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1 Introduction

1.1 The objectives of Normaliz

The programNormaliz, version 2.5, is mainly a tool for computing the Hilbert [zasf a
rational cone. The rational cone can be given by

(1) asystem of generatogsin a latticeZ";
(2) constraints: a homogeneous linear system of equatmhgaqualities;
(3) generators and relations.

The Hilbert basis of a rational pointed co@én R" is defined with respect to a lattitec Z":
it is the unique minimal system of generators of the mom@itL. The standard choice far
is Z" itself, but forNormaliz this choice can be modified in two ways:

(1) L can be chosen to be the sublatticeZ8fgenerated by;
(2) L can be chosen to be the lattice of solutions of a homogenegstens of congruences
if the cone is specified by equations and inequalities.

In particular,Normaliz solves combined systems of homogeneous diophantine letpaa-
tions, inequalities and congruences. (An extension to aordgeneous systems is envisaged.)
ConverselyNormaliz computes a system of constraints defining the cone and tieel&r
which the Hilbert basis has been computed.

Normaliz has special input types for lattice polytopes (represeloyateir vertices) and mono-
mial ideals (represented by the exponent vectors of theieigeors).

The data computed bMormaliz can be augmented if the monoid is homogeneous in a cer-
tain sense (see Sectibn13.6): if asked to doNs@maliz computes thér-vector and Hilbert
polynomial of the monoid (or its associated algebra).

On the other hand, the data computed can also be restriotagkdmple to the support hyper-
planes of the cone or the lattice points of a lattice polytope

For the mathematical background we refer the readér to [@]4in The terminology follows
[2]. For algorithms ofNormaliz see [5] and[[6]. Some of the recent extensions from version
2.2 to 2.5 are discussed in [3].

The input syntax oNormaliz is always kept backward compatible so that input files foeold
versions can still be used.

1.2 Access from other systems

We provide a 8VGULAR library normaliz.1ib and the packaggormaliz.m2 for MACAU-
LAY 2 that makeéNormaliz accessible from these systems. ThusGLAR or MACAULAY 2
can be used as a comfortable environment for the work Wettmaliz, and, moreoverNor-
maliz can be applied directly to objects belonging to the clas$ésriz rings and monomial
ideals.

Normaliz has been made accessible fremLYMAKE (thanks to Andreas Paffenholz).



1.3 Major changes relative to version 2.2

(1) Two new input types for congruences and lattice ideals,

(2) a Hilbert basis algorithm using partial triangulatipns

(3) a computation mode restricted to lattice points of pubgs,

(4) parallelization for shared memory systems (if wantedhgyuser),

(5) significant improvement of the shelling algorithm,

(6) overall improvement in time and memory usage,

(7) reorganization of the main output file,

(8) the graphical user interfagormaliz by Vinicius Almendra and Bogdan Ichim,
(9) abolition of the setup file and abrm32.

1.4 Future extensions

(1) Inhomogeneous systems of equations, inequalities @mgraences,
(2) a programming interface,

(3) further development of algorithms,

(4) exploitation of symmetries,

(5) optimization of the source code,

(6) more generdh-vector computation,

(7) access from further systems.

2 Getting started

Download
e the zip file with the Normaliz source, documentation, exasam@nd further platform
independent components, and
¢ zip file made with executables for your system

from theNormaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it,r@ctbryNormaliz2.5 (called
Normaliz directory in the following) is created with several subdimgies. (Some versions of
the Windows executables may need the installation of amelibrary; see website.)

In theNormaliz directory operjNormaliz by clicking jNormaliz. jar in the appropriate way.
(We assume that Java is installed on your machine.) IijNbenaliz file dialogue choose one
of the input files in the subdirectogxample, saymedium. in, and pres®&un. In the console

window you can watciNormaliz at work. Finally inspect the output window for the results.

The menus and dialogues ®formaliz are self explanatory, but you can also consult the doc-
umentation([1] via the help menu.
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If the executables prepared cannot be run on your system ythecan download the source
files and compiléNormaliz yourself (see Sectidn 110).

Moreover, one can, and often will, riNormaliz from the command line. This is explained in
Sectior{ 4.

If 64 bit integer precision is not sufficient, then one can usembig instead ofnorm64.
normbig has no restrictions on the integer precision. See Selct@n(#he integer precision
has nothing to do with the address width (32 bit or 64 bit) airyoperating system.)

3 The input file

The input file<projectname>.in consists of one or several matrices (in version 2.5). Each
matrix is built as follows:

(1) The first line contains the number of rows

(2) The second contains the number of columns

(3) The neximlines ofnintegers each contain the rows.

(4) The last line contains a single integer or word specgtime type of input the matrix

presents.

At the moment there are three major types of input matricasiatygeneratorsconstraints
andrelations
For each input type we specify two lattices: t@bient latticeA in which the Hilbert basis
“lives” and theessential latticéE C A which is generated by the Hilbert basis.
In this section we assume thidbrmaliz is run in a computation mode in which the Hilbert
basis is actually computed. (See Seclibn 4 for computatiotes.)



3.1 Generators

The generator types are 0, 1, 2 and 3. If a matrix of one of thgms is in the input file, then
it must be the only matrix in the file.

3.1.1 Type 0, integral_closure

The rows of aqmm x n matrix of type O represemh vectors in the ambient latticé = Z". The
essential lattic& is the smallest direct summand®t that contains the vectors in the matrix.

The vectors are considered as a system of genergtoifsa coneC, andNormaliz computes
the Hilbert basis o€ with respect tde (or, equivalentlyZ").

The nomenclaturéntegral closure is explained by the fact that the Hilbert basis generates
the integral closure of the mono#, ¢ in Z".

A simple example:

Input Hilbert basis
3 10

2 01

20

11

02

integral_closure

In this example, the three input vectors clearly genera@tsitive orthanRi in R?, and the
two unit vectors clearly are the Hilbert basisRf N Z2.

3.1.2 Type 1, normalization

The matrix is interpreted as in type 0, howeteis chosen as the sublattice Af generated
by 4.

The choice of the nameormalization indicates thaNormaliz computes the normalization
of the monoidZ., ¥ . (The computation of such normalizations was the origimall @f Nor-
maliz, hence the name.)

