
OpenMM

 Users Manual and
Theory Guide

 Release 5.1
May 1, 2013

 Website: simtk.org/home/openmm

OpenMM Users Manual and Theory Guide

Authors

Kyle Beauchamp

Christopher Bruns

Peter Eastman

Mark Friedrichs

Joy P. Ku

Tom Markland

Vijay Pande

Randy Radmer

Michael Sherman

Copyright and Permission Notice

Portions copyright (c) 2008-2013 Stanford University and the Authors
Contributors: Kyle Beauchamp, Christopher Bruns, Peter Eastman, Mark Friedrichs, Joy P. Ku, Vijay Pande,
Randy Radmer, Michael Sherman, Tom Markland

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

v

Acknowledgments

OpenMM software and all related activities, such as this manual, are funded by the Simbios

National Center for Biomedical Computing through the National Institutes of Health

Roadmap for Medical Research, Grant U54 GM072970. Information on the National

Centers can be found at http://nihroadmap.nih.gov/bioinformatics.

Table of Contents

1	 INTRODUCTION ...12	

1.1	 Online Resources ...12	
1.2	 Referencing OpenMM..12	

2	 INTRODUCTION TO THE OPENMM APPLICATION LAYER15	

3	 INSTALLING OPENMM ..16	

3.1	 Installing on Mac OS X ..16	
3.2	 Installing on Linux .. 18	
3.3	 Installing on Windows .. 20	

4	 RUNNING SIMULATIONS ... 24	

4.1	 A First Example... 24	
4.2	 Using AMBER Files... 27	
4.3	 Using Gromacs Files ... 29	
4.4	 The Script Builder Application ... 30	
4.5	 Simulation Parameters ..31	

4.5.1	 Platforms..31	
4.5.2	 Force Fields... 32	
4.5.3	 AMBER Implicit Solvent .. 34	
4.5.4	 Nonbonded Interactions .. 35	
4.5.5	 Constraints.. 38	
4.5.6	 Integrators.. 39	
4.5.7	 Temperature Coupling ..41	
4.5.8	 Pressure Coupling ...41	
4.5.9	 Energy Minimization ... 42	
4.5.10	 Removing Center of Mass Motion ... 43	
4.5.11	 Writing Trajectories ... 43	
4.5.12	 Recording Other Data .. 43	

5	 MODEL BUILDING AND EDITING .. 45	

5.1	 Adding Hydrogens .. 45	
5.2	 Adding Solvent .. 46	

vii

5.3	 Converting Between Water Models ..48	
5.4	 Removing Water..48	
5.5	 Saving The Results ..48	

6	 ADVANCED SIMULATION EXAMPLES ... 50	

6.1	 Simulated Annealing ...50	
6.2	 Applying an External Force to Particles: a Spherical Container .. 51	
6.3	 Extracting and Reporting Forces (and other data)... 52	
6.4	 Computing Energies .. 54	

7	 CREATING FORCE FIELDS .. 56	

7.1	 Basic Concepts... 56	
7.1.1	 Atom Types and Atom Classes .. 56	
7.1.2	 Residue Templates... 57	
7.1.3	 Forces ... 57	

7.2	 Writing the XML File .. 57	
7.2.1	 <AtomTypes> ..58	
7.2.2	 <Residues>..58	
7.2.3	 <HarmonicBondForce> ...60	
7.2.4	 <HarmonicAngleForce> ..60	
7.2.5	 <PeriodicTorsionForce>... 61	
7.2.6	 <RBTorsionForce> ...62	
7.2.7	 <CMAPTorsionForce> ..63	
7.2.8	 <NonbondedForce>..64	
7.2.9	 <GBSAOBCForce> ..64	
7.2.10	 <CustomBondForce>..65	
7.2.11	 <CustomAngleForce> ...66	
7.2.12	 <CustomTorsionForce>..66	
7.2.13	 <CustomGBForce> ...68	
7.2.14	 Writing Custom Expressions..69	

7.3	 Using Multiple Files ..70	
7.4	 Extending ForceField ...71	

8	 INTRODUCTION TO THE OPENMM LIBRARY .. 74	

8.1	 What Is the OpenMM Library? ... 74	
8.1.1	 How to get started... 74	
8.1.2	 License ... 75	

viii

8.2	 Design Principles .. 75	
8.3	 Choice of Language ... 76	
8.4	 Architectural Overview ..77	
8.5	 The OpenMM Public API .. 79	
8.6	 The OpenMM Low Level API..80	
8.7	 Platforms ... 82	

9	 COMPILING OPENMM FROM SOURCE CODE .. 84	

9.1	 Prerequisites.. 84	
9.1.1	 Get a C++ compiler ... 84	
9.1.2	 Install CMake.. 85	
9.1.3	 Get the OpenMM source code... 85	
9.1.4	 Other Required Software ... 86	

9.2	 Step 1: Configure with CMake... 86	
9.2.1	 Build and source directories... 86	
9.2.2	 Starting CMake .. 87	

9.3	 Step 2: Generate Build Files with CMake ...88	
9.3.1	 Windows..88	
9.3.2	 Mac and Linux..88	

9.4	 Step 3: Build OpenMM ... 89	
9.4.1	 Windows.. 89	
9.4.2	 Mac and Linux.. 89	

9.5	 Step 4: Install OpenMM.. 89	
9.5.1	 Windows.. 89	
9.5.2	 Mac and Linux.. 89	

9.6	 Step 5: Set Your Library Path ... 89	
9.7	 Step 6: Test your build .. 90	

9.7.1	 Windows.. 90	
9.7.2	 Mac and Linux .. 90	

10	 OPENMM TUTORIALS.. 92	

10.1	 Example Files Overview.. 92	
10.2	 Running Example Files ... 93	

10.2.1	 Visual Studio ... 93	
10.2.2	 Mac OS X/Linux ... 96	

10.3	 HelloArgon Program... 98	
10.3.1	 Including OpenMM-defined functions .. 98	

ix

10.3.2	 Running a program on GPU platforms...98	
10.3.3	 Running a simulation using the OpenMM public API ..99	
10.3.4	 Error handling for OpenMM.. 102	
10.3.5	 Writing out PDB files .. 102	
10.3.6	 HelloArgon output .. 103	

10.4	 HelloSodiumChloride Program .. 103	
10.4.1	 Simple molecular dynamics system... 104	
10.4.2	 Interface routines.. 105	

10.5	 HelloEthane Program...113	

11	 PLATFORM-SPECIFIC PROPERTIES... 117	

11.1	 OpenCL Platform.. 117	
11.2	 CUDA Platform...118	

12	 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER

THAN C++ ... 120	

12.1	 C API ...121	
12.1.1	 Mechanics of using the C API ..121	
12.1.2	 Mapping from the C++ API to the C API ... 122	
12.1.3	 Exceptions ... 123	
12.1.4	 OpenMM_Vec3 helper type.. 123	
12.1.5	 Array helper types .. 123	

12.2	 Fortran 95 API... 125	
12.2.1	 Mechanics of using the Fortran API .. 126	
12.2.2	 Mapping from the C++ API to the Fortran API .. 127	
12.2.3	 OpenMM_Vec3 helper type.. 128	
12.2.4	 Array helper types .. 128	

12.3	 Python API..131	
12.3.1	 Installing the Python API ..131	
12.3.2	 Mapping from the C++ API to the Python API.. 133	
12.3.3	 Mechanics of using the Python API.. 134	
12.3.4	 Units and dimensional analysis ... 135	

13	 EXAMPLES OF OPENMM INTEGRATION ...142	

13.1	 GROMACS ... 142	
13.2	 TINKER-OpenMM .. 143	

14	 TESTING AND VALIDATION OF OPENMM ...145	

x

14.1	 Description of Tests ...146	
14.1.1	 Unit tests ..146	
14.1.2	 System tests..146	
14.1.3	 Direct comparisons between OpenMM and other programs..................................147	

14.2	 Test Results ..147	
14.2.1	 Comparison to Reference Platform ... 148	
14.2.2	 Energy Conservation...149	
14.2.3	 Comparison to Gromacs .. 150	

15	 AMOEBA PLUGIN..152	

15.1	 OpenMM AMOEBA Supported Forces and Options...152	
15.1.1	 Supported Forces and Options..152	
15.1.2	 Supported Integrators...155	

15.2	 TINKER-OpenMM...155	
15.2.1	 Building TINKER-OpenMM (Linux) ..155	
15.2.2	 Using TINKER-OpenMM ..156	

15.3	 OpenMM AMOEBA Validation... 160	

16	 RING POLYMER MOLECULAR DYNAMICS (RPMD) PLUGIN162	

17	 THE THEORY BEHIND OPENMM: AN INTRODUCTION165	

17.1	 Overview...165	
17.2	 Units ...166	

18	 STANDARD FORCES ...167	

18.1	 HarmonicBondForce..167	
18.2	 HarmonicAngleForce...167	
18.3	 PeriodicTorsionForce.. 168	
18.4	 RBTorsionForce .. 168	
18.5	 CMAPTorsionForce... 168	
18.6	 NonbondedForce..169	

18.6.1	 Lennard-Jones Interaction ...169	
18.6.2	 Coulomb Interaction Without Cutoff .. 171	
18.6.3	 Coulomb Interaction With Cutoff ... 171	
18.6.4	 Coulomb Interaction With Ewald Summation... 171	
18.6.5	 Coulomb Interaction With Particle Mesh Ewald ...173	

18.7	 GBSAOBCForce..174	
18.7.1	 Generalized Born Term ...174	

xi

18.7.2	 Surface Area Term...175	
18.8	 GBVIForce ... 176	
18.9	 AndersenThermostat..177	
18.10	 MonteCarloBarostat .. 178	
18.11	 CMMotionRemover... 179	

19	 CUSTOM FORCES... 180	

19.1	 CustomBondForce... 180	
19.2	 CustomAngleForce .. 180	
19.3	 CustomTorsionForce ..181	
19.4	 CustomNonbondedForce .. 182	
19.5	 CustomExternalForce.. 182	
19.6	 CustomCompoundBondForce... 182	
19.7	 CustomGBForce .. 183	
19.8	 CustomHbondForce .. 185	
19.9	 Writing Custom Expressions... 186	

20	 INTEGRATORS ... 188	

20.1	 VerletIntegrator... 188	
20.2	 LangevinIntegator ... 188	
20.3	 BrownianIntegrator... 189	
20.4	 VariableVerletIntegrator ... 190	
20.5	 VariableLangevinIntegrator...191	
20.6	 CustomIntegrator ...191	

21	 OTHER FEATURES..193	

21.1	 LocalEnergyMinimizer.. 193	
21.2	 XMLSerializer.. 193	
21.3	 Force Groups ... 194	
21.4	 Virtual Sites ... 194	

22	 BIBLIOGRAPHY ..196	

1 Introduction

OpenMM consists of two parts:

1. A set of libraries that lets programmers easily add molecular simulation features to

their programs

2. An “application layer” that exposes those features to end users who just want to run

simulations

This guide is devided into three sections:

• Part I (Chapters 2-7) describes the application layer. It is relevant to all users, but

especially relevant to people who want to use OpenMM as a stand-alone application

for running simulations.

• Part II (Chapters 8-16) describes how to use the OpenMM libraries within your own

applications. It is primarily relevant to programmers who want to write simulation

applications.

• Part III (Chapters 17-21) describes the mathematical theory behind the features

found in OpenMM. It is relevant to all users.

1.1 Online Resources

You can find more documentation and other material at our website

http://simtk.org/home/openmm. Among other things there is a discussion forum, a wiki,

and videos of lectures on using OpenMM.

1.2 Referencing OpenMM

13

Any work that uses OpenMM should cite the following publication:

P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A.

Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R.

Shirts, and V. S. Pande. "OpenMM 4: A Reusable, Extensible, Hardware Independent

Library for High Performance Molecular Simulation." J. Chem. Theor. Comput. In press.

(2012).

We depend on academic research grants to fund the OpenMM development efforts; citations

of our publication will help demonstrate the value of OpenMM.

Part I
Application Guide

2 Introduction to the
OpenMM Application
Layer

The first thing to understand about the OpenMM “application layer” is that it is not exactly

an application in the traditional sense: there is no program called “OpenMM” that you run.

Rather, it is a collection of libraries written in the Python programming language. Those

libraries can easily be chained together to create Python programs that run simulations. But

don’t worry! You don’t need to know anything about Python programming (or programming

at all) to use it. Nearly all molecular simulation applications ask you to write some sort of

“script” that specifies the details of the simulation to run. With OpenMM, that script

happens to be written in Python. But it is no harder to write than those for most other

applications, and this guide will teach you everything you need to know. There is even a

graphical interface that can write the script for you based on a simple set of options (see

section 4.4), so you never need to type a single line of code!

On the other hand, if you don’t mind doing a little programming, this approach gives you

enormous power and flexibility. Your script has complete access to the entire OpenMM

application programming interface (API), as well as the full power of the Python language

and libraries. You have complete control over every detail of the simulation, from defining

the molecular system to analyzing the results.

16

3 Installing OpenMM

Follow these instructions to install OpenMM. There also is an online troubleshooting guide

that describes common problems and how to fix them

(http://wiki.simtk.org/openmm/FAQApp).

3.1 Installing on Mac OS X

OpenMM works on Mac OS X 10.6 or later. It may also work on 10.5, but it has not been

tested, and the OpenCL platform (which enables you to run accelerated calculations using

OpenCL-supporting GPUs) will not be available. Also, GPU acceleration is currently only

supported on Nvidia GPUs, not on AMD or Intel GPUs.

Important: A serious bug was introduced in Mac OS X 10.7.5 that prevents OpenMM’s

OpenCL platform from working correctly. At the time of this writing, the bug is present in

all versions from 10.7.5 onward. The CUDA platform (see below) is not affected by the bug,

so if you have an affected version of OS X, you should use it instead of the OpenCL platform.

1. Download the pre-compiled binary of OpenMM for Mac OS X, then double click the .zip

file to expand it.

2. If you have not already done so, install Apple’s Xcode developer tools from the App Store.

They are required to use OpenMM. (With Xcode 4.3 and later, you must then launch Xcode,

open the Preferences window, go to the Downloads tab, and tell it to install the command

line tools. With Xcode 4.2 and earlier, the command line tools are automatically installed

when you install Xcode.)

3. (Recommended) If you have an Nvidia GPU and want to use the CUDA platform,

download CUDA 5.0 from https://developer.nvidia.com/cuda-downloads. Be sure to install

both the drivers and toolkit.

17

4. Launch the Terminal application. Change to the OpenMM directory by typing

cd <openmm_directory>

where <openmm_directory> is the path to the OpenMM folder. Then run the install script

by typing

sudo ./install.sh

It will prompt you for an install location and the path to the python executable. Unless you

are certain you know what you are doing, accept the defaults for both options.

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA libraries, if

you installed those) to your library path so your computer knows where to find them. You

can do this by typing

export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib

This will affect only the particular Terminal window you type it into. If you want to run

OpenMM in another Terminal window, you must type the above command in the new

window.

If you installed OpenMM somewhere other than the default location, you must also set

OPENMM_PLUGIN_DIR to point to the plugins directory. For example,

export OPENMM_PLUGIN_DIR=/Users/peter/openmm/lib/plugins

If this variable is not set, it will assume plugins are in the default location

(/usr/local/openmm/lib/plugins).

If you plan to use the CUDA platform, OpenMM also needs to locate the CUDA kernel

compiler (nvcc). By default it looks for it in the location /usr/local/cuda/bin/nvcc. If you

have installed the CUDA toolkit in a different location, you can set

OPENMM_CUDA_COMPILER to tell OpenMM where to find it. For example,

18

export OPENMM_CUDA_COMPILER=/opt/CUDA/cuda-5.0/bin/nvcc

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, cd to the examples folder and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via the OpenCL and/or CUDA platforms), and verifies that all platforms produce consistent

results.

Important Note: Some Mac laptops have two GPUs, only one of which is capable of running

OpenMM. If you have a laptop, open the System Preferences and go to the Energy Saver

panel. On OS X 10.6, look for two radio buttons at the top labeled “Better battery life” and

“Higher performance”. Make sure that “Higher performance” is selected. On OS X 10.7 or

10.8, there will be a single checkbox labeled “Automatic graphics switching”, which should

be disabled. Otherwise, trying to run OpenMM may produce an error. You will only see

these options if your laptop has two GPUs

3.2 Installing on Linux

1. Download the pre-compiled binary of OpenMM for Linux, then double click the .zip file to

expand it.

2. Make sure you have Python 2.6 or higher (earlier versions will not work) and gcc (we have

tested various versions between 4.0 and 4.5) installed on your computer. You can check

what versions are installed by typing python --version and gcc --version into a console

window.

3. In a console window, change to the OpenMM directory by typing

cd <openmm_directory>

19

where <openmm_directory> is the path to the OpenMM folder. Then run the install script

by typing

sudo ./install.sh

It will prompt you for an install location and the path to the python executable. Unless you

are certain you know what you are doing, accept the defaults for both options.

4. (Recommended) Install CUDA and/or OpenCL. You can run OpenMM without installing

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated

computational power of OpenMM without one or the other.

• If you have an Nvidia GPU, download CUDA 5.0 from

https://developer.nvidia.com/cuda-downloads. Be sure to install both the drivers

and toolkit. OpenCL is included with the CUDA drivers.

• If you have an AMD GPU, download the AMD APP SDK from

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.

OpenMM requires version 2.4 or later of the SDK and version 11.7 or later of the

Catalyst driver.

• If you want to use the OpenCL platform to run accelerated simulations on your CPU,

there are two options available. First, you can use the AMD SDK listed above.

Alternatively, you can download the Intel SDK for OpenCL Applications from

http://software.intel.com/en-us/vcsource/tools/opencl-sdk.

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA/OpenCL

libraries, if you installed those) to your library path. You can do this by typing

export LD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib

This will affect only the particular console window you type it into. If you want to run

OpenMM in another console window, you must type the above command in the new

window.

If you installed OpenMM somewhere other than the default location, you must also set

OPENMM_PLUGIN_DIR to point to the plugins directory. For example,

20

export OPENMM_PLUGIN_DIR=/home/peter/openmm/lib/plugins

If this variable is not set, it will assume plugins are in the default location

(/usr/local/openmm/lib/plugins).

If you plan to use the CUDA platform, OpenMM also needs to locate the CUDA kernel

compiler (nvcc). By default it looks for it in the location /usr/local/cuda/bin/nvcc. If you

have installed the CUDA toolkit in a different location, you can set

OPENMM_CUDA_COMPILER to tell OpenMM where to find it. For example,

export OPENMM_CUDA_COMPILER=/opt/CUDA/cuda-5.0/bin/nvcc

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, cd to the examples folder and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce

consistent results.

3.3 Installing on Windows

1. Download the pre-compiled binary of OpenMM for Windows, then double click the .zip

file to expand it. Move the files to C:\Program Files\OpenMM. (On 64 bit Windows, use

C:\Program Files (x86)\OpenMM).

2. Make sure you have the 32-bit version of Python 2.6 or 2.7 (other versions will not work)

installed on your computer. To do this, launch the Python program (either the command

line version or the GUI version). The first line in the Python window will indicate the

version you have, e.g., Python 2.6.6, as well as whether you have a 32-bit or 64-bit version.

21

3. Double click the Python API Installer for your version of Python (2.6 or 2.7) to install the

Python components. (If you are running on Vista or Windows 7, a “Program Compatibility

Assistant” window may appear with the warning, “This program might not have installed

correctly.” This is just Microsoft trying to scare you. Click “This program installed correctly”

and ignore it.)

4. (Recommended) Install CUDA and/or OpenCL. You can run OpenMM without installing

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated

computational power of OpenMM without one or the other.

• If you have an Nvidia GPU, download CUDA 5.0 from

https://developer.nvidia.com/cuda-downloads. Be sure to install both the drivers

and toolkit. For 64-bit machines, you should install the 64-bit driver, but download

the 32-bit version of the toolkit since the OpenMM binary is 32-bit. OpenCL is

included with the CUDA drivers.

• If you have an AMD GPU, download the AMD APP SDK from

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.

OpenMM requires version 2.4 or later of the SDK and version 11.7 or later of the

Catalyst driver.

• If you want to use the OpenCL platform to run accelerated simulations on your CPU,

there are two options available. First, you can use the AMD SDK listed above.

Alternatively, you can download the Intel SDK for OpenCL Applications from

http://software.intel.com/en-us/vcsource/tools/opencl-sdk.

5. Before running OpenMM, you must add the OpenMM libraries to your PATH

environment variable. You may also need to add the Python executable to your PATH.

a. To find out if the Python executable is already in your PATH, open a command

prompt window by clicking on Start -> Programs -> Accessories -> Command

Prompt. (On Windows 7, select Start -> All Programs -> Accessories -> Command

Prompt). Type

python

22

If you get an error message, such as ‘python’ is not recognized as an

internal or external command, operable program or batch file, then

you need to add Python to your PATH. To do so, locate it by typing

dir C:\py*

The files are typically located in a directory like C:\Python26 or C:\Python27. Remember

this location. You will need to enter it, along with the location of the OpenMM libraries,

later in this process.

b. Click on Start -> Control Panel -> System (On Windows 7, select Start -> Control

Panel -> System and Security -> System)

c. Click on the “Advanced” tab or the “Advanced system settings” link

d. Click “Environment Variables”

e. Under “System variables,” select the line for “Path” and click “Edit…”

f. Add C:\Program Files\OpenMM\lib and C:\Program Files\OpenMM\lib\plugins to

the “Variable value”. If you also need to add Python to your PATH, enter that

directory location here. Directory locations need to be separated by semi-colons (;).

If you installed OpenMM somewhere other than the default location, you must also set

OPENMM_PLUGIN_DIR to point to the plugins directory. If this variable is not set, it will

assume plugins are in the default location (C:\Program Files\OpenMM\lib\plugins or

C:\Program Files (x86)\OpenMM\lib\plugins).

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, open a command window, cd to the examples

folder, and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce

consistent results.

23

24

4 Running Simulations

4.1 A First Example

Let’s begin with our first example of an OpenMM script. It loads a PDB file called

“input.pdb”, models it using the AMBER99SB force field and TIP3P water model, energy

minimizes it, simulates it for 10,000 steps with a Langevin integrator, and saves a frame to a

PDB file called “output.pdb” every 1000 time steps.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 4.1

You can find this script in the “examples” folder of your OpenMM installation. It is called

“simulatePdb.py”. To execute it from a command line, go to your

terminal/console/command prompt window (see Chapter 0 on setting up the window to use

OpenMM). Navigate to the “examples” folder by typing

cd <examples_directory>

25

where the typical directory is /usr/local/openmm/examples on Linux and Mac machines

and “C:\Program Files\OpenMM\examples” on Windows machines.

Then type

python simulatePdb.py

You can name your own scripts whatever you want, but their names should end with “.py”.

Let’s go through the script line by line and see how it works.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

These lines are just telling the Python interpreter about some libraries we will be using.

Don’t worry about exactly what they mean. Just include them at the start of your scripts.

pdb = PDBFile('input.pdb')

This line loads the PDB file from disk. (The input.pdb file in the examples directory contains

the villin headpiece in explicit solvent.) More precisely, it creates a PDBFile object, passes

the file name input.pdb to it as an argument, and assigns the object to a variable called pdb.

