with this package, as described above in Section 2.3, this switch must be set to enable running with the
CUDA-enabled styles the package provides. If the switch is not set (the default), LAMMPS will operate as if the
USER-CUDA package were not installed; i.e. you can run standard LAMMPS or with the GPU package, for
testing or benchmarking purposes.

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

—help

Print a brief help summary and a list of options compiled into this executable for each LAMMPS style
(atom_style, fix, compute, pair_style, bond_style, etc). This can tell you if the command you want to use was
included via the appropriate package at compile time. LAMMPS will print the info and immediately exit if this
switch is used.

—-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition mode.
If it is not specified, LAMMPS reads its script from standard input, typically from a script via I/O redirection; e.g.
Imp_linux < in.run. I/O redirection should also work in parallel, but if it does not (in the unlikely case that an MPI
implementation does not support it), then use the -in flag. Note that this is a required switch when running
LAMMPS in multi-partition mode, since multiple processors cannot all read from stdin.

-kokkos on/off keyword/value ...

Explicitly enable or disable KOKKOS support, as provided by the KOKKOS package. Even if LAMMPS is built
with this package, as described above in Section 2.3, this switch must be set to enable running with the
KOKKOS-enabled styles the package provides. If the switch is not set (the default), LAMMPS will operate as if
the KOKKOS package were not installed; i.e. you can run standard LAMMPS or with the GPU or USER-CUDA
or USER-OMP packages, for testing or benchmarking purposes.

Additional optional keyword/value pairs can be specified which determine how Kokkos will use the underlying
hardware on your platform. These settings apply to each MPI task you launch via the "mpirun" or "mpiexec"
command. You may choose to run one or more MPI tasks per physical node. Note that if you are running on a
desktop machine, you typically have one physical node. On a cluster or supercomputer there may be dozens or
1000s of physical nodes.

Either the full word or an abbreviation can be used for the keywords. Note that the keywords do not use a leading
minus sign. L.e. the keyword is "t", not "-t". Also note that each of the keywords has a default setting. Example of
when to use these options and what settings to use on different platforms is given in Section 5.8.

e d or device

31

® g or gpus
e t or threads
e n or numa

device Nd

This option is only relevant if you built LAMMPS with CUDA=yes, you have more than one GPU per node, and
if you are running with only one MPI task per node. The Nd setting is the ID of the GPU on the node to run on.
By default Nd = 0. If you have multiple GPUs per node, they have consecutive IDs numbered as 0,1,2,etc. This
setting allows you to launch multiple independent jobs on the node, each with a single MPI task per node, and
assign each job to run on a different GPU.

gpus Ng Ns

This option is only relevant if you built LAMMPS with CUDA=yes, you have more than one GPU per node, and
you are running with multiple MPI tasks per node (up to one per GPU). The Ng setting is how many GPUs you
will use. The Ns setting is optional. If set, it is the ID of a GPU to skip when assigning MPI tasks to GPUs. This
may be useful if your desktop system reserves one GPU to drive the screen and the rest are intended for
computational work like running LAMMPS. By default Ng = 1 and N is not set.

Depending on which flavor of MPI you are running, LAMMPS will look for one of these 3 environment variables

SLURM_LOCALID (various MPI variants compiled with SLURM support)
MV2_COMM_WORLD_LOCAL_RANK (Mvapich)
OMPI_COMM_WORLD_LOCAL_RANK (OpenMPI)

which are initialized by the "srun", "mpirun" or "mpiexec" commands. The environment variable setting for each
MPI rank is used to assign a unique GPU ID to the MPI task.

threads Nt

This option assigns Nt number of threads to each MPI task for performing work when Kokkos is executing in
OpenMP or pthreads mode. The default is Nt = 1, which essentially runs in MPI-only mode. If there are Np MPI
tasks per physical node, you generally want Np*Nt = the number of physical cores per node, to use your available
hardware optimally. This also sets the number of threads used by the host when LAMMPS is compiled with
CUDA-=yes.

numa Nm

This option is only relevant when using pthreads with hwloc support. In this case Nm defines the number of
NUMA regions (typicaly sockets) on a node which will be utilizied by a single MPI rank. By default Nm = 1. If
this option is used the total number of worker-threads per MPI rank is threads*numa. Currently it is always almost
better to assign at least one MPI rank per NUMA region, and leave numa set to its default value of 1. This is
because letting a single process span multiple NUMA regions induces a significant amount of cross NUMA data
traffic which is slow.

-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information. Each
partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log

32

command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-nocite

Disable writing the log.cite file which is normally written to list references for specific cite-able features used
during a LAMMPS run. See the citation page for more details.

-package style args

Invoke the package command with style and args. The syntax is the same as if the command appeared at the top
of the input script. For example "-package gpu 2" or "-pk gpu 2" is the same as package gpu 2 in the input script.
The possible styles and args are documented on the package doc page. This switch can be used multiple times,
e.g. to set options for the USER-INTEL and USER-OMP packages which can be used together.

Along with the "-suffix" command-line switch, this is a convenient mechanism for invoking accelerator packages
and their options without having to edit an input script.

-partition 8x2 4 5

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs on on
one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more
(virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section_howto 4 of
the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used the log file for
partition N is log.Jlammps.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen). If this option is not
used the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

-restart restartfile remap datafile keyword value ...

33

http://lammps.sandia.gov/cite.html

Convert the restart file into a data file and immediately exit. This is the same operation as if the following 2-line
input script were run:

read_restart restartfile remap
write_data datafile keyword value ...

Note that the specified restartfile and datafile can have wild-card characters ("*",%") as described by the
read_restart and write_data commands. But a filename such as file.* will need to be enclosed in quotes to avoid
shell expansion of the "*" character.

Note that following restartfile, the optional flag remap can be used. This has the same effect as adding it to the
read_restart command, as explained on its doc page. This is only useful if the reading of the restart file triggers an
error that atoms have been lost. In that case, use of the remap flag should allow the data file to still be produced.

Also note that following datafile, the same optional keyword/value pairs can be listed as used by the write_data
command.

-reorder nth N
-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order. E.g. to
insure that cores within each node are ranked in a desired order. Or when using the run_style verlet/split
command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is matched up with a
specific set of processors in the 1st partition. See the Section_accelerate doc pages for more details.

If the keyword nth is used with a setting NV, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition. The
-reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the 2nd
partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost performance. For
example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12 processors, the processors will
be reordered from

0123456789 1011

to

012456289103 711

so that the processors in each partition will be

01245638910
3711

See the "processors" command for how to insure processors from each partition could then be grouped optimally
for quad-core nodes.

If the keyword is custom, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

IJ

34

where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition mode
(see the -partition switch above) P is the total number of processors in all partitions. The I and J values describe a
permutation of the P processors. Every I and J should be values from O to P-1 inclusive. In the set of P I values,
every proc ID should appear exactly once. Ditto for the set of P J values. A single I,J pairing means that the
physical processor with rank I in the original MPI communicator will have rank J in the reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables that
specify how to order physical processors, or by config files that specify what physical processors to assign to each
MPI rank. The -reorder switch simply gives you a portable way to do this without relying on MPI itself. See the
processors out command for how to output info on the final assignment of physical processors to the LAMMPS
simulation domain.

-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style args

Use variants of various styles if they exist. The specified style can be cuda, gpu, intel, kk, omp, opt, or hybrid.
These refer to optional packages that LAMMPS can be built with, as described above in Section 2.3. The "cuda"
style corresponds to the USER-CUDA package, the "gpu" style to the GPU package, the "intel" style to the
USER-INTEL package, the "kk" style to the KOKKOS package, the "opt" style to the OPT package, and the
"omp" style to the USER-OMP package. The hybrid style is the only style that accepts arguments. It allows for
two packages to be specified. The first package specified is the default and will be used if it is available. If no
style is available for the first package, the style for the second package will be used if available. For example,
"-suffix hybrid intel omp" will use styles from the USER-INTEL package if they are installed and available, but
styles for the USER-OMP package otherwise.

Along with the "-package" command-line switch, this is a convenient mechanism for invoking accelerator
packages and their options without having to edit an input script.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/cuda, lj/cut/gpu,
lj/cut/intel, 1j/cut/kk, lj/cut/omp, and lj/cut/opt. A variant style can be specified explicitly in your input script, e.g.
pair_style lj/cut/gpu. If the -suffix switch is used the specified suffix (cuda,gpu,intel,kk,omp,opt) is automatically
appended whenever your input script command creates a new atom, pair, fix, compute, or run style. If the variant
version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the command
"package gpu 1" were used at the top of your input script. These settings can be changed by using the "-package
gpu" command-line switch or the package gpu command in your script.

For the USER-INTEL package, using this command-line switch also invokes the default USER-INTEL settings,
as if the command "package intel 1" were used at the top of your input script. These settings can be changed by
using the "-package intel" command-line switch or the package intel command in your script. If the USER-OMP
package is also installed, the hybrid style with "intel omp" arguments can be used to make the omp suffix a
second choice, if a requested style is not available in the USER-INTEL package. It will also invoke the default
USER-OMP settings, as if the command "package omp 0" were used at the top of your input script. These settings

35

can be changed by using the "-package omp" command-line switch or the package omp command in your script.

For the KOKKOS package, using this command-line switch also invokes the default KOKKOS settings, as if the
command "package kokkos" were used at the top of your input script. These settings can be changed by using the
"-package kokkos" command-line switch or the package kokkos command in your script.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the command
"package omp 0" were used at the top of your input script. These settings can be changed by using the "-package
omp" command-line switch or the package omp command in your script.

The suffix command can also be used within an input script to set a suffix, or to turn off or back on any suffix
setting made via the command line.

-var name valuel value?2

Specify a variable that will be defined for substitution purposes when the input script is read. This switch can be
used multiple times to define multiple variables. "Name" is the variable name which can be a single character
(referenced as $x in the input script) or a full string (referenced as ${abc}). An index-style variable will be created
and populated with the subsequent values, e.g. a set of filenames. Using this command-line option is equivalent to
putting the line "variable name index valuel value2 ..." at the beginning of the input script. Defining an index
variable as a command-line argument overrides any setting for the same index variable in the input script, since
index variables cannot be re-defined. See the variable command for more info on defining index and other kinds
of variables and this section for more info on using variables in input scripts.

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches. Thus

you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value. It is OK
if the first valuel starts with a "-", since it is automatically skipped.

2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of
the initial thermodynamic state of the system. During the run itself, thermodynamic information is printed
periodically, every few timesteps. When the run concludes, LAMMPS prints the final thermodynamic state and a
total run time for the simulation. It then appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:

Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms

Performance: 18.436 ns/day 1.302 hours/ns 106.689 timesteps/s
97.0% CPU use with 4 MPI tasks x no OpenMP threads

MPI task timings breakdown:

Section | min time | avg time | max time $varavg| %total
Pair | 1.9808 | 2.0134 | 2.0318 | 1.4 | 71.60
Bond | 0.0021894 | 0.0060319 | 0.010058 | 4.7 | 0.21
Kspace | 0.3207 | 0.3366 | 0.36616 | 3.1 | 11.97
Neigh | 0.28411 | 0.28464 | 0.28516 | 0.1 | 10.12
Comm | 0.075732 | 0.077018 | 0.07883 | 0.4 | 2.74
Output | 0.00030518 | 0.00042665 | 0.00078821 | 1.0 | 0.02
Modify | 0.086606 | 0.086631 | 0.086668 | 0.0 | 3.08
Other | | 0.007178 | | | 0.26

36

Nlocal: 501 ave 508 max 490 min
Histogram: 1 0 0 0 0 0 1 1 0 1

Nghost: 6586.25 ave 6628 max 6548 min
Histogram: 1 0 1 0 0 0 1 0 0 1
Neighs: 177007 ave 180562 max 170212 min

Histogram: 1 0 0 0 0 0 0 1 1 1

Total # of neighbors = 708028

Ave neighs/atom = 353.307

Ave special neighs/atom = 2.34032
Neighbor list builds = 26
Dangerous builds = 0

The first section provides a global loop timing summary. The loop time is the total wall time for the section. The
Performance line is provided for convenience to help predicting the number of loop continuations required and
for comparing performance with other similar MD codes. The CPU use line provides the CPU utilzation per MPI
task; it should be close to 100% times the number of OpenMP threads (or 1). Lower numbers correspond to
delays due to file I/O or insufficient thread utilization.

The MPI task section gives the breakdown of the CPU run time (in seconds) into major categories:

¢ Pair stands for all non-bonded force computation

¢ Bond stands for bonded interactions: bonds, angles, dihedrals, impropers
® Kspace stands for reciprocal space interactions: Ewald, PPPM, MSM

® Neigh stands for neighbor list construction

® Comm stands for communicating atoms and their properties

® Output stands for writing dumps and thermo output

® Modify stands for fixes and computes called by them

® Other is the remaining time

For each category, there is a breakdown of the least, average and most amount of wall time a processor spent on
this section. Also you have the variation from the average time. Together these numbers allow to gauge the
amount of load imbalance in this segment of the calculation. Ideally the difference between minimum, maximum
and average is small and thus the variation from the average close to zero. The final column shows the percentage
of the total loop time is spent in this section.

When using the timer full setting, an additional column is present that also prints the CPU utilization in percent.
In addition, when using timer full and the package omp command are active, a similar timing summary of time
spent in threaded regions to monitor thread utilization and load balance is provided. A new entry is the Reduce
section, which lists the time spend in reducing the per-thread data elements to the storage for non-threaded
computation. These thread timings are taking from the first MPI rank only and and thus, as the breakdown for
MPI tasks can change from MPI rank to MPI rank, this breakdown can be very different for individual ranks.
Here is an example output for this section:

Thread timings breakdown (MPI rank 0): Total threaded time 0.6846 / 90.6% Section | min time | avg time | max
time |%varavgl %total Pair 1 0.512710.514710.516710.3 |

75.18 Bond 1 0.0043139 1 0.0046779 10.0050418 1 0.5 1 0.68 Kspace 1 0.070572 1 0.074541 10.07851 11.5110.89
Neigh 10.084778 10.086969 1 0.089161 1 0.7 1 12.70 Reduce | 0.0036485 [0.003737 1 0.0038254 10.1 1 0.55

The third section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored
per processor. The max and min values give the spread of these values across processors with a 10-bin histogram
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps

37

track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is given
as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list rebuilding
(see the neigh_modify command), then dangerous reneighborings are those that were triggered on the first
timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay factor to
insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a rebuild takes
place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
Stopping criterion = linesearch alpha is zero
Energy initial, next-to-last, final =
-6372.3765206 -8328.46998942 -8328.46998942
Force two-norm initial, final = 1059.36 5.36874
Force max component initial, final = 58.6026 1.46872
Final line search alpha, max atom move = 2.7842e-10 4.0892e-10
Iterations, force evaluations = 701 1516

The first line prints the criterion that determined the minimization to be completed. The third line lists the initial
and final energy, as well as the energy on the next-to-last iteration. The next 2 lines give a measure of the gradient
of the energy (force on all atoms). The 2-norm is the "length" of this force vector; the inf-norm is the largest
component. Then some information about the line search and statistics on how many iterations and
force-evaluations the minimizer required. Multiple force evaluations are typically done at each iteration to
perform a 1d line minimization in the search direction.

If a kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d ld-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total KSpace
time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication (transposes). The
total flops performed is SNlog_2(N), where N is the number of points in the 3d grid. The FFTs are timed with and
without the communication and a Gflop rate is computed. The 3d rate is with communication; the 1d rate is
without (just the 1d FFTs). Thus you can estimate what fraction of your FFT time was spent in communication,
roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in Section_history. The FO90 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer those
versions. The 99 and 2001 versions are no longer under active development; they do not have all the features of
C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

38

http://lammps.sandia.gov

(3) The format of the data file can be streamlined for some problems. See the read_data command for details. The
data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by FOO which writes in a different binary format than C or C++ writes
or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a text data
file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read it in.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical answers

when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory should be close if
you have setup the problem for both codes the same.

39

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of

commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for
the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect. For example, the read_data command initializes
the system by setting up the simulation box and assigning atoms to processors. If default values are not desired,
the processors and boundary commands need to be used before read_data to tell LAMMPS how to map
processors to the simulation box.

40

http://lammps.sandia.gov

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character, the command is assumed to continue on the next
line. The next line is concatenated to the previous line by removing the "&" character and line break. This allows
long commands to be continued across two or more lines. See the discussion of triple quotes in (6) for how to
continue a command across multiple line without using "&" characters.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the single character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x".

How the variable is converted to a text string depends on what style of variable it is; see the variable doc page for
details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be
multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command.
The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string.

As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an
"immediate" variable and evaluated as an equal-style variable. This is a way to use numeric formulas in an input
script without having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt (v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by
region 1 block $((xlo+xhi)/2+sqrt (v_area)) 2 INF INF EDGE EDGE
so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other
variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = S${bsa}"

41

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is
valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how they
can be used in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either single or double or
triple quotes. A long single argument enclosed in single or double quotes can span multiple lines if the "&"
character is used, as described above. When the lines are concatenated together (and the "&" characters and line
breaks removed), the text will become a single line. If you want multiple lines of an argument to retain their line
breaks, the text can be enclosed in triple quotes, in which case "&" characters are not needed. For example:

print "Volume = $v"

print 'Volume = $v'

if "${steps} > 1000" then quit

variable a string "red green blue &
purple orange cyan"

print mnn
System volume = $v
System temperature = $t

nwn

In each case, the single, double, or triple quotes are removed when the single argument they enclose is stored
internally.

See the dump modify format, print, if, and python commands for examples.

A "#" or "$" character that is between quotes will not be treated as a comment indicator in (2) or substituted for as
a variable in (3).

NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print command as part of
an if or run every command), then single, double, or triple quotes can be nested in the usual manner. See the doc
pages for those commands for examples. Only one of level of nesting is allowed, but that should be sufficient for
most use cases.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS
distribution contains many sample input scripts; the corresponding problems are discussed in Section_example,
and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:
1. Initialization
2. Atom definition

3. Settings
4. Run a simulation

42

http://lammps.sandia.gov

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Initialization

Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force
fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set of
atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command comes
in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modify,
and variable commands.

Output options are set by the thermo, dump, and restart commands.
(4) Run a simulation
A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is

performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using the
temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages, which
means they cannot be used unless the package was included when LAMMPS was built. Not all packages are
included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's

43

documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_dump, read_restart, region, replicate
Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

comm_style, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute
Output:

dump, dump image, dump_modify, dump movie, restart, thermo, thermo_modify, thermo_style, undump,
write_data, write_dump, write_restart

Actions:
delete_atoms, delete_bonds, displace_atoms, change_box, minimize, neb prd, rerun, run, temper
Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some style options for
some commands are part of specific LAMMPS packages, which means they cannot be used unless the package
was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These
dependencies are listed as Restrictions in the command's documentation.

angle_coeff | angle_style | atom_modify atom_style balance bond_coeff
bond_style boundary box change_box clear comm_modify
comm_style compute |compute_modify| create_atoms | create_bonds | create_box

44

delete_atoms [delete_bonds dielectric dihedral_coeff | dihedral_style dimension
displace_atoms dump dump image | dump_modify | dump movie echo
fix fix_modify group if info improper_coeff
improper_style| include jump kspace_modify| kspace_style label
lattice log mass minimize min_modify min_style
molecule neb neigh_modify neighbor newton next
package pair_coeff pair_modify pair_style pair_write partition
prd print processors python quit read_data
read_dump | read_restart region replicate rerun reset_timestep
restart run run_style set shell special_bonds
suffix tad temper thermo thermo_modify| thermo_style
timer timestep uncompute undump unfix units
variable velocity write_data write_dump | write_restart
These are additional commands in USER packages, which can be used if LAMMPS is built with the appropriate
package.
Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description. Some
of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate accelerated

package. This is indicated by additional letters in parenthesis: c = USER-CUDA, g = GPU, i = USER-INTEL, k =
KOKKOS, o = USER-OMP, t = OPT.

adapt addforce (c) [|append/atoms| atom/swap | aveforce (c) ave/atom ave/chunk | ave/correle
ave/histo ave/histo/weight| ave/spatial ave/time balance bond/break bond/create bond/swa
box/relax deform (k) deposit drag dt/reset efield enforce2d (c) evaporat
external freeze (¢) gcme gld gravity (co) heat indent langevin (|
lineforce momentum move msst neb nph (ko) nphug (o) nph/e(l(s)[))he:
nph/body nph/sphere (0) [npt (ckio) npt/ezif))here npt/body npt/sphere (0) nve (ckio) |nve/asphere
nve/asphere/noforce nve/body nve/limit nve/line nve/noforce nve/sphere (0) nve/tri nvt (ciko
nvt/asphere (0) nvt/body nvt/sllod (i0) [nvt/sphere (0) oneway orient/fcc planeforce poems
pour press/berendsen print property/atom| geg/comb (0) geq/dynamic geq/fire geg/poin
geq/shielded geqg/slater rattle reax/bonds recenter restrain rigid (o) rigid/nph (
rigid/npt (o) rigid/nve (o) | rigid/nvt (o) [rigid/small (o)|rigid/small/nph| rigid/small/npt [rigid/small/nve|rigid/small/
setforce (ck) shake (c) spring spring/rg spring/self srd store/force store/stat
temp/berendsen (c) temp/csld temp/csvr tempérce):scale tfme thermal/conductivity tmd ttm
tune/kspace vector viscosity viscous (c) | wall/colloid wall/gran wall/harmonic | wall/lj104
wall/lj126 wall/lj93 | wall/piston Wa”ﬁ(‘;ﬂe“ wall/region wall/srd

These are additional fix styles in USER packages, which can be used if LAMMPS is built with the appropriate

package.

45

adapt/fep addtorque atc ave/correlate/long | ave/spatial/sphere colv
drude drude/transform/direct drude/transform/reverse eos/cv eos/table gl
imd ipi langevin/drude langevin/eff Ib/fluid Ib/mom
Ib/pc Ib/rigid/pc/sphere Ib/viscous meso meso/stationary nph/
npt/eff nve/eff nvt/eff nvt/sllod/eff phonon pin
gbmsst geg/reax gmmm qtb reax/c/bonds reax/c/s
saed/vtk shardlow smd smd/adjust/dt |smd/integrate/tlsph|smd/integr
md/move/triangulated/surface smd/setvel smd/tlsph/reference/configuration | smd/wall/surface | temp/rescale/eff ti/t
ti/spring ttm/mod
Compute styles
See the compute command for one-line descriptions of each style or click on the style itself for a full description.
Some of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: c = USER-CUDA, g = GPU, i =
USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
angle/local angmom/chunk body/local bond/local | centro/atom chunk/atom
cluster/atom cna/atom com com/chunk | contact/atom coord/atom
damage/atom | dihedral/local |dilatation/atom |displace/atom |erotate/asphere| erotate/rigid
erotate/sphere |erotate/sphere/atom | event/displace | group/group gyration gyration/chunk
heat/flux hexorder/atom |improper/local | inertia/chunk ke ke/atom
ke/rigid msd msd/chunk |msd/nongauss| omega/chunk |orientorder/atom
pair pair/local pe () pe/atom |plasticity/atom| pressure (c)
property/atom| property/local |property/chunk rdf reduce reduce/region
slice sna/atom snad/atom snav/atom stress/atom temp (ck)
temp/asphere temp/body temp/chunk temp/com | temp/deform | temp/partial (c)
temp/profile temp/ramp temp/region | temp/sphere t torque/chunk
vacf vem/chunk voronoi/atom
These are additional compute styles in USER packages, which can be used if LAMMPS is built with the
appropriate package.
ackland/atom basal/atom dpd dpd/atom fep force/tally
heat/flux/tally ke/eff ke/atom/eff meso/e/atom meso/rho/atom meso/t/atom
pe/tally saed smd/contact/radius smd/damage smd/hourglass/error smd/internal/energy
smd/plastic/strain [smd/plastic/strain/rate smd/rho smd/tIsph/defgrad smd/tIsph/dt smd/tIsph/num/neigh:
smd/tlsph/shape smd/tlsph/strain ~ |smd/tlsph/strain/rate| smd/tlsph/stress |smd/triangle/mesh/vertices|smd/ulsph/num/neigh:
smd/ulsph/strain | smd/ulsph/strain/rate | smd/ulsph/stress smd/vol stress/tally temp/drude
temp/eff temp/deform/eff temp/region/eff temp/rotate xrd

Pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description.
Many of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: ¢ = USER-CUDA, g = GPU, i =
USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

46

none hybrid hybrid/overlay adp (o)
airebo (0) beck (go) body bop
born (go) born/coul/long (cgo) born/coul/long/cs born/coul/msm (o)
born/coul/wolf (go) brownian (0) brownian/poly (0) buck (cgkio)
buck/coul/cut (cgkio) | buck/coul/long (cgkio) buck/coul/long/cs buck/coul/msm (o)
buck/lonzg(:soulllong colloid (go) comb (0) comb3
coul/cut (gko) coul/debye (gko) coul/dsf (gko) coul/long (gko)
coul/long/cs coul/msm coul/streitz coul/wolf (ko)
dpd (o) dpd/tstat (0) dsmc eam (cgkot)
eam/alloy (cgkot) eam/fs (cgkot) eim (0) gauss (go)
gayberne (gio) gran/hertz/history (o) gran/hooke (co) gran/hooke/history (0)
hbond/dreiding/lj (o) | hbond/dreiding/morse (0) kim Icbop
line/lj lj/charmm/coul/charmm | lj/charmm/coul/charmm/implicit lj/charmm/coulllong
(cko) (cko) (cgiko)
lj/charmm/coul/msm lj/class2 (cgko) lj/class2/coul/cut (cko) lj/classgéic();;l/long
lj/cubic (go) lj/cut (cgikot) lj/cut/coul/cut (cgko) lj/cut/coul/debye (cgko)
lj/cut/coul/dsf (gko) | lj/cut/coul/long (cgikot) lj/cut/coul/long/cs lj/cut/coul/msm (go)
lj/cut/dipole/cut (go) lj/cut/dipole/long lj/cut/tip4p/cut (0) lj/cut/tip4p/long (ot)
lj/expand (cgko) lj/gromacs (cgko) lj/gromacs/coul/gromacs (cko) lj/long/coul/long (o)
lj/long/dipole/long lj/long/tip4p/long lj/smooth (co) lj/smooth/linear (o)
1j96/cut (cgo) lubricate (0) lubricate/poly (o) lubricateU
lubricateU/poly meam (0) mie/cut (0) morse (cgot)
nb3b/harmonic (0) nm/cut (0) nm/cut/coul/cut (0) nm/cut/coul/long (0)
peri/eps peri/lps (0) peri/pmb (0) peri/ves
polymorphic reax rebo (0) resquared (go)
snap soft (go) sw (cgkio) table (gko)
tersoff (cgkio) tersoff/mod (ko) tersoff/zbl (ko) tip4p/cut (0)
tip4p/long (o) tri/lj vashishta (0) yukawa (go)
yukawa/colloid (go) zbl (go)
These are additional pair styles in USER packages, which can be used if LAMMPS is built with the appropriate
package.
awpmd/cut buck/mdf coul/cut/soft (0) coul/diel (o)
coul/long/soft (0) dpd/conservative dpd/fdt dpd/fdt/energy
eam/cd (0) edip (o) eff/cut gauss/cut
lennard/mdf list lj/charmm/coul/long/soft (0)| lj/cut/coul/cut/soft (0)
lj/cut/coul/long/soft (o) |lj/cut/dipole/sf (go) lj/cut/soft (0) lj/cut/tip4p/long/soft (0)
lj/mdf 1j/sdk (gko) lj/sdk/coul/long (go) lj/sdk/coul/msm (o)
1j/sf (o) meam/spline meam/sw/spline mgpt
quip reax/c smd/hertz smd/tIsph
smd/triangulated/surface smd/ulsph smtbq sph/heatconduction
sph/idealgas sph/lj sph/rhosum sph/taitwater

47

sph/taitwater/morris SIp tersoff/table (o) | thole

tip4p/long/soft (o)

Bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full description.
Some of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: ¢ = USER-CUDA, g = GPU, i =
USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

none hybrid class2 (0)| fene (ko)

fene/expand (o) |harmonic (ko) |morse (o) |nonlinear (0)

quartic (0) table (0)
These are additional bond styles in USER packages, which can be used if LAMMPS is built with the appropriate
package.

|harm0nic/shift (0) |harm0nic/shift/cut (0) |

Angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full description.
Some of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: c = USER-CUDA, g = GPU, i =
USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

none hybrid charmm (ko) class2 (o)

cosine (0) [cosine/delta (0)|cosine/periodic (0) [cosine/squared (0)

harmonic (iko) table (0)

These are additional angle styles in USER packages, which can be used if LAMMPS is built with the appropriate
package.

cosine/shift (0) |cosine/shift/exp (o) [dipole (o) [fourier (0) |

fourier/simple (0) quartic (0) sdk

Dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full
description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the
appropriate accelerated package. This is indicated by additional letters in parenthesis: c = USER-CUDA, g =
GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

none hybrid charmm (ko) class2 (o)

harmonic (io) |helix (o) [multi/harmonic (o) |opls (iko)
These are additional dihedral styles in USER packages, which can be used if LAMMPS is built with the
appropriate package.

cosine/shift/exp (o) |fourier (0) |nharm0nic (0) |quadratic (0) |
table (o)

48

Improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the
appropriate accelerated package. This is indicated by additional letters in parenthesis: ¢ = USER-CUDA, g =

GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

none hybrid

class2 (0) |cvff (i0) |

harmonic (ko)

umbrella (0)

These are additional improper styles in USER packages, which can be used if LAMMPS is built with the

appropriate package.

|cossq (0) |distance|f0urier (0) |ring (0) |

Kspace solvers

See the kspace_style command for an overview of Kspace solvers. Click on the style itself for a full description.

Some of the styles have accelerated versions, which can be used if LAMMPS is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: c = USER-CUDA, g = GPU, i =

USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.

ewald (0) ewald/disp msm (0) msm/cg (0)
pppm (cgo) | pppm/cg (o) |pppm/disp|pppm/disp/tip4p
pppm/stagger | pppm/tip4p (0)

49

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features. For
example, force fields for molecular systems or granular systems are in packages. You can see the list of all
packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the LAMMPS

build process, and for more details about the differences between standard packages and user packages.

Unless otherwise noted below, every package is independent of all the others. I.e. any package can be included or
excluded in a LAMMPS build, independent of all other packages. However, note that some packages include
commands derived from commands in other packages. If the other package is not installed, the derived command
from the new package will also not be installed when you include the new one. E.g. the pair lj/cut/coul/long/omp
command from the USER-OMP package will not be installed as part of the USER-OMP package if the KSPACE
package is not also installed, since it contains the pair lj/cut/coul/long command. If you later install the KSPACE
pacakge and the USER-OMP package is already installed, both the pair lj/cut/coul/long and lj/cut/coul/long/omp
commands will be installed.

The two tables below list currently available packages in LAMMPS, with a one-line descriptions of each. The
sections below give a few more details, including instructions for building LAMMPS with the package, either via
the make command or the Make.py tool described in Section 2.4.

4.1 Standard packages

The current list of standard packages is as follows.

Package Description Author(s) Doc page Example | Library
ASPHERE aspherical particles - Section_howto 6.14 | ellipse -
BODY body-style particles - body body -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid | colloid -
COMPRESS I/0O compression Axel KOhlmS)y er (Temple dump */gz - -
. . Hendrik Heenen .
CORESHELL |adiabatic core/shell model (Technical U of Munich) Section_howto 6.25 |coreshell -
DIPOLE point dipole particles - pair_style dipole/cut | dipole -
Fast Lubrication Kumar & Bybee & . .
FLD Dynamics Higdon (1) pair_style lubricateU - -
GPU GPU-enabled styles Mike Brown (ORNL) Section accelerate gpu lib/gpu
GRANULAR granular systems - Section_howto 6.6 pour -
KIM openKIM potentials pair_style kim kim KIM

50

http://lammps.sandia.gov

Smirichinski & Elliot &
Tadmor (3)

KOKKOS Kokkos-enabled styles Trott & Edwards (4) Section_accelerate | kokkos |lib/kokkos

KSPACE long-range Coulombic - kspace_style peptide -
solvers

MANYBODY| many-body potentials - pair_style tersoff shear -

MEAM modified EAM potential | Greg Wagner (Sandia) pair_style meam meam | lib/meam
MC Monte Carlo options - fix gcme - -
MOLECULE | molecular system force ; Section_howto 6.3 | peptide ;

fields
. . Fischer & Richie & .

OPT optimized pair styles Natoli (2) Section accelerate - -
PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -

POEMS coup lﬁ;fol r(lj body Rudra Mukherjee (JPL) fix poems rigid | lib/poems

embed Python code in an .
PYTHON input script - python python |lib/python
. Aidan Thompson . .
REAX ReaxFF potential (Sandia) pair_style reax reax lib/reax
REPLICA multi-replica methods - Section_howto 6.5 tad -
RIGID rigid bodies - fix rigid rigid -
SHOCK shock loading methods - fix msst - -
SNAP uantum-fit potential Aidan Thompson air sna sna -
q p (Sandia) p p p
SRD stochastic rf)tatlon) fix srd srd)
dynamics
VORONOI Voronoi tesselations Daniel Schwen (LANL) compute - Voro++
voronoi/atom

XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
More details on multiple authors are give below.

(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at UITUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

(4) The KOKKOS package was created primarily by Christian Trott (Sandia). It uses the Kokkos library which
was developed by Carter Edwards, Christian, and collaborators at Sandia.

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory.

51

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS
distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the
src/package/README or src/package/Makefile.lammps file for info on where to download the library. Section
start of the manual also gives details on how to build LAMMPS with both kinds of auxiliary libraries.

Except where explained below, all of these packages can be installed, and LAMMPS re-built, by issuing these
commands from the src dir.

make yes-package

make machine

or

Make.py -p package -a machine

To un-install the package and re-build LAMMPS without it:

make no-package

make machine

or

Make.py -p “package -a machine

"Package" is the name of the package in lower-case letters, e.g. asphere or rigid, and "machine" is the build target,

e.g. mpi or serial.

Build instructions for COMPRESS package

Build instructions for GPU package

Build instructions for KIM package

Build instructions for KOKKOS package

Build instructions for KSPACE package

Build instructions for MEAM package

Build instructions for POEMS package

Build instructions for PYTHON package

Build instructions for REAX package

Build instructions for VORONOI package

Build instructions for XTC package

52

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie Lib:
USER-ATC | Aom-to-continuum | Jones & Templeton & fix atc USER/atc atc liby
coupling Zimmerman (1)
USER-AWPMD wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut USER/awpmd - lib/ay
. coarse-graining Axel Kohlmeyer . . i
USER-CG-CMM model (Temple U) pair_style 1j/sdk USER/cg-cmm cg
USER-COLVARS |collective variables Fiorin & Henin & fix colvars USER/colvars colvars lib/cc
Kohlmeyer (2)
USER-CUDA NVIDIAGPU | Christian Trott (U Tech Section accelerate USER/cuda - lib/c
styles Ilmenau)
JSER-DIFFRACTION| Virutalxrayand 4 g o o leman (ARL) compute xrd USER/diffraction -
electron diffraction
dissipative particle | Larentzos & Mattox &
USER-DPD dynamics (DPD) Brennan (5) src/USER-DPD/README USER/dpd -
USER-DRUDE Drude oscillators Dequidt & Devemy & tutorial USER/drude -
Padua (3)
USER-EFF electron force field Andres Jaramillo-Botero pair_style eff/cut USER/eff eff
(Caltech)
free ener Agilio Padua (U Blaise
USER-FEP erturbatﬁl Pascal compute fep USER/fep ;
p Clermont-Ferrand)
dump output via Pierre de Buyl (KU .
USER-H5MD HDES Leuven) dump h5md - - lib/h
Vectorized CPU .
USER-INTEL and Intel(R) W MIEIIL zg)Brown Section accelerate examples/intel -
coprocessor styles
USER-LB Lattice B(?ltzmann Colin Denmstoq (U fix 1b/fluid USER/Ib i
fluid Western Ontario)
fast MGPT Tomas Oppelstrup & o
USER-MGPT multi-ion potentials | John Moriarty (LLNL) pair_style mgpt USER/mept i
single-file
USER-MISC . USER-MISC/README | USER-MISC/README - -
contributions
USER-MOLFILE VMD molfile Axel Kohlmeyer dump molfile - - VMD-M
plug-ins (Temple U)
USER-OMP OpenMP threaded Axel Kohlmeyer Section accelerate i i
styles (Temple U)
USER-PHONON | Phonon dynamical 1Ling-Ti Kong (Shanghai fix phonon USER/phonon -
matrix Jiao Tong U)
USER-QMMM | QM/MM couplin Axel Kohlmeyer fix gmmm USER/qmmm ; lib/qs
pung (Temple U) q q 4
USER-QTB q“anzufrfrécnt‘slcmr Yuan Shen (Stanford) fix qtb fix_qbmsst qtb -
USER-QUIP QUIP/libatoms | Albert Bartok-Partay (U pair_style quip USER/quip - lib/c

53

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff
http://www.ks.uiuc.edu/Research/vmd

interface Cambridge)
C version of) .
USER-REAXC ReaxFF Metin Aktulga (LBNL) pair_style reaxc reax -
smoothed Mach Georg Ganzenmuller .
USER-SMD dynamics (EMI) userguide.pdf USER/smd -
Second Moment
. . Salles & Maras & .
USER-SMTBQ Tight Bmdln.g - Politano & Tetot (4) pair_style smtbq USER/smtbq -
QEq potential
smoothed particle | Georg Ganzenmuller .
USER-SPH hydrodynamics (EMI) userguide.pdf USER/sph sph
USER-TALLY Pairwise tallied Axel Kohlmeyer compute /tally USER/tally .
computes (Temple U)

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(1) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

(2) The COLVARS package was created by Axel Kohlmeyer (Temple U) using the colvars module library written
by Giacomo Fiorin (Temple U) and Jerome Henin (LISM, Marseille, France).

(3) The DRUDE package was created by Alain Dequidt (U Blaise Pascal Clermont-Ferrand) and co-authors Julien
Devemy (CNRS) and Agilio Padua (U Blaise Pascal).

(4) The SMTBQ package was created by Nicolas Salles, Emile Maras, Olivier Politano, and Robert Tetot
(LAAS-CNRS, France).

(4) The USER-DPD package was created by James Larentzos, Timothy Mattox, and John Brennan (Army
Research Lab (ARL) and Engility Corp).

If the Library is not listed as lib/package, then it is a third-party library not included in the LAMMPS distribution.
See the src/package/Makefile.lammps file for info on where to download the library from.

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package, or to additional documentation provided within the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS
distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the
src/package/Makefile.lammps file for info on where to download the library. Section start of the manual also
gives details on how to build LAMMPS with both kinds of auxiliary libraries.

Except where explained below, all of these packages can be installed, and LAMMPS re-built, by issuing these
commands from the src dir.

make yes—-user-package

make machine

or

Make.py —-p package —a machine

54

http://lammps.sandia.gov/movies.html#sph

To un-install the package and re-build LAMMPS without it:

make no-user—-package

make machine

or

Make.py -p “package —a machine

"Package" is the name of the package (in this case without the user prefix) in lower-case letters, e.g. drude or
phonon, and "machine" is the build target, e.g. mpi or serial.

USER-ATC package

This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be
employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly post-processing
of atomic information to continuum fields.

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton (jatempl
at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you have
questions.

USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular Dynamics
(AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See the
lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external

libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de). Contact
him directly if you have questions.

USER-CG-CMM package
This package implements 3 commands which can be used in a LAMMPS input script:
e pair_style 1j/sdk

e pair_style lj/sdk/coul/long
¢ angle_style sdk

55

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol Sim,
33, 27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino acids.

See the doc pages for these commands for details.
There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many systems
with electrostatics, it will be faster to use pair_style hybrid/overlay with lj/sdk and coul/long instead of the
combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other coulomb
interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is recommended
over regular pppm. For all new styles, input file backward compatibility is provided. The old implementation is
still available through appending the /old suffix. These will be discontinued and removed after the new
implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-COLVARS package
This package implements the "fix colvars" command which can be used in a LAMMPS input script.

This fix allows to use "collective variables" to implement Adaptive Biasing Force, Metadynamics, Steered MD,
Umbrella Sampling and Restraints. This code consists of two parts:

¢ A portable collective variable module library written and maintained

¢ by Giacomo Fiorin ICMS, Temple University, Philadelphia, PA, USA) and
¢ Jerome Henin (LISM, CNRS, Marseille, France). This code is located in

¢ the directory lib/colvars and needs to be compiled first. The colvars

¢ fix and an interface layer, exchanges information between LAMMPS and

¢ the collective variable module.

See the doc page of fix colvars for more details.

There are example scripts for using this package in examples/USER/colvars

This is a very new interface that does not yet support all features in the module and will see future optimizations
and improvements. The colvars module library is also available in NAMD has been thoroughly used and tested
there. Bugs and problems are likely due to the interface layers code. Thus the current version of this package

should be considered beta quality.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and long-range
Coulombics via PPPM for NVIDIA GPUs.

56

See this section of the manual to get started:
Section_accelerate
There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-DIFFRACTION package

This package contains the commands neeed to calculate x-ray and electron diffraction intensities based on
kinematic diffraction theory.

See these doc pages and their related commands to get started:
e compute xrd
e compute saed

o fix saed/vtk

The person who created this package is Shawn P. Coleman (shawn.p.coleman8.ctr at mail.mil) while at the
University of Arkansas. Contact him directly if you have questions.

USER-DPD package

This package implements the dissipative particle dynamics (DPD) method under isothermal, isoenergetic, isobaric
and isenthalpic conditions. The DPD equations of motion are integrated efficiently through the Shardlow splitting
algorithm.

See these doc pages and their related commands to get started:

e compute dpd

e compute dpd/atom

e fix_eos/cv

e fix_cos/table

¢ fix_shardlow

e pair_dpd/conservative
e pair_dpd/fdt

e pair_dpd/fdt/energy

There are example scripts for using this package in examples/USER/dpd.
The people who created this package are James Larentzos (james.p.larentzos.civ at mail.mil), Timothy Mattox

(Timothy.Mattox at engilitycorp.com) and John Brennan (john.k.brennan.civ at mail.mil). Contact them directly if
you have questions.

57

USER-DRUDE package

This package implements methods for simulating polarizable systems in LAMMPS using thermalized Drude
oscillators.

See these doc pages and their related commands to get started:

¢ Drude tutorial

¢ fix drude

¢ compute temp/drude
¢ fix langevin/drude

¢ fix drude/transform/...
¢ pair thole

There are auxiliary tools for using this package in tools/drude.
The person who created this package is Alain Dequidt at Universite Blaise Pascal Clermont-Ferrand

(alain.dequidt at univ-bpclermont.fr) Contact him directly if you have questions. Co-authors: Julien Devemy,
Agilio Padua.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under development
at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010. The eFF potential
was first introduced by Su and Goddard, in 2007.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number of
highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force field
method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli exclusion
principle and the electron wavefunction kinetic energy associated with the Heisenberg principle) that reduce,
along with classical electrostatic terms between nuclei and electrons, to the sum of a set of effective pairwise
potentials. This makes eFF uniquely suited to simulate materials over a wide range of temperatures and pressures
where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit electron
properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.
There are example scripts for using this package in examples/USER/eff.
There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

58

USER-FEP package

This package provides methods for performing free energy perturbation simulations with soft-core pair potentials
in LAMMPS.

See these doc pages and their related commands to get started:
¢ fix adapt/fep
¢ compute fep

® soft pair styles

The person who created this package is Agilio Padua at Universite Blaise Pascal Clermont-Ferrand (agilio.padua
at univ-bpclermont.fr) Contact him directly if you have questions.

USER-H5MD package

This package contains a dump h5md command for performing a dump of atom properties in HDF5 format. HDF5
files are binary, portable and self-describing and can be examined and used by a variety of auxiliary tools. The
output HDFS files are structured in a format called HSMD, which was designed to store molecular data, and can
be used and produced by various MD and MD-related codes. The dump h5md command gives a citation to a
paper describing the format.

The person who created this package and the underlying HSMD format is Pierre de Buyl at KU Leuven (see
http://pdebuyl.be). Contact him directly if you have questions.

USER-INTEL package

This package provides options for performing neighbor list and non-bonded force calculations in single, mixed, or
double precision and also a capability for accelerating calculations with an Intel(R) Xeon Phi(TM) coprocessor.

See this section of the manual to get started:
Section_accelerate

The person who created this package is W. Michael Brown at Intel (michael.w.brown at intel.com). Contact him
directly if you have questions.

USER-LB package

This package contains a LAMMPS implementation of a background Lattice-Boltzmann fluid, which can be used
to model MD particles influenced by hydrodynamic forces.

See this doc page and its related commands to get started:
fix 1b/fluid

The people who created this package are Frances Mackay (fmackay at uwo.ca) and Colin (cdennist at uwo.ca)
Denniston, University of Western Ontario. Contact them directly if you have questions.

59

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

USER-MGPT package

This package contains a fast implementation for LAMMPS of quantum-based MGPT multi-ion potentials. The
MGPT or model GPT method derives from first-principles DFT-based generalized pseudopotential theory (GPT)
through a series of systematic approximations valid for mid-period transition metals with nearly half-filled d
bands. The MGPT method was originally developed by John Moriarty at Lawrence Livermore National Lab
(LLNL).

In the general matrix representation of MGPT, which can also be applied to f-band actinide metals, the multi-ion
potentials are evaluated on the fly during a simulation through d- or f-state matrix multiplication, and the forces
that move the ions are determined analytically. The mgpt pair style in this package calculates forces and energies
using an optimized matrix-MGPT algorithm due to Tomas Oppelstrup at LLNL.

See this doc page to get started:

pair_style mgpt

The persons who created the USER-MGPT package are Tomas Oppelstrup (oppelstrup2 @llnl.gov) and John
Moriarty (moriarty2 @lInl.gov) Contact them directly if you have any questions.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users. Each
feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section_commands
User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.
The list of features and author of each is given in the src/USER-MISC/README file.

You should contact the author directly if you have specific questions about the feature or its coding.

USER-MOLFILE package

This package contains a dump molfile command which uses molfile plugins that are bundled with the VMD
molecular visualization and analysis program, to enable LAMMPS to dump its information in formats compatible
with various molecular simulation tools.

The package only provides the interface code, not the plugins. These can be obtained from a VMD installation
which has to match the platform that you are using to compile LAMMPS for. By adding plugins to VMD, support
for new file formats can be added to LAMMPS (or VMD or other programs that use them) without having to
recompile the application itself.

See this doc page to get started:

dump molfile

60

http://www.ks.uiuc.edu/Research/vmd

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair styles,
dihedral styles, and fix styles.

See this section of the manual to get started:
Section_accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-PHONON package

This package contains a fix phonon command that calculates dynamical matrices, which can then be used to
compute phonon dispersion relations, directly from molecular dynamics simulations.

See this doc page to get started:
fix phonon

The person who created this package is Ling-Ti Kong (konglt at sjtu.edu.cn) at Shanghai Jiao Tong University.
Contact him directly if you have questions.

USER-QMMM package

This package provides a fix gmmm command which allows LAMMPS to be used in a QM/MM simulation,
currently only in combination with pw.x code from the Quantum ESPRESSO package.

The current implementation only supports an ONIOM style mechanical coupling to the Quantum ESPRESSO
plane wave DFT package. Electrostatic coupling is in preparation and the interface has been written in a manner
that coupling to other QM codes should be possible without changes to LAMMPS itself.

See this doc page to get started:

fix gmmm

as well as the 1lib/gqmmm/README file.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-QTB package

This package provides a self-consistent quantum treatment of the vibrational modes in a classical molecular
dynamics simulation. By coupling the MD simulation to a colored thermostat, it introduces zero point energy into
the system, alter the energy power spectrum and the heat capacity towards their quantum nature. This package
could be of interest if one wants to model systems at temperatures lower than their classical limits or when
temperatures ramp up across the classical limits in the simulation.

61

http://www.quantum-espresso.org

See these two doc pages to get started:

fix qtb provides quantum nulcear correction through a colored thermostat and can be used with other time
integration schemes like fix nve or fix nph.

fix gbmsst enables quantum nuclear correction of a multi-scale shock technique simulation by coupling the
quantum thermal bath with the shocked system.

The person who created this package is Yuan Shen (sy0302 at stanford.edu) at Stanford University. Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very
similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.

The person who created this package is Hasan Metin Aktulga (hmaktulga at 1bl.gov), while at Purdue University.
Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have questions.

USER-SMD package

This package implements smoothed Mach dynamics (SMD) in LAMMPS. Currently, the package has the
following features:

* Does liquids via traditional Smooth Particle Hydrodynamics (SPH)
* Also solves solids mechanics problems via a state of the art stabilized meshless method with hourglass control.

* Can specify hydrostatic interactions independently from material strength models, i.e. pressure and deviatoric
stresses are separated.

* Many material models available (Johnson-Cook, plasticity with hardening, Mie-Grueneisen, Polynomial EOS).
Easy to add new material models.

* Rigid boundary conditions (walls) can be loaded as surface geometries from *.STL files.

62

See the file doc/PDF/SMD_LAMMPS_userguide.pdf to get started.
There are example scripts for using this package in examples/USER/smd.
The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.thg.de). Contact him directly if you
have questions.

USER-SMTBQ package

This package implements the Second Moment Tight Binding - QEq (SMTB-Q) potential for the description of
ionocovalent bonds in oxides.

There are example scripts for using this package in examples/USER/smtbq.

See this doc page to get started:

pair_style smtbq

The persons who created the USER-SMTBQ package are Nicolas Salles, Emile Maras, Olivier Politano, Robert

Tetot, who can be contacted at these email addreses: lammps @u-bourgogne.fr, nsalles@laas.fr. Contact them
directly if you have any questions.

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has the
following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state

* Plain or Monaghans XSPH integration of the equations of motion

* Density continuity or density summation to propagate the density field

* Commands to set internal energy and density of particles from the input script

* Output commands to access internal energy and density for dumping and thermo output

See the file doc/PDF/SPH_LAMMPS_userguide.pdf to get started.

There are example scripts for using this package in examples/USER/sph.

The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.thg.de). Contact him directly if you
have questions.

63

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of problems
running on different kinds of machines.

There are two thrusts to the discussion that follows. The first is using code options that implement alternate
algorithms that can speed-up a simulation. The second is to use one of the several accelerator packages provided
with LAMMPS that contain code optimized for certain kinds of hardware, including multi-core CPUs, GPUs, and
Intel Xeon Phi coprocessors.

¢ 5.1 Measuring performance
¢ 5.2 Algorithms and code options to boost performace
® 5.3 Accelerator packages with optimized styles
¢ 5.3.1 USER-CUDA package
¢ 5.3.2 GPU package
¢ 5.3.3 USER-INTEL package
¢ 5.3.4 KOKKOS package
¢ 5.3.5 USER-OMP package
¢ 5.3.6 OPT package
¢ 5.4 Comparison of various accelerator packages

The Benchmark page of the LAMMPS web site gives performance results for the various accelerator packages
discussed in Section 5.2, for several of the standard LAMMPS benchmark problems, as a function of problem size
and number of compute nodes, on different hardware platforms.

5.1 Measuring performance

Before trying to make your simulation run faster, you should understand how it currently performs and where the
bottlenecks are.

The best way to do this is run the your system (actual number of atoms) for a modest number of timesteps (say
100 steps) on several different processor counts, including a single processor if possible. Do this for an
equilibrium version of your system, so that the 100-step timings are representative of a much longer run. There is
typically no need to run for 1000s of timesteps to get accurate timings; you can simply extrapolate from short
runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each LAMMPS run. This
section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the serial performance and what portions of
the timestep are taking the most time. Running the same problem on a few different processor counts should give
an estimate of parallel scalability. L.e. if the simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it's 50% efficient.

