CDF

Perl Reference Manual

Version 3.4, February 28, 2012

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2012

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

) O70) 111 1)1 1) 11 |

1.1 How t0 uSe the Perl-CDF PACKAZEc..coueieieieieieieteteteet ettt ettt ettt et ettt et et e et et entensenseneen 1

2 Programming INterface......cccocvvvvnneeriicccssssscsssnnnnsineccsssssssssssssssssssssssssssssssssssse 3

2.1 TEEM RETETEIICINIEoveieneieee ettt ettt ettt e et et e e st et et enbent e st entententensensententensansansan 3
2.2 PASSING ATGUIMEIIESveutiuteuienieietetetetet et et et e e et et et et estestestententententententententententententensententensententansensensantensansansen 3
2.3 CDF Status CONSTANLS ...c.cveureueteuerienteteteteteuentestetestesessesesesestestssestesesesessesessestesessesensesessestasentesensesessesesseneesensesensenens 4
24 CDF FOIMIALS ...ttt ettt ettt ettt et b et b s ea et ettt et e e ebe b e bt s e st st esteb et ese s enesesessensenennenens 4
2.5 CDF DAta TYPES ..veuveuventenienieieietetetestetetetestestetestestestensessensentententensententensensententensentensensensensensensensansensensansensensensen 4
2.6 DAta ENCOGINES -...veutentenienieieieietet ettt ettt ettt et et e e st et et et e st e st e st e st entententententenbentenbentensensensensensansansan 5
2.7 DAtA DECOMINES .. euventeutentenietetetet ettt ettt et et et et et e st e st et estententententententententententensentenbentententensansentansensansansan 6
2.8 VarIaDIE IMAJOTIEIESveuveutenienienietetetetete ettt e et et et et et e st et ententententententententententententensentensentententansensensantensansansan 7
2.9 Record/DImension VATTANCESc..ccoveerieirieiruenieiinieieteteseteuestesestestesestesessesessesessestesessesessesesseseesensesessesessenessensones 8
2.10 COMMIPTESSIONS ... eueuteutententententetetentetetetentestententententensensensententensen 8
2.11 SPATSEIIESS «.cuveeveveeuieuieteeueeiteute et et et eu e et e st e st e st e st e st estes e e st est e st e st es e e st e st e st e st e st e st e st e st e st e st e st e st e st e st en b e st e st ententententensententen 9

2011 SPATSE RECOTAS ..uviuiiuiiiiieieieieee ettt ettt ettt et et et et et et et e st entententensenbensentententensensensentensensansenes 9

2112 SPATSE ATTAYS ..eeuveneeieieteietentetestestestetetetetentestententententensentententensensentensensensententensensensensensensensensensensensensensones 9
2.12 ATLTIDULE SCOPES -.vvenventeietetentetenteste e ste e te st et e testes b e tententententententententententententensensensensentensensensensentensensensensensensen 9
2.13 REAA-ONIY IMOUES.......eiiiiiieieieteetet ettt ettt et et et et e b et et e st et et ententententententententensententensentensensensansanes 9
2.14 ZIVIOTCS ..ottt ettt ettt b ettt ettt b et bbbttt en e nea 10
2.15 20.0 10 0.0 MOAES.....vcnivinieiiieiiteieteteetee ettt ettt ettt b e bttt bttt b e b st ettt b e b s b s senee 10
2.16 OPETALIONAL LISeutiitiietetetetetet ettt ettt et et et et et et et ent et et ententensensensentensentensensensensensans 10
2.17 Limits of Names and Other Character StrNESceverierierierienieieiertetertetestestestestetetetestessestestessessessessensensan 11
2.18 Backward File Compatibility With CDF 2.7 ...c..cciiiiiieiiieieieeeseteetet ettt sttt ettt eaenens 11
2.19 CRECKSUIN «.ceiitentieieiete ettt ettt ettt ettt b ettt e b e b e s e st sttt e st ese s ebe s e st saesesseneesennenens 12
2.20 Data ValIAAtION ...c..c.eoteuiieietiieieiet ettt ettt ettt e b e b ettt et es s se s et st seeneneenennenens 14
2.21 BB YT INEEZET ..ttt ettt ettt ettt et et et et et et et et e et s et et et et et et et ententen 15

RN #2110 B:1 oo B 01172 o £ TR A

3.1 CDFALICTRALEveveeureeeeesieeieeteeteesteettesteeseessesteessaessasssesseessasssassaassasssassaassasssassanssanssessanssesssassanssesssessanssasssessenssanss 17
3.1.1 EXAMPIE(S) .ttt ettt ettt ettt et ettt et et et e st e et et e st et e e st et e et et e st et et e st et et et enten 18
32 CDFAtTENTYTIQUITE ..uveutinieieietetetestest ettt ettt ettt et et et et et et entententententensententensensentensensensensensensensans 18
321 EXAMPIE(S) .ttt ettt ettt ettt et ettt et et et e st e et et e st et e e st et e et et e st et et e st et et et enten 19
33 CDFALIGELuvieiiiiieieeieie ettt et e et e steeteetbesteesbeessesssesseessasssesseassasssassaassasssassaassanssessanssasssassaassanssassaessanssassenssanss 20
33.1 EXAMPIE(S) .ttt ettt ettt ettt et ettt et et et e st e et et e st et e e st et e et et e st et et e st et et et enten 20
34 CDFAIINQUITE ...ttt ettt et et et e et et et et e st et e st ententententententensentententensentententensensensensansans 21
34.1 EXAMPIE(S) .evtttiieiieiieiteieeteitete ettt ettt ettt ettt et ettt et e st et e st et et et e st e st et e st e st et et et e st et et et et et ententen 22
35 CDFAIINUI ...ttt ettt e et e st et e et esteesbeessasssesseessesssessaassaassessaassanssassanssanssassanssasssassaassesssesseessanssessanssenss 22
35.1 EXAMPIE(S) .evtevtiieiieiieiieieeteitet ettt ettt ettt et ettt et et e st oo st et et et e st e st et e st e st et et et et e st et et et et et enten 23
3.6 CDFALIPULcuviiiiiicieeteeieete ettt ettt e et e s te et e e sbestsesbeesbesssasbaassasaesseassanssassaassanssassanssesssassanssesssessaassanssessanssenns 23
3.6.1 EXAMPIE(S) .evtreeiieiieiieiieieeitei ettt ettt ettt et ettt et e st et e st et e st et e st e st et et e st et et et e st e st et et et et et enten 24
3.7 CDFAIRENAINEeevieiiiiieieeeieeeete et eeteete et e st ebeetsesteesseessessaesseassasssasseassasssassaassasssassanssasssassanssesssesenssasssessenssenss 25
37.1 EXAMPIE(S) .ttt ettt ettt ettt et ettt et e e st et e st et et et e st e st et et e st et e e et e st et et et et et entenaen 25
3.8 CDFCIOSE ..viuvieuteeiieiieeieetesieete et e st et e e st e s taesbeesbesseesbaessasssassaessasssassaassanssassaassassassaassasssessanssenssassaassenssessaassanssassanssanss 25
3.8.1 EXAMPIE(S) .ttt ettt ettt ettt et ettt et et et e st e et et e st et e e st et e et et e st et et e st et et et enten 26
39 CDEFCIEALEeevveeeeeieeiteeeieeie e e et e eteeteestesteesbeessesseessaessasssessaess e ssassaassanssassaassasssassaassasssassaessanssassaassenssessaassanssassanssanss 26
39.1 EXAMPIE(S) .evtttiieiieiieiteieeteitete ettt ettt ettt ettt et ettt et e st et e st et et et e st e st et e st e st et et et e st et et et et et ententen 27

3.10 CDFAEIELE ...ttt ettt et et ee e e te e et e e eaaeeeteeeseeeabeeesseeesseeseeesseeesseeasseensseenseeesseenaseenseeenseeenreeneas 28

3.10.
3.11
3.11.
3.12
3.12.
3.13
3.13.
3.14
3.14.
3.15
3.15.
3.16
3.16.
3.17
3.17.
3.18
3.18.
3.19
3.19.
320
3.20.
321
3.21.
322
3.22.
323
3.23.
324
3.24.
325
3.25.
3.26
3.26.
327
3.27.
328
3.28.
329
3.20.

I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 28
CDEFAOC ...t iuteeiieeieieeiee et ettt et e et e st et e et e s te e beessesssesbaassasssesseessasssassaassassasseassanssessaassanssesseessansaassenssanssassanssanses 28
I EXAMPIE(S) cueereeueeuieiieiieiieieiteiteitei ettt et ettt et et et e st et e st e st e st e st e st e st e st es s e st e st e st e st e st e nteaten s e st et e st et et en b e st e st et entenes 29
CDFEITOTtieuteetteteeieete st e et e et erteeste e st e beesbesssesseessasssessaassassaessaassasssessaassasssesseessanssessaassasssassaessaseassenssenssessanssanses 29
I EXAMPIE(S) cueueeuieuieiieiieiteteiteeeitett ettt ettt et et e et e et e et e st e st e st e st e st e st e st e st e st e st et e st e st e aten b e st et et et e n s e st e st e st et e st enes 30
CDFZEECNECKSUINeuiiitiitiietetetetet ettt ettt ettt e st e ten b e te st entensensensensentensensentensensensensentensensensensensansensans 30
I EXAMPIE(S) cueereeueeuieiieiieiieieiteiteitei ettt et ettt et et et e st et e st e st e st e st e st e st e st es s e st e st e st e st e st e nteaten s e st et e st et et en b e st e st et entenes 30
CDFZEtFIIEBACKWAIT......c.titiieieieieteee ettt ettt ettt et et et et et et et et e b et enbentensensensensensens 31
I EXAMPIE(S) cuereeuieuieiieiieiietteitetei ettt ettt et ettt et et e st e et e st e st e st e st e st e st e st e st e st e st e st e st en b e n b e st e st et et e st et e st e st e st et entenes 31
CDFZEEVAIIAALE ...ttt ettt ettt ettt et et et et e st e st enbententententensensensensentensensentensensensensans 31
I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 32
CDFINQUITE ..eutenteteiesiestetes ettt et et e e testestestestentententensententensensensensensensensensensentensensensensensensensensensensansensans 32
I EXAMPIE(S) cueereeueeuieiieiieiieieiteiteitei ettt et ettt et et et e st et e st e st e st e st e st e st e st es s e st e st e st e st e st e nteaten s e st et e st et et en b e st e st et entenes 33
CDFOPEN ...ttt ettt ettt et et et e et et et eneententent e st entententensentensentententententensentensententensentensensantensans 33
I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 34
CDFSELCNECKSUINvivieiiieeiieiieieeiiee et eete st eteebesteebeesbassaesseessasssessaassasssassesssassessaassassasseassanssessenssassessanssenses 34
I EXAMPIE(S) cueeueeuieuieieeiieiieteiteiteiteit ettt ettt et et et et et et e st e st e st e st e st e st e st e st e st en b e st e st e st e n b e st en b e st et et e st et et e st e st et e st enes 35
CDFSELFIIEBACKWAIc.vieiieiiiiieiiieieieeteet ettt este et et ebe et e s saesbeessessaesseessassaessasssassessasssasssessenssasssessanssenses 35
I EXAMPIE(S) cuereeuieuieiieiieiietteitetei ettt ettt et ettt et et e st e et e st e st e st e st e st e st e st e st e st e st e st e st en b e n b e st e st et et e st et e st e st e st et entenes 35
CDEFSEEVAIIAALEvecuvieeieiieiieiieieeiee et et e et et e et e et esbe e b e steesbeesbessaessaassasssesseassasssessasssassassesssasseassenssasssessanssanses 36
I EXAMPIE(S) cuereeuieuieiieiieiietteitetei ettt ettt et ettt et et e st e et e st e st e st e st e st e st e st e st e st e st e st e st en b e n b e st e st et et e st et e st e st e st et entenes 36
CDEFVATCIOSE ...c.vvevieeiieiietieteetesteetestesteetesteeseessessseseassasssessaassasssassaassasssasseassassessanssassasseassanssessenssesssessanssanses 36
I EXAMPIE(S) cuereeuieuieiieiieiietteitetei ettt ettt et ettt et et e st e et e st e st e st e st e st e st e st e st e st e st e st e st en b e n b e st e st et et e st et e st e st e st et entenes 37
CDEFVATCTEALEeeuveeeveeeieteeteettesteetteetesteetesseeseessessseseassasssassaessasssassaassasssasseassanssessaassassasseassasseassenssenssassenssanses 37
I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 38
CDEFVATGEL......tietieteeieeieieet e ettt e et e et este et e s st e beesbesseesbeassasssesseessasssassaassassasseassasssessaassanssasseassessassenssassassanssanses 39
I EXAMPIE(S) cuereeueeuieiieiieiieteiteitetett ettt ettt et et e et et e e st e st e st e st e st e st es b e st e st e st e st e st e n b e st en b e st et et e st et et e st e st ententenes 39
CDEFVHPGELveveeteieiiieteteie ettt sttt e e e se s e s et esaesessesessesasseseesensesensesensasessesaesensasensesensesesansesensasensesens 40
I EXAMPIE(S) cueueeuieuieiieiieiteteiteeeitett ettt ettt et et e et e et e et e st e st e st e st e st e st e st e st e st e st et e st e st e aten b e st et et et e n s e st e st e st et e st enes 40
CDEFVHPPUL ...c.ovevetiieiiieietetete ettt ettt e st e s e et e st et essesessesasseseesenaesessesessesensaseasansesensesensesesensesansasensesens 41
I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 41
CDEFVAITIQUITE ...ttt ettt ettt e e et e st et et entententensententensentensensensensentensensensensensensansans 42
I EXAMPIE(S) cueereeuieuieiieiieiieiteiteitetet ettt ettt ettt ettt e et e st e st e st e st e st e st es s e st en b en e e st e st e st e a s e st e st et et e st et et e st e st et entenes 43
CDEFVATNUIN ...ttt et et et e et e et esteesbesteesbeessessaessaassasssessesssasssassaassassasseessasssessanssasssasseassesssessanssassassanssenses 43
I EXAMPIE(S) cuereeuiruieiieiieieeieiteiteiteit ettt et ettt et et et et e st e st e st e st e st e st e st es s e st enten b e st e st e n b e st en b e st et e n b et et e st e st e st et e st enes 44
CDEVAIPUL ...ttt ettt e et e st et e et e s te e beesb e saesbeesbesssesbeessassessaessasssasseassansaessenssassassanssenses 44
I EXAMPIE(S) cuereeueeuieiieiieiieteiteitetett ettt ettt et et e et et e e st e st e st e st e st e st es b e st e st e st e st e st e n b e st en b e st et et e st et et e st e st ententenes 45
CDEFVATRENAIMEecuiiiiiiieieeeeeet ettt ettt ettt et e et e s te et e esbessaesbeessesssesseessasssessaassassasseassassaassenssassessanssanses 45
I EXAMPIE(S) cueeueeuieuieieeiieiieteiteiteiteit ettt ettt et et et et et et e st e st e st e st e st e st e st e st e st en b e st e st e st e n b e st en b e st et et e st et et e st e st et e st enes 46

4 Internal INterface = CDFLDu..ceuereiienerenereecereecreeeersecsseesssecssescsseesssesssessssescd 7

4.1

42

43

44

45

4.6

4.7
471
472
473
474
475
476
417

EXAMPIE(S) 1.nteutentenienietetet ettt ettt ettt et et e et e et e et et e st e st e st e st et e st et et et e n b e st et en b e st e st en b et ent et e st et ententen 47
Current ObJECtS/STALES (TLEIMS) ..uveuvereieieietetetetet ettt et et et et e et e te b et e te st e testensensentensentensensensensensensensensens 49
REUINEA STALUS ...ttt ettt ettt et ettt et b e bbbt ettt be e be s e st st eneeseneenennenens 52
INAENEALION/SEYIE ...ttt ettt ettt et e et e et et e st et et en b e st enbentententenbententententensentensentans 53
STIEAX .euventetetentertestestestestestestetetetestententententententensensententensentensentensententententententententententententent et ententententententententenes 53
OPCTALIONS. . ..eeuteuteutetetetetetetet e tetestestestestestestestentententententententententententensententensensententensentententensententententensensensansans 54
IMOTE EXAMPIES ...ttt ettt ettt et e et et e et et et et et e st ententenbententententensententansensensanes 109
TVATTADIE CTEALIONeveniinteiiteiietctetet ettt ettt ettt ettt b et b e b s et b et sbe e s s ese s st sseseeseseenennenens 109
zVariable Creation (Character Data TYPE).....ccuecveieierieierieieieieietetetetetetet ettt ettt et ns 109
Hyper Read with SUDSAMPIINGcoveuiiiiiiieieieeeeeeee ettt ettt ettt ettt 110
ALTIDULE RENAMING ...ttt ettt ettt et ettt et et et et e b et et et et e st ensensensenaenes 111
SEQUENLIAL ACCESS . .veuveurenrententenietetetetet et et et et e et e te st et estesteste st e st et estestestententestententententensentententensensansanean 111
ALEIDULE TENLTY WIILES .o.uiiuiiiiiiieieieteteteeet ettt ettt et et ettt et ettt et et et e et et e s ensenaenes 112

MUItIPle ZVariable WTILEc.eeiiieieieieieietetete ettt ettt ettt ettt ettt et et et et et e st e s ensenaenes 112

4.8

A Potential Mistake We Don't Want YOU t0 IMAKEcc.eeeeuiieiiiiiieiieeeteeereceee ettt eve e eetee et ereeenneeennes 113

S Interpreting CDF Status Codescccccvvrceveeeeeeeeeeeeseesessssssssssssssssssssssssssssees 1 15

6 EPOCH Utility ROULINES ...ccceeeeeeeeeeeeeeeeeeeeeeeesses 117

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
621
6.22
6.23
6.24
6.25
6.26

