
CDF
Perl Reference Manual

Version 3.4, February 28, 2012

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2012
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

1 Compiling..1
1.1 How to use the Perl-CDF package.. 1

2 Programming Interface..3
2.1 Item Referencing ... 3
2.2 Passing Arguments .. 3
2.3 CDF Status Constants.. 4
2.4 CDF Formats ... 4
2.5 CDF Data Types .. 4
2.6 Data Encodings.. 5
2.7 Data Decodings.. 6
2.8 Variable Majorities.. 7
2.9 Record/Dimension Variances ... 8
2.10 Compressions... 8
2.11 Sparseness.. 9

2.11.1 Sparse Records .. 9
2.11.2 Sparse Arrays .. 9

2.12 Attribute Scopes .. 9
2.13 Read-Only Modes.. 9
2.14 zModes... 10
2.15 -0.0 to 0.0 Modes... 10
2.16 Operational Limits... 10
2.17 Limits of Names and Other Character Strings ... 11
2.18 Backward File Compatibility with CDF 2.7 .. 11
2.19 Checksum .. 12
2.20 Data Validation.. 14
2.21 8-Byte Integer .. 15

3 Standard Interface..17
3.1 CDFattrCreate.. 17

3.1.1 Example(s)... 18
3.2 CDFattrEntryInquire ... 18

3.2.1 Example(s)... 19
3.3 CDFattrGet .. 20

3.3.1 Example(s)... 20
3.4 CDFattrInquire... 21

3.4.1 Example(s)... 22
3.5 CDFattrNum .. 22

3.5.1 Example(s)... 23
3.6 CDFattrPut ... 23

3.6.1 Example(s)... 24
3.7 CDFattrRename... 25

3.7.1 Example(s)... 25
3.8 CDFclose ... 25

3.8.1 Example(s)... 26
3.9 CDFcreate .. 26

3.9.1 Example(s)... 27
3.10 CDFdelete .. 28

3.10.1 Example(s)... 28
3.11 CDFdoc.. 28

3.11.1 Example(s)... 29
3.12 CDFerror.. 29

3.12.1 Example(s)... 30
3.13 CDFgetChecksum ... 30

3.13.1 Example(s)... 30
3.14 CDFgetFileBackward.. 31

3.14.1 Example(s)... 31
3.15 CDFgetValidate... 31

3.15.1 Example(s)... 32
3.16 CDFinquire .. 32

3.16.1 Example(s)... 33
3.17 CDFopen.. 33

3.17.1 Example(s)... 34
3.18 CDFsetChecksum.. 34

3.18.1 Example(s)... 35
3.19 CDFsetFileBackward .. 35

3.19.1 Example(s)... 35
3.20 CDFsetValidate ... 36

3.20.1 Example(s)... 36
3.21 CDFvarClose ... 36

3.21.1 Example(s)... 37
3.22 CDFvarCreate.. 37

3.22.1 Example(s)... 38
3.23 CDFvarGet... 39

3.23.1 Example(s)... 39
3.24 CDFvHpGet... 40

3.24.1 Example(s)... 40
3.25 CDFvHpPut ... 41

3.25.1 Example(s)... 41
3.26 CDFvarInquire... 42

3.26.1 Example(s)... 43
3.27 CDFvarNum .. 43

3.27.1 Example(s)... 44
3.28 CDFvarPut ... 44

3.28.1 Example(s)... 45
3.29 CDFvarRename ... 45

3.29.1 Example(s)... 46

4 Internal Interface - CDFlib ..47
4.1 Example(s) ... 47
4.2 Current Objects/States (Items) .. 49
4.3 Returned Status.. 52
4.4 Indentation/Style.. 53
4.5 Syntax .. 53
4.6 Operations. . .. 54
4.7 More Examples.. 109

4.7.1 rVariable Creation... 109
4.7.2 zVariable Creation (Character Data Type)... 109
4.7.3 Hyper Read with Subsampling ... 110
4.7.4 Attribute Renaming... 111
4.7.5 Sequential Access.. 111
4.7.6 Attribute rEntry Writes ... 112
4.7.7 Multiple zVariable Write .. 112

4.8 A Potential Mistake We Don't Want You to Make.. 113

5 Interpreting CDF Status Codes ...115

6 EPOCH Utility Routines ..117
6.1 computeEPOCH .. 117
6.2 EPOCHbreakdown .. 117
6.3 encodeEPOCH... 118
6.4 encodeEPOCH1... 118
6.5 encodeEPOCH2... 118
6.6 encodeEPOCH3... 119
6.7 encodeEPOCH4... 119
6.8 encodeEPOCHx... 119
6.9 parseEPOCH.. 120
6.10 parseEPOCH1.. 120
6.11 parseEPOCH2.. 121
6.12 parseEPOCH3.. 121
6.13 parseEPOCH4.. 121
6.14 computeEPOCH16 .. 121
6.15 EPOCH16breakdown.. 122
6.16 encodeEPOCH16... 122
6.17 encodeEPOCH16_1 .. 122
6.18 encodeEPOCH16_2 .. 123
6.19 encodeEPOCH16_3 .. 123
6.20 encodeEPOCH16_4 .. 123
6.21 encodeEPOCH16_x .. 124
6.22 parseEPOCH16.. 124
6.23 parseEPOCH16_1 ... 125
6.24 parseEPOCH16_2 ... 125
6.25 parseEPOCH16_3 ... 125
6.26 parseEPOCH16_4 ... 126

7 TT2000 Utility Routines ...127
7.1 computeTT2000... 127
7.2 TT2000breakdown .. 127
7.3 encodeTT2000 ... 128
7.4 parseTT2000.. 128
7.5 leapsecondsinfo ... 129

1

Chapter 1

1 Compiling

Since Perl is an interpreter language and its scripts are checked for any syntax error during their execution, there are no
separate steps for compilation and linking as other programming languages like C and Fortran.

The Perl-CDF package includes two interfaces: Internal Interface and Standard Interface. The Standard Interface only
covers limited functions that deal mainly with the older rVariables and their attributes in the CDF. This interface is
mirrored the original functions that are covered in the C’s Standard Interface. The Internal Interface, based on the C’s
Internal Interface, provides a complete suite of CDF functionality.

1.1 How to use the Perl-CDF package

In order to use either one or both interfaces from any Perl script, the search path for the Perl-CDF package must be set
up properly. In addition, the Perl-CDF package needs to be imported as well prior to using the either CDF interface.
There are two ways to define the search path for the Perl-CDF package. One way is to include the location of the Perl-
CDF package at the beginning of a Perl script. The following code illustrates how to define a Perl-CDF package that is
installed under /home/cdf/PerlCDF32:

 use strict;
 BEGIN { unshift @INC,'/home/cdf/PerlCDF32/blib/arch',
 '/home/cdf/PerlCDF32/blib/lib'; }
 use CDF; # Import the CDF module - optional

The other way is to define the location of the Perl-CDF package at the command line when invoking the Perl script.
The following command is equivalent to the above example:

 perl -I/home/cdf/PerlCDF32/blib/arch -I/home/cdf/PerlCDF32/blib/lib <perl script name>

Since the Perl CDF interface uses the shared CDF library, the user has to tell the operating system where to find the
shared library. For Linux, DEC Alpha/OSF1, Sun Solaris or SGI, the environment variable LD_LIBRARY_PATH
must be set to point to the directory that contains the shared CDF library, libcdf.so. For example, if the shared CDF
library is installed under /usr/local/share/cdf32/lib and you are using the C-shell, enter:

 setenv LD_LIBRARY_PATH /usr/local/share/cdf32/lib

2

For HP-UX, the shared library is libcdf.sl. For IBM RS6000, the library is libcdf.o.

For BSD-based Mac OS X, the environment variable is DYLD_LIBRARY_PATH that must be set to point to the
directory containing the shared library libcdf.dylib.

For Windows 9x/NT/2000/XP, similarly, set the PATH variable to point to the directory that contains dllcdf.dll.

Two Perl test scripts, testPerlCDFii.pl and testPerlCDFsi.pl, are provided in the distribution. Both use extensive
Perl-CDF interface functions: testPerlCDFii.pl tests CDF's Internal Interface functions while testPerlCDFsi.pl tests the
Standard Interface functions. They can be used as sample scripts for development.

3

Chapter 2

2 Programming Interface
2.1 Item Referencing

The following sections describe various aspects of the Perl programming interface for CDF applications. These include
the constants that are available to CDF applications written in Perl. These constants are defined in the Perl-CDF
package.

Unlike other programming languages (e.g. C, Fortran, Java, etc.), Perl only has three basic data types: scalars, arrays of
scalars and hashes of scalars. No other defined data types are needed for any of the Perl-CDF operation items.

For Perl applications, all CDF items are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Passing Arguments

For calling Perl-CDF APIs, the arguments are passed by values or references, based on the input or output operation.
The general rules for passing the arguments to APIs are:

Input Normally, for a scalar argument, it is passed by value1, e.g., $format, if it is sending
information to the CDF for an operation (e.g. setting the CDF file format, data type, variable
name, compression method, etc.). However, if the scalar is passed in as a data value2, it is
required by design that it be passed by reference, .e.g., \$dataValue, \$padValue,
\$entryData, etc. For an argument requiring an array, no matter how many elements in the
array, it is always passed by reference, e.g., \@indices.

Output The argument is passed by reference, e.g., \$format for a scalar or \@indices for an array, if
the argument(s) in an operation is to acquire information from the CDF.

1 The scalar data can be interpreted properly into an integer (of data type long in C) by the CDF library for a non-string
data. A string is also a valid scalar data.

2 A data value is referred as a variable’s record data or padded data, or a global or variable attribute’s entry data. Its
value will be interpreted based upon its data type when the variable or entry is created.

4

Refer to the two test Perl scripts mentioned above for example. Since Perl doesn’t do type checking, it’s application
developer’s responsibility to ensure that proper arguments are being used. For example, an integer data should be
passed to an operation that writes the data value to a CDF variable that is defined as CDF_INT4 or CDF_INT2.

2.3 CDF Status Constants

All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum, CDFgetAttrNum, CDFgetFileBackward and
CDFgetChecksum functions, return a status code indicating the completion status of the function. The CDFerror
function can be used to inquire the meaning of the status code. Appendix A lists the possible status codes along with
their explanations. Chapter 5 describes how to interpret status codes.

CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 5 describes how to use these constants to interpret status codes.

2.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE 1-byte, signed integer.

CDF_CHAR 1-byte, signed character.

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1-byte, unsigned character.

CDF_UINT1 1-byte, unsigned integer.

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer.

5

CDF_UINT4 4-byte, unsigned integer.

CDF_INT8 8-byte, signed integer.

CDF_REAL4 4-byte, floating point.

CDF_FLOAT 4-byte, floating point.

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point.

CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF_TIME_TT2000 8-byte, signed integer.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

2.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D_FLOAT representation.

ALPHAVMSd_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

6

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).

HP_ENCODING Indicates HP data representation (HP 9000 series).

PC_ENCODING Indicates PC data representation.

NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

2.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D_FLOAT representation.

ALPHAVMSd_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D_FLOAT
representation.

ALPHAVMSg_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

7

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

2.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

8

2.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.

HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.3 There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most

3 Disabled for PC running 16-bit DOS/Windows 3.x.

9

compression but require the most execution time. Values in-between
provide varying compromises of these two extremes.

2.11 Sparseness

2.11.1 Sparse Records

The following types of sparse records for variables are supported.

NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

2.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.4

NO_SPARSEARRAYS No sparse arrays.

2.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

VARIABLE_SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

2.13 Read-Only Modes

4 Obviously, sparse arrays are not yet supported.

10

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zMODEoff Turns off zMode.

zMODEon1 Turns on zMode/1.

zMODEon2 Turns on zMode/2.

2.15 -0.0 to 0.0 Modes
Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT_,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfp0on Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.

CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

11

2.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the NUL5 terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX
systems).

CDF_VAR_NAME_LEN256 Maximum length of a variable name (excluding the NUL terminator).

CDF_ATTR_NAME_LEN256 Maximum length of an attribute name (excluding the NUL terminator).

CDF_COPYRIGHT_LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).

CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the
NUL terminator).

2.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Perl script,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreate). This function takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, also defined in the Perl-CDF package, to the function will cause new files to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation
mode and new files created will not be backward compatible with older libraries. The created files are of version 3.*
and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of calling the
function with an argument value of BACKWARDFILEoff.

The following example create two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

.

.
my $id1, $id2; # CDF identifier.
my $status; # Returned status code.
my $numDims = 0; # Number of dimensions.
my @dimSizes = (0); # Dimension sizes.
.
.
$status = CDF::CDFlib (CREATE_, CDF_, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
 NULL_);

5 The ASCII null character, 0x0.

12

UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;
.
.
CDF::CDFsetFileBackward(BACKWARDFILEon);
$status = CDF::CDFlib (CREATE_, CDF_, “MY_TEST2”, $numDims, \@dimSizes, \$id2,
 NULL_);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;
.
.

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDF$FILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward script to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

.

.
my $status; # Returned status code.
my $flag; # File backward flag.
.
$flag = CDF::CDFgetFileBackward();

2.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: 0 for NO_CHECKSUM and 1 for MD5_CHECKSUM, both defined in cdf.h. With MD5_CHECKSUM, the
MD5 algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

13

See Section 3.13 and 3.18 for the Standards Interface functions and Section 4.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable C D F _ C H E C K S U M on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MD5 checksum and set another
existing file’s checksum to none.

.

.

.
my $id1, $id2; # CDF identifier.
my $status; # Returned status code.
my $numDims = 0; # Number of dimensions.
my @dimSizes = (0); # Dimension sizes.
my $checksum; # Checksum code.
.
.
$status = CDF::CDFlib (CREATE_, CDF_, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
 NULL_);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;
.
.
$checksum = 1;
$status = CDF::CDFlib (SELECT_, CDF_, $id1,
 PUT_, CDF_CHECKSUM_, $checksum,
 NULL_);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;
.
$status = CDF::CDFlib (OPEN_, CDF_, “MY_TEST2”, \$id2,
 NULL_);
UserStatusHandler ("3.0", $status) if ($status < CDF_OK) ;
.
.
$checksum = 0;
$status = CDF::CDFlib (SELECT_, CDF_, $id2,
 PUT_, CDF_CHECKSUM_, $checksum,
 NULL_);
UserStatusHandler ("4.0", $status) if ($status < CDF_OK) ;
.
.

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # Checksum code.
.

14

.
$status = CDF::CDFlib (OPEN_, CDF_, “MY_TEST1”, \$id,
 NULL_);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;
.
.
$status = CDF::CDFlib (SELECT_, CDF_, $id,
 GET_, CDF_CHECKSUM_, \$checksum,
 NULL_);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;
if ($checksum == MD5_CHECKSUM) {
 …..
}

.

Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

2.20 Data Validation

To ensure the data integrity from CDF files and secure opetating of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to
function unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-
guard the CDF operations: catch any bad data in the file and end the application gracefully if any bad data is identified.
An overhead (performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is
advised that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need
a file conversion, which will consolidate the interna; data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide.

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all
open CDF files are subjected to this data validation process. If the environment variable is set to “no”, then no
validation is perfomed. The environment variable can be set at logon or through command line, which becomes in
effective during terminal session, or by an application, which is good only while the application is run. Setting the
environment variable, subroutine CDFsetValidate, at application level will overwrite the setup from the command
line. The validation is set to be on when value 1 (one) is passed into as the argument. Value 0 (zero) will set off the
validation. CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero) otherwise. If
the environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation off when the CDF file, “TEST”, is open.
.
.
my $id; ; # CDF identifier.
my $status; # Returned status code.
.
CDF::CDFsetValidate(0);
$status = CDF::CDFlib (OPEN_, CDF_, “TEST”, \$id,
 NULL_);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;
.

