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1 Introduction 

OpenMM consists of two parts: 

 

1. A set of libraries that lets programmers easily add molecular simulation features to 

their programs 

2. An “application layer” that exposes those features to end users who just want to run 

simulations 

 

This guide is devided into three sections: 

 

• Part I (Chapters 2-7) describes the application layer.  It is relevant to all users, but 

especially relevant to people who want to use OpenMM as a stand-alone application 

for running simulations. 

• Part II (Chapters 8-16) describes how to use the OpenMM libraries within your own 

applications.  It is primarily relevant to programmers who want to write simulation 

applications. 

• Part III (Chapters 17-21) describes the mathematical theory behind the features 

found in OpenMM.  It is relevant to all users. 

 

1.1 Online Resources 

You can find more documentation and other material at our website 

http://simtk.org/home/openmm.   Among other things there is a discussion forum, a wiki, 

and videos of lectures on using OpenMM. 

 

1.2 Referencing OpenMM 
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Any work that uses OpenMM should cite the following publication: 

 

P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A. 

Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. 

Shirts, and V. S. Pande. "OpenMM 4: A Reusable, Extensible, Hardware Independent 

Library for High Performance Molecular Simulation." J. Chem. Theor. Comput. In press. 

(2012). 

 

We depend on academic research grants to fund the OpenMM development efforts; citations 

of our publication will help demonstrate the value of OpenMM. 



 

 

 

 

 

 

 
 

 

Part I 
Application Guide



 

 

2 Introduction to the 
OpenMM Application 
Layer 

The first thing to understand about the OpenMM “application layer” is that it is not exactly 

an application in the traditional sense: there is no program called “OpenMM” that you run.  

Rather, it is a collection of libraries written in the Python programming language.  Those 

libraries can easily be chained together to create Python programs that run simulations.  But 

don’t worry!  You don’t need to know anything about Python programming (or programming 

at all) to use it.  Nearly all molecular simulation applications ask you to write some sort of 

“script” that specifies the details of the simulation to run.  With OpenMM, that script 

happens to be written in Python.  But it is no harder to write than those for most other 

applications, and this guide will teach you everything you need to know.  There is even a 

graphical interface that can write the script for you based on a simple set of options (see 

section 4.4), so you never need to type a single line of code! 

 

On the other hand, if you don’t mind doing a little programming, this approach gives you 

enormous power and flexibility.  Your script has complete access to the entire OpenMM 

application programming interface (API), as well as the full power of the Python language 

and libraries.  You have complete control over every detail of the simulation, from defining 

the molecular system to analyzing the results. 
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3 Installing OpenMM 

Follow these instructions to install OpenMM.  There also is an online troubleshooting guide 

that describes common problems and how to fix them 

(http://wiki.simtk.org/openmm/FAQApp). 

3.1 Installing on Mac OS X 

OpenMM works on Mac OS X 10.6 or later.  It may also work on 10.5, but it has not been 

tested, and the OpenCL platform (which enables you to run accelerated calculations using 

OpenCL-supporting GPUs) will not be available.  Also, GPU acceleration is currently only 

supported on Nvidia GPUs, not on AMD or Intel GPUs. 

 

Important: A serious bug was introduced in Mac OS X 10.7.5 that prevents OpenMM’s 

OpenCL platform from working correctly.  At the time of this writing, the bug is present in 

all versions from 10.7.5 onward.  The CUDA platform (see below) is not affected by the bug, 

so if you have an affected version of OS X, you should use it instead of the OpenCL platform. 

 

1. Download the pre-compiled binary of OpenMM for Mac OS X, then double click the .zip 

file to expand it. 

 

2. If you have not already done so, install Apple’s Xcode developer tools from the App Store.  

They are required to use OpenMM.  (With Xcode 4.3 and later, you must then launch Xcode, 

open the Preferences window, go to the Downloads tab, and tell it to install the command 

line tools.  With Xcode 4.2 and earlier, the command line tools are automatically installed 

when you install Xcode.) 

 

3. (Recommended) If you have an Nvidia GPU and want to use the CUDA platform, 

download CUDA 5.0 from https://developer.nvidia.com/cuda-downloads.  Be sure to install 

both the drivers and toolkit. 
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4. Launch the Terminal application.  Change to the OpenMM directory by typing 

 
cd <openmm_directory> 

 

where <openmm_directory> is the path to the OpenMM folder.  Then run the install script 

by typing 

 
sudo ./install.sh 

 

It will prompt you for an install location and the path to the python executable.  Unless you 

are certain you know what you are doing, accept the defaults for both options. 

 

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA libraries, if 

you installed those) to your library path so your computer knows where to find them.  You 

can do this by typing 

 
export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib 

 

This will affect only the particular Terminal window you type it into.  If you want to run 

OpenMM in another Terminal window, you must type the above command in the new 

window. 

 

If you installed OpenMM somewhere other than the default location, you must also set 

OPENMM_PLUGIN_DIR to point to the plugins directory.  For example, 

 
export OPENMM_PLUGIN_DIR=/Users/peter/openmm/lib/plugins 

 

If this variable is not set, it will assume plugins are in the default location 

(/usr/local/openmm/lib/plugins). 

 

If you plan to use the CUDA platform, OpenMM also needs to locate the CUDA kernel 

compiler (nvcc).  By default it looks for it in the location /usr/local/cuda/bin/nvcc.  If you 

have installed the CUDA toolkit in a different location, you can set 

OPENMM_CUDA_COMPILER to tell OpenMM where to find it.  For example, 
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export OPENMM_CUDA_COMPILER=/opt/CUDA/cuda-5.0/bin/nvcc 

 

6. Verify your installation by running the “testInstallation.py” script found in the “examples” 

folder of your OpenMM installation.  To run it, cd to the examples folder and type 

 
python testInstallation.py 

 

This script confirms that OpenMM is installed, checks whether GPU acceleration is available 

(via the OpenCL and/or CUDA platforms), and verifies that all platforms produce consistent 

results. 

 

Important Note: Some Mac laptops have two GPUs, only one of which is capable of running 

OpenMM.   If you have a laptop, open the System Preferences and go to the Energy Saver 

panel.  On OS X 10.6, look for two radio buttons at the top labeled “Better battery life” and 

“Higher performance”.  Make sure that “Higher performance” is selected.  On OS X 10.7 or 

10.8, there will be a single checkbox labeled “Automatic graphics switching”, which should 

be disabled.  Otherwise, trying to run OpenMM may produce an error.  You will only see 

these options if your laptop has two GPUs 

3.2 Installing on Linux 

1. Download the pre-compiled binary of OpenMM for Linux, then double click the .zip file to 

expand it. 

 

2. Make sure you have Python 2.6 or higher (earlier versions will not work) and gcc (we have 

tested various versions between 4.0 and 4.5) installed on your computer.  You can check 

what versions are installed by typing python --version and gcc --version into a console 

window. 

 

3. In a console window, change to the OpenMM directory by typing 

 
cd <openmm_directory> 
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where <openmm_directory> is the path to the OpenMM folder.  Then run the install script 

by typing 

 
sudo ./install.sh 

 

It will prompt you for an install location and the path to the python executable.  Unless you 

are certain you know what you are doing, accept the defaults for both options. 

 

4. (Recommended) Install CUDA and/or OpenCL.  You can run OpenMM without installing 

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated 

computational power of OpenMM without one or the other. 

• If you have an Nvidia GPU, download CUDA 5.0 from 

https://developer.nvidia.com/cuda-downloads.  Be sure to install both the drivers 

and toolkit.  OpenCL is included with the CUDA drivers. 

• If you have an AMD GPU, download the AMD APP SDK from 

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.  

OpenMM requires version 2.4 or later of the SDK and version 11.7 or later of the 

Catalyst driver. 

• If you want to use the OpenCL platform to run accelerated simulations on your CPU, 

there are two options available.  First, you can use the AMD SDK listed above.  

Alternatively, you can download the Intel SDK for OpenCL Applications from 

http://software.intel.com/en-us/vcsource/tools/opencl-sdk. 

 

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA/OpenCL 

libraries, if you installed those) to your library path.  You can do this by typing 

 
export LD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib 

 

This will affect only the particular console window you type it into.  If you want to run 

OpenMM in another console window, you must type the above command in the new 

window. 

 

If you installed OpenMM somewhere other than the default location, you must also set 

OPENMM_PLUGIN_DIR to point to the plugins directory.  For example, 
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export OPENMM_PLUGIN_DIR=/home/peter/openmm/lib/plugins 

 

If this variable is not set, it will assume plugins are in the default location 

(/usr/local/openmm/lib/plugins). 

 

If you plan to use the CUDA platform, OpenMM also needs to locate the CUDA kernel 

compiler (nvcc).  By default it looks for it in the location /usr/local/cuda/bin/nvcc.  If you 

have installed the CUDA toolkit in a different location, you can set 

OPENMM_CUDA_COMPILER to tell OpenMM where to find it.  For example, 

 
export OPENMM_CUDA_COMPILER=/opt/CUDA/cuda-5.0/bin/nvcc 

 

6. Verify your installation by running the “testInstallation.py” script found in the “examples” 

folder of your OpenMM installation.  To run it, cd to the examples folder and type 

 
python testInstallation.py 

 

This script confirms that OpenMM is installed, checks whether GPU acceleration is available 

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce 

consistent results. 

 

3.3 Installing on Windows 

1. Download the pre-compiled binary of OpenMM for Windows, then double click the .zip 

file to expand it.  Move the files to C:\Program Files\OpenMM.  (On 64 bit Windows, use 

C:\Program Files (x86)\OpenMM). 

 

2. Make sure you have the 32-bit version of Python 2.6 or 2.7 (other versions will not work) 

installed on your computer.  To do this, launch the Python program (either the command 

line version or the GUI version).  The first line in the Python window will indicate the 

version you have, e.g., Python 2.6.6, as well as whether you have a 32-bit or 64-bit version. 
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3. Double click the Python API Installer for your version of Python (2.6 or 2.7) to install the 

Python components.  (If you are running on Vista or Windows 7, a “Program Compatibility 

Assistant” window may appear with the warning, “This program might not have installed 

correctly.”  This is just Microsoft trying to scare you.  Click “This program installed correctly” 

and ignore it.) 

 

4. (Recommended) Install CUDA and/or OpenCL.  You can run OpenMM without installing 

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated 

computational power of OpenMM without one or the other. 

 

• If you have an Nvidia GPU, download CUDA 5.0 from 

https://developer.nvidia.com/cuda-downloads.  Be sure to install both the drivers 

and toolkit. For 64-bit machines, you should install the 64-bit driver, but download 

the 32-bit version of the toolkit since the OpenMM binary is 32-bit.  OpenCL is 

included with the CUDA drivers. 

• If you have an AMD GPU, download the AMD APP SDK from 

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.  

OpenMM requires version 2.4 or later of the SDK and version 11.7 or later of the 

Catalyst driver. 

• If you want to use the OpenCL platform to run accelerated simulations on your CPU, 

there are two options available.  First, you can use the AMD SDK listed above.  

Alternatively, you can download the Intel SDK for OpenCL Applications from 

http://software.intel.com/en-us/vcsource/tools/opencl-sdk. 

 

5. Before running OpenMM, you must add the OpenMM libraries to your PATH 

environment variable.  You may also need to add the Python executable to your PATH. 

 

a. To find out if the Python executable is already in your PATH, open a command 

prompt window by clicking on Start -> Programs -> Accessories -> Command 

Prompt.  (On Windows 7, select Start -> All Programs -> Accessories -> Command 

Prompt).  Type 
 

python 
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If you get an error message, such as ‘python’ is not recognized as an 

internal or external command, operable program or batch file, then 

you need to add Python to your PATH.  To do so, locate it by typing 

 
dir C:\py* 

 

The files are typically located in a directory like C:\Python26 or C:\Python27.  Remember 

this location.  You will need to enter it, along with the location of the OpenMM libraries, 

later in this process. 

 

b. Click on Start -> Control Panel -> System (On Windows 7, select Start -> Control 

Panel -> System and Security -> System)  

c. Click on the “Advanced” tab or the “Advanced system settings” link 

d. Click “Environment Variables” 

e. Under “System variables,” select the line for “Path” and click “Edit…” 

f. Add C:\Program Files\OpenMM\lib and C:\Program Files\OpenMM\lib\plugins to 

the “Variable value”.  If you also need to add Python to your PATH, enter that 

directory location here.  Directory locations need to be separated by semi-colons (;). 

 

If you installed OpenMM somewhere other than the default location, you must also set 

OPENMM_PLUGIN_DIR to point to the plugins directory.  If this variable is not set, it will 

assume plugins are in the default location (C:\Program Files\OpenMM\lib\plugins or 

C:\Program Files (x86)\OpenMM\lib\plugins). 

 

6. Verify your installation by running the “testInstallation.py” script found in the “examples” 

folder of your OpenMM installation.  To run it, open a command window, cd to the examples 

folder, and type 

 
python testInstallation.py 

 

This script confirms that OpenMM is installed, checks whether GPU acceleration is available 

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce 

consistent results. 
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4 Running Simulations 

4.1 A First Example 

Let’s begin with our first example of an OpenMM script. It loads a PDB file called 

“input.pdb”, models it using the AMBER99SB force field and TIP3P water model, energy 

minimizes it, simulates it for 10,000 steps with a Langevin integrator, and saves a frame to a 

PDB file called “output.pdb” every 1000 time steps. 

 

from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
from sys import stdout 
 
pdb = PDBFile('input.pdb') 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
simulation = Simulation(pdb.topology, system, integrator)  
simulation.context.setPositions(pdb.positions) 
simulation.minimizeEnergy() 
simulation.reporters.append(PDBReporter('output.pdb', 1000)) 
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True, 

potentialEnergy=True, temperature=True)) 
simulation.step(10000) 

Example 4.1 

 

You can find this script in the “examples” folder of your OpenMM installation.  It is called 

“simulatePdb.py”.  To execute it from a command line, go to your 

terminal/console/command prompt window (see Chapter 0 on setting up the window to use 

OpenMM).  Navigate to the “examples” folder by typing 

 
cd <examples_directory> 
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where the typical directory is /usr/local/openmm/examples on Linux and Mac machines 

and  “C:\Program Files\OpenMM\examples” on Windows machines. 

 

Then type 

 
python simulatePdb.py 

 

You can name your own scripts whatever you want, but their names should end with “.py”. 

Let’s go through the script line by line and see how it works. 

 
from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
from sys import stdout 
 

These lines are just telling the Python interpreter about some libraries we will be using.  

Don’t worry about exactly what they mean.  Just include them at the start of your scripts. 

 
pdb = PDBFile('input.pdb') 
 

This line loads the PDB file from disk.  (The input.pdb file in the examples directory contains 

the villin headpiece in explicit solvent.)  More precisely, it creates a PDBFile object, passes 

the file name input.pdb to it as an argument, and assigns the object to a variable called pdb.  

The PDBFile object contains the information that was read from the file: the molecular 

topology and atom positions.  Your file need not be called “input.pdb”.  Feel free to change 

this line to specify any file you want.  Make sure you include the single quotes around the file 

name. 

 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
 

This line specifies the force field to use for the simulation.  Force fields are defined by XML 

files.  Chapter 7 describes how to write these files, if you are interested in that sort of thing, 

but you probably won’t need to.  OpenMM includes XML files defining lots of standard force 

fields (see section 4.5.2).  In this case we load two of those files: amber99sb.xml, which 

contains the AMBER99SB force field, and tip3p.xml, which contains the TIP3P water model.  
The ForceField object is assigned to a variable called forcefield. 
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system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
 

This line combines the force field with the molecular topology loaded from the PDB file to 

create a complete mathematical description of the system we want to simulate.  (More 

precisely, we invoke the ForceField object’s “createSystem” function.  It creates a System 
object, which we assign to the variable system.)  It specifies some additional options about 

how to do that: use particle mesh Ewald for the long range electrostatic interactions 
(nonbondedMethod=PME), use a 1 nm cutoff for the direct space interactions 

(nonbondedCutoff=1*nanometer), and constrain the length of all bonds that involve a 

hydrogen atom (constraints=HBonds). 

 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
 

This line creates the integrator to use for advancing the equations of motion.  It specifies a 

LangevinIntegrator, which (surprise!) performs Langevin dynamics, and assigns it to a 
variable called integrator.  It also specifies the values of three parameters that are specific 

to Langevin dynamics: the simulation temperature (300K), the friction coefficient (1 ps-1), 

and the step size (0.002 ps). 

 
simulation = Simulation(pdb.topology, system, integrator)  
 

This line combines the molecular topology, system, and integrator to begin a new 
simulation.  It creates a Simulation object and assigns it to a variable called simulation.  A 

Simulation object coordinates all the processes involved in running a simulation, such as 

advancing time and writing output. 

 
simulation.context.setPositions(pdb.positions) 
 

This line specifies the initial atom positions for the simulation: in this case, the positions 

that were loaded from the PDB file. 

 
simulation.minimizeEnergy() 
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This line tells OpenMM to perform a local energy minimization.  It is usually a good idea to 

do this at the start of a simulation, since the coordinates in the PDB file might produce very 

large forces. 

 
simulation.reporters.append(PDBReporter('output.pdb', 1000)) 
 

This line creates a “reporter” to generate output during the simulation, and adds it to the 

Simulation object’s list of reporters.  A PDBReporter writes structures to a PDB file.  We 

specify that the output file should be called “output.pdb”, and that a structure should be 

written every 1000 time steps. 

 
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True, 

potentialEnergy=True, temperature=True)) 
 

It can be useful to get regular status reports as a simulation runs so you can monitor its 

progress.  This line adds another reporter to print out some basic information every 1000 

time steps: the current step index, the potential energy of the system, and the temperature.  
We specify stdout (not in quotes) as the output file, which means to write the results to the 

console.  We also could have given a file name (in quotes), just as we did for the 

PDBReporter, to write the information to a file. 

 
simulation.step(10000) 
 

Finally, we run the simulation, integrating the equations of motion for 10,000 time steps.  

Once it is finished, you can load the PDB file into any program you want for analysis and 

visualization (VMD, PyMol, AmberTools, etc.). 

4.2 Using AMBER Files 

OpenMM can build a system in several different ways.  One option, as shown above, is to 

start with a PDB file and then select a force field with which to model it.  Alternatively, you 

can use AmberTools to model your system.  In that case, you provide a prmtop file and an 

inpcrd file.  OpenMM loads the files and creates a system from them.  This is shown in the 

following script.  It can be found in OpenMM’s “examples” folder with the name 

“simulateAmber.py”. 
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from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
from sys import stdout 
 
prmtop = AmberPrmtopFile('input.prmtop') 
inpcrd = AmberInpcrdFile('input.inpcrd') 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
simulation = Simulation(prmtop.topology, system, integrator)  
simulation.context.setPositions(inpcrd.positions) 
simulation.minimizeEnergy() 
simulation.reporters.append(PDBReporter('output.pdb', 1000)) 
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True, 

potentialEnergy=True, temperature=True)) 
simulation.step(10000) 

Example 4.2 

 

This script is very similar to the previous one.  There are just a few significant differences: 

 
prmtop = AmberPrmtopFile('input.prmtop') 
inpcrd = AmberInpcrdFile('input.inpcrd') 
 

In these lines, we load the prmtop file and inpcrd file.  More precisely, we create 
AmberPrmtopFile and AmberInpcrdFile objects and assign them to the variables prmtop 

and inpcrd, respectively.  As before, you can change these lines to specify any files you want.  

Be sure to include the single quotes around the file names. 

 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
 

This line creates the system.  In the previous section, we loaded the topology from a PDB file 

and then had the force field create a system based on it.  In this case, we don’t need a force 

field; the prmtop file already contains the force field parameters, so it can create the system 

directly. 

 
simulation = Simulation(prmtop.topology, system, integrator)  
simulation.context.setPositions(inpcrd.positions) 
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Notice that we now get the topology from the prmtop file and the atom positions from the 

inpcrd file.  In the previous section, both of these came from a PDB file, but AMBER puts the 

topology and positions in separate files. 

4.3 Using Gromacs Files 

A third option for creating your system is to use the Gromacs setup tools.  They produce a 

gro file containing the coordinates and a top file containing the topology.  OpenMM can load 

these exactly as it did the AMBER files.  This is shown in the following script.  It can be 

found in OpenMM’s “examples” folder with the name “simulateGromacs.py”. 

 

from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
from sys import stdout 
 
gro = GromacsGroFile('input.gro') 
top = GromacsTopFile('input.top', 

unitCellDimensions=gro.getUnitCellDimensions(), 
includeDir='/usr/local/gromacs/share/gromacs/top') 

system = top.createSystem(nonbondedMethod=PME, 
nonbondedCutoff=1*nanometer, constraints=HBonds) 

integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 
0.002*picoseconds) 

simulation = Simulation(top.topology, system, integrator)  
simulation.context.setPositions(gro.positions) 
simulation.minimizeEnergy() 
simulation.reporters.append(PDBReporter('output.pdb', 1000)) 
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True, 

potentialEnergy=True, temperature=True)) 
simulation.step(10000) 

Example 4.3 

 

This script is nearly identical to the previous one, just replacing AmberInpcrdFile and 

AmberPrmtopFile with GromacsGroFile and GromacsTopFile.  Note that when we create the 

GromacsTopFile, we specify values for two extra options.  First, we specify 
unitCellDimensions=gro.getUnitCellDimensions().  Unlike OpenMM and AMBER, 

which store the periodic unit cell dimensions with the topology, Gromacs stores them with 

the coordinates.  To let GromacsTopFile create a Topology object, we therefore need to tell it 

the unit cell dimensions that were loaded from the gro file.  You only need to do this if you 

are simulating a periodic system.  For implicit solvent simulations, it usually can be omitted. 
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Second, we specify includeDir='/usr/local/gromacs/share/gromacs/top'.  Unlike 

AMBER, which stores all the force field parameters directly in a prmtop file, Gromacs just 

stores references to force field definition files that are installed with the Gromacs 
application.  OpenMM needs to know where to find these files, so the includeDir parameter 

specifies the directory containing them.  If you omit this parameter, OpenMM will assume 

the default location /usr/local/gromacs/share/gromacs/top, which is often where they are 

installed on Unix-like operating systems.  So in Example 4.3 we actually could have 

omitted this parameter, but if the Gromacs files were installed in any other location, we 

would need to include it. 

4.4 The Script Builder Application 

One option for writing your own scripts is to start with one of the examples given above (the 

one in section 4.1 if you are starting from a PDB file, section 4.2 if you are starting from 

AMBER prmtop and inpcrd files, or section 4.3 if you are starting from Gromacs gro and top 

files), then customize it to suit your needs.  Another option is to use the OpenMM Script 

Builder application. 
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Figure	  4-‐1:	  	  The	  Script	  Builder	  application	  

 

This is a web application available at https://builder.openmm.org.  It provides a graphical 

interface with simple choices for all the most common simulation options, then 

automatically generates a script based on them.  As you change the settings, the script is 

instantly updated to reflect them.  Once everything is set the way you want, click the “Save 

Script” button to save it to disk, or simply copy and paste it into a text editor. 

4.5 Simulation Parameters 

Now let’s consider lots of ways you might want to customize your script. 

4.5.1 Platforms 
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When creating a Simulation, you can optionally tell it what Platform to use.  OpenMM 

includes three platforms: Reference, CUDA, and OpenCL.  For a description of the 

differences between them, see Section 8.7.  If you do not specify a Platform, it will select one 

automatically.  Usually its choice will be reasonable, but you may want to change it. 

 

The following lines specify to use the CUDA Platform: 

 
platform = Platform.getPlatformByName('CUDA') 
simulation = Simulation(prmtop.topology, system, integrator, platform)  
 
The Platform name should be OpenCL, CUDA, or Reference. 

 

You also can specify Platform-specific properties that customize how calculations should be 

done.  See Chapter 11 for details of the properties that each Platform supports.  For example, 

the following lines specify to parallelize work across two different GPUs (CUDA devices 0 

and 1), doing all computations in double precision: 

 
platform = Platform.getPlatformByName('CUDA') 
properties = {'CudaDeviceIndex': '0,1', 'CudaPrecision': 'double'} 
simulation = Simulation(prmtop.topology, system, integrator, platform, 

properties)  

4.5.2 Force Fields 

 

When you create a force field, you specify one or more XML files from which to load the 

force field definition.  Most often, there will be one file to define the main force field, and 

possibly a second file to define the water model (either implicit or explicit).  For example: 

 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
 

For the main force field, OpenMM provides the following options: 
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File Force Field 

amber96.xml AMBER961 

amber99sb.xml AMBER992 with modified backbone torsions3 

amber99sbildn.xml AMBER99SB plus improved side chain torsions4 

amber99sbnmr.xml AMBER99SB with modifications to fit NMR data5 

amber03.xml AMBER036 

amber10.xml AMBER10 

amoeba2009.xml AMOEBA7 

 

The AMBER files do not include parameters for water molecules.  This allows you to 

separately select which water model you want to use.  For simulations that include explicit 

water molecules, you should also specify one of the following files: 

 

File Water Model 

tip3p.xml TIP3P water model8 

tip4pew.xml TIP4P-Ew water model9 

tip5p.xml TIP5P water model10 

spce.xml SPC/E water model11 

 

For the AMOEBA force field, only one explicit water model is currently available and the 
water parameters are included in the file amoeba2009.xml. Also the AMOEBA force field file 

only includes the parameters for amino acids and ions; nucleic acids will be included in a 

future release. 

 

If you want to include an implicit solvation model, you can also specify one of the following 

files: 
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File Implicit Solvation Model 

amber96_obc.xml 
GBSA-OBC solvation model12 for use with AMBER96 force 

field 

amber99_obc.xml GBSA-OBC solvation model for use with AMBER99 force fields 

amber03_obc.xml GBSA-OBC solvation model for use with AMBER03 force field 

amber10_obc.xml GBSA-OBC solvation model for use with AMBER10 force field 

amoeba2009_gk.xml 
Generalized Kirkwood solvation model13 for use with AMOEBA 

force field 

 

For example, to use the GBSA-OBC solvation model with the Amber99SB force field, you 

would type: 

 
forcefield = ForceField('amber99sb.xml', 'amber99_obc.xml') 
 

If you are running a vacuum simulation, you do not need to specify a water model.  The 

following line specifies the AMBER10 force field and no water model.  If you try to use it 

with a PDB file that contains explicit water, it will produce an error since no water 

parameters are defined: 

 
forcefield = ForceField('amber10.xml') 

4.5.3 AMBER Implicit Solvent 

 

When creating a system from a prmtop file you do not specify force field files, so you need a 
different way to tell it to use implicit solvent.  This is done with the implicitSolvent 

parameter: 

 
system = prmtop.createSystem(implicitSolvent=OBC2) 
 

OpenMM supports most of the implicit solvent models used by AMBER.  Here are the 
allowed values for implicitSolvent: 
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Value Meaning 

None No implicit solvent is used. 

HCT 
Hawkins-Cramer-Truhlar GBSA model14 (corresponds to igb=1 

in AMBER) 

OBC1 
Onufriev-Bashford-Case GBSA model12 using the GBOBCI 

parameters (corresponds to igb=2 in AMBER). 

OBC2 

Onufriev-Bashford-Case GBSA model12 using the GBOBCII 

parameters (corresponds to igb=5 in AMBER).  This is the 

same model used by the GBSA-OBC files described in section 

4.5.2. 

GBn GBn solvation model15 (corresponds to igb=7 in AMBER). 

 

You can further control the solvation model by specifying the dielectric constants to use for 

the solute and solvent: 

 
system = prmtop.createSystem(implicitSolvent=OBC2, soluteDielectric=2.0, 

solventDielectric=80.0) 
 

If they are not specified, the solute and solvent dielectrics default to 1.0 and 78.5, 

respectively.  These values were chosen for consistency with AMBER, and are slightly 

different from those used elsewhere in OpenMM: when building a system from a force field, 

the solvent dielectric defaults to 78.3. 

4.5.4 Nonbonded Interactions 

 

When creating the system (either from a force field or a prmtop file), you can specify options 

about how nonbonded interactions should be treated: 

 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer) 
 
The nonbondedMethod parameter can have any of the following values: 
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Value Meaning 

NoCutoff No cutoff is applied. 

CutoffNonPeriodic 
The reaction field method is used to eliminate all interactions 

beyond a cutoff distance.  Not valid for AMOEBA. 

CutoffPeriodic 

The reaction field method is used to eliminate all interactions 

beyond a cutoff distance.  Periodic boundary conditions are 

applied, so each atom interacts only with the nearest periodic 

copy of every other atom.  Not valid for AMOEBA. 

Ewald 

Periodic boundary conditions are applied.  Ewald summation is 

used to compute long range interactions.  (This option is rarely 

used, since PME is much faster for all but the smallest 

systems.)  Not valid for AMOEBA. 

PME 
Periodic boundary conditions are applied.  The Particle Mesh 

Ewald method is used to compute long range interactions. 

 
When using any method other than NoCutoff, you should also specify a cutoff distance.  Be 

sure to specify units, as shown in the examples above. For example, 

nonbondedCutoff=1.5*nanometers or nonbondedCutoff=12*angstroms are legal values. 

 
When using Ewald or PME, you can optionally specify an error tolerance for the force 

computation.  For example: 

 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001) 
 

The error tolerance is roughly equal to the fractional error in the forces due to truncating the 

Ewald summation.  If you do not specify it, a default value of 0.0005 is used. 
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4.5.4.1 Nonbonded Forces for AMOEBA 

For the AMOEBA force field, the valid values for the nonbondedMethod are NoCutoff and 

PME.  The other nonbonded methods, CutoffNonPeriodic, CutoffPeriodic, and Ewald are 

unavailable for this force field.  

 
For implicit solvent runs using AMOEBA, only the nonbondedMethod option NoCutoff is 

available. 

4.5.4.1.1 Lennard-Jones Interaction Cutoff Value 

In addition, for the AMOEBA force field a cutoff for the Lennard-Jones interaction 

independent of the value used for the electrostatic interactions may be specified using the 
keyword vdwCutoff. 

 
system = forcefield.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001, 
vdwCutoff=1.2*nanometer) 

 
If vdwCutoff is not specified, then the value of nonbondedCutoff is used for the Lennard-

Jones interactions. 

4.5.4.1.2 Specifying the Polarization Method 

OpenMM allows the setting of several other parameters particular to the AMOEBA force 

field.  The mutualInducedTargetEpsilon option allows you to specify the accuracy to 

which the induced dipoles are calculated at each time step; the default value is 0.00001.  The 
polarization setting determines whether the calculation of the induced dipoles is 

continued until the dipoles are self-consistent to within the tolerance specified by 
mutualInducedTargetEpsilon or whether a quick estimate of the induced dipoles is used 

instead.  The first option corresponds to the polarization='mutual' setting and is the 

default; the quick estimate option is given by polarization='direct' and in this case, 

mutualInducedTargetEpsilon is ignored, if provided.  Simulations using 

polarization='direct' will be significantly faster than those with 

polarization='mutual', but less accurate.  Examples using the two options are given 

below: 
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system = forcefield.createSystem(nonbondedMethod=PME, 
nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001, 
vdwCutoff=1.2*nanometer, mutualInducedTargetEpsilon=0.01) 

 
system = forcefield.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001, 
vdwCutoff=1.2*nanometer, polarization ='direct') 

 

4.5.4.1.3 Implicit Solvent and Solute Dielectrics 

For implicit solvent simulations using the AMOEBA force field, the 'amoeba2009_gk.xml' 

file should be included in the initialization of the force field: 

 
forcefield = ForceField('amoeba2009.xml', 'amoeba2009_gk.xml') 

 

Only the nonbondedMethod option NoCutoff is available for implicit solvent runs using 

AMOEBA.  In addition, the solvent and solute dielectric values can be specified for implicit 

solvent simulations: 

 
system=forcefield.createSystem(nonbondedMethod=NoCutoff, 

soluteDielectric=2.0, solventDielectric=80.0) 
 

The default values are 1.0 for the solute dielectric and 78.3 for the solvent dielectric. 