The PDBFile object contains the information that was read from the file: the molecular

topology and atom positions. Your file need not be called “input.pdb”. Feel free to change

this line to specify any file you want. Make sure you include the single quotes around the file

name.

forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

This line specifies the force field to use for the simulation. Force fields are defined by XML

files. Chapter 7 describes how to write these files, if you are interested in that sort of thing,

but you probably won’t need to. OpenMM includes XML files defining lots of standard force

fields (see section 4.5.2). In this case we load two of those files: amber99sb.xml, which

contains the AMBER99SB force field, and tip3p.xml, which contains the TIP3P water model.
The ForceField object is assigned to a variable called forcefield.

26

system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)

This line combines the force field with the molecular topology loaded from the PDB file to

create a complete mathematical description of the system we want to simulate. (More

precisely, we invoke the ForceField object’s “createSystem” function. It creates a System
object, which we assign to the variable system.) It specifies some additional options about

how to do that: use particle mesh Ewald for the long range electrostatic interactions
(nonbondedMethod=PME), use a 1 nm cutoff for the direct space interactions

(nonbondedCutoff=1*nanometer), and constrain the length of all bonds that involve a

hydrogen atom (constraints=HBonds).

integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)

This line creates the integrator to use for advancing the equations of motion. It specifies a

LangevinIntegrator, which (surprise!) performs Langevin dynamics, and assigns it to a
variable called integrator. It also specifies the values of three parameters that are specific

to Langevin dynamics: the simulation temperature (300K), the friction coefficient (1 ps-1),

and the step size (0.002 ps).

simulation = Simulation(pdb.topology, system, integrator)

This line combines the molecular topology, system, and integrator to begin a new
simulation. It creates a Simulation object and assigns it to a variable called simulation. A

Simulation object coordinates all the processes involved in running a simulation, such as

advancing time and writing output.

simulation.context.setPositions(pdb.positions)

This line specifies the initial atom positions for the simulation: in this case, the positions

that were loaded from the PDB file.

simulation.minimizeEnergy()

27

This line tells OpenMM to perform a local energy minimization. It is usually a good idea to

do this at the start of a simulation, since the coordinates in the PDB file might produce very

large forces.

simulation.reporters.append(PDBReporter('output.pdb', 1000))

This line creates a “reporter” to generate output during the simulation, and adds it to the

Simulation object’s list of reporters. A PDBReporter writes structures to a PDB file. We

specify that the output file should be called “output.pdb”, and that a structure should be

written every 1000 time steps.

simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))

It can be useful to get regular status reports as a simulation runs so you can monitor its

progress. This line adds another reporter to print out some basic information every 1000

time steps: the current step index, the potential energy of the system, and the temperature.
We specify stdout (not in quotes) as the output file, which means to write the results to the

console. We also could have given a file name (in quotes), just as we did for the

PDBReporter, to write the information to a file.

simulation.step(10000)

Finally, we run the simulation, integrating the equations of motion for 10,000 time steps.

Once it is finished, you can load the PDB file into any program you want for analysis and

visualization (VMD, PyMol, AmberTools, etc.).

4.2 Using AMBER Files

OpenMM can build a system in several different ways. One option, as shown above, is to

start with a PDB file and then select a force field with which to model it. Alternatively, you

can use AmberTools to model your system. In that case, you provide a prmtop file and an

inpcrd file. OpenMM loads the files and creates a system from them. This is shown in the

following script. It can be found in OpenMM’s “examples” folder with the name

“simulateAmber.py”.

28

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 4.2

This script is very similar to the previous one. There are just a few significant differences:

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')

In these lines, we load the prmtop file and inpcrd file. More precisely, we create
AmberPrmtopFile and AmberInpcrdFile objects and assign them to the variables prmtop

and inpcrd, respectively. As before, you can change these lines to specify any files you want.

Be sure to include the single quotes around the file names.

system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)

This line creates the system. In the previous section, we loaded the topology from a PDB file

and then had the force field create a system based on it. In this case, we don’t need a force

field; the prmtop file already contains the force field parameters, so it can create the system

directly.

simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)

29

Notice that we now get the topology from the prmtop file and the atom positions from the

inpcrd file. In the previous section, both of these came from a PDB file, but AMBER puts the

topology and positions in separate files.

4.3 Using Gromacs Files

A third option for creating your system is to use the Gromacs setup tools. They produce a

gro file containing the coordinates and a top file containing the topology. OpenMM can load

these exactly as it did the AMBER files. This is shown in the following script. It can be

found in OpenMM’s “examples” folder with the name “simulateGromacs.py”.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

gro = GromacsGroFile('input.gro')
top = GromacsTopFile('input.top',

unitCellDimensions=gro.getUnitCellDimensions(),
includeDir='/usr/local/gromacs/share/gromacs/top')

system = top.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, constraints=HBonds)

integrator = LangevinIntegrator(300*kelvin, 1/picosecond,
0.002*picoseconds)

simulation = Simulation(top.topology, system, integrator)
simulation.context.setPositions(gro.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 4.3

This script is nearly identical to the previous one, just replacing AmberInpcrdFile and

AmberPrmtopFile with GromacsGroFile and GromacsTopFile. Note that when we create the

GromacsTopFile, we specify values for two extra options. First, we specify
unitCellDimensions=gro.getUnitCellDimensions(). Unlike OpenMM and AMBER,

which store the periodic unit cell dimensions with the topology, Gromacs stores them with

the coordinates. To let GromacsTopFile create a Topology object, we therefore need to tell it

the unit cell dimensions that were loaded from the gro file. You only need to do this if you

are simulating a periodic system. For implicit solvent simulations, it usually can be omitted.

30

Second, we specify includeDir='/usr/local/gromacs/share/gromacs/top'. Unlike

AMBER, which stores all the force field parameters directly in a prmtop file, Gromacs just

stores references to force field definition files that are installed with the Gromacs
application. OpenMM needs to know where to find these files, so the includeDir parameter

specifies the directory containing them. If you omit this parameter, OpenMM will assume

the default location /usr/local/gromacs/share/gromacs/top, which is often where they are

installed on Unix-like operating systems. So in Example 4.3 we actually could have

omitted this parameter, but if the Gromacs files were installed in any other location, we

would need to include it.

4.4 The Script Builder Application

One option for writing your own scripts is to start with one of the examples given above (the

one in section 4.1 if you are starting from a PDB file, section 4.2 if you are starting from

AMBER prmtop and inpcrd files, or section 4.3 if you are starting from Gromacs gro and top

files), then customize it to suit your needs. Another option is to use the OpenMM Script

Builder application.

31

Figure	 4-‐1:	 	 The	 Script	 Builder	 application	

This is a web application available at https://builder.openmm.org. It provides a graphical

interface with simple choices for all the most common simulation options, then

automatically generates a script based on them. As you change the settings, the script is

instantly updated to reflect them. Once everything is set the way you want, click the “Save

Script” button to save it to disk, or simply copy and paste it into a text editor.

4.5 Simulation Parameters

Now let’s consider lots of ways you might want to customize your script.

4.5.1 Platforms

32

When creating a Simulation, you can optionally tell it what Platform to use. OpenMM

includes three platforms: Reference, CUDA, and OpenCL. For a description of the

differences between them, see Section 8.7. If you do not specify a Platform, it will select one

automatically. Usually its choice will be reasonable, but you may want to change it.

The following lines specify to use the CUDA Platform:

platform = Platform.getPlatformByName('CUDA')
simulation = Simulation(prmtop.topology, system, integrator, platform)

The Platform name should be OpenCL, CUDA, or Reference.

You also can specify Platform-specific properties that customize how calculations should be

done. See Chapter 11 for details of the properties that each Platform supports. For example,

the following lines specify to parallelize work across two different GPUs (CUDA devices 0

and 1), doing all computations in double precision:

platform = Platform.getPlatformByName('CUDA')
properties = {'CudaDeviceIndex': '0,1', 'CudaPrecision': 'double'}
simulation = Simulation(prmtop.topology, system, integrator, platform,

properties)

4.5.2 Force Fields

When you create a force field, you specify one or more XML files from which to load the

force field definition. Most often, there will be one file to define the main force field, and

possibly a second file to define the water model (either implicit or explicit). For example:

forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

For the main force field, OpenMM provides the following options:

33

File Force Field

amber96.xml AMBER961

amber99sb.xml AMBER992 with modified backbone torsions3

amber99sbildn.xml AMBER99SB plus improved side chain torsions4

amber99sbnmr.xml AMBER99SB with modifications to fit NMR data5

amber03.xml AMBER036

amber10.xml AMBER10

amoeba2009.xml AMOEBA7

The AMBER files do not include parameters for water molecules. This allows you to

separately select which water model you want to use. For simulations that include explicit

water molecules, you should also specify one of the following files:

File Water Model

tip3p.xml TIP3P water model8

tip4pew.xml TIP4P-Ew water model9

tip5p.xml TIP5P water model10

spce.xml SPC/E water model11

For the AMOEBA force field, only one explicit water model is currently available and the
water parameters are included in the file amoeba2009.xml. Also the AMOEBA force field file

only includes the parameters for amino acids and ions; nucleic acids will be included in a

future release.

If you want to include an implicit solvation model, you can also specify one of the following

files:

34

File Implicit Solvation Model

amber96_obc.xml
GBSA-OBC solvation model12 for use with AMBER96 force

field

amber99_obc.xml GBSA-OBC solvation model for use with AMBER99 force fields

amber03_obc.xml GBSA-OBC solvation model for use with AMBER03 force field

amber10_obc.xml GBSA-OBC solvation model for use with AMBER10 force field

amoeba2009_gk.xml
Generalized Kirkwood solvation model13 for use with AMOEBA

force field

For example, to use the GBSA-OBC solvation model with the Amber99SB force field, you

would type:

forcefield = ForceField('amber99sb.xml', 'amber99_obc.xml')

If you are running a vacuum simulation, you do not need to specify a water model. The

following line specifies the AMBER10 force field and no water model. If you try to use it

with a PDB file that contains explicit water, it will produce an error since no water

parameters are defined:

forcefield = ForceField('amber10.xml')

4.5.3 AMBER Implicit Solvent

When creating a system from a prmtop file you do not specify force field files, so you need a
different way to tell it to use implicit solvent. This is done with the implicitSolvent

parameter:

system = prmtop.createSystem(implicitSolvent=OBC2)

OpenMM supports most of the implicit solvent models used by AMBER. Here are the
allowed values for implicitSolvent:

35

Value Meaning

None No implicit solvent is used.

HCT
Hawkins-Cramer-Truhlar GBSA model14 (corresponds to igb=1

in AMBER)

OBC1
Onufriev-Bashford-Case GBSA model12 using the GBOBCI

parameters (corresponds to igb=2 in AMBER).

OBC2

Onufriev-Bashford-Case GBSA model12 using the GBOBCII

parameters (corresponds to igb=5 in AMBER). This is the

same model used by the GBSA-OBC files described in section

4.5.2.

GBn GBn solvation model15 (corresponds to igb=7 in AMBER).

You can further control the solvation model by specifying the dielectric constants to use for

the solute and solvent:

system = prmtop.createSystem(implicitSolvent=OBC2, soluteDielectric=2.0,

solventDielectric=80.0)

If they are not specified, the solute and solvent dielectrics default to 1.0 and 78.5,

respectively. These values were chosen for consistency with AMBER, and are slightly

different from those used elsewhere in OpenMM: when building a system from a force field,

the solvent dielectric defaults to 78.3.

4.5.4 Nonbonded Interactions

When creating the system (either from a force field or a prmtop file), you can specify options

about how nonbonded interactions should be treated:

system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer)

The nonbondedMethod parameter can have any of the following values:

36

Value Meaning

NoCutoff No cutoff is applied.

CutoffNonPeriodic
The reaction field method is used to eliminate all interactions

beyond a cutoff distance. Not valid for AMOEBA.

CutoffPeriodic

The reaction field method is used to eliminate all interactions

beyond a cutoff distance. Periodic boundary conditions are

applied, so each atom interacts only with the nearest periodic

copy of every other atom. Not valid for AMOEBA.

Ewald

Periodic boundary conditions are applied. Ewald summation is

used to compute long range interactions. (This option is rarely

used, since PME is much faster for all but the smallest

systems.) Not valid for AMOEBA.

PME
Periodic boundary conditions are applied. The Particle Mesh

Ewald method is used to compute long range interactions.

When using any method other than NoCutoff, you should also specify a cutoff distance. Be

sure to specify units, as shown in the examples above. For example,

nonbondedCutoff=1.5*nanometers or nonbondedCutoff=12*angstroms are legal values.

When using Ewald or PME, you can optionally specify an error tolerance for the force

computation. For example:

system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001)

The error tolerance is roughly equal to the fractional error in the forces due to truncating the

Ewald summation. If you do not specify it, a default value of 0.0005 is used.

37

4.5.4.1 Nonbonded Forces for AMOEBA

For the AMOEBA force field, the valid values for the nonbondedMethod are NoCutoff and

PME. The other nonbonded methods, CutoffNonPeriodic, CutoffPeriodic, and Ewald are

unavailable for this force field.

For implicit solvent runs using AMOEBA, only the nonbondedMethod option NoCutoff is

available.

4.5.4.1.1 Lennard-Jones Interaction Cutoff Value

In addition, for the AMOEBA force field a cutoff for the Lennard-Jones interaction

independent of the value used for the electrostatic interactions may be specified using the
keyword vdwCutoff.

system = forcefield.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer)

If vdwCutoff is not specified, then the value of nonbondedCutoff is used for the Lennard-

Jones interactions.

4.5.4.1.2 Specifying the Polarization Method

OpenMM allows the setting of several other parameters particular to the AMOEBA force

field. The mutualInducedTargetEpsilon option allows you to specify the accuracy to

which the induced dipoles are calculated at each time step; the default value is 0.00001. The
polarization setting determines whether the calculation of the induced dipoles is

continued until the dipoles are self-consistent to within the tolerance specified by
mutualInducedTargetEpsilon or whether a quick estimate of the induced dipoles is used

instead. The first option corresponds to the polarization='mutual' setting and is the

default; the quick estimate option is given by polarization='direct' and in this case,

mutualInducedTargetEpsilon is ignored, if provided. Simulations using

polarization='direct' will be significantly faster than those with

polarization='mutual', but less accurate. Examples using the two options are given

below:

38

system = forcefield.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer, mutualInducedTargetEpsilon=0.01)

system = forcefield.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer, polarization ='direct')

4.5.4.1.3 Implicit Solvent and Solute Dielectrics

For implicit solvent simulations using the AMOEBA force field, the 'amoeba2009_gk.xml'

file should be included in the initialization of the force field:

forcefield = ForceField('amoeba2009.xml', 'amoeba2009_gk.xml')

Only the nonbondedMethod option NoCutoff is available for implicit solvent runs using

AMOEBA. In addition, the solvent and solute dielectric values can be specified for implicit

solvent simulations:

system=forcefield.createSystem(nonbondedMethod=NoCutoff,

soluteDielectric=2.0, solventDielectric=80.0)

The default values are 1.0 for the solute dielectric and 78.3 for the solvent dielectric.

4.5.5 Constraints

When creating the system (either from a force field or a prmtop file), you can optionally tell

OpenMM to constrain certain bond lengths and angles. For example,

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds)

The constraints parameter can have any of the following values:

39

Value Meaning

None No constraints are applied. This is the default value.

HBonds The lengths of all bonds that involve a hydrogen atom are constrained.

AllBonds The lengths of all bonds are constrained.

HAngles
The lengths of all bonds are constrained. In addition, all angles of the form H-

X-H or H-O-X (where X is an arbitrary atom) are constrained.

The main reason to use constraints is that it allows one to use a larger integration time step.
With no constraints, one is typically limited to a time step of about 1 fs. With HBonds

constraints, this can be increased to about 2 fs. With HAngles, it can be further increased to

3.5 or 4 fs.

Regardless of the value of this parameter, OpenMM makes water molecules completely rigid,

constraining both their bond lengths and angles. You can disable this behavior with the
rigidWater parameter:

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=None,

rigidWater=False)

Be aware that flexible water may require you to further reduce the integration step size,

typically to about 0.5 fs.

4.5.6 Integrators

OpenMM offers a choice of several different integration methods. You select which one to

use by creating an integrator object of the appropriate type.

4.5.6.1 Langevin Integrator

In the examples of the previous sections, we used Langevin integration:

integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)

40

The three parameter values in this line are the simulation temperature (300K), the friction

coefficient (1 ps-1), and the step size (0.002 ps). You are free to change these to whatever

values you want. Be sure to specify units on all values. For example, the step size could be
written either as 0.002*picoseconds or 2*femtoseconds. They are exactly equivalent.

4.5.6.2 Leapfrog Verlet Integrator

A leapfrog Verlet integrator can be used for running constant energy dynamics. The

command for this is:

integrator = VerletIntegrator(0.002*picoseconds)

The only option is the step size.

4.5.6.3 Brownian Integrator

Brownian (diffusive) dynamics can be used by specifying the following:

integrator = BrownianIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)

The parameters are the same as for Langevin dynamics: temperature (300K), friction

coefficient (1 ps-1), and step size (0.002 ps).

4.5.6.4 Variable Time Step Langevin Integrator

A variable time step Langevin integrator continuously adjusts its step size to keep the

integration error below a specified tolerance. In some cases, this can allow you to use a

larger average step size than would be possible with a fixed step size integrator. It also is

very useful in cases where you do not know in advance what step size will be stable, such as

when first equilibrating a system. You create this integrator with the following command:

integrator = VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)

In place of a step size, you specify an integration error tolerance (0.001 in this example). It

is best not to think of this value as having any absolute meaning. Just think of it as an

adjustable parameter that affects the step size and integration accuracy. Smaller values will

produce a smaller average step size. You should try different values to find the largest one

that produces a trajectory sufficiently accurate for your purposes.

41

4.5.6.5 Variable Time Step Leapfrog Verlet Integrator

A variable time step leapfrog Verlet integrator works similarly to the variable time step

Langevin integrator in that it continuously adjusts its step size to keep the integration error

below a specified tolerance. The command for this integrator is:

integrator = VariableVerletIntegrator(0.001)

The parameter is the integration error tolerance (0.001), whose meaning is the same as for

the Langevin integrator.

4.5.7 Temperature Coupling

If you want to run a simulation at constant temperature, using a Langevin integrator (as

shown in the examples above) is usually the best way to do it. OpenMM does provide an

alternative, however: you can use a Verlet integrator, then add an Andersen thermostat to

your system to provide temperature coupling.

To do this, add a single line to the script as shown below. (The lines in grey are just for

context.)

...
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))
integrator = VerletIntegrator(0.002*picoseconds)
...

The two parameters of the Andersen thermostat are the temperature (300K) and collision

frequency (1 ps-1).

4.5.8 Pressure Coupling

All the examples so far have been constant volume simulations. If you want to run at

constant pressure instead, add a Monte Carlo barostat to your system. You do this exactly

the same way you added the Andersen thermostat in the previous section:

42

...
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
...

The parameters of the Monte Carlo barostat are the pressure (1 bar) and temperature

(300K). The barostat assumes the simulation is being run at constant temperature, but it

does not itself do anything to regulate the temperature. It is therefore critical that you

always use it along with a Langevin integrator or Andersen thermostat, and that you specify

the same temperature for both the barostat and the integrator or thermostat. Otherwise,

you will get incorrect results.

4.5.9 Energy Minimization

As seen in the examples, performing a local energy minimization takes a single line in the

script:

simulation.minimizeEnergy()

In most cases, that is all you need. There are two optional parameters you can specify if you

want further control over the minimization. First, you can specify a tolerance for when the

energy should be considered to have converged:

simulation.minimizeEnergy(tolerance=10*kilojoule/mole)

If you do not specify this parameter, a default tolerance of 1 kJ/mole is used.

Second, you can specify a maximum number of iterations:

simulation.minimizeEnergy(maxIterations=100)

The minimizer will exit once the specified number of iterations is reached, even if the energy

has not yet converged. If you do not specify this parameter, the minimizer will continue

until convergence is reached, no matter how many iterations it takes.

43

These options are independent. You can specify both if you want:

simulation.minimizeEnergy(tolerance=0.1*kilojoule/mole, maxIterations=500)

4.5.10 Removing Center of Mass Motion

By default, OpenMM removes all center of mass motion at every time step so the system as a

whole does not drift with time. This is almost always what you want. In rare situations, you

may want to allow the system to drift with time. You can do this by specifying the
removeCMMotion parameter when you create the System:

system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff,

removeCMMotion=False)

4.5.11 Writing Trajectories

OpenMM can save simulation trajectories to disk in two formats: PDB and DCD. Both of

these are widely supported formats, so you should be able to read them into most analysis

and visualization programs.

To save a trajectory, just add a “reporter” to the simulation, as shown in the example scripts

above:

simulation.reporters.append(PDBReporter('output.pdb', 1000))

The two parameters of the PDBReporter are the output filename and how often (in number

of time steps) output structures should be written. To use DCD format, just replace

“PDBReporter” with “DCDReporter”. The parameters represent the same values:

simulation.reporters.append(DCDReporter('output.dcd', 1000))

4.5.12 Recording Other Data

44

In addition to saving a trajectory, you may want to record other information over the course

of a simulation, such as the potential energy or temperature. OpenMM provides a reporter

for this purpose also. Create a StateDataReporter and add it to the simulation:

simulation.reporters.append(StateDataReporter('data.csv', 1000, time=True,

kineticEnergy=True, potentialEnergy=True))

The first two parameters are the output filename and how often (in number of time steps)

values should be written. The remaining arguments specify what values should be written at
each report. The available options are step (the index of the current time step), time,

potentialEnergy, kineticEnergy, totalEnergy, temperature, volume (the volume of the

periodic box), and density (the total system mass divided by the volume of the periodic

box). One line is written to the file for each report containing the requested values. By

default the values are written in comma-separated-value (CSV) format. You can use the
separator parameter to choose a different separator. For example, the following line will

cause values to be separated by spaces instead of commas:

simulation.reporters.append(StateDataReporter('data.txt', 1000, time=True,

temperature=True, separator=' '))

45

5 Model Building and Editing

Sometimes you have a PDB file that needs some work before you can simulate it. Maybe it

doesn’t contain hydrogen atoms (which is common for structures determined by x-ray

crystallography), so you need to add them. Or perhaps you want to simulate the system in

explicit water, but the PDB file doesn’t contain water molecules. Or maybe it does contain

water molecules, but they contain the wrong number of interaction sites for the water model

you want to use. OpenMM’s Modeller class can fix problems such as these.

To use it, create a Modeller object, providing the initial Topology and atom positions. You

then can invoke various modelling functions on it. Each one modifies the system in some

way, creating a new Topology and list of positions. When you are all done, you can retrieve

them from the Modeller and use them as the starting point for your simulation:

...
pdb = PDBFile('input.pdb')
modeller = Modeller(pdb.topology, pdb.positions)
... Call some modelling functions here ...
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)

Example 5.1

Now let’s consider the particular functions you can call.

