
Normaliz 2.5

Winfried Bruns, Bogdan Ichim and Christof Söger

winfried@math.uos.de

bogdan.ichim@imar.ro

csoeger@math.uos.de

Contents

1 Introduction 3
1.1 The objectives of Normaliz .. . 3
1.2 Access from other systems .. 3
1.3 Major changes relative to version 2.2 4
1.4 Future extensions .4

2 Getting started 4

3 The input file 5
3.1 Generators . 6

3.1.1 Type 0,integral closure . 6
3.1.2 Type 1,normalization . 6
3.1.3 Type 2,polytope . 7
3.1.4 Type 3,rees algebra . 7
3.1.5 Preparation of the generators .. . 7

3.2 Constraints . 7
3.2.1 Type 4,hyperplanes . 8
3.2.2 Type 5,equations . 8
3.2.3 Type 6,congruences . 8
3.2.4 The constraints combined . 9

3.3 Relations . 9
3.3.1 Type 10,lattice ideal . 10

3.4 Pointedness . 10
3.5 The zero cone . 10
3.6 Homogeneity . 10

1

4 Running Normaliz 11
4.1 Computation modes . 12

4.1.1 Standard modes . 12
4.1.2 Computation modes for large examples 12
4.1.3 The dual algorithm . 13

4.2 Control of output files .. 13
4.3 Control of execution .13
4.4 Numerical limitations .. . 14

5 The output file 14

6 Examples 16
6.1 Generators . 16

6.1.1 Type 0,integral closure . 16
6.1.2 Type 2,polytope . 18
6.1.3 Type 3,rees algebra . 20

6.2 Constraints . 20
6.2.1 Type 4,hyperplanes . 20
6.2.2 Type 5,equations . 21
6.2.3 Type 6,congruences . 23

6.3 Relations . 24
6.3.1 Type 10,lattice ideal . 24

7 Optional output files 25

8 Performance and parallelization 26

9 Distribution and Installation 28

10 Compilation 29
10.1 GCC . 29
10.2 Visual C++ . 29

11 Changes relative to version 2.0 30

12 Copyright 31

2

1 Introduction

1.1 The objectives of Normaliz

The programNormaliz, version 2.5, is mainly a tool for computing the Hilbert basis of a
rational cone. The rational cone can be given by

(1) a system of generatorsG in a latticeZn;
(2) constraints: a homogeneous linear system of equations and inequalities;
(3) generators and relations.

The Hilbert basis of a rational pointed coneC in R
n is defined with respect to a latticeL ⊂ Z

n:
it is the unique minimal system of generators of the monoidC∩L. The standard choice forL
isZn itself, but forNormaliz this choice can be modified in two ways:

(1) L can be chosen to be the sublattice ofZ
n generated byG ;

(2) L can be chosen to be the lattice of solutions of a homogeneous system of congruences
if the cone is specified by equations and inequalities.

In particular,Normaliz solves combined systems of homogeneous diophantine linearequa-
tions, inequalities and congruences. (An extension to nonhomogeneous systems is envisaged.)
Conversely,Normaliz computes a system of constraints defining the cone and the lattice for
which the Hilbert basis has been computed.

Normaliz has special input types for lattice polytopes (representedby their vertices) and mono-
mial ideals (represented by the exponent vectors of their generators).

The data computed byNormaliz can be augmented if the monoid is homogeneous in a cer-
tain sense (see Section 3.6): if asked to do so,Normaliz computes theh-vector and Hilbert
polynomial of the monoid (or its associated algebra).

On the other hand, the data computed can also be restricted, for example to the support hyper-
planes of the cone or the lattice points of a lattice polytope.

For the mathematical background we refer the reader to [2] and [4]. The terminology follows
[2]. For algorithms ofNormaliz see [5] and [6]. Some of the recent extensions from version
2.2 to 2.5 are discussed in [3].

The input syntax ofNormaliz is always kept backward compatible so that input files for older
versions can still be used.

1.2 Access from other systems

We provide a SINGULAR library normaliz.lib and the packageNormaliz.m2 for MACAU-
LAY 2 that makeNormaliz accessible from these systems. Thus SINGULAR or MACAULAY 2
can be used as a comfortable environment for the work withNormaliz, and, moreover,Nor-
maliz can be applied directly to objects belonging to the classes of toric rings and monomial
ideals.

Normaliz has been made accessible fromPOLYMAKE (thanks to Andreas Paffenholz).

3

1.3 Major changes relative to version 2.2

(1) Two new input types for congruences and lattice ideals,
(2) a Hilbert basis algorithm using partial triangulations,
(3) a computation mode restricted to lattice points of polytopes,
(4) parallelization for shared memory systems (if wanted bythe user),
(5) significant improvement of the shelling algorithm,
(6) overall improvement in time and memory usage,
(7) reorganization of the main output file,
(8) the graphical user interfacejNormaliz by Vinicius Almendra and Bogdan Ichim,
(9) abolition of the setup file and ofnorm32.

1.4 Future extensions

(1) Inhomogeneous systems of equations, inequalities and congruences,
(2) a programming interface,
(3) further development of algorithms,
(4) exploitation of symmetries,
(5) optimization of the source code,
(6) more generalh-vector computation,
(7) access from further systems.

2 Getting started

Download

• the zip file with the Normaliz source, documentation, examples and further platform
independent components, and

• zip file made with executables for your system

from theNormaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it, a directoryNormaliz2.5 (called
Normaliz directory in the following) is created with several subdirectories. (Some versions of
the Windows executables may need the installation of a runtime library; see website.)

In theNormaliz directory openjNormaliz by clickingjNormaliz.jar in the appropriate way.
(We assume that Java is installed on your machine.) In thejNormaliz file dialogue choose one
of the input files in the subdirectoryexample, saymedium.in, and pressRun. In the console
window you can watchNormaliz at work. Finally inspect the output window for the results.

The menus and dialogues ofjNormaliz are self explanatory, but you can also consult the doc-
umentation [1] via the help menu.

4

http://www.math.uos.de/normaliz

Figure 1:jNormaliz

If the executables prepared cannot be run on your system, then you can download the source
files and compileNormaliz yourself (see Section 10).

Moreover, one can, and often will, runNormaliz from the command line. This is explained in
Section 4.

If 64 bit integer precision is not sufficient, then one can usenormbig instead ofnorm64.
normbig has no restrictions on the integer precision. See Section 4.4. (The integer precision
has nothing to do with the address width (32 bit or 64 bit) of your operating system.)

3 The input file

The input file<projectname>.in consists of one or several matrices (in version 2.5). Each
matrix is built as follows:

(1) The first line contains the number of rowsm.
(2) The second contains the number of columnsn.
(3) The nextm lines ofn integers each contain the rows.
(4) The last line contains a single integer or word specifying the type of input the matrix

presents.