We choose the same input vectors as above, but change thetypealization:

Input Hilbert basis
3 20

2 11

20 02

11

02

normalization

The cone has not changed, but the lattice fiais: now the sublattice df? of all (z;,2,) with
z1+2=0 mod?2.



3.1.3 Type 2, polytope

The rows of the matrix are interpreted as integral points lattice polytope inR", which is
their convex hull.

The coneC is the cone over the polytope, i.e. the cone with apex RTh! generated by the
vectors(x, 1) wherex represents a row of the input matrix. We want to computeghenart
monoid CNZ"+1,

The latticeA is Z"*1, andE is the smallest direct summandAfcontaining the generators of
C.

Type 2 is only a variant of type 0. One obtains the same reaslis type 0 with the extended
vectors(x, 1) as input. However, the text in the output file is adapted tgthigtopal situation.
For an example, see Sectign 6.

3.1.4 Type 3, rees_algebra

In this type the input vectors are considered as exponeonrgecf the generators of a mono-
mial ideall in the polynomial ringK[Xy,...,Xn]. Normaliz computes the normalization of
the Rees algebra of the idda(see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ripXy, . . ., Xy, T] with an auxiliary variabld . Nor-
maliz computes the exponent vector<jifi! of the system of generators. For an example, see
Sectior{ 6.

In type 3 one had = FE = 7z,

3.1.5 Preparation of the generators

After the coordinate transformation to the lattiEe Normaliz divides each generator by the
greatest common divisor of its components. For examplegxtreme rays listed will always
be such divided vectors (re-transformeditp

3.2 Constraints

Inequalities, equations, and congruences defining the aodethe lattice are called con-
straints. Matrices representing them are of types 4, 5 ardl 8hree types can be present in
the input file, and there can be several matrices of each fpe order does not matter. Ma-
trices of the same type will be concatenated. The numberslofmms must of course match:
for the ambient latticeZ" the matrices of types 4 and 5 must haveolumns, and those of
type 6 must have+ 1 columns.

If there is no matrix of type 4, then itis assumed that the uwserts to compute the nonnegative
solutions of the system represented by the matrices of typadéor 6. The input file is
therefore compatible with the types 4 and 5 of previous wesbdfNormaliz.



3.2.1 Type 4, hyperplanes

Arow (&1,...,¢&n) of the input matrix of type 4 represents an inequality

Eixa 4 +&X >0
for the vectorgxy, ..., X,) of R".

Example:
Input Hilbert basis

2 0 -1
2 1 1
10

1 -1

hyperplanes

Normaliz has computed the Hilbert basis of the cone defined by the alitigs x; > 0 and
X1 — X > 0 with respect to the latticg&?.

3.2.2 Type 5, equations

Arow (&1,..., &) of the input matrix of type 5 represents an equation
&iXa+-+énXa =0
for the vectorgxy,...,x,) of R".

Example:

Input Hilbert basis
1 201

3 021

11-2 111
equations

If the input file contains no further matriceSprmaliz has computed the Hilbert basis of the
subcone oft2 defined by the equation +x; — 2x3 = 0.

3.2.3 Type 6, congruences

We consider the rows of a matrix of type 6 to have length 1. Each row(&,...,é&n,C)
represents a congruence
§1z1+---+énza =0 modc

for the element$z, ..., z,) € Z".

Example:

Input Hilbert basis
1 20

3 11

112 02
congruences



If no other matrix is in the input file, theNormaliz computes the Hilbert basis of the positive
orthant intersected with the lattice of all integral vest(#,z) such thatzy +z =0 mod 2
and the result is the same a$in 3.1.2 above.

3.2.4 The constraints combined

LetL be the sublattice df" that consists of the solutions of the system of congruenefisedi
by the input matrix of type 6L(= Z" if there is no matrix of type 6). Moreover létbe the
matrix of type 4 and be the matrix of type 5. Then the co@es given by

C={xeR":Ax>0, Bx=0}.
and the Hilbert basis &€ NL is computed.

The ambient lattice\ is Z", and the essential latticels= L NRC.

If there is no matrix of type 5, then the system of equatioremipty, satisfied by all vectors
of R".

Note that there is always a matrix of type 4, either explyaitlthe input, or implicitly, namely
then x n unit matrix, if there is no matrix of type 4 in the input file ¢bene of type 5 or 6).

See Section 6.2.3 for an example combining types 5 and 6.

3.3 Relations

Relations are another type of constraints. They do notsalsgblattice of." or a subcone of
R", but define a monoid as a quotientZf modulo a system of congruences (in the semigroup
sensel).

Let U be a subgroup ofZ". Then the natural imag® of Z C Z" in the abelian group
G=Z"/U is a submonoid o6. In generalG is not torsionfree, and therefoké may not be
an affine monoid. However the imatyjeof M in the latticeL = G/torsion is an affine monoid.
Normaliz chooses an embeddihg— Z", r = n—rankU, such thalN becomes a submonoid
of Z!, . In general there is no canonical choice for such an embgddirt one can always find
one, providedN has no invertible element except 0. The ambient latticeas th= Z'", and
the essential lattice is, realized as a sublattice &f.

The typical starting point is an idedlC K[Xy,...,X,] generated by binomials

b n
Xflmxna“—Xll-uX,?.

The image ofK[X,...,Xn] in the residue class ring of the Laurent polynomial rig-
KIX{,. .., XY modulo the idealSis exactly the monoid algebi&[M] of the monoidM
above if we leUU be the subgroup ¢t" generated by the differences

(a]_,...,an)—(b]_,...,bn).

Ideals of typeJSare called lattice ideals if they are prime. Singermaliz automatically
passes t&/torsion, it replaced Sby the smallest lattice ideal containing it.



3.3.1 Type 10, lattice_ideal

The rows of the input matrix of type 10 are interpreted as gepes of the subgroup, and
Normaliz performs the computation as just explained.

As an example we consider the binomixis( — X2, X; X4 — XoXs:

Input Hilbert basis
2 30
4 21
1-2 10 12
1-1-11 03

lattice_ideal

In this exampléZ*/U is torsionfree, but we can replace each of the vectors imetimatrix
by a nonzero integral multiple without changing the result.

Type 10 cannot be combined with any other input type—suchrbaation would not make
sense.

