
CHALLENGING COMPUTATIONS OF HILBERT BASES OF CONES

ASSOCIATED WITH ALGEBRAIC STATISTICS

WINFRIED BRUNS, RAYMOND HEMMECKE, BOGDAN ICHIM, MATTHIAS KÖPPE,
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Abstract. In this paper we present two independent computational proofs that the
monoid derived from 5× 5× 3 contingency tables is normal, completing the classifi-
cation by Hibi and Ohsugi. We show that Vlach’s vector disproving normality for the
monoid derived from 6× 4× 3 contingency tables is the unique minimal such vector
up to symmetry. Finally, we compute the full Hilbert basis of the cone associated
with the non-normal monoid of the semi-graphoid for |N | = 5. The computations are
based on extensions of the packages LattE-4ti2 and Normaliz.

1. Introduction

Let S = monoid(G) be an affine monoid generated by a finite set G ⊆ Z
n of integer

vectors. We call S normal if S = cone(G) ∩ lattice(G), where cone(G) = {x ∈ R
n :

x =
∑

λigi, λi ∈ R+, gi ∈ G} denotes the rational polyhedral cone generated by G
and where lattice(G) = {x ∈ R

n : x =
∑

λigi, λi ∈ Z, gi ∈ G} denotes the sublattice
of Zn generated by G. In this paper, we will stick to the case that lattice(G) = Z

n.
Then, normality of S is equivalent to saying that G contains the Hilbert basis of
cone(G), i.e., every lattice point in cone(G) can be written as a nonnegative integer
linear combination of elements in G. Lattice points in cone(G) \monoid(G) are called
holes (or gaps). Clearly, monoid(G) is nonnormal if and only there exists at least one
hole.

By the Hilbert basis H(C) of a pointed rational cone C we mean the unique minimal
system of generators of the monoid M of lattice points in C. The Hilbert basis of
C consists of the irreducible elements of M , i.e., those elements of M that do not
have a nontrivial representation as a sum of two elements of M (see [2, Ch. 2] for a
comprehensive discussion). Note that deciding normality of an affine monoid is NP-hard
[6].

An r1×r2×· · ·×rN contingency table is a function T : {1, . . . , r1}×· · ·×{1, . . . , rN} →
Z+ where Z+ denotes the nonnegative integers. It can be imagined as an N -dimensional
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array of size r1 × r2 × · · · × rN with nonnegative integer entries. Such a contingency
table arises when one classifies a sample of individuals according to the values of N
random variables Xj, j = 1, . . . , N , where Xj takes values in {1, . . . , rj}. The j-th
(N − 1)-marginal Tj of T is the r1 × · · · × rj−1 × rj+1 × · · · × rN contingency table
defined by

Tj(i1, . . . , ij−1, ij+1, . . . , iN ) =

rj
∑

k=1

T (i1, . . . , ij−1, k, ij+1, . . . , iN ).

The marginals are the basic tool for testing the independence ofXj from the compound
random variable (X1, . . . , Xj−1, Xj+1, . . . , XN).

The r1 × r2 × · · · × rN contingency tables form the monoid O of integral points in the
nonnegative orthant of RD where D = r1 · · · rN . The assignment T 7→ (T1, . . . , TN) is
a monoid homomorphism M from O into the monoid of nonnegative integer points in
R

d1+···+dN where dj = r1 · · · rj−1rj+1 · · · rN . In the following, the image M(O) is called
the monoid derived from r1 × r2 × · · · × rN contingency tables (by taking line sums).
For the role of these monoids and their normality in algebraic statistics we refer the
reader to Ohsugi and Hibi [12], Drton, Sturmfels and Sullivant [5] and Sullivant [15].

Normality of monoids derived from r1 × r2 × · · · × rN contingency tables was settled
almost completely in [12]. In this paper we close the last open cases by showing compu-
tationally, via two different approaches and independent implementations, that 5×5×3
has a normal monoid. The normality for 5× 5× 3 implies normality for the other two
open cases 5×4×3 and 4×4×3 by [12, 3.2] (or can also be verified computationally).

In the last section we report on a partial verification of a conjecture of Sturmfels and
Sullivant [14] on the normality of cut monoids of graphs.