15

.

2.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME_TT2000 use 8-byes signed integer. Tests show that on the 32-bit Perl
environment, large values from these data types, especially common 18-digits values for TT2000 data type, will not be
precisely preserved. In oder to preserve the data values, the Math::BigInt module is used.for these types. When a data
of such types is returned by a CDF module, it is wraped into a BigInt object. Similarly, passing a value of these types, it
should also be in BigInt object.

The following example shows the difference between a BigInt object and a regular value from CDF_TIME_TT2000
data type after it is encoded on a 32-bit Perl.

use Math::BigInt;

BEGIN { unshift @INC,'/Users/cdf/PerlCDF33_2/blib/arch',
 '/Users/cdf/PerlCDF33_2/blib/lib'; }
use CDF;

my $ttb = Math::BigInt->new('340203790171876765');
my $ttr = 340203790171876765;
my ($tt2000b, $tt2000r);
CDF::encodeTT2000($ttb, $tt2000b);
CDF::encodeTT2000($ttr, $tt2000r);
print $tt2000b,"(bigint) vs ",$tt2000r,"(regular) \n";

2010-10-13T01:02:03.987876765(bigint) vs 2010-10-13T01:02:03.987876736(regular)

17

Chapter 3

3 Standard Interface

The Standard Interface functions described in this chapter represents the Standard Interface functions. They are based
on the original Standard Interface developed for the C. This set of interfaces only provides a very limited functionality
within the CDF library. For example, it can not handle zVariables and has no access to attribute’s entry corresponding
to the zVariables (zEntries). If you want to create or access zVariables and zEntries, or operate any single item not
accessible from the Standard Interface in a CDF file, you must use the Internal Interface described in Chapter 4.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
it’s not as efficient as Internal Interface and can only create and maipulate rVariables, not zVariables. If you are not
familiar with Internal Interface and need a very simple CDF in a short time, the use of Standard Interface is
recommended. However, the Internal Interface (see Chapter 4 for details) is strongly recommended since it’s not really
hard to learn (see testPerlCDFii.pl included in the Perl-CDF package) and much more flexible and powerful than the
Standard Interface.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the Standard Interface functions callable from Perl applications. Most functions return
a status code (see Chapter 5). The Internal Interface is described in Chapter 4. An application can use either or both
interfaces when necessary.

3.1 CDFattrCreate

CDF::CDFattrCreate(# out -- Completion status code.
my id, # in -- CDF identifier.
my $attrName, # in -- Attribute name.
my $attrScope, # in -- Scope of attribute.
my \$attrNum); # out -- Attribute number.

18

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF
function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

3.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $UNITSattrName = "Units"; # Name of "Units" attribute.
my $UNITSattrNum; # "Units" attribute number.
my $TITLEattrNum; # "TITLE" attribute number.
my $TITLEattrScope = GLOBAL_SCOPE; # "TITLE" attribute scope.
.
.
$status = CDF::CDFattrCreate ($id, "TITLE", $TITLEattrScope, \$TITLEattrNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrCreate ($id, $UNITSattrName, VARIABLE_SCOPE, \$UNITSattrnum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
.
.

3.2 CDFattrEntryInquire

CDF::CDFattrEntryInquire(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $attrNum, # in -- Attribute number.
my $entryNum, # in -- Entry number.
my \$dataType, # out -- Data type.

19

my \$numElements); # out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrInquire. CDFattrEntryInquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrNum The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 3.5).

entryNum The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

dataType The data type of the specified entry. The data types are defined in Section 2.5.

NumElements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

3.2.1 Example(s)

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $attrN; # Attribute number.
my $entryN; # Entry number.
my $attrName; # Attribute name.
my $attrScope; # Attribute scope.
my $maxEntry; # Maximum entry number used.
my $dataType; # Data type.
my $numElems; # Number of elements (of the data type).
.
.
$attrN = CDF::CDFgetAttrNum ($id, "TMP");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrInquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

for ($entryN = 0; $entryN <= $maxEntry; $entryN++) {

20

 $status = CDF::CDFattrEntryInquire ($id, $attrN, $entryN, \$dataType, \$numElems);
 if ($status < CDF_OK) {
 if ($status != NO_SUCH_ENTRY) UserStatusHandler (“3.0”. $status);
 }
 else {
 process entries
 .
 .
 }
}

3.3 CDFattrGet

CDF::CDFattrGet(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $attrNum, # in -- Attribute number.
my $entryNum, # in -- Entry number.
my \$value); # out -- Attribute entry value.

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum (Section
3.5).

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The function
CDFattrEntryInquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed in the variable
value.

3.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

.

.

.

21

my $id; # CDF identifier.
my $status; # Returned status code.
my $attrN; # Attribute number.
my $entryN; # Entry number.
my $dataType; # Data type.
my $numElems; # Number of elements (of data type).
my $buffer; # Buffer to receive value.
.
.
$attrN = CDF::CDFattrNum (id, "UNITS");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$entryN = CDF::CDFvarNum (id, "PRES_LVL"); # The rEntry number is the rVariable number.

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrEntryInquire ($id, $attrN, $entryN, \$dataType, \$numElems);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
if ($dataType == CDF_CHAR) {
 $status = CDF::CDFattrGet ($id, $attrN, $entryN, \$buffer);
 UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

 print "Units of PRES_LVL variable: $buffer \n";
}
.
.

3.4 CDFattrInquire

CDF::CDFattrInquire(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $attrNum, # in -- Attribute number.
my \$attrName, # out -- Attribute name.
my \$attrScope, # out -- Attribute scope.
my \$maxEntry); # out -- Maximum gEntry or rEntry number.

CDFattrInquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 3.5).

attrName The attribute's name.

attrScope The scope of the attribute. Attribute scopes are defined in Section 2.12.

maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of

22

entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 4). If no entries exist for the attribute, then
a value of -1 will be passed back.

3.4.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $numDims; # Number of dimensions.
my @dimSizes = (CDF_MAX_DIMS); # Dimension sizes (allocate to allow the maximum

 number of dimensions).
my $encoding; # Data encoding.
my $majority; # Variable majority.
my $maxRec; # Maximum record number in CDF.
my $numVars; # Number of variables in CDF.
my $numAttrs; # Number of attributes in CDF.
my $attrN; # attribute number.
my $attrName; # attribute name -- +1 for NUL terminator.
my $attrScope; # attribute scope.
my $maxEntry; # Maximum entry number.
.
.
$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,
 \$maxRec, \$numVars, \$numAttrs);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
for ($attrN = 0; $attrN < $numAttrs; $attrN++) {
 $status = CDFattrInquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
 if ($status < CDF_OK) # INFO status codes ignored.
 UserStatusHandler (“2.0”, $status);
 else
 print ("$attrName \n”);
}
.
.

3.5 CDFattrNum

CDF:: CDFattrNum(# out -- Attribute number.
my $id, # in -- CDF id
my $attrName); # in -- Attribute name

23

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrName The name of the attribute for which to search. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

3.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $attrNum; # Attribute number.
.
.
$attrNum = CDF::CDFattrNum($id,"pressure");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "PRESSURE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.6 CDFattrPut

CDF::CDFattrPut(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $attrNum, # in -- Attribute number.
my $entryNum, # in -- Entry number.
my $dataType, # in -- Data type of this entry.
my $numElements, # in -- Number of elements (of the data type).
my $value); # in -- Attribute entry value.

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

24

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType The data type of the specified entry. Specify one of the data types defined in Section
2.5.

numElements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

3.6.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $entryNum; # Entry number.
my $numElements; # Number of elements (of data type).
my $title = "CDF title."; # Value of TITLE attribute, entry number 0.
my @TMPvalids = (15,30); # Value(s) of VALIDs attribute, rEntry for rVariable TMP.
my $TITLE_LEN = 10; # Length of CDF title.
my $attrNum; # Attribute number.
my $varNum; # rVariable number. .
.
.
$entryNum = 0;
$attrNum = CDF:: CDFgetAttrNum(id,"TITLE");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, CDF_CHAR, 10, $title);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
.
.
$numElements = 2;
$attrNum = CDF:: CDFgetAttrNum(id,"VALIDs");
UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);
$varNum = CDF:: CDFgetVarNum(id,"TMP");
UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrPut ($id, $attrNum, $varNum, CDF_INT2, $numElements, \@TMPvalids);

25

UserStatusHandler (“5.0”. $status) if ($status < CDF_OK);
.
.

3.7 CDFattrRename

CDF::CDFattrRename(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $attrNum, # in -- Attribute number.
my $attrName); # in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 3.5).

attrName The new attribute name. Attribute names are case-sensitive.

3.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $attrNum; # Attribute number.
.
.
$attrNum = CDF:: CDFgetAttrNum(id,"LAT");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "LATITUDE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
.
.

3.8 CDFclose

26

CDF::CDFclose(# out -- Completion status code.
my $id); # in -- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.8.1 Example(s)

The following example will close an open CDF.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
.
.
$status = CDF::CDFclose ($id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.9 CDFcreate

CDF::CDFcreate(# out -- Completion status code.
my $CDFname, # in -- CDF file name.
my $numDims, # in -- Number of dimensions, rVariables.
my \@dimSizes, # in -- Dimension sizes, rVariables.
my $encoding, # in -- Data encoding.
my $majority, # in -- Variable majority.
my \$id); # out -- CDF identifier.

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

27

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

numDims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_MAX_DIMS.

dimSizes The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.6.

majority The majority for variable data. Specify one of the majorities described in Section 2.8.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 3.8).

3.9.1 Example(s)

The following example creates a CDF named “test1.cdf” with network encoding and row majority.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $numDims = 3; # Number of dimensions, rVariables.
my @dimSizes = (180,360,10); # Dimension sizes, rVariables.
my $majority = ROW_MAJOR; # Variable majority.
.
.
$status = CDF::CDFcreate ("test1", $numDims, \@dimSizes, NETWORK_ENCODING, $majority, &id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

ROW_MAJOR and NETWORK_ENCODING are defined in the Perl-CDF package.

28

3.10 CDFdelete

CDF::CDFdelete(# out -- Completion status code.
my id); # in -- CDF identifier.

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.10.1 Example(s)

The following example will open and then delete an existing CDF.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
.
.
$status = CDF::CDFopen ("test2", \$id);
if ($status < CDF_OK) # INFO status codes ignored.
 UserStatusHandler (“1.0”, $status);
else {
 $status = CDF::CDFdelete ($id);
 UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
}
.
.

3.11 CDFdoc
CDF::CDFdoc(# out -- Completion status code.
my $id, # in -- CDF identifier.
my \$version, # out -- Version number.
my \$release, # out -- Release number.
my \$Copyright); # out -- Copyright.

29

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This string will contain a
newline character after each line of the Copyright notice.

3.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $version; # CDF version number.
my $release; # CDF release number.
my $Copyright; # Copyright notice.
.
.
$status = CDF::CDFdoc ($id, \$version, \$release, \$Copyright);
if ($status < CDF_OK) # INFO status codes ignored
 UserStatusHandler (“1.0”, status);
else {
 print ("CDF V$version.$release\n”);
 print ("$Copyright”);
}
.
.

3.12 CDFerror

CDF::CDFerror(# out -- Completion status code.
my $status, # in -- Status code.
my $message); # out -- Explanation text for the status code.

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 5 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

30

The arguments to CDFerror are defined as follows:

status The status code to check.

message The explanation of the status code.

3.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $text; # Explanation text.
.
.
$status = CDF::CDFopen ("giss_wetl", \$id);
if ($status < CDF_WARN) { # INFO and WARNING codes ignored.
 CDF::CDFerror ($status, \$text);
 print ("ERROR> $text\n”);
}
.
.

3.13 CDFgetChecksum

CDF::CDFgetChecksum (# out -- Completion status code.
my $id, # in -- CDF identifier.
my \$checksum); # out -- CDF’s checksum mode.

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.19.

The arguments to CDFgetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

3.13.1 Example(s)

The following example returns the checksum mode for the open CDF file.

.

.

31

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # CDF’s checksum.
.
.
$status = CDF::CDFgetChecksum ($id, \$checksum);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

3.14 CDFgetFileBackward

CDF::CDFgetFileBackward() # out -- Backward file indicator.

CDFgetFileBackward is used to get the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFgetFileBackward defined as follows:

 N/A

3.14.1 Example(s)

In the following example, the backward file indicator is retrieved.

.

.

.
my $backwardFlag; # File backward flag.
.
.
$backwardFlag = CDF::CDFgetFileBackward();
.
.

3.15 CDFgetValidate

CDF::CDFgetValidate () # out -- Validation mode.

CDFgetValidate returns the validation mode when opening CDF files. The CDF validation mode is described in
Section 2.20.

The arguments to CDFgetValidate are defined as follows:

N/A

32

3.15.1 Example(s)

The following example returns the data validation mode when opening the CDF files.

.

.

.
my $validate; # CDF’s validation mode.
.
.
$validate = CDF::CDFgetValidate ();
.
.

3.16 CDFinquire

CDF::CDFinquire(# out -- Completion status code.
my $id, # in -- CDF identifier
my \$numDims, # out -- Number of dimensions, rVariables.
my \@dimSizes, # out -- Dimension sizes, rVariables.
my \$encoding, # out -- Data encoding.
my \$majority, # out -- Variable majority.
my \$maxRec, # out -- Maximum record number in the CDF, rVariables.
my \$numVars, # out -- Number of rVariables in the CDF.
my \$numAttrs); # out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.

dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.6.

majority The majority of the variable data. The majorities are defined in Section 2.8.

33

maxRec The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

numVars The number of rVariables in the CDF.

numAttrs The number of attributes in the CDF.

3.16.1 Example(s)

The following example returns the basic information about a CDF.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $numDims; # Number of dimensions, rVariables.
my @dimSizes ; # Dimension sizes, rVariables (allocate to allow the

maximum number of dimensions).
my $encoding; # Data encoding.
my $majority; # Variable majority.
my $maxRec; # Maximum record number, rVariables.
my $numVars; # Number of rVariables in CDF.
my $numAttrs; # Number of attributes in CDF.
.
.
$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,
 \$maxRec, \$numVars, \$numAttrs);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.17 CDFopen

CDF::CDFopen(# out -- Completion status code.
my $CDFname, # in -- CDF file name.
my \$id); # out -- CDF identifier.

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

34

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

3.17.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $CDFname = "NOAA1"; # File name of CDF.
.
.
$status = CDF::CDFopen ($CDFname, \$id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.18 CDFsetChecksum

CDF::CDFsetChecksum (# out -- Completion status code.
my $id, # in -- CDF identifier.
my $checksum); # in -- CDF’s checksum mode.

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.19.

The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

35

3.18.1 Example(s)

The following example turns off the checksum flag for the open CDF file..

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $checksum; # CDF’s checksum.
.
.
$checksum= 0;
$status = CDF::CDFsetChecksum ($id, $checksum);
if ($status != CDF_OK) UserStatusHandler ($status);

.

.

3.19 CDFsetFileBackward

CDF::CDFsetFileBackward(#
my $flag) # in -- Backward file flag

CDFsetFileBackward is used to set the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFsetFileBackward defined as follows:

 flag The backward file flag

3.19.1 Example(s)

In the following example, the backward file indicator is set to true so a new CDF file(s) of V2.7, instead of V3.*, will
be created.

.

.

.
my $backwardFlag; # Backward file flag.
.
.
 $backwadFlag = 1;
 CDF::CDFsetFileBackward($backwardFlag);
.
.