The most important data to look at in the timing info is the timing breakdown and relative percentages. For
example, trying different options for speeding up the long-range solvers will have little impact if they only
consume 10% of the run time. If the pairwise time is dominating, you may want to look at GPU or OMP versions
of the pair style, as discussed below. Comparing how the percentages change as you increase the processor count
gives you a sense of how different operations within the timestep are scaling. Note that if you are running with a

64

http://lammps.sandia.gov
http://lammps.sandia.gov/bench.html

Kspace solver, there is additional output on the breakdown of the Kspace time. For PPPM, this includes the
fraction spent on FFTs, which can be communication intensive.

Another important detail in the timing info are the histograms of atoms counts and neighbor counts. If these vary
widely across processors, you have a load-imbalance issue. This often results in inaccurate relative timing data,
because processors have to wait when communication occurs for other processors to catch up. Thus the reported
times for "Communication" or "Other" may be higher than they really are, due to load-imbalance. If this is an
issue, you can uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile LAMMPS, to obtain
synchronized timings.

5.2 General strategies
NOTE: this section 5.2 is still a work in progress

Here is a list of general ideas for improving simulation performance. Most of them are only applicable to certain
models and certain bottlenecks in the current performance, so let the timing data you generate be your guide. It is
hard, if not impossible, to predict how much difference these options will make, since it is a function of problem
size, number of processors used, and your machine. There is no substitute for identifying performance
bottlenecks, and trying out various options.

¢ rRESPA

¢ 2-FFT PPPM

¢ Staggered PPPM

¢ single vs double PPPM

e partial charge PPPM

e verlet/split run style

¢ processor command for proc layout and numa layout
¢ Joad-balancing: balance and fix balance

2-FFT PPPM, also called analytic differentiation or ad PPPM, uses 2 FFTs instead of the 4 FFTs used by the
default ik differentiation PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to achieve the
same accuracy as 4-FFT PPPM. For problems where the FFT cost is the performance bottleneck (typically large
problems running on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.

Staggered PPPM performs calculations using two different meshes, one shifted slightly with respect to the other.
This can reduce force aliasing errors and increase the accuracy of the method, but also doubles the amount of
work required. For high relative accuracy, using staggered PPPM allows one to half the mesh size in each
dimension as compared to regular PPPM, which can give around a 4x speedup in the kspace time. However, for
low relative accuracy, using staggered PPPM gives little benefit and can be up to 2x slower in the kspace time.
For example, the rhodopsin benchmark was run on a single processor, and results for kspace time vs. relative
accuracy for the different methods are shown in the figure below. For this system, staggered PPPM (using ik
differentiation) becomes useful when using a relative accuracy of slightly greater than le-5 and above.

65

NOTE: Using staggered PPPM may not give the same increase in accuracy of energy and pressure as it does in
forces, so some caution must be used if energy and/or pressure are quantities of interest, such as when using a

barostat.

kspace time (s)

Rhodopsin Benchmark

g
Ha

15 /
/ —+—PPPM, ik
N / / =i PPPI, &d
2 / == PPPM, staggered ik
FPPM, staggered ad
'j//
Cgoes ; : . ,
1E-02 1.E-04 1E-05 1.E-06 1.E-07

relative accuracy

5.3 Packages with optimized styles

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to LAMMPS,
which will typically run faster than the standard non-accelerated versions. Some require appropriate hardware to
be present on your system, e.g. GPUs or Intel Xeon Phi coprocessors.

All of these commands are in packages provided with LAMMPS. An overview of packages is give in Section
packages.

These are the accelerator packages currently in LAMMPS, either as standard or user packages:

Inverting this list, LAMMPS currently has acceleration support for three kinds of hardware, via the listed
packages:

USER-CUDA [for NVIDIA GPUs

GPU for NVIDIA GPUs as well as OpenCL support

USER-INTEL [for Intel CPUs and Intel Xeon Phi

KOKKOS for GPUs, Intel Xeon Phi, and OpenMP threading

USER-OMP [for OpenMP threading

OPT generic CPU optimizations

Many-core CPUs [USER-INTEL, KOKKOS, USER-OMP, OPT packages

NVIDIA GPUs |USER-CUDA, GPU, KOKKOS packages

Intel Phi USER-INTEL, KOKKOS packages

Which package is fastest for your hardware may depend on the size problem you are running and what commands

66

(accelerated and non-accelerated) are invoked by your input script. While these doc pages include performance
guidelines, there is no substitute for trying out the different packages appropriate to your hardware.

Any accelerated style has the same name as the corresponding standard style, except that a suffix is appended.
Otherwise, the syntax for the command that uses the style is identical, their functionality is the same, and the
numerical results it produces should also be the same, except for precision and round-off effects.

For example, all of these styles are accelerated variants of the Lennard-Jones pair_style lj/cut:

¢ pair_style lj/cut/cuda
® pair_style lj/cut/gpu
¢ pair_style lj/cut/intel
¢ pair_style lj/cut/kk

® pair_style lj/cut/omp
® pair_style lj/cut/opt

To see what accelerate styles are currently available, see Section_commands 5 of the manual. The doc pages for
individual commands (e.g. pair lj/cut or fix nve) also list any accelerated variants available for that style.

To use an accelerator package in LAMMPS, and one or more of the styles it provides, follow these general steps.
Details vary from package to package and are explained in the individual accelerator doc pages, listed above:

build the accelerator library only for USER-CUDA and GPU packages
install the accelerator package make yes-opt, make yes-user-intel, etc
S . . in srtc/MAKE,
add compile/link flags to Makefile.machine | ¢ (;9ER INTEL, KOKKOS, USER-OMP, OPT packages
re-build LAMMPS make machine

Imp_machine < in.script

run a LAMMPS simulation . S .
mpirun -np 32 Imp_machine -in in.script

via "-c on" and "-k on" command-line switches,
only for USER-CUDA and KOKKOS packages

via "-pk" command-line switch or package command,
only if defaults need to be changed

enable the accelerator package

set any needed options for the package

use accelerated styles in your input script |via "-sf" command-line switch or suffix command

Note that the first 4 steps can be done as a single command, using the src/Make.py tool. This tool is discussed in
Section 2.4 of the manual, and its use is illustrated in the individual accelerator sections. Typically these steps
only need to be done once, to create an executable that uses one or more accelerator packages.

The last 4 steps can all be done from the command-line when LAMMPS is launched, without changing your input
script, as illustrated in the individual accelerator sections. Or you can add package and suffix commands to your
input script.

NOTE: With a few exceptions, you can build a single LAMMPS executable with all its accelerator packages
installed. Note however that the USER-INTEL and KOKKOS packages require you to choose one of their
hardware options when building for a specific platform. I.e. CPU or Phi option for the USER-INTEL package. Or
the OpenMP, Cuda, or Phi option for the KOKKOS package.

These are the exceptions. You cannot build a single executable with:

¢ both the USER-INTEL Phi and KOKKOS Phi options
¢ the USER-INTEL Phi or Kokkos Phi option, and either the USER-CUDA or GPU packages

67

See the examples/accelerate/ README and make.list files for sample Make.py commands that build LAMMPS
with any or all of the accelerator packages. As an example, here is a command that builds with all the GPU related
packages installed (USER-CUDA, GPU, KOKKOS with Cuda), including settings to build the needed auxiliary
USER-CUDA and GPU libraries for Kepler GPUs:

Make.py -3 16 -p omp gpu cuda kokkos -cc nvcc wrap=mpi —cuda mode=double arch=35 -gpu mode=double

The examples/accelerate directory also has input scripts that can be used with all of the accelerator packages. See
its README file for details.

Likewise, the bench directory has FERMI and KEPLER and PHI sub-directories with Make.py commands and
input scripts for using all the accelerator packages on various machines. See the README files in those dirs.

As mentioned above, the Benchmark page of the LAMMPS web site gives performance results for the various
accelerator packages for several of the standard LAMMPS benchmark problems, as a function of problem size
and number of compute nodes, on different hardware platforms.

Here is a brief summary of what the various packages provide. Details are in the individual accelerator sections.

e Styles with a "cuda" or "gpu" suffix are part of the USER-CUDA or GPU packages, and can be run on
NVIDIA GPUs. The speed-up on a GPU depends on a variety of factors, discussed in the accelerator
sections.

e Styles with an "intel" suffix are part of the USER-INTEL package. These styles support vectorized single
and mixed precision calculations, in addition to full double precision. In extreme cases, this can provide
speedups over 3.5x on CPUs. The package also supports acceleration in "offload" mode to Intel(R) Xeon
Phi(TM) coprocessors. This can result in additional speedup over 2x depending on the hardware
configuration.

¢ Styles with a "kk" suffix are part of the KOKKOS package, and can be run using OpenMP on multicore
CPUs, on an NVIDIA GPU, or on an Intel Xeon Phi in "native" mode. The speed-up depends on a variety
of factors, as discussed on the KOKKOS accelerator page.

e Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in
multi-threaded mode using OpenMP. This can be useful on nodes with high-core counts when using less
MPI processes than cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer
MPI processors or when the many MPI tasks would overload the available bandwidth for communication.

¢ Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations
of your simulation by 5-25% on a CPU.

The individual accelerator package doc pages explain:

¢ what hardware and software the accelerated package requires

¢ how to build LAMMPS with the accelerated package

¢ how to run with the accelerated package either via command-line switches or modifying the input script
e speed-ups to expect

¢ guidelines for best performance

® restrictions

5.4 Comparison of various accelerator packages
NOTE: this section still needs to be re-worked with additional KOKKOS and USER-INTEL information.

The next section compares and contrasts the various accelerator options, since there are multiple ways to perform
OpenMP threading, run on GPUs, and run on Intel Xeon Phi coprocessors.

68

http://lammps.sandia.gov/bench.html

All 3 of these packages accelerate a LAMMPS calculation using NVIDIA hardware, but they do it in different

ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other. We
give guidelines below, but the best way to determine which package is faster for your input script is to try both of
them on your machine. See the benchmarking section below for examples where this has been done.

Guidelines for using each package optimally:

The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common configuration
for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in this mode. The
USER-CUDA package does not allow this; you can only use one CPU per GPU.

The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and GPU
every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation is
required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your input
script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output, dump file
snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very low, causing
it to run faster than the GPU package.

The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
smaller. The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes faster
depends strongly on the pair style. For example, for a simple Lennard Jones system the crossover (in
single precision) is often about S0K-100K atoms per GPU. When performing double precision
calculations the crossover point can be significantly smaller.

Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model with
bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the CPU
and GPU every timestep. If the GPU package is running with several MPI processes assigned to one
GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the GPU
package can run faster.

When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if full
16 PCle lanes are not available for each GPU. In HPC environments this can be the case if S2050/70
servers are used, where two devices generally share one PCle 2.0 16x slot. Also many multi-GPU
mainboards do not provide full 16 lanes to each of the PCle 2.0 16x slots.

Differences between the two packages:

The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The USER-CUDA
package currently supports a wider range of pair styles and can also accelerate many fix styles and some
compute styles, as well as neighbor list and PPPM calculations.

The USER-CUDA package does not support acceleration for minimization.

The USER-CUDA package does not support hybrid pair styles.

The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting in a
different order for force accumulation.

The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.
The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a triclinic
simulation box.

The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

Examples:

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA

69

packages.

¢ Jammps/examples/gpu = GPU package files
¢ lJammps/examples/USER/cuda = USER-CUDA package files

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

70

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions
This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM, AMBER, and DREIDING force fields

6.4 Running multiple simulations from one input script

6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Finite-size spherical and aspherical particles

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting and computing temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS

6.20 Calculating thermal conductivity

6.21 Calculating viscosity

6.22 Calculating a diffusion coefficient

6.23 Using chunks to calculate system properties

6.24 Setting parameters for the kspace_style pppm/disp command
6.25 Polarizable models

6.26 Adiabatic core/shell model

6.27 Drude induced dipoles

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also show
how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same input
script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk
using the restart command. At a later time, these binary files can be read via a read_restart command in a new
script. Or they can be converted to text data files using the -r command-line switch and read by a read_data
command in a new script.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a

new run command to continue where the previous run left off. They illustrate what settings must be made in the
new script. Details are discussed in the documentation for the read_restart and read_data commands.

71

http://lammps.sandia.gov

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the original
script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart
added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the st restart file and re-run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart file:
units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used, since their
settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at step
50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is because
the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file as follows:

Ilmp_g++ -r tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units 173
atom_style bond
pair_style 1j/cut 1.12
pair_modify shift yes
bond_style fene

special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep

72

command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data files.

6.2 2d simulations
Use the dimension command to specify a 2d simulation.
Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z coordinate
so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces are
zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes will be
zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.

NOTE: Some models in LAMMPS treat particles as finite-size spheres, as opposed to point particles. In 2d, the
particles will still be spheres, not disks, meaning their moment of inertia will be the same as in 3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we only
discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the CHARMM,
AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the read_data
command or in the input script with commands like pair_coeff or bond_coeff. See Section_tools for additional
tools that can use CHARMM or AMBER to assign force field coefficients and convert their output into LAMMPS
input.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

¢ bond_style harmonic

¢ angle_style charmm

e dihedral_style charmm

e pair_style lj/charmm/coul/charmm

e pair_style lj/charmm/coul/charmm/implicit
e pair_style lj/charmm/coul/long

¢ special_bonds charmm
¢ special_bonds amber

73

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting
structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen bond
term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

¢ bond_style harmonic
¢ bond_style morse

¢ angle_style harmonic
¢ angle_style cosine
¢ angle_style cosine/periodic

¢ dihedral_style charmm
¢ improper_style umbrella

® pair_style buck

® pair_style buck/coul/cut
¢ pair_style buck/coul/long
® pair_style lj/cut

® pair_style lj/cut/coul/cut
® pair_style lj/cut/coul/long

¢ pair_style hbond/dreiding/lj
¢ pair_style hbond/dreiding/morse

¢ special_bonds dreiding

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

units 17
atom_style atomic
read_data data.lj
run 10000

run 10000

run 10000

run 10000

run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

74

http://www.wag.caltech.edu

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units 1j

atom_style atomic
read_data data.lj

run 10000

clear

units 1j

atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.polymer

variable d index runl run2 run3 run4 run5 run6 run7 run8
shell cd $d

read_data data.polymer

run 10000

shell cd ..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$Sa

read data.polymer

velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.S$a
run 100000

clear

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

75

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of your
simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

¢ neb for nudged elastic band calculations

¢ prd for parallel replica dynamics

¢ tad for temperature accelerated dynamics

¢ temper for parallel tempering

¢ fix pimd for path-integral molecular dynamics (PIMD)

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing
accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs different
replicas at a series of temperature to facilitate rare-event sampling.

These commands can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

PIMD runs different replicas whose individual particles are coupled together by springs to model a system or
ring-polymers.

This commands can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each replica
are determined at run-time by using the -partition command-line switch to launch LAMMPS on multiple
partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8xl -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to specify the
input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors than
you have physical processors. Thus the above commands could be run on a single-processor (or few-processor)
desktop so that you can run a multi-replica simulation on more replicas than you have physical processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This means
they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:
e atom_style sphere
¢ fix nve/sphere
o fix gravity

This compute

76

¢ compute erotate/sphere
calculates rotational kinetic energy which can be output with thermodynamic info.
Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:
® pair_style gran/history
® pair_style gran/no_history
® pair_style gran/hertzian
These commands implement fix options specific to granular systems:
o fix freeze
¢ fix pour
e fix viscous

¢ fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by using
this command:

¢ neigh_modify exclude

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake command can
be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an angle style of
harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix shake) is
desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983 TIP3P
model (Jorgensen).

O mass = 15.9994

H mass = 1.008

O charge =-0.834

H charge = 0.417

LJ epsilon of OO =0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753
K of OH bond =450

r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

77

These are the parameters to use for TIP3P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS), see (Price) for details:

O mass = 15.9994

H mass = 1.008

O charge =-0.830

H charge =0.415

LJ epsilon of OO =0.102

LJ sigma of OO =3.188

LJ epsilon, sigma of OH, HH = 0.0
K of OH bond =450

r0 of OH bond = 0.9572

K of HOH angle = 55

theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an additional
site, usually massless, where the charge associated with the oxygen atom is placed. This site M is located at a
fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

A TIP4P model is run with LAMMPS using either this command for a cutoff model:
pair_style lj/cut/tip4p/cut
or these two commands for a long-range model:

® pair_style lj/cut/tip4p/long
® kspace_style pppm/tip4p

For both models, the bond lengths and bond angles should be held fixed using the fix shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style command, not as
part of the pair coefficients.

O mass = 15.9994

H mass = 1.008

O charge =-1.040

H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.15

LJ epsilon of O-O = 0.1550
LJ sigma of O-O =3.1536
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

78

http://en.wikipedia.org/wiki/Water_model

For the TIP4/Ice model (J Chem Phys, 122, 234511 (2005); http://dx.doi.org/10.1063/1.1931662) these values can
be used:

O mass = 15.9994

H mass = 1.008

O charge =-1.1794

H charge = 0.5897

r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1577

LJ epsilon of O-O =0.21084
LJ sigma of O-O = 3.1668
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

For the TIP4P/2005 model (J Chem Phys, 123, 234505 (2005); http://dx.doi.org/10.1063/1.2121687), these values
can be used:

O mass = 15.9994

H mass = 1.008

O charge =-1.1128

H charge = 0.5564

r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1546

LJ epsilon of O-O =0.1852
LJ sigma of O-O =3.1589
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

These are the parameters to use for TIP4P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS):

O mass = 15.9994

H mass = 1.008

O charge =-1.0484

H charge = 0.5242

r0 of OH bond = 0.9572

theta of HOH angle = 104.52

OM distance = 0.1250

LJ epsilon of O-O =0.16275

LJ sigma of O-O = 3.16435

LJ epsilon, sigma of OH, HH = 0.0

Note that the when using the TIP4P pair style, the neighobr list cutoff for Coulomb interactions is effectively
extended by a distance 2 * (OM distance), to account for the offset distance of the fictitious charges on O atoms in
water molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*(OM
distance), to shrink the size of the neighbor list. This leads to slightly larger cost for the long-range calculation, so
you can test the trade-off for your model. The OM distance and the LJ and Coulombic cutoffs are set in the
pair_style lj/cut/tip4p/long command.

Wikipedia also has a nice article on water models.

79

http://en.wikipedia.org/wiki/Water_model

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters assigned
to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds and the
H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
SPC model.

O mass = 15.9994

H mass = 1.008

O charge =-0.820

H charge = 0.410

LJ epsilon of OO =0.1553

LJ sigma of OO =3.166

LJ epsilon, sigma of OH, HH = 0.0
r0 of OH bond = 1.0

theta of HOH angle = 109.47

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and Coulommbic
terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without changing any of
the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

O charge =-0.8476
H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the POEMS package that performs constrained rigid-body motion on groups of atoms
is hooked to LAMMPS. See the fix_poems command for more details. See this section of the documentation for
info on how to add a new fix to LAMMPS.

80

http://en.wikipedia.org/wiki/Water_model
http://www.rpi.edu/~anderk5/lab

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but in
this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used to alternate
LAMMPS runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with LAMMPS thru files that the
command writes and reads.

See Section_modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls LAMMPS
as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do
multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the examples/COUPLE directory of the
LAMMPS distribution; see examples/fCOUPLE/README for more details:

¢ simple: simple driver programs in C++ and C which invoke LAMMPS as a library

¢ Jammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated by
a density functional code

¢ lammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in LAMMPS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus the
calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might decide to
alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform different
calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

81

http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the xmovie
program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d systems, and can
be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a lammps2pdb
Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool which converts
LAMMPS dump files into Accelrys' Insight MD program files. The third is the Imp2cfg tool which converts
LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom dump
files with additional columns of user-specified atom information, and convert them to various formats or pipe
them into visualization software directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can
convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe LAMMPS dump
files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d
OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by many
visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files. See
the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be read
by VMD for visualization. See the dump command for more information on XTC files.

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command sets
the boundary conditions of the box (periodic, non-periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-x10,0,0); b = (0,yhi-ylo,0);
¢ = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the simulation box is created,
e.g. by the create_box or read_data or read_restart commands. Additionally, LAMMPS defines box size
parameters Ix,ly,lz where Ix = xhi-xlo, and similarly in the y and z dimensions. The 6 parameters, as well as
Ix,ly,lz, can be output via the thermo_style custom command.

LAMMPS also allows simulations to be performed in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge
vectors starting from the origin given by a = (xhi-x10,0,0); b = (xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zlo). xy,xz,yz can be
0.0 or positive or negative values and are called "tilt factors" because they are the amount of displacement applied
to faces of an originally orthogonal box to transform it into the parallelepiped. In LAMMPS the triclinic
simulation box edge vectors a, b, and ¢ cannot be arbitrary vectors. As indicated, a must lie on the positive x axis.
b must lie in the xy plane, with strictly positive y component. ¢ may have any orientation with strictly positive z
component. The requirement that a, b, and ¢ have strictly positive X, y, and z components, respectively, ensures
that a, b, and ¢ form a complete right-handed basis. These restrictions impose no loss of generality, since it is
possible to rotate/invert any set of 3 crystal basis vectors so that they conform to the restrictions.

For example, assume that the 3 vectors A,B,C are the edge vectors of a general parallelepiped, where there is no
restriction on A,B,C other than they form a complete right-handed basis i.e. A x B.. C > 0. The equivalent

82

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

LAMMPS a,b,c are a linear rotation of A, B, and C and can be computed as follows:

:::EUH
|
>
X
o)
[
™
EJ.
-2
[
£
>
|
S

¢; = |C-(AxB)] = +/C?—c2—¢?

where A = |Al indicates the scalar length of A. The ~ hat symbol indicates the corresponding unit vector. beta and

gamma are angles between the vectors described below. Note that by construction, a, b, and ¢ have strictly

positive X, y, and z components, respectively. If it should happen that A, B, and C form a left-handed basis, then

the above equations are not valid for c. In this case, it is necessary to first apply an inversion. This can be
achieved by interchanging two basis vectors or by changing the sign of one of them.

For consistency, the same rotation/inversion applied to the basis vectors must also be applied to atom positions,
velocities, and any other vector quantities. This can be conveniently achieved by first converting to fractional

coordinates in the old basis and then converting to distance coordinates in the new basis. The transformation is
given by the following equation:

B xC
CxAl]-X
A xB

1
V

X

(a b c)-

where V is the volume of the box, X is the original vector quantity and x is the vector in the LAMMPS basis.

83

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at least
the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions across that
boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt commands, require
periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the command doc pages for
details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create_box command is used with a region of style prism, then a triclinic box is
setup. See the region command for details. If the read_data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a triclinic box is setup. See the read_data
command for details. Finally, if the read_restart command reads a restart file which was written from a simulation
using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands. Alternatively,
you can use the change_box command to convert a simulation box from orthogonal to triclinic and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters 1x,ly,1z where 1x = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as 1x,ly,1z, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), LAMMPS normally requires that
no tilt factor can skew the box more than half the distance of the parallel box length, which is the 1st dimension in
the tilt factor (x for xz). This is required both when the simulation box is created, e.g. via the create_box or
read_data commands, as well as when the box shape changes dynamically during a simulation, e.g. via the fix
deform or fix npt commands.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5.
Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if
the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are
geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix deform
command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the run can
continue. See the fix deform doc page for further details.

One exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the limits
on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom positions due
to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will simply become
inefficient, due to the highly skewed simulation box.

The limitation on not creating a simulation box with a tilt factor skewing the box more than half the distance of
the parallel box length can be overridden via the box command. Setting the filt keyword to large allows any tilt
factors to be specified.

Box flips that may occur using the fix deform or fix npt commands can be turned off using the flip no option with
either of the commands.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume of
communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For extreme

values of tilt, LAMMPS may also lose atoms and generate an error.

Triclinic crystal structures are often defined using three lattice constants a, b, and ¢, and three angles alpha, beta
and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the edge

84

vectors a, b, and ¢ defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma) and the
LAMMPS box sizes (Ix,ly,lz) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

i = K
3] 2
b = ly* +xy°
2 2 2 2
¢ = lz°+xz"+yz
Xy * Xz + 1y * yz
cosa =
bxc
X7
cosfi = —
C
Xy
The inverse relationship can be written as follows:
B = @
xy = bcosy
xZ = ccosfd

2 2 2
1}; = b Xy
bxccosa — XY * XZ

The values of a, b, ¢ , alpha, beta , and gamma can be printed out or accessed by computes using the thermo_style
custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump file
for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along with
the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz
x1lo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box
parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

85

xlo_bound = xlo + MIN(0.0,xy,xz,xy+x2z)
xhi_bound = xhi + MAX(0.0,xy,xz,xy+x2z)
ylo_bound = ylo + MIN(0.0,yz)
yhi_bound = yhi + MAX(0.0,yz)

zlo_bound = zlo
zhi_bound = zhi

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,xz,Xy+Xxz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice command
can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation box via the
create_atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz tilt
factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used for
this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed in the
next section on non-equilibrium MD (NEMD) simulations.

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a non-orthogonal
simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command. The
fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of motion
for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by subtracting out the
streaming velocity of the shearing atoms. The velocity profile or other properties of the fluid can be monitored via
the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can be
applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However, fix
deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command, when the
tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of periodic space.
The strain rate can then continue to change as before. In a long NEMD simulation these box re-shaping events
may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

6.14 Finite-size spherical and aspherical particles
Typical MD models treat atoms or particles as point masses. Sometimes it is desirable to have a model with

finite-size particles such as spheroids or ellipsoids or generalized aspherical bodies. The difference is that such
particles have a moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque

86

coming from interactions with other particles.

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

¢ atom styles

® pair potentials

® time integration

¢ computes, thermodynamics, and dump output
¢ rigid bodies composed of finite-size particles

Example input scripts for these kinds of models are in the body, colloid, dipole, ellipse, line, peri, pour, and tri
directories of the examples directory in the LAMMPS distribution.

Atom styles

There are several atom styles that allow for definition of finite-size particles: sphere, dipole, ellipsoid, line, tri,
peri, and body.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set" command
can be used to modify the diameter and mass of individual particles, after then are created.

The dipole style does not actually define finite-size particles, but is often used in conjunction with spherical
particles, via a command like

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be finite-size (i.e.
have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details. The
"set" command can be used to modify the orientation and length of the dipole moment of individual particles,
after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their orientation
(quaternion), and can be acted upon by torque. They do not store an angular velocity (omega), which can be in a
different direction than angular momentum, rather they compute it as needed. The "set" command can be used to
modify the diameter, orientation, and mass of individual particles, after then are created. It also has a brief
explanation of what quaternions are.

The line style defines line segment particles with two end points and a mass (or density). They can be used in 2d
simulations, and they can be joined together to form rigid bodies which represent arbitrary polygons.

The tri style defines triangular particles with three corner points and a mass (or density). They can be used in 3d
simulations, and they can be joined together to form rigid bodies which represent arbitrary particles with a
triangulated surface.

The peri style is used with Peridynamic models and defines particles as having a volume, that is used internally in
the pair_style peri potentials.

The body style allows for definition of particles which can represent complex entities, such as surface meshes of
discrete points, collections of sub-particles, deformable objects, etc. The body style is discussed in more detail on
the body doc page.

87

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical.

For example, in the ellipsoid style, if the 3 shape parameters are set to the same value, the particle will be a sphere
rather than an ellipsoid. If the 3 shape parameters are all set to 0.0 or if the diameter is set to 0.0, it will be a point
particle. In the line or tri style, if the lineflag or triflag is specified as 0, then it will be a point particle.

Some of the pair styles used to compute pairwise interactions between finite-size particles also compute the
correct interaction with point particles as well, e.g. the interaction between a point particle and a finite-size
particle or between two point particles. If necessary, pair_style hybrid can be used to insure the correct
interactions are computed for the appropriate style of interactions. Likewise, using groups to partition particles
(ellipsoids versus spheres versus point particles) will allow you to use the appropriate time integrators and
temperature computations for each class of particles. See the doc pages for various commands for details.

Also note that for 2d simulations, atom styles sphere and ellipsoid still use 3d particles, rather than as circular
disks or ellipses. This means they have the same moment of inertia as the 3d object. When temperature is
computed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with finite-size particles is defined, the particles will only rotate and experience torque if the force
field computes such interactions. These are the various pair styles that generate torque:

¢ pair_style gran/history
¢ pair_style gran/hertzian
® pair_style gran/no_history
¢ pair_style dipole/cut

® pair_style gayberne

® pair_style resquared

® pair_style brownian

¢ pair_style lubricate

¢ pair_style line/lj

® pair_style tri/lj

® pair_style body

The granular pair styles are used with spherical particles. The dipole pair style is used with the dipole atom style,
which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials require
ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The Brownian
and lubrication potentials are used with spherical particles. The line, tri, and body potentials are used with line
segment, triangular, and body particles respectively.

Time integration

There are several fixes that perform time integration on finite-size spherical particles, meaning the integrators
update the rotational orientation and angular velocity or angular momentum of the particles:

¢ fix nve/sphere
¢ fix nvt/sphere
¢ fix npt/sphere
Likewise, there are 3 fixes that perform time integration on ellipsoidal particles:

¢ fix nve/asphere

88

¢ fix nvt/asphere
¢ fix npt/asphere

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of freedom
in the temperature calculation and thermostatting. The fix langevin command can also be used with its omgea or
angmom options to thermostat the rotational degrees of freedom for spherical or ellipsoidal particles. Other
thermostatting fixes only operate on the translational kinetic energy of finite-size particles.

These fixes perform constant NVE time integration on line segment, triangular, and body particles:

e fix nve/line
e fix nve/tri
¢ fix nve/body

Note that for mixtures of point and finite-size particles, these integration fixes can only be used with groups which
contain finite-size particles.

Computes, thermodynamics, and dump output
There are several computes that calculate the temperature or rotational energy of spherical or ellipsoidal particles:

¢ compute temp/sphere

¢ compute temp/asphere

¢ compute erotate/sphere
¢ compute erotate/asphere

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of finite-size particles),
then the compute can be defined and the thermo_modify command used. Note that by default thermodynamic
quantities will be calculated with a temperature that only includes translational degrees of freedom. See the
thermo_style command for details.

These commands can be used to output various attributes of finite-size particles:

¢ dump custom

® compute property/atom
¢ dump local

¢ compute body/local

Attributes include the dipole moment, the angular velocity, the angular momentum, the quaternion, the torque, the
end-point and corner-point coordinates (for line and tri particles), and sub-particle attributes of body particles.

Rigid bodies composed of finite-size particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the total
force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates the
motion of the rigid body.

If any of the constituent particles of a rigid body are finite-size particles (spheres or ellipsoids or line segments or
triangles), then their contribution to the inertia tensor of the body is different than if they were point particles.
This means the rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the
dimer consists of two point masses versus two spheroids, even if the two particles have the same mass. Finite-size
particles that experience torque due to their interaction with other particles will also impart that torque to a rigid

89

body they are part of.
See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

Also note that body particles cannot be modeled with the fix rigid command. Body particles are treated by
LAMMPS as single particles, though they can store internal state, such as a list of sub-particles. Individual body
partices are typically treated as rigid bodies, and their motion integrated with a command like fix nve/body.
Interactions between pairs of body particles are computed via a command like pair_style body.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
There are four basic kinds of LAMMPS output:

¢ Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and logfile.

¢ Dump files, which contain snapshots of atoms and various per-atom values and are written at a specified
frequency.

¢ Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix ave/spatial
for spatial averaging, and fix print for single-line output of variables. Fix print can also output to the
screen.

® Restart files.

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number of
dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

¢ Global/per-atom/local data

e Scalar/vector/array data

¢ Thermodynamic output

® Dump file output

¢ Fixes that write output files

e Computes that process output quantities
¢ Fixes that process output quantities

e Computes that generate values to output
¢ Fixes that generate values to output

¢ Variables that generate values to output
¢ Summary table of output options and data flow between commands

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or more

90

values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor based on the
atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both the style
and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f " for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the compute, fix,
or variable must generate global values for input to the thermo_style custom command.

Note that thermodynamic output values can be "extensive" or "intensive". The former scale with the number of
atoms in the system (e.g. total energy), the latter do not (e.g. temperature). The setting for thermo_modify norm
determines whether extensive quantities are normalized or not. Computes and fixes produce either extensive or
intensive values; see their individual doc pages for details. Equal-style variables produce only intensive values;
you can include a division by "natoms" in the formula if desired, to make an extensive calculation produce an
intensive result.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats
(dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom. Pre-defined
atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the values to be output. In each case, the compute,
fix, or variable must generate per-atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be specified
(c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the compute or fix
must generate local values for input to the dump local command.

91

Fixes that write output files

Several fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix ave/histo,
fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the atom style which produces per-atom values. Since a variable can refer to keywords used by
the thermo_style custom command (like temp or press) and individual per-atom values, a wide variety of
quantities can be time averaged and/or output in this way. If the inputs are one or more scalar values, then the fix
generate a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a
global vector or array of output. The time-averaged output of this fix can also be used as input to other output
commands.

The fix ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density (mass or
number) or atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also be used as input to
other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be global
scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the atom style). As explained above, variables themselves can contain references to global values
generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a specific
atom. Thus the fix print command is a means to output a wide variety of quantities separate from normal
thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector quantities
as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output values which
can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset of
their values to create a new vector or array. These are produced as output values which can be used as input to
other output commands.

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc) and
stores the values in a per-atom vector or array. These are produced as output values which can be used as input to
other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle

info, etc) and stores the values in a local vector or array. These are produced as output values which can be used
as input to other output commands.

92

Fixes that process output quantities

The fix vector command can create global vectors as output from global scalars as input, accumulating them one
element at a time.

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be atom
attributes such as position, velocity, force. They can also be per-atom quantities calculated by a compute, by a fix,
or by an atom-style variable. The time-averaged per-atom output of this fix can be used as input to other output
commands.

The fix store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump custom
command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style variable. The
output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The doc
page for each compute command describes what it produces. Computes that produce per-atom or local values
have the word "atom" or "local" in their style name. Computes without the word "atom" or "local" produce global
values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can contain
references to the thermodynamic keywords and to global and per-atom data generated by computes, fixes, and
other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per-atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command Input Output
thermo_style custom |global scalars screen, log file
dump custom per-atom vectors dump file

93

dump local local vectors dump file

fix print global scalar from variable screen, file

print global scalar from variable screen

computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector

compute reduce per-atom/local vectors global scalar/vector

compute slice global vectors/arrays global vector/array

compute property/atom [per-atom vectors per-atom vector/array

compute property/local [local vectors local vector/array

fix vector global scalars global vector

fix ave/atom per-atom vectors per-atom vector/array

fix ave/time global scalars/vectors global scalar/vector/array, file

fix ave/spatial per-atom vectors global array, file

fix ave/histo global/per-atom/local scalars and vectors |global array, file

fix ave/correlate global scalars global array, file

fix store/state per-atom vectors per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the Boltzmann
constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish between a
particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity. The sum of the
two is the particle's total velocity, but the latter is often what is wanted to compute a temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates
pressure.

® compute temp

e compute temp/sphere
e compute temp/asphere
e compute temp/com

e compute temp/deform
e compute temp/partial
e compute temp/profile
e compute temp/ramp

e compute temp/region

All but the first 3 calculate velocity biases directly (e.g. advection velocities) that are removed when computing

the thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for finite-size
particles that includes rotational degrees of freedom. They both allow for velocity biases indirectly, via an

94

optional extra argument, another temperature compute that subtracts a velocity bias. This allows the translational
velocity of spherical or aspherical particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Several thermostatting fixes are
available: Nose-Hoover (nvt), Berendsen, CSVR, Langevin, and direct rescaling (temp/rescale). Dissipative
particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

o fix nvt

¢ fix nvt/sphere

¢ fix nvt/asphere

¢ fix nvt/sllod

¢ fix temp/berendsen
¢ fix temp/csvr

¢ fix langevin

¢ fix temp/rescale

® pair_style dpd/tstat

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it subtracts
out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the NEMD
simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not only
translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias which has two effects. First, the
current calculated temperature, which is compared to the requested target temperature, is caluclated with the
velocity bias removed. Second, the thermostat adjusts only the thermal temperature component of the particle's
velocities, which are the velocities with the bias removed. The removed bias is then added back to the adjusted
velocities. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature compute to a thermostatting fix. For example, you can apply a thermostat to only the x and z
components of velocity by using it in conjunction with compute temp/partial. Of you could thermostat only the
thermal temperature of a streaming flow of particles without affecting the streaming velocity, by using compute
temp/profile.

NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and positions of particles
due to forces and velocities respectively. The other thermostat fixes only adjust velocities; they do NOT perform
time integration updates. Thus they should be used in conjunction with a constant NVE integration fix such as
these:

¢ fix nve
¢ fix nve/sphere
¢ fix nve/asphere

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

¢ fix npt

¢ fix npt/sphere

¢ fix npt/asphere

¢ fix nph

¢ fix press/berendsen

95

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover barostat; it
does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any of the
thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and P
and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only translation
velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command), which
is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use temperature
computes that remove bias for the purpose of computing the kinetic componenet which contributes to the current
pressure. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature or pressure compute to a barostatting fix.

NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time integration. Fix
press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with one of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes temperature
and pressure values. As explained on the doc page for the thermo_style command, the default T and P are setup
by the thermo command itself. They are NOT the ones associated with any thermostatting or barostatting fix you
have defined or with any compute that calculates a temperature or pressure. Thus if you want to view these values
of T and P, you need to specify them explicitly via a thermo_style custom command. Or you can use the
thermo_modify command to re-define what temperature or pressure compute is used for default thermodynamic
output.

6.17 Walls
Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like any
other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together as a
group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g. rotate
around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group that
contains wall particles, their positions and velocities will not be updated.

¢ fix aveforce - set force on particles to average value, so they move together

¢ fix setforce - set force on particles to a value, e.g. 0.0

¢ fix freeze - freeze particles for use as granular walls

¢ fix nve/noforce - advect particles by their velocity, but without force

¢ fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable

The fix move command offers the most generality, since the motion of individual particles can be specified with
variable formula which depends on time and/or the particle position.

96

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with mobile
particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do interact with
other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

o fix wall/reflect - reflective flat walls

o fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential

o fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential

¢ fix wall/colloid - flat walls, with pair_style colloid potential

¢ fix wall/harmonic - flat walls, with repulsive harmonic spring potential
¢ fix wall/region - use region surface as wall

¢ fix wall/gran - flat or curved walls with pair_style granular potential

The [j93, [j126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or oscillate
in time. The fix wall/region command offers the most generality, since the region surface is treated as a wall, and
the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a complex
volume made from the union and intersection of primitive volumes. Regions can also specify a volume "interior"
or "exterior" to the specified primitive shape or union or intersection. Regions can also be "dynamic" meaning
they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix wall/gran
command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as triangulated
surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear relation
that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor notation, this is
expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the elements of the
symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the elements of the fourth
rank tensor of elastic constants. In three dimensions, this tensor has 374=81 elements. Using Voigt notation, the
tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t. e_j. Because s_i is itself a
derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21 distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change_box command and measuring the change in the stress tensor. A general-purpose
script that does this is given in the examples/elastic directory described in this section.

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a simulation
that perfoms time averages of differential properties. One way to do this is to measure the change in average
stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order to balance the
systematic and statistical errors in this method, the magnitude of the deformation must be chosen judiciously, and
care must be taken to fully equilibrate the deformed cell before sampling the stress tensor. Another approach is to
sample the triclinic cell fluctuations that occur in an NPT simulation. This method can also be slow to converge
and requires careful post-processing (Shinoda)

97

6.19 Library interface to LAMMPS

As described in Section_start 5, LAMMPS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates how to invoke
internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS namespace
(LAMMPS_NS) if you use them from another C++ application.

Library.cpp contains these 5 basic functions:

void lammps_open(int, char **, MPI_Comm, void **)
void lammps_close (void *)

int lammps_version (void *)

void lammps_file(void *, char ¥*)

char *lammps_command (void *, char ¥*)

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run LAMMPS
on all or a subset of processors. For example, a wrapper script might decide to alternate between LAMMPS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
LAMMPS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_version() function can be used to determined the specific version of the underlying LAMMPS code.
This is particularly useful when loading LAMMPS as a shared library via dlopen(). The code using the library
interface can than use this information to adapt to changes to the LAMMPS command syntax between versions.
The returned LAMMPS version code is an integer (e.g. 2 Sep 2015 results in 20150902) that grows with every
new LAMMPS version.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of LAMMPS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the lammps_command() calls with other calls to extract information from LAMMPS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global (void *, char ¥*)

void *lammps_extract_atom(void *, char ¥*)

void *lammps_extract_compute (void *, char *, int, int)

void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)

int lammps_set_variable (void *, char *, char *)

int lammps_get_natoms (void ¥*)

void lammps_get_coords (void *, double *)

98

void lammps_put_coords (void *, double *)

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a
compute, fix, or variable. The "set_variable" function can set an existing string-style variable to a new value, so
that subsequent LAMMPS commands can access the variable. The "get" and "put" operations can retrieve and
reset atom coordinates. See the library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any LAMMPS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to LAMMPS as a library, run
LAMMPS on a subset of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 4 ways using various options in
LAMMPS. See the examples/KAPPA directory for scripts that implement the 4 methods discussed here for a
simple Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for viscosity.

The thermal conducitivity tensor kappa is a measure of the propensity of a material to transmit heat energy in a
diffusive manner as given by Fourier's law

J = -kappa grad(T)

where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature. The
thermal conductivity thus has units of energy per distance per time per degree K and is often approximated as an
isotropic quantity, i.e. as a scalar.

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the middle
and one at the end of a periodic box. By holding the two regions at different temperatures with a thermostatting
fix, the energy added to the hot region should equal the energy subtracted from the cold region and be
proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for details of
this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the cumulative
energy they add/subtract.

Alternatively, as a second method, the fix heat command can used in place of thermostats on each of two regions
to add/subtract specified amounts of energy to both regions. In both cases, the resulting temperatures of the two
regions can be monitored with the "compute temp/region" command and the temperature profile of the
intermediate region can be monitored with the fix ave/spatial and compute ke/atom commands.

The third method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the INEMD algorithm of Muller-Plathe. Kinetic energy is swapped between atoms
in two different layers of the simulation box. This induces a temperature gradient between the two layers which
can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the cumulative energy
transfer that it performs. See the fix thermal/conductivity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and cold
regions of the simulation box.

99

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to
calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example input
script that calculates the thermal conductivity of solid Ar via the GK formalism.

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 4 ways using various options in LAMMPS. See the
examples/VISCOSITY directory for scripts that implement the 4 methods discussed here for a simple
Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for thermal
conductivity.

Eta is a measure of the propensity of a fluid to transmit momentum in a direction perpendicular to the direction of
velocity or momentum flow. Alternatively it is the resistance the fluid has to being sheared. It is given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial gradient
of the velocity of the fluid moving in another direction, normal to the area through which the momentum flows.
Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via the
fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD equations of
motion. Alternatively, as a second method, one or more moving walls can be used to shear the fluid in between
them, again with some kind of thermostat that modifies only the thermal (non-shearing) components of velocity to
prevent the fluid from heating up.

In both cases, the velocity profile setup in the fluid by this procedure can be monitored by the fix ave/spatial
command, which determines grad(Vstream) in the equation above. E.g. the derivative in the y-direction of the Vx
component of fluid motion or grad(Vstream) = dVx/dy. The Pxy off-diagonal component of the pressure or stress
tensor, as calculated by the compute pressure command, can also be monitored, which is the J term in the
equation above. See this section of the manual for details on NEMD simulations.

The third method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command which
implements the INEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between atoms in
two different layers of the simulation box in a different dimension. This induces a velocity gradient which can be
monitored with the fix ave/spatial command. The fix tallies the cuammulative momentum transfer that it performs.
See the fix viscosity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously through

the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of liquid Ar

units real

variable T equal 86.4956
variable V equal vol
variable dt equal 4.0

100

variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann

variable atm2Pa equal 101325.0

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${atm2Pa}*${atm2Pa}*S${fs2s}*${A2m}*S${A2m}*S${A2m}

setup problem

dimension 3

boundary pPpPpP

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep ${dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s $p $d &

V_pxy V_pxz v_pyz type auto file SO0St.dat ave running
variable scale equal S${convert}/ (${kB}*ST)*SV*S$s*s{dt}
variable v1ll equal trap(f_SS[3])*${scale}
variable v22 equal trap(f_SS[4])*${scale}
variable v33 equal trap(f_SS[5])*${scale}

thermo_style custom step temp press v_pxy Vv_pxz v_pyz v_vll v_v22 v_v33
run 100000

variable v equal (v_vll+v_v22+v_v33)/3.0
variable ndens equal count (all)/vol
print "average viscosity: $v [Pa.s/ @ ST K, ${ndens} /A"3"

6.22 Calculating a diffusion coefficient
The diffusion coefficient D of a material can be measured in at least 2 ways using various options in LAMMPS.

See the examples/DIFFUSE directory for scripts that implement the 2 methods discussed here for a simple
Lennard-Jones fluid model.

101

The first method is to measure the mean-squared displacement (MSD) of the system, via the compute msd
command. The slope of the MSD versus time is proportional to the diffusion coefficient. The instantaneous MSD
values can be accumulated in a vector via the fix vector command, and a line fit to the vector to compute its slope
via the variable slope function, and thus extract D.

The second method is to measure the velocity auto-correlation function (VACEF) of the system, via the compute
vacf command. The time-integral of the VACEF is proportional to the diffusion coefficient. The instantaneous
VACEF values can be accumulated in a vector via the fix vector command, and time integrated via the variable trap
function, and thus extract D.

6.23 Using chunks to calculate system properties

In LAMMS, "chunks" are collections of atoms, as defined by the compute chunk/atom command, which assigns
each atom to a chunk ID (or to no chunk at all). The number of chunks and the assignment of chunk IDs to atoms
can be static or change over time. Examples of "chunks" are molecules or spatial bins or atoms with similar values
(e.g. coordination number or potential energy).

The per-atom chunk IDs can be used as input to two other kinds of commands, to calculate various properties of a
system:

e fix ave/chunk
¢ any of the compute */chunk commands

Here, each of the 3 kinds of chunk-related commands is briefly overviewed. Then some examples are given of
how to compute different properties with chunk commands.

Compute chunk/atom command:

This compute can assign atoms to chunks of various styles. Only atoms in the specified group and optional
specified region are assigned to a chunk. Here are some possible chunk definitions:

atoms in same molecule chunk ID = molecule ID

atoms of same atom type chunk ID = atom type

all atoms with same atom property (charge,

radius, efc) chunk ID = output of compute property/atom

atoms in same cluster chunk ID = output of compute cluster/atom command
atoms in same spatial bin chunk ID = bin ID

atoms in same rigid body chunk ID = molecule ID used to define rigid bodies
atoms with similar potential energy chunk ID = output of compute pe/atom

chunk ID = output of compute centro/atom or compute

atoms with same local defect structure
coord/atom command

Note that chunk IDs are integer values, so for atom properties or computes that produce a floating point value,
they will be truncated to an integer. You could also use the compute in a variable that scales the floating point
value to spread it across multiple intergers.

Spatial bins can be of various kinds, e.g. 1d bins = slabs, 2d bins = pencils, 3d bins = boxes, spherical bins,
cylindrical bins.

This compute also calculates the number of chunks Nchunk, which is used by other commands to tally per-chunk
data. Nchunk can be a static value or change over time (e.g. the number of clusters). The chunk ID for an

102

individual atom can also be static (e.g. a molecule ID), or dynamic (e.g. what spatial bin an atom is in as it
moves).

Note that this compute allows the per-atom output of other computes, fixes, and variables to be used to define
chunk IDs for each atom. This means you can write your own compute or fix to output a per-atom quantity to use
as chunk ID. See Section_modify of the documentation for how to do this. You can also define a per-atom
variable in the input script that uses a formula to generate a chunk ID for each atom.

Fix ave/chunk command:

This fix takes the ID of a compute chunk/atom command as input. For each chunk, it then sums one or more
specified per-atom values over the atoms in each chunk. The per-atom values can be any atom property, such as
velocity, force, charge, potential energy, kinetic energy, stress, etc. Additional keywords are defined for
per-chunk properties like density and temperature. More generally any per-atom value generated by other
computes, fixes, and per-atom variables, can be summed over atoms in each chunk.

Similar to other averaging fixes, this fix allows the summed per-chunk values to be time-averaged in various
ways, and output to a file. The fix produces a global array as output with one row of values per chunk.

Compute */chunk commands:
Currently the following computes operate on chunks of atoms to produce per-chunk values.

¢ compute com/chunk

¢ compute gyration/chunk
¢ compute inertia/chunk

¢ compute msd/chunk

¢ compute property/chunk
¢ compute temp/chunk

¢ compute torque/chunk

¢ compute vem/chunk

They each take the ID of a compute chunk/atom command as input. As their names indicate, they calculate the
center-of-mass, radius of gyration, moments of inertia, mean-squared displacement, temperature, torque, and
velocity of center-of-mass for each chunk of atoms. The compute property/chunk command can tally the count of
atoms in each chunk and extract other per-chunk properties.

The reason these various calculations are not part of the fix ave/chunk command, is that each requires a more
complicated operation than simply summing and averaging over per-atom values in each chunk. For example,
many of them require calculation of a center of mass, which requires summing mass*position over the atoms and
then dividing by summed mass.

All of these computes produce a global vector or global array as output, wih one or more values per chunk. They
can be used in various ways:

¢ As input to the fix ave/time command, which can write the values to a file and optionally time average
them.

¢ As input to the fix ave/histo command to histogram values across chunks. E.g. a histogram of cluster sizes
or molecule diffusion rates.

¢ As input to special functions of equal-style variables, like sum() and max(). E.g. to find the largest cluster
or fastest diffusing molecule.

103

Example calculations with chunks
Here are eaxmples using chunk commands to calculate various properties:

(1) Average velocity in each of 1000 2d spatial bins:

compute ccl all chunk/atom bin/2d x 0.0 0.1 y lower 0.01 units reduced
fix 1 all ave/chunk 100 10 1000 ccl vx vy file tmp.out

(2) Temperature in each spatial bin, after subtracting a flow velocity:

compute ccl all chunk/atom bin/2d x 0.0 0.1 y lower 0.1 units reduced
compute vbias all temp/profile 1 0 0 y 10
fix 1 all ave/chunk 100 10 1000 ccl temp bias vbias file tmp.out

(3) Center of mass of each molecule:

compute ccl all chunk/atom molecule
compute myChunk all com/chunk ccl
fix 1 all ave/time 100 1 100 c_myChunk file tmp.out mode vector

(4) Total force on each molecule and ave/max across all molecules:

compute ccl all chunk/atom molecule

fix 1 all ave/chunk 1000 1 1000 ccl fx fy fz file tmp.out
variable xave equal ave (f_12)

variable xmax equal max(f_12)

thermo 1000

thermo_style custom step temp v_xave v_xmax

(5) Histogram of cluster sizes:

compute cluster all cluster/atom 1.0

compute ccl all chunk/atom c_cluster compress yes

compute size all property/chunk ccl count

fix 1 all ave/histo 100 1 100 0 20 20 c_size mode vector ave running beyond ignore file tmp.histo

6.24 Setting parameters for the kspace_style pppm/disp command

The PPPM method computes interactions by splitting the pair potential into two parts, one of which is computed
in a normal pairwise fashion, the so-called real-space part, and one of which is computed using the Fourier
transform, the so called reciprocal-space or kspace part. For both parts, the potential is not computed exactly but
is approximated. Thus, there is an error in both parts of the computation, the real-space and the kspace error. The
just mentioned facts are true both for the PPPM for Coulomb as well as dispersion interactions. The deciding
difference - and also the reason why the parameters for pppm/disp have to be selected with more care - is the
impact of the errors on the results: The kspace error of the PPPM for Coulomb and dispersion interaction and the
real-space error of the PPPM for Coulomb interaction have the character of noise. In contrast, the real-space error
of the PPPM for dispersion has a clear physical interpretation: the underprediction of cohesion. As a consequence,
the real-space error has a much stronger effect than the kspace error on simulation results for pppm/disp.
Parameters must thus be chosen in a way that this error is much smaller than the kspace error.