3.4 Pointedness

For Hilbert basis computations and triangulatidfte maliz requires the cone to be pointed
(x, —x € C = x=0). Whenever the condition of pointedness is violated aep sthere it
is crucial,Normaliz will stop computations.

Pointedness is checked by testing whether the dual co@afull dimensional, and if not,
then the constructor of the dual cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in the
constructor of the object Full_Cone.
Probable reason: Cone not full dimensional (<=> dual cone not pointed)!

3.5 The zero cone

The zero cone with an empty Hilbert basis is a legitimate @l Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

3.6 Homogeneity

In certain casedlormaliz can compute thé-vector and the Hilbert polynomial of a graded
monoid. A grading of a monoidM is simply a homomorphism degM — Z9 where Z°
contains the degrees. Thibert seriesof M with respect to the grading is the formal Laurent
series

% #{xe M : degx=d} T ... T49,
dez9
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provided all set§x € M : degx = d} are finite. At the momentjormaliz can only handle the
caseg = 1 if the monoid ishomogeneoum the following sense: deg is a linear form on the
essential latticé& such that deg = 1 for all extreme integral generators in the Hilbert basis.
If such a linear form exists, it is uniquely determined, &wdmaliz finds it.

Homogeneity is always satisfied for lattice polytopes. Tleedalgebra is homogeneous in
our sense if and only if all the monomials generating thelidage the same total degree.

Instead of degree we will ugeeightin the following because of its geometric flavor.

Note that the notion of homogeneity used here is more getleaal previous versions of
Normaliz. Its use is compatible with that in![2], provided one refershte monoid generated
by the extreme integral generators.

4 Running Normaliz

The syntax for callindNormaliz from the command line is
norm64 [-svnhlpSVNdafce] [-x=<T>] [<projectname>]

where the options andpbrojectname> are optional. (We assume that the executablen64

or norm64.exe Is in the search path. Otherwise you have to prefix it with table relative
or absolute path.) If n@projectname> is given, the program will ask you for it or display a
help screen.

The option-x differs from the other onexT> represents a positive number assignedxtp
see Section 413.

The help screen can also be displayedbym64 -7.
Normaliz will look for <projectname>.in as input file.
For example, if you input the command

norm64 -c -p —a rafa2416 or norm64 -cpa rafa2416

then the program will take the fileafa2416.1in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulatioe multiplicity, theh-vector and the
Hilbert polynomial will be computed and all the possiblepmuitfiles will be produced.

If you have inadvertently typedafa2416.in as the project name, thétormaliz will first
look for rafa2416.in.in as the input file. If this file doesn't existafa2416.1in will be
loaded.

In the following we explain the various options of Normalihe full text names given appear
in the help screen as well as in the menugNafrmaliz which allows you to choose options
interactively.

The default computation mode is -n. All options that can be activated are switched off
by default.
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Options are evaluated from left to right. Therefore the tdsnutually exclusive options is
used.

4.1 Computation modes
4.1.1 Standard modes

The standard, ascending chain of computation modes is llogving:

-s support hyperplanes: only the support hyperplanes of the cone under consiaerati
are computed.

-v triangulation: includes-s. In addition,Normaliz computes a triangulation and the
multiplicity in the homogeneous case. (For lattice polgsthis is the normalized vol-
ume.)

-n Hilbert basis triangulation (previouslynormal): includes-v. Normaliz com-
putes the Hilbert basis.

-h Hilbert basis polynomial: includes-n. In the homogeneous cad¢ormaliz com-
putes théh-vector and the Hilbert polynomial. This computation modsds the maxi-
mum informationNormaliz can produce.

If only the h-vector is to be computed, then one uses
-p Hilbert polynomial
This mode is much faster tham. It also computes the height 1 elements of the Hilbert basis.

Finally, for the application to lattice polytopes (but afew other homogeneous cases), the
computation of Hilbert bases can be restricted to the hdigiéments (without thie-vector):

-1 height 1 elements: the same asn, but only height 1 elements are computed, using
a partial triangulation. See alsti below.

The last mode is again faster tham

4.1.2 Computation modes for large examples

For some challenging examples it has proved extremely efiico avoid the computation of
full triangulations. Se€ ]3] and Sectidh 8. The partialrtgalation type for the computation
of Hilbert bases is activated by

-N Hilbert basis.

The only loss of-N in comparison with-n is that one cannot compute the multiplicity in the
homogeneous case (and looses the full triangulation).efbie, if only the Hilbert basis is of
interest, it may be a good idea to use

The following input files in thexample subdirectory should be processed with the optibn
e A443.1in, A543.1in, A553.1in, A643.1n, semigraphoidb. in.

See Sectiohl8 for an indication of computation times. Thé dfshese example$443.in,
can also be run withn (the default) orh.
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Moreover, we have implemented variants-ef and -v that are faster for sufficiently large
examples.

-3 support hyperplanes pyramids: the same ass based on a different algorithm,
-V triangulation pyramids: Similar replacement fofv.

The first example for whickS yields a better computation time thais is A553.in, but
alreadyA443. in shows thatV is advantageous from a certain order of magnitude on.

We plan to develop an automatic choice of algorithms and g&mneion of the ideas behir®
and-v.

4.1.3 The dual algorithm

In types 4, 5 and 6 it is often faster to use a Hilbert basisrédlyo originally due to Pottier
[7] that we call thedual algorithm, in contrast to thprimal (triangulation based) algorithm of
Normaliz. (See([5] for our version of the dual algorithm.) The dualoaithm is invoked by

-d dual
See Sectionl8 for a comparison of performance on various jghesm

4.2 Control of output files

In the default settindlormaliz writes only the output fil&projectname>.out. The amount
of output files can be increased in two steps:

-f Normaliz writes the additional output files with suffixgen, cst, inv andtyp, provided
the data of these files have been computed.
-a Normaliz writes all available output files.

For the list of potential output files and their interpredatsee Sectiop 7.

4.3 Control of execution

The options that control the execution are:
-c activates the verbose (“control”) behavior érmaliz in which Normaliz writes addi-
tional information about its current activities to the stard output.
-e activates the overflow error checkdrm64. Ignored bynormbig.
-x=<T> There<T> stands for a positive integer limiting the number of thretidd Normaliz
is allowed access on your system. The default value is sdidgperating system. If
you want to runNormaliz in a strictly serial mode, choosa>= 1.
The number of threads can also be controlled by the envirahwagiableOMP_NUM_THREADS.
See Sectiohl8 for further discussion.