36

3.20 CDFsetValidate

CDF::CDFsetValidate (
my $validate); # in -- CDF’s validation mode.

CDFsetValidate specifies the validation mode when opening a CDF file. The CDF validation mode is described in
Section 2.20.

The arguments to CDFsetValidate are defined as follows:

validate The validation mode.

3.20.1 Example(s)

The following example turns on the data validation when opening the CDF file, “TEST”..

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
.
.
CDF::CDFsetValidate (1);
$status = CDF::CDFlib(OPEN_, CDF_, “TEST”, \$id,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);

.

.

3.21 CDFvarClose

CDF::CDFvarClose(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum); # in -- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

37

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

3.21.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $varNum; # rVariable number.
.
.
$varNum = CDF::CDFvarNum (id, “Flux”);
UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarClose (id, $varNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
.
.

3.22 CDFvarCreate

CDF::CDFvarCreate(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varName, # in -- rVariable name.
my $dataType, # in -- Data type.
my $numElements, # in -- Number of elements (of the data type).
my $recVariance, # in -- Record variance.
my \@dimVariances, # in -- Dimension variances.
my \$varNum); # out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varName The name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.5.

38

numElements The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The rVariable's record variance. Specify one of the variances defined in Section 2.9.

dimVariances The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

varNum The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

3.22.1 Example(s)

The following example will create several rVariables in a CDF. In this case EPOCH is a 0-dimensional, LATITUDE
and LONGITUDE are 2-diemnational, and TEMPERATURE is a 1-dimensional.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $EPOCHrecVary = VARY; # EPOCH record variance.
my $LATrecVary = NOVARY; # LAT record variance.
my $LONrecVary = NOVARY; # LON record variance.
my $TMPrecVary = VARY; # TMP record variance.
my $EPOCHdimVarys = NOVARY; # EPOCH dimension variances.
my @LATdimVarys = (VARY,VARY); # LAT dimension variances.
my @LONdimVarys = (VARY,VARY); # LON dimension variances.
my @TMPdimVarys = (VARY,VARY); # TMP dimension variances.
my $EPOCHvarNum; # EPOCH zVariable number.
my $LATvarNum; # LAT zVariable number.
my $LONvarNum; # LON zVariable number.
my TMPvarNum; # TMP zVariable number.
my @EPOCHdimSizes = (3); # EPOCH dimension sizes.
my @LATLONdimSizes = (2,3); # LAT/LON dimension sizes.
my @TMPdimSizes = (3); # TMP dimension sizes.
.
.
$status = CDF::CDFvarCreate ($id, "EPOCH", CDF_EPOCH, 1,
 $EPOCHrecVary, \@EPOCHdimVarys, \$EPOCH varNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LATITUDE", CDF_INT2, 1,
 $LATrecVary, \@LATdimVarys, \$LATvarNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LONGITUDE", CDF_INT2, 1,

39

 $LONrecVary, \@LONdimVarys, \$LONvarNum);
UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "TEMPERATURE", CDF_REAL4, 1,
 $TMPrecVary, \@TMPdimVarys, \$TMPvarNum);
UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);
.
.

3.23 CDFvarGet

CDF::CDFvarGet(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum, # in -- rVariable number.
my $recNum, # in -- Record number.
my \@indices, # in -- Dimension indices.
my \$value); # out -- Value.

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

3.23.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

.

.

.
my $id; # CDF identifier.
my $varNum; # rVariable number.
my $recNum; # The record number.
my @indices; # The dimension indices.
my $value1, $value2; # The data values.
.
.
$varNum = CDF::CDFvarNum ($id, “MY_VAR”);

40

if ($varNum < CDF_OK) Quit (“….”);
$recNum = 0;
$indices[0] = 0;
$indices[1] = 0;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value1);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$indices[0] = 1L;
$indices[1] = 1L;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.24 CDFvHpGet

CDF::CDFvHpGet(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum, # in -- rVariable number.
my $recStart, # in -- Starting record number.
my $recCount, # in -- Number of records.
my $recInterval, # in -- Subsampling interval between records.
my \@indices, # in -- Dimension indices of starting value.
my \@counts, # in -- Number of values along each dimension.
my \@intervals, # in -- Subsampling intervals along each dimension.
my \@buffer); # out -- Buffer of values.

CDFvHpGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvHpGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

3.24.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvHpGet rather than numerous calls to
CDFvarGet.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my @tmp; # Temperature values.
my $varN; # rVariable number.
my $recStart = 13; # Record number.
my $recCount = 1; # Record counts.
my $recInterval = 1; # Record interval.
my @indices = (0,0,0); # Dimension indices.

41

my @counts = (180,91,10); # Dimension counts.
my @intervals = (1,1,1); # Dimension intervals.
.
.
$varN = CDF::CDFgetVarNum ($id, "Temperature");
if ($varN < CDF_OK) UserStatusHandler ($varN);
status = CDF::CDFgetHyperGet ($id, $varN, $recStart, $recCount, $recInterval,
 \@indices, \@counts, \@intervals, \@tmp);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

3.25 CDFvHpPut

CDF::CDFvHpPut(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum, # in -- rVariable number.
my $recStart, # in -- Starting record number.
my $recCount, # in -- Number of records.
my $recInterval, # in -- Interval between records.
my \@indices, # in -- Dimension indices of starting value.
my \@counts, # in -- Number of values along each dimension.
my \@intervals, # in -- Interval between values along each dimension.
my \@buffer); # in -- Buffer of values.

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

3.25.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvHpPut rather than numerous calls to CDFvarPut.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $lat; # Latitude value.
my @lats; # Buffer of latitude values.
my $varN; # rVariable number.
my $recStart = 0; # Record number.

42

my $recCount = 1; # Record counts.
my $recInterval = 1; # Record interval.
my @indices = (0,0); # Dimension indices.
my @counts = (1,181); # Dimension counts.
my @intervals = (1,1); # Dimension intervals.

.

.
$varN = CDF::CDFvarNum ($id, "LATITUDE");
if ($varN < CDF_OK) UserStatusHandler ($varN);
for ($lat = -90; $lat <= 90; $lat ++)
 $lats[90+lat] = $lat;

$status = CDF::CDFvHpPut ($id, $varN, $recStart, $recCount, $recInterval,
 \@indices, \@counts, \@intervals, \@lats);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.26 CDFvarInquire

CDF::CDFvarInquire(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum, # in -- rVariable number.
my $varName, # out -- rVariable name.
my \$dataType, # out -- Data type.
my \$numElements, # out -- Number of elements (of the data type).
my \$recVariance, # out -- Record variance.
my \@dimVariances); # out -- Dimension variances.

CDFvarInquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvHpGet) to determine the data type and number of elements (of that data
type).

The arguments to CDFvarInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 3.27).

varName The rVariable's name. This character string must not be greater than
CDF_VAR_NAME_LEN256 characters.

dataType The data type of the rVariable. The data types are defined in Section 2.5.

numElements The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

43

recVariance The record variance. The record variances are defined in Section 2.9.

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are defined in Section 2.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

3.26.1 Example(s)

The following example returns about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name
returned by CDFvarInquire will be the same as that passed in to CDFgetVarNum.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $varNum; # rVariable number.
my $varName; # rVariable name.
my $dataType; # Data type of the rVariable.
my $numElems; # Number of elements (of data type).
my $recVary; # Record variance.
my @dimVarys; # Dimension variances (allocate to allow the
 # maximum number of dimensions).
.
.
$varNum = CDF:: CDFgetVarNum(id,"HEAT_FLUX");
UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarInquire ($id, $varNum, \$varName, \$dataType,
 \$numElems, \$recVary, \@dimVarys);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.27 CDFvarNum

CDF::CDFvarNum(# out -- Variable number.
my $id, # in -- CDF identifier.
my $varName); # in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code is returned. Error codes are less than zero (0). The returned variable
number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable, functions
dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

44

varName The name of the variable to search. Variable names are case-sensitive.

3.27.1 Example(s)
In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $varNum; # rVariable number.
my $varName; # Variable name.
my $dataType; # Data type of the rVariable.
my $numElements; # Number of elements (of the data type).
my $recVariance; # Record variance.
my @dimVariances; # Dimension variances.
.
.
$varNum = CDF:: CDFvarNum(id,"LATITUDE");
UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarInquire ($id, $varNum, \$varName, \$dataType,
 \$numElements, \$recVariance, \@dimVariances);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);
.
.

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarInquire as an rVariable
number would have resulted in CDFvarInquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would
be used to determine them. CDFvarInquire is described in Section 3.26.

3.28 CDFvarPut

CDF::CDFvarPut(# out -- Completion status code.
my $id, # in -- CDF identifier.
my $varNum, # in -- rVariable number.
my $recNum, # in -- Record number.
my \@indices, # in -- Dimension indices.
my \$value); # in -- Value.

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

45

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record number at which to write.

indices The dimension indices within the specified record at which to write. Each element of
indices specifies the corresponding dimension index. For 0-dimensional variables, this
argument is ignored (but must be present).

value The data value to write.

3.28.1 Example(s)

The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named
MY_VAR to record number 0.

.

.

.
my $id; # CDF identifier.
my $varNum; # rVariable number.
my $recNum; # The record number.
my @indices; # The dimension indices.
my $value1, $value2; # The data values.
.
.
$varNum = CDF::CDFgetVarNum ($id, “MY_VAR”);
if ($varNum < CDF_OK) Quit (“….”);
$recNum = 0;
$indices[0] = 0;
$indices[1] = 0;
$value1 = 10.1;
$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value1);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$indices[0] = 1;
$indices[1] = 1;
$value2 = 20.2;
$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
.
.

3.29 CDFvarRename

CDF::CDFvarRename(# out -- Completion status code.
my $id, # in -- CDF identifier.

46

my $varNum, # in -- rVariable number.
my $varName); # in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

varName The new rVariable name. The maximum length of the new name is
CDF_VAR_NAME_LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

3.29.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error
code.

.

.

.
my $id; # CDF identifier.
my $status; # Returned status code.
my $varNum; # rVariable number.
.
.
$varNum = CDF::CDFvarNum ($id, "TEMPERATURE");
if ($varNum < CDF_OK) {
 if ($varNum != NO_SUCH_VAR) UserStatusHandler (varNum);
}
else {
 $status = CDF::CDFvarRename ($id, $varNum, "TMP");
 if ($status != CDF_OK) UserStatusHandler (status);
}
.
.

47

Chapter 4

4 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 4.6.
The function prototype for CDFlib is as follows:

status = CDF::CDFlib (function, ...);

4.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

.

.

.
my $id; # CDF identifier (handle).
my $status; # Status returned from CDF library.
my $CDFname = "test1"; # File name of the CDF.
my $numDims = 2; # Number of dimensions.
my @dimSizes = {100,200}; # Dimension sizes.
my $encoding = HOST_ENCODING; # Data encoding.
my $majority = ROW_MAJOR; # Variable data majority.
my $format = SINGLE_FILE; # Format of CDF.
.
.
$status = CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id);

48

if ($status != CDF_OK) UserStatusHandler ($status);

$status = CDF::CDFlib (PUT__, CDF_FORMAT_, $format, NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFlib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDFlib in this example are explained as follows:

PUT_ The first function to be performed. In this case an item is going to be put to the “current"
CDF (a new format). PUT_ is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.1 This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

CDF_FORMAT The item to be put. in this case it is the CDF's format.

format The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

NULL_ This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_ function. NULL_
indicates the end of the call to CDFlib. Specifying NULL_ at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations
would be the same.)

.

.
$status = CDF::CDFlib (CREATE_, CDF_, $CDFname, $numDims, \@dimSizes, \$id,
 PUT__, CDF_ENCODING_, $encoding,
 CDF_MAJORITY_, $majority,
 CDF_FORMAT_, $format,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

The purpose of each argument is as follows:

CREATE_ The first function to be performed. In this case something will be created.

CDF_ The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

1 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

49

CDFname The file name of the CDF.

numDims The number of dimensions in the CDF.

dimSizes The dimension sizes.

id The identifier to be used when referencing the created CDF in subsequent
operations.

PUT_ This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

CDF_ENCODING_ The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

encoding The encoding to be put to the CDF.

CDF_MAJORITY_ This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

majority The majority to be put to the CDF.

CDF_FORMAT_ Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL_ This argument could have been either another item to put or a new function to
perform. Here it is another function to perform - the NULL_function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

4.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)
A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>2 operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly
selected.3

2 This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
3 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

50

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,rVAR_> or <SELECT_,rVAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,zVAR_> or <SELECT_,zVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,ATTR_> or <SELECT_,ATTR_NAME_>
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT_,gENTRY_> operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT_,rENTRY_> operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT_,zENTRY_> operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,rVARs_RECNUMBER_> operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECCOUNT_> operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

51

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECINTERVAL_>
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES_> operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT_,rVARs_DIMINTERVALS_> operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)
A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT_,zVAR_RECNUMBER_> operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECCOUNT_> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

52

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)
A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT_,zVAR_DIMINDICES_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT_,zVAR_DIMCOUNTS_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT_,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)
A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)
When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT_,CDF_STATUS_> operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.4

4.3 Returned Status

CDFlib returns a status code. Since more than one operation may be performed with a single call to CDFlib, the
following rules apply:

4 The CDF library now maintains the current status code from one call to the next of CDFlib.

53

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.

4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 5 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

4.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

$status = CDF::CDFlib (CREATE_, CDF_, $CDFname, $numDims, \@dimSizes, \$id,
 PUT__, CDF_FORMAT_, $format,
 CDF_MAJORITY_, $majority,
 CREATE_, ATTR_, $attrName, $scope, \$attrNum,
 rVAR_, $varName, $dataType, $numElements,
 $recVary, \@dimVarys, \$varNum,
 NULL_);

Note that the functions (CREATE_, PUT_, and NULL_) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding
functions.

The following example shows the same call to CDFlib without the proper indentation.

$status = CDF::CDFlib (CREATE_, CDF_, $CDFname, $numDims, \@dimSizes, \$id, PUT__,
 CDF_FORMAT_, $format, CDF_MAJORITY_, $majority, CREATE_,
 ATTR_, $attrName, $scope, \$attrNum, rVAR_, $varName, $dataType,
 $numElements, $recVary, \@dimVarys, \$varNum, NULL_);

The need for proper indentation to ensure the readability of your applications should be obvious.

4.5 Syntax

CDFlib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather by the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFlib is as follows:

$status = CDF::CDFlib (fnc1, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,

54

 .
 .
 itemN, arg1, arg2, ...argN,
 fnc2, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 .
 .
 fncN, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 NULL_);

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required
argument for the operation. The NULL_function must be used to end the call to CDFlib. The completion status, status,
is returned.

4.6 Operations. . .

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.
CONFIRM_ Used to confirm the value of an item.
CREATE_ Used to create an item.
DELETE_ Used to delete an item.
GET_ Used to get (read) something from an item.
NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN_ Used to open an item.
PUT_ Used to put (write) something to an item.
SELECT_ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT_
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 4.2.

<CLOSE_,CDF_>
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE_,rVAR_>
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

55

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR_>
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: \$attrNum

Attribute number.

The only required preselected object/state is the current CDF.

<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: \$attrName

The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>
Confirms the current CDF. Required arguments are as follows:

out: \$id

The current CDF.

There are no required preselected objects/states.

<CONFIRM_,CDF_ACCESS_>
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_CACHESIZE_>
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

out: \$numBuffers

The number of cache buffers being used.

56

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>
Confirms the decoding for the current CDF. Required arguments are as follows:

out: \$decoding

The decoding. The decodings are described in Section 2.7.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>
Confirms the file name of the current CDF. Required arguments are as follows:

out: \$CDFname

File name of the CDF.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: \$mode

The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 2.15.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: \$mode

The read-only mode. The read-only modes are described in Section 2.13.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_STATUS_>
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT_,CDF_STATUS_> operation).