2. Results

The defining matrix A5×5×3 whose columns generate the monoid associated to 5×5×3
contingency tables is given in the following table in which every · corresponds to an
entry 0.

1..............1..............1..............1..............1..............

.1..............1..............1..............1..............1.............

..1..............1..............1..............1..............1............

...1..............1..............1..............1..............1...........

....1..............1..............1..............1..............1..........

.....1..............1..............1..............1..............1.........

......1..............1..............1..............1..............1........

.......1..............1..............1..............1..............1.......

........1..............1..............1..............1..............1......

.........1..............1..............1..............1..............1.....

..........1..............1..............1..............1..............1....

...........1..............1..............1..............1..............1...

............1..............1..............1..............1..............1..
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.............1..............1..............1..............1..............1.

..............1..............1..............1..............1..............1

1..1..1..1..1..............................................................

.1..1..1..1..1.............................................................

..1..1..1..1..1............................................................

...............1..1..1..1..1...............................................

................1..1..1..1..1..............................................

.................1..1..1..1..1.............................................

..............................1..1..1..1..1................................

...............................1..1..1..1..1...............................

................................1..1..1..1..1..............................

.............................................1..1..1..1..1.................

..............................................1..1..1..1..1................

...............................................1..1..1..1..1...............

............................................................1..1..1..1..1..

.............................................................1..1..1..1..1.

..............................................................1..1..1..1..1

111........................................................................

...111.....................................................................

......111..................................................................

.........111...............................................................

............111............................................................

...............111.........................................................

..................111......................................................

.....................111...................................................

........................111................................................

...........................111.............................................

..............................111..........................................

.................................111.......................................

....................................111....................................

.......................................111.................................

..........................................111..............................

.............................................111...........................

................................................111........................

...................................................111.....................

......................................................111..................

.........................................................111...............

............................................................111............

...............................................................111.........

..................................................................111......

.....................................................................111...

........................................................................111

Note that this normality problem cannot be settled directly (except for 4 × 4 × 3)
by computing the Hilbert basis of the associated cone using state-of-the-art software
such as Normaliz v2.2 [3, 4] or 4ti2 v1.3.2 [1, 7]. Both codes fail to return an answer
due to time and to memory requirements of intermediate computations. Using the
computational approaches presented below, we can now show the following.
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Lemma 1. The monoid derived from 5× 5× 3 contingency tables by taking line sums
(= two-marginals) is normal.

This completes the normality classification of the monoids derived from r1×r2×· · ·×rN
contingency tables by taking line sums as given in [12]:

Theorem 2. Let r1 ≥ r2 ≥ . . . ≥ rN ≥ 2 be integer numbers. Then the monoid derived
from r1 × r2 × · · · × rN contingency tables by taking line sums is normal if and only if
the contingency table is of size

• r1 × r2, r1 × r2 × 2× . . .× 2, or
• r1 × 3× 3, or
• 4× 4× 3, 5× 4× 3, or 5× 5× 3.

For the monoid of 6 × 4 × 3 contingency tables, a vector disproving normality was
presented by Vlach [16]. Let M be the monoid derived from 6 × 4 × 3 contingency
tables and f be the vector in R

4×3⊕R
6×3⊕R

6×4 given by the following three matrices:









1 1 1
1 1 1
1 1 1
1 1 1









,















1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1















and















1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1















.

The unique point in the 6×4×3 (transportation) polytope {z ∈ R
6×4×3 : Az = f , z ≥ 0}

is

z∗ =
1

2









1 1 0
0 0 0
0 0 0
1 1 0

0 0 0
1 1 0
1 1 0
0 0 0

1 0 1
1 0 1
0 0 0
0 0 0

0 0 0
0 0 0
1 0 1
1 0 1

0 1 1
0 0 0
0 1 1
0 0 0

0 0 0
0 1 1
0 0 0
0 1 1









.

(We have written the 6 × 4 × 3 contingency table z∗ as a sequence of 6 matrices of
size 4 × 3.) This equation shows on the one hand that f indeed belongs to the cone
C generated by M (since 2f ∈ M), and on the other hand, by the uniqueness of
the solution, that f /∈ M . Since Z

6×4×3/ lattice(M) is torsionfree (as one can verify
computationally), f lies in lattice(M), and it follows that M is not normal. We can
show the following more precise result.