COMPULEEPOCHuiiiiiiiieee ettt ettt et et et et et et et et e st e st e st ent et ententensententensensensenes 117
EPOCHDIEAKAOWIvivieiiieiiieiieieeieet ettt ettt e e steete et e e teesbeessesssessaessasssesseessasssassaassasssessasssesssassanssessaassenssanses 117
ENCOACEPOCH ...ttt ettt e e e et e et e e tb e beesbeessebeesbasssessaassesssassaessasssessaassesssessanssanssassans 118
ENCOACEPOCH L ...ttt ettt e e e st et e e tb e beesbeess e baessasssessaessesssassaessasssessaessesssessanssanssassans 118
ENCOACEPOCH ...ttt ettt et e e ta e s te et e e tb e beesbeess e beessaessessaassesssessaessaessassasssesssessanssanssassans 118
ENCOACEPOCHSottt e et e s te e b e e tb e be e st e ess e beesbaessessaassesssassaessesssessanssesssassanssanssassans 119
ENCOACEPOCHA ...ttt ettt et e et e te et e e st e beesbeess e beessasssessaassesssassaessasssessaessesssessanssanssassens 119
ENCOUCEPOCHXoiiviiiieieeiceeeteet ettt et e et e et e e sa e teesbeesb e baesbeessabeessaessessaassesssassaessasssessanssesssassanssanssassans 119
PATSEEPOCH ...ttt ettt ettt et e et et et e st e st e st et et e st e st e st e st enbentensententens 120
PATSEEPOCH L ...ttt ettt et ettt et e et et e st et e st ententententensensensensentens 120
PATSEEPOCHZ ...ttt ettt ettt et et e b et et et e st e st e st e st enbententententensensententens 121
PATSEEPOCHSttt ettt ettt et et et e b et et et e st e st e st e st ensententententensensententens 121
PATSEEPOCHA ...ttt ettt ettt et et et et et e st et en b et e st ententententenbensensententens 121
COMPULEEPOCH O ...ttt ettt ettt et et e et e st et et et ent et ensentententensensansenes 121
EPOCH 16DIEAKAOWIouviiiiieeiiiieieeieeitet et estteteete st esteesbessaebeesbessaessaessesssassaessasssassaessasssessaassanssessanssenssanses 122
ENCOACEPOCHIO.........c.eiiiieieeeeeet ettt ettt e et e et e e et e e st e teesbeess e ssesbasssesssessaessesssassanssanssessanssenssessans 122
ENCOACEPOCHTO_1 ...ttt ettt ae et e et e st e e b e e sb e beesbaessessaesbesssasssassaessasssessanssanssensans 122
ENCOACEPOCHTO_2 ...ttt ettt et e et e e et e e st e s ta e b e esb e seesbasssasssessaessanssassasssasssensasssanssessans 123
ENCOACEPOCHIO_3 ..ottt ettt ettt et e et e e et e e st e s ta e s b e esb e ssesbaassesssessasssasssassasssassessanssenssensans 123
ENCOACEPOCHIO_4 ...ttt ettt et e et e st e et e e st e s teesbeesbesseesbaessasssessaessanssassasssasssessanssanssensans 123
ENCOACEPOCHTO_X ...oeiiiiiiieiiecieeieet ettt ettt te et e et estaesbeesbasseesseess e saesbaassasssessasssasssassanssasssassanssanssessans 124
PATSEEPOCHLO.........ouiiiieeeeee ettt ettt et ettt et e e et et e st et et entenbententensensensensentens 124
PATSEEPOCHTO_T ..ottt ettt ettt ettt e st et e et et et en s e tentensensensensentans 125
PATSEEPOCHTO_2 ...ttt ettt ettt et et et e et e st et et enbentenbententensensensentens 125
PATSEEPOCHTO_3 ...ttt ettt ettt et et e et et et et et et entententensensensensentans 125
PATSEEPOCH IO _4 ...ttt ettt ettt et et et et et e st et e st e b ententensensensensensentens 126

7 TT2000 Utility ROULINES ccceveveeeeeeeesess 127

7.1
72
7.3
74
7.5

COMPULETT2000........ccueeeeeeeeteeeet ettt et ettt et e bttt e e e bt et e et e sat et e eatesat e be e st e sseeseenbesaeenseensenaeensens 127
TT2000DIEAKAOWIvivieiiieiiieiieteeteeeeste et e eeeteestesteebeestesseesseessassaessasssassaassaassassaassasssassaessanssassanssesssessanssesssessens 127
ENCOACTT2000ociieiieeieiieteeterte ettt et e et e st e b e et e s st ebeesaesseesseessasaessaessassaessaassassaassasssassaessaassessanssesssassanssanssassens 128
PATSETT2000 ...ttt ettt ettt et et e b et eat e s bt et e e st e bt et e ea b e bt ea b e e st e bt enbeeub e bt eabeeabenbeenbeeatennes 128

LEAPSECOMASINITO ..uteuteiieieietee ettt ettt ettt et e et et et et et et et et e st enbentenbentensenbentensententensensansenes 129

Chapter 1

1 Compiling

Since Perl is an interpreter language and its scripts are checked for any syntax error during their execution, there are no
separate steps for compilation and linking as other programming languages like C and Fortran.

The Perl-CDF package includes two interfaces: Internal Interface and Standard Interface. The Standard Interface only
covers limited functions that deal mainly with the older rVariables and their attributes in the CDF. This interface is
mirrored the original functions that are covered in the C’s Standard Interface. The Internal Interface, based on the C’s
Internal Interface, provides a complete suite of CDF functionality.

1.1 How to use the Perl-CDF package

In order to use either one or both interfaces from any Perl script, the search path for the Perl-CDF package must be set
up properly. In addition, the Perl-CDF package needs to be imported as well prior to using the either CDF interface.
There are two ways to define the search path for the Perl-CDF package. One way is to include the location of the Perl-
CDF package at the beginning of a Perl script. The following code illustrates how to define a Perl-CDF package that is
installed under /home/cdf/PerlCDF32:

use strict;

BEGIN { unshift @INC,'/home/cdf/Perl CDF32/blib/arch’,
'/home/cdf/PerlCDF32/blib/lib"; }

use CDF; # Import the CDF module - optional

The other way is to define the location of the Perl-CDF package at the command line when invoking the Perl script.
The following command is equivalent to the above example:

perl -I/home/cdf/PerlCDF32/blib/arch -I’home/cdf/PerlCDF32/blib/lib <perl script name>

Since the Perl CDF interface uses the shared CDF library, the user has to tell the operating system where to find the
shared library. For Linux, DEC Alpha/OSF1, Sun Solaris or SGI, the environment variable LD_LIBRARY_PATH
must be set to point to the directory that contains the shared CDF library, libedf.so. For example, if the shared CDF
library is installed under /ust/local/share/cdf32/lib and you are using the C-shell, enter:

setenv LD LIBRARY PATH /ust/local/share/cdf32/lib

For HP-UX, the shared library is libedf.sl. For IBM RS6000, the library is libedf.o.

For BSD-based Mac OS X, the environment variable is DYLD LIBRARY_PATH that must be set to point to the
directory containing the shared library libedf.dylib.

For Windows 9x/NT/2000/XP, similarly, set the PATH variable to point to the directory that contains dllcdf.dll.
Two Perl test scripts, testPerlCDFii.pl and testPerlCDFsi.pl, are provided in the distribution. Both use extensive

Perl-CDF interface functions: testPerlCDFii.pl tests CDF's Internal Interface functions while testPerlCDFsi.pl tests the
Standard Interface functions. They can be used as sample scripts for development.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the Perl programming interface for CDF applications. These include
the constants that are available to CDF applications written in Perl. These constants are defined in the Perl-CDF
package.

Unlike other programming languages (e.g. C, Fortran, Java, etc.), Perl only has three basic data types: scalars, arrays of
scalars and hashes of scalars. No other defined data types are needed for any of the Perl-CDF operation items.

For Perl applications, all CDF items are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Passing Arguments

For calling Perl-CDF APIs, the arguments are passed by values or references, based on the input or output operation.
The general rules for passing the arguments to APIs are:

Input Normally, for a scalar argument, it is passed by value', e.g., $format, if it is sending
information to the CDF for an operation (e.g. setting the CDF file format, data type, variable
name, compression method, etc.). However, if the scalar is passed in as a data value?, it is
required by design that it be passed by reference, .e.g., \$dataValue, \$padValue,
\$entryData, etc. For an argument requiring an array, no matter how many elements in the
array, it is always passed by reference, e.g., \@indices.

Output The argument is passed by reference, e.g., \$format for a scalar or \@indices for an array, if
the argument(s) in an operation is to acquire information from the CDF.

' The scalar data can be interpreted properly into an integer (of data type long in C) by the CDF library for a non-string
data. A string is also a valid scalar data.

? A data value is referred as a variable’s record data or padded data, or a global or variable attribute’s entry data. Its
value will be interpreted based upon its data type when the variable or entry is created.

Refer to the two test Perl scripts mentioned above for example. Since Perl doesn’t do type checking, it’s application
developer’s responsibility to ensure that proper arguments are being used. For example, an integer data should be
passed to an operation that writes the data value to a CDF variable that is defined as CDF_INT4 or CDF _INT?2.

2.3 CDF Status Constants

All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum, CDFgetAttrNum, CDFgetFileBackward and
CDFgetChecksum functions, return a status code indicating the completion status of the function. The CDFerror
function can be used to inquire the meaning of the status code. Appendix A lists the possible status codes along with
their explanations. Chapter 5 describes how to interpret status codes.

CDF OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 5 describes how to use these constants to interpret status codes.

24 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINTI1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF _UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.

CDF_UINT4
CDF_INT8
CDF_REAL4
CDF_FLOAT
CDF_REALS
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCH16

CDF_TIME_TT2000

4-byte, unsigned integer.
8-byte, signed integer.
4-byte, floating point.
4-byte, floating point.
8-byte, floating point.
8-byte, floating point.
8-byte, floating point.
two 8-byte, floating point.

8-byte, signed integer.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

2.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd ENCODING

ALPHAVMSg_ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1 ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.
SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS _ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
PC_ENCODING Indicates PC data representation.

NeXT ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

2.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D _FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_ DECODING Indicates Silicon Graphics Iris and Power Series data representation.
DECSTATION_DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).
HP_DECODING Indicates HP data representation (HP 9000 series).
PC_DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

2.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY

NOVARY

True record or dimension variance.

False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the

same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for

a particular data set.
NO COMPRESSION

RLE_COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING TREES.

Gnu's “zip" compression.” There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most

? Disabled for PC running 16-bit DOS/Windows 3 x.

compression but require the most execution time. Values in-between
provide varying compromises of these two extremes.

2.11 Sparseness

2.11.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

2.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.”

NO_SPARSEARRAYS No sparse arrays.

2.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

2.13 Read-Only Modes

* Obviously, sparse arrays are not yet supported.

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF_READONLY MODE > operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT ,CDF zMODE > operation.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

2.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF NEGtoPOSfp0 MODE > operation.

NEGtoPOS{pOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOS{pOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF _MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

10

2.17 Limits of Names and Other Character Strings

CDF _PATHNAME LEN Maximum length of a CDF file name (excluding the NUL’ terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX

systems).
CDF_VAR NAME LEN256 Maximum length of a variable name (excluding the NUL terminator).
CDF_ATTR NAME LEN256 Maximum length of an attribute name (excluding the NUL terminator).
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).
CDF_STATUSTEXT LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

2.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Perl script,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreate). This function takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, also defined in the Perl-CDF package, to the function will cause new files to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation
mode and new files created will not be backward compatible with older libraries. The created files are of version 3.*
and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of calling the
function with an argument value of BACKWARDFILEoff.

The following example create two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

my $id1, $id2; # CDF identifier.

my S$status; # Returned status code.
my $numDims = 0; # Number of dimensions.
my (@dimSizes=(0); # Dimension sizes.

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL);

5 The ASCII null character, 0x0.

11

UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

CDF::CDFsetFileBackward(BACKWARDFILEon);

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST2”, $numDims, \@dimSizes, \$id2,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDFSFILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward script to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

my S$status; # Returned status code.
my $flag; # File backward flag.

$flag = CDF::CDFgetFileBackward();

2.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: 0 for NO_CHECKSUM and 1 for MD5_CHECKSUM, both defined in cdf.h. With MD5 CHECKSUM, the
MDS algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

12

See Section 3.13 and 3.18 for the Standards Interface functions and Section 4.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$SCHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MDS5”, all new CDF
files will have their checksum bit set with a signature message produced by the MDS5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MDS5 checksum and set another
existing file’s checksum to none.

my $id1, $id2;

my S$status;

my $numDims = 0;
my (@dimSizes = (0);
my $checksum;

CDF identifier.
Returned status code.
Number of dimensions.
Dimension sizes.
Checksum code.

HHHHH®

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$checksum = 1;

$status = CDF::CDFlib (SELECT , CDF , $idl,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (OPEN_, CDF_, “MY_TEST2”,\$id2,
NULL);
UserStatusHandler ("3.0", $status) if ($status < CDF_OK) ;

$checksum = 0;

$status = CDF::CDFlib (SELECT , CDF , $id2,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("4.0", $status) if ($status < CDF_OK) ;

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.
my $checksum; # Checksum code.

13

$status = CDF::CDFlib (OPEN , CDF , “MY TEST1”, \$id,
NULL);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (SELECT , CDF , $id,
GET_, CDF_CHECKSUM , \$checksum,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

if ($checksum == MD5 CHECKSUM) {

}

Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

2.20 Data Validation

To ensure the data integrity from CDF files and secure opetating of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to
function unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-
guard the CDF operations: catch any bad data in the file and end the application gracefully if any bad data is identified.
An overhead (performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is
advised that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need
a file conversion, which will consolidate the interna; data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide.

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$SVALIDATE on Open/VMS. If its value is not set or set to “yes”, all
open CDF files are subjected to this data validation process. If the environment variable is set to “ne”, then no
validation is perfomed. The environment variable can be set at logon or through command line, which becomes in
effective during terminal session, or by an application, which is good only while the application is run. Setting the
environment variable, subroutine CDFsetValidate, at application level will overwrite the setup from the command
line. The validation is set to be on when value 1 (one) is passed into as the argument. Value 0 (zero) will set off the
validation. CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero) otherwise. If
the environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation off when the CDF file, “TEST”, is open.
my $id; ; # CDF identifier.
my S$status; # Returned status code.
CDF::CDFsetValidate(0);
$status = CDF::CDFlib (OPEN , CDF , “TEST”, \$id,

NULL);
UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

14

2.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME TT2000 use 8-byes signed integer. Tests show that on the 32-bit Perl
environment, large values from these data types, especially common 18-digits values for TT2000 data type, will not be
precisely preserved. In oder to preserve the data values, the Math::BigInt module is used.for these types. When a data
of such types is returned by a CDF module, it is wraped into a BigInt object. Similarly, passing a value of these types, it
should also be in BigInt object.

The following example shows the difference between a Biglnt object and a regular value from CDF_TIME_TT2000
data type after it is encoded on a 32-bit Perl.

use Math::Biglnt;

BEGIN { unshift @INC,'/Users/cdf/PerlCDF33_2/blib/arch’,
'/Users/cdf/PerlCDF33 2/blib/lib'; }
use CDF;

my $ttb = Math::Biglnt->new('340203790171876765");
my S$ttr = 340203790171876765;

my ($tt2000b, $tt2000r);

CDF::encodeTT2000($ttb, $tt2000b);
CDF::encodeTT2000(S$ttr, $tt2000r);

print $tt2000b,"(bigint) vs ",$tt2000r," (regular) \n";

2010-10-13T01:02:03.987876765(bigint) vs 2010-10-13T01:02:03.987876736(regular)

15

Chapter 3

3 Standard Interface

The Standard Interface functions described in this chapter represents the Standard Interface functions. They are based
on the original Standard Interface developed for the C. This set of interfaces only provides a very limited functionality
within the CDF library. For example, it can not handle zVariables and has no access to attribute’s entry corresponding
to the zVariables (zEntries). If you want to create or access zVariables and zEntries, or operate any single item not
accessible from the Standard Interface in a CDF file, you must use the Internal Interface described in Chapter 4.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
it’s not as efficient as Internal Interface and can only create and maipulate rVariables, not zVariables. If you are not
familiar with Internal Interface and need a very simple CDF in a short time, the use of Standard Interface is
recommended. However, the Internal Interface (see Chapter 4 for details) is strongly recommended since it’s not really
hard to learn (see testPerlCDFii.pl included in the Perl-CDF package) and much more flexible and powerful than the
Standard Interface.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the Standard Interface functions callable from Perl applications. Most functions return
a status code (see Chapter 5). The Internal Interface is described in Chapter 4. An application can use either or both
interfaces when necessary.

3.1 CDFattrCreate

CDF::CDFattrCreate(
my id,

my $attrName,

my S$attrScope,

my \$attrNum);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

H oH H H H

17

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

3.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

CDF identifier.

Returned status code.
Name of "Units" attribute.
"Units" attribute number.
"TITLE" attribute number.
"TITLE" attribute scope.

my $id;

my S$status;

my S$SUNITSattrName = "Units";

my $UNITSattrNum;

my S$TITLEattrNum;

my S$TITLEattrScope = GLOBAL SCOPE;

$status = CDF::CDFattrCreate ($id, "TITLE", $TITLEattrScope, \$TITLEattrNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrCreate ($id, $UNITSattrName, VARIABLE SCOPE, \$UNITSattrnum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.2 CDFattrEntrylnquire

CDF::CDFattrEntryInquire(# out-- Completion status code.
my $id, # in-- CDF identifier.

my SattrNum, # in -- Attribute number.

my SentryNum, # in-- Entry number.

my \$dataType, # out-- Data type.

18

my \$numElements); # out-- Number of elements (of the data type).

CDFattrEntrylnquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrinquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.
attrNum The attribute number for which to inquire an entry. This number may be determined

with a call to CDFattrNum (see Section 3.5).

entryNum The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by

the rEntry).
dataType The data type of the specified entry. The data types are defined in Section 2.5.
NumElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

3.2.1 Example(s)

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

my $id; CDF identifier.

my S$status; Returned status code.
my S$attrN; Attribute number.

my S$entryN; Entry number.

Attribute name.

Attribute scope.

Maximum entry number used.

Data type.

Number of elements (of the data type).

my S$attrName;
my S$attrScope;
my $maxEntry;
my $dataType;
my $numElems;

HoH H H H H H H H

$attrN = CDF::CDFgetAttrNum ($id, "TMP");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrInquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

for (SentryN = 0; $entryN <= $maxEntry; $SentryN++) {

19

$status = CDF::CDFattrEntrylnquire ($id, $attrN, $entryN, \$dataType, \$numElems);
if ($status < CDF_OK) {
if ($status '= NO_SUCH_ENTRY) UserStatusHandler (“3.0”. $status);

}

else {

process entries

3.3 CDFattrGet

CDF::CDFattrGet(
my $id,

my $attrNum,

my $entryNum,
my \$value);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Attribute entry value.

HoH H H H

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

The attribute number. This number may be determined with a call to CDFattrNum (Section
3.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed in the variable
value.

3.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

20

my $id;

my S$status;
my S$attrN;
my S$entryN;

my $dataType;
my $numElems;
my S$buffer;

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).
Buffer to receive value.

HHHFHFEHFHFH

$attrN = CDF::CDFattrNum (id, "UNITS");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$entryN = CDF::CDFvarNum (id, "PRES LVL"); # The rEntry number is the rVariable number.