At the moment there are three major types of input matrices, namelygenerators, constraints,
andrelations.

For each input type we specify two lattices: theambient latticeA in which the Hilbert basis
“lives” and theessential latticeE⊂ A which is generated by the Hilbert basis.

In this section we assume thatNormaliz is run in a computation mode in which the Hilbert
basis is actually computed. (See Section 4 for computation modes.)

5

3.1 Generators

The generator types are 0, 1, 2 and 3. If a matrix of one of thesetypes is in the input file, then
it must be the only matrix in the file.

3.1.1 Type 0, integral closure

The rows of anm×n matrix of type 0 representm vectors in the ambient latticeA= Z
n. The

essential latticeE is the smallest direct summand ofZ
n that contains the vectors in the matrix.

The vectors are considered as a system of generatorsG of a coneC, andNormaliz computes
the Hilbert basis ofC with respect toE (or, equivalently,Zn).

The nomenclatureintegral closure is explained by the fact that the Hilbert basis generates
the integral closure of the monoidZ+G in Z

n.

A simple example:
Input Hilbert basis

3 1 0

2 0 1

2 0

1 1

0 2

integral_closure

In this example, the three input vectors clearly generate the positive orthantR2
+ in R

2, and the
two unit vectors clearly are the Hilbert basis ofR

2
+∩Z

2.

3.1.2 Type 1, normalization

The matrix is interpreted as in type 0, howeverE is chosen as the sublattice ofZ
n generated

by G .

The choice of the namenormalization indicates thatNormaliz computes the normalization
of the monoidZ+G . (The computation of such normalizations was the original goal ofNor-
maliz, hence the name.)

We choose the same input vectors as above, but change the typeto normalization:
Input Hilbert basis

3 2 0

2 1 1

2 0 0 2

1 1

0 2

normalization

The cone has not changed, but the lattice has:E is now the sublattice ofZ2 of all (z1,z2) with
z1+z2 ≡ 0 mod 2.

6

3.1.3 Type 2, polytope

The rows of the matrix are interpreted as integral points of alattice polytope inRn, which is
their convex hull.

The coneC is the cone over the polytope, i.e. the cone with apex 0 inR
n+1 generated by the

vectors(x,1) wherex represents a row of the input matrix. We want to compute theEhrhart
monoid C∩Z

n+1.

The latticeA isZn+1, andE is the smallest direct summand ofA containing the generators of
C.

Type 2 is only a variant of type 0. One obtains the same resultsas in type 0 with the extended
vectors(x,1) as input. However, the text in the output file is adapted to thepolytopal situation.
For an example, see Section 6.

3.1.4 Type 3, rees algebra

In this type the input vectors are considered as exponent vectors of the generators of a mono-
mial ideal I in the polynomial ringK[X1, . . . ,Xn]. Normaliz computes the normalization of
the Rees algebra of the idealI (see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ringK[X1, . . . ,Xn,T] with an auxiliary variableT. Nor-
maliz computes the exponent vectors inZn+1 of the system of generators. For an example, see
Section 6.

In type 3 one hasA= E= Z
n+1.

3.1.5 Preparation of the generators

After the coordinate transformation to the latticeE, Normaliz divides each generator by the
greatest common divisor of its components. For example, theextreme rays listed will always
be such divided vectors (re-transformed toA).

3.2 Constraints

Inequalities, equations, and congruences defining the coneand the lattice are called con-
straints. Matrices representing them are of types 4, 5 and 6.All three types can be present in
the input file, and there can be several matrices of each type.The order does not matter. Ma-
trices of the same type will be concatenated. The numbers of columns must of course match:
for the ambient latticeZn the matrices of types 4 and 5 must haven columns, and those of
type 6 must haven+1 columns.

If there is no matrix of type 4, then it is assumed that the userwants to compute the nonnegative
solutions of the system represented by the matrices of type 5and/or 6. The input file is
therefore compatible with the types 4 and 5 of previous versions ofNormaliz.

7

3.2.1 Type 4, hyperplanes

A row (ξ1, . . . ,ξn) of the input matrix of type 4 represents an inequality

ξ1x1+ · · ·+ξnxn ≥ 0

for the vectors(x1, . . . ,xn) of Rn.

Example:
Input Hilbert basis

2 0 -1

2 1 1

1 0

1 -1

hyperplanes

Normaliz has computed the Hilbert basis of the cone defined by the inequalitiesx1 ≥ 0 and
x1−x2 ≥ 0 with respect to the latticeZ2.

3.2.2 Type 5, equations

A row (ξ1, . . . ,ξn) of the input matrix of type 5 represents an equation

ξ1x1+ · · ·+ξnxn = 0

for the vectors(x1, . . . ,xn) of Rn.

Example:
Input Hilbert basis

1 2 0 1

3 0 2 1

1 1 -2 1 1 1

equations

If the input file contains no further matrices,Normaliz has computed the Hilbert basis of the
subcone ofR3

+ defined by the equationx1+x1−2x3 = 0.

3.2.3 Type 6, congruences

We consider the rows of a matrix of type 6 to have lengthn+ 1. Each row(ξ1, . . . ,ξn,c)
represents a congruence

ξ1z1+ · · ·+ξnzn ≡ 0 modc

for the elements(z1, . . . ,zn) ∈ Z
n.

Example:
Input Hilbert basis

1 2 0

3 1 1

1 1 2 0 2

congruences

8

If no other matrix is in the input file, thenNormaliz computes the Hilbert basis of the positive
orthant intersected with the lattice of all integral vectors (z1,z2) such thatz1+z2 ≡ 0 mod 2
and the result is the same as in 3.1.2 above.

3.2.4 The constraints combined

Let L be the sublattice ofZn that consists of the solutions of the system of congruences defined
by the input matrix of type 6 (L = Z

n if there is no matrix of type 6). Moreover letA be the
matrix of type 4 andB be the matrix of type 5. Then the coneC is given by

C= {x∈ R
n : Ax≥ 0, Bx= 0}.

and the Hilbert basis ofC∩L is computed.

The ambient latticeA isZn, and the essential lattice isE= L∩RC.

If there is no matrix of type 5, then the system of equations isempty, satisfied by all vectors
of Rn.

Note that there is always a matrix of type 4, either explicitly in the input, or implicitly, namely
then×n unit matrix, if there is no matrix of type 4 in the input file (but one of type 5 or 6).

See Section 6.2.3 for an example combining types 5 and 6.

3.3 Relations

Relations are another type of constraints. They do not select a sublattice ofZn or a subcone of
R

n, but define a monoid as a quotient ofZ
n
+ modulo a system of congruences (in the semigroup

sense!).