The options-i and-m of version 2.2 have become obsolete. They will be ignoredagent.
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4.4 Numerical limitations

Evenin low dimensions, the range of 64 bit integers may naubicient for the computations
of Normaliz. Therefore we provide an indefinite precision executablenbig in addition to
norm64.

Computations witmormbig typically run about 5 times slower than those wiibrm64. In
examples that look critical, it may be useful first to ttyrm64 with the error check option
activated. This costs time, too, but hardly more than 50%aext

The user should run the exampteitical64. in in the subdirectorgxamples with normé4
-e in order to see the failure of 64 bit arithmetic. (Running ithwhormbig takes a while.)

Another way of checkingorm64 by normbig in the homogeneous case is to havem64 -h
followed bynormbig -p and to comparé-vectors.

Note: The Hilbert polynomial is computed lyorm64 only if the rank is< 21 since 20! is the
largest factorial representable in 64 bit arithmetic.

5 The output file

The data you will find in the output file depend on the input typel on the computation
mode. The output file starts with an “abstract” that colle@sous numerical and qualitative
data, for example the number of elements in the Hilbert bdsie lists of vectors, equations
etc. follow the abstract.

In types+# 2, 3 the output file<projectname>. out may contain the following data:

e only for type 10: the original system of generators (seewglo

the Hilbert basidH computed;

the extreme rays of the co@generated by;

the rank of the latticé;

the index of the lattice generated by the original input oecinE;

the support hyperplanes Gf

a system of equations defining the vector space generat€d by

e a system of congruences definifigas a sublattice of (together with the equations);

In the homogeneous case the following extra data may beepkint

e the linear form defining the degree;

e the height 1 elements of the Hilbert basis;

e the multiplicity;

e theh-vector and the coefficients of the Hilbert polynomial.

The (non)homogeneous case is indicated by the statemdnthth@&xtreme rays are (not)
homogeneous. If the whole Hilbert basis is of height 1, teisndicated as well (despite
of the fact that it can be concluded from the numerical daké)reover,Normaliz tells you
whether the original system of generators contains thedilasis by indicating whether the
original monoid is integrally closed.
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Please note:

1)

(@)
(3)

(4)

The equations and support hyperplat@getherdefine the con&C. While support
hyperplanes will be always present (except for the zero }cawiations will only be
printed if necessary, namely when dinc rankA.

Similarly, congruences will only be printed if the lattiggs not given byRCNA. This
can only happen with input matrices of type 1 or 6. The latide defined simultane-
ously by the equations and the congruences.

Even if the cone and the lattice are defined by constrairgsntgualities, equations and
congruences will in general not be reproduced, but replagexh equivalent system.
The extreme rays are given by the first point&ion them (the extreme integral gener-
ators with respect t@).

In order to lift the linear form defining the degree frdinto A it may be necessary
to replace it by a multiple (in order to avoid fractions asflorents). In this case the
evaluation of the linear form on the extreme rays will yieldesgree> 1. Theh-vector
and the Hilbert polynomial do always refer to the degrek.in

Input matrices of types 0,1, 2 or 3 contain an explicittegsof generators. For the
other types# 10 the extreme rays computed Ngrmaliz take their place. For type 10
Normaliz first computes the monoidll generated by the residue classes of the canoni-
cal basis ofZ" (compare Sectioh 3.3), and they are considered the origirsiém of
generators.

If type = 2 (polytope), the following data may be found in the output file:

the Hilbert basis of the Ehrhart monoid;

the lattice points of the polytope;

the dimension of the polytope;

the extreme points;

the support hyperplanes;

a system of equations defining the affine hull of the polytope;
the normalized volume;

theh-vector and the coefficients of the Ehrhart polynomial.

In type= 3 (rees_algebra), the output file may contain the following:

the generators of the integral closugtof the Rees algebra;

the extreme rays;

the generators of the integral closure of the ideal;

the support hyperplanes;

if the ideal is primary to the irrelevant maximal ideal, theltiplicity of the ideal (not
to be confused with the multiplicity of the monoid).

In the homogeneous case the following extra data may beepkint

the linear form defining the degree;

the height 1 elements of the Hilbert basis;

the multiplicity (of the monoid);

the h-vector and the coefficients of the Hilbert polynomial.

15



6 Examples

6.1 Generators
6.1.1 Type 0, integral closure

The filerproj2.in contains the following (here typeset in 2 columns):

16
7

R = O O O O O -
P P, O OO O O
O OO OrFr OO
P O O O Fr OO O
O OO, OO O O
O O Fr OO O O O
B P, O OO O O O
O O O O O O - K
OO R, Pk, Pk, OO O
= = O O O O =
P P, O Fr OO O
Or Pr Pk OrFr O K
_ O, O B, = O
L e i

This means that we wish to compute the Hilbert basis of the gemerated by the 16 vectors
(1,0,0,0,0,0,0), (0,1,0,0,0,0,0), ..., (0,0,1,1,0,1,1)

in R” with respect to the full lattic&’, as indicated by the final digit that specifies the type.
(Actually, the vectors generate the full lattice so that@aeement of type 0 by type 1 would
not change anything.)

Runningnorm64 with option-h, Hilbert basis polynomial produces the fileproj2.out
which has the following content (partially typeset in 2 qohs):

17 Hilbert basis elements

16 height 1 Hilbert basis elements
16 extreme rays

24 support hyperplanes

rank = 7 (maximal)

index =1

original monoid is not integrally closed

extreme rays are homogeneous via the linear form:
111111-2

Hilbert basis elements are not homogeneous
multiplicity = 72

h-vector:
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193125600

Hilbert polynomial:

1/1 97/30 71/15 49/12 13/6 41/60 1/10

>k 3k 3k >k >k 3k 3k 5k >k 3k 3k 3k >k %k 3k 3k >k >k 3k 3k >k >k 3k 3k 3K >k >k >k 3k 3k >k >k %k >k 5k >k >k >k >k 3k >k >k >k >k 3k 5k >k >k >k >k %k 5k >k >k >k %k >k >k >k >k %k %k >k >k >k %k %k > > %k *k