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrEntrylnquire ($id, $attrN, $entryN, \$dataType, \$numElems);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

if ($dataType == CDF_CHAR) {
$status = CDF::CDFattrGet ($id, $attrN, $entryN, \$buffer);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print "Units of PRES LVL variable: $buffer \n";

}

3.4 CDFattrInquire

CDF::CDFattrInquire(
my $id,

my $attrNum,

my \$attrName,

my \$attrScope,

my \$maxEntry);

out -- Completion status code.

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry or rEntry number.

HoH H H

CDFattrInquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use

CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id

attrNum

attrName
attrScope

maxEntry

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 3.5).

The attribute's name.
The scope of the attribute. Attribute scopes are defined in Section 2.12.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of

21

entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 4). If no entries exist for the attribute, then
a value of -1 will be passed back.

3.4.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

CDF identifier.
Returned status code.
Number of dimensions.
Dimension sizes (allocate to allow the maximum
number of dimensions).

Data encoding.
Variable majority.
my $maxRec; # Maximum record number in CDF.
my $numVars; # Number of variables in CDF.
my $numAdttrs; # Number of attributes in CDF.

#

#

#

#

my $id;

my S$status;

my $numDims;

my (@dimSizes = (CDF_MAX DIMS);

my $encoding;
my $majority;

my S$attrN; attribute number.

my S$attrName; attribute name -- +1 for NUL terminator.
my $attrScope; attribute scope.

my $maxEntry; Maximum entry number.

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,
\$maxRec, \$numVars, \$numAttrs);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
for ($attrN = 0; $attrN < $numAttrs; $attrN++) {
$status = CDFattrInquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“2.0”, $status);
else
print ("$attrName \n”);

3.5 CDFattrNum

CDF:: CDFattrNum(# out -- Attribute number.
my $id, # in-- CDF id
my $attrName); # in -- Attribute name

22

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrName The name of the attribute for which to search. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

3.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF::CDFattrNum($id,"pressure");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "PRESSURE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.6 CDFattrPut

CDF::CDFattrPut(
my $id,

my S$attrNum,

my S$entryNum,
my $dataType,
my $numElements,
my $value);

out -- Completion status code.

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

H o H H H HF H

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

23

id

attrNum

entryNum

dataType

numElements

value

3.6.1

Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
2.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

my $id;

my S$status;

my $entryNum;

my $numElements;

my $title ="CDF title.";

my @TMPvalids = (15,30);
my STITLE_LEN = 10;

my S$attrNum;

my $varNum;

$entryNum = 0;

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, entry number 0.

Value(s) of VALIDs attribute, rEntry for rVariable TMP.
Length of CDF title.

Attribute number.

rVariable number.

HHHFHFEHFEHFEHFEHFH

$attrNum = CDF:: CDFgetAttrNum(id,"TITLE");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, CDF_CHAR, 10, $title);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$numElements = 2;
$attrNum = CDF:: CDFgetAttrNum(id,"VALIDs");

UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$varNum = CDF:: CDFgetVarNum(id,"TMP");

UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, SattrNum, $varNum, CDF_INT2, $numElements, \@TMPvalids);

24

UserStatusHandler (“5.0”. $status) if ($status < CDF_OK);

3.7 CDFattrRename

CDF::CDFattrRename(
my $id,

my S$attrNum,

my $attrName);

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- New attribute name.

H o H

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrNum The number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 3.5).

attrName The new attribute name. Attribute names are case-sensitive.

3.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF:: CDFgetAttrNum(id,"LAT");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "LATITUDE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.8 CDFclose

25

CDF::CDFclose(# out-- Completion status code.
my $id); # in-- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.8.1 Example(s)

The following example will close an open CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.

$status = CDF::CDFclose ($id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.9 CDFcreate

CDF::CDFcreate(
my $CDFname,
my $numDims,
my \@dimSizes,
my $encoding,
my $majority,
my \$id);

out -- Completion status code.

in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

out -- CDF identifier.

HoH HHFHHFH

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.vl,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

26

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.6.

The majority for variable data. Specify one of the majorities described in Section 2.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 3.8).

3.9.1 Example(s)

The following example creates a CDF named “test1.cdf” with network encoding and row majority.

my $id;
my S$status;

my S$numDims =
my (@dimSizes = (180,360,10);
my $majority = ROW_MAIJOR,;

3;

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables.
Variable majority.

HoH H H H

$status = CDF::CDFcreate ("testl", $numDims, \@dimSizes, NETWORK ENCODING, $majority, &id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

ROW_MAJOR and NETWORK ENCODING are defined in the Perl-CDF package.

27

3.10 CDFdelete

CDF::CDFdelete(# out-- Completion status code.
my id); # in-- CDF identifier.

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.10.1 Example(s)

The following example will open and then delete an existing CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.

$status = CDF::CDFopen ("test2", \$id);

if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“1.0”, $status);

else {
$status = CDF::CDFdelete ($id);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

}

3.11 CDFdoc

CDF::CDFdoc(
my $id,

my \$version,
my \$release,
my \$Copyright);

out -- Completion status code.
in -- CDF 1identifier.

out -- Version number.

out -- Release number.

out -- Copyright.

HoH H H H

28

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

3.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

CDF identifier.
Returned status code.
CDF version number.
CDF release number.
Copyright notice.

my $id;

my S$status;

my $version;
my S$release;
my $Copyright;

H oH H H H

$status = CDF::CDFdoc ($id, \$version, \$release, \$Copyright);

if ($status < CDF_OK) # INFO status codes ignored
UserStatusHandler (“1.0”, status);

else {
print ("CDF VS$version.$release\n”);
print ("$Copyright”);

H

3.12 CDFerror

CDF::CDFerror(# out-- Completion status code.
my $status, # in-- Status code.
my $message); # out-- Explanation text for the status code.

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 5 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

29

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

3.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$text; # Explanation text.

$status = CDF::CDFopen ("giss wetl", \$id);

if ($status < CDF_WARN) { # INFO and WARNING codes ignored.
CDF::CDFerror ($status, \$text);
print ("ERROR> $text\n”);

}

3.13 CDFgetChecksum

CDF::CDFgetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my \$checksum); # out-- CDF’s checksum mode.

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.19.

The arguments to CDFgetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

3.13.1 Example(s)

The following example returns the checksum mode for the open CDF file.

30

my $id; # CDF identifier.
my S$status; # Returned status code.
my $checksum; # CDEF’s checksum.

$status = CDF::CDFgetChecksum ($id, \$checksum);
if ($status |= CDF_OK) UserStatusHandler ($status);

3.14 CDFgetFileBackward

CDF::CDFgetFileBackward() # out-- Backward file indicator.

CDFgetFileBackward is used to get the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFgetFileBackward defined as follows:

N/A

3.14.1 Example(s)

In the following example, the backward file indicator is retrieved.

my $backwardFlag; # File backward flag.

$backwardFlag = CDF::CDFgetFileBackward();

3.15 CDFgetValidate

CDF::CDFgetValidate () # out-- Validation mode.

CDFgetValidate returns the validation mode when opening CDF files. The CDF validation mode is described in
Section 2.20.

The arguments to CDFgetValidate are defined as follows:

N/A

31

3.15.1 Example(s)

The following example returns the data validation mode when opening the CDF files.

my $validate; #

$validate = CDF::CDFgetValidate ();

3.16 CDFinquire

CDF::CDFinquire(
my $id,

my \$numDims,
my \@dimSizes,
my \$encoding,
my \$majority,
my \$maxRec,
my \$numVars,
my \$numAttrs);

HHHFHFEFEHFEHFHH

CDFinquire returns the basic characteristics

CDF’s validation mode.

out -- Completion status code.

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

of a CDF. An application needs to know the number of rVariable

dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.

dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array

containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but

must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.6.
majority The majority of the variable data. The majorities are defined in Section 2.8.

32

maxRec

numVars

numAttrs

3.16.1 Example(s)

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

The number of rVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

my
my
my
my

my
my
my
my
my

$id;
$status;
$numDims;
@dimSizes

$encoding;
$majority;
$maxRec;
$numVars;
$numA ttrs;

CDF identifier.

Returned status code.

Number of dimensions, rVariables.

Dimension sizes, rVariables (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number, rVariables.

Number of rVariables in CDF.

Number of attributes in CDF.

HHHHFEHFEHFEHFEHFEHFH

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,

\$maxRec, \$numVars, \$numAttrs);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.17 CDFopen

CDF::CDFopen(
my $CDFname,
my \$id);

out-- Completion status code.
in-- CDF file name.
out-- CDF identifier.

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

33

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

3.17.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

my $id; # CDF identifier.
my S$status; # Returned status code.

my $CDFname ="NOAAI1"; # File name of CDF.

$status = CDF::CDFopen ($CDFname, \$id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.18 CDFsetChecksum

CDF::CDFsetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my $checksum); # in-- CDF’s checksum mode.

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.19.
The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

34

3.18.1 Example(s)

The following example turns off the checksum flag for the open CDF file..

my $id; # CDF identifier.
my S$status; # Returned status code.

my $checksum; # CDEF’s checksum.

$checksum= 0;
$status = CDF::CDFsetChecksum ($id, $checksum);
if ($status |= CDF_OK) UserStatusHandler ($status);

3.19 CDFsetFileBackward

CDF::CDFsetFileBackward(#
my $flag) # in-- Backward file flag

CDFsetFileBackward is used to set the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFsetFileBackward defined as follows:

flag The backward file flag

3.19.1 Example(s)

In the following example, the backward file indicator is set to true so a new CDF file(s) of V2.7, instead of V3.*, will
be created.

my $backwardFlag; # Backward file flag.

$backwadFlag = 1;
CDF::CDFsetFileBackward($backwardFlag);

35

3.20 CDFsetValidate

CDF::CDFsetValidate (
my $validate); # in-- CDF’s validation mode.

CDFsetValidate specifies the validation mode when opening a CDF file. The CDF validation mode is described in
Section 2.20.

The arguments to CDFsetValidate are defined as follows:

validate The validation mode.

3.20.1 Example(s)

The following example turns on the data validation when opening the CDF file, “TEST”..

my $id; # CDF identifier.
my S$status; # Returned status code.

CDF::CDFsetValidate (1);

$status = CDF::CDFIib(OPEN , CDF , “TEST”, \$id,
NULL);

if ($status |= CDF_OK) UserStatusHandler ($status);

3.21 CDFvarClose

CDF::CDFvarClose(# out-- Completion status code.
my $id, # in-- CDF identifier.
my $varNum); # in-- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

36

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

3.21.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.
my $varNum; # rVariable number.

$varNum = CDF::CDFvarNum (id, “Flux”);

UserStatusHandler (“1.0”. $varNum) if (§varNum < CDF_OK);
$status = CDF::CDFvarClose (id, $varNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.22 CDFvarCreate

CDF::CDFvarCreate(
my $id,

my $varName,

my $dataType,

my $numElements,
my $recVariance,
my \@dimVariances,
my \$varNum);

out -- Completion status code.

in -- CDF 1identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

HoH H H H H H H

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.
varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.5.

37

numElements

recVariance

dimVariances

varNum

3.22.1 Example(s)

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.9.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

The following example will create several rVariables in a CDF. In this case EPOCH is a 0-dimensional, LATITUDE
and LONGITUDE are 2-diemnational, and TEMPERATURE is a 1-dimensional.

my $id; # CDF identifier.

my S$status; # Returned status code.

my S$EPOCHrecVary = VARY; # EPOCH record variance.
my $LATrecVary = NOVARY; # LAT record variance.

my $LONrecVary = NOVARY; # LON record variance.

my $TMPrecVary = VARY; # TMP record variance.

my $EPOCHdimVarys = NOVARY; # EPOCH dimension variances.
my @LATdimVarys = (VARY,VARY); # LAT dimension variances.
my @LONdimVarys = (VARY,VARY); # LON dimension variances.
my @TMPdimVarys = (VARY,VARY); # TMP dimension variances.
my S$EPOCHvarNum; # EPOCH zVariable number.
my $LATvarNum; # LAT zVariable number.

my $LONvarNum; # LON zVariable number.
my TMPvarNum; # TMP zVariable number.
my @EPOCHdimSizes = (3); # EPOCH dimension sizes.
my @LATLONdimSizes = (2,3); # LAT/LON dimension sizes.
my @TMPdimSizes = (3); # TMP dimension sizes.

$status = CDF::CDFvarCreate ($id, "EPOCH", CDF_EPOCH, 1,
$EPOCHrecVary, \@EPOCHdimVarys, \$EPOCH varNum);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LATITUDE", CDF_INT2, 1,
$LATrecVary, \@LATdimVarys, \$LATvarNum);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LONGITUDE", CDF_INT2, 1,

$LONrecVary, \@LONdimVarys, \$LONvarNum);
UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "TEMPERATURE", CDF_REALA4, 1,

$TMPrecVary, \@TMPdimVarys, \$TMPvarNum);
UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

3.23 CDFvarGet

CDF::CDFvarGet(# out-- Completion status code.
my Sid, # in-- CDF identifier.

my $varNum, # in-- rVariable number.

my $recNum, # in-- Record number.

my \@indices, # in-- Dimension indices.

my \$value); # out-- Value.

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

3.23.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

my $id;

my $varNum;

my $recNum;

my @indices;

my $valuel, $value2;

HoH H H H

$varNum = CDF::CDFvarNum ($id, “MY_VAR”);

39

if ($varNum < CDF_OK) Quit (“....”);
$recNum = 0;
$indices[0] = 0;
$indices[1] = 0;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$valuel);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$indices[0] = 1L;
$indices[1] = 1L;
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.24 CDFvHpGet

CDF::CDFvHpGet(

my $id,

my $varNum,
my $recStart,
my $recCount,
my $reclnterval,
my \@indices,
my \@counts,
my \@intervals,
my \@buffer);

HoH o H H H HHF H R

out -- Completion status code.

in --
in --
in --
in --
in --
in --
in --
in --

CDF identifier.

rVariable number.

Starting record number.

Number of records.

Subsampling interval between records.
Dimension indices of starting value.

Number of values along each dimension.
Subsampling intervals along each dimension.

out -- Buffer of values.

CDFvHpGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvHpGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

3.24.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvHpGet rather than numerous calls to

CDFvarGet.
my $id;
my S$status;
my (@tmp;
my $varN;
my S$recStart = 13;
my $recCount = 1;
my S$recInterval = 1;
my @indices = (0,0,0);

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.

HHHFHFEHFEHFEHH

40

my (@counts = (180,91,10); # Dimension counts.
my @intervals = (1,1,1); # Dimension intervals.

$varN = CDF::CDFgetVarNum ($id, "Temperature");

if (§varN < CDF_OK) UserStatusHandler ($varN);

status = CDF::CDFgetHyperGet ($id, $varN, $recStart, $recCount, $recInterval,
\@indices, \@counts, \@intervals, \@tmp);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

3.25 CDFvHpPut

CDF::CDFvHpPut(
my $id,

my $varNum,

my $recStart,

my $recCount,
my $recnterval,
my \@indices,

my \@counts,

my \@intervals,
my \@buffer);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

in -- Starting record number.

in -- Number of records.

in -- Interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

in -- Interval between values along each dimension.
in -- Buffer of values.

HoH H H H H H H H H

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

3.25.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvHpPut rather than numerous calls to CDFvarPut.

my $id; # CDF identifier.

my S$status; # Returned status code.

my $lat; # Latitude value.

my @lats; # Buffer of latitude values.
my $varN; # rVariable number.

my S$recStart = 0; # Record number.

41

my $recCount = 1;

my S$recInterval =

I;

my @indices = (0,0);

my (@counts = (1,181);

my @intervals =

(1,D);

Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

HoH H H H

$varN = CDF::CDFvarNum ($id, "LATITUDE");
if (§varN < CDF_OK) UserStatusHandler ($varN);
for ($lat = -90; $lat <= 90; $lat ++)

$lats[90+lat] =

$lat;

$status = CDF::CDFvHpPut ($id, $varN, S$recStart, $recCount, $recnterval,

\@indices, \@counts, \@intervals, \@lats);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.26 CDFvarlnquire

CDF::CDFvarlnquire(
my $id,

my $varNum,

my $varName,

my \$dataType,

my \$numElements,
my \$recVariance,
my \@dimVariances);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

H o H H H H H

CDFvarlnquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvHpGet) to determine the data type and number of elements (of that data

type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName

dataType

numElements

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 3.27).

The rVariable's name. This character string must not be greater than
CDF_VAR NAME LEN256 characters.

The data type of the rVariable. The data types are defined in Section 2.5.
The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

42

recVariance The record variance. The record variances are defined in Section 2.9.

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are defined in Section 2.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

3.26.1 Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

CDF identifier.

Returned status code.

rVariable number.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Dimension variances (allocate to allow the
maximum number of dimensions).

my $id;

my S$status;

my $varNum;
my $varName;
my $dataType;
my $numElems;
my S$recVary;
my @dimVarys;

HoH H H H H H

$varNum = CDF:: CDFgetVarNum(id,"HEAT FLUX");

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);

$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElems, \$recVary, \@dimVarys);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.27 CDFvarNum

CDF::CDFvarNum(# out-- Variable number.
my $id, # in-- CDF identifier.
my $varName); # in-- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code is returned. Error codes are less than zero (0). The returned variable
number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable, functions
dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

43

varName The name of the variable to search. Variable names are case-sensitive.

3.27.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

CDF identifier.

Returned status code.

rVariable number.

Variable name.

Data type of the rVariable.

Number of elements (of the data type).
Record variance.

Dimension variances.

my $id;

my S$status;

my $varNum;

my $varName;

my $dataType;

my $numElements;
my $recVariance;
my (@dimVariances;

HoH H H HHFHF R

$varNum = CDF:: CDFvarNum(id,"LATITUDE");

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);

$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElements, \$recVariance, \@dimVariances);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 3.26.

3.28 CDFvarPut

CDF::CDFvarPut(
my $id,

my $varNum,
my $recNum,
my \@indices,
my \$value);

out -- Completion status code.
in -- CDF 1identifier.

in -- rVariable number.

in -- Record number.

in -- Dimension indices.

in -- Value.

H o H H H H

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

44

id

varNum

recNum

indices

value

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

The record number at which to write.
The dimension indices within the specified record at which to write. Each element of
indices specifies the corresponding dimension index. For 0-dimensional variables, this

argument is ignored (but must be present).

The data value to write.