4.5.5 Constraints 

 

When creating the system (either from a force field or a prmtop file), you can optionally tell 

OpenMM to constrain certain bond lengths and angles.  For example, 

 
system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds) 
 

The constraints parameter can have any of the following values: 
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Value Meaning 

None No constraints are applied.  This is the default value. 

HBonds The lengths of all bonds that involve a hydrogen atom are constrained. 

AllBonds The lengths of all bonds are constrained. 

HAngles 
The lengths of all bonds are constrained.  In addition, all angles of the form H-

X-H or H-O-X (where X is an arbitrary atom) are constrained. 

 

The main reason to use constraints is that it allows one to use a larger integration time step.  
With no constraints, one is typically limited to a time step of about 1 fs.  With HBonds 

constraints, this can be increased to about 2 fs.  With HAngles, it can be further increased to 

3.5 or 4 fs. 

 

Regardless of the value of this parameter, OpenMM makes water molecules completely rigid, 

constraining both their bond lengths and angles.  You can disable this behavior with the 
rigidWater parameter: 

 
system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=None, 

rigidWater=False) 
 

Be aware that flexible water may require you to further reduce the integration step size, 

typically to about 0.5 fs. 

4.5.6 Integrators 

 

OpenMM offers a choice of several different integration methods.  You select which one to 

use by creating an integrator object of the appropriate type. 

4.5.6.1 Langevin Integrator 

In the examples of the previous sections, we used Langevin integration: 

 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
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The three parameter values in this line are the simulation temperature (300K), the friction 

coefficient (1 ps-1), and the step size (0.002 ps).  You are free to change these to whatever 

values you want.  Be sure to specify units on all values.  For example, the step size could be 
written either as 0.002*picoseconds or 2*femtoseconds.  They are exactly equivalent. 

4.5.6.2 Leapfrog Verlet Integrator 

A leapfrog Verlet integrator can be used for running constant energy dynamics.  The 

command for this is: 

 
integrator = VerletIntegrator(0.002*picoseconds) 
 

The only option is the step size. 

4.5.6.3 Brownian Integrator 

Brownian (diffusive) dynamics can be used by specifying the following: 

 
integrator = BrownianIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
 

The parameters are the same as for Langevin dynamics: temperature (300K), friction 

coefficient (1 ps-1), and step size (0.002 ps). 

4.5.6.4 Variable Time Step Langevin Integrator 

A variable time step Langevin integrator continuously adjusts its step size to keep the 

integration error below a specified tolerance.  In some cases, this can allow you to use a 

larger average step size than would be possible with a fixed step size integrator.  It also is 

very useful in cases where you do not know in advance what step size will be stable, such as 

when first equilibrating a system.  You create this integrator with the following command:  

 
integrator = VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001) 
 

In place of a step size, you specify an integration error tolerance (0.001 in this example).  It 

is best not to think of this value as having any absolute meaning.  Just think of it as an 

adjustable parameter that affects the step size and integration accuracy.  Smaller values will 

produce a smaller average step size.  You should try different values to find the largest one 

that produces a trajectory sufficiently accurate for your purposes. 
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4.5.6.5 Variable Time Step Leapfrog Verlet Integrator 

A variable time step leapfrog Verlet integrator works similarly to the variable time step 

Langevin integrator in that it continuously adjusts its step size to keep the integration error 

below a specified tolerance.  The command for this integrator is: 

 
integrator = VariableVerletIntegrator(0.001) 
 

The parameter is the integration error tolerance (0.001), whose meaning is the same as for 

the Langevin integrator. 

4.5.7 Temperature Coupling 

 

If you want to run a simulation at constant temperature, using a Langevin integrator (as 

shown in the examples above) is usually the best way to do it.  OpenMM does provide an 

alternative, however: you can use a Verlet integrator, then add an Andersen thermostat to 

your system to provide temperature coupling. 

 

To do this, add a single line to the script as shown below.  (The lines in grey are just for 

context.) 

 
... 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
system.addForce(AndersenThermostat(300*kelvin, 1/picosecond)) 
integrator = VerletIntegrator(0.002*picoseconds) 
... 
 

The two parameters of the Andersen thermostat are the temperature (300K) and collision 

frequency (1 ps-1). 

4.5.8 Pressure Coupling 

 

All the examples so far have been constant volume simulations.  If you want to run at 

constant pressure instead, add a Monte Carlo barostat to your system.  You do this exactly 

the same way you added the Andersen thermostat in the previous section: 
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... 
system = prmtop.createSystem(nonbondedMethod=PME, 

nonbondedCutoff=1*nanometer, constraints=HBonds) 
system.addForce(MonteCarloBarostat(1*bar, 300*kelvin)) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 

0.002*picoseconds) 
... 
 

The parameters of the Monte Carlo barostat are the pressure (1 bar) and temperature 

(300K).  The barostat assumes the simulation is being run at constant temperature, but it 

does not itself do anything to regulate the temperature.  It is therefore critical that you 

always use it along with a Langevin integrator or Andersen thermostat, and that you specify 

the same temperature for both the barostat and the integrator or thermostat.  Otherwise, 

you will get incorrect results. 

4.5.9 Energy Minimization 

 

As seen in the examples, performing a local energy minimization takes a single line in the 

script: 

 
simulation.minimizeEnergy() 
 

In most cases, that is all you need.  There are two optional parameters you can specify if you 

want further control over the minimization.  First, you can specify a tolerance for when the 

energy should be considered to have converged: 

 
simulation.minimizeEnergy(tolerance=10*kilojoule/mole) 
 

If you do not specify this parameter, a default tolerance of 1 kJ/mole is used. 

 

Second, you can specify a maximum number of iterations: 

 
simulation.minimizeEnergy(maxIterations=100) 
 

The minimizer will exit once the specified number of iterations is reached, even if the energy 

has not yet converged.  If you do not specify this parameter, the minimizer will continue 

until convergence is reached, no matter how many iterations it takes. 
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These options are independent.  You can specify both if you want: 

 
simulation.minimizeEnergy(tolerance=0.1*kilojoule/mole, maxIterations=500) 

4.5.10 Removing Center of Mass Motion 

 

By default, OpenMM removes all center of mass motion at every time step so the system as a 

whole does not drift with time.  This is almost always what you want.  In rare situations, you 

may want to allow the system to drift with time.  You can do this by specifying the 
removeCMMotion parameter when you create the System: 

 
system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff, 

removeCMMotion=False) 

4.5.11 Writing Trajectories 

 

OpenMM can save simulation trajectories to disk in two formats: PDB and DCD.  Both of 

these are widely supported formats, so you should be able to read them into most analysis 

and visualization programs. 

 

To save a trajectory, just add a “reporter” to the simulation, as shown in the example scripts 

above: 

 
simulation.reporters.append(PDBReporter('output.pdb', 1000)) 
 

The two parameters of the PDBReporter are the output filename and how often (in number 

of time steps) output structures should be written.  To use DCD format, just replace 

“PDBReporter” with “DCDReporter”.  The parameters represent the same values: 

 
simulation.reporters.append(DCDReporter('output.dcd', 1000)) 

4.5.12 Recording Other Data 
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In addition to saving a trajectory, you may want to record other information over the course 

of a simulation, such as the potential energy or temperature.  OpenMM provides a reporter 

for this purpose also.  Create a StateDataReporter and add it to the simulation: 

 
simulation.reporters.append(StateDataReporter('data.csv', 1000, time=True, 

kineticEnergy=True, potentialEnergy=True)) 
 

The first two parameters are the output filename and how often (in number of time steps) 

values should be written.  The remaining arguments specify what values should be written at 
each report.  The available options are step (the index of the current time step), time, 

potentialEnergy, kineticEnergy, totalEnergy, temperature, volume (the volume of the 

periodic box), and density (the total system mass divided by the volume of the periodic 

box).  One line is written to the file for each report containing the requested values.  By 

default the values are written in comma-separated-value (CSV) format.  You can use the 
separator parameter to choose a different separator.  For example, the following line will 

cause values to be separated by spaces instead of commas: 

 
simulation.reporters.append(StateDataReporter('data.txt', 1000, time=True, 

temperature=True, separator=' ')) 
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5 Model Building and Editing 

Sometimes you have a PDB file that needs some work before you can simulate it.  Maybe it 

doesn’t contain hydrogen atoms (which is common for structures determined by x-ray 

crystallography), so you need to add them.  Or perhaps you want to simulate the system in 

explicit water, but the PDB file doesn’t contain water molecules.  Or maybe it does contain 

water molecules, but they contain the wrong number of interaction sites for the water model 

you want to use.  OpenMM’s Modeller class can fix problems such as these. 

 

To use it, create a Modeller object, providing the initial Topology and atom positions.  You 

then can invoke various modelling functions on it.  Each one modifies the system in some 

way, creating a new Topology and list of positions.  When you are all done, you can retrieve 

them from the Modeller and use them as the starting point for your simulation: 

 

... 
pdb = PDBFile('input.pdb') 
modeller = Modeller(pdb.topology, pdb.positions) 
# ... Call some modelling functions here ... 
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME) 
simulation = Simulation(modeller.topology, system, integrator)  
simulation.context.setPositions(modeller.positions) 

Example 5.1 

Now let’s consider the particular functions you can call. 

5.1 Adding Hydrogens 

Call the addHydrogens function to add missing hydrogen atoms: 

 
modeller.addHydrogens(forcefield) 
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The force field is needed to determine the positions for the hydrogen atoms.  If the system 

already contains some hydrogens but is missing others, that is fine.  The Modeller will 

recognize the existing ones and figure out which ones need to be added. 

 

Some residues can exist in different protonation states depending on the pH and on details 

of the local environment.  By default it assumes pH 7, but you can specify a different value: 

 
modeller.addHydrogens(forcefield, pH=5.0) 

 

For each residue, it selects the protonation state that is most common at the specified pH.  

In the case of Cysteine residues, it also checks whether the residue participates in a disulfide 

bond when selecting the state to use.  Histidine has two different protonation states that are 

equally likely at neutral pH.  It therefore selects which one to use based on which will form a 

better hydrogen bond. 

 

If you want more control, it is possible to specify exactly which protonation state to use for 

particular residues.  For details, consult the API documentation for the Modeller class. 

5.2 Adding Solvent 

Call addSolvent to create a box of solvent (water and ions) around the model: 

 
modeller.addSolvent(forcefield) 
 

This constructs a box of water around the solute, ensuring that no water molecule comes 

closer to any solute atom than the sum of their van der Waals radii.  It also determines the 

charge of the solute, and adds enough positive or negative ions to make the system neutral. 

 

When called as shown above, addSolvent expects that periodic box dimensions were 

specified in the PDB file, and it uses them as the size for the water box.  If your PDB file does 

not specify a box size, or if you want to use a different size, you can specify one: 

 
modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers) 
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This requests a 5 nm by 3.5 nm by 3.5 nm box.  Another option is to specify a padding 

distance: 

 
modeller.addSolvent(forcefield, padding=1.0*nanometers) 

 

This determines the largest size of the solute along any axis (x, y, or z).  It then creates a 

cubic box of width (solute size)+2*(padding).  The above line guarantees that no part of the 

solute comes closer than 1 nm to any edge of the box. 

 

By default, addSolvent creates TIP3P water molecules, but it also supports other water 

models: 

 
modeller.addSolvent(forcefield, model='tip5p') 

 
Allowed values for the model option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'.  Be sure to 

include the single quotes around the value. 

 

Another option is to add extra ion pairs to give a desired total ionic strength.  For example: 

 
modeller.addSolvent(forcefield, ionicStrength=0.1*molar) 

 

This solvates the system with a salt solution whose ionic strength is 0.1 molar.  Note that 

when computing the ionic strength, it does not consider the ions that were added to 

neutralize the solute.  It assumes those are bound to the solute and do not contribute to the 

bulk ionic strength. 

 

By default, Na+ and Cl- ions are used, but you can specify different ones using the 
positiveIon and negativeIon options.  For example, this creates a potassium chloride 

solution: 

 
modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+') 
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Allowed values for positiveIon are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'.  Allowed values for 

negativeIon are 'Cl-', 'Br-', 'F-', and 'I-'.  Be sure to include the single quotes around the 

value.  Also be aware some force fields do not include parameters for all of these ion types, so 

you need to use types that are supported by your chosen force field. 

5.3 Converting Between Water Models 

Call convertWater to change between water models: 

 
modeller.convertWater(model='tip4pew') 

 

This identifies every water molecule in the system (regardless of what water model it 
currently uses) and converts it to the requested water model.  Allowed values for the model 

option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'. 

5.4 Removing Water 

Call deleteWater to remove all water molecules from the system: 

 
modeller.deleteWater() 

 

This is useful, for example, if you want to simulate it with implicit solvent.  Be aware, 

though, that this only removes water molecules, not ions or other small molecules that might 

be considered “solvent”. 

5.5 Saving The Results 

Once you have finished editing your model, you can immediately use the resulting Topology 

and atom positions as the input to a Simulation.  If you plan to simulate it many times, 

though, it is usually better to save the result to a new PDB file, then use that as the input for 

the simulations.  This avoids the cost of repeating the modeling operations at the start of 

every simulation, and also ensures that all your simulations are really starting from exactly 

the same structure. 
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The following example loads a PDB file, adds missing hydrogens, builds a solvent box 

around it, performs an energy minimization, and saves the result to a new PDB file. 

 

from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
 
print('Loading...') 
pdb = PDBFile('input.pdb') 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
modeller = Modeller(pdb.topology, pdb.positions) 
print('Adding hydrogens...') 
modeller.addHydrogens(forcefield) 
print('Adding solvent...') 
modeller.addSolvent(forcefield, model='tip3p', padding=1*nanometer) 
print('Minimizing...') 
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME) 
integrator = VerletIntegrator(0.001*picoseconds) 
simulation = Simulation(modeller.topology, system, integrator) 
simulation.context.setPositions(modeller.positions) 
simulation.minimizeEnergy(maxIterations=100) 
print('Saving...')  
positions = simulation.context.getState(getPositions=True).getPositions() 
PDBFile.writeFile(simulation.topology, positions, open('output.pdb', 'w')) 
print('Done') 

Example 5.2 
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6 Advanced Simulation 
Examples 

In the previous chapter, we looked at some basic scripts for running simulations and saw 

lots of ways to customize them.  If that is all you want to do—run straightforward molecular 

simulations—you already know everything you need to know.  Just use the example scripts 

and customize them in the ways described in section 4.4. 

 

OpenMM can do far more than that.  Your script has the full OpenMM API at its disposal, 

along with all the power of the Python language and libraries.  In this chapter, we will 

consider some examples that illustrate more advanced techniques.  Remember that these are 

still only examples; it would be impossible to give an exhaustive list of everything OpenMM 

can do.  Hopefully they will give you a sense of what is possible, and inspire you to 

experiment further on your own. 

 

Starting in this section, we will assume some knowledge of programming, as well as 

familiarity with the OpenMM API.  Consult the OpenMM Users Guide and API 

documentation if you are uncertain about how something works.   You can also use the 

Python “help” command.  For example, 

 
help(Simulation) 

 

will print detailed documentation on the Simulation class. 

6.1 Simulated Annealing 

Here is a very simple example of how to do simulated annealing.  The following lines linearly 

reduce the temperature from 300K to 0K in 100 increments, executing 1000 time steps at 

each temperature: 
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... 
simulation.context.setPositions(pdb.positions) 
simulation.minimizeEnergy() 
for i in range(100): 
    integrator.setTemperature(3*(100-i)*kelvin) 
    simulation.step(1000) 

Example 6.1 

 

This code needs very little explanation.  The loop is executed 100 times.  Each time through, 
it adjusts the temperature of the LangevinIntegrator and then calls step(1000) to take 1000 

time steps. 

6.2 Applying an External Force to Particles: a Spherical 
Container 

In this example, we will simulate a non-periodic system contained inside a spherical 

container with radius 2 nm.  We implement the container by applying a harmonic potential 

to every particle: 

 
E(r) = 0  r ≤ 2 

 100(r-2)2 r > 2 

 

where r is the distance of the particle from the origin, measured in nm.  We can easily do this 

using OpenMM’s CustomExternalForce class.  This class applies a force to some or all of the 

particles in the system, where the energy is an arbitrary function of each particle’s (x, y, z) 

coordinates.  Here is the code to do it: 
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...   
system = forcefield.createSystem(pdb.topology, 

nonbondedMethod=CutoffNonPeriodic, nonbondedCutoff=1*nanometer, 
constraints=None) 

force = CustomExternalForce('100*max(0, r-2)^2; r=sqrt(x*x+y*y+z*z)') 
system.addForce(force) 
for i in range(system.getNumParticles()): 
    force.addParticle(i, []) 
integrator = LangevinIntegrator(300*kelvin, 91/picosecond, 
0.002*picoseconds) 
... 

Example 6.2 

 

The first thing it does is create a CustomExternalForce object and add it to the System.  The 

argument to CustomExternalForce is a mathematical expression specifying the energy of 

each particle.  This can be any function of x, y, and z you want.  It also can depend on global 

or per-particle parameters.  A wide variety of restraints, steering forces, shearing forces, etc. 

can be implemented with this method. 

 

Next it must specify which particles to apply the force to.  In this case, we want it to affect 
every particle in the system, so we loop over them and call addParticle() once for each 

one.  The two arguments are the index of the particle to affect, and the list of per-particle 

parameter values (an empty list in this case).  If we had per-particle parameters, such as to 

make the force stronger for some particles than for others, this is where we would specify 

them. 

 

Notice that we do all of this immediately after creating the System.  That is not an arbitrary 

choice.  If you add new forces to a System, you must do so before creating the Simulation.  

Once you create a Simulation, modifying the System will have no effect on that Simulation. 

6.3 Extracting and Reporting Forces (and other data) 

OpenMM provides reporters for two output formats: PDB and DCD.  Both of those formats 

store only positions, not velocities, forces, or other data.  In this section, we create a new 

reporter that outputs forces.  This illustrates two important things: how to write a reporter, 

and how to query the simulation for forces or other data. 
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Here is the definition of the ForceReporter class: 

 

class ForceReporter(object): 
    def __init__(self, file, reportInterval): 
        self._out = open(file, 'w') 
        self._reportInterval = reportInterval 
 
    def __del__(self): 
        self._out.close() 
     
    def describeNextReport(self, simulation): 
        steps = self._reportInterval - 

simulation.currentStep%self._reportInterval 
        return (steps, False, False, True, False) 
     
    def report(self, simulation, state): 
        forces = 

state.getForces().value_in_unit(kilojoules/mole/nanometer) 
        for f in forces: 
            print >>self._out, f[0], f[1], f[2] 

Example 6.3 

 

The constructor and destructor are straightforward.  The arguments to the constructor are 

the output filename and the interval (in time steps) at which it should generate reports.  It 

opens the output file for writing and records the reporting interval.  The destructor closes 

the file. 

 
We then have two methods that every reporter must implement: describeNextReport() 

and report().  A Simulation object periodically calls describeNextReport() on each of its 

reporters to find out when that reporter will next generate a report, and what information 

will be needed to generate it.  The return value should be a five element tuple, whose 

elements are as follows: 

 

• The number of time steps until the next report.  We calculate this as (report 

interval)-(current step)%(report interval).  For example, if we want a report every 

100 steps and the simulation is currently on step 530, we will return 100-(530%100) 

= 70. 

• Whether the next report will need particle positions. 

• Whether the next report will need particle velocities. 

• Whether the next report will need forces. 
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• Whether the next report will need energies. 

 
When the time comes for the next scheduled report, the Simulation calls report() to 

generate the report.  The arguments are the Simulation object, and a State that is guaranteed 
to contain all the information that was requested by describeNextReport().  A State object 

contains a snapshot of information about the simulation, such as forces or particle positions.  
We call getForces() to retrieve the forces and convert them to the units we want to output 

(kJ/mole/nm).  Then we loop over each value and write it to the file.  To keep the example 

simple, we just print the values in text format, one line per particle.  In a real program, you 

might choose a different output format. 

 

Now that we have defined this class, we can use it exactly like any other reporter.  For 

example, 

 
simulation.reporters.append(ForceReporter('forces.txt', 100)) 
 

will output forces to a file called “forces.txt” every 100 time steps. 

6.4 Computing Energies 

This example illustrates a different sort of analysis.  Instead of running a simulation, assume 

we have already identified a set of structures we are interested in.  These structures are saved 

in a set of PDB files.  We want to loop over all the files in a directory, load them in one at a 

time, and compute the potential energy of each one.  Assume we have already created our 

System and Simulation.  The following lines perform the analysis: 

 

import os 
for file in os.listdir('structures'): 
    pdb = PDBFile(os.path.join('structures', file)) 
    simulation.context.setPositions(pdb.positions) 
    state = simulation.context.getState(getEnergy=True) 
    print file, state.getPotentialEnergy() 

Example 6.4 
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We use Python’s listdir() function to list all the files in the directory.  We create a 

PDBFile object for each one and call setPositions() on the Context to specify the particle 

positions loaded from the PDB file.  We then compute the energy by calling getState() 

with the option getEnergy=True, and print it to the console along with the name of the file. 
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7 Creating Force Fields 

OpenMM uses a simple XML file format to describe force fields.  It includes many common 

force fields, but you can also create your own.  A force field can use all the standard 

OpenMM force classes, as well as the very flexible custom force classes.  You can even extend 

the ForceField class to add support for completely new forces, such as ones defined in 

plugins.  This makes it a powerful tool for force field development. 

7.1 Basic Concepts 

Let’s start by considering how OpenMM defines a force field.  There are a small number of 

basic concepts to understand. 

7.1.1 Atom Types and Atom Classes 

Force field parameters are assigned to atoms based on their “atom types”.  Atom types 

should be the most specific identification of an atom that will ever be needed.  Two atoms 

should have the same type only if the force field will always treat them identically in every 

way. 

 

Multiple atom types can be grouped together into “atom classes”.  In general, two types 

should be in the same class if the force field usually (but not necessarily always) treats them 

identically.  For example, the α-carbon of an alanine residue will probably have a different 

atom type than the α-carbon of a leucine residue, but both of them will probably have the 

same atom class. 

 

All force field parameters can be specified either by atom type or atom class.  Classes exist as 

a convenience to make force field definitions more compact.  If necessary, you could define 

everything in terms of atom types, but when many types all share the same parameters, it is 

convenient to only have to specify them once. 
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7.1.2 Residue Templates 

Types are assigned to atoms by matching residues to templates.  A template specifies a list of 

atoms, the type of each one, and the bonds between them.  For each residue in the PDB file, 

the force field searches its list of templates for one that has an identical set of atoms with 

identical bonds between them.  When matching templates, neither the order of the atoms 

nor their names matter; it only cares about their elements and the set of bonds between 

them.  (The PDB file reader does care about names, of course, since it needs to figure out 

which atom each line of the file corresponds to.) 

7.1.3 Forces 

Once a force field has defined its atom types and residue templates, it must define its force 

field parameters.  This generally involves one block of XML for each Force object that will be 

added to the System.  The details are different for each Force, but it generally consists of a 

set of rules for adding interactions based on bonds and atom types or classes.  For example, 

when adding a HarmonicBondForce, the force field will loop over every pair of bonded 

atoms, check their types and classes, and see if they match any of its rules.  If so, it will call 
addBond() on the HarmonicBondForce.  If none of them match, it simply ignores that pair 

and continues. 

7.2 Writing the XML File 

The root element of the XML file must be a <ForceField> tag: 

 
<ForceField> 

... 

</ForceField> 

 
The <ForceField> tag contains the following children: 

 
• An <AtomTypes> tag containing the atom type definitions 

• A <Residues> tag containing the residue template definitions 

• Zero or more tags defining specific forces 
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The order of these tags does not matter.  They are described in details below. 

7.2.1 <AtomTypes> 

The atom type definitions look like this: 

 
<AtomTypes> 
 <Type name="0" class="N" element="N" mass="14.00672"/> 
 <Type name="1" class="H" element="H" mass="1.007947"/> 
 <Type name="2" class="CT" element="C" mass="12.01078"/> 
 ... 
</AtomTypes> 
 
There is one <Type> tag for each atom type.  It specifies the name of the type, the name of 

the class it belongs to, the symbol for its element, and its mass in amu.  The names are 

arbitrary strings: they need not be numbers, as in this example.  The only requirement is 

that all types have unique names.  The classes are also arbitrary strings, and in general will 
not be unique.  Two types belong to the same class if they list the same value for the class 

attribute. 

7.2.2 <Residues> 

The residue template definitions look like this: 

 
<Residues> 
 <Residue name="ACE"> 
  <Atom name="HH31" type="710"/> 
  <Atom name="CH3" type="711"/> 
  <Atom name="HH32" type="710"/> 
  <Atom name="HH33" type="710"/> 
  <Atom name="C" type="712"/> 
  <Atom name="O" type="713"/> 
  <Bond from="0" to="1"/> 
  <Bond from="1" to="2"/> 
  <Bond from="1" to="3"/> 
  <Bond from="1" to="4"/> 
  <Bond from="4" to="5"/> 
  <ExternalBond from="4"/> 
 </Residue> 
 <Residue name="ALA"> 
  ... 
 </Residue> 
 ... 
</Residues> 
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There is one <Residue> tag for each residue template.  That in turn contains the following 

tags: 

 
• An <Atom> tag for each atom in the residue.  This specifies the name of the atom and 

its atom type. 

• A <Bond> tag for each pair of atoms that are bonded to each other.  The to and from 

attributes are the indices of the two bonded atoms (starting from 0) in the order they 
were listed.  For example, <Bond from="1" to="3"/> describes a bond between 

atom CH3 and atom HH33. 
• An <ExternalBond> tag for each atom that will be bonded to an atom of a different 

residue. 

 
The <Residue> tag may also contain <VirtualSite> tags, as in the following example: 

 
<Residue name="HOH"> 
   <Atom name="O" type="tip4pew-O"/> 
   <Atom name="H1" type="tip4pew-H"/> 
   <Atom name="H2" type="tip4pew-H"/> 
   <Atom name="M" type="tip4pew-M"/> 
   <VirtualSite type="average3" index="3" atom1="0" atom2="1" atom3="2" 

weight1="0.786646558" weight2="0.106676721" weight3="0.106676721"/> 
   <Bond from="0" to="1"/> 
   <Bond from="0" to="2"/> 
  </Residue> 
 

Each <VirtualSite> tag indicates an atom in the residue that should be represented with a 

virtual site.  The type attribute may equal "average2", "average3", or "outOfPlane", 

which correspond to the TwoParticleAverageSite, ThreeParticleAverageSite, and 
OutOfPlaneSite classes respectively.  The index attribute gives the index (starting from 0) of 

the atom to represent with a virtual site.  The atoms it is calculated based on are specified by 
atom1, atom2, and (for virtual site classes that involve three atoms) atom3.  The remaining 

attributes are specific to the virtual site class, and specify the parameters for calculating the 
site position.  For a TwoParticleAverageSite, they are weight1 and weight2.  For a 

ThreeParticleAverageSite, they are weight1, weight2, and weight3. For an OutOfPlaneSite, 

they are weight12, weight13, and weightCross. 
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7.2.3 <HarmonicBondForce> 

To add a HarmonicBondForce to the System, include a tag that looks like this: 

 
<HarmonicBondForce> 
 <Bond class1="C" class2="C" length="0.1525" k="259408.0"/> 
 <Bond class1="C" class2="CA" length="0.1409" k="392459.2"/> 
 <Bond class1="C" class2="CB" length="0.1419" k="374049.6"/> 
 ... 
</HarmonicBondForce> 
 
Every <Bond> tag defines a rule for creating harmonic bond interactions between atoms.  

Each tag may identify the atoms either by type (using the attributes type1 and type2) or by 

class (using the attributes class1 and class2).  For every pair of bonded atoms, the force 

field searches for a rule whose atom types or atom classes match the two atoms.  If it finds 
one, it calls addBond() on the HarmonicBondForce with the specified parameters.  

Otherwise, it ignores that pair and continues.  length is the equilibrium bond length in nm, 

and k is the spring constant in kJ/mol/nm2. 

7.2.4 <HarmonicAngleForce> 

To add a HarmonicAngleForce to the System, include a tag that looks like this: 

 
<HarmonicAngleForce> 
 <Angle class1="C" class2="C" class3="O" angle="2.094" k="669.44"/> 
 <Angle class1="C" class2="C" class3="OH" angle="2.094" k="669.44"/> 
 <Angle class1="CA" class2="C" class3="CA" angle="2.094" k="527.184"/> 
 ... 
</HarmonicAngleForce> 
 
Every <Angle> tag defines a rule for creating harmonic angle interactions between triplets of 

atoms.  Each tag may identify the atoms either by type (using the attributes type1, type2, 

...) or by class (using the attributes class1, class2, ...).  The force field identifies every set of 

three atoms in the system where the first is bonded to the second, and the second to the 

third.  For each one, it searches for a rule whose atom types or atom classes match the three 
atoms.  If it finds one, it calls addAngle() on the HarmonicAngleForce with the specified 

parameters.  Otherwise, it ignores that set and continues.  angle is the equilibrium angle in 

radians, and k is the spring constant in kJ/mol/radian2. 
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7.2.5 <PeriodicTorsionForce> 

To add a PeriodicTorsionForce to the System, include a tag that looks like this: 

 
<PeriodicTorsionForce> 
 <Proper class1="HC" class2="CT" class3="CT" class4="CT" periodicity1="3" 

phase1="0.0" k1="0.66944"/> 
 <Proper class1="HC" class2="CT" class3="CT" class4="HC" periodicity1="3" 

phase1="0.0" k1="0.6276"/> 
 ... 
 <Improper class1="N" class2="C" class3="CT" class4="O" periodicity1="2" 

phase1="3.14159265359" k1="4.6024"/> 
 <Improper class1="N" class2="C" class3="CT" class4="H" periodicity1="2" 

phase1="3.14159265359" k1="4.6024"/> 
 ... 
</PeriodicTorsionForce> 
 

Every child tag defines a rule for creating periodic torsion interactions between sets of four 

atoms.  Each tag may identify the atoms either by type (using the attributes type1, type2, 

...) or by class (using the attributes class1, class2, ...). 

 

The force field recognizes two different types of torsions: proper and improper.  A proper 

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4.  An 

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3, 

and 4 are all bonded to atom 1.  The force field begins by identifying every set of atoms in the 

system of each of these types. For each one, it searches for a rule whose atom types or atom 
classes match the four atoms.  If it finds one, it calls addTorsion() on the 

PeriodicTorsionForce with the specified parameters.  Otherwise, it ignores that set and 
continues.  periodicity1 is the periodicity of the torsion, phase1 is the phase offset in 

radians, and k1 is the force constant in kJ/mol. 