Required arguments are as follows:

out: \$status

The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zMODE_>
Confirms the zMode for the current CDF. Required arguments are as follows:

out: \$mode

The zMode. The zModes are described in Section 2.14.

57

The only required preselected object/state is the current CDF.

<CONFIRM_,COMPRESS_CACHESIZE_>
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CURgENTRY_EXISTENCE_>
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,CURrENTRY_EXISTENCE_>
Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).
If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,CURzENTRY_EXISTENCE_>
Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum

The gEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,gENTRY_EXISTENCE_>

58

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY_>
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum

The rEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rENTRY_EXISTENCE_>
Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varNum

rVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_EXISTENCE_>

59

Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_PADVALUE_>

Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: \$percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

out: \$recNum

Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVARs_DIMCOUNTS_>
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: \@counts

Dimension counts. Each element of counts receives the corresponding dimension count.

The only required preselected object/state is the current CDF.

60

<CONFIRM_,rVARs_DIMINDICES_>
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_DIMINTERVALS_>
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: \@intervals

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECCOUNT_>
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: \$recCount

Record count.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECINTERVAL_>
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: \$recInterval

Record interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECNUMBER_>
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: \$recNum

Record number.

The only required preselected object/state is the current CDF.

<CONFIRM_,STAGE_CACHESIZE_>
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

61

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_>
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum

The zEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_EXISTENCE_>
Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR_>
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varNum

zVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMCOUNTS_>
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@counts

Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINDICES_>

62

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINTERVALS_>
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@intervals

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_EXISTENCE_>
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECCOUNT_>
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:

out: \$recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECINTERVAL_>
Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

out: \$recInterval

Record interval.

63

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECNUMBER_>
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

out: \$recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: \$percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

out: \$recNum

Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_,ATTR_>
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: $attrName

Name of the attribute to be created. This can be at most CDF_ATTR_NAME_LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: $scope

Scope of the new attribute. Specify one of the scopes described in Section 2.12.

out: \$attrNum

64

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF_>
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: $CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

in: $numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX_DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: \@dimSizes

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: \$id

CDF identifier to be used in subsequent operations on the CDF.

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT_,CDF_FORMAT_>, <PUT_,CDF_ENCODING_>, and
<PUT_,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE_,rVAR_>
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: $varName

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: $dataType

65

Data type of the new rVariable. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: $recVary

Record variance. Specify one of the variances described in Section 2.9.

in: \@dimVarys

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

out: \$varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in: $varName

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

in: $dataType

Data type of the new zVariable. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: $numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.

in: \@dimSizes

66

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: $recVary

Record variance. Specify one of the variances described in Section 2.9.

in: \@dimVarys

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).

out: \$varNum

Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is
deleted, there is no longer a current attribute.

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF_>
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.

There are no required arguments.

The only required preselected object/state is the current CDF.

<DELETE_,gENTRY_>
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE_,rENTRY_>
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

67

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR_>
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,rVAR_RECORDS_>
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: $firstRecord

The record number of the first record to be deleted.

in: $lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zENTRY_>
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,zVAR_>
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zVAR_RECORDS_>
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the

68

records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:

in: $firstRecord

The record number of the first record to be deleted.

in: $lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,ATTR_MAXgENTRY_>
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_MAXrENTRY_>
Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_MAXzENTRY_>
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NAME_>
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

69

out: \$attrName

Attribute name.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,ATTR_NUMBER_>
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: $attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

out: \$attrNum

The attribute number.

The only required preselected object/state is the current CDF.

<GET_,ATTR_NUMgENTRIES_>
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:

out: \$numEntries

The number of gEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_NUMrENTRIES_>
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:

out: \$numEntries

The number of rEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NUMzENTRIES_>
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:

out: \$numEntries

The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

70

<GET_,ATTR_SCOPE_>
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: \$scope

Attribute scope. The scopes are described in Section 2.12.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM__>
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: \$checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5_CHECKSUM). The checksum
mode is described in Section 2.19.

The required preselected objects/states is the current CDF.

<GET_,CDF_COMPRESSION_>
Inquires the compression type/parameters and compression percentage of the current CDF. This refers to the
compression of the CDF - not of any compressed variables. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size.5 Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

out: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.

<GET_,CDF_COPYRIGHT_>
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:

out: \$Copyright

CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>
Inquires the data encoding of the current CDF. Required arguments are as follows:

5 The compression ratio is (100 – compression percentage): the lower the compression percentage, the better the
compression ratio.

71

out: \$encoding

Data encoding. The encodings are described in Section 2.6.

The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT_>
Inquires the format of the current CDF. Required arguments are as follows:

out: \$format

CDF format. The formats are described in Section 2.4.

The only required preselected object/state is the current CDF.

<GET_,CDF_INCREMENT_>
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:

out: \$increment

Incremental number.

The only required preselected object/state is the current CDF.

<GET_,CDF_INFO_>
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:

in: $CDFname

File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: \$cType

The CDF compression type. The types of compressions are described in Section 2.10.

out: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

out: \$cSize

If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: \$uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

72

<GET_,CDF_MAJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: \$majority

Variable majority. The majorities are described in Section 2.8.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS_>
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: \$numAttrs

Number of attributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs

Number of gAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMrVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:

out: \$numVars

Number of rVariables.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMvATTRS_>
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs

Number of vAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: \$numVars

Number of zVariables.

The only required preselected object/state is the current CDF.

73

<GET_,CDF_RELEASE_>
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: \$release

Release number.

The only required preselected object/state is the current CDF.

<GET_,CDF_VERSION_>
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:

out: \$version

Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE_>
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: $dataType

Data type.

out: \$numBytes

Number of bytes per element.

There are no required preselected objects/states.

<GET_,gENTRY_DATA_>
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY_DATATYPE_>
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: \$dataType

Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

74

<GET_,gENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: \$numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,LIB_COPYRIGHT_>
Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: \$Copyright

CDF library Copyright text.

There are no required preselected objects/states.

<GET_,LIB_INCREMENT_>
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: \$increment

Incremental number.

There are no required preselected objects/states.

<GET_,LIB_RELEASE_>
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: \$release

Release number.

There are no required preselected objects/states.

<GET_,LIB_subINCREMENT_>
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: \$subincrement

Subincremental character.

There are no required preselected objects/states.

<GET_,LIB_VERSION_>
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: \$version

75

Version number.

There are no required preselected objects/states.

<GET_,rENTRY_DATA_>
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_DATATYPE_>
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: \$dataType

Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: \$numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord

The number of the next allocated record.

76

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the last allocated record.

out: \$nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_BLOCKINGFACTOR_>6

Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:

out: \$blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_COMPRESSION_>
Inquires the compression type/parameters and the compression percentage of the current rVariable (in the
current CDF). The compression percentage is the result of the compressed size from all variable records divided
by its original, uncompressed varible size. Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

out: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DATA_>
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

6 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

77

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR_DATATYPE_>
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$dataType

Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DIMVARYS_>
Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_HYPERDATA_>
Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: \@buffer

Values. The values are read from the CDF and placed in the variable buffer.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<GET_,rVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:

out: \$varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_MAXREC_>
Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: \$varMaxRec

Maximum record number.

78

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NAME_>
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varName

Name of the rVariable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXENTRIES_>
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXLEVELS_>
Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXRECORDS_>
Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMallocRECS_>
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: \$numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

79

<GET_,rVAR_NUMBER_>
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

out: \$varNum

The rVariable number.

The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>
Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: \$numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) – multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS_>
Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,rVAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:

out: \$numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE_>
Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT_,rVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: \$value

Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY_>
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$recVary

80

Record variance. The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SEQDATA_>
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.

<GET_,rVAR_SPARSEARRAYS_>
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: \$sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.

out: \@ArraysParms

The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SPARSERECORDS_>
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:

out: \$sRecordsType

The sparse records type. The types of sparse records are described in Section 2.11.1.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVARs_DIMSIZES_>
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: \@dimSizes

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

81

The only required preselected object/state is the current CDF.

<GET_,rVARs_MAXREC_>
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET_,rVAR_MAXREC_> operation. Required arguments are
as follows:

out: \$maxRec

Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: \$numDims

Number of dimensions.

The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA_>
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: $numVars

The number of rVariables from which to read. This must be at least one (1).

in: \@varNums

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 rVariables, each a 2-dimensional (2 by 3), the buffer should have 18 elements after the
read. As all variables’ have the same number of data values, then the buffer should return with 18
elements (2*3 + 2*3 + 2*3), the first 6 for the first variable, the next 6 for the second variable and the
last 6 for the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. 7

<GET_,STATUS_TEXT_>

7 A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

82

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: \$text

Text explaining the status code.

The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA_>
Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_DATATYPE_>
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: \$dataType

Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: \$numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

83

out: \$nextRecord

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the last allocated record.

out: \$nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_BLOCKINGFACTOR_>8

Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:

out: \$blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_COMPRESSION_>
Inquires the compression type/parameters and compression percentage of the current zVariable (in the current
CDF). The compression percentage is the result of the compressed size from all variable records divided by its
original, uncompressed varible size. Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

out: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA_>

8 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

84

Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: \$value

Value. The value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zVAR_DATATYPE_>
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$dataType

Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMSIZES_>
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimSizes

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMVARYS_>
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_HYPERDATA_>
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: \@buffer

Values. The values are read from the CDF and placed in the variable buffer.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<GET_,zVAR_MAXallocREC_>

85

Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:

out: \$varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: \$varMaxRec

Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NAME_>
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varName

Name of the zVariable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXENTRIES_>
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXLEVELS_>
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXRECORDS_>
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

86

out: \$numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMallocRECS_>
Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: \$numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER_>
Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the
NUL terminator).

out: \$varNum

The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>
Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: \$numDims

Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>
Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: \$numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) – multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMRECS_>

87

Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,zVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: \$numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_PADVALUE_>
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT_,zVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: \$value

Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_RECVARY_>
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$recVary

Record variance. The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SEQDATA_>
Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: \$value

Value. The value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.

<GET_,zVAR_SPARSEARRAYS_>
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:

out: \$sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.

out: \@sArraysParms

The sparse arrays parameters.

88

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SPARSERECORDS_>
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: \$sRecordsType

The sparse records type. The types of sparse records are described in Section 2.11.1.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVARs_MAXREC_>
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET_,zVAR_MAXREC_> operation. Required arguments are
as follows:

out: \$maxRec

Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,zVARs_RECDATA_>
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: $numVars

The number of zVariables from which to read. This must be at least one (1).

in: \@varNums

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 zVariables, first a 2-dimensional (2 by 3), second as a 1-dimensional (3) and third a scalar,
the buffer should have 10 (2*3 + 3 + 1) elements after the read. Among them, the first 6 for the first
variable, the next 3 for the second variable and the last 1 for the third variable.

89

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 9

<NULL_>
Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.

<OPEN ,CDF_>
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:

in: $CDFname

File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: \$id

CDF identifier to be used in subsequent operations on the CDF.

There are no required preselected objects/states.

<PUT_,ATTR_NAME_>
Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: $attrName

New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the
NUL terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: $scope

New attribute scope. Specify one of the scopes described in Section 2.12.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,CDF_CHECKSUM__>_
Respecifies the checksum mode of the current CDF. Required arguments are as follows:

in: $checksum

9 A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

90

The checksum mode to be used (NO_CHECKSUM or MD5_CHECKSUM). The checksum mode is
described in Section 2.19.

The required preselected objects/states is the current CDF.

<PUT_,CDF_COMPRESSION_>
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:

in: $cType

The compression type. The types of compressions are described in Section 2.10.

in: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

The only required preselected object/state is the current CDF.

<PUT_,CDF_ENCODING_>
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:

in: $encoding

New data encoding. Specify one of the encodings described in Section 2.6.

The only required preselected object/state is the current CDF.

<PUT_,CDF_FORMAT_>
Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: $format

New CDF format. Specify one of the formats described in Section 2.4.

The only required preselected object/state is the current CDF.

<PUT_,CDF_MAJORITY_>
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:

in: $majority

New variable majority. Specify one of the majorities described in Section 2.8.

The only required preselected object/state is the current CDF.

<PUT_,gENTRY_DATA_>
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: $dataType

91

Data type of the gEntry. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: \$value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: $dataType

New data type of the gEntry. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,rENTRY_DATA_>
Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: $dataType

Data type of the rEntry. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: \$value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

92

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: $dataType

New data type of the rEntry. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.

in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:

in: $nRecords

Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>10

Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: $blockingFactor

10 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

93

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_COMPRESSION_>
Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: $cType

The compression type. The types of compressions are described in Section 2.10.

in: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DATA_>
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: \$value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType

New data type. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DIMVARYS_>
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: \@dimVarys

94

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA_>
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: \@buffer

Values. The values in the variable buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT_,rVAR_INITIALRECS_>
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_NAME_>
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_PADVALUE_>
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: \$value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current rVariable.

95

<PUT_,rVAR_RECVARY_>
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: $recVary

New record variance. Specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SEQDATA_>
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: \$value

Value. The value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.

<PUT_,rVAR_SPARSEARRAYS_>
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:

in: $sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.

in: \@sArraysParms

The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SPARSERECORDS_>
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:

in: $sRecordsType

The sparse records type. The types of sparse records are described in Section 2.11.1.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVARs_RECDATA_>
Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: $numVars

96

The number of rVariables to which to write. This must be at least one (1).

in: \@varNums

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: \@buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the variables are all 2-dimensional (2 by 3) array, then the buffer should
have 18 elements (2*3 + 2*3 + 2*3) for handling a process of three variables. Among them, the first 6
is from the first variable, the next 6 from the second variable and the last 6 from the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. 11

<PUT_,zENTRY_DATA_>
Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: dataType

Data type of the zEntry. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: \$value

Value(s). The entry value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: $dataType

New data type of the zEntry. Specify one of the data types described in Section 2.5.

11 A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

97

in: $numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.

in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:

in: $nRecords

Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR_>12

Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: $blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_COMPRESSION_>
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:

in: $cType

The compression type. The types of compressions are described in Section 2.10.

12 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

98

in: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DATA_>
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: \$value

Value. The value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zVAR_DATASPEC_>
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType

New data type. Specify one of the data types described in Section 2.5.

in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DIMVARYS_>
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: \@dimVarys

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_INITIALRECS_>
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is

99

written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_HYPERDATA_>
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: \@buffer

Values. The values at the variable buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<PUT_,zVAR_NAME_>
Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_PADVALUE_>
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: \$value

Pad value. The pad value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_RECVARY_>
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: $recVary

New record variance. Specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

100

<PUT_,zVAR_SEQDATA_>
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:

in: \$value

Value. The value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.

<PUT_,zVAR_SPARSEARRAYS_>
Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

in: $sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.

in: \@sArraysParms

The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>
Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: $sRecordsType

The sparse records type. The types of sparse records are described in Section 2.11.1.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs_RECDATA_>
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: $numVars

The number of zVariables to which to write. This must be at least one (1).

in: \@varNums

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: \@buffer

101

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the first variable is a 2-dimensional (2 by 3) array and the second variable is
a 1-dimensional (5 elements) and the third variable is a scalar, then the buffer should have 12 elements
(2*3 + 5 + 1), the first 6 from the first variable, the next 5 from the second variable and the last one
from the third variable, while passing into the CDFlib.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 13

<SELECT_,ATTR_>
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: $attrNum

Attribute number.

The only required preselected object/state is the current CDF.

<SELECT_,ATTR_NAME_>
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT_,ATTR_>) is more efficient. Required arguments are as follows:

in: $attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>
Explicitly selects the current CDF. Required arguments are as follows:

in: $id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_>
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.