Let U be a subgroup ofZn. Then the natural imageM of Zn
+ ⊂ Z

n in the abelian group
G= Z

n/U is a submonoid ofG. In general,G is not torsionfree, and thereforeM may not be
an affine monoid. However the imageN of M in the latticeL = G/torsion is an affine monoid.
Normaliz chooses an embeddingL →֒ Z

r , r = n− rankU , such thatN becomes a submonoid
of Zr

+. In general there is no canonical choice for such an embedding, but one can always find
one, providedN has no invertible element except 0. The ambient lattice is thenA = Z

r , and
the essential lattice isL, realized as a sublattice ofA.

The typical starting point is an idealJ ⊂ K[X1, . . . ,Xn] generated by binomials

Xa1
1 · · ·Xan

n −Xb1
1 · · ·Xbn

n .

The image ofK[X1, . . . ,Xn] in the residue class ring of the Laurent polynomial ringS=
K[X±1

1 , . . . ,X±1
n] modulo the idealJS is exactly the monoid algebraK[M] of the monoidM

above if we letU be the subgroup ofZn generated by the differences

(a1, . . . ,an)− (b1, . . . ,bn).

Ideals of typeJS are called lattice ideals if they are prime. SinceNormaliz automatically
passes toG/torsion, it replacesJSby the smallest lattice ideal containing it.

9

3.3.1 Type 10, lattice ideal

The rows of the input matrix of type 10 are interpreted as generators of the subgroupU , and
Normaliz performs the computation as just explained.

As an example we consider the binomialsX1X3−X2
2 , X1X4−X2X3:

Input Hilbert basis

2 3 0

4 2 1

1 -2 1 0 1 2

1 -1 -1 1 0 3

lattice_ideal

In this exampleZ4/U is torsionfree, but we can replace each of the vectors in the input matrix
by a nonzero integral multiple without changing the result.

Type 10 cannot be combined with any other input type—such a combination would not make
sense.

3.4 Pointedness

For Hilbert basis computations and triangulationsNormaliz requires the cone to be pointed
(x,−x∈ C =⇒ x= 0). Whenever the condition of pointedness is violated at a step where it
is crucial,Normaliz will stop computations.

Pointedness is checked by testing whether the dual cone ofC is full dimensional, and if not,
then the constructor of the dual cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in the

constructor of the object Full_Cone.

Probable reason: Cone not full dimensional(<=> dual cone not pointed)!

3.5 The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

3.6 Homogeneity

In certain casesNormaliz can compute theh-vector and the Hilbert polynomial of a graded
monoid. A grading of a monoidM is simply a homomorphism deg :M → Z

g whereZg

contains the degrees. TheHilbert seriesof M with respect to the grading is the formal Laurent
series

∑
d∈Zg

#{x∈ M : degx= d}Td1
1 · · ·T

dg
g ,

10

provided all sets{x∈ M : degx= d} are finite. At the moment,Normaliz can only handle the
caseg = 1 if the monoid ishomogeneousin the following sense: deg is a linear form on the
essential latticeE such that degx= 1 for all extreme integral generators in the Hilbert basis.
If such a linear form exists, it is uniquely determined, andNormaliz finds it.

Homogeneity is always satisfied for lattice polytopes. The Rees algebra is homogeneous in
our sense if and only if all the monomials generating the ideal have the same total degree.

Instead of degree we will useheightin the following because of its geometric flavor.

Note that the notion of homogeneity used here is more generalthan previous versions of
Normaliz. Its use is compatible with that in [2], provided one refers to the monoid generated
by the extreme integral generators.

4 Running Normaliz

The syntax for callingNormaliz from the command line is

norm64 [-svnh1pSVNdafce] [-x=<T>] [<projectname>]

where the options and<projectname> are optional. (We assume that the executablenorm64

or norm64.exe is in the search path. Otherwise you have to prefix it with a suitable relative
or absolute path.) If no<projectname> is given, the program will ask you for it or display a
help screen.

The option-x differs from the other ones:<T> represents a positive number assigned to-x;
see Section 4.3.

The help screen can also be displayed bynorm64 -?.

Normaliz will look for <projectname>.in as input file.

For example, if you input the command

norm64 -c -p -a rafa2416 or norm64 -cpa rafa2416

then the program will take the filerafa2416.in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulation, the multiplicity, theh-vector and the
Hilbert polynomial will be computed and all the possible output files will be produced.

If you have inadvertently typedrafa2416.in as the project name, thenNormaliz will first
look for rafa2416.in.in as the input file. If this file doesn’t exist,rafa2416.in will be
loaded.

In the following we explain the various options of Normaliz.The full text names given appear
in the help screen as well as in the menus ofjNormaliz which allows you to choose options
interactively.

The default computation mode is -n. All options that can be activated are switched off
by default.

11

Options are evaluated from left to right. Therefore the lastof mutually exclusive options is
used.

4.1 Computation modes

4.1.1 Standard modes

The standard, ascending chain of computation modes is the following:

-s support hyperplanes: only the support hyperplanes of the cone under consideration
are computed.

-v triangulation: includes-s. In addition,Normaliz computes a triangulation and the
multiplicity in the homogeneous case. (For lattice polytopes this is the normalized vol-
ume.)

-n Hilbert basis triangulation (previouslynormal): includes-v. Normaliz com-
putes the Hilbert basis.

-h Hilbert basis polynomial: includes-n. In the homogeneous case,Normaliz com-
putes theh-vector and the Hilbert polynomial. This computation mode yields the maxi-
mum informationNormaliz can produce.

If only theh-vector is to be computed, then one uses

-p Hilbert polynomial

This mode is much faster than-n. It also computes the height 1 elements of the Hilbert basis.

Finally, for the application to lattice polytopes (but alsofor other homogeneous cases), the
computation of Hilbert bases can be restricted to the height1 elements (without theh-vector):

-1 height 1 elements: the same as-n, but only height 1 elements are computed, using
a partial triangulation. See also-N below.

The last mode is again faster than-p.

4.1.2 Computation modes for large examples

For some challenging examples it has proved extremely efficient to avoid the computation of
full triangulations. See [3] and Section 8. The partial triangulation type for the computation
of Hilbert bases is activated by

-N Hilbert basis.

The only loss of-N in comparison with-n is that one cannot compute the multiplicity in the
homogeneous case (and looses the full triangulation). Therefore, if only the Hilbert basis is of
interest, it may be a good idea to use-N.

The following input files in theexample subdirectory should be processed with the option-N:

• A443.in, A543.in, A553.in, A643.in, semigraphoid5.in.

See Section 8 for an indication of computation times. The first of these examples,A443.in,
can also be run with-n (the default) or-h.

12

Moreover, we have implemented variants of-s and-v that are faster for sufficiently large
examples.

-S support hyperplanes pyramids: the same as-s based on a different algorithm,
-V triangulation pyramids: similar replacement for-v.

The first example for which-S yields a better computation time than-s is A553.in, but
alreadyA443.in shows that-V is advantageous from a certain order of magnitude on.