 

Each torsion definition can specify multiple periodic torsion terms to add to its atoms.  To 

add a second one, just add three more attributes: periodicity2, phase2, and k2.  You can 

have as many terms as you want.  Here is an example of a rule that adds three torsion terms 

to its atoms: 

 
<Proper class1="CT" class2="CT" class3="CT" class4="CT" periodicity1="3" 

phase1="0.0" k1="0.75312" periodicity2="2" phase2="3.14159265359" 
k2="1.046" periodicity3="1" phase3="3.14159265359" k3="0.8368"/> 
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You can also use wildcards when defining torsions.  To do this, simply leave the type or class 

name for an atom empty.  That will cause it to match any atom.  For example, the following 

definition will match any sequence of atoms where the second atom has class OS and the 

third has class P: 

 
<Proper class1="" class2="OS" class3="P" class4="" periodicity1="3" 

phase1="0.0" k1="1.046"/> 

7.2.6 <RBTorsionForce> 

To add an RBTorsionForce to the System, include a tag that looks like this: 

 
<RBTorsionForce> 
 <Proper class1="CT" class2="CT" class3="OS" class4="CT" c0="2.439272" 

c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" /> 
 <Proper class1="C" class2="N" class3="CT" class4="C" c0="10.46" c1="-

3.34720" c2="-7.1128" c3="0" c4="0" c5="0" /> 
 ... 
 <Improper class1="N" class2="C" class3="CT" class4="O" c0="0.8368" c1="0" 

c2="-2.76144" c3="0" c4="3.3472" c5="0" /> 
 <Improper class1="N" class2="C" class3="CT" class4="H" c0="29.288" c1="-

8.368" c2="-20.92" c3="0" c4="0" c5="0" /> 
 ... 
</RBTorsionForce> 
 

Every child tag defines a rule for creating Ryckaert-Bellemans torsion interactions between 

sets of four atoms.  Each tag may identify the atoms either by type (using the attributes 
type1, type2, ...) or by class (using the attributes class1, class2, ...). 

 

The force field recognizes two different types of torsions: proper and improper.  A proper 

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4.  An 

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3, 

and 4 are all bonded to atom 1.  The force field begins by identifying every set of atoms in the 

system of each of these types. For each one, it searches for a rule whose atom types or atom 
classes match the four atoms.  If it finds one, it calls addTorsion() on the RBTorsionForce 

with the specified parameters.  Otherwise, it ignores that set and continues.  The attributes 
c0 through c5 are the coefficients of the terms in the Ryckaert-Bellemans force expression. 

 

You can also use wildcards when defining torsions.  To do this, simply leave the type or class 

name for an atom empty.  That will cause it to match any atom.  For example, the following 
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definition will match any sequence of atoms where the second atom has class OS and the 

third has class P: 

 
<Proper class1="" class2="OS" class3="P" class4="" c0="2.439272" 

c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" /> 

7.2.7 <CMAPTorsionForce> 

To add a CMAPTorsionForce to the System, include a tag that looks like this: 

 
<CMAPTorsionForce> 
 <Map> 
  0.0 0.809 0.951 0.309 
  -0.587 -1.0 -0.587 0.309 
  0.951 0.809 0.0 -0.809 
  -0.951 -0.309 0.587 1.0 
 </Map> 
 <Torsion map="0" class1="CT" class2="CT" class3="C" class4="N" 

class5="CT"/> 
 <Torsion map="0" class1="N" class2="CT" class3="C" class4="N" 

class5="CT"/> 
 ... 
</CMAPTorsionForce> 
 
Each <Map> tag defines an energy correction map.  Its content is the list of energy values in 

kJ/mole, listed in the correct order for CMAPTorsionForce’s addMap() method and 

separated by white space.  See the API documentation for details.  The size of the map is 

determined from the number of energy values. 

 
Each <Torsion> tag defines a rule for creating CMAP torsion interactions between sets of 

five atoms.  The tag may identify the atoms either by type (using the attributes type1, type2, 

...) or by class (using the attributes class1, class2, ...).  The force field identifies every set of 

five atoms that are bonded in sequence: 1 to 2, 2 to 3, 3 to 4, and 4 to 5.  For each one, it 

searches for a rule whose atom types or atom classes match the five atoms.  If it finds one, it 
calls addTorsion() on the CMAPTorsionForce with the specified parameters.  Otherwise, it 

ignores that set and continues.  The first torsion is defined by the sequence of atoms 1-2-3-4, 

and the second one by atoms 2-3-4-5.  map is the index of the map to use, starting from 0, in 

the order they are listed in the file. 
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You can also use wildcards when defining torsions.  To do this, simply leave the type or class 

name for an atom empty.  That will cause it to match any atom.  For example, the following 

definition will match any sequence of five atoms where the middle three have classes CT, C, 

and N respectively: 

 
<Torsion map="0" class1="" class2="CT" class3="C" class4="N" class5=""/> 

7.2.8 <NonbondedForce> 

To add a NonbondedForce to the System, include a tag that looks like this: 

 
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5"> 
 <Atom type="0" charge="-0.4157" sigma="0.32499" epsilon="0.71128"/> 
 <Atom type="1" charge="0.2719" sigma="0.10690" epsilon="0.06568"/> 
 <Atom type="2" charge="0.0337" sigma="0.33996" epsilon="0.45772"/> 
 ... 
</NonbondedForce> 
 
The <NonbondedForce> tag has two attributes coulomb14scale and lj14scale that specify 

the scale factors between pairs of atoms separated by three bonds.  After setting the 
nonbonded parameters for all atoms, the force field calls createExceptionsFromBonds() 

on the NonbondedForce, passing in these scale factors as arguments. 

 

Each <Atom> tag specifies the nonbonded parameters for one atom type (specified with the 

type attribute) or atom class (specified with the class attribute).  It is fine to mix these two 

methods, having some tags specify a type and others specify a class.  However you do it, you 
must make sure that a unique set of parameters is defined for every atom type.  charge is 

measured in units of the proton charge, sigma is in nm, and epsilon is in kJ/mole. 

7.2.9 <GBSAOBCForce> 

To add a GBSAOBCForce to the System, include a tag that looks like this: 

 
<GBSAOBCForce> 
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/> 
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/> 
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/> 
 ... 
</GBSAOBCForce> 
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Each <Atom> tag specifies the OBC parameters for one atom type (specified with the type 

attribute) or atom class (specified with the class attribute).  It is fine to mix these two 

methods, having some tags specify a type and others specify a class.  However you do it, you 
must make sure that a unique set of parameters is defined for every atom type.  charge is 

measured in units of the proton charge, radius is the GBSA radius in nm, and scale is the 

OBC scaling factor. 

7.2.10 <CustomBondForce> 

To add a CustomBondForce to the System, include a tag that looks like this: 

 
<CustomBondForce energy="scale*k*(r-r0)^2"> 
 <GlobalParameter name="scale" defaultValue="0.5"/> 
 <PerBondParameter name="k"/> 
 <PerBondParameter name="r0"/> 
 <Bond class1="OW" class2="HW" r0="0.09572" k="462750.4"/> 
 <Bond class1="HW" class2="HW" r0="0.15136" k="462750.4"/> 
 <Bond class1="C" class2="C" r0="0.1525" k="259408.0"/> 
 ... 
</CustomBondForce> 
 
The energy expression for the CustomBondForce is specified by the energy attribute.  This is 

a mathematical expression that gives the energy of each bond as a function of its length r.  It 

also may depend on an arbitrary list of global or per-bond parameters.  Use a 
<GlobalParameter> tag to define a global parameter, and a <PerBondParameter> tag to 

define a per-bond parameter. 

 
Every <Bond> tag defines a rule for creating custom bond interactions between atoms.  Each 

tag may identify the atoms either by type (using the attributes type1 and type2) or by class 

(using the attributes class1 and class2).  For every pair of bonded atoms, the force field 

searches for a rule whose atom types or atom classes match the two atoms.  If it finds one, it 
calls addBond() on the CustomBondForce.  Otherwise, it ignores that pair and continues.  

The remaining attributes are the values to use for the per-bond parameters.  All per-bond 

parameters must be specified for every <Bond> tag, and the attribute name must match the 

name of the parameter.  For instance, if there is a per-bond parameter with the name “k”, 
then every <Bond> tag must include an attribute called k.    
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7.2.11 <CustomAngleForce> 

To add a CustomAngleForce to the System, include a tag that looks like this: 

 
<CustomAngleForce energy="scale*k*(theta-theta0)^2"> 
 <GlobalParameter name="scale" defaultValue="0.5"/> 
 <PerAngleParameter name="k"/> 
 <PerAngleParameter name=" theta0"/> 
 <Angle class1="HW" class2="OW" class3="HW" theta0="1.824218" k="836.8"/> 
 <Angle class1="HW" class2="HW" class3="OW" theta0="2.229483" k="0.0"/> 
 <Angle class1="C" class2="C" class3="O" theta0="2.094395" k="669.44"/> 
 ... 
</CustomAngleForce> 
 
The energy expression for the CustomAngleForce is specified by the energy attribute.  This 

is a mathematical expression that gives the energy of each angle as a function of the angle 

theta.  It also may depend on an arbitrary list of global or per-angle parameters.  Use a 
<GlobalParameter> tag to define a global parameter, and a <PerAngleParameter> tag to 

define a per-angle parameter. 

 
Every <Angle> tag defines a rule for creating custom angle interactions between triplets of 

atoms.  Each tag may identify the atoms either by type (using the attributes type1, type2, 

...) or by class (using the attributes class1, class2, ...).  The force field identifies every set of 

three atoms in the system where the first is bonded to the second, and the second to the 

third.  For each one, it searches for a rule whose atom types or atom classes match the three 
atoms.  If it finds one, it calls addAngle() on the CustomAngleForce.  Otherwise, it ignores 

that set and continues. The remaining attributes are the values to use for the per-angle 
parameters. All per-angle parameters must be specified for every <Angle> tag, and the 

attribute name must match the name of the parameter.  For instance, if there is a per-angle 
parameter with the name “k”, then every <Angle> tag must include an attribute called k. 

7.2.12 <CustomTorsionForce> 

To add a CustomTorsionForce to the System, include a tag that looks like this: 

 
<CustomTorsionForce energy="scale*k*(1+cos(per*theta-phase))"> 
 <GlobalParameter name="scale" defaultValue="1"/> 
 <PerTorsionParameter name="k"/> 
 <PerTorsionParameter name="per"/> 
 <PerTorsionParameter name="phase"/> 
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 <Proper class1="HC" class2="CT" class3="CT" class4="CT" per="3" 
phase="0.0" k="0.66944"/> 

 <Proper class1="HC" class2="CT" class3="CT" class4="HC" per="3" 
phase="0.0" k="0.6276"/> 

 ... 
 <Improper class1="N" class2="C" class3="CT" class4="O" per="2" 

phase="3.14159265359" k="4.6024"/> 
 <Improper class1="N" class2="C" class3="CT" class4="H" per="2" 

phase="3.14159265359" k="4.6024"/> 
 ... 
</CustomTorsionForce> 
 
The energy expression for the CustomTorsionForce is specified by the energy attribute.  

This is a mathematical expression that gives the energy of each torsion as a function of the 

angle theta.  It also may depend on an arbitrary list of global or per-torsion parameters.  Use 
a <GlobalParameter> tag to define a global parameter, and a <PerTorsionParameter> tag 

to define a per-torsion parameter. 

 

Every child tag defines a rule for creating custom torsion interactions between sets of four 
atoms.  Each tag may identify the atoms either by type (using the attributes type1, type2, 

...) or by class (using the attributes class1, class2, ...). 

 

The force field recognizes two different types of torsions: proper and improper.  A proper 

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4.  An 

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3, 

and 4 are all bonded to atom 1.  The force field begins by identifying every set of atoms in the 

system of each of these types. For each one, it searches for a rule whose atom types or atom 
classes match the four atoms.  If it finds one, it calls addTorsion() on the 

CustomTorsionForce with the specified parameters.  Otherwise, it ignores that set and 

continues. The remaining attributes are the values to use for the per-torsion parameters.  
Every <Torsion> tag must include one attribute for every per-torsion parameter, and the 

attribute name must match the name of the parameter. 

 

You can also use wildcards when defining torsions.  To do this, simply leave the type or class 

name for an atom empty.  That will cause it to match any atom.  For example, the following 

definition will match any sequence of atoms where the second atom has class OS and the 

third has class P: 
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<Proper class1="" class2="OS" class3="P" class4="" per="3" phase="0.0" 
k="0.66944"/> 

7.2.13 <CustomGBForce> 

To add a CustomGBForce to the System, include a tag that looks like this: 

 
<CustomGBForce> 
 <GlobalParameter name="solventDielectric" defaultValue="78.3"/> 
 <GlobalParameter name="soluteDielectric" defaultValue="1"/> 
 <PerParticleParameter name="charge"/> 
 <PerParticleParameter name="radius"/> 
 <PerParticleParameter name="scale"/> 
 <ComputedValue name="I" type="ParticlePairNoExclusions"> 
  step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-

sr2*sr2/r)+0.5*log(L/U)/r+C); U=r+sr2; C=2*(1/or1-1/L)*step(sr2-r-
or1); L=max(or1, D); D=abs(r-sr2); sr2 = scale2*or2; or1 = radius1-
0.009; or2 = radius2-0.009 

 </ComputedValue> 
 <ComputedValue name="B" type="SingleParticle"> 
  1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius); psi=I*or; or=radius-

0.009 
 </ComputedValue> 
 <EnergyTerm type="SingleParticle"> 
  28.3919551*(radius+0.14)^2*(radius/B)^6-

0.5*138.935456*(1/soluteDielectric-1/solventDielectric)*charge^2/B 
 </EnergyTerm> 
 <EnergyTerm type="ParticlePair"> 
  -138.935456*(1/soluteDielectric-1/solventDielectric)*charge1*charge2/f; 

f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2))) 
 </EnergyTerm> 
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/> 
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/> 
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/> 
 ... 
</CustomGBForce> 
 

The above (rather complicated) example defines a generalized Born model that is equivalent 

to GBSAOBCForce.  The definition consists of a set of computed values (defined by 

<ComputedValue> tags) and energy terms (defined by <EnergyTerm> tags), each of which is 

evaluated according to a mathematical expression.  See the API documentation for details. 

 

The expressions may depend on an arbitrary list of global or per-atom parameters.  Use a 
<GlobalParameter> tag to define a global parameter, and a <PerAtomParameter> tag to 

define a per-atom parameter. 
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Each <Atom> tag specifies the parameters for one atom type (specified with the type 

attribute) or atom class (specified with the class attribute).  It is fine to mix these two 

methods, having some tags specify a type and others specify a class.  However you do it, you 

must make sure that a unique set of parameters is defined for every atom type. The 

remaining attributes are the values to use for the per-atom parameters. All per-atom 

parameters must be specified for every <Atom> tag, and the attribute name must match the 

name of the parameter.  For instance, if there is a per-atom parameter with the name 
“radius”, then every <Atom> tag must include an attribute called radius. 

 

CustomGBForce also allows you to define tabulated functions.  To define a function, include 
a <Function> tag inside the <CustomGBForce> tag: 

 
<Function name="myfn" min="-5" max="5"> 

0.983674857694 -0.980096396266 -0.975743130031 -0.970451936613 -
0.964027580076 -0.956237458128 -0.946806012846 -0.935409070603 -
0.921668554406 -0.905148253645 -0.885351648202 -0.861723159313 -
0.833654607012 -0.800499021761 -0.761594155956 -0.716297870199 -
0.664036770268 -0.604367777117 -0.537049566998 -0.46211715726 -
0.379948962255 -0.291312612452 -0.197375320225 -0.099667994625 0.0 
0.099667994625 0.197375320225 0.291312612452 0.379948962255 
0.46211715726 0.537049566998 0.604367777117 0.664036770268 
0.716297870199 0.761594155956 0.800499021761 0.833654607012 
0.861723159313 0.885351648202 0.905148253645 0.921668554406 
0.935409070603 0.946806012846 0.956237458128 0.964027580076 
0.970451936613 0.975743130031 0.980096396266 0.983674857694 
0.986614298151 0.989027402201  

</Function> 
 

The tag’s attributes define the name of the function and the range of values for which it is 

defined.  The tabulated values are listed inside the body of the tag, with successive values 

separated by white space.  Again, see the API documentation for more details. 

7.2.14 Writing Custom Expressions 

The custom forces described in this chapter involve user defined algebraic expressions.  

These expressions are specified as character strings, and may involve a variety of standard 

operators and mathematical functions. 

 

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^ 

(power).  Parentheses “(“and “)” may be used for grouping. 
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The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot, 

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step. step(x) = 0 if x < 0, 1 

otherwise.  Some custom forces allow additional functions to be defined from tabulated 

values. 

 

Numbers may be given in either decimal or exponential form.  All of the following are valid 

numbers: 5, -3.1, 1e6, and 3.12e-2. 

 

The variables that may appear in expressions are specified in the API documentation for 

each force class.  In addition, an expression may be followed by definitions for intermediate 

values that appear in the expression.  A semicolon “;” is used as a delimiter between value 

definitions.  For example, the expression 

 
a^2+a*b+b^2; a=a1+a2; b=b1+b2 

 

is exactly equivalent to 

 
(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2 

 

The definition of an intermediate value may itself involve other intermediate values.  All uses 

of a value must appear before that value’s definition. 

 

7.3 Using Multiple Files 

If multiple XML files are specified when a ForceField is created, their definitions are 

combined as follows. 

 

• A file may refer to atom types and classes that it defines, as well as those defined in 

previous files.  It may not refer to ones defined in later files.  This means that the 

order in which files are listed when calling the ForceField constructor is potentially 

significant. 
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• Forces that involve per-atom parameters (such as NonbondedForce or 

GBSAOBCForce) require parameter values to be defined for every atom type.  It does 

not matter which file those types are defined in.  For example, files that define 

explicit water models generally define a small number of atom types, as well as 

nonbonded parameters for those types.  In contrast, files that define implicit solvent 

models do not define any new atom types, but provide parameters for all the atom 

types that were defined in the main force field file. 

• For other forces, the files are effectively independent.  For example, if two files each 
include a <HarmonicBondForce> tag, bonds will be created based on the rules in the 

first file, and then more bonds will be created based on the rules in the second file.  

This means you could potentially end up with multiple bonds between a single pair of 

atoms. 

7.4 Extending ForceField 

The ForceField class is designed to be modular and extensible.  This means you can add 

support for entirely new force types, such as ones implemented with plugins. 

 

For every force class, there is a “generator” class that parses the corresponding XML tag, 

then creates Force objects and adds them to the System.  ForceField maintains a map of tag 

names to generator classes.  When a ForceField is created, it scans through the XML files, 

looks up the generator class for each tag, and asks that class to create a generator object 
based on it.  Then, when you call createSystem(),  it loops over each of its generators and 

asks each one to create its Force object.  Adding a new Force type therefore is simply a 

matter of creating a new generator class and adding it to ForceField’s map. 

 

The generator class must define two methods.  First, it needs a static method with the 

following signature to parse the XML tag and create the generator: 

 
@staticmethod 
def parseElement(element, forcefield): 
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element is the XML tag (an xml.etree.ElementTree.Element object) and forcefield is the 

ForceField being created.  This method should create a generator and add it to the 

ForceField: 

 
generator = MyForceGenerator() 
forcefield._forces.append(generator) 
 

It then should parse the information contained in the XML tag and configure the generator 

based on it. 

 

Second, it must define a method with the following signature: 

 
def createForce(self, system, data, nonbondedMethod, nonbondedCutoff, 

args): 

 
When createSystem() is called on the ForceField, it first creates the System object, then 

loops over each of its generators and calls createForce() on each one.  This method should 

create the Force object and add it to the System.  data is a ForceField._SystemData object 

containing information about the System being created (atom types, bonds, angles, etc.), 

system is the System object, and the remaining arguments are values that were passed to 

createSystem().  To get a better idea of how this works, look at the existing generator 

classes in forcefield.py. 

 

Finally, you need to register your class by adding it to ForceField’s map: 

 
forcefield.parsers['MyForce'] = MyForceGenerator.parseElement 

 

The key is the XML tag name, and the value is the static method to use for parsing it. 

 

Now you can simply create a ForceField object as usual.  If an XML file contains a 
<MyForce> tag, it will be recognized and processed correctly. 



 

 

 

 

 

 

 
 

 

Part II 
Library Guide



 

 

8 Introduction to the 
OpenMM Library 

8.1 What Is the OpenMM Library? 

OpenMM consists of two parts.  First, there is a set of libraries for performing many types of 

computations needed for molecular simulations: force evaluation, numerical integration, 

energy minimization, etc.  These libraries provide an interface targeted at developers of 

simulation software, allowing them to easily add simulation features to their programs. 

 

Second, there is an “application layer”, a set of Python libraries providing a high level 

interface for running simulations.  This layer is targeted at computational biologists or other 

people who want to run simulations, and who may or may not be programmers. 

 

Part I of this guide focused on the application layer and described how to run simulations 

with it.  We now turn to the lower level libraries.  We will assume you are a programmer, 

that you are writing your own applications, and that you want to add simulation features to 

those applications.  Part II of this guide describes how to do that with OpenMM. 

8.1.1 How to get started 

We have provided a number of files that make it easy to get started with OpenMM.  Pre-

compiled binaries are provided for quickly getting OpenMM onto your computer (See 

Chapter 0 for set-up instructions).  We recommend that you then compile and run some of 

the tutorial examples, described in Chapter 10.  These highlight key functions within 

OpenMM and teach you the basic programming concepts for using OpenMM.  Once you are 

ready to begin integrating OpenMM into a specific software package, read through Chapter 

13 to see how other software developers have done this. 



75 

 

8.1.2 License  

Two different licenses are used for different parts of OpenMM.  The public API, the low level 

API, and the reference platform are all distributed under the MIT license.  This is a very 

permissive license which allows them to be used in almost any way, requiring only that you 

retain the copyright notice and disclaimer when distributing them. 

 

The CUDA and OpenCL platforms are distributed under the GNU Lesser General Public 

License (LGPL).  This also allows you to use, modify, and distribute them in any way you 

want, but it requires you to also distribute the source code for your modifications.  This 

restriction applies only to modifications to OpenMM itself; you need not distribute the 

source code to applications that use it. 

 

OpenMM also uses several pieces of code that were written by other people and are covered 

by other licenses.  All of these licenses are similar in their terms to the MIT license, and do 

not significantly restrict how OpenMM can be used. 

 

All of these licenses may be found in the “licenses” directory included with OpenMM. 

 

8.2 Design Principles 

The design of the OpenMM API is guided by the following principles. 

 

1. The API must support efficient implementations on a variety of architectures. 

 

The most important consequence of this goal is that the API cannot provide direct access to 

state information (particle positions, velocities, etc.) at all times.  On some architectures, 

accessing this information is expensive.  With a GPU, for example, it will be stored in video 

memory, and must be transferred to main memory before outside code can access it.  On a 

distributed architecture, it might not even be present on the local computer.  OpenMM 

therefore only allows state information to be accessed in bulk, with the understanding that 

doing so may be a slow operation. 
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2. The API should be easy to understand and easy to use. 

 

This seems obvious, but it is worth stating as an explicit goal.  We are creating OpenMM 

with the hope that many other people will use it.  To achieve that goal, it should be possible 

for someone to learn it without an enormous amount of effort.  An equally important aspect 

of being “easy to use” is being easy to use correctly.  A well designed API should minimize 

the opportunities for a programmer to make mistakes.  For both of these reasons, clarity and 

simplicity are essential. 

 

3. It should be modular and extensible. 

 

We cannot hope to provide every feature any user will ever want.  For that reason, it is 

important that OpenMM be easy to extend.  If a user wants to add a new molecular force 

field, a new thermostat algorithm, or a new hardware platform, the API should make that 

easy to do. 

 

4. The API should be hardware independent. 

 

Computer architectures are changing rapidly, and it is impossible to predict what hardware 

platforms might be important to support in the future.  One of the goals of OpenMM is to 

separate the API from the hardware.  The developers of a simulation application should be 

able to write their code once, and have it automatically take advantage of any architecture 

that OpenMM supports, even architectures that do not yet exist when they write it. 

8.3 Choice of Language 

Molecular modeling and simulation tools are written in a variety of languages: C, C++, 

Fortran, Python, TCL, etc.  It is important that any of these tools be able to use OpenMM.  

There are two possible approaches to achieving this goal. 

 

One option is to provide a separate version of the API for each language.  These could be 

created by hand, or generated automatically with a wrapper generator such as SWIG.  This 

would require the API to use only “lowest common denominator” features that can be 
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reasonably supported in all languages.  For example, an object oriented API would not be an 

option, since it could not be cleanly expressed in C or Fortran. 

 

The other option is to provide a single version of the API written in a single language.  This 

would permit a cleaner, simpler API, but also restrict the languages it could be directly called 

from.  For example, a C++ API could not be invoked directly from Fortran or Python. 

 

We have chosen to use a hybrid of these two approaches.  OpenMM is based on an object 

oriented C++ API.  This is the primary way to invoke OpenMM, and is the only API that fully 

exposes all features of the library.  We believe this will ultimately produce the best, easiest to 

use API and create the least work for developers who use it.  It does require that any code 

which directly invokes this API must itself be written in C++, but this should not be a 

significant burden.  Regardless of what language we had chosen, developers would need to 

write a thin layer for translating between their own application’s data model and OpenMM.  

That layer is the only part which needs to be written in C++. 

 

In addition, we have created wrapper APIs that allow OpenMM to be invoked from other 

languages.  The current release includes wrappers for C, Fortran, and Python.  These 

wrappers support as many features as reasonably possible given the constraints of the 

particular languages, but some features cannot be fully supported.  In particular, writing 

plug-ins to extend the OpenMM API can only be done in C++. 

 

We are also aware that some features of C++ can easily lead to compatibility and portability 

problems, and we have tried to avoid those features.  In particular, we make minimal use of 

templates and avoid multiple inheritance altogether.  Our goal is to eventually support 

OpenMM on all major compilers and operating systems. 

8.4 Architectural Overview 

OpenMM is based on a layered architecture, as shown in the following diagram: 
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Figure	  8-‐1:	  	  OpenMM	  architecture	  

At the highest level is the OpenMM public API.  This is the API developers program against 

when using OpenMM within their own applications.  It is designed to be simple, easy to 

understand, and completely platform independent.  This is the only layer that many users 

will ever need to look at. 

 

The public API is implemented by a layer of platform independent code.  It serves as the 

interface to the lower level, platform specific code.  Most users will never need to look at it. 

 

The next level down is the OpenMM Low Level API (OLLA).  This acts as an abstraction 

layer to hide the details of each hardware platform.  It consists of a set of C++ interfaces that 

each platform must implement.  Users who want to extend OpenMM will need to write 

classes at the OLLA level.  Note the different roles played by the public API and the low level 

API: the public API defines an interface for users to invoke in their own code, while OLLA 

defines an interface that users must implement, and that is invoked by the OpenMM 

implementation layer. 

 

At the lowest level is hardware specific code that actually performs computations.  This code 

may be written in any language and use any technologies that are appropriate.  For example, 

code for GPUs will be written in stream processing languages such as OpenCL or CUDA, 

code written to run on clusters will use MPI or other distributed computing tools, code 

written for multicore processors will use threading tools such as Pthreads or OpenMP, etc.  
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OpenMM sets no restrictions on how these computational kernels are written.  As long as 

they are wrapped in the appropriate OLLA interfaces, OpenMM can use them. 

8.5 The OpenMM Public API 

The public API is based on a small number of classes: 

 

System: A System specifies generic properties of the system to be simulated: the number of 

particles it contains, the mass of each one, the size of the periodic box, etc.  The interactions 

between the particles are specified through a set of Force objects (see below) that are added 

to the System.  Force field specific parameters, such as particle charges, are not direct 

properties of the System.  They are properties of the Force objects contained within the 

System. 

 

Force: The Force objects added to a System define the behavior of the particles.  Force is an 

abstract class; subclasses implement specific behaviors.  The Force class is actually slightly 

more general than its name suggests.  A Force can, indeed, apply forces to particles, but it 

can also directly modify particle positions and velocities in arbitrary ways.  Some 

thermostats and barostats, for example, can be implemented as Force classes.  Examples of 

Force subclasses in OpenMM 5.1 include HarmonicBondForce, NonbondedForce, and 

MonteCarloBarostat. 

 

Context: This stores all of the state information for a simulation: particle positions and 

velocities, as well as arbitrary parameters defined by the Forces in the System.  It is possible 

to create multiple Contexts for a single System, and thus have multiple simulations of that 

System in progress at the same time. 

 

Integrator: This implements an algorithm for advancing the simulation through time.  It is 

an abstract class; subclasses implement specific algorithms.  Examples of Integrator 

subclasses in OpenMM 5.1 include LangevinIntegrator, VerletIntegrator, and 

BrownianIntegrator. 
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State: A State stores a snapshot of the simulation at a particular point in time.  It is created 

by calling a method on a Context.  As discussed earlier, this is a potentially expensive 

operation.  This is the only way to query the values of state variables, such as particle 

positions and velocities; Context does not provide methods for accessing them directly. 

 

Here is an example of what the source code to create a System and run a simulation might 

look like: 

 
System system; 

for (int i = 0; i < numParticles; ++i) 

    system.addParticle(particle[i].mass); 

HarmonicBondForce* bonds = new HarmonicBondForce(); 

system.addForce(bonds); 

for (int i = 0; i < numBonds; ++i) 

    bonds->addBond(bond[i].particle1, bond[i].particle2, 

        bond[i].length, bond[i].k); 

HarmonicAngleForce* angles = new HarmonicAngleForce(); 

system.addForce(angles); 

for (int i = 0; i < numAngles; ++i) 

    angles->addAngle(angle[i].particle1, angle[i].particle2,  

        angle[i].particle3, angle[i].angle, angle[i].k); 

// ...create and initialize other force field terms in the same way 

LangevinIntegrator integrator(temperature, friction, stepSize); 

Context context(system, integrator); 

context.setPositions(initialPositions); 

context.setVelocities(initialVelocities); 

integrator.step(10000); 

 

We create a System, add various Forces to it, and set parameters on both the System and the 

Forces.  We then create a LangevinIntegrator, initialize a Context in which to run a 

simulation, and instruct the Integrator to advance the simulation for 10,000 time steps. 

8.6 The OpenMM Low Level API 
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The OpenMM Low Level API (OLLA) defines a set of interfaces that users must implement 

in their own code if they want to extend OpenMM, such as to create a new Force subclass or 

support a new hardware platform.  It is based on the concept of “kernels” that define 

particular computations to be performed. 

 

More specifically, there is an abstract class called KernelImpl.  Instances of this class (or 

rather, of its subclasses) are created by KernelFactory objects.  These classes provide the 

concrete implementations of kernels for a particular platform.  For example, to perform 

calculations on a GPU, one would create one or more KernelImpl subclasses that 

implemented the computations with GPU kernels, and one or more KernelFactory 

subclasses to instantiate the KernelImpl objects. 

 

All of these objects are encapsulated in a single object that extends Platform. KernelFactory 

objects are registered with the Platform to be used for creating specific named kernels.  The 

choice of what implementation to use (a GPU implementation, a multithreaded CPU 

implementation, an MPI-based distributed implementation, etc.) consists entirely of 

choosing what Platform to use. 

 

As discussed so far, the low level API is not in any way specific to molecular simulation; it is 

a fairly generic computational API.  In addition to defining the generic classes, OpenMM 

also defines abstract subclasses of KernelImpl corresponding to specific calculations.  For 

example, there is a class called CalcHarmonicBondForceKernel to implement 

HarmonicBondForce and a class called IntegrateLangevinStepKernel to implement 

LangevinIntegrator.  It is these classes for which each Platform must provide a concrete 

subclass. 