<SELECT_,CDF_CACHESIZE_>
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

in: $numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

13 A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

102

<SELECT_,CDF_DECODING_>
Selects a decoding (for the current CDF). Required arguments are as follows:

in: $decoding

The decoding. Specify one of the decodings described in Section 2.7.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: $mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 2.15.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: $mode

The read-only mode. Specify one of the read-only modes described in Section 2.13.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_SCRATCHDIR_>
Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the CDF$TMP logical name (on OpenVMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: $scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_>
Selects the current status code. Required arguments are as follows:

in: $status

CDF status code.

There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

in: $mode

The zMode. Specify one of the zModes described in Section 2.14.

103

The only required preselected object/state is the current CDF.

<SELECT_,COMPRESS_CACHESIZE_>
Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,gENTRY_>
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: $entryNum

gEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_>
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum

rEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_NAME_>
Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT_,rENTRY_>) is more efficient. Required arguments are as
follows:

in: $varName

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_>
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum

rVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_CACHESIZE_>

104

Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_NAME_>
Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT_,rVAR_>) is more efficient. Required arguments are as follows:

in: $varName

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: $percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

in: $recNum

Record number.

in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

105

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMCOUNTS_>
Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: \@counts

Dimension counts. Each element of counts specifies the corresponding dimension count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINDICES_>
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINTERVALS_>
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: \@intervals

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: $recCount

Record count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: $recInterval

Record interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: $recNum

Record number.

106

The only required preselected object/state is the current CDF.

<SELECT_,STAGE CACHESIZE_>
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

in: $numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_>
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum

zEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_NAME_>
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT_,zENTRY_>) is more efficient. Required arguments are
as follows:

in: $varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_>
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum

zVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_CACHESIZE_>
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current zVariable.

107

<SELECT_,zVAR_DIMCOUNTS_>
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: \@counts

Dimension counts. Each element of counts specifies the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINDICES_>
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINTERVALS_>
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

in: \@intervals

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME_>
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT_,zVAR_>) is more efficient. Required arguments are as follows:

in: $varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_RECCOUNT_>
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:

in: $recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECINTERVAL_>
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

in: $recInterval

108

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

in: $recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: $percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

in: $recNum

Record number.

in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zVARs_RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

109

in: $recNum

Record number.

The only required preselected object/state is the current CDF.

4.7 More Examples
Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

4.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

.

.

.
my $status; # Status returned from CDF library.
my @dimVarys; # Dimension variances.
my $varNum; # rVariable number.
my $padValue = -999.9; # Pad value.

.

.
$dimVarys[0] = VARY;
$dimVarys[1] = VARY;
$status = CDF::CDFlib (CREATE_, rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY, \@dimVarys, \$varNum,
 PUT__, rVAR_PADVALUE_, \$padValue,
 rVAR_INITIALRECS_, 500,
 rVAR_BLOCKINGFACTOR_, 50,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

4.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

.

.

.

110

my $status; # Status returned from CDF library.
my @dimVarys; # Dimension variances.
my $varNum; # zVariable number.
my $numDims = 1; # Number of dimensions.
my @dimSizes = { 20 }; # Dimension sizes.
my $numElems = 10; # Number of elements (characters in this case).
my $padValue = "**********"; # Pad value.
.
.
$dimVarys[0] = VARY;
$status = CDF::CDFlib (CREATE_, zVAR_, "Station", CDF_CHAR, $numElems, $numDims,
 \@dimSizes, NOVARY, \@dimVarys, \$varNum,
 PUT__, zVAR_PADVALUE_, \$padValue,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

4.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF_UINT2. It is assumed that the
current CDF has already been selected.

.

.

.
my $status; # Status returned from CDF library.
my @values; # Buffer to receive values.
my $recCount = 1; # Record count, one record per hyper get.
my $recInterval = 1; # Record interval, set to one to indicate contiguous records
 # (really meaningless since record count is one).
my @indices = (0,0); # Dimension indices, start each read at 0,0 of the array.
my @counts = (50,100); # Dimension counts, half of the values along

each dimension will be read.
my @intervals = (2,2); # Dimension intervals, every other value along
 # each dimension will be read.
my $recNum; # Record number.
my $maxRec; # Maximum rVariable record number in the CDF - This was
 # determined with a call to CDFinquire.
.
.
$status = CDF::CDFlib (SELECT_, rVAR_NAME_, "BRIGHTNESS",
 rVARs_RECCOUNT_, $recCount,
 rVARs_RECINTERVAL_, $recInterval,
 rVARs_DIMINDICES_, \@indices,
 rVARs_DIMCOUNTS_, \@counts,
 rVARs_DIMINTERVALS_, \@intervals,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);

for ($recNum = 0; $recNum <= $maxRec; $recNum++) {
 $status = CDF::CDFlib (SELECT_, rVARs_RECNUMBER_, $recNum,

111

 GET_, rVAR_HYPERDATA_, \@values,
 NULL_);
 if ($status != CDF_OK) UserStatusHandler ($status);
 .
 .
 process values
 .
 .
}
.
.

4.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

.

.

.
my $status; # Status returned from CDF library.
.
.
$status = CDF::CDFlib (SELECT_, ATTR_NAME_, "Tmp",
 PUT__, ATTR_NAME, "TMP",
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

4.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current
CDF has already been selected.

.

.
my $status; # Status returned from CDF library.
my $varNum; # zVariable number.
my $recNum = 0; # Record number, start at first record.
my @indices = (0,0); # Dimension indices.
my $value; # Value read.
my $sum = 0.0; # Sum of all values.
my $count = 0; # Number of values.
my $ave; # Average value.
.
.
$status = CDF::CDFlib (GET_, zVAR_NUMBER_, "FLUX", \$varNum,

112

 NULL_);
if (status != CDF_OK) UserStatusHandler ($status);
$status = CDF::CDFlib (SELECT_, zVAR_, $varNum,
 zVAR_SEQPOS_, $recNum, \@indices,
 GET_, zVAR_SEQDATA_, \$value,
 NULL_);

while ($status _>= CDF_OK) {
 $sum += $value;
 $count++;
 $status = CDF::CDFlib (GET_, zVAR_SEQDATA_, \$value,
 NULL_);
}
if ($status != END_OF_VAR) UserStatusHandler ($status);

$ave = $sum / $count;
.
.

4.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

.

.

.
my $status; # Status returned from CDF library.
my @scale = (-90.0,90.0); # Scale, minimum/maximum.
.
.
$status = CDF::CDFlib (SELECT_, rENTRY_NAME_, "LATITUDE",
 ATTR_NAME_, "FIELDNAM",
 PUT__, rENTRY_DATA_, CDF_CHAR, 20, "Latitude “,
 SELECT_, ATTR_NAME_, "SCALE",
 PUT__, rENTRY_DATA_, CDF_REAL, 4, 2, \@scale,
 SELECT_, ATTR_NAME_, "UNITS",
 PUT__, rENTRY_DATA_, CDF_CHAR, 20, "Degrees north “,
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

4.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

.

.

113

.
my $status; # Status returned from CDF library.
my $time; # `Time' (short) value.
my $vectorA; # `vectorA' (characters of 3) values.
my @vectorB; # `vectorB' (5 doubles) values.
my $recNumber; # Record number.
my @buffer; # Buffer of full-physical records.
my @varNumbers; # Variable numbers.
.
.
$status = CDF::CDFlib (GET_, zVAR_NUMBER_, "vectorB", \$varNumbers[0],
 zVAR_NUMBER_, "time", \$varNumbers[1],
 zVAR_NUMBER_, "vectorA", \$varNumbers[2],
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.
my $ii;
for ($recNumber = 0; $recNumber < 100; $recNumber++) {
 .
 read values from input file
 .
 for ($ii = 0; $ii < 5; $ii++) {
 $buffer[$ii] = $vectorB[$ii];
 }

 $buffer[5] = $time;
 $buffer[6] = $vectorA;
 $status = CDF::CDFlib (SELECT_, zVARs_RECNUMBER_, $recNumber,
 PUT__, zVARs_RECDATA_, 3, \@varNumbers, \@buffer,
 NULL_);
 if ($status != CDF_OK) UserStatusHandler ($status);
}
.
.

Note that it would be more efficient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

4.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a Perl
application. Please don't do something like the following:

.

.

.
my $id; # CDF identifier (handle).
my $status; # Status returned from CDF library.
my $varNum; # zVariable number.
.
.

114

$status = CDF::CDFlib (SELECT_, CDF_, $id,
 GET_, zVAR_NUMBER_, "EPOCH", \$varNum,
 SELECT_, zVAR_, $varNum, # _ERROR!
 NULL_);
if ($status != CDF_OK) UserStatusHandler ($status);
.
.

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET_,zVAR_NUMBER_> operation. What actually happens is that the zVariable number passed to the
<SELECT_,zVAR_> operation is undefined. This is because the varNum is passed by value rather than reference.14

Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a value. Only
after the <GET_,zVAR_NUMBER_> operation is performed does varNum have a valid value. But at that point it's too
late since the argument list has already been created. In this type of situation you would have to make two calls to
CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

14 Fortran programmers can get away with doing something like this because everything is passed by reference.

115

Chapter 5

5 Interpreting CDF Status Codes

Most CDF functions return a status code. The symbolic names for these codes are defined in cdf.h and should be used
in your applications rather than using the true numeric values. Appendix A explains each status code. When the status
code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

my $status;

.

.
$status = CDF::CDFfunction (...); # any CDF function returning status
if ($status != CDF_OK) {
 UserStatusHandler (“1.0”, $status);
 .
 .
}

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

sub UserStatusHandler {
 my ($where, $status)=@_;

 print "Aborting at $where ...\n";
 if ($status < CDF_OK) {
 my $text;

116

 CDF::CDFlib (SELECT_, CDF_STATUS_, $status,
 GET_, STATUS_TEXT_, \$text,
 NULL_);
 print $text;
 }
 CDF::CDFlib (CLOSE_, CDF_,
 NULL_);
 print "...test aborted.\n";
 exit;

}#endsub QuitCDF

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

117

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are included in
the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter
in the CDF User's Guide describes EPOCH values.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.
For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::computeEPOCH(# out -- CDF_EPOCH value returned.
my year, # in -- Year (AD, e.g., 1994).
my month, # in -- Month (1-12).
my day, # in -- Day (1-31).
my hour, # in -- Hour (0-23).
my minute, # in -- Minute (0-59).
my second, # in -- Second (0-59).
my msec); # in -- Millisecond (0-999).

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

6.2 EPOCHbreakdown

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

118

CDF::EPOCHbreakdown(
my $epoch, # in -- The CDF_EPOCH value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).
my $day, # out -- Day (1-31).
my $hour, # out -- Hour (0-23).
my $minute, # out -- Minute (0-59).
my $second, # out -- Second (0-59).
my $msec); # out -- Millisecond (0-999).

6.3 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The standard date/time character string.

epString has the length of EPOCH_STRING_LEN, defined in Perl-CDF package.

6.4 encodeEPOCH1

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

CDF::encodeEPOCH1(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH1_STRING_LEN.

6.5 encodeEPOCH2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH2(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The alternate date/time character string.

119

spString has a length of EPOCH2_STRING_LEN.

6.6 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH3(
my $epoch; # in -- The CDF_EPOCH value.
my \$epString); # out -- The alternate date/time character string.

epString has a length of EPOCH3_STRING_LEN.

6.7 encodeEPOCH4

EncodeEPOCH4 encodes a CDF_EPOCH value into an alternate. ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH4(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The ISO 8601 date/time character string.

epString has a length of EPOCH4_STRING_LEN.

6.8 encodeEPOCHx

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

CDF::encodeEPOCHx(
my $epoch; # in -- The CDF_EPOCH value.
my $format; # in ---The format string.
my $encoded); # out -- The custom date/time character string.

The encoded string has a length up to EPOCHx_STRING_MAX. The format string consists of EPOCH components,
which are encoded, and text that is simply copied to the encoded custom string. Components are enclosed in angle
brackets and consist of a component token and an optional width. The syntax of a component is: <token[.width]>. If
the optional width contains a leading zero, then the component will be encoded with leading zeroes (rather than leading
blanks).

The supported component tokens and their default widths are as follows. . .

120

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would
be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

6.9 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 6.3. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH(# out -- CDF_EPOCH value returned.
my $epString); # in -- The standard date/time character string.

6.10 parseEPOCH1

parseEPOCH1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 function described in Section 6.4. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH1(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

121

6.11 parseEPOCH2

parseEPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH2 function described in Section 6.5. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH2(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

6.12 parseEPOCH3

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 function described in Section 6.6. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH3(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

6.13 parseEPOCH4

ParseEPOCH4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The
format of the string is that produced by the encodeEPOCH4 function described in Section 6.7. If an illegal field is
detected in the string the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH4(# out -- CDF_EPOCH value returned.
my $epString); # in -- The ISO 8601 date/time character string.

6.14 computeEPOCH16

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::computeEPOCH16(# out -- status code returned.
my $year, # in -- Year (AD, e.g., 1994).
my $month, # in -- Month (1-12).
my $day, # in -- Day (1-31).
my $hour, # in -- Hour (0-23).
my $minute, # in -- Minute (0-59).
my $second, # in -- Second (0-59).
my $msec, # in -- Millisecond (0-999).
my $microsec, # in -- Microsecond (0-999).
my $nanosec, # in -- Nanosecond (0-999).
my $picosec, # in -- Picosecond (0-999).

122

my \@epoch16); # out -- CDF_EPOCH16 value returned

epoch16, an array with two elements, contains the epoch time in picoseconds.

6.15 EPOCH16breakdown

EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.

CDF::EPOCH16breakdown(
my \@epoch16, # in -- The CDF_EPOCH16 value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).
my $day, # out -- Day (1-31).
my $hour, # out -- Hour (0-23).
my $minute, # out -- Minute (0-59).
my $second, # out -- Second (0-59).
my $msec, # out -- Millisecond (0-999).
my $microsec, # out -- Microsecond (0-999).
my $nanosec, # out -- Nanosecond (0-999).
my $picosec); # out -- Picosecond (0-999).

6.16 encodeEPOCH16

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16(
my \@epoch16; # in -- The CDF_EPOCH16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16_STRING_LEN.

6.17 encodeEPOCH16_1

encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

CDF::encodeEPOCH16_1(
my \@epoch16; # in -- The CDF_EPOCH16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16_1_STRING_LEN.

123

6.18 encodeEPOCH16_2

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH16_2(
my \@epoch16; # in -- The CDF_EPOCH16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16_2_STRING_LEN.

6.19 encodeEPOCH16_3

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16_3(
my \@epoch16; # in -- The CDF_EPOCH16 value.
my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16_3_STRING_LEN.

6.20 encodeEPOCH16_4

encodeEPOCH16_4 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16_4(
my \@epoch16; # in -- The CDF_EPOCH16 value.
my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16_4_STRING_LEN.

124

6.21 encodeEPOCH16_x

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

CDF::encodeEPOCH16_x(
mt \@epoch16; # in -- The CDF_EPOCH16 value.
my $format; # in ---The format string.
my $encoded); # out -- The date/time character string.

While the format string has a length up to EPOCHx_FORMAT_LEN, the encoded string has a length up to
EPOCHx_STRING_MAX. The format string consists of EPOCH components, which are encoded, and text that is
simply copied to the encoded custom string. Components are enclosed in angle brackets and consist of a component
token and an optional width. The syntax of a component is: <token[.width]>. If the optional width contains a leading
zero, then the component will be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.22 parseEPOCH16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

125

CDF::parseEPOCH16(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH16 value returned

epString has a length of EPOCH16_STRING_LEN . epoch is an array of two elements.