Lemma 3. The vector f presented by Vlach [16] is the unique vector (up to the under-
lying S6 × S4 × S3 symmetry) in the Hilbert basis of the cone of 6× 4× 3 contingency
tables that is not an extreme ray.

The treatment in [8] now completely describes all holes of the cone, that is, all lattice
points in cone(A6×4×3) that cannot be written as a nonnegative linear integer combi-
nation of the (integer) generators of the cone:
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Corollary 4. Let f be the hole in cone(A6×4×3) and let z∗ ∈ R
6×4×3
+ be the unique

solution to A6×4×3z = f , z ∈ R
6×4×3
+ , as stated above. Moreover, let G denote the set of

those 24 columns of A6×4×3 for which z∗i > 0.

Then the set of holes in cone(A6×4×3) is the set of all points that can be written uniquely
as σ(f + s) with σ ∈ S6 × S4 × S3 and with s ∈ monoid(G).

Finally, we have computed the Hilbert basis of the cone associated to the semi-graphoid
for |N | = 5 [13]. It was already shown in [9] that the corresponding monoid is not
normal by constructing a hole via a different method. The computation of the full
Hilbert basis was not possible at that time, neither with Normaliz, nor with 4ti2.
Here is the defining matrix whose columns generate the monoid associated to the semi-
graphoid for |N | = 5. Every dot corresponds to an entry 0. The symbols + and −
represent entries 1 and −1.

++++++++++......................................................................

----......++++++................................................................

-...---.........++++++..........................................................

.-..-..--................++++++.................................................

..-..-.-.-............................++++++....................................

...-..-.--..............................................++++++..................

+.........---...---...+++.......................................................

.+........-..--..........---...+++..............................................

..+........-.-.-......................---...+++.................................

...+........-.--........................................---...+++...............

....+...........-..--....-..--....+++...........................................

.....+...........-.-.-................-..--....+++..............................

......+...........-.--..................................-..--....+++............

.......+..................-.-.-........-.-.-.......+++..........................

........+..................-.--..........................-.-.-.......+++........

.........+..............................-.--..............-.--............+++...

..........+.....+.....--.+.....--.--.+..........................................

...........+.....+....-.-.............+.....--.--.+.............................

............+.....+....--...............................+.....--.--.+...........

.............+............+....-.-.....+....-.-....--.+.........................

..............+............+....--.......................+....-.-....--.+.......

...............+........................+....--...........+....--.........--.+..

...................+........+.....-.-....+.....-.-.-.-.+........................

....................+........+.....--......................+.....-.-.-.-.+......

.....................+....................+.....--..........+.....--......-.-.+.

..............................+............+........--.......+........--...--..+

......................+........+..+..-......+..+..-+..--........................

.......................+........+..+.-........................+..+..-+..--......

........................+....................+..+.-............+..+.-.....+..--.

.................................+............+.....+.-.........+.....+.-..+.-.-

....................................+............+...+.-...........+...+.-..+.--

.....................................+............+...++............+...++...+++
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Lemma 5. The Hilbert basis of the cone associated to the semi-graphoid for |N | = 5
has 1300 elements that come in 21 orbits under the underlying symmetry group S5×S2.
These are represented by the 21 rows of the following matrix:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0

2 0 0 0 0 −2 −1 −1 1 1 0 −1 1 −1 1 1 1 0 0 0 −1 −2 1 −1 −1 0 −1 0 1 1 0 1

2 0 0 0 −2 0 −1 −1 1 0 0 1 −1 1 −1 1 1 −1 1 0 1 −1 −1 1 0 −1 0 −2 0 0 0 2

1 0 0 1 0 0 0 −1 −1 2 −1 2 −1 −1 −1 0 0 −1 −1 2 −1 −1 −1 2 −1 0 0 0 1 0 0 1

1 0 1 1 0 −1 −1 1 −1 1 −2 0 0 −1 0 1 0 1 −1 0 −2 0 1 1 −1 −1 −1 1 0 1 0 1

0 1 1 0 1 1 −1 0 −2 1 0 0 −2 0 0 −1 −1 1 0 1 −2 0 −1 1 1 −1 0 1 −1 1 0 1

0 1 1 0 1 1 −1 0 −2 0 0 0 −2 0 0 −1 −1 1 1 1 −1 1 −1 1 1 −1 0 0 −2 0 0 2

1 0 0 1 0 0 −1 −1 0 2 −1 2 0 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 0 0 1 0 0 1

