

ExoLab OpenJMS

Java™ Message Service Messaging Engine

Jim Alateras
alateras@exoffice.com

Jim Mourikis
mourikis@exoffice.com

Features Overview

• JMS 1.0.2 compliant

• JDK 1.2 compliant

• Point-to-point messaging

• Publish-subscribe messaging

• Transacted sessions

• JAAS support

• Persistence adapter

• ORB adapter

• More at www.openjms.org

Overview

The Java™ Message Service (JMS), a messaging

infrastructure defined by Sun Microsystems, Inc.

provides a common way for Java™ programs to create,

send, receive and read enterprise messaging system’s

messages. OpenJMS is an Open Source

implementation of version 1.0.2 of the JMS

specification, which supports both publish-subscribe

and point-to-point messaging semantics in addition

to reliable and guaranteed Quality of Service (QoS)

delivery models.

Quality of Service

A higher Quality of Service inevitably requires more

processing resources than a lower one. The JMS

specification defines two levels of reliable and

guaranteed service, with the latter offering the

highest Quality of Service. The OpenJMS messaging

engine provides an environment where clients with

differing Quality of Service requirements can coexist

without adversely affecting the overall performance

of the others.

Scalability

Scalability and high-availability concerns are

addressed through a peer-to-peer communication

protocol between servers. This feature allows

multiple servers to be connected together to build a

federation, facilitating inter-server client

communication.

Federated Configuration of OpenJMS Servers

Security

Security considerations, such as authentication and

authorization, are addressed through the Java™ 2

Security Model. OpenJMS relies on security policies

to provide access control to resources such as queues

and topics, securely restricting the capabilities of

publishers and subscribers accessing those

destinations. In addition, OpenJMS delegates the

responsibility of securing all end-to-end

communications to the underlying Object Request

Broker (over IIOP, RMI or any other protocol).

Transactions

OpenJMS supports transacted sessions with the Java™

Transaction Service (JTS) and distributed transactions

via the JTA XAResource API. The Tyrex Transaction

Processing Monitor implements both JTS and JTA.

Deployment

OpenJMS has been designed and packaged so that it

can be easily deployed as an embeddable component

or run as a standalone service. In embedded mode it

is integrated and controlled by a parent component,

such as an application server, which is then

responsible for managing all aspects of configuration

and lifecycle. Alternatively, if run in standalone mode

OpenJMS takes full responsibility for these tasks.

Administration & Monitoring

OpenJMS supports both console-based and web-

based administration and monitoring. The

Administration Facility is capable of configuring all

aspects of the server including persistence,

debugging, resource restrictions, etc. Similarly, the

Monitoring Facility is capable of starting, stopping

and supervising the OpenJMS messaging engine. The

engine can be configured to run with its own

embedded web server or can run with any other web

server supporting the Servlet API.

OpenJMS
Client

OpenJMS
Client

OpenJMS
Client

OpenJMS
Client

OpenJMS
Server

OpenJMS
Server

OpenJMS
Server

OpenJMS
Server

Architecture

OpenJMS has been designed with an adapter-based

architecture relying on open and extensible

interfaces to the persistence mechanisms, Object

Request Broker, and configuration manager.

Adapter-based OpenJMS Architecture

Persistence Mechanism

OpenJMS can be configured to use an RDBMS, an

OODBMS, or the plain file system as persistence

mechanism. Such a persistence mechanism is used to

support durable subscribers and destinations through

a JNDI service provider, as well as a storage area for

messages requiring guaranteed delivery.

Object Request Broker

OpenJMS provides a generic interface allowing any

Object Request Broker to be used for supporting

protocols like IIOP or RMI. The OpenORB CORBA

Object Request Broker is used to support RMI-IIOP.

Configuration Manager

The configuration manager offers the ability to use

several types of configuration file formats. Java™

property files, as well as Castor configuration files are

supported by the current OpenJMS implementation.

Features

• JMS 1.0.2 compliant

• JDK 1.2 compliant

• Point-to-point messaging

• Publish-subscribe messaging

• Reliable and guaranteed QoS delivery models

• Synchronous and asynchronous message delivery

• Hierarchical topic namespace

• JAAS authentication and authorization

• Transactional and non-transactional sessions

• Web-based and console-based administration

• Adapter-based architecture

• CORBA, RMI and proprietary ORB support

• JDBC™, ODMG and JNDI-based persistence

• Multi-threaded messaging engine

• Embeddable or standalone service

• Open Source licensing (ExoLab Public License)

www.exolab.org

info@exolab.org

1-650-259-9796

1-603-719-9409

Copyright © 2000 Exoffice Technologies, Inc.
All rights reserved. Java, Java Message Service, JDBC
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the US and other countries.

JDBC™ ODMG JNDI

Persistence Adapter

CORBA
ORB

RMI
ORB

Other
ORB

Object Request Broker Adapter

Java™ Castor Other

Configuration Manager Adapter

JMS Server
Library

JMS Server

JNDI Server
Library

JNDI Server

JMS Client
Library

JMS Client
Library

JMS Client