3.28.1 Example(s)

The following example will write two data values (1 and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

my $id;

my $varNum;

my S$recNum;

my (@indices;

my $valuel, $value2;

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

H oH H HF H

$varNum = CDF::CDFgetVarNum ($id, “MY_VAR”);
if (§varNum < CDF_OK) Quit (“....”);

$recNum = 0;

$indices[0] = 0;
$indices[1] = 0;
$valuel = 10.1;

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$valuel);

UserStatusHandler (“1.

$indices[0] = 1;
$indices[1] = 1;
$value2 = 20.2;

0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.29 CDFvarRename

CDF::CDFvarRename(
my $id,

out-- Completion status code.
in-- CDF identifier.

45

my $varNum,

my $varName);

in -- rVariable number.
in-- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF_VAR NAME LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

3.29.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.
my $id;
my S$status;

my $varNum;

CDF identifier.
Returned status code.
rVariable number.

$varNum = CDF::CDFvarNum ($id, "TEMPERATURE");
if (fvarNum <CDF_OK) {
if (JvarNum != NO_SUCH_VAR) UserStatusHandler (varNum);

}

else {

$status = CDF::CDFvarRename ($id, $varNum, "TMP");
if ($status '= CDF_OK) UserStatusHandler (status);

46

Chapter 4

4 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 4.6.
The function prototype for CDFlib is as follows:

status = CDF::CDFlib (function, ...);

4.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

my $id; # CDF identifier (handle).

my $status; # Status returned from CDF library.
my $CDFname = "testl"; # File name of the CDF.

my $numDims = 2; # Number of dimensions.

my @dimSizes = {100,200}; # Dimension sizes.

my $encoding = HOST ENCODING; # Data encoding.

my $majority = ROW_MAIJOR; # Variable data majority.

my $format = SINGLE FILE; # Format of CDF.

$status = CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id);

47

if ($status |= CDF_OK) UserStatusHandler ($status);

$status = CDF::CDFlib (PUT _, CDF_FORMAT , $format, NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFlib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDFIib in this example are explained as follows:

PUT The first function to be performed. In this case an item is going to be put to the “current"
CDF (anew format). PUT is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.' This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

CDF _FORMAT The item to be put. in this case it is the CDF's format.

format The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

NULL This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL function. NULL
indicates the end of the call to CDFlib. Specifying NULL at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations
would be the same.)

$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id,
PUT_, CDF _ENCODING , $encoding,
CDF_MAIJORITY _, $majority,
CDF_FORMAT , $format,
NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

The purpose of each argument is as follows:
CREATE The first function to be performed. In this case something will be created.

CDF _ The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

" In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

48

CDFname
numDims
dimSizes

id

PUT_

CDF_ENCODING

encoding

CDF_MAJORITY _

majority

CDF_FORMAT _

format

NULL_

The file name of the CDF.
The number of dimensions in the CDF.
The dimension sizes.

The identifier to be used when referencing the created CDF in subsequent
operations.

This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

The encoding to be put to the CDF.

This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

The majority to be put to the CDF.

Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

The format to be put to the CDF.
This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

4.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT ,CDF_>7 operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly

selected.?

? This notation is used to specify a function to be performed on an item. The syntax is <function_,item >,
? In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

49

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR > or <SELECT ,rVAR NAME >
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zZVAR > or <SELECT ,zZVAR_NAME >
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR > or <SELECT ,ATTR NAME >
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT ,gENTRY > operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT ,rENTRY > operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zZENTRY > operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT ,rVARs RECNUMBER > operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT > operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

50

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT ,rVARs DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT ,rVARs DIMCOUNTS > operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT ,rVARs DIMINTERVALS > operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,rVAR SEQPOS > operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT ,zZVAR RECNUMBER > operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR RECCOUNT > operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

51

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zVAR RECINTERVAL > operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zVAR DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT ,zZVAR DIMCOUNTS >
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT ,zZVAR DIMINTERVALS > operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,zVAR SEQPOS > operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)

4.3

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT ,CDF_STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.”

Returned Status

CDFlib returns a status code. Since more than one operation may be performed with a single call to CDFlib, the
following rules apply:

* The CDF library now maintains the current status code from one call to the next of CDFlib.

52

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF _OK is returned.

Chapter 5 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

4.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id,
PUT , CDF FORMAT , S$format,
CDF_MAJORITY _, $majority,
CREATE_, ATTR , $attrName, $scope, \$attrNum,
rVAR , $varName, $dataType, $numElements,
$recVary, \@dimVarys, \$varNum,
NULL);

Note that the functions (CREATE , PUT , and NULL) are indented the same and that the items (CDF ,
CDF_FORMAT , CDF MAIJORITY , ATTR , and rVAR) are indented the same under their corresponding
functions.

The following example shows the same call to CDFlib without the proper indentation.
$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id, PUT__,
CDF_FORMAT , $format, CDF_MAJORITY , $majority, CREATE ,
ATTR , $attrName, $scope, \$attrNum, rVAR , $varName, $dataType,
$numElements, $recVary, \@dimVarys, \$varNum, NULL);

The need for proper indentation to ensure the readability of your applications should be obvious.

4.5 Syntax

CDFIib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather by the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFlib is as follows:

$status = CDF::CDFlib (fncl, iteml, argl, arg2, ...argN,
item2, argl, arg2, ..argN,

53

itemN, argl, arg2, ...argN,
fnc2, iteml, argl, arg2, ...argN,
item2, argl, arg2, ..argN,

itemN, argl, arg2, ...argN,

fncN, iteml, argl, arg2, ..argN,
item2, argl, arg2, ..argN,

itemN, argl, arg2, ...argN,
NULL);

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required
argument for the operation. The NULL function must be used to end the call to CDFlib. The completion status, status,
is returned.

4.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE _ Used to close an item.

CONFIRM _ Used to confirm the value of an item.

CREATE Used to create an item.

DELETE Used to delete an item.

GET Used to get (read) something from an item.

NULL _ Used to signal the end of the argument list of an internal interface call.
OPEN Used to open an item.

PUT _ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT _
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 4.2.

<CLOSE ,CDF >
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.
There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE ,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

54

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE ,zZVAR >
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM ,ATTR >
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: \$attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE >
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: \$attrName

The attribute name. This may be at most CDF_ATTR _NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM ,CDF >
Confirms the current CDF. Required arguments are as follows:

out: \$id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF ACCESS >
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM ,CDF CACHESIZE >
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

out: \$numBuffers

The number of cache buffers being used.

55

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING >
Confirms the decoding for the current CDF. Required arguments are as follows:

out: \$decoding
The decoding. The decodings are described in Section 2.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME >
Confirms the file name of the current CDF. Required arguments are as follows:

out: \$CDFname
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM _,CDF NEGtoPOSfp0_ MODE >
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: \$mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 2.15.
The only required preselected object/state is the current CDF.

<CONFIRM _,CDF_READONLY_ MODE >
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: \$mode
The read-only mode. The read-only modes are described in Section 2.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF_STATUS > operation).
Required arguments are as follows:
out: \$status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM ,zMODE >
Confirms the zMode for the current CDF. Required arguments are as follows:

out: \$mode

The zMode. The zModes are described in Section 2.14.

56

The only required preselected object/state is the current CDF.
<CONFIRM _,COMPRESS CACHESIZE >
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.
<CONFIRM_,CUREENTRY_ EXISTENCE >
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM _,CURTENTRY EXISTENCE >
Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).
If the rEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY EXISTENCE >
Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,gENTRY >
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The gEntry number.
The only required preselected object/state is the current CDF.

<CONFIRM_,gENTRY EXISTENCE_>

57

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:
in: $entryNum
The gEntry number.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM ,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM ,rENTRY EXISTENCE >

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,rVAR >
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE >
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_EXISTENCE >

58

Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR _PADVALUE >
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_ PADVALUE _SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_SEQPOS >
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM _,rVARs DIMCOUNTS >
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@counts

Dimension counts. Each element of counts receives the corresponding dimension count.

The only required preselected object/state is the current CDF.

59

<CONFIRM ,rVARs DIMINDICES >
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM _,rVARs DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECCOUNT >
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: \$recCount
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECINTERVAL >
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: \$recInterval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECNUMBER >
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: \$recNum
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE_CACHESIZE >
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

60

The only required preselected object/state is the current CDF.

<CONFIRM ,zENTRY >
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM ,zZENTRY_ EXISTENCE >

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,zVAR >
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM ,zVAR CACHESIZE >
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM ,zVAR DIMCOUNTS >
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@counts
Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINDICES_>

61

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM ,zVAR _DIMINTERVALS >
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR_EXISTENCE >
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_ VAR _NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_PADVALUE >

Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An

explicit pad value has not been specified, the informational status code NO_ PADVALUE_SPECIFIED will be

returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECCOUNT >

Confirms the current record count for the current zVariable in the current CDF. Required arguments are as

follows:

out: \$recCount
Record count.

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECINTERVAL >

Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as

follows:

out: \$recInterval

Record interval.

62

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECNUMBER >
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$recNum
Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM ,zZVAR RESERVEPERCENT >
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE ,ATTR >
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: S$attrName

Name of the attribute to be created. This can be at most CDF_ATTR NAME LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: $scope
Scope of the new attribute. Specify one of the scopes described in Section 2.12.

out: \$attrNum

63

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET ,ATTR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,CDF >
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: $CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF _PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.
in: $numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: \@dimSizes

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: \$id
CDF identifier to be used in subsequent operations on the CDF.
A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT ,CDF FORMAT >, <PUT ,CDF ENCODING >, and
<PUT_,CDF MAJORITY > operations if necessary.

A CDF must be closed with the <CLOSE ,CDF > operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE ,rVAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: $varName

Name of the rVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: $dataType

64

in:

in:

in:

out:

Data type of the new rVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$recVary
Record variance. Specify one of the variances described in Section 2.9.

\@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

\$varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls

when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET ,rVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,zVAR >
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in:

in:

in:

$varName

Name of the zVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

$dataType
Data type of the new zVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_ MAX DIMS.

\@dimSizes

65

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).
in: S$recVary
Record variance. Specify one of the variances described in Section 2.9.
in: \@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).
out: \$varNum
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET ,zVAR_NUMBER > operation.
The only required preselected object/state is the current CDF.
<DELETE ,ATTR >
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is
deleted, there is no longer a current attribute.
There are no required arguments.
The required preselected objects/states are the current CDF and its current attribute.
<DELETE ,CDF >
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.
<DELETE ,gENTRY >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<DELETE ,rENTRY >
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

66

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE ,rVAR >
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,rVAR RECORDS >
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zZENTRY >
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE ,zVAR >
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zZVAR RECORDS >

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the

67

records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,ATTR_MAXgENTRY >
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,ATTR MAXrENTRY >
Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR_MAXzENTRY >
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET ,ATTR NAME >
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

68

out: \$attrName
Attribute name.
The required preselected objects/states are the current CDF and its current attribute.
<GET ,ATTR NUMBER >
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: S$attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

out: \$attrNum
The attribute number.
The only required preselected object/state is the current CDF.
<GET ,ATTR NUMgENTRIES >
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: \$numEntries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,ATTR_NUMrENTRIES >
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: \$numEntries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR_NUMZzENTRIES >
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:
out: \$numEntries
The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

69

<GET ,ATTR_SCOPE >
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: \$scope
Attribute scope. The scopes are described in Section 2.12.
The required preselected objects/states are the current CDF and its current attribute.

<GET ,CDF_CHECKSUM__ >
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: \$checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5 CHECKSUM). The checksum
mode is described in Section 2.19.

The required preselected objects/states is the current CDF.
<GET_,CDF_COMPRESSION >
Inquires the compression type/parameters and compression percentage of the current CDF. This refers to the
compression of the CDF - not of any compressed variables. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size.” Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET ,CDF _COPYRIGHT >
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:
out: \$Copyright
CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>
Inquires the data encoding of the current CDF. Required arguments are as follows:

> The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

70

out: \$encoding
Data encoding. The encodings are described in Section 2.6.
The only required preselected object/state is the current CDF.

<GET _,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: \$format
CDF format. The formats are described in Section 2.4.
The only required preselected object/state is the current CDF.
<GET ,CDF INCREMENT >
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$increment
Incremental number.
The only required preselected object/state is the current CDF.
<GET ,CDF_INFO >
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in: $CDFname
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF _PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: \$cType
The CDF compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cSize
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: \$uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

71

<GET_,CDF_MAJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: \$majority
Variable majority. The majorities are described in Section 2.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: \$numAittrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET ,CDF NUMgATTRS >
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: \$numAittrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS >
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: \$numVars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET ,CDF_NUMVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: \$numAdttrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET ,CDF_NUMzVARS >
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: \$numVars
Number of zVariables.

The only required preselected object/state is the current CDF.

72

<GET ,CDF RELEASE >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: \$release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION >
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$version
Version number.

The only required preselected object/state is the current CDF.

<GET ,DATATYPE SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: $dataType
Data type.
out: \$numBytes
Number of bytes per element.
There are no required preselected objects/states.
<GET ,gENTRY DATA >

Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,gENTRY DATATYPE >
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

73

<GET ,gENTRY NUMELEMS >
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET _,LIB_COPYRIGHT >
Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: \$Copyright
CDF library Copyright text.
There are no required preselected objects/states.

<GET _,LIB_INCREMENT >
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: \$increment
Incremental number.
There are no required preselected objects/states.

<GET _,LIB RELEASE >
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: \$release
Release number.
There are no required preselected objects/states.

<GET __,LIB_subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: \$subincrement
Subincremental character.
There are no required preselected objects/states.

<GET __,LIB_VERSION >
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: \$version

74

Version number.
There are no required preselected objects/states.
<GET ,rENTRY DATA >
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,rENTRY DATATYPE >
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,rENTRY NUMELEMS >
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,rVAR ALLOCATEDFROM >
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord

The number of the next allocated record.

75

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:
in: $startRecord
The record number at which to begin searching for the last allocated record.
out: \$nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_BLOCKINGFACTOR >°
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,r VAR COMPRESSION >
Inquires the compression type/parameters and the compression percentage of the current rVariable (in the
current CDF). The compression percentage is the result of the compressed size from all variable records divided
by its original, uncompressed varible size. Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR DATA >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

% The item r'VAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

76

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET ,rVAR DATATYPE >
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR DIMVARYS >
Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR HYPERDATA >
Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.
<GET ,rVAR MAXallocREC >
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:
out: \$varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR MAXREC >
Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: \$varMaxRec

Maximum record number.

77

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR NAME >
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the rVariable.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR nINDEXENTRIES >
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET _,rVAR nINDEXLEVELS >
Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR nINDEXRECORDS >
Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR NUMallocRECS >
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

78

<GET ,rVAR NUMBER >
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum
The rVariable number.
The only required preselected object/state is the current CDF.
<GET ,y VAR NUMELEMS >
Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:
out: \$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR NUMRECS >
Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,rVAR_MAXREC >) if the rVariable has sparse records. Required
arguments are as follows:
out: \$numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR PADVALUE >
Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT ,rVAR PADVALUE >), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR RECVARY >
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$recVary

79

Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR SEQDATA >
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.
<GET_,rVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
out: \@ArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR SPARSERECORDS >
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:
out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVARs DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: \@dimSizes

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

80

The only required preselected object/state is the current CDF.

<GET ,rVARs MAXREC >
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET ,rVAR MAXREC > operation. Required arguments are
as follows:

out: \$maxRec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET _,rVARs NUMDIMS >
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: \$numDims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET ,rVARs RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: $numVars
The number of rVariables from which to read. This must be at least one (1).
in: \@varNums

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 rVariables, each a 2-dimensional (2 by 3), the buffer should have 18 elements after the
read. As all variables’ have the same number of data values, then the buffer should return with 18
elements (2*3 + 2*3 + 2*3), the first 6 for the first variable, the next 6 for the second variable and the
last 6 for the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. ’

<GET ,STATUS_TEXT >

7 A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

81

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: \$text
Text explaining the status code.
The only required preselected object/state is the current status code.
<GET ,zZENTRY DATA >
Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,zZENTRY DATATYPE >
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,zZENTRY NUMELEMS >
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,zZVAR ALLOCATEDFROM >
Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

82

out: \$nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: $startRecord
The record number at which to begin searching for the last allocated record.
out: \$nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_BLOCKINGFACTOR_>*
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_COMPRESSION >
Inquires the compression type/parameters and compression percentage of the current zVariable (in the current
CDF). The compression percentage is the result of the compressed size from all variable records divided by its
original, uncompressed varible size. Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,ZVAR_DATA >

¥ The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

83

Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: \$value
Value. The value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET ,zVAR DATATYPE >
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: \@dimSizes
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMVARYS_>
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and

dimension intervals for the zVariable.

<GET_,zVAR_MAXallocREC_>

84

Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:

out: \$varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zZVAR_MAXREC >
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: \$varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET _,zZVAR_NAME >
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the zVariable.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR_nINDEXENTRIES >
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR_nINDEXLEVELS >
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR_nINDEXRECORDS >
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance

for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

85

out: \$numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_NUMallocRECS >
Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords
Number of allocated records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_NUMBER >
Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum
The zVariable number.
The only required preselected object/state is the current CDF.
<GET ,zZVAR NUMDIMS >
Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$numDims
Number of dimensions.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVAR NUMELEMS >
Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:
out: \$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NUMRECS_>

86

Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,ZVAR MAXREC >) if the zVariable has sparse records. Required
arguments are as follows:
out: \$numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVAR PADVALUE >
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT ,zZVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$recVary
Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_SEQDATA >
Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:
out: \$value
Value. The value is read from the CDF and placed in the variable value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zZVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.

out: \@sArraysParms

The sparse arrays parameters.

87

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVARs MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET ,ZVAR_MAXREC > operation. Required arguments are
as follows:

out: \$maxRec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET ,zVARs RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: $numVars
The number of zVariables from which to read. This must be at least one (1).
in: \@varNums

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 zVariables, first a 2-dimensional (2 by 3), second as a 1-dimensional (3) and third a scalar,
the buffer should have 10 (2*3 + 3 + 1) elements after the read. Among them, the first 6 for the first
variable, the next 3 for the second variable and the last 1 for the third variable.

88

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). °

<NULL >
Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.
<OPEN ,CDF >
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:
in: $CDFname
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF _PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: \$id
CDF identifier to be used in subsequent operations on the CDF.
There are no required preselected objects/states.
<PUT ,ATTR NAME >
Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: S$attrName

New attribute name. This may be at most CDF_ATTR NAME LEN256 characters (excluding the
NUL terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE >
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: $scope
New attribute scope. Specify one of the scopes described in Section 2.12.
The required preselected objects/states are the current CDF and its current attribute.

<PUT _,CDF_CHECKSUM >
Respecifies the checksum mode of the current CDF. Required arguments are as follows:

in: $checksum

? A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

89

The checksum mode to be used (NO_CHECKSUM or MD5 CHECKSUM). The checksum mode is
described in Section 2.19.