When using pppm/disp and not making any specifications on the PPPM parameters via the kspace modify
command, parameters will be tuned such that the real-space error and the kspace error are equal. This will result
in simulations that are either inaccurate or slow, both of which is not desirable. For selecting parameters for the
pppm/disp that provide fast and accurate simulations, there are two approaches, which both have their up- and

104

downsides.

The first approach is to set desired real-space an kspace accuracies via the kspace_modify force/disp/real and
kspace_modify force/disp/kspace commands. Note that the accuracies have to be specified in force units and are
thus dependend on the chosen unit settings. For real units, 0.0001 and 0.002 seem to provide reasonable accurate
and efficient computations for the real-space and kspace accuracies. 0.002 and 0.05 work well for most systems
using lj units. PPPM parameters will be generated based on the desired accuracies. The upside of this approach is
that it usually provides a good set of parameters and will work for both the kspace_modify diff ad and
kspace_modify diff ik options. The downside of the method is that setting the PPPM parameters will take some
time during the initialization of the simulation.

The second approach is to set the parameters for the pppm/disp explicitly using the kspace_modify mesh/disp,
kspace_modify order/disp, and kspace_modify gewald/disp commands. This approach requires a more
experienced user who understands well the impact of the choice of parameters on the simulation accuracy and
performance. This approach provides a fast initialization of the simulation. However, it is sensitive to errors: A
combination of parameters that will perform well for one system might result in far-from-optimal conditions for
other simulations. For example, parametes that provide accurate and fast computations for all-atomistic force
fields can provide insufficient accuracy or united-atomistic force fields (which is related to that the latter typically
have larger dispersion coefficients).

To avoid inaccurate or inefficient simulations, the pppm/disp stops simulations with an error message if no action
is taken to control the PPPM parameters. If the automatic parameter generation is desired and real-space and
kspace accuracies are desired to be equal, this error message can be suppressed using the kspace_modify disp/auto
yes command.

A reasonable approach that combines the upsides of both methods is to make the first run using the
kspace_modify force/disp/real and kspace_modify force/disp/kspace commands, write down the PPPM parameters
from the outut, and specify these parameters using the second approach in subsequent runs (which have the same
composition, force field, and approximately the same volume).

Concerning the performance of the pppm/disp there are two more things to consider. The first is that when using
the pppm/disp, the cutoff parameter does no longer affect the accuracy of the simulation (subject to that
gewald/disp is adjusted when changing the cutoff). The performance can thus be increased by examining different
values for the cutoff parameter. A lower bound for the cutoff is only set by the truncation error of the repulsive
term of pair potentials.

The second is that the mixing rule of the pair style has an impact on the computation time when using the
pppm/disp. Fastest computations are achieved when using the geometric mixing rule. Using the arithmetic mixing
rule substantially increases the computational cost. The computational overhead can be reduced using the
kspace_modify mix/disp geom and kspace_modify splittol commands. The first command simply enforces
geometric mixing of the dispersion coeffiecients in kspace computations. This introduces some error in the
computations but will also significantly speed-up the simulations. The second keyword sets the accuracy with
which the dispersion coefficients are approximated using a matrix factorization approach. This may result in
better accuracy then using the first command, but will usually also not provide an equally good increase of
efficiency.

Finally, pppm/disp can also be used when no mixing rules apply. This can be achieved using the kspace_modify
mix/disp none command. Note that the code does not check automatically whether any mixing rule is fulfilled. If
mixing rules do not apply, the user will have to specify this command explicitly.

105

6.25 Polarizable models

In polarizable force fields the charge distributions in molecules and materials respond to their electrostatic
environements. Polarizable systems can be simulated in LAMMPS using three methods:

¢ the fluctuating charge method, implemented in the QEQ package,
¢ the adiabatic core-shell method, implemented in the CORESHELL package,
¢ the thermalized Drude dipole method, implemented in the USER-DRUDE package.

The fluctuating charge method calculates instantaneous charges on interacting atoms based on the
electronegativity equalization principle. It is implemented in the fix qeq which is available in several variants. It is
a relatively efficient technique since no additional particles are introduced. This method allows for charge transfer
between molecules or atom groups. However, because the charges are located at the interaction sites, off-plane
components of polarization cannot be represented in planar molecules or atom groups.

The two other methods share the same basic idea: polarizable atoms are split into one core atom and one satellite
particle (called shell or Drude particle) attached to it by a harmonic spring. Both atoms bear a charge and they
represent collectively an induced electric dipole. These techniques are computationally more expensive than the
QEq method because of additional particles and bonds. These two charge-on-spring methods differ in certain
features, with the core-shell model being normally used for ionic/crystalline materials, whereas the so-called
Drude model is normally used for molecular systems and fluid states.

The core-shell model is applicable to crystalline materials where the high symmetry around each site leads to
stable trajectories of the core-shell pairs. However, bonded atoms in molecules can be so close that a core would
interact too strongly or even capture the Drude particle of a neighbor. The Drude dipole model is relatively more
complex in order to remediate this and other issues. Specifically, the Drude model includes specific thermostating
of the core-Drude pairs and short-range damping of the induced dipoles.

The three polarization methods can be implemented through a self-consistent calculation of charges or induced
dipoles at each timestep. In the fluctuating charge scheme this is done by the matrix inversion method in fix
geg/point, but for core-shell or Drude-dipoles the relaxed-dipoles technique would require an slow iterative
procedure. These self-consistent solutions yield accurate trajectories since the additional degrees of freedom
representing polarization are massless. An alternative is to attribute a mass to the additional degrees of freedom
and perform time integration using an extended Lagrangian technique. For the fluctuating charge scheme this is
done by fix geq/dynamic, and for the charge-on-spring models by the methods outlined in the next two sections.
The assignment of masses to the additional degrees of freedom can lead to unphysical trajectories if care is not
exerted in choosing the parameters of the poarizable models and the simulation conditions.

In the core-shell model the vibration of the shells is kept faster than the ionic vibrations to mimic the fast response
of the polarizable electrons. But in molecular systems thermalizing the core-Drude pairs at temperatures
comparable to the rest of the simulation leads to several problems (kinetic energy transfer, too short a timestep,
etc.) In order to avoid these problems the relative motion of the Drude particles with respect to their cores is kept
"cold" so the vibration of the core-Drude pairs is very slow, approaching the self-consistent regime. In both
models the temperature is regulated using the velocities of the center of mass of core+shell (or Drude) pairs, but
in the Drude model the actual relative core-Drude particle motion is thermostated separately as well.

6.26 Adiabatic core/shell model
The adiabatic core-shell model by Mitchell and Finchham is a simple method for adding polarizability to a

system. In order to mimic the electron shell of an ion, a satellite particle is attached to it. This way the ions are
split into a core and a shell where the latter is meant to react to the electrostatic environment inducing

106

polarizability.

Technically, shells are attached to the cores by a spring force f = k*r where k is a parametrized spring constant
and r is the distance between the core and the shell. The charges of the core and the shell add up to the ion charge,
thus q(ion) = q(core) + q(shell). This setup introduces the ion polarizability (alpha) given by alpha = q(shell)*2 /
k. In a similar fashion the mass of the ion is distributed on the core and the shell with the core having the larger
mass.

To run this model in LAMMPS, atom_style full can be used since atom charge and bonds are needed. Each kind
of core/shell pair requires two atom types and a bond type. The core and shell of a core/shell pair should be
bonded to each other with a harmonic bond that provides the spring force. For example, a data file for NaCl, as
found in examples/coreshell, has this format:

432 atoms # core and shell atoms
216 bonds # number of core/shell springs

4 atom types # 2 cores and 2 shells for Na and Cl
2 bond types

0.0 24.09597 xlo xhi
0.0 24.09597 ylo yhi
0.0 24.09597 zlo zhi

Masses # core/shell mass ratio = 0.1

1 20.690784 # Na core

2 31.90500 # Cl core

3 2.298976 # Na shell

4 3.54500 # Cl shell

Atoms

1 1 2 1.5005 0.00000000 0.00000000 0.00000000 # core of core/shell pair 1
2 1 4 -2.5005 0.00000000 0.00000000 0.00000000 # shell of core/shell pair 1
3 2 1 1.5056 4.01599500 4.01599500 4.01599500 # core of core/shell pair 2
4 2 3 -0.5056 4.01599500 4.01599500 4.01599500 # shell of core/shell pair 2
(...)

Bonds # Bond topology for spring forces

1 2 1 2 # spring for core/shell pair 1

2 2 3 4 # spring for core/shell pair 2

Non-Coulombic (e.g. Lennard-Jones) pairwise interactions are only defined between the shells. Coulombic
interactions are defined between all cores and shells. If desired, additional bonds can be specified between cores.

The special_bonds command should be used to turn-off the Coulombic interaction within core/shell pairs, since
that interaction is set by the bond spring. This is done using the special_bonds command with a 1-2 weight = 0.0,
which is the default value. It needs to be considered whether one has to adjust the special_bonds weighting

according to the molecular topology since the interactions of the shells are bypassed over an extra bond.

Note that this core/shell implementation does not require all ions to be polarized. One can mix core/shell pairs and
ions without a satellite particle if desired.

Since the core/shell model permits distances of r = 0.0 between the core and shell, a pair style with a "cs" suffix

107

needs to be used to implement a valid long-range Coulombic correction. Several such pair styles are provided in

the CORESHELL package. See this doc page for details. All of the core/shell enabled pair styles require the use

of a long-range Coulombic solver, as specified by the kspace_style command. Either the PPPM or Ewald solvers
can be used.

For the NaCL example problem, these pair style and bond style settings are used:

pair_style born/coul/long/cs 20.0 20.0

pair_coeff *ox 0.0 1.000 0.00 0.00 0.00
pair_coeff 33 487.0 0.23768 0.00 1.05 0.50 #Na-Na
pair_coeff 3 4 145134.0 0.23768 0.00 6.99 8.70 #Na-Cl
pair_coeff 4 4 405774.0 0.23768 0.00 72.40 145.40 #Cl-Cl
bond_style harmonic

bond_coeff 1 63.014 0.0

bond_coeff 2 25.724 0.0

When running dynamics with the adiabatic core/shell model, the following issues should be considered. Since the
relative motion of the core and shell particles corresponds to the polarization, typical thermostats can alter the
polarization behaviour, meaning the shell will not react freely to its electrostatic environment. This is critical
during the equilibration of the system. Therefore it's typically desirable to decouple the relative motion of the
core/shell pair, which is an imaginary degree of freedom, from the real physical system. To do that, the compute
temp/cs command can be used, in conjunction with any of the thermostat fixes, such as fix nvt or fix langevin.
This compute uses the center-of-mass velocity of the core/shell pairs to calculate a temperature, and insures that
velocity is what is rescaled for thermostatting purposes. This compute also works for a system with both
core/shell pairs and non-polarized ions (ions without an attached satellite particle). The compute temp/cs
command requires input of two groups, one for the core atoms, another for the shell atoms. Non-polarized ions
which might also be included in the treated system should not be included into either of these groups, they are
taken into account by the group-ID (2nd argument) of the compute. The groups can be defined using the group
type command. Note that to perform thermostatting using this definition of temperature, the fix modify temp
command should be used to assign the compute to the thermostat fix. Likewise the thermo_modify temp
command can be used to make this temperature be output for the overall system.

For the NaCl example, this can be done as follows:

group cores type 1 2
group shells type 3 4
compute CSequ all temp/cs cores shells

fix thermoberendsen all temp/berendsen 1427 1427 0.4 # thermostat for the true physical system
fix thermostatequ all nve # integrator as needed for the berendsen the
fix_modify thermoberendsen temp CSequ

thermo_modify temp CSequ # output of center-of-mass derived temperatu

If compute temp/cs is used, the decoupled relative motion of the core and the shell should in theory be stable.
However numerical fluctuation can introduce a small momentum to the system, which is noticable over long
trajectories. Therefore it is recomendable to use the fix momentum command in combination with compute
temp/cs when equilibrating the system to prevent any drift.

When intializing the velocities of a system with core/shell pairs, it is also desirable to not introduce energy into
the relative motion of the core/shell particles, but only assign a center-of-mass velocity to the pairs. This can be
done by using the bias keyword of the velocity create command and assigning the compute temp/cs command to
the temp keyword of the velocity commmand, e.g.

velocity all create 1427 134 bias yes temp CSequ
velocity all scale 1427 temp CSequ

108

It is important to note that the polarizability of the core/shell pairs is based on their relative motion. Therefore the
choice of spring force and mass ratio need to ensure much faster relative motion of the 2 atoms within the
core/shell pair than their center-of-mass velocity. This allow the shells to effectively react instantaneously to the
electrostatic environment. This fast movement also limits the timestep size that can be used.

The primary literature of the adiabatic core/shell model suggests that the fast relative motion of the core/shell
pairs only allows negligible energy transfer to the environment. Therefore it is not intended to decouple the
core/shell degree of freedom from the physical system during production runs. In other words, the compute
temp/cs command should not be used during production runs and is only required during equilibration. This way
one is consistent with literature (based on the code packages DL_POLY or GULP for instance).

The mentioned energy transfer will typically lead to a a small drift in total energy over time. This internal energy
can be monitored using the compute chunk/atom and compute temp/chunk commands. The internal kinetic
energies of each core/shell pair can then be summed using the sum() special function of the variable command. Or
they can be time/averaged and output using the fix ave/time command. To use these commands, each core/shell
pair must be defined as a "chunk". If each core/shell pair is defined as its own molecule, the molecule ID can be
used to define the chunks. If cores are bonded to each other to form larger molecules, the chunks can be identified
by the fix property/atom via assigning a core/shell ID to each atom using a special field in the data file read by the
read_data command. This field can then be accessed by the compute property/atom command, to use as input to
the compute chunk/atom command to define the core/shell pairs as chunks.

For example,

fix csinfo all property/atom i_CSID # property/atom command

read_data NaCl_CS_x0.1_prop.data fix csinfo NULL CS-Info # atom property added in the data-file
compute prop all property/atom i_CSID

compute cs_chunk all chunk/atom c_prop

compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector

The additional section in the date file would be formatted like this:
CS-Info # header of additional section

column 1 = atom ID, column 2 = core/shell ID

—~ 00 J o U W N
~ D W w NN

6.27 Drude induced dipoles

The thermalized Drude model, similarly to the core-shell model, representes induced dipoles by a pair of charges
(the core atom and the Drude particle) connected by a harmonic spring. The Drude model has a number of
features aimed at its use in molecular systems (Lamoureux and Roux):

¢ Thermostating of the additional degrees of freedom associated with the induced dipoles at very low

temperature, in terms of the reduced coordinates of the Drude particles with respect to their cores. This
makes the trajectory close to that of relaxed induced dipoles.

109

¢ Consistent definition of 1-2 to 1-4 neighbors. A core-Drude particle pair represents a single (polarizable)
atom, so the special screening factors in a covalent structure should be the same for the core and the
Drude particle. Drude particles have to inherit the 1-2, 1-3, 1-4 special neighbor relations from their
respective cores.

¢ Stabilization of the interactions between induced dipoles. Drude dipoles on covalently bonded atoms
interact too strongly due to the short distances, so an atom may capture the Drude particle of a neighbor,
or the induced dipoles within the same molecule may align too much. To avoid this, damping at short
range can be done by Thole functions (for which there are physical grounds). This Thole damping is
applied to the point charges composing the induced dipole (the charge of the Drude particle and the
opposite charge on the core, not to the total charge of the core atom).

A detailed tutorial covering the usage of Drude induced dipoles in LAMMPS is available here.

As with the core-shell model, the cores and Drude particles should appear in the data file as standard atoms. The
same holds for the springs between them, which are described by standard harmonic bonds. The nature of the
atoms (core, Drude particle or non-polarizable) is specified via the fix drude command. The special list of
neighbors is automatically refactored to account for the equivalence of core and Drude particles as regards special
1-2 to 1-4 screening. It may be necessary to use the extra keyword of the special_bonds command. If using fix
shake, make sure no Drude particle is in this fix group.

There are two ways to thermostat the Drude particles at a low temperature: use either fix langevin/drude for a
Langevin thermostat, or fix drude/transform/* for a Nose-Hoover thermostat. The former requires use of the
command comm_modify vel yes. The latter requires two separate integration fixes like nvt or npt. The correct
temperatures of the reduced degrees of freedom can be calculated using the compute temp/drude. This requires
also to use the command comm_modify vel yes.

Short-range damping of the induced dipole interactions can be achieved using Thole functions through the the
pair style thole in pair_style hybrid/overlay with a Coulomb pair style. It may be useful to use coul/long/cs or
similar from the CORESHELL package if the core and Drude particle come too close, which can cause numerical
issues.

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J Chem Phys, 120, 9665 (2004).

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

110

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

(Mitchell and Finchham) Mitchell, Finchham, J Phys Condensed Matter, 5, 1031-1038 (1993).

(Lamoureux and Roux) G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

111

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A few sample log
file outputs on different machines and different numbers of processors are included in the directories to compare
your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of machine "foo".

For examples that use input data files, many of them were produced by Pizza.py or setup tools described in the
Additional Tools section of the LAMMPS documentation and provided with the LAMMPS distribution.

If you uncomment the dump command in the input script, a text dump file will be produced, which can be
animated by various visualization programs. It can also be animated using the xmovie tool described in the
Additional Tools section of the LAMMPS documentation.

If you uncomment the dump image command in the input script, and assuming you have built LAMMPS with a
JPG library, JPG snapshot images will be produced when the simulation runs. They can be quickly post-processed
into a movie using commands described on the dump image doc page.

Animations of many of these examples can be viewed on the Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

balance dynamic load balancing, 2d system

body body particles, 2d system

colloid big colloid particles in a small particle solvent, 2d system

comb models using the COMB potential

crack crack propagation in a 2d solid

cuda use of the USER-CUDA package for GPU acceleration

dipole point dipolar particles, 2d system

dreiding |methanol via Dreiding FF

eim NaCl using the EIM potential

ellipse ellipsoidal particles in spherical solvent, 2d system

flow Couette and Poiseuille flow in a 2d channel

friction frictional contact of spherical asperities between 2d surfaces

gpu use of the GPU package for GPU acceleration

hugoniostat [Hugoniostat shock dynamics

indent spherical indenter into a 2d solid

intel use of the USER-INTEL package for CPU or Intel(R) Xeon Phi(TM) coprocessor
kim use of potentials in Knowledge Base for Interatomic Models (KIM)
line line segment particles in 2d rigid bodies

meam MEAM test for SiC and shear (same as shear examples)

melt rapid melt of 3d LJ system

micelle self-assembly of small lipid-like molecules into 2d bilayers

112

http://lammps.sandia.gov
http://pizza.sandia.gov
http://lammps.sandia.gov/viz.html
http://lammps.sandia.gov

min energy minimization of 2d LJ melt

msst MSST shock dynamics

nb3b use of nonbonded 3-body harmonic pair style

neb nudged elastic band (NEB) calculation for barrier finding

nemd non-equilibrium MD of 2d sheared system

obstacle |flow around two voids in a 2d channel

peptide dynamics of a small solvated peptide chain (5-mer)

peri Peridynamic model of cylinder impacted by indenter

pour pouring of granular particles into a 3d box, then chute flow

prd parallel replica dynamics of vacancy diffusion in bulk Si

geq use of the QEQ pacakge for charge equilibration

reax RDX and TATB models using the ReaxFF

rigid rigid bodies modeled as independent or coupled

shear sideways shear applied to 2d solid, with and without a void
snap NVE dynamics for BCC tantalum crystal using SNAP potential
srd stochastic rotation dynamics (SRD) particles as solvent

tad temperature-accelerated dynamics of vacancy diffusion in bulk Si
tri triangular particles in rigid bodies

vashishta: models using the Vashishta potential

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
Imp_linux -in in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

If you uncomment the dump image line(s) in the input script a series of JPG images will be produced by the run.
These can be viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or
various Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command
would create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.jpg foo.gif

There is also a COUPLE directory with examples of how to use LAMMPS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

There is also an ELASTIC directory with an example script for computing elastic constants at zero temperature,
using an Si example. See the ELASTIC/in.elastic file for more info.

There is also an ELASTIC_T directory with an example script for computing elastic constants at finite
temperature, using an Si example. See the ELASTIC_T/in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages. See
the README files in those directories for more info. See the Section_start.html file for more info about user

113

packages.

114

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks page
of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the benchmarks are
described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with a
27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
(440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output files.
Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial benchmarks (on
one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or scaled-size problem. For
fixed-size benchmarking, the same 32K atom problem is run on various numbers of processors. For scaled-size
benchmarking, the model size is increased with the number of processors. E.g. on 8 processors, a 256K-atom
problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance scales
roughly linearly with problem size and timesteps, the run time of any problem using the same model (atom style,
force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop machine (Intel icc
compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5 problems is

Problem:| LJ Chain | EAM | Chute |Rhodopsin
CPU/atom/step:[4.55E-6 [2.18E-6 [9.38E-6 |2.18E-6 | 1.11E-4

Ratioto LJ:[1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively. The
bulk of these cost differences is due to the expense of computing a particular pairwise force field for a given
number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel efficiency
can be estimated. The communication bandwidth and latency of a particular parallel machine affects the
efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these benchmarks above
50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128 processors. Likewise,
scaled-size parallel efficiencies will typically be 80% or greater up to very large processor counts. The benchmark
data on the LAMMPS WWW Site gives specific examples on some different machines, including a run of 3/4 of a
billion LJ atoms on 1500 processors that ran at 85% parallel efficiency.

115

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations. Additional
pre- and post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are
provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is available for
download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their output to
a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS distribution as
examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were contributed by
LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in that
directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

e amber2lmp

® binary2txt

e ch2Imp

¢ chain

® colvars

® createatoms
¢ data2xmovie
¢ eam database
® cam generate
o eff

® emacs

o fep

®i-pi

® ipp

e kate

® Imp2arc

® Imp2cfg

¢ Imp2vmd

® matlab

® micelle2d

* moltemplate
* msi2lmp

¢ phonon

¢ polymer bonding
¢ pymol_asphere
¢ python

® reax

e restart2data
® vim

® xmgrace

® Xmovie

116

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

amber2imp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2Imp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment with
them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file created
by a LAMMPS run, since binary files are not compatible across all platforms.

ch2Iimp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent atoms
can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used to
create the system for the chain benchmark.

colvars tools

The colvars directory contains a collection of tools for postprocessing data produced by the colvars collective
variable library. To compile the tools, edit the makefile for your system and run "make".

117

Please report problems and issues the colvars library and its tools at: https://github.com/colvars/colvars/issues
abf_integrate:

MC-based integration of multidimensional free energy gradient Version 20110511
Syntax: ./abf_integrate <filename > [-n <nsteps >] [-t <temp >] [-m [0]1] (metadynamics)] [-h <hi

The LAMMPS interface to the colvars collective variable library, as well as these tools, were created by Axel
Kohlmeyer (akohlmey at gmail.com) at ICTP, Italy.

createatoms tool

The tools/createatoms directory contains a Fortran program called create Atoms.f which can generate a variety of
interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS or
other formats.

See the included Manual.pdf for details.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie [options] <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setfl potential files for
any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files can
then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool
The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials

directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

118

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of input
scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

fep tool

The tools/fep directory contains Python scripts useful for post-processing results from performing free-energy
perturbation simulations using the USER-FEP package.

The scripts were contributed by Agilio Padua (Universite Blaise Pascal Clermont-Ferrand), agilio.padua at
univ-bpclermont.fr.

See README file in the tools/fep directory.

i-pi tool

The tools/i-pi directory contains a version of the i-PI package, with all the LAMMPS-unrelated files removed. It
is provided so that it can be used with the fix ipi command to perform path-integral molecular dynamics (PIMD).

The i-PI package was created and is maintained by Michele Ceriotti, michele.ceriotti at gmail.com, to interface to
a variety of molecular dynamics codes.

See the tools/i-pi/manual.pdf file for an overview of i-PI, and the fix ipi doc page for further details on running
PIMD calculations with LAMMPS.

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated file
(say, a lammps input script or tools/createatoms input file) using a template file.

ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

kate tool

The file in the tools/kate directory is an add-on to the Kate editor in the KDE suite that allow syntax highlighting
of LAMMPS input scripts. See the README.txt file for details.

The file was provided by Alessandro Luigi Sellerio (alessandro.sellerio at ieni.cnr.it).

119

Imp2arc tool

The ImpZ2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys' Insight
MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at sandia.gov).

Imp2cfg tool

The Imp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files which
can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2vmd tool

The Imp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses a
text file containing lipid definition parameters as an input. The created molecules and solvent atoms can strongly
overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it. The syntax for
running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create the
system for the micelle example.

moltemplate tool
The moltemplate sub-directory contains a Python-based tool for building molecular systems based on a text-file

description, and creating LAMMPS data files that encode their molecular topology as lists of bonds, angles,
dihedrals, etc. See the README.TXT file for more information.

120

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A

This tool was written by Andrew Jewett (jewett.aij at gmail.com), who supports it. It has its own WWW page at
http://moltemplate.org.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD code
(formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it at
Sandia, you'll need to experiment with it yourself.

phonon tool

The phonon sub-directory contains a post-processing tool useful for analyzing the output of the fix phonon
command in the USER-PHONON package.

See the README file for instruction on building the tool and what library it needs. And see the
examples/USER/phonon directory for example problems that can be post-processed with this tool.

This tool was written by Ling-Ti Kong at Shanghai Jiao Tong University.

polymer bonding tool

The polybond sub-directory contains a Python-based tool useful for performing "programmable polymer
bonding". The Python file Impsdata.py provides a "Lmpsdata" class with various methods which can be invoked
by a user-written Python script to create data files with complex bonding topologies.

See the Manual.pdf for details and example scripts.

This tool was written by Zachary Kraus at Georgia Tech.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains orientation
info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within PyMol.
See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing tasks,
such as:

e extract thermodynamic info from a log file as columns of numbers
® plot two columns of thermodynamic info from a log file using GnuPlot
e sort the snapshots in a dump file by atom ID

121

http://moltemplate.org
http://pymol.sourceforge.net

¢ convert multiple NEB dump files into one dump file for viz
¢ convert dump files into XYZ, CFG, or PDB format for viz by other packages

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to use
these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds command
from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

NOTE: This tool is now obsolete and is not included in the current LAMMPS distribution. This is becaues there is
now a write_data command, which can create a data file from within an input script. Running LAMMPS with the

no_n

-r'" command-line switch as follows:
Imp_g++ -r restartfile datafile
is the same as running a 2-line input script:
read_restart restartfile write_data datafile

which will produce the same data file that the restart2data tool used to create. The following information is
included in case you have an older version of LAMMPS which still includes the restart2data tool.

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for running
the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since binary
files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted data
file will typically not conform as closely to a previous run as will restarting from a binary restart file.

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are named.

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

122

http://www.sandia.gov/~sjplimp/pizza.html

xmgrace tool

The files in the tools/xmgrace directory can be used to plot the thermodynamic data in LAMMPS log files via the
xmgrace plotting package. There are several tools in the directory that can be used in post-processing mode. The
lammpsplot.cpp file can be compiled and used to create plots from the current state of a running LAMMPS
simulation.

See the README file for details.

These files were provided by Vikas Varshney (vv0210 at gmail.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It is
in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie [options] dump.filel dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in scaled
coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays 2d
projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large numbers
of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure your
simulation is doing what you think it should. The animations on the Examples page of the LAMMPS WWW site
were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

123

http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles

10.2 Bond, angle, dihedral, improper potentials

10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options

10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Body styles

10.13 Thermodynamic output options

10.14 Variable options

10.15 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In fact,
about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of LAMMPS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to work as
a new option. Depending on how different your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to invoke the new
class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class PairFoo

that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to invoke those
potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

124

http://lammps.sandia.gov

then your pair_foo.h file should be structured as follows:

#ifdef PAIR_CLASS
PairStyle (foo,PairFoo)
#else

(class definition for PairFoo)
#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your
pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be invoked
with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by
your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation as
the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of LAMMPS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality LAMMPS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp
files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

¢ Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

¢ Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of
data on a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

¢ [f your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

¢ [f you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS distribution.
See further details on this at the bottom of this page.

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The atom
style determines what attributes are associated with an atom. A new atom style can be created if one of the
existing atom styles does not define all the attributes you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

125

http://lammps.sandia.gov/authors.html

init one time setup (optional)

grow re-allocate atom arrays to longer lengths (required)

grow_reset make array pointers in Atom and AtomVec classes consistent (required)
copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)

pack_comm_hybrid store extra info unique to this atom style (optional)

unpack_comm retrieve an atom's info from the buffer (required)

unpack_comm_vel also retrieve velocity info (required)

unpack_comm_hybrid |retreive extra info unique to this atom style (optional)

pack_reverse store an atom's info in a buffer communicating partial forces (required)

pack_reverse_hybrid |[store extra info unique to this atom style (optional)

unpack_reverse retrieve an atom's info from the buffer (required)

unpack_reverse_hybrid [retreive extra info unique to this atom style (optional)

pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)

pack_border_hybrid |store extra info unique to this atom style (optional)

unpack_border retrieve an atom's info from the buffer (required)

unpack_border_vel also retrieve velocity info (required)

unpack_border_hybrid |retreive extra info unique to this atom style (optional)

pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)

size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)

unpack_restart unpack atom quantities from a buffer (required)

create_atom create an individual atom of this style (required)

data_atom parse an atom line from the data file (required)
data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new atom
style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the word
"customize" and you will find locations you will need to modify.

NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not have them via the
fix property/atom command. This command also allows new custom attributes consisting of extra integer or
floating-point values to be added to atoms. See the fix property/atom doc page for examples of cases where this is
useful and details on how to initialize, access, and output the custom values.

New pair styles, fixes, or computes can be added to LAMMPS, as discussed below. The code for these classes can
use the per-atom properties defined by fix property/atom. The Atom class has a find_custom() method that is

useful in this context:

int index = atom->find_custom(char *name, int &flag);

126

The "name" of a custom attribute, as specified in the fix property/atom command, is checked to verify that it
exists and its index is returned. The method also sets flag = 0/1 depending on whether it is an integer or
floating-point attribute. The vector of values associated with the attribute can then be accessed using the returned
index as

int *ivector = atom->ivector[index];
double *dvector = atom->dvector[index];

Ivector or dvector are vectors of length Nlocal = # of owned atoms, which store the attributes of individual atoms.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper classes.
New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle, dihedral,
and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)

settings apply global settings for all types (optional)

coeff set coefficients for one type (required)

equilibrium_distance [length of bond, used by SHAKE (required, bond only)

equilibrium_angle [opening of angle, used by SHAKE (required, angle only)

write & read_restart |writes/reads coeffs to restart files (required)

single force and energy of a single bond or angle (required, bond or angle only)

memory_usage tally memory allocated by the style (optional)

10.3 Compute styles
Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes that
compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the

Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a simple
example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

init perform one time setup (required)

init_list neighbor list setup, if needed (optional)

compute_scalar |compute a scalar quantity (optional)

compute_vector |[compute a vector of quantities (optional)

127

compute_peratom [compute one or more quantities per atom (optional)

compute_local compute one or more quantities per processor (optional)
pack_comm pack a buffer with items to communicate (optional)
unpack_comm unpack the buffer (optional)

pack_reverse pack a buffer with items to reverse communicate (optional)

unpack_reverse |unpack the buffer (optional)

remove_bias remove velocity bias from one atom (optional)

remove_bias_all |remove velocity bias from all atoms in group (optional)

restore_bias restore velocity bias for one atom after remove_bias (optional)

restore_bias_all |same as before, but for all atoms in group (optional)

pair_tally_callback |callback function for fally-style computes (optional).

memory_usage tally memory usage (optional)
Tally-style computes are a special case, as their computation is done in two stages: the callback function is
registered with the pair style and then called from the Pair::ev_tally() function, which is called for each pair after
force and energy has been computed for this pair. Then the tallied values are retrieved with the standard
compute_scalar or compute_vector or compute_peratom methods. The USER-TALLY package provides
examples_compute_tally.html for utilizing this mechanism.

10.4 Dump styles

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_header |write the header section of a snapshot of atoms

count count the number of lines a processor will output

pack pack a proc's output data into a buffer

write_data |write a proc's data to a file

See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list

128

construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask

determines when the fix is called during the timestep (required)

init

initialization before a run (optional)

setup_pre_exchange

called before atom exchange in setup (optional)

setup_pre_force

called before force computation in setup (optional)

setup

called immediately before the 1st timestep and after forces are computed (optional)

min_setup_pre_force

like setup_pre_force, but for minimizations instead of MD runs (optional)

min_setup

like setup, but for minimizations instead of MD runs (optional)

initial_integrate

called at very beginning of each timestep (optional)

pre_exchange

called before atom exchange on re-neighboring steps (optional)

pre_neighbor

called before neighbor list build (optional)

pre_force

called before pair & molecular forces are computed (optional)

post_force

called after pair & molecular forces are computed and communicated (optional)

final_integrate

called at end of each timestep (optional)

end_of_step

called at very end of timestep (optional)

write_restart

dumps fix info to restart file (optional)

restart

uses info from restart file to re-initialize the fix (optional)

grow_arrays

allocate memory for atom-based arrays used by fix (optional)

copy_arrays

copy atom info when an atom migrates to a new processor (optional)

pack_exchange

store atom's data in a buffer (optional)

unpack_exchange

retrieve atom's data from a buffer (optional)

pack_restart

store atom's data for writing to restart file (optional)

unpack_restart

retrieve atom's data from a restart file buffer (optional)

size_restart

size of atom's data (optional)

maxsize_restart

max size of atom's data (optional)

setup_pre_force_respa

same as setup_pre_force, but for rRESPA (optional)

initial_integrate_respa

same as initial_integrate, but for rRESPA (optional)

post_integrate_respa

called after the first half integration step is done in rRESPA (optional)

pre_force_respa

same as pre_force, but for rRESPA (optional)

post_force_respa

same as post_force, but for rRESPA (optional)

final_integrate_respa

same as final_integrate, but for rRESPA (optional)

min_pre_force

called after pair & molecular forces are computed in minimizer (optional)

min_post_force

called after pair & molecular forces are computed and communicated in minmizer
(optional)

min_store

store extra data for linesearch based minimization on a LIFO stack (optional)

min_pushstore

push the minimization LIFO stack one element down (optional)

min_popstore

pop the minimization LIFO stack one element up (optional)

129

min_clearstore clear minimization LIFO stack (optional)

min_step reset or move forward on line search minimization (optional)

min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)
pack_comm pack a buffer to communicate a per-atom quantity (optional)

unpack_comm unpack a buffer to communicate a per-atom quantity (optional)

pack_reverse_comm |pack a buffer to reverse communicate a per-atom quantity (optional)

unpack_reverse_comm [unpack a buffer to reverse communicate a per-atom quantity (optional)

dof report number of degrees of freedom removed by this fix during MD (optional)
compute_scalar return a global scalar property that the fix computes (optional)

compute_vector return a component of a vector property that the fix computes (optional)
compute_array return a component of an array property that the fix computes (optional)

deform called when the box size is changed (optional)

reset_target called when a change of the target temperature is requested during a run (optional)
reset_dt is called when a change of the time step is requested during a run (optional)
modify_param called when a fix_modify request is executed (optional)

memory_usage report memory used by fix (optional)

thermo compute quantities for thermodynamic output (optional)

Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt, npt)
implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain forces
implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group-ID, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a fix to
contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential energy of
the system.

10.7 Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command" method.
For example, the create_atoms, read_data, velocity, and run commands are all implemented in this fashion. When
such a command is encountered in the LAMMPS input script, LAMMPS simply creates a class with the
corresponding name, invokes the "command" method of the class, and passes it the arguments from the input
script. The command method can perform whatever operations it wishes on LAMMPS data structures.

The single method your new class must define is as follows:

130

|command |0perations performed by the new command
Of course, the new class can define other methods and variables as needed.

10.8 Kspace computations

Classes that compute long-range Coulombic interactions via K-space representations (Ewald, PPPM) are derived
from the KSpace class. New styles can be created to add new K-space options to LAMMPS.

Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

init initialize the calculation before a run

setup computation before the 1st timestep of a run
compute every-timestep computation

memory_usage |tally of memory usage

10.9 Minimization styles

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init initialize the minimization before a run

run perform the minimization

memory_usage [tally of memory usage

10.10 Pairwise potentials
Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.

New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use
with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions
settings reads the input script line with arguments you define
coeff set coefficients for one i,j type pair

init_one perform initialization for one i,j type pair

init_style initialization specific to this pair style

131

write & read_restart write/read i,j pair coeffs to restart files

write & read_restart_settings |write/read global settings to restart files

single force and energy of a single pairwise interaction between 2 atoms

compute_inner/middle/outer |versions of compute used by rRESPA
The inner/middle/outer routines are optional.

10.11 Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in LAMMPS
to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles can be created to
add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

determine whether a point is in the

match)
region

10.11 Body styles

Classes that define body particles are derived from the Body class. Body particles can represent complex entities,
such as surface meshes of discrete points, collections of sub-particles, deformable objects, etc.

See Section_howto 14 of the manual for an overview of using body particles and the body doc page for details on
the various body styles LAMMPS supports. New styles can be created to add new kinds of body particles to
LAMMPS.

Body_nparticle.cpp is an example of a body particle that is treated as a rigid body containing N sub-particles.

Here is a brief description of methods you define in your new derived class. See body.h for details.

data_body process a line from the Bodies section of a data file
noutrow number of sub-particles output is generated for

noutcol number of values per-sub-particle output is generated for
output output values for the Mth sub-particle

pack_comm_body [body attributes to communicate every timestep

unpack_comm_body |unpacking of those attributes

pack_border_body |body attributes to communicate when reneighboring is done

unpack_border_body [unpacking of those attributes

10.13 Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

132

There are two styles defined in thermo.cpp: "one" and "multi". There is also a flexible "custom" style which
allows the user to explicitly list keywords for quantities to print when thermodynamic info is output. See the
thermo_style command for a list of defined quantities.

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires defining a
new list of keywords. Search for the word "customize" with references to "thermo style" in thermo.cpp to see the
two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to be
added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by fixes,
computes, and variables. Thus, it may be simpler to compute what you wish via one of those constructs, than by
adding a new keyword to the thermo command.

10.14 Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The value
associated with a variable can be periodically printed to the screen via the print, fix print, or thermo_style custom
commands. Variables of style "equal”" can compute complex equations that involve the following types of
arguments:

thermo keywords = ke, vol, atoms,

other variables = v_a, v_myvar,

math functions = div(x,y), mult(x,y), add(x,y),
group functions = mass (group), xcm(group,x),
atom values = x[123], yI[3], vx[34],

compute values = c_mytemp[0], c_thermo_press([3],

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was discussed
here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search for
the word "customize" to find the appropriate location. You may need to add a new method to the Group class as
well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here on
this page.

10.15 Submitting new features for inclusion in LAMMPS

We encourage users to submit new features to the developers that they add to LAMMPS, especially if you think
they will be of interest to other users. If they are broadly useful we may add them as core files to LAMMPS or as

133

http://lammps.sandia.gov/authors.html

part of a standard package. Else we will add them as a user-contributed file or package. Examples of user
packages are in src sub-directories that start with USER. The USER-MISC package is simply a collection of
(mostly) unrelated single files, which is the simplest way to have your contribution quickly added to the
LAMMPS distribution. You can see a list of the both standard and user packages by typing "make package" in the
LAMMPS src directory.

Note that by providing us the files to release, you are agreeing to make them open-source, i.e. we can release them
under the terms of the GPL, used as a license for the rest of LAMMPS. See Section 1.4 for details.

With user packages and files, all we are really providing (aside from the fame and fortune that accompanies
having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to
distribute your work to the LAMMPS user community, and a mechanism for others to easily try out your new
feature. This may help you find bugs or make contact with new collaborators. Note that you're also implicitly
agreeing to support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes in
some way that breaks it (an unusual event).

NOTE: If you prefer to actively develop and support your add-on feature yourself, then you may wish to make it
available for download from your own website, as a user package that LAMMPS users can add to their copy of
LAMMPS. See the Offsite LAMMPS packages and tools page of the LAMMPS web site for examples of groups
that do this. We are happy to advertise your package and web site from that page. Simply email the developers
with info about your package and we will post it there.

The previous sections of this doc page describe how to add new "style" files of various kinds to LAMMPS.
Packages are simply collections of one or more new class files which are invoked as a new style within a
LAMMPS input script. If designed correctly, these additions typically do not require changes to the main core of
LAMMPS; they are simply add-on files. If you think your new feature requires non-trivial changes in core
LAMMPS files, you'll need to communicate with the developers, since we may or may not want to make those
changes. An example of a trivial change is making a parent-class method "virtual" when you derive a new child
class from it.

Here are the steps you need to follow to submit a single file or user package for our consideration. Following
these steps will save both you and us time. See existing files in packages in the src dir for examples.

¢ All source files you provide must compile with the most current version of LAMMPS.

¢ If you want your file(s) to be added to main LAMMPS or one of its standard packages, then it needs to be
written in a style compatible with other LAMMPS source files. This is so the developers can understand it
and hopefully maintain it. This basically means that the code accesses data structures, performs its
operations, and is formatted similar to other LAMMPS source files, including the use of the error class for
error and warning messages.

¢ [f you want your contribution to be added as a user-contributed feature, and it's a single file (actually a
*.cpp and *.h file) it can rapidly be added to the USER-MISC directory. Send us the one-line entry to add
to the USER-MISC/READMEE file in that dir, along with the 2 source files. You can do this multiple
times if you wish to contribute several individual features.

¢ [f you want your contribution to be added as a user-contribution and it is several related featues, it is
probably best to make it a user package directory with a name like USER-FOO. In addition to your new
files, the directory should contain a README text file. The README should contain your name and
contact information and a brief description of what your new package does. If your files depend on other
LAMMPS style files also being installed (e.g. because your file is a derived class from the other
LAMMPS class), then an Install.sh file is also needed to check for those dependencies. See other
README and Install.sh files in other USER directories as examples. Send us a tarball of this
USER-FOO directory.

¢ Your new source files need to have the LAMMPS copyright, GPL notice, and your name and email

134

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/offsite.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/authors.html

address at the top, like other user-contributed LAMMPS source files. They need to create a class that is
inside the LAMMPS namespace. If the file is for one of the USER packages, including USER-MISC,
then we are not as picky about the coding style (see above). 1.e. the files do not need to be in the same
stylistic format and syntax as other LAMMPS files, though that would be nice for developers as well as
users who try to read your code.

You must also create a documentation file for each new command or style you are adding to LAMMPS.
This will be one file for a single-file feature. For a package, it might be several files. These are simple text
files which we auto-convert to HTML. Thus they must be in the same format as other *.txt files in the
lammps/doc directory for similar commands and styles; use one or more of them as a starting point. As
appropriate, the text files can include links to equations (see doc/Eqs/*.tex for examples, we auto-create
the associated JPG files), or figures (see doc/JPG for examples), or even additional PDF files with further
details (see doc/PDF for examples). The doc page should also include literature citations as appropriate;
see the bottom of doc/fix_nh.txt for examples and the earlier part of the same file for how to format the
cite itself. The "Restrictions" section of the doc page should indicate that your command is only available
if LAMMPS is built with the appropriate USER-MISC or USER-FOO package. See other user package
doc files for examples of how to do this. The txt2html tool we use to convert to HTML can be
downloaded from this site, so you can perform the HTML conversion yourself to proofread your doc
page.

For a new package (or even a single command) you can include one or more example scripts. These
should run in no more than 1 minute, even on a single processor, and not require large data files as input.
See directories under examples/USER for examples of input scripts other users provided for their
packages.

If there is a paper of yours describing your feature (either the algorithm/science behind the feature itself,
or its initial usage, or its implementation in LAMMPS), you can add the citation to the *.cpp source file.
See src/USER-EFF/atom_vec_electron.cpp for an example. A LaTeX citation is stored in a variable at the
top of the file and a single line of code that references the variable is added to the constructor of the class.
Whenever a user invokes your feature from their input script, this will cause LAMMPS to output the
citation to a log.cite file and prompt the user to examine the file. Note that you should only use this for a
paper you or your group authored. E.g. adding a cite in the code for a paper by Nose and Hoover if you
write a fix that implements their integrator is not the intended usage. That kind of citation should just be
in the doc page you provide.

Finally, as a general rule-of-thumb, the more clear and self-explanatory you make your doc and README files,
and the easier you make it for people to get started, e.g. by providing example scripts, the more likely it is that
users will try out your new feature.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

135

http://www.sandia.gov/~sjplimp/download.html

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

11. Python interface to LAMMPS

LAMMPS can work together with Python in two ways. First, Python can wrap LAMMPS through the LAMMPS
library interface, so that a Python script can create one or more instances of LAMMPS and launch one or more
simulations. In Python lingo, this is "extending" Python with LAMMPS.

Second, LAMMPS can use the Python interpreter, so that a LAMMPS input script can invoke Python code, and
pass information back-and-forth between the input script and Python functions you write. The Python code can
also callback to LAMMPS to query or change its attributes. In Python lingo, this is "embedding" Python in
LAMMPS.

This section describes how to do both.

¢ 11.1 Overview of running LAMMPS from Python

¢ 11.2 Overview of using Python from a LAMMPS script
¢ 11.3 Building LAMMPS as a shared library

¢ 11.4 Installing the Python wrapper into Python

¢ 11.5 Extending Python with MPI to run in parallel

® 11.6 Testing the Python-LAMMPS interface

¢ 11.7 Using LAMMPS from Python

¢ 11.8 Example Python scripts that use LAMMPS

If you are not familiar with it, Python is a powerful scripting and programming language which can essentially do
anything that faster, lower-level languages like C or C++ can do, but typically with much fewer lines of code.
When used in embedded mode, Python can perform operations that the simplistic LAMMPS input script syntax
cannot. Python can be also be used as a "glue" language to drive a program through its library interface, or to
hook multiple pieces of software together, such as a simulation package plus a visualization package, or to run a
coupled multiscale or multiphysics model.

See Section_howto 10 of the manual and the couple directory of the distribution for more ideas about coupling
LAMMPS to other codes. See Section_howto 19 for a description of the LAMMPS library interface provided in
src/library.cpp and src/library.h, and how to extend it for your needs. As described below, that interface is what is
exposed to Python either when calling LAMMPS from Python or when calling Python from a LAMMPS input
script and then calling back to LAMMPS from Python code. The library interface is designed to be easy to add
functions to. Thus the Python interface to LAMMPS is also easy to extend as well.

If you create interesting Python scripts that run LAMMPS or interesting Python functions that can be called from
a LAMMPS input script, that you think would be useful to other users, please email them to the developers. We
can include them in the LAMMPS distribution.

11.1 Overview of running LAMMPS from Python

The LAMMPS distribution includes a python directory with all you need to run LAMMPS from Python. The
python/lammps.py file wraps the LAMMPS library interface, with one wrapper function per LAMMPS library
function. This file makes it is possible to do the following either from a Python script, or interactively from a
Python prompt: create one or more instances of LAMMPS, invoke LAMMPS commands or give it an input script,
run LAMMPS incrementally, extract LAMMPS results, an modify internal LAMMPS variables. From a Python
script you can do this in serial or parallel. Running Python interactively in parallel does not generally work, unless

136

http://lammps.sandia.gov
http://www.python.org
http://lammps.sandia.gov/authors.html

you have a version of Python that extends standard Python to enable multiple instances of Python to read what
you type.

To do all of this, you must first build LAMMPS as a shared library, then insure that your Python can find the
python/lammps.py file and the shared library. These steps are explained in subsequent sections 11.3 and 11.4.
Sections 11.5 and 11.6 discuss using MPI from a parallel Python program and how to test that you are ready to
use LAMMPS from Python. Section 11.7 lists all the functions in the current LAMMPS library interface and how
to call them from Python.

Section 11.8 gives some examples of coupling LAMMPS to other tools via Python. For example, LAMMPS can
easily be coupled to a GUI or other visualization tools that display graphs or animations in real time as LAMMPS
runs. Examples of such scripts are inlcluded in the python directory.

Two advantages of using Python to run LAMMPS are how concise the language is, and that it can be run
interactively, enabling rapid development and debugging of programs. If you use it to mostly invoke costly
operations within LAMMPS, such as running a simulation for a reasonable number of timesteps, then the
overhead cost of invoking LAMMPS thru Python will be negligible.

The Python wrapper for LAMMPS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

11.2 Overview of using Python from a LAMMPS script

NOTE: It is not currently possible to use the python command described in this section with Python 3, only with
Python 2. The C API changed from Python 2 to 3 and the LAMMPS code is not compatible with both.

LAMMPS has a python command which can be used in an input script to define and execute a Python function
that you write the code for. The Python function can also be assigned to a LAMMPS python-style variable via the
variable command. Each time the variable is evaluated, either in the LAMMPS input script itself, or by another
LAMMPS command that uses the variable, this will trigger the Python function to be invoked.

The Python code for the function can be included directly in the input script or in an auxiliary file. The function
can have arguments which are mapped to LAMMPS variables (also defined in the input script) and it can return a
value to a LAMMPS variable. This is thus a mechanism for your input script to pass information to a piece of
Python code, ask Python to execute the code, and return information to your input script.

Note that a Python function can be arbitrarily complex. It can import other Python modules, instantiate Python
classes, call other Python functions, etc. The Python code that you provide can contain more code than the single
function. It can contain other functions or Python classes, as well as global variables or other mechanisms for
storing state between calls from LAMMPS to the function.

The Python function you provide can consist of "pure" Python code that only performs operations provided by
standard Python. However, the Python function can also "call back" to LAMMPS through its Python-wrapped
library interface, in the manner described in the previous section 11.1. This means it can issue LAMMPS input
script commands or query and set internal LAMMPS state. As an example, this can be useful in an input script to
create a more complex loop with branching logic, than can be created using the simple looping and brancing logic
enabled by the next and if commands.

137

See the python doc page and the variable doc page for its python-style variables for more info, including
examples of Python code you can write for both pure Python operations and callbacks to LAMMPS.

To run pure Python code from LAMMPS, you only need to build LAMMPS with the PYTHON package
installed:

make yes-python
make machine

Note that this will link LAMMPS with the Python library on your system, which typically requires several
auxiliary system libraries to also be linked. The list of these libraries and the paths to find them are specified in
the lib/python/Makefile.lammps file. You need to insure that file contains the correct information for your version
of Python and your machine to successfully build LAMMPS. See the lib/python/README file for more info.

If you want to write Python code with callbacks to LAMMPS, then you must also follow the steps overviewed in
the preceeding section (11.1) for running LAMMPS from Python. I.e. you must build LAMMPS as a shared
library and insure that Python can find the python/lammps.py file and the shared library.

11.3 Building LAMMPS as a shared library

Instructions on how to build LAMMPS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires to wrap LAMMPS. On Linux this is a library file that

non

ends in ".so", not ".a".

From the src directory, type

make foo mode=shlib

where foo is the machine target name, such as linux or g++ or serial. This should create the file liblammps_foo.so
in the src directory, as well as a soft link liblammps.so, which is what the Python wrapper will load by default.
Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

NOTE: If you are building LAMMPS with an MPI or FFT library or other auxiliary libraries (used by various
packages), then all of these extra libraries must also be shared libraries. If the LAMMPS shared-library build fails
with an error complaining about this, see Section_start 5 for more details.

11.4 Installing the Python wrapper into Python
For Python to invoke LAMMPS, there are 2 files it needs to know about:

¢ python/lammps.py
e src/liblammps.so

Lammps.py is the Python wrapper on the LAMMPS library interface. Liblammps.so is the shared LAMMPS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

e set two environment variables
¢ run the python/install.py script

138

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH ${PYTHONPATH}:/home/sjplimp/lammps/python
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sJjplimp/lammps/src

If you use the python/install.py script, you need to invoke it every time you rebuild LAMMPS (as a shared
library) or make changes to the python/lammps.py file.

