// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ONE_VS_ONE_TRAiNER_H__
#define DLIB_ONE_VS_ONE_TRAiNER_H__

#include "one_vs_one_trainer_abstract.h"

#include "one_vs_one_decision_function.h"
#include <vector>

#include "../unordered_pair.h"
#include "multiclass_tools.h"

#include <sstream>
#include <iostream>

#include "../any.h"
#include <map>
#include <set>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename any_trainer,
        typename label_type_ = double
        >
    class one_vs_one_trainer
    {
    public:
        typedef label_type_ label_type;

        typedef typename any_trainer::sample_type sample_type;
        typedef typename any_trainer::scalar_type scalar_type;
        typedef typename any_trainer::mem_manager_type mem_manager_type;

        typedef one_vs_one_decision_function<one_vs_one_trainer> trained_function_type;

        one_vs_one_trainer (
        ) : 
            verbose(false)
        {}

        void set_trainer (
            const any_trainer& trainer
        )
        {
            default_trainer = trainer;
            trainers.clear();
        }

        void set_trainer (
            const any_trainer& trainer,
            const label_type& l1,
            const label_type& l2
        )
        {
            trainers[make_unordered_pair(l1,l2)] = trainer;
        }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

        struct invalid_label : public dlib::error 
        { 
            invalid_label(const std::string& msg, const label_type& l1_, const label_type& l2_
                ) : dlib::error(msg), l1(l1_), l2(l2_) {};

            virtual ~invalid_label(
            ) throw() {}

            label_type l1, l2;
        };

        trained_function_type train (
            const std::vector<sample_type>& all_samples,
            const std::vector<label_type>& all_labels
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(all_samples,all_labels),
                "\t trained_function_type one_vs_one_trainer::train(all_samples,all_labels)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t all_samples.size():     " << all_samples.size() 
                << "\n\t all_labels.size():      " << all_labels.size() 
                );

            const std::vector<label_type> distinct_labels = select_all_distinct_labels(all_labels);

            std::vector<sample_type> samples;
            std::vector<scalar_type> labels;


            typename trained_function_type::binary_function_table dfs;

            for (unsigned long i = 0; i < distinct_labels.size(); ++i)
            {
                for (unsigned long j = i+1; j < distinct_labels.size(); ++j)
                {
                    samples.clear();
                    labels.clear();

                    const unordered_pair<label_type> p(distinct_labels[i], distinct_labels[j]);

                    // pick out the samples corresponding to these two classes
                    for (unsigned long k = 0; k < all_samples.size(); ++k)
                    {
                        if (all_labels[k] == p.first)
                        {
                            samples.push_back(all_samples[k]);
                            labels.push_back(+1);
                        }
                        else if (all_labels[k] == p.second)
                        {
                            samples.push_back(all_samples[k]);
                            labels.push_back(-1);
                        }
                    }


                    if (verbose)
                    {
                        std::cout << "Training classifier for " << p.first << " vs. " << p.second << std::endl;
                    }

                    // now train a binary classifier using the samples we selected
                    const typename binary_function_table::const_iterator itr = trainers.find(p);

                    if (itr != trainers.end())
                    {
                        dfs[p] = itr->second.train(samples, labels);
                    }
                    else if (default_trainer.is_empty() == false)
                    {
                        dfs[p] = default_trainer.train(samples, labels);
                    }
                    else
                    {
                        std::ostringstream sout;
                        sout << "In one_vs_one_trainer, no trainer registered for the (" << p.first << ", " << p.second << ") label pair.";
                        throw invalid_label(sout.str(), p.first, p.second);
                    }
                }
            }

            return trained_function_type(dfs);
        }

    private:

        any_trainer default_trainer;

        typedef std::map<unordered_pair<label_type>, any_trainer> binary_function_table;
        binary_function_table trainers;

        bool verbose;

    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ONE_VS_ONE_TRAiNER_H__