 

This architecture is designed to allow easy extensibility.  To support a new hardware 

platform, for example, you create concrete subclasses of all the abstract kernel classes, then 

create appropriate factories and a Platform subclass to bind everything together.  Any 

program that uses OpenMM can then use your implementation simply by specifying your 

Platform subclass as the platform to use. 
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Alternatively, you might want to create a new Force subclass to implement a new type of 

interaction.  To do this, define an abstract KernelImpl subclass corresponding to the new 

force, then write the Force class to use it.  Any Platform can support the new Force by 

providing a concrete implementation of your KernelImpl subclass.  Furthermore, you can 

easily provide that implementation yourself, even for existing Platforms created by other 

people.  Simply create a new KernelFactory subclass for your kernel and register it with the 

Platform object.  The goal is to have a completely modular system.  Each module, which 

might be distributed as an independent library, can either add new features to existing 

platforms or support existing features on new platforms. 

 

In fact, there is nothing “special” about the kernel classes defined by OpenMM.  They are 

simply KernelImpl subclasses that happen to be used by Forces and Integrators that happen 

to be bundled with OpenMM.  They are treated exactly like any other KernelImpl, including 

the ones you define yourself. 

 

It is important to understand that OLLA defines an interface, not an implementation.  It 

would be easy to assume a one-to-one correspondence between KernelImpl objects and the 

pieces of code that actually perform calculations, but that need not be the case.  For a GPU 

implementation, for example, a single KernelImpl might invoke several GPU kernels.  

Alternatively, a single GPU kernel might perform the calculations of several KernelImpl 

subclasses. 

8.7 Platforms 

This release of OpenMM contains the following Platform subclasses: 

 

ReferencePlatform. This is designed to serve as reference code for writing other 

platforms.  It is written with simplicity and clarity in mind, not performance. 

CudaPlatform.  This platform is implemented using the CUDA language, and performs 

calculations on Nvidia GPUs. 

OpenCLPlatform.  This platform is implemented using the OpenCL language, and 

performs calculations on a variety of types of GPUs and CPUs. 
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The choice of which platform to use for a simulation depends on various factors: 

 

1. The Reference platform is much slower than the others, and therefore is rarely used 

for production simulations. 

2. The CUDA platform can only be used with NVIDIA GPUs.  For using an AMD GPU or 

for running on a CPU, use the OpenCL platform. 

3. When running on recent NVIDIA GPUs (Fermi and Kepler generations), the CUDA 

platform is usually faster and should be used.  On older GPUs, the OpenCL platform 

is likely to be faster.  Also, some very old GPUs (GeForce 8000 and 9000 series) are 

only supported by the OpenCL platform, not by the CUDA platform. 

4. The AMOEBA force field only works with the CUDA platform, not with the OpenCL 

platform.



 

 

9 Compiling OpenMM from 
Source Code 

This chapter describes the procedure for building and installing OpenMM libraries from 

source code.  It is recommended that you use binary OpenMM libraries, if possible.  If there 

are not suitable binary libraries for your system, consider building OpenMM from source 

code by following these instructions. 

9.1 Prerequisites 

Before building OpenMM from source, you will need the following: 

• A C++ compiler 

• CMake 

• OpenMM source code 

 

See the sections below for specific instructions for the different platforms. 

9.1.1 Get a C++ compiler 

You must have a C++ compiler installed before attempting to build OpenMM from source. 

9.1.1.1 Mac and Linux: gcc 

Use gcc on Mac/Linux.  We have tested the examples with various versions of gcc between 

4.0 and 4.6. 

 

To find out whether you have gcc installed, type: 
   

which gcc 

 

 



85 

 

To find out what version of gcc you have, type: 
 

gcc –version 

 

If you do not already have gcc installed, you will need to download and install it.  On the 

Mac, this means downloading the Xcode Tools from the App Store. (With Xcode 4.3 and 

later, you must then launch Xcode, open the Preferences window, go to the Downloads tab, 

and tell it to install the command line tools.  With Xcode 4.2 and earlier, the command line 

tools are automatically installed when you install Xcode.) 

9.1.1.2 Windows: Visual Studio 

On Windows systems, use the C++ compiler in Visual Studio version 10 (2010) or 9 (2008).  

You can download a free version of Visual C++ 10 2010 (Express Edition) from 

http://www.microsoft.com/express/vc/. 

9.1.2 Install CMake 

CMake is the build system used for OpenMM.  You must install CMake version 2.8 or higher 

before attempting to build OpenMM from source.  You can get CMake from 

http://www.cmake.org/.  If you choose to build CMake from source on Linux, make sure you 

have the curses library installed beforehand, so that you will be able to build the CCMake 

visual CMake tool. 

9.1.3 Get the OpenMM source code 

You will also need the OpenMM source code before building OpenMM from source.  To 

download and unpack OpenMM source code: 

 

1. Browse to https://simtk.org/home/openmm/. 

2. Click the "Downloads" link in the navigation bar on the left side. 

3. Download OpenMM<Version>-Source.zip, choosing the latest version. 

4. Unpack the zip file.  Note the location where you unpacked the OpenMM source 

code. 
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9.1.4 Other Required Software 

There are several other pieces of software you must install to compile certain parts of 

OpenMM.  Which of these you need depends on the options you select in CMake. 

 

• For compiling the CUDA Platform, you need: 

o CUDA (See Chapter 3 for installation instructions.) 

• For compiling the OpenCL Platform, you need: 

o OpenCL (See Chapter 3 for installation instructions.) 

• For compiling C and Fortran API wrappers, you need: 

o A Fortran compiler   

o gccxml (http://gccxml.github.io) 

• For compiling the Python API wrappers, you need: 

o Python 2.6 or later (http://www.python.org)  

o SWIG (http://www.swig.org)  

o Doxygen (http://www.doxygen.org)  

• To generate API documentation, you need: 

o Doxygen (http://www.doxygen.org)  

9.2 Step 1: Configure with CMake 

9.2.1 Build and source directories 

First, create a directory in which to build OpenMM.  A good name for this directory is 

build_openmm.  We will refer to this as the “build_openmm directory” in the instructions 

below.  This directory will contain the temporary files used by the OpenMM CMake build 

system.  Do not create this build directory within the OpenMM source code directory.  This 

is what is called an “out of source” build, because the build files will not be mixed with the 

source files. 

 

Also note the location of the OpenMM source directory (i.e., where you unpacked the source 

code zip file).  It should contain a file called CMakeLists.txt.  This directory is what we will 

call the “OpenMM source directory” in the following instructions. 
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9.2.2 Starting CMake 

Configuration is the first step of the CMake build process.  In the configuration step, the 

values of important build variables will be established. 

9.2.2.1 Mac and Linux 

On Mac and Linux machines, type the following two lines:   
 

cd build_openmm 

   ccmake -i <path to OpenMM src directory> 

 

That is not a typo.  ccmake has two c’s.  CCMake is the visual CMake configuration tool.         

Press “c” within the CCMake interface to configure CMake.  Follow the instructions in the 

“All Platforms” section below.  

9.2.2.2 Windows 

On Windows, perform the following steps: 

 

• Click Start->All Programs->CMake 2.8->CMake 

• In the box labeled "Where is the source code:" browse to OpenMM src directory 

(containing top CMakeLists.txt) 

• In the box labeled "Where to build the binaries" browse to your build_openmm 

directory. 

• Click the "Configure" button at the bottom of the CMake screen. 

• Select "Visual Studio 9 2008" from the  list of Generators.  (or Visual Studio 10, if 

that is what you have installed) 

• Follow the instructions in the “All Platforms” section below. 

9.2.2.3 All platforms 

There are several variables that can be adjusted in the CMake interface: 

 

• If you intend to use CUDA (NVIDIA) or OpenCL acceleration, set the variable 

OPENMM_BUILD_CUDA_LIB or OPENMM_BUILD_OPENCL_LIB, respectively, 

to ON.  Before doing so, be certain that you have installed and tested the drivers for 
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the platform you have selected (see Chapter 3 for information on installing GPU 

software). 

• There are lots of other options starting with OPENMM_BUILD that control whether 

to build particular features of OpenMM, such as plugins, API wrappers, and 

documentation. 

 

• Do not worry about the SVNVERSION_EXE variable with value 

SVNVERSION_EXE_NOT_FOUND.  That is unimportant. 

 

• Set the variable CMAKE_INSTALL_PREFIX to the location where you want to 

install OpenMM.  

 
Configure (press “c”) again.  Adjust any variables that cause an error or are set to 

NOTFOUND (except for SVNVERSION_EXE). 

 
Continue to configure (press “c”) until no starred/red CMake variables are displayed.  

Congratulations, you have completed the configuration step. 

9.3 Step 2: Generate Build Files with CMake 

Once the configuration is done, the next step is generation.  The generate “g” or “OK” or 

“Generate” option will not be available until configuration has completely converged. 

9.3.1 Windows 

• Press the "OK" or “Generate” button to generate Visual Studio project files. 

• Ignore any warnings about "Policy CMP003" (Press "OK") 

• If CMake does not exit automatically, press the close button in the upper-right corner 

of the CMake title bar to exit. 

9.3.2 Mac and Linux 

• Press g to generate the Makefile. 

• Ignore any warnings about "Policy CMP003" (Press “e”) 

• If CMake does not exit automatically, press “q” to exit. 
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That’s it!  Generation is the easy part.  Now it’s time to build. 

9.4 Step 3: Build OpenMM 

9.4.1 Windows 

• Open the file OpenMM.sln in your openmm_build directory in Visual Studio. 

• Set the configuration type to "Release" (not "Debug") in the toolbar. 

• From the Build menu, click Build->Build Solution 

• The OpenMM libraries and test programs will be created.  This takes some time. 

• The test program TestCudaRandom might not build on Windows.  This is OK. 

9.4.2 Mac and Linux 

• Type make in the openmm_build directory. 

• The OpenMM libraries and test programs will be created.  This takes some time. 

9.5 Step 4: Install OpenMM 

9.5.1 Windows 

In the Solution Explorer Panel, far-click/right-click INSTALL->build. 

9.5.2 Mac and Linux 

Type:  

 
make install 

 

If you are installing to a system area, such as /usr/local/openmm/, you will need to type: 

 
sudo make install  

9.6 Step 5: Set Your Library Path 
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Refer to Chapter 3 for instructions on setting your library path environment variable (PATH, 

LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH) and OPENMM_PLUGIN_DIR to point 

to your new OpenMM installation. 

9.7 Step 6: Test your build 

After OpenMM has been built, you should run the unit tests to make sure it works. 

9.7.1 Windows 

In Visual Studio, far-click/right-click RUN_TESTS in the Solution Explorer Panel.  Select 

RUN_TESTS->build to begin testing.  Ignore any failures for TestCudaRandom. 

9.7.2 Mac and Linux 

Type: 
 

make test 

 

You should see a series of test results like this: 

         
        Start   1: TestReferenceAndersenThermostat 

  1/317 Test   #1: TestReferenceAndersenThermostat .............. Passed  0.26 sec 

        Start   2: TestReferenceBrownianIntegrator 

  2/317 Test   #2: TestReferenceBrownianIntegrator .............. Passed  0.13 sec 

        Start   3: TestReferenceCheckpoints 

  3/317 Test   #3: TestReferenceCheckpoints ..................... Passed  0.02 sec 

  ... <many other tests> ... 

   
Passed is good.  FAILED is bad.  If any tests fail, you can run them individually to get more 

detailed error information.  Note that some tests are stochastic, and therefore are expected 

to fail a small fraction of the time.  These tests will say so in the error message: 

 
./TestReferenceLangevinIntegrator  
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exception: Assertion failure at 

TestReferenceLangevinIntegrator.cpp:129.  Expected 9.97741, 

found 10.7884 (This test is stochastic and may occasionally 

fail) 

 

 
Congratulations! You successfully have built and installed OpenMM from source.



 

 

	  

10 OpenMM Tutorials  

10.1 Example Files Overview 

Four example files are provided in the examples folder, each designed with a specific 

objective.   

 

• HelloArgon:  A very simple example intended for verifying that you have installed 

OpenMM correctly.  It also introduces you to the basic classes within OpenMM. 

• HelloSodiumChloride:  This example shows you our recommended strategy for 

integrating OpenMM into an existing molecular dynamics code.   

• HelloEthane: The main purpose of this example is to demonstrate how to tell 

OpenMM about bonded forces (bond stretch, bond angle bend, dihedral torsion). 

• HelloWaterBox:  This example shows you how to use OpenMM to model explicit 

solvation, including setting up periodic boundary conditions.  It runs extremely fast 

on a GPU but very, very slowly on a CPU, so it is an excellent example to use to 

compare performance on the GPU versus the CPU.  The other examples provided use 

systems where the performance difference would be too small to notice. 

 

The two fundamental examples—HelloArgon and HelloSodiumChloride—are provided in 

C++, C, and Fortran, as indicated in the table below.  The other two examples—HelloEthane 

and HelloWaterBox—follow the same structure as HelloSodiumChloride but demonstrate 

more calls within the OpenMM API.  They are only provided in C++ but can be adapted to 

run in C and Fortran by following the mappings described in Chapter 12.  HelloArgon and 

HelloSodiumChloride also serve as examples of how to do these mappings.  The sections 

below describe the HelloArgon, HelloSodiumChloride, and HelloEthane programs in more 

detail.  
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Example Solvent Thermostat Boundary 
Forces & 

Constraints 
API 

Argon Vacuum None None Non-bonded* 
C++, C, 

Fortran 

Sodium 

Chloride 

Implicit 

water 
Langevin None Non-bonded* 

C++, C, 

Fortran 

Ethane Vacuum None None 

Non-bonded,* 

stretch, bend, 

torsion 

C++ 

Water Box 
Explicit 

water 
Andersen Periodic 

Non-bonded,* 

stretch, bend, 

constraints 

C++ 

*van der Waals and Coulomb forces 

10.2 Running Example Files  

The instructions below are for running the HelloArgon program.  A similar process would be 

used to run the other examples. 

10.2.1 Visual Studio 

Navigate to wherever you saved the example files.  Descend into the directory folder 

VisualStudio. Double-click the file HelloArgon.sln (a Microsoft Visual Studio Solution file).  

Visual Studio will launch. 
 

Note:  these files were created using Visual Studio 8.  If you are using Visual Studio 9 (2008 

Express Edition), the program will ask if you want to convert the files to the new version.  

Agree and continue through the conversion process.  

 

In Visual Studio, make sure the "Solution Configuration" is set to "Release" and not "Debug".  

The “Solution Configuration” can be set using the drop-down menu in the top toolbar, next 
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to the green arrow (see Figure 10-1 below).  Due to incompatibilities among Visual Studio 

versions, we do not provide pre-compiled debug binaries.   

 

 

Figure	  10-‐1:	  	  Setting	  "Solution	  Configuration"	  to	  "Release"	  mode	  in	  Visual	  Studio	  

 

From the command options select Debug -> Start Without Debugging (or CTRL-F5).  See 

Figure 10-2.  This will also compile the program, if it has not previously been compiled. 

 

 

Figure	  10-‐2:	  	  Run	  a	  program	  in	  Visual	  Studio	  

 

You should see a series of lines like the following output on your screen: 

 
REMARK  Using OpenMM platform Reference 

MODEL     1 

ATOM      1  AR   AR     1       0.000   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.000   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       10.000  0.000   0.000  1.00  0.00 

ENDMDL 
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… 

 

MODEL     250 

ATOM      1  AR   AR     1       0.233   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.068   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.678   0.000   0.000  1.00  0.00 

ENDMDL 

MODEL     251 

ATOM      1  AR   AR     1       0.198   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.082   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.698   0.000   0.000  1.00  0.00 

ENDMDL 

MODEL     252 

ATOM      1  AR   AR     1       0.165   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.097   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.717   0.000   0.000  1.00  0.00 

ENDMDL 

 

10.2.1.1 Determining the platform being used 

The very first line of the output will indicate whether you are running on the CPU (Reference 

platform) or a GPU (CUDA or OpenCL platform).  It will say one of the following: 

 
REMARK  Using OpenMM platform Reference 

REMARK  Using OpenMM platform Cuda 

REMARK  Using OpenMM platform OpenCL 

 

If you have a supported GPU, the program should, by default, run on the GPU. 

10.2.1.2 Visualizing the results  

You can output the results to a PDB file that could be visualized using programs like VMD 

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/).  To do 

this within Visual Studios: 

 

1.  Right-click on the project name HelloArgon (not one of the files) and select the 

“Properties” option.  
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2. On the “Property Pages” form, select “Debugging” under the “Configuration 

Properties” node. 

3. In the “Command Arguments” field, type: 

 
> argon.pdb 

 

This will save the output to a file called argon.pdb in the current working directory 

(default is the VisualStudio directory).  If you want to save it to another directory, 

you will need to specify the full path. 

4. Select “OK” 

 

Now, when you run the program in Visual Studio, no text will appear.  After a short time, 
you should see the message “Press any key to continue…,” indicating that the 

program is complete and that the PDB file has been completely written. 

10.2.2 Mac OS X/Linux 

Navigate to wherever you saved the example files. 

 

Verify your makefile by consulting the MakefileNotes file in this directory, if necessary. 

  

Type: 
make 

 

 

Then run the program by typing: 

 
./HelloArgon  

 

You should see a series of lines like the following output on your screen: 
 

REMARK  Using OpenMM platform Reference 

MODEL     1 

ATOM      1  AR   AR     1       0.000   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.000   0.000   0.000  1.00  0.00 
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ATOM      3  AR   AR     1       10.000  0.000   0.000  1.00  0.00 

ENDMDL 

 

… 

 
MODEL     250 

ATOM      1  AR   AR     1       0.233   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.068   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.678   0.000   0.000  1.00  0.00 

ENDMDL 

MODEL     251 

ATOM      1  AR   AR     1       0.198   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.082   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.698   0.000   0.000  1.00  0.00 

ENDMDL 

MODEL     252 

ATOM      1  AR   AR     1       0.165   0.000   0.000  1.00  0.00 

ATOM      2  AR   AR     1       5.097   0.000   0.000  1.00  0.00 

ATOM      3  AR   AR     1       9.717   0.000   0.000  1.00  0.00 

ENDMDL 

 

10.2.2.1 Determining the platform being used 

The very first line of the output will indicate whether you are running on the CPU (Reference 

platform) or a GPU (CUDA or OpenCL platform).  It will say one of the following: 

 
REMARK  Using OpenMM platform Reference 

REMARK  Using OpenMM platform Cuda 

REMARK  Using OpenMM platform OpenCL 

 

If you have a supported GPU, the program should, by default, run on the GPU. 

10.2.2.2 Visualizing the results  

You can output the results to a PDB file that could be visualized using programs like VMD 

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/) by 

typing: 
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./HelloArgon > argon.pdb 

10.2.2.3 Compiling Fortran and C examples 

The Makefile provided with the examples can also be used to compile the Fortran and C 

examples.   

 

The Fortran compiler needs to load a version of the libstdc++.dylib library that is compatible 

with the version of gcc used to build OpenMM;   OpenMM for Mac is compiled using gcc 4.2.  

If you are compiling with a different version, edit the Makefile and add the following flag to 
FCPPLIBS: –L/usr/lib/gcc/i686-apple-darwin10/4.2.1.   

 

When the Makefile has been updated, type: 

 
make all 

10.3 HelloArgon Program 

The HelloArgon program simulates three argon atoms in a vacuum.  It is a simple program 

primarily intended for you to verify that you are able to compile, link, and run with 

OpenMM.  It also demonstrates the basic calls needed to run a simulation using OpenMM. 

10.3.1 Including OpenMM-defined functions 

The OpenMM header file OpenMM.h instructs the program to include everything defined by 

the OpenMM libraries.  Include the header file by adding the following line at the top of your 

program:   
 

#include "OpenMM.h" 

10.3.2 Running a program on GPU platforms 

By default, a program will run on the Reference platform.  In order to run a program on 

another platform (e.g., an NVIDIA or AMD GPU), you need to load the required shared 

libraries for that other platform (e.g., Cuda, OpenCL).  The easy way to do this is to call: 
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OpenMM::Platform::loadPluginsFromDirectory( 

         OpenMM::Platform::getDefaultPluginsDirectory()); 

 

This will load all the shared libraries (plug-ins) that can be found, so you do not need to 

explicitly know which libraries are available on a given machine.  In this way, the program 

will be able to run on another platform, if it is available. 

10.3.3 Running a simulation using the OpenMM public API 

The OpenMM public API was described in Section 8.5.  Here you will see how to use those 

classes to create a simple system of three argon atoms and run a short simulation.  The main 

components of the simulation are within the function simulateArgon(): 

 

1. System – We first establish a system and add a non-bonded force to it.  At this 

point, there are no particles in the system. 

 
// Create a system with nonbonded forces. 

     OpenMM::System system; 
     OpenMM::NonbondedForce* nonbond =  

new OpenMM::NonbondedForce();  
system.addForce(nonbond); 

 

We then add the three argon atoms to the system.  For this system, all the data for 

the particles are hard-coded into the program.  While not a realistic scenario, it 
makes the example simpler and clearer.  The std::vector<OpenMM::Vec3> is an 

array of vectors of 3. 

 
     // Create three atoms. 
     std::vector<OpenMM::Vec3> initPosInNm(3); 
     for (int a = 0; a < 3; ++a)  
     { 
        initPosInNm[a] = OpenMM::Vec3(0.5*a,0,0); // location, nm 
 
        system.addParticle(39.95); // mass of Ar, grams per mole 
 
        // charge, L-J sigma (nm), well depth (kJ) 
        nonbond->addParticle(0.0, 0.3350, 0.996); // vdWRad(Ar)=  

.188 nm 
} 
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Units: Be very careful with the units in your program.  It is very easy to make 

mistakes with the units, so we recommend including them in your variable names, as 
we have done here initPosInNm (position in nanometers).  OpenMM provides 

conversion constants that should be used whenever there are conversions to be done; 

for simplicity, we did not do that in HelloArgon, but all the other examples show the 

use of these constants.  

 

It is hard to overemphasize the importance of careful units handling—it is very easy 

to make a mistake despite, or perhaps because of, the trivial nature of units 

conversion.  For more information about the units used in OpenMM, see Section 

17.2. 

 

Adding Particle Information: Both the system and the non-bonded force 

require information about the particles.  The system just needs to know the mass of 

the particle.  The non-bonded force requires information about the charge (in this 

case, argon is uncharged), and the Lennard-Jones parameters sigma (zero-energy 

separation distance) and well depth (see Section 18.6.1 for more details).   

 

Note that the van der Waals radius for argon is 0.188 nm and that it has already been 

converted to sigma (0.335 nm) in the example above where it is added to the non-

bonded force;  in your code, you should make use of the appropriate conversion 

factor supplied with OpenMM as discussed in Section 17.2. 

 

2. Integrator – We next specify the integrator to use to perform the calculations.  In 

this case, we choose a Verlet integrator to run a constant energy simulation.  The only 

argument required is the step size in picoseconds.   

 
OpenMM::VerletIntegrator integrator(0.004); // step size in ps 

 

We have chosen to use 0.004 picoseconds, or 4 femtoseconds, which is larger than 

that used in a typical molecular dynamics simulation.  However, since this example 

does not have any bonds with higher frequency components, like most molecular 

dynamics simulations do, this is an acceptable value. 
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3. Context – The context is an object that consists of an integrator and a system.  It 

manages the state of the simulation.  The code below initializes the context.  We then 

let the context select the best platform available to run on, since this is not 

specifically specified, and print out the chosen platform.  This is useful information, 

especially when debugging.    

 
// Let OpenMM Context choose best platform. 

     OpenMM::Context context(system, integrator); 
     printf( "REMARK  Using OpenMM platform %s\n",  

        context.getPlatform().getName().c_str() ); 

 

We then initialize the system, setting the initial time, as well as the initial positions 

and velocities of the atoms.  In this example, we leave time and velocity at their 

default values of zero. 

 
   // Set starting positions of the atoms. Leave time and velocity  

zero. 
    context.setPositions(initPosInNm); 

 

4. Initialize and run the simulation – The next block of code runs the simulation 

and saves its output.  For each frame of the simulation (in this example, a frame is 

defined by the advancement interval of the integrator; see below), the current state of 

the simulation is obtained and written out to a PDB-formatted file.  

 

 
// Simulate. 
for (int frameNum=1; ;++frameNum) { 

        // Output current state information. 
  OpenMM::State state    =  

context.getState(OpenMM::State::Positions); 
        const double  timeInPs = state.getTime(); 
        writePdbFrame(frameNum, state); // output coordinates 

 

Getting state information has to be done in bulk, asking for information for all the 

particles at once.  This is computationally expensive since this information can 

reside on the GPUs and requires communication overhead to retrieve, so you do not 

want to do it very often.  In the above code, we only request the positions, since that 

is all that is needed, and time from the state.   
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The simulation stops after 10 ps; otherwise we ask the integrator to take 10 steps (so 

one frame is equivalent to 10 time steps).   Normally, we would want to take more 

than 10 steps at a time, but to get a reasonable-looking animation, we use 10.   
 if (timeInPs >= 10.) 
            break; 
 
 // Advance state many steps at a time, for efficient use of OpenMM. 
 integrator.step(10); // (use a lot more than this normally) 

10.3.4 Error handling for OpenMM 

Error handling for OpenMM is explicitly designed so you do not have to check the status 

after every call.  If anything goes wrong, OpenMM throws an exception.  It uses standard 

exceptions, so on many platforms, you will get the exception message automatically.  

However, we recommend using try-catch blocks to ensure you do catch the exception.   

 
int main()  
{ 
    try { 
        simulateArgon(); 
        return 0; // success! 
    } 
    // Catch and report usage and runtime errors detected by OpenMM and 
fail. 
    catch(const std::exception& e) { 
        printf("EXCEPTION: %s\n", e.what()); 
        return 1; // failure! 
    } 
} 

10.3.5 Writing out PDB files 

For the HelloArgon program, we provide a simple PDB file writing function 

writePdbFrame that only writes out argon atoms.  The function has nothing to do with 

OpenMM except for using the OpenMM State.  The function extracts the positions from the 

State in nanometers (10-9 m) and converts them to Angstroms (10-10 m) to be compatible 

with the PDB format.   Again, we emphasize how important it is to track the units being 

used!       
 
void writePdbFrame(int frameNum, const OpenMM::State& state)  
{ 
    // Reference atomic positions in the OpenMM State. 
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    const std::vector<OpenMM::Vec3>& posInNm = state.getPositions(); 
 
    // Use PDB MODEL cards to number trajectory frames 
    printf("MODEL     %d\n", frameNum); // start of frame 
    for (int a = 0; a < (int)posInNm.size(); ++a) 
    { 
        printf("ATOM  %5d  AR   AR     1    ", a+1); // atom number 
        printf("%8.3f%8.3f%8.3f  1.00  0.00\n",      // coordinates 
            // "*10" converts nanometers to Angstroms 
            posInNm[a][0]*10, posInNm[a][1]*10, posInNm[a][2]*10); 
    } 
    printf("ENDMDL\n"); // end of frame 
} 

 
MODEL and ENDMDL are used to mark the beginning and end of a frame, respectively.  By 

including multiple frames in a PDB file, you can visualize the simulation trajectory. 

10.3.6 HelloArgon output 

The output of the HelloArgon program can be saved to a .pdb file and visualized using 

programs like VMD or PyMol (see Section 10.2).  You should see three atoms moving 

linearly away and towards one another:  

 

 
 

You may need to adjust the van der Waals radius in your visualization program to see the 

atoms colliding. 

10.4 HelloSodiumChloride Program 

The HelloSodiumChloride models several sodium (Na+) and chloride (Cl-) ions in implicit 

solvent (using a Generalized Born/Surface Area, or GBSA, OBC model).  As with the 

HelloArgon program, only non-bonded forces are simulated.   

 

The main purpose of this example is to illustrate our recommended strategy for integrating 

OpenMM into an existing molecular dynamics (MD) code: 
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1. Write a few, high-level interface routines containing all your OpenMM 

calls:  Rather than make OpenMM calls throughout your program, we recommend 

writing a handful of interface routines that understand both your MD code’s data 

structures and OpenMM.  Organize these routines into a separate compilation unit so 

you do not have to make huge changes to your existing MD code.  These routines 

could be written in any language that is callable from the existing MD code.  We 

recommend writing them in C++ since that is what OpenMM is written in, but you 

can also write them in C or Fortran; see Chapter 12. 

 

2. Call only these high-level interface routines from your existing MD code:  

This provides a clean separation between the existing MD code and OpenMM, so that 

changes to OpenMM will not directly impact the existing MD code.  One way to 

implement this is to use opaque handles, a standard trick used (for example) for 

opening files in Linux.  An existing MD code can communicate with OpenMM via the 

handle, but knows none of the details of the handle.  It only has to hold on to the 

handle and give it back to OpenMM. 

 

In the example described below, you will see how this strategy can be implemented for a very 

simple MD code.  Chapter 13 describes the strategies used in integrating OpenMM into real 

MD codes.   

10.4.1 Simple molecular dynamics system  

The initial sections of HelloSodiumChloride.cpp represent a very simple molecular dynamics 

system.  The system includes modeling and simulation parameters and the atom and force 
field data.  It also provides a data structure posInAng[3] for storing the current state.  

These sections represent (in highly simplified form) information that would be available 

from an existing MD code, and will be used to demonstrate how to integrate OpenMM with 

an existing MD program. 
 
// ----------------------------------------------------------------- 
//                   MODELING AND SIMULATION PARAMETERS 
// ----------------------------------------------------------------- 
static const double Temperature         = 300;     // Kelvins 
static const double FrictionInPerPs     = 91.;     // collisions per 
picosecond 
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static const double SolventDielectric   = 80.;     // typical for water 
static const double SoluteDielectric    = 2.;      // typical for protein 
 
static const double StepSizeInFs        = 2;       // integration step 
size (fs) 
static const double ReportIntervalInFs  = 50;      // how often to issue 
PDB frame (fs) 
static const double SimulationTimeInPs  = 100;     // total simulation 
time (ps) 
 
// Decide whether to request energy calculations. 
static const bool   WantEnergy          = true; 
 
 
// ----------------------------------------------------------------- 
//                          ATOM AND FORCE FIELD DATA 
// ----------------------------------------------------------------- 
// This is not part of OpenMM; just a struct we can use to collect atom  
// parameters for this example. Normally atom parameters would come from 
the  
// force field's parameterization file. We're going to use data in 
Angstrom and  
// Kilocalorie units and show how to safely convert to OpenMM's internal 
unit  
// system which uses nanometers and kilojoules. 
static struct MyAtomInfo {  
    const char* pdb;  
    double      mass, charge, vdwRadiusInAng, vdwEnergyInKcal, 
                gbsaRadiusInAng, gbsaScaleFactor; 
    double      initPosInAng[3]; 
    double      posInAng[3]; // leave room for runtime state info 
} atoms[] = { 
// pdb   mass  charge  vdwRad vdwEnergy   gbsaRad gbsaScale  initPos 
{" NA ", 22.99,  1,    1.8680, 0.00277,    1.992,   0.8,     8, 0,  0}, 
{" CL ", 35.45, -1,    2.4700, 0.1000,     1.735,   0.8,    -8, 0,  0}, 
{" NA ", 22.99,  1,    1.8680, 0.00277,    1.992,   0.8,     0, 9,  0}, 
{" CL ", 35.45, -1,    2.4700, 0.1000,     1.735,   0.8,     0,-9,  0}, 
{" NA ", 22.99,  1,    1.8680, 0.00277,    1.992,   0.8,     0, 0,-10}, 
{" CL ", 35.45, -1,    2.4700, 0.1000,     1.735,   0.8,     0, 0, 10}, 
{""} // end of list 
}; 
 

10.4.2 Interface routines 

The key to our recommended integration strategy is the interface routines.  You will need to 

decide what interface routines are required for effective communication between your 

existing MD program and OpenMM, but typically there will only be six or seven.  In our 

example, the following four routines suffice: 
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• Initialize: Data structures that already exist in your MD program (i.e., force fields, 
constraints, atoms in the system) are passed to the Initialize routine, which 

makes appropriate calls to OpenMM and then returns a handle to the OpenMM 

object that can be used by the existing MD program.   
• Terminate: Clean up the heap space allocated by Initialize by passing the 

handle to the Terminate routine.   