You can invoke install.py from the python directory as
% python install.py [libdir] [pydir]

The optional libdir is where to copy the LAMMPS shared library to; the default is /usr/local/lib. The optional
pydir is where to copy the lammps.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

Note that libdir must be a location that is in your default LD_ILIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]
You can also invoke install.py from the make command in the src directory as
% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the LAMMPS shared library (see this section
below), you will need to manually copy files like liblammps_g++.s0 into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.5 Extending Python with MPI to run in parallel

If you wish to run LAMMPS in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

¢ pyMPI
® maroonmpi

* mpidpy

139

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/

* myMPI
® Pypar

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke LAMMPS in parallel and to make MPI
calls themselves from a Python script which is itself running in parallel. However, when I downloaded and looked
at a few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if
some of the packages are still being actively developed and supported.

The packages Pypar and mpi4py have both been successfully tested with LAMMPS. Pypar is simpler and easy to
set up and use, but supports only a subset of MPI. Mpi4py is more MPI-feature complete, but also a bit more
complex to use. As of version 2.0.0, mpi4py is the only python MPI wrapper that allows passing a custom MPI
communicator to the LAMMPS constructor, which means one can easily run one or more LAMMPS instances on
subsets of the total MPI ranks.

Pypar requires the ubiquitous Numpy package be installed in your Python. After launching Python, type

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type
import pypar

without error. You should also be able to run python in parallel on a simple test script
% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

140

http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

NOTE: To use Pypar and LAMMPS in parallel from Python, you must insure both are using the same version of
MPIL. If you only have one MPI installed on your system, this is not an issue, but it can be if you have multiple
MPIs. Your LAMMPS build is explicit about which MPI it is using, since you specify the details in your lo-level
src/MAKE/Makefile.foo file. Pypar uses the "mpicc" command to find information about the MPI it uses to build
against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find the MPI
library that LAMMPS is using. If you have problems running both Pypar and LAMMPS together, this is an issue
you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

To install mpidpy (version mpi4py-2.0.0 as of Oct 2015), unpack it and from its main directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy mpidpy files into your Python distribution's site-packages
directory. To install with user privilege into the user local directory type

python setup.py install —-user

If you have successully installed mpidpy, you should be able to run Python and type
from mpidpy import MPT

without error. You should also be able to run python in parallel on a simple test script
% mpirun -np 4 python test.py

where test.py contains the lines

from mpidpy import MPI
comm = MPI.COMM_WORLD
print "Proc %d out of %d procs" % (comm.Get_rank(),comm.Get_size())

and see one line of output for each processor you run on.

NOTE: To use mpidpy and LAMMPS in parallel from Python, you must insure both are using the same version of
MPIL. If you only have one MPI installed on your system, this is not an issue, but it can be if you have multiple
MPIs. Your LAMMPS build is explicit about which MPI it is using, since you specify the details in your lo-level
src/MAKE/Makefile.foo file. Mpidpy uses the "mpicc" command to find information about the MPI it uses to
build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find the MPI
library that LAMMPS is using. If you have problems running both mpi4py and LAMMPS together, this is an
issue you may need to address, e.g. by moving other MPI installations so that mpi4py finds the right one.

11.6 Testing the Python-LAMMPS interface

To test if LAMMPS is callable from Python, launch Python interactively and type:

>>> from lammps import lammps
>>> 1lmp = lammps ()

If you get no errors, you're ready to use LAMMPS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load LAMMPS dynamic library

141

which means Python was unable to load the LAMMPS shared library. This typically occurs if the system can't
find the LAMMPS shared library or one of the auxiliary shared libraries it depends on, or if something about the
library is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the lammps.py file:

>>> from ctypes import CDLL
>>> CDLL("liblammps.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test LAMMPS and Python in serial:

To run a LAMMPS test in serial, type these lines into Python interactively from the bench directory:

>>> from lammps import lammps
>>> Imp = lammps ()
>>> Imp.file("in.13")

Or put the same lines in the file test.py and run it as

)

% python test.py

Either way, you should see the results of running the in.lj benchmark on a single processor appear on the screen,
the same as if you had typed something like:

Ilmp_g++ —-in in.1j
Test LAMMPS and Python in parallel:

To run LAMMPS in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar

from lammps import lammps

Imp = lammps ()

Imp.file("in.13")

print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize ()

To run LAMMPS in parallel, assuming you have installed the mpidpy package as discussed above, create a
test.py file containing these lines:

from mpidpy import MPI

from lammps import lammps

Imp = lammps ()

Imp.file("in.13")

me = MPI.COMM_WORLD.Get_rank ()

nprocs = MPI.COMM_WORLD.Get_size()

print "Proc %d out of %d procs has" % (me,nprocs),lmp
MPI.Finalize ()

You can either script in parallel as:

% mpirun -np 4 python test.py

142

and you should see the same output as if you had typed
% mpirun -np 4 lmp_g++ —-in in.1j

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
LAMMPS independently on each of the P processors specified in the mpirun command. In this case you should
get 4 sets of output, each showing that a LAMMPS run was made on a single processor, instead of one set of
output showing that LAMMPS ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not
working correctly.

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should

be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for LAMMPS) can be invoked in one of several ways:

o°

python foo.script
python -i foo.script
foo.script

o°

o°

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:

)

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

11.7 Using LAMMPS from Python

As described above, the Python interface to LAMMPS consists of a Python "lammps" module, the source code for
which is in python/lammps.py, which creates a "lammps" object, with a set of methods that can be invoked on that
object. The sample Python code below assumes you have first imported the "lammps" module in your Python
script, as follows:

from lammps import lammps

These are the methods defined by the lammps module. If you look at the files src/library.cpp and src/library.h you
will see that they correspond one-to-one with calls you can make to the LAMMPS library from a C++ or C or
Fortran program.

lmp = lammps () # create a LAMMPS object using the default liblammps.so library
4 optional args are allowed: name, cmdargs, ptr, comm
Imp = lammps (ptr=1lmpptr) # use lmpptr as previously created LAMMPS object
1mp lammps (comm=split) # create a LAMMPS object with a custom communicator, requires mpidpy 2.0.0

1mp lammps (name="g++") # create a LAMMPS object using the liblammps_g++.so library

143

Ilmp = lammps (name="g++",cmdargs=1list) # add LAMMPS command-line args, e.g. list = ["-echo", "scree

lmp.close() # destroy a LAMMPS object

version = Imp.version() # return the numerical version id, e.g. LAMMPS 2 Sep 2015 -> 20150902

Imp.file(file) # run an entire input script, file = "in.13j"
Imp.command (cmd) # invoke a single LAMMPS command, cmd = "run 100"

xlo = lmp.extract_global (name,type) # extract a global quantity
name = "boxxlo", "nlocal", etc
type = 0 = int
1 double

coords = lmp.extract_atom(name, type) extract a per—-atom quantity
name = "x", "type", etc

type = 0 vector of ints
array of ints
vector of doubles

array of doubles

P

1
2
3

eng = lmp.extract_compute (id,style, type)
v3 = lmp.extract_fix(id, style, type,i, J)

extract value(s) from a compute

extract value(s) from a fix

id = ID of compute or fix

style = 0 global data

1 = per—atom data

2 = local data

0 = scalar

1 = vector

2 = array

i,j = indices of wvalue in global vector or array

type =

S o e S S S e 3 S o

var = lmp.extract_variable (name,group, flag) extract value(s) from a variable
name = name of variable
group = group ID (ignored for equal-style variables)
flag = 0 = equal-style variable
1

= atom-style variable

He o W

flag = lmp.set_variable (name,value)
natoms = lmp.get_natoms ()
data = lmp.gather_atoms (name, type, count)

set existing named string-style variable to value, flag
total # of atoms as int

return atom attribute of all atoms gathered into data, o
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

scatter atom attribute of all atoms from data, ordered Db
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

lmp.scatter_atoms (name, type, count, data)

E .

The lines

from lammps import lammps
Imp = lammps ()

create an instance of LAMMPS, wrapped in a Python class by the lammps Python module, and return an instance
of the Python class as Imp. It is used to make all subequent calls to the LAMMPS library.

Additional arguments can be used to tell Python the name of the shared library to load or to pass arguments to the
LAMMPS instance, the same as if LAMMPS were launched from a command-line prompt.

If the ptr argument is set like this:

144

Imp = lammps (ptr=1lmpptr)

then Impptr must be an argument passed to Python via the LAMMPS python command, when it is used to define
a Python function that is invoked by the LAMMPS input script. This mode of using Python with LAMMPS is
described above in 11.2. The variable Impptr refers to the instance of LAMMPS that called the embedded Python
interpreter. Using it as an argument to lammps() allows the returned Python class instance "Imp" to make calls to
that instance of LAMMPS. See the python command doc page for examples using this syntax.

Note that you can create multiple LAMMPS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from lammps import lammps
Impl = lammps ()

Imp2 = lammps ()
Impl.file("in.filel")
Imp2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_atom(), extract_compute(), extract_fix(), and extract_variable() methods return
values or pointers to data structures internal to LAMMPS.

For extract_global() see the src/library.cpp file for the list of valid names. New names could easily be added. A
double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_atom(), a pointer to internal LAMMPS atom-based data is returned, which you can use via normal
Python subscripting. See the extract() method in the src/atom.cpp file for a list of valid names. Again, new names
could easily be added. A pointer to a vector of doubles or integers, or a pointer to an array of doubles (double **)
or integers (int **) is returned. You need to specify the appropriate data type via the type argument.

For extract_compute() and extract_fix(), the global, per-atom, or local data calulated by the compute or fix can be
accessed. What is returned depends on whether the compute or fix calculates a scalar or vector or array. For a
scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the internal
LAMMPS data is returned, which you can use via normal Python subscripting. The one exception is that for a fix
that calculates a global vector or array, a single double value from the vector or array is returned, indexed by I
(vector) or I and J (array). IJ are zero-based indices. The I,J arguments can be left out if not needed. See
Section_howto 15 of the manual for a discussion of global, per-atom, and local data, and of scalar, vector, and
array data types. See the doc pages for individual computes and fixes for a description of what they calculate and
store.

For extract_variable(), an equal-style or atom-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For atom-style
variables, a vector of doubles is returned, one value per atom, which you can use via normal Python subscripting.
The values will be zero for atoms not in the specified group.

The get_natoms() method returns the total number of atoms in the simulation, as an int.

The gather_atoms() method returns a ctypes vector of ints or doubles as specified by type, of length
count*natoms, for the property of all the atoms in the simulation specified by name, ordered by count and then by

atom ID. The vector can be used via normal Python subscripting. If atom IDs are not consecutively ordered within
LAMMPS, a None is returned as indication of an error.

145

Note that the data structure gather_atoms("x") returns is different from the data structure returned by
extract_atom("x") in four ways. (1) Gather_atoms() returns a vector which you index as x[i]; extract_atom()
returns an array which you index as x[i][j]. (2) Gather_atoms() orders the atoms by atom ID while extract_atom()
does not. (3) Gathert_atoms() returns a list of all atoms in the simulation; extract_atoms() returns just the atoms
local to each processor. (4) Finally, the gather_atoms() data structure is a copy of the atom coords stored
internally in LAMMPS, whereas extract_atom() returns an array that effectively points directly to the internal
data. This means you can change values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the gather_atoms() vector, you need to change values in the vector, then
invoke the scatter_atoms() method.

The scatter_atoms() method takes a vector of ints or doubles as specified by type, of length count*natoms, for the
property of all the atoms in the simulation specified by name, ordered by bount and then by atom ID. It uses the
vector of data to overwrite the corresponding properties for each atom inside LAMMPS. This requires LAMMPS
to have its "map" option enabled; see the atom_modify command for details. If it is not, or if atom IDs are not
consecutively ordered, no coordinates are reset.

The array of coordinates passed to scatter_atoms() must be a ctypes vector of ints or doubles, allocated and
initialized something like this:

from ctypes import *

natoms = lmp.get_natoms ()

n3 = 3*natoms

x = (n3*c_double) ()

x[0] = x coord of atom with ID 1

x[1] = y coord of atom with ID 1

x[2] = z coord of atom with ID 1

x[3] = x coord of atom with ID 2

x[n3-1] = z coord of atom with ID natoms

lmp.scatter_coords ("x",1, 3, x)

Alternatively, you can just change values in the vector returned by gather_atoms("x",1,3), since it is a ctypes
vector of doubles.

As noted above, these Python class methods correspond one-to-one with the functions in the LAMMPS library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

¢ Add a new interface function to src/library.cpp and src/library.h.

¢ Rebuild LAMMPS as a shared library.

¢ Add a wrapper method to python/lammps.py for this interface function.

¢ You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?

11.8 Example Python scripts that use LAMMPS

These are the Python scripts included as demos in the python/examples directory of the LAMMPS distribution, to
illustrate the kinds of things that are possible when Python wraps LAMMPS. If you create your own scripts, send
them to us and we can include them in the LAMMPS distribution.

trivial.py read/run a LAMMPS input script thru Python

invoke various LAMMPS library interface

demo. .
py routines

146

simple.py run in parallel

similar to examples/COUPLE/simple/simple.cpp split.py

same as simple.py but running in parallel on a subset of procs |gui.py

GUI go/stop/temperature-slider to control LAMMPS plot.py

real-time temeperature plot with GnuPlot via Pizza.py viz_tool.py
real-time viz via some viz package vizplotgui_tool.py

combination of viz_tool.py and plot.py and gui.py

For the viz_tool.py and vizplotgui_tool.py commands, replace "tool" with "gl" or "atomeye" or "pymol" or
"vmd", depending on what visualization package you have installed.

Note that for GL, you need to be able to run the Pizza.py GL tool, which is included in the pizza sub-directory.
See the Pizza.py doc pages for more info:

Note that for AtomEye, you need version 3, and there is a line in the scripts that specifies the path and name of the
executable. See the AtomEye WWW pages here or here for more details:

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

The latter link is to AtomEye 3 which has the scriping capability needed by these Python scripts.

Note that for PyMol, you need to have built and installed the open-source version of PyMol in your Python, so
that you can import it from a Python script. See the PyMol WWW pages here or here for more details:

http://www.pymol.org
http://sourceforge.net/scm/?2type=svn&group_id=4546

The latter link is to the open-source version.

Note that for VMD, you need a fairly current version (1.8.7 works for me) and there are some lines in the
pizza/vmd.py script for 4 PIZZA variables that have to match the VMD installation on your system.

See the python/README file for instructions on how to run them and the source code for individual scripts for
comments about what they do.

Here are screenshots of the vizplotgui_tool.py script in action for different visualization package options. Click to
see larger images:

147

http://www.sandia.gov/~sjplimp/pizza.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html
http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

148

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

12. Errors

This section describes the errors you can encounter when using LAMMPS, either conceptually, or as printed out
by the program.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. In theory you should get identical answers on any number of processors and on any
machine. In practice, numerical round-off can cause slight differences and eventual divergence of molecular
dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the statistical properties
of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different velocity
when the problem is run on a different number of processors or on different machines. If this happens, the phase
space trajectories of the two simulations will rapidly diverge. See the discussion of the loop option in the velocity
command for details and options that avoid this issue.

Similarly, the create_atoms command generates a lattice of atoms. For the same physical system, the ordering and
numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number streams
on each processor and hence will produce different effects when run on different numbers of processors. A
commonly-used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup time;
others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course,
LAMMPS cannot figure out your physics or numerical mistakes, like choosing too big a timestep, specifying
erroneous force field coefficients, or putting 2 atoms on top of each other! If you run into errors that LAMMPS
doesn't catch that you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.lammps file or using the echo command to see it on the screen. If you
get an error like "Invalid ... style", with ... being fix, compute, pair, etc, it means that you mistyped the style name
or that the command is part of an optional package which was not compiled into your executable. The list of
available styles in your executable can be listed by using the -h command-line argument. The installation and
compilation of optional packages is explained in the installation instructions.

For a given command, LAMMPS expects certain arguments in a specified order. If you mess this up, LAMMPS
will often flag the error, but it may also simply read a bogus argument and assign a value that is valid, but not
what you wanted. E.g. trying to read the string "abc" as an integer value of 0. Careful reading of the associated
doc page for the command should allow you to fix these problems. Note that some commands allow for variables

149

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

to be specified in place of numeric constants so that the value can be evaluated and change over the course of a
run. This is typically done with the syntax v_name for a parameter, where name is the name of the variable. This
is only allowed if the command documentation says it is.

Generally, LAMMPS will print a message to the screen and logfile and exit gracefully when it encounters a fatal
error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the
WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to
the screen, not to the logfile, to avoid cluttering up thermodynamic output. If LAMMPS crashes or hangs without
spitting out an error message first then it could be a bug (see this section) or one of the following cases:

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C-style malloc's which will generate an error message if you run out
of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild thermodynamic values or NaN values in your LAMMPS
output, something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out
thermodynamic info frequently (e.g. every timestep) via the thermo so you can monitor what is happening.
Visualizing the atom movement is also a good idea to insure your model is behaving as you expect.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

12.2 Reporting bugs
If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW gite to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it or
where in the code the problem might be. The developers will ask for more info if needed, such as an input script
or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug and try to

identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

12.3 Error & warning messages
These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason why.

If the explanation here is not sufficient, the documentation for the offending command may help. Error and
warning messages also list the source file and line number where the error was generated. For example, this

150

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

message
ERROR: Illegal velocity command (velocity.cpp:78)

means that line #78 in the file src/velocity.cpp generated the error. Looking in the source code may help you
figure out what went wrong.

Note that error messages from user-contributed packages are not listed here. If such an error occurs and is not
self-explanatory, you'll need to look in the source code or contact the author of the package.

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

Accelerator sharing is not currently supported on system
Multiple MPI processes cannot share the accelerator on your system. For NVIDIA GPUs, see the
nvidia-smi command to change this setting.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All atom IDs = 0 but atom_modify id = yes
Self-explanatory.

All atoms of a swapped type must have same charge.
Self-explanatory.

All atoms of a swapped type must have the same charge.
Self-explanatory.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running a
simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before running a
simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity command.

All mol IDs should be set for fix gcmc group atoms
The molecule flag is on, yet not all molecule ids in the fix group have been set to non-zero positive values
by the user. This is an error since all atoms in the fix gcmc group are eligible for deletion, rotation, and
translation and therefore must have valid molecule ids.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All read_dump x,y,z fields must be specified for scaled, triclinic coords
For triclinic boxes and scaled coordinates you must specify all 3 of the x,y,z fields, else LAMMPS cannot
reconstruct the unscaled coordinates.

151

All universe/uloop variables must have same # of values
Self-explanatory.
All variables in next command must be same style
Self-explanatory.
Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.
Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.
Angle atoms %d %d %d missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.
Angle atoms missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.
Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.
Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.
Angle extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the angle atoms are
so far apart it is ambiguous how it should be defined.
Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.
Angle style hybrid cannot have hybrid as an argument
Self-explanatory.
Angle style hybrid cannot have none as an argument
Self-explanatory.
Angle style hybrid cannot use same angle style twice
Self-explanatory.
Angle table must range from 0 to 180 degrees
Self-explanatory.
Angle table parameters did not set N
List of angle table parameters must include N setting.
Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has been
assigned.
Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.
Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Angles defined but no angle types
The data file header lists angles but no angle types.
Append boundary must be shrink/minimum
The boundary style of the face where atoms are added must be of type m (shrink/minimum).

152

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
Assigning body parameters to non-body atom
Self-explanatory.
Assigning ellipsoid parameters to non-ellipsoid atom
Self-explanatory.
Assigning line parameters to non-line atom
Self-explanatory.
Assigning quat to non-body atom
Self-explanatory.
Assigning tri parameters to non-tri atom
Self-explanatory.
At least one atom of each swapped type must be present to define charges.
Self-explanatory.
Atom IDs must be consecutive for velocity create loop all
Self-explanatory.
Atom IDs must be used for molecular systems
Atom IDs are used to identify and find partner atoms in bonds.
Atom count changed in fix neb
This is not allowed in a NEB calculation.
Atom count is inconsistent, cannot write data file
The sum of atoms across processors does not equal the global number of atoms. Probably some atoms
have been lost.
Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have lost
some atoms.
Atom in too many rigid bodies - boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number of
rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined exceed this
limit.
Atom sort did not operate correctly
This is an internal LAMMPS error. Please report it to the developers.
Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size in
the atom_modify sort command or turn off sorting.
Atom style hybrid cannot have hybrid as an argument
Self-explanatory.
Atom style hybrid cannot use same atom style twice
Self-explanatory.
Atom style template molecule must have atom types
The defined molecule(s) does not specify atom types.
Atom style was redefined after using fix property/atom
This is not allowed.
Atom type must be zero in fix gcmc mol command
Self-explanatory.
Atom vector in equal-style variable formula
Atom vectors generate one value per atom which is not allowed in an equal-style variable.
Atom-style variable in equal-style variable formula
Atom-style variables generate one value per atom which is not allowed in an equal-style variable.
Atom_modify id command after simulation box is defined

153

The atom_modify id command cannot be used after a read_data, read_restart, or create_box command.
Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box command.
Atom_modify sort and first options cannot be used together
Self-explanatory.
Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.
Atom_style line can only be used in 2d simulations
Self-explanatory.
Atom_style tri can only be used in 3d simulations
Self-explanatory.
Atomffile variable could not read values
Check the file assigned to the variable.
Atomfile variable in equal-style variable formula
Self-explanatory.
Atomfile-style variable in equal-style variable formula
Self-explanatory.
Attempt to pop empty stack in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.
Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad TIP4P angle type for PPPM/TIP4P
Specified angle type is not valid.
Bad TIP4P angle type for PPPMDisp/TIP4P
Specified angle type is not valid.
Bad TIP4P bond type for PPPM/TIP4P
Specified bond type is not valid.
Bad TIP4P bond type for PPPMDisp/TIP4P
Specified bond type is not valid.
Bad fix ID in fix append/atoms command
The value of the fix_id for keyword spatial must start with the suffix f_.
Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.
Bad kspace_modify kmax/ewald parameter
Kspace_modify values for the kmax/ewald keyword must be integers > 0
Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >=2.0.
Bad matrix inversion in mldivide3
This error should not occur unless the matrix is badly formed.
Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad quadratic solve for particle/line collision
This is an internal error. It should nornally not occur.
Bad quadratic solve for particle/tri collision
This is an internal error. It should nornally not occur.
Bad real space Coulomb cutoff in fix tune/kspace
Fix tune/kspace tried to find the optimal real space Coulomb cutoff using the Newton-Rhaphson method,

154

but found a non-positive or NaN cutoff
Balance command before simulation box is defined
The balance command cannot be used before a read_data, read_restart, or create_box command.
Balance produced bad splits
This should not occur. It means two or more cutting plane locations are on top of each other or out of
order. Report the problem to the developers.
Balance rcb cannot be used with comm_style brick
Comm_style tiled must be used instead.
Balance shift string is invalid
The string can only contain the characters "x", "y", or "z".
Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.
Bias compute does not calculate temperature
The specified compute must compute temperature.
Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.
Big particle in fix srd cannot be point particle
Big particles must be extended spheriods or ellipsoids.
Bigint setting in Imptype.h is invalid
Size of bigint is less than size of tagint.
Bigint setting in Imptype.h is not compatible
Format of bigint stored in restart file is not consistent with LAMMPS version you are running. See the
settings in src/lmptype.h
Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with table
0 instead.
Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.
Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.
Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.
Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atom missing in image check
The 2nd atom in a particular bond is missing on this processor. Typically this is because the pairwise
cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atoms %d %d missing on proc %d at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atoms missing on proc %d at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the

155

bond_coeff command or read from a restart file is not recognized.
Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.
Bond extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the bond atoms are
so far apart it is ambiguous how it should be defined.
Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.
Bond style hybrid cannot have hybrid as an argument
Self-explanatory.
Bond style hybrid cannot have none as an argument
Self-explanatory.
Bond style hybrid cannot use same bond style twice
Self-explanatory.
Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.
Bond style quartic cannot be used with atom style template
This bond style can change the bond topology which is not allowed with this atom style.
Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.
Bond table parameters did not set N
List of bond table parameters must include N setting.
Bond table values are not increasing
The values in the tabulated file must be monotonically increasing.
BondAngle coeff for hybrid angle has invalid format
No "ba" field should appear in data file entry.
BondBond coeff for hybrid angle has invalid format
No "bb" field should appear in data file entry.
Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has been
assigned.
Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.
Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Bonds defined but no bond types
The data file header lists bonds but no bond types.
Both restart files must use % or neither
Self-explanatory.
Both restart files must use MPI-10 or neither
Self-explanatory.
Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.
Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value

156

for all 3 dimensions.
Box command after simulation box is defined
The box command cannot be used after a read_data, read_restart, or create_box command.
CPU neighbor lists must be used for ellipsoid/sphere mix.
When using Gay-Berne or RE-squared pair styles with both ellipsoidal and spherical particles, the
neighbor list must be built on the CPU
Can not specify Pxy/Pxz/Pyz in fix box/relax with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can not specify Pxy/Pxz/Pyz in fix nvt/npt/nph with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use Kokkos supported regions with Kokkos package
Self-explanatory.
Can only use NEB with 1-processor replicas
This is current restriction for NEB as implemented in LAMMPS.
Can only use TAD with I-processor replicas for NEB
This is current restriction for NEB as implemented in LAMMPS.
Cannot (yet) do analytic differentiation with pppm/gpu
This is a current restriction of this command.
Cannot (yet) request ghost atoms with Kokkos half neighbor list
This feature is not yet supported.
Cannot (yet) use 'electron’ units with dipoles
This feature is not yet supported.
Cannot (yet) use Ewald with triclinic box and slab correction
This feature is not yet supported.
Cannot (yet) use K-space slab correction with compute group/group for triclinic systems
This option is not yet supported.
Cannot (yet) use MSM with 2d simulation
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and TIP4P
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and kspace_modify diff ad
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and slab correction
This feature is not yet supported.
Cannot (yet) use kspace slab correction with long-range dipoles and non-neutral systems or per-atom energy
This feature is not yet supported.
Cannot (yet) use kspace_modify diff ad with compute group/group
This option is not yet supported.
Cannot (yet) use kspace_style pppm/stagger with triclinic systems
This feature is not yet supported.
Cannot (yet) use molecular templates with Kokkos
Self-explanatory.
Cannot (yet) use respa with Kokkos
Self-explanatory.
Cannot (yet) use rigid bodies with fix deform and Kokkos
Self-explanatory.

157

Cannot (yet) use rigid bodies with fix nh and Kokkos
Self-explanatory.
Cannot (yet) use single precision with MSM (remove -DFFT_SINGLE from Makefile and recompile)
Single precision cannot be used with MSM.
Cannot add atoms to fix move variable
Atoms can not be added afterwards to this fix option.
Cannot append atoms to a triclinic box
The simulation box must be defined with edges alligned with the Cartesian axes.
Cannot balance in 7 dimension for 2d simulation
Self-explanatory.
Cannot change box ortho/triclinic with certain fixes defined
This is because those fixes store the shape of the box. You need to use unfix to discard the fix, change the
box, then redefine a new fix.
Cannot change box ortho/triclinic with dumps defined
This is because some dumps store the shape of the box. You need to use undump to discard the dump,
change the box, then redefine a new dump.
Cannot change box tilt factors for orthogonal box
Cannot use tilt factors unless the simulation box is non-orthogonal.
Cannot change box to orthogonal when tilt is non-zero
Self-explanatory.
Cannot change box z boundary to nonperiodic for a 2d simulation
Self-explanatory.
Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.
Cannot change dump_modify every for dump xtc
The frequency of writing dump xtc snapshots cannot be changed.
Cannot change timestep once fix srd is setup
This is because various SRD properties depend on the timestep size.
Cannot change timestep with fix pour
This is because fix pour pre-computes the time delay for particles to fall out of the insertion volume due
to gravity.
Cannot change to comm_style brick from tiled layout
Self-explanatory.
Cannot change_box after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot change_box in xz or yz for 2d simulation
Self-explanatory.
Cannot change_box in 7 dimension for 2d simulation
Self-explanatory.
Cannot clear group all
This operation is not allowed.
Cannot close restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot compute initial g_ewald_disp
LAMMPS failed to compute an initial guess for the PPPM_disp g_ewald_6 factor that partitions the
computation between real space and k-space for Disptersion interactions.
Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.
Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.

158

Cannot create/grow a vector/array of pointers for %s
LAMMPS code is making an illegal call to the templated memory allocaters, to create a vector or array of
pointers.
Cannot create_atoms after reading restart file with per-atom info
The per-atom info was stored to be used when by a fix that you may re-define. If you add atoms before
re-defining the fix, then there will not be a correct amount of per-atom info.
Cannot create_box after simulation box is defined
A simulation box can only be defined once.
Cannot currently use pair reax with pair hybrid
This is not yet supported.
Cannot currently use pppm/gpu with fix balance.
Self-explanatory.
Cannot delete group all
Self-explanatory.
Cannot delete group currently used by a compute
Self-explanatory.
Cannot delete group currently used by a dump
Self-explanatory.
Cannot delete group currently used by a fix
Self-explanatory.
Cannot delete group currently used by atom_modify first
Self-explanatory.
Cannot delete_atoms bond yes for non-molecular systems
Self-explanatory.
Cannot displace_atoms after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot do GCMC on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot do atom/swap on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot dump sort on atom IDs with no atom IDs defined
Self-explanatory.
Cannot dump sort when multiple dump files are written
In this mode, each processor dumps its atoms to a file, so no sorting is allowed.
Cannot embed Python when also extending Python with LAMMPS
When running LAMMPS via Python through the LAMMPS library interface you cannot also user the
input script python command.
Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot find create_bonds group ID
Self-explanatory.
Cannot find delete_bonds group 1D
Group ID used in the delete_bonds command does not exist.
Cannot find specified group ID for core particles
Self-explanatory.
Cannot find specified group ID for shell particles
Self-explanatory.
Cannot have both pair_modify shift and tail set to yes

159

These 2 options are contradictory.
Cannot intersect groups using a dynamic group

This operation is not allowed.
Cannot mix molecular and molecule template atom styles

Self-explanatory.
Cannot open -reorder file

Self-explanatory.
Cannot open ADP potential file %os

The specified ADP potential file cannot be opened. Check that the path and name are correct.
Cannot open AIREBO potential file %s

The specified AIREBO potential file cannot be opened. Check that the path and name are correct.
Cannot open BOP potential file %os

The specified BOP potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB potential file %os

The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB3 lib.comb3 file

The COMBS3 library file cannot be opened. Check that the path and name are correct.
Cannot open COMB3 potential file %s

The specified COMB3 potential file cannot be opened. Check that the path and name are correct.
Cannot open EAM potential file %s

The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open EIM potential file %os

The specified EIM potential file cannot be opened. Check that the path and name are correct.
Cannot open LCBOP potential file %s

The specified LCBOP potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file %s

The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open SNAP coefficient file %s

The specified SNAP coefficient file cannot be opened. Check that the path and name are correct.
Cannot open SNAP parameter file %s

The specified SNAP parameter file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger-Weber potential file %s

The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file Yos

The specified potential file cannot be opened. Check that the path and name are correct.
Cannot open Vashishta potential file %s

The specified Vashishta potential file cannot be opened. Check that the path and name are correct.
Cannot open balance output file

Self-explanatory.
Cannot open coul/streitz potential file %s

The specified coul/streitz potential file cannot be opened. Check that the path and name are correct.

Cannot open custom file
Self-explanatory.
Cannot open data file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.
Cannot open dump file
Self-explanatory.
Cannot open dump file %s

The output file for the dump command cannot be opened. Check that the path and name are correct.

160

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed
file, also check that the gzip executable can be found and run.
Cannot open file variable file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/chunk file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/correlate file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/histo file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/spatial file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix balance output file
Self-explanatory.
Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix print file %s
The output file generated by the fix print command cannot be opened
Cannot open fix qeq parameter file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix qeq/comb file Yos
The output file for the fix geq/combs command cannot be opened. Check that the path and name are
correct.
Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are
correct.
Cannot open fix rigid infile %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix rigid restart file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix rigid/small infile %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.
Cannot open fix ttm file %s
The output file for the fix ttm command cannot be opened. Check that the path and name are correct.
Cannot open gzipped file
LAMMPS was compiled without support for reading and writing gzipped files through a pipeline to the
gzip program with -DLAMMPS_GZIP.
Cannot open input script %s
Self-explanatory.
Cannot open log.cite file
This file is created when you use some LAMMPS features, to indicate what paper you should cite on
behalf of those who implemented the feature. Check that you have write priveleges into the directory you
are running in.
Cannot open log.lammps for writing
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows for
files to be created.
Cannot open logfile

161

The LAMMPS log file named in a command-line argument cannot be opened. Check that the path and
name are correct.
Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name are
correct.
Cannot open molecule file %os
The specified file cannot be opened. Check that the path and name are correct.
Cannot open nb3b/harmonic potential file %s
The specified potential file cannot be opened. Check that the path and name are correct.
Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name are
correct.
Cannot open polymorphic potential file %os
The specified polymorphic potential file cannot be opened. Check that the path and name are correct.
Cannot open print file %s
Self-explanatory.
Cannot open processors output file
Self-explanatory.
Cannot open restart file %s
Self-explanatory.
Cannot open restart file for reading - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot open restart file for writing - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot open temporary file for world counter.
Self-explanatory.
Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.
Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot read from restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot read_data without add keyword after simulation box is defined
Self-explanatory.
Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.
Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.
Cannot replicate 2d simulation in 7 dimension
The replicate command cannot replicate a 2d simulation in the z dimension.
Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom-based vectors or a restart file was read which included
atom-based vectors for fixes. The replicate command cannot duplicate that information for new atoms.
You should use the replicate command before fixes are applied to the system.
Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.

162

Cannot reset timestep with a time-dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.
Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.
Cannot set bond topology types for atom style template
The bond, angle, etc types cannot be changed for this atom style since they are static settings in the
molecule template files.
Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.
Cannot set cutoff/multi before simulation box is defined
Self-explanatory.
Cannot set dpd/theta for this atom style
Self-explanatory.
Cannot set dump_modify flush for dump xtc
Self-explanatory.
Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a per-atom
basis in the data file.
Cannot set meso/cv for this atom style
Self-explanatory.
Cannot set meso/e for this atom style
Self-explanatory.
Cannot set meso/rho for this atom style
Self-explanatory.
Cannot set non-zero image flag for non-periodic dimension
Self-explanatory.
Cannot set non-zero z velocity for 2d simulation
Self-explanatory.
Cannot set quaternion for atom that has none
Self-explanatory.
Cannot set quaternion with xy components for 2d system
Self-explanatory.
Cannot set respa hybrid and any of pair/inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), with different
cutoff regions (inner/middle/outer), or per hybrid sub-style (hybrid). You cannot mix those.
Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle setting.
Cannot set restart file size - MPI error: %os
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot set smd/contact/radius for this atom style
Self-explanatory.
Cannot set smd/mass/density for this atom style
Self-explanatory.
Cannot set temperature for fix rigid/nph
The temp keyword cannot be specified.
Cannot set theta for atom that is not a line
Self-explanatory.
Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.
Cannot set variable z velocity for 2d simulation
Self-explanatory.

163

Cannot skew triclinic box in z for 2d simulation
Self-explanatory.
Cannot subtract groups using a dynamic group
This operation is not allowed.
Cannot union groups using a dynamic group
This operation is not allowed.
Cannot use -cuda on and -kokkos on together
This is not allowed since both packages can use GPUs.
Cannot use -cuda on without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.
Cannot use -kokkos on without KOKKOS installed
Self-explanatory.
Cannot use -reorder after -partition
Self-explanatory. See doc page discussion of command-line switches.
Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation; see
the kspace_modify command.
Cannot use Ewald/disp solver on system with no charge, dipole, or LJ particles
No atoms in system have a non-zero charge or dipole, or are LJ particles. Change charges/dipoles or
change options of the kspace solver/pair style.
Cannot use EwaldDisp with 2d simulation
This is a current restriction of this command.
Cannot use GPU package with USER-CUDA package enabled
You cannot use both the GPU and USER-CUDA packages together. Use one or the other.
Cannot use Kokkos pair style with rRESPA inner/middle
Self-explanatory.
Cannot use NEB unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use NEB with a single replica
Self-explanatory.
Cannot use NEB with atom_modify sort enabled
This is current restriction for NEB implemented in LAMMPS.
Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation; see
the kspace_modify command.
Cannot use PPPMDisp with 2d simulation
The kspace style pppm/disp cannot be used in 2d simulations. You can use 2d pppm/disp in a 3d
simulation; see the kspace_modify command.
Cannot use PRD with a changing box
The current box dimensions are not copied between replicas
Cannot use PRD with a time-dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.
Cannot use PRD with a time-dependent region defined
PRD alters the timestep in ways that will mess up these regions.
Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the
atom_modify command.
Cannot use PRD with multi-processor replicas unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use TAD unless atom map exists for NEB
See atom_modify map command to set this.
Cannot use TAD with a single replica for NEB

164

NEB requires multiple replicas.
Cannot use TAD with atom_modify sort enabled for NEB

This is a current restriction of NEB.
Cannot use a damped dynamics min style with fix box/relax

This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use a damped dynamics min style with per-atom DOF

This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use append/atoms in periodic dimension

The boundary style of the face where atoms are added can not be of type p (periodic).

Cannot use atomfile-style variable unless atom map exists
Self-explanatory. See the atom_modify command to create a map.

Cannot use both com and bias with compute temp/chunk
Self-explanatory.

Cannot use chosen neighbor list style with buck/coul/cut/kk
Self-explanatory.

Cannot use chosen neighbor list style with buck/coul/long/kk
Self-explanatory.

Cannot use chosen neighbor list style with buck/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with coul/cut/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with coul/debye/kk
Self-explanatory.

Cannot use chosen neighbor list style with coul/dsf/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with coul/wolf/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with lj/charmm/coul/charmm/implicit/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/charmm/coul/charmm/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/charmm/coul/long/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/class2/coul/cut/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/class2/coul/long/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/class2/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/cut/coul/cut/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with lj/cut/coul/debye/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/cut/coul/long/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with lj/cut/kk
That style is not supported by Kokkos.

Cannot use chosen neighbor list style with lj/expand/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/gromacs/coul/gromacs/kk
Self-explanatory.

Cannot use chosen neighbor list style with lj/gromacs/kk

165

Self-explanatory.
Cannot use chosen neighbor list style with lj/sdk/kk
That style is not supported by Kokkos.
Cannot use chosen neighbor list style with pair eam/kk
That style is not supported by Kokkos.
Cannot use chosen neighbor list style with pair eam/kk/alloy
Self-explanatory.
Cannot use chosen neighbor list style with pair eam/kk/fs
Self-explanatory.
Cannot use chosen neighbor list style with pair sw/kk
Self-explanatory.
Cannot use chosen neighbor list style with tersoff/kk
Self-explanatory.
Cannot use chosen neighbor list style with tersoff/zbl/kk
Self-explanatory.
Cannot use compute chunk/atom bin z for 2d model
Self-explanatory.
Cannot use compute cluster/atom unless atoms have IDs
Atom IDs are used to identify clusters.
Cannot use create_atoms rotate unless single style
Self-explanatory.
Cannot use create_bonds unless atoms have IDs
This command requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.
Cannot use create_bonds with non-molecular system
Self-explanatory.
Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.
Cannot use delete_atoms bond yes with atom_style template
This is because the bonds for that atom style are hardwired in the molecule template.
Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.
Cannot use delete_bonds with non-molecular system
Your choice of atom style does not have bonds.
Cannot use dump_modify fileper without % in dump file name
Self-explanatory.
Cannot use dump_modify nfile without % in dump file name
Self-explanatory.
Cannot use dynamic group with fix adapt atom
This is not yet supported.
Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An atom
map does not exist (by default) for non-molecular problems. Using the atom_modify map command will
force an atom map to be created.
Cannot use fix ave/spatial 7 for 2 dimensional model
Self-explanatory.
Cannot use fix bond/break with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.
Cannot use fix bond/create with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.
Cannot use fix bond/swap with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.

166

Cannot use fix box/relax on a 2nd non-periodic dimension

When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.

E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix box/relax on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix box/relax with both relaxation and scaling on a tilt factor
When specifying scaling on a tilt factor component, that component can not also be controlled by the
barostat. E.g. if scalexy yes is specified and also keyword tri or Xy, this is wrong.
Cannot use fix box/relax with tilt factor scaling on a 2nd non-periodic dimension

When specifying scaling on a tilt factor component, the 2nd of the two dimensions must be periodic. E.g.

if the Xy component is specified, then the y dimension must be periodic.
Cannot use fix deform on a shrink-wrapped boundary

The x, y, z options cannot be applied to shrink-wrapped dimensions.
Cannot use fix deform tilt on a shrink-wrapped 2nd dim

This is because the shrink-wrapping will change the value of the strain implied by the tilt factor.
Cannot use fix deform trate on a box with zero tilt

The trate style alters the current strain.
Cannot use fix deposit rigid and not molecule

Self-explanatory.
Cannot use fix deposit rigid and shake

These two attributes are conflicting.
Cannot use fix deposit shake and not molecule

Self-explanatory.
Cannot use fix enforce2d with 3d simulation

Self-explanatory.
Cannot use fix gcmc in a 2d simulation

Fix gemc is set up to run in 3d only. No 2d simulations with fix gcmc are allowed.
Cannot use fix gcmc shake and not molecule

Self-explanatory.
Cannot use fix msst without per-type mass defined

Self-explanatory.
Cannot use fix npt and fix deform on same component of stress tensor

This would be changing the same box dimension twice.
Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension

When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.

E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix nvt/npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix nvt/npt/nph with both xy dynamics and xy scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both xz dynamics and xz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both yz dynamics and yz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with xy scaling when y is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with xz scaling when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with yz scaling when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix pour rigid and not molecule
Self-explanatory.

167

Cannot use fix pour rigid and shake
These two attributes are conflicting.
Cannot use fix pour shake and not molecule
Self-explanatory.
Cannot use fix pour with triclinic box
This option is not yet supported.
Cannot use fix press/berendsen and fix deform on same component of stress tensor

These commands both change the box size/shape, so you cannot use both together.

Cannot use fix press/berendsen on a non-periodic dimension
Self-explanatory.
Cannot use fix press/berendsen with triclinic box
Self-explanatory.
Cannot use fix reax/bonds without pair_style reax
Self-explantory.
Cannot use fix rigid npt/nph and fix deform on same component of stress tensor
This would be changing the same box dimension twice.
Cannot use fix rigid npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix rigid/small npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix shake with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix ttm with 2d simulation
This is a current restriction of this fix due to the grid it creates.
Cannot use fix ttm with triclinic box
This is a current restriction of this fix due to the grid it creates.
Cannot use fix tune/kspace without a kspace style
Self-explanatory.
Cannot use fix tune/kspace without a pair style
This fix (tune/kspace) can only be used when a pair style has been specified.
Cannot use fix wall in periodic dimension
Self-explanatory.
Cannot use fix wall zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/reflect in periodic dimension
Self-explanatory.
Cannot use fix wall/reflect zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/srd in periodic dimension
Self-explanatory.
Cannot use fix wall/srd more than once
Nor is their a need to since multiple walls can be specified in one command.
Cannot use fix wall/srd without fix srd
Self-explanatory.
Cannot use fix wall/srd zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix_deposit unless atoms have IDs
Self-explanatory.
Cannot use fix_pour unless atoms have IDs
Self-explanatory.
Cannot use include command within an if command
Self-explanatory.

168

Cannot use lines with fix srd unless overlap is set
This is because line segements are connected to each other.

Cannot use multiple fix wall commands with pair brownian
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricate
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricate/poly
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricateU
Self-explanatory.

Cannot use neigh_modify exclude with GPU neighbor builds
This is a current limitation of the GPU implementation in LAMMPS.

Cannot use neighbor bins - box size << cutoff

Too many neighbor bins will be created. This typically happens when the simulation box is very small in

some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.

Cannot use newton pair with beck/gpu pair style
Self-explanatory.

Cannot use newton pair with born/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with born/coul/wolf/gpu pair style
Self-explanatory.

Cannot use newton pair with born/gpu pair style
Self-explantory.

Cannot use newton pair with buck/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/gpu pair style
Self-explanatory.

Cannot use newton pair with colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/debye/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with dipole/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with dipole/sf/gpu pair style
Self-explanatory.

Cannot use newton pair with dpd/gpu pair style
Self-explanatory.

Cannot use newton pair with dpd/tstat/gpu pair style
Self-explanatory.

Cannot use newton pair with eam/alloy/gpu pair style
Self-explanatory.

Cannot use newton pair with eam/fs/gpu pair style
Self-explanatory.

Cannot use newton pair with eam/gpu pair style

169

Self-explanatory.

Cannot use newton pair with gauss/gpu pair style
Self-explanatory.

Cannot use newton pair with gayberne/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/charmm/coul/long/gpu pair style

Self-explanatory.

Cannot use newton pair with lj/class2/coul/long/gpu pair style

Self-explanatory.

Cannot use newton pair with lj/class2/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cubic/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/debye/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/msm/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/expand/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/gromacs/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/sdk/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/sdk/gpu pair style
Self-explanatory.

Cannot use newton pair with [j96/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with mie/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with morse/gpu pair style
Self-explanatory.

Cannot use newton pair with resquared/gpu pair style
Self-explanatory.

Cannot use newton pair with soft/gpu pair style
Self-explanatory.

Cannot use newton pair with table/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/gpu pair style
Self-explanatory.

Cannot use newton pair with zbl/gpu pair style
Self-explantory.

Cannot use non-zero forces in an energy minimization

170

Fix setforce cannot be used in this manner. Use fix addforce instead.
Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.
Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use nonperiodic boundaries with EwaldDisp
For kspace style ewald/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the kspace_modify
command to define a 2d slab with a non-periodic z dimension.
Cannot use nonperiodic boundaries with PPPMDisp
For kspace style pppm/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use order greater than 8 with pppm/gpu.
Self-explanatory.
Cannot use package gpu neigh yes with triclinic box
This is a current restriction in LAMMPS.
Cannot use pair hybrid with GPU neighbor list builds
Neighbor list builds must be done on the CPU for this pair style.
Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.
Cannot use processors part command without using partitions
See the command-line -partition switch.
Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.
Cannot use read_data add before simulation box is defined
Self-explanatory.
Cannot use read_data extra with add flag
Self-explanatory.
Cannot use read_data offset without add flag
Self-explanatory.
Cannot use read_data shift without add flag
Self-explanatory.
Cannot use region INF or EDGE when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has been used.
Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.
Cannot use set mol with no molecule IDs defined
Self-explanatory.
Cannot use swiggle in variable formula between runs
This is a function of elapsed time.
Cannot use tris with fix srd unless overlap is set
This is because triangles are connected to each other.
Cannot use variable energy with constant efield in fix efield
LAMMPS computes the energy itself when the E-field is constant.
Cannot use variable energy with constant force in fix addforce
This is because for constant force, LAMMPS can compute the change in energy directly.
Cannot use variable every setting for dump dcd
The format of DCD dump files requires snapshots be output at a constant frequency.
Cannot use variable every setting for dump xtc

171

The format of this file requires snapshots at regular intervals.
Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.
Cannot use velocity bias command without temp keyword
Self-explanatory.
Cannot use velocity create loop all unless atoms have IDs
Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.
Cannot use wall in periodic dimension
Self-explanatory.
Cannot use write_restart fileper without % in restart file name
Self-explanatory.
Cannot use write_restart nfile without % in restart file name
Self-explanatory.
Cannot wiggle and shear fix wall/gran
Cannot specify both options at the same time.
Cannot write to restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot yet use KSpace solver with grid with comm style tiled
This is current restriction in LAMMPS.
Cannot yet use comm_style tiled with multi-mode comm
Self-explanatory.
Cannot yet use comm_style tiled with triclinic box
Self-explanatory.
Cannot yet use compute tally with Kokkos
This feature is not yet supported.
Cannot yet use fix bond/break with this improper style
This is a current restriction in LAMMPS.
Cannot yet use fix bond/create with this improper style
This is a current restriction in LAMMPS.
Cannot yet use minimize with Kokkos
This feature is not yet supported.
Cannot yet use pair hybrid with Kokkos
This feature is not yet supported.
Cannot zero Langevin force of 0 atoms
The group has zero atoms, so you cannot request its force be zeroed.
Cannot zero gld force for zero atoms
There are no atoms currently in the group.
Cannot zero momentum of no atoms
Self-explanatory.
Change_box command before simulation box is defined
Self-explanatory.
Change_box volume used incorrectly
The "dim volume" option must be used immediately following one or two settings for "dim1 ..." (and
optionally "dim?2 ...") and must be for a different dimension, i.e. dim != dim1 and dim != dim?2.
Chunk/atom compute does not exist for compute angmom/chunk
Self-explanatory.
Chunk/atom compute does not exist for compute com/chunk
Self-explanatory.
Chunk/atom compute does not exist for compute gyration/chunk
Self-explanatory.
Chunk/atom compute does not exist for compute inertia/chunk
Self-explanatory.

172

Chunk/atom compute does not exist for compute msd/chunk
Self-explanatory.

Chunk/atom compute does not exist for compute omega/chunk
Self-explanatory.

Chunk/atom compute does not exist for compute property/chunk
Self-explanatory.

Chunk/atom compute does not exist for compute temp/chunk
Self-explanatory.

Chunk/atom compute does not exist for compute torque/chunk
Self-explanatory.

Chunk/atom compute does not exist for compute vem/chunk
Self-explanatory.

Chunk/atom compute does not exist for fix ave/chunk
Self-explanatory.

Comm tiled invalid index in box drop brick

Internal error check in comm_style tiled which should not occur. Contact the developers.

Comm tiled mis-match in box drop brick

Internal error check in comm_style tiled which should not occur. Contact the developers.

Comm_modify group != atom_modify first group
Self-explanatory.

Communication cutoff for comm_style tiled cannot exceed periodic box length

Self-explanatory.

Communication cutoff too small for SNAP micro load balancing
This can happen if you change the neighbor skin after your pair_style command or if your box

dimensions grow during a run. You can set the cutoff explicitly via the comm_modify cutoff command.

Compute %s does not allow use of dynamic group

Dynamic groups have not yet been enabled for this compute.

Compute ID for compute chunk /atom does not exist

Self-explanatory.

Compute ID for compute chunk/atom does not exist
Self-explanatory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for compute slice does not exist
Self-explanatory.

Compute ID for fix ave/atom does not exist
Self-explanatory.

Compute ID for fix ave/chunk does not exist
Self-explanatory.

Compute ID for fix ave/correlate does not exist
Self-explanatory.

Compute ID for fix ave/histo does not exist
Self-explanatory.

Compute ID for fix ave/spatial does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID for fix store/state does not exist
Self-explanatory.

Compute ID for fix vector does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters

173

Self-explanatory.
Compute angle/local used when angles are not allowed
The atom style does not support angles.
Compute angmom/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute body/local requires atom style body
Self-explanatory.
Compute bond/local used when bonds are not allowed
The atom style does not support bonds.
Compute centro/atom requires a pair style be defined

This is because the computation of the centro-symmetry values uses a pairwise neighbor list.

Compute chunk/atom bin/cylinder radius is too large for periodic box
Radius cannot be bigger than 1/2 of a non-axis periodic dimention.

Compute chunk/atom bin/sphere radius is too large for periodic box
Radius cannot be bigger than 1/2 of any periodic dimention.

Compute chunk/atom compute array is accessed out-of-range
The index for the array is out of bounds.

Compute chunk/atom compute does not calculate a per-atom array
Self-explanatory.

Compute chunk/atom compute does not calculate a per-atom vector
Self-explanatory.

Compute chunk/atom compute does not calculate per-atom values
Self-explanatory.

Compute chunk/atom cylinder axis must be z for 2d
Self-explanatory.

Compute chunk/atom fix array is accessed out-of-range
the index for the array is out of bounds.

Compute chunk/atom fix does not calculate a per-atom array
Self-explanatory.

Compute chunk/atom fix does not calculate a per-atom vector
Self-explanatory.

Compute chunk/atom fix does not calculate per-atom values
Self-explanatory.