0 1 1 1 1 1 −2 −1 −1 1 −1 1 −1 −1 −1 −2 1 0 0 1 −1 0 −1 1 0 1 0 0 0 0 0 1

0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 0 0 0 0 −2 2

1 1 0 1 0 −1 −1 −1 −1 0 −1 1 1 −1 0 1 1 0 −1 1 1 −1 0 −1 −1 −1 −1 0 1 0 1 1

0 1 0 1 1 1 0 −1 1 −2 0 0 0 −2 1 −1 −1 −2 1 0 0 0 1 −2 −1 0 1 1 1 0 1 0

2 −1 0 0 −1 −1 0 0 1 1 −1 1 1 1 1 0 1 −2 −1 −1 −2 0 −1 −1 −1 −1 1 1 1 1 1 0

0 1 1 1 1 1 −2 −1 −1 0 −1 0 −1 −1 −1 −2 1 1 1 1 0 1 0 1 1 1 −1 −1 −2 −1 −1 3

0 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 2 2 0 0 1 1 1 1 −1 −1 −1 −1 −2 3

1 0 0 1 2 −1 −1 −1 −1 1 −1 −1 1 −2 0 0 2 1 0 1 −1 −1 1 −1 −1 1 −2 0 0 0 0 2

2 0 0 0 0 −2 −1 −1 1 2 1 −1 1 −1 1 1 0 0 −1 0 −1 −2 0 −2 −1 −1 0 1 1 1 2 0

3 −1 −1 1 −1 −2 0 −1 0 1 −1 0 1 −1 1 1 1 1 −1 1 0 −1 1 0 −1 0 −2 −1 1 −1 −1 3

3 1 −1 −1 −1 −2 −1 −1 −1 2 0 0 1 0 1 1 1 1 −1 1 −1 −1 1 −1 −1 −1 −2 0 0 0 1 2

2 1 0 0 0 −2 −1 −1 −1 2 −1 −1 1 −1 1 1 1 1 −1 1 −1 −1 2 −1 −1 −1 −2 0 0 0 1 2

3. Computational Approaches

In this section we present the two computational approaches that allowed us to solve
the three challenging Hilbert basis computations of the cones associated to 5× 5 × 3-
tables, to 6× 4× 3-tables, and to semi-graphoids for |N | = 5. In the first approach, we
iteratively decompose the cone into smaller cones and exploit the underlying symmetry
and set inclusion to avoid a lot of unnecessary computations. An implementation of
this approach is freely available in the new release latte-for-tea-too-1.4 of “LattE
for tea, too” (http://www.latte-4ti2.de), a joint source code distribution of the two
software packages LattE macchiato and 4ti2. In the second approach, we exploit the
fact that the cones are nearly compressed; hence many cones in any pulling triangula-
tion are unimodular, and the same holds in placing triangulations. Using our second
approach, none of these unimodular cones is constructed, saving a lot of computation
time. An implementation of this approach will be freely available in the next release of
Normaliz (http://www.math.uos.de/normaliz), together with the input files of the
examples of this paper.

3.1. First approach: exploiting symmetry. Let us assume that we wish to compute
the Hilbert basis of a rational polyhedral cone C = cone(r1, . . . , rs) ⊆ R

n. Moreover,
assume that C has a coordinate-permuting symmetry group S, that is, if v ∈ V and
σ ∈ S then also σ(v) ∈ C. Herein, the vector σ(v) is obtained by permuting the
components of v according to the permutation σ.
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One approach to find the Hilbert basis of C is to find a regular triangulation of C into
simplicial cones C1, . . . , Ck and to compute the Hilbert bases of the simplicial cones
C1, . . . , Ck. Clearly, the union of these Hilbert bases is a (typically non-minimal) system
of generators of the monoid of lattice points in C. The drawback of this approach is
that a complete triangulation of C is often too hard to accomplish.