The required preselected objects/states is the current CDF.
<PUT ,CDF_COMPRESSION >
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:
in: $cType
The compression type. The types of compressions are described in Section 2.10.
in: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
The only required preselected object/state is the current CDF.
<PUT ,CDF _ENCODING >
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:
in: $encoding
New data encoding. Specify one of the encodings described in Section 2.6.
The only required preselected object/state is the current CDF.
<PUT ,CDF FORMAT >
Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:
in: $format
New CDF format. Specify one of the formats described in Section 2.4.
The only required preselected object/state is the current CDF.
<PUT ,CDF MAIJORITY >
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:
in: $majority
New variable majority. Specify one of the majorities described in Section 2.8.
The only required preselected object/state is the current CDF.
<PUT ,gENTRY DATA >
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or

a different data specification. Required arguments are as follows:

in: $dataType

90

Data type of the gEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<PUT ,gENTRY DATASPEC >
Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: $dataType
New data type of the gEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<PUT _,rENTRY_ DATA >
Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: $dataType
Data type of the rEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

91

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,rENTRY DATASPEC >
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of

the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s

Guide. Required arguments are as follows:
in: $dataType
New data type of the rEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,rVAR ALLOCATEBLOCK >
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only

applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.
in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: $nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR >'"
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV

variables or multi-file CDFs. Required arguments are as follows:

in: $blockingFactor

' The item r'VAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

92

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT ,rVAR COMPRESSION >
Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:
in: $cType
The compression type. The types of compressions are described in Section 2.10.
in: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT ,rVAR DATA >
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:
in: \$value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC >
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType
New data type. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVAR DIMVARYS >
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have

been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: \@dimVarys

93

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR HYPERDATA >
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: \@buffer
Values. The values in the variable buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT _,rVAR_INITIALRECS >
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_NAME >
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the rVariable. This may consist of at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR _PADVALUE >
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:
in: \$value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current rVariable.

94

<PUT _,rVAR RECVARY >
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: S$recVary
New record variance. Specify one of the variances described in Section 2.9.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVAR _SEQDATA >
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:
in: \$value
Value. The value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.
<PUT_,rVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: $sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
in: \@sArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT ,rVAR SPARSERECORDS >
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:
in: $sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVARs RECDATA >
Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the

current CDF). Required arguments are as follows:

in: $numVars

95

The number of rVariables to which to write. This must be at least one (1).
in: \@varNums

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: \@buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the variables are all 2-dimensional (2 by 3) array, then the buffer should
have 18 elements (2*3 + 2*3 + 2*3) for handling a process of three variables. Among them, the first 6
is from the first variable, the next 6 from the second variable and the last 6 from the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. '
<PUT ,zZENTRY DATA >
Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: dataType
Data type of the zEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value
Value(s). The entry value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT ,zZENTRY DATASPEC >
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: $dataType

New data type of the zEntry. Specify one of the data types described in Section 2.5.

"' A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

96

in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,zZVAR_ALLOCATEBLOCK >
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only

applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.
in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT _,zZVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: $nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_BLOCKINGFACTOR >"
Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV

variables or multi-file CDFs. Required arguments are as follows:

in: $blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_COMPRESSION >

Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:

in: $cType

The compression type. The types of compressions are described in Section 2.10.

"> The item zZVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

97

in: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zZVAR DATA >
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: \$value
Value. The value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT _,zZVAR DATASPEC >
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType
New data type. Specify one of the data types described in Section 2.5.
in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zZVAR DIMVARYS >
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: \@dimVarys

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT _,zVAR_INITIALRECS >
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is

98

written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zZVAR _HYPERDATA >
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: \@buffer
Values. The values at the variable buffer are written to the CDF.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<PUT_,zZVAR NAME >

Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the zVariable. This may consist of at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_PADVALUE >
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:
in: \$value
Pad value. The pad value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_RECVARY >
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: S$recVary

New record variance. Specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

99

<PUT_,zZVAR_SEQDATA >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:
in: \$value
Value. The value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.
<PUT_,zVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:
in: $sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
in: \@sArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT ,zVAR_SPARSERECORDS >
Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:
in: $sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVARs RECDATA >
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:
in: $numVars
The number of zVariables to which to write. This must be at least one (1).

in: \@varNums

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: \@buffer

100

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the first variable is a 2-dimensional (2 by 3) array and the second variable is
a 1-dimensional (5 elements) and the third variable is a scalar, then the buffer should have 12 elements
(2*¥3 + 5 + 1), the first 6 from the first variable, the next 5 from the second variable and the last one
from the third variable, while passing into the CDFlib.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). "

<SELECT ,ATTR >
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: $attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT ,ATTR_NAME >
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT ,ATTR >) is more efficient. Required arguments are as follows:

in: S$attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,CDF >
Explicitly selects the current CDF. Required arguments are as follows:

in: $id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE ,CDF >
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.
<SELECT ,CDF CACHESIZE >
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:
in: $numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

1 A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

101

<SELECT ,CDF DECODING >
Selects a decoding (for the current CDF). Required arguments are as follows:

in: $decoding
The decoding. Specify one of the decodings described in Section 2.7.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOS{fp0_ MODE >
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: $mode
The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 2.15.
The only required preselected object/state is the current CDF.

<SELECT_ ,CDF_READONLY_ MODE >
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: $mode
The read-only mode. Specify one of the read-only modes described in Section 2.13.
The only required preselected object/state is the current CDF.
<SELECT ,CDF_SCRATCHDIR >

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the CDF$STMP logical name (on OpenVMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: $scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT ,CDF_STATUS >
Selects the current status code. Required arguments are as follows:

in: $status
CDF status code.
There are no required preselected objects/states.

<SELECT ,CDF_zMODE >
Selects a zMode (for the current CDF). Required arguments are as follows:

in: $mode

The zMode. Specify one of the zModes described in Section 2.14.

102

The only required preselected object/state is the current CDF.

<SELECT ,COMPRESS CACHESIZE >
Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,gENTRY >
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT ,rENTRY >
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
rEntry number.
The only required preselected object/state is the current CDF.

<SELECT ,rENTRY NAME >
Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY >) is more efficient. Required arguments are as
follows:
in: $varName

rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum
rVariable number.
The only required preselected object/state is the current CDF.

<SELECT ,rVAR_CACHESIZE >

103

Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVAR NAME >
Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT ,rVAR >) is more efficient. Required arguments are as follows:

in: $varName

rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT ,rVAR_RESERVEPERCENT >
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: $percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: $recNum
Record number.
in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVARs CACHESIZE >

Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation

is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching

scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

The number of cache buffers to be used.

104

The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMCOUNTS >
Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: \@counts
Dimension counts. Each element of counts specifies the corresponding dimension count.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINDICES >
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: \@indices
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINTERVALS >
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: \@intervals
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECCOUNT >
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: $recCount
Record count.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECINTERVAL >
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: $recInterval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECNUMBER >
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: $recNum

Record number.

105

The only required preselected object/state is the current CDF.
<SELECT ,STAGE CACHESIZE >
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
in: $numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,zZENTRY >
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
zEntry number.
The only required preselected object/state is the current CDF.
<SELECT ,zZENTRY NAME >
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT ,zZENTRY >) is more efficient. Required arguments are
as follows:

in: $varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,zVAR >
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,zZVAR_CACHESIZE >
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: $numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current zVariable.

106

<SELECT ,zVAR DIMCOUNTS >
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
in: \@counts
Dimension counts. Each element of counts specifies the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVAR DIMINDICES >
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
in: \@indices
Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVAR DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: \@intervals
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVAR NAME >
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT ,zVAR >) is more efficient. Required arguments are as follows:

in: $varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT ,zZVAR RECCOUNT >

Selects the current record count for the current zVariable in the current CDF. Required arguments are as

follows:

in: $recCount
Record count.

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_RECINTERVAL >

Selects the current record interval for the current zVariable in the current CDF. Required arguments are as

follows:

in: $recInterval

107

Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
in: $recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_RESERVEPERCENT >
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: $percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: $recNum
Record number.
in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVARs CACHESIZE >

Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation

is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching

scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.
<SELECT ,zVARs RECNUMBER >

Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify

the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

108

in: $recNum
Record number.

The only required preselected object/state is the current CDF.

4.7 More Examples

Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT ,CDF >).

4.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

my $status; # Status returned from CDF library.
my @dimVarys; # Dimension variances.
my $varNum; # rVariable number.

my $padValue = -999.9; # Pad value.

$dimVarys[0] = VARY;
$dimVarys[1] = VARY;
$status = CDF::CDFlib (CREATE , rVAR , "HUMIDITY", CDF REAL4, 1, VARY, \@dimVarys, \$varNum,
PUT__, rVAR PADVALUE , \$padValue,
rVAR _INITIALRECS , 500,
VAR _BLOCKINGFACTOR , 50,
NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

4.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

109

my $status; # Status returned from CDF library.

my @dimVarys; # Dimension variances.

my $varNum; # zVariable number.

my $numDims = 1; # Number of dimensions.

my @dimSizes = { 20 }; # Dimension sizes.

my $numElems = 10; # Number of elements (characters in this case).
my SpadValue = "¥¥**sxxksixn, # Pad value.

$dimVarys[0] = VARY;
$status = CDF::CDFlib (CREATE , zVAR , "Station", CDF_CHAR, $numElems, $numDims,
\@dimSizes, NOVARY, \@dimVarys, \$varNum,
PUT__, zVAR PADVALUE , \$padValue,
NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

4.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF_UINT2. It is assumed that the
current CDF has already been selected.

my $status; # Status returned from CDF library.
my @values; # Buffer to receive values.
my $recCount = 1; # Record count, one record per hyper get.
my $reclnterval = 1; # Record interval, set to one to indicate contiguous records
(really meaningless since record count is one).
my @indices = (0,0); # Dimension indices, start each read at 0,0 of the array.
my @counts = (50,100); # Dimension counts, half of the values along
each dimension will be read.
my @intervals = (2,2); # Dimension intervals, every other value along
each dimension will be read.
my $recNum; # Record number.
my $maxRec; # Maximum rVariable record number in the CDF - This was

determined with a call to CDFinquire.

$status = CDF::CDFlib (SELECT , r'VAR NAME , "BRIGHTNESS",
rVARs RECCOUNT _, $recCount,
rVARs RECINTERVAL , S$recInterval,
rVARs_DIMINDICES , \@indices,
rVARs DIMCOUNTS , \@counts,
rVARs DIMINTERVALS , \@intervals,

NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

for (SrecNum = 0; $recNum <= $maxRec; $recNum++) {
$status = CDF::CDFlib (SELECT , rVARs RECNUMBER , $recNum,

110

GET_, rVAR_HYPERDATA , \@values,
NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

process values

4.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

my $status; # Status returned from CDF library.

$status = CDF::CDFlib (SELECT , ATTR_NAME _, "Tmp",
PUT , ATTR NAME, "TMP",
NULL);

if ($status |= CDF_OK) UserStatusHandler ($status);

4.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current
CDF has already been selected.

my $status; # Status returned from CDF library.
my $varNum; # zVariable number.

my $recNum = 0; # Record number, start at first record.
my @indices = (0,0); # Dimension indices.

my $value; # Value read.

my $sum = 0.0; # Sum of all values.

my $count = 0; # Number of values.

my $ave; # Average value.

$status = CDF::CDFlib (GET_, zVAR NUMBER , "FLUX", \$varNum,

111

NULL);
if (status = CDF_OK) UserStatusHandler ($status);
$status = CDF::CDFlib (SELECT , zVAR_, $varNum,
zVAR SEQPOS , $recNum, \@indices,
GET , zVAR _SEQDATA , \$value,
NULL);

while ($status _>= CDF_OK) {
$sum += $value;
$count++;
$status = CDF::CDFlib (GET , zVAR SEQDATA , \$value,
NULL);
}
if ($status '= END_OF VAR) UserStatusHandler ($status);

$ave = $sum / $count;

4.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

my $status; # Status returned from CDF library.
my @scale = (-90.0,90.0); # Scale, minimum/maximum.

$status = CDF::CDFlib (SELECT , rENTRY NAME , "LATITUDE",
ATTR _NAME , "FIELDNAM",

PUT__, rENTRY _DATA_, CDF_CHAR, 20, "Latitude “
SELECT , ATTR NAME , "SCALE",
PUT__, rENTRY _DATA_, CDF_REAL, 4, 2, \@scale,
SELECT , ATTR_ NAME , "UNITS",
PUT , rENTRY DATA , CDF CHAR, 20, "Degrees north ~ “
NULL);

if ($status |= CDF_OK) UserStatusHandler ($status);

4.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

112

my $status; # Status returned from CDF library.
my $time; # 'Time' (short) value.

my $vectorA,; # ‘vectorA' (characters of 3) values.
my @vectorB; # ‘vectorB' (5 doubles) values.

my $recNumber; # Record number.

my @buffer; # Buffer of full-physical records.
my @varNumbers; # Variable numbers.

$status = CDF::CDFlib (GET , zVAR NUMBER , "vectorB", \$varNumbers[0],
zVAR NUMBER , "time", \$varNumbers[1],
zVAR NUMBER , "vectorA", \$varNumbers[2],
NULL);
if ($status |= CDF_OK) UserStatusHandler ($status);

my $ii;
for ($recNumber = 0; $recNumber < 100; $recNumber++) {

read values from input file

for (Sii = 0; $ii < 5; $ii++) {
$buffer[$ii] = $vectorB[$ii];
¥

$buffer[5] = $time;
$buffer[6] = $vectorA;
$status = CDF::CDFlib (SELECT , zVARs RECNUMBER , $recNumber,
PUT_, zVARs RECDATA , 3, \@varNumbers, \@buffer,

NULL);
if ($status '= CDF_OK) UserStatusHandler ($status);

Note that it would be more efficient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

4.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a Perl
application. Please don't do something like the following:

my $id; # CDF identifier (handle).
my $status; # Status returned from CDF library.
my $varNum; # zVariable number.

113

$status = CDF::CDFlib (SELECT_, CDF _, $id,
GET_, zVAR_NUMBER_, "EPOCH", \$varNum,
SELECT , zVAR , $varNum, # ERROR!
NULL);

if ($status |= CDF_OK) UserStatusHandler ($status);

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET ,zVAR NUMBER > operation. What actually happens is that the zVariable number passed to the
<SELECT _,zVAR_> operation is undefined. This is because the varNum is passed by value rather than reference.'
Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a value. Only
after the <GET ,zZVAR NUMBER > operation is performed does varNum have a valid value. But at that point it's too
late since the argument list has already been created. In this type of situation you would have to make two calls to
CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

' Fortran programmers can get away with doing something like this because everything is passed by reference.

114

Chapter 5

S Interpreting CDF Status Codes

Most CDF functions return a status code. The symbolic names for these codes are defined in cdf.h and should be used
in your applications rather than using the true numeric values. Appendix A explains each status code. When the status
code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

my S$status;

$status = CDF::CDFfunction (...); # any CDF function returning status
if ($status '= CDF_OK) {
UserStatusHandler (“1.0”, $status);

H
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

sub UserStatusHandler {
my ($where, $status)=@ _;

print "Aborting at $where ...\n";

if ($status < CDF_OK) {
my $text;

115

CDF::CDFlib (SELECT , CDF STATUS , $status,
GET , STATUS TEXT , \$text,
NULL);

print $text;

}
CDF::CDFlib (CLOSE_, CDF _,

NULL);
print "...test aborted.\n";
exit;

}#endsub QuitCDF

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

116

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCHI16 data types and are included in
the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter
in the CDF User's Guide describes EPOCH values.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

CDF::computeEPOCH(# out -- CDF_EPOCH value returned.
my year, # in -- Year (AD, e.g., 1994).
my month, # in -- Month (1-12).
my day, # in -- Day (1-31).
my hour, # in -- Hour (0-23).
my minute, # in -- Minute (0-59).
my second, # in -- Second (0-59).
my msec); # in -- Millisecond (0-999).

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

6.2 EPOCHbreakdown

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

117

CDF::EPOCHbreakdown(

my $epoch, # in -- The CDF_EPOCH value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my Shour, # out -- Hour (0-23).

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-59).

my $msec); # out -- Millisecond (0-999).

6.3 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.cce where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The standard date/time character string.

epString has the length of EPOCH_STRING LEN, defined in Perl-CDF package.

6.4 encodeEPOCH1

encodeEPOCHI encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

CDF::encodeEPOCH1(
my $epoch; # in -- The CDF_EPOCH value.

my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH1 _STRING LEN.

6.5 encodeEPOCH?2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH2(

my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The alternate date/time character string.

118

spString has a length of EPOCH2 STRING LEN.

6.6 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH3(
my $epoch; # in -- The CDF_EPOCH value.

my \$epString); # out -- The alternate date/time character string.

epString has a length of EPOCH3_STRING_LEN.

6.7 encodeEPOCH4

EncodeEPOCH4 encodes a CDF_EPOCH value into an alternate. ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH4(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The ISO 8601 date/time character string.

epString has a length of EPOCH4 STRING_LEN.

6.8 encodeEPOCHXx

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

CDF::encodeEPOCHXx(

my $epoch; # in -- The CDF_EPOCH value.
my $format; # in ---The format string.
my $encoded); # out -- The custom date/time character string.

The encoded string has a length up to EPOCHx STRING MAX. The format string consists of EPOCH components,
which are encoded, and text that is simply copied to the encoded custom string. Components are enclosed in angle
brackets and consist of a component token and an optional width. The syntax of a component is: <token[.width]>. If
the optional width contains a leading zero, then the component will be encoded with leading zeroes (rather than leading
blanks).

The supported component tokens and their default widths are as follows. . .

119

Token Meaning Default

dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (*Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING MAX are defined in cdfh.

6.9 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 6.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH(# out -- CDF_EPOCH value returned.
my $epString); # in -- The standard date/time character string.

6.10 parseEPOCHI1

parseEPOCHI parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCHI1 function described in Section 6.4. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH1(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

120

6.11 parseEPOCH2

parseEPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH?2 function described in Section 6.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH2(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

6.12 parseEPOCH3

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 function described in Section 6.6. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH3(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

6.13 parseEPOCH4

ParseEPOCH4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The
format of the string is that produced by the encodeEPOCH4 function described in Section 6.7. If an illegal field is
detected in the string the value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH4(# out -- CDF_EPOCH value returned.
my $epString); # in -- The ISO 8601 date/time character string.