6.23 parseEPOCH16_1

parseEPOCH16_1 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH16_1(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH16 value returned

epString has a length of EPOCH16_1_STRING_LEN . epoch is an array of two elements.

6.24 parseEPOCH16_2

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH16_2(# out -- The status code returned.
My $epString, # in -- The date/time character string.
My \@epoch16); # out -- The CDF_EPOCH16 value returned

 epString has a length of EPOCH16_2_STRING_LEN . epoch is an array of two elements

6.25 parseEPOCH16_3

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH16_3(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH16 value returned

epString has a length of EPOCH16_3_STRING_LEN . epoch is an array of two elements

126

6.26 parseEPOCH16_4

parseEPOCH16_4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encodeEPOCH16_4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH16_3(# out -- The status code returned.
my $epString, # in -- The ISO 8601 date/time character string.
my \@epoch16); # out -- The CDF_EPOCH16 value returned

epString has a length of EPOCH16_4_STRING_LEN . epoch is an array of two elements

127

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME_TT2000 values. These functions may
be called by applications using the CDF_TIME_TT2000 data type and are included in the CDF library. The Concepts
chapter in the CDF User's Guide describes CDF_TIME_TT2000 values.

The CDF_TIME_TT2000 data type is used to store time values referenced from J 2 0 0 0 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000

computeTT2000 calculates a CDF_TIME_TT2000 value given the individual components. If an illegal component is
detected, e.g., the year is outside of the valid range for TT2000 data, the value returned will be
ILLEGAL_TT2000_VALUE.

CDF::computeTT2000(# out -- CDF_TIME_TT2000 value returned.
my year, # in -- Year (AD, e.g., 1994).
my month, # in -- Month (1-12).
my day, # in -- Day (1-31).
my hour, # in -- Hour (0-23).
my minute, # in -- Minute (0-59).
my second, # in -- Second (0-59 or 0-60 if leap second).
my msec; # in -- Millisecond (0-999).
my usec, # in -- Microsecond (0-999).
my nsec); # in -- Nanosecond (0-999).

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000. Similar arrangements are for micro and nano-second.

7.2 TT2000breakdown

TT2000breakdown decomposes a CDF_TIME_TT2000 value into the individual components.

CDF::EPOCHbreakdown(
my $epoch, # in -- The CDF_EPOCH value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).
my $day, # out -- Day (1-31).
my $hour, # out -- Hour (0-23).

128

my $minute, # out -- Minute (0-59).
my $second, # out -- Second (0-59 or 0-60 if leap second).
my $msec; # out -- Millisecond (0-999).
my $usec, # out -- Microsecond (0-999).
my $nsec); # out -- Nanosecond (0-999).

7.3 encodeTT2000

encodeTT2000 encodes a CDF_TT2000 value into the standard date/time character string. The default format of the
string is in ISO 8601 format: yyyy-mm-ddT hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the
month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59
or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-
999).

CDF::encodeEPOCH(
my $epoch; # in -- The CDF_TIME_TT2000 value.
my $epString); # out -- The standard date/time character string.

This module accepts an extra, optional argument field of integer for format. If the format is not passed in, a format of
value 3 is assumed and the default encoded UTC string is returned. The fomat has a valid value from 0 to 3.

For a format of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day
of the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

For a format of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999).

For a format of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-
59 or 0-60 if leap second).

For a format of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999).

7.4 parseTT2000

parseTT2000 parses a standard date/time character string and returns a CDF_TIME_TT2000 value. The format of the
string is that produced by the encodeTT2000 function described in Section 6.3. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

CDF::parseEPOCH(# out -- CDF_TIME_TT2000 value returned.
my $epString); # in -- The standard date/time character string.

129

7.5 leapsecondsinfo

leapsecondinfo shows how the leap seconds table is accessed and when the last leap second was added. The table can
be accessed externally or internally by the CDF library. Refer to User’s Guide for leap seconds.

CDF::leapsecondinfo();

Optionally, a n integer value of 0 (zero) or non-zero can be passed to the module. If a non-zero value is passed in, the
contents of the leap seconds table is dumped. No value or 0 is passed in, the table is not shown.

131

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h include file, distributed with the Perl-CDF package,
contains the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror can be used within a program to inquire the
explanation text for a given status code. The Internal Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:

Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD_ALLOCATE_RECS An illegal number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

132

BAD_ATTR_NAME Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

BAD_ATTR_NUM Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD_BLOCKING_FACTOR1 An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

BAD_CACHESIZE An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

BAD_CDF_EXTENSION An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

BAD_CDF_ID CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

BAD_CDF_NAME Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

BAD_CDFSTATUS Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

BAD_CHECKSUM An illegal checksum mode received. It is invlid or currently not
supported. [Error]

BAD_COMPRESSION_PARM An illegal compression parameter was specified. [Error]

BAD_DATA_TYPE An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

BAD_DECODING An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_DIM_COUNT Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

BAD_DIM_INDEX One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

BAD_DIM_INTERVAL Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

1 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

133

BAD_DIM_SIZE Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

BAD_ENCODING Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_ENTRY_NUM Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

BAD_FNC_OR_ITEM The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

BAD_FORMAT Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

BAD_INITIAL_RECS An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

BAD_MAJORITY Unknown variable majority specified. The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

BAD_MALLOC Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

BAD_NEGtoPOSfp0_MODE An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_NUM_DIMS The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

BAD_NUM_ELEMS The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

BAD_NUM_VARS Illegal number of variables in a record access operation. [Error]

BAD_READONLY_MODE Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_REC_COUNT Illegal record count specified. A record count must be at least
one (1). [Error]

BAD_REC_INTERVAL Illegal record interval specified. A record interval must be at
least one (1). [Error]

134

BAD_REC_NUM Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

BAD_SCOPE Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_SCRATCH_DIR An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

BAD_SPARSEARRAYS_PARM An illegal sparse arrays parameter was specified. [Error]

BAD_VAR_NAME Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

BAD_VAR_NUM Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD_zMODE Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

CANNOT_ALLOCATE_RECORDS Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

CANNOT_CHANGE Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

135

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

CANNOT_COMPRESS The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

CANNOT_SPARSEARRAYS Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

CANNOT_SPARSERECORDS Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

CDF_CLOSE_ERROR Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

CDF_CREATE_ERROR Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

CDF_DELETE_ERROR Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

CDF_EXISTS The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

CDF_INTERNAL_ERROR An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF_NAME_TRUNC CDF file name truncated to CDF_PATHNAME_LEN characters.
The CDF was created but with a truncated name. [Warning]

CDF_OK Function completed successfully.

CDF OPEN_ERROR Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

136

CDF_READ_ERROR Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

CDF_WRITE_ERROR Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

CHECKSUM_ERROR Data integrity verification through the checksum failed. [Error]

CHECKSUM_NOT_ALLOWED The checksum is not allowed for old versioned files. [Error]

COMPRESSION_ERROR An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

CORRUPTED_V2_CDF This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

DECOMPRESSION_ERROR An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

DID_NOT_COMPRESS For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

EMPTY_COMPRESSED_CDF The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

END_OF_VAR The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

FORCED_PARAMETER A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

IBM_PC_OVERFLOW An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

ILLEGAL_EPOCH_VALUE Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

ILLEGAL_FOR_SCOPE The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

ILLEGAL_IN_zMODE The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

137

ILLEGAL_ON_V1_CDF The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

MULTI_FILE_FORMAT The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

NA_FOR_VARIABLE The attempted operation is not applicable to the given variable.
[Warning]

NEGATIVE_FP_ZERO One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

NO_ATTR_SELECTED An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

NO_CDF_SELECTED A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

NO_DELETE_ACCESS Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

NO_ENTRY_SELECTED An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

NO_MORE_ACCESS Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

NO_PADVALUE_SPECIFIED A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

NO_STATUS SELECTED A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

NO_SUCH_ATTR The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

NO_SUCH_CDF The specified CDF does not exist. Check that the file name
specified is correct. [Error]

NO_SUCH_ENTRY No such entry for specified attribute. [Error]

NO_SUCH_RECORD The specified record does not exist for the given variable. [Error]

NO_SUCH_VAR The named variable was not found. Note that variable names are
case-sensitive. [Error]

NO_VAR_SELECTED A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

NO_VARS_IN_CDF This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

138

NO_WRITE_ACCESS Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

NOT_A_CDF Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

NOT_A_CDF_OR_NOT_SUPPORTED This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

PRECEEDING_RECORDS_ALLOCATED Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

READ_ONLY_DISTRIBUTION Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

READ_ONLY_MODE The CDF is in read-only mode - modifications are not allowed.
[Error]

SCRATCH_CREATE_ERROR Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

SCRATCH_DELETE_ERROR Cannot delete a scratch file - error from file system. [Error]

SCRATCH_READ_ERROR Cannot read from a scratch file - error from file system. [Error]

SCRATCH_WRITE_ERROR Cannot write to a scratch file - error from file system. [Error]

SINGLE_FILE_FORMAT The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a
variable in a single-file CDF. [Informational]

SOME_ALREADY_ALLOCATED Some of the records being allocated were already allocated.
[Informational]

TOO_MANY_PARMS A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

TOO_MANY_VARS A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

UNKNOWN_COMPRESSION An unknown type of compression was specified or encountered.
[Error]

UNKNOWN_SPARSENESS An unknown type of sparseness was specified or encountered.
[Error]

139

UNSUPPORTED_OPERATION The attempted operation is not supported at this time. [Error]

VAR_ALREADY_CLOSED The specified variable is already closed. [Informational]

VAR_CLOSE_ERROR Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

VAR_CREATE_ERROR An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

VAR_DELETE_ERROR An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

VAR_EXISTS Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

VAR_NAME_TRUNC Variable name truncated to CDF_VAR_NAME_LEN256
characters. The variable was created but with a truncated name.
[Warning]

VAR_OPEN_ERROR An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

VAR_READ_ERROR Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

VAR_WRITE_ERROR Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

VIRTUAL_RECORD_DATA One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

141

Appendix B

B.1 Standard Interface

$status = CDF::CDFattrCreate ($id, $attrName, $attrScope, \$attrNum)
my $id; # in
my $attrName; # in
my $attrScope; # in
my \$attrNum; # out

$status = CDF::CDFattrEntryInquire ($id, $attrNum, $entryNum, \$dataType, \$numElements)
my $id; # in
my $attrNum; # in
my $entryNum; # in
my \$dataType; # out
my \$numElements; # out

$status = CDF::CDFattrGet ($id, $attrNum, $entryNum, \$value)
my $id; # in
my $attrNum; # in
my $entryNum; # in
my \$value; # out

$status = CDF::CDFattrInquire ($id, $attrNum, \$attrName, \$attrScope, \$maxEntry)
my $id; # in
my $attrNum; # in
my \$attrName; # out
my \$attrScope; # out
my \$maxEntry; # out

$varNum = CDF::CDFattrNum ($id, $attrName)
my $id; # in
my $attrName; # in

$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, $dataType, $numElements, \$value)
my $id; # in
my $attrNum; # in
my $entryNum; # in
my $dataType; # in
my $numElements; # in
my \$value; # in

$status = CDF::CDFattrRename ($id, $attrNum, $attrName)
my $id; # in
my $attrNum; # in

142

my $attrName; # in

$status = CDF::CDFclose ($id)
my $id; # in

$status = CDF::CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id)
my $CDFname; # in
my $numDims; # in
my \@dimSizes; # in
my $encoding; # in
my $majority; # in
my \$id; # out

$status = CDF::CDFdelete ($id)
my $id; # in

$status = CDF::CDFdoc ($id, \$version, \$release, \$text)
my $id; # in
my \$version; # out
my \$release; # out
my \$text; # out

$status = CDF:: CDFerror ($status, \$message)
my $status; # in
my \$message; # out

$status = CDF::CDFgetChecksum ($id, \$checksum)
my $id; # in
my \$checksum; # out

$flag = CDF::CDFgetFileBackward ()
my $flag # out

$flag = CDF::CDFgetValidate ()
my $flag # out

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority, \$maxRec,
 \$numVars, \$numAttrs)
my $id; # in
my \$numDims; # out
my \@dimSizes; # out
my \$encoding; # out
my \$majority; # out
my \$maxRec; # out
my \$numVars; # out
my \$numAttrs; # out

$status = CDF:: CDFopen ($CDFname, $id)
my $CDFname; # in
my \$id; # out

$status = CDF::CDFsetChecksum ($id, $checksum)
my $id; # in
my $checksum; # in

CDF::CDFsetFileBackward ($cdf27BackwardCompatibleFlag)

143

my $cdf27BackwardCompatibleFlag; # in

$ CDF::CDFsetValidate ($validationFlag)
my $validationFlag; # in

status = CDF::CDFvarClose ($id, $varNum)
my $id; # in
my $varNum; # in

$status = CDF::CDFvarCreate ($id, $varName, $dataType, $numElements, $recVariances,
 \@dimVariances, \$varNum)
my $id; # in
my $varName; # in
my $dataType; # in
my $numElements; # in
my $recVariance; # in
my \@dimVariances; # in
my \$varNum; # out

$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value)
my $id; # in
my $varNum; # in
my $recNum; # in
my \@indices; # in
my \$value; # out

$status = CDF::CDFvHpGet ($id, $varNum, $recStart, $recCount, $recInterval,
 \@indices, \@counts, \@intervals, \@buffer)
my $id; # in
my $varNum; # in
my $recStart; # in
my $recCount; # in
my $recInterval; # in
my \@indices; # in
my \@counts; # in
my \@intervals; # in
my \@buffer; # out

$status = CDF::CDFvHpPut ($id, $varNum, $recStart, $recCount, $recInterval,
 \@indices, \@counts, \@intervals, \@buffer)
my $id; # in
my $varNum; # in
my $recStart; # in
my $recCount; # in
my $recInterval; # in
my \@indices; # in
my \@counts; # in
my \@intervals; # in
my \@buffer; # in

$status = CDF::CDFvarInquire ($id, $varNum, \$varName, \$dataType, \$numElements,
 \$recVariance, \@dimVariances)
my $id; # in
my $varNum; # in
my \$varName; # out
my \$dataType; # out

144

my \$numElements; # out
my \$recVariance; # out
my \@dimVariances; # out

$varNum = CDF::CDFvarNum ($id, $varName) # out
my $id; # in
my $varName; # in

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value)
my $id; # in
my $varNum; # in
my $recNum; # in
my \@indices; # in
my \$value; # in

$status = CDF::CDFvarRename ($id, $varNum, $varName)
my $id; # in
my $varNum; # in
my $varName; # in

145

B.2 Internal Interface

$status = CDF::CDFlib (op, ...)
 op; # in

CLOSE_
CDF_
rVAR_
zVAR_

CONFIRM_
ATTR_ \$attrNum # out
ATTR_EXISTENCE_ $attrName # in
CDF_ \$id # out
CDF_ACCESS_
CDF_CACHESIZE_ \$numBuffers # out
CDF_DECODING_ \$decoding # out
CDF_NAME_ \$CDFname # out
CDF_NEGtoPOSfp0_MODE_ \$mode # out
CDF_READONLY_MODE_ \$mode # out
CDF_STATUS_ \$status # out
CDF_zMODE_ \$mode # out
COMPRESS_CACHESIZE_ \$numBuffers # out
CURgENTRY_EXISTENCE_
CURrENTRY_EXISTENCE_
CURzENTRY_EXISTENCE_
gENTRY_ \$entryNum # out
gENTRY_EXISTENCE_ $entryNum # in
rENTRY_ \$entryNum # out
rENTRY_EXISTENCE_ $entryNum # in
rVAR_ \$varNum # out
rVAR_CACHESIZE_ \$numBuffers # out
rVAR_EXISTENCE_ $varName # in
rVAR_PADVALUE_
rVAR_RESERVEPERCENT_ \$percent # out
rVAR_SEQPOS_ \$recNum # out