Instead of computing a full triangulation, we compute only a (regular) subdivision of C
into few cones. To this end we remove one of the generators of the cones, say rs, compute
the convex hull of the cone C ′ = cone(r1, . . . , rs−1), and find all facets F of C ′ that are
visible from rs. By F ′ we denote the set of all cones that we get as the convex hull of
a facet in F with the ray generated by rs. Then F ′ ∪ {C ′} gives a regular subdivision
of C, called the subdivision with distinguished generator rs. Before we now subdivide
those cones in F ′ further into smaller cones, we use the following simple observation
to remove cones that can be avoided due to the underlying symmetry given by S.

Lemma 6. Let C,C1, . . . , Ck ⊆ R
n be rational polyhedral cones such that C =

⋃k

i=1
Ci

(not necessarily a disjoint union). Suppose that there is a permutation σ and indices i
and j such that Ci ⊆ σ(Cj) ⊆ C. Then the Hilbert basis of C is contained in the union
of the Hilbert bases of the cones C1, . . . , Ci−1, σ(Cj), Ci+1, . . . , Ck.

Proof. The result follows by observing that all lattice points in Ci also belong to σ(Cj)
and thus can be written as a nonnegative integer linear combination of the Hilbert basis
of σ(Cj). �

If successful, this test whether Ci can be dropped is a very efficient way of removing
unnecessary cones. However, the fewer generators are present in the cones C1, . . . , Ck,
the higher the chance that this test fails. So one has to make a trade-off between a
simple test (that may fail more and more often) and a direct treatment of each cone
Ci. As we compute only regular subdivisions whose cones are spanned by some of the
vectors r1, . . . , rs, each of the cones C1, . . . , Ck can be represented by a characteristic
0-1-vector χ(C1), . . . , χ(Ck) of length s that encodes which of the generators of C are
present in this cone. This makes the test Ci ⊆ σ(Cj) comparatively cheap, as we only
need to check whether χ(Ci) ≤ σ(χ(Cj)).

Summarizing these ideas, the symmetry-exploiting approach can be stated as follows:

(1) Let C = cone(r1, . . . , rs) ⊆ R
n and C = {C}.

(2) i := 0
(3) While C 6= ∅ do

(a) i := i+ 1
(b) For all K ∈ C that contain the i-th generator compute a subdivision with

distinguished ith generator.
(c) Let T be the set of all cones in these subdivisions.
(d) Let M be the set of those cones with a maximum number of rays.
(e) Let C 6= ∅ be the set M together with all cones T ∈ T that are not covered

by a cone σ(M) with M ∈ M and σ ∈ S, see Lemma 6.
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(f) Remove from C all simplicial cones and compute their Hilbert bases.
(4) For each computed Hilbert basis element h compute its full orbit {σ(h) : σ ∈ S}

and collect them in a set H.
(5) Remove the reducible elements from H.
(6) Return the set of irreducible elements as the minimal Hilbert basis of C.

This quite simple approach via triangulations and elimination of cones by symmetric
covering already solves all three presented examples. In particular, it gives a compu-
tational proof to Lemma 1. The candidates for the representatives of Hilbert basis
elements can be computed using “LattE for tea, too” by calling

dest/bin/hilbert-from-rays-symm --hilbert-from-rays="dest/bin/hilbert-from-rays"

--dimension=26 S5.rays

dest/bin/hilbert-from-rays-symm --hilbert-from-rays="dest/bin/hilbert-from-rays"

--dimension=43 355.short.rays

dest/bin/hilbert-from-rays-symm --hilbert-from-rays="dest/bin/hilbert-from-rays"

--dimension=42 346.short.rays

The data files can be found on http://www.latte-4ti2.de. (For typographical reasons
each command has been printed in two lines.)

3.2. Second approach: partial triangulation. In the second approach, we build
up a triangulation of the given cone C = cone(r1, . . . , rs) ⊆ R

n. However, by using
the following Lemma 7 and its Corollary 8, we can avoid regions of the triangulation
that consist only of unimodular cones (for which the extreme ray generators already
constitute a Hilbert basis). More precisely, we try to omit simplicial cones whose non-
extreme Hilbert basis elements are contained in previously computed simplicial cones.

In the following we describe the facets of a full-dimensional rational cone by (uniquely
determined) primitive integral exterior normal vectors. In other words, F = {x ∈ C :
c⊺x = 0} where c has coprime integer entries and c⊺y ≤ 0 for all y ∈ C.