24 support hyperplanes:

17 Hilbert basis elements:

0 0 01 0 0 O
0 0 0 0 1
0 0 0 0 O

0000010

0 O

1 0

1

0 0 0 O

0000100
0001000
0010000
0011011
0011101

0 0 0 0 0 O

0
0

1

0
1
1
1

0 0 0 0 O

1

-1
-1

1
1

0 O

0100000
0100111
0101101
0110011

0 0 1
1

0

0 -1
1

1

-1

1000000
1000111

1 0 -1

1
0 0 0 0 0 O

1

1001011

1010101
1101001
1110001
1111112

-1
-1

1
1

1
0
1

0 0 O
0 O

1
1

1

0 -1

0 0 0-1

1

1

16 extreme rays:

1000000
0100000
0010000
0001000
0000100
0000010

0 0 -1

1

0

16 height 1 Hilbert basis elements:

0000010
0000100
0001000
0010000
060011011
0011101
0100000
0100111
0101101

1110001
1101001
1010101
1001011

0110011
1000000
1000111

1000111
0110011
0101101
0100111
0011101
0011011

1001011
1010101
1101001
1110001

From this, we see that there are 17 elements in the Hilbers laasl 16 extreme rays, that
the sublattice generated by the input vectors has indexZl’ jrand that the corresponding
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support hyperplanes are given by the linear forf0,0,1,0,0,0), (0,0,0,0,1,0,0), ...,
(1,1,0,1,1,1,—2). We are also given the information that the monoid is homegas and
that its multiplicity is 72.

Since we are in the homogeneous case, the height 1 elemeéhtsigilbert basis, the-vector
and Hilbert polynomial of the monoid generated by the Hillb&sis are also computed. The
h-vector is

(ho,hy,...,hg) =(1,9,31,25,6,0,0),

and the Hilbert polynomial is given by

1 97 71, 49. 13, 41. 1
PK)= >4 —Kk+ —Kk2+ K3+ K4+ “Kk°4+ —K5.
K=tz B+ K+ 5Ktk T 10

The Hilbert polynomial gives the number of elements of dedgestarting from degree 0, as
is always the case for normal monoids.

We omit an example of type 1 since it does not add anything new.

6.1.2 Type 2, polytope

The filepolytop. in:
4

w O O
o O O

3
0
2
0
0065
polytope

The Ehrhart monoid of the integral polytope with the 4 versic
(0,0,0), (2,0,0), (0,3,00 and (0,0,5)

in R3 is to be computed. (Note the last line, indicating the pgigttype 2.)
Runningnorm64 with option-h, Hilbert basis polynomial produces the filpolytop.out:

19 generators of Ehrhart ring

18 lattice points in polytope

4 extreme points of polytope

4 support hyperplanes

polytope is not integrally closed

dimension of the polytope = 3
normalized volume = 30

h-vector:
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114 15 0

Ehrhart polynomial:
1/1 4/1 8/1 5/1

>k 3k 3k >k >k 3k 3k 5k >k 3k 3k 3k >k %k 3k 3k >k >k 3k 3k >k >k 3k 3k 3K >k >k >k 3k 3k >k >k %k >k 5k >k >k >k >k 3k >k >k >k >k 3k 5k >k >k >k >k %k 5k >k >k >k %k >k >k >k >k %k %k >k >k >k %k %k > > %k *k

[EY
Ne]
[E
(0]

generators of Ehrhart ring:
01

lattice points in polytope:
0

P NP, P PP OO0 O0O0O00O0O 00O o OoOOo
N O Fr OO0 WNNF, P, P, P, OOOOOO
B O O NP, OO, O WNEFE OO P WwN -
N, P, RP,rPRP,rPRPrPPPRPPRPRPRPRPRPRPRRPRRPRRPRRPRRRBRER
NP, P, PP OOOOOOOOOOoOOoOOoOOo
O P OO O WMNNF, P, EFP,EFP,OOOOODO
OO NP, OOF, O WNEFE OO WN-

4 extreme points of polytope: 4 support hyperplanes:
00 -15 -10 -6 >= -30

1 0 0>= 0

0O 1 0 >= 0

0
2
0
0 0 0 1 >= 0

O w o
o1 O O

The desired lattice points are the 18 ones listed above. Mmplate the picture, we also
provide all the generators of the Ehrhart monoid of the ggt (There are 19 of them in this
example.) Furthermore, the original polytope is the solutif the system of the 4 inequalities

x3>0, >0, x>0 and 1% + 10x,+ 6x3< 30,

and has normalized volume 30.
The last two lines provide the information that tme@ector of the Ehrhart ring is

(ho,h1,h2, hg) = (1,14,15,0),
and its Ehrhart polynomial of the polytope is
P(k) = 1+ 4k + 8k + 5k3.
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6.1.3 Type 3, rees_algebra

Next, let us discuss the examplees . in:

10

6 011001
111000 010110
110100 010011
101010 001110
100101 001101
100011 rees_algebra

Comparing with the data iaproj2.in shows thatees is the origin ofrproj2.

Here we want to compute the integral closure of the Rees agatthe ideal generated by
the monomials corresponding to the above 10 exponent \&cfbne output inrees.out
coincides with that inrproj2.out, up to notions and the supplementary information on the
integral closure of the ideal:

10 generators of integral closure of the ideal:

001101
001110
010011 100101
010110 101010
011001 110100
100011 111000

A brief look atrproj2.out shows that exactly the generators with the last coordinizvé
been extracted. (So the ideal is integrally closed. Thisoissurprising because we have
chosen squarefree monomials.)

6.2 Constraints
6.2.1 Type 4, hyperplanes

The filedual.in is

24

7

000100 O 100000 O
000010 O 111111-3
000001 O 100101-1
00000O0 1 100011-1
001000 O 101010 -1
010000 O 101111-2
06010110 -1 110100 -1
010011-1 111000 -1
06011001 -1 111101-2

20



001110 -1 111011-2

001101-1 111110 -2

06011111-2 110111-2
hyperplanes

This means that we wish to compute the Hilbert basis of thes @art out fromR’ by the
24 inequalities. (It is the dual of the cone spanned by thergat forms in(R7)*.). The
inequalities represent exactly the support hyperplarees the filerproj2.out. The output
in dual.out coincides with that inrproj2. out.