\@indices # out
rVARs_DIMCOUNTS_ \@counts # out
rVARs_DIMINDICES_ \@indices # out
rVARs_DIMINTERVALS_ \@intervals # out
rVARs_RECCOUNT_ \$recCount # out
rVARs_RECINTERVAL_ \$recInterval # out
rVARs_RECNUMBER_ \$recNum # out
STAGE_CACHESIZE_ \$numBuffers # out
zENTRY_ \$entryNum # out
zENTRY_EXISTENCE_ $entryNum # in
zVAR_ \$varNum # out
zVAR_CACHESIZE_ \$numBuffers # out
zVAR_DIMCOUNTS_ \@counts # out
zVAR_DIMINDICES_ \@indices # out
zVAR_DIMINTERVALS_ \@intervals # out
zVAR_EXISTENCE_ $varName # in
zVAR_PADVALUE_

146

zVAR_RECCOUNT_ \$recCount # out
zVAR_RECINTERVAL_ \$recInterval # out
zVAR_RECNUMBER_ \$recNum # out
zVAR_RESERVEPERCENT_ \$percent # out
zVAR_SEQPOS_ \$recNum # out

\@indices # out

CREATE_
ATTR_ $attrName # in

$scope # in
\$attrNum # out

CDF_ $CDFname # in
$numDims # in
\@dimSizes # in
\$id # out

rVAR_ $varName # in
$dataType # in
$numElements # in
$recVary # in
\@dimVarys # in
\$varNum # out

zVAR_ $varName # in
$dataType # in
$numElements # in
$numDims # in
\@dimSizes # in
$recVary # in
\@dimVarys # in
\$varNum # out

DELETE_
ATTR_
CDF_
gENTRY_
rENTRY_
rVAR_
rVAR_RECORDS_ $firstRecord # in

$lastRecord # in
zENTRY_
zVAR_
zVAR_RECORDS_ $firstRecord # in

$lastRecord # in

GET_
ATTR_MAXgENTRY_ \$maxEntry # out
ATTR_MAXrENTRY_ \$maxEntry # out
ATTR_MAXzENTRY_ \$maxEntry # out
ATTR_NAME_ \$attrName # out
ATTR_NUMBER_ $attrName # in

\$attrNum # out
ATTR_NUMgENTRIES_ \$numEntries # out
ATTR_NUMrENTRIES_ \$numEntries # out
ATTR_NUMzENTRIES_ \$numEntries # out

147

ATTR_SCOPE_ \$scope # out
CDF_CHECKSUM_ \$checksum # out
CDF_COMPRESSION_ \$cType # out

\@cParms # out
\$cPct # out

CDF_COPYRIGHT_ \$Copyright # out
CDF_ENCODING_ \$encoding # out
CDF_FORMAT_ \$format # out
CDF_INCREMENT_ \$increment # out
CDF_INFO_ $name # in

\$cType # out
\@cParms # out
\$cSize # out
\$uSize # out

CDF_MAJORITY_ \$majority # out
CDF_NUMATTRS_ \$numAttrs # out
CDF_NUMgATTRS_ \$numAttrs # out
CDF_NUMrVARS_ \$numVars # out
CDF_NUMvATTRS_ \$numAttrs # out
CDF_NUMzVARS_ \$numVars # out
CDF_RELEASE_ \$release # out
CDF_VERSION_ \$version # out
DATATYPE_SIZE_ $dataType # in

\$numBytes # out
gENTRY_DATA_ \$value # out
gENTRY_DATATYPE_ \$dataType # out
gENTRY_NUMELEMS_ \$numElements # out
LIB_COPYRIGHT_ \$Copyright # out
LIB_INCREMENT_ \$increment # out
LIB_RELEASE_ \$release # out
LIB_subINCREMENT_ \$subincrement # out
LIB_VERSION_ \$version # out
rENTRY_DATA_ \$value # out
rENTRY_DATATYPE_ \$dataType # out
rENTRY_NUMELEMS_ \$numElements # out
rVAR_ALLOCATEDFROM_ $startRecord # in

\$nextRecord # out
rVAR_ALLOCATEDTO_ $startRecord # in

\$lastRecord # out
rVAR_BLOCKINGFACTOR_ \$blockingFactor # out
rVAR_COMPRESSION_ \$cType # out

\@cParms # out
\$cPct # out

rVAR_DATA_ \$value # out
rVAR_DATATYPE_ \$dataType # out
rVAR_DIMVARYS_ \@dimVarys # out
rVAR_HYPERDATA_ \@buffer # out
rVAR_MAXallocREC_ \$maxRec # out
rVAR_MAXREC_ \$maxRec # out
rVAR_NAME_ \$varName # out
rVAR_nINDEXENTRIES_ \$numEntries # out
rVAR_nINDEXLEVELS_ \$numLevels # out
rVAR_nINDEXRECORDS_ \$numRecords # out
rVAR_NUMallocRECS_ \$numRecords # out
rVAR_NUMBER_ $varName # in

\$varNum # out

148

rVAR_NUMELEMS_ \$numElements # out
rVAR_NUMRECS_ \$numRecords # out
rVAR_PADVALUE_ \$value # out
rVAR_RECVARY_ \$recVary # out
rVAR_SEQDATA_ \$value # out
rVAR_SPARSEARRAYS_ \$sArraysType # out

\@sArraysParms # out
\$sArraysPct # out

rVAR_SPARSERECORDS_ \$sRecordsType # out
rVARs_DIMSIZES_ \@dimSizes # out
rVARs_MAXREC_ \$maxRec # out
rVARs_NUMDIMS_ \$numDims # out
rVARs_RECDATA_ $numVars # in

\@varNums # in
\@buffer # out

STATUS_TEXT_ \$text # out
zENTRY_DATA_ \$value # out
zENTRY_DATATYPE_ \$dataType # out
zENTRY_NUMELEMS_ \$numElements # out
zVAR_ALLOCATEDFROM_ $startRecord # in

\$nextRecord # out
zVAR_ALLOCATEDTO_ $startRecord # in

\$lastRecord # out
zVAR_BLOCKINGFACTOR_ \$blockingFactor # out
zVAR_COMPRESSION_ \$cType # out

\@cParms # out
\$cPct # out

zVAR_DATA_ \$value # out
zVAR_DATATYPE_ \$dataType # out
zVAR_DIMSIZES_ \@dimSizes # out
zVAR_DIMVARYS_ \@dimVarys # out
zVAR_HYPERDATA_ \@buffer # out
zVAR_MAXallocREC_ \$maxRec # out
zVAR_MAXREC_ \$maxRec # out
zVAR_NAME_ \$varName # out
zVAR_nINDEXENTRIES_ \$numEntries # out
zVAR_nINDEXLEVELS_ \$numLevels # out
zVAR_nINDEXRECORDS_ \$numRecords # out
zVAR_NUMallocRECS_ \$numRecords # out
zVAR_NUMBER_ $varName # in

\$varNum # out
zVAR_NUMDIMS_ \$numDims # out
zVAR_NUMELEMS_ \$numElements # out
zVAR_NUMRECS_ \$numRecords # out
zVAR_PADVALUE_ \$value # out
zVAR_RECVARY_ \$recVary # out
zVAR_SEQDATA_ \$value # out
zVAR_SPARSEARRAYS_ \$sArraysType # out

\@sArraysParms # out
\$sArraysPct # out

zVAR_SPARSERECORDS_ \$sRecordsType # out
zVARs_MAXREC_ \$maxRec # out
zVARs_RECDATA_ $numVars # in

\@varNums # in
\@buffer # out

NULL_

149

OPEN_
CDF_ $CDFname # in

\$id # out
PUT__

ATTR_NAME_ $attrName # in
ATTR_SCOPE_ $scope # in
CDF_CHECKSUM_ $checksum # in
CDF_COMPRESSION_ $cType # in

\@cParms # in
CDF_ENCODING_ $encoding # in
CDF_FORMAT_ $format # in
CDF_MAJORITY_ $majority # in
gENTRY_DATA_ $dataType # in

$numElements # in
\$value # in

gENTRY_DATASPEC_ $dataType # in
$numElements # in

rENTRY_DATA_ $dataType # in
$numElements # in
\$value # in

rENTRY_DATASPEC_ $dataType # in
$numElements # in

rVAR_ALLOCATEBLOCK_ $firstRecord # in
$lastRecord # in

rVAR_ALLOCATERECS_ $numRecords # in
rVAR_BLOCKINGFACTOR_ $blockingFactor # in
rVAR_COMPRESSION_ $cType # in

\@cParms # in
rVAR_DATA_ \$value # in
rVAR_DATASPEC_ $dataType # in

$numElements # in
rVAR_DIMVARYS_ \@dimVarys # in
rVAR_HYPERDATA_ \@buffer # in
rVAR_INITIALRECS_ $nRecords # in
rVAR_NAME_ $varName # in
rVAR_PADVALUE_ \$value # in
rVAR_RECVARY_ $recVary # in
rVAR_SEQDATA_ \$value # in
rVAR_SPARSEARRAYS_ $sArraysType # in

\@sArraysParms # in
rVAR_SPARSERECORDS_ $sRecordsType # in
rVARs_RECDATA_ $numVars # in

\@varNums # in
\$buffer # in

zENTRY_DATA_ long dataType # in
$numElements # in
\$value # in

zENTRY_DATASPEC_ $dataType # in
$numElements # in

zVAR_ALLOCATEBLOCK_ $firstRecord # in
$lastRecord # in

zVAR_ALLOCATERECS_ $numRecords # in
zVAR_BLOCKINGFACTOR_ $blockingFactor # in
zVAR_COMPRESSION_ $cType # in

\@$cParms # in

150

zVAR_DATA_ \$value # in
zVAR_DATASPEC_ $dataType # in

$numElements # in
zVAR_DIMVARYS_ \@dimVarys # in
zVAR_INITIALRECS_ $nRecords # in
zVAR_HYPERDATA_ \@buffer # in
zVAR_NAME_ $varName # in
zVAR_PADVALUE_ \$value # in
zVAR_RECVARY_ $recVary # in
zVAR_SEQDATA_ \$value # in
zVAR_SPARSEARRAYS_ $sArraysType # in

\@sArraysParms # in
zVAR_SPARSERECORDS_ $sRecordsType # in
zVARs_RECDATA_ $numVars # in

\@varNums # in
\@buffer # in

SELECT_
ATTR_ $attrNum # in
ATTR_NAME_ $attrName # in
CDF_ $id # in
CDF_CACHESIZE_ $numBuffers # in
CDF_DECODING_ $decoding # in
CDF_NEGtoPOSfp0_MODE_ $mode # in
CDF_READONLY_MODE_ $mode # in
CDF_SCRATCHDIR_ $dirPath # in
CDF_STATUS_ $status # in
CDF_zMODE_ $mode # in
COMPRESS_CACHESIZE_ $numBuffers # in
gENTRY_ $entryNum # in
rENTRY_ $entryNum # in
rENTRY_NAME_ $varName # in
rVAR_ $varNum # in
rVAR_CACHESIZE_ $numBuffers # in
rVAR_NAME_ $varName # in
rVAR_RESERVEPERCENT_ $percent # in
rVAR_SEQPOS_ $recNum # in

\@indices # in
rVARs_CACHESIZE_ $numBuffers # in
rVARs_DIMCOUNTS_ \@counts # in
rVARs_DIMINDICES_ \@indices # in
rVARs_DIMINTERVALS_ \@intervals # in
rVARs_RECCOUNT_ $recCount # in
rVARs_RECINTERVAL_ $recInterval # in
rVARs_RECNUMBER_ $recNum # in
STAGE_CACHESIZE_ $numBuffers # in
zENTRY_ $entryNum # in
zENTRY_NAME_ $varName # in
zVAR_ $varNum # in
zVAR_CACHESIZE_ $numBuffers # in
zVAR_DIMCOUNTS_ \@counts # in
zVAR_DIMINDICES_ \@indices # in
zVAR_DIMINTERVALS_ \@intervals # in
zVAR_NAME_ $varName # in
zVAR_RECCOUNT_ $recCount # in
zVAR_RECINTERVAL_ $recInterval # in
zVAR_RECNUMBER_ $recNum # in

151

zVAR_RESERVEPERCENT_ $percent # in
zVAR_SEQPOS_ $recNum # in

\@indices # in
zVARs_CACHESIZE_ $numBuffers # in
zVARs_RECNUMBER_ $recNum # in

153

B.3 EPOCH Utility Routines

$epoch = CDF::computeEPOCH ($year, $month, $day, $hour, $minute, $second, $msec)
my $year; # in
my $month; # in
my $day; # in
my $hour; # in
my $minute; # in
my $second; # in
my $msec; # in

CDF::EPOCHbreakdown ($epoch, $year, $month, $day, $hour, $minute, $second, $msec)
my $epoch; # in
my $year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out

CDF::encodeEPOCH ($epoch, $epString)
my $epoch; # in
my $epString; # out

CDF::encodeEPOCH1 ($epoch, $epString)
my $epoch; # in
my $epString; # out

CDF::encodeEPOCH2 ($epoch, $epString)
my $epoch; # in
my $epString; # out

CDF::encodeEPOCH3 ($epoch, $epString)
my $epoch; # in
my $epString; # out

CDF::encodeEPOCH4 ($epoch, $epString)
my $epoch; # in
my $epString; # out

CDF::encodeEPOCHx ($epoch, $format, $epString)
my $epoch; # in
my $format; # in
my $epString; # out

$epoch = CDF::parseEPOCH ($epString) # out
my $epString; # in

$epoch = CDF::parseEPOCH1 ($epString) # out
my $epString # in

$epoch = CDF::parseEPOCH2 ($epString) # out

154

my $epString; # in

$epoch = CDF::parseEPOCH3 ($epString) # out
my $epString; # in

$epoch = CDF::parseEPOCH4 ($epString) # out
my $epString; # in

$status = CDF:: computeEPOCH16 ($year, $month, $day, $hour, $minute, $second, $msec, $microsec,
 $nanosec, $picosec. \@epoch) # out
my $year; # in
my $month; # in
my $day; # in
my $hour; # in
my $minute; # in
my $second; # in
my $msec; # in
my $microsec; # in
my $nanosec; # in
my $picosec; # in
my \@epoch; # out

CDF::EPOCH16breakdown (\@epoch, $year, $month, $day, $hour, $minute, $second, $msec,
 $microsec, $nanosec, $picosec)
my \@epoch; # in
my $year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out
my $microsec; # out
my $nanosec; # out
my $picosec; # out

CDF::encodeEPOCH16 (\@epoch, epString)
my \@epoch; # in
my $epString; # out

CDF::encodeEPOCH16_1 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out

CDF::encodeEPOCH16_2 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out

CDF::encodeEPOCH16_3 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out

CDF::encodeEPOCH16_4 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out

155

CDF::encodeEPOCH16_x (\@epoch, format, epString)
my \@epoch; # in
my $format; # in
my $epString; # out

CDF:: parseEPOCH16 ($epString, \@epoch)
my $epString; # in
my \@epoch; # out

$status = CDF::parseEPOCH16_1 ($epString, \@epoch) # out
my $epString; # in
my \@epoch; # out

$status = CDF::parseEPOCH16_2 ($epString, \@epoch) # out
my $epString; # in
my \@epoch; # out

$status = CDF::parseEPOCH16_3 ($epString, \@epoch) # out
my $epString; # in
my \@epoch; # out

$status = CDF::parseEPOCH16_4 ($epString, \@epoch) # out
my $epString; # in
my \@epoch; # out