5.1 Adding Hydrogens

Call the addHydrogens function to add missing hydrogen atoms:

modeller.addHydrogens(forcefield)

46

The force field is needed to determine the positions for the hydrogen atoms. If the system

already contains some hydrogens but is missing others, that is fine. The Modeller will

recognize the existing ones and figure out which ones need to be added.

Some residues can exist in different protonation states depending on the pH and on details

of the local environment. By default it assumes pH 7, but you can specify a different value:

modeller.addHydrogens(forcefield, pH=5.0)

For each residue, it selects the protonation state that is most common at the specified pH.

In the case of Cysteine residues, it also checks whether the residue participates in a disulfide

bond when selecting the state to use. Histidine has two different protonation states that are

equally likely at neutral pH. It therefore selects which one to use based on which will form a

better hydrogen bond.

If you want more control, it is possible to specify exactly which protonation state to use for

particular residues. For details, consult the API documentation for the Modeller class.

5.2 Adding Solvent

Call addSolvent to create a box of solvent (water and ions) around the model:

modeller.addSolvent(forcefield)

This constructs a box of water around the solute, ensuring that no water molecule comes

closer to any solute atom than the sum of their van der Waals radii. It also determines the

charge of the solute, and adds enough positive or negative ions to make the system neutral.

When called as shown above, addSolvent expects that periodic box dimensions were

specified in the PDB file, and it uses them as the size for the water box. If your PDB file does

not specify a box size, or if you want to use a different size, you can specify one:

modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers)

47

This requests a 5 nm by 3.5 nm by 3.5 nm box. Another option is to specify a padding

distance:

modeller.addSolvent(forcefield, padding=1.0*nanometers)

This determines the largest size of the solute along any axis (x, y, or z). It then creates a

cubic box of width (solute size)+2*(padding). The above line guarantees that no part of the

solute comes closer than 1 nm to any edge of the box.

By default, addSolvent creates TIP3P water molecules, but it also supports other water

models:

modeller.addSolvent(forcefield, model='tip5p')

Allowed values for the model option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'. Be sure to

include the single quotes around the value.

Another option is to add extra ion pairs to give a desired total ionic strength. For example:

modeller.addSolvent(forcefield, ionicStrength=0.1*molar)

This solvates the system with a salt solution whose ionic strength is 0.1 molar. Note that

when computing the ionic strength, it does not consider the ions that were added to

neutralize the solute. It assumes those are bound to the solute and do not contribute to the

bulk ionic strength.

By default, Na+ and Cl- ions are used, but you can specify different ones using the
positiveIon and negativeIon options. For example, this creates a potassium chloride

solution:

modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+')

48

Allowed values for positiveIon are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'. Allowed values for

negativeIon are 'Cl-', 'Br-', 'F-', and 'I-'. Be sure to include the single quotes around the

value. Also be aware some force fields do not include parameters for all of these ion types, so

you need to use types that are supported by your chosen force field.

5.3 Converting Between Water Models

Call convertWater to change between water models:

modeller.convertWater(model='tip4pew')

This identifies every water molecule in the system (regardless of what water model it
currently uses) and converts it to the requested water model. Allowed values for the model

option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'.

5.4 Removing Water

Call deleteWater to remove all water molecules from the system:

modeller.deleteWater()

This is useful, for example, if you want to simulate it with implicit solvent. Be aware,

though, that this only removes water molecules, not ions or other small molecules that might

be considered “solvent”.

5.5 Saving The Results

Once you have finished editing your model, you can immediately use the resulting Topology

and atom positions as the input to a Simulation. If you plan to simulate it many times,

though, it is usually better to save the result to a new PDB file, then use that as the input for

the simulations. This avoids the cost of repeating the modeling operations at the start of

every simulation, and also ensures that all your simulations are really starting from exactly

the same structure.

49

The following example loads a PDB file, adds missing hydrogens, builds a solvent box

around it, performs an energy minimization, and saves the result to a new PDB file.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

print('Loading...')
pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print('Adding solvent...')
modeller.addSolvent(forcefield, model='tip3p', padding=1*nanometer)
print('Minimizing...')
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
integrator = VerletIntegrator(0.001*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)
simulation.minimizeEnergy(maxIterations=100)
print('Saving...')
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open('output.pdb', 'w'))
print('Done')

Example 5.2

50

6 Advanced Simulation
Examples

In the previous chapter, we looked at some basic scripts for running simulations and saw

lots of ways to customize them. If that is all you want to do—run straightforward molecular

simulations—you already know everything you need to know. Just use the example scripts

and customize them in the ways described in section 4.4.

OpenMM can do far more than that. Your script has the full OpenMM API at its disposal,

along with all the power of the Python language and libraries. In this chapter, we will

consider some examples that illustrate more advanced techniques. Remember that these are

still only examples; it would be impossible to give an exhaustive list of everything OpenMM

can do. Hopefully they will give you a sense of what is possible, and inspire you to

experiment further on your own.

Starting in this section, we will assume some knowledge of programming, as well as

familiarity with the OpenMM API. Consult the OpenMM Users Guide and API

documentation if you are uncertain about how something works. You can also use the

Python “help” command. For example,

help(Simulation)

will print detailed documentation on the Simulation class.

6.1 Simulated Annealing

Here is a very simple example of how to do simulated annealing. The following lines linearly

reduce the temperature from 300K to 0K in 100 increments, executing 1000 time steps at

each temperature:

51

...
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
for i in range(100):
 integrator.setTemperature(3*(100-i)*kelvin)
 simulation.step(1000)

Example 6.1

This code needs very little explanation. The loop is executed 100 times. Each time through,
it adjusts the temperature of the LangevinIntegrator and then calls step(1000) to take 1000

time steps.

6.2 Applying an External Force to Particles: a Spherical
Container

In this example, we will simulate a non-periodic system contained inside a spherical

container with radius 2 nm. We implement the container by applying a harmonic potential

to every particle:

E(r) = 0 r ≤ 2

 100(r-2)2 r > 2

where r is the distance of the particle from the origin, measured in nm. We can easily do this

using OpenMM’s CustomExternalForce class. This class applies a force to some or all of the

particles in the system, where the energy is an arbitrary function of each particle’s (x, y, z)

coordinates. Here is the code to do it:

52

...
system = forcefield.createSystem(pdb.topology,

nonbondedMethod=CutoffNonPeriodic, nonbondedCutoff=1*nanometer,
constraints=None)

force = CustomExternalForce('100*max(0, r-2)^2; r=sqrt(x*x+y*y+z*z)')
system.addForce(force)
for i in range(system.getNumParticles()):
 force.addParticle(i, [])
integrator = LangevinIntegrator(300*kelvin, 91/picosecond,
0.002*picoseconds)
...

Example 6.2

The first thing it does is create a CustomExternalForce object and add it to the System. The

argument to CustomExternalForce is a mathematical expression specifying the energy of

each particle. This can be any function of x, y, and z you want. It also can depend on global

or per-particle parameters. A wide variety of restraints, steering forces, shearing forces, etc.

can be implemented with this method.

Next it must specify which particles to apply the force to. In this case, we want it to affect
every particle in the system, so we loop over them and call addParticle() once for each

one. The two arguments are the index of the particle to affect, and the list of per-particle

parameter values (an empty list in this case). If we had per-particle parameters, such as to

make the force stronger for some particles than for others, this is where we would specify

them.

Notice that we do all of this immediately after creating the System. That is not an arbitrary

choice. If you add new forces to a System, you must do so before creating the Simulation.

Once you create a Simulation, modifying the System will have no effect on that Simulation.

6.3 Extracting and Reporting Forces (and other data)

OpenMM provides reporters for two output formats: PDB and DCD. Both of those formats

store only positions, not velocities, forces, or other data. In this section, we create a new

reporter that outputs forces. This illustrates two important things: how to write a reporter,

and how to query the simulation for forces or other data.

53

Here is the definition of the ForceReporter class:

class ForceReporter(object):
 def __init__(self, file, reportInterval):
 self._out = open(file, 'w')
 self._reportInterval = reportInterval

 def __del__(self):
 self._out.close()

 def describeNextReport(self, simulation):
 steps = self._reportInterval -

simulation.currentStep%self._reportInterval
 return (steps, False, False, True, False)

 def report(self, simulation, state):
 forces =

state.getForces().value_in_unit(kilojoules/mole/nanometer)
 for f in forces:
 print >>self._out, f[0], f[1], f[2]

Example 6.3

The constructor and destructor are straightforward. The arguments to the constructor are

the output filename and the interval (in time steps) at which it should generate reports. It

opens the output file for writing and records the reporting interval. The destructor closes

the file.

We then have two methods that every reporter must implement: describeNextReport()

and report(). A Simulation object periodically calls describeNextReport() on each of its

reporters to find out when that reporter will next generate a report, and what information

will be needed to generate it. The return value should be a five element tuple, whose

elements are as follows:

• The number of time steps until the next report. We calculate this as (report

interval)-(current step)%(report interval). For example, if we want a report every

100 steps and the simulation is currently on step 530, we will return 100-(530%100)

= 70.

• Whether the next report will need particle positions.

• Whether the next report will need particle velocities.

• Whether the next report will need forces.

54

• Whether the next report will need energies.

When the time comes for the next scheduled report, the Simulation calls report() to

generate the report. The arguments are the Simulation object, and a State that is guaranteed
to contain all the information that was requested by describeNextReport(). A State object

contains a snapshot of information about the simulation, such as forces or particle positions.
We call getForces() to retrieve the forces and convert them to the units we want to output

(kJ/mole/nm). Then we loop over each value and write it to the file. To keep the example

simple, we just print the values in text format, one line per particle. In a real program, you

might choose a different output format.

Now that we have defined this class, we can use it exactly like any other reporter. For

example,

simulation.reporters.append(ForceReporter('forces.txt', 100))

will output forces to a file called “forces.txt” every 100 time steps.

6.4 Computing Energies

This example illustrates a different sort of analysis. Instead of running a simulation, assume

we have already identified a set of structures we are interested in. These structures are saved

in a set of PDB files. We want to loop over all the files in a directory, load them in one at a

time, and compute the potential energy of each one. Assume we have already created our

System and Simulation. The following lines perform the analysis:

import os
for file in os.listdir('structures'):
 pdb = PDBFile(os.path.join('structures', file))
 simulation.context.setPositions(pdb.positions)
 state = simulation.context.getState(getEnergy=True)
 print file, state.getPotentialEnergy()

Example 6.4

55

We use Python’s listdir() function to list all the files in the directory. We create a

PDBFile object for each one and call setPositions() on the Context to specify the particle

positions loaded from the PDB file. We then compute the energy by calling getState()

with the option getEnergy=True, and print it to the console along with the name of the file.

56

7 Creating Force Fields

OpenMM uses a simple XML file format to describe force fields. It includes many common

force fields, but you can also create your own. A force field can use all the standard

OpenMM force classes, as well as the very flexible custom force classes. You can even extend

the ForceField class to add support for completely new forces, such as ones defined in

plugins. This makes it a powerful tool for force field development.

7.1 Basic Concepts

Let’s start by considering how OpenMM defines a force field. There are a small number of

basic concepts to understand.

7.1.1 Atom Types and Atom Classes

Force field parameters are assigned to atoms based on their “atom types”. Atom types

should be the most specific identification of an atom that will ever be needed. Two atoms

should have the same type only if the force field will always treat them identically in every

way.

Multiple atom types can be grouped together into “atom classes”. In general, two types

should be in the same class if the force field usually (but not necessarily always) treats them

identically. For example, the α-carbon of an alanine residue will probably have a different

atom type than the α-carbon of a leucine residue, but both of them will probably have the

same atom class.

All force field parameters can be specified either by atom type or atom class. Classes exist as

a convenience to make force field definitions more compact. If necessary, you could define

everything in terms of atom types, but when many types all share the same parameters, it is

convenient to only have to specify them once.

57

7.1.2 Residue Templates

Types are assigned to atoms by matching residues to templates. A template specifies a list of

atoms, the type of each one, and the bonds between them. For each residue in the PDB file,

the force field searches its list of templates for one that has an identical set of atoms with

identical bonds between them. When matching templates, neither the order of the atoms

nor their names matter; it only cares about their elements and the set of bonds between

them. (The PDB file reader does care about names, of course, since it needs to figure out

which atom each line of the file corresponds to.)

7.1.3 Forces

Once a force field has defined its atom types and residue templates, it must define its force

field parameters. This generally involves one block of XML for each Force object that will be

added to the System. The details are different for each Force, but it generally consists of a

set of rules for adding interactions based on bonds and atom types or classes. For example,

when adding a HarmonicBondForce, the force field will loop over every pair of bonded

atoms, check their types and classes, and see if they match any of its rules. If so, it will call
addBond() on the HarmonicBondForce. If none of them match, it simply ignores that pair

and continues.

7.2 Writing the XML File

The root element of the XML file must be a <ForceField> tag:

<ForceField>

...

</ForceField>

The <ForceField> tag contains the following children:

• An <AtomTypes> tag containing the atom type definitions

• A <Residues> tag containing the residue template definitions

• Zero or more tags defining specific forces

58

The order of these tags does not matter. They are described in details below.

7.2.1 <AtomTypes>

The atom type definitions look like this:

<AtomTypes>
 <Type name="0" class="N" element="N" mass="14.00672"/>
 <Type name="1" class="H" element="H" mass="1.007947"/>
 <Type name="2" class="CT" element="C" mass="12.01078"/>
 ...
</AtomTypes>

There is one <Type> tag for each atom type. It specifies the name of the type, the name of

the class it belongs to, the symbol for its element, and its mass in amu. The names are

arbitrary strings: they need not be numbers, as in this example. The only requirement is

that all types have unique names. The classes are also arbitrary strings, and in general will
not be unique. Two types belong to the same class if they list the same value for the class

attribute.

7.2.2 <Residues>

The residue template definitions look like this:

<Residues>
 <Residue name="ACE">
 <Atom name="HH31" type="710"/>
 <Atom name="CH3" type="711"/>
 <Atom name="HH32" type="710"/>
 <Atom name="HH33" type="710"/>
 <Atom name="C" type="712"/>
 <Atom name="O" type="713"/>
 <Bond from="0" to="1"/>
 <Bond from="1" to="2"/>
 <Bond from="1" to="3"/>
 <Bond from="1" to="4"/>
 <Bond from="4" to="5"/>
 <ExternalBond from="4"/>
 </Residue>
 <Residue name="ALA">
 ...
 </Residue>
 ...
</Residues>

59

There is one <Residue> tag for each residue template. That in turn contains the following

tags:

• An <Atom> tag for each atom in the residue. This specifies the name of the atom and

its atom type.

• A <Bond> tag for each pair of atoms that are bonded to each other. The to and from

attributes are the indices of the two bonded atoms (starting from 0) in the order they
were listed. For example, <Bond from="1" to="3"/> describes a bond between

atom CH3 and atom HH33.
• An <ExternalBond> tag for each atom that will be bonded to an atom of a different

residue.

The <Residue> tag may also contain <VirtualSite> tags, as in the following example:

<Residue name="HOH">
 <Atom name="O" type="tip4pew-O"/>
 <Atom name="H1" type="tip4pew-H"/>
 <Atom name="H2" type="tip4pew-H"/>
 <Atom name="M" type="tip4pew-M"/>
 <VirtualSite type="average3" index="3" atom1="0" atom2="1" atom3="2"

weight1="0.786646558" weight2="0.106676721" weight3="0.106676721"/>
 <Bond from="0" to="1"/>
 <Bond from="0" to="2"/>
 </Residue>

Each <VirtualSite> tag indicates an atom in the residue that should be represented with a

virtual site. The type attribute may equal "average2", "average3", or "outOfPlane",

which correspond to the TwoParticleAverageSite, ThreeParticleAverageSite, and
OutOfPlaneSite classes respectively. The index attribute gives the index (starting from 0) of

the atom to represent with a virtual site. The atoms it is calculated based on are specified by
atom1, atom2, and (for virtual site classes that involve three atoms) atom3. The remaining

attributes are specific to the virtual site class, and specify the parameters for calculating the
site position. For a TwoParticleAverageSite, they are weight1 and weight2. For a

ThreeParticleAverageSite, they are weight1, weight2, and weight3. For an OutOfPlaneSite,

they are weight12, weight13, and weightCross.

60

7.2.3 <HarmonicBondForce>

To add a HarmonicBondForce to the System, include a tag that looks like this:

<HarmonicBondForce>
 <Bond class1="C" class2="C" length="0.1525" k="259408.0"/>
 <Bond class1="C" class2="CA" length="0.1409" k="392459.2"/>
 <Bond class1="C" class2="CB" length="0.1419" k="374049.6"/>
 ...
</HarmonicBondForce>

Every <Bond> tag defines a rule for creating harmonic bond interactions between atoms.

Each tag may identify the atoms either by type (using the attributes type1 and type2) or by

class (using the attributes class1 and class2). For every pair of bonded atoms, the force

field searches for a rule whose atom types or atom classes match the two atoms. If it finds
one, it calls addBond() on the HarmonicBondForce with the specified parameters.

Otherwise, it ignores that pair and continues. length is the equilibrium bond length in nm,

and k is the spring constant in kJ/mol/nm2.

7.2.4 <HarmonicAngleForce>

To add a HarmonicAngleForce to the System, include a tag that looks like this:

<HarmonicAngleForce>
 <Angle class1="C" class2="C" class3="O" angle="2.094" k="669.44"/>
 <Angle class1="C" class2="C" class3="OH" angle="2.094" k="669.44"/>
 <Angle class1="CA" class2="C" class3="CA" angle="2.094" k="527.184"/>
 ...
</HarmonicAngleForce>

Every <Angle> tag defines a rule for creating harmonic angle interactions between triplets of

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

three atoms in the system where the first is bonded to the second, and the second to the

third. For each one, it searches for a rule whose atom types or atom classes match the three
atoms. If it finds one, it calls addAngle() on the HarmonicAngleForce with the specified

parameters. Otherwise, it ignores that set and continues. angle is the equilibrium angle in

radians, and k is the spring constant in kJ/mol/radian2.

61

7.2.5 <PeriodicTorsionForce>

To add a PeriodicTorsionForce to the System, include a tag that looks like this:

<PeriodicTorsionForce>
 <Proper class1="HC" class2="CT" class3="CT" class4="CT" periodicity1="3"

phase1="0.0" k1="0.66944"/>
 <Proper class1="HC" class2="CT" class3="CT" class4="HC" periodicity1="3"

phase1="0.0" k1="0.6276"/>
 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
 <Improper class1="N" class2="C" class3="CT" class4="H" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
 ...
</PeriodicTorsionForce>

Every child tag defines a rule for creating periodic torsion interactions between sets of four

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom
classes match the four atoms. If it finds one, it calls addTorsion() on the

PeriodicTorsionForce with the specified parameters. Otherwise, it ignores that set and
continues. periodicity1 is the periodicity of the torsion, phase1 is the phase offset in

radians, and k1 is the force constant in kJ/mol.

Each torsion definition can specify multiple periodic torsion terms to add to its atoms. To

add a second one, just add three more attributes: periodicity2, phase2, and k2. You can

have as many terms as you want. Here is an example of a rule that adds three torsion terms

to its atoms:

<Proper class1="CT" class2="CT" class3="CT" class4="CT" periodicity1="3"

phase1="0.0" k1="0.75312" periodicity2="2" phase2="3.14159265359"
k2="1.046" periodicity3="1" phase3="3.14159265359" k3="0.8368"/>

62

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

<Proper class1="" class2="OS" class3="P" class4="" periodicity1="3"

phase1="0.0" k1="1.046"/>

7.2.6 <RBTorsionForce>

To add an RBTorsionForce to the System, include a tag that looks like this:

<RBTorsionForce>
 <Proper class1="CT" class2="CT" class3="OS" class4="CT" c0="2.439272"

c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" />
 <Proper class1="C" class2="N" class3="CT" class4="C" c0="10.46" c1="-

3.34720" c2="-7.1128" c3="0" c4="0" c5="0" />
 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" c0="0.8368" c1="0"

c2="-2.76144" c3="0" c4="3.3472" c5="0" />
 <Improper class1="N" class2="C" class3="CT" class4="H" c0="29.288" c1="-

8.368" c2="-20.92" c3="0" c4="0" c5="0" />
 ...
</RBTorsionForce>

Every child tag defines a rule for creating Ryckaert-Bellemans torsion interactions between

sets of four atoms. Each tag may identify the atoms either by type (using the attributes
type1, type2, ...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom
classes match the four atoms. If it finds one, it calls addTorsion() on the RBTorsionForce

with the specified parameters. Otherwise, it ignores that set and continues. The attributes
c0 through c5 are the coefficients of the terms in the Ryckaert-Bellemans force expression.

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

63

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

<Proper class1="" class2="OS" class3="P" class4="" c0="2.439272"

c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" />

7.2.7 <CMAPTorsionForce>

To add a CMAPTorsionForce to the System, include a tag that looks like this:

<CMAPTorsionForce>
 <Map>
 0.0 0.809 0.951 0.309
 -0.587 -1.0 -0.587 0.309
 0.951 0.809 0.0 -0.809
 -0.951 -0.309 0.587 1.0
 </Map>
 <Torsion map="0" class1="CT" class2="CT" class3="C" class4="N"

class5="CT"/>
 <Torsion map="0" class1="N" class2="CT" class3="C" class4="N"

class5="CT"/>
 ...
</CMAPTorsionForce>

Each <Map> tag defines an energy correction map. Its content is the list of energy values in

kJ/mole, listed in the correct order for CMAPTorsionForce’s addMap() method and

separated by white space. See the API documentation for details. The size of the map is

determined from the number of energy values.

Each <Torsion> tag defines a rule for creating CMAP torsion interactions between sets of

five atoms. The tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

five atoms that are bonded in sequence: 1 to 2, 2 to 3, 3 to 4, and 4 to 5. For each one, it

searches for a rule whose atom types or atom classes match the five atoms. If it finds one, it
calls addTorsion() on the CMAPTorsionForce with the specified parameters. Otherwise, it

ignores that set and continues. The first torsion is defined by the sequence of atoms 1-2-3-4,

and the second one by atoms 2-3-4-5. map is the index of the map to use, starting from 0, in

the order they are listed in the file.

64

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of five atoms where the middle three have classes CT, C,

and N respectively:

<Torsion map="0" class1="" class2="CT" class3="C" class4="N" class5=""/>

7.2.8 <NonbondedForce>

To add a NonbondedForce to the System, include a tag that looks like this:

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
 <Atom type="0" charge="-0.4157" sigma="0.32499" epsilon="0.71128"/>
 <Atom type="1" charge="0.2719" sigma="0.10690" epsilon="0.06568"/>
 <Atom type="2" charge="0.0337" sigma="0.33996" epsilon="0.45772"/>
 ...
</NonbondedForce>

The <NonbondedForce> tag has two attributes coulomb14scale and lj14scale that specify

the scale factors between pairs of atoms separated by three bonds. After setting the
nonbonded parameters for all atoms, the force field calls createExceptionsFromBonds()

on the NonbondedForce, passing in these scale factors as arguments.