Compute chunk/atom for triclinic boxes requires units reduced
Self-explanatory.

Compute chunk/atom ids once but nchunk is not once

You cannot assign chunks IDs to atom permanently if the number of chunks may change.

Compute chunk/atom molecule for non-molecular system

Self-explanatory.
Compute chunk/atom sphere z origin must be 0.0 for 2d

Self-explanatory.
Compute chunk/atom stores no IDs for compute property/chunk

It will only store IDs if its compress option is enabled.
Compute chunk/atom stores no coordl for compute property/chunk

Only certain binning options for comptue chunk/atom store coordinates.
Compute chunk/atom stores no coord?2 for compute property/chunk

Only certain binning options for comptue chunk/atom store coordinates.
Compute chunk/atom stores no coord3 for compute property/chunk

Only certain binning options for comptue chunk/atom store coordinates.
Compute chunk/atom variable is not atom-style variable

Self-explanatory.
Compute chunk/atom without bins cannot use discard mixed

174

That discard option only applies to the binning styles.
Compute cluster/atom cutoff is longer than pairwise cutoff
Cannot identify clusters beyond cutoff.
Compute cluster/atom requires a pair style be defined
This is so that the pair style defines a cutoff distance which is used to find clusters.
Compute cna/atom cutoff is longer than pairwise cutoff
Self-explantory.
Compute cna/atom requires a pair style be defined
Self-explantory.
Compute com/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute contact/atom requires a pair style be defined
Self-explantory.
Compute contact/atom requires atom style sphere
Self-explanatory.
Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.
Compute coord/atom requires a pair style be defined
Self-explantory.
Compute damage/atom requires peridynamic potential
Damage is a Peridynamic-specific metric. It requires you to be running a Peridynamics simulation.
Compute dihedral/local used when dihedrals are not allowed
The atom style does not support dihedrals.
Compute dilatation/atom cannot be used with this pair style
Self-explanatory.
Compute dilatation/atom requires Peridynamic pair style
Self-explanatory.
Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.
Compute erotate/asphere requires atom style ellipsoid or line or tri
Self-explanatory.
Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.
Compute erotate/rigid with non-rigid fix-1D
Self-explanatory.
Compute erotate/sphere requires atom style sphere
Self-explanatory.
Compute erotate/sphere/atom requires atom style sphere
Self-explanatory.
Compute event/displace has invalid fix event assigned
This is an internal LAMMPS error. Please report it to the developers.
Compute group/group group ID does not exist
Self-explanatory.
Compute gyration/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute heat/flux compute ID does not compute ke/atom
Self-explanatory.
Compute heat/flux compute ID does not compute pe/atom
Self-explanatory.
Compute heat/flux compute ID does not compute stress/atom
Self-explanatory.

175

Compute hexorder/atom cutoff is longer than pairwise cutoff
Cannot compute order parameter beyond cutoff.
Compute hexorder/atom requires a pair style be defined
Self-explantory.
Compute improper/local used when impropers are not allowed
The atom style does not support impropers.
Compute inertia/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute ke/rigid with non-rigid fix-ID
Self-explanatory.
Compute msd/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute msd/chunk nchunk is not static
This is required because the MSD cannot be computed consistently if the number of chunks is changing.
Compute chunk/atom allows setting nchunk to be static.
Compute nve/asphere requires atom style ellipsoid
Self-explanatory.
Compute nvt/nph/npt asphere requires atom style ellipsoid
Self-explanatory.
Compute nvt/nph/npt body requires atom style body
Self-explanatory.
Compute omega/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute orientorder/atom cutoff is longer than pairwise cutoff
Cannot compute order parameter beyond cutoff.
Compute orientorder/atom requires a pair style be defined
Self-explantory.
Compute pair must use group all
Pair styles accumlate energy on all atoms.
Compute pe must use group all
Energies computed by potentials (pair, bond, etc) are computed on all atoms.
Compute plasticity/atom cannot be used with this pair style
Self-explanatory.
Compute plasticity/atom requires Peridynamic pair style
Self-explanatory.
Compute pressure must use group all
Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.
Compute pressure requires temperature ID to include kinetic energy
The keflag cannot be used unless a temperature compute is provided.
Compute pressure temperature ID does not compute temperature
The compute ID assigned to a pressure computation must compute temperature.
Compute property/atom floating point vector does not exist
The command is accessing a vector added by the fix property/atom command, that does not exist.
Compute property/atom for atom property that isn't allocated
Self-explanatory.
Compute property/atom integer vector does not exist
The command is accessing a vector added by the fix property/atom command, that does not exist.
Compute property/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Compute property/local cannot use these inputs together
Only inputs that generate the same number of datums can be used togther. E.g. bond and angle quantities
cannot be mixed.

176

Compute property/local does not (yet) work with atom_style template
Self-explanatory.

Compute property/local for property that isn't allocated
Self-explanatory.

Compute rdf requires a pair style be defined
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global values

A compute that calculates peratom or local values is required.

Compute reduce compute does not calculate a local array
Self-explanatory.

Compute reduce compute does not calculate a local vector
Self-explanatory.

Compute reduce compute does not calculate a per-atom array
Self-explanatory.

Compute reduce compute does not calculate a per-atom vector
Self-explanatory.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a local array
Self-explanatory.

Compute reduce fix does not calculate a local vector
Self-explanatory.

Compute reduce fix does not calculate a per-atom array
Self-explanatory.

Compute reduce fix does not calculate a per-atom vector
Self-explanatory.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not atom-style variable
Self-explanatory.

Compute slice compute array is accessed out-of-range
An index for the array is out of bounds.

Compute slice compute does not calculate a global array
Self-explanatory.

Compute slice compute does not calculate a global vector
Self-explanatory.

Compute slice compute does not calculate global vector or array
Self-explanatory.

Compute slice compute vector is accessed out-of-range
The index for the vector is out of bounds.

Compute slice fix array is accessed out-of-range
An index for the array is out of bounds.

Compute slice fix does not calculate a global array
Self-explanatory.

Compute slice fix does not calculate a global vector
Self-explanatory.

Compute slice fix does not calculate global vector or array
Self-explanatory.

177

Compute slice fix vector is accessed out-of-range
The index for the vector is out of bounds.

Compute sna/atom cutoff is longer than pairwise cutoff
Self-explanatory.

Compute sna/atom requires a pair style be defined
Self-explanatory.

Compute snad/atom cutoff is longer than pairwise cutoff
Self-explanatory.

Compute snad/atom requires a pair style be defined
Self-explanatory.

Compute snav/atom cutoff is longer than pairwise cutoff
Self-explanatory.

Compute snav/atom requires a pair style be defined
Self-explanatory.

Compute stress/atom temperature ID does not compute temperature
The specified compute must compute temperature.

Compute temp/asphere requires atom style ellipsoid
Self-explanatory.

Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute temp/body requires atom style body
Self-explanatory.

Compute temp/body requires bodies
This compute can only be applied to body particles.

Compute temp/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.

Compute temp/cs requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.

Compute temp/cs used when bonds are not allowed
This compute only works on pairs of bonded particles.

Compute temp/partial cannot use vz for 2d systemx
Self-explanatory.

Compute temp/profile cannot bin 7 for 2d systems
Self-explanatory.

Compute temp/profile cannot use vz for 2d systemx
Self-explanatory.

Compute temp/sphere requires atom style sphere
Self-explanatory.

Compute ti kspace style does not exist
Self-explanatory.

Compute ti pair style does not exist
Self-explanatory.

Compute ti tail when pair style does not compute tail corrections
Self-explanatory.

Compute torque/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.

Compute used in dump between runs is not current

The compute was not invoked on the current timestep, therefore it cannot be used in a dump between

runs.
Compute used in variable between runs is not current

Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the

last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the

178

variable command for more info.
Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by a
variable in between runs. Thus they must have been evaluated on the last timestep of the previous run in
order for their value(s) to be accessed. See the doc page for the variable command for more info.
Compute vem/chunk does not use chunk/atom compute
The style of the specified compute is not chunk/atom.
Computed temperature for fix temp/berendsen cannot be 0.0
Self-explanatory.
Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.
Core/shell partner atom not found
Could not find one of the atoms in the bond pair.
Core/shell partners were not all found
Could not find or more atoms in the bond pairs.
Could not adjust g_ewald_6
The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not occur
for typical problems. Please send an email to the developers.
Could not compute g_ewald
The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not occur
for typical problems. Please send an email to the developers.
Could not compute grid size
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.
Could not compute grid size for Coulomb interaction
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.
Could not compute grid size for Dispersion
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.
Could not create 3d FFT plan
The FFT setup for the PPPM solver failed, typically due to lack of memory. This is an unusual error.
Check the size of the FFT grid you are requesting.
Could not create 3d grid of processors
The specified constraints did not allow a Px by Py by Pz grid to be created where Px * Py * Pz = P = total
number of processors.
Could not create 3d remap plan
The FFT setup in pppm failed.
Could not create Python function arguments
This is an internal Python error, possibly because the number of inputs to the function is too large.
Could not create numa grid of processors
The specified constraints did not allow this style of grid to be created. Usually this is because the total
processor count is not a multiple of the cores/node or the user specified processor count is > 1 in one of
the dimensions.
Could not create twolevel 3d grid of processors
The specified constraints did not allow this style of grid to be created.
Could not evaluate Python function input variable
Self-explanatory.
Could not find Python function
The provided Python code was run successfully, but it not define a callable function with the required
name.
Could not find atom_modify first group ID

179

Self-explanatory.
Could not find change_box group ID
Group ID used in the change_box command does not exist.
Could not find compute ID for PRD
Self-explanatory.
Could not find compute ID for TAD
Self-explanatory.
Could not find compute ID for temperature bias
Self-explanatory.
Could not find compute ID to delete
Self-explanatory.
Could not find compute displace/atom fix ID
Self-explanatory.
Could not find compute event/displace fix ID
Self-explanatory.
Could not find compute group ID
Self-explanatory.
Could not find compute heat/flux compute ID
Self-explanatory.
Could not find compute msd fix ID
Self-explanatory.
Could not find compute msd/chunk fix ID
The compute creates an internal fix, which has been deleted.
Could not find compute pressure temperature ID
The compute ID for calculating temperature does not exist.
Could not find compute stress/atom temperature ID
Self-explanatory.
Could not find compute vacf fix ID
Self-explanatory.
Could not find compute/voronoi surface group 1D
Self-explanatory.
Could not find compute_modify ID
Self-explanatory.
Could not find custom per-atom property 1D
Self-explanatory.
Could not find delete_atoms group ID
Group ID used in the delete_atoms command does not exist.
Could not find delete_atoms region ID
Region ID used in the delete_atoms command does not exist.
Could not find displace_atoms group 1D

Group ID used in the displace_atoms command does not exist.

Could not find dump custom compute 1D
Self-explanatory.

Could not find dump custom fix ID
Self-explanatory.

Could not find dump custom variable name
Self-explanatory.

Could not find dump group ID
A group ID used in the dump command does not exist.

Could not find dump local compute ID
Self-explanatory.

Could not find dump local fix ID

180

Self-explanatory.
Could not find dump modify compute ID
Self-explanatory.
Could not find dump modify custom atom floating point property 1D
Self-explanatory.
Could not find dump modify custom atom integer property ID
Self-explanatory.
Could not find dump modify fix 1D
Self-explanatory.
Could not find dump modify variable name
Self-explanatory.
Could not find fix ID to delete
Self-explanatory.
Could not find fix adapt storage fix ID

This should not happen unless you explicitly deleted a secondary fix that fix adapt created internally.

Could not find fix gcmc exclusion group ID

Self-explanatory.
Could not find fix gcmc rotation group 1D

Self-explanatory.
Could not find fix group ID

A group ID used in the fix command does not exist.
Could not find fix msst compute ID

Self-explanatory.
Could not find fix poems group 1D

A group ID used in the fix poems command does not exist.
Could not find fix recenter group ID

A group ID used in the fix recenter command does not exist.
Could not find fix rigid group ID

A group ID used in the fix rigid command does not exist.
Could not find fix srd group ID

Self-explanatory.
Could not find fix_modify 1D

A fix ID used in the fix_modify command does not exist.
Could not find fix_modify pressure ID

The compute ID for computing pressure does not exist.
Could not find fix_modify temperature ID

The compute ID for computing temperature does not exist.
Could not find group clear group ID

Self-explanatory.
Could not find group delete group ID

Self-explanatory.
Could not find pair fix ID

A fix is created internally by the pair style to store shear history information. You cannot delete it.
Could not find set group ID

Group ID specified in set command does not exist.
Could not find specified fix gcmc group ID

Self-explanatory.
Could not find thermo compute ID

Compute ID specified in thermo_style command does not exist.
Could not find thermo custom compute 1D

The compute ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom fix ID

181

The fix ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom variable name
Self-explanatory.
Could not find thermo fix ID
Fix ID specified in thermo_style command does not exist.
Could not find thermo variable name
Self-explanatory.
Could not find thermo_modify pressure 1D
The compute ID needed by thermo style custom to compute pressure does not exist.
Could not find thermo_modify temperature ID
The compute ID needed by thermo style custom to compute temperature does not exist.
Could not find undump 1D
A dump ID used in the undump command does not exist.
Could not find velocity group ID
A group ID used in the velocity command does not exist.
Could not find velocity temperature ID
The compute ID needed by the velocity command to compute temperature does not exist.
Could not find/initialize a specified accelerator device
Could not initialize at least one of the devices specified for the gpu package
Could not grab element entry from EIM potential file
Self-explanatory
Could not grab global entry from EIM potential file
Self-explanatory.
Could not grab pair entry from EIM potential file
Self-explanatory.
Could not initialize embedded Python
The main module in Python was not accessible.
Could not open Python file
The specified file of Python code cannot be opened. Check that the path and name are correct.
Could not process Python file
The Python code in the specified file was not run sucessfully by Python, probably due to errors in the
Python code.
Could not process Python string
The Python code in the here string was not run sucessfully by Python, probably due to errors in the
Python code.
Coulomb PPPMDisp order has been reduced below minorder
The default minimum order is 2. This can be reset by the kspace_modify minorder command.
Coulomb cut not supported in pair_style buck/long/coul/coul
Must use long-range Coulombic interactions.
Coulomb cut not supported in pair_style lj/long/coul/long
Must use long-range Coulombic interactions.
Coulomb cut not supported in pair_style lj/long/tip4dp/long
Must use long-range Coulombic interactions.
Coulomb cutoffs of pair hybrid sub-styles do not match
If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.
Coulombic cut not supported in pair_style lj/long/dipole/long
Must use long-range Coulombic interactions.
Cound not find dump_modify ID
Self-explanatory.
Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box command.
Create_atoms molecule has atom IDs, but system does not

182

The atom_style id command can be used to force atom IDs to be stored.
Create_atoms molecule must have atom types
The defined molecule does not specify atom types.
Create_atoms molecule must have coordinates
The defined molecule does not specify coordinates.
Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.
Create_bonds command before simulation box is defined
Self-explanatory.
Create_bonds command requires no kspace_style be defined
This is so that atom pairs that are already bonded to not appear in the neighbor list.
Create_bonds command requires special_bonds 1-2 weights be 0.0
This is so that atom pairs that are already bonded to not appear in the neighbor list.
Create_bonds max distance > neighbor cutoff
Can only create bonds for atom pairs that will be in neighbor list.
Create_bonds requires a pair style be defined
Self-explanatory.
Create_box region ID does not exist
Self-explanatory.
Create_box region does not support a bounding box

Not all regions represent bounded volumes. You cannot use such a region with the create_box command.

Custom floating point vector for fix store/state does not exist
The command is accessing a vector added by the fix property/atom command, that does not exist.
Custom integer vector for fix store/state does not exist
The command is accessing a vector added by the fix property/atom command, that does not exist.
Custom per-atom property ID is not floating point
Self-explanatory.
Custom per-atom property ID is not integer
Self-explanatory.
Cut-offs missing in pair_style lj/long/dipole/long
Self-explanatory.
Cutoffs missing in pair_style buck/long/coul/long
Self-exlanatory.
Cutoffs missing in pair_style lj/long/coul/long
Self-explanatory.
Cyclic loop in joint connections

Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).

Degenerate lattice primitive vectors

Invalid set of 3 lattice vectors for lattice command.
Delete region ID does not exist

Self-explanatory.
Delete_atoms command before simulation box is defined

The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.

Delete_atoms cutoff > max neighbor cutoff

Can only delete atoms in atom pairs that will be in neighbor list.
Delete_atoms mol yes requires atom attribute molecule

Cannot use this option with a non-molecular system.
Delete_atoms requires a pair style be defined

This is because atom deletion within a cutoff uses a pairwise neighbor list.
Delete_bonds command before simulation box is defined

The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.

Delete_bonds command with no atoms existing

183

No atoms are yet defined so the delete_bonds command cannot be used.
Deposition region extends outside simulation box
Self-explanatory.
Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some atom
coordinates being outside a non-periodic simulation box.
Did not assign all restart atoms correctly
Atoms read in from the restart file were not assigned correctly to processors. This is likely due to some
atom coordinates being outside a non-periodic simulation box. Normally this should not happen. You
may wish to use the "remap" option on the read_restart command to see if this helps.
Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.
Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2, 1-3,
1-4 weighting list via the special keyword.
Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.
Did not set pressure for fix rigid/nph
The press keyword must be specified.
Did not set temp for fix rigid/nvt/small
Self-explanatory.
Did not set temp or press for fix rigid/npt/small
Self-explanatory.
Did not set temperature for fix rigid/nvt
The temp keyword must be specified.
Did not set temperature or pressure for fix rigid/npt
The temp and press keywords must be specified.
Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atoms %d %d %d Yod missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral atoms missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.
Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in the
dihedral_coeff command or read from a restart file is not recognized.
Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.
Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.

184

Dihedral style hybrid cannot have none as an argument
Self-explanatory.
Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.
Dihedral/improper extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the dihedral atoms
are so far apart it is ambiguous how it should be defined.
Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style has
been assigned.
Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box command.
Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.
Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.
Dispersion PPPMDisp order has been reduced below minorder
The default minimum order is 2. This can be reset by the kspace_modify minorder command.
Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box command.
Distance must be > 0 for compute event/displace
Self-explanatory.
Divide by 0 in influence function
This should not normally occur. It is likely a problem with your model.
Divide by 0 in influence function of pair peri/lps
This should not normally occur. It is likely a problem with your model.
Divide by 0 in variable formula
Self-explanatory.
Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or more
atoms have been blown out of the simulation box to a great distance.
Double precision is not supported on this accelerator
Self-explanatory
Dump atom/gz only writes compressed files
The dump atom/gz output file name must have a .gz suffix.
Dump cfg arguments can not mix xslyslzs with xsulysulzsu
Self-explanatory.
Dump cfg arguments must start with 'mass type xs ys zs' or 'mass type xsu ysu zsu'
This is a requirement of the CFG output format. See the dump cfg doc page for more details.
Dump cfg requires one snapshot per file
Use the wildcard "*" character in the filename.
Dump cfg/gz only writes compressed files
The dump cfg/gz output file name must have a .gz suffix.
Dump custom and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump custom needs them.

185

Dump custom compute does not calculate per-atom array
Self-explanatory.
Dump custom compute does not calculate per-atom vector
Self-explanatory.
Dump custom compute does not compute per-atom info
Self-explanatory.
Dump custom compute vector is accessed out-of-range
Self-explanatory.
Dump custom fix does not compute per-atom array
Self-explanatory.
Dump custom fix does not compute per-atom info
Self-explanatory.
Dump custom fix does not compute per-atom vector
Self-explanatory.
Dump custom fix vector is accessed out-of-range
Self-explanatory.
Dump custom variable is not atom-style variable
Only atom-style variables generate per-atom quantities, needed for dump output.
Dump custom/gz only writes compressed files
The dump custom/gz output file name must have a .gz suffix.
Dump dcd of non-matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.
Dump dcd requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Dump file MPI-10 output not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Dump file does not contain requested snapshot
Self-explanatory.
Dump file is incorrectly formatted
Self-explanatory.
Dump image body yes requires atom style body
Self-explanatory.
Dump image bond not allowed with no bond types
Self-explanatory.
Dump image cannot perform sorting
Self-explanatory.
Dump image line requires atom style line
Self-explanatory.
Dump image persp option is not yet supported
Self-explanatory.
Dump image requires one snapshot per file
Use a "*" in the filename.
Dump image tri requires atom style tri
Self-explanatory.
Dump local and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump local needs them.
Dump local attributes contain no compute or fix
Self-explanatory.
Dump local cannot sort by atom ID
This is because dump local does not really dump per-atom info.

186

Dump local compute does not calculate local array
Self-explanatory.

Dump local compute does not calculate local vector
Self-explanatory.

Dump local compute does not compute local info
Self-explanatory.

Dump local compute vector is accessed out-of-range
Self-explanatory.

Dump local count is not consistent across input fields
Every column of output must be the same length.

Dump local fix does not compute local array
Self-explanatory.

Dump local fix does not compute local info
Self-explanatory.

Dump local fix does not compute local vector
Self-explanatory.

Dump local fix vector is accessed out-of-range
Self-explanatory.

Dump modify bcolor not allowed with no bond types
Self-explanatory.

Dump modify bdiam not allowed with no bond types
Self-explanatory.

Dump modify compute ID does not compute per-atom array
Self-explanatory.

Dump modify compute ID does not compute per-atom info
Self-explanatory.

Dump modify compute ID does not compute per-atom vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify element names do not match atom types
Number of element names must equal number of atom types.

Dump modify fix ID does not compute per-atom array
Self-explanatory.

Dump modify fix ID does not compute per-atom info
Self-explanatory.

Dump modify fix ID does not compute per-atom vector
Self-explanatory.

Dump modify fix ID vector is not large enough
Self-explanatory.

Dump modify variable is not atom-style variable
Self-explanatory.

Dump sort column is invalid
Self-explanatory.

Dump xtc requires sorting by atom ID
Use the dump_modify sort command to enable this.

Dump xyz/gz only writes compressed files
The dump xyz/gz output file name must have a .gz suffix.

Dump_modify buffer yes not allowed for this style
Self-explanatory.

Dump_modify format string is too short

There are more fields to be dumped in a line of output than your format string specifies.

187

Dump_modify region ID does not exist
Self-explanatory.
Dumping an atom property that isn't allocated
The chosen atom style does not define the per-atom quantity being dumped.
Duplicate atom IDs exist
Self-explanatory.
Duplicate fields in read_dump command
Self-explanatory.
Duplicate particle in PeriDynamic bond - simulation box is too small
This is likely because your box length is shorter than 2 times the bond length.
Electronic temperature dropped below zero
Something has gone wrong with the fix ttm electron temperature model.
Element not defined in potential file
The specified element is not in the potential file.
Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.
Energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Epsilon or sigma reference not set by pair style in PPPMDisp
Self-explanatory.
Epsilon or sigma reference not set by pair style in ewald/n
The pair style is not providing the needed epsilon or sigma values.
Error in vdw spline: inner radius > outer radius
A pre-tabulated spline is invalid. Likely a problem with the potential parameters.
Error writing averaged chunk data
Something in the output to the file triggered an error.
Error writing file header
Something in the output to the file triggered an error.
Error writing out correlation data
Something in the output to the file triggered an error.
Error writing out histogram data
Something in the output to the file triggered an error.
Error writing out time averaged data
Something in the output to the file triggered an error.
Failed to allocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to open FFmpeg pipeline to file %s
The specified file cannot be opened. Check that the path and name are correct and writable and that the
FFmpeg executable can be found and run.
Failed to reallocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Fewer SRD bins than processors in some dimension
This is not allowed. Make your SRD bin size smaller.
File variable could not read value
Check the file assigned to the variable.
Final box dimension due to fix deform is < 0.0
Self-explanatory.
Fix %s does not allow use of dynamic group
Dynamic groups have not yet been enabled for this fix.

188

Fix ID for compute chunk/atom does not exist
Self-explanatory.
Fix ID for compute erotate/rigid does not exist
Self-explanatory.
Fix ID for compute ke/rigid does not exist
Self-explanatory.
Fix ID for compute reduce does not exist
Self-explanatory.
Fix ID for compute slice does not exist
Self-explanatory.
Fix ID for fix ave/atom does not exist
Self-explanatory.
Fix ID for fix ave/chunk does not exist
Self-explanatory.
Fix ID for fix ave/correlate does not exist
Self-explanatory.
Fix ID for fix ave/histo does not exist
Self-explanatory.
Fix ID for fix ave/spatial does not exist
Self-explanatory.
Fix ID for fix ave/time does not exist
Self-explanatory.
Fix ID for fix store/state does not exist
Self-explanatory
Fix ID for fix vector does not exist
Self-explanatory.
Fix ID for read_data does not exist
Self-explanatory.
Fix ID for velocity does not exist
Self-explanatory.
Fix ID must be alphanumeric or underscore characters
Self-explanatory.
Fix SRD: bad bin assignment for SRD advection
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad search bin assignment
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad stencil bin for big particle
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: too many big particles in bin
Reset the ATOMPERBIN parameter at the top of fix_srd.cpp to a larger value, and re-compile the code.
Fix SRD: too many walls in bin
This should not happen unless your system has been setup incorrectly.
Fix adapt interface to this pair style not supported
New coding for the pair style would need to be done.
Fix adapt kspace style does not exist
Self-explanatory.
Fix adapt pair style does not exist
Self-explanatory
Fix adapt pair style param not supported
The pair style does not know about the parameter you specified.
Fix adapt requires atom attribute charge
The atom style being used does not specify an atom charge.

189

Fix adapt requires atom attribute diameter
The atom style being used does not specify an atom diameter.
Fix adapt type pair range is not valid for pair hybrid sub-style
Self-explanatory.
Fix append/atoms requires a lattice be defined
Use the lattice command for this purpose.
Fix ave/atom compute array is accessed out-of-range
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom array
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom vector
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom compute does not calculate per-atom values
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom fix array is accessed out-of-range
Self-explanatory.
Fix ave/atom fix does not calculate a per-atom array
Self-explanatory.
Fix ave/atom fix does not calculate a per-atom vector
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom fix does not calculate per-atom values
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom variable is not atom-style variable
A variable used by fix ave/atom must generate per-atom values.
Fix ave/chunk compute does not calculate a per-atom array
Self-explanatory.
Fix ave/chunk compute does not calculate a per-atom vector
Self-explanatory.
Fix ave/chunk compute does not calculate per-atom values
Self-explanatory.
Fix ave/chunk compute vector is accessed out-of-range
Self-explanatory.
Fix ave/chunk does not use chunk/atom compute

The specified conpute is not for a compute chunk/atom command.

Fix ave/chunk fix does not calculate a per-atom array
Self-explanatory.

Fix ave/chunk fix does not calculate a per-atom vector
Self-explanatory.

Fix ave/chunk fix does not calculate per-atom values
Self-explanatory.

Fix ave/chunk fix vector is accessed out-of-range
Self-explanatory.

Fix ave/chunk variable is not atom-style variable
Self-explanatory.

Fix ave/correlate compute does not calculate a scalar
Self-explanatory.

Fix ave/correlate compute does not calculate a vector
Self-explanatory.

Fix ave/correlate compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate fix does not calculate a scalar
Self-explanatory.

190

Fix ave/correlate fix does not calculate a vector
Self-explanatory.

Fix ave/correlate fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate variable is not equal-style variable
Self-explanatory.

Fix ave/histo cannot input local values in scalar mode
Self-explanatory.

Fix ave/histo cannot input per-atom values in scalar mode
Self-explanatory.

Fix ave/histo compute array is accessed out-of-range
Self-explanatory.

Fix ave/histo compute does not calculate a global array
Self-explanatory.

Fix ave/histo compute does not calculate a global scalar
Self-explanatory.

Fix ave/histo compute does not calculate a global vector
Self-explanatory.

Fix ave/histo compute does not calculate a local array
Self-explanatory.

Fix ave/histo compute does not calculate a local vector
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom array
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo compute does not calculate local values
Self-explanatory.

Fix ave/histo compute does not calculate per-atom values
Self-explanatory.

Fix ave/histo compute vector is accessed out-of-range
Self-explanatory.

Fix ave/histo fix array is accessed out-of-range
Self-explanatory.

Fix ave/histo fix does not calculate a global array
Self-explanatory.

Fix ave/histo fix does not calculate a global scalar
Self-explanatory.

Fix ave/histo fix does not calculate a global vector
Self-explanatory.

Fix ave/histo fix does not calculate a local array
Self-explanatory.

Fix ave/histo fix does not calculate a local vector
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom array
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo fix does not calculate local values
Self-explanatory.

Fix ave/histo fix does not calculate per-atom values
Self-explanatory.

191

Fix ave/histo fix vector is accessed out-of-range
Self-explanatory.
Fix ave/histo input is invalid compute
Self-explanatory.
Fix ave/histo input is invalid fix
Self-explanatory.
Fix ave/histo input is invalid variable
Self-explanatory.
Fix ave/histo inputs are not all global, peratom, or local
All inputs in a single fix ave/histo command must be of the same style.
Fix ave/histo/weight value and weight vector lengths do not match
Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom vector
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute does not calculate per-atom values
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial fix does not calculate a per-atom vector
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix does not calculate per-atom values
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial for triclinic boxes requires units reduced
Self-explanatory.
Fix ave/spatial settings invalid with changing box size
If the box size changes, only the units reduced option can be used.
Fix ave/spatial variable is not atom-style variable
A variable used by fix ave/spatial must generate per-atom values.
Fix ave/time cannot set output array intensive/extensive from these inputs

One of more of the vector inputs has individual elements which are flagged as intensive or extensive.

Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self-explanatory.

Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time compute does not calculate a scalar
Self-explantory.

Fix ave/time compute does not calculate a vector
Self-explantory.

Fix ave/time compute does not calculate an array
Self-explanatory.

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time fix array cannot be variable length

192

Self-explanatory.
Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.
Fix ave/time fix does not calculate a scalar
Self-explanatory.
Fix ave/time fix does not calculate a vector
Self-explanatory.
Fix ave/time fix does not calculate an array
Self-explanatory.
Fix ave/time fix vector cannot be variable length
Self-explanatory.
Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/time variable is not equal-style variable
Self-explanatory.
Fix balance rcb cannot be used with comm_style brick
Comm_style tiled must be used instead.
Fix balance shift string is invalid
The string can only contain the characters "x", "y", or "z".
Fix bond/break needs ghost atoms from further away
This is because the fix needs to walk bonds to a certain distance to acquire needed info, The
comm_modify cutoff command can be used to extend the communication range.
Fix bond/create angle type is invalid
Self-explanatory.
Fix bond/create cutoff is longer than pairwise cutoff
This is not allowed because bond creation is done using the pairwise neighbor list.
Fix bond/create dihedral type is invalid
Self-explanatory.
Fix bond/create improper type is invalid
Self-explanatory.
Fix bond/create induced too many angles/dihedrals/impropers per atom
See the read_data command for info on setting the "extra angle per atom", etc header values to allow for
additional angles, etc to be formed.
Fix bond/create needs ghost atoms from further away
This is because the fix needs to walk bonds to a certain distance to acquire needed info, The
comm_modify cutoff command can be used to extend the communication range.
Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.
Fix bond/swap requires pair and bond styles
Self-explanatory.
Fix bond/swap requires special_bonds = 0,1,1
Self-explanatory.
Fix box/relax generated negative box length
The pressure being applied is likely too large. Try applying it incrementally, to build to the high pressure.
Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform cannot use yz variable with xy
The yz setting cannot be a variable if xy deformation is also specified. This is because LAMMPS cannot
determine if the yz setting will induce a box flip which would be invalid if xy is also changing.
Fix deform is changing yz too much with xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme to
another. Thus it is not allowed for yz to grow so much that a flip is induced.

193

Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non-orthogonal) box.
Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.
Fix deposit and fix rigid/small not using same molecule template ID
Self-explanatory.
Fix deposit and fix shake not using same molecule template 1D
Self-explanatory.
Fix deposit molecule must have atom types
The defined molecule does not specify atom types.
Fix deposit molecule must have coordinates
The defined molecule does not specify coordinates.
Fix deposit molecule template ID must be same as atom_style template 1D
When using atom_style template, you cannot deposit molecules that are not in that template.
Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.
Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit command.
Fix deposit shake fix does not exist
Self-explanatory.
Fix efield requires atom attribute q or mu
The atom style defined does not have this attribute.
Fix efield with dipoles cannot use atom-style variables
This option is not supported.
Fix evaporate molecule requires atom attribute molecule
The atom style being used does not define a molecule ID.
Fix external callback function not set
This must be done by an external program in order to use this fix.
Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non-allowed
timestep.
Fix for fix ave/chunk not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/chunk is requesting a value on a non-allowed
timestep.
Fix for fix ave/correlate not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/correlate is requesting a value on a non-allowed
timestep.
Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non-allowed
timestep.
Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a non-allowed
timestep.
Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.
Fix for fix store/state not computed at compatible time
Fixes generate their values on specific timesteps. Fix store/state is requesting a value on a non-allowed
timestep.
Fix for fix vector not computed at compatible time
Fixes generate their values on specific timesteps. Fix vector is requesting a value on a non-allowed
timestep.

194

Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.
Fix gcmc and fix shake not using same molecule template 1D
Self-explanatory.
Fix gcmce atom has charge, but atom style does not
Self-explanatory.
Fix gemce cannot exchange individual atoms belonging to a molecule
This is an error since you should not delete only one atom of a molecule. The user has specified atomic
(non-molecular) gas exchanges, but an atom belonging to a molecule could be deleted.
Fix gemc does not (yet) work with atom_style template
Self-explanatory.
Fix gcmc molecule command requires that atoms have molecule attributes
Should not choose the gcmc molecule feature if no molecules are being simulated. The general molecule
flag is off, but gcmc's molecule flag is on.
Fix gcmc molecule has charges, but atom style does not
Self-explanatory.
Fix gemc molecule must have atom types
The defined molecule does not specify atom types.
Fix gecme molecule must have coordinates
The defined molecule does not specify coordinates.
Fix gcmc molecule template ID must be same as atom_style template ID
When using atom_style template, you cannot insert molecules that are not in that template.
Fix gcmce put atom outside box
This should not normally happen. Contact the developers.
Fix gcmc ran out of available atom IDs
See the setting for tagint in the src/lmptype.h file.
Fix gcmc ran out of available molecule IDs
See the setting for tagint in the src/lmptype.h file.
Fix gcmc region cannot be dynamic
Only static regions can be used with fix gemc.
Fix gcmc region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix gcmc command.
Fix gcmc region extends outside simulation box

Self-explanatory.

Fix gcmc shake fix does not exist
Self-explanatory.

Fix gld c coefficients must be >= 0
Self-explanatory.

Fix gld needs more prony series coefficients
Self-explanatory.

Fix gld prony terms must be > 0
Self-explanatory.

Fix gld series type must be pprony for now
Self-explanatory.

Fix gld start temperature must be >= 0
Self-explanatory.

Fix gld stop temperature must be >= 0
Self-explanatory.

Fix gld tau coefficients must be > 0
Self-explanatory.

Fix heat group has no atoms
Self-explanatory.

195

Fix heat kinetic energy of an atom went negative

This will cause the velocity rescaling about to be performed by fix heat to be invalid.
Fix heat kinetic energy went negative

This will cause the velocity rescaling about to be performed by fix heat to be invalid.
Fix in variable not computed at compatible time

Fixes generate their values on specific timesteps. The variable is requesting the values on a non-allowed

timestep.
Fix langevin angmom is not yet implemented with kokkos
This option is not yet available.
Fix langevin angmom requires atom style ellipsoid
Self-explanatory.
Fix langevin angmom requires extended particles
This fix option cannot be used with point paritlces.
Fix langevin omega is not yet implemented with kokkos
This option is not yet available.
Fix langevin omega requires atom style sphere
Self-explanatory.
Fix langevin omega requires extended particles
One of the particles has radius 0.0.
Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0
Fix langevin variable returned negative temperature

Self-explanatory.

Fix momentum group has no atoms
Self-explanatory.

Fix move cannot define z or vz variable for 2d problem
Self-explanatory.

Fix move cannot rotate aroung non z-axis for 2d problem
Self-explanatory.

Fix move cannot set linear z motion for 2d problem
Self-explanatory.

Fix move cannot set wiggle z motion for 2d problem
Self-explanatory.

Fix msst compute ID does not compute potential energy
Self-explanatory.

Fix msst compute ID does not compute pressure
Self-explanatory.

Fix msst compute ID does not compute temperature
Self-explanatory.

Fix msst requires a periodic box
Self-explanatory.

Fix msst tscale must satisfy 0 <= tscale < 1
Self-explanatory.

Fix npt/nph has tilted box too far in one step - periodic cell is too far from equilibrium state
Self-explanatory. The change in the box tilt is too extreme on a short timescale.
Fix nve/asphere requires extended particles
This fix can only be used for particles with a shape setting.
Fix nve/asphere/noforce requires atom style ellipsoid
Self-explanatory.
Fix nve/asphere/noforce requires extended particles
One of the particles is not an ellipsoid.
Fix nve/body requires atom style body

196

Self-explanatory.
Fix nve/body requires bodies
This fix can only be used for particles that are bodies.
Fix nve/line can only be used for 2d simulations
Self-explanatory.
Fix nve/line requires atom style line
Self-explanatory.
Fix nve/line requires line particles
Self-explanatory.
Fix nve/sphere dipole requires atom attribute mu
An atom style with this attribute is needed.
Fix nve/sphere requires atom style sphere
Self-explanatory.
Fix nve/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix nve/tri can only be used for 3d simulations
Self-explanatory.
Fix nve/tri requires atom style tri
Self-explanatory.
Fix nve/tri requires tri particles
Self-explanatory.
Fix nvt/nph/npt asphere requires extended particles
The shape setting for a particle in the fix group has shape = 0.0, which means it is a point particle.
Fix nvt/nph/npt body requires bodies
Self-explanatory.
Fix nvt/nph/npt sphere requires atom style sphere
Self-explanatory.
Fix nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix nvt/npt/nph dilate group ID does not exist
Self-explanatory.
Fix nvt/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix orient/fcc file open failed
The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed
The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice
The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send an
email to the developers.
Fix peri neigh does not exist
Somehow a fix that the pair style defines has been deleted.
Fix pour and fix rigid/small not using same molecule template ID
Self-explanatory.
Fix pour and fix shake not using same molecule template ID
Self-explanatory.
Fix pour insertion count per timestep is 0
Self-explanatory.
Fix pour molecule must have atom types
The defined molecule does not specify atom types.
Fix pour molecule must have coordinates
The defined molecule does not specify coordinates.

197

http://lammps.sandia.gov/authors.html

Fix pour molecule template ID must be same as atom style template ID
When using atom_style template, you cannot pour molecules that are not in that template.
Fix pour polydisperse fractions do not sum to 1.0
Self-explanatory.
Fix pour region ID does not exist
Self-explanatory.
Fix pour region cannot be dynamic
Only static regions can be used with fix pour.
Fix pour region does not support a bounding box

Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.

Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.
Fix pour rigid fix does not exist
Self-explanatory.
Fix pour shake fix does not exist
Self-explanatory.
Fix press/berendsen damping parameters must be > 0.0
Self-explanatory.
Fix property/atom cannot specify mol twice
Self-explanatory.
Fix property/atom cannot specify q twice
Self-explanatory.
Fix property/atom mol when atom_style already has molecule attribute
Self-explanatory.
Fix property/atom q when atom_style already has charge attribute
Self-explanatory.
Fix property/atom vector name already exists
The name for an integer or floating-point vector must be unique.
Fix geq has negative upper Taper radius cutoff
Self-explanatory.
Fix geq/comb group has no atoms
Self-explanatory.
Fix geq/comb requires atom attribute q
An atom style with charge must be used to perform charge equilibration.
Fix geq/dynamic group has no atoms
Self-explanatory.
Fix geq/dynamic requires atom attribute q
Self-explanatory.
Fix geqg/fire group has no atoms
Self-explanatory.
Fix geq/fire requires atom attribute q
Self-explanatory.
Fix geq/point group has no atoms
Self-explanatory.
Fix geq/point has insufficient QEq matrix size
Occurs when number of neighbor atoms for an atom increased too much during a run. Increase
SAFE_ZONE and MIN_CAP in fix_geq.h and recompile.
Fix geqg/point requires atom attribute q
Self-explanatory.
Fix geq/shielded group has no atoms
Self-explanatory.
Fix geqg/shielded has insufficient QEq matrix size

198

Occurs when number of neighbor atoms for an atom increased too much during a run. Increase
SAFE_ZONE and MIN_CAP in fix_geq.h and recompile.
Fix geq/shielded requires atom attribute q
Self-explanatory.
Fix geg/slater could not extract params from pair coul/streitz
This should not happen unless pair coul/streitz has been altered.
Fix geq/slater group has no atoms
Self-explanatory.
Fix geg/slater has insufficient QEq matrix size
Occurs when number of neighbor atoms for an atom increased too much during a run. Increase
SAFE_ZONE and MIN_CAP in fix_geq.h and recompile.
Fix geg/slater requires atom attribute q
Self-explanatory.
Fix reax/bonds numbonds > nsbmax_most
The limit of the number of bonds expected by the ReaxFF force field was exceeded.
Fix recenter group has no atoms
Self-explanatory.
Fix restrain requires an atom map, see atom_modify
Self-explanatory.
Fix rigid atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.
Fix rigid file has no lines
Self-explanatory.
Fix rigid langevin period must be > 0.0
Self-explanatory.
Fix rigid molecule requires atom attribute molecule
Self-explanatory.
Fix rigid npt/nph dilate group ID does not exist
Self-explanatory.
Fix rigid npt/nph does not yet allow triclinic box
This is a current restriction in LAMMPS.
Fix rigid npt/nph period must be > 0.0
Self-explanatory.
Fix rigid npt/small t_chain should not be less than 1
Self-explanatory.
Fix rigid npt/small t_order must be 3 or 5
Self-explanatory.
Fix rigid nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix rigid nvt/small t_chain should not be less than 1
Self-explanatory.
Fix rigid nvt/small t_iter should not be less than 1
Self-explanatory.
Fix rigid nvt/small t_order must be 3 or 5
Self-explanatory.
Fix rigid xy torque cannot be on for 2d simulation
Self-explanatory.
Fix rigid z force cannot be on for 2d simulation
Self-explanatory.
Fix rigid/npt period must be > 0.0
Self-explanatory.
Fix rigid/npt temperature order must be 3 or 5

199

Self-explanatory.
Fix rigid/npt/small period must be > 0.0
Self-explanatory.
Fix rigid/nvt period must be > 0.0
Self-explanatory.
Fix rigid/nvt temperature order must be 3 or 5
Self-explanatory.
Fix rigid/nvt/small period must be > 0.0
Self-explanatory.
Fix rigid/small atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.
Fix rigid/small langevin period must be > 0.0
Self-explanatory.
Fix rigid/small molecule must have atom types
The defined molecule does not specify atom types.
Fix rigid/small molecule must have coordinates
The defined molecule does not specify coordinates.
Fix rigid/small npt/nph period must be > 0.0
Self-explanatory.
Fix rigid/small nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix rigid/small nvt/npt/nph dilate group ID does not exist
Self-explanatory.
Fix rigid/small requires an atom map, see atom_modify
Self-explanatory.
Fix rigid/small requires atom attribute molecule
Self-explanatory.
Fix rigid: Bad principal moments

The principal moments of inertia computed for a rigid body are not within the required tolerances.

Fix shake cannot be used with minimization

Cannot use fix shake while doing an energy minimization since it turns off bonds that should contribute to

the energy.
Fix shake molecule template must have shake info
The defined molecule does not specify SHAKE information.
Fix spring couple group ID does not exist
Self-explanatory.
Fix srd can only currently be used with comm_style brick
This is a current restriction in LAMMPS.
Fix srd lamda must be >= 0.6 of SRD grid size
This is a requirement for accuracy reasons.
Fix srd no-slip requires atom attribute torque

This is because the SRD collisions will impart torque to the solute particles.

Fix srd requires SRD particles all have same mass
Self-explanatory.

Fix srd requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.

Fix srd requires newton pair on
Self-explanatory.

Fix store/state compute array is accessed out-of-range
Self-explanatory.

Fix store/state compute does not calculate a per-atom array
The compute calculates a per-atom vector.

200

Fix store/state compute does not calculate a per-atom vector
The compute calculates a per-atom vector.
Fix store/state compute does not calculate per-atom values

Computes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state fix array is accessed out-of-range
Self-explanatory.
Fix store/state fix does not calculate a per-atom array
The fix calculates a per-atom vector.
Fix store/state fix does not calculate a per-atom vector
The fix calculates a per-atom array.
Fix store/state fix does not calculate per-atom values
Fixes that calculate global or local quantities cannot be used with fix store/state.
Fix store/state for atom property that isn't allocated
Self-explanatory.
Fix store/state variable is not atom-style variable
Only atom-style variables calculate per-atom quantities.
Fix temp/berendsen period must be > 0.0
Self-explanatory.
Fix temp/berendsen variable returned negative temperature
Self-explanatory.
Fix temp/csld is not compatible with fix rattle or fix shake
These two commands cannot currently be used together with fix temp/csld.
Fix temp/csld variable returned negative temperature
Self-explanatory.
Fix temp/csvr variable returned negative temperature
Self-explanatory.
Fix temp/rescale variable returned negative temperature
Self-explanatory.
Fix tfmc displacement length must be > 0
Self-explanatory.
Fix tfmc is not compatible with fix shake
These two commands cannot currently be used together.
Fix tfmc temperature must be > 0
Self-explanatory.
Fix thermal/conductivity swap value must be positive
Self-explanatory.
Fix tmd must come after integration fixes

Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt). See

the fix tmd documentation for details.
Fix ttm electron temperatures must be > 0.0

Self-explanatory.

Fix ttm electronic_density must be > 0.0
Self-explanatory.

Fix ttm electronic_specific_heat must be > 0.0
Self-explanatory.

Fix ttm electronic_thermal_conductivity must be >= 0.0
Self-explanatory.

Fix ttm gamma_p must be > 0.0
Self-explanatory.

Fix ttm gamma_s must be >= 0.0
Self-explanatory.

Fix ttm number of nodes must be > 0

201

Self-explanatory.
Fix ttm v_0 must be >= 0.0
Self-explanatory.
Fix used in compute chunk/atom not computed at compatible time

The chunk/atom compute cannot query the output of the fix on a timestep it is needed.

Fix used in compute reduce not computed at compatible time

Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a non-allowed

timestep.
Fix used in compute slice not computed at compatible time

Fixes generate their values on specific timesteps. Compute slice is requesting a value on a non-allowed

timestep.
Fix vector cannot set output array intensive/extensive from these inputs

The inputs to the command have conflicting intensive/extensive attributes. You need to use more than one

fix vector command.

Fix vector compute does not calculate a scalar
Self-explanatory.

Fix vector compute does not calculate a vector
Self-explanatory.

Fix vector compute vector is accessed out-of-range
Self-explanatory.

Fix vector fix does not calculate a scalar
Self-explanatory.

Fix vector fix does not calculate a vector
Self-explanatory.

Fix vector fix vector is accessed out-of-range
Self-explanatory.

Fix vector variable is not equal-style variable
Self-explanatory.

Fix viscosity swap value must be positive
Self-explanatory.

Fix viscosity vtarget value must be positive
Self-explanatory.

Fix wall cutoff <= 0.0
Self-explanatory.

Fix wall/colloid requires atom style sphere
Self-explanatory.

Fix wall/colloid requires extended particles
One of the particles has radius 0.0.

Fix wall/gran is incompatible with Pair style

Must use a granular pair style to define the parameters needed for this fix.

Fix wall/gran requires atom style sphere
Self-explanatory.

Fix wall/piston command only available at zlo
The face keyword must be zlo.

Fix wall/region colloid requires atom style sphere
Self-explanatory.

Fix wall/region colloid requires extended particles
One of the particles has radius 0.0.

Fix wall/region cutoff <= 0.0
Self-explanatory.

Fix_modify pressure ID does not compute pressure
The compute ID assigned to the fix must compute pressure.

202

Fix_modify temperature ID does not compute temperature
The compute ID assigned to the fix must compute temperature.
For triclinic deformation, specified target stress must be hydrostatic
Triclinic pressure control is allowed using the tri keyword, but non-hydrostatic pressure control can not
be used in this case.
Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.
GPU library not compiled for this accelerator
Self-explanatory.
GPU package does not (yet) work with atom_style template
Self-explanatory.
GPU particle split must be set to 1 for this pair style.
For this pair style, you cannot run part of the force calculation on the host. See the package command.
GPU split param must be positive for hybrid pair styles
See the package gpu command.
GPUs are requested but Kokkos has not been compiled for CUDA
Recompile Kokkos with CUDA support to use GPUs.
Ghost velocity forward comm not yet implemented with Kokkos
This is a current restriction.
Gmask function in equal-style variable formula
Gmask is per-atom operation.
Gravity changed since fix pour was created
The gravity vector defined by fix gravity must be static.
Gravity must point in -y to use with fix pour in 2d
Self-explanatory.
Gravity must point in -z to use with fix pour in 3d
Self-explanatory.
Grmask function in equal-style variable formula
Grmask is per-atom operation.
Group ID does not exist
A group ID used in the group command does not exist.
Group ID in variable formula does not exist
Self-explanatory.
Group all cannot be made dynamic
This operation is not allowed.
Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.
Group dynamic cannot reference itself
Self-explanatory.
Group dynamic parent group cannot be dynamic
Self-explanatory.
Group dynamic parent group does not exist
Self-explanatory.
Group region ID does not exist
A region ID used in the group command does not exist.
If read_dump purges it cannot replace or trim
These operations are not compatible. See the read_dump doc page for details.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running LAMMPS to see the offending line.
lllegal COMB parameter
One or more of the coefficients defined in the potential file is invalid.