We plan to develop an automatic choice of algorithms and an extension of the ideas behind-S
and-V.

4.1.3 The dual algorithm

In types 4, 5 and 6 it is often faster to use a Hilbert basis algorithm originally due to Pottier
[7] that we call thedualalgorithm, in contrast to theprimal (triangulation based) algorithm of
Normaliz. (See [5] for our version of the dual algorithm.) The dual algorithm is invoked by

-d dual

See Section 8 for a comparison of performance on various examples.

4.2 Control of output files

In the default settingNormaliz writes only the output file<projectname>.out. The amount
of output files can be increased in two steps:

-f Normaliz writes the additional output files with suffixesgen, cst, inv andtyp, provided
the data of these files have been computed.

-a Normaliz writes all available output files.

For the list of potential output files and their interpretation see Section 7.

4.3 Control of execution

The options that control the execution are:

-c activates the verbose (“control”) behavior ofNormaliz in whichNormaliz writes addi-
tional information about its current activities to the standard output.

-e activates the overflow error check ofnorm64. Ignored bynormbig.
-x=<T> There<T> stands for a positive integer limiting the number of threadsthatNormaliz

is allowed access on your system. The default value is set by the operating system. If
you want to runNormaliz in a strictly serial mode, choose<T>= 1.

The number of threads can also be controlled by the environment variableOMP_NUM_THREADS.
See Section 8 for further discussion.

The options-i and-m of version 2.2 have become obsolete. They will be ignored if present.

13

4.4 Numerical limitations

Even in low dimensions, the range of 64 bit integers may not besufficient for the computations
of Normaliz. Therefore we provide an indefinite precision executablenormbig in addition to
norm64.

Computations withnormbig typically run about 5 times slower than those withnorm64. In
examples that look critical, it may be useful first to trynorm64 with the error check option
activated. This costs time, too, but hardly more than 50% extra.

The user should run the examplecritical64.in in the subdirectoryexamples with norm64

-e in order to see the failure of 64 bit arithmetic. (Running it with normbig takes a while.)

Another way of checkingnorm64 by normbig in the homogeneous case is to havenorm64 -h

followed bynormbig -p and to compareh-vectors.

Note: The Hilbert polynomial is computed bynorm64 only if the rank is≤ 21 since 20! is the
largest factorial representable in 64 bit arithmetic.

5 The output file

The data you will find in the output file depend on the input typeand on the computation
mode. The output file starts with an “abstract” that collectsvarious numerical and qualitative
data, for example the number of elements in the Hilbert basis. The lists of vectors, equations
etc. follow the abstract.

In types6= 2,3 the output file<projectname>.out may contain the following data:

• only for type 10: the original system of generators (see below);
• the Hilbert basisH computed;
• the extreme rays of the coneC generated byH;
• the rank of the latticeE;
• the index of the lattice generated by the original input vectors inE;
• the support hyperplanes ofC;
• a system of equations defining the vector space generated byC;
• a system of congruences definingE as a sublattice ofA (together with the equations);

In the homogeneous case the following extra data may be printed:

• the linear form defining the degree;
• the height 1 elements of the Hilbert basis;
• the multiplicity;
• theh-vector and the coefficients of the Hilbert polynomial.

The (non)homogeneous case is indicated by the statement that the extreme rays are (not)
homogeneous. If the whole Hilbert basis is of height 1, this is indicated as well (despite
of the fact that it can be concluded from the numerical data).Moreover,Normaliz tells you
whether the original system of generators contains the Hilbert basis by indicating whether the
original monoid is integrally closed.

14

Please note:

(1) The equations and support hyperplanestogetherdefine the coneC. While support
hyperplanes will be always present (except for the zero cone), equations will only be
printed if necessary, namely when dimC< rankA.
Similarly, congruences will only be printed if the latticeE is not given byRC∩A. This
can only happen with input matrices of type 1 or 6. The latticeE is defined simultane-
ously by the equations and the congruences.
Even if the cone and the lattice are defined by constraints, the inequalities, equations and
congruences will in general not be reproduced, but replacedby an equivalent system.

(2) The extreme rays are given by the first points inE on them (the extreme integral gener-
ators with respect toE).

(3) In order to lift the linear form defining the degree fromE to A it may be necessary
to replace it by a multiple (in order to avoid fractions as coefficients). In this case the
evaluation of the linear form on the extreme rays will yield adegree> 1. Theh-vector
and the Hilbert polynomial do always refer to the degree inE.

(4) Input matrices of types 0,1, 2 or 3 contain an explicit system of generators. For the
other types6= 10 the extreme rays computed byNormaliz take their place. For type 10
Normaliz first computes the monoidM generated by the residue classes of the canoni-
cal basis ofZn (compare Section 3.3), and they are considered the originalsystem of
generators.

If type= 2 (polytope), the following data may be found in the output file:

• the Hilbert basis of the Ehrhart monoid;
• the lattice points of the polytope;
• the dimension of the polytope;
• the extreme points;
• the support hyperplanes;
• a system of equations defining the affine hull of the polytope;
• the normalized volume;
• theh-vector and the coefficients of the Ehrhart polynomial.

In type= 3 (rees algebra), the output file may contain the following:

• the generators of the integral closureR of the Rees algebra;
• the extreme rays;
• the generators of the integral closure of the ideal;
• the support hyperplanes;
• if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal (not

to be confused with the multiplicity of the monoid).

In the homogeneous case the following extra data may be printed:

• the linear form defining the degree;
• the height 1 elements of the Hilbert basis;
• the multiplicity (of the monoid);
• theh-vector and the coefficients of the Hilbert polynomial.

15

6 Examples

6.1 Generators

6.1.1 Type 0, integral closure

The filerproj2.in contains the following (here typeset in 2 columns):

16

7

1 0 0 0 0 0 0 1 0 1 0 1 0 1

0 1 0 0 0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 0 0 1 0 0 0 1 1 1

0 0 0 1 0 0 0 0 1 1 0 0 1 1

0 0 0 0 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 1 0 0 1 1 1

1 1 1 0 0 0 1 0 0 1 1 1 0 1

1 1 0 1 0 0 1 0 0 1 1 0 1 1

0

This means that we wish to compute the Hilbert basis of the cone generated by the 16 vectors

(1,0,0,0,0,0,0) , (0,1,0,0,0,0,0) , . . . , (0,0,1,1,0,1,1)

in R
7 with respect to the full latticeZ7, as indicated by the final digit that specifies the type.

(Actually, the vectors generate the full lattice so that a replacement of type 0 by type 1 would
not change anything.)