Each <Atom> tag specifies the nonbonded parameters for one atom type (specified with the

type attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you
must make sure that a unique set of parameters is defined for every atom type. charge is

measured in units of the proton charge, sigma is in nm, and epsilon is in kJ/mole.

7.2.9 <GBSAOBCForce>

To add a GBSAOBCForce to the System, include a tag that looks like this:

<GBSAOBCForce>
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
 ...
</GBSAOBCForce>

65

Each <Atom> tag specifies the OBC parameters for one atom type (specified with the type

attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you
must make sure that a unique set of parameters is defined for every atom type. charge is

measured in units of the proton charge, radius is the GBSA radius in nm, and scale is the

OBC scaling factor.

7.2.10 <CustomBondForce>

To add a CustomBondForce to the System, include a tag that looks like this:

<CustomBondForce energy="scale*k*(r-r0)^2">
 <GlobalParameter name="scale" defaultValue="0.5"/>
 <PerBondParameter name="k"/>
 <PerBondParameter name="r0"/>
 <Bond class1="OW" class2="HW" r0="0.09572" k="462750.4"/>
 <Bond class1="HW" class2="HW" r0="0.15136" k="462750.4"/>
 <Bond class1="C" class2="C" r0="0.1525" k="259408.0"/>
 ...
</CustomBondForce>

The energy expression for the CustomBondForce is specified by the energy attribute. This is

a mathematical expression that gives the energy of each bond as a function of its length r. It

also may depend on an arbitrary list of global or per-bond parameters. Use a
<GlobalParameter> tag to define a global parameter, and a <PerBondParameter> tag to

define a per-bond parameter.

Every <Bond> tag defines a rule for creating custom bond interactions between atoms. Each

tag may identify the atoms either by type (using the attributes type1 and type2) or by class

(using the attributes class1 and class2). For every pair of bonded atoms, the force field

searches for a rule whose atom types or atom classes match the two atoms. If it finds one, it
calls addBond() on the CustomBondForce. Otherwise, it ignores that pair and continues.

The remaining attributes are the values to use for the per-bond parameters. All per-bond

parameters must be specified for every <Bond> tag, and the attribute name must match the

name of the parameter. For instance, if there is a per-bond parameter with the name “k”,
then every <Bond> tag must include an attribute called k.

66

7.2.11 <CustomAngleForce>

To add a CustomAngleForce to the System, include a tag that looks like this:

<CustomAngleForce energy="scale*k*(theta-theta0)^2">
 <GlobalParameter name="scale" defaultValue="0.5"/>
 <PerAngleParameter name="k"/>
 <PerAngleParameter name=" theta0"/>
 <Angle class1="HW" class2="OW" class3="HW" theta0="1.824218" k="836.8"/>
 <Angle class1="HW" class2="HW" class3="OW" theta0="2.229483" k="0.0"/>
 <Angle class1="C" class2="C" class3="O" theta0="2.094395" k="669.44"/>
 ...
</CustomAngleForce>

The energy expression for the CustomAngleForce is specified by the energy attribute. This

is a mathematical expression that gives the energy of each angle as a function of the angle

theta. It also may depend on an arbitrary list of global or per-angle parameters. Use a
<GlobalParameter> tag to define a global parameter, and a <PerAngleParameter> tag to

define a per-angle parameter.

Every <Angle> tag defines a rule for creating custom angle interactions between triplets of

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

three atoms in the system where the first is bonded to the second, and the second to the

third. For each one, it searches for a rule whose atom types or atom classes match the three
atoms. If it finds one, it calls addAngle() on the CustomAngleForce. Otherwise, it ignores

that set and continues. The remaining attributes are the values to use for the per-angle
parameters. All per-angle parameters must be specified for every <Angle> tag, and the

attribute name must match the name of the parameter. For instance, if there is a per-angle
parameter with the name “k”, then every <Angle> tag must include an attribute called k.

7.2.12 <CustomTorsionForce>

To add a CustomTorsionForce to the System, include a tag that looks like this:

<CustomTorsionForce energy="scale*k*(1+cos(per*theta-phase))">
 <GlobalParameter name="scale" defaultValue="1"/>
 <PerTorsionParameter name="k"/>
 <PerTorsionParameter name="per"/>
 <PerTorsionParameter name="phase"/>

67

 <Proper class1="HC" class2="CT" class3="CT" class4="CT" per="3"
phase="0.0" k="0.66944"/>

 <Proper class1="HC" class2="CT" class3="CT" class4="HC" per="3"
phase="0.0" k="0.6276"/>

 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" per="2"

phase="3.14159265359" k="4.6024"/>
 <Improper class1="N" class2="C" class3="CT" class4="H" per="2"

phase="3.14159265359" k="4.6024"/>
 ...
</CustomTorsionForce>

The energy expression for the CustomTorsionForce is specified by the energy attribute.

This is a mathematical expression that gives the energy of each torsion as a function of the

angle theta. It also may depend on an arbitrary list of global or per-torsion parameters. Use
a <GlobalParameter> tag to define a global parameter, and a <PerTorsionParameter> tag

to define a per-torsion parameter.

Every child tag defines a rule for creating custom torsion interactions between sets of four
atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom
classes match the four atoms. If it finds one, it calls addTorsion() on the

CustomTorsionForce with the specified parameters. Otherwise, it ignores that set and

continues. The remaining attributes are the values to use for the per-torsion parameters.
Every <Torsion> tag must include one attribute for every per-torsion parameter, and the

attribute name must match the name of the parameter.

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

68

<Proper class1="" class2="OS" class3="P" class4="" per="3" phase="0.0"
k="0.66944"/>

7.2.13 <CustomGBForce>

To add a CustomGBForce to the System, include a tag that looks like this:

<CustomGBForce>
 <GlobalParameter name="solventDielectric" defaultValue="78.3"/>
 <GlobalParameter name="soluteDielectric" defaultValue="1"/>
 <PerParticleParameter name="charge"/>
 <PerParticleParameter name="radius"/>
 <PerParticleParameter name="scale"/>
 <ComputedValue name="I" type="ParticlePairNoExclusions">
 step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-

sr2*sr2/r)+0.5*log(L/U)/r+C); U=r+sr2; C=2*(1/or1-1/L)*step(sr2-r-
or1); L=max(or1, D); D=abs(r-sr2); sr2 = scale2*or2; or1 = radius1-
0.009; or2 = radius2-0.009

 </ComputedValue>
 <ComputedValue name="B" type="SingleParticle">
 1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius); psi=I*or; or=radius-

0.009
 </ComputedValue>
 <EnergyTerm type="SingleParticle">
 28.3919551*(radius+0.14)^2*(radius/B)^6-

0.5*138.935456*(1/soluteDielectric-1/solventDielectric)*charge^2/B
 </EnergyTerm>
 <EnergyTerm type="ParticlePair">
 -138.935456*(1/soluteDielectric-1/solventDielectric)*charge1*charge2/f;

f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))
 </EnergyTerm>
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
 ...
</CustomGBForce>

The above (rather complicated) example defines a generalized Born model that is equivalent

to GBSAOBCForce. The definition consists of a set of computed values (defined by

<ComputedValue> tags) and energy terms (defined by <EnergyTerm> tags), each of which is

evaluated according to a mathematical expression. See the API documentation for details.

The expressions may depend on an arbitrary list of global or per-atom parameters. Use a
<GlobalParameter> tag to define a global parameter, and a <PerAtomParameter> tag to

define a per-atom parameter.

69

Each <Atom> tag specifies the parameters for one atom type (specified with the type

attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you

must make sure that a unique set of parameters is defined for every atom type. The

remaining attributes are the values to use for the per-atom parameters. All per-atom

parameters must be specified for every <Atom> tag, and the attribute name must match the

name of the parameter. For instance, if there is a per-atom parameter with the name
“radius”, then every <Atom> tag must include an attribute called radius.

CustomGBForce also allows you to define tabulated functions. To define a function, include
a <Function> tag inside the <CustomGBForce> tag:

<Function name="myfn" min="-5" max="5">

0.983674857694 -0.980096396266 -0.975743130031 -0.970451936613 -
0.964027580076 -0.956237458128 -0.946806012846 -0.935409070603 -
0.921668554406 -0.905148253645 -0.885351648202 -0.861723159313 -
0.833654607012 -0.800499021761 -0.761594155956 -0.716297870199 -
0.664036770268 -0.604367777117 -0.537049566998 -0.46211715726 -
0.379948962255 -0.291312612452 -0.197375320225 -0.099667994625 0.0
0.099667994625 0.197375320225 0.291312612452 0.379948962255
0.46211715726 0.537049566998 0.604367777117 0.664036770268
0.716297870199 0.761594155956 0.800499021761 0.833654607012
0.861723159313 0.885351648202 0.905148253645 0.921668554406
0.935409070603 0.946806012846 0.956237458128 0.964027580076
0.970451936613 0.975743130031 0.980096396266 0.983674857694
0.986614298151 0.989027402201

</Function>

The tag’s attributes define the name of the function and the range of values for which it is

defined. The tabulated values are listed inside the body of the tag, with successive values

separated by white space. Again, see the API documentation for more details.

7.2.14 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions.

These expressions are specified as character strings, and may involve a variety of standard

operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^

(power). Parentheses “(“and “)” may be used for grouping.

70

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot,

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step. step(x) = 0 if x < 0, 1

otherwise. Some custom forces allow additional functions to be defined from tabulated

values.

Numbers may be given in either decimal or exponential form. All of the following are valid

numbers: 5, -3.1, 1e6, and 3.12e-2.

The variables that may appear in expressions are specified in the API documentation for

each force class. In addition, an expression may be followed by definitions for intermediate

values that appear in the expression. A semicolon “;” is used as a delimiter between value

definitions. For example, the expression

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses

of a value must appear before that value’s definition.

7.3 Using Multiple Files

If multiple XML files are specified when a ForceField is created, their definitions are

combined as follows.

• A file may refer to atom types and classes that it defines, as well as those defined in

previous files. It may not refer to ones defined in later files. This means that the

order in which files are listed when calling the ForceField constructor is potentially

significant.

71

• Forces that involve per-atom parameters (such as NonbondedForce or

GBSAOBCForce) require parameter values to be defined for every atom type. It does

not matter which file those types are defined in. For example, files that define

explicit water models generally define a small number of atom types, as well as

nonbonded parameters for those types. In contrast, files that define implicit solvent

models do not define any new atom types, but provide parameters for all the atom

types that were defined in the main force field file.

• For other forces, the files are effectively independent. For example, if two files each
include a <HarmonicBondForce> tag, bonds will be created based on the rules in the

first file, and then more bonds will be created based on the rules in the second file.

This means you could potentially end up with multiple bonds between a single pair of

atoms.

7.4 Extending ForceField

The ForceField class is designed to be modular and extensible. This means you can add

support for entirely new force types, such as ones implemented with plugins.

For every force class, there is a “generator” class that parses the corresponding XML tag,

then creates Force objects and adds them to the System. ForceField maintains a map of tag

names to generator classes. When a ForceField is created, it scans through the XML files,

looks up the generator class for each tag, and asks that class to create a generator object
based on it. Then, when you call createSystem(), it loops over each of its generators and

asks each one to create its Force object. Adding a new Force type therefore is simply a

matter of creating a new generator class and adding it to ForceField’s map.

The generator class must define two methods. First, it needs a static method with the

following signature to parse the XML tag and create the generator:

@staticmethod
def parseElement(element, forcefield):

72

element is the XML tag (an xml.etree.ElementTree.Element object) and forcefield is the

ForceField being created. This method should create a generator and add it to the

ForceField:

generator = MyForceGenerator()
forcefield._forces.append(generator)

It then should parse the information contained in the XML tag and configure the generator

based on it.

Second, it must define a method with the following signature:

def createForce(self, system, data, nonbondedMethod, nonbondedCutoff,

args):

When createSystem() is called on the ForceField, it first creates the System object, then

loops over each of its generators and calls createForce() on each one. This method should

create the Force object and add it to the System. data is a ForceField._SystemData object

containing information about the System being created (atom types, bonds, angles, etc.),

system is the System object, and the remaining arguments are values that were passed to

createSystem(). To get a better idea of how this works, look at the existing generator

classes in forcefield.py.

Finally, you need to register your class by adding it to ForceField’s map:

forcefield.parsers['MyForce'] = MyForceGenerator.parseElement

The key is the XML tag name, and the value is the static method to use for parsing it.

Now you can simply create a ForceField object as usual. If an XML file contains a
<MyForce> tag, it will be recognized and processed correctly.

Part II
Library Guide

8 Introduction to the
OpenMM Library

8.1 What Is the OpenMM Library?

OpenMM consists of two parts. First, there is a set of libraries for performing many types of

computations needed for molecular simulations: force evaluation, numerical integration,

energy minimization, etc. These libraries provide an interface targeted at developers of

simulation software, allowing them to easily add simulation features to their programs.

Second, there is an “application layer”, a set of Python libraries providing a high level

interface for running simulations. This layer is targeted at computational biologists or other

people who want to run simulations, and who may or may not be programmers.

Part I of this guide focused on the application layer and described how to run simulations

with it. We now turn to the lower level libraries. We will assume you are a programmer,

that you are writing your own applications, and that you want to add simulation features to

those applications. Part II of this guide describes how to do that with OpenMM.

8.1.1 How to get started

We have provided a number of files that make it easy to get started with OpenMM. Pre-

compiled binaries are provided for quickly getting OpenMM onto your computer (See

Chapter 0 for set-up instructions). We recommend that you then compile and run some of

the tutorial examples, described in Chapter 10. These highlight key functions within

OpenMM and teach you the basic programming concepts for using OpenMM. Once you are

ready to begin integrating OpenMM into a specific software package, read through Chapter

13 to see how other software developers have done this.

75

8.1.2 License

Two different licenses are used for different parts of OpenMM. The public API, the low level

API, and the reference platform are all distributed under the MIT license. This is a very

permissive license which allows them to be used in almost any way, requiring only that you

retain the copyright notice and disclaimer when distributing them.

The CUDA and OpenCL platforms are distributed under the GNU Lesser General Public

License (LGPL). This also allows you to use, modify, and distribute them in any way you

want, but it requires you to also distribute the source code for your modifications. This

restriction applies only to modifications to OpenMM itself; you need not distribute the

source code to applications that use it.

OpenMM also uses several pieces of code that were written by other people and are covered

by other licenses. All of these licenses are similar in their terms to the MIT license, and do

not significantly restrict how OpenMM can be used.

All of these licenses may be found in the “licenses” directory included with OpenMM.

8.2 Design Principles

The design of the OpenMM API is guided by the following principles.

1. The API must support efficient implementations on a variety of architectures.

The most important consequence of this goal is that the API cannot provide direct access to

state information (particle positions, velocities, etc.) at all times. On some architectures,

accessing this information is expensive. With a GPU, for example, it will be stored in video

memory, and must be transferred to main memory before outside code can access it. On a

distributed architecture, it might not even be present on the local computer. OpenMM

therefore only allows state information to be accessed in bulk, with the understanding that

doing so may be a slow operation.

76

2. The API should be easy to understand and easy to use.

This seems obvious, but it is worth stating as an explicit goal. We are creating OpenMM

with the hope that many other people will use it. To achieve that goal, it should be possible

for someone to learn it without an enormous amount of effort. An equally important aspect

of being “easy to use” is being easy to use correctly. A well designed API should minimize

the opportunities for a programmer to make mistakes. For both of these reasons, clarity and

simplicity are essential.

3. It should be modular and extensible.

We cannot hope to provide every feature any user will ever want. For that reason, it is

important that OpenMM be easy to extend. If a user wants to add a new molecular force

field, a new thermostat algorithm, or a new hardware platform, the API should make that

easy to do.

4. The API should be hardware independent.

Computer architectures are changing rapidly, and it is impossible to predict what hardware

platforms might be important to support in the future. One of the goals of OpenMM is to

separate the API from the hardware. The developers of a simulation application should be

able to write their code once, and have it automatically take advantage of any architecture

that OpenMM supports, even architectures that do not yet exist when they write it.

8.3 Choice of Language

Molecular modeling and simulation tools are written in a variety of languages: C, C++,

Fortran, Python, TCL, etc. It is important that any of these tools be able to use OpenMM.

There are two possible approaches to achieving this goal.

One option is to provide a separate version of the API for each language. These could be

created by hand, or generated automatically with a wrapper generator such as SWIG. This

would require the API to use only “lowest common denominator” features that can be

77

reasonably supported in all languages. For example, an object oriented API would not be an

option, since it could not be cleanly expressed in C or Fortran.

The other option is to provide a single version of the API written in a single language. This

would permit a cleaner, simpler API, but also restrict the languages it could be directly called

from. For example, a C++ API could not be invoked directly from Fortran or Python.

We have chosen to use a hybrid of these two approaches. OpenMM is based on an object

oriented C++ API. This is the primary way to invoke OpenMM, and is the only API that fully

exposes all features of the library. We believe this will ultimately produce the best, easiest to

use API and create the least work for developers who use it. It does require that any code

which directly invokes this API must itself be written in C++, but this should not be a

significant burden. Regardless of what language we had chosen, developers would need to

write a thin layer for translating between their own application’s data model and OpenMM.

That layer is the only part which needs to be written in C++.

In addition, we have created wrapper APIs that allow OpenMM to be invoked from other

languages. The current release includes wrappers for C, Fortran, and Python. These

wrappers support as many features as reasonably possible given the constraints of the

particular languages, but some features cannot be fully supported. In particular, writing

plug-ins to extend the OpenMM API can only be done in C++.

We are also aware that some features of C++ can easily lead to compatibility and portability

problems, and we have tried to avoid those features. In particular, we make minimal use of

templates and avoid multiple inheritance altogether. Our goal is to eventually support

OpenMM on all major compilers and operating systems.

8.4 Architectural Overview

OpenMM is based on a layered architecture, as shown in the following diagram:

78

Figure	 8-‐1:	 	 OpenMM	 architecture	

At the highest level is the OpenMM public API. This is the API developers program against

when using OpenMM within their own applications. It is designed to be simple, easy to

understand, and completely platform independent. This is the only layer that many users

will ever need to look at.

The public API is implemented by a layer of platform independent code. It serves as the

interface to the lower level, platform specific code. Most users will never need to look at it.

The next level down is the OpenMM Low Level API (OLLA). This acts as an abstraction

layer to hide the details of each hardware platform. It consists of a set of C++ interfaces that

each platform must implement. Users who want to extend OpenMM will need to write

classes at the OLLA level. Note the different roles played by the public API and the low level

API: the public API defines an interface for users to invoke in their own code, while OLLA

defines an interface that users must implement, and that is invoked by the OpenMM

implementation layer.

At the lowest level is hardware specific code that actually performs computations. This code

may be written in any language and use any technologies that are appropriate. For example,

code for GPUs will be written in stream processing languages such as OpenCL or CUDA,

code written to run on clusters will use MPI or other distributed computing tools, code

written for multicore processors will use threading tools such as Pthreads or OpenMP, etc.

79

OpenMM sets no restrictions on how these computational kernels are written. As long as

they are wrapped in the appropriate OLLA interfaces, OpenMM can use them.

8.5 The OpenMM Public API

The public API is based on a small number of classes:

System: A System specifies generic properties of the system to be simulated: the number of

particles it contains, the mass of each one, the size of the periodic box, etc. The interactions

between the particles are specified through a set of Force objects (see below) that are added

to the System. Force field specific parameters, such as particle charges, are not direct

properties of the System. They are properties of the Force objects contained within the

System.

Force: The Force objects added to a System define the behavior of the particles. Force is an

abstract class; subclasses implement specific behaviors. The Force class is actually slightly

more general than its name suggests. A Force can, indeed, apply forces to particles, but it

can also directly modify particle positions and velocities in arbitrary ways. Some

thermostats and barostats, for example, can be implemented as Force classes. Examples of

Force subclasses in OpenMM 5.1 include HarmonicBondForce, NonbondedForce, and

MonteCarloBarostat.

Context: This stores all of the state information for a simulation: particle positions and

velocities, as well as arbitrary parameters defined by the Forces in the System. It is possible

to create multiple Contexts for a single System, and thus have multiple simulations of that

System in progress at the same time.

Integrator: This implements an algorithm for advancing the simulation through time. It is

an abstract class; subclasses implement specific algorithms. Examples of Integrator

subclasses in OpenMM 5.1 include LangevinIntegrator, VerletIntegrator, and

BrownianIntegrator.

80

State: A State stores a snapshot of the simulation at a particular point in time. It is created

by calling a method on a Context. As discussed earlier, this is a potentially expensive

operation. This is the only way to query the values of state variables, such as particle

positions and velocities; Context does not provide methods for accessing them directly.

Here is an example of what the source code to create a System and run a simulation might

look like:

System system;

for (int i = 0; i < numParticles; ++i)

 system.addParticle(particle[i].mass);

HarmonicBondForce* bonds = new HarmonicBondForce();

system.addForce(bonds);

for (int i = 0; i < numBonds; ++i)

 bonds->addBond(bond[i].particle1, bond[i].particle2,

 bond[i].length, bond[i].k);

HarmonicAngleForce* angles = new HarmonicAngleForce();

system.addForce(angles);

for (int i = 0; i < numAngles; ++i)

 angles->addAngle(angle[i].particle1, angle[i].particle2,

 angle[i].particle3, angle[i].angle, angle[i].k);

// ...create and initialize other force field terms in the same way

LangevinIntegrator integrator(temperature, friction, stepSize);

Context context(system, integrator);

context.setPositions(initialPositions);

context.setVelocities(initialVelocities);

integrator.step(10000);

We create a System, add various Forces to it, and set parameters on both the System and the

Forces. We then create a LangevinIntegrator, initialize a Context in which to run a

simulation, and instruct the Integrator to advance the simulation for 10,000 time steps.

8.6 The OpenMM Low Level API

81

The OpenMM Low Level API (OLLA) defines a set of interfaces that users must implement

in their own code if they want to extend OpenMM, such as to create a new Force subclass or

support a new hardware platform. It is based on the concept of “kernels” that define

particular computations to be performed.

More specifically, there is an abstract class called KernelImpl. Instances of this class (or

rather, of its subclasses) are created by KernelFactory objects. These classes provide the

concrete implementations of kernels for a particular platform. For example, to perform

calculations on a GPU, one would create one or more KernelImpl subclasses that

implemented the computations with GPU kernels, and one or more KernelFactory

subclasses to instantiate the KernelImpl objects.

All of these objects are encapsulated in a single object that extends Platform. KernelFactory

objects are registered with the Platform to be used for creating specific named kernels. The

choice of what implementation to use (a GPU implementation, a multithreaded CPU

implementation, an MPI-based distributed implementation, etc.) consists entirely of

choosing what Platform to use.

As discussed so far, the low level API is not in any way specific to molecular simulation; it is

a fairly generic computational API. In addition to defining the generic classes, OpenMM

also defines abstract subclasses of KernelImpl corresponding to specific calculations. For

example, there is a class called CalcHarmonicBondForceKernel to implement

HarmonicBondForce and a class called IntegrateLangevinStepKernel to implement

LangevinIntegrator. It is these classes for which each Platform must provide a concrete

subclass.

