// Copyright (C) 2003  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_POINT_TrANSFORMS_ABSTRACT_H__
#ifdef DLIB_POINT_TrANSFORMS_ABSTRACT_H__

#include "../matrix/matrix_abstract.h"
#include "vector_abstract.h"
#include <vector>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class point_transform_affine
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an object that takes 2D points or vectors and 
                applies an affine transformation to them.
        !*/
    public:
        point_transform_affine (
            const matrix<double,2,2>& m,
            const dlib::vector<double,2>& b
        );
        /*!
            ensures
                - #get_m() == m
                - #get_b() == b
                - When (*this)(p) is invoked it will return a point P such that:
                    - P == m*p + b
        !*/

        const dlib::vector<double,2> operator() (
            const dlib::vector<double,2>& p
        ) const;
        /*!
            ensures
                - applies the affine transformation defined by this object's constructor
                  to p and returns the result.
        !*/

        const matrix<double,2,2>& get_m(
        ) const;
        /*!
            ensures
                - returns the transformation matrix used by this object.
        !*/

        const dlib::vector<double,2>& get_b(
        ) const;
        /*!
            ensures
                - returns the offset vector used by this object.
        !*/

    };

// ----------------------------------------------------------------------------------------

    template <typename T>
    point_transform_affine find_affine_transform (
        const std::vector<dlib::vector<T,2> >& from_points,
        const std::vector<dlib::vector<T,2> >& to_points
    );
    /*!
        requires
            - from_points.size() == to_points.size()
            - from_points.size() >= 3
        ensures
            - returns a point_transform_affine object, T, such that for all valid i:
                length(T(from_points[i]) - to_points[i])
              is minimized as often as possible.  That is, this function finds the affine
              transform that maps points in from_points to points in to_points.  If no
              affine transform exists which performs this mapping exactly then the one
              which minimizes the mean squared error is selected.  Additionally, if many
              equally good transformations exist, then the transformation with the smallest
              squared parameters is selected (i.e. if you wrote the transformation as a
              matrix then we say we select the transform with minimum Frobenius norm among
              all possible solutions).
    !*/

// ----------------------------------------------------------------------------------------

    class point_transform_projective
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an object that takes 2D points or vectors and 
                applies a projective transformation to them.
        !*/

    public:

        point_transform_projective (
            const matrix<double,3,3>& m
        );
        /*!
            ensures
                - #get_m() == m
        !*/

        point_transform_projective (
            const point_transform_affine& tran
        );
        /*!
            ensures
                - This object will perform exactly the same transformation as the given
                  affine transform.
        !*/

        const dlib::vector<double,2> operator() (
            const dlib::vector<double,2>& p
        ) const;
        /*!
            ensures
                - Applies the projective transformation defined by this object's constructor
                  to p and returns the result.  To define this precisely:
                    - let p_h == the point p in homogeneous coordinates.  That is:
                        - p_h.x() == p.x()
                        - p_h.y() == p.y()
                        - p_h.z() == 1 
                    - let x == get_m()*p_h 
                    - Then this function returns the value x/x.z()
        !*/

        const matrix<double,3,3>& get_m(
        ) const;
        /*!
            ensures
                - returns the transformation matrix used by this object.
        !*/

    };

// ----------------------------------------------------------------------------------------

    point_transform_projective find_projective_transform (
        const std::vector<dlib::vector<double,2> >& from_points,
        const std::vector<dlib::vector<double,2> >& to_points
    );
    /*!
        requires
            - from_points.size() == to_points.size()
            - from_points.size() >= 4
        ensures
            - returns a point_transform_projective object, T, such that for all valid i:
                length(T(from_points[i]) - to_points[i])
              is minimized as often as possible.  That is, this function finds the projective
              transform that maps points in from_points to points in to_points.  If no
              projective transform exists which performs this mapping exactly then the one
              which minimizes the mean squared error is selected. 
    !*/

// ----------------------------------------------------------------------------------------

    class point_transform
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an object that takes 2D points or vectors and 
                rotates them around the origin by a given angle and then
                translates them.
        !*/
    public:
        point_transform (
            const double& angle,
            const dlib::vector<double,2>& translate
        )
        /*!
            ensures
                - When (*this)(p) is invoked it will return a point P such that:
                    - P is the point p rotated counter-clockwise around the origin 
                      angle radians and then shifted by having translate added to it.
                      (Note that this is counter clockwise with respect to the normal
                      coordinate system with positive y going up and positive x going
                      to the right)
        !*/

        template <typename T>
        const dlib::vector<T,2> operator() (
            const dlib::vector<T,2>& p
        ) const;
        /*!
            ensures
                - rotates p, then translates it and returns the result.  The output
                  of this function is therefore equal to get_m()*p + get_b().
        !*/

        const matrix<double,2,2> get_m(
        ) const;
        /*!
            ensures
                - returns the transformation matrix used by this object.
        !*/

        const dlib::vector<double,2> get_b(
        ) const;
        /*!
            ensures
                - returns the offset vector used by this object.
        !*/

    };

// ----------------------------------------------------------------------------------------

    class point_rotator
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an object that takes 2D points or vectors and 
                rotates them around the origin by a given angle.
        !*/
    public:
        point_rotator (
            const double& angle
        );
        /*!
            ensures
                - When (*this)(p) is invoked it will return a point P such that:
                    - P is the point p rotated counter-clockwise around the origin 
                      angle radians.
                      (Note that this is counter clockwise with respect to the normal
                      coordinate system with positive y going up and positive x going
                      to the right)
        !*/

        template <typename T>
        const dlib::vector<T,2> operator() (
            const dlib::vector<T,2>& p
        ) const;
        /*!
            ensures
                - rotates p and returns the result. The output of this function is
                  therefore equal to get_m()*p.
        !*/

        const matrix<double,2,2> get_m(
        ) const;
        /*!
            ensures
                - returns the transformation matrix used by this object.
        !*/
    };

// ----------------------------------------------------------------------------------------

    template <typename T>
    const dlib::vector<T,2> rotate_point (
        const dlib::vector<T,2> center,
        const dlib::vector<T,2> p,
        double angle
    );
    /*!
        ensures
            - returns a point P such that:
                - P is the point p rotated counter-clockwise around the given
                  center point by angle radians.
                  (Note that this is counter clockwise with respect to the normal
                  coordinate system with positive y going up and positive x going
                  to the right)
    !*/

// ----------------------------------------------------------------------------------------

    matrix<double,2,2> rotation_matrix (
         double angle
    );
    /*!
        ensures
            - returns a rotation matrix which rotates points around the origin in a
              counter-clockwise direction by angle radians.
              (Note that this is counter clockwise with respect to the normal
              coordinate system with positive y going up and positive x going
              to the right)
              Or in other words, this function returns a matrix M such that, given a
              point P, M*P gives a point which is P rotated by angle radians around
              the origin in a counter-clockwise direction.
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_POINT_TrANSFORMS_ABSTRACT_H__