• Advance State: The AdvanceState routine advances the simulation.  It requires 

that the calling function, the existing MD code, gives it a handle.   

• Retrieve State: When you want to do an analysis or generate some kind of report, 
you call the RetrieveState routine.  You have to give it a handle.  It then fills in a 

data structure that is defined in the existing MD code, allowing the MD program to 

use it in its existing routines without further modification.   

 

Note that these are just descriptions of the routines’ functions—you can call them anything 

you like and implement them in whatever way makes sense for your MD code. 

 

In the example code, the four routines performing these functions, plus an opaque data 

structure (the handle), would be declared, as shown below.  Then, the main program, which 

sets up, runs, and reports on the simulation, accesses these routines and the opaque data 
structure (in this case, the variable omm).  As you can see, it does not have access to any 

OpenMM declarations, only to the interface routines that you write so there is no need to 

change the build environment. 

    
struct MyOpenMMData; 
static MyOpenMMData* myInitializeOpenMM(const MyAtomInfo atoms[], 
                                        double temperature, 
                                        double frictionInPs, 
                                        double solventDielectric, 
                                        double soluteDielectric, 
                                        double stepSizeInFs,  
                                        std::string& platformName); 
static void          myStepWithOpenMM(MyOpenMMData*, int numSteps); 
static void          myGetOpenMMState(MyOpenMMData*, bool  

wantEnergy,double& time, double& energy,  
                            MyAtomInfo atoms[]); 
static void          myTerminateOpenMM(MyOpenMMData*); 
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// ----------------------------------------------------------------- 
//                                MAIN PROGRAM 
// ----------------------------------------------------------------- 
int main() { 
    const int NumReports     = (int)(SimulationTimeInPs*1000 / 

ReportIntervalInFs + 0.5); 
    const int NumSilentSteps = (int)(ReportIntervalInFs / StepSizeInFs + 

0.5); 
 
    // ALWAYS enclose all OpenMM calls with a try/catch block to make sure 
that 
    // usage and runtime errors are caught and reported. 
    try { 
        double        time, energy; 
        std::string   platformName; 
 
        // Set up OpenMM data structures; returns OpenMM Platform name. 
        MyOpenMMData* omm = myInitializeOpenMM(atoms, Temperature, 

FrictionInPerPs,SolventDielectric, SoluteDielectric, 
             StepSizeInFs, platformName); 
 
        // Run the simulation: 
        //  (1) Write the first line of the PDB file and the initial 

configuration. 
        //  (2) Run silently entirely within OpenMM between reporting 

intervals. 
        //  (3) Write a PDB frame when the time comes. 
        printf("REMARK  Using OpenMM platform %s\n", 

platformName.c_str()); 
        myGetOpenMMState(omm, WantEnergy, time, energy, atoms); 
        myWritePDBFrame(1, time, energy, atoms); 
 
        for (int frame=2; frame <= NumReports; ++frame) { 
            myStepWithOpenMM(omm, NumSilentSteps); 
            myGetOpenMMState(omm, WantEnergy, time, energy, atoms); 
            myWritePDBFrame(frame, time, energy, atoms); 
        }  
  
        // Clean up OpenMM data structures. 
        myTerminateOpenMM(omm); 
 
        return 0; // Normal return from main. 
    } 
 
    // Catch and report usage and runtime errors detected by OpenMM and 
fail. 
    catch(const std::exception& e) { 
        printf("EXCEPTION: %s\n", e.what()); 
        return 1; 
    } 
} 
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We will examine the implementation of each of the four interface routines and the opaque 

data structure (handle) in the sections below. 

10.4.2.1 Units 

The simple molecular dynamics system described in Section 10.4.1 employs the commonly 

used units of angstroms and kcals.  These differ from the units and parameters used within 

OpenMM (see Section 17.2): nanometers and kilojoules.  These differences may be small but 

they are critical and must be carefully accounted for in the interface routines.       

10.4.2.2 Lennard-Jones potential 

The Lennard-Jones potential describes the energy between two identical atoms as the 

distance between them varies.   

 

The van der Waals “size” parameter is used to identify the distance at which the energy 

between these two atoms is at a minimum (that is, where the van der Waals force is most 

attractive).  There are several ways to specify this parameter, typically, either as the van der 

Waals radius rvdw or as the actual distance between the two atoms dmin (also called rmin), 

which is twice the van der Waals radius rvdw.  A third way to describe the potential is through 
sigma σ, which identifies the distance at which the energy function crosses zero as the atoms 

move closer together than dmin.  (See Section 18.6.1 for more details about the relationship 

between these). 

 
σ turns out to be about 0.89 * dmin, which is close enough to dmin that it makes it hard to 

distinguish the two.  Be very careful that you use the correct value.  In the example below, we 

will show you how to use the built-in OpenMM conversion constants to avoid errors.  

 

Lennard-Jones parameters are defined for pairs of identical atoms, but must also be applied 

to pairs of dissimilar atoms. That is done by “combining rules” that differ among popular 

MD codes. Two of the most common are: 

• Lorentz-Berthelot (used by AMBER, CHARMM):    

• Jorgensen (used by OPLS):   



109 

 

where r = the effective van der Waals “size” parameter (minimum radius, minimum 
distance, or zero crossing (sigma)), and  ε = the effective van der Waals energy well depth 

parameter, for the dissimilar pair of atoms i and j.  

 

OpenMM only implements Lorentz-Berthelot directly, but others can be implemented using 

the CustomNonbondedForce class.  (See Section 19.1 for details.) 

10.4.2.3 Opaque handle MyOpenMMData 

In this example, the handle used by the interface to OpenMM is a pointer to a struct called 
MyOpenMMData.  The pointer itself is opaque, meaning the calling program has no 

knowledge of what the layout of the object it points to is, or how to use it to directly interface 

with OpenMM.  The calling program will simply pass this opaque handle from one interface 

routine to another.   

 

There are many different ways to implement the handle.  The code below shows just one 

example.  A simulation requires three OpenMM objects (a System, a Context, and an 

Integrator) and so these must exist within the handle.  If other objects were required for a 

simulation, you would just add them to your handle; there would be no change in the main 

program using the handle. 

 
struct MyOpenMMData { 
    MyOpenMMData() : system(0), context(0), integrator(0) {} 
    ~MyOpenMMData() {delete system; delete context; delete integrator;} 
    OpenMM::System*         system; 
    OpenMM::Context*        context; 
    OpenMM::Integrator*     integrator; 
}; 

 

In addition to establishing pointers to the required three OpenMM objects, MyOpenMMData 

has a constructor MyOpenMMData() that sets the pointers for the three OpenMM objects to 

zero and a destructor ~MyOpenMMData() that (in C++) gives the heap space back.  This was 

done in-line in the HelloArgon program, but we recommend you use something like the 

method here instead. 
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10.4.2.4  myInitializeOpenMM 

The myInitializeOpenMM function takes the data structures and simulation parameters 

from the existing MD code and returns a new handle that can be used to do efficient 

computations with OpenMM.  It also returns the platformName so the calling program 

knows what platform (e.g., CUDA, OpenCL, Reference) was used. 

 
static MyOpenMMData*  
myInitializeOpenMM( const MyAtomInfo    atoms[], 
                    double              temperature, 
                    double              frictionInPs, 
                    double              solventDielectric, 
                    double              soluteDielectric, 
                    double              stepSizeInFs,  
                    std::string&        platformName)  
 
 
This initialization routine is very similar to the HelloArgon example program, except that 

objects are created and put in the handle.  For instance, just as in the HelloArgon program, 

the first step is to load the OpenMM plug-ins, so that the program will run on the best 

performing platform that is available.   Then, a System is created and assigned to the handle 
omm.   Similarly, forces are added to the System which is already in the handle.    

 
// Load all available OpenMM plugins from their default location. 
OpenMM::Platform::loadPluginsFromDirectory 
       (OpenMM::Platform::getDefaultPluginsDirectory()); 
 
// Allocate space to hold OpenMM objects while we're using them. 
MyOpenMMData* omm = new MyOpenMMData(); 
 
// Create a System and Force objects within the System. Retain a reference 
// to each force object so we can fill in the forces. Note: the OpenMM 
// System takes ownership of the force objects;don't delete them yourself. 
omm->system = new OpenMM::System(); 
OpenMM::NonbondedForce* nonbond = new OpenMM::NonbondedForce(); 
OpenMM::GBSAOBCForce*   gbsa    = new OpenMM::GBSAOBCForce(); 
omm->system->addForce(nonbond); 
omm->system->addForce(gbsa); 
 
// Specify dielectrics for GBSA implicit solvation. 
gbsa->setSolventDielectric(solventDielectric); 
gbsa->setSoluteDielectric(soluteDielectric); 
 
 
In the next step, atoms are added to the System within the handle, with information about 

each atom coming from the data structure that was passed into the initialization function 

from the existing MD code.  As shown in the HelloArgon program, both the System and the 
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forces need information about the atoms.  For those unfamiliar with the C++ Standard 
Template Library, the push_back function called at the end of this code snippet just adds 

the given argument to the end of a C++ “vector” container. 
 
// Specify the atoms and their properties: 
//  (1) System needs to know the masses. 
//  (2) NonbondedForce needs charges,van der Waals properties(in MD 
units!). 
//  (3) GBSA needs charge, radius, and scale factor. 
//  (4) Collect default positions for initializing the simulation later. 
std::vector<Vec3> initialPosInNm; 
for (int n=0; *atoms[n].pdb; ++n) { 
     const MyAtomInfo& atom = atoms[n]; 
 
     omm->system->addParticle(atom.mass); 
 
     nonbond->addParticle(atom.charge, 
                         atom.vdwRadiusInAng * OpenMM::NmPerAngstrom  
                                             * OpenMM::SigmaPerVdwRadius, 
                         atom.vdwEnergyInKcal * OpenMM::KJPerKcal); 
 
     gbsa->addParticle(atom.charge,  
                       atom.gbsaRadiusInAng * OpenMM::NmPerAngstrom, 
                       atom.gbsaScaleFactor); 
 
     // Convert the initial position to nm and append to the array. 
     const Vec3 posInNm(atom.initPosInAng[0] * OpenMM::NmPerAngstrom, 
                  atom.initPosInAng[1] * OpenMM::NmPerAngstrom, 
                  atom.initPosInAng[2] * OpenMM::NmPerAngstrom); 
     initialPosInNm.push_back(posInNm); 
     
 
Units:  Here we emphasize the need to pay special attention to the units.   As mentioned 

earlier, the existing MD code in this example uses units of angstroms and kcals, but 

OpenMM uses nanometers and kilojoules.  So the initialization routine will need to convert 

the values from the existing MD code into the OpenMM units before assigning them to the 

OpenMM objects.   

 

In the code above, we have used the unit conversion constants that come with OpenMM 

(e.g., OpenMM::NmPerAngstrom) to perform these conversions.  Combined with the 

naming convention of including the units in the variable name (e.g., initPosInAng), the 

unit conversion constants are useful reminders to pay attention to units and minimize 

errors. 
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Finally, the initialization routine creates the Integrator and Context for the simulation.  

Again, note the change in units for the arguments!   The routine then gets the platform that 
will be used to run the simulation and returns that, along with the handle omm, back to the 

calling function. 
 
// Choose an Integrator for advancing time, and a Context connecting the 
// System with the Integrator for simulation. Let the Context choose the 
// best available Platform. Initialize the configuration from the default 
// positions we collected above. Initial velocities will be zero but could 
// have been set here. 
omm->integrator = new OpenMM::LangevinIntegrator(temperature,  

frictionInPs,  
stepSizeInFs * 
OpenMM::PsPerFs); 

omm->context    = new OpenMM::Context(*omm->system, *omm->integrator); 
omm->context->setPositions(initialPosInNm); 
 
platformName = omm->context->getPlatform().getName(); 
return omm; 
 

10.4.2.5 myGetOpenMMState 

The myGetOpenMMState function takes the handle and returns the time, energy, and data 

structure for the atoms in a way that the existing MD code can use them without 

modification. 
 

static void 
myGetOpenMMState(MyOpenMMData* omm, bool wantEnergy,  
                 double& timeInPs, double& energyInKcal, 

           MyAtomInfo atoms[])   

 

Again, this is another interface routine in which you need to be very careful of your units!  

Note the conversion from the OpenMM units back to the units used in the existing MD code. 

 

 
int infoMask = 0; 
infoMask = OpenMM::State::Positions; 
if (wantEnergy) { 
   infoMask += OpenMM::State::Velocities; // for kinetic energy (cheap) 
   infoMask += OpenMM::State::Energy;     // for pot. energy (more 
expensive) 
} 
// Forces are also available (and cheap). 
 
const OpenMM::State state = omm->context->getState(infoMask); 
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timeInPs = state.getTime(); // OpenMM time is in ps already 
 
// Copy OpenMM positions into atoms array and change units from nm to 
Angstroms. 
const std::vector<Vec3>& positionsInNm = state.getPositions(); 
for (int i=0; i < (int)positionsInNm.size(); ++i) 
    for (int j=0; j < 3; ++j) 
         atoms[i].posInAng[j] = positionsInNm[i][j] * 
OpenMM::AngstromsPerNm; 
 
// If energy has been requested, obtain it and convert from kJ to kcal. 
energyInKcal = 0; 
if (wantEnergy)  
   energyInKcal = (state.getPotentialEnergy() + state.getKineticEnergy()) 
                  * OpenMM::KcalPerKJ; 

10.4.2.6 myStepWithOpenMM 

The myStepWithOpenMM routine takes the handle, uses it to find the Integrator, and then 

sets the number of steps for the Integrator to take.  It does not return any values.   
 

static void  
myStepWithOpenMM(MyOpenMMData* omm, int numSteps) { 
    omm->integrator->step(numSteps); 
} 

10.4.2.7 myTerminateOpenMM 

The myTerminateOpenMM routine takes the handle and deletes all the components, e.g., the 

Context and System, cleaning up the heap space.   
 

static void  
myTerminateOpenMM(MyOpenMMData* omm) { 
    delete omm; 
} 

 

10.5 HelloEthane Program 

The HelloEthane program simulates ethane (H3-C-C-H3) in a vacuum.  It is structured 

similarly to the HelloSodiumChloride example, but includes bonded forces (bond stretch, 

bond angle bend, dihedral torsion).  In setting up these bonded forces, the program 

illustrates some of the other inconsistencies in definitions and units that you should watch 

out for. 
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The bonded forces are added to the system within the initialization interface routine, similar 

to how the non-bonded forces were added in the HelloSodiumChloride example: 

 
// Create a System and Force objects within the System. Retain a reference 
// to each force object so we can fill in the forces. Note: the System 
owns 
// the force objects and will take care of deleting them; don't do it 
yourself! 
OpenMM::System&                 system      = *(omm->system = new 
OpenMM::System()); 
OpenMM::NonbondedForce&         nonbond     = *new 
OpenMM::NonbondedForce(); 
OpenMM::HarmonicBondForce&      bondStretch = *new 
OpenMM::HarmonicBondForce(); 
OpenMM::HarmonicAngleForce&     bondBend    = *new 
OpenMM::HarmonicAngleForce(); 
OpenMM::PeriodicTorsionForce&   bondTorsion = *new 
OpenMM::PeriodicTorsionForce(); 
    system.addForce(&nonbond); 
    system.addForce(&bondStretch); 
    system.addForce(&bondBend); 
    system.addForce(&bondTorsion); 

 

Constrainable and non-constrainable bonds:  In the initialization routine, we also 

set up the bonds.  If constraints are being used, then we tell the System about the 

constrainable bonds: 
 
    std::vector< std::pair<int,int> > bondPairs; 
    for (int i=0; bonds[i].type != EndOfList; ++i) { 
        const int*      atom = bonds[i].atoms; 
        const BondType& bond = bondType[bonds[i].type]; 
 
        if (UseConstraints && bond.canConstrain) { 
            system.addConstraint(atom[0], atom[1], 

                    bond.nominalLengthInAngstroms  
  * OpenMM::NmPerAngstrom); 

        }  
 

Otherwise, we need to give the HarmonicBondForce the bond stretch parameters.   

 

Warning: The constant used to specify the stiffness may be defined differently between the 

existing MD code and OpenMM.  For instance, AMBER uses the constant, as given in the 

harmonic energy term kx2, where the force is 2kx (k = constant and x = distance).  OpenMM 

wants the constant, as used in the force term kx (with energy 0.5 * kx2).  So a factor of 2 
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must be introduced when setting the bond stretch parameters in an OpenMM system using 

data from an AMBER system.   
 

     bondStretch.addBond(atom[0], atom[1], 
                                bond.nominalLengthInAngstroms     
                                    * OpenMM::NmPerAngstrom, 
                                bond.stiffnessInKcalPerAngstrom2  
                                    * 2 * OpenMM::KJPerKcal  
                                    * OpenMM::AngstromsPerNm *  

OpenMM::AngstromsPerNm); 
         
 
Non-bond exclusions: Next, we deal with non-bond exclusions. These are used for pairs 

of atoms that appear close to one another in the network of bonds in a molecule. For atoms 

that close, normal non-bonded forces do not apply or are reduced in magnitude.  First, we 

create a list of bonds to generate the non-bond exclusions:   
 
        bondPairs.push_back(std::make_pair(atom[0], atom[1])); 
 
OpenMM’s non-bonded force provides a convenient routine for creating the common 

exceptions. These are: (1) for atoms connected by one bond (1-2) or connected by just one 

additional bond (1-3), Coulomb and van der Waals terms do not apply; and (2) for atoms 

connected by three bonds (1-4), Coulomb and van der Waals terms apply but are reduced by 

a force-field dependent scale factor.  In general, you may introduce additional exceptions, 

but the standard ones suffice here and in many other circumstances. 
 
// Exclude 1-2, 1-3 bonded atoms from nonbonded forces, and scale down 1-4 
bonded atoms. 
nonbond.createExceptionsFromBonds(bondPairs, Coulomb14Scale, 
LennardJones14Scale); 
 
// Create the 1-2-3 bond angle harmonic terms. 
for (int i=0; angles[i].type != EndOfList; ++i) { 
     const int*       atom  = angles[i].atoms; 
     const AngleType& angle = angleType[angles[i].type]; 
 
// See note under bond stretch above regarding the factor of 2 here. 
bondBend.addAngle(atom[0],atom[1],atom[2], 

angle.nominalAngleInDegrees     * 
OpenMM::RadiansPerDegree, 
angle.stiffnessInKcalPerRadian2 * 2 *  
OpenMM::KJPerKcal); 

} 
 
// Create the 1-2-3-4 bond torsion (dihedral) terms. 
for (int i=0; torsions[i].type != EndOfList; ++i) { 
     const int*         atom = torsions[i].atoms; 
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    const TorsionType& torsion = torsionType[torsions[i].type]; 
    bondTorsion.addTorsion(atom[0],atom[1],atom[2],atom[3],  
            torsion.periodicity,  
            torsion.phaseInDegrees  * OpenMM::RadiansPerDegree, 
            torsion.amplitudeInKcal * OpenMM::KJPerKcal); 
} 
 

The rest of the code is similar to the HelloSodiumChloride example and will not be covered 

in detail here.  Please refer to the program HelloEthane.cpp itself, which is well-commented, 

for additional details.  



 

 

11 Platform-Specific 
Properties 

When creating a Context, you can specify values for properties specific to a particular 

Platform.  This is used to control how calculations are done in ways that are outside the 

scope of the generic OpenMM API. 

 

To do this, pass both the Platform object and a map of property values to the Context 

constructor: 

 
Platform& platform = Platform::getPlatformByName("OpenCL"); 

map<string, string> properties; 

properties["OpenCLDeviceIndex"] = "1"; 

Context context(system, integrator, platform, properties); 

 
After a Context is created, you can use the Platform’s getPropertyValue() method to 

query the values of properties. 

11.1 OpenCL Platform 

The OpenCL Platform recognizes the following Platform-specific properties: 

 

• OpenCLPrecision: This selects what numeric precision to use for calculations.  The 

allowed values are “single”, “mixed”, and “double”.  If it is set to “single”, nearly all 

calculations are done in single precision.  This is the fastest option but also the least 

accurate.  If it is set to “mixed”, forces are computed in single precision but 

integration is done in double precision.  This gives much better energy conservation 

with only a slightly decrease in speed.  If it is set to “double”, all calculations are done 
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in double precision.  This is the most accurate option, but is usually much slower 

than the others. 

• OpenCLPlatformIndex: When multiple OpenCL implementations are installed on 

your computer, this is used to select which one to use.  The value is the zero-based 

index of the platform (in the OpenCL sense, not the OpenMM sense) to use, in the 

order they are returned by the OpenCL platform API.  This is useful, for example, in 

selecting whether to use a GPU or CPU based OpenCL implementation. 

• OpenCLDeviceIndex: When multiple OpenCL devices are available on your 

computer, this is used to select which one to use.  The value is the zero-based index of 

the device to use, in the order they are returned by the OpenCL device API. 

 

The OpenCL Platform also supports parallelizing a simulation across multiple GPUs.  To do 

that, set the OpenCLDeviceIndex property to a comma separated list of values.  For example, 

 
properties["OpenCLDeviceIndex"] = "0,1"; 

 

This tells it to use both devices 0 and 1, splitting the work between them. 

11.2 CUDA Platform 

The CUDA Platform recognizes the following Platform-specific properties: 

 

• CudaPrecision: This selects what numeric precision to use for calculations.  The 

allowed values are “single”, “mixed”, and “double”.  If it is set to “single”, nearly all 

calculations are done in single precision.  This is the fastest option but also the least 

accurate.  If it is set to “mixed”, forces are computed in single precision but 

integration is done in double precision.  This gives much better energy conservation 

with only a slightly decrease in speed.  If it is set to “double”, all calculations are done 

in double precision.  This is the most accurate option, but is usually much slower 

than the others. 

• CudaCompiler: This specifies the path to the CUDA kernel compiler.  If you do not 

specify this, OpenMM will try to locate the compiler itself.  Specify this only when 
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you want to override the default location.  The logic used to pick the default location 

depends on the operating system: 

o Mac/Linux: It first looks for an environment variable called 

OPENMM_CUDA_COMPILER.  If that is set, its value is used.  Otherwise, 

the default location is set to /usr/local/cuda/bin/nvcc. 

o Windows: It looks for an environment variable called CUDA_BIN_PATH, 

then appends \nvcc.exe to it.  That environment variable is set by the CUDA 

installer, so it usually is present. 

• CudaTempDirectory: This specifies a directory where temporary files can be written 

while compiling kernels.  OpenMM usually can locate your operating system’s temp 

directory automatically (for example, by looking for the TEMP environment 

variable), so you rarely need to specify this. 

• CudaDeviceIndex: When multiple CUDA devices are available on your computer, this 

is used to select which one to use.  The value is the zero-based index of the device to 

use, in the order they are returned by the CUDA API. 

• CudaUseBlockingSync: This is used to control how the CUDA runtime synchronizes 

between the CPU and GPU.  If this is set to “true” (the default), CUDA will allow the 

calling thread to sleep while the GPU is performing a computation, allowing the CPU 

to do other work.  If it is set to “false”, CUDA will spin-lock while the GPU is working.  

This can improve performance slightly, but also prevents the CPU from doing 

anything else while the GPU is working. 

 

The CUDA Platform also supports parallelizing a simulation across multiple GPUs.  To do 

that, set the CudaDeviceIndex property to a comma separated list of values.  For example, 

 
properties["CudaDeviceIndex"] = "0,1"; 

 

This tells it to use both devices 0 and 1, splitting the work between them. 



 

 

 

12 Using OpenMM with 
Software Written in 
Languages Other than C++ 

Although the native OpenMM API is object-oriented C++ code, it is possible to directly 

translate the interface so that it is callable from C, Fortran 95, and Python with no 

substantial conceptual changes. We have developed a straightforward mapping for these 

languages that, while perhaps not the most elegant possible, has several advantages: 

 

• Almost all documentation, training, forum discussions, and so on are equally useful 

to users of all these languages. There are syntactic differences of course, but all the 

important concepts remain unchanged.   

• We are able to generate the C, Fortran, and Python APIs from the C++ API. 

Obviously, this reduces development effort, but more importantly it means that the 

APIs are likely to be error-free and are always available immediately when the native 

API is updated. 

• Because OpenMM performs expensive operations “in bulk” there is no noticeable 

overhead in accessing these operations through the C, Fortran, or Python APIs. 
• All symbols introduced to a C or Fortran program begin with the prefix “OpenMM_” 

so will not interfere with symbols already in use. 

 

Availability of APIs in other languages:  All necessary C and Fortran bindings are built in to 

the main OpenMM library; no separate library is required.  The Python wrappers are 

contained in a module that is distributed with OpenMM and that can be installed by 

executing its setup.py script in the standard way. 
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(This doesn’t apply to most users: if you are building your own OpenMM from source using 

CMake and want the API bindings generated, be sure to enable the 
OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS option for C and Fortran, or 

OPENMM_BUILD_PYTHON_WRAPPERS option for Python.  The Python module will be placed 

in a subdirectory of your main build directory called “python”) 

 

Documentation for APIs in other languages:  While there is extensive Doxygen 

documentation available for the C++ and Python APIs, there is no separate on-line 

documentation for the C and Fortran API. Instead, you should use the C++ documentation, 

employing the mappings described here to figure out the equivalent syntax in C or Fortran. 

12.1 C API 

Before you start writing your own C program that calls OpenMM, be sure you can build and 

run the two C examples that are supplied with OpenMM (see Chapter 10). These can be built 
from the supplied Makefile on Linux and Mac, or supplied NMakefile and Visual Studio 

solution files on Windows. 

 
The example programs are HelloArgonInC and HelloSodiumChlorideInC. The argon 

example serves as a quick check that your installation is set up properly and you know how 

to build a C program that is linked with OpenMM. It will also tell you whether OpenMM is 

executing on the GPU or is running (slowly) on the Reference platform. However, the argon 

example is not a good template to follow for your own programs. The sodium chloride 

example, though necessarily simplified, is structured roughly in the way we recommended 

you set up your own programs to call OpenMM. Please be sure you have both of these 

programs executing successfully on your machine before continuing. 

12.1.1 Mechanics of using the C API 

The C API is generated automatically from the C++ API when OpenMM is built. There are 

two resulting components: C bindings (functions to call), and C declarations (in a header 
file). The C bindings are small extern (global) interface functions, one for every method of 

every OpenMM class, whose signatures (name and arguments) are predictable from the class 

name and method signatures. There are also “helper” types and functions provided for the 
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few cases in which the C++ behavior cannot be directly mapped into C. These interface and 

helper functions are compiled in to the main OpenMM library so there is nothing special you 

have to do to get access to them. 

 
In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated header file OpenMMCWrapper.h that should be #included in any C program that 

is to make calls to OpenMM functions. That header contains declarations for all the 

OpenMM C interface functions and related types. Note that if you follow our suggested 
structure, you will not need to include this file in your main() compilation unit but can 

instead use it only in a local file that you write to provide a simple interface to your existing 

code (see Chapter 10). 

12.1.2 Mapping from the C++ API to the C API 

The automated generator of the C “wrappers” follows the translation strategy shown in Table 

12.1. The idea is that if you see the construct on the left in the C++ API documentation, you 

should interpret it as the corresponding construct on the right in C. Please look at the 

supplied example programs to see how this is done in practice. 

 

C++	  API	  declaration	   Equivalent	  in	  C	  API	  
namespace OpenMM:: OpenMM_  (prefix) 
class class OpenMM::ClassName typedef OpenMM_ClassName 
constant OpenMM::RadiansPerDeg OpenMM_RadiansPerDeg (static constant) 
class enum OpenMM::State::Positions OpenMM_State_Positions 

constructor 
new OpenMM::ClassName() OpenMM_ClassName*  

 OpenMM_ClassName_create() 
(addl. constructors are _create_2(), etc.) 

destructor OpenMM::ClassName* thing; 
delete thing; 

OpenMM_ClassName* thing; 
OpenMM_ClassName_destroy(thing); 

class method 
OpenMM::ClassName* thing; 
thing->someName(args) 

OpenMM_ClassName* thing; 
OpenMM_ClassName_someName 
                     (thing, args) 

Boolean type 
& constants 

bool 
true, false 

OpenMM_Boolean 
OpenMM_True (1),    OpenMM_False (0) 

string std::string char* 
3-vector OpenMM::Vec3 typedef OpenMM_Vec3 

arrays  

std::vector<std::string> 
std::vector<double> 
std::vector<Vec3> 
std::vector<std::pair<int,int>> 
std::map<std::string,double> 

typedef OpenMM_StringArray 
typedef OpenMM_DoubleArray  
typedef OpenMM_Vec3Array  
typedef OpenMM_BondArray  
typedef OpenMM_ParameterArray 

Table	  12.1:	  Default	  mapping	  of	  objects	  from	  the	  C++	  API	  to	  the	  C	  API	  
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There are some exceptions to the generic translation rules shown in the table; they are 

enumerated in the next section. And because there are no C++ API equivalents to the array 

types, they are described in detail below. 

12.1.3 Exceptions 

These two methods are handled somewhat differently in the C API than in the C++ API: 
• OpenMM::Context::getState() 

The C version, OpenMM_Context_getState(), returns a pointer to a heap 

allocated OpenMM_State object. You must then explicitly destroy this State object 

when you are done with it, by calling OpenMM_State_destroy(). 

• OpenMM::Platform::loadPluginsFromDirectory() 

The C version OpenMM_Platform_loadPluginsFromDirectory() returns a 

heap-allocated OpenMM_StringArray object containing a list of all the file names 

that were successfully loaded. You must then explicitly destroy this StringArray 

object when you are done with it. Do not ignore the return value; if you do you’ll have 
a memory leak since the StringArray will still be allocated.  

 

(In the C++ API, the equivalent methods return references into existing memory rather than 

new heap-allocated memory, so the returned objects do not need to be destroyed.) 

12.1.4 OpenMM_Vec3 helper type 

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the C 
API provides an explicit definition for the C OpenMM_Vec3 type that is compatible with the 

OpenMM::Vec3 type. The definition of OpenMM_Vec3 is: 
typedef struct {double x, y, z;} OpenMM_Vec3; 

You can work directly with the individual fields of this type from your C program if you want. 