This architecture is designed to allow easy extensibility. To support a new hardware

platform, for example, you create concrete subclasses of all the abstract kernel classes, then

create appropriate factories and a Platform subclass to bind everything together. Any

program that uses OpenMM can then use your implementation simply by specifying your

Platform subclass as the platform to use.

82

Alternatively, you might want to create a new Force subclass to implement a new type of

interaction. To do this, define an abstract KernelImpl subclass corresponding to the new

force, then write the Force class to use it. Any Platform can support the new Force by

providing a concrete implementation of your KernelImpl subclass. Furthermore, you can

easily provide that implementation yourself, even for existing Platforms created by other

people. Simply create a new KernelFactory subclass for your kernel and register it with the

Platform object. The goal is to have a completely modular system. Each module, which

might be distributed as an independent library, can either add new features to existing

platforms or support existing features on new platforms.

In fact, there is nothing “special” about the kernel classes defined by OpenMM. They are

simply KernelImpl subclasses that happen to be used by Forces and Integrators that happen

to be bundled with OpenMM. They are treated exactly like any other KernelImpl, including

the ones you define yourself.

It is important to understand that OLLA defines an interface, not an implementation. It

would be easy to assume a one-to-one correspondence between KernelImpl objects and the

pieces of code that actually perform calculations, but that need not be the case. For a GPU

implementation, for example, a single KernelImpl might invoke several GPU kernels.

Alternatively, a single GPU kernel might perform the calculations of several KernelImpl

subclasses.

8.7 Platforms

This release of OpenMM contains the following Platform subclasses:

ReferencePlatform. This is designed to serve as reference code for writing other

platforms. It is written with simplicity and clarity in mind, not performance.

CudaPlatform. This platform is implemented using the CUDA language, and performs

calculations on Nvidia GPUs.

OpenCLPlatform. This platform is implemented using the OpenCL language, and

performs calculations on a variety of types of GPUs and CPUs.

83

The choice of which platform to use for a simulation depends on various factors:

1. The Reference platform is much slower than the others, and therefore is rarely used

for production simulations.

2. The CUDA platform can only be used with NVIDIA GPUs. For using an AMD GPU or

for running on a CPU, use the OpenCL platform.

3. When running on recent NVIDIA GPUs (Fermi and Kepler generations), the CUDA

platform is usually faster and should be used. On older GPUs, the OpenCL platform

is likely to be faster. Also, some very old GPUs (GeForce 8000 and 9000 series) are

only supported by the OpenCL platform, not by the CUDA platform.

4. The AMOEBA force field only works with the CUDA platform, not with the OpenCL

platform.

9 Compiling OpenMM from
Source Code

This chapter describes the procedure for building and installing OpenMM libraries from

source code. It is recommended that you use binary OpenMM libraries, if possible. If there

are not suitable binary libraries for your system, consider building OpenMM from source

code by following these instructions.

9.1 Prerequisites

Before building OpenMM from source, you will need the following:

• A C++ compiler

• CMake

• OpenMM source code

See the sections below for specific instructions for the different platforms.

9.1.1 Get a C++ compiler

You must have a C++ compiler installed before attempting to build OpenMM from source.

9.1.1.1 Mac and Linux: gcc

Use gcc on Mac/Linux. We have tested the examples with various versions of gcc between

4.0 and 4.6.

To find out whether you have gcc installed, type:

which gcc

85

To find out what version of gcc you have, type:

gcc –version

If you do not already have gcc installed, you will need to download and install it. On the

Mac, this means downloading the Xcode Tools from the App Store. (With Xcode 4.3 and

later, you must then launch Xcode, open the Preferences window, go to the Downloads tab,

and tell it to install the command line tools. With Xcode 4.2 and earlier, the command line

tools are automatically installed when you install Xcode.)

9.1.1.2 Windows: Visual Studio

On Windows systems, use the C++ compiler in Visual Studio version 10 (2010) or 9 (2008).

You can download a free version of Visual C++ 10 2010 (Express Edition) from

http://www.microsoft.com/express/vc/.

9.1.2 Install CMake

CMake is the build system used for OpenMM. You must install CMake version 2.8 or higher

before attempting to build OpenMM from source. You can get CMake from

http://www.cmake.org/. If you choose to build CMake from source on Linux, make sure you

have the curses library installed beforehand, so that you will be able to build the CCMake

visual CMake tool.

9.1.3 Get the OpenMM source code

You will also need the OpenMM source code before building OpenMM from source. To

download and unpack OpenMM source code:

1. Browse to https://simtk.org/home/openmm/.

2. Click the "Downloads" link in the navigation bar on the left side.

3. Download OpenMM<Version>-Source.zip, choosing the latest version.

4. Unpack the zip file. Note the location where you unpacked the OpenMM source

code.

86

9.1.4 Other Required Software

There are several other pieces of software you must install to compile certain parts of

OpenMM. Which of these you need depends on the options you select in CMake.

• For compiling the CUDA Platform, you need:

o CUDA (See Chapter 3 for installation instructions.)

• For compiling the OpenCL Platform, you need:

o OpenCL (See Chapter 3 for installation instructions.)

• For compiling C and Fortran API wrappers, you need:

o A Fortran compiler

o gccxml (http://gccxml.github.io)

• For compiling the Python API wrappers, you need:

o Python 2.6 or later (http://www.python.org)

o SWIG (http://www.swig.org)

o Doxygen (http://www.doxygen.org)

• To generate API documentation, you need:

o Doxygen (http://www.doxygen.org)

9.2 Step 1: Configure with CMake

9.2.1 Build and source directories

First, create a directory in which to build OpenMM. A good name for this directory is

build_openmm. We will refer to this as the “build_openmm directory” in the instructions

below. This directory will contain the temporary files used by the OpenMM CMake build

system. Do not create this build directory within the OpenMM source code directory. This

is what is called an “out of source” build, because the build files will not be mixed with the

source files.

Also note the location of the OpenMM source directory (i.e., where you unpacked the source

code zip file). It should contain a file called CMakeLists.txt. This directory is what we will

call the “OpenMM source directory” in the following instructions.

87

9.2.2 Starting CMake

Configuration is the first step of the CMake build process. In the configuration step, the

values of important build variables will be established.

9.2.2.1 Mac and Linux

On Mac and Linux machines, type the following two lines:

cd build_openmm

 ccmake -i <path to OpenMM src directory>

That is not a typo. ccmake has two c’s. CCMake is the visual CMake configuration tool.

Press “c” within the CCMake interface to configure CMake. Follow the instructions in the

“All Platforms” section below.

9.2.2.2 Windows

On Windows, perform the following steps:

• Click Start->All Programs->CMake 2.8->CMake

• In the box labeled "Where is the source code:" browse to OpenMM src directory

(containing top CMakeLists.txt)

• In the box labeled "Where to build the binaries" browse to your build_openmm

directory.

• Click the "Configure" button at the bottom of the CMake screen.

• Select "Visual Studio 9 2008" from the list of Generators. (or Visual Studio 10, if

that is what you have installed)

• Follow the instructions in the “All Platforms” section below.

9.2.2.3 All platforms

There are several variables that can be adjusted in the CMake interface:

• If you intend to use CUDA (NVIDIA) or OpenCL acceleration, set the variable

OPENMM_BUILD_CUDA_LIB or OPENMM_BUILD_OPENCL_LIB, respectively,

to ON. Before doing so, be certain that you have installed and tested the drivers for

88

the platform you have selected (see Chapter 3 for information on installing GPU

software).

• There are lots of other options starting with OPENMM_BUILD that control whether

to build particular features of OpenMM, such as plugins, API wrappers, and

documentation.

• Do not worry about the SVNVERSION_EXE variable with value

SVNVERSION_EXE_NOT_FOUND. That is unimportant.

• Set the variable CMAKE_INSTALL_PREFIX to the location where you want to

install OpenMM.

Configure (press “c”) again. Adjust any variables that cause an error or are set to

NOTFOUND (except for SVNVERSION_EXE).

Continue to configure (press “c”) until no starred/red CMake variables are displayed.

Congratulations, you have completed the configuration step.

9.3 Step 2: Generate Build Files with CMake

Once the configuration is done, the next step is generation. The generate “g” or “OK” or

“Generate” option will not be available until configuration has completely converged.

9.3.1 Windows

• Press the "OK" or “Generate” button to generate Visual Studio project files.

• Ignore any warnings about "Policy CMP003" (Press "OK")

• If CMake does not exit automatically, press the close button in the upper-right corner

of the CMake title bar to exit.

9.3.2 Mac and Linux

• Press g to generate the Makefile.

• Ignore any warnings about "Policy CMP003" (Press “e”)

• If CMake does not exit automatically, press “q” to exit.

89

That’s it! Generation is the easy part. Now it’s time to build.

9.4 Step 3: Build OpenMM

9.4.1 Windows

• Open the file OpenMM.sln in your openmm_build directory in Visual Studio.

• Set the configuration type to "Release" (not "Debug") in the toolbar.

• From the Build menu, click Build->Build Solution

• The OpenMM libraries and test programs will be created. This takes some time.

• The test program TestCudaRandom might not build on Windows. This is OK.

9.4.2 Mac and Linux

• Type make in the openmm_build directory.

• The OpenMM libraries and test programs will be created. This takes some time.

9.5 Step 4: Install OpenMM

9.5.1 Windows

In the Solution Explorer Panel, far-click/right-click INSTALL->build.

9.5.2 Mac and Linux

Type:

make install

If you are installing to a system area, such as /usr/local/openmm/, you will need to type:

sudo make install

9.6 Step 5: Set Your Library Path

90

Refer to Chapter 3 for instructions on setting your library path environment variable (PATH,

LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH) and OPENMM_PLUGIN_DIR to point

to your new OpenMM installation.

9.7 Step 6: Test your build

After OpenMM has been built, you should run the unit tests to make sure it works.

9.7.1 Windows

In Visual Studio, far-click/right-click RUN_TESTS in the Solution Explorer Panel. Select

RUN_TESTS->build to begin testing. Ignore any failures for TestCudaRandom.

9.7.2 Mac and Linux

Type:

make test

You should see a series of test results like this:

 Start 1: TestReferenceAndersenThermostat

 1/317 Test #1: TestReferenceAndersenThermostat Passed 0.26 sec

 Start 2: TestReferenceBrownianIntegrator

 2/317 Test #2: TestReferenceBrownianIntegrator Passed 0.13 sec

 Start 3: TestReferenceCheckpoints

 3/317 Test #3: TestReferenceCheckpoints Passed 0.02 sec

 ... <many other tests> ...

Passed is good. FAILED is bad. If any tests fail, you can run them individually to get more

detailed error information. Note that some tests are stochastic, and therefore are expected

to fail a small fraction of the time. These tests will say so in the error message:

./TestReferenceLangevinIntegrator

91

exception: Assertion failure at

TestReferenceLangevinIntegrator.cpp:129. Expected 9.97741,

found 10.7884 (This test is stochastic and may occasionally

fail)

Congratulations! You successfully have built and installed OpenMM from source.

	

10 OpenMM Tutorials

10.1 Example Files Overview

Four example files are provided in the examples folder, each designed with a specific

objective.

• HelloArgon: A very simple example intended for verifying that you have installed

OpenMM correctly. It also introduces you to the basic classes within OpenMM.

• HelloSodiumChloride: This example shows you our recommended strategy for

integrating OpenMM into an existing molecular dynamics code.

• HelloEthane: The main purpose of this example is to demonstrate how to tell

OpenMM about bonded forces (bond stretch, bond angle bend, dihedral torsion).

• HelloWaterBox: This example shows you how to use OpenMM to model explicit

solvation, including setting up periodic boundary conditions. It runs extremely fast

on a GPU but very, very slowly on a CPU, so it is an excellent example to use to

compare performance on the GPU versus the CPU. The other examples provided use

systems where the performance difference would be too small to notice.

The two fundamental examples—HelloArgon and HelloSodiumChloride—are provided in

C++, C, and Fortran, as indicated in the table below. The other two examples—HelloEthane

and HelloWaterBox—follow the same structure as HelloSodiumChloride but demonstrate

more calls within the OpenMM API. They are only provided in C++ but can be adapted to

run in C and Fortran by following the mappings described in Chapter 12. HelloArgon and

HelloSodiumChloride also serve as examples of how to do these mappings. The sections

below describe the HelloArgon, HelloSodiumChloride, and HelloEthane programs in more

detail.

93

Example Solvent Thermostat Boundary
Forces &

Constraints
API

Argon Vacuum None None Non-bonded*
C++, C,

Fortran

Sodium

Chloride

Implicit

water
Langevin None Non-bonded*

C++, C,

Fortran

Ethane Vacuum None None

Non-bonded,*

stretch, bend,

torsion

C++

Water Box
Explicit

water
Andersen Periodic

Non-bonded,*

stretch, bend,

constraints

C++

*van der Waals and Coulomb forces

10.2 Running Example Files

The instructions below are for running the HelloArgon program. A similar process would be

used to run the other examples.

10.2.1 Visual Studio

Navigate to wherever you saved the example files. Descend into the directory folder

VisualStudio. Double-click the file HelloArgon.sln (a Microsoft Visual Studio Solution file).

Visual Studio will launch.

Note: these files were created using Visual Studio 8. If you are using Visual Studio 9 (2008

Express Edition), the program will ask if you want to convert the files to the new version.

Agree and continue through the conversion process.

In Visual Studio, make sure the "Solution Configuration" is set to "Release" and not "Debug".

The “Solution Configuration” can be set using the drop-down menu in the top toolbar, next

94

to the green arrow (see Figure 10-1 below). Due to incompatibilities among Visual Studio

versions, we do not provide pre-compiled debug binaries.

Figure	 10-‐1:	 	 Setting	 "Solution	 Configuration"	 to	 "Release"	 mode	 in	 Visual	 Studio	

From the command options select Debug -> Start Without Debugging (or CTRL-F5). See

Figure 10-2. This will also compile the program, if it has not previously been compiled.

Figure	 10-‐2:	 	 Run	 a	 program	 in	 Visual	 Studio	

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference

MODEL 1

ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00

ENDMDL

95

…

MODEL 250

ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00

ENDMDL

MODEL 251

ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00

ENDMDL

MODEL 252

ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00

ENDMDL

10.2.1.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference

platform) or a GPU (CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference

REMARK Using OpenMM platform Cuda

REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

10.2.1.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/). To do

this within Visual Studios:

1. Right-click on the project name HelloArgon (not one of the files) and select the

“Properties” option.

96

2. On the “Property Pages” form, select “Debugging” under the “Configuration

Properties” node.

3. In the “Command Arguments” field, type:

> argon.pdb

This will save the output to a file called argon.pdb in the current working directory

(default is the VisualStudio directory). If you want to save it to another directory,

you will need to specify the full path.

4. Select “OK”

Now, when you run the program in Visual Studio, no text will appear. After a short time,
you should see the message “Press any key to continue…,” indicating that the

program is complete and that the PDB file has been completely written.

10.2.2 Mac OS X/Linux

Navigate to wherever you saved the example files.

Verify your makefile by consulting the MakefileNotes file in this directory, if necessary.

Type:
make

Then run the program by typing:

./HelloArgon

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference

MODEL 1

ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00

97

ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00

ENDMDL

…

MODEL 250

ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00

ENDMDL

MODEL 251

ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00

ENDMDL

MODEL 252

ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00

ENDMDL

10.2.2.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference

platform) or a GPU (CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference

REMARK Using OpenMM platform Cuda

REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

10.2.2.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/) by

typing:

98

./HelloArgon > argon.pdb

10.2.2.3 Compiling Fortran and C examples

The Makefile provided with the examples can also be used to compile the Fortran and C

examples.

The Fortran compiler needs to load a version of the libstdc++.dylib library that is compatible

with the version of gcc used to build OpenMM; OpenMM for Mac is compiled using gcc 4.2.

If you are compiling with a different version, edit the Makefile and add the following flag to
FCPPLIBS: –L/usr/lib/gcc/i686-apple-darwin10/4.2.1.

When the Makefile has been updated, type:

make all

10.3 HelloArgon Program

The HelloArgon program simulates three argon atoms in a vacuum. It is a simple program

primarily intended for you to verify that you are able to compile, link, and run with

OpenMM. It also demonstrates the basic calls needed to run a simulation using OpenMM.

10.3.1 Including OpenMM-defined functions

The OpenMM header file OpenMM.h instructs the program to include everything defined by

the OpenMM libraries. Include the header file by adding the following line at the top of your

program:

#include "OpenMM.h"

10.3.2 Running a program on GPU platforms

By default, a program will run on the Reference platform. In order to run a program on

another platform (e.g., an NVIDIA or AMD GPU), you need to load the required shared

libraries for that other platform (e.g., Cuda, OpenCL). The easy way to do this is to call:

99

OpenMM::Platform::loadPluginsFromDirectory(

 OpenMM::Platform::getDefaultPluginsDirectory());

This will load all the shared libraries (plug-ins) that can be found, so you do not need to

explicitly know which libraries are available on a given machine. In this way, the program

will be able to run on another platform, if it is available.

10.3.3 Running a simulation using the OpenMM public API

The OpenMM public API was described in Section 8.5. Here you will see how to use those

classes to create a simple system of three argon atoms and run a short simulation. The main

components of the simulation are within the function simulateArgon():

1. System – We first establish a system and add a non-bonded force to it. At this

point, there are no particles in the system.

// Create a system with nonbonded forces.

 OpenMM::System system;
 OpenMM::NonbondedForce* nonbond =

new OpenMM::NonbondedForce();
system.addForce(nonbond);

We then add the three argon atoms to the system. For this system, all the data for

the particles are hard-coded into the program. While not a realistic scenario, it
makes the example simpler and clearer. The std::vector<OpenMM::Vec3> is an

array of vectors of 3.

 // Create three atoms.
 std::vector<OpenMM::Vec3> initPosInNm(3);
 for (int a = 0; a < 3; ++a)
 {
 initPosInNm[a] = OpenMM::Vec3(0.5*a,0,0); // location, nm

 system.addParticle(39.95); // mass of Ar, grams per mole

 // charge, L-J sigma (nm), well depth (kJ)
 nonbond->addParticle(0.0, 0.3350, 0.996); // vdWRad(Ar)=

.188 nm
}

100

Units: Be very careful with the units in your program. It is very easy to make

mistakes with the units, so we recommend including them in your variable names, as
we have done here initPosInNm (position in nanometers). OpenMM provides

conversion constants that should be used whenever there are conversions to be done;

for simplicity, we did not do that in HelloArgon, but all the other examples show the

use of these constants.

It is hard to overemphasize the importance of careful units handling—it is very easy

to make a mistake despite, or perhaps because of, the trivial nature of units

conversion. For more information about the units used in OpenMM, see Section

17.2.

Adding Particle Information: Both the system and the non-bonded force

require information about the particles. The system just needs to know the mass of

the particle. The non-bonded force requires information about the charge (in this

case, argon is uncharged), and the Lennard-Jones parameters sigma (zero-energy

separation distance) and well depth (see Section 18.6.1 for more details).

Note that the van der Waals radius for argon is 0.188 nm and that it has already been

converted to sigma (0.335 nm) in the example above where it is added to the non-

bonded force; in your code, you should make use of the appropriate conversion

factor supplied with OpenMM as discussed in Section 17.2.

2. Integrator – We next specify the integrator to use to perform the calculations. In

this case, we choose a Verlet integrator to run a constant energy simulation. The only

argument required is the step size in picoseconds.

OpenMM::VerletIntegrator integrator(0.004); // step size in ps

We have chosen to use 0.004 picoseconds, or 4 femtoseconds, which is larger than

that used in a typical molecular dynamics simulation. However, since this example

does not have any bonds with higher frequency components, like most molecular

dynamics simulations do, this is an acceptable value.

101

3. Context – The context is an object that consists of an integrator and a system. It

manages the state of the simulation. The code below initializes the context. We then

let the context select the best platform available to run on, since this is not

specifically specified, and print out the chosen platform. This is useful information,

especially when debugging.

// Let OpenMM Context choose best platform.

 OpenMM::Context context(system, integrator);
 printf("REMARK Using OpenMM platform %s\n",

 context.getPlatform().getName().c_str());

We then initialize the system, setting the initial time, as well as the initial positions

and velocities of the atoms. In this example, we leave time and velocity at their

default values of zero.

 // Set starting positions of the atoms. Leave time and velocity

zero.
 context.setPositions(initPosInNm);

4. Initialize and run the simulation – The next block of code runs the simulation

and saves its output. For each frame of the simulation (in this example, a frame is

defined by the advancement interval of the integrator; see below), the current state of

the simulation is obtained and written out to a PDB-formatted file.

// Simulate.
for (int frameNum=1; ;++frameNum) {

 // Output current state information.
 OpenMM::State state =

context.getState(OpenMM::State::Positions);
 const double timeInPs = state.getTime();
 writePdbFrame(frameNum, state); // output coordinates

Getting state information has to be done in bulk, asking for information for all the

particles at once. This is computationally expensive since this information can

reside on the GPUs and requires communication overhead to retrieve, so you do not

want to do it very often. In the above code, we only request the positions, since that

is all that is needed, and time from the state.

102

The simulation stops after 10 ps; otherwise we ask the integrator to take 10 steps (so

one frame is equivalent to 10 time steps). Normally, we would want to take more

than 10 steps at a time, but to get a reasonable-looking animation, we use 10.
 if (timeInPs >= 10.)
 break;

 // Advance state many steps at a time, for efficient use of OpenMM.
 integrator.step(10); // (use a lot more than this normally)

10.3.4 Error handling for OpenMM

Error handling for OpenMM is explicitly designed so you do not have to check the status

after every call. If anything goes wrong, OpenMM throws an exception. It uses standard

exceptions, so on many platforms, you will get the exception message automatically.

However, we recommend using try-catch blocks to ensure you do catch the exception.

int main()
{
 try {
 simulateArgon();
 return 0; // success!
 }
 // Catch and report usage and runtime errors detected by OpenMM and
fail.
 catch(const std::exception& e) {
 printf("EXCEPTION: %s\n", e.what());
 return 1; // failure!
 }
}

10.3.5 Writing out PDB files

For the HelloArgon program, we provide a simple PDB file writing function

writePdbFrame that only writes out argon atoms. The function has nothing to do with

OpenMM except for using the OpenMM State. The function extracts the positions from the

State in nanometers (10-9 m) and converts them to Angstroms (10-10 m) to be compatible

with the PDB format. Again, we emphasize how important it is to track the units being

used!

void writePdbFrame(int frameNum, const OpenMM::State& state)
{
 // Reference atomic positions in the OpenMM State.

103

 const std::vector<OpenMM::Vec3>& posInNm = state.getPositions();

 // Use PDB MODEL cards to number trajectory frames
 printf("MODEL %d\n", frameNum); // start of frame
 for (int a = 0; a < (int)posInNm.size(); ++a)
 {
 printf("ATOM %5d AR AR 1 ", a+1); // atom number
 printf("%8.3f%8.3f%8.3f 1.00 0.00\n", // coordinates
 // "*10" converts nanometers to Angstroms
 posInNm[a][0]*10, posInNm[a][1]*10, posInNm[a][2]*10);
 }
 printf("ENDMDL\n"); // end of frame
}

MODEL and ENDMDL are used to mark the beginning and end of a frame, respectively. By

including multiple frames in a PDB file, you can visualize the simulation trajectory.