6.14 computeEPOCHI16

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

CDF::computeEPOCH16(# out -- status code returned.
my $year, # in -- Year (AD, ec.g., 1994).
my $month, # in -- Month (1-12).
my $day, # in -- Day (1-31).
my Shour, # in -- Hour (0-23).
my $minute, # in -- Minute (0-59).
my $second, # in -- Second (0-59).
my $msec, # in -- Millisecond (0-999).
my $microsec, # in -- Microsecond (0-999).
my $nanosec, # in -- Nanosecond (0-999).
my $picosec, # in -- Picosecond (0-999).

121

my \@epoch16); # out-- CDF_EPOCHI16 value returned

epoch16, an array with two elements, contains the epoch time in picoseconds.

6.15 EPOCH16breakdown

EPOCHI16breakdown decomposes a CDF_EPOCH16 value into the individual components.

CDF::EPOCH16breakdown(

my \@epochl6, # in -- The CDF_EPOCHI16 value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my $hour, # out -- Hour (0-23).

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-59).

my $msec, # out -- Millisecond (0-999).
my $microsec, # out -- Microsecond (0-999).
my $nanosec, # out -- Nanosecond (0-999).
my $picosec); # out -- Picosecond (0-999).

6.16 encodeEPOCHI16

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16(
my \@epoch16; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16_STRING LEN.

6.17 encodeEPOCH16 1

encodeEPOCH16 1 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyymmdad.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttetteeeteetttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

CDF::encodeEPOCH16_1(
my \@epoch16; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16 1 STRING LEN.

122

6.18 encodeEPOCH16 2

encodeEPOCH16 2 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH16 2(
my \@epoch16; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16 2 STRING LEN.

6.19 encodeEPOCHI16 3

encodeEPOCH16_3 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16_3(
my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16 3 STRING LEN.

6.20 encodeEPOCHI16 4

encodeEPOCH16_4 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCHI16_4(
my \@epoch16; # in -- The CDF_EPOCHI16 value.

my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16 4 STRING LEN.

123

6.21 encodeEPOCH16 x

encodeEPOCHI16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

CDF::encodeEPOCH16_x(

mt \@epoch16; # in -- The CDF_EPOCHI16 value.
my $format; # in ---The format string.
my $encoded); # out -- The date/time character string.

While the format string has a length up to EPOCHx FORMAT LEN, the encoded string has a length up to
EPOCHx_STRING MAX. The format string consists of EPOCH components, which are encoded, and text that is
simply copied to the encoded custom string. Components are enclosed in angle brackets and consist of a component
token and an optional width. The syntax of a component is: <token[.width]>. If the optional width contains a leading
zero, then the component will be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (*Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.22 parseEPOCHI16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH_VALUE.

124

CDF::parseEPOCH16(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_STRING_LEN . epoch is an array of two elements.

6.23 parseEPOCH16 1

parseEPOCH16 1 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16_1(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16 1 _STRING_LEN . epoch is an array of two elements.

6.24 parseEPOCHI16 2

parseEPOCH16 2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16_2(# out -- The status code returned.
My $epString, # in -- The date/time character string.
My \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_2 STRING_LEN . epoch is an array of two elements

6.25 parseEPOCHI16 3

parseEPOCH16 3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16_3(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_3 STRING_LEN . epoch is an array of two elements

125

6.26 parseEPOCH16 4

parseEPOCH16_4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encodeEPOCH16 4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16_3(# out -- The status code returned.
my $epString, # in -- The ISO 8601 date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_4 STRING_LEN . epoch is an array of two elements

126

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and are included in the CDF library. The Concepts
chapter in the CDF User's Guide describes CDF_TIME_TT2000 values.

The CDF_TIME_TT2000 data type is used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000

computeTT2000 calculates a CDF_TIME TT2000 value given the individual components. If an illegal component is
detected, e.g., the year is outside of the valid range for TT2000 data, the value returned will be
ILLEGAL_TT2000 VALUE.

CDF::computeTT2000(# out -- CDF_TIME TT2000 value returned.
my year, # in -- Year (AD, e.g., 1994).
my month, # in -- Month (1-12).
my day, # in -- Day (1-31).
my hour, # in -- Hour (0-23).
my minute, # in -- Minute (0-59).
my second, # in -- Second (0-59 or 0-60 if leap second).
my msec; # in -- Millisecond (0-999).
my usec, # in -- Microsecond (0-999).
my nsec); # in -- Nanosecond (0-999).

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000. Similar arrangements are for micro and nano-second.

7.2 TT2000breakdown

TT2000breakdown decomposes a CDF_TIME TT2000 value into the individual components.

CDF::EPOCHbreakdown(

my $epoch, # in -- The CDF_EPOCH value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my Shour, # out -- Hour (0-23).

127

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-59 or 0-60 if leap second).
my $msec; # out -- Millisecond (0-999).

my Susec, # out -- Microsecond (0-999).

my $nsec); # out -- Nanosecond (0-999).

7.3 encodeTT2000

encodeTT2000 encodes a CDF_TT2000 value into the standard date/time character string. The default format of the
string is in ISO 8601 format: yyyy-mm-ddT hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the
month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59
or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-
999).

CDF::encodeEPOCH(
my $epoch; # in -- The CDF _TIME TT2000 value.
my $epString); # out -- The standard date/time character string.

This module accepts an extra, optional argument field of integer for format. If the format is not passed in, a format of
value 3 is assumed and the default encoded UTC string is returned. The fomat has a valid value from 0 to 3.

For a format of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day
of the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

For a format of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999).

For a format of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYY'Y is the year, MM is the
month (1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-
59 or 0-60 if leap second).

For a format of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999).

7.4 parseTT2000

parseTT2000 parses a standard date/time character string and returns a CDF_TIME_TT2000 value. The format of the
string is that produced by the encodeTT2000 function described in Section 6.3. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH(# out -- CDF_TIME TT2000 value returned.
my $epString); # in -- The standard date/time character string.

128

7.5 leapsecondsinfo

leapsecondinfo shows how the leap seconds table is accessed and when the last leap second was added. The table can
be accessed externally or internally by the CDF library. Refer to User’s Guide for leap seconds.

CDF::leapsecondinfo();

Optionally, a n integer value of 0 (zero) or non-zero can be passed to the module. If a non-zero value is passed in, the
contents of the leap seconds table is dumped. No value or 0 is passed in, the table is not shown.

129

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h include file, distributed with the Perl-CDF package,
contains the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror can be used within a program to inquire the
explanation text for a given status code. The Internal Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRYV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

131

BAD_ATTR_NAME

BAD ATTR _NUM

BAD BLOCKING FACTOR'

BAD CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD _CDF_NAME

BAD_CDFSTATUS

BAD_CHECKSUM

BAD COMPRESSION PARM

BAD DATA_TYPE

BAD _DECODING

BAD DIM_COUNT

BAD DIM_INDEX

BAD_DIM_INTERVAL

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal checksum mode received. It is invlid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

" The status code BAD BLOCKING FACTOR was previously named BAD EXTEND RECS.

132

BAD DIM_SIZE

BAD_ENCODING

BAD _ENTRY_NUM

BAD FNC_OR_ITEM

BAD FORMAT

BAD_INITIAL RECS

BAD MAIJORITY

BAD MALLOC

BAD_NEGtoPOSfp0 MODE

BAD NUM_DIMS

BAD NUM_ELEMS

BAD NUM VARS

BAD READONLY_ MODE

BAD_REC_COUNT

BAD REC INTERVAL

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran

applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

133

BAD _REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD SPARSEARRAYS PARM

BAD VAR NAME

BAD VAR _NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

o

Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

134

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL_ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.
Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

exists to open it. Also check that an open file quota has not
already been reached. [Error]

135

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

COMPRESSION ERROR

CORRUPTED V2 _CDF

DECOMPRESSION ERROR

DID_NOT_COMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH_VALUE

ILLEGAL FOR_SCOPE

ILLEGAL IN_zMODE

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Data integrity verification through the checksum failed. [Error]
The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.%*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal.
[Error]

136

ILLEGAL_ON_V1_CDF

MULTI FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO PADVALUE SPECIFIED

NO_STATUS SELECTED

NO _SUCH_ATTR

NO SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

137

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

PRECEEDING RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ ONLY _MODE

SCRATCH_CREATE ERROR

SCRATCH_DELETE ERROR

SCRATCH_READ ERROR

SCRATCH_WRITE ERROR

SINGLE FILE FORMAT

SOME ALREADY ALLOCATED

TOO MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]

The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

138

UNSUPPORTED _OPERATION
VAR _ALREADY_ CLOSED

VAR_CLOSE_ERROR

VAR _CREATE_ERROR

VAR _DELETE_ERROR

VAR_EXISTS

VAR _NAME_TRUNC

VAR_OPEN_ERROR

VAR _READ ERROR

VAR _WRITE_ERROR

VIRTUAL RECORD DATA

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

139

Appendix B

B.1 Standard Interface

$status = CDF::CDFattrCreate ($id, $attrName, $attrScope, \$attrNum)

my $id; # in
my SattrName; # in
my $attrScope; # in
my \$attrNum; # out

$status = CDF::CDFattrEntryInquire ($id, $attrNum, $entryNum, \$dataType, \$numElements)

my $id; # in
my SattrNum; # in
my SentryNum; # in
my \$dataType; # out
my \$numElements; # out
$status = CDF::CDFattrGet ($id, $attrNum, $entryNum, \$value)

my $id; # in
my SattrNum; # in
my SentryNum; # in
my \$value; # out
$status = CDF::CDFattrInquire ($id, $attrNum, \$attrName, \$attrScope, \$maxEntry)

my $id; # in
my SattrNum; # in
my \$attrName; # out
my \$attrScope; # out
my \$maxEntry; # out
$varNum = CDF::CDFattrNum ($id, $attrName)

my $id; # in
my SattrName; # in

$status = CDF::CDFattrPut ($id, $attrNum, $SentryNum, $dataType, $numElements, \$value)

my $id; # in
my SattrNum; # in
my SentryNum; # in
my $dataType; # in
my $numElements; # in
my \$value; # in
$status = CDF::CDFattrRename ($id, $attrNum, $attrName)

my $id; # in
my SattrNum; # in

141

my SattrName; # in

$status = CDF::CDFclose ($id)
my $id; # in

$status = CDF::CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id)

my $CDFname; # in
my $numDims; # in
my \@dimSizes; # in
my $encoding; # in
my $majority; # in
my \$id; # out
$status = CDF::CDFdelete ($id)

my $id; # in
$status = CDF::CDFdoc ($id, \$version, \$release, \$text)

my $id; # in
my \$version; # out
my \$release; # out
my \$text; # out
$status = CDF:: CDFerror ($status, \$message)

my $status; # in
my \$message; # out
$status = CDF::CDFgetChecksum ($id, \$checksum)

my $id; # in
my \$checksum; # out
$flag = CDF::CDFgetFileBackward ()

my $flag # out
$flag = CDF::CDFgetValidate ()

my $flag # out

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority, \$maxRec,
\$numVars, \$numAttrs)

my $id; # in
my \$numDims; # out
my \@dimSizes; # out
my \$encoding; # out
my \$majority; # out
my \$maxRec; # out
my \$numVars; # out
my \$numAdttrs; # out
$status = CDF:: CDFopen ($CDFname, $id)

my $CDFname; # in
my \$id; # out
$status = CDF::CDFsetChecksum ($id, $checksum)

my $id; # in
my $checksum; # in

CDF::CDFsetFileBackward ($cdf27BackwardCompatibleFlag)

142

my $cdf27BackwardCompatibleFlag; #

$ CDF::CDFsetValidate ($validationFlag)

my $validationFlag; #
status = CDF::CDFvarClose ($id, $varNum)

my $id; #
my $varNum; #

$status = CDF::CDFvarCreate ($id, $varName, $dataType, $numElements, $recVariances,
\@dimVariances, \$varNum)

my $id; #
my $varName; #
my $dataType; #
my $numElements; #
my $recVariance; #
my \@dimVariances; #
my \$varNum; #
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value)
my $id; #
my $varNum; #
my $recNum; #
my \@indices; #
my \$value; #
$status = CDF::CDFvHpGet ($id, $varNum, S$recStart, $recCount, $recInterval,
\@indices, \@counts, \@intervals, \@buffer)
my $id; #
my $varNum; #
my $recStart; #
my $recCount; #
my $recInterval, #
my \@indices; #
my \@counts; #
my \@intervals; #
my \@buffer; #
$status = CDF::CDFvHpPut ($id, $varNum, $recStart, $recCount, $recInterval,
\@indices, \@counts, \@intervals, \@buffer)
my $id; #
my $varNum; #
my $recStart; #
my $recCount; #
my $recInterval, #
my \@indices; #
my \@counts; #
my \@intervals; #
my \@buffer; #
$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType, \$numElements,
\$recVariance, \@dimVariances)
my $id; #
my $varNum; #
my \$varName; #
my \$dataType; #

143

in

in

in
in

in
in
in
in
in
in
out

in
in
in
in
out

in
in
in
in
in
in
in
in
out

in
in
in
in
in
in
in
in
in

in
in
out
out

my \$numElements; # out
my \$recVariance; # out
my \@dimVariances; # out
$varNum = CDF::CDFvarNum ($id, $varName) # out
my $id; # in
my $varName; # in
$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value)

my $id; # in
my $varNum; # in
my $recNum; # in
my \@indices; # in
my \$value; # in
$status = CDF::CDFvarRename ($id, $varNum, $varName)

my $id; # in
my $varNum; # in
my $varName; # in

144

B.2 Internal Interface

$status = CDF::CDFlib (op, ...)

ZVAR_PADVALUE_

145

op; # in

CLOSE _
CDF _
VAR _
zVAR

CONFIRM _
ATTR _ \$attrNum # out
ATTR_EXISTENCE SattrName # in
CDF_ \$id # out
CDF_ACCESS_
CDF_CACHESIZE \$numBuffers # out
CDF _DECODING \$decoding # out
CDF NAME \$CDFname # out
CDF_NEGtoPOS{p0 MODE \$mode # out
CDF_READONLY MODE _ \$mode # out
CDF_STATUS \$status # out
CDF_zMODE \$mode # out
COMPRESS CACHESIZE \$numBuffers # out
CUREENTRY_EXISTENCE _
CURrENTRY_EXISTENCE
CURzENTRY_EXISTENCE _
gENTRY \$entryNum # out
¢ENTRY EXISTENCE SentryNum # in
rENTRY \$entryNum # out
rENTRY EXISTENCE SentryNum # in
VAR \$varNum # out
rVAR CACHESIZE \$numBuffers # out
rVAR EXISTENCE $varName # in
rVAR PADVALUE
rVAR RESERVEPERCENT \$percent # out
rVAR SEQPOS \$recNum # out

\@indices # out

rVARs DIMCOUNTS _ \@counts # out
rVARs DIMINDICES \@indices # out
rVARs DIMINTERVALS \@intervals # out
rVARs RECCOUNT \$recCount # out
rVARs RECINTERVAL \$recInterval # out
rVARs RECNUMBER \$recNum # out
STAGE CACHESIZE \$numBuffers # out
zENTRY _ \$entryNum # out
zENTRY EXISTENCE SentryNum # in
zVAR \$varNum # out
zVAR CACHESIZE \$numBuffers # out
zVAR_DIMCOUNTS \@counts # out
zVAR_DIMINDICES \@indices # out
ZVAR_DIMINTERVALS_ \@intervals # out
zVAR EXISTENCE $varName # in

ZVAR_RECCOUNT _
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _

zVAR _RESERVEPERCENT

ZVAR_SEQPOS_

CREATE_

ATTR

CDF_

VAR

zVAR

DELETE_

GET_

ATTR

CDF_

gENTRY _
rENTRY _

VAR
rVAR_RECORDS

zENTRY _
zVAR
zVAR_RECORDS _

ATTR_MAXgENTRY _
ATTR_MAXtENTRY _
ATTR_MAXZzENTRY _
ATTR_NAME_
ATTR_NUMBER _

ATTR_NUMEENTRIES
ATTR_NUMIENTRIES
ATTR_NUMZENTRIES_

\$recCount
\$recInterval
\$recNum
\$percent
\$recNum
\@indices

$attrName
$scope
\$attrNum

$CDFname
$numDims
\@dimSizes
\$id

$varName
$dataType

$numElements

$recVary
\@dimVarys
\$varNum

$varName
$dataType

$numElements

$numDims
\@dimSizes
$recVary
\@dimVarys
\$varNum

$firstRecord
$lastRecord

$firstRecord
$lastRecord

\$maxEntry
\$maxEntry
\$maxEntry
\$attrName
$attrName
\$attrNum
\$numEntries
\$numEntries
\$numEntries

146

HoH H H H

H H H*

H o H H*

H o H H H H

HHHHFHFEHFHFH

H* H*

HHHHFHFHFHFH

out
out
out
out
out
out

in
in
out

in
in
in
out

in
in
in
in
in
out

in
in
in
in
in
in
in
out

in
in

in
in

out
out
out
out
in

out
out
out
out

ATTR_SCOPE_
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_COPYRIGHT _
CDF_ENCODING _
CDF_FORMAT _
CDF_INCREMENT _
CDF_INFO

CDF_MAIJORITY _
CDF_NUMATTRS_
CDF_NUMgATTRS_
CDF_NUMrIVARS_
CDF_NUMVATTRS_
CDF_NUMzVARS _
CDF_RELEASE_
CDF_VERSION _
DATATYPE_SIZE_

gENTRY DATA_
gENTRY DATATYPE_
gENTRY_ NUMELEMS_
LIB_COPYRIGHT _
LIB_INCREMENT _
LIB_RELEASE_
LIB_subINCREMENT _
LIB_VERSION _
rENTRY _DATA _
rENTRY DATATYPE_
rENTRY_NUMELEMS _
rVAR_ALLOCATEDFROM _

rVAR _ALLOCATEDTO

rVAR_BLOCKINGFACTOR
rVAR_COMPRESSION

rVAR DATA

rVAR DATATYPE
rVAR DIMVARYS
rVAR HYPERDATA
rVAR _MAXallocREC
r'VAR MAXREC

rVAR NAME

rVAR nINDEXENTRIES
rVAR nINDEXLEVELS
rVAR nINDEXRECORDS
rVAR NUMallocRECS
rVAR NUMBER

\$scope
\$checksum
\$cType
\@cParms
\$cPct
\$Copyright
\$encoding
\$format
\$increment
$name
\$cType
\@cParms
\$cSize
\$uSize
\$majority
\$numA ttrs
\$numA ttrs
\$numVars
\$numA ttrs
\$numVars
\$release
\$version
$dataType
\$numBytes
\$value
\$dataType
\$numElements
\$Copyright
\$increment
\$release
\$subincrement
\$version
\$value
\$dataType
\$numElements
$startRecord
\$nextRecord
$startRecord
\$lastRecord
\$blockingFactor
\$cType
\@cParms
\$cPct