6.2.2 Type 5, equations

Suppose that you have the following “square”

X1 | X2 | X3
X4 | X5 | X6
X7 | X8 | X9

and the problem is to find nonnegative valuesdgr . . , xg such that the 3 numbers in all rows,
all columns, and both diagonals sum to the same consta(dalled the magic constant). This
leads to a linear system of equations

X1+ X2+ X3 = X4 + X5 + X6,
X1 4 X2 4= X3 = X7 + Xg + Xo;
X1+ X2+ X3 = X1 + X4 +X7;
X1+ X2+ X3 = X2+ X5+ Xg;
X1 4 X2 4= X3 = X3 + Xg 1+ Xo;
X1+ X2 + X3 = X1 + X5 + Xo;
X1+ Xo 4+ X3 = X3+ X5 + X7.

This system of equations is contained in the 3#@magic. in. It ends with the input typs.
The output file contains the following:

5 Hilbert basis elements

5 height 1 Hilbert basis elements
4 extreme rays

4 support hyperplanes

rank = 3
index = 2

original monoid is not integrally closed

extreme rays are homogeneous via the linear form:

21



000010000
Hilbert basis elements are homogeneous
multiplicity = 4

h-vector:
121

Hilbert polynomial:
1/1 2/1 2/1

>k 3k 3k >k >k 3k 3k 5k >k 5k 5k 3k >k %k 3k 3k >k %k 3k 5k >k >k 3k 5k 3K >k >k 5k 3k 3k >k >k %k 5k 5k >k >k >k 5k 5k >k >k >k >k 3k 3k >k >k >k >k %k 3k >k >k >k %k >k >k >k >k %k %k >k >k >k %k %k > > %k *k

5 Hilbert basis elements: 6 equations:
201012120 -2 1. 4-3 0 0 0 0 O
102210021 -1 0 1-1 1 0 0 0 O
111111111 -2 0 2-1 0 1 0 0 O
120012201 -2 0 3-2 0 01 0 O
021210102 0 0-2 1 0 0 0 1 O

-1 0 2-2 0 0 0 0 1

4 extreme rays:

120012201 5 height 1 Hilbert basis elements:
201012120 201012120
021210102 102210021
102210021 111111111
120012201
4 support hyperplanes: 021210102

0-1 0 0 2 0 O
01 2 0-2
0-1-2 0 4
01 0 0 O

o O O
o O O O
o O O O

0
0
0

The 5 elements of the Hilbert basis represent the magic sguar

2101 1/0|2 1(1/1 120 0|2|1
012 2(1|0 1(11 0112 2110
1/2|0 021 1(11 2101 1/0]|2

All other solutions are linear combinations of these sgaiaigh nonnegative integer coeffi-
cients.

The next question one may rise is: Given a const#ithow many magic square are there
with magic constant# ? All generators have magic constant 3, so there are no maiggces
if . # + 3k. If .# = 3k, then the answer (in this particular case) is given by thdeitl
polynomial

P(K) = 1+ 2k + 2K2.
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Note that the nine inequalitieg¢ > 0 shrink to four support hyperplanes of the cone defined
by the inequalities and the equations.
6.2.3 Type 6, congruences

We change our definition of magic square by requiring thaethteées in the 4 corners are all
even. Then we have to augment the input file as foll®xSifagiceven. in):

7 4

9 10

111-1-1-1 0 0 O 1000000002
111 0 0 0-1-1-1 0010000002
011-1 0 0-1 0 O 0000001002
101 0-1 0 0-1 0 0000000012
110 0 0-1 0 0-1 congruences

011 0-1 0 O 0-1

110 0-1 0-1 0 O

equations

The output changes accordingly:

9 Hilbert basis elements
4 extreme rays
4 support hyperplanes

rank = 3
index = 4
original monoid is not integrally closed

extreme rays are not homogeneous

>k 3k 3k >k >k 3k 3k 5k >k 3k 3k 3k >k %k 3k 3k >k >k 3k 3k >k >k 3k 3k 3K >k >k 5k 3k 5k >k >k %k %k 5k >k >k >k 3k 5k >k >k >k >k 3k 3k >k >k >k %k %k 3k >k >k >k >k >k >k >k >k %k %k >k >k >k %k %k > >k %k *k

9 Hilbert basis elements: 4 support hyperplanes:
240024402 101 0-1 0 O O O
042420204 -1 01 01 0 0 0 O
222222222 -1 0-1 0 3 0 0 O O
402024240 1 0-1 0 1 0 O O O
204420042
252333414 6 equations:
432135432 -2 1 4-3 0 0 0 0 O
234531234 -1 0 1-1 1 0 0 O O
414333252 -2 0 2-1 01 0 0 O

-2 0 3-2 0 01 0 O

4 extreme rays: 0 60-2 1 0 0 0 1 O

402024240 -1 0 2-2 0 0 0 0 1

240024402
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042420204 2 congruences:
204420042 0010000002
1000000002

As you can see, the equations make two of the input congresesugeerfluous: it is enough to
require the two corners in the first row to be even. The firsgcoeence is to be read ags=0
mod 2, the second ag =0 mod 2.
6.3 Relations
6.3.1 Type 10, lattice _ideal
As an example, we consider the binomial ideal generated by

XEXo — XaXeXe, X X7 —XaXsXe, X1XoXa — XEXe.

We want to find an embedding of the toric ring it defines.
The inputideallattice_ideal.in is

3
6
21 0-1-1 -1
10-1 2-1 -1
11 1 0-2 -1

lattice_ideal

It yields the output

6 original generators

Hilbert basis elements

height 1 Hilbert basis elements
extreme rays

support hyperplanes

o 01 © ©

rank = 3 (maximal)
index =1
original monoid is not integrally closed

extreme rays are homogeneous via the linear form:
1-11

Hilbert basis elements are homogeneous
multiplicity = 10

h-vector:
163
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Hilbert polynomial:
1/1 3/1 5/1

3k 3k 3k 3k 3k 5k >k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k 3k 5k 5k 3k 5k 3k >k 3k 5k 5k 3k >k 3k 5k 5k 5k 5k 3k >k 3k 5k >k 5k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 5k 5k >k 5k >k 3k 5k %k >k %k >k 5k %k >k %k >k *k

6 original generators: 5 support hyperplanes:
012 1 0 O

320 0 1 O

001 0 0 1

111 6 -9 7

100 3 -2 1

133

9 height 1 Hilbert basis elements:
9 Hilbert basis elements: 00

00

H P~ N WO L, NO -
WNDNNMNNEFE - PP, O
WNFE, ONEF O -
R, N WO N O -
W NNMNNNEFE, -~ -~ O
WNEFE, ONEF O

5 extreme rays:
12

= = O W O
w O O N
w o ~» O

The 6 original generators correspond to the indetermingies., X in the binomial equa-
tions. They represent an embedding of the affine monoid dkbgehe binomial equations.