Lemma 7. Let C = cone(r1, . . . , rk) ⊆ R
n be a rational polyhedral cone such that

• r1, . . . , rk ∈ Z
n,

• r1, . . . , rk−1 lie in a facet of C defined by the hyperplane c⊺x = 0,
• c⊺rk = 1.

Then the Hilbert basis of C is the union of {rk} and the Hilbert basis of cone(r1, . . . ,
rk−1).

Proof. Let z ∈ C ∩ Z
n. Then z =

∑k

i=1
λiri for some nonnegative real numbers

λ1, . . . , λk. Multiplying by c⊺, we obtain

c⊺z =

k
∑

i=1

λic
⊺ri = λkc

⊺rk = λk.
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As c, z ∈ Z
n, we obtain λk ∈ Z. Hence, z is the sum of a nonnegative integer multiple

of rk and a lattice point z − λkrk ∈ cone(r1, . . . , rk−1), which can be written as a
nonnegative integer linear combination of elements from the Hilbert basis of this cone.
The result now follows. �

This lemma implies the following fact, which excludes many regions when searching
for missing Hilbert basis elements.

Corollary 8. Let r1, . . . , rk ∈ Z
n such that C ′ = cone(r1, . . . , rk−1) has dimension n,

and C = C ′ + cone(rk). Suppose that rk /∈ C ′. Moreover, let F1, . . . , Fq be the facets
of C ′ visible from rk and let c1, . . . , cq the normal vectors of these facets as introduced
above. Then

H(C ′) ∪ {rk} ∪
⋃

{H(Fi + cone(rk)) : |c
⊺
i rk| ≥ 2, i = 1, . . . , q}

generates C ∩ Z
n.

Proof. Evidently we obtain a system of generators of C ∩ Z
n if we extend the union

in the Corollary over all facets Fi, i = 1, . . . , q. It remains to observe that

H(Fi + cone(rk)) = {rk} ∪ H(C ′ ∩ Fi)

if |c⊺i rk| = 1. But this is the statement of Lemma 7. �

Corollary 8 yields an extremely efficient computation of Hilbert bases—provided the
case |c⊺i rk| ≥ 2 occurs only rarely, or, in other words, the system r1, . . . , rk of generators
is not too far from a Hilbert basis.

A thoroughly consequent application of Corollary 8 could be realized as follows, col-
lecting the list A(C) of critical simplicial cones in a recursive algorithm.

(1) Initially A(C) is empty.
(2) One searches lexicographically for the first linearly independent subset {ri1 , . . . ,

rid}. If the cone generated by these elements is not unimodular, it is added to
A(C).

(3) Now the remaining elements among r1, . . . , rs (if any) are inserted into the
algorithm in ascending order. Suppose that C ′ is the cone generated by the
elements processed already, and let rj be the next element to be inserted. Then
for all facets Fi of C

′ such that c⊺i rk ≥ 2 the list A(C) is augmented by A(Fi +
cone(rj)).

After all the critical simplicial cones have been collected, it remains to compute their
Hilbert bases and to reduce their union globally, together with {r1, . . . , rs}.

Let us add some remarks on this approach.

(a) It is not hard to see that the list A(C) constitutes a subcomplex of the lexi-
cographical triangulation obtained by inserting r1, . . . , rs. However, this fact is
irrelevant for the computation of Hilbert bases.
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(b) In an optimal list of simplicial cones each candidate for the Hilbert basis of
C would appear exactly once. (The candidates are the elements of the Hilbert
bases of the simplicial cones.) The algorithm above cannot achieve this goal
since the cones F +cone(rj) for fixed j are treated independently of each other.

(c) The drawback of the algorithm above is that it uses the Fourier-Motzkin elimi-
nation recursively for subcones. Therefore Normaliz applies the algorithm above
only on the top level and produces a full triangulation of the cones Fi+cone(rk)
for which c

⊺
i rk ≥ 2 (instead of the list A(Fi + cone(rj))).

(d) It is a crucial feature of the partial triangulation that it reduces memory usage
drastically.