For convenience, a scale() function is provided that creates a new OpenMM_Vec3 from an 

old one and a scale factor: 
OpenMM_Vec3 OpenMM_Vec3_scale(const OpenMM_Vec3 vec, double scale);  

12.1.5 Array helper types 

C++ has built-in container types std::vector and std::map which OpenMM uses to 

manipulate arrays of objects. These don’t have direct equivalents in C, so we supply special 
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array types for each kind of object for which OpenMM creates containers. These are: string, 

double, Vec3, bond, and parameter map. See Table 12.1 for the names of the C types for each 

of these object arrays. Each of the array types provides these functions (prefixed by 
OpenMM_ and the actual Thing name), with the syntax shown conceptually since it differs 

slightly for each kind of object. 

 

ThingArray* create(int size) Create a heap-allocated array of Things, with 
space pre-allocated to hold size of them. 
You can start at size==0 if you want since 
these arrays are dynamically resizeable. 

void destroy(ThingArray*) Free the heap space that is currently in use 
for the passed-in array of Things. 

int getSize(ThingArray*) Return the current number of Things in this 
array. This means you can get() and set() 
elements up to getSize()-1. 

void resize(ThingArray*,int size) Change the size of this array to the indicated 
value which may be smaller or larger than 
the current size. Existing elements remain in 
their same locations as long as they still fit. 

void append(ThingArray*,Thing) Add a Thing to the end of the array, 
increasing the array size by one. The precise 
syntax depends on the actual type of Thing; 
see below. 

void set(ThingArray*, 
         int index,Thing) 

Store a copy of Thing in the indicated 
element of the array (indexed from 0). The 
array must be of length at least index+1; 
you can’t grow the array with this function. 

Thing get(ThingArray*, 
         int index) 

Retrieve a particular element from the array 
(indexed from 0). (For some Things the 
value is returned in arguments rather than as 
the function return.) 

Table	  12.2:	  Generic	  description	  of	  array	  helper	  types	  

 

Here are the exact declarations with deviations from the generic description noted, for each 

of the array types. 

12.1.5.1 OpenMM_DoubleArray 
OpenMM_DoubleArray*  
            OpenMM_DoubleArray_create(int size); 
void        OpenMM_DoubleArray_destroy(OpenMM_DoubleArray*); 
int         OpenMM_DoubleArray_getSize(const OpenMM_DoubleArray*); 
void        OpenMM_DoubleArray_resize(OpenMM_DoubleArray*, int size); 
void        OpenMM_DoubleArray_append(OpenMM_DoubleArray*, double value); 
void        OpenMM_DoubleArray_set(OpenMM_DoubleArray*, int index, double value); 
double      OpenMM_DoubleArray_get(const OpenMM_DoubleArray*, int index); 
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12.1.5.2 OpenMM_StringArray 
OpenMM_StringArray*  
            OpenMM_StringArray_create(int size); 
void        OpenMM_StringArray_destroy(OpenMM_StringArray*); 
int         OpenMM_StringArray_getSize(const OpenMM_StringArray*); 
void        OpenMM_StringArray_resize(OpenMM_StringArray*, int size); 
void        OpenMM_StringArray_append(OpenMM_StringArray*, const char* string); 
void        OpenMM_StringArray_set(OpenMM_StringArray*, int index, const char* string); 
const char* OpenMM_StringArray_get(const OpenMM_StringArray*, int index); 

12.1.5.3 OpenMM_Vec3Array 
OpenMM_Vec3Array*   
            OpenMM_Vec3Array_create(int size); 
void        OpenMM_Vec3Array_destroy(OpenMM_Vec3Array*); 
int         OpenMM_Vec3Array_getSize(const OpenMM_Vec3Array*); 
void        OpenMM_Vec3Array_resize(OpenMM_Vec3Array*, int size); 
void        OpenMM_Vec3Array_append(OpenMM_Vec3Array*, const OpenMM_Vec3 vec); 
void        OpenMM_Vec3Array_set(OpenMM_Vec3Array*, int index, const OpenMM_Vec3 vec); 
const OpenMM_Vec3*  
            OpenMM_Vec3Array_get(const OpenMM_Vec3Array*, int index); 

12.1.5.4 OpenMM_BondArray 

Note that bonds are specified by pairs of integers (the atom indices). The get() method 

returns those in a pair of final arguments rather than as its functional return. 
OpenMM_BondArray*  
            OpenMM_BondArray_create(int size); 
void        OpenMM_BondArray_destroy(OpenMM_BondArray*); 
int         OpenMM_BondArray_getSize(const OpenMM_BondArray*); 
void        OpenMM_BondArray_resize(OpenMM_BondArray*, int size); 
void        OpenMM_BondArray_append(OpenMM_BondArray*, int particle1, int particle2); 
void        OpenMM_BondArray_set(OpenMM_BondArray*, int index, int particle1, int particle2); 
void        OpenMM_BondArray_get(const OpenMM_BondArray*, int index,  
                                 int* particle1, int* particle2); 

12.1.5.5 OpenMM_ParameterArray 

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available. 

Also, note that since this is actually a map rather than an array, the “index” is the name of 

the parameter rather than its ordinal. 

 
int         OpenMM_ParameterArray_getSize(const OpenMM_ParameterArray*); 
double      OpenMM_ParameterArray_get(const OpenMM_ParameterArray*, const char* name); 
 

12.2    Fortran 95 API 
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Before you start writing your own Fortran program that calls OpenMM, be sure you can 

build and run the two Fortran examples that are supplied with OpenMM (see Chapter 10). 
These can be built from the supplied Makefile on Linux and Mac, or supplied NMakefile 

and Visual Studio solution files on Windows. 

 
The example programs are HelloArgonInFortran and 

HelloSodiumChlorideInFortran. The argon example serves as a quick check that your 

installation is set up properly and you know how to build a Fortran program that is linked 

with OpenMM. It will also tell you whether OpenMM is executing on the GPU or is running 

(slowly) on the Reference platform. However, the argon example is not a good template to 

follow for your own programs. The sodium chloride example, though necessarily simplified, 

is structured roughly in the way we recommended you set up your own programs to call 

OpenMM. Please be sure you have both of these programs executing successfully on your 

machine before continuing. 

12.2.1 Mechanics of using the Fortran API 

The Fortran API is generated automatically from the C++ API when OpenMM is built. There 

are two resulting components: Fortran bindings (subroutines to call), and Fortran 

declarations of types and subroutines (in the form of a Fortran 95 module file). The Fortran 

bindings are small interface subroutines, one for every method of every OpenMM class, 

whose signatures (name and arguments) are predictable from the class name and method 

signatures. There are also “helper” types and subroutines provided for the few cases in which 

the C++ behavior cannot be directly mapped into Fortran. These interface and helper 

subroutines are compiled in to the main OpenMM library so there is nothing special you 

have to do to get access to them. 

 

Because Fortran is case-insensitive, calls to Fortran subroutines (however capitalized) are 

mapped by the compiler into all-lowercase or all-uppercase names, and different compilers 

use different conventions. The automatically-generated OpenMM Fortran “wrapper” 

subroutines, which are generated in C and thus case-sensitive, are provided in two forms for 

compatibility with the majority of Fortran compilers, including Intel Fortran and gfortran. 

The two forms are: (1) all-lowercase with a trailing underscore, and (2) all-uppercase 
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without a trailing underscore. So regardless of the Fortran compiler you are using, it should 

find a suitable subroutine to call in the main OpenMM library. 

 
In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated module file OpenMMFortranModule.f90 that must be compiled along with any 

Fortran program that is to make calls to OpenMM functions. (You can look at the Makefile 

or Visual Studio solution file provided with the OpenMM examples to see how to build a 

program that uses this module file.) This module file contains definitions for two modules: 
MODULE OpenMM_Types and MODULE OpenMM; however, only the OpenMM module will 

appear in user programs (it references the other module internally). The modules contain 

declarations for all the OpenMM Fortran interface subroutines, related types, and 

parameters (constants). Note that if you follow our suggested structure, you will not need to 
use the OpenMM module in your main() compilation unit but can instead use it only in a 

local file that you write to provide a simple interface to your existing code (see Chapter 10). 

12.2.2 Mapping from the C++ API to the Fortran API 

The automated generator of the Fortran “wrappers” follows the translation strategy shown in 

Table 12.3. The idea is that if you see the construct on the left in the C++ API 

documentation, you should interpret it as the corresponding construct on the right in 

Fortran. Please look at the supplied example programs to see how this is done in practice. 
Note that all subroutines and modules are declared with “implicit none”, meaning that 

the type of every symbol is declared explicitly and should not be inferred from the first letter 

of the symbol name. 
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C++	  API	  declaration	   Equivalent	  in	  Fortran	  API	  
namespace OpenMM:: OpenMM_  (prefix) 
class class OpenMM::ClassName type (OpenMM_ClassName) 
constant OpenMM::RadiansPerDeg parameter (OpenMM_RadiansPerDeg) 
class enum OpenMM::State::Positions parameter (OpenMM_State_Positions) 

constructor 
new OpenMM::ClassName() type (OpenMM_ClassName) thing 

call OpenMM_ClassName_create(thing) 
(addl. constructors are _create_2(), etc.) 

destructor OpenMM::ClassName* thing; 
delete thing; 

type (OpenMM_ClassName) thing 
call OpenMM_ClassName_destroy(thing) 

class 
method 

OpenMM::ClassName* thing; 
thing->someName(args) 

type (OpenMM_ClassName) thing 
call OpenMM_ClassName_someName 
                     (thing, args) 

Boolean 
type 
& constants 

bool 
true, false 

integer*4 
parameter (OpenMM_True=1) 
parameter (OpenMM_False=0)     

string std::string character(*) 
3-vector OpenMM::Vec3 real*8 vec(3) 

arrays  

std::vector<std::string> 
std::vector<double> 
std::vector<Vec3> 
std::vector<std::pair<int,int>> 
std::map<std::string,double> 

type (OpenMM_StringArray) 
type (OpenMM_DoubleArray)  
type (OpenMM_Vec3Array)  
type (OpenMM_BondArray)  
type (OpenMM_ParameterArray) 

Table	  12.3:	  Default	  mapping	  of	  objects	  from	  the	  C++	  API	  to	  the	  Fortran	  API	  

 

Because there are no C++ API equivalents to the array types, they are described in detail 

below. 

12.2.3 OpenMM_Vec3 helper type 

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the 
Fortran API uses an ordinary real*8(3) array in place of the OpenMM::Vec3 type. The  

You can work directly with the individual elements of this type from your Fortran program if 
you want. For convenience, a scale() function is provided that creates a new Vec3 from an 

old one and a scale factor: 

 
subroutine OpenMM_Vec3_scale(vec, scale, result) 
real*8 vec(3), scale, result(3) 

 
No explicit type(OpenMM_Vec3) is provided in the Fortran API since it is not needed. 

12.2.4 Array helper types 

C++ has built-in container types std::vector and std::map which OpenMM uses to 

manipulate arrays of objects. These don’t have direct equivalents in Fortran, so we supply 
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special array types for each kind of object for which OpenMM creates containers. These are: 

string, double, Vec3, bond, and parameter map. See Table 12.3 for the names of the Fortran 

types for each of these object arrays. Each of the array types provides these functions 
(prefixed by OpenMM_ and the actual Thing name), with the syntax shown conceptually since 

it differs slightly for each kind of object. 

 
subroutine create(array,size) 
type (OpenMM_ThingArray) array 
integer*4 size 

Create a heap-allocated array of Things, with 
space pre-allocated to hold size of them. 
You can start at size==0 if you want since 
these arrays are dynamically resizeable. 

subroutine destroy(array) 
type (OpenMM_ThingArray) array 
 

Free the heap space that is currently in use 
for the passed-in array of Things. 

function getSize(array) 
type (OpenMM_ThingArray) array 
integer*4 getSize 
 

Return the current number of Things in this 
array. This means you can get() and set() 
elements up to getSize(). 

subroutine resize(array,size) 
type (OpenMM_ThingArray) array 
integer*4 size 

Change the size of this array to the indicated 
value which may be smaller or larger than 
the current size. Existing elements remain in 
their same locations as long as they still fit. 

subroutine append(array,elt) 
type (OpenMM_ThingArray) array 
Thing elt 

Add a Thing to the end of the array, 
increasing the array size by one. The precise 
syntax depends on the actual type of Thing; 
see below. 

subroutine set(array,index,elt) 
type (OpenMM_ThingArray) array 
integer*4 index 
Thing elt 

Store a copy of elt in the indicated element 
of the array (indexed from 1). The array must 
be of length at least index; you can’t grow 
the array with this function. 

subroutine get(array,index,elt) 
type (OpenMM_ThingArray) array 
integer*4 index 
Thing elt 

Retrieve a particular element from the array 
(indexed from 1).  Some Things require more 
than one argument to return. 

Table	  12.4:	  Generic	  description	  of	  array	  helper	  types	  

 

Here are the exact declarations with deviations from the generic description noted, for each 

of the array types. 

12.2.4.1 OpenMM_DoubleArray 
        subroutine OpenMM_DoubleArray_create(array, size) 
            integer*4 size 
            type (OpenMM_DoubleArray) array 
        subroutine OpenMM_DoubleArray_destroy(array) 
            type (OpenMM_DoubleArray) array 
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        function OpenMM_DoubleArray_getSize(array) 
            type (OpenMM_DoubleArray) array 
            integer*4 OpenMM_DoubleArray_getSize 
        subroutine OpenMM_DoubleArray_resize(array, size) 
            type (OpenMM_DoubleArray) array 
            integer*4 size 
        subroutine OpenMM_DoubleArray_append(array, value) 
            type (OpenMM_DoubleArray) array 
            real*8 value 
        subroutine OpenMM_DoubleArray_set(array, index, value) 
            type (OpenMM_DoubleArray) array 
            integer*4 index 
            real*8 value 
        subroutine OpenMM_DoubleArray_get(array, index, value) 
            type (OpenMM_DoubleArray) array 
            integer*4 index 
            real*8 value 

12.2.4.2 OpenMM_StringArray 
        subroutine OpenMM_StringArray_create(array, size) 
            integer*4 size 
            type (OpenMM_StringArray) array 
        subroutine OpenMM_StringArray_destroy(array) 
            type (OpenMM_StringArray) array 
        function OpenMM_StringArray_getSize(array) 
            type (OpenMM_StringArray) array 
            integer*4 OpenMM_StringArray_getSize 
        subroutine OpenMM_StringArray_resize(array, size) 
            type (OpenMM_StringArray) array 
            integer*4 size 
        subroutine OpenMM_StringArray_append(array, str) 
            type (OpenMM_StringArray) array 
            character(*) str 
        subroutine OpenMM_StringArray_set(array, index, str) 
            type (OpenMM_StringArray) array 
            integer*4 index 
            character(*) str 
        subroutine OpenMM_StringArray_get(array, index, str) 
            type (OpenMM_StringArray) array 
            integer*4 index 
            character(*)str 

12.2.4.3 OpenMM_Vec3Array 
        subroutine OpenMM_Vec3Array_create(array, size) 
            integer*4 size 
            type (OpenMM_Vec3Array) array 
        subroutine OpenMM_Vec3Array_destroy(array) 
            type (OpenMM_Vec3Array) array 
        function OpenMM_Vec3Array_getSize(array) 
            type (OpenMM_Vec3Array) array 
            integer*4 OpenMM_Vec3Array_getSize 
        subroutine OpenMM_Vec3Array_resize(array, size) 
            type (OpenMM_Vec3Array) array 
            integer*4 size 
        subroutine OpenMM_Vec3Array_append(array, vec) 
            type (OpenMM_Vec3Array) array 
            real*8 vec(3) 
        subroutine OpenMM_Vec3Array_set(array, index, vec) 
            type (OpenMM_Vec3Array) array 
            integer*4 index 
            real*8 vec(3) 
        subroutine OpenMM_Vec3Array_get(array, index, vec) 
            type (OpenMM_Vec3Array) array 
            integer*4 index 
            real*8 vec (3) 
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12.2.4.4 OpenMM_BondArray 

Note that bonds are specified by pairs of integers (the atom indices). The get() method 

returns those in a pair of final arguments rather than as its functional return. 

 
        subroutine OpenMM_BondArray_create(array, size) 
            integer*4 size 
            type (OpenMM_BondArray) array 
        subroutine OpenMM_BondArray_destroy(array) 
            type (OpenMM_BondArray) array 
        function OpenMM_BondArray_getSize(array) 
            type (OpenMM_BondArray) array 
            integer*4 OpenMM_BondArray_getSize 
        subroutine OpenMM_BondArray_resize(array, size) 
            type (OpenMM_BondArray) array 
            integer*4 size 
        subroutine OpenMM_BondArray_append(array, particle1, particle2) 
            type (OpenMM_BondArray) array 
            integer*4 particle1, particle2 
        subroutine OpenMM_BondArray_set(array, index, particle1, particle2) 
            type (OpenMM_BondArray) array 
            integer*4 index, particle1, particle2 
        subroutine OpenMM_BondArray_get(array, index, particle1, particle2) 
            type (OpenMM_BondArray) array 
            integer*4 index, particle1, particle2 

12.2.4.5 OpenMM_ParameterArray 

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available. 

Also, note that since this is actually a map rather than an array, the “index” is the name of 

the parameter rather than its ordinal. 

        function OpenMM_ParameterArray_getSize(array) 
            type (OpenMM_ParameterArray) array 
            integer*4 OpenMM_ParameterArray_getSize 
        subroutine OpenMM_ParameterArray_get(array, name, param) 
            type (OpenMM_ParameterArray) array 
            character(*) name 
            character(*) param 

 

12.3 Python API 

12.3.1 Installing the Python API 

There are currently two types of packages for installing the Python API.  One contains 

wrapper source code for Unix-type machines (including Linux and Mac operating systems).  

You will need a C++ compiler to install it using this type of package.  The other type of 
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installation package is a binary package which contains compiled wrapper code for Windows 

machines (no compilers are needed to install binary packages). 

12.3.1.1 Installing on Windows 

OpenMM only works with Python 2.6 or 2.7, so make sure that one of those versions is 

installed before you try installing. For Python installation packages and instructions, go to 

http://python.org.  Note that if you have a 64-bit machine, you should still install the 32-bit 

version of Python since the OpenMM Python API binary is 32-bit.  We suggest that you 

install Python using the default options. 

 

Double click on the Python API Installer icon, located in the top level directory for the 

OpenMM installation (by default, this is C:\Program Files\OpenMM).  This will install the 

OpenMM package into the Python installation area.  If you have more than one Python 

installation, you will be asked which Python to use—make sure to select Python 2.6 or 2.7. 

12.3.1.2 Installing on Linux and Mac 

Make sure you have Python 2.6 or later installed.  For Python installation packages and 

instructions, go to http://python.org.  If you do not have the correct Python version, install a 

valid version using the default options.  Most versions of Linux and Mac OS X have a 
suitable Python preinstalled.  You can check by typing “python --version” in a terminal 

window. 

 

You must have a C++ compiler to install the OpenMM Python API.  If you are using a Mac, 

install Apple's Xcode development tools (http://developer.apple.com/TOOLS/Xcode) to get 

the needed compiler.  On other Unix-type systems, install gcc-c++ (version 4.0 or later).  

 

The install.sh script installs the Python API automatically as part of the installation process, 

so you probably already have it installed.  If for some reason you need to install it manually, 
you can do that with the setup.py script included with OpenMM.  Before executing this 

script, you must set two environment variables: OPENMM_INCLUDE_PATH must point to the 

directory containing OpenMM header files, and OPENMM_LIB_PATH must point to the 

directory containing OpenMM library files.  Assuming OpenMM is installed in the default 
location (/usr/local/openmm), you would type the following commands.  Note that if you 
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are using the system Python (as opposed to a locally installed version), you may need to run 
the Python installation process as a superuser using the sudo command: 

 
export OPENMM_INCLUDE_PATH=/usr/local/openmm/include 
export OPENMM_LIB_PATH=/usr/local/openmm/lib 
python setup.py build 
python setup.py install      OR   sudo python setup.py install 
 

If you are compiling OpenMM from source, you can also install by building the 

“PythonInstall” target: 

 
make PythonInstall      OR   sudo make PythonInstall 

12.3.2 Mapping from the C++ API to the Python API 

The Python API follows the C++ API as closely as possible. There are three notable 

differences:   

 
1) The getState() method in the Context class takes Pythonic-type arguments to 

indicate which state variables should be made available.  For example: 

 
myContext.getState(getEnergy=True, getForce=False, …) 
 

2) Wherever the C++ API uses references to return multiple values from a method, the 

Python API returns a tuple.  For example, in C++ you would query a 

HarmonicBondForce for a bond’s parameters as follows: 

 
int particle1, particle2; 

double length, k; 

f.getBondParameters(i, particle1, particle2, length, k); 

 

In Python, the equivalent code is: 

 
[particle1, particle2, length, k] = f.getBondParameters(i) 

 

3) Unlike C++, the Python API accepts and returns quantities with units attached to 

most values (see the “Units and dimensional analysis” section below for details).  In 
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short, this means that while values in C++ have implicit units, the Python API 
returns objects that have values and explicit units. 

12.3.3 Mechanics of using the Python API 

When using the Python API, be sure to include the OpenMM and GPU support libraries in 

your library path, just as you would for a C++ application.  This is set with the 
LD_LIBRARY_PATH environment variable on Linux, DYLD_LIBRARY_PATH on Mac, or 

PATH on Windows.  See sections Error! Reference source not found. and Error! 

Reference source not found. for details. 

 

The Python API is contained in the simtk.openmm package, while the units code is 

contained in the simtk.units package.  (The application layer, described in the Application 

Guide, is contained in the simtk.openmm.app package.)  A program using it will therefore 

typically begin 

 
import simtk.openmm as mm 

import simtk.unit as unit 

 

Creating and using OpenMM objects is then done exactly as in C++: 

 
system = mm.System() 

nb = mm.NonbondedForce() 

nb.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic) 

nb.setCutoffDistance(1.2*unit.nanometer) 

system.addForce(nb) 

 

Note that when setting the cutoff distance, we explicitly specify that it is in nanometers.  We 

could just as easily specify it in different units: 
 

nb.setCutoffDistance(12*unit.angstrom) 

 

The use of units in OpenMM is discussed in the next section. 
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12.3.4 Units and dimensional analysis 

12.3.4.1 Why does the Python API include units? 

The C++ API for OpenMM uses an implicit set of units for physical quantities such as 

lengths, masses, energies, etc.  These units are based on daltons, nanometers, and 

picoseconds for the mass, length, and time dimensions, respectively.  When using the C++ 

API, it is very important to ensure that quantities being manipulated are always expressed in 

terms of these units.  For example, if you read in a distance in Angstroms, you must multiply 

that distance by a conversion factor to turn it into nanometers before using it in the C++ 

API.  Such conversions can be a source of tedium and errors.  This is true in many areas of 

scientific programming.  Units confusion was blamed for the loss of the Mars Climate 

Orbiter spacecraft in 1999, at a cost of more than $100 million.  Units were introduced in the 

Python API to minimize the chance of such errors. 

 

The Python API addresses the potential problem of conversion errors by using quantities 

with explicit units.  If a particular distance is expressed in Angstroms, the Python API will 

know that it is in Angstroms.  When the time comes to call the C++ API, it will understand 

that the quantity must be converted to nanometers.  You, the programmer, must declare 

upfront that the quantity is in Angstrom units, and the API will take care of the details from 

then on.  Using explicit units is a bit like brushing your teeth: it requires some effort upfront, 

but it probably saves you trouble in the long run. 

12.3.4.2 Quantities, units, and dimensions 

The explicit unit system is based on three concepts: Dimensions, Units, and Quantities.    

 

Dimensions are measurable physical concepts such as mass, length, time, and energy.  

Energy is actually a composite dimension based on mass, length, and time. 

 

A Unit defines a linear scale used to measure amounts of a particular physical Dimension.  

Examples of units include meters, seconds, joules, inches, and grams. 

 

A Quantity is a specific amount of a physical Dimension.  An example of a quantity is “0.63 

kilograms”.  A Quantity is expressed as a combination of a value (e.g., 0.63), and a Unit (e.g., 

kilogram).  The same Quantity can be expressed in different Units. 
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The set of BaseDimensions defined in the simtk.unit module includes: 

 

• mass 

• length 

• time 

• temperature 

• amount 

• charge 

• luminous intensity 

• angle 

 

These are not precisely the same list of base dimensions used in the SI unit system.  SI 

defines “current” (charge per time) as a base unit, while simtk.unit uses “charge”.  And 

simtk.unit treats angle as a dimension, even though angle quantities are often considered 

dimensionless.  In this case, we choose to err on the side of explicitness, particularly because 

interconversion of degrees and radians is a frequent source of unit headaches. 

12.3.4.3 Units examples 

Many common units are defined in the simtk.unit module. 

 
from simtk.unit import nanometer, angstrom, dalton 

 

Sometimes you don’t want to type the full unit name every time, so you can assign it a 
shorter name using the as functionality: 

 
from simtk.unit import nanometer as nm 

 

New quantities can be created from a value and a unit.  You can use either the multiply 

operator (‘*’) or the explicit Quantity constructor: 

 
from simk.unit import nanometer, Quantity 

# construct a Quantity using the multiply operator 

bond_length = 1.53 * nanometer 
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# equivalently using the explicit Quantity constructor 

bond_length = Quantity(1.53, nanometer) 

# or more verbosely 

bond_length = Quantity(value=1.53, unit=nanometer) 

 

12.3.4.4 Arithmetic with units 

Addition and subtraction of quantities is only permitted between quantities that share the 

same dimension.  It makes no sense to add a mass to a distance.  If you attempt to add or 

subtract two quantities with different dimensions, an exception will be raised.  This is a good 

thing; it helps you avoid errors. 

 
x = 5.0*dalton + 4.3*nanometer; # error 

 

Addition or subtraction of quantities with the same dimension, but different units, is fine, 

and results in a new quantity created using the correct conversion factor between the units 

used. 

 
x = 1.3*nanometer + 5.6*angstrom; # OK, result in nanometers 

 

Quantities can be added and subtracted.  Naked Units cannot. 

 

Multiplying or dividing two quantities creates a new quantity with a composite dimension.  

For example, dividing a distance by a time results in a velocity. 

 
from simtk.unit import kilogram, meter, second 

a = 9.8 * meter / second**2; # acceleration 

m = 0.36 * kilogram; # mass 

F = m * a; # force in kg*m/s**2 

 

Multiplication or division of two Units results in a composite Unit. 

 
mps = meter / second 
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Unlike amount (moles), angle (radians) is arguably dimensionless.  But 

simtk.unit treats angle as another dimension.   Use the trigonometric functions from the 

simtk.unit module (not those from the Python math module!) when dealing with Units and 

Quantities. 

 
from simtk.unit import sin, cos, acos 

x = sin(90.0*degrees) 

angle = acos(0.68); # returns an angle quantity (in radians) 

 
The method pow() is a built-in Python method that works with Quantities and Units.   

 
area = pow(3.0*meter, 2) 

# or, equivalently 

area = (3.0*meter)**2 

# or 

area = 9.0*(meter**2) 

 
The method sqrt() is not as built-in as pow().  Do not use the Python math.sqrt() 

method with Units and Quantities.  Use the simtk.unit.sqrt() method instead: 

 
from simtk.unit import sqrt 

side_length = sqrt(4.0*meter**2) 

 

12.3.4.5 Atomic scale mass and energy units are “per amount” 

Mass and energy units at the atomic scale are specified “per amount” in the simtk.unit 

module.  Amount (mole) is one of the seven fundamental dimensions in the SI unit system.   

The atomic scale mass unit, dalton, is defined as grams per mole.  The dimension of dalton is 

therefore mass/amount, instead of simply mass.  Similarly, the atomic scale energy unit, 

kilojoule_per_mole (and kilocalorie_per_mole) has “per amount” in its dimension.  Be 

careful to always use “per amount” mass and energy types at the atomic scale, and your 

dimensional analysis should work out properly. 
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The energy unit kilocalories_per_mole does not have the same Dimension as the 

macroscopic energy unit kilocalories.  Molecular scientists sometimes use the word 

"kilocalories" when they mean "kilocalories per mole".  Use "kilocalories per mole" or 

"kilojoules per mole" for molecular energies.  Use "kilocalories" for the metabolic energy 

content of your lunch.  The energy unit kilojoule_per_mole happens to go naturally with the 

units nanometer, picoseconds, and dalton.  This is because 1 kilojoule/mole happens to be 

equal to 1 gram-nanometer2/mole-picosecond2, and is therefore consistent with the 

molecular dynamics unit system used in the C++ OpenMM API. 

 

 These "per mole" units are what you should be using for molecular calculations, as long as 

you are using SI / cgs / calorie sorts of units. 

 

12.3.4.6 SI prefixes 

Many units with SI prefixes such as “milligram” (milli) and “kilometer” (kilo) are provided in 

the simtk.unit module.  Others can be created by multiplying a prefix symbol by a non-

prefixed unit: 

 
from simtk.unit import mega, kelvin 

megakelvin = mega * kelvin 

t = 8.3 * megakelvin 

 

Only grams and meters get all of the SI prefixes (from yotto-(10-24) to yotta-(1024)) 

automatically. 

 

12.3.4.7 Converting to different units 

Use the Quantity.in_units_of() method to create a new Quantity with different units. 

 
from simtk.unit import nanosecond, fortnight 

x = (175000*nanosecond).in_units_of(fortnight) 

 
When you want a plain number out of a Quantity, use the value_in_unit() method: 
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from simtk.unit import femtosecond, picosecond 

t = 5.0*femtosecond 

t_just_a_number = t.value_in_unit(picoseconds) 

 
Using value_in_unit() puts the responsibility for unit analysis back into your hands, and 

it should be avoided.  It is sometimes necessary, however, when you are called upon to use a 

non-units-aware Python API. 

 

12.3.4.8 Lists, tuples, vectors, numpy arrays, and Units 

Units can be attached to containers of numbers to create a vector quantity.  The simtk.unit 
module overloads the __setitem__ and __getitem__ methods for these containers to 

ensure that Quantities go in and out. 

 
>>> a = Vec3(1,2,3) * nanometers 

>>> print a 

(1, 2, 3) nm 

>>> print a.in_units_of(angstroms) 

(10.0, 20.0, 30.0) A 

 

>>> s2 = [[1,2,3],[4,5,6]] * centimeter 

>>> print s2 

[[1, 2, 3], [4, 5, 6]] cm 

>>> print s2 / millimeter 

[[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]] 

 
>>> import numpy 

>>> a = Quantity(numpy.array([1,2,3]), centimeter) 

>>> print a 

[1 2 3] cm 

>>> print a / millimeter 

[ 10.  20.  30.] 
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Converting a whole list to different units at once is much faster than converting each element 

individually.  For example, consider the following code that prints out the position of every 

particle in a State, as measured in Angstroms: 

 
for v in state.getPositions(): 

    print v.value_in_unit(angstrom) 

 

 

This can be rewritten as follows: 

 
for v in state.getPositions().value_in_unit(angstrom): 

    print v 

 

The two versions produce identical results, but the second one will run faster, and therefore 

is preferred.



 

 

13 Examples of OpenMM 
Integration  

13.1 GROMACS 

GROMACS is a large, complex application written primarily in C.  The considerations 

involved in adapting it to use OpenMM are likely to be similar to those faced by developers 

of other existing applications. 