10.3.6 HelloArgon output

The output of the HelloArgon program can be saved to a .pdb file and visualized using

programs like VMD or PyMol (see Section 10.2). You should see three atoms moving

linearly away and towards one another:

You may need to adjust the van der Waals radius in your visualization program to see the

atoms colliding.

10.4 HelloSodiumChloride Program

The HelloSodiumChloride models several sodium (Na+) and chloride (Cl-) ions in implicit

solvent (using a Generalized Born/Surface Area, or GBSA, OBC model). As with the

HelloArgon program, only non-bonded forces are simulated.

The main purpose of this example is to illustrate our recommended strategy for integrating

OpenMM into an existing molecular dynamics (MD) code:

104

1. Write a few, high-level interface routines containing all your OpenMM

calls: Rather than make OpenMM calls throughout your program, we recommend

writing a handful of interface routines that understand both your MD code’s data

structures and OpenMM. Organize these routines into a separate compilation unit so

you do not have to make huge changes to your existing MD code. These routines

could be written in any language that is callable from the existing MD code. We

recommend writing them in C++ since that is what OpenMM is written in, but you

can also write them in C or Fortran; see Chapter 12.

2. Call only these high-level interface routines from your existing MD code:

This provides a clean separation between the existing MD code and OpenMM, so that

changes to OpenMM will not directly impact the existing MD code. One way to

implement this is to use opaque handles, a standard trick used (for example) for

opening files in Linux. An existing MD code can communicate with OpenMM via the

handle, but knows none of the details of the handle. It only has to hold on to the

handle and give it back to OpenMM.

In the example described below, you will see how this strategy can be implemented for a very

simple MD code. Chapter 13 describes the strategies used in integrating OpenMM into real

MD codes.

10.4.1 Simple molecular dynamics system

The initial sections of HelloSodiumChloride.cpp represent a very simple molecular dynamics

system. The system includes modeling and simulation parameters and the atom and force
field data. It also provides a data structure posInAng[3] for storing the current state.

These sections represent (in highly simplified form) information that would be available

from an existing MD code, and will be used to demonstrate how to integrate OpenMM with

an existing MD program.

// ---
// MODELING AND SIMULATION PARAMETERS
// ---
static const double Temperature = 300; // Kelvins
static const double FrictionInPerPs = 91.; // collisions per
picosecond

105

static const double SolventDielectric = 80.; // typical for water
static const double SoluteDielectric = 2.; // typical for protein

static const double StepSizeInFs = 2; // integration step
size (fs)
static const double ReportIntervalInFs = 50; // how often to issue
PDB frame (fs)
static const double SimulationTimeInPs = 100; // total simulation
time (ps)

// Decide whether to request energy calculations.
static const bool WantEnergy = true;

// ---
// ATOM AND FORCE FIELD DATA
// ---
// This is not part of OpenMM; just a struct we can use to collect atom
// parameters for this example. Normally atom parameters would come from
the
// force field's parameterization file. We're going to use data in
Angstrom and
// Kilocalorie units and show how to safely convert to OpenMM's internal
unit
// system which uses nanometers and kilojoules.
static struct MyAtomInfo {
 const char* pdb;
 double mass, charge, vdwRadiusInAng, vdwEnergyInKcal,
 gbsaRadiusInAng, gbsaScaleFactor;
 double initPosInAng[3];
 double posInAng[3]; // leave room for runtime state info
} atoms[] = {
// pdb mass charge vdwRad vdwEnergy gbsaRad gbsaScale initPos
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 8, 0, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, -8, 0, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 9, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0,-9, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 0,-10},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0, 0, 10},
{""} // end of list
};

10.4.2 Interface routines

The key to our recommended integration strategy is the interface routines. You will need to

decide what interface routines are required for effective communication between your

existing MD program and OpenMM, but typically there will only be six or seven. In our

example, the following four routines suffice:

106

• Initialize: Data structures that already exist in your MD program (i.e., force fields,
constraints, atoms in the system) are passed to the Initialize routine, which

makes appropriate calls to OpenMM and then returns a handle to the OpenMM

object that can be used by the existing MD program.
• Terminate: Clean up the heap space allocated by Initialize by passing the

handle to the Terminate routine.

• Advance State: The AdvanceState routine advances the simulation. It requires

that the calling function, the existing MD code, gives it a handle.

• Retrieve State: When you want to do an analysis or generate some kind of report,
you call the RetrieveState routine. You have to give it a handle. It then fills in a

data structure that is defined in the existing MD code, allowing the MD program to

use it in its existing routines without further modification.

Note that these are just descriptions of the routines’ functions—you can call them anything

you like and implement them in whatever way makes sense for your MD code.

In the example code, the four routines performing these functions, plus an opaque data

structure (the handle), would be declared, as shown below. Then, the main program, which

sets up, runs, and reports on the simulation, accesses these routines and the opaque data
structure (in this case, the variable omm). As you can see, it does not have access to any

OpenMM declarations, only to the interface routines that you write so there is no need to

change the build environment.

struct MyOpenMMData;
static MyOpenMMData* myInitializeOpenMM(const MyAtomInfo atoms[],
 double temperature,
 double frictionInPs,
 double solventDielectric,
 double soluteDielectric,
 double stepSizeInFs,
 std::string& platformName);
static void myStepWithOpenMM(MyOpenMMData*, int numSteps);
static void myGetOpenMMState(MyOpenMMData*, bool

wantEnergy,double& time, double& energy,
 MyAtomInfo atoms[]);
static void myTerminateOpenMM(MyOpenMMData*);

107

// ---
// MAIN PROGRAM
// ---
int main() {
 const int NumReports = (int)(SimulationTimeInPs*1000 /

ReportIntervalInFs + 0.5);
 const int NumSilentSteps = (int)(ReportIntervalInFs / StepSizeInFs +

0.5);

 // ALWAYS enclose all OpenMM calls with a try/catch block to make sure
that
 // usage and runtime errors are caught and reported.
 try {
 double time, energy;
 std::string platformName;

 // Set up OpenMM data structures; returns OpenMM Platform name.
 MyOpenMMData* omm = myInitializeOpenMM(atoms, Temperature,

FrictionInPerPs,SolventDielectric, SoluteDielectric,
 StepSizeInFs, platformName);

 // Run the simulation:
 // (1) Write the first line of the PDB file and the initial

configuration.
 // (2) Run silently entirely within OpenMM between reporting

intervals.
 // (3) Write a PDB frame when the time comes.
 printf("REMARK Using OpenMM platform %s\n",

platformName.c_str());
 myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
 myWritePDBFrame(1, time, energy, atoms);

 for (int frame=2; frame <= NumReports; ++frame) {
 myStepWithOpenMM(omm, NumSilentSteps);
 myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
 myWritePDBFrame(frame, time, energy, atoms);
 }

 // Clean up OpenMM data structures.
 myTerminateOpenMM(omm);

 return 0; // Normal return from main.
 }

 // Catch and report usage and runtime errors detected by OpenMM and
fail.
 catch(const std::exception& e) {
 printf("EXCEPTION: %s\n", e.what());
 return 1;
 }
}

108

We will examine the implementation of each of the four interface routines and the opaque

data structure (handle) in the sections below.

10.4.2.1 Units

The simple molecular dynamics system described in Section 10.4.1 employs the commonly

used units of angstroms and kcals. These differ from the units and parameters used within

OpenMM (see Section 17.2): nanometers and kilojoules. These differences may be small but

they are critical and must be carefully accounted for in the interface routines.

10.4.2.2 Lennard-Jones potential

The Lennard-Jones potential describes the energy between two identical atoms as the

distance between them varies.

The van der Waals “size” parameter is used to identify the distance at which the energy

between these two atoms is at a minimum (that is, where the van der Waals force is most

attractive). There are several ways to specify this parameter, typically, either as the van der

Waals radius rvdw or as the actual distance between the two atoms dmin (also called rmin),

which is twice the van der Waals radius rvdw. A third way to describe the potential is through
sigma σ, which identifies the distance at which the energy function crosses zero as the atoms

move closer together than dmin. (See Section 18.6.1 for more details about the relationship

between these).

σ turns out to be about 0.89 * dmin, which is close enough to dmin that it makes it hard to

distinguish the two. Be very careful that you use the correct value. In the example below, we

will show you how to use the built-in OpenMM conversion constants to avoid errors.

Lennard-Jones parameters are defined for pairs of identical atoms, but must also be applied

to pairs of dissimilar atoms. That is done by “combining rules” that differ among popular

MD codes. Two of the most common are:

• Lorentz-Berthelot (used by AMBER, CHARMM):

• Jorgensen (used by OPLS):

109

where r = the effective van der Waals “size” parameter (minimum radius, minimum
distance, or zero crossing (sigma)), and ε = the effective van der Waals energy well depth

parameter, for the dissimilar pair of atoms i and j.

OpenMM only implements Lorentz-Berthelot directly, but others can be implemented using

the CustomNonbondedForce class. (See Section 19.1 for details.)

10.4.2.3 Opaque handle MyOpenMMData

In this example, the handle used by the interface to OpenMM is a pointer to a struct called
MyOpenMMData. The pointer itself is opaque, meaning the calling program has no

knowledge of what the layout of the object it points to is, or how to use it to directly interface

with OpenMM. The calling program will simply pass this opaque handle from one interface

routine to another.

There are many different ways to implement the handle. The code below shows just one

example. A simulation requires three OpenMM objects (a System, a Context, and an

Integrator) and so these must exist within the handle. If other objects were required for a

simulation, you would just add them to your handle; there would be no change in the main

program using the handle.

struct MyOpenMMData {
 MyOpenMMData() : system(0), context(0), integrator(0) {}
 ~MyOpenMMData() {delete system; delete context; delete integrator;}
 OpenMM::System* system;
 OpenMM::Context* context;
 OpenMM::Integrator* integrator;
};

In addition to establishing pointers to the required three OpenMM objects, MyOpenMMData

has a constructor MyOpenMMData() that sets the pointers for the three OpenMM objects to

zero and a destructor ~MyOpenMMData() that (in C++) gives the heap space back. This was

done in-line in the HelloArgon program, but we recommend you use something like the

method here instead.

110

10.4.2.4 myInitializeOpenMM

The myInitializeOpenMM function takes the data structures and simulation parameters

from the existing MD code and returns a new handle that can be used to do efficient

computations with OpenMM. It also returns the platformName so the calling program

knows what platform (e.g., CUDA, OpenCL, Reference) was used.

static MyOpenMMData*
myInitializeOpenMM(const MyAtomInfo atoms[],
 double temperature,
 double frictionInPs,
 double solventDielectric,
 double soluteDielectric,
 double stepSizeInFs,
 std::string& platformName)

This initialization routine is very similar to the HelloArgon example program, except that

objects are created and put in the handle. For instance, just as in the HelloArgon program,

the first step is to load the OpenMM plug-ins, so that the program will run on the best

performing platform that is available. Then, a System is created and assigned to the handle
omm. Similarly, forces are added to the System which is already in the handle.

// Load all available OpenMM plugins from their default location.
OpenMM::Platform::loadPluginsFromDirectory
 (OpenMM::Platform::getDefaultPluginsDirectory());

// Allocate space to hold OpenMM objects while we're using them.
MyOpenMMData* omm = new MyOpenMMData();

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the OpenMM
// System takes ownership of the force objects;don't delete them yourself.
omm->system = new OpenMM::System();
OpenMM::NonbondedForce* nonbond = new OpenMM::NonbondedForce();
OpenMM::GBSAOBCForce* gbsa = new OpenMM::GBSAOBCForce();
omm->system->addForce(nonbond);
omm->system->addForce(gbsa);

// Specify dielectrics for GBSA implicit solvation.
gbsa->setSolventDielectric(solventDielectric);
gbsa->setSoluteDielectric(soluteDielectric);

In the next step, atoms are added to the System within the handle, with information about

each atom coming from the data structure that was passed into the initialization function

from the existing MD code. As shown in the HelloArgon program, both the System and the

111

forces need information about the atoms. For those unfamiliar with the C++ Standard
Template Library, the push_back function called at the end of this code snippet just adds

the given argument to the end of a C++ “vector” container.

// Specify the atoms and their properties:
// (1) System needs to know the masses.
// (2) NonbondedForce needs charges,van der Waals properties(in MD
units!).
// (3) GBSA needs charge, radius, and scale factor.
// (4) Collect default positions for initializing the simulation later.
std::vector<Vec3> initialPosInNm;
for (int n=0; *atoms[n].pdb; ++n) {
 const MyAtomInfo& atom = atoms[n];

 omm->system->addParticle(atom.mass);

 nonbond->addParticle(atom.charge,
 atom.vdwRadiusInAng * OpenMM::NmPerAngstrom
 * OpenMM::SigmaPerVdwRadius,
 atom.vdwEnergyInKcal * OpenMM::KJPerKcal);

 gbsa->addParticle(atom.charge,
 atom.gbsaRadiusInAng * OpenMM::NmPerAngstrom,
 atom.gbsaScaleFactor);

 // Convert the initial position to nm and append to the array.
 const Vec3 posInNm(atom.initPosInAng[0] * OpenMM::NmPerAngstrom,
 atom.initPosInAng[1] * OpenMM::NmPerAngstrom,
 atom.initPosInAng[2] * OpenMM::NmPerAngstrom);
 initialPosInNm.push_back(posInNm);

Units: Here we emphasize the need to pay special attention to the units. As mentioned

earlier, the existing MD code in this example uses units of angstroms and kcals, but

OpenMM uses nanometers and kilojoules. So the initialization routine will need to convert

the values from the existing MD code into the OpenMM units before assigning them to the

OpenMM objects.

In the code above, we have used the unit conversion constants that come with OpenMM

(e.g., OpenMM::NmPerAngstrom) to perform these conversions. Combined with the

naming convention of including the units in the variable name (e.g., initPosInAng), the

unit conversion constants are useful reminders to pay attention to units and minimize

errors.

112

Finally, the initialization routine creates the Integrator and Context for the simulation.

Again, note the change in units for the arguments! The routine then gets the platform that
will be used to run the simulation and returns that, along with the handle omm, back to the

calling function.

// Choose an Integrator for advancing time, and a Context connecting the
// System with the Integrator for simulation. Let the Context choose the
// best available Platform. Initialize the configuration from the default
// positions we collected above. Initial velocities will be zero but could
// have been set here.
omm->integrator = new OpenMM::LangevinIntegrator(temperature,

frictionInPs,
stepSizeInFs *
OpenMM::PsPerFs);

omm->context = new OpenMM::Context(*omm->system, *omm->integrator);
omm->context->setPositions(initialPosInNm);

platformName = omm->context->getPlatform().getName();
return omm;

10.4.2.5 myGetOpenMMState

The myGetOpenMMState function takes the handle and returns the time, energy, and data

structure for the atoms in a way that the existing MD code can use them without

modification.

static void
myGetOpenMMState(MyOpenMMData* omm, bool wantEnergy,
 double& timeInPs, double& energyInKcal,

 MyAtomInfo atoms[])

Again, this is another interface routine in which you need to be very careful of your units!

Note the conversion from the OpenMM units back to the units used in the existing MD code.

int infoMask = 0;
infoMask = OpenMM::State::Positions;
if (wantEnergy) {
 infoMask += OpenMM::State::Velocities; // for kinetic energy (cheap)
 infoMask += OpenMM::State::Energy; // for pot. energy (more
expensive)
}
// Forces are also available (and cheap).

const OpenMM::State state = omm->context->getState(infoMask);

113

timeInPs = state.getTime(); // OpenMM time is in ps already

// Copy OpenMM positions into atoms array and change units from nm to
Angstroms.
const std::vector<Vec3>& positionsInNm = state.getPositions();
for (int i=0; i < (int)positionsInNm.size(); ++i)
 for (int j=0; j < 3; ++j)
 atoms[i].posInAng[j] = positionsInNm[i][j] *
OpenMM::AngstromsPerNm;

// If energy has been requested, obtain it and convert from kJ to kcal.
energyInKcal = 0;
if (wantEnergy)
 energyInKcal = (state.getPotentialEnergy() + state.getKineticEnergy())
 * OpenMM::KcalPerKJ;

10.4.2.6 myStepWithOpenMM

The myStepWithOpenMM routine takes the handle, uses it to find the Integrator, and then

sets the number of steps for the Integrator to take. It does not return any values.

static void
myStepWithOpenMM(MyOpenMMData* omm, int numSteps) {
 omm->integrator->step(numSteps);
}

10.4.2.7 myTerminateOpenMM

The myTerminateOpenMM routine takes the handle and deletes all the components, e.g., the

Context and System, cleaning up the heap space.

static void
myTerminateOpenMM(MyOpenMMData* omm) {
 delete omm;
}

10.5 HelloEthane Program

The HelloEthane program simulates ethane (H3-C-C-H3) in a vacuum. It is structured

similarly to the HelloSodiumChloride example, but includes bonded forces (bond stretch,

bond angle bend, dihedral torsion). In setting up these bonded forces, the program

illustrates some of the other inconsistencies in definitions and units that you should watch

out for.

114

The bonded forces are added to the system within the initialization interface routine, similar

to how the non-bonded forces were added in the HelloSodiumChloride example:

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the System
owns
// the force objects and will take care of deleting them; don't do it
yourself!
OpenMM::System& system = *(omm->system = new
OpenMM::System());
OpenMM::NonbondedForce& nonbond = *new
OpenMM::NonbondedForce();
OpenMM::HarmonicBondForce& bondStretch = *new
OpenMM::HarmonicBondForce();
OpenMM::HarmonicAngleForce& bondBend = *new
OpenMM::HarmonicAngleForce();
OpenMM::PeriodicTorsionForce& bondTorsion = *new
OpenMM::PeriodicTorsionForce();
 system.addForce(&nonbond);
 system.addForce(&bondStretch);
 system.addForce(&bondBend);
 system.addForce(&bondTorsion);

Constrainable and non-constrainable bonds: In the initialization routine, we also

set up the bonds. If constraints are being used, then we tell the System about the

constrainable bonds:

 std::vector< std::pair<int,int> > bondPairs;
 for (int i=0; bonds[i].type != EndOfList; ++i) {
 const int* atom = bonds[i].atoms;
 const BondType& bond = bondType[bonds[i].type];

 if (UseConstraints && bond.canConstrain) {
 system.addConstraint(atom[0], atom[1],

 bond.nominalLengthInAngstroms
 * OpenMM::NmPerAngstrom);

 }

Otherwise, we need to give the HarmonicBondForce the bond stretch parameters.

Warning: The constant used to specify the stiffness may be defined differently between the

existing MD code and OpenMM. For instance, AMBER uses the constant, as given in the

harmonic energy term kx2, where the force is 2kx (k = constant and x = distance). OpenMM

wants the constant, as used in the force term kx (with energy 0.5 * kx2). So a factor of 2

115

must be introduced when setting the bond stretch parameters in an OpenMM system using

data from an AMBER system.

 bondStretch.addBond(atom[0], atom[1],
 bond.nominalLengthInAngstroms
 * OpenMM::NmPerAngstrom,
 bond.stiffnessInKcalPerAngstrom2
 * 2 * OpenMM::KJPerKcal
 * OpenMM::AngstromsPerNm *

OpenMM::AngstromsPerNm);

Non-bond exclusions: Next, we deal with non-bond exclusions. These are used for pairs

of atoms that appear close to one another in the network of bonds in a molecule. For atoms

that close, normal non-bonded forces do not apply or are reduced in magnitude. First, we

create a list of bonds to generate the non-bond exclusions:

 bondPairs.push_back(std::make_pair(atom[0], atom[1]));

OpenMM’s non-bonded force provides a convenient routine for creating the common

exceptions. These are: (1) for atoms connected by one bond (1-2) or connected by just one

additional bond (1-3), Coulomb and van der Waals terms do not apply; and (2) for atoms

connected by three bonds (1-4), Coulomb and van der Waals terms apply but are reduced by

a force-field dependent scale factor. In general, you may introduce additional exceptions,

but the standard ones suffice here and in many other circumstances.

// Exclude 1-2, 1-3 bonded atoms from nonbonded forces, and scale down 1-4
bonded atoms.
nonbond.createExceptionsFromBonds(bondPairs, Coulomb14Scale,
LennardJones14Scale);

// Create the 1-2-3 bond angle harmonic terms.
for (int i=0; angles[i].type != EndOfList; ++i) {
 const int* atom = angles[i].atoms;
 const AngleType& angle = angleType[angles[i].type];

// See note under bond stretch above regarding the factor of 2 here.
bondBend.addAngle(atom[0],atom[1],atom[2],

angle.nominalAngleInDegrees *
OpenMM::RadiansPerDegree,
angle.stiffnessInKcalPerRadian2 * 2 *
OpenMM::KJPerKcal);

}

// Create the 1-2-3-4 bond torsion (dihedral) terms.
for (int i=0; torsions[i].type != EndOfList; ++i) {
 const int* atom = torsions[i].atoms;

116

 const TorsionType& torsion = torsionType[torsions[i].type];
 bondTorsion.addTorsion(atom[0],atom[1],atom[2],atom[3],
 torsion.periodicity,
 torsion.phaseInDegrees * OpenMM::RadiansPerDegree,
 torsion.amplitudeInKcal * OpenMM::KJPerKcal);
}

The rest of the code is similar to the HelloSodiumChloride example and will not be covered

in detail here. Please refer to the program HelloEthane.cpp itself, which is well-commented,

for additional details.

11 Platform-Specific
Properties

When creating a Context, you can specify values for properties specific to a particular

Platform. This is used to control how calculations are done in ways that are outside the

scope of the generic OpenMM API.

To do this, pass both the Platform object and a map of property values to the Context

constructor:

Platform& platform = Platform::getPlatformByName("OpenCL");

map<string, string> properties;

properties["OpenCLDeviceIndex"] = "1";

Context context(system, integrator, platform, properties);

After a Context is created, you can use the Platform’s getPropertyValue() method to

query the values of properties.

11.1 OpenCL Platform

The OpenCL Platform recognizes the following Platform-specific properties:

• OpenCLPrecision: This selects what numeric precision to use for calculations. The

allowed values are “single”, “mixed”, and “double”. If it is set to “single”, nearly all

calculations are done in single precision. This is the fastest option but also the least

accurate. If it is set to “mixed”, forces are computed in single precision but

integration is done in double precision. This gives much better energy conservation

with only a slightly decrease in speed. If it is set to “double”, all calculations are done

118

in double precision. This is the most accurate option, but is usually much slower

than the others.

• OpenCLPlatformIndex: When multiple OpenCL implementations are installed on

your computer, this is used to select which one to use. The value is the zero-based

index of the platform (in the OpenCL sense, not the OpenMM sense) to use, in the

order they are returned by the OpenCL platform API. This is useful, for example, in

selecting whether to use a GPU or CPU based OpenCL implementation.

• OpenCLDeviceIndex: When multiple OpenCL devices are available on your

computer, this is used to select which one to use. The value is the zero-based index of

the device to use, in the order they are returned by the OpenCL device API.