7 Optional output files

When one of the optionst or -a is activatedNormaliz writes additional output files whose
names are of typ&projectname>.<type>. The format of the files (with the exception of
inv) is completely analogous to that of the input file, except thare is usually no last line
denoting the type. The main purpose of these files is to give@itier easy access to the results
of theNormaliz run and to provide additional information not containedhe standard output
file.

The following files may be written, provided certain conalits are satisfied and the informa-
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tion that should go into them is available (we denote the §iegply by their types):

gen contains the Hilbert basis.

cst contains the constraints defining the cone and the lattitkearsame format as they
would appear in the input: matrices of types 4,5,6 followaagh other. Each matrix
is concluded by the integer denoting its type. Empty masgraxe indicated by O as the
number of rows. Therefore there will always be 3 matrices.
Using this file as input foNormaliz will reproduce the Hilbert basis and all the other
data computed.

inv contains all the information from the fileut that is not contained in any of the other
files.

typ This is the product of the matrices correspondingdga andesp. In other words, the
linear forms representing the support hyperplanes of time Coare evaluated on the
Hilbert basis. The resulting matrix, with the generatorgegponding to the rows and
the support hyperplanes corresponding to the columns jitewto this file.
The suffixtyp is motivated by the fact that the matrix in this file dependly @m the
isomorphism type of monoid generated by the Hilbert basgst(urow and column
permutations). In the language 0f [2] it contains sit@ndard embedding

The 4 files above are produced with the optian If -a is activated, then the following files
are written additionally:

ext contains the extreme rays of the cone.
egn,esp These contain the Hilbert basis and support hyperplanelercoordinates with
respect to a basis d@f.
tgn, tri These files together describe the triangulation computelddemaliz. (The com-
putation types-N and-d do not compute a triangulation.)
The filetgn contains a matrix of vectors (in the coordinates\¢fspanning the simpli-
cial cones in the triangulation.
The filetri lists the simplicial subcones as follows: The first line @ns the number
of simplicial cones in the triangulation, and the next lirm@ins the numbem+ 1
wherem = rankE. Each of the following lines specifies a simplicial cofvethe first
m numbers are the indices (with respect to the order in the g of those generators
that spar\, and the last entry is the multiplicity & in [E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elésnefi).
ht1 contains the height 1 elements of the Hilbert basis in thedgemeous case.

The file3x3magiceven. in has been processed with the optienactivated. We recommend
you to inspect all the output files in the subdirectexrample of the distribution.

8 Performance and parallelization

The executables dflormaliz have been compiled for parallelization on shared memory sys
tems with OpenMP. Parallelization reduces the “real” tirhéhe computations considerably,
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even on relatively small systems. However, one should nd¢restimate the administrational
overhead involved.

e Itis not a good idea to use parallelization for very smalligems.
e On multi-user systems with many processors it may be wisanih the number of
threads foNormaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Nornmgition-x (see Sectiofh 413) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)
or

set OMP_NUM_THREADS=<T> (Windows)
where<T> stands for the maximum number of threads accessiietmaliz. We use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.
Limiting the number of threads to 1 forces a strictly sera@ition ofNormaliz.
First we compare the performanceMdrmaliz on several processor configurations.

mode i5 M520 i7 Xeon Xeon
cores/threads 2 cor, 4 thr| 4 cor, 8 thr| 1 cor, 1 thr| 24 cor, 16 thr
medium -h 15 2.5 9.2 3.9
A443 -h - 340 997 495

A443 -N 6 0.7 2.8 0.6

A543 -N 120 17.5 96 10

A553 -N - 3061 49560 3467

The computation times in the i5 system are based on the Wisdevsion, the others on the
Linux version ofnorm64. Because of lack of memory not all examples could be run on all
systems.

The small difference in computation times 443 -h in the last two columns results from
the still missing parallelization of the step in the alglonit that is the most time consuming
for this example: the combinatorial evaluation of the vemge shelling. The shelling must be
evaluated in strict order. Therefore naive parallelizatgonot possible, but we have envisaged
a solution for this problem for the next version.

Next we compare the optionss, -S, -v and-V (computation times measured on the Xeon
system with 1 thread).
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-s -5 -v| -V
A443 2.7 6.8 | 1860 | 392
A543 86 144 - -
A553 | 37645| 10047 - -
semigraphoid5 | 1880 648 - -

In comparing the optionsv and-V one must bear in mind that the difference in time arises
only from the computation of the triangulation. The timetioe computation of the multiplic-
ity is the same for both options (approximately 300 se\f3).

Finally we compare the primal and the dual algorithm on sshetamples (computation times
measured on the Xeon system with 16 threads).

-n -d
dual | 0.03| 0.03
cut | 0.2 0.6
small 3 520
rafad 25 (o]
4x4 | 0.03| 0.02
6x6 co | 10538

As a rule of thumb, one should use if the number of extreme rays is at least one magnitude

larger than that of support hyperplanes. Therefore a pusvion with-s (or -S) may help in
choosing the right approach.

The examplesmall is discussed extensively ihl[5]. The time fei is based on the input

file in the example directory whereas the time fed is based on an input file containing the
support hyperplanes.

9 Distribution and Installation

In order to instalNormaliz you should first download the basic package containing tlee-do
mentation, examples, source cofermaliz and the packages for Singular and Macaulay 2.
Then unzip the downloaded firmaliz2.5.zip in a directory of your choice. (Any other
downloaded zip file foNormaliz should be unzipped in this directory, too.)