Runningnorm64 with option-h, Hilbert basis polynomial produces the filerproj2.out
which has the following content (partially typeset in 2 columns):

17 Hilbert basis elements

16 height 1 Hilbert basis elements

16 extreme rays

24 support hyperplanes

rank = 7 (maximal)

index = 1

original monoid is not integrally closed

extreme rays are homogeneous via the linear form:

1 1 1 1 1 1 -2

Hilbert basis elements are not homogeneous

multiplicity = 72

h-vector:

16

1 9 31 25 6 0 0

Hilbert polynomial:

1/1 97/30 71/15 49/12 13/6 41/60 1/10

17 Hilbert basis elements: 24 support hyperplanes:

0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 0 1 1 0 0 1 0 0 0 0

0 0 1 1 1 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 1 -1

0 1 0 0 1 1 1 0 1 0 0 1 1 -1

0 1 0 1 1 0 1 0 1 0 1 1 0 -1

0 1 1 0 0 1 1 0 0 1 1 0 1 -1

1 0 0 0 0 0 0 0 1 1 1 1 1 -2

1 0 0 0 1 1 1 0 0 1 1 1 0 -1

1 0 0 1 0 1 1 1 0 0 0 0 0 0

1 0 1 0 1 0 1 1 1 1 1 1 1 -3

1 1 0 1 0 0 1 1 0 0 0 1 1 -1

1 1 1 0 0 0 1 1 0 0 1 0 1 -1

1 1 1 1 1 1 2 1 0 1 0 1 0 -1

1 0 1 1 1 1 -2

16 extreme rays: 1 1 1 0 0 0 -1

1 0 0 0 0 0 0 1 1 1 1 0 1 -2

0 1 0 0 0 0 0 1 1 0 1 0 0 -1

0 0 1 0 0 0 0 1 1 1 0 1 1 -2

0 0 0 1 0 0 0 1 1 1 1 1 0 -2

0 0 0 0 1 0 0 1 1 0 1 1 1 -2

0 0 0 0 0 1 0

1 1 1 0 0 0 1 16 height 1 Hilbert basis elements:

1 1 0 1 0 0 1 0 0 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1

1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1

0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1

0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1

0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1

From this, we see that there are 17 elements in the Hilbert basis and 16 extreme rays, that
the sublattice generated by the input vectors has index 1 inZ

7, and that the corresponding

17

support hyperplanes are given by the linear forms(0,0,0,1,0,0,0), (0,0,0,0,1,0,0), . . . ,
(1,1,0,1,1,1,−2). We are also given the information that the monoid is homogeneous and
that its multiplicity is 72.

Since we are in the homogeneous case, the height 1 elements ofthe Hilbert basis, theh-vector
and Hilbert polynomial of the monoid generated by the Hilbert basis are also computed. The
h-vector is

(h0,h1, . . . ,h6) = (1,9,31,25,6,0,0) ,

and the Hilbert polynomial is given by

P(k) =
1
1
+

97
30

k+
71
15

k2+
49
12

k3+
13
6

k4+
41
60

k5+
1
10

k6 .

The Hilbert polynomial gives the number of elements of degree k, starting from degree 0, as
is always the case for normal monoids.

We omit an example of type 1 since it does not add anything new.

6.1.2 Type 2, polytope

The filepolytop.in:

4

3

0 0 0

2 0 0

0 3 0

0 0 5

polytope

The Ehrhart monoid of the integral polytope with the 4 vertices

(0,0,0) , (2,0,0) , (0,3,0) and (0,0,5)

in R
3 is to be computed. (Note the last line, indicating the polytope type 2.)

Runningnorm64 with option-h, Hilbert basis polynomial produces the filepolytop.out:

19 generators of Ehrhart ring

18 lattice points in polytope

4 extreme points of polytope

4 support hyperplanes

polytope is not integrally closed

dimension of the polytope = 3

normalized volume = 30

h-vector:

18

1 14 15 0

Ehrhart polynomial:

1/1 4/1 8/1 5/1

19 generators of Ehrhart ring: 18 lattice points in polytope:

0 0 0 1 0 0 0

0 0 1 1 0 0 1

0 0 2 1 0 0 2

0 0 3 1 0 0 3

0 0 4 1 0 0 4

0 0 5 1 0 0 5

0 1 0 1 0 1 0

0 1 1 1 0 1 1

0 1 2 1 0 1 2

0 1 3 1 0 1 3

0 2 0 1 0 2 0

0 2 1 1 0 2 1

0 3 0 1 0 3 0

1 0 0 1 1 0 0

1 0 1 1 1 0 1

1 0 2 1 1 0 2

1 1 0 1 1 1 0

2 0 0 1 2 0 0

1 2 4 2

4 extreme points of polytope: 4 support hyperplanes:

0 0 0 -15 -10 -6 >= -30

2 0 0 1 0 0 >= 0

0 3 0 0 1 0 >= 0

0 0 5 0 0 1 >= 0

The desired lattice points are the 18 ones listed above. To complete the picture, we also
provide all the generators of the Ehrhart monoid of the polytope. (There are 19 of them in this
example.) Furthermore, the original polytope is the solution of the system of the 4 inequalities

x3 ≥ 0, x2 ≥ 0, x1 ≥ 0 and 15x1+10x2+6x3 ≤ 30,

and has normalized volume 30.

The last two lines provide the information that theh-vector of the Ehrhart ring is

(h0,h1,h2,h3) = (1,14,15,0) ,

and its Ehrhart polynomial of the polytope is

P(k) = 1+4k+8k2+5k3 .

19

6.1.3 Type 3, rees algebra

Next, let us discuss the examplerees.in:
10

6 0 1 1 0 0 1

1 1 1 0 0 0 0 1 0 1 1 0

1 1 0 1 0 0 0 1 0 0 1 1

1 0 1 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 0 0 1 1 0 1

1 0 0 0 1 1 rees_algebra

Comparing with the data inrproj2.in shows thatrees is the origin ofrproj2.

Here we want to compute the integral closure of the Rees algebra of the ideal generated by
the monomials corresponding to the above 10 exponent vectors. The output inrees.out
coincides with that inrproj2.out, up to notions and the supplementary information on the
integral closure of the ideal:

10 generators of integral closure of the ideal:

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 1 1 1 0 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 1 0 1 0 0

1 0 0 0 1 1 1 1 1 0 0 0

A brief look atrproj2.out shows that exactly the generators with the last coordinate 1have
been extracted. (So the ideal is integrally closed. This is not surprising because we have
chosen squarefree monomials.)

6.2 Constraints

6.2.1 Type 4, hyperplanes

The filedual.in is

24

7

0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 1 1 1 1 -3

0 0 0 0 0 1 0 1 0 0 1 0 1 -1

0 0 0 0 0 0 1 1 0 0 0 1 1 -1

0 0 1 0 0 0 0 1 0 1 0 1 0 -1

0 1 0 0 0 0 0 1 0 1 1 1 1 -2

0 1 0 1 1 0 -1 1 1 0 1 0 0 -1

0 1 0 0 1 1 -1 1 1 1 0 0 0 -1

0 1 1 0 0 1 -1 1 1 1 1 0 1 -2

20

0 0 1 1 1 0 -1 1 1 1 0 1 1 -2

0 0 1 1 0 1 -1 1 1 1 1 1 0 -2

0 1 1 1 1 1 -2 1 1 0 1 1 1 -2

hyperplanes

This means that we wish to compute the Hilbert basis of the cone cut out fromR
7 by the

24 inequalities. (It is the dual of the cone spanned by the 24 linear forms in(R7)∗.). The
inequalities represent exactly the support hyperplanes from the filerproj2.out. The output
in dual.out coincides with that inrproj2.out.