\$value
\$dataType
\@dimVarys
\@buffer
\$maxRec
\$maxRec
\$varName
\$numEntries
\$numLevels
\$numRecords
\$numRecords
$varName
\$varNum

147

FHoH H H O O o o o o o H oH O o o o o o o o H H o o o o o o o H H H o o o o o o o M R R O oH H H

out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
in

out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
in

out

NULL_

rVAR_NUMELEMS_
rVAR_NUMRECS _
rVAR_PADVALUE _
rVAR_RECVARY _
rVAR_SEQDATA _
rVAR_SPARSEARRAYS

rVAR_SPARSERECORDS
rVARs DIMSIZES
rVARs MAXREC

rVARs NUMDIMS
rVARs RECDATA _

STATUS_TEXT _

ZENTRY _DATA_

ZENTRY _DATATYPE_
ZENTRY_NUMELEMS_
ZVAR_ALLOCATEDFROM _

zVAR_ALLOCATEDTO

zVAR _BLOCKINGFACTOR
zVAR_COMPRESSION

zVAR DATA

zVAR DATATYPE
zVAR DIMSIZES

zVAR DIMVARYS
zVAR _HYPERDATA
zVAR_MAXallocREC
zVAR MAXREC

zVAR NAME

zVAR nINDEXENTRIES
zVAR nINDEXLEVELS
zVAR nINDEXRECORDS
zVAR _NUMallocRECS
zVAR NUMBER

ZVAR_NUMDIMS _
ZVAR_NUMELEMS_
ZVAR_NUMRECS _
ZVAR_PADVALUE
ZVAR_RECVARY _
ZVAR_SEQDATA _
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS
ZVARs MAXREC_
ZVARs RECDATA_

\$numElements
\$numRecords
\$value
\$recVary
\$value
\$sArraysType
\@sArraysParms
\$sArraysPct
\$sRecordsType
\@dimSizes
\$maxRec
\$numDims
$numVars
\@varNums
\@buffer

\$text

\$value
\$dataType
\$numElements
$startRecord
\$nextRecord
$startRecord
\$lastRecord
\$blockingFactor
\$cType
\@cParms
\$cPct

\$value
\$dataType
\@dimSizes
\@dimVarys
\@buffer
\$maxRec
\$maxRec
\$varName
\$numEntries
\$numLevels
\$numRecords
\$numRecords
$varName
\$varNum
\$numDims
\$numElements
\$numRecords
\$value
\$recVary
\$value
\$sArraysType
\@sArraysParms
\$sArraysPct
\$sRecordsType
\$maxRec
$numVars
\@varNums
\@buffer

148

HoH H o O O O O o o o oH O O O o o o o o o H o o o o o o o oH H o o o o o o o o M R R H H oH H

out
out
out
out
out
out
out
out
out
out
out
out
in

in

out
out
out
out
out
in

out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
in

in

out

OPEN_

PUT

CDF

ATTR_NAME_
ATTR_SCOPE_
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_ENCODING _
CDF_FORMAT _
CDF_MAIJORITY _
gENTRY DATA _

gENTRY DATASPEC_

rENTRY _DATA _

rENTRY DATASPEC
r'VAR ALLOCATEBLOCK

rVAR ALLOCATERECS
rVAR_BLOCKINGFACTOR
rVAR_COMPRESSION

rVAR_DATA _
rVAR_DATASPEC

rVAR _DIMVARYS_
rVAR_HYPERDATA _
rVAR_INITIALRECS
rVAR_NAME_
rVAR_PADVALUE _
rVAR_RECVARY _
rVAR_SEQDATA _
rVAR_SPARSEARRAYS

rVAR_SPARSERECORDS
rVARs RECDATA

ZENTRY _DATA _

zENTRY DATASPEC
zVAR_ALLOCATEBLOCK
zVAR_ALLOCATERECS

zVAR _BLOCKINGFACTOR
zVAR_COMPRESSION

$CDFname
\$id

$attrName
$scope
$checksum
$cType
\@cParms
$encoding
$format
$majority
$dataType
$numElements
\$value
$dataType
$numElements
$dataType
$numElements
\$value
$dataType
$numElements
$firstRecord
$lastRecord
$numRecords
$blockingFactor
$cType
\@cParms
\$value
$dataType
$numElements
\@dimVarys
\@buffer
$nRecords
$varName
\$value
$recVary
\$value
$sArraysType
\@sArraysParms
$sRecordsType
$numVars
\@varNums
\$buffer

long dataType
$numElements
\$value
$dataType
$numElements
$firstRecord
$lastRecord
$numRecords
$blockingFactor
$cType
\@$cParms

149

H* H*

HoH H H O O o o o o o o H 3 o o o o o o o o o H H 3 o o o o o o o H H o o o o o o o H H H H

in
out

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

ZVAR_DATA_
ZVAR_DATASPEC

ZVAR_DIMVARYS
ZVAR_INITIALRECS
ZVAR_HYPERDATA _
ZVAR_NAME_
ZVAR_PADVALUE
ZVAR_RECVARY _
ZVAR_SEQDATA _
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS
ZVARs RECDATA _

SELECT

ATTR

ATTR_NAME_

CDF_

CDF_CACHESIZE_
CDF_DECODING _
CDF_NEGtoPOSfp0_MODE _
CDF_READONLY MODE _
CDF_SCRATCHDIR
CDF_STATUS_
CDF_zMODE _
COMPRESS_CACHESIZE_
gENTRY _

rENTRY _

rENTRY_NAME_

VAR

rVAR_CACHESIZE
rVAR_NAME_
rVAR_RESERVEPERCENT
r'VAR_SEQPOS

rVARs CACHESIZE
rVARs DIMCOUNTS
rVARs DIMINDICES
rVARs DIMINTERVALS
rVARs RECCOUNT _
rVARs RECINTERVAL
rVARs RECNUMBER
STAGE CACHESIZE
zENTRY _

zENTRY NAME

zVAR

zVAR CACHESIZE
zVAR DIMCOUNTS
zVAR DIMINDICES
zVAR DIMINTERVALS
zVAR NAME

zVAR RECCOUNT _
zVAR RECINTERVAL
zVAR RECNUMBER

\$value
$dataType
$numElements
\@dimVarys
$nRecords
\@buffer
$varName
\$value
$recVary
\$value
$sArraysType
\@sArraysParms
$sRecordsType
$numVars
\@varNums
\@buffer

$attrNum
$attrName
$id
$numBuffers
$decoding
$mode
$mode
$dirPath
$status
$mode
$numBuffers
$entryNum
$entryNum
$varName
$varNum
$numBuffers
$varName
$percent
$recNum
\@indices
$numBuffers
\@counts
\@indices
\@intervals
$recCount
$recInterval
$recNum
$numBuffers
$entryNum
$varName
$varNum
$numBuffers
\@counts
\@indices
\@intervals
$varName
$recCount
$recInterval
$recNum

150

HoH H H H H O H H H H H H HH

HoH H oH O O o o o oH H 3 o o o o o o H H H o o o o o o H H H H

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

ZVARs_CACHESIZE
ZVARs RECNUMBER _

$percent
$recNum
\@indices
$numBuffers
$recNum

151

HoH H H FH

in
in
in
in
in

B.3 EPOCH Utility Routines

$epoch = CDF::computeEPOCH ($year, $month, $day, $hour, $minute, $second, $msec)

my Syear; # in
my $month; # in
my $day; # in
my S$hour; # in
my $minute; # in
my $second; # in
my $msec; # in
CDF::EPOCHbreakdown ($epoch, $year, $month, $day, $hour, $minute, $second, $msec)

my $epoch; # in
my Syear; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out
CDF::encodeEPOCH ($epoch, $epString)

my $epoch; # in
my S$epString; # out
CDF::encodeEPOCH1 ($epoch, $epString)

my $epoch; # in
my S$epString; # out
CDF::encodeEPOCH2 ($epoch, $epString)

my $epoch; # in
my S$epString; # out
CDF::encodeEPOCH3 ($epoch, $epString)

my $epoch; # in
my $epString; # out
CDF::encodeEPOCH4 ($epoch, $epString)

my $epoch; # in
my S$epString; # out
CDF::encodeEPOCHx ($epoch, $format, $epString)

my S$epoch; # in
my $format; # in
my $epString; # out
$epoch = CDF::parseEPOCH ($epString) # out
my S$epString; # in
$epoch = CDF::parseEPOCH1 ($epString) # out
my $epString # in
$epoch = CDF::parseEPOCH2 ($epString) # out

153

my S$epString; # in

$epoch = CDF::parseEPOCH3 ($epString) # out
my S$epString; # in
$epoch = CDF::parseEPOCH4 ($epString) # out
my S$epString; # in

$status = CDF:: computeEPOCH16 ($year, $month, $day, $hour, $minute, $second, $msec, $microsec,

$nanosec, $picosec. \@epoch) # out
my $year; # in
my $month; # in
my $day; # in
my S$hour; # in
my $minute; # in
my $second; # in
my $msec; # in
my S$microsec; # in
my $nanosec; # in
my $picosec; # in
my \@epoch; # out
CDF::EPOCHI16breakdown (\@epoch, $year, $month, $day, $hour, $minute, $second, $msec,

$microsec, $nanosec, $picosec)

my \@epoch; # in
my $year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out
my $microsec; # out
my $nanosec; # out
my S$picosec; # out
CDF::encodeEPOCH16 (\@epoch, epString)
my \@epoch; # in
my S$epString; # out
CDF::encodeEPOCH16 1 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out
CDF::encodeEPOCH16 2 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out
CDF::encodeEPOCH16 3 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out
CDF::encodeEPOCH16 4 (\@epoch, epString)
my \@epoch; # in
my \$epString; # out

154

CDF::encodeEPOCH16 _x (\@epoch, format, epString)
my \@epoch;

my $format;

my S$epString;

CDF:: parseEPOCH16 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16_1 ($epString, \@epoch)
my $epString;
my \@epoch;

$status = CDF::parseEPOCH16_2 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16_3 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16_4 ($epString, \@epoch)
my $epString;
my \@epoch;

155

H H H*

H H H H H* H o H*

H H

in
in
out

in
out

out
in
out

out
in
out

out
in
out
out
in
out

B.4 TT2000 Utility Routines

$tt2000 = CDF::computeTT2000 ($year, $month, $day, $hour, $minute, $second, $msec, $usec, $nansec)
my Syear; in

my $month; in

my S$day; in

my $hour; in

my $minute; in

my $second; in

my $msec; in

my $usec; in

my $nsec;

HHHHFHFHFEHFHFH

in

CDF::TT2000breakdown ($tt2000, $year, $month, $day, $hour, $minute, $second, $msec, Susec, $nsec)

my $tt2000; # in
my S$year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out
my S$usec; # out
my $nsec; # out
CDF::encodeTT2000 ($tt2000, $epString, $format')

my $tt2000; # in
my $epString; # out
my S$format; # in
$epoch = CDF::parseTT2000 ($epString) # out
my S$epString; # in
CDF::leapsecondsinfo ($dump?)

my $dump; # in

' An optional field.
* An optional field.

157

Index

ALPHAOSF1 _DECODING......ccccceetreieiriieieereeeeeeseeee
ALPHAOSF1 _ENCODING......ccccvctrieieirieieereeeeeseeee
ALPHAVMSd DECODING...
ALPHAVMSd ENCODING.......cccoreriirreierieeeeieeeeieeeenes
ALPHAVMSE DECODING........cooooomoroeeeeoeeeeeeoceesessssssseee
ALPHAVMSg_ENCODING...
ALPHAVMSi DECODING.......ccccoctreiririeeeereeeeeseene
ALPHAVMSi ENCODING.......cccvcireirireieieereeeeeseeee
ATgUMENt PASSINZvevevevvercvereieieieieieieererere st
attribute
IQUITING .ottt e 23
number
inquiring
TENAMINGveeveveeiierenieiereseeseseseesesesesseseseesesesaesesesesesessesesenes
attributes
CIEALINZ ..ottt 20, 67
CUITENL ettt ettt ese e sese s se s se e saenenenen 53
CONFITMMING . 59
selecting
DY NAME ..o 106
DY NUMDET .. 106
AELEtING ...ttt 70
entries
CUITEINE .vecveeeeeeeereeeteeeeeeeereeeaeeereeereeereeeeeeeseeeseeenreenes 53,54
CONFITMING....veviieieiiieieeieeeceeeeee e 61, 62, 65
selecting
DY NAME ..o 108, 111
DY NUMDET ..o 108, 111
data specification
ChanGINGccoevieeeeieeeeceee e 96, 101
data type
ANQUITING «eovvenieieieieeeeeieeeeeee e eeeeene 78,79, 86
number of elements
INQUITING «eovveneieeeieieeeeeeeeeeeeeeee e seeene
deletingccccevvevevreenenene.
existence, determining
IAQUITING ottt
maximum
INQUITING oo 72
number of
INQUITING oottt ns 73,74

reading22,77,79, 86

WIHNG oo .26, 95,96, 101
existence, determMiningoceeveevereerrerererrerereereeessesesennas 59
NAMING .ottt eeresseseeseesesseneeneene

inquiring

TENAMING ...vveveverireeeniereeeseeseeeeeseseseesesessesesessesesessesesessesens 94
number of

IQUITING . .c.veveviievereeieteeeieeeee et eaese s se e esesenes 76
numbering

IQUITING oottt eseee e se e s sens 73
scopes

159

ChANGING ..o
CONSLANTSovviiiiiiiiiiccicc s
GLOBAL_SCOPE
VARIABLE SCOPE......ccoooiiiriieeieeeeeee 11
IQUITING 1.ttt eese e see e saesene 23,74
Backward file
SCHHING .vveeeveiieieteee ettt ettt ettt ese e senene 38
CDF
backward filecocoveverieiiieiccccccccc e 14
IQUITING 1ottt sse e e sesenenas 33
backward file flag
OLINZ .ttt aas 14
setting 14
Big Integer.... .. 17
ChECKSUIM ...ttt 15
Checksum mode
GOLLINZ vttt nes 16
setting16
closing.... .28
creating... .29
ELEtING....vcvieieveeiieieeietee et 30
OPCING....vveevveeerieteeesieteeeseeseeeseeseseseesesesessesesessesesessesesessesens 36
Validationc.ccoeeerinininnnneceeeecee e 17
CDF library
copy right notice
MAX 1ENGN ..ottt 13
TEAAING ...ttt ns 78
internal iNterface.........covvivvvirieiciccicccccc e 50
modes
-0.0t0 0.0
CONFITMING ..o 60
constants
NEGtoPOSTPOOLT ... 12
NEGtOPOSTPOON ...t 12
SCIECHING ..vuveveiieteeiete ettt 106
decoding
CONFITMING ..o 59
constants
ALPHAOSF1 _DECODING.......ccccocevvririreriennne. 8
ALPHAVMSd DECODING.......ccccecevurrreerirrenne 7
ALPHAVMSg_DECODING...........ooooooeerrrerrereee 8
ALPHAVMSi DECODING........ccocevvrririennne. 8
DECSTATION DECODING.......ccccevereeireriennne.
HOST DECODING......ccccooiririieirerieeeeeeeee
151300 16(0) 01 TN
IBMRS DECODING.
MAC DECODING......ccoeiririeieeeieeeeeseeees
NETWORK DECODING.......cccectveriiirererienenne 7
NeXT DECODING
TG 0YE160))1 C TN
SGi_DECODING......ccoviimieeirrieeeierneeieeeieeseneens
SUN _DECODINGccctoiieirireieereieeeeseieeens

VAX DECODING......ccoctreeiriereeieieeieeeeeeieeenns 7
SCIECHING vttt 106
read-only
CONTITMING....veviieeiiieeieeeeee s 60
constants
READONLYOST ..ottt 12
READONLYon
SCIECHING ...
zMode
CONFITMING....veviieeiiieeieeeeee s 60
constants
ZMODEOST......coieiieeeee s 12
zMODEon1
zMODEon2
SCIECHING v
standard iINtErface.........eveivieeerieeirieeereeee e
version
IQUITING oottt esese e s seesesens
CDF_ATTR NAME_LEN..
CDF _BYTE ..ottt
CDF _CHAR ..ottt
CDF_COPYRIGHT LEN ...
CDF_DOUBLE....................
CDF_EPOCH
CDF_EPOCH16..
CDF_FLOAT...
CDF_INTI.......
CDF_INT2...
CDF_INT4...