The OpenCL Platform also supports parallelizing a simulation across multiple GPUs. To do

that, set the OpenCLDeviceIndex property to a comma separated list of values. For example,

properties["OpenCLDeviceIndex"] = "0,1";

This tells it to use both devices 0 and 1, splitting the work between them.

11.2 CUDA Platform

The CUDA Platform recognizes the following Platform-specific properties:

• CudaPrecision: This selects what numeric precision to use for calculations. The

allowed values are “single”, “mixed”, and “double”. If it is set to “single”, nearly all

calculations are done in single precision. This is the fastest option but also the least

accurate. If it is set to “mixed”, forces are computed in single precision but

integration is done in double precision. This gives much better energy conservation

with only a slightly decrease in speed. If it is set to “double”, all calculations are done

in double precision. This is the most accurate option, but is usually much slower

than the others.

• CudaCompiler: This specifies the path to the CUDA kernel compiler. If you do not

specify this, OpenMM will try to locate the compiler itself. Specify this only when

119

you want to override the default location. The logic used to pick the default location

depends on the operating system:

o Mac/Linux: It first looks for an environment variable called

OPENMM_CUDA_COMPILER. If that is set, its value is used. Otherwise,

the default location is set to /usr/local/cuda/bin/nvcc.

o Windows: It looks for an environment variable called CUDA_BIN_PATH,

then appends \nvcc.exe to it. That environment variable is set by the CUDA

installer, so it usually is present.

• CudaTempDirectory: This specifies a directory where temporary files can be written

while compiling kernels. OpenMM usually can locate your operating system’s temp

directory automatically (for example, by looking for the TEMP environment

variable), so you rarely need to specify this.

• CudaDeviceIndex: When multiple CUDA devices are available on your computer, this

is used to select which one to use. The value is the zero-based index of the device to

use, in the order they are returned by the CUDA API.

• CudaUseBlockingSync: This is used to control how the CUDA runtime synchronizes

between the CPU and GPU. If this is set to “true” (the default), CUDA will allow the

calling thread to sleep while the GPU is performing a computation, allowing the CPU

to do other work. If it is set to “false”, CUDA will spin-lock while the GPU is working.

This can improve performance slightly, but also prevents the CPU from doing

anything else while the GPU is working.

The CUDA Platform also supports parallelizing a simulation across multiple GPUs. To do

that, set the CudaDeviceIndex property to a comma separated list of values. For example,

properties["CudaDeviceIndex"] = "0,1";

This tells it to use both devices 0 and 1, splitting the work between them.

12 Using OpenMM with
Software Written in
Languages Other than C++

Although the native OpenMM API is object-oriented C++ code, it is possible to directly

translate the interface so that it is callable from C, Fortran 95, and Python with no

substantial conceptual changes. We have developed a straightforward mapping for these

languages that, while perhaps not the most elegant possible, has several advantages:

• Almost all documentation, training, forum discussions, and so on are equally useful

to users of all these languages. There are syntactic differences of course, but all the

important concepts remain unchanged.

• We are able to generate the C, Fortran, and Python APIs from the C++ API.

Obviously, this reduces development effort, but more importantly it means that the

APIs are likely to be error-free and are always available immediately when the native

API is updated.

• Because OpenMM performs expensive operations “in bulk” there is no noticeable

overhead in accessing these operations through the C, Fortran, or Python APIs.
• All symbols introduced to a C or Fortran program begin with the prefix “OpenMM_”

so will not interfere with symbols already in use.

Availability of APIs in other languages: All necessary C and Fortran bindings are built in to

the main OpenMM library; no separate library is required. The Python wrappers are

contained in a module that is distributed with OpenMM and that can be installed by

executing its setup.py script in the standard way.

121

(This doesn’t apply to most users: if you are building your own OpenMM from source using

CMake and want the API bindings generated, be sure to enable the
OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS option for C and Fortran, or

OPENMM_BUILD_PYTHON_WRAPPERS option for Python. The Python module will be placed

in a subdirectory of your main build directory called “python”)

Documentation for APIs in other languages: While there is extensive Doxygen

documentation available for the C++ and Python APIs, there is no separate on-line

documentation for the C and Fortran API. Instead, you should use the C++ documentation,

employing the mappings described here to figure out the equivalent syntax in C or Fortran.

12.1 C API

Before you start writing your own C program that calls OpenMM, be sure you can build and

run the two C examples that are supplied with OpenMM (see Chapter 10). These can be built
from the supplied Makefile on Linux and Mac, or supplied NMakefile and Visual Studio

solution files on Windows.

The example programs are HelloArgonInC and HelloSodiumChlorideInC. The argon

example serves as a quick check that your installation is set up properly and you know how

to build a C program that is linked with OpenMM. It will also tell you whether OpenMM is

executing on the GPU or is running (slowly) on the Reference platform. However, the argon

example is not a good template to follow for your own programs. The sodium chloride

example, though necessarily simplified, is structured roughly in the way we recommended

you set up your own programs to call OpenMM. Please be sure you have both of these

programs executing successfully on your machine before continuing.

12.1.1 Mechanics of using the C API

The C API is generated automatically from the C++ API when OpenMM is built. There are

two resulting components: C bindings (functions to call), and C declarations (in a header
file). The C bindings are small extern (global) interface functions, one for every method of

every OpenMM class, whose signatures (name and arguments) are predictable from the class

name and method signatures. There are also “helper” types and functions provided for the

122

few cases in which the C++ behavior cannot be directly mapped into C. These interface and

helper functions are compiled in to the main OpenMM library so there is nothing special you

have to do to get access to them.

In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated header file OpenMMCWrapper.h that should be #included in any C program that

is to make calls to OpenMM functions. That header contains declarations for all the

OpenMM C interface functions and related types. Note that if you follow our suggested
structure, you will not need to include this file in your main() compilation unit but can

instead use it only in a local file that you write to provide a simple interface to your existing

code (see Chapter 10).

12.1.2 Mapping from the C++ API to the C API

The automated generator of the C “wrappers” follows the translation strategy shown in Table

12.1. The idea is that if you see the construct on the left in the C++ API documentation, you

should interpret it as the corresponding construct on the right in C. Please look at the

supplied example programs to see how this is done in practice.

C++	 API	 declaration	 Equivalent	 in	 C	 API	
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName typedef OpenMM_ClassName
constant OpenMM::RadiansPerDeg OpenMM_RadiansPerDeg (static constant)
class enum OpenMM::State::Positions OpenMM_State_Positions

constructor
new OpenMM::ClassName() OpenMM_ClassName*

 OpenMM_ClassName_create()
(addl. constructors are _create_2(), etc.)

destructor OpenMM::ClassName* thing;
delete thing;

OpenMM_ClassName* thing;
OpenMM_ClassName_destroy(thing);

class method
OpenMM::ClassName* thing;
thing->someName(args)

OpenMM_ClassName* thing;
OpenMM_ClassName_someName
 (thing, args)

Boolean type
& constants

bool
true, false

OpenMM_Boolean
OpenMM_True (1), OpenMM_False (0)

string std::string char*
3-vector OpenMM::Vec3 typedef OpenMM_Vec3

arrays

std::vector<std::string>
std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string,double>

typedef OpenMM_StringArray
typedef OpenMM_DoubleArray
typedef OpenMM_Vec3Array
typedef OpenMM_BondArray
typedef OpenMM_ParameterArray

Table	 12.1:	 Default	 mapping	 of	 objects	 from	 the	 C++	 API	 to	 the	 C	 API	

123

There are some exceptions to the generic translation rules shown in the table; they are

enumerated in the next section. And because there are no C++ API equivalents to the array

types, they are described in detail below.

12.1.3 Exceptions

These two methods are handled somewhat differently in the C API than in the C++ API:
• OpenMM::Context::getState()

The C version, OpenMM_Context_getState(), returns a pointer to a heap

allocated OpenMM_State object. You must then explicitly destroy this State object

when you are done with it, by calling OpenMM_State_destroy().

• OpenMM::Platform::loadPluginsFromDirectory()

The C version OpenMM_Platform_loadPluginsFromDirectory() returns a

heap-allocated OpenMM_StringArray object containing a list of all the file names

that were successfully loaded. You must then explicitly destroy this StringArray

object when you are done with it. Do not ignore the return value; if you do you’ll have
a memory leak since the StringArray will still be allocated.

(In the C++ API, the equivalent methods return references into existing memory rather than

new heap-allocated memory, so the returned objects do not need to be destroyed.)

12.1.4 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the C
API provides an explicit definition for the C OpenMM_Vec3 type that is compatible with the

OpenMM::Vec3 type. The definition of OpenMM_Vec3 is:
typedef struct {double x, y, z;} OpenMM_Vec3;

You can work directly with the individual fields of this type from your C program if you want.

For convenience, a scale() function is provided that creates a new OpenMM_Vec3 from an

old one and a scale factor:
OpenMM_Vec3 OpenMM_Vec3_scale(const OpenMM_Vec3 vec, double scale);

12.1.5 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to

manipulate arrays of objects. These don’t have direct equivalents in C, so we supply special

124

array types for each kind of object for which OpenMM creates containers. These are: string,

double, Vec3, bond, and parameter map. See Table 12.1 for the names of the C types for each

of these object arrays. Each of the array types provides these functions (prefixed by
OpenMM_ and the actual Thing name), with the syntax shown conceptually since it differs

slightly for each kind of object.

ThingArray* create(int size) Create a heap-allocated array of Things, with
space pre-allocated to hold size of them.
You can start at size==0 if you want since
these arrays are dynamically resizeable.

void destroy(ThingArray*) Free the heap space that is currently in use
for the passed-in array of Things.

int getSize(ThingArray*) Return the current number of Things in this
array. This means you can get() and set()
elements up to getSize()-1.

void resize(ThingArray*,int size) Change the size of this array to the indicated
value which may be smaller or larger than
the current size. Existing elements remain in
their same locations as long as they still fit.

void append(ThingArray*,Thing) Add a Thing to the end of the array,
increasing the array size by one. The precise
syntax depends on the actual type of Thing;
see below.

void set(ThingArray*,
 int index,Thing)

Store a copy of Thing in the indicated
element of the array (indexed from 0). The
array must be of length at least index+1;
you can’t grow the array with this function.

Thing get(ThingArray*,
 int index)

Retrieve a particular element from the array
(indexed from 0). (For some Things the
value is returned in arguments rather than as
the function return.)

Table	 12.2:	 Generic	 description	 of	 array	 helper	 types	

Here are the exact declarations with deviations from the generic description noted, for each

of the array types.

12.1.5.1 OpenMM_DoubleArray
OpenMM_DoubleArray*
 OpenMM_DoubleArray_create(int size);
void OpenMM_DoubleArray_destroy(OpenMM_DoubleArray*);
int OpenMM_DoubleArray_getSize(const OpenMM_DoubleArray*);
void OpenMM_DoubleArray_resize(OpenMM_DoubleArray*, int size);
void OpenMM_DoubleArray_append(OpenMM_DoubleArray*, double value);
void OpenMM_DoubleArray_set(OpenMM_DoubleArray*, int index, double value);
double OpenMM_DoubleArray_get(const OpenMM_DoubleArray*, int index);

125

12.1.5.2 OpenMM_StringArray
OpenMM_StringArray*
 OpenMM_StringArray_create(int size);
void OpenMM_StringArray_destroy(OpenMM_StringArray*);
int OpenMM_StringArray_getSize(const OpenMM_StringArray*);
void OpenMM_StringArray_resize(OpenMM_StringArray*, int size);
void OpenMM_StringArray_append(OpenMM_StringArray*, const char* string);
void OpenMM_StringArray_set(OpenMM_StringArray*, int index, const char* string);
const char* OpenMM_StringArray_get(const OpenMM_StringArray*, int index);

12.1.5.3 OpenMM_Vec3Array
OpenMM_Vec3Array*
 OpenMM_Vec3Array_create(int size);
void OpenMM_Vec3Array_destroy(OpenMM_Vec3Array*);
int OpenMM_Vec3Array_getSize(const OpenMM_Vec3Array*);
void OpenMM_Vec3Array_resize(OpenMM_Vec3Array*, int size);
void OpenMM_Vec3Array_append(OpenMM_Vec3Array*, const OpenMM_Vec3 vec);
void OpenMM_Vec3Array_set(OpenMM_Vec3Array*, int index, const OpenMM_Vec3 vec);
const OpenMM_Vec3*
 OpenMM_Vec3Array_get(const OpenMM_Vec3Array*, int index);

12.1.5.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method

returns those in a pair of final arguments rather than as its functional return.
OpenMM_BondArray*
 OpenMM_BondArray_create(int size);
void OpenMM_BondArray_destroy(OpenMM_BondArray*);
int OpenMM_BondArray_getSize(const OpenMM_BondArray*);
void OpenMM_BondArray_resize(OpenMM_BondArray*, int size);
void OpenMM_BondArray_append(OpenMM_BondArray*, int particle1, int particle2);
void OpenMM_BondArray_set(OpenMM_BondArray*, int index, int particle1, int particle2);
void OpenMM_BondArray_get(const OpenMM_BondArray*, int index,
 int* particle1, int* particle2);

12.1.5.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available.

Also, note that since this is actually a map rather than an array, the “index” is the name of

the parameter rather than its ordinal.

int OpenMM_ParameterArray_getSize(const OpenMM_ParameterArray*);
double OpenMM_ParameterArray_get(const OpenMM_ParameterArray*, const char* name);

12.2 Fortran 95 API

126

Before you start writing your own Fortran program that calls OpenMM, be sure you can

build and run the two Fortran examples that are supplied with OpenMM (see Chapter 10).
These can be built from the supplied Makefile on Linux and Mac, or supplied NMakefile

and Visual Studio solution files on Windows.

The example programs are HelloArgonInFortran and

HelloSodiumChlorideInFortran. The argon example serves as a quick check that your

installation is set up properly and you know how to build a Fortran program that is linked

with OpenMM. It will also tell you whether OpenMM is executing on the GPU or is running

(slowly) on the Reference platform. However, the argon example is not a good template to

follow for your own programs. The sodium chloride example, though necessarily simplified,

is structured roughly in the way we recommended you set up your own programs to call

OpenMM. Please be sure you have both of these programs executing successfully on your

machine before continuing.

12.2.1 Mechanics of using the Fortran API

The Fortran API is generated automatically from the C++ API when OpenMM is built. There

are two resulting components: Fortran bindings (subroutines to call), and Fortran

declarations of types and subroutines (in the form of a Fortran 95 module file). The Fortran

bindings are small interface subroutines, one for every method of every OpenMM class,

whose signatures (name and arguments) are predictable from the class name and method

signatures. There are also “helper” types and subroutines provided for the few cases in which

the C++ behavior cannot be directly mapped into Fortran. These interface and helper

subroutines are compiled in to the main OpenMM library so there is nothing special you

have to do to get access to them.

Because Fortran is case-insensitive, calls to Fortran subroutines (however capitalized) are

mapped by the compiler into all-lowercase or all-uppercase names, and different compilers

use different conventions. The automatically-generated OpenMM Fortran “wrapper”

subroutines, which are generated in C and thus case-sensitive, are provided in two forms for

compatibility with the majority of Fortran compilers, including Intel Fortran and gfortran.

The two forms are: (1) all-lowercase with a trailing underscore, and (2) all-uppercase

127

without a trailing underscore. So regardless of the Fortran compiler you are using, it should

find a suitable subroutine to call in the main OpenMM library.

In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated module file OpenMMFortranModule.f90 that must be compiled along with any

Fortran program that is to make calls to OpenMM functions. (You can look at the Makefile

or Visual Studio solution file provided with the OpenMM examples to see how to build a

program that uses this module file.) This module file contains definitions for two modules:
MODULE OpenMM_Types and MODULE OpenMM; however, only the OpenMM module will

appear in user programs (it references the other module internally). The modules contain

declarations for all the OpenMM Fortran interface subroutines, related types, and

parameters (constants). Note that if you follow our suggested structure, you will not need to
use the OpenMM module in your main() compilation unit but can instead use it only in a

local file that you write to provide a simple interface to your existing code (see Chapter 10).

12.2.2 Mapping from the C++ API to the Fortran API

The automated generator of the Fortran “wrappers” follows the translation strategy shown in

Table 12.3. The idea is that if you see the construct on the left in the C++ API

documentation, you should interpret it as the corresponding construct on the right in

Fortran. Please look at the supplied example programs to see how this is done in practice.
Note that all subroutines and modules are declared with “implicit none”, meaning that

the type of every symbol is declared explicitly and should not be inferred from the first letter

of the symbol name.

128

C++	 API	 declaration	 Equivalent	 in	 Fortran	 API	
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName type (OpenMM_ClassName)
constant OpenMM::RadiansPerDeg parameter (OpenMM_RadiansPerDeg)
class enum OpenMM::State::Positions parameter (OpenMM_State_Positions)

constructor
new OpenMM::ClassName() type (OpenMM_ClassName) thing

call OpenMM_ClassName_create(thing)
(addl. constructors are _create_2(), etc.)

destructor OpenMM::ClassName* thing;
delete thing;

type (OpenMM_ClassName) thing
call OpenMM_ClassName_destroy(thing)

class
method

OpenMM::ClassName* thing;
thing->someName(args)

type (OpenMM_ClassName) thing
call OpenMM_ClassName_someName
 (thing, args)

Boolean
type
& constants

bool
true, false

integer*4
parameter (OpenMM_True=1)
parameter (OpenMM_False=0)

string std::string character(*)
3-vector OpenMM::Vec3 real*8 vec(3)

arrays

std::vector<std::string>
std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string,double>

type (OpenMM_StringArray)
type (OpenMM_DoubleArray)
type (OpenMM_Vec3Array)
type (OpenMM_BondArray)
type (OpenMM_ParameterArray)

Table	 12.3:	 Default	 mapping	 of	 objects	 from	 the	 C++	 API	 to	 the	 Fortran	 API	

Because there are no C++ API equivalents to the array types, they are described in detail

below.

12.2.3 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the
Fortran API uses an ordinary real*8(3) array in place of the OpenMM::Vec3 type. The

You can work directly with the individual elements of this type from your Fortran program if
you want. For convenience, a scale() function is provided that creates a new Vec3 from an

old one and a scale factor:

subroutine OpenMM_Vec3_scale(vec, scale, result)
real*8 vec(3), scale, result(3)

No explicit type(OpenMM_Vec3) is provided in the Fortran API since it is not needed.

12.2.4 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to

manipulate arrays of objects. These don’t have direct equivalents in Fortran, so we supply

129

special array types for each kind of object for which OpenMM creates containers. These are:

string, double, Vec3, bond, and parameter map. See Table 12.3 for the names of the Fortran

types for each of these object arrays. Each of the array types provides these functions
(prefixed by OpenMM_ and the actual Thing name), with the syntax shown conceptually since

it differs slightly for each kind of object.

subroutine create(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Create a heap-allocated array of Things, with
space pre-allocated to hold size of them.
You can start at size==0 if you want since
these arrays are dynamically resizeable.

subroutine destroy(array)
type (OpenMM_ThingArray) array

Free the heap space that is currently in use
for the passed-in array of Things.

function getSize(array)
type (OpenMM_ThingArray) array
integer*4 getSize

Return the current number of Things in this
array. This means you can get() and set()
elements up to getSize().

subroutine resize(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Change the size of this array to the indicated
value which may be smaller or larger than
the current size. Existing elements remain in
their same locations as long as they still fit.

subroutine append(array,elt)
type (OpenMM_ThingArray) array
Thing elt

Add a Thing to the end of the array,
increasing the array size by one. The precise
syntax depends on the actual type of Thing;
see below.

subroutine set(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 index
Thing elt

Store a copy of elt in the indicated element
of the array (indexed from 1). The array must
be of length at least index; you can’t grow
the array with this function.

subroutine get(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 index
Thing elt

Retrieve a particular element from the array
(indexed from 1). Some Things require more
than one argument to return.

Table	 12.4:	 Generic	 description	 of	 array	 helper	 types	

Here are the exact declarations with deviations from the generic description noted, for each

of the array types.

12.2.4.1 OpenMM_DoubleArray
 subroutine OpenMM_DoubleArray_create(array, size)
 integer*4 size
 type (OpenMM_DoubleArray) array
 subroutine OpenMM_DoubleArray_destroy(array)
 type (OpenMM_DoubleArray) array

130

 function OpenMM_DoubleArray_getSize(array)
 type (OpenMM_DoubleArray) array
 integer*4 OpenMM_DoubleArray_getSize
 subroutine OpenMM_DoubleArray_resize(array, size)
 type (OpenMM_DoubleArray) array
 integer*4 size
 subroutine OpenMM_DoubleArray_append(array, value)
 type (OpenMM_DoubleArray) array
 real*8 value
 subroutine OpenMM_DoubleArray_set(array, index, value)
 type (OpenMM_DoubleArray) array
 integer*4 index
 real*8 value
 subroutine OpenMM_DoubleArray_get(array, index, value)
 type (OpenMM_DoubleArray) array
 integer*4 index
 real*8 value

12.2.4.2 OpenMM_StringArray
 subroutine OpenMM_StringArray_create(array, size)
 integer*4 size
 type (OpenMM_StringArray) array
 subroutine OpenMM_StringArray_destroy(array)
 type (OpenMM_StringArray) array
 function OpenMM_StringArray_getSize(array)
 type (OpenMM_StringArray) array
 integer*4 OpenMM_StringArray_getSize
 subroutine OpenMM_StringArray_resize(array, size)
 type (OpenMM_StringArray) array
 integer*4 size
 subroutine OpenMM_StringArray_append(array, str)
 type (OpenMM_StringArray) array
 character(*) str
 subroutine OpenMM_StringArray_set(array, index, str)
 type (OpenMM_StringArray) array
 integer*4 index
 character(*) str
 subroutine OpenMM_StringArray_get(array, index, str)
 type (OpenMM_StringArray) array
 integer*4 index
 character(*)str

12.2.4.3 OpenMM_Vec3Array
 subroutine OpenMM_Vec3Array_create(array, size)
 integer*4 size
 type (OpenMM_Vec3Array) array
 subroutine OpenMM_Vec3Array_destroy(array)
 type (OpenMM_Vec3Array) array
 function OpenMM_Vec3Array_getSize(array)
 type (OpenMM_Vec3Array) array
 integer*4 OpenMM_Vec3Array_getSize
 subroutine OpenMM_Vec3Array_resize(array, size)
 type (OpenMM_Vec3Array) array
 integer*4 size
 subroutine OpenMM_Vec3Array_append(array, vec)
 type (OpenMM_Vec3Array) array
 real*8 vec(3)
 subroutine OpenMM_Vec3Array_set(array, index, vec)
 type (OpenMM_Vec3Array) array
 integer*4 index
 real*8 vec(3)
 subroutine OpenMM_Vec3Array_get(array, index, vec)
 type (OpenMM_Vec3Array) array
 integer*4 index
 real*8 vec (3)

131

12.2.4.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method

returns those in a pair of final arguments rather than as its functional return.

 subroutine OpenMM_BondArray_create(array, size)
 integer*4 size
 type (OpenMM_BondArray) array
 subroutine OpenMM_BondArray_destroy(array)
 type (OpenMM_BondArray) array
 function OpenMM_BondArray_getSize(array)
 type (OpenMM_BondArray) array
 integer*4 OpenMM_BondArray_getSize
 subroutine OpenMM_BondArray_resize(array, size)
 type (OpenMM_BondArray) array
 integer*4 size
 subroutine OpenMM_BondArray_append(array, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 particle1, particle2
 subroutine OpenMM_BondArray_set(array, index, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 index, particle1, particle2
 subroutine OpenMM_BondArray_get(array, index, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 index, particle1, particle2

12.2.4.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available.