6.2.2 Type 5, equations

Suppose that you have the following “square”

x1 x2 x3

x4 x5 x6

x7 x8 x9

and the problem is to find nonnegative values forx1, . . . ,x9 such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same constantM (called the magic constant). This
leads to a linear system of equations

x1+x2+x3 = x4+x5+x6;

x1+x2+x3 = x7+x8+x9;

x1+x2+x3 = x1+x4+x7;

x1+x2+x3 = x2+x5+x8;

x1+x2+x3 = x3+x6+x9;

x1+x2+x3 = x1+x5+x9;

x1+x2+x3 = x3+x5+x7.

This system of equations is contained in the file3x3magic.in. It ends with the input type5.

The output file contains the following:

5 Hilbert basis elements

5 height 1 Hilbert basis elements

4 extreme rays

4 support hyperplanes

rank = 3

index = 2

original monoid is not integrally closed

extreme rays are homogeneous via the linear form:

21

0 0 0 0 1 0 0 0 0

Hilbert basis elements are homogeneous

multiplicity = 4

h-vector:

1 2 1

Hilbert polynomial:

1/1 2/1 2/1

5 Hilbert basis elements: 6 equations:

2 0 1 0 1 2 1 2 0 -2 1 4 -3 0 0 0 0 0

1 0 2 2 1 0 0 2 1 -1 0 1 -1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 -2 0 2 -1 0 1 0 0 0

1 2 0 0 1 2 2 0 1 -2 0 3 -2 0 0 1 0 0

0 2 1 2 1 0 1 0 2 0 0 -2 1 0 0 0 1 0

-1 0 2 -2 0 0 0 0 1

4 extreme rays:

1 2 0 0 1 2 2 0 1 5 height 1 Hilbert basis elements:

2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0

0 2 1 2 1 0 1 0 2 1 0 2 2 1 0 0 2 1

1 0 2 2 1 0 0 2 1 1 1 1 1 1 1 1 1 1

1 2 0 0 1 2 2 0 1

4 support hyperplanes: 0 2 1 2 1 0 1 0 2

0 -1 0 0 2 0 0 0 0

0 1 2 0 -2 0 0 0 0

0 -1 -2 0 4 0 0 0 0

0 1 0 0 0 0 0 0 0

The 5 elements of the Hilbert basis represent the magic squares

2 0 1
0 1 2
1 2 0

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

1 2 0
0 1 2
2 0 1

0 2 1
2 1 0
1 0 2

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients.

The next question one may rise is: Given a constantM , how many magic square are there
with magic constantM ? All generators have magic constant 3, so there are no magic squares
if M 6= 3k. If M = 3k, then the answer (in this particular case) is given by the Hilbert
polynomial

P(k) = 1+2k+2k2 .

22

Note that the nine inequalitiesxi ≥ 0 shrink to four support hyperplanes of the cone defined
by the inequalities and the equations.

6.2.3 Type 6, congruences

We change our definition of magic square by requiring that theentries in the 4 corners are all
even. Then we have to augment the input file as follows (3x3magiceven.in):

7 4

9 10

1 1 1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 2

1 1 1 0 0 0 -1 -1 -1 0 0 1 0 0 0 0 0 0 2

0 1 1 -1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 2

1 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 2

1 1 0 0 0 -1 0 0 -1 congruences

0 1 1 0 -1 0 0 0 -1

1 1 0 0 -1 0 -1 0 0

equations

The output changes accordingly:

9 Hilbert basis elements

4 extreme rays

4 support hyperplanes

rank = 3

index = 4

original monoid is not integrally closed

extreme rays are not homogeneous

9 Hilbert basis elements: 4 support hyperplanes:

2 4 0 0 2 4 4 0 2 1 0 1 0 -1 0 0 0 0

0 4 2 4 2 0 2 0 4 -1 0 1 0 1 0 0 0 0

2 2 2 2 2 2 2 2 2 -1 0 -1 0 3 0 0 0 0

4 0 2 0 2 4 2 4 0 1 0 -1 0 1 0 0 0 0

2 0 4 4 2 0 0 4 2

2 5 2 3 3 3 4 1 4 6 equations:

4 3 2 1 3 5 4 3 2 -2 1 4 -3 0 0 0 0 0

2 3 4 5 3 1 2 3 4 -1 0 1 -1 1 0 0 0 0

4 1 4 3 3 3 2 5 2 -2 0 2 -1 0 1 0 0 0

-2 0 3 -2 0 0 1 0 0

4 extreme rays: 0 0 -2 1 0 0 0 1 0

4 0 2 0 2 4 2 4 0 -1 0 2 -2 0 0 0 0 1

2 4 0 0 2 4 4 0 2

23

0 4 2 4 2 0 2 0 4 2 congruences:

2 0 4 4 2 0 0 4 2 0 0 1 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 2

As you can see, the equations make two of the input congruences superfluous: it is enough to
require the two corners in the first row to be even. The first congruence is to be read asx1 ≡ 0
mod 2, the second asx3 ≡ 0 mod 2.

6.3 Relations

6.3.1 Type 10, lattice ideal

As an example, we consider the binomial ideal generated by

X2
1X2−X4X5X6, X1X2

4 −X3X5X6, X1X2X3−X2
5X6.

We want to find an embedding of the toric ring it defines.

The input ideallattice_ideal.in is
3

6

2 1 0 -1 -1 -1

1 0 -1 2 -1 -1

1 1 1 0 -2 -1

lattice_ideal

It yields the output
6 original generators

9 Hilbert basis elements

9 height 1 Hilbert basis elements

5 extreme rays

5 support hyperplanes

rank = 3 (maximal)

index = 1

original monoid is not integrally closed

extreme rays are homogeneous via the linear form:

1 -1 1

Hilbert basis elements are homogeneous

multiplicity = 10

h-vector:

1 6 3

24

Hilbert polynomial:

1/1 3/1 5/1

6 original generators: 5 support hyperplanes:

0 1 2 1 0 0

3 2 0 0 1 0

0 0 1 0 0 1

1 1 1 6 -9 7

1 0 0 3 -2 1

1 3 3

9 height 1 Hilbert basis elements:

9 Hilbert basis elements: 1 0 0

1 0 0 0 0 1

0 0 1 2 1 0

2 1 0 1 1 1

1 1 1 0 1 2

0 1 2 3 2 0

3 2 0 2 2 1

2 2 1 1 2 2

1 2 2 1 3 3

1 3 3

5 extreme rays:

0 1 2

3 2 0

0 0 1

1 0 0

1 3 3

The 6 original generators correspond to the indeterminatesX1, . . . ,X6 in the binomial equa-
tions. They represent an embedding of the affine monoid defined by the binomial equations.