203

lllegal COMB3 parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal Stillinger-Weber parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal Tersoff parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal Vashishta parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal compute voronoi/atom command (occupation and (surface or edges))

Self-explanatory.
lllegal coul/streitz parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal dump_modify sfactor value (must be > 0.0)

Self-explanatory.
lllegal dump_modify tfactor value (must be > 0.0)

Self-explanatory.
lllegal fix gcmce gas mass <=0

The computed mass of the designated gas molecule or atom type was less than or equal to zero.
lllegal fix tfmc random seed

Seeds can only be nonzero positive integers.
lllegal fix wall/piston velocity

The piston velocity must be positive.
lllegal integrate style

Self-explanatory.
lllegal nb3b/harmonic parameter

One or more of the coefficients defined in the potential file is invalid.
lllegal number of angle table entries

There must be at least 2 table entries.
lllegal number of bond table entries

There must be at least 2 table entries.
lllegal number of pair table entries

There must be at least 2 table entries.
lllegal or unset periodicity in restart

This error should not normally occur unless the restart file is invalid.
lllegal range increment value

The increment must be >= 1.
lllegal simulation box

The lower bound of the simulation box is greater than the upper bound.
lllegal size double vector read requested

This error should not normally occur unless the restart file is invalid.
lllegal size integer vector read requested

This error should not normally occur unless the restart file is invalid.
lllegal size string or corrupt restart

This error should not normally occur unless the restart file is invalid.
Imageint setting in Imptype.h is invalid

Imageint must be as large or larger than smallint.
Imageint setting in lmptype.h is not compatible

Format of imageint stored in restart file is not consistent with LAMMPS version you are running. See the

settings in src/lmptype.h
Improper atom missing in delete_bonds

The delete_bonds command cannot find one or more atoms in a particular improper on a particular

processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

204

Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.
Improper atoms missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.
Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used in
the improper_coeff command or read from a restart file is not recognized.
Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.
Improper style hybrid cannot have hybrid as an argument
Self-explanatory.
Improper style hybrid cannot have none as an argument
Self-explanatory.
Improper style hybrid cannot use same improper style twice
Self-explanatory.
Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style has
been assigned.
Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box command.
Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Impropers defined but no improper types
The data file header lists improper but no improper types.
Incomplete use of variables in create_atoms command
The var and set options must be used together.
Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.
Inconsistent line segment in data file
The end points of the line segment are not equal distances from the center point which is the atom
coordinate.
Inconsistent triangle in data file
The centroid of the triangle as defined by the corner points is not the atom coordinate.
Inconsistent use of finite-size particles by molecule template molecules
Not all of the molecules define a radius for their constituent particles.
Incorrect # of floating-point values in Bodies section of data file
See doc page for body style.
Incorrect # of integer values in Bodies section of data file
See doc page for body style.
Incorrect %s format in data file

205

A section of the data file being read by fix property/atom does not have the correct number of values per
line.
Incorrect SNAP parameter file
The file cannot be parsed correctly, check its internal syntax.
Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
Incorrect args in pair_style command
Self-explanatory.
Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.
Incorrect atom format in neb file
The number of fields per line is not what expected.
Incorrect bonus data format in data file
See the read_data doc page for a description of how various kinds of bonus data must be formatted for
certain atom styles.
Incorrect boundaries with slab Ewald
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab EwaldDisp
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect boundaries with slab PPPMDisp
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with pppm/disp.
Incorrect element names in ADP potential file
The element names in the ADP file do not match those requested.
Incorrect element names in EAM potential file
The element names in the EAM file do not match those requested.
Incorrect format in COMB potential file
Incorrect number of words per line in the potential file.
Incorrect format in COMB3 potential file
Incorrect number of words per line in the potential file.
Incorrect format in MEAM potential file
Incorrect number of words per line in the potential file.
Incorrect format in SNAP coefficient file
Incorrect number of words per line in the coefficient file.
Incorrect format in SNAP parameter file
Incorrect number of words per line in the parameter file.
Incorrect format in Stillinger-Weber potential file
Incorrect number of words per line in the potential file.
Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file
Incorrect number of words per line in the potential file.
Incorrect format in Vashishta potential file

206

Incorrect number of words per line in the potential file.
Incorrect format in coul/streitz potential file
Incorrect number of words per line in the potential file.
Incorrect format in nb3b/harmonic potential file
Incorrect number of words per line in the potential file.
Incorrect integer value in Bodies section of data file
See doc page for body style.
Incorrect multiplicity arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect number of elements in potential file
Self-explanatory.
Incorrect rigid body format in fix rigid file
The number of fields per line is not what expected.
Incorrect rigid body format in fix rigid/small file
The number of fields per line is not what expected.
Incorrect sign arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect table format check for element types
Self-explanatory.
Incorrect velocity format in data file
Each atom style defines a format for the Velocity section of the data file. The read-in lines do not match.
Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Index between variable brackets must be positive
Self-explanatory.
Indexed per-atom vector in variable formula without atom map
Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided by
an atom map. An atom map does not exist (by default) for non-molecular problems. Using the
atom_modify map command will force an atom map to be created.
Initial temperatures not all set in fix ttm
Self-explantory.
Input line quote not followed by whitespace
An end quote must be followed by whitespace.
Insertion region extends outside simulation box
Self-explanatory.
Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for body nparticle
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid molecule
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for triangle
The calculation of the intertia tensor of the triangle failed. This should not happen if it is a reasonably
shaped triangle.
Insufficient memory on accelerator
There is insufficient memory on one of the devices specified for the gpu package
Internal error in atom_style body
This error should not occur. Contact the developers.
Invalid -reorder N value
Self-explanatory.

207

Invalid Angles section in molecule file
Self-explanatory.
Invalid Bonds section in molecule file
Self-explanatory.
Invalid Boolean syntax in if command
Self-explanatory.
Invalid Charges section in molecule file
Self-explanatory.
Invalid Coords section in molecule file
Self-explanatory.
Invalid Diameters section in molecule file
Self-explanatory.
Invalid Dihedrals section in molecule file
Self-explanatory.
Invalid Impropers section in molecule file
Self-explanatory.
Invalid Kokkos command-line args
Self-explanatory. See Section 2.7 of the manual for details.
Invalid LAMMPS restart file
The file does not appear to be a LAMMPS restart file since it doesn't contain the correct magic string at
the beginning.
Invalid Masses section in molecule file
Self-explanatory.
Invalid REAX atom type
There is a mis-match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.
Invalid Special Bond Counts section in molecule file
Self-explanatory.
Invalid Types section in molecule file
Self-explanatory.
Invalid angle count in molecule file
Self-explanatory.
Invalid angle table length
Length must be 2 or greater.
Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.
Invalid angle type in Angles section of molecule file

Self-explanatory.
Invalid angle type index for fix shake
Self-explanatory.

Invalid args for non-hybrid pair coefficients

"NULL" is only supported in pair_coeff calls when using pair hybrid
Invalid argument to factorial %d

N must be >= 0 and <= 167, otherwise the factorial result is too large.
Invalid atom ID in %s section of data file

An atom in a section of the data file being read by fix property/atom has an invalid atom ID that is <=0 or

> the maximum existing atom ID.
Invalid atom ID in Angles section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Angles section of molecule file

Self-explanatory.
Invalid atom ID in Atoms section of data file

208

Atom IDs must be positive integers.
Invalid atom ID in Bodies section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonds section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonds section of molecule file
Self-explanatory.
Invalid atom ID in Bonus section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Dihedrals section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Impropers section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Velocities section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in dihedrals section of molecule file
Self-explanatory.
Invalid atom ID in impropers section of molecule file
Self-explanatory.
Invalid atom ID in variable file
Self-explanatory.
Invalid atom IDs in neb file
An ID in the file was not found in the system.
Invalid atom diameter in molecule file
Diameters must be >= 0.0.
Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.
Invalid atom mass in molecule file
Masses must be > 0.0.
Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.
Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.
Invalid atom type in create_atoms mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.
Invalid atom type in fix atom/swap command
The atom type specified in the atom/swap command does not exist.
Invalid atom type in fix bond/create command
Self-explanatory.
Invalid atom type in fix deposit command
Self-explanatory.
Invalid atom type in fix deposit mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.
Invalid atom type in fix gcmc command
The atom type specified in the gcmec command does not exist.
Invalid atom type in fix pour command
Self-explanatory.
Invalid atom type in fix pour mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.

209

Invalid atom type in molecule file
Atom types must range from 1 to specified # of types.
Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.
Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.
Invalid atom vector in variable formula
The atom vector is not recognized.
Invalid atom_style body command
No body style argument was provided.
Invalid atom_style command
Self-explanatory.
Invalid attribute in dump custom command
Self-explantory.
Invalid attribute in dump local command
Self-explantory.
Invalid attribute in dump modify command
Self-explantory.
Invalid basis setting in create_atoms command

The basis index must be between 1 to N where N is the number of basis atoms in the lattice. The type

index must be between 1 to N where N is the number of atom types.
Invalid basis setting in fix append/atoms command

The basis index must be between 1 to N where N is the number of basis atoms in the lattice. The type

index must be between 1 to N where N is the number of atom types.
Invalid bin bounds in compute chunk/atom
The lo/hi values are inconsistent.
Invalid bin bounds in fix ave/spatial
The lo/hi values are inconsistent.
Invalid body nparticle command
Arguments in atom-style command are not correct.
Invalid bond count in molecule file
Self-explanatory.
Invalid bond table length
Length must be 2 or greater.
Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.
Invalid bond type in Bonds section of molecule file
Self-explanatory.
Invalid bond type in create_bonds command
Self-explanatory.
Invalid bond type in fix bond/break command
Self-explanatory.
Invalid bond type in fix bond/create command
Self-explanatory.
Invalid bond type index for fix shake
Self-explanatory. Check the fix shake command in the input script.
Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.
Invalid color in dump_modify command

The specified color name was not in the list of recognized colors. See the dump_modify doc page.

210

Invalid color map min/max values
The min/max values are not consistent with either each other or with values in the color map.
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.
Invalid compute ID in variable formula
The compute is not recognized.
Invalid create_atoms rotation vector for 2d model
The rotation vector can only have a z component.
Invalid custom OpenCL parameter string.
There are not enough or too many parameters in the custom string for package GPU.
Invalid cutoff in comm_modify command
Specified cutoff must be >= 0.0.
Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.
Invalid dI or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.
Invalid data file section: Angle Coeffs
Atom style does not allow angles.
Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.
Invalid data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Angles
Atom style does not allow angles.
Invalid data file section: Bodies
Atom style does not allow bodies.
Invalid data file section: Bond Coeffs
Atom style does not allow bonds.
Invalid data file section: BondAngle Coelffs
Atom style does not allow angles.
Invalid data file section: BondBond Coeffs
Atom style does not allow angles.
Invalid data file section: BondBondl13 Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Bonds
Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Dihedrals
Atom style does not allow dihedrals.
Invalid data file section: Ellipsoids
Atom style does not allow ellipsoids.
Invalid data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs
Atom style does not allow impropers.
Invalid data file section: Impropers
Atom style does not allow impropers.
Invalid data file section: Lines

211

Atom style does not allow lines.
Invalid data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Triangles
Atom style does not allow triangles.
Invalid delta_conf in tad command
The value must be between 0 and 1 inclusive.
Invalid density in Atoms section of data file
Density value cannot be <= 0.0.
Invalid density in set command
Density must be > 0.0.
Invalid diameter in set command
Self-explanatory.
Invalid dihedral count in molecule file
Self-explanatory.
Invalid dihedral type in Dihedrals section of data file
Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dihedral type in dihedrals section of molecule file
Self-explanatory.
Invalid dipole length in set command
Self-explanatory.
Invalid displace_atoms rotate axis for 2d
Axis must be in z direction.
Invalid dump dcd filename
Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump frequency
Dump frequency must be 1 or greater.
Invalid dump image element name
The specified element name was not in the standard list of elements. See the dump_modify doc page.
Invalid dump image filename
The file produced by dump image cannot be binary and must be for a single processor.
Invalid dump image persp value
Persp value must be >= 0.0.
Invalid dump image theta value
Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value
Zoom value must be > 0.0.
Invalid dump movie filename
The file produced by dump movie cannot be binary or compressed and must be a single file for a single
processor.
Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each processor.
Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.
Invalid entry in -reorder file
Self-explanatory.
Invalid fix ID in variable formula
The fix is not recognized.

212

Invalid fix ave/time off column
Self-explantory.
Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.
Invalid fix box/relax command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix box/relax pressure settings
Settings for coupled dimensions must be the same.
Invalid fix nvt/npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix nvt/npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix nvt/npt/nph pressure settings
Settings for coupled dimensions must be the same.
Invalid fix press/berendsen for a 2d simulation
The z component of pressure cannot be controlled for a 2d model.
Invalid fix press/berendsen pressure settings
Settings for coupled dimensions must be the same.
Invalid fix geq parameter file
Element index > number of atom types.
Invalid fix rigid npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix rigid npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix rigid/small npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix rigid/small npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid flag in force field section of restart file
Unrecognized entry in restart file.
Invalid flag in header section of restart file
Unrecognized entry in restart file.
Invalid flag in peratom section of restart file
The format of this section of the file is not correct.
Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.
Invalid frequency in temper command
Nevery must be > 0.
Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.
Invalid group function in variable formula
Group function is not recognized.
Invalid group in comm_modify command
Self-explanatory.
Invalid image up vector
Up vector cannot be (0,0,0).
Invalid immediate variable
Syntax of immediate value is incorrect.
Invalid improper count in molecule file
Self-explanatory.
Invalid improper type in Impropers section of data file

Improper type must be positive integer and within range of specified improper types.

213

Invalid improper type in impropers section of molecule file
Self-explanatory.

Invalid index for non-body particles in compute body/local command
Only indices 1,2,3 can be used for non-body particles.

Invalid index in compute body/local command

Self-explanatory.

Invalid is_active() function in variable formula
Self-explanatory.

Invalid is_available() function in variable formula
Self-explanatory.

Invalid is_defined() function in variable formula
Self-explanatory.

Invalid keyword in angle table parameters
Self-explanatory.

Invalid keyword in bond table parameters
Self-explanatory.

Invalid keyword in compute angle/local command
Self-explanatory.

Invalid keyword in compute bond/local command
Self-explanatory.

Invalid keyword in compute dihedral/local command
Self-explanatory.

Invalid keyword in compute improper/local command
Self-explanatory.

Invalid keyword in compute pair/local command
Self-explanatory.

Invalid keyword in compute property/atom command
Self-explanatory.

Invalid keyword in compute property/chunk command
Self-explanatory.

Invalid keyword in compute property/local command
Self-explanatory.

Invalid keyword in dump cfg command
Self-explanatory.

Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.
Invalid length in set command
Self-explanatory.
Invalid mass in set command
Self-explanatory.
Invalid mass line in data file
Self-explanatory.
Invalid mass value
Self-explanatory.
Invalid math function in variable formula
Self-explanatory.
Invalid math/group/special function in variable formula
Self-explanatory.
Invalid option in lattice command for non-custom style

Certain lattice keywords are not supported unless the lattice style is "custom".

Invalid order of forces within respa levels

For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds cannot

214

be compute less frequently than angles, pairwise forces cannot be computed less frequently than kspace,
etc.
Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read-in pair table.
Invalid pair table length
Length of read-in pair table is invalid
Invalid param file for fix qeq/shielded
Invalid value of gamma.
Invalid param file for fix qeq/slater
Zeta value is 0.0.
Invalid partitions in processors part command
Valid partitions are numbered 1 to N and the sender and receiver cannot be the same partition.
Invalid python command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running LAMMPS to see the offending line.
Invalid radius in Atoms section of data file
Radius must be >= 0.0.
Invalid random number seed in fix ttm command
Random number seed must be > 0.
Invalid random number seed in set command
Random number seed must be > 0.
Invalid replace values in compute reduce
Self-explanatory.
Invalid rigid body ID in fix rigid file
The ID does not match the number of an existing ID of rigid bodies that are defined by the fix rigid
command.
Invalid rigid body ID in fix rigid/small file
The ID does not match the number of an existing ID of rigid bodies that are defined by the fix rigid/small
command.
Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this, perform
multiple shorter runs.
Invalid run command start/stop value
Self-explanatory.
Invalid run command upto value
Self-explanatory.
Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.
Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.
Invalid shake angle type in molecule file
Self-explanatory.
Invalid shake atom in molecule file
Self-explanatory.
Invalid shake bond type in molecule file
Self-explanatory.
Invalid shake flag in molecule file
Self-explanatory.
Invalid shape in Ellipsoids section of data file
Self-explanatory.
Invalid shape in Triangles section of data file

215

Two or more of the triangle corners are duplicate points.
Invalid shape in set command
Self-explanatory.
Invalid shear direction for fix wall/gran
Self-explanatory.
Invalid special atom index in molecule file
Self-explanatory.
Invalid special function in variable formula
Self-explanatory.
Invalid style in pair_write command
Self-explanatory. Check the input script.
Invalid syntax in variable formula
Self-explanatory.
Invalid t_event in prd command
Self-explanatory.
Invalid t_event in tad command
The value must be greater than 0.
Invalid template atom in Atoms section of data file
The atom indices must be between 1 to N, where N is the number of atoms in the template molecule the
atom belongs to.
Invalid template index in Atoms section of data file
The template indices must be between 1 to N, where N is the number of molecules in the template.
Invalid thermo keyword in variable formula
The keyword is not recognized.
Invalid threads_per_atom specified.
For 3-body potentials on the GPU, the threads_per_atom setting cannot be greater than 4 for NVIDIA
GPUs.
Invalid timestep reset for fix ave/atom
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid timestep reset for fix ave/chunk
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid timestep reset for fix ave/correlate
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid timestep reset for fix ave/histo
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid timestep reset for fix ave/spatial
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid timestep reset for fix ave/time
Resetting the timestep has invalidated the sequence of timesteps this fix needs to process.
Invalid tmax in tad command
The value must be greater than 0.0.
Invalid type for mass set
Mass command must set a type from 1-N where N is the number of atom types.
Invalid use of library file() function
This function is called thru the library interface. This error should not occur. Contact the developers if it
does.
Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.
Invalid variable in next command
Self-explanatory.

216

Invalid variable name
Variable name used in an input script line is invalid.
Invalid variable name in variable formula
Variable name is not recognized.
Invalid variable style in special function next
Only file-style or atomfile-style variables can be used with next().
Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.
Invalid volume in set command
Volume must be > 0.0.
Invalid wiggle direction for fix wall/gran
Self-explanatory.
Invoked angle equil angle on angle style none
Self-explanatory.
Invoked angle single on angle style none
Self-explanatory.
Invoked bond equil distance on bond style none
Self-explanatory.
Invoked bond single on bond style none
Self-explanatory.
Invoked pair single on pair style none
A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is illegal.
You are probably attempting to compute per-atom quantities with an undefined pair style.
Invoking coulombic in pair style lj/coul requires atom attribute q
The atom style defined does not have this attribute.
Invoking coulombic in pair style lj/long/dipole/long requires atom attribute q
The atom style defined does not have these attributes.
KIM neighbor iterator exceeded range
This should not happen. It likely indicates a bug in the KIM implementation of the interatomic potential
where it is requesting neighbors incorrectly.
KOKKOS package does not yet support comm_style tiled
Self-explanatory.
KOKKOS package requires a kokkos enabled atom_style
Self-explanatory.
KSpace accuracy must be > 0
The kspace accuracy designated in the input must be greater than zero.
KSpace accuracy too large to estimate G vector
Reduce the accuracy request or specify gwald explicitly via the kspace_modify command.
KSpace accuracy too low
Requested accuracy must be less than 1.0.
KSpace solver requires a pair style
No pair style is defined.
KSpace style does not yet support triclinic geometries
The specified kspace style does not allow for non-orthogonal simulation boxes.
KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with matching long-range Coulombic or dispersion
components be used.
Keyword %s in MEAM parameter file not recognized
Self-explanatory.
Kokkos has been compiled for CUDA but no GPUs are requested

217

One or more GPUs must be used when Kokkos is compiled for CUDA.
Kspace style does not support compute group/group
Self-explanatory.
Kspace style pppm/disp/tip4p requires newton on
Self-explanatory.
Kspace style pppm/tip4p requires newton on
Self-explanatory.
Kspace style requires atom attribute q
The atom style defined does not have these attributes.
Kspace_modify eigtol must be smaller than one
Self-explanatory.
LAMMPS is not built with Python embedded
This is done by including the PYTHON package before LAMMPS is built. This is required to use
python-style variables.
LAMMPS unit_style lj not supported by KIM models
Self-explanatory. Check the input script or data file.
LJ6 off not supported in pair_style buck/long/coul/long
Self-exlanatory.
Label wasn't found in input script
Self-explanatory.
Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.
Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right-handed coordinate system such that al
cross a2 = a3.
Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.
Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.
Lattice spacings are invalid
Each x,y,z spacing must be > 0.
Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.
Log of zero/negative value in variable formula
Self-explanatory.
Lost atoms via balance: original %ld current %ld
This should not occur. Report the problem to the developers.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
MEAM library error %d
A call to the MEAM Fortran library returned an error.
MPI_LMP_BIGINT and bigint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.
MPI_LMP_TAGINT and tagint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a tagint.
MSM can only currently be used with comm_style brick
This is a current restriction in LAMMPS.
MSM grid is too large
The global MSM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
16384. You likely need to decrease the requested accuracy.

218

MSM order must be 4, 6, 8, or 10
This is a limitation of the MSM implementation in LAMMPS: the MSM order can only be 4, 6, 8, or 10.
Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.
Matrix factorization to split dispersion coefficients failed
This should not normally happen. Contact the developers.
Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimization could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.
Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.
Mismatched brackets in variable
Self-explanatory.
Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an equal-style
variable formula.
Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.
Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in an
equal-style variable formula.
Modulo 0 in variable formula
Self-explanatory.
Molecule IDs too large for compute chunk/atom
The IDs must not be larger than can be stored in a 32-bit integer since chunk IDs are 32-bit integers.
Molecule auto special bond generation overflow
Counts exceed maxspecial setting for other atoms in system.
Molecule file has angles but no nangles setting

Self-explanatory.

Molecule file has body params but no setting for them
Self-explanatory.

Molecule file has bonds but no nbonds setting
Self-explanatory.

Molecule file has dihedrals but no ndihedrals setting
Self-explanatory.

Molecule file has impropers but no nimpropers setting
Self-explanatory.

Molecule file has no Body Doubles section
Self-explanatory.

Molecule file has no Body Integers section
Self-explanatory.

Molecule file has special flags but no bonds
Self-explanatory.

Molecule file needs both Special Bond sections
Self-explanatory.

Molecule file requires atom style body
Self-explanatory.

Molecule file shake flags not before shake atoms
The order of the two sections is important.

219

Molecule file shake flags not before shake bonds
The order of the two sections is important.
Molecule file shake info is incomplete
All 3 SHAKE sections are needed.
Molecule file special list does not match special count
The number of values in an atom's special list does not match count.
Molecule file 7z center-of-mass must be 0.0 for 2d

Self-explanatory.

Molecule file z coord must be 0.0 for 2d
Self-explanatory.

Molecule natoms must be 1 for body particle
Self-explanatory.

Molecule sizescale must be 1.0 for body particle
Self-explanatory.

Molecule template ID for atom_style template does not exist
Self-explanatory.

Molecule template ID for create_atoms does not exist
Self-explantory.

Molecule template ID for fix deposit does not exist
Self-explanatory.

Molecule template ID for fix gcmc does not exist
Self-explanatory.

Molecule template ID for fix pour does not exist
Self-explanatory.

Molecule template ID for fix rigid/small does not exist
Self-explanatory.

Molecule template ID for fix shake does not exist
Self-explanatory.

Molecule template ID must be alphanumeric or underscore characters
Self-explanatory.

Molecule toplogy/atom exceeds system topology/atom
The number of bonds, angles, etc per-atom in the molecule exceeds the system setting. See the create_box
command for how to specify these values.
Molecule topology type exceeds system topology type
The number of bond, angle, etc types in the molecule exceeds the system setting. See the create_box
command for how to specify these values.
More than one fix deform
Only one fix deform can be defined at a time.
More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.
More than one fix shake
Only one fix shake can be defined.
Mu not allowed when not using semi-grand in fix atom/swap command
Self-explanatory.
Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.

220

Must define dihedral_style before AngleAngleTorsion Coeffs

Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.

Must define dihedral_style before AngleTorsion Coeffs

Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.
Must define dihedral_style before BondBondl3 Coeffs

Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.
Must define dihedral_style before Dihedral Coeffs

Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.
Must define dihedral_style before EndBondTorsion Coeffs

Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.
Must define dihedral_style before MiddleBondTorsion Coeffs

Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion Coeffs.

Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must define pair_style before PairlJ Coeffs
Must use a pair_style command before reading a data file that defines PairlJ Coeffs.
Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the -partition command-line
option.
Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.
Must read Atoms before Bodies
The Atoms section of a data file must come before a Bodies section.
Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.
Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.
Must read Atoms before Ellipsoids
The Atoms section of a data file must come before a Ellipsoids section.
Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.
Must read Atoms before Lines
The Atoms section of a data file must come before a Lines section.
Must read Atoms before Triangles
The Atoms section of a data file must come before a Triangles section.
Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.
Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.
Must set number of threads via package omp command
Because you are using the USER-OMP package, set the number of threads via its settings, not by the
pair_style snap nthreads setting.
Must shrink-wrap piston boundary
The boundary style of the face where the piston is applied must be of type s (shrink-wrapped).
Must specify a region in fix deposit
The region keyword must be specified with this fix.
Must specify a region in fix pour
Self-explanatory.

221

Must specify at least 2 types in fix atom/swap command
Self-explanatory.

Must use 'kspace_modify pressure/scalar no' for rRESPA with kspace_style MSM
The kspace scalar pressure option cannot (yet) be used with rRESPA.

Must use 'kspace_modify pressure/scalar no' for tensor components with kspace_style msm
Otherwise MSM will compute only a scalar pressure. See the kspace_modify command for details on this
setting.

Must use 'kspace_modify pressure/scalar no' to obtain per-atom virial with kspace_style MSM
The kspace scalar pressure option cannot be used to obtain per-atom virial.

Must use 'kspace_modify pressure/scalar no' with GPU MSM Pair styles
The kspace scalar pressure option is not (yet) compatible with GPU MSM Pair styles.

Must use 'kspace_modify pressure/scalar no' with kspace_style msm/cg
The kspace scalar pressure option is not compatible with kspace_style msm/cg.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Must use Kokkos half/thread or full neighbor list with threads or GPUs
Using Kokkos half-neighbor lists with threading is not allowed.

Must use a block or cylinder region with fix pour
Self-explanatory.

Must use a block region with fix pour for 2d simulations
Self-explanatory.

Must use a bond style with TIP4P potential
TIPAP potentials assume bond lengths in water are constrained by a fix shake command.

Must use a molecular atom style with fix poems molecule
Self-explanatory.

Must use a z-axis cylinder region with fix pour
Self-explanatory.

Must use an angle style with TIP4P potential
TIPAP potentials assume angles in water are constrained by a fix shake command.

Must use atom map style array with Kokkos
See the atom_modify map command.

Must use atom style with molecule IDs with fix bond/swap
Self-explanatory.

Must use pair_style comb or comb3 with fix geq/comb
Self-explanatory.

Must use variable energy with fix addforce
Must define an energy vartiable when applyting a dynamic force during minimization.

Must use variable energy with fix efield
You must define an energy when performing a minimization with a variable E-field.

NEB command before simulation box is defined
Self-explanatory.

NEB requires damped dynamics minimizer
Use a different minimization style.

NEB requires use of fix neb
Self-explanatory.

NL ramp in wall/piston only implemented in zlo for now
The ramp keyword can only be used for piston applied to face zlo.

Need nswaptypes mu values in fix atom/swap command
Self-explanatory.

Needed bonus data not in data file
Some atom styles require bonus data. See the read_data doc page for details.

222

Needed molecular topology not in data file
The header of the data file indicated bonds, angles, etc would be included, but they are not present.
Neigh_modify exclude molecule requires atom attribute molecule
Self-explanatory.
Neigh_modify include group != atom_modify first group
Self-explanatory.
Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay setting is
non-zero, then it must be a multiple of the every setting.
Neighbor include group not allowed with ghost neighbors
This is a current restriction within LAMMPS.
Neighbor list overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.
Neighbor multi not yet enabled for ghost neighbors
This is a current restriction within LAMMPS.
Neighbor multi not yet enabled for granular
Self-explanatory.
Neighbor multi not yet enabled for rRESPA
Self-explanatory.
Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.
New atom IDs exceed maximum allowed ID
See the setting for tagint in the src/lmptype.h file.
New bond exceeded bonds per atom in create_bonds
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.
New bond exceeded bonds per atom in fix bond/create
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.
New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow for
additional bonds to be formed.
Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart, or
create_box command.
Next command must list all universe and uloop variables
This is to insure they stay in sync.
No Kspace style defined for compute group/group
Self-explanatory.
No OpenMP support compiled in
An OpenMP flag is set, but LAMMPS was not built with OpenMP support.
No angle style is defined for compute angle/local
Self-explanatory.
No angles allowed with this atom style
Self-explanatory.
No atoms in data file
The header of the data file indicated that atoms would be included, but they are not present.
No basis atoms in lattice
Basis atoms must be defined for lattice style user.
No bodies allowed with this atom style
Self-explanatory. Check data file.

223

No bond style is defined for compute bond/local
Self-explanatory.
No bonds allowed with this atom style
Self-explanatory.
No box information in dump. You have to use 'box no'
Self-explanatory.
No count or invalid atom count in molecule file
The number of atoms must be specified.
No dihedral style is defined for compute dihedral/local
Self-explanatory.
No dihedrals allowed with this atom style
Self-explanatory.
No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.
No dump local arguments specified
Self-explanatory.
No ellipsoids allowed with this atom style
Self-explanatory. Check data file.
No fix gravity defined for fix pour
Gravity is required to use fix pour.
No improper style is defined for compute improper/local
Self-explanatory.
No impropers allowed with this atom style
Self-explanatory.
No input values for fix ave/spatial
Self-explanatory.
No lines allowed with this atom style
Self-explanatory. Check data file.
No matching element in ADP potential file
The ADP potential file does not contain elements that match the requested elements.
No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.
No molecule topology allowed with atom style template
The data file cannot specify the number of bonds, angles, etc, because this info if inferred from the
molecule templates.
No overlap of box and region for create_atoms
Self-explanatory.
No pair coul/streitz for fix geq/slater
These commands must be used together.
No pair hbond/dreiding coefficients set
Self-explanatory.
No pair style defined for compute group/group
Cannot calculate group interactions without a pair style defined.
No pair style is defined for compute pair/local
Self-explanatory.
No pair style is defined for compute property/local
Self-explanatory.
No rigid bodies defined
The fix specification did not end up defining any rigid bodies.
No triangles allowed with this atom style
Self-explanatory. Check data file.
No values in fix ave/chunk command

224

Self-explanatory.
No values in fix ave/time command
Self-explanatory.
Non digit character between brackets in variable
Self-explantory.
Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.
Non-numeric box dimensions - simulation unstable
The box size has apparently blown up.
Non-zero atom IDs with atom_modify id = no
Self-explanatory.
Non-zero read_data shift 7 value for 2d simulation
Self-explanatory.
Nprocs not a multiple of N for -reorder
Self-explanatory.
Number of core atoms != number of shell atoms
There must be a one-to-one pairing of core and shell atoms.
Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.
One or more Atom IDs is negative
Atom IDs must be positive integers.
One or more atom IDs is too big
The limit on atom IDs is set by the SMALLBIG, BIGBIG, SMALLSMALL setting in your Makefile. See
Section_start 2.2 of the manual for more details.
One or more atom IDs is zero
Either all atoms IDs must be zero or none of them.
One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.
One or more rigid bodies are a single particle
Self-explanatory.
One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.
Only 2 types allowed when not using semi-grand in fix atom/swap command
Self-explanatory.
Only one cut-off allowed when requesting all long
Self-explanatory.
Only one cutoff allowed when requesting all long
Self-explanatory.
Only zhi currently implemented for fix append/atoms
Self-explanatory.
Out of range atoms - cannot compute MSM
One or more atoms are attempting to map their charge to a MSM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay 0 every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.
Out of range atoms - cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a

225

processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.

Out of range atoms - cannot compute PPPMDisp
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.

Overflow of allocated fix vector storage
This should not normally happen if the fix correctly calculated how long the vector will grow to. Contact
the developers.

Overlapping large/large in pair colloid
This potential is infinite when there is an overlap.

Overlapping small/large in pair colloid
This potential is infinite when there is an overlap.

POEMS fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the pressure
virial is incorrect.

PPPM can only currently be used with comm_style brick
This is a current restriction in LAMMPS.

PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPM grid stencil extends beyond nearest neighbor processor
This is not allowed if the kspace_modify overlap setting is no.

PPPM order < minimum allowed order
The default minimum order is 2. This can be reset by the kspace_modify minorder command.

PPPM order cannot be < 2 or > than %d
This is a limitation of the PPPM implementation in LAMMPS.

PPPMDisp Coulomb grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPMDisp Dispersion grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPMDisp can only currently be used with comm_style brick
This is a current restriction in LAMMPS.

PPPMDisp coulomb order cannot be greater than %d
This is a limitation of the PPPM implementation in LAMMPS.

PPPMDisp used but no parameters set, for further information please see the pppm/disp documentation
An efficient and accurate usage of the pppm/disp requires settings via the kspace_modify command.
Please see the pppm/disp documentation for further instructions.

PRD command before simulation box is defined
The prd command cannot be used before a read_data, read_restart, or create_box command.

226

PRD nsteps must be multiple of t_event
Self-explanatory.
PRD t_corr must be multiple of t_event
Self-explanatory.
Package command after simulation box is defined
The package command cannot be used afer a read_data, read_restart, or create_box command.
Package cuda command without USER-CUDA package enabled
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built, and the
"-c on" must be used to enable the package.
Package gpu command without GPU package installed
The GPU package must be installed via "make yes-gpu" before LAMMPS is built.
Package intel command without USER-INTEL package installed
The USER-INTEL package must be installed via "make yes-user-intel" before LAMMPS is built.
Package kokkos command without KOKKOS package enabled
The KOKKOS package must be installed via "make yes-kokkos" before LAMMPS is built, and the "-k
on" must be used to enable the package.
Package omp command without USER-OMP package installed
The USER-OMP package must be installed via "make yes-user-omp" before LAMMPS is built.
Pair body requires atom style body
Self-explanatory.
Pair body requires body style nparticle
This pair style is specific to the nparticle body style.
Pair brownian requires atom style sphere
Self-explanatory.
Pair brownian requires extended particles
One of the particles has radius 0.0.
Pair brownian requires monodisperse particles
All particles must be the same finite size.
Pair brownian/poly requires atom style sphere
Self-explanatory.
Pair brownian/poly requires extended particles
One of the particles has radius 0.0.
Pair brownian/poly requires newton pair off
Self-explanatory.
Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.
Pair coul/wolf requires atom attribute q
The atom style defined does not have this attribute.
Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Fair dipole/cut requires atom attributes g, mu, torque
The atom style defined does not have these attributes.
Fair dipole/cut/gpu requires atom attributes q, mu, torque
The atom style defined does not have this attribute.
Fair dipole/long requires atom attributes q, mu, torque
The atom style defined does not have these attributes.
Fair dipole/sf/gpu requires atom attributes q, mu, torque
The atom style defined does not one or more of these attributes.
Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.
Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.

227

Pair dpd requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
Pair gayberne epsilon a,b,c coeffs are not all set

Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.

Pair gayberne requires atom style ellipsoid
Self-explanatory.
FPair gayberne requires atoms with same type have same shape
Self-explanatory.
FPair gayberne/gpu requires atom style ellipsoid
Self-explanatory.
FPair gayberne/gpu requires atoms with same type have same shape
Self-explanatory.
Pair granular requires atom attributes radius, rmass
The atom style defined does not have these attributes.
FPair granular requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
FPair granular with shear history requires newton pair off

This is a current restriction of the implementation of pair granular styles with history.

Pair hybrid single calls do not support per sub-style special bond values
Self-explanatory.
Pair hybrid sub-style does not support single call
You are attempting to invoke a single() call on a pair style that doesn't support it.
Pair hybrid sub-style is not used
No pair_coeff command used a sub-style specified in the pair_style command.
Pair inner cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff
The specified cutoffs for the pair style are inconsistent.
Fair line/lj requires atom style line
Self-explanatory.
Fair lj/long/dipole/long requires atom attributes mu, torque
The atom style defined does not have these attributes.
Pair lubricate requires atom style sphere
Self-explanatory.
Pair lubricate requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
Pair lubricate requires monodisperse particles
All particles must be the same finite size.
Fair lubricate/poly requires atom style sphere
Self-explanatory.
Fair lubricate/poly requires extended particles
One of the particles has radius 0.0.
Fair lubricate/poly requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
Fair lubricate/poly requires newton pair off
Self-explanatory.
Fair lubricateU requires atom style sphere
Self-explanatory.
Fair lubricateU requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
Fair lubricateU requires monodisperse particles
All particles must be the same finite size.

228

Fair lubricateU/poly requires ghost atoms store velocity
Use the comm_modify vel yes command to enable this.
Fair lubricateU/poly requires newton pair off
Self-explanatory.
Pair peri lattice is not identical in x, y, and z
The lattice defined by the lattice command must be cubic.
Pair peri requires a lattice be defined
Use the lattice command for this purpose.
Pair peri requires an atom map, see atom_modify
Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify
command to define one.
Pair resquared epsilon a,b,c coeffs are not all set

Self-explanatory.

Pair resquared epsilon and sigma coeffs are not all set
Self-explanatory.

Pair resquared requires atom style ellipsoid
Self-explanatory.

Fair resquared requires atoms with same type have same shape
Self-explanatory.

FPair resquared/gpu requires atom style ellipsoid
Self-explanatory.

FPair resquared/gpu requires atoms with same type have same shape
Self-explanatory.

Fair style AIREBO requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style AIREBO requires newton pair on

See the newton command. This is a restriction to use the AIREBO potential.
Fair style BOP requires atom IDs

This is a requirement to use the BOP potential.
Fair style BOP requires newton pair on

See the newton command. This is a restriction to use the BOP potential.
Fair style COMB requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style COMB requires atom attribute q

Self-explanatory.
FPair style COMB requires newton pair on

See the newton command. This is a restriction to use the COMB potential.
Fair style COMB3 requires atom IDs

This is a requirement to use the COMB3 potential.
Fair style COMB3 requires atom attribute q

Self-explanatory.
Fair style COMB3 requires newton pair on

See the newton command. This is a restriction to use the COMB3 potential.
Fair style LCBOP requires atom IDs

This is a requirement to use the LCBOP potential.
Fair style LCBOP requires newton pair on

See the newton command. This is a restriction to use the Tersoff potential.
Fair style MEAM requires newton pair on

See the newton command. This is a restriction to use the MEAM potential.
Fair style SNAP requires newton pair on

See the newton command. This is a restriction to use the SNAP potential.
Fair style Stillinger-Weber requires atom IDs

229

This is a requirement to use the SW potential.
Fair style Stillinger-Weber requires newton pair on
See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs
This is a requirement to use the Tersoff potential.
Fair style Tersoff requires newton pair on
See the newton command. This is a restriction to use the Tersoff potential.
Pair style Vashishta requires atom IDs
This is a requirement to use the Vashishta potential.
Fair style Vashishta requires newton pair on
See the newton command. This is a restriction to use the Vashishta potential.
Pair style bop requires comm ghost cutoff at least 3x larger than %g
Use the communicate ghost command to set this. See the pair bop doc page for more details.
Fair style born/coul/long requires atom attribute q
An atom style that defines this attribute must be used.
Fair style born/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style born/coul/wolf requires atom attribute g
The atom style defined does not have this attribute.
Fair style buck/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style buck/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style buck/coul/long/gpu requires atom attribute ¢
The atom style defined does not have this attribute.
Fair style buck/long/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/cut requires atom attribute q
The atom style defined does not have these attributes.
Fair style coul/cut/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/debye/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/dsf requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/dsf/gpu requires atom attribute ¢
The atom style defined does not have this attribute.
Fair style coul/long/gpu requires atom attribute q
The atom style defined does not have these attributes.
Fair style coul/streitz requires atom attribute q
Self-explanatory.
Fair style does not have extra field requested by compute pair/local
The pair style does not support the pN value requested by the compute pair/local command.
Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quartic.
Fair style does not support compute group/group
The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.
Fair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by compute pair/local.
Fair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

230

Fair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Fair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.
Fair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.
Fair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.
Fair style hbond/dreiding requires an atom map, see atom_modify
Self-explanatory.
Fair style hbond/dreiding requires atom IDs
Self-explanatory.
Fair style hbond/dreiding requires molecular system
Self-explanatory.
Fair style hbond/dreiding requires newton pair on
See the newton command for details.
Fair style hybrid cannot have hybrid as an argument
Self-explanatory.
Fair style hybrid cannot have none as an argument
Self-explanatory.
Fair style is incompatible with KSpace style
If a pair style with a long-range Coulombic component is selected, then a kspace style must also be used.
Fair style is incompatible with TIP4P KSpace style
The pair style does not have the requires TIP4P settings.
Fair style lj/charmm/coul/charmm requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/debye/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/dsf requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/cut/coul/dsf/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/tip4p/cut requires atom IDs

231

This is a requirement to use this potential.
Fair style lj/cut/tip4p/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/tip4p/cut requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style lj/cut/tip4dp/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style lj/cut/tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/cut/tip4p/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair style lj/gromacs/coul/gromacs requires atom attribute q
An atom_style with this attribute is needed.
Fair style lj/long/dipole/long does not currently support respa
This feature is not yet supported.
Fair style lj/long/tip4p/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style lj/long/tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/long/tip4p/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair style lj/sdk/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style nb3b/harmonic requires atom IDs
This is a requirement to use this potential.
Fair style nb3b/harmonic requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style nm/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style nm/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Pair style peri requires atom style peri
Self-explanatory.
Pair style polymorphic requires atom IDs
This is a requirement to use the polymorphic potential.
Fair style polymorphic requires newton pair on
See the newton command. This is a restriction to use the polymorphic potential.
Pair style reax requires atom IDs
This is a requirement to use the ReaxFF potential.
Pair style reax requires atom attribute q
The atom style defined does not have this attribute.
Fair style reax requires newton pair on
This is a requirement to use the ReaxFF potential.
Fair style requires a KSpace style
No kspace style is defined.
Fair style requires use of kspace_style ewald/disp
Self-explanatory.
Fair style sw/gpu requires atom IDs

232

This is a requirement to use this potential.
Fair style sw/gpu requires newton pair off
See the newton command. This is a restriction to use this potential.
Fair style tersoff/gpu requires atom IDs
This is a requirement to use the tersoff/gpu potential.
Fair style tersoff/gpu requires newton pair off
See the newton command. This is a restriction to use this pair style.
Fair style tip4p/cut requires atom IDs
This is a requirement to use this potential.
Fair style tipdp/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style tip4dp/cut requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style tip4dp/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style tipdp/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair table cutoffs must all be equal to use with KSpace
When using pair style table with a long-range KSpace solver, the cutoffs for all atom type pairs must all
be the same, since the long-range solver starts at that cutoff.
Pair table parameters did not set N
List of pair table parameters must include N setting.
Fair tersoff/zbl requires metal or real units
This is a current restriction of this pair potential.
Fair tersoff/zbl/kk requires metal or real units
This is a current restriction of this pair potential.
Fair tri/lj requires atom style tri
Self-explanatory.
FPair yukawa/colloid requires atom style sphere
Self-explantory.
Pair yukawa/colloid requires atoms with same type have same radius
Self-explantory.
Pair yukawa/colloid/gpu requires atom style sphere
Self-explanatory.
PairKIM only works with 3D problems
This is a current limitation.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.
Pair_modify command before pair_style is defined
Self-explanatory.
Pair_modify special setting for pair hybrid incompatible with global special_bonds setting
Cannot override a setting of 0.0 or 1.0 or change a setting between 0.0 and 1.0.
Pair_write command before pair_style is defined
Self-explanatory.
Farticle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.

233

Farticle outside surface of region used in fix wall/region
Particles must be inside the region for energy/force to be calculated. A particle outside the region
generates an error.
Per-atom compute in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-atom fix in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-processor system is too big
The number of owned atoms plus ghost atoms on a single processor must fit in 32-bit integer.
Potential energy ID for fix neb does not exist
Self-explanatory.
Potential energy ID for fix nvt/nph/npt does not exist
A compute for potential energy must be defined.
Potential file has duplicate entry
The potential file has more than one entry for the same element.
Potential file is missing an entry
The potential file does not have a needed entry.
Power by 0 in variable formula
Self-explanatory.
Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix modify does not exist
Self-explanatory.
Pressure ID for fix npt/nph does not exist
Self-explanatory.
Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix rigid npt/nph does not exist
Self-explanatory.
Pressure ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.
Pressure control can not be used with fix nvt
Self-explanatory.
Pressure control can not be used with fix nvt/asphere
Self-explanatory.
Pressure control can not be used with fix nvt/body
Self-explanatory.
Pressure control can not be used with fix nvt/sllod
Self-explanatory.
Pressure control can not be used with fix nvt/sphere
Self-explanatory.
Pressure control must be used with fix nph
Self-explanatory.
Pressure control must be used with fix nph/asphere
Self-explanatory.
Pressure control must be used with fix nph/body

234

Self-explanatory.
Pressure control must be used with fix nph/small
Self-explanatory.
Pressure control must be used with fix nph/sphere
Self-explanatory.
Pressure control must be used with fix nphug
A pressure control keyword (iso, aniso, tri, X, y, or z) must be provided.
Pressure control must be used with fix npt
Self-explanatory.
Pressure control must be used with fix npt/asphere
Self-explanatory.
Pressure control must be used with fix npt/body
Self-explanatory.
Pressure control must be used with fix npt/sphere
Self-explanatory.
Processor count in z must be 1 for 2d simulation
Self-explanatory.
Processor partitions do not match number of allocated processors
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.
Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.
Processors custom grid file is inconsistent
The vales in the custom file are not consistent with the number of processors you are running on or the
Px,Py,Pz settings of the processors command. Or there was not a setting for every processor.
Processors grid numa and map style are incompatible
Using numa for gstyle in the processors command requires using cart for the map option.
Processors part option and grid style are incompatible
Cannot use gstyle numa or custom with the part option.
Processors twogrid requires proc count be a multiple of core count
Self-explanatory.
Pstart and Pstop must have the same value
Self-explanatory.
Python function evaluation failed
The Python function did not run succesfully and/or did not return a value (if it is supposed to return a
value). This is probably due to some error condition in the function.
Python function is not callable
The provided Python code was run successfully, but it not define a callable function with the required
name.
Python invoke of undefined function
Cannot invoke a function that has not been previously defined.
Python variable does not match Python function
This matching is defined by the python-style variable and the python command.
Python variable has no function
No python command was used to define the function associated with the python-style variable.
QEQ with 'newton pair off not supported
See the newton command. This is a restriction to use the QEQ fixes.
RO < O for fix spring command
Equilibrium spring length is invalid.
RATTLE coordinate constraints are not satisfied up to desired tolerance
Self-explanatory.
RATTLE determinant = 0.0

235

The determinant of the matrix being solved for a single cluster specified by the fix rattle command is
numerically invalid.
RATTLE failed
Certain constraints were not satisfied.
RATTLE velocity constraints are not satisfied up to desired tolerance
Self-explanatory.
Read data add offset is too big
It cannot be larger than the size of atom IDs, e.g. the maximum 32-bit integer.
Read dump of atom property that isn't allocated
Self-explanatory.
Read rerun dump file timestep > specified stop
Self-explanatory.
Read restart MPI-10 input not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Read_data shrink wrap did not assign all atoms correctly
This is typically because the box-size specified in the data file is large compared to the actual extent of
atoms in a shrink-wrapped dimension. When LAMMPS shrink-wraps the box atoms will be lost if the
processor they are re-assigned to is too far away. Choose a box size closer to the actual extent of the
atoms.
Read_dump command before simulation box is defined
The read_dump command cannot be used before a read_data, read_restart, or create_box command.
Read_dump field not found in dump file
Self-explanatory.
Read_dump triclinic status does not match simulation
Both the dump snapshot and the current LAMMPS simulation must be using either an orthogonal or
triclinic box.
Read_dump xyz fields do not have consistent scaling/wrapping
Self-explanatory.
Reading from MPI-10 filename when MPIIO package is not installed
Self-explanatory.
Reax_defs.h setting for NATDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Reax_defs.h setting for NNEIGHMAXDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Receiving partition in processors part command is already a receiver
Cannot specify a partition to be a receiver twice.
Region ID for compute chunk/atom does not exist
Self-explanatory.
Region ID for compute reduce/region does not exist
Self-explanatory.
Region ID for compute temp/region does not exist
Self-explanatory.
Region ID for dump custom does not exist
Self-explanatory.
Region ID for fix addforce does not exist
Self-explanatory.
Region ID for fix atom/swap does not exist
Self-explanatory.
Region ID for fix ave/spatial does not exist
Self-explanatory.
Region ID for fix aveforce does not exist
Self-explanatory.

236

Region ID for fix deposit does not exist

Self-explanatory.

Region ID for fix efield does not exist
Self-explanatory.

Region ID for fix evaporate does not exist
Self-explanatory.

Region ID for fix gcmc does not exist
Self-explanatory.

Region ID for fix heat does not exist
Self-explanatory.

Region ID for fix setforce does not exist
Self-explanatory.

Region ID for fix wall/region does not exist
Self-explanatory.

Region ID for group dynamic does not exist
Self-explanatory.

Region ID in variable formula does not exist
Self-explanatory.

Region cannot have 0 length rotation vector
Self-explanatory.

Region for fix oneway does not exist
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union or intersect cannot be dynamic
The sub-regions can be dynamic, but not the combined region.
Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix ID when you
do not intend to.
Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.
Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely due
to some atom coordinates being outside a non-periodic simulation box.
Replicated system atom IDs are too big
See the setting for tagint in the src/lmptype.h file.
Replicated system is too big
See the setting for bigint in the src/lmptype.h file.
Required border comm not yet implemented with Kokkos
There are various limitations in the communication options supported by Kokkos.
Rerun command before simulation box is defined
The rerun command cannot be used before a read_data, read_restart, or create_box command.
Rerun dump file does not contain requested snapshot
Self-explanatory.
Resetting timestep size is not allowed with fix move
This is because fix move is moving atoms based on elapsed time.
Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.
Respa levels must be >= 1

237

Self-explanatory.
Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.
Restart file MPI-10 output not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Restart file byte ordering is not recognized
The file does not appear to be a LAMMPS restart file since it doesn't contain a recognized byte-orderomg
flag at the beginning.
Restart file byte ordering is swapped
The file was written on a machine with different byte-ordering than the machine you are reading it on.
Convert it to a text data file instead, on the machine you wrote it on.
Restart file incompatible with current version
This is probably because you are trying to read a file created with a version of LAMMPS that is too old
compared to the current version. Use your older version of LAMMPS and convert the restart file to a data
file.
Restart file is a MPI-10 file
The file is inconsistent with the filename you specified for it.
Restart file is a multi-proc file
The file is inconsistent with the filename you specified for it.
Restart file is not a MPI-10 file
The file is inconsistent with the filename you specified for it.
Restart file is not a multi-proc file
The file is inconsistent with the filename you specified for it.
Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Restrain atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a restrain dihedral specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.
Restrain atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a restrain angle specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Restrain atoms %d %d missing on proc %d at step %ld
The 2 atoms in a restrain bond specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Reuse of compute 1D
A compute ID cannot be used twice.
Reuse of dump ID
A dump ID cannot be used twice.
Reuse of molecule template ID
The template IDs must be unique.
Reuse of region ID
A region ID cannot be used twice.
Rigid body atoms %d %d missing on proc %d at step %ld
This means that an atom cannot find the atom that owns the rigid body it is part of, or vice versa. The
solution is to use the communicate cutoff command to insure ghost atoms are acquired from far enough
away to encompass the max distance printed when the fix rigid/small command was invoked.
Rigid body has degenerate moment of inertia
Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non-collinear atoms, even with joint atoms removed.
Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.

238

Rmask function in equal-style variable formula
Rmask is per-atom operation.
Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.
Run command start value is after start of run
Self-explanatory.
Run command stop value is before end of run
Self-explanatory.
Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
SRD particle %d started inside wall %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Same dimension twice in fix ave/spatial
Self-explanatory.
Sending partition in processors part command is already a sender
Cannot specify a partition to be a sender twice.
Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.
Set command floating point vector does not exist
Self-explanatory.
Set command integer vector does not exist
Self-explanatory.
Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.
Set region ID does not exist
Region ID specified in set command does not exist.
Shake angles have different bond types
All 3-atom angle-constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.
Shake atoms %d %d Y%0d %od missing on proc %d at step %ld
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d %0d missing on proc %d at step %ld
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d missing on proc %d at step %ld
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.
Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3 other
atoms bonded to it.
Shake determinant = 0.0

239

The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.

Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the pressure
virial is incorrect.

Shear history overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.

Small to big integers are not sized correctly
This error occurs whenthe sizes of smallint, imageint, tagint, bigint, as defined in src/Imptype.h are not
what is expected. Contact the developers if this occurs.

Smallint setting in Imptype.h is invalid
It has to be the size of an integer.

Smallint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.

Special list size exceeded in fix bond/create
See the read_data command for info on setting the "extra special per atom" header value to allow for
additional special values to be stored.

Specified processors != physical processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.

Specified target stress must be uniaxial or hydrostatic
Self-explanatory.

Sqrt of negative value in variable formula
Self-explanatory.

Subsequent read data induced too many angles per atom
See the create_box extra/angle/per/atom or read_data "extra angle per atom" header value to set this limit
larger.

Subsequent read data induced too many bonds per atom
See the create_box extra/bond/per/atom or read_data "extra bond per atom" header value to set this limit
larger.

Subsequent read data induced too many dihedrals per atom
See the create_box extra/dihedral/per/atom or read_data "extra dihedral per atom" header value to set this
limit larger.

Subsequent read data induced too many impropers per atom
See the create_box extra/improper/per/atom or read_data "extra improper per atom" header value to set
this limit larger.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

Support for writing images in JPEG format not included
LAMMPS was not built with the -DLAMMPS_JPEG switch in the Makefile.