 

The first principle we followed in adapting GROMACS was to keep all OpenMM-related code 

isolated to just a few files, while modifying as little of the existing GROMACS code as 

possible.  This minimized the risk of breaking existing parts of the code, while making the 

OpenMM-related parts as easy to work with as possible.  It also minimized the need for C 

code to invoke the C++ API.  (This would not be an issue if we used the OpenMM C API 

wrapper, but that is less convenient than the C++ API, and placing all of the OpenMM calls 

into separate C++ files solves the problem equally well.)  Nearly all of the OpenMM-specific 

code is contained in a single file, openmm_wrapper.cpp.  It defines four functions which 

encapsulate all of the interaction between OpenMM and the rest of GROMACS: 

 
openmm_init(): As arguments, this function takes pointers to lots of internal GROMACS 

data structures that describe the simulation to be run.  It creates a System, Integrator, and 

Context based on them, then returns an opaque reference to an object containing them.  

That reference is an input argument to all of the other functions defined in 

openmm_wrapper.cpp.  This allows information to be passed between those functions 

without exposing it to the rest of GROMACS. 

 
openmm_take_one_step(): This calls step(1) on the Integrator that was created by 

openmm_init(). 
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openmm_copy_state(): This calls getState() on the Context that was created by 

openmm_init(), and then copies information from the resulting State into various 

GROMACS data structures.  This function is how state data generated by OpenMM is passed 

back to GROMACS for output, analysis, etc. 

 
openmm_cleanup(): This is called at the end of the simulation.  It deletes all the objects 

that were created by openmm_init(). 

 

This set of functions defines the interactions between GROMACS and OpenMM: copying 

information from the application to OpenMM, performing integration, copying information 

from OpenMM back to the application, and freeing resources at the end of the simulation.  

While the details of their implementations are specific to GROMACS, this overall pattern is 

fairly generic.  A similar set of functions can be used for many other applications as well. 

13.2 TINKER-OpenMM 

TINKER is written primarily in Fortran, and uses common blocks extensively to store 

application-wide parameters.  Rather than modify the TINKER build scripts to allow C++ 

code, it was decided to use the OpenMM C API instead.  Despite these differences, the 

overall approach used to add OpenMM support was very similar to that used for GROMACS.  

 

TINKER-OpenMM allows OpenMM to be used to calculate forces and energies and to 

perform the integration in the main molecular dynamics loop. The only changes to the 

TINKER source code are in the file dynamic.f for the setup and running of a simulation.  

An added file, dynamic_openmm.c, contains the interface C code between TINKER and 

OpenMM.  

 

The flow of the molecular dynamics simulation using OpenMM is as follows: 

 
1. The TINKER code is used to read the AMOEBA parameter file,  the *.xyz 

and *.key files.  It then parses the command-line options. 
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2. The routine map_common_blocks_to_c_data_structs() is called to 

map the FORTRAN common blocks to C data structures used in setting the 

parameters used by OpenMM. 

  
3. The routine openmm_validate() is called from dynamic.f before the 

main loop.  This routine checks that all required options and settings 

obtained from the input in step (1) and common blocks in step (2) are 

available.  If an option or setting is unsupported, the program exits with an 
appropriate message.  The routine openmm_validate() and the other 

OpenMM interface methods are in the file dynamic_openmm.c. 

 
4. openmm_init() is called to create the OpenMM System, Integrator and 

Context objects.. 

 
5. openmm_take_steps() is called to take a specified number of time steps.  

 
6. openmm_update() is then called to retrieve the state 

(energies/positions/velocities) and populate the appropriate TINKER data 

structures.  These values are converted from the OpenMM units of kJ/nm to 

kcal/Å	  when populating the TINKER arrays. 

 
7. Once the main loop has completed, the routine openmm_cleanup() is called 

to delete the OpenMM objects and release resources being used on the GPU. 



 

 

14 Testing and Validation of 
OpenMM 

The goal of testing and validation is to make sure that OpenMM works correctly.  That 

means that it runs without crashing or otherwise failing, and that it produces correct results.  

Furthermore, it must work correctly on a variety of hardware platforms (e.g. different 

models of GPU), software platforms (e.g. operating systems and OpenCL implementations), 

and types of simulations. 

 

Three types of tests are used to validate OpenMM: 

 

• Unit tests: These are small tests designed to test specific features or pieces of code 

in isolation.  For example, a test of HarmonicBondForce might create a System with 

just a few particles and bonds, compute the forces and energy, and compare them to 

the analytically expected values.  There are thousands of unit tests that collectively 

cover all of OpenMM. 

 

• System tests: Whereas unit tests validate small features in isolation, system tests 

are designed to validate the entire library as a whole.  They simulate realistic models 

of biomolecules and perform tests that are likely to fail if any problem exists 

anywhere in the library. 

 

• Direct comparison between OpenMM and other programs:  The third type 

of validation performed is a direct comparison of the individual forces computed by 

OpenMM to those computed by other programs for a collection of biomolecules.  

	  

Each type of test is outlined in greater detail below; a discussion of the current status of the 

tests is then given. 
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14.1 Description of Tests 

14.1.1 Unit tests  

The unit tests are with the source code, so if you build from source you can run them 

yourself.  See Section 9.7 for details.  When you run the tests (for example, by typing “make 

test” on Linux or Mac), it should produce output something like this: 

 
        Start   1: TestReferenceAndersenThermostat 

  1/317 Test   #1: TestReferenceAndersenThermostat .............. Passed  0.26 sec 

        Start   2: TestReferenceBrownianIntegrator 

  2/317 Test   #2: TestReferenceBrownianIntegrator .............. Passed  0.13 sec 

        Start   3: TestReferenceCheckpoints 

  3/317 Test   #3: TestReferenceCheckpoints ..................... Passed  0.02 sec 

  ... <many other tests> ... 

 

Each line represents a test suite, which may contain multiple unit tests.  If all tests within a 

suite passed, it prints the word “Passed” and how long the suite took to execute.  Otherwise it 

prints an error message.  If any tests failed, you can then run them individually (each one is 

a separate executable) to get more details on what went wrong. 

14.1.2 System tests 

Several different types of system tests are performed.  Each type is run for a variety of 

systems, including both proteins and nucleic acids, and involving both implicit and explicit 

solvent.  The full suite of tests is repeated for both the CUDA and OpenCL platforms, using 

both single and double precision (and for the integration tests, mixed precision as well), on a 

variety of operating systems and hardware.  There are four types of tests: 

 

• Consistency between platforms: The forces and energy are computed using the 

platform being tested, then compared to ones computed with the Reference platform.  

The results are required to agree to within a small tolerance. 
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• Energy-force consistency: This verifies that the force really is the gradient of the 

energy.   It first computes the vector of forces for a given conformation.  It then 

generates four other conformations by displacing the particle positions by small 

amounts along the force direction.  It computes the energy of each one, uses those to 

calculate a fourth order finite difference approximation to the derivative along that 

direction, and compares it to the actual forces.  They are required to agree to within a 

small tolerance. 

• Energy conservation: The system is simulated at constant energy using a Verlet 

integrator, and the total energy is periodically recorded.  A linear regression is used 

to estimate the rate of energy drift.  In addition, all constrained distances are 

monitored during the simulation to make sure they never differ from the expected 

values by more than the constraint tolerance. 

• Thermostability: The system is simulated at constant temperature using a 

Langevin integrator.  The mean kinetic energy over the course of the simulation is 

computed and compared to the expected value based on the temperature.  In 

addition, all constrained distances are monitored during the simulation to make sure 

they never differ from the expected values by more than the constraint tolerance. 

 

If you want to run the system tests yourself, they can be found in the Subversion repository 

at https://simtk.org/svn/pyopenmm/trunk/test/system-tests.  Check out that directory, 

then execute the runAllTests.sh shell script.  It will create a series of files with detailed 

information about the results of the tests.  Be aware that running the full test suite may take 

a long time (possibly several days) depending on the speed of your GPU. 

14.1.3 Direct comparisons between OpenMM and other programs 

As a final check, identical systems are set up in OpenMM and in another program (Gromacs 

4.5 or Tinker 6.1), each one is used to compute the forces on atoms, and the results are 

directly compared to each other. 

14.2 Test Results 
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In this section, we highlight the major results obtained from the tests described above.  They 

are not exhaustive, but should give a reasonable idea of the level of accuracy you can expect 

from OpenMM. 

14.2.1 Comparison to Reference Platform 

The differences between forces computed with the Reference platform and those computed 

with the OpenCL or CUDA platform are shown in Table 14.1.  For every atom, the relative 

difference between platforms was computed as 2·|Fref–Ftest|/(|Fref|+|Ftest|), where Fref is the 

force computed by the Reference platform and Ftest is the force computed by the platform 

being tested (OpenCL or CUDA).  The median over all atoms in a given system was 

computed to estimate the typical force errors for that system.  Finally, the median of those 

values for all test systems was computed to give the value shown in the table. 

Table	  14.1:	  	  Median	  relative	  difference	  in	  forces	  between	  Reference	  platform	  and	  
OpenCL/CUDA	  platform	  

 

Median Relative Difference  

Force 
OpenCL 

(single) 

OpenCL 

(double) 

CUDA 

(single) 

CUDA 

(double) 

Total Force 2.55·10-6 1.44·10-7 2.56·10-6 8.78·10-8 

HarmonicBondForce 2.88·10-6 1.57e·10-13 2.88·10-6 1.57·10-13 

HarmonicAngleForce 2.25·10-5 4.21·10-7 2.27·10-5 4.21·10-7 

PeriodicTorsionForce 8.23·10-7 2.44·10-7 9.27·10-7 2.56·10-7 

RBTorsionForce 4.86·10-6 1.46·10-7 4.72·10-6 1.40·10-8 

NonbondedForce (no cutoff) 1.49·10-6 6.49·10-8 1.49·10-6 6.49·10-8 

NonbondedForce (cutoff, nonperiodic) 9.74·10-7 4.88·10-9 9.73·10-7 4.88·10-9 

NonbondedForce (cutoff, periodic) 9.82·10-7 4.88·10-9 9.80·10-7 4.88·10-9 

NonbondedForce (Ewald) 2.95·10-6 5.22·10-9 2.96·10-6 5.22·10-9 

NonbondedForce (PME) 4.01·10-5 4.08·10-6 4.02·10-5 4.08·10-6 

GBSAOBCForce (no cutoff) 2.91·10-6 1.76·10-7 3.03·10-6 9.40·10-8 

GBSAOBCForce (cutoff, nonperiodic) 2.66·10-6 1.76·10-7 2.76·10-6 9.33·10-8 

GBSAOBCForce (cutoff, periodic) 2.56·10-6 1.78·10-7 2.61·10-6 9.24·10-8 
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14.2.2 Energy Conservation 

Figure 14-1 shows the total system energy versus time for three simulations of ubiquitin in 

OBC implicit solvent.  All three simulations used the CUDA platform, a Verlet integrator, a 

time step of 0.5 fs, no constraints, and no cutoff on the nonbonded interactions.  They differ 

only in the level of numeric precision that was used for calculations (see Chapter 11). 

 

Figure	   14-‐1:	   Total	   energy	   versus	   time	   for	   simulations	   run	   in	   three	   different	  
precision	  modes.	  

 

For the mixed and double precision simulations, the drift in energy is almost entirely 

diffusive with negligible systematic drift.  The single precision simulation has a more 

significant upward drift with time, though the rate of drift is still small compared to the rate 

of short term fluctuations.  Fitting a straight line to each curve gives a long term rate of 

energy drift of 3.98 kJ/mole/ns for single precision, 0.217 kJ/mole/ns for mixed precision, 

and 0.00100 kJ/mole/ns for double precision.  In the more commonly reported units of 

kT/ns/dof, these correspond to 4.3·10-4 for single precision, 2.3·10-5 for mixed precision, and 

1.1·10-7 for double precision. 
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Be aware that different simulation parameters will give different results.  These simulations 

were designed to minimize all sources of error except those inherent in OpenMM.  There are 

other sources of error that may be significant in other situations.  In particular: 

 
• Using a larger time step increases the integration error (roughly proportional to dt2). 

• If a system involves constraints, the level of error will depend strongly on the 

constraint tolerance specified by the Integrator. 

• When using Ewald summation or Particle Mesh Ewald, the accuracy will depend 

strongly on the Ewald error tolerance. 

• Applying a distance cutoff to implicit solvent calculations will increase the error, and 

the shorter the cutoff is, the greater the error will be. 

 

As a result, the rate of energy drift may be much greater in some simulations than in the 

ones shown above. 

14.2.3 Comparison to Gromacs 

OpenMM and Gromacs 4.5.5 were each used to compute the atomic forces for dihydrofolate 

reductase (DHFR) in implicit and explicit solvent.  The implicit solvent calculations used the 

OBC solvent model and no cutoff on nonbonded interactions.  The explicit solvent 

calculations used Particle Mesh Ewald and a 1 nm cutoff on direct space interactions.  For 
OpenMM, the Ewald error tolerance was set to 10-6.  For Gromacs, fourierspacing was 

set to 0.07 and ewald_rtol to 10-6.  No constraints were applied to any degrees of freedom.  

Both programs used single precision.  The test was repeated for OpenCL and CUDA 

platforms. 

 

For every atom, the relative difference between OpenMM and Gromacs was computed as 

2·|FMM–FGro|/(|FMM|+|FGro|), where FMM is the force computed by OpenMM and FGro is the 

force computed by Gromacs.  The median over all atoms is shown in Table 14.2 



151 

 

Median Relative Difference  

Solvent Model 
OpenCL CUDA 

Implicit 8.03·10-6 8.08·10-6 

Explicit 6.78·10-5 6.80·10-5 

Table	  14.2:	  	  Median	  relative	  difference	  in	  forces	  between	  OpenMM	  and	  Gromacs	  

 

 



 

 

15 AMOEBA Plugin 

OpenMM 5.1 provides a plugin that implements the AMOEBA polarizable atomic multipole 

force field7, 16 from Jay Ponder’s lab. The AMOEBA force field may be used through 

OpenMM’s Python application layer. We have also created a modified version of TINKER 

(referred to as TINKER-OpenMM here) that uses OpenMM to accelerate AMOEBA 

simulations. TINKER-OpenMM can be created from a TINKER package using three files 

made available through the OpenMM home page. OpenMM AMOEBA Force and System 

objects containing AMOEBA forces can be serialized. 

 

At present, AMOEBA is only supported on the CUDA and Reference platforms, not on the 

OpenCL platform. 

 

In the following sections, the individual forces and options available in the plugin are listed, 

and the steps required to build and use the plugin and TINKER-OpenMM are outlined. 

Validation results are also reported.  Benchmarks can be found on the OpenMM wiki at 

http://wiki.simtk.org/openmm/Benchmarks. 

15.1 OpenMM AMOEBA Supported Forces and Options  

15.1.1 Supported Forces and Options 

The AMOEBA force terms implemented in OpenMM are listed in Table 15.1 along with the 

supported and unsupported options. TINKER options that are not supported for any 

OpenMM force include the grouping of atoms (e.g. protein chains), the infinite polymer 

check, and no exclusion of particles from energy/force calculations (‘active’/’inactive’ 

particles).  The virial is not calculated for any force. 

 

All rotation axis types are supported: ‘Z-then-X’, ‘Bisector’, ‘Z-Bisect’, ‘3-Fold’, ‘Z-Only’.  
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TINKER Force 

(key file parameter) 
OpenMM Force Option/Note 

ebond1(bondterm) AmoebaBondForce bndtyp='HARMONIC' supported, 

'MORSE' not implemented 

Eangle71(angleterm) AmoebaAngleForce  angtyp='HARMONIC' and 'IN-

PLANE' supported; 'LINEAR' and 

'FOURIER' not implemented 

etors1a(torsionterm) PeriodicTorsionForce All options implemented; smoothing 

version(etors1b) not supported 

etortor1(tortorterm) AmoebaTorsionTorsionForce All options implemented 

eopbend1(opbendterm) AmoebaOutOfPlaneBendForce opbtyp = 'ALLINGER' implemented; 

'W-D-C' not implemented 

epitors1(pitorsterm) AmoebaPiTorsionForce All options implemented 

estrbnd1(strbndterm) AmoebaStretchBendForce All options implemented 

ehal1a(vdwterm) AmoebaVdwForce ehal1b(LIGHTS) not supported 

empole1a(mpoleterm) AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT'  

supported 

empole1c(mpoleterm) 

PME 

AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT' 

supported; boundary= 'VACUUM' 

unsupported 

esolv1 (solvateterm) AmoebaWcaDispersionForce, 

AmoebaGeneralizedKirkwoodForce 

Only born-radius=’grycuk’ and 

solvate=’GK’ supported; unsupported 

solvate settings: ‘ASP’, ‘SASA’, 

‘ONION’, ‘pb’, 'GB-HPMF’, 'Gk-

HPMF’; SASA computation is based 

on ACE approximation 

eurey1(ureyterm) HarmonicBondForce All options implemented 

Table	  15.1:	  	  Mapping	  between	  TINKER	  and	  OpenMM	  AMOEBA	  forces	  
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Some specific details to be aware of are the following: 

 

• Forces available in TINKER but not implemented in the OpenMM AMOEBA plugin 

include the following: angle-angle, out-of-plane distance, improper dihedral, 

improper torsion, stretch-torsion, charge-charge, atomwise charge-dipole, dipole-

dipole, reaction field, ligand field, restraint, scf molecular orbital calculation; strictly 

speaking, these are not part of the AMOEBA force field. 

 

• Implicit solvent in TINKER-OpenMM is implemented with key file entry ‘solvate 

GK’.  The entry ‘born-radius grycuk’ should also be included; only the ‘grycuk’ option 

for calculating the Born radii is available in the plugin. 

 

• In TINKER, the nonpolar cavity contribution to the solvation term is calculated using 

an algorithm that does not map well to GPUs.  Instead the OpenMM plugin uses the 

TINKER version of the ACE approximation to estimate the cavity contribution to the 

SASA.  

 

• Calculations using the CUDA platform may be done in either single or double 

precision; for the Reference platform, double precision is used.  TINKER uses double 

precision. 

 

• The TINKER parameter files for the AMOEBA force-field parameters are based on 

units of kilocalorie/Å, whereas OpenMM uses units of kilojoules/nanometer; both 

TINKER and OpenMM use picoseconds time units. Hence, in mapping the force-field 

parameters from TINKER files to OpenMM, many of the parameter values must be 

converted to the OpenMM units. The setup methods in the TINKER-OpenMM 

application perform the required conversions. 
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15.1.2 Supported Integrators 

In addition to the limitations to the forces outlined above, TINKER-OpenMM can only use 

either the ‘Verlet’ or ‘Stochastic’ integrators when the OpenMM plugin is used; an equivalent 

to the TINKER ‘Beeman’ integrator is unavailable in OpenMM. 

15.2 TINKER-OpenMM  

15.2.1 Building TINKER-OpenMM (Linux) 

Below are instructions for building TINKER-OpenMM in Linux. 

 

1. To build and install the OpenMM plugin libraries, follow the steps outlined in 

Chapter 9 (Compiling OpenMM from Source Code).  You will need to set the 

following options to ‘ON’ when you run CMake:  

 

i. OPENMM_BUILD_AMOEBA_PLUGIN  

ii. OPENMM_BUILD_AMOEBA_CUDA_LIB  

iii. OPENMM_BUILD_CUDA_LIB 

iv. OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS 

 

2. Download the complete TINKER distribution from http://dasher.wustl.edu/ffe/ and 

unzip/untar the file.  

 
3. Obtain the modified TINKER file dynamic.f, the interface file 

dynamic_openmm.c and the Makefile from the “Downloads” section of 

OpenMM’s homepage (https://simtk.org/home/openmm) and place them in the 

TINKER source directory. These files are compatible with TINKER 6.0.4. If you are 

using later versions of TINKER, some minor edits may be required to get the 

program to compile. 

 
4. In the Makefile, edit the following fields, as needed: 

a. TINKERDIR – This should point to the head of the TINKER distribution 

directory, e.g., ‘/home/user/tinker-5.1.09’ 
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b.  LINKDIR – directory in executable path containing linked copies of the 

TINKER executables; typical directory would be ‘/usr/local/bin’ 

c. CC – This is an added field that should point to the C compiler (e.g., 

‘/usr/bin/gcc’)  

d. OpenMM_INSTALL_DIR - This should identify the directory where the 

OpenMM files were installed, i.e., the OPENMM_INSTALL_PREFIX setting 

when CMake was run in step (1)  

 

5. At the command line, type  
make dynamic_openmm.x 

to create the executable. 

 

6. Check that the environment variable ‘OPENMM_PLUGIN_DIR’ is set to the 

installed plugins directory and that the environment variable ‘LD_LIBRARY_PATH’ 

includes both  the installed lib and plugins directory; for example: 
 

OPENMM_PLUGIN_DIR=/home/usr/install/openmm/lib/plugins 

LD_LIBRARY_PATH=/usr/local/cuda/lib64:/home/usr/install/openmm

/lib:/home/usr/install/openmm/lib/plugins 

15.2.2 Using TINKER-OpenMM 

Run dynamic_openmm.x with the same command-line options as you would dynamic.x.  

Consult the TINKER documentation and Table 15.1 for more details. 

15.2.2.1 Available outputs   

Only the total force and potential energy are returned by TINKER-OpenMM; a breakdown of 

the energy and force into individual terms (bond, angle, …), as is done in TINKER, is 

unavailable through the OpenMM plugin.  Also, the pressure cannot be calculated since the 

virial is not calculated in the plugin.  

15.2.2.2 Setting the frequency of output data updates 

Frequent retrieval of the state information from the GPU board can use up a substantial 

portion of the total wall clock time.  This is due to the fact that the forces and energies are 

recalculated for each retrieval.  Hence, if the state information is obtained after every 
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timestep, the wall clock time will approximately double over runs where the state 

information in only gathered infrequently (say every 50-100 timesteps). 

 

Two options are provided for updating the TINKER data structures: 

 

(i) (DEFAULT)  If the logical value of ‘oneTimeStepPerUpdate’ in dynamic.f is 

true, then a single step is taken and the TINKER data structures are populated at 

each step. This option is conceptually simpler and is consistent with the TINKER 

md loops; for example, the output from the TINKER subroutine mdstat() will be 

accurate for this choice. However, the performance will be degraded since the 

forces and energy are recalculated with each call, doubling the required time. 

This is the default option. 

(ii) If ‘oneTimeStepPerUpdate’ is false, then depending on the values of iprint 

(TINKER keyword ‘PRINTOUT’) and iwrite (=dump time/dt), multiple time 

steps are taken on the GPU before data is transferred from the GPU to the CPU; 

here dump time is the value given to the TINKER command-line query ‘Enter 

Time between Dumps in Picoseconds’. Under this option, every  iprint and every 

iwrite timesteps, the state information will be retrieved. For example if 

‘PRINTOUT’ is 10 and iwrite is 15, then the information will be retrieved at time 

steps { 10, 15, 20, 30, 40, 45, …}. This option will lead to better performance than 

option 1. However, a downside to this approach is that the fluctuation values 

printed by the Tinker routine mdstat() will be incorrect. 

 

15.2.2.3 Specify the GPU board to use 

To specify a GPU board other than the default, set the environment variable 

‘CUDA_DEVICE’ to the desired board id. A line like the following will be printed to stderr 

for the setting CUDA_DEVICE=2: 

 
Platform Cuda: setting device id to 2 based on env variable 

CUDA_DEVICE. 
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15.2.2.4 Running comparison tests between TINKER and OpenMM routines 

To turn on testing (comparison of forces and potential energy for the initial conformation 

calculated using TINKER routines and OpenMM routines), set ‘applyOpenMMTest’ to a 
non-zero value in dynamic.f. Note: the program exits after the force/energy comparisons; 

it does not execute the main molecular dynamics loop. 

 

Testing individual forces:  An example key file for testing the harmonic bond term is as 

follows:  

parameters /home/user/tinker/params/amoebabio09 

verbose  

solvate  GK   

born-radius  grycuk  

polar-eps  0.0001 

integrate  verlet 

bondterm only 

 

For the other covalent and Van der Waals forces, replace the line ‘bondterm only’ above 

with the following lines depending on the force to be tested: 

 

angle force:                      angleterm only       

out-of-plane bend:          opbendterm only  

stretch bend force            strbndterm only    

pi-torsion force:                pitorsterm only 

torsion force:                     torsionterm only 

torsion-torsion force:        tortorterm only 

Urey-Bradley force:           ureyterm only 

Van der Waals force:       vdwterm only 

 

A sample key file for the multipole force with no cutoffs is given below: 

parameters /home/user/tinker/params/amoebabio09 

verbose  

solvate  GK   

born-radius  grycuk  
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polar-eps  0.0001 

integrate  verlet 

mpoleterm only 

polarizeterm 

 

A sample key file for PME multipole tests 

 

parameters /home/user/tinker/params/amoebabio09 

verbose  

randomseed  123456789 

neighbor-list  

vdw-cutoff  12.0 

ewald  

ewald-cutoff  7.0  

pme-grid  64 64 64 

polar-eps  0.01 

fft-package  fftw 

integrate  verlet 

mpoleterm only 

polarizeterm 

 

For the Generalized Kirkwood force, the following entries are needed: 

 

parameters /home/user/tinker/params/amoebabio09 

verbose  

solvate  GK   

born-radius  grycuk  

polar-eps  0.0001 

integrate  verlet 

solvateterm only 

polarizeterm  

mpoleterm 
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For the implicit solvent (‘solvate GK’ runs) test, the forces and energies will differ due to the 

different treatments of the cavity term (see Section 15.1.1 above).  With these options for the 

Generalized Kirkwood force, the test routine will remove the cavity contribution from the 

TINKER and OpenMM forces/energy when performing the comparisons between the two 

calculations.  

 

To test the multipole force or the Generalized Kirkwood forces with direct polarization, add 

the following line to the end of the above files: 

 

polarization DIRECT 

 

15.2.2.5 Turning off OpenMM / Reverting to TINKER routines 

To use the TINKER routines, as opposed to the OpenMM plugin, to run a simulation, set 
‘useOpenMM’ to .false. in dynamic.f.  

15.3 OpenMM AMOEBA Validation 

OpenMM and TINKER 6.1.01 were each used to compute the atomic forces for dihydrofolate 

reductase (DHFR) in implicit and explicit solvent.  Calculations used the CUDA platform, 

and were repeated for both single and double precision.  For every atom, the relative 

difference between OpenMM and TINKER was computed as 2·|FMM–FT|/(|FMM|+|FT|), 

where FMM is the force computed by OpenMM and FT is the force computed by TINKER.  The 

median over all atoms is shown inTable 15.2. 

 

Because OpenMM and TINKER use different approximations to compute the cavity term, 

the differences in forces are much larger for implicit solvent than for explicit solvent.  We 

therefore repeated the calculations, removing the cavity term.  This yields much closer 

agreement between OpenMM and TINKER, demonstrating that the difference comes 

entirely from that one term. 
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Median Relative Difference  

Solvent Model single double 

Implicit 1.04·10-2 1.04·10-2 

Implicit (no cavity term) 9.23 ·10-6 1.17·10-6 

Explicit 3.73·10-5 1.83·10-7 

Table	  15.2:	  	  Median	  relative	  difference	  in	  forces	  between	  OpenMM	  and	  TINKER	  

 



 

 

16 Ring Polymer Molecular 
Dynamics (RPMD) Plugin 

Ring Polymer Molecular Dynamics (RPMD) provides an efficient approach to include 

nuclear quantum effects in molecular simulations.17  When used to calculate static 

equilibrium properties, RPMD reduces to path integral molecular dynamics and gives an 

exact description of the effect of quantum fluctuations for a given potential energy model.18  

For dynamical properties RPMD is no longer exact but has shown to be a good 

approximation in many cases.  

 

For a system with a classical potential energy E(q), the RPMD Hamiltonian is given by 

 

 

 

This Hamiltonian resembles that of a system of classical ring polymers where different 

copies of the system are connected by harmonic springs.  Hence each copy of the classical 

system is commonly referred to as a “bead”.  The spread of the ring polymer representing 

each particle is directly related to its De Broglie thermal wavelength (uncertainty in its 

position). 

 

RPMD calculations must be converged with respect to the number n of beads used.  Each 

bead is evolved at the effective temperature nT, where T is the temperature for which 

properties are required.  The number of beads needed to converge a calculation can be 

estimated using19 
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where ωmax is the highest frequency in the problem.  For example, for flexible liquid water 

the highest frequency is the OH stretch at around 3000 cm-1, so around 24 to 32 beads are 

needed depending on the accuracy required.  For rigid water where the highest frequency is 

only around 1000 cm-1, only 6 beads are typically needed.  Due to the replication needed of 

the classical system, the extra cost of the calculation compared to a classical simulation 

increases linearly with the number of beads used. 

 

Due to the stiff spring terms between the beads, NVE RPMD trajectories can suffer from 

ergodicity problems and hence thermostatting is highly recommended, especially when 

dynamical properties are not required.20  The thermostat implemented here is the path 

integral Langevin equation (PILE) approach.21  This method couples an optimal white noise 

Langevin thermostat to the normal modes of each polymer, leaving only one parameter to be 

chosen by the user which controls the friction applied to the center of mass of each ring 

polymer.  A good choice for this is to use a value similar to that used in a classical calculation 

of the same system.  



 

 

 

 
 

 

Part III 
Theory Guide 

 



 

 

17 The Theory Behind 
OpenMM:  an Introduction  

17.1 Overview 

This guide describes the mathematical theory behind OpenMM.  For each computational 

class, it describes what computations the class performs and how it should be used.  This 

serves two purposes.  If you are using OpenMM within an application, this guide teaches you 

how to use it correctly.  If you are implementing the OpenMM API for a new Platform, it 

teaches you how to correctly implement the required kernels. 

 

On the other hand, many details are intentionally left unspecified.  Any behavior that is not 

specified either in this guide or in the API documentation is left up to the Platform, and may 

be implemented in different ways by different Platforms.  For example, an Integrator is 

required to produce a trajectory that satisfies constraints to within the user specified 

tolerance, but the algorithm used to enforce those constraints is left up to the Platform.  

Similarly, this guide provides the functional form of each Force, but does not specify what 

level of numerical precision it must be calculated to. 

 

This is an essential feature of the design of OpenMM, because it allows the API to be 

implemented efficiently on a wide variety of hardware and software platforms, using 

whatever methods are most appropriate for each platform.  On the other hand, it means that 

a single program may produce meaningfully different results depending on which Platform it 

uses.  For example, different constraint algorithms may have different regions of 

convergence, and thus a time step that is stable on one platform may be unstable on a 

different one.  It is essential that you validate your simulation methodology on each Platform 

you intend to use, and do not assume that good results on one Platform will guarantee good 

results on another Platform when using identical parameters. 
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17.2 Units 

There are several different sets of units widely used in molecular simulations.  For example, 

energies may be measured in kcal/mol or kJ/mol, distances may be in Angstroms or nm, 

and angles may be in degrees or radians.  OpenMM uses the following units everywhere. 

 

Quantity Units 

distance nm 

time ps 

mass atomic mass units 

charge proton charge 

temperature Kelvin 

angle radians 

energy kJ/mol 

Table	  17.1:	  	  Units	  used	  within	  OpenMM	  

 

These units have the important feature that they form an internally consistent set.  For 

example, a force always has the same units (kJ/mol/nm) whether it is calculated as the 

gradient of an energy or as the product of a mass and an acceleration.  This is not true in 

some other widely used unit systems, such as those that express energy in kcal/mol. 

 

The header file Units.h contains predefined constants for converting between the OpenMM 

units and some other common units.  For example, if your application expresses distances in 

Angstroms, you should multiply them by OpenMM::NmPerAngstrom before passing them to 

OpenMM, and positions calculated by OpenMM should be multiplied by 

OpenMM::AngstromsPerNm before passing them back to your application. 