7 Optional output files

When one of the options-f or -a is activated,Normaliz writes additional output files whose
names are of type<projectname>.<type>. The format of the files (with the exception of
inv) is completely analogous to that of the input file, except that there is usually no last line
denoting the type. The main purpose of these files is to give the user easy access to the results
of theNormaliz run and to provide additional information not contained in the standard output
file.

The following files may be written, provided certain conditions are satisfied and the informa-

25

tion that should go into them is available (we denote the filessimply by their types):

gen contains the Hilbert basis.
cst contains the constraints defining the cone and the lattice inthe same format as they

would appear in the input: matrices of types 4,5,6 followingeach other. Each matrix
is concluded by the integer denoting its type. Empty matrices are indicated by 0 as the
number of rows. Therefore there will always be 3 matrices.
Using this file as input forNormaliz will reproduce the Hilbert basis and all the other
data computed.

inv contains all the information from the fileout that is not contained in any of the other
files.

typ This is the product of the matrices corresponding toegn andesp. In other words, the
linear forms representing the support hyperplanes of the coneC are evaluated on the
Hilbert basis. The resulting matrix, with the generators corresponding to the rows and
the support hyperplanes corresponding to the columns, is written to this file.
The suffixtyp is motivated by the fact that the matrix in this file depends only on the
isomorphism type of monoid generated by the Hilbert basis (up to row and column
permutations). In the language of [2] it contains thestandard embedding.

The 4 files above are produced with the option-f. If -a is activated, then the following files
are written additionally:

ext contains the extreme rays of the cone.
egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with

respect to a basis ofE.
tgn, tri These files together describe the triangulation computed byNormaliz. (The com-

putation types-N and-d do not compute a triangulation.)
The filetgn contains a matrix of vectors (in the coordinates ofA) spanning the simpli-
cial cones in the triangulation.
The filetri lists the simplicial subcones as follows: The first line contains the number
of simplicial cones in the triangulation, and the next line contains the numberm+ 1
wherem= rankE. Each of the following lines specifies a simplicial cone∆: the first
m numbers are the indices (with respect to the order in the filetgn) of those generators
that span∆, and the last entry is the multiplicity of∆ in E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elements ofE).

ht1 contains the height 1 elements of the Hilbert basis in the homogeneous case.

The file3x3magiceven.in has been processed with the option-a activated. We recommend
you to inspect all the output files in the subdirectoryexample of the distribution.

8 Performance and parallelization

The executables ofNormaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,

26

even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

• It is not a good idea to use parallelization for very small problems.
• On multi-user systems with many processors it may be wise to limit the number of

threads forNormaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normalizoption-x (see Section 4.3) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)

or

set OMP_NUM_THREADS=<T> (Windows)

where<T> stands for the maximum number of threads accessible toNormaliz. We use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.

Limiting the number of threads to 1 forces a strictly serial execution ofNormaliz.

First we compare the performance ofNormaliz on several processor configurations.

mode i5 M520 i7 Xeon Xeon
cores/threads 2 cor, 4 thr 4 cor, 8 thr 1 cor, 1 thr 24 cor, 16 thr

medium -h 15 2.5 9.2 3.9
A443 -h – 340 997 495
A443 -N 6 0.7 2.8 0.6
A543 -N 120 17.5 96 10
A553 -N – 3061 49560 3467

The computation times in the i5 system are based on the Windows version, the others on the
Linux version ofnorm64. Because of lack of memory not all examples could be run on all
systems.

The small difference in computation times forA443 -h in the last two columns results from
the still missing parallelization of the step in the algorithm that is the most time consuming
for this example: the combinatorial evaluation of the very large shelling. The shelling must be
evaluated in strict order. Therefore naive parallelization is not possible, but we have envisaged
a solution for this problem for the next version.

Next we compare the options-s, -S, -v and-V (computation times measured on the Xeon
system with 1 thread).

27

-s -S -v -V

A443 2.7 6.8 1860 392
A543 86 144 – –
A553 37645 10047 – –

semigraphoid5 1880 648 – –

In comparing the options-v and-V one must bear in mind that the difference in time arises
only from the computation of the triangulation. The time forthe computation of the multiplic-
ity is the same for both options (approximately 300 sec forA443).

Finally we compare the primal and the dual algorithm on several examples (computation times
measured on the Xeon system with 16 threads).

-n -d

dual 0.03 0.03
cut 0.2 0.6

small 3 520
rafad 25 ∞

4x4 0.03 0.02
6x6 ∞ 10538

As a rule of thumb, one should use-d if the number of extreme rays is at least one magnitude
larger than that of support hyperplanes. Therefore a previous run with-s (or -S) may help in
choosing the right approach.

The examplesmall is discussed extensively in [5]. The time for-n is based on the input
file in theexample directory whereas the time for-d is based on an input file containing the
support hyperplanes.

9 Distribution and Installation

In order to installNormaliz you should first download the basic package containing the docu-
mentation, examples, source code,jNormaliz and the packages for Singular and Macaulay 2.
Then unzip the downloaded fileNormaliz2.5.zip in a directory of your choice. (Any other
downloaded zip file forNormaliz should be unzipped in this directory, too.)

This process will create a directoryNormaliz2.5 (calledNormaliz directory) and several
subdirectories inNormaliz2.5. The names of the subdirectories created are self-explanatory.
Nevertheless we give an overview:

• In the main directoryNormaliz2.5 you should findjNormaliz.jar, Copying and
subdirectories.

• In the subdirectorysource contains the source files and aMakefile for compilation
with GCC.

• Subdirectorydoc contains the file you are reading and further documentation.

28

• In the subdirectoryexample are the input and output files for some examples It contains
all input files of examples of this documentation, except thetoy examples of Section
3. Some very large output files are contained in an extra zip file accessible from the
Normaliz home page.

• The subdirectorysingular contains the SINGULAR library normaliz.lib and a PDF
file with documentation.

• The subdirectorymacaulay2 contains the MACAULAY 2 packageNormaliz.m2.
• The subdirectorylib contains libraries forjNormaliz.

We provide executables for Windows, Linux (each in a 32 bit and a 64 bit version) and Mac.
Download the archive file corresponding to your systemNormaliz2.5<systemname>.zip

and unzip it. This process will store the two executables in the directoryNormaliz2.5. In
case you want to runNormaliz from the command line or use it from other systems, you may
have to copy the executables to a directory in the search pathfor executables.