Support for writing images in PNG format not included
LAMMPS was not built with the -DLAMMPS_PNG switch in the Makefile.

Support for writing movies not included
LAMMPS was not built with the -DLAMMPS_FFMPEG switch in the Makefile

System in data file is too big
See the setting for bigint in the src/Imptype.h file.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0. For some KSpace solvers this is an error.

TAD nsteps must be multiple of t_event
Self-explanatory.

TIP4P hydrogen has incorrect atom type

240

The TIP4P pairwise computation found an H atom whose type does not agree with the specified H type.
TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.
TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.
Tad command before simulation box is defined
Self-explanatory.
Tagint setting in Imptype.h is invalid
Tagint must be as large or larger than smallint.
Tagint setting in Imptype.h is not compatible
Format of tagint stored in restart file is not consistent with LAMMPS version you are running. See the
settings in src/lmptype.h
Target pressure for fix rigid/nph cannot be < 0.0
Self-explanatory.
Target pressure for fix rigid/npt/small cannot be < 0.0
Self-explanatory.
Target temperature for fix nvt/npt/nph cannot be 0.0
Self-explanatory.
Target temperature for fix rigid/npt cannot be 0.0
Self-explanatory.
Target temperature for fix rigid/npt/small cannot be 0.0
Self-explanatory.
Target temperature for fix rigid/nvt cannot be 0.0
Self-explanatory.
Target temperature for fix rigid/nvt/small cannot be 0.0
Self-explanatory.
Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.
Temperature ID for fix bond/swap does not exist
Self-explanatory.
Temperature ID for fix box/relax does not exist
Self-explanatory.
Temperature ID for fix nvt/npt does not exist
Self-explanatory.
Temperature ID for fix press/berendsen does not exist
Self-explanatory.
Temperature ID for fix rigid nvt/npt/nph does not exist
Self-explanatory.
Temperature ID for fix temp/berendsen does not exist
Self-explanatory.
Temperature ID for fix temp/csld does not exist
Self-explanatory.
Temperature ID for fix temp/csvr does not exist
Self-explanatory.
Temperature ID for fix temp/rescale does not exist
Self-explanatory.
Temperature compute degrees of freedom < 0
This should not happen if you are calculating the temperature on a valid set of atoms.
Temperature control can not be used with fix nph
Self-explanatory.
Temperature control can not be used with fix nph/asphere
Self-explanatory.

241

Temperature control can not be used with fix nph/body
Self-explanatory.

Temperature control can not be used with fix nph/sphere
Self-explanatory.

Temperature control must be used with fix nphug
The temp keyword must be provided.

Temperature control must be used with fix npt
Self-explanatory.

Temperature control must be used with fix npt/asphere
Self-explanatory.

Temperature control must be used with fix npt/body
Self-explanatory.

Temperature control must be used with fix npt/sphere
Self-explanatory.

Temperature control must be used with fix nvt
Self-explanatory.

Temperature control must be used with fix nvt/asphere
Self-explanatory.

Temperature control must be used with fix nvt/body
Self-explanatory.

Temperature control must be used with fix nvt/sllod
Self-explanatory.

Temperature control must be used with fix nvt/sphere
Self-explanatory.

Temperature control must not be used with fix nph/small
Self-explanatory.

Temperature for fix nvt/sllod does not have a bias

The specified compute must compute temperature with a bias.

Tempering could not find thermo_pe compute

This compute is created by the thermo command. It must have been explicitly deleted by a uncompute

command.
Tempering fix ID is not defined

The fix ID specified by the temper command does not exist.

Tempering temperature fix is not valid

The fix specified by the temper command is not one that controls temperature (nvt or langevin).

Test_descriptor_string already allocated
This is an internal error. Contact the developers.
The package gpu command is required for gpu styles
Self-explanatory.
Thermo and fix not computed at compatible times

Fixes generate values on specific timesteps. The thermo output does not match these timesteps.

Thermo compute array is accessed out-of-range
Self-explanatory.

Thermo compute does not compute array
Self-explanatory.

Thermo compute does not compute scalar
Self-explanatory.

Thermo compute does not compute vector
Self-explanatory.

Thermo compute vector is accessed out-of-range
Self-explanatory.

Thermo custom variable cannot be indexed

242

Self-explanatory.
Thermo custom variable is not equal-style variable
Only equal-style variables can be output with thermodynamics, not atom-style variables.
Thermo every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Thermo fix array is accessed out-of-range
Self-explanatory.
Thermo fix does not compute array
Self-explanatory.
Thermo fix does not compute scalar
Self-explanatory.
Thermo fix does not compute vector
Self-explanatory.
Thermo fix vector is accessed out-of-range
Self-explanatory.
Thermo keyword in variable requires thermo to use/init pe
You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo_modify every variable returned a bad timestep
The returned timestep is less than or equal to the current timestep.
Thermo_modify int format does not contain d character
Self-explanatory.
Thermo_modify pressure ID does not compute pressure
The specified compute ID does not compute pressure.
Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.
Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.
This variable thermo keyword cannot be used between runs
Keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.
Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.
Timestep must be >= 0
Specified timestep is invalid.
Too big a problem to use velocity create loop all
The system size must fit in a 32-bit integer to use this option.
Too big a timestep for dump dcd
The timestep must fit in a 32-bit integer to use this dump style.
Too big a timestep for dump xtc
The timestep must fit in a 32-bit integer to use this dump style.
Too few bits for lookup table

243

Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too few lines in %s section of data file
Self-explanatory.
Too few values in body lines in data file
Self-explanatory.
Too few values in body section of molecule file
Self-explanatory.
Too many -pk arguments in command line
The string formed by concatenating the arguments is too long. Use a package command in the input script
instead.
Too many MSM grid levels
The max number of MSM grid levels is hardwired to 10.
Too many args in variable function
More args are used than any variable function allows.
Too many atom pairs for pair bop
The number of atomic pairs exceeds the expected number. Check your atomic structure to ensure that it is
realistic.
Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many atom triplets for pair bop
The number of three atom groups for angle determinations exceeds the expected number. Check your
atomic structrure to ensure that it is realistic.
Too many atoms for dump dcd
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms for dump xtc
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms to dump sort
Cannot sort when running with more than 2*31 atoms.
Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.
Too many iterations
You must use a number of iterations that fit in a 32-bit integer for minimization.
Too many lines in one body in data file - boost MAXBODY
MAXBODY is a setting at the top of the src/read_data.cpp file. Set it larger and re-compile the code.
Too many local+ghost atoms for neighbor list
The number of nlocal + nghost atoms on a processor is limited by the size of a 32-bit integer with 2 bits
removed for masking 1-2, 1-3, 1-4 neighbors.
Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many masses for fix shake
The fix shake command cannot list more masses than there are atom types.
Too many molecules for fix poems
The limit is 2”31 = ~2 billion molecules.
Too many molecules for fix rigid
The limit is 2”31 = ~2 billion molecules.
Too many neighbor bins

244

This is likely due to an immense simulation box that has blown up to a large size.
Too many timesteps
The cummulative timesteps must fit in a 64-bit integer.
Too many timesteps for NEB
You must use a number of timesteps that fit in a 32-bit integer for NEB.
Too many total atoms
See the setting for bigint in the src/Imptype.h file.
Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2N size
table.
Too many values in body lines in data file
Self-explanatory.
Too many values in body section of molecule file
Self-explanatory.
Too much buffered per-proc info for dump
The size of the buffered string must fit in a 32-bit integer for a dump.
Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.
Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.
Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g. the
xy tilt must be between -half and +half of the x box length. This constraint can be relaxed by using the
box tilt command.
Tried to convert a double to int, but input_double > INT_MAX
Self-explanatory.
Trying to build an occasional neighbor list before initialization completed
This is not allowed. Source code caller needs to be modified.
Two fix ave commands using same compute chunk/atom command in incompatible ways
They are both attempting to "lock" the chunk/atom command so that the chunk assignments persist for
some number of timesteps, but are doing it in different ways.
Two groups cannot be the same in fix spring couple
Self-explanatory.
USER-CUDA mode requires CUDA variant of min style
CUDA mode is enabled, so the min style must include a cuda suffix.
USER-CUDA mode requires CUDA variant of run style
CUDA mode is enabled, so the run style must include a cuda suffix.
USER-CUDA package does not yet support comm_style tiled
Self-explanatory.
USER-CUDA package requires a cuda enabled atom_style
Self-explanatory.
Unable to initialize accelerator for use
There was a problem initializing an accelerator for the gpu package
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Unexpected end of -reorder file
Self-explanatory.
Unexpected end of AngleCoeffs section
Read a blank line.
Unexpected end of BondCoeffs section
Read a blank line.
Unexpected end of DihedralCoeffs section

245

Read a blank line.
Unexpected end of ImproperCoeffs section
Read a blank line.
Unexpected end of PairCoeffs section
Read a blank line.
Unexpected end of custom file
Self-explanatory.
Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.
Unexpected end of dump file
A read operation from the file failed.
Unexpected end of fix rigid file
A read operation from the file failed.
Unexpected end of fix rigid/small file
A read operation from the file failed.
Unexpected end of molecule file
Self-explanatory.
Unexpected end of neb file
A read operation from the file failed.
Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown angle style
The choice of angle style is unknown.
Unknown atom style
The choice of atom style is unknown.
Unknown body style
The choice of body style is unknown.
Unknown bond style
The choice of bond style is unknown.
Unknown category for info is_active()
Self-explanatory.
Unknown category for info is_available()
Self-explanatory.
Unknown category for info is_defined()
Self-explanatory.
Unknown command: %s
The command is not known to LAMMPS. Check the input script.
Unknown compute style
The choice of compute style is unknown.
Unknown dihedral style
The choice of dihedral style is unknown.
Unknown dump reader style
The choice of dump reader style via the format keyword is unknown.
Unknown dump style
The choice of dump style is unknown.
Unknown error in GPU library
Self-explanatory.
Unknown fix style

246

The choice of fix style is unknown.
Unknown identifier in data file: %s

A section of the data file cannot be read by LAMMPS.
Unknown improper style

The choice of improper style is unknown.
Unknown keyword in thermo_style custom command

One or more specified keywords are not recognized.
Unknown kspace style

The choice of kspace style is unknown.
Unknown name for info newton category

Self-explanatory.
Unknown name for info package category

Self-explanatory.
Unknown name for info pair category

Self-explanatory.
Unknown pair style

The choice of pair style is unknown.
Unknown pair_modify hybrid sub-style

The choice of sub-style is unknown.
Unknown region style

The choice of region style is unknown.
Unknown section in molecule file

Self-explanatory.
Unknown table style in angle style table

Self-explanatory.
Unknown table style in bond style table

Self-explanatory.
Unknown table style in pair_style command

Style of table is invalid for use with pair_style table command.
Unknown unit_style

Self-explanatory. Check the input script or data file.
Unrecognized lattice type in MEAM file 1

The lattice type in an entry of the MEAM library file is not valid.
Unrecognized lattice type in MEAM file 2

The lattice type in an entry of the MEAM parameter file is not valid.
Unrecognized pair style in compute pair command

Self-explanatory.
Unrecognized virial argument in pair_style command

Only two options are supported: LAMMPSvirial and KIMyvirial
Unsupported mixing rule in kspace_style ewald/disp

Only geometric mixing is supported.
Unsupported order in kspace_style ewald/disp

Only 1/1"6 dispersion or dipole terms are supported.
Unsupported order in kspace_style pppm/disp, pair_style %os

Only pair styles with 1/r and 1/r*6 dependence are currently supported.
Use cutoff keyword to set cutoff in single mode

Mode is single so cutoff/multi keyword cannot be used.
Use cutoff/multi keyword to set cutoff in multi mode

Mode is multi so cutoff keyword cannot be used.
Using fix nvt/sllod with inconsistent fix deform remap option

Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix deform

option.

247

Using fix nvt/sllod with no fix deform defined
Self-explanatory.

Using fix srd with inconsistent fix deform remap option
When shearing the box in an SRD simulation, the remap v option for fix deform needs to be used.
Using pair lubricate with inconsistent fix deform remap option
Must use remap v option with fix deform with this pair style.
Using pair lubricate/poly with inconsistent fix deform remap option
If fix deform is used, the remap v option is required.
Using suffix cuda without USER-CUDA package enabled

Self-explanatory.

Using suffix gpu without GPU package installed

Self-explanatory.

Using suffix intel without USER-INTEL package installed

Self-explanatory.

Using suffix kk without KOKKOS package enabled

Self-explanatory.

Using suffix omp without USER-OMP package installed

Self-explanatory.

Using update dipole flag requires atom attribute mu

Self-explanatory.

Using update dipole flag requires atom style sphere

Self-explanatory.

Variable ID in variable formula does not exist
Self-explanatory.

Variable atom ID is too large

Specified ID is larger than the maximum allowed atom ID.
Variable evaluation before simulation box is defined

Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been setup.

Variable evaluation in fix wall gave bad value

The returned value for epsilon or sigma < 0.0.

Variable evaluation in region gave bad value
Variable returned a radius < 0.0.

Variable for compute ti is invalid style
Self-explanatory.

Variable for create_atoms is invalid style

The variables must be equal-style variables.

Variable for displace_atoms is invalid style

It must be an equal-style or atom-style variable.

Variable for dump every is invalid style

Only equal-style variables can be used.

Variable for dump image center is invalid style
Must be an equal-style variable.
Variable for dump image persp is invalid style
Must be an equal-style variable.
Variable for dump image phi is invalid style
Must be an equal-style variable.
Variable for dump image theta is invalid style
Must be an equal-style variable.
Variable for dump image zoom is invalid style
Must be an equal-style variable.
Variable for fix adapt is invalid style

Only equal-style variables can be used.

248

Variable for fix addforce is invalid style
Self-explanatory.
Variable for fix aveforce is invalid style
Only equal-style variables can be used.
Variable for fix deform is invalid style

The variable must be an equal-style variable.

Variable for fix efield is invalid style

The variable must be an equal- or atom-style variable.

Variable for fix gravity is invalid style
Only equal-style variables can be used.
Variable for fix heat is invalid style

Only equal-style or atom-style variables can be used.

Variable for fix indent is invalid style

Only equal-style variables can be used.
Variable for fix indent is not equal style

Only equal-style variables can be used.
Variable for fix langevin is invalid style

It must be an equal-style variable.
Variable for fix move is invalid style

Only equal-style variables can be used.
Variable for fix setforce is invalid style

Only equal-style variables can be used.
Variable for fix temp/berendsen is invalid style

Only equal-style variables can be used.
Variable for fix temp/csld is invalid style

Only equal-style variables can be used.
Variable for fix temp/csvr is invalid style

Only equal-style variables can be used.
Variable for fix temp/rescale is invalid style

Only equal-style variables can be used.
Variable for fix wall is invalid style

Only equal-style variables can be used.
Variable for fix wall/reflect is invalid style

Only equal-style variables can be used.
Variable for fix wall/srd is invalid style

Only equal-style variables can be used.
Variable for group dynamic is invalid style

The variable must be an atom-style variable.

Variable for group is invalid style
Only atom-style variables can be used.
Variable for region cylinder is invalid style
Only equal-style varaibles are allowed.
Variable for region is invalid style
Only equal-style variables can be used.
Variable for region is not equal style
Self-explanatory.
Variable for region sphere is invalid style
Only equal-style varaibles are allowed.
Variable for restart is invalid style
Only equal-style variables can be used.
Variable for set command is invalid style
Only atom-style variables can be used.

249

Variable for thermo every is invalid style

Only equal-style variables can be used.
Variable for velocity set is invalid style

Only atom-style variables can be used.
Variable for voronoi radius is not atom style

Self-explanatory.

Variable formula compute array is accessed out-of-range

Self-explanatory.

Variable formula compute vector is accessed out-of-range

Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable has circular dependency

A circular dependency is when variable "a" in used by variable "b" and variable "b" is also used by
varaible "a". Circular dependencies with longer chains of dependence are also not allowed.
Variable name between brackets must be alphanumeric or underscore characters

Self-explanatory.

Variable name for compute chunk/atom does not exist
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for compute ti does not exist
Self-explanatory.

Variable name for create_atoms does not exist
Self-explanatory.

Variable name for displace_atoms does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix adapt does not exist
Self-explanatory.

Variable name for fix addforce does not exist
Self-explanatory.

Variable name for fix ave/atom does not exist
Self-explanatory.

Variable name for fix ave/chunk does not exist
Self-explanatory.

Variable name for fix ave/correlate does not exist
Self-explanatory.

Variable name for fix ave/histo does not exist

250

Self-explanatory.
Variable name for fix ave/spatial does not exist

Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for fix aveforce does not exist
Self-explanatory.

Variable name for fix deform does not exist
Self-explantory.

Variable name for fix efield does not exist
Self-explanatory.

Variable name for fix gravity does not exist
Self-explanatory.

Variable name for fix heat does not exist
Self-explanatory.

Variable name for fix indent does not exist
Self-explanatory.

Variable name for fix langevin does not exist
Self-explanatory.

Variable name for fix move does not exist
Self-explanatory.

Variable name for fix setforce does not exist
Self-explanatory.

Variable name for fix store/state does not exist
Self-explanatory.

Variable name for fix temp/berendsen does not exist
Self-explanatory.

Variable name for fix temp/csld does not exist
Self-explanatory.

Variable name for fix temp/csvr does not exist
Self-explanatory.

Variable name for fix temp/rescale does not exist
Self-explanatory.

Variable name for fix vector does not exist
Self-explanatory.

Variable name for fix wall does not exist
Self-explanatory.

Variable name for fix wall/reflect does not exist
Self-explanatory.

Variable name for fix wall/srd does not exist
Self-explanatory.

Variable name for group does not exist
Self-explanatory.

Variable name for group dynamic does not exist
Self-explanatory.

Variable name for region cylinder does not exist
Self-explanatory.

Variable name for region does not exist
Self-explanatory.

Variable name for region sphere does not exist
Self-explanatory.

Variable name for restart does not exist

251

Self-explanatory.
Variable name for set command does not exist
Self-explanatory.
Variable name for thermo every does not exist
Self-explanatory.
Variable name for velocity set does not exist
Self-explanatory.
Variable name for voronoi radius does not exist
Self-explanatory.
Variable name must be alphanumeric or underscore characters
Self-explanatory.
Variable uses atom property that isn't allocated
Self-explanatory.
Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.
Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem
Self-explanatory.
Velocity rigid used with non-rigid fix-ID
Self-explanatory.
Velocity temperature ID does calculate a velocity bias
The specified compute must compute a bias for temperature.
Velocity temperature ID does not compute temperature
The compute ID given to the velocity command must compute temperature.
Verlet/split can only currently be used with comm_style brick
This is a current restriction in LAMMPS.
Verlet/split does not yet support TIP4P
This is a current limitation.
Verlet/split requires 2 partitions
See the -partition command-line switch.
Verlet/split requires Rspace partition layout be multiple of Kspace partition layout in each dim
This is controlled by the processors command.
Verlet/split requires Rspace partition size be multiple of Kspace partition size
This is so there is an equal number of Rspace processors for every Kspace processor.
Virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Voro++ error: narea and neigh have a different size
This error is returned by the Voro++ library.
Wall defined twice in fix wall command
Self-explanatory.
Wall defined twice in fix wall/reflect command
Self-explanatory.
Wall defined twice in fix wall/srd command
Self-explanatory.
Water H epsilon must be 0.0 for pair style lj/cut/tip4p/cut
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.
Water H epsilon must be 0.0 for pair style lj/cut/tip4p/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.

252

Water H epsilon must be 0.0 for pair style lj/long/tip4dp/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.
World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.
Write_data command before simulation box is defined
Self-explanatory.
Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.
Writing to MPI-10 filename when MPIIO package is not installed
Self-explanatory.
Zero length rotation vector with displace_atoms
Self-explanatory.
Zero length rotation vector with fix move
Self-explanatory.
Zero-length lattice orient vector
Self-explanatory.

Warnings:

Adjusting Coulombic cutoff for MSM, new cutoff = %g
The adjust/cutoff command is turned on and the Coulombic cutoff has been adjusted to match the
user-specified accuracy.
Angle atoms missing at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.
Angle style in data file differs from currently defined angle style
Self-explanatory.
Atom style in data file differs from currently defined atom style
Self-explanatory.
Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in image check
The 2nd atom in a particular bond is missing on this processor. Typically this is because the pairwise
cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atoms missing at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond style in data file differs from currently defined bond style
Self-explanatory.
Bond/angle/dihedral extent > half of periodic box length
This is a restriction because LAMMPS can be confused about which image of an atom in the bonded
interaction is the correct one to use. "Extent" in this context means the maximum end-to-end length of the
bond/angle/dihedral. LAMMPS computes this by taking the maximum bond length, multiplying by the
number of bonds in the interaction (e.g. 3 for a dihedral) and adding a small amount of stretch.
Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be
non-zero
Self-explantory.
Calling write_dump before a full system init.
The write_dump command is used before the system has been fully initialized as part of a 'run' or
'minimize' command. Not all dump styles and features are fully supported at this point and thus the

253

command may fail or produce incomplete or incorrect output. Insert a "run 0" command, if a full system
init is required.
Cannot count rigid body degrees-of-freedom before bodies are fully initialized
This means the temperature associated with the rigid bodies may be incorrect on this timestep.
Cannot count rigid body degrees-of-freedom before bodies are initialized
This means the temperature associated with the rigid bodies may be incorrect on this timestep.
Cannot include log terms without 1/r terms, setting flagHI to 1
Self-explanatory.
Cannot include log terms without 1/r terms, setting flagHI to 1.
Self-explanatory.
Charges are set, but coulombic solver is not used
Self-explanatory.
Charges did not converge at step %ld: %lg
Self-explanatory.
Communication cutoff is too small for SNAP micro load balancing, increased to %lf
Self-explanatory.
Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.
Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees-of-freedom for the atoms in those partial rigid bodies will not be
accounted for.
Create_bonds max distance > minimum neighbor cutoff
This means atom pairs for some atom types may not be in the neighbor list and thus no bond can be
created between them.
Delete_atoms cutoff > minimum neighbor cutoff
This means atom pairs for some atom types may not be in the neighbor list and thus an atom in that pair
cannot be deleted.
Dihedral atoms missing at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral problem
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Dihedral problem: %od %ld %d %od Yod %od
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Dihedral style in data file differs from currently defined dihedral style
Self-explanatory.
Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.
Energy tally does not account for 'zero yes'
The energy removed by using the 'zero yes' flag is not accounted for in the energy tally and thus energy
conservation cannot be monitored in this case.
Estimated error in splitting of dispersion coeffs is %g
Error is greater than 0.0001 percent.
Ewald/disp Newton solver failed, using old method to estimate g_ewald
Self-explanatory. Choosing a different cutoff value may help.
FENE bond too long
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
FENE bond too long: %ld %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to

254

prevent the bond from blowing up.
FENE bond too long: %ld %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
Fix SRD walls overlap but fix srd overlap not set
You likely want to set this in your input script.
Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.
Fix deposit near setting < possible overlap separation %g
This test is performed for finite size particles with a diameter, not for point particles. The near setting is
smaller than the particle diameter which can lead to overlaps.
Fix evaporate may delete atom with non-zero molecule 1D
This is probably an error, since you should not delete only one atom of a molecule.
Fix gcmc using full_energy option
Fix gcmc has automatically turned on the full_energy option since it is required for systems like the one
specified by the user. User input included one or more of the following: kspace, triclinic, a hybrid pair
style, an eam pair style, or no "single" function for the pair style.
Fix property/atom mol or charge w/out ghost communication
A model typically needs these properties defined for ghost atoms.
Fix geq CG convergence failed (%g) after %d iterations at %ld step
Self-explanatory.
Fix geq has non-zero lower Taper radius cutoff
Absolute value must be <= 0.01.
Fix geq has very low Taper radius cutoff
Value should typically be >=5.0.
Fix geq/dynamic tolerance may be too small for damped dynamics
Self-explanatory.
Fix geq/fire tolerance may be too small for damped fires
Self-explanatory.
Fix rattle should come after all other integration fixes
This fix is designed to work after all other integration fixes change atom positions. Thus it should be the
last integration fix specified. If not, it will not satisfy the desired constraints as well as it otherwise would.
Fix recenter should come after all other integration fixes
Other fixes may change the position of the center-of-mass, so fix recenter should come last.
Fix srd SRD moves may trigger frequent reneighboring
This is because the SRD particles may move long distances.
Fix srd grid size > 1/4 of big particle diameter
This may cause accuracy problems.
Fix srd particle moved outside valid domain
This may indicate a problem with your simulation parameters.
Fix srd particles may move > big particle diameter
This may cause accuracy problems.
Fix srd viscosity < 0.0 due to low SRD density
This may cause accuracy problems.
Fix thermal/conductivity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you are
using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may cause a
glitch in the profile since you are averaging immediately after swaps have occurred. Flipping the order of
the 2 fixes typically helps.
Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the

255

profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2 fixes
typically helps.

Fixes cannot send data in Kokkos communication, switching to classic communication
This is current restriction with Kokkos.

For better accuracy use 'pair_modify table 0'
The user-specified force accuracy cannot be achieved unless the table feature is disabled by using
"pair_modify table 0'.

Geometric mixing assumed for 1/r\6 coefficients
Self-explanatory.

Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

H matrix size has been exceeded: m_fill=%d H.m=%d\n
This is the size of the matrix.

Ignoring unknown or incorrect info command flag
Self-explanatory. An unknown argument was given to the info command. Compare your input with the
documentation.

Improper atoms missing at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.

Improper problem: Yod %ld %d %d Yod Yod
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.

Improper style in data file differs from currently defined improper style
Self-explanatory.

Inconsistent image flags
The image flags for a pair on bonded atoms appear to be inconsistent. Inconsistent means that when the
coordinates of the two atoms are unwrapped using the image flags, the two atoms are far apart.
Specifically they are further apart than half a periodic box length. Or they are more than a box length
apart in a non-periodic dimension. This is usually due to the initial data file not having correct image flags
for the 2 atoms in a bond that straddles a periodic boundary. They should be different by 1 in that case.
This is a warning because inconsistent image flags will not cause problems for dynamics or most
LAMMPS simulations. However they can cause problems when such atoms are used with the fix rigid or
replicate commands.

KIM Model does not provide “energy'; Potential energy will be zero
Self-explanatory.

KIM Model does not provide “forces'; Forces will be zero
Self-explanatory.

KIM Model does not provide “particleEnergy'; energy per atom will be zero
Self-explanatory.

KIM Model does not provide “particleVirial'; virial per atom will be zero
Self-explanatory.

Kspace_modify slab param < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space do
not overlap.

Less insertions than requested
The fix pour command was unsuccessful at finding open space for as many particles as it tried to insert.

Library error in lammps_gather_atoms
This library function cannot be used if atom IDs are not defined or are not consecutively numbered.

Library error in lammps_scatter_atoms
This library function cannot be used if atom IDs are not defined or are not consecutively numbered, or if

256

no atom map is defined. See the atom_modify command for details about atom maps.
Lost atoms via change_box: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms via displace_atoms: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
MSM mesh too small, increasing to 2 points in each direction
Self-explanatory.
Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms that
velocities are being set for.
Mixing forced for lj coefficients
Self-explanatory.
Molecule attributes do not match system attributes
An attribute is specified (e.g. diameter, charge) that is not defined for the specified atom style.
Molecule has bond topology but no special bond settings
This means the bonded atoms will not be excluded in pair-wise interactions.
Molecule template for create_atoms has multiple molecules
The create_atoms command will only create molecules of a single type, i.e. the first molecule in the
template.
Molecule template for fix gcmc has multiple molecules
The fix gecmc command will only create molecules of a single type, i.e. the first molecule in the template.
Molecule template for fix shake has multiple molecules
The fix shake command will only recoginze molecules of a single type, i.e. the first molecule in the
template.
More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.
More than one compute cluster/atom
It is not efficient to use compute cluster/atom more than once.
More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.
More than one compute contact/atom
It is not efficient to use compute contact/atom more than once.
More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.
More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.
More than one compute dilatation/atom
Self-explanatory.
More than one compute erotate/sphere/atom
It is not efficient to use compute erorate/sphere/atom more than once.
More than one compute hexorder/atom
It is not efficient to use compute hexorder/atom more than once.
More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.
More than one compute orientorder/atom
It is not efficient to use compute orientorder/atom more than once.
More than one compute plasticity/atom
Self-explanatory.

257

More than one compute sna/atom
Self-explanatory.

More than one compute snad/atom
Self-explanatory.

More than one compute snav/atom
Self-explanatory.

More than one fix poems
It is not efficient to use fix poems more than once.

More than one fix rigid
It is not efficient to use fix rigid more than once.

Neighbor exclusions used with KSpace solver may give inconsistent Coulombic energies
This is because excluding specific pair interactions also excludes them from long-range interactions
which may not be the desired effect. The special_bonds command handles this consistently by insuring
excluded (or weighted) 1-2, 1-3, 1-4 interactions are treated consistently by both the short-range pair style
and the long-range solver. This is not done for exclusions of charged atom pairs via the neigh_modify
exclude command.

New thermo_style command, previous thermo_modify settings will be lost
If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new style.

No Kspace calculation with verlet/split
The 2nd partition performs a kspace calculation so the kspace_style command must be used.

No automatic unit conversion to XTC file format conventions possible for units j
This means no scaling will be performed.

No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.

No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion, but
it would be more efficient to use fix rigid.

Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set of
units.

Number of MSM mesh points changed to be a multiple of 2
MSM requires that the number of grid points in each direction be a multiple of two and the number of
grid points in one or more directions have been adjusted to meet this requirement.

OMP_NUM_THREADS environment is not set.
This environment variable must be set appropriately to use the USER-OMP pacakge.

One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an atom
more than once per timestep.

One or more chunks do not contain all atoms in molecule
This may not be what you intended.

One or more dynamic groups may not be updated at correct point in timestep
If there are other fixes that act immediately after the intitial stage of time integration within a timestep
(i.e. after atoms move), then the command that sets up the dynamic group should appear after those fixes.
This will insure that dynamic group assignements are made after all atoms have moved.

One or more respa levels compute no forces
This is computationally inefficient.

Pair COMB charge %.10f with force %.10f hit max barrier
Something is possibly wrong with your model.

Pair COMB charge %.10f with force %.10f hit min barrier

258

Something is possibly wrong with your model.

Pair brownian needs newton pair on for momentum conservation
Self-explanatory.

Fair dpd needs newton pair on for momentum conservation
Self-explanatory.

Pair dsmc: num_of_collisions > number_of_A
Collision model in DSMC is breaking down.

Pair dsmc: num_of_collisions > number_of B
Collision model in DSMC is breaking down.

Pair style in data file differs from currently defined pair style
Self-explanatory.

Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume fraction
may be too high, or other atoms may be in the insertion region.

Proc sub-domain size < neighbor skin, could lead to lost atoms
The decomposition of the physical domain (likely due to load balancing) has led to a processor's
sub-domain being smaller than the neighbor skin in one or more dimensions. Since reneighboring is
triggered by atoms moving the skin distance, this may lead to lost atoms, if an atom moves all the way
across a neighboring processor's sub-domain before reneighboring is triggered.

Reducing PPPM order b/c stencil extends beyond nearest neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Reducing PPPMDisp Coulomb order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Reducing PPPMDisp dispersion order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you are
specifying does not match the old group.

Replicating in a non-periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this may
cause unwanted behavior.

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during TAD
A TAD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of processors.
Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of processors.

259

Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.
Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.
Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.
Restart file used different newton pair setting, using input script value
The input script value will override the setting in the restart file.
Restrain problem: %d %ld %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Running PRD with only one replica
This is allowed, but you will get no parallel speed-up.
SRD bin shifting turned on due to small lamda
This is done to try to preserve accuracy.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
SRD particle %d started inside wall %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.
Shell command '%s’ failed with error '%os’
Self-explanatory.
Shell command returned with non-zero status
This may indicate the shell command did not operate as expected.
Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.
Should not use fix nve/limit with fix shake or fix rattle
This will lead to invalid constraint forces in the SHAKE/RATTLE computation.
Simulations might be very slow because of large number of structure factors
Self-explanatory.
Slab correction not needed for MSM
Slab correction is intended to be used with Ewald or PPPM and is not needed by MSM.
System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0. For some KSpace solvers this is only a warning.
Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.
Temperature for MSST is not for group all
User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also be for
all atoms. Thus the pressure used by MSST could be inaccurate.
Temperature for NPT is not for group all
User-assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT computes a
global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms.
Thus the pressure used by NPT could be inaccurate.

260

Temperature for fix modify is not for group all

The temperature compute is being used with a pressure calculation which does operate on group all, so

this may be inconsistent.
Temperature for thermo pressure is not for group all

User-assigned temperature to thermo via the thermo_modify command does not compute temperature for
all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the temperature

is assumed to also be for all atoms. Thus the pressure printed by thermo could be inaccurate.
The fix ave/spatial command has been replaced by the more flexible fix ave/chunk and compute chunk/atom
commands -- fix ave/spatial will be removed in the summer of 2015

Self-explanatory.

The minimizer does not re-orient dipoles when using fix efield
This means that only the atom coordinates will be minimized, not the orientation of the dipoles.

Too many common neighbors in CNA %d times

More than the maximum # of neighbors was found multiple times. This was unexpected.

Too many inner timesteps in fix ttm
Self-explanatory.
Too many neighbors in CNA for %d atoms

More than the maximum # of neighbors was found multiple times. This was unexpected.

Triclinic box skew is large

The displacement in a skewed direction is normally required to be less than half the box length in that
dimension. E.g. the xy tilt must be between -half and +half of the x box length. You have relaxed the
constraint using the box tilt command, but the warning means that a LAMMPS simulation may be

inefficient as a result.
Use special bonds = 0,1,1 with bond style fene

Most FENE models need this setting for the special_bonds command.

Use special bonds = 0,1,1 with bond style fene/expand

Most FENE models need this setting for the special_bonds command.
Using a manybody potential with bonds/angles/dihedrals and special_bond exclusions

This is likely not what you want to do. The exclusion settings will eliminate neighbors in the neighbor

list, which the manybody potential needs to calculated its terms correctly.
Using compute temp/deform with inconsistent fix deform remap option

Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap none" as

a fix deform option.
Using compute temp/deform with no fix deform defined

This is probably an error, since it makes little sense to use compute temp/deform in this case.
Using fix srd with box deformation but no SRD thermostat
The deformation will heat the SRD particles so this can be dangerous.

Using kspace solver on system with no charge
Self-explanatory.

Using largest cut-off for lj/long/dipole/long long long
Self-explanatory.

Using largest cutoff for buck/long/coul/long
Self-exlanatory.

Using largest cutoff for lj/long/coul/long
Self-explanatory.

Using largest cutoff for pair_style lj/long/tip4p/long
Self-explanatory.

Using package gpu without any pair style defined
Self-explanatory.

Using pair potential shift with pair_modify compute no
The shift effects will thus not be computed.

Using pair tail corrections with nonperiodic system

261

This is probably a bogus thing to do, since tail corrections are computed by integrating the density of a
periodic system out to infinity.

Using pair tail corrections with pair_modify compute no
The tail corrections will thus not be computed.

pair style reax is now deprecated and will soon be retired. Users should switch to pair_style reax/c
Self-explanatory.

262

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

13. Future and history

This section lists features we plan to add to LAMMPS, features of previous versions of LAMMPS, and features of
other parallel molecular dynamics codes our group has distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions
The Wish list link on the LAMMPS WWW page gives a list of features we are hoping to add to LAMMPS in the
future, including contact names of individuals you can email if you are interested in contributing to the

developement or would be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research & development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). The goal was to develop a large-scale parallel classical MD code; the coding effort was led by Steve
Plimpton at Sandia.

After the CRADA ended, a final F77 version, LAMMPS 99, was released. As development of LAMMPS
continued at Sandia, its memory management was converted to F90; a final FO0 version was released as
LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released as an open source code in 2004. It
includes many new features beyond those in LAMMPS 99 or 2001. It also includes features from older parallel
MD codes written at Sandia, namely ParaDyn, Warp, and GranFlow (see below).

In late 2006 we began merging new capabilities into LAMMPS that were developed by Aidan Thompson at
Sandia for his MD code GRASP, which has a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF - and the associated charge-equilibration
routines needed for ReaxFF.

The History link on the LAMMPS WWW page gives a timeline of features added to the C++ open-source version
of LAMMPS over the last several years.

These older codes are available for download from the LAMMPS WWW site, except for Warp & GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001
¢ F90 + MPI
¢ dynamic memory

e spatial-decomposition parallelism
e NVE, NVT, NPT, NPH, rRESPA integrators

263

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/history.html
http://lammps.sandia.gov

¢ L.J and Coulombic pairwise force fields

¢ all-atom, united-atom, bead-spring polymer force fields
¢ CHARMM-compatible force fields

o class 2 force fields

¢ 3d/2d Ewald & PPPM

¢ various force and temperature constraints

e SHAKE

¢ Hessian-free truncated-Newton minimizer

¢ user-defined diagnostics

LAMMPS 99

e F77 + MPI

¢ static memory allocation

¢ spatial-decomposition parallelism

¢ most of the LAMMPS 2001 features with a few exceptions
¢ no 2d Ewald & PPPM

¢ molecular force fields are missing a few CHARMM terms
¢ no SHAKE

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ embedded atom method (EAM) metal potentials + LJ

¢ lattice and grain-boundary atom creation

¢ NVE, NVT integrators

¢ boundary conditions for applying shear stresses

¢ temperature controls for actively sheared systems

e per-atom energy and centro-symmetry computation and output

ParaDyn

e F77 + MPI

¢ atom- and force-decomposition parallelism

¢ embedded atom method (EAM) metal potentials

e Jattice atom creation

¢ NVE, NVT, NPT integrators

e all serial DYNAMO features for controls and constraints

GranFlow

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ frictional granular potentials

¢ NVE integrator

¢ boundary conditions for granular flow and packing and walls
¢ particle insertion

264

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview
5.3.1 USER-CUDA package

The USER-CUDA package was developed by Christian Trott (Sandia) while at U Technology Ilmenau in
Germany. It provides NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range
Coulombics via the PPPM command. It has the following general features:

¢ The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely on
the GPU (except for inter-processor MPI communication), so that atom-based data (e.g. coordinates,
forces) do not have to move back-and-forth between the CPU and GPU.

¢ The speed-up advantage of this approach is typically better when the number of atoms per GPU is large

¢ Data will stay on the GPU until a timestep where a non-USER-CUDA fix or compute is invoked.
Whenever a non-GPU operation occurs (fix, compute, output), data automatically moves back to the CPU
as needed. This may incur a performance penalty, but should otherwise work transparently.

¢ Neighbor lists are constructed on the GPU.

¢ The package only supports use of a single MPI task, running on a single CPU (core), assigned to each
GPU.

Here is a quick overview of how to use the USER-CUDA package:

¢ build the library in lib/cuda for your GPU hardware with desired precision
¢ include the USER-CUDA package and build LAMMPS

¢ use the mpirun command to specify 1 MPI task per GPU (on each node)

¢ enable the USER-CUDA package via the "-c on" command-line switch

e specify the # of GPUs per node

¢ use USER-CUDA styles in your input script

The latter two steps can be done using the "-pk cuda" and "-sf cuda" command-line switches respectively. Or the
effect of the "-pk" or "-sf" switches can be duplicated by adding the package cuda or suffix cuda commands
respectively to your input script.

Required hardware/software:

To use this package, you need to have one or more NVIDIA GPUs and install the NVIDIA Cuda software on your
system:

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Install the Nvidia Cuda Toolkit (version 3.2 or higher) and the corresponding GPU drivers. The Nvidia Cuda SDK
is not required, but we recommend it also be installed. You can then make sure its sample projects can be
compiled without problems.

Building LAMMPS with the USER-CUDA package:

This requires two steps (a,b): build the USER-CUDA library, then build LAMMPS with the USER-CUDA
package.

265

http://lammps.sandia.gov

You can do both these steps in one line, using the src/Make.py script, described in Section 2.4 of the manual.
Type "Make.py -h" for help. If run from the src directory, this command will create src/lmp_cuda using
src/MAKE/Makefile.mpi as the starting Makefile.machine:

Make.py -p cuda -cuda mode=single arch=20 -o cuda -a lib-cuda file mpi
Or you can follow these two (a,b) steps:
(a) Build the USER-CUDA library

The USER-CUDA library is in lammps/lib/cuda. If your CUDA toolkit is not installed in the default system
directoy /usr/local/cuda edit the file lib/cuda/Makefile.common accordingly.

To build the library with the settings in lib/cuda/Makefile.default, simply type:
make

To set options when the library is built, type "make OPTIONS", where OPTIONS are one or more of the
following. The settings will be written to the lib/cuda/Makefile.defaults before the build.

precision=N to set the precision level

N = 1 for single precision (default)

N = 2 for double precision

N = 3 for positions in double precision

N = 4 for positions and velocities in double precision

arch=M to set GPU compute capability
M = 35 for Kepler GPUs
M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
M = 13 for CCl.3 (GF200, e.g. C1060, GTX285)
prec_timer=0/1 to use hi-precision timers
0 = do not use them (default)
1 = use them
this is usually only useful for Mac machines
dbg=0/1 to activate debug mode
0 = no debug mode (default)
1 = yes debug mode
this is only useful for developers
cufft=1 for use of the CUDA FFT library
0 = no CUFFT support (default)
in the future other CUDA-enabled FFT libraries might be supported

If the build is successful, it will produce the files liblammpscuda.a and Makefile.lammps.

Note that if you change any of the options (like precision), you need to re-build the entire library. Do a "make
clean" first, followed by "make".

(b) Build LAMMPS with the USER-CUDA package

cd lammps/src
make yes-user—-cuda
make machine

No additional compile/link flags are needed in Makefile.machine.

Note that if you change the USER-CUDA library precision (discussed above) and rebuild the USER-CUDA
library, then you also need to re-install the USER-CUDA package and re-build LAMMPS, so that all affected

266

files are re-compiled and linked to the new USER-CUDA library.
Run with the USER-CUDA package from the command line:

The mpirun or mpiexec command sets the total number of MPI tasks used by LAMMPS (one or multiple per
compute node) and the number of MPI tasks used per node. E.g. the mpirun command in MPICH does this via its
-np and -ppn switches. Ditto for OpenMPI via -np and -npernode.

When using the USER-CUDA package, you must use exactly one MPI task per physical GPU.

You must use the "-c on" command-line switch to enable the USER-CUDA package. The "-c on" switch also
issues a default package cuda 1 command which sets various USER-CUDA options to default values, as discussed
on the package command doc page.

Use the "-sf cuda" command-line switch, which will automatically append "cuda" to styles that support it. Use the
"-pk cuda Ng" command-line switch to set Ng = # of GPUs per node to a different value than the default set by
the "-c on" switch (1 GPU) or change other package cuda options.

lmp_machine -c on -sf cuda -pk cuda 1 -in in.script # 1 MPI task uses 1 GPU
mpirun -np 2 lmp_machine -c on -sf cuda -pk cuda 2 -in in.script # 2 MPI tasks use 2 GPUs o
mpirun -np 24 -ppn 2 lmp_machine -c on -sf cuda -pk cuda 2 -in in.script # ditto on 12 16-core node

The syntax for the "-pk" switch is the same as same as the "package cuda" command. See the package command
doc page for details, including the default values used for all its options if it is not specified.

Note that the default for the package cuda command is to set the Newton flag to "off" for both pairwise and
bonded interactions. This typically gives fastest performance. If the newton command is used in the input script, it
can override these defaults.

Or run with the USER-CUDA package by editing an input script:

The discussion above for the mpirun/mpiexec command and the requirement of one MPI task per GPU is the
same.

You must still use the "-c on" command-line switch to enable the USER-CUDA package.

Use the suffix cuda command, or you can explicitly add a "cuda" suffix to individual styles in your input script,
e.g.

pair_style 1j/cut/cuda 2.5

You only need to use the package cuda command if you wish to change any of its option defaults, including the
number of GPUs/node (default = 1), as set by the "-c on" command-line switch.

Speed-ups to expect:

The performance of a GPU versus a multi-core CPU is a function of your hardware, which pair style is used, the
number of atoms/GPU, and the precision used on the GPU (double, single, mixed).

See the Benchmark page of the LAMMPS web site for performance of the USER-CUDA package on different
hardware.

Guidelines for best performance:

267

http://lammps.sandia.gov/bench.html

¢ The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms
per GPU is large, e.g. on the order of tens or hundreds of 1000s.

¢ As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for
inter-processor MPI communication), for multiple timesteps, until a CPU calculation is required, either by
a fix or compute that is non-GPU-ized, or until output is performed (thermo or dump snapshot or restart
file). The less often this occurs, the faster your simulation will run.

Restrictions:

None.

268

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview
5.3.2 GPU package

The GPU package was developed by Mike Brown at ORNL and his collaborators, particularly Trung Nguyen
(ORNL). It provides GPU versions of many pair styles, including the 3-body Stillinger-Weber pair style, and for
kspace_style pppm for long-range Coulombics. It has the following general features:

e It is designed to exploit common GPU hardware configurations where one or more GPUs are coupled to
many cores of one or more multi-core CPUs, e.g. within a node of a parallel machine.

¢ Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

¢ Neighbor lists can be built on the CPU or on the GPU

¢ The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

¢ Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.

e [t allows for GPU computations to be performed in single or double precision, or in mixed-mode
precision, where pairwise forces are computed in single precision, but accumulated into double-precision
force vectors.

e L AMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

Here is a quick overview of how to use the GPU package:

¢ build the library in lib/gpu for your GPU hardware wity desired precision

¢ include the GPU package and build LAMMPS

¢ use the mpirun command to set the number of MPI tasks/node which determines the number of MPI
tasks/GPU

e specify the # of GPUs per node

¢ use GPU styles in your input script

The latter two steps can be done using the "-pk gpu" and "-sf gpu" command-line switches respectively. Or the
effect of the "-pk" or "-sf" switches can be duplicated by adding the package gpu or suffix gpu commands
respectively to your input script.

Required hardware/software:

To use this package, you currently need to have an NVIDIA GPU and install the NVIDIA Cuda software on your
system:

® Check if you have an NVIDIA GPU: cat /proc/driver/nvidia/gpus/O/information

¢ Go to http://www.nvidia.com/object/cuda_get.html

¢ Install a driver and toolkit appropriate for your system (SDK is not necessary)

¢ Run lammps/lib/gpu/nvc_get_devices (after building the GPU library, see below) to list supported devices
and properties

Building LAMMPS with the GPU package:

This requires two steps (a,b): build the GPU library, then build LAMMPS with the GPU package.

269

http://lammps.sandia.gov

You can do both these steps in one line, using the src/Make.py script, described in Section 2.4 of the manual.
Type "Make.py -h" for help. If run from the src directory, this command will create src/lmp_gpu using
src/MAKE/Makefile.mpi as the starting Makefile.machine:

Make.py -p gpu -gpu mode=single arch=31 -o gpu -a lib-gpu file mpi
Or you can follow these two (a,b) steps:

(a) Build the GPU library

The GPU library is in lammps/lib/gpu. Select a Makefile.machine (in lib/gpu) appropriate for your system. You
should pay special attention to 3 settings in this makefile.

¢ CUDA_HOME = needs to be where NVIDIA Cuda software is installed on your system
e CUDA_ARCH = needs to be appropriate to your GPUs
¢ CUDA_PREC = precision (double, mixed, single) you desire

See lib/gpu/Makefile.linux.double for examples of the ARCH settings for different GPU choices, e.g. Fermi vs
Kepler. It also lists the possible precision settings:

CUDA_PREC = -D_SINGLE_SINGLE # single precision for all calculations
CUDA_PREC = -D_DOUBLE_DOUBLE # double precision for all calculations
CUDA_PREC = -D_SINGLE_DOUBLE # accumulation of forces, etc, in double

The last setting is the mixed mode referred to above. Note that your GPU must support double precision to use
either the 2nd or 3rd of these settings.

To build the library, type:

make -f Makefile.machine

If successful, it will produce the files libgpu.a and Makefile.lammps.

The latter file has 3 settings that need to be appropriate for the paths and settings for the CUDA system software
on your machine. Makefile.lammps is a copy of the file specified by the EXTRAMAKE setting in

Makefile.machine. You can change EXTRAMAKE or create your own Makefile.lammps.machine if needed.

Note that to change the precision of the GPU library, you need to re-build the entire library. Do a "clean" first, e.g.
"make -f Makefile.linux clean", followed by the make command above.

(b) Build LAMMPS with the GPU package

cd lammps/src
make yes—-gpu
make machine

No additional compile/link flags are needed in Makefile.machine.

Note that if you change the GPU library precision (discussed above) and rebuild the GPU library, then you also
need to re-install the GPU package and re-build LAMMPS, so that all affected files are re-compiled and linked to
the new GPU library.

Run with the GPU package from the command line:

270

The mpirun or mpiexec command sets the total number of MPI tasks used by LAMMPS (one or multiple per
compute node) and the number of MPI tasks used per node. E.g. the mpirun command in MPICH does this via its
-np and -ppn switches. Ditto for OpenMPI via -np and -npernode.

When using the GPU package, you cannot assign more than one GPU to a single MPI task. However multiple
MPI tasks can share the same GPU, and in many cases it will be more efficient to run this way. Likewise it may
be more efficient to use less MPI tasks/node than the available # of CPU cores. Assignment of multiple MPI tasks
to a GPU will happen automatically if you create more MPI tasks/node than there are GPUs/mode. E.g. with 8
MPI tasks/node and 2 GPUs, each GPU will be shared by 4 MPI tasks.

Use the "-sf gpu" command-line switch, which will automatically append "gpu" to styles that support it. Use the
"-pk gpu Ng" command-line switch to set Ng = # of GPUs/node to use.

Ilmp_machine -sf gpu -pk gpu 1 -in in.script # 1 MPI task uses 1 GPU
mpirun -np 12 lmp_machine -sf gpu -pk gpu 2 -in in.script # 12 MPI tasks share 2 GPUs on a
mpirun -np 48 -ppn 12 lmp_machine -sf gpu -pk gpu 2 -in in.script # ditto on 4 l6-core nodes

Note that if the "-sf gpu" switch is used, it also issues a default package gpu 1 command, which sets the number of
GPUs/node to 1.

Using the "-pk" switch explicitly allows for setting of the number of GPUs/node to use and additional options. Its
syntax is the same as same as the "package gpu" command. See the package command doc page for details,
including the default values used for all its options if it is not specified.

Note that the default for the package gpu command is to set the Newton flag to "off" pairwise interactions. It does
not affect the setting for bonded interactions (LAMMPS default is "on"). The "off" setting for pairwise interaction
is currently required for GPU package pair styles.

Or run with the GPU package by editing an input script:

The discussion above for the mpirun/mpiexec command, MPI tasks/node, and use of multiple MPI tasks/GPU is
the same.

Use the suffix gpu command, or you can explicitly add an "gpu" suffix to individual styles in your input script,
e.g.

pair_style 1j/cut/gpu 2.5

You must also use the package gpu command to enable the GPU package, unless the "-sf gpu" or "-pk gpu"
command-line switches were used. It specifies the number of GPUs/node to use, as well as other options.

Speed-ups to expect:

The performance of a GPU versus a multi-core CPU is a function of your hardware, which pair style is used, the
number of atoms/GPU, and the precision used on the GPU (double, single, mixed).

See the Benchmark page of the LAMMPS web site for performance of the GPU package on various hardware,
including the Titan HPC platform at ORNL.

You should also experiment with how many MPI tasks per GPU to use to give the best performance for your
problem and machine. This is also a function of the problem size and the pair style being using. Likewise, you
should experiment with the precision setting for the GPU library to see if single or mixed precision will give
accurate results, since they will typically be faster.

271

http://lammps.sandia.gov/bench.html

Guidelines for best performance:

¢ Using multiple MPI tasks per GPU will often give the best performance, as allowed my most multi-core
CPU/GPU configurations.

o If the number of particles per MPI task is small (e.g. 100s of particles), it can be more efficient to run
with fewer MPI tasks per GPU, even if you do not use all the cores on the compute node.