 

 



 

 

18 Standard Forces 

The following classes implement standard force field terms that are widely used in molecular 

simulations. 

18.1 HarmonicBondForce 

Each harmonic bond is represented by an energy term of the form 

 

 

 

where x is the distance between the two particles, x0 is the equilibrium distance, and k is the 

force constant.  This produces a force of magnitude k(x-x0). 

 

Be aware that some force fields define their harmonic bond parameters in a slightly different 

way: E = k´(x-x0)2, leading to a force of magnitude 2k´(x-x0).  Comparing these two forms, 

you can see that k = 2k´.  Be sure to check which form a particular force field uses, and if 

necessary multiply the force constant by 2. 

18.2 HarmonicAngleForce 

Each harmonic angle is represented by an energy term of the form 

 

 

 
where θ is the angle formed by the three particles, θ0 is the equilibrium angle, and k is the 

force constant. 
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As with HarmonicBondForce, be aware that some force fields define their harmonic angle 
parameters as E = k´(θ-θ0)2.  Be sure to check which form a particular force field uses, and if 

necessary multiply the force constant by 2. 

18.3 PeriodicTorsionForce 

Each torsion is represented by an energy term of the form 

 

 

 
where θ is the dihedral angle formed by the four particles, θ0 is the equilibrium angle, n is 

the periodicity, and k is the force constant. 

18.4 RBTorsionForce 

Each torsion is represented by an energy term of the form 

 

 

 

where φ is the dihedral angle formed by the four particles and C0 through C5 are constant 

coefficients. 

 

For reason of convention, PeriodicTorsionForce and RBTorsonForce define the torsion angle 
differently. θ is zero when the first and last particles are on the same side of the bond formed 

by the middle two particles (the cis configuration), whereas φ is zero when they are on 

opposite sides (the trans configuration).  This means that θ = φ - π. 

18.5 CMAPTorsionForce 

Each torsion pair is represented by an energy term of the form 
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where θ1 and θ2 are the two dihedral angles coupled by the term, and f(x,y) is defined by a 

user supplied grid of tabulated values.  A natural cubic spline surface is fit through the 
tabulated values, then evaluated to determine the energy for arbitrary (θ1, θ2) pairs. 

18.6 NonbondedForce 

18.6.1 Lennard-Jones Interaction 

The Lennard-Jones interaction between each pair of particles is represented by an energy 

term of the form 

 

 

 
where r is the distance between the two particles, σ is the distance at which the energy 

equals zero, and ε sets the strength of the interaction.  If the NonbondedMethod in use is 

anything other than NoCutoff and r is greater than the cutoff distance, the energy and force 

are both set to zero.  Because the interaction decreases very quickly with distance, the cutoff 

usually has little effect on the accuracy of simulations. 

 
When an exception has been added for a pair of particles, σ and ε are the parameters 

specified by the exception.  Otherwise they are determined from the parameters of the 

individual particles using the Lorentz-Bertelot combining rule: 

 

 

 

 

When using periodic boundary conditions, NonbondedForce can optionally add a term 

(known as a long range dispersion correction) to the energy that approximately represents 

the contribution from all interactions beyond the cutoff distance:22 
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where N is the number of particles in the system, V is the volume of the periodic box, rc is 

the cutoff distance, σij and εij are the interaction parameters between particle i and particle j, 

and 〈...〉 represents an average over all pairs of particles in the system.  The long range 

dispersion correction is primarily useful when running simulations at constant pressure, 

since it produces a more accurate variation in system energy with respect to volume. 

 

The Lennard-Jones interaction is often parameterized in two other equivalent ways.  One is 

 

 

 

where rmin (sometimes known as dmin; this is not a radius) is the center-to-center distance at 
which the energy is minimum.  It is related to σ by 

 

 

 

In turn, rmin is related to the van der Waals radius by rmin = 2 rvdw. 

 

Another common form is 

 

 

 
The coefficients A and B are related to σ and ε by 
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18.6.2 Coulomb Interaction Without Cutoff 

The form of the Coulomb interaction between each pair of particles depends on the 

NonbondedMethod in use.  For NoCutoff, it is given by 

 

 

 

where q1 and q2 are the charges of the two particles, and r is the distance between them. 

18.6.3 Coulomb Interaction With Cutoff 

For CutoffNonPeriodic or CutoffPeriodic, it is modified using the reaction field 

approximation.  This is derived by assuming everything beyond the cutoff distance is a 

solvent with a uniform dielectric constant.23 

 

 

 

 

 

where rcutoff is the cutoff distance and εsolvent is the dielectric constant of the solvent.  In the 

limit εsolvent >> 1, this causes the force to go to zero at the cutoff. 

18.6.4 Coulomb Interaction With Ewald Summation 

For Ewald, the total Coulomb energy is the sum of three terms: the direct space sum, the 

reciprocal space sum, and the self-energy term.24 
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In the above expressions, the indices i and j run over all particles, n = (n1, n2, n3) runs over 

all copies of the periodic cell, and k = (k1, k2, k3) runs over all integer wave vectors from (-

kmax, -kmax, -kmax) to (kmax, kmax, kmax) excluding (0, 0, 0).  ri is the position of particle i, while 
rij is the distance between particles i and j.  V is the volume of the periodic cell, and α is an 

internal parameter. 

 

In the direct space sum, all pairs that are further apart than the cutoff distance are ignored.  

Because the cutoff is required to be less than half the width of the periodic cell, the number 

of terms in this sum is never greater than the square of the number of particles. 

 
The error made by applying the direct space cutoff depends on the magnitude of erfc(αrcutoff).  

Similarly, the error made in the reciprocal space sum by ignoring wave numbers beyond kmax 
depends on the magnitude of exp(-(πkmax/α)2).  By changing α, one can decrease the error in 

either term while increasing the error in the other one. 

 
Instead of having the user specify α and kmax, NonbondedForce instead asks the user to 

choose an error tolerance δ.  It then calculates α as 

 

 

 

Finally, it estimates the error in the reciprocal space sum as 
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where d is the width of the periodic box, and selects the smallest value for kmax which gives 
error < δ.  (If the box is not square, kmax will have a different value along each axis.) 

 
This means that the accuracy of the calculation is determined by δ. rcutoff does not affect the 

accuracy of the result, but does affect the speed of the calculation by changing the relative 

costs of the direct space and reciprocal space sums.  You therefore should test different 

cutoffs to find the value that gives best performance; this will in general vary both with the 

size of the system and with the Platform being used for the calculation.  When the optimal 

cutoff is used for every simulation, the overall cost of evaluating the nonbonded forces scales 

as O(N3/2) in the number of particles. 

 

Be aware that the error tolerance δ is not a rigorous upper bound on the errors.  The 

formulas given above are empirically found to produce average relative errors in the forces 
that are less than or similar to δ across a variety of systems and parameter values, but no 

guarantees are made.  It is important to validate your own simulations, and identify 

parameter values that produce acceptable accuracy for each system. 

18.6.5 Coulomb Interaction With Particle Mesh Ewald 

The Particle Mesh Ewald (PME) algorithm25 is similar to Ewald summation, but instead of 

calculating the reciprocal space sum directly, it first distributes the particle charges onto 

nodes of a rectangular mesh using 5th order B-splines.  By using a Fast Fourier Transform, 

the sum can then be computed very quickly, giving performance that scales as O(N log N) in 

the number of particles (assuming the volume of the periodic box is proportional to the 

number of particles). 

 

As with Ewald summation, the user specifies the direct space cutoff rcutoff and error tolerance 
δ.  NonbondedForce then selects α as 

 

 

 

and the number of nodes in the mesh along each dimension as 
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where d is the width of the periodic box along that dimension.  (Note that some Platforms 

may choose to use a larger value of nmesh than that given by this equation.  For example, 

some FFT implementations require the mesh size to be a multiple of certain small prime 

numbers, so a Platform might round it up to the nearest permitted value.  It is guaranteed 

that nmesh will never be smaller than the value given above.) 

 
The comments in the previous section regarding the interpretation of δ for Ewald 

summation also apply to PME, but even more so.  The behavior of the error for PME is more 

complicated than for simple Ewald summation, and while the above formulas will usually 
produce an average relative error in the forces less than or similar to δ, this is not a rigorous 

guarantee.  PME is also more sensitive to numerical round-off error than Ewald summation.  
For Platforms that do calculations in single precision, making δ too small (typically below 

about 5⋅10-5) can actually cause the error to increase. 

18.7 GBSAOBCForce 

18.7.1 Generalized Born Term 

GBSAOBCForce consists of two energy terms: a Generalized Born Approximation term to 

represent the electrostatic interaction between the solute and solvent, and a surface area 

term to represent the free energy cost of solvating a neutral molecule.  The Generalized Born 

energy is given by12 

 

 

 
where the indices i and j run over all particles, εsolute and εsolvent are the dielectric constants of 

the solute and solvent respectively, qi is the charge of particle i, and dij is the distance 

between particles i and j.  fGB(dij, Ri, Rj) is defined as 
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Ri is the Born radius of particle i, which calculated as 

 

 

 
where α, β, and γ are the GBOBCII parameters α = 1, β = 0.8, and γ = 4.85.  ρi is the adjusted 

atomic radius of particle i, which is calculated from the atomic radius ri as ρi = ri-0.009 nm.  

Ψi is calculated as an integral over the van der Waals spheres of all particles outside particle 

i: 

 

 

 
where θ(r) is a step function that excludes the interior of particle i from the integral. 

18.7.2 Surface Area Term 

The surface area term is given by26-27 

 

 

 

where ri is the atomic radius of particle i, Ri is its Born radius, and rsolvent is the solvent 

radius, which is taken to be 0.14 nm. 
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18.8 GBVIForce 

The GBVI force is an implicit solvent force based on an algorithm developed by Paul 

Labute.28 The GBVI force is currently undergoing testing to validate that it is correctly 

implementing the algorithm. The GBVI energy is given by Equation 2 of the referenced 

paper: 

 

 
where the indices i and j run over all n particles, εsolute and εsolvent are the dielectric constants 

of the solute and solvent respectively, qi is the charge of particle i,  dij is the distance between 
particles i and j, ri are the input particle radii, and the γi are adjustable parameters. fGB(dij, Ri, 

Rj) is defined as above (Section 10.6) for the GBSAOBCForce. The Born radii, Ri, are defined 

by the equation 

 

 

where V(d,r,S) is given by 

 

 

 

 

 

and 

 

 

 

The Si are derived from the covalent topology of the solute: 
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and 

 

 

 

where dij is the fixed covalent bond length between particles i and j, and the sum in the 
calculation of the νi is over the particles j covalently bonded to particle i. 

18.9 AndersenThermostat 

AndersenThermostat couples the system to a heat bath by randomly selecting a subset of 

particles at the start of each time step, then setting their velocities to new values chosen from 

a Boltzmann distribution.  This represents the effect of random collisions between particles 

in the system and particles in the heat bath.29 

 

The probability that a given particle will experience a collision in a given time step is 

 

 
 

where f is the collision frequency and Δt is the step size.  Each component of its velocity is 

then set to 
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where T is the thermostat temperature, m is the particle mass, and R is a random number 

chosen from a normal distribution with mean of zero and variance of one. 

18.10 MonteCarloBarostat 

MonteCarloBarostat models the effect of constant pressure by allowing the size of the 

periodic box to vary with time.30-31  At regular intervals, it attempts a Monte Carlo step by 

scaling the box vectors and the coordinates of each molecule’s center by a factor s.  The scale 
factor s is chosen to change the volume of the periodic box from V to V+δV: 

 

 

 

The change in volume is chosen randomly as 

 

 
 

where A is a scale factor and r is a random number uniformly distributed between -1 and 1.  

The step is accepted or rejected based on the weight function 

 

 

 
where ΔE is the change in potential energy resulting from the step, P is the system pressure, 

N is the number of molecules in the system, kB is Boltzmann’s constant, and T is the system 

temperature.  In particular, if ΔW ≤ 0 the step is always accepted.  If ΔW > 0, the step is 

accepted with probability exp(-ΔW/kBT). 

 

This algorithm tends to be more efficient than deterministic barostats such as the Berendsen 

or Parrinello-Rahman algorithms, since it does not require an expensive virial calculation at 

every time step.  Each Monte Carlo step involves two energy evaluations, but this can be 

done much less often than every time step.  It also does not require you to specify the 

compressibility of the system, which usually is not known in advance. 
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The scale factor A that determines the size of the steps is chosen automatically to produce an 

acceptance rate of approximately 50%.  It is initially set to 1% of the periodic box volume.  

The acceptance rate is then monitored, and if it varies too much from 50% then A is 

modified accordingly. 

 

Each Monte Carlo step modifies particle positions by scaling the centroid of each molecule, 

then applying the resulting displacement to each particle in the molecule.  This ensures that 

each molecule is translated as a unit, so bond lengths and constrained distances are 

unaffected. 

 

MonteCarloBarostat assumes the simulation is being run at constant temperature as well as 

pressure, and the simulation temperature affects the step acceptance probability.  It does not 

itself perform temperature regulation, however.  You must use another mechanism along 

with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat. 

18.11 CMMotionRemover 

CMMotionRemover prevents the system from drifting in space by periodically removing all 

center of mass motion.  At the start of every n’th time step (where n is set by the user), it 

calculates the total center of mass velocity of the system: 

 

 

 

where mi and vi are the mass and velocity of particle i.  It then subtracts vCM from the 

velocity of every particle. 



 

 

19 Custom Forces 

In addition to the standard forces described in the previous chapter, OpenMM provides a 

number of “custom” force classes.   These classes provide detailed control over the 

mathematical form of the force by allowing the user to specify one or more arbitrary 

algebraic expressions.  The details of how to write these custom expressions are described in 

section 19.9. 

19.1 CustomBondForce 

CustomBondForce is similar to HarmonicBondForce in that it represents an interaction 

between certain pairs of particles as a function of the distance between them, but it allows 

the precise form of the interaction to be specified by the user.  That is, the interaction energy 

of each bond is given by 

 
 

 

where f(r) is a user defined mathematical expression. 

 

In addition to depending on the inter-particle distance r, the energy may also depend on an 

arbitrary set of user defined parameters.  Parameters may be specified in two ways: 

 

• Global parameters have a single, fixed value. 

• Per-bond parameters are defined by specifying a value for each bond. 

19.2 CustomAngleForce 

CustomAngleForce is similar to HarmonicAngleForce in that it represents an interaction 

between sets of three particles as a function of the angle between them, but it allows the 
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precise form of the interaction to be specified by the user.  That is, the interaction energy of 

each angle is given by 

 
 

 
where f(θ) is a user defined mathematical expression. 

 
In addition to depending on the angle θ, the energy may also depend on an arbitrary set of 

user defined parameters.  Parameters may be specified in two ways: 

 

• Global parameters have a single, fixed value.  

• Per-angle parameters are defined by specifying a value for each angle. 

19.3 CustomTorsionForce 

CustomTorsionForce is similar to PeriodicTorsionForce in that it represents an interaction 

between sets of four particles as a function of the dihedral angle between them, but it allows 

the precise form of the interaction to be specified by the user.  That is, the interaction energy 

of each angle is given by 

 
 

 
where f(θ) is a user defined mathematical expression.  The angle θ is guaranteed to be in the 

range [-π, π].  Like PeriodicTorsionForce, it is defined to be zero when the first and last 

particles are on the same side of the bond formed by the middle two particles (the cis 

configuration).  

 
In addition to depending on the angle θ, the energy may also depend on an arbitrary set of 

user defined parameters.  Parameters may be specified in two ways: 

 

• Global parameters have a single, fixed value. 

• Per-torsion parameters are defined by specifying a value for each torsion. 
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19.4 CustomNonbondedForce 

CustomNonbondedForce is similar to NonbondedForce in that it represents a pairwise 

interaction between all particles in the System, but it allows the precise form of the 

interaction to be specified by the user.  That is, the interaction energy between each pair of 

particles is given by 

 
 

 

where f(r) is a user defined mathematical expression. 

 

In addition to depending on the inter-particle distance r, the energy may also depend on an 

arbitrary set of user defined parameters.  Parameters may be specified in two ways: 

 

• Global parameters have a single, fixed value.  

• Per-particle parameters are defined by specifying a value for each particle. 

19.5 CustomExternalForce 

CustomExternalForce represents a force that is applied independently to each particle as a 

function of its position.   That is, the energy of each particle is given by 

 
 

 

where f(x, y, z) is a user defined mathematical expression. 

 

In addition to depending on the particle’s (x, y, z) coordinates, the energy may also depend 

on an arbitrary set of user defined parameters.  Parameters may be specified in two ways: 

 

• Global parameters have a single, fixed value. 

• Per-particle parameters are defined by specifying a value for each particle. 

19.6 CustomCompoundBondForce 
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CustomCompoundBondForce supports a wide variety of bonded interactions.  It defines a 

“bond” as a single energy term that depends on the positions of a fixed set of particles.  The 

number of particles involved in a bond, and how the energy depends on their positions, is 

configurable.  It may depend on the positions of individual particles, the distances between 

pairs of particles, the angles formed by sets of three particles, and the dihedral angles 

formed by sets of four particles.  That is, the interaction energy of each bond is given by 

 

€ 

E = f ({xi},{ri},{θ i},{φi})  

 

where f(...) is a user defined mathematical expression.  It may depend on an arbitrary set of 

positions {xi}, distances {ri}, angles {θi}, and dihedral angles {φi}. 

 

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from 

among the particles that make up the bond.  A distance variable is defined by two particles, 

and equals the distance between them.  An angle variable is defined by three particles, and 

equals the angle between them.  A dihedral variable is defined by four particles, and equals 

the angle between the first and last particles about the axis formed by the middle two 

particles.  It is equal to zero when the first and last particles are on the same side of the axis. 

 

In addition to depending on positions, distances, angles, and dihedrals, the energy may also 

depend on an arbitrary set of user defined parameters.  Parameters may be specified in two 

ways: 

 

• Global parameters have a single, fixed value.  

• Per-bond parameters are defined by specifying a value for each bond. 

19.7 CustomGBForce 

CustomGBForce implements complex, multiple stage nonbonded interactions between 

particles.  It is designed primarily for implementing Generalized Born implicit solvation 

models, although it is not strictly limited to that purpose. 
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The interaction is specified as a series of computations, each defined by an arbitrary 

algebraic expression.  These computations consist of some number of per-particle computed 

values, followed by one or more energy terms.  A computed value is a scalar value that is 

computed for each particle in the system.  It may depend on an arbitrary set of global and 

per-particle parameters, and well as on other computed values that have been calculated 

before it.  Once all computed values have been calculated, the energy terms and their 

derivatives are evaluated to determine the system energy and particle forces.  The energy 

terms may depend on global parameters, per-particle parameters, and per-particle 

computed values. 

 

Computed values can be calculated in two different ways: 

 

• Single particle values are calculated by evaluating a user defined expression for each 

particle: 

 
 

 

where f(...) may depend only on properties of particle i (its coordinates and 

parameters, as well as other computed values that have already been calculated). 

• Particle pair values are calculated as a sum over pairs of particles: 

 

 

 

where the sum is over all other particles in the System, and f(r, ...) is a function of the 

distance r between particles i and j, as well as their parameters and computed values. 

 

Energy terms may similarly be calculated per-particle or per-particle-pair. 

 

• Single particle energy terms are calculated by evaluating a user defined expression 

for each particle: 

 
 



185 

 

 

where f(...) may depend only on properties of that particle (its coordinates, 

parameters, and computed values). 

• Particle pair energy terms are calculated by evaluating a user defined expression 

once for every pair of particles in the System: 

 

 

 

where the sum is over all particle pairs i < j, and f(r, ...) is a function of the distance r 

between particles i and j, as well as their parameters and computed values. 

 

Note that energy terms are assumed to be symmetric with respect to the two interacting 

particles, and therefore are evaluated only once per pair.  In contrast, expressions for 

computed values need not be symmetric and therefore are calculated twice for each pair: 

once when calculating the value for the first particle, and again when calculating the value 

for the second particle. 

 

Be aware that, although this class is extremely general in the computations it can define, 

particular Platforms may only support more restricted types of computations.  In particular, 

all currently existing Platforms require that the first computed value must be a particle pair 

computation, and all computed values after the first must be single particle computations. 

This is sufficient for most Generalized Born models, but might not permit some other types 

of calculations to be implemented. 

19.8 CustomHbondForce 

CustomHbondForce supports a wide variety of energy functions used to represent hydrogen 

bonding.  It computes interactions between "donor" particle groups and "acceptor" particle 

groups, where each group may include up to three particles.  Typically a donor group 

consists of a hydrogen atom and the atoms it is bonded to, and an acceptor group consists of 

a negatively charged atom and the atoms it is bonded to.  The interaction energy between 

each donor group and each acceptor group is given by 
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where f(...) is a user defined mathematical expression.  It may depend on an arbitrary set of 
distances {ri}, angles {θi}, and dihedral angles {φi}. 

 

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from 

the interacting donor and acceptor groups (up to six atoms to choose from, since each group 

may contain up to three atoms).  A distance variable is defined by two particles, and equals 

the distance between them.  An angle variable is defined by three particles, and equals the 

angle between them.  A dihedral variable is defined by four particles, and equals the angle 

between the first and last particles about the axis formed by the middle two particles.  It is 

equal to zero when the first and last particles are on the same side of the axis. 

 

In addition to depending on distances, angles, and dihedrals, the energy may also depend on 

an arbitrary set of user defined parameters.  Parameters may be specified in three ways: 

 

• Global parameters have a single, fixed value. 

• Per-donor parameters are defined by specifying a value for each donor group. 

• Per-acceptor parameters are defined by specifying a value for each acceptor group. 

19.9 Writing Custom Expressions 

The custom forces described in this chapter involve user defined algebraic expressions.  

These expressions are specified as character strings, and may involve a variety of standard 

operators and mathematical functions. 

 

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^ 

(power).  Parentheses “(“and “)” may be used for grouping. 

 

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot, 

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step, delta. step(x) = 0 if x < 0, 1 
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otherwise.  delta(x) = 1 if x is 0, 0 otherwise.  Some custom forces allow additional functions 

to be defined from tabulated values. 

 

Numbers may be given in either decimal or exponential form.  All of the following are valid 

numbers: 5, -3.1, 1e6, and 3.12e-2. 

 

The variables that may appear in expressions are specified in the API documentation for 

each force class.  In addition, an expression may be followed by definitions for intermediate 

values that appear in the expression.  A semicolon “;” is used as a delimiter between value 

definitions.  For example, the expression 

 
a^2+a*b+b^2; a=a1+a2; b=b1+b2 

 

is exactly equivalent to 

 
(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2 

 

The definition of an intermediate value may itself involve other intermediate values.  All uses 

of a value must appear before that value’s definition. 



 

 

20 Integrators 

20.1 VerletIntegrator 

VerletIntegrator implements the leap-frog Verlet integration method.  The positions and 

velocities stored in the context are offset from each other by half a time step.  In each step, 

they are updated as follows: 

 
 

 

 

where vi is the velocity of particle i, ri is its position, fi is the force acting on it, mi is its mass, 
and Δt is the time step. 

 

Because the positions are always half a time step later than the velocities, care must be used 

when calculating the energy of the system.  In particular, the potential energy and kinetic 

energy in a State correspond to different times, and you cannot simply add them to get the 

total energy of the system.  Instead, it is better to retrieve States after two successive time 

steps, calculate the on-step velocities as 

 

 

 

then use those velocities to calculate the kinetic energy at time t. 

20.2 LangevinIntegator 

LangevinIntegator simulates a system in contact with a heat bath by integrating the 

Langevin equation of motion: 
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where vi is the velocity of particle i, fi is the force acting on it, mi is its mass, γ is the friction 

coefficient, and Ri is an uncorrelated random force whose components are chosen from a 
normal distribution with mean zero and variance 2miγkBT, where T is the temperature of the 

heat bath. 

 

The integration is done using a leap-frog method similar to VerletIntegrator.32 The same 

comments about the offset between positions and velocities apply to this integrator as to that 

one. 

20.3 BrownianIntegrator 

BrownianIntegrator simulates a system in contact with a heat bath by integrating the 

Brownian equation of motion: 

 

 

 
where ri is the position of particle i, fi is the force acting on it, γ is the friction coefficient, and 

Ri is an uncorrelated random force whose components are chosen from a normal 
distribution with mean zero and variance 2kBT/miγ, where T is the temperature of the heat 

bath. 

 

The Brownian equation of motion is derived from the Langevin equation of motion in the 
limit of large γ.  In that case, the velocity of a particle is determined entirely by the 

instantaneous force acting on it, and kinetic energy ceases to have much meaning, since it 

disappears as soon as the applied force is removed. 
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20.4 VariableVerletIntegrator 

This is very similar to VerletIntegrator, but instead of using the same step size for every time 

step, it continuously adjusts the step size to keep the integration error below a user specified 

tolerance.  It compares the positions generated by Verlet integration with those that would 

be generated by an explicit Euler integrator, and takes the difference between them as an 

estimate of the integration error: 

 

 

 

where fi is the force acting on particle i and mi is its mass.  (In practice, the error made by 

the Euler integrator is usually larger than that made by the Verlet integrator, so this tends to 

overestimate the true error.  Even so, it can provide a useful mechanism for step size 

control.) 

 

It then selects the value of Δt that makes the error exactly equal the specified error tolerance: 

 

 

 

where δ is the error tolerance.  This is the largest step that may be taken consistent with the 

user specified accuracy requirement. 

 

(Note that the integrator may sometimes choose to use a smaller value for Δt than given 

above.  For example, it might restrict how much the step size can grow from one step to the 

next, or keep the step size constant rather than increasing it by a very small amount.  This 

behavior is not specified and may vary between Platforms.  It is required, however, that Δt 

never be larger than the value given above.) 

 

A variable time step integrator is generally superior to a fixed time step one in both stability 

and efficiency.  It can take larger steps on average, but will automatically reduce the step size 
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to preserve accuracy and avoid instability when unusually large forces occur.  Conversely, 

when each uses the same step size on average, the variable time step one will usually be 

more accurate since the time steps are concentrated in the most difficult areas of the 

trajectory. 

 

Unlike a fixed step size Verlet integrator, variable step size Verlet is not symplectic.  This 

means that for a given average step size, it will not conserve energy as precisely over long 

time periods, even though each local region of the trajectory is more accurate.  For this 

reason, it is most appropriate when precise energy conservation is not important, such as 

when simulating a system at constant temperature.  For constant energy simulations that 

must maintain the energy accurately over long time periods, the fixed step size Verlet may be 

more appropriate. 

20.5 VariableLangevinIntegrator 

This is similar to LangevinIntegrator, but it continuously adjusts the step size using the same 

method as VariableVerletIntegrator.  It is usually preferred over the fixed step size Langevin 

integrator for the reasons given above.  Furthermore, because Langevin dynamics involves a 

random force, it can never be symplectic and therefore the fixed step size Verlet integrator’s 

advantages do not apply to the Langevin integrator. 

20.6 CustomIntegrator 

CustomIntegrator is a very flexible class that can be used to implement a wide range of 

integration methods.  This includes both deterministic and stochastic integrators; 

Metropolized integrators; multiple time step integrators; and algorithms that must integrate 

additional quantities along with the particle positions and momenta. 

 

The algorithm is specified as a series of computations that are executed in order to perform a 

single time step.  Each computation computes the value (or values) of a variable.  There are 

two types of variables: global variables have a single value, while per-DOF variables have a 

separate value for every degree of freedom (that is, every x, y, or z component of a particle).  

CustomIntegrator defines lots of variables you can compute and/or use in computing other 
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variables.  Some examples include the step size (global), the particle positions (per-DOF), 

and the force acting on each particle (per-DOF).  In addition, you can define as many 

variables as you want for your own use. 

 

The actual computations are defined by mathematical expressions as described in section 

19.9.  Several types of computations are supported: 

 

• Global: the expression is evaluated once, and the result is stored into a global 

variable. 

• Per-DOF: the expression is evaluated once for every degree of freedom, and the 

results are stored into a per-DOF variable. 

• Sum: the expression is evaluated once for every degree of freedom.  The results for all 

degrees of freedom are added together, and the sum is stored into a global variable. 

 

There also are other, more specialized types of computations that do not involve 

mathematical expressions.  For example, there are computations that apply distance 

constraints, modifying the particle positions or velocities accordingly.  

 

CustomIntegrator is a very powerful tool, and this description only gives a vague idea of the 

scope of its capabilities.  For full details and examples, consult the API documentation.



 

 

21 Other Features 

21.1 LocalEnergyMinimizer 

This provides an implementation of the L-BFGS optimization algorithm.33  Given a Context 

specifying initial particle positions, it searches for a nearby set of positions that represent a 

local minimum of the potential energy.  Distance constraints are enforced during 

minimization by adding a harmonic restraining force to the potential function.  The strength 

of the restraining force is steadily increased until the minimum energy configuration 

satisfies all constraints to within the tolerance specified by the Context's Integrator. 

21.2 XMLSerializer 

This provides the ability to “serialize” a System, Force, Integrator, or State object to a 

portable XML format, then reconstruct it again later.  When serializing a System, the XML 

data contains a complete copy of the entire system definition, including all Forces that have 

been added to it. 

 

Here are some examples of uses for this class: 

 

1. A model building utility could generate a System in memory, then serialize it to a file 

on disk.  Other programs that perform simulation or analysis could then reconstruct 

the model by simply loading the XML file. 

2. When running simulations on a cluster, all model construction could be done on a 

single node.  The Systems and Integrators could then be encoded as XML, allowing 

them to be easily transmitted to other nodes. 

 

XMLSerializer is a templatized class that, in principle, can be used to serialize any type of 

object.  At present, however, only System, Force, Integrator, and State are supported. 
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21.3 Force Groups 

It is possible to split the Force objects in a System into groups.  Those groups can then be 

evaluated independently of each other.  Some Force classes also provide finer grained 

control over grouping.  For example, NonbondedForce allows direct space computations to 

be in one group and reciprocal space computations in a different group. 

 

The most important use of force groups is for implementing multiple time step algorithms 

with CustomIntegrator.  For example, you might evaluate the slowly changing nonbonded 

interactions less frequently than the quickly changing bonded ones.  It also is useful if you 

want the ability to query a subset of the forces acting on the system. 

21.4 Virtual Sites 

A virtual site is a particle whose position is computed directly from the positions of other 

particles, not by integrating the equations of motion.  An important example is the “extra 

sites” present in 4 and 5 site water models.  These particles are massless, and therefore 

cannot be integrated.  Instead, their positions are computed from the positions of the 

massive particles in the water molecule. 

 

Virtual sites are specified by creating a VirtualSite object, then telling the System to use it for 

a particular particle.  The VirtualSite defines the rules for computing its position.  It is an 

abstract class with subclasses for specific types of rules.  They are: 

 

• TwoParticleAverageSite: The virtual site location is computed as a weighted average 

of the positions of two particles: 

 

€ 

r = w1r1 + w2r2  
 

• ThreeParticleAverageSite: The virtual site location is computed as a weighted average 

of the positions of three particles: 

 

€ 

r = w1r1 + w2r21 + w3r3  
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• OutOfPlaneSite: The virtual site location is computed as a weighted average of the 

positions of three particles and the cross product of their relative displacements: 

 

€ 

r = r1 + w12r12 + w13r13 + wcross(r12 × r13)  
 

where r12 = r2-r1 and r13 = r3-r1.  This allows the virtual site to be located outside the 

plane of the three particles.
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