() 0) 2 32N 7 S 5
CDF REALS

CDF_STATUSTEXT LEN.........ooooooooeoreeeeeooerreeeeeeseeeeeseseeeeeen 13
CDF_TIME_TT2000ooooooooooeeeeeeeeereeeeeeeseseeeeeeeseseeseseseseeeeene 5
CDF_UCHAR

CDF_UINTI
CDF_UINT2
CDF_UINT4
CDF_VAR NAME LEN....cccooiiiirieiieeeeeeeeeeeeeeee 13
CDF_WARN ..ottt 4
CDFattrCreate......ccovevieeeeeieiierieeieieeeeeeeeie e ee e saeenenns 20

CDFattrEntryInquirecccceeeeeeeereneninnnnnnseeeeevenenenes 21
CDFAttIGeL ...covveviiiciiieiccnieicerieeceneete et 22
CDFattrINqQUITe.cceveeeveeeecieiicicicicice et 23
CDFattrNUM ..ottt 25
CDFattrPut....c..cvciviiiiiicinceeccec e 26
CDFattrRename........c.o.ccccevveueenieicinieneineeeneceneceneneennen 27

CDFECIOSE vttt nenes 28
CDFCIEALE ...ttt 29
CDFAICL ...ttt 30
CDFAOC ...ttt 31
CDFerror

CDFgetCKECKSUM.....cueieeieiieieiiieiecieiecete e 33
CDFgetFileBackward.........cccoovvveeiinieeineeieeeeeeeeeeeeen 33
CDFgetValidate

CDFINQUITE ..ottt sesenes
CDFTID...oniiiieee ettt 50
CDFOPCI ..ottt 36

160

CDFs
accessing
browsing
cache buffers
CONFITMINGvovenieieieieieeieeeeeeeene 59, 60, 62, 64, 65
selecting......coceveveeriennne 106, 107, 108,109, 110, 111, 113
checksum
INQUITING 1.ttt et see e saeaens
TESCTNG 1.ttt ettt ettt s s ese s
specifying.
CLOSINEZ ..ttt ettt enenene
compression
INQUITING 1.t ns
SPECIEYING ..ttt
COmpression types/pParametersoceeeveeeereeeeerereeenns 10
copy right notice
MAX 1ENGN ..ottt 13
TEAAING ..c.veveeiieveieieeet ettt
corrupted...
CTEALING. ..vvereeveeerieteterieteteeeseeeseeseseseeseseessesesessesesessesesesesens
CUITEIE oottt
CONFITMING ..vviiiiiiii e 59
selecting....... ... 106
ELEtING....vviieeeeeieieeieee et 70
encoding
changing94
CONSLANLES ...ttt 5
ALPHAOSF1_ENCODING.......cccecvrirrierrriereeerennenes 6
ALPHAVMSd ENCODINGcceceevrirreeiereeeierenne 6
ALPHAVMSg ENCODING ..o 6
ALPHAVMSi_ENCODINGcccocvreierrrereeerennenes 6
DECSTATION_ENCODINGccocovimirerrrereiereenenes 6
HOST_ENCODING
HP_ENCODING......ccocectiiiiririririninrseeeeeeeeienes
IBMRS_ENCODINGccoceoirtrtririnnrrireieieieeieienenes 7
MAC_ENCODING
NETWORK_ENCODINGccoeovurreiniiereiriereieneinenes 6
NeXT ENCODING.......ccceotrirtrrririnrrieeeieieieieienenes 7
PC_ENCODING
SGi_ ENCODING......ccosrrirriieiieieicicicieieicieeeceeene
SUN_ENCODING......cccsrrriririeieiereiereieieieieeeeeeene
VAX _ENCODING ..
default.....c.ceiiiiiiii e
INQUITING 1.ttt ese e se e e saesens
format
ChANGING ..o 95
constants
MULTI _FILE.....coiiiiiiiiinirnnrnreeeeeeeeeene 4
SINGLE _FILEcooiiiiieeereeeeeeee e 4
default.....c.coiiiiiiii e 4
IQUITING 1.ttt etese e seseese e e s sesenas 75
NAMING <.ttt ettt eese e saeneenes 13,29, 36
NUIING ot 93
OPCING. ...vveeieveenieteeeneeteeeseeseeeseeseseseesesesessesesessesesessesesesesens 93
OVETWITEINZ. c.vvviriveeenieietesieteeeseeseseseeseteessesesessesesessesesessesens 29
scratch directory
SPECIEYING ..ottt 107
validation
IQUITING 1.ttt ettt seseseesese e esesesenes 34
TESCTNG c.vveeveveeeieteeeteteetete ettt be e sese s senes 38
version
INQUITING 1.ttt ns 31,75,77

CDFSetCheCKSUMc.covevieiieeeiieeeceieieeeieieee e 37
CDFsetFileBackwardcccoovvveeinieeineeieeeeeeeeeeeean 38
CDFSetValidatec.ccovveveirieieiieeeieieecsieeeeeeeee e
CDFvarClose........
CDFVArCIatec.veveeeeveieieeieeieeeieeie ettt
CDFVAIGEL.....coveeieieiieieieeeeeee ettt
CDFvarlnquire.
CDFVAIrNUM ..ot
CDFVArPUL ...t
CDFvarRenameccocooeevineieineeceeceeeeeeeee e 48
CDFVHPGEL ..ot 43
CDFVHPPUL ..o 44
CRECKSUML.....oovevieiieieiieteceee ettt 37
CDF
SPECIEYING. ... eveveiiieietieieeeee ettt 94
Ckecksum
COLUMN_MAJOR ..ottt 9
COMPIING ..ttt eseseneenes 1
compression
CDF
INQUITING . .c.vevevieieveeieieeeieie et seseeesesenes
specifying...........
types/parameters
variables
INQUITING . oeevevieieveeieieeeeeeteeee et eesesens 80, 88
reserve percentage
CONFITMING....cveeiieeiiieieieeeee s 63, 67
selecting ...
specifying....
computeEPOCH
cOMPUtEEPOCHIO ..o 128
comPULETT2000ovemieeiiiieieereeeeeeee e 135
data types
CONSTANTS ..ottt
CDF BYTE
CDF_CHAR
CDF_DOUBLE ..ottt
CDF_EPOCH ..ottt
CDF_EPOCHIS6...
CDF _FLOAT ..ottt
CDF_INT1
CDF_INT2
CDF_INT4
CDF_INTS
CDF REALA4.....
CDF REALS.....
CDF_TIME_TT2000 ..
CDF_UCHAR..............
CDF _UINTI......
CDF _UINT2......

..97,102

(&) 5) 26110 S 5
INQUITING SIZ@...eveveviieveririetesieiereestereseeteseseeseseessesesesseseneenes 77
DECSTATION _DECODING......cccectreiririeieieerieieeeeseene 8
DECSTATION _ENCODING......cccoctrieieereieieereeeieeeseeees 6
dimensions
TIMIE 1ottt 13

encodeEPOCH1671..::129
enCOdeEPOCHI16 2......cooiiiiiieeeee e 130
encodeEPOCHI16 3.....ooiiiiiiieeeee e 130

161

enCOdeEPOCH16 4.......covviiiiiieeeeeeeee e 130
encodeEPOCH16 x..... ...131

encodeEPOCH2125
encodeEPOCHS3 125
enCOdeEPOCH4cooiiiieeeeeeeeeee e 125
eNCOAEEPOCHXccvievieiiiicicieeeeeeeeee e 126
encodeTT2000.........ccoccieriirieieieeieeeeeeereeeee e 136
EPOCH

COMPULINE .vvveeriereeeieieeeiereesaeteeeeseseeeseseeesesenenes 128

decomposing. 129

encoding........ocevvevevereereereenenenes 131
ISO 8601 ...t 133
parsing 133
ULILILY TOULINES . ..veveniieeeieieieieetecee e 123, 135
computeEPOCH........cccoooiiiieeee 123
computeEPOCHI16 128
enCOdEEPOCHcocoviiieiieeeee e 124
encOdeEPOCH ..o 124
encodeEPOCH16 ...129
encodeEPOCHI16 1 ..o 129

encodeEPOCH16 2......cooiviiiiiiieeeeeeeee 130
encodeEPOCH16 _3... ... 130
encodeEPOCH16 _4... ..130

encodeEPOCH16 x... ...131
encodeEPOCH2.......... ... 125
encodeEPOCH3 125
encodeEPOCH4 125
encodeEPOCHx............. ... 126
EPOCH]16breakdown129
EPOCHbreakdown124
ParseEPOCH ..o 127
parseEPOCHIccooiiiiiiieeeeeeeeeeee 127
parseEPOCH16 .. 132

132
132

parseEPOCH16 _1
parseEPOCH16_2

parseEPOCH16 3 ..133
parseEPOCH16_4 133
parseEPOCH2cocoviieeee e 127
parseEPOCH3 127
parseEPOCHA4oocooiiieeeeeeeee e 128
EPOCH16breakdown...........c.coveuievieeeierieieieeereeeereeeveeienens 129
EPOCHDIeakdown.........ccouevveeieeiiiiieeeereeieieeereceeeee e 124
examples
Backward file indicator
SCHHING vttt ettt ettt es s ss s seenene 38
closing
CDF ottt 28
TVAriable........covviiiieieieeceeeeeeee e 39
creating
AUTIDULE. ...
CDF..........
rVariable
zVariable
deleting
CDF ottt 30
get
Backward file indicatorccoceevevveeeevieieieriieneans 34
CheCKSUML......oeoiiiiiicceecee s 33
File validationccoceeveieveeeieeeieieeeeeeeeeeereneens 34
rVariable
AAta...iiiiciciccee e 42
inquiring

CIITY .ttt ettt ettt ettt st ne st ene e 21
attribute NUMDETc.oveviiviiiieieceeeeeeeee e 25
CDF..oveviveeeeeeeeeeen 31,35
error code explanation teXtcoceveveerererieerereeenens 32
TVArIable ...
variable number.
Internal Interface...........ccoooevevveeeiviveeieieeeeeeeea,
interpreting

StALUS COAES ..ouvinviriiriiriieieeteeree ettt 121
opening

CDF ..ot 36
reading

ALTIDULE NETY covveiieeeiieeceeeeeeee e 23

rVariable values

MY PCT .ttt 43,115
zVariable values

SEQUENHIAL ...t 116

renaming
AUTIDULEcvevvceeeceeeee et 27
AUTIDULES ...vevivceeceeceecceee et 116
TVArIable ... 49
set
CDF
CheCKSUM........oovviiiieieccecececee s 37,39
status handler
writing
attribute

gEntry

rEntry
rVariable

multiple records/values...........cccevuveeerieeeriereerienenene 44
TVArIableovovieiiiiecccceee e 48
zVariable values

multiple variable.........ccooveeverieiecenieieeieeeeeeeen 118

GLOBAL_SCOPE
HOST DECODING.......cccctneieiieieeinieieeieieeeeieeseeieeseeseseeenes 7
HOST _ENCODING.......cccctiteieiirieiieieeieieeeeieeaeseeseeseseeenes 6

HP_DECODING
HP_ENCODING

IBMRS _DECODING......ccoceiiieieeiiereeieieeeeieeeeseeseeseseennes 8
IBMRS _ENCODING......ccooeteiieieiieieeeieieeeeieeseseesessesenennes 7
inquiring

CDF information...........c.cceevveriereeeeereeieeeeeeeeeeeere e 31
interfaces

Internalooveevieiiiiiccee e 50

Standard..........c.ooveeieiiiiic e 19
Internal INterfaceccooveievivvieeieieieeeeeeeeeeeeeee e 50

common mistakes 119
CUITNt ODJECES/SLALES ..ouvevvenveveeeiieieeeieeieeeeee e 52
AUTIDULEvevceeeecceeece e 53
attribute ENtriES ...cvvviveeeeeriieeeeeereeeeeeeeee e 53,54
CDF ettt 53
records/dimensions.ccooveveeeeeeeeereeneennns 54, 55,56
sequential valueceeeveeeerieerineeeeeeeeeeen 55,56
status code
VATIADIESooviviecieetieieceeeee e
CXAMPLES.c.eieiieieieeieeieeere e
Indentation/Style....
OPETALIONS ...ttt saeneeneas 58
status codes, TEtUrNEd.ccvevveeieveereeeeeeeeeeeeeeeeeeeeens 56
SYIEAX wevvtntirerieeiierteete ettt ettt sb ettt 57

162

ArgUMENE LiST..viuieveeiieieeieieeee e 57
limitations....
1eapsecondSinto.........cccceveeerieeirieeineeeeeee e
limits
ATIDULE NAIME ..vevvveveeieieieieeeeeeteeet e seeaens 13
COPYTIGNE LEXT ..ttt eaeeeaenens 13
dimensions

explanation/status text
Il NAME ...t
parameters .
Variable NAME.......c.ccoereiriririririieieeeeeeeeeieee e
Limits 0f NAMES......cvvveeiiciiciciciciciccec e
MAC_DECODING
MAC_ENCODING
MULTI_FILE....ciiiiiiiieeeeiciceeec ettt
NEGtoPOSpOoff.
NEGLOPOSTPOON......coeuiieieiiieieieieieieieteeeeieeeeeeeeeseeveesaeaens
NETWORK DECODING
NETWORK _ENCODING
NeXT DECODING.......ccoceiteueieieiiiieeeetreneneseee e
NeXT ENCODING.......ccocoeueueieieiiieietcttnereness e
NO_COMPRESSION.....
NO_SPARSEARRAYS......
NO_SPARSERECORDS ...
NOVARY ..ot
PAD SPARSERECORDS....
parseEPOCH
parseEPOCHI
parseEPOCH16.....
parseEPOCH16 1....
ParseEPOCHILO 2.....coouiiiiiiiieeeeeeeeeeee e
parseEPOCHILO 3 ...
parseEPOCH16 4....
Pars€eEPOCH2cooiiiiee e
ParseEPOCH3 ..o
parseEPOCH4 ...
PAISETT2000......c.cciiiieieereeeeee e
PC_DECODING
PC_ENCODING
PREV_SPARSERECORDS........cccccectvttririnnirnnreeeieievenes 11
READONLYOff ..ottt
READONLYon....
ROW_MAIJOR ..ottt
rVariables

creating...
hyper values
ACCESSINEZ cuvveevereieniererteeeneetesteeereetesteeesesseseeneesessenaeneens 43
writing
renaming
single value
accessing .
WITEIIIE vttt ettt ettt sb e e sesenenas
scratch directory
SPECIEYING...vviieveiiieteee e
SGi_DECODING
SGi_ENCODING
SINGLE _FILEc.coiiiiiiiiiiiiintnnneeeeeee e
sparse arrays
IQUITING vttt ettt be e e s e esesens 84,92
SPECIEYING...veviiieiiieieeieeeee et 100, 104

sparse records
INQUITING .ot
specifying....

CONSLANES ...cvvieeveeereeeere e etreereeeteeereeereeereeerreeseeereeennean 4,121
CDF _OKo..ooiiiiieeeeeieittte et 4
CDF WARN ... seeseesseeen 4
CONFITMMING ..ot 60
SCIECHING vttt 107

CITOT .nveveveneteueeetesetetesesteaesese s bt ss st s bt be st e eneseseenene 139

explanation text
INQUITING . .o.veveviievenieieeeeeie e se e e esesens
max length ..

informational.........cocovvvriririieiccccc

INECIPIELING ..vveveveerieieeesieieieeeteeee ettt ssesesesaesens

status handler, example.

WATTHINE . vevvevevenieveeeseereeesaeseseseesesessesesessesesesessesesessesesessesens 139

SUN_DECODINGcoctiiieiriiieieenieieeeieseeee et 8
SUN_ENCODINGcoctiiieirenieieieeieeeeeseeee et 6
TT2000

COMPULING.c.vveriereieriereeesieteieteseseteseseseesesesessesesessesesessesens 135

decomposing136

encoding........... ..136

leap seconds137
PATSING ..ottt 137
utility routines
comPUtETT2000oovemeeeeeeirieieeeeieeereeeee e 135
encodeTT2000........ccccerveirineiinieirrecereceneceen 136
leapsecondSintoccoveveeriereerinieenieeeeeeeee e 137
parseTT2000
TT2000breakdOWnc.cvvvvieieiiiiririnerrrseeeieeenees 136
TT2000breakdOWIovvevviiiicicieceerere e 136
Validate
VARIABLE _SCOPEccccoiiiiiiiininnrneeeeeeeeeeeaes 11
variables
CLOSINE 1.ttt sesenenes 58
compression
CONFITMING ..ovveveiieeeieeeee s 63, 67
inquiring
selecting
SPECIEYING. ..ottt 97, 102

LYPES/PATAMELETSeeveveeireeeneeieeeneereeaeseseeeseessesesessenens 10
CTEALING ..vveeveveeiiereieeieteseeteteeet et ese et se e seseseesesesenas 68, 69
CUITENL ...ttt ete st sessesee e seesesseneeneas 53

CONFITMING ..o s 62, 65
selecting
DY NAME ..o 108, 112
DY NUMDET ..o 108, 111
data specification
ChaNGING.....c.ccvieieiieieeeeeeee e 98, 103
data type
INQUITING oottt eneeene 45, 81, 88
number of elements
INQUITING cvovevveeeieieeeeieeeeee e eaeene 45, 83,91
AELEtING ...ttt 71
dimension counts
CUITEINE .vecveeeeeeeereeeteeeeeeeereeeaeeereeereeereeeeeeeseeeseeenreenes 54, 56
CONFITMING....cveviieeiiieeieeeee s 63, 65
SCIECHING wovvevviieteieieieeete e 109, 111

163

dimension indices, starting
CUITENE. ..ottt
confirming
SCIECHING ..vevveveiiereeeiete e
dimension intervals

confirming ..
SCIECHING ..t
dimensionality
INQUITING 1.ttt ns
existence, determining..........ccoveeervereereereereereereerenenns 62, 66
majority
ChANGING ..o
CONSIACTING ...ttt ns
CONSTANTS ...oeiiiiiiiiiiiiiiieieeeeeee e
COLUMN_MAJOR.
ROW_MAIJOR ..ottt
default.....coieeeiieeeeee e
inquiring....
NAMINE <.ttt eae e eesesseseeseesesseseeseesesseneeneas
INQUITING 1.t ns
max length...
TENAMING. ..v.vevveveveniereeeiereeeseeseseseeseseseeseseassesesessesens
number
IQUITING 1.vevvveeeieveeeieteieeete ettt eesese e sesesenas 46
number of
IQUITING 1.ttt ettt seseseesese e esesesenes 35
number of, INQUITING........ccvvveereriereiriereerieeesieeeerieaene 76,77
numbering
INQUITING 1.ttt et see e saeaens 83,90
pad value
CONFITMING ...cveiieveiiietceeeeeeee e 63, 66
inquiring
SPECIEYING .. 99, 104
TEAAING ..ttt s 81, 88, 89
record count
CUITEME..eeveeeveeeereeeeeeteeeereereeeseeeseeeneeeseeereeenseenseeesneens 54,55
CONFITMING ..ot 64, 66
SCIECHING ..vevveviiieieeieeeeetee e 110,112
record interval

confirming ..
SCIECHING ..vevveviiieieeieeeeetee e
record number, starting
CUITEME..eeveeeveeeeeeereeereeeereeereeeseeereeenneeeseeeseeenneenseeesneens 54,55
confirming64, 67
SCIECHING ..t 110, 113
records
allocated
INQUITING covovenieveienieieieieieieeeeeeeee e 80, 83, 87, 90
SPECITYING c.oveiieieiieeeeeeeee e 96,97, 101, 102
blocking factor
IQUITING ©ovvinieveiiiereieieteeietee st eesese e esesesaesens 80, 87
SPECIEYING c.voveiieieieieieeeee s 97, 102
ElEtiNG ...veeeveeiiereeeiee et 71,72
indexing
IQUITING ©ovvinieveiiiereiiiereeeietee e seeaee e s seesens 82,90
initial
WITHNZ oottt snenne 98, 103
maximum
INQUITING v eeeneeene 82, 85, 89,92
number of

INQUITING oottt INQUITING ¢t 81, 89

SPArSe ...cvueee SPECIEYING .ot 98, 103
inquiring.... record
specifying ChaNGING ...c.ooveveieieeieeeeceee e 99, 104
sparse arrays IQUITING ©.vevenreveiiiereieiereeeieree e eeese e eeesesaesens 84,91
INQUITING .ot WITEINZ vttt sesens 98, 103
BYPES e
variances VAX DECODINGoccoitirieririeietrieieesieieeeieieesseaeeeseeeenes 7
COMNSLANES ...ttt neete ettt seste e e e eaeseeneenees VAX ENCODINGcceoieireieieeeeeeeese s 6
NOVARY . zMODE{off.
VARY oottt ZMODEONT ..ot 12
dimensional ZMODEON2 ...t 12

164