10 Compilation

10.1 GCC

Produce the executables by callingmake in the subdirectorysource. You may have to trans-
port the executables to a directory in your search path.jNormaliz expects them in its own
directory.

Note thatnormbig needs GMP (including the C++ wrapper). Therefore you must install it
first.

The current versions of GCC are compatible with our use of OpenMP.Exceptions:

1. One can compile Windows executables with the Cygwin port of GCC. Unfortunately it
is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makes it impossible to use OpenMP.

In both cases, or if you want to avoid parallelization, callmake OPENMP=no.

10.2 Visual C++

The Windows executables provided by us have been compiled with Visual C++ (as contained
in Visual Studio 9).

If you want to compileNormaliz yourself by Visual C++, please unzip the corresponding zip
file on theNormaliz home page. This will create a subdirectoryVisual C++ of theNormaliz

directory. This directory contains the predefined projects. For both projects (norm64 and
normbig we have provided

1. two configurations:Release (with OpenMP) andReleaseSerial (without OpenMP),
and

29

2. two platforms,Win32 andx64.

Instead of GMP we use the MPIR library for the Windows versions of normbig. For con-
venience, the MPIR files have been included in the distribution (in the subdirectoryMPIR of
Visual C++). Please

• copy the library files for Win32 into thelib subdirectory of the Visual C++ compiler,
• the library files for x64 to the subdirectoryamd64 (or x64) of lib, and
• the two header files to theinclude subdirectory of the compiler.

After the compilation with Visual C++ you must copy the executables to the directories where
they are expected (theNormaliz directory or a directory in the search path).

The source files for Visual C++ are identical to those for GCC.

11 Changes relative to version 2.0

Changes in version 2.1:

User control, input and output:

1. The command line option-i forcesNormaliz to ignore a potentially existing setup file. This is
useful if an external program wants to keep complete control(see Section 4). In case the setup
file does not exist,-i keepsNormaliz from issuing a warning message. (Obsolete)

2. In addition to the choice of the type via a single digit in the last line of the input file, the type
can now be specified by a keyword (see Section 3).

3. In the homogeneous caseNormaliz also lists the “height 1” elements in the Hilbert basis (and
writes them to a file with suffixht1 if requested); see Sections 5 and 6.

4. The structure of the file with suffixinv (used for the communication with computer algebra
systems) has been changed from a SINGULAR command to a neutral format.

Algorithms:

1. In types 4 and 5 in which the input is given as a system of homogeneous linear inequalities
or equations resp., it is often (but by no means always) better to use (a variant of) Pottier’s
algorithm. The user can choose this algorithm by the commandline option -d representing
“dual” (see Section 8).

Access from computer algebra systems:

1. a package for MACAULAY 2.

2. library for SINGULAR extended by functions for torus invariants and valuation rings.

Changes in version 2.2:

User control, input and output:

1. New command line option-e to activate test for arithmetic errors.

2. New command line option-m to save memory at the expense of computation time. This option
replaces “optimize for speed” in version 2.1.

30

3. New command line option-? to print a small help text.

4. Name of setup file changed fromsetup.txt to normaliz.cfg.

5. It is now possible to give the input file with the ending ”.in” (but not recommended).

6. Option “Abort by user” removed. The program exits if an error is detected.

7. Renamed “Run mode” to “Computation type” for clearer distinction to the (run) mode.

8. Renamed “Testing number” to “Overflow Test Modulus”, “Lifting constant” to “Lifting bound”
and “Use control data” to “Verbose”.

9. File extension.hom changed to.ht1.

10. In type2=polytope the vectors in the file.ext are given as extreme rays of the cone over the
polytope (vertices of the polytope in the previous version).

Changes in version 2.5:

User control, input and output:

1. Introduction ofjNormaliz.

2. Setup file abolished. Option-i therefore obsolete.

3. Option-m obsolete because of improved algorithm.

4. New input types 6 and 10. Moreover, combination of 4, 5 and 6allowed.

5. Output file reorganized. Equations and congruences added.

6. Filesup replaced bycst containing a full system of constraints.

7. Filetri supplemented by filetgn (necessary since the reference to the input file is not always
possible).

Algorithms and implementation:

1. Several details improved. Memory usage reduced.

2. Shelling algorithm improved considerably.

3. Algorithms for large examples added.

4. Parallelization for shared memory systems.

5. norm32 abolished.

6. More general notion of homogeneity.

Access from computer algebra systems:

1. MACAULAY 2 package restructured by Gesa Kämpf.

2. MACAULAY 2 package and SINGULAR library adapted.

12 Copyright

Normaliz 2.5 is free software licensed under the GNU General Public License, version 3. You
can redistribute it and/or modify it under the terms of the GNU General Public License as

31

published by the Free Software Foundation, either version 3of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer toNormaliz in any publication for which it has been used:

W. Bruns, B. Ichim and C. Söger:Normaliz. Algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normaliz.

References

[1] V. Almendra and B. Ichim.jNormaliz 1.0..

[2] W.Bruns and J. Gubeladze.Polytopes, rings, and K-theory. Springer 2009.

[3] W.Bruns, R. Hemmecke, B. Ichim, M. Köppe and C. Söger.Challenging computations of Hilbert
bases of cones associated with algebraic statistics. Exp. Math., to appear.

[4] W.Bruns and J. Herzog.Cohen-Macaulay rings. Rev. ed. Cambridge University Press 1998.

[5] W.Bruns and B. Ichim.Normaliz: algorithms for rational cones and affine monoids.J. Algebra
324 (2010) 1098–1113.

[6] W.Bruns and R. Koch.Computing the integral closure of an affine semigroup. Univ. Iagell. Acta
Math.39 (2001), 59–70.

[7] L. Pottier.The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM Press 1996.

32

	Introduction
	The objectives of Normaliz
	Access from other systems
	Major changes relative to version 2.2
	Future extensions

	Getting started
	The input file
	Generators
	Type 0, integral_closure
	Type 1, normalization
	Type 2, polytope
	Type 3, rees_algebra
	Preparation of the generators

	Constraints
	Type 4, hyperplanes
	Type 5, equations
	Type 6, congruences
	The constraints combined

	Relations
	Type 10, lattice_ideal

	Pointedness
	The zero cone
	Homogeneity

	Running Normaliz
	Computation modes
	Standard modes
	Computation modes for large examples
	The dual algorithm

	Control of output files
	Control of execution
	Numerical limitations

	The output file
	Examples
	Generators
	Type 0, integral_closure
	Type 2, polytope
	Type 3, rees_algebra

	Constraints
	Type 4, hyperplanes
	Type 5, equations
	Type 6, congruences

	Relations
	Type 10, lattice_ideal

	Optional output files
	Performance and parallelization
	Distribution and Installation
	Compilation
	GCC
	Visual C++

	Changes relative to version 2.0
	Copyright