This process will create a directolfprmaliz2.5 (called Normaliz directory) and several

subdirectories iMlormaliz2.5. The names of the subdirectories created are self-explgnat
Nevertheless we give an overview:

e In the main directoryormaliz2.5 you should findjNormaliz. jar, Copying and
subdirectories.

¢ In the subdirectorgource contains the source files andMakefile for compilation
with GCC.

e Subdirectorydoc contains the file you are reading and further documentation.
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¢ Inthe subdirectorgxample are the input and output files for some examples It contains
all input files of examples of this documentation, exceptttheexamples of Section
[3. Some very large output files are contained in an extra &paficessible from the
Normaliz home page.

e The subdirectorgingular contains the 8IGULAR library normaliz.1ib and a PDF
file with documentation.

e The subdirectoryacaulay?2 contains the MCAULAY 2 packag&lormaliz.m2.

e The subdirectoryib contains libraries fojNormaliz.

We provide executables for Windows, Linux (each in a 32 bt ar64 bit version) and Mac.
Download the archive file corresponding to your syst&vmaliz2.5<systemname>.zip

and unzip it. This process will store the two executablehendirectoryNormaliz2.5. In
case you want to ruNormaliz from the command line or use it from other systems, you may
have to copy the executables to a directory in the searchfpaéxecutables.

10 Compilation

10.1 GCC

Produce the executables by callingke in the subdirectorgource. You may have to trans-
port the executables to a directory in your search pfitfarmaliz expects them in its own
directory.

Note thatnormbig needs GMP (including the C++ wrapper). Therefore you mustailhit
first.

The current versions of GCC are compatible with our use off®e Exceptions:

1. One can compile Windows executables with the Cygwin po@©C. Unfortunately it
is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makepassible to use OpenMP.
In both cases, or if you want to avoid parallelization, ealke OPENMP=no.

10.2 Visual C++

The Windows executables provided by us have been compiliovigual C++ (as contained
in Visual Studio 9).

If you want to compileNormaliz yourself by Visual C++, please unzip the corresponding zip
file on theNormaliz home page. This will create a subdirectysual C++ of the Normaliz
directory. This directory contains the predefined projedtsr both projectsnorm64 and
normbig we have provided

1. two configurationsRelease (with OpenMP) antkeleaseSerial (without OpenMP),
and
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2. two platformsWin32 andx64.

Instead of GMP we use the MPIR library for the Windows versiofinormbig. For con-
venience, the MPIR files have been included in the distrougin the subdirectoryiPIR of
Visual C++). Please

e copy the library files for Win32 into theib subdirectory of the Visual C++ compiler,
e the library files for x64 to the subdirectosnd64 (or x64) of 1ib, and
e the two header files to thinclude subdirectory of the compiler.

After the compilation with Visual C++ you must copy the exethles to the directories where
they are expected (tHdormaliz directory or a directory in the search path).

The source files for Visual C++ are identical to those for GCC.

11 Changes relative to version 2.0

Changesin version 2.1
User control, input and output:

1. The command line optioni forcesNormaliz to ignore a potentially existing setup file. This is
useful if an external program wants to keep complete colsexe Sectiohl4). In case the setup
file does not exist; i keepsNormaliz from issuing a warning message. (Obsolete)

2. In addition to the choice of the type via a single digit ie tast line of the input file, the type
can now be specified by a keyword (see Sedtion 3).

3. In the homogeneous cablermaliz also lists the “height 1” elements in the Hilbert basis (and
writes them to a file with suffixit 1 if requested); see Sections 5 dnd 6.

4. The structure of the file with suffixnv (used for the communication with computer algebra
systems) has been changed froma@&LAR command to a neutral format.

Algorithms:

1. In types 4 and 5 in which the input is given as a system of lg@meous linear inequalities
or equations resp., it is often (but by no means always) baiteise (a variant of) Pottier’s
algorithm. The user can choose this algorithm by the comntimedoption -d representing
“dual” (see Sectiofi]8).

Access from computer algebra systems:

1. a package for MCAULAY 2.

2. library for SNGULAR extended by functions for torus invariants and valuatiogsi
Changesin version 2.2
User control, input and output:

1. New command line optiore to activate test for arithmetic errors.

2. New command line optioam to save memory at the expense of computation time. Thismptio
replaces “optimize for speed” in version 2.1.
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10.

New command line optioa? to print a small help text.

Name of setup file changed frogetup.txt tonormaliz.cfg.

It is now possible to give the input file with the ending ".{but not recommended).
Option “Abort by user” removed. The program exits if arpelis detected.

Renamed “Run mode” to “Computation type” for cleareridigion to the (run) mode.

Renamed “Testing number” to “Overflow Test Modulus”, ‘tinfy constant” to “Lifting bound”
and “Use control data” to “Verbose”.

File extension hom changed taht1.

In type2=polytope the vectors in the file ext are given as extreme rays of the cone over the
polytope (vertices of the polytope in the previous version)

Changesin version 2.5:

User control, input and output:

1.

N o ok~ wDd

Introduction ofiNormaliz.

Setup file abolished. Optiori therefore obsolete.

Option-m obsolete because of improved algorithm.

New input types 6 and 10. Moreover, combination of 4, 5 aatldsved.
Output file reorganized. Equations and congruences added

File sup replaced byst containing a full system of constraints.

Filetri supplemented by filegn (necessary since the reference to the input file is not always
possible).

Algorithms and implementation:

o~ WD

6.

Several details improved. Memory usage reduced.
Shelling algorithm improved considerably.
Algorithms for large examples added.
Parallelization for shared memory systems.
norm32 abolished.

More general notion of homogeneity.

Access from computer algebra systems:

1.
2.

12

MACAULAY 2 package restructured by Gesa Kampf.
MACAULAY 2 package andIS8GULAR library adapted.
Copyright

Normaliz 2.5 is free software licensed under the GNU General Pubtierise, version 3. You
can redistribute it and/or modify it under the terms of thelNeneral Public License as
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published by the Free Software Foundation, either versiirtl3e License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITRID ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR PARTICULAR
PURPOSE. See the GNU General Public License for more details

You should have received a copy of the GNU General Publicriseealong with the program.
If not, see http://www.gnu.org/licenses/.

Please refer tdlormaliz in any publication for which it has been used:

W. Bruns, B. Ichim and C. SogeNormaliz. Algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normali
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