Contingency tables Semigraphoid

4× 4× 3 5× 4× 3 5× 5× 3 6× 4× 3 N = 5

emb-dim 40 47 55 54 32

dim 30 36 43 42 26

# rays 48 60 75 72 80

# HB 48 60 75 4,392 1,300

# supp hyp 4,948 29,387 306,955 153,858 117,978

# full tri 2,654,000 102,538,980 9,248,466,183 3,100,617,276 1,045,346,320

# partial tri 48 4,320 775,800 206,064 3,109,495

# cand 96 1,260 41,593 10,872 168,014

real time par. < 0.1 0.2 38 9 14

real time ser. < 0.1 1.5 813 201 225

Table 1. Data of challenging Hilbert basis computations

We illustrate the size of the computation and the gain of the improved algorithm by
the data in Table 1. In the table we use the following abbreviations: emb-dim is the
dimension of the space in which the cone (or monoid) is embedded, dim denotes its
dimension, # rays is the number of extreme rays, # HB is the number of elements
in the Hilbert basis, # full tri is the number of simplicial cones in a full triangulation
computed by Normaliz, # partial tri is the number of cones in the partial triangulation,
# cand is the number of candidates for the Hilbert basis, and # supp hyp is the number
of support hyperplanes.

In addition to the improved algorithm just presented, parallelization has contributed
substantially to the rather short computation times (given in minutes) that (the exper-
imental version of) Normaliz needs for the cones considered. The computation times
were measured on a SUN Fire X4450 with 24 Xeon cores where we had limited the
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number of threads to 1 for the strictly serial computation. Even on a single processor
machine computation times are moderate, as the last line of Table 1 shows.

We should add that Normaliz cannot compute the full triangulations for 5 × 5 × 3,
6 × 4 × 3 and the semi-graphoid. The numbers were determined by a special program
that just produced and counted the simplicial cones.

4. On a conjecture of Sturmfels and Sullivant

In this short section we report on a partial verification of a conjecture of Sturmfels and
Sullivant on the normality of cut monoids of graphs.

Let G be a simple, undirected graph without loops on the vertex set V with edge set
E. We label the edges 1, . . . , e. A cut of G is a decomposition V = A ∪B into disjoint
subsets. Each cut defines a 0-1-vector c{A,B} in Z

2e as follows: (i) for j = 1, . . . , e the
j-th entry of c{A,B} is 1 if and only if the vertices x, y of edge j satisfy {x, y} ⊂ A or
{x, y} ⊂ B; (ii) for j = e + 1, . . . , 2e the j-th entry of c{A,B} is 1 if and only if the
vertices of edge j − e belong to different sets in the decomposition.

The cut monoid of G is the submonoid of Z2e generated by the vectors c{A,B} where
{A,B} runs through the cuts of G.The eight 0-1-vectors below the figure generate the
cut monoid of the graph G:

v2

v4 v3

v1

G

1

234

1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 1 1 1 0 0
1 0 0 1 0 1 1 0

1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1
0 0 1 0 1 1 0 1
0 1 0 1 1 0 1 0

Cut monoids have been introduced to the algebraic statistics literature by Sturmfels
and Sullivant [14]. They stated the very interesting conjecture that cut monoids of
graphs without K5-minors are normal. (A minor of a graph G is a graph H that can
be produced from G by a composition of (i) deletion of a vertex and (ii) contraction
of an edge.) In fact, the cut monoid of K5 is nonnormal, this implies nonnormality
for every graph with a K5-minor. Sturmfels and Sullivant verified their conjecture for
graphs with at most 6 vertices.

For graphs with 7 and 8 vertices we used the approach via partial triangulations (and
parallelization) in order to verify the conjecture. We generated all these graphs (up to
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symmetry) with the help of nauty [10] and then excluded the graphs which have a K5-
minor. For the remaining graphs no counterexample could be found. The computations
took 1 minute for 689 graphs with 7 vertices and 20 hours for 6708 graphs with 8
vertices.

For recent progress on this problem we refer the reader to Ohsugi [11].

References

[1] 4ti2 team. 4ti2–A software package for algebraic, geometric and combinatorial problems on linear

spaces. Available at www.4ti2.de.
[2] W. Bruns and J. Gubeladze. Polytopes, rings, and K-theory. Springer Monographs in Mathematics

(2009).
[3] W. Bruns and B. Ichim. Normaliz. Computing normalizations of affine semigroups. With contri-
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