Also, note that since this is actually a map rather than an array, the “index” is the name of

the parameter rather than its ordinal.

 function OpenMM_ParameterArray_getSize(array)
 type (OpenMM_ParameterArray) array
 integer*4 OpenMM_ParameterArray_getSize
 subroutine OpenMM_ParameterArray_get(array, name, param)
 type (OpenMM_ParameterArray) array
 character(*) name
 character(*) param

12.3 Python API

12.3.1 Installing the Python API

There are currently two types of packages for installing the Python API. One contains

wrapper source code for Unix-type machines (including Linux and Mac operating systems).

You will need a C++ compiler to install it using this type of package. The other type of

132

installation package is a binary package which contains compiled wrapper code for Windows

machines (no compilers are needed to install binary packages).

12.3.1.1 Installing on Windows

OpenMM only works with Python 2.6 or 2.7, so make sure that one of those versions is

installed before you try installing. For Python installation packages and instructions, go to

http://python.org. Note that if you have a 64-bit machine, you should still install the 32-bit

version of Python since the OpenMM Python API binary is 32-bit. We suggest that you

install Python using the default options.

Double click on the Python API Installer icon, located in the top level directory for the

OpenMM installation (by default, this is C:\Program Files\OpenMM). This will install the

OpenMM package into the Python installation area. If you have more than one Python

installation, you will be asked which Python to use—make sure to select Python 2.6 or 2.7.

12.3.1.2 Installing on Linux and Mac

Make sure you have Python 2.6 or later installed. For Python installation packages and

instructions, go to http://python.org. If you do not have the correct Python version, install a

valid version using the default options. Most versions of Linux and Mac OS X have a
suitable Python preinstalled. You can check by typing “python --version” in a terminal

window.

You must have a C++ compiler to install the OpenMM Python API. If you are using a Mac,

install Apple's Xcode development tools (http://developer.apple.com/TOOLS/Xcode) to get

the needed compiler. On other Unix-type systems, install gcc-c++ (version 4.0 or later).

The install.sh script installs the Python API automatically as part of the installation process,

so you probably already have it installed. If for some reason you need to install it manually,
you can do that with the setup.py script included with OpenMM. Before executing this

script, you must set two environment variables: OPENMM_INCLUDE_PATH must point to the

directory containing OpenMM header files, and OPENMM_LIB_PATH must point to the

directory containing OpenMM library files. Assuming OpenMM is installed in the default
location (/usr/local/openmm), you would type the following commands. Note that if you

133

are using the system Python (as opposed to a locally installed version), you may need to run
the Python installation process as a superuser using the sudo command:

export OPENMM_INCLUDE_PATH=/usr/local/openmm/include
export OPENMM_LIB_PATH=/usr/local/openmm/lib
python setup.py build
python setup.py install OR sudo python setup.py install

If you are compiling OpenMM from source, you can also install by building the

“PythonInstall” target:

make PythonInstall OR sudo make PythonInstall

12.3.2 Mapping from the C++ API to the Python API

The Python API follows the C++ API as closely as possible. There are three notable

differences:

1) The getState() method in the Context class takes Pythonic-type arguments to

indicate which state variables should be made available. For example:

myContext.getState(getEnergy=True, getForce=False, …)

2) Wherever the C++ API uses references to return multiple values from a method, the

Python API returns a tuple. For example, in C++ you would query a

HarmonicBondForce for a bond’s parameters as follows:

int particle1, particle2;

double length, k;

f.getBondParameters(i, particle1, particle2, length, k);

In Python, the equivalent code is:

[particle1, particle2, length, k] = f.getBondParameters(i)

3) Unlike C++, the Python API accepts and returns quantities with units attached to

most values (see the “Units and dimensional analysis” section below for details). In

134

short, this means that while values in C++ have implicit units, the Python API
returns objects that have values and explicit units.

12.3.3 Mechanics of using the Python API

When using the Python API, be sure to include the OpenMM and GPU support libraries in

your library path, just as you would for a C++ application. This is set with the
LD_LIBRARY_PATH environment variable on Linux, DYLD_LIBRARY_PATH on Mac, or

PATH on Windows. See sections Error! Reference source not found. and Error!

Reference source not found. for details.

The Python API is contained in the simtk.openmm package, while the units code is

contained in the simtk.units package. (The application layer, described in the Application

Guide, is contained in the simtk.openmm.app package.) A program using it will therefore

typically begin

import simtk.openmm as mm

import simtk.unit as unit

Creating and using OpenMM objects is then done exactly as in C++:

system = mm.System()

nb = mm.NonbondedForce()

nb.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)

nb.setCutoffDistance(1.2*unit.nanometer)

system.addForce(nb)

Note that when setting the cutoff distance, we explicitly specify that it is in nanometers. We

could just as easily specify it in different units:

nb.setCutoffDistance(12*unit.angstrom)

The use of units in OpenMM is discussed in the next section.

135

12.3.4 Units and dimensional analysis

12.3.4.1 Why does the Python API include units?

The C++ API for OpenMM uses an implicit set of units for physical quantities such as

lengths, masses, energies, etc. These units are based on daltons, nanometers, and

picoseconds for the mass, length, and time dimensions, respectively. When using the C++

API, it is very important to ensure that quantities being manipulated are always expressed in

terms of these units. For example, if you read in a distance in Angstroms, you must multiply

that distance by a conversion factor to turn it into nanometers before using it in the C++

API. Such conversions can be a source of tedium and errors. This is true in many areas of

scientific programming. Units confusion was blamed for the loss of the Mars Climate

Orbiter spacecraft in 1999, at a cost of more than $100 million. Units were introduced in the

Python API to minimize the chance of such errors.

The Python API addresses the potential problem of conversion errors by using quantities

with explicit units. If a particular distance is expressed in Angstroms, the Python API will

know that it is in Angstroms. When the time comes to call the C++ API, it will understand

that the quantity must be converted to nanometers. You, the programmer, must declare

upfront that the quantity is in Angstrom units, and the API will take care of the details from

then on. Using explicit units is a bit like brushing your teeth: it requires some effort upfront,

but it probably saves you trouble in the long run.

12.3.4.2 Quantities, units, and dimensions

The explicit unit system is based on three concepts: Dimensions, Units, and Quantities.

Dimensions are measurable physical concepts such as mass, length, time, and energy.

Energy is actually a composite dimension based on mass, length, and time.

A Unit defines a linear scale used to measure amounts of a particular physical Dimension.

Examples of units include meters, seconds, joules, inches, and grams.

A Quantity is a specific amount of a physical Dimension. An example of a quantity is “0.63

kilograms”. A Quantity is expressed as a combination of a value (e.g., 0.63), and a Unit (e.g.,

kilogram). The same Quantity can be expressed in different Units.

136

The set of BaseDimensions defined in the simtk.unit module includes:

• mass

• length

• time

• temperature

• amount

• charge

• luminous intensity

• angle

These are not precisely the same list of base dimensions used in the SI unit system. SI

defines “current” (charge per time) as a base unit, while simtk.unit uses “charge”. And

simtk.unit treats angle as a dimension, even though angle quantities are often considered

dimensionless. In this case, we choose to err on the side of explicitness, particularly because

interconversion of degrees and radians is a frequent source of unit headaches.

12.3.4.3 Units examples

Many common units are defined in the simtk.unit module.

from simtk.unit import nanometer, angstrom, dalton

Sometimes you don’t want to type the full unit name every time, so you can assign it a
shorter name using the as functionality:

from simtk.unit import nanometer as nm

New quantities can be created from a value and a unit. You can use either the multiply

operator (‘*’) or the explicit Quantity constructor:

from simk.unit import nanometer, Quantity

construct a Quantity using the multiply operator

bond_length = 1.53 * nanometer

137

equivalently using the explicit Quantity constructor

bond_length = Quantity(1.53, nanometer)

or more verbosely

bond_length = Quantity(value=1.53, unit=nanometer)

12.3.4.4 Arithmetic with units

Addition and subtraction of quantities is only permitted between quantities that share the

same dimension. It makes no sense to add a mass to a distance. If you attempt to add or

subtract two quantities with different dimensions, an exception will be raised. This is a good

thing; it helps you avoid errors.

x = 5.0*dalton + 4.3*nanometer; # error

Addition or subtraction of quantities with the same dimension, but different units, is fine,

and results in a new quantity created using the correct conversion factor between the units

used.

x = 1.3*nanometer + 5.6*angstrom; # OK, result in nanometers

Quantities can be added and subtracted. Naked Units cannot.

Multiplying or dividing two quantities creates a new quantity with a composite dimension.

For example, dividing a distance by a time results in a velocity.

from simtk.unit import kilogram, meter, second

a = 9.8 * meter / second**2; # acceleration

m = 0.36 * kilogram; # mass

F = m * a; # force in kg*m/s**2

Multiplication or division of two Units results in a composite Unit.

mps = meter / second

138

Unlike amount (moles), angle (radians) is arguably dimensionless. But

simtk.unit treats angle as another dimension. Use the trigonometric functions from the

simtk.unit module (not those from the Python math module!) when dealing with Units and

Quantities.

from simtk.unit import sin, cos, acos

x = sin(90.0*degrees)

angle = acos(0.68); # returns an angle quantity (in radians)

The method pow() is a built-in Python method that works with Quantities and Units.

area = pow(3.0*meter, 2)

or, equivalently

area = (3.0*meter)**2

or

area = 9.0*(meter**2)

The method sqrt() is not as built-in as pow(). Do not use the Python math.sqrt()

method with Units and Quantities. Use the simtk.unit.sqrt() method instead:

from simtk.unit import sqrt

side_length = sqrt(4.0*meter**2)

12.3.4.5 Atomic scale mass and energy units are “per amount”

Mass and energy units at the atomic scale are specified “per amount” in the simtk.unit

module. Amount (mole) is one of the seven fundamental dimensions in the SI unit system.

The atomic scale mass unit, dalton, is defined as grams per mole. The dimension of dalton is

therefore mass/amount, instead of simply mass. Similarly, the atomic scale energy unit,

kilojoule_per_mole (and kilocalorie_per_mole) has “per amount” in its dimension. Be

careful to always use “per amount” mass and energy types at the atomic scale, and your

dimensional analysis should work out properly.

139

The energy unit kilocalories_per_mole does not have the same Dimension as the

macroscopic energy unit kilocalories. Molecular scientists sometimes use the word

"kilocalories" when they mean "kilocalories per mole". Use "kilocalories per mole" or

"kilojoules per mole" for molecular energies. Use "kilocalories" for the metabolic energy

content of your lunch. The energy unit kilojoule_per_mole happens to go naturally with the

units nanometer, picoseconds, and dalton. This is because 1 kilojoule/mole happens to be

equal to 1 gram-nanometer2/mole-picosecond2, and is therefore consistent with the

molecular dynamics unit system used in the C++ OpenMM API.

 These "per mole" units are what you should be using for molecular calculations, as long as

you are using SI / cgs / calorie sorts of units.

12.3.4.6 SI prefixes

Many units with SI prefixes such as “milligram” (milli) and “kilometer” (kilo) are provided in

the simtk.unit module. Others can be created by multiplying a prefix symbol by a non-

prefixed unit:

from simtk.unit import mega, kelvin

megakelvin = mega * kelvin

t = 8.3 * megakelvin

Only grams and meters get all of the SI prefixes (from yotto-(10-24) to yotta-(1024))

automatically.

12.3.4.7 Converting to different units

Use the Quantity.in_units_of() method to create a new Quantity with different units.

from simtk.unit import nanosecond, fortnight

x = (175000*nanosecond).in_units_of(fortnight)

When you want a plain number out of a Quantity, use the value_in_unit() method:

140

from simtk.unit import femtosecond, picosecond

t = 5.0*femtosecond

t_just_a_number = t.value_in_unit(picoseconds)

Using value_in_unit() puts the responsibility for unit analysis back into your hands, and

it should be avoided. It is sometimes necessary, however, when you are called upon to use a

non-units-aware Python API.

12.3.4.8 Lists, tuples, vectors, numpy arrays, and Units

Units can be attached to containers of numbers to create a vector quantity. The simtk.unit
module overloads the __setitem__ and __getitem__ methods for these containers to

ensure that Quantities go in and out.

>>> a = Vec3(1,2,3) * nanometers

>>> print a

(1, 2, 3) nm

>>> print a.in_units_of(angstroms)

(10.0, 20.0, 30.0) A

>>> s2 = [[1,2,3],[4,5,6]] * centimeter

>>> print s2

[[1, 2, 3], [4, 5, 6]] cm

>>> print s2 / millimeter

[[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]]

>>> import numpy

>>> a = Quantity(numpy.array([1,2,3]), centimeter)

>>> print a

[1 2 3] cm

>>> print a / millimeter

[10. 20. 30.]

141

Converting a whole list to different units at once is much faster than converting each element

individually. For example, consider the following code that prints out the position of every

particle in a State, as measured in Angstroms:

for v in state.getPositions():

 print v.value_in_unit(angstrom)

This can be rewritten as follows:

for v in state.getPositions().value_in_unit(angstrom):

 print v

The two versions produce identical results, but the second one will run faster, and therefore

is preferred.

13 Examples of OpenMM
Integration

13.1 GROMACS

GROMACS is a large, complex application written primarily in C. The considerations

involved in adapting it to use OpenMM are likely to be similar to those faced by developers

of other existing applications.

The first principle we followed in adapting GROMACS was to keep all OpenMM-related code

isolated to just a few files, while modifying as little of the existing GROMACS code as

possible. This minimized the risk of breaking existing parts of the code, while making the

OpenMM-related parts as easy to work with as possible. It also minimized the need for C

code to invoke the C++ API. (This would not be an issue if we used the OpenMM C API

wrapper, but that is less convenient than the C++ API, and placing all of the OpenMM calls

into separate C++ files solves the problem equally well.) Nearly all of the OpenMM-specific

code is contained in a single file, openmm_wrapper.cpp. It defines four functions which

encapsulate all of the interaction between OpenMM and the rest of GROMACS:

openmm_init(): As arguments, this function takes pointers to lots of internal GROMACS

data structures that describe the simulation to be run. It creates a System, Integrator, and

Context based on them, then returns an opaque reference to an object containing them.

That reference is an input argument to all of the other functions defined in

openmm_wrapper.cpp. This allows information to be passed between those functions

without exposing it to the rest of GROMACS.

openmm_take_one_step(): This calls step(1) on the Integrator that was created by

openmm_init().

143

openmm_copy_state(): This calls getState() on the Context that was created by

openmm_init(), and then copies information from the resulting State into various

GROMACS data structures. This function is how state data generated by OpenMM is passed

back to GROMACS for output, analysis, etc.

openmm_cleanup(): This is called at the end of the simulation. It deletes all the objects

that were created by openmm_init().

This set of functions defines the interactions between GROMACS and OpenMM: copying

information from the application to OpenMM, performing integration, copying information

from OpenMM back to the application, and freeing resources at the end of the simulation.

While the details of their implementations are specific to GROMACS, this overall pattern is

fairly generic. A similar set of functions can be used for many other applications as well.

13.2 TINKER-OpenMM

TINKER is written primarily in Fortran, and uses common blocks extensively to store

application-wide parameters. Rather than modify the TINKER build scripts to allow C++

code, it was decided to use the OpenMM C API instead. Despite these differences, the

overall approach used to add OpenMM support was very similar to that used for GROMACS.

TINKER-OpenMM allows OpenMM to be used to calculate forces and energies and to

perform the integration in the main molecular dynamics loop. The only changes to the

TINKER source code are in the file dynamic.f for the setup and running of a simulation.

An added file, dynamic_openmm.c, contains the interface C code between TINKER and

OpenMM.

The flow of the molecular dynamics simulation using OpenMM is as follows:

1. The TINKER code is used to read the AMOEBA parameter file, the *.xyz

and *.key files. It then parses the command-line options.

144

2. The routine map_common_blocks_to_c_data_structs() is called to

map the FORTRAN common blocks to C data structures used in setting the

parameters used by OpenMM.

3. The routine openmm_validate() is called from dynamic.f before the

main loop. This routine checks that all required options and settings

obtained from the input in step (1) and common blocks in step (2) are

available. If an option or setting is unsupported, the program exits with an
appropriate message. The routine openmm_validate() and the other

OpenMM interface methods are in the file dynamic_openmm.c.

4. openmm_init() is called to create the OpenMM System, Integrator and

Context objects..

5. openmm_take_steps() is called to take a specified number of time steps.

6. openmm_update() is then called to retrieve the state

(energies/positions/velocities) and populate the appropriate TINKER data

structures. These values are converted from the OpenMM units of kJ/nm to

kcal/Å	 when populating the TINKER arrays.

7. Once the main loop has completed, the routine openmm_cleanup() is called

to delete the OpenMM objects and release resources being used on the GPU.

14 Testing and Validation of
OpenMM

The goal of testing and validation is to make sure that OpenMM works correctly. That

means that it runs without crashing or otherwise failing, and that it produces correct results.

Furthermore, it must work correctly on a variety of hardware platforms (e.g. different

models of GPU), software platforms (e.g. operating systems and OpenCL implementations),

and types of simulations.

Three types of tests are used to validate OpenMM:

• Unit tests: These are small tests designed to test specific features or pieces of code

in isolation. For example, a test of HarmonicBondForce might create a System with

just a few particles and bonds, compute the forces and energy, and compare them to

the analytically expected values. There are thousands of unit tests that collectively

cover all of OpenMM.

• System tests: Whereas unit tests validate small features in isolation, system tests

are designed to validate the entire library as a whole. They simulate realistic models

of biomolecules and perform tests that are likely to fail if any problem exists

anywhere in the library.

• Direct comparison between OpenMM and other programs: The third type

of validation performed is a direct comparison of the individual forces computed by

OpenMM to those computed by other programs for a collection of biomolecules.

	

Each type of test is outlined in greater detail below; a discussion of the current status of the

tests is then given.

146

	

14.1 Description of Tests

14.1.1 Unit tests

The unit tests are with the source code, so if you build from source you can run them

yourself. See Section 9.7 for details. When you run the tests (for example, by typing “make

test” on Linux or Mac), it should produce output something like this:

 Start 1: TestReferenceAndersenThermostat

 1/317 Test #1: TestReferenceAndersenThermostat Passed 0.26 sec

 Start 2: TestReferenceBrownianIntegrator

 2/317 Test #2: TestReferenceBrownianIntegrator Passed 0.13 sec

 Start 3: TestReferenceCheckpoints

 3/317 Test #3: TestReferenceCheckpoints Passed 0.02 sec

 ... <many other tests> ...

Each line represents a test suite, which may contain multiple unit tests. If all tests within a

suite passed, it prints the word “Passed” and how long the suite took to execute. Otherwise it

prints an error message. If any tests failed, you can then run them individually (each one is

a separate executable) to get more details on what went wrong.

14.1.2 System tests

Several different types of system tests are performed. Each type is run for a variety of

systems, including both proteins and nucleic acids, and involving both implicit and explicit

solvent. The full suite of tests is repeated for both the CUDA and OpenCL platforms, using

both single and double precision (and for the integration tests, mixed precision as well), on a

variety of operating systems and hardware. There are four types of tests:

• Consistency between platforms: The forces and energy are computed using the

platform being tested, then compared to ones computed with the Reference platform.

The results are required to agree to within a small tolerance.

147

• Energy-force consistency: This verifies that the force really is the gradient of the

energy. It first computes the vector of forces for a given conformation. It then

generates four other conformations by displacing the particle positions by small

amounts along the force direction. It computes the energy of each one, uses those to

calculate a fourth order finite difference approximation to the derivative along that

direction, and compares it to the actual forces. They are required to agree to within a

small tolerance.

• Energy conservation: The system is simulated at constant energy using a Verlet

integrator, and the total energy is periodically recorded. A linear regression is used

to estimate the rate of energy drift. In addition, all constrained distances are

monitored during the simulation to make sure they never differ from the expected

values by more than the constraint tolerance.

• Thermostability: The system is simulated at constant temperature using a

Langevin integrator. The mean kinetic energy over the course of the simulation is

computed and compared to the expected value based on the temperature. In

addition, all constrained distances are monitored during the simulation to make sure

they never differ from the expected values by more than the constraint tolerance.

If you want to run the system tests yourself, they can be found in the Subversion repository

at https://simtk.org/svn/pyopenmm/trunk/test/system-tests. Check out that directory,

then execute the runAllTests.sh shell script. It will create a series of files with detailed

information about the results of the tests. Be aware that running the full test suite may take

a long time (possibly several days) depending on the speed of your GPU.

14.1.3 Direct comparisons between OpenMM and other programs

As a final check, identical systems are set up in OpenMM and in another program (Gromacs

4.5 or Tinker 6.1), each one is used to compute the forces on atoms, and the results are

directly compared to each other.

14.2 Test Results

148

In this section, we highlight the major results obtained from the tests described above. They

are not exhaustive, but should give a reasonable idea of the level of accuracy you can expect

from OpenMM.

14.2.1 Comparison to Reference Platform

The differences between forces computed with the Reference platform and those computed

with the OpenCL or CUDA platform are shown in Table 14.1. For every atom, the relative

difference between platforms was computed as 2·|Fref–Ftest|/(|Fref|+|Ftest|), where Fref is the

force computed by the Reference platform and Ftest is the force computed by the platform

being tested (OpenCL or CUDA). The median over all atoms in a given system was

computed to estimate the typical force errors for that system. Finally, the median of those

values for all test systems was computed to give the value shown in the table.

Table	 14.1:	 	 Median	 relative	 difference	 in	 forces	 between	 Reference	 platform	 and	
OpenCL/CUDA	 platform	

Median Relative Difference

Force
OpenCL

(single)

OpenCL

(double)

CUDA

(single)

CUDA

(double)

Total Force 2.55·10-6 1.44·10-7 2.56·10-6 8.78·10-8

HarmonicBondForce 2.88·10-6 1.57e·10-13 2.88·10-6 1.57·10-13

HarmonicAngleForce 2.25·10-5 4.21·10-7 2.27·10-5 4.21·10-7

PeriodicTorsionForce 8.23·10-7 2.44·10-7 9.27·10-7 2.56·10-7

RBTorsionForce 4.86·10-6 1.46·10-7 4.72·10-6 1.40·10-8

NonbondedForce (no cutoff) 1.49·10-6 6.49·10-8 1.49·10-6 6.49·10-8

NonbondedForce (cutoff, nonperiodic) 9.74·10-7 4.88·10-9 9.73·10-7 4.88·10-9

NonbondedForce (cutoff, periodic) 9.82·10-7 4.88·10-9 9.80·10-7 4.88·10-9

NonbondedForce (Ewald) 2.95·10-6 5.22·10-9 2.96·10-6 5.22·10-9

NonbondedForce (PME) 