¢ The package gpu command has several options for tuning performance. Neighbor lists can be built on the
GPU or CPU. Force calculations can be dynamically balanced across the CPU cores and GPUs.
GPU-specific settings can be made which can be optimized for different hardware. See the packakge
command doc page for details.

® As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of
the time required to complete the CPU pair style computations and the time required to complete the GPU
pair style computations. Any time spent for GPU-enabled pair styles for computations that run
simultaneously with bond, angle, dihedral, improper, and long-range calculations will not be included in
the "Pair" time.

® When the mode setting for the package gpu command is force/neigh, the time for neighbor list
calculations on the GPU will be added into the "Pair" time, not the "Neigh" time. An additional
breakdown of the times required for various tasks on the GPU (data copy, neighbor calculations, force
computations, etc) are output only with the LAMMPS screen output (not in the log file) at the end of each
run. These timings represent total time spent on the GPU for each routine, regardless of asynchronous
CPU calculations.

¢ The output section "GPU Time Info (average)" reports "Max Mem / Proc". This is the maximum memory
used at one time on the GPU for data storage by a single MPI process.

Restrictions:

None.

272

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview
5.3.3 USER-INTEL package

The USER-INTEL package was developed by Mike Brown at Intel Corporation. It provides two methods for
accelerating simulations, depending on the hardware you have. The first is acceleration on Intel(R) CPUs by
running in single, mixed, or double precision with vectorization. The second is acceleration on Intel(R) Xeon
Phi(TM) coprocessors via offloading neighbor list and non-bonded force calculations to the Phi. The same C++
code is used in both cases. When offloading to a coprocessor from a CPU, the same routine is run twice, once on
the CPU and once with an offload flag.

Note that the USER-INTEL package supports use of the Phi in "offload" mode, not "native" mode like the
KOKKOS package.

Also note that the USER-INTEL package can be used in tandem with the USER-OMP package. This is useful
when offloading pair style computations to the Phi, so that other styles not supported by the USER-INTEL
package, e.g. bond, angle, dihedral, improper, and long-range electrostatics, can run simultaneously in threaded
mode on the CPU cores. Since less MPI tasks than CPU cores will typically be invoked when running with
coprocessors, this enables the extra CPU cores to be used for useful computation.

As illustrated below, if LAMMPS is built with both the USER-INTEL and USER-OMP packages, this dual mode
of operation is made easier to use, via the "-suffix hybrid intel omp" command-line switch or the suffix hybrid
intel omp command. Both set a second-choice suffix to "omp" so that styles from the USER-INTEL package will
be used if available, with styles from the USER-OMP package as a second choice.

Here is a quick overview of how to use the USER-INTEL package for CPU acceleration, assuming one or more
16-core nodes. More details follow.

use an Intel compiler
use these CCFLAGS settings in Makefile.machine: -fopenmp, -DLAMMPS_MEMALIGN=64, -restrict, -xHost, -
use these LINKFLAGS settings in Makefile.machine: -fopenmp, -xHost

make yes-user—-intel yes-user-omp # including user-omp is optional

make mpi # build with the USER-INTEL package, if settings (including com
make intel_cpu # or Makefile.intel_cpu already has settings, uses Intel MPI wr
Make.py -v -p intel omp -intel cpu -a file mpich_icc # or one-line build via Make.py for MPICH
Make.py -v -p intel omp -intel cpu -a file ompi_icc # or for OpenMPI

Make.py -v -p intel omp -intel cpu -a file intel_cpu # or for Intel MPI wrapper

lmp_machine -sf intel -pk intel 0 omp 16 —-in in.script # 1 node, 1 MPI task/node, 16 threads/task
mpirun -np 32 lmp_machine -sf intel -in in.script # 2 nodess, 16 MPI tasks/node, no threads,
lmp_machine -sf hybrid intel omp -pk intel 0 omp 16 -pk omp 16 -in in.script # 1 node, 1 MPI
mpirun -np 32 -ppn 4 lmp_machine -sf hybrid intel omp -pk omp 4 -pk omp 4 -in in.script # 8 nod

Here is a quick overview of how to use the USER-INTEL package for the same CPUs as above (16 cores/node),
with an additional Xeon Phi(TM) coprocessor per node. More details follow.

Same as above for building, with these additions/changes:

add the flag -DLMP_INTEL_OFFLOAD to CCFLAGS in Makefile.machine

add the flag -offload to LINKFLAGS in Makefile.machine

for Make.py change "-intel cpu" to "-intel phi", and "file intel_cpu" to "file intel_phi"

mpirun -np 32 lmp_machine -sf intel -pk intel 1 -in in.script # 2 nodes, 16 MPI task
mpirun -np 16 -ppn 8 lmp_machine -sf intel -pk intel 1 omp 2 -in in.script # 2 nodes, 8 M
mpirun -np 32 -ppn 8 lmp_machine -sf hybrid intel omp -pk intel 1 omp 2 -pk omp 2 —-in in.script # 4

273

http://lammps.sandia.gov

Required hardware/software:

Your compiler must support the OpenMP interface. Use of an Intel(R) C++ compiler is recommended, but not
required. However, g++ will not recognize some of the settings listed above, so they cannot be used.
Optimizations for vectorization have only been tested with the Intel(R) compiler. Use of other compilers may not
result in vectorization, or give poor performance.

The recommended version of the Intel(R) compiler is 14.0.1.106. Versions 15.0.1.133 and later are also
supported. If using Intel(R) MPI, versions 15.0.2.044 and later are recommended.

To use the offload option, you must have one or more Intel(R) Xeon Phi(TM) coprocessors and use an Intel(R)
C++ compiler.

Building LAMMPS with the USER-INTEL package:

The lines above illustrate how to include/build with the USER-INTEL package, for either CPU or Phi support, in
two steps, using the "make" command. Or how to do it with one command via the src/Make.py script, described
in Section 2.4 of the manual. Type "Make.py -h" for help. Because the mechanism for specifing what compiler to
use (Intel in this case) is different for different MPI wrappers, 3 versions of the Make.py command are shown.

Note that if you build with support for a Phi coprocessor, the same binary can be used on nodes with or without
coprocessors installed. However, if you do not have coprocessors on your system, building without offload
support will produce a smaller binary.

If you also build with the USER-OMP package, you can use styles from both packages, as described below.

Note that the CCFLAGS and LINKFLAGS settings in Makefile.machine must include "-fopenmp". Likewise, if
you use an Intel compiler, the CCFLAGS setting must include "-restrict". For Phi support, the
"-DLMP_INTEL_OFFLOAD" (CCFLAGS) and "-offload" (LINKFLAGS) settings are required. The other
settings listed above are optional, but will typically improve performance. The Make.py command will add all of
these automatically.

If you are compiling on the same architecture that will be used for the runs, adding the flag -xHost to CCFLAGS
enables vectorization with the Intel(R) compiler. Otherwise, you must provide the correct compute node
architecture to the -x option (e.g. -xAVX).

Example machines makefiles Makefile.intel_cpu and Makefile.intel_phi are included in the src/MAKE/OPTIONS
directory with settings that perform well with the Intel(R) compiler. The latter has support for offload to Phi
coprocessors; the former does not.

Run with the USER-INTEL package from the command line:

The mpirun or mpiexec command sets the total number of MPI tasks used by LAMMPS (one or multiple per
compute node) and the number of MPI tasks used per node. E.g. the mpirun command in MPICH does this via its
-np and -ppn switches. Ditto for OpenMPI via -np and -npernode.

If you compute (any portion of) pairwise interactions using USER-INTEL pair styles on the CPU, or use
USER-OMP styles on the CPU, you need to choose how many OpenMP threads per MPI task to use. If both
packages are used, it must be done for both packages, and the same thread count value should be used for both.
Note that the product of MPI tasks * threads/task should not exceed the physical number of cores (on a node),
otherwise performance will suffer.

274

When using the USER-INTEL package for the Phi, you also need to specify the number of coprocessor/node and
optionally the number of coprocessor threads per MPI task to use. Note that coprocessor threads (which run on the
coprocessor) are totally independent from OpenMP threads (which run on the CPU). The default values for the
settings that affect coprocessor threads are typically fine, as discussed below.

As in the lines above, use the "-sf intel" or "-sf hybrid intel omp" command-line switch, which will automatically
append "intel" to styles that support it. In the second case, "omp" will be appended if an "intel" style does not
exist.

Note that if either switch is used, it also invokes a default command: package intel 1. If the "-sf hybrid intel omp"
switch is used, the default USER-OMP command package omp O is also invoked (if LAMMPS was built with
USER-OMP). Both set the number of OpenMP threads per MPI task via the OMP_NUM_THREADS
environment variable. The first command sets the number of Xeon Phi(TM) coprocessors/node to 1 (ignored if
USER-INTEL is built for CPU-only), and the precision mode to "mixed" (default value).

You can also use the "-pk intel Nphi" command-line switch to explicitly set Nphi = # of Xeon Phi(TM)
coprocessors/node, as well as additional options. Nphi should be >= 1 if LAMMPS was built with coprocessor
support, otherswise Nphi = 0 for a CPU-only build. All the available coprocessor threads on each Phi will be
divided among MPI tasks, unless the tptask option of the "-pk intel" command-line switch is used to limit the
coprocessor threads per MPI task. See the package intel command for details, including the default values used
for all its options if not specified, and how to set the number of OpenMP threads via the OMP_NUM_THREADS
environment variable if desired.

If LAMMPS was built with the USER-OMP package, you can also use the "-pk omp Nt" command-line switch to
explicitly set Nt = # of OpenMP threads per MPI task to use, as well as additional options. Nt should be the same
threads per MPI task as set for the USER-INTEL package, e.g. via the "-pk intel Nphi omp Nt" command. Again,
see the package omp command for details, including the default values used for all its options if not specified, and
how to set the number of OpenMP threads via the OMP_NUM_THREADS environment variable if desired.

Or run with the USER-INTEL package by editing an input script:

The discussion above for the mpirun/mpiexec command, MPI tasks/node, OpenMP threads per MPI task, and
coprocessor threads per MPI task is the same.

Use the suffix intel or suffix hybrid intel omp commands, or you can explicitly add an "intel" or "omp" suffix to
individual styles in your input script, e.g.

pair_style 1j/cut/intel 2.5

You must also use the package intel command, unless the "-sf intel" or "-pk intel" command-line switches were
used. It specifies how many coprocessors/node to use, as well as other OpenMP threading and coprocessor
options. The package doc page explains how to set the number of OpenMP threads via an environment variable if
desired.

If LAMMPS was also built with the USER-OMP package, you must also use the package omp command to
enable that package, unless the "-sf hybrid intel omp" or "-pk omp" command-line switches were used. It specifies
how many OpenMP threads per MPI task to use (should be same as the setting for the USER-INTEL package), as
well as other options. Its doc page explains how to set the number of OpenMP threads via an environment
variable if desired.

Speed-ups to expect:

275

If LAMMPS was not built with coprocessor support (CPU only) when including the USER-INTEL package, then
acclerated styles will run on the CPU using vectorization optimizations and the specified precision. This may give
a substantial speed-up for a pair style, particularly if mixed or single precision is used.

If LAMMPS was built with coproccesor support, the pair styles will run on one or more Intel(R) Xeon Phi(TM)
coprocessors (per node). The performance of a Xeon Phi versus a multi-core CPU is a function of your hardware,
which pair style is used, the number of atoms/coprocessor, and the precision used on the coprocessor (double,
single, mixed).

See the Benchmark page of the LAMMPS web site for performance of the USER-INTEL package on different
hardware.

NOTE: Setting core affinity is often used to pin MPI tasks and OpenMP threads to a core or group of cores so that
memory access can be uniform. Unless disabled at build time, affinity for MPI tasks and OpenMP threads on the
host (CPU) will be set by default on the host when using offload to a coprocessor. In this case, it is unnecessary to
use other methods to control affinity (e.g. taskset, numactl, I_MPI_PIN_DOMAIN, etc.). This can be disabled in
an input script with the no_affinity option to the package intel command or by disabling the option at build time
(by adding -DINTEL_OFFLOAD_NOAFFINITY to the CCFLAGS line of your Makefile). Disabling this option
is not recommended, especially when running on a machine with hyperthreading disabled.

Guidelines for best performance on an Intel(R) Xeon Phi(TM) coprocessor:

¢ The default for the package intel command is to have all the MPI tasks on a given compute node use a
single Xeon Phi(TM) coprocessor. In general, running with a large number of MPI tasks on each node
will perform best with offload. Each MPI task will automatically get affinity to a subset of the hardware
threads available on the coprocessor. For example, if your card has 61 cores, with 60 cores available for
offload and 4 hardware threads per core (240 total threads), running with 24 MPI tasks per node will
cause each MPI task to use a subset of 10 threads on the coprocessor. Fine tuning of the number of
threads to use per MPI task or the number of threads to use per core can be accomplished with keyword
settings of the package intel command.

¢ [f desired, only a fraction of the pair style computation can be offloaded to the coprocessors. This is
accomplished by using the balance keyword in the package intel command. A balance of O runs all
calculations on the CPU. A balance of 1 runs all calculations on the coprocessor. A balance of 0.5 runs
half of the calculations on the coprocessor. Setting the balance to -1 (the default) will enable dynamic
load balancing that continously adjusts the fraction of offloaded work throughout the simulation. This
option typically produces results within 5 to 10 percent of the optimal fixed balance.

® When using offload with CPU hyperthreading disabled, it may help performance to use fewer MPI tasks
and OpenMP threads than available cores. This is due to the fact that additional threads are generated
internally to handle the asynchronous offload tasks.

¢ If running short benchmark runs with dynamic load balancing, adding a short warm-up run (10-20 steps)
will allow the load-balancer to find a near-optimal setting that will carry over to additional runs.

¢ [f pair computations are being offloaded to an Intel(R) Xeon Phi(TM) coprocessor, a diagnostic line is
printed to the screen (not to the log file), during the setup phase of a run, indicating that offload mode is
being used and indicating the number of coprocessor threads per MPI task. Additionally, an offload
timing summary is printed at the end of each run. When offloading, the frequency for atom sorting is
changed to 1 so that the per-atom data is effectively sorted at every rebuild of the neighbor lists.

¢ For simulations with long-range electrostatics or bond, angle, dihedral, improper calculations,
computation and data transfer to the coprocessor will run concurrently with computations and MPI
communications for these calculations on the host CPU. The USER-INTEL package has two modes for
deciding which atoms will be handled by the coprocessor. This choice is controlled with the ghost
keyword of the package intel command. When set to 0, ghost atoms (atoms at the borders between MPI
tasks) are not offloaded to the card. This allows for overlap of MPI communication of forces with

276

http://lammps.sandia.gov/bench.html

computation on the coprocessor when the newton setting is "on". The default is dependent on the style
being used, however, better performance may be achieved by setting this option explictly.

Restrictions:

When offloading to a coprocessor, hybrid styles that require skip lists for neighbor builds cannot be offloaded.
Using hybrid/overlay is allowed. Only one intel accelerated style may be used with hybrid styles. Special_bonds
exclusion lists are not currently supported with offload, however, the same effect can often be accomplished by
setting cutoffs for excluded atom types to 0. None of the pair styles in the USER-INTEL package currently

support the "inner", "middle", "outer" options for rRESPA integration via the run_style respa command; only the
"pair" option is supported.

277

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview
5.3.4 KOKKOS package

The KOKKOS package was developed primarily by Christian Trott (Sandia) with contributions of various styles
by others, including Sikandar Mashayak (UIUC), Stan Moore (Sandia), and Ray Shan (Sandia). The underlying
Kokkos library was written primarily by Carter Edwards, Christian Trott, and Dan Sunderland (all Sandia).

The KOKKOS package contains versions of pair, fix, and atom styles that use data structures and macros
provided by the Kokkos library, which is included with LAMMPS in lib/kokkos.

The Kokkos library is part of Trilinos and can also be downloaded from Github. Kokkos is a templated C++
library that provides two key abstractions for an application like LAMMPS. First, it allows a single
implementation of an application kernel (e.g. a pair style) to run efficiently on different kinds of hardware, such as
a GPU, Intel Phi, or many-core CPU.

The Kokkos library also provides data abstractions to adjust (at compile time) the memory layout of basic data
structures like 2d and 3d arrays and allow the transparent utilization of special hardware load and store operations.
Such data structures are used in LAMMPS to store atom coordinates or forces or neighbor lists. The layout is
chosen to optimize performance on different platforms. Again this functionality is hidden from the developer, and
does not affect how the kernel is coded.

These abstractions are set at build time, when LAMMPS is compiled with the KOKKOS package installed. All
Kokkos operations occur within the context of an individual MPI task running on a single node of the machine.
The total number of MPI tasks used by LAMMPS (one or multiple per compute node) is set in the usual manner
via the mpirun or mpiexec commands, and is independent of Kokkos.

Kokkos currently provides support for 3 modes of execution (per MPI task). These are OpenMP (for many-core
CPUs), Cuda (for NVIDIA GPUs), and OpenMP (for Intel Phi). Note that the KOKKOS package supports
running on the Phi in native mode, not offload mode like the USER-INTEL package supports. You choose the
mode at build time to produce an executable compatible with specific hardware.

Here is a quick overview of how to use the KOKKOS package for CPU acceleration, assuming one or more
16-core nodes. More details follow.

use a C++11 compatible compiler make yes-kokkos make mpi KOKKOS_DEVICES=0OpenMP # build with the
KOKKOS package make kokkos_omp # or Makefile.kokkos_omp already has variable set Make.py -v -p kokkos
-kokkos omp -0 mpi -a file mpi # or one-line build via Make.py

mpirun -np 16 lmp_mpi -k on -sf kk —-in in.1lj # 1 node, 16 MPI tasks/node, no threads

mpirun -np 2 -ppn 1 lmp_mpi -k on t 16 -sf kk —-in in.1j # 2 nodes, 1 MPI task/node, 16 threads/tas
mpirun -np 2 lmp_mpi -k on t 8 -sf kk —-in in.1j # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 32 -ppn 4 lmp_mpi -k on t 4 -sf kk -in in.1j # 8 nodes, 4 MPI tasks/node, 4 threads/tas

e specify variables and settings in your Makefile.machine that enable OpenMP, GPU, or Phi support

¢ include the KOKKOS package and build LAMMPS

¢ enable the KOKKOS package and its hardware options via the "-k on" command-line switch use
KOKKOS styles in your input script

Here is a quick overview of how to use the KOKKOS package for GPUs, assuming one or more nodes, each with
16 cores and a GPU. More details follow.

278

http://lammps.sandia.gov
http://trilinos.sandia.gov/packages/kokkos
https://github.com/kokkos/kokkos

discuss use of NVCC, which Makefiles to examine

use a C++11 compatible compiler KOKKOS_DEVICES = Cuda, OpenMP KOKKOS_ARCH = Kepler35 make
yes-kokkos make machine Make.py -p kokkos -kokkos cuda arch=31 -o kokkos_cuda -a file kokkos_cuda

mpirun -np 1 lmp_cuda -k on t 6 -sf kk —-in in.1j # one MPI task, 6 threads on CPU
mpirun -np 4 -ppn 1 lmp_cuda -k on t 6 -sf kk —-in in.1j # ditto on 4 nodes

mpirun -np 2 lmp_cuda -k on t 8 g 2 -sf kk -in in.1j # two MPI tasks, 8 threads per CPU
mpirun -np 32 -ppn 2 lmp_cuda -k on t 8 g 2 -sf kk —-in in.1j # ditto on 16 nodes

Here is a quick overview of how to use the KOKKOS package for the Intel Phi:

use a C++11 compatible compiler

KOKKOS_DEVICES = OpenMP

KOKKOS_ARCH = KNC

make yes-—-kokkos

make machine

Make.py -p kokkos -kokkos phi -o kokkos_phi -a file mpi

host=MIC, Intel Phi with 61 cores (240 threads/phi via 4x hardware threading): mpirun -np 1 Imp_g++ -k on t 240
-sf kk -in in.lj # 1 MPI task on 1 Phi, 1*240 = 240 mpirun -np 30 Imp_g++ -k on t 8 -sf kk -in in.lj # 30 MPI tasks
on 1 Phi, 30*8 = 240 mpirun -np 12 Imp_g++ -k on t 20 -sf kk -in in.]j # 12 MPI tasks on 1 Phi, 12*%20 = 240
mpirun -np 96 -ppn 12 Imp_g++ -k on t 20 -sf kk -in in.lj # ditto on 8 Phis

Required hardware/software:

Kokkos support within LAMMPS must be built with a C++11 compatible compiler. If using gcc, version 4.8.1 or
later is required.

To build with Kokkos support for CPUs, your compiler must support the OpenMP interface. You should have one
or more multi-core CPUs so that multiple threads can be launched by each MPI task running on a CPU.

To build with Kokkos support for NVIDIA GPUs, NVIDIA Cuda software version 6.5 or later must be installed
on your system. See the discussion for the USER-CUDA and GPU packages for details of how to check and do
this.

NOTE: For good performance of the KOKKOS package on GPUs, you must have Kepler generation GPUs (or
later). The Kokkos library exploits texture cache options not supported by Telsa generation GPUs (or older).

To build with Kokkos support for Intel Xeon Phi coprocessors, your sysmte must be configured to use them in
"native" mode, not "offload" mode like the USER-INTEL package supports.

Building LAMMPS with the KOKKOS package:

You must choose at build time whether to build for CPUs (OpenMP), GPUs, or Phi.

You can do any of these in one line, using the src/Make.py script, described in Section 2.4 of the manual. Type
"Make.py -h" for help. If run from the src directory, these commands will create src/lmp_kokkos_omp,
Imp_kokkos_cuda, and Imp_kokkos_phi. Note that the OMP and PHI options use src/MAKE/Makefile.mpi as the
starting Makefile.machine. The CUDA option uses src/MAKE/OPTIONS/Makefile.kokkos_cuda.

The latter two steps can be done using the "-k on", "-pk kokkos" and "-sf kk" command-line switches
respectively. Or the effect of the "-pk" or "-sf" switches can be duplicated by adding the package kokkos or suffix

279

kk commands respectively to your input script.
Or you can follow these steps:

CPU-only (run all-MPI or with OpenMP threading):

cd lammps/src
make yes-—-kokkos
make gt++ KOKKOS_DEVICES=0OpenMP

Intel Xeon Phi:

cd lammps/src
make yes-—-kokkos
make gt++ KOKKOS_DEVICES=0OpenMP KOKKOS_ARCH=KNC

CPUs and GPUs:

cd lammps/src
make yes-—-kokkos
make cuda KOKKOS_DEVICES=Cuda

These examples set the KOKKOS-specific OMP, MIC, CUDA variables on the make command line which
requires a GNU-compatible make command. Try "gmake" if your system's standard make complains.

NOTE: If you build using make line variables and re-build LAMMPS twice with different KOKKOS options and
the *same™ target, e.g. g++ in the first two examples above, then you *must* perform a "make clean-all" or "make
clean-machine" before each build. This is to force all the KOKKOS-dependent files to be re-compiled with the
new options.

You can also hardwire these make variables in the specified machine makefile, e.g. scc/MAKE/Makefile.g++ in
the first two examples above, with a line like:

KOKKOS_ARCH = KNC

Note that if you build LAMMPS multiple times in this manner, using different KOKKOS options (defined in
different machine makefiles), you do not have to worry about doing a "clean" in between. This is because the
targets will be different.

NOTE: The 3rd example above for a GPU, uses a different machine makefile, in this case
src/MAKE/Makefile.cuda, which is included in the LAMMPS distribution. To build the KOKKOS package for a
GPU, this makefile must use the NVIDA "nvcc" compiler. And it must have a KOKKOS_ARCH setting that is
appropriate for your NVIDIA hardware and installed software. Typical values for KOKKOS_ARCH are given
below, as well as other settings that must be included in the machine makefile, if you create your own.

NOTE: Currently, there are no precision options with the KOKKOS package. All compilation and computation is
performed in double precision.

There are other allowed options when building with the KOKKOS package. As above, they can be set either as
variables on the make command line or in Makefile.machine. This is the full list of options, including those
discussed above, Each takes a value shown below. The default value is listed, which is set in the

lib/kokkos/Makefile.kokkos file.

#Default settings specific options #Options: force_uvm,use_ldg,rdc

280

e KOKKOS_DEVICES, values = OpenMP, Serial, Pthreads, Cuda, default = OpenMP

e KOKKOS_ARCH, values = KNC, SNB, HSW, Kepler, Kepler30, Kepler32, Kepler35, Kepler37,
Maxwell, Maxwell50, Maxwell52, Maxwell53, ARMvS, BGQ, Power7, Power8, default = none

e KOKKOS_DEBUG, values = yes, no, default = no

e KOKKOS_USE_TPLS, values = hwloc, librt, default = none

e KOKKOS_CUDA_OPTIONS, values = force_uvm, use_ldg, rdc

KOKKOS_DEVICE sets the parallelization method used for Kokkos code (within LAMMPS).
KOKKOS_DEVICES=0OpenMP means that OpenMP will be used. KOKKOS_DEVICES=Pthreads means that
pthreads will be used. KOKKOS_DEVICES=Cuda means an NVIDIA GPU running CUDA will be used.

If KOKKOS_DEVICES=Cuda, then the lo-level Makefile in the src/MAKE directory must use "nvcc" as its
compiler, via its CC setting. For best performance its CCFLAGS setting should use -O3 and have a
KOKKOS_ARCH setting that matches the compute capability of your NVIDIA hardware and software
installation, e.g. KOKKOS_ARCH=Kepler30. Note the minimal required compute capability is 2.0, but this will
give signicantly reduced performance compared to Kepler generation GPUs with compute capability 3.x. For the
LINK setting, "nvce" should not be used; instead use g++ or another compiler suitable for linking C++
applications. Often you will want to use your MPI compiler wrapper for this setting (i.e. mpicxx). Finally, the
lo-level Makefile must also have a "Compilation rule" for creating *.o files from *.cu files. See src/Makefile.cuda
for an example of a lo-level Makefile with all of these settings.

KOKKOS_USE_TPLS=hwloc binds threads to hardware cores, so they do not migrate during a simulation.
KOKKOS_USE_TPLS=hwloc should always be used if running with KOKKOS_DEVICES=Pthreads for
pthreads. It is not necessary for KOKKOS_DEVICES=0OpenMP for OpenMP, because OpenMP provides
alternative methods via environment variables for binding threads to hardware cores. More info on binding
threads to cores is given in this section.

KOKKOS_ARCH=KNC enables compiler switches needed when compling for an Intel Phi processor.

KOKKOS_USE_TPLS=librt enables use of a more accurate timer mechanism on most Unix platforms. This
library is not available on all platforms.

KOKKOS_DEBUG is only useful when developing a Kokkos-enabled style within LAMMPS.
KOKKOS_DEBUG=yes enables printing of run-time debugging information that can be useful. It also enables
runtime bounds checking on Kokkos data structures.

KOKKOS_CUDA_OPTIONS are additional options for CUDA.

For more information on Kokkos see the Kokkos programmers' guide here: /lib/kokkos/doc/Kokkos_PG.pdf.
Run with the KOKKOS package from the command line:

The mpirun or mpiexec command sets the total number of MPI tasks used by LAMMPS (one or multiple per
compute node) and the number of MPI tasks used per node. E.g. the mpirun command in MPICH does this via its
-np and -ppn switches. Ditto for OpenMPI via -np and -npernode.

When using KOKKOS built with host=OMP, you need to choose how many OpenMP threads per MP1 task will
be used (via the "-k" command-line switch discussed below). Note that the product of MPI tasks * OpenMP

threads/task should not exceed the physical number of cores (on a node), otherwise performance will suffer.

When using the KOKKOS package built with device=CUDA, you must use exactly one MPI task per physical
GPU.

281

When using the KOKKOS package built with host=MIC for Intel Xeon Phi coprocessor support you need to
insure there are one or more MPI tasks per coprocessor, and choose the number of coprocessor threads to use per
MPI task (via the "-k" command-line switch discussed below). The product of MPI tasks * coprocessor
threads/task should not exceed the maximum number of threads the coproprocessor is designed to run, otherwise
performance will suffer. This value is 240 for current generation Xeon Phi(TM) chips, which is 60 physical cores
* 4 threads/core. Note that with the KOKKOS package you do not need to specify how many Phi coprocessors
there are per node; each coprocessors is simply treated as running some number of MPI tasks.

You must use the "-k on" command-line switch to enable the KOKKOS package. It takes additional arguments for
hardware settings appropriate to your system. Those arguments are documented here. The two most commonly
used options are:

-k on t Nt g Ng

The "t Nt" option applies to host=OMP (even if device=CUDA) and host=MIC. For host=OMP, it specifies how
many OpenMP threads per MPI task to use with a node. For host=MIC, it specifies how many Xeon Phi threads
per MPI task to use within a node. The default is Nt = 1. Note that for host=OMP this is effectively MPI-only
mode which may be fine. But for host=MIC you will typically end up using far less than all the 240 available
threads, which could give very poor performance.

The "g Ng" option applies to device=CUDA. It specifies how many GPUs per compute node to use. The default is
1, so this only needs to be specified is you have 2 or more GPUs per compute node.

The "-k on" switch also issues a "package kokkos" command (with no additional arguments) which sets various
KOKKOS options to default values, as discussed on the package command doc page.

Use the "-sf kk" command-line switch, which will automatically append "kk" to styles that support it. Use the "-pk

kokkos" command-line switch if you wish to change any of the default package kokkos optionns set by the "-k
on" command-line switch.

Note that the default for the package kokkos command is to use "full” neighbor lists and set the Newton flag to
"off" for both pairwise and bonded interactions. This typically gives fastest performance. If the newton command
is used in the input script, it can override the Newton flag defaults.

However, when running in MPI-only mode with 1 thread per MPI task, it will typically be faster to use "half"
neighbor lists and set the Newton flag to "on", just as is the case for non-accelerated pair styles. You can do this
with the "-pk" command-line switch.

Or run with the KOKKOS package by editing an input script:

The discussion above for the mpirun/mpiexec command and setting appropriate thread and GPU values for
host=OMP or host=MIC or device=CUDA are the same.

You must still use the "-k on" command-line switch to enable the KOKKOS package, and specify its additional
arguments for hardware options appopriate to your system, as documented above.

Use the suffix kk command, or you can explicitly add a "kk" suffix to individual styles in your input script, e.g.
pair_style 1j/cut/kk 2.5

You only need to use the package kokkos command if you wish to change any of its option defaults, as set by the
"-k on" command-line switch.

282

Speed-ups to expect:

The performance of KOKKOS running in different modes is a function of your hardware, which
KOKKOS-enable styles are used, and the problem size.

Generally speaking, the following rules of thumb apply:

¢ When running on CPUs only, with a single thread per MPI task, performance of a KOKKOS style is
somewhere between the standard (un-accelerated) styles (MPI-only mode), and those provided by the
USER-OMP package. However the difference between all 3 is small (less than 20%).

¢ When running on CPUs only, with multiple threads per MPI task, performance of a KOKKOS style is a
bit slower than the USER-OMP package.

® When running on GPUs, KOKKOS is typically faster than the USER-CUDA and GPU packages.

® When running on Intel Xeon Phi, KOKKOS is not as fast as the USER-INTEL package, which is
optimized for that hardware.

See the Benchmark page of the LAMMPS web site for performance of the KOKKOS package on different
hardware.

Guidelines for best performance:
Here are guidline for using the KOKKOS package on the different hardware configurations listed above.

Many of the guidelines use the package kokkos command See its doc page for details and default settings.
Experimenting with its options can provide a speed-up for specific calculations.

Running on a multi-core CPU:

If N is the number of physical cores/node, then the number of MPI tasks/node * number of threads/task should not
exceed N, and should typically equal N. Note that the default threads/task is 1, as set by the "t" keyword of the
"-k" command-line switch. If you do not change this, no additional parallelism (beyond MPI) will be invoked on
the host CPU(s).

You can compare the performance running in different modes:

e run with 1 MPI task/node and N threads/task
e run with N MPI tasks/node and 1 thread/task
¢ run with settings in between these extremes

Examples of mpirun commands in these modes are shown above.

When using KOKKOS to perform multi-threading, it is important for performance to bind both MPI tasks to
physical cores, and threads to physical cores, so they do not migrate during a simulation.

If you are not certain MPI tasks are being bound (check the defaults for your MPI installation), binding can be
forced with these flags:

OpenMPI 1.8: mpirun -np 2 -bind-to socket -map-by socket ./lmp_openmpi ...
Mvapich2 2.0: mpiexec -np 2 -bind-to socket -map-by socket ./lmp_mvapich ...

For binding threads with the KOKKOS OMP option, use thread affinity environment variables to force binding.

With OpenMP 3.1 (gcc 4.7 or later, intel 12 or later) setting the environment variable OMP_PROC_BIND=true
should be sufficient. For binding threads with the KOKKOS pthreads option, compile LAMMPS the KOKKOS

283

http://lammps.sandia.gov/bench.html

HWLOC=yes option, as discussed in Section 2.3.4 of the manual.
Running on GPUs:

Insure the -arch setting in the machine makefile you are using, e.g. scc/MAKE/Makefile.cuda, is correct for your
GPU hardware/software (see this section of the manual for details).

The -np setting of the mpirun command should set the number of MPI tasks/node to be equal to the # of physical
GPUs on the node.

Use the "-k" command-line switch to specify the number of GPUs per node, and the number of threads per MPI
task. As above for multi-core CPUs (and no GPU), if N is the number of physical cores/node, then the number of
MPI tasks/node * number of threads/task should not exceed N. With one GPU (and one MPI task) it may be faster
to use less than all the available cores, by setting threads/task to a smaller value. This is because using all the
cores on a dual-socket node will incur extra cost to copy memory from the 2nd socket to the GPU.

Examples of mpirun commands that follow these rules are shown above.

NOTE: When using a GPU, you will achieve the best performance if your input script does not use any fix or
compute styles which are not yet Kokkos-enabled. This allows data to stay on the GPU for multiple timesteps,
without being copied back to the host CPU. Invoking a non-Kokkos fix or compute, or performing I/O for thermo
or dump output will cause data to be copied back to the CPU.

You cannot yet assign multiple MPI tasks to the same GPU with the KOKKOS package. We plan to support this
in the future, similar to the GPU package in LAMMPS.

You cannot yet use both the host (multi-threaded) and device (GPU) together to compute pairwise interactions
with the KOKKOS package. We hope to support this in the future, similar to the GPU package in LAMMPS.

Running on an Intel Phi:

Kokkos only uses Intel Phi processors in their "native" mode, i.e. not hosted by a CPU.

As illustrated above, build LAMMPS with OMP=yes (the default) and MIC=yes. The latter insures code is
correctly compiled for the Intel Phi. The OMP setting means OpenMP will be used for parallelization on the Phi,
which is currently the best option within Kokkos. In the future, other options may be added.

Current-generation Intel Phi chips have either 61 or 57 cores. One core should be excluded for running the OS,
leaving 60 or 56 cores. Each core is hyperthreaded, so there are effectively N = 240 (4*60) or N = 224 (4*56)
cores to run on.

The -np setting of the mpirun command sets the number of MPI tasks/node. The "-k on t Nt" command-line
switch sets the number of threads/task as Nt. The product of these 2 values should be N, i.e. 240 or 224. Also, the
number of threads/task should be a multiple of 4 so that logical threads from more than one MPI task do not run
on the same physical core.

Examples of mpirun commands that follow these rules are shown above.

Restrictions:

As noted above, if using GPUs, the number of MPI tasks per compute node should equal to the number of GPUs
per compute node. In the future Kokkos will support assigning multiple MPI tasks to a single GPU.

284

Currently Kokkos does not support AMD GPUs due to limits in the available backend programming models.
Specifically, Kokkos requires extensive C++ support from the Kernel language. This is expected to change in the
future.

285

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview
5.3.5 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides multi-threaded
versions of most pair styles, nearly all bonded styles (bond, angle, dihedral, improper), several Kspace styles, and
a few fix styles. The package currently uses the OpenMP interface for multi-threading.

Here is a quick overview of how to use the USER-OMP package, assuming one or more 16-core nodes. More
details follow.

use —-fopenmp with CCFLAGS and LINKFLAGS in Makefile.machine
make yes-user-omp

make mpi # build with USER-OMP package, if settings added to Makef
make omp # or Makefile.omp already has settings

Make.py -v -p omp -o mpi -a file mpi # or one-line build via Make.py

Imp_mpi -sf omp -pk omp 16 <in.script # 1 MPI task, 16 threads

mpirun -np 4 lmp_mpi -sf omp -pk omp 4 -in in.script # 4 MPI tasks, 4 threads/task

mpirun -np 32 -ppn 4 lmp_mpi -sf omp -pk omp 4 —-in in.script # 8 nodes, 4 MPI tasks/node, 4 thread
Required hardware/software:

Your compiler must support the OpenMP interface. You should have one or more multi-core CPUs so that
multiple threads can be launched by each MPI task running on a CPU.

Building LAMMPS with the USER-OMP package:

The lines above illustrate how to include/build with the USER-OMP package in two steps, using the "make"
command. Or how to do it with one command via the src/Make.py script, described in Section 2.4 of the manual.
Type "Make.py -h" for help.

Note that the CCFLAGS and LINKFLAGS settings in Makefile.machine must include "-fopenmp". Likewise, if
you use an Intel compiler, the CCFLAGS setting must include "-restrict". The Make.py command will add these
automatically.

Run with the USER-OMP package from the command line:

The mpirun or mpiexec command sets the total number of MPI tasks used by LAMMPS (one or multiple per
compute node) and the number of MPI tasks used per node. E.g. the mpirun command in MPICH does this via its
-np and -ppn switches. Ditto for OpenMPI via -np and -npernode.

You need to choose how many OpenMP threads per MPI task will be used by the USER-OMP package. Note that
the product of MPI tasks * threads/task should not exceed the physical number of cores (on a node), otherwise
performance will suffer.

As in the lines above, use the "-sf omp" command-line switch, which will automatically append "omp" to styles
that support it. The "-sf omp" switch also issues a default package omp 0 command, which will set the number of

threads per MPI task via the OMP_NUM_THREADS environment variable.

You can also use the "-pk omp Nt" command-line switch, to explicitly set Nt = # of OpenMP threads per MPI
task to use, as well as additional options. Its syntax is the same as the package omp command whose doc page

286

http://lammps.sandia.gov

gives details, including the default values used if it is not specified. It also gives more details on how to set the
number of threads via the OMP_NUM_THREADS environment variable.

Or run with the USER-OMP package by editing an input script:
The discussion above for the mpirun/mpiexec command, MPI tasks/node, and threads/MPI task is the same.

Use the suffix omp command, or you can explicitly add an "omp" suffix to individual styles in your input script,
e.g.

pair_style 1j/cut/omp 2.5

You must also use the package omp command to enable the USER-OMP package. When you do this you also
specify how many threads per MPI task to use. The command doc page explains other options and how to set the
number of threads via the OMP_NUM_THREADS environment variable.

Speed-ups to expect:

Depending on which styles are accelerated, you should look for a reduction in the "Pair time", "Bond time",
"KSpace time", and "Loop time" values printed at the end of a run.

You may see a small performance advantage (5 to 20%) when running a USER-OMP style (in serial or parallel)
with a single thread per MPI task, versus running standard LAMMPS with its standard un-accelerated styles (in
serial or all-MPI parallelization with 1 task/core). This is because many of the USER-OMP styles contain similar
optimizations to those used in the OPT package, described in Section accelerate 5.3.6.

With multiple threads/task, the optimal choice of number of MPI tasks/node and OpenMP threads/task can vary a
lot and should always be tested via benchmark runs for a specific simulation running on a specific machine,
paying attention to guidelines discussed in the next sub-section.

A description of the multi-threading strategy used in the USER-OMP package and some performance examples
are presented here

Guidelines for best performance:

For many problems on current generation CPUs, running the USER-OMP package with a single thread/task is
faster than running with multiple threads/task. This is because the MPI parallelization in LAMMPS is often more
efficient than multi-threading as implemented in the USER-OMP package. The parallel efficiency (in a threaded
sense) also varies for different USER-OMP styles.

Using multiple threads/task can be more effective under the following circumstances:

¢ Individual compute nodes have a significant number of CPU cores but the CPU itself has limited memory
bandwidth, e.g. for Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad-core processors. Running
one MPI task per CPU core will result in significant performance degradation, so that running with 4 or
even only 2 MPI tasks per node is faster. Running in hybrid MPI+OpenMP mode will reduce the
inter-node communication bandwidth contention in the same way, but offers an additional speedup by
utilizing the otherwise idle CPU cores.

¢ The interconnect used for MPI communication does not provide sufficient bandwidth for a large number
of MPI tasks per node. For example, this applies to running over gigabit ethernet or on Cray XT4 or XTS5
series supercomputers. As in the aforementioned case, this effect worsens when using an increasing
number of nodes.

287

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

¢ The system has a spatially inhomogeneous particle density which does not map well to the domain
decomposition scheme or load-balancing options that LAMMPS provides. This is because
multi-threading achives parallelism over the number of particles, not via their distribution in space.

¢ A machine is being used in "capability mode", i.e. near the point where MPI parallelism is maxed out. For
example, this can happen when using the PPPM solver for long-range electrostatics on large numbers of
nodes. The scaling of the KSpace calculation (see the kspace_style command) becomes the
performance-limiting factor. Using multi-threading allows less MPI tasks to be invoked and can speed-up
the long-range solver, while increasing overall performance by parallelizing the pairwise and bonded
calculations via OpenMP. Likewise additional speedup can be sometimes be achived by increasing the
length of the Coulombic cutoff and thus reducing the work done by the long-range solver. Using the
run_style verlet/split command, which is compatible with the USER-OMP package, is an alternative way
to reduce the number of MPI tasks assigned to the KSpace calculation.

Additional performance tips are as follows:

¢ The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per
physical CPU chip, i.e. socket or die.

¢ [t is usually most efficient to restrict threading to a single socket, i.e. use one or more MPI task per
socket.

¢ NOTE: By default, several current MPI implementations use a processor affinity setting that restricts each
MPI task to a single CPU core. Using multi-threading in this mode will force all threads to share the one
core and thus is likely to be counterproductive. Instead, binding MPI tasks to a (multi-core) socket, should
solve this issue.

Restrictions:

None.

288

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Return to Section accelerate overview

5.3.6 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods were rewritten

in C++ templated form to reduce the overhead due to if tests and other conditional code.

Here is a quick overview of how to use the OPT package. More details follow.

make yes—-opt
make mpi # build with the OPT pacakge
Make.py -v -p opt -o mpi -a file mpi # or one-line build via Make.py

Imp_mpi -sf opt —-in in.script # run in serial
mpirun -np 4 lmp_mpi -sf opt —-in in.script # run in parallel

Required hardware/software:

None.

Building LAMMPS with the OPT package:

The lines above illustrate how to build LAMMPS with the OPT package in two steps, using the "make"
command. Or how to do it with one command via the src/Make.py script, described in Section 2.4 of the manual.

Type "Make.py -h" for help.

Note that if you use an Intel compiler to build with the OPT package, the CCFLAGS setting in your
Makefile.machine must include "-restrict". The Make.py command will add this automatically.

Run with the OPT package from the command line:

As in the lines above, use the "-sf opt" command-line switch, which will automatically append "opt" to styles that
support it.

Or run with the OPT package by editing an input script:

Use the suffix opt command, or you can explicitly add an "opt" suffix to individual styles in your input script, e.g.
pair_style 1j/cut/opt 2.5

Speed-ups to expect:

You should see a reduction in the "Pair time" value printed at the end of a run. On most machines for reasonable
problem sizes, it will be a 5 to 20% savings.

Guidelines for best performance:
Just try out an OPT pair style to see how it performs.

Restrictions:

289

http://lammps.sandia.gov

None.

290

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command
angle_style charmm/intel command
angle_style charmm/kk command

angle_style charmm/omp command
Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential
: - 2 i o e 2
FEF=K (9—00) —|—1X(__.-'B(‘I = ’L-"B)

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
thetaO, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian’2)

¢ thetaO (degrees)

¢ K_ub (energy/distance”2)
¢ r_ub (distance)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making

291

http://lammps.sandia.gov

LAMMPS section for more info.
You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

292

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command
Syntax:

angle_style class2

Examples:

angle_style class?2

angle_coeff * 75.0

angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

E = E,+ Ep+ Epg

E, = Ky —00)%+ K3(0—00)° + K40 — 6p)*
E{;.b = JI(I” — T"l)(?"jk o ?'g)
Epy = Nl(?"z'j —11)(0 — 6g) + Ny ("".jh‘ —12)(0 — 6p)

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the angle_coeff command
as in the example above, or in the data file or restart files read by the read_data or read_restart commands.

These are the 4 coefficients for the Ea formula:

¢ thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian™4)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K are
in per-radian.

For the Ebb formula, each line in a angle_coeff command in the input script lists 4 coefficients, the first of which
is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed under a
"BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the angle type.

293

http://lammps.sandia.gov

* bb

® M (energy/distance”2)
¢ r1 (distance)

¢ 2 (distance)

For the Eba formula, each line in a angle_coeff command in the input script lists 5 coefficients, the first of which
is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed under a
"BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the angle type.

® ba

® N1 (energy/distance”2)
® N2 (energy/distance”2)
¢ r1 (distance)

e 2 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS2 package. See the Making LAMMPS
section for more info on packages.

Related commands:
angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

294

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:
angle_coeff N args

¢ N = angle type (see asterisk form below)
e args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the coefficients
depends on the angle style. Angle coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For example,
these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients for
all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line that
corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle_style class2 is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
e angle_style hybrid - define multiple styles of angle interactions

295

http://lammps.sandia.gov

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
¢ angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

¢ angle_style harmonic - harmonic angle

¢ angle_style table - tabulated by angle

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.
Related commands:
angle_style

Default: none

296

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command
Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential
E = K|[1 + cos(6)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

297

http://lammps.sandia.gov

angle_coeff

Default: none

298

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command
Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential
E = K[1 — cos(0 — 6,)]
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

299

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_style cosine/squared

Default: none

300

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command
Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:
The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force

field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

E=C|[l1- B(—=1)"cos (nf)]

where C, B and n are coefficients defined for each angle type.
See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ C (energy)
eB=1or-1
en=1,2,3,4,5 or 6 for periodicity

Note that the prefactor C is specified and not the overall force constant K=C /n*2. When B =1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

301

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

302

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command
Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:

The cosine/shift angle style uses the potential

e _# [1+ Cos(0 — 6p)]

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood of
the minimum E=- Umin + Umin/4(theta-theta0)"2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

303

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshiftexp

Default: none

304

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command
Syntax:
angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

e —al(0,00) _ 1

E=—U_y., ; with U(6,6y) = —0.5 (1 + cos(0 — b))
pie—

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter can
be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented to
linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

305

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshift, dihedral_cosineshift

Default: none

306

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command
Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
- 2
E = K|cos(6) — cos(6)]

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

307

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

308

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command
Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi). Specifically,
the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with respect to a
reference (bond) vector r_ij =r_i - r_j, where '1' is another atom of the same molecule (typically, 'i' and 'j' are also

covalently bonded).

It is convenient to define an angle gamma between the 'free' vector mu_j and the reference (bond) vector r_ij:

_ Ei® Ty

15 Tij

(_‘(_) S A,r'l

The dipole angle style uses the potential:

E = K(cosvy — cos~p)?

— ATD " (™ " 0

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix C.3
of (Allen):

2K (cosvy — cos)

5 Tig

T; =

iz X [

Example: if gammad is set to O degrees, the torque generated by the potential will tend to align the dipole along
the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point towards atom

).

309

http://lammps.sandia.gov

The dipolar torque T_j must be counterbalanced in order to conserve the local angular momentum. This is
achieved via an additional force couple generating a torque equivalent to the opposite of T_j:

—T} = I” X E
g = iy

where F_i and F_j are applied on atoms i and j, respectively.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ gamma((degrees)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to restrain must come
before the atom ID of the reference atom 'i'. A third atom ID 'k' must also be provided, although 'k’ is just a
'dummy’ atom which can be any atom; it may be useful to choose a convention (e.g., 'k'='i') and adhere to it. For
example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom, the corresponding line in the
"Angles" section of the data file would read: X X 122

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle_coeff, angle_hybrid

310

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
€28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

311

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier command

angle_style fourier/omp command
Syntax:

angle_style fourier

Examples:

angle_style fourier angle_coeff 75.0 1.0 1.0 1.0
Description:

The fourier angle style uses the potential
E = K[Cy + C] cos(0) + C; cos(20)]

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ CO (real)
e C1 (real)
e C2 (real)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

312

http://lammps.sandia.gov

angle_coeff

Default: none

313

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier/simple command

angle_style fourier/simple/omp command
Syntax:

angle_style fourier/simple

Examples:

angle_style fourier/simple angle_coeff 100.0 -1.0 1.0
Description:

The fourier/simple angle style uses the potential
E = KJ[1.0 + ccos(nf)]

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
® ¢ (real)
® n (real)

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

314

http://lammps.sandia.gov

angle_coeff

Default: none

315

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command
angle_style harmonic/intel command
angle_style harmonic/kk command

angle_style harmonic/omp command
Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
2
E=K(@0-6)
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

316

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

317

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command

Syntax:
angle_style hybrid stylel style2 ...
e stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic potential
and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The assignment of
angle type to style is made via the angle_coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 angle_coeff commands set angles of
angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0 for K, theta0. All other angle
types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read_data command, then the same rule applies. E.g.
"harmonic" or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section, e.g.

Angle Coeffs
1 harmonic 80.0 30.0

2 cosine 50.0

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. L.e. class2 must be added to each line after
the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are not
class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs
1 skip

2 class2 3.6512 1.0119 1.0119

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class?2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

318

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify angle_coeff
commands.

Related commands:

angle_coeff

Default: none

319

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command

Syntax:

angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed in
the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

320

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style quartic command

angle_style quartic’/omp command
Syntax:

angle_style quartic

Examples:

angle_style quartic
angle_coeff 1 129.1948 56.8726 -25.9442 -14.2221

Description:

The qguartic angle style uses the potential
E = K0 —6y)* + K3(0 — 6p)° + K4(6 — 6)*

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian”4)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

321

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

322

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:
angle_style sdk

angle_style sdk/omp
Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,
2
E=K(®6 -6

where theta(is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lji/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style 1j/sdk. Relative to the pair_style [j/sdk, however, the energy is
shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2. The also required /j/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_style harmonic, pair_style 1j/sdk, pair_style lj/sdk/coul/long

Default: none

323

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command
Syntax:
angle_style style
e style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic
Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in force
for the duration of the simulation. The list of angle triplets is read in by a read_data or read_restart command from
a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

NOTE: When both an angle and pair style is defined, the special_bonds command often needs to be used to turn
off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
¢ angle_style hybrid - define multiple styles of angle interactions

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
e angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

324

http://lammps.sandia.gov

¢ angle_style harmonic - harmonic angle
¢ angle_style table - tabulated by angle

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULE package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

325

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:
angle_style table style N

e style = linear or spline = method of interpolation
e N =use N values in table

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRYL

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s) as a
function of angle The files are read by the angle_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and force
values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a section
of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Angle potential for harmonic (one or more comment or blank lines)

HAM
N 181 FP 0 0 EQ 90.0

(keyword is the first text on line)
(N, FP, EQ parameters)

(blank line)
(
(

=
=
©
i

FP 0 O N, FP parameters)

index, angle, energy, derivative)

N -
= O
o O
=N
o O
0 O
o Ul

326

http://lammps.sandia.gov

181 180.0 0.0 0.0

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the angle_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle_style table command. Let Ntable = N in the angle_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points. The resulting tables of length Ntable are then used as described above, when
computing energy and force for individual angles and their atoms. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd derivatives
at the innermost and outermost angle settings. These values are needed by the spline construction routines. If not
specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two derivative values
in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used, for
example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th is
-dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified angle.
The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the units of
the last term are still energy, not force. The angle values must increase from one line to the next. The angle values
must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without
the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL, KOKKOS, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making
LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

327

This angle style can only be used if LAMMPS was built with the MOLECULE package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

328

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command
Syntax:
atom_m