157

B.4 TT2000 Utility Routines

$tt2000 = CDF::computeTT2000 ($year, $month, $day, $hour, $minute, $second, $msec, $usec, $nansec)
my $year; # in
my $month; # in
my $day; # in
my $hour; # in
my $minute; # in
my $second; # in
my $msec; # in
my $usec; # in
my $nsec; # in

CDF::TT2000breakdown ($tt2000, $year, $month, $day, $hour, $minute, $second, $msec, $usec, $nsec)
my $tt2000; # in
my $year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out
my $usec; # out
my $nsec; # out

CDF::encodeTT2000 ($tt2000, $epString, $format1)
my $tt2000; # in
my $epString; # out
my $format; # in

$epoch = CDF::parseTT2000 ($epString) # out
my $epString; # in

CDF::leapsecondsinfo ($dump2)
my $dump; # in

1 An optional field.
2 An optional field.

159

Index

ALPHAOSF1_DECODING...8
ALPHAOSF1_ENCODING...6
ALPHAVMSd_DECODING..7
ALPHAVMSd_ENCODING..6
ALPHAVMSg_DECODING..8
ALPHAVMSg_ENCODING..6
ALPHAVMSi_DECODING...8
ALPHAVMSi_ENCODING...6
Argument passing..3
attribute

inquiring ..23
number

inquiring..25
renaming..27

attributes
creating... 20, 67
current..53

confirming ..59
selecting

by name..106
by number ..106

deleting..70
entries

current .. 53, 54
confirming... 61, 62, 65
selecting

by name .. 108, 111
by number... 108, 111

data specification
changing.. 96, 101
data type

inquiring ... 78, 79, 86
number of elements

inquiring ... 78, 79, 87
deleting .. 70, 71
existence, determining 61, 62, 65
inquiring..21
maximum

inquiring...72
number of

inquiring.. 73, 74
reading ... 22, 77, 79, 86
writing.. 26, 95, 96, 101

existence, determining ..59
naming.. 13, 20

inquiring... 24, 73
renaming ...94

number of
inquiring..76

numbering
inquiring..73

scopes

changing ... 94
constants... 11

GLOBAL_SCOPE.. 11
VARIABLE_SCOPE.. 11

inquiring ...23, 74
Backward file

setting.. 38
CDF

backward file .. 14
inquiring ... 33

backward file flag
getting... 14
setting ... 14

Big Integer .. 17
Checksum ... 15
Checksum mode

getting... 16
setting ... 16

closing... 28
creating.. 29
deleting.. 30
opening.. 36
Validation ... 17

CDF library
copy right notice

max length.. 13
reading.. 78

internal interface... 50
modes

-0.0 to 0.0
confirming ... 60
constants

NEGtoPOSfp0off ... 12
NEGtoPOSfp0on .. 12

selecting...106
decoding

confirming ... 59
constants

ALPHAOSF1_DECODING.................................. 8
ALPHAVMSd_DECODING................................. 7
ALPHAVMSg_DECODING................................. 8
ALPHAVMSi_DECODING.................................. 8
DECSTATION_DECODING................................ 8
HOST_DECODING... 7
HP_DECODING .. 8
IBMRS_DECODING... 8
MAC_DECODING.. 8
NETWORK_DECODING..................................... 7
NeXT_DECODING ... 8
PC_DECODING .. 8
SGi_DECODING... 8
SUN_DECODING ... 8

160

VAX_DECODING...7
selecting ...106

read-only
confirming..60
constants

READONLYoff..12
READONLYon...12

selecting .. 12, 107
zMode

confirming..60
constants

zMODEoff...12
zMODEon1 ...12
zMODEon2 ...12

selecting .. 12, 107
standard interface..19
version

inquiring..79
CDF_ATTR_NAME_LEN...13
CDF_BYTE ...4
CDF_CHAR ..4
CDF_COPYRIGHT_LEN ..13
CDF_DOUBLE ...5
CDF_EPOCH ..5
CDF_EPOCH16 ..5
CDF_FLOAT...5
CDF_INT1...4
CDF_INT2...5
CDF_INT4...5
CDF_INT8...5
CDF_MAX_DIMS..13
CDF_MAX_PARMS ..13
CDF_OK..4
CDF_PATHNAME_LEN...13
CDF_REAL4...5
CDF_REAL8...5
CDF_STATUSTEXT_LEN..13
CDF_TIME_TT2000 ..5
CDF_UCHAR ...5
CDF_UINT1..5
CDF_UINT2..5
CDF_UINT4..5
CDF_VAR_NAME_LEN...13
CDF_WARN ...4
CDFattrCreate..20
CDFattrEntryInquire ...21
CDFattrGet ..22
CDFattrInquire...23
CDFattrNum ..25
CDFattrPut...26
CDFattrRename...27
CDFclose ...28
CDFcreate ..29
CDFdelete ..30
CDFdoc..31
CDFerror..32
CDFgetCkecksum..33
CDFgetFileBackward..33
CDFgetValidate...34
CDFinquire ..35
CDFlib..50
CDFopen..36

CDFs
accessing ... 59
browsing ... 12
cache buffers

confirming... 59, 60, 62, 64, 65
selecting.......................106, 107, 108, 109, 110, 111, 113

checksum
inquiring ...33, 74
resetting .. 37
specifying ... 94

closing... 58
compression

inquiring ...74, 80, 88
specifying ... 94

compression types/parameters ... 10
copy right notice

max length.. 13
reading..31, 74

corrupted ... 29
creating.. 68
current ... 53

confirming.. 59
selecting..106

deleting.. 70
encoding

changing ... 94
constants... 5

ALPHAOSF1_ENCODING....................................... 6
ALPHAVMSd_ENCODING 6
ALPHAVMSg_ENCODING 6
ALPHAVMSi_ENCODING 6
DECSTATION_ENCODING 6
HOST_ENCODING ... 6
HP_ENCODING... 7
IBMRS_ENCODING ... 7
MAC_ENCODING... 7
NETWORK_ENCODING ... 6
NeXT_ENCODING.. 7
PC_ENCODING... 7
SGi_ENCODING.. 6
SUN_ENCODING.. 6
VAX_ENCODING ... 6

default... 6
inquiring ...35, 75

format
changing ... 95
constants

MULTI_FILE.. 4
SINGLE_FILE .. 4

default... 4
inquiring ... 75

naming ..13, 29, 36
nulling ... 93
opening.. 93
overwriting.. 29
scratch directory

specifying ...107
validation

inquiring ... 34
resetting .. 38

version
inquiring ...31, 75, 77

161

CDFsetChecksum..37
CDFsetFileBackward ..38
CDFsetValidate ...38
CDFvarClose ...39
CDFvarCreate..40
CDFvarGet...42
CDFvarInquire...45
CDFvarNum ..46
CDFvarPut ...47
CDFvarRename ...48
CDFvHpGet...43
CDFvHpPut ...44
Checksum...37

CDF
specifying..94

Ckecksum...33
COLUMN_MAJOR ..9
Compiling ..1
compression

CDF
inquiring... 74, 75
specifying..94

types/parameters ...10
variables

inquiring... 80, 88
reserve percentage

confirming... 63, 67
selecting .. 109, 113

specifying... 97, 102
computeEPOCH ..123
computeEPOCH16 ..128
computeTT2000 ..135
data types

constants..4
CDF_BYTE..4
CDF_CHAR ...4
CDF_DOUBLE..5
CDF_EPOCH ...5
CDF_EPOCH16...5
CDF_FLOAT ...5
CDF_INT1..4
CDF_INT2..5
CDF_INT4..5
CDF_INT8..5
CDF_REAL4..5
CDF_REAL8..5
CDF_TIME_TT2000 ...5
CDF_UCHAR ..5
CDF_UINT1...5
CDF_UINT2...5
CDF_UINT4...5

inquiring size...77
DECSTATION_DECODING...8
DECSTATION_ENCODING...6
dimensions

limit ...13
encodeEPOCH...124
encodeEPOCH1...124
encodeEPOCH16...129
encodeEPOCH16_1...129
encodeEPOCH16_2...130
encodeEPOCH16_3...130

encodeEPOCH16_4 ..130
encodeEPOCH16_x ..131
encodeEPOCH2 ..125
encodeEPOCH3 ..125
encodeEPOCH4 ..125
encodeEPOCHx ..126
encodeTT2000...136
EPOCH

computing ...123, 128
decomposing...124, 129
encoding...................................124, 125, 126, 129, 130, 131
ISO 8601.. 125, 128, 130, 133
parsing.. 127, 128, 132, 133
utility routines...123, 135

computeEPOCH...123
computeEPOCH16 ..128
encodeEPOCH ...124
encodeEPOCH1...124
encodeEPOCH16...129
encodeEPOCH16_1...129
encodeEPOCH16_2...130
encodeEPOCH16_3...130
encodeEPOCH16_4...130
encodeEPOCH16_x...131
encodeEPOCH2...125
encodeEPOCH3...125
encodeEPOCH4...125
encodeEPOCHx...126
EPOCH16breakdown ..129
EPOCHbreakdown ..124
parseEPOCH ..127
parseEPOCH1..127
parseEPOCH16..132
parseEPOCH16_1..132
parseEPOCH16_2..132
parseEPOCH16_3..133
parseEPOCH16_4..133
parseEPOCH2..127
parseEPOCH3..127
parseEPOCH4..128

EPOCH16breakdown..129
EPOCHbreakdown..124
examples

Backward file indicator
setting ... 38

closing
CDF .. 28
rVariable... 39

creating
attribute... 20
CDF ..30, 50
rVariable...41, 114
zVariable ..114

deleting
CDF .. 30

get
Backward file indicator ... 34
checksum.. 33
File validation .. 34
rVariable

data... 42
inquiring

162

attribute ...24
entry..21

attribute number ...25
CDF.. 31, 35
error code explanation text ..32
rVariable ...46
variable number..47

Internal Interface.. 50, 114
interpreting

status codes...121
opening

CDF...36
reading

attribute entry ...23
rVariable values

hyper.. 43, 115
zVariable values

sequential ...116
renaming

attribute ...27
attributes ...116
rVariable ...49

set
CDF

checksum... 37, 39
status handler...121
writing

attribute
gEntry...26
rEntry .. 26, 117

rVariable
multiple records/values..44

rVariable ...48
zVariable values

multiple variable ..118
GLOBAL_SCOPE ..11
HOST_DECODING..7
HOST_ENCODING..6
HP_DECODING ...8
HP_ENCODING ...7
IBMRS_DECODING..8
IBMRS_ENCODING..7
inquiring

CDF information...31
interfaces

Internal ..50
Standard...19

Internal Interface ...50
common mistakes ...119
currnt objects/states ..52

attribute ...53
attribute entries .. 53, 54
CDF...53
records/dimensions.. 54, 55, 56
sequential value ... 55, 56
status code...56
variables..53

examples... 50, 114
Indentation/Style...57
Operations ...58
status codes, returned..56
syntax ..57

argument list... 57
limitations... 57

leapsecondsinfo...137
limits

attribute name ... 13
Copyright text... 13
dimensions .. 13
explanation/status text.. 13
file name ... 13
parameters... 13
variable name.. 13

Limits of names... 13
MAC_DECODING... 8
MAC_ENCODING... 7
MULTI_FILE.. 4
NEGtoPOSfp0off .. 12
NEGtoPOSfp0on... 12
NETWORK_DECODING ... 7
NETWORK_ENCODING ... 6
NeXT_DECODING.. 8
NeXT_ENCODING.. 7
NO_COMPRESSION... 10
NO_SPARSEARRAYS.. 11
NO_SPARSERECORDS ... 11
NOVARY.. 9
PAD_SPARSERECORDS ... 11
parseEPOCH ...127
parseEPOCH1 ...127
parseEPOCH16 ...132
parseEPOCH16_1 ...132
parseEPOCH16_2 ...132
parseEPOCH16_3 ...133
parseEPOCH16_4 ...133
parseEPOCH2 ...127
parseEPOCH3 ...127
parseEPOCH4 ...128
parseTT2000..137
PC_DECODING... 8
PC_ENCODING... 7
PREV_SPARSERECORDS... 11
READONLYoff .. 12
READONLYon... 12
ROW_MAJOR.. 9
rVariables

close .. 39
creating.. 40
hyper values

accessing .. 43
writing .. 44

renaming ... 48
single value

accessing .. 42
writing .. 47

scratch directory
specifying..107

SGi_DECODING.. 8
SGi_ENCODING.. 6
SINGLE_FILE .. 4
sparse arrays

inquiring..84, 92
specifying..100, 104
types .. 11

163

sparse records
inquiring ... 85, 92
specifying ... 100, 105
types...11

Standard Interface..19
status codes

constants... 4, 121
CDF_OK...4
CDF_WARN..4

current..56
confirming ..60
selecting ..107

error ...139
explanation text

inquiring... 32, 86
max length ..13

informational...139
interpreting ..121
status handler, example...118
warning..139

SUN_DECODING ..8
SUN_ENCODING ..6
TT2000

computing..135
decomposing ...136
encoding ..136
leap seconds ..137
parsing ...137
utility routines

computeTT2000 ...135
encodeTT2000..136
leapsecondsinfo ..137
parseTT2000...137
TT2000breakdown ...136

TT2000breakdown ..136
Validate ... 34, 38
VARIABLE_SCOPE ..11
variables

closing ...58
compression

confirming ... 63, 67
inquiring... 74, 80, 88
selecting ... 109, 113
specifying... 97, 102
types/parameters...10

creating... 68, 69
current..53

confirming ... 62, 65
selecting

by name... 108, 112
by number ... 108, 111

data specification
changing... 98, 103
data type

inquiring.. 45, 81, 88
number of elements

inquiring.. 45, 83, 91
deleting..71
dimension counts

current .. 54, 56
confirming... 63, 65
selecting .. 109, 111

dimension indices, starting
current...54, 55

confirming ...63, 66
selecting...110, 112

dimension intervals
current...55, 56

confirming ...64, 66
selecting...110, 112

dimensionality
inquiring ...35, 85, 91

existence, determining..62, 66
majority

changing ... 95
considering ... 9
constants... 9

COLUMN_MAJOR.. 9
ROW_MAJOR.. 9

default... 68
inquiring ... 76

naming .. 40
inquiring ...45, 82, 89
max length.. 13
renaming...99, 104

number
inquiring ... 46

number of
inquiring ... 35

number of, inquiring...76, 77
numbering

inquiring ...83, 90
pad value

confirming..63, 66
inquiring ...84, 91
specifying ...99, 104

reading ..81, 88, 89
record count

current...54, 55
confirming ...64, 66
selecting...110, 112

record interval
current...54, 55

confirming ...64, 67
selecting...110, 112

record number, starting
current...54, 55

confirming ...64, 67
selecting...110, 113

records
allocated

inquiring ..80, 83, 87, 90
specifying ... 96, 97, 101, 102

blocking factor
inquiring ..80, 87
specifying ..97, 102

deleting...71, 72
indexing

inquiring ..82, 90
initial

writing..98, 103
maximum

inquiring ..82, 85, 89, 92
number of

164

inquiring.. 83, 91
sparse ..11

inquiring.. 85, 92
specifying.. 100, 105

sparse arrays
inquiring...84, 92, 100, 104
types ..11

variances
constants ...9

NOVARY ..9
VARY ..9

dimensional

inquiring ..81, 89
specifying ..98, 103

record
changing ..99, 104
inquiring ..84, 91

writing...98, 103
VARY.. 9
VAX_DECODING... 7
VAX_ENCODING... 6
zMODEoff... 12
zMODEon1 ... 12
zMODEon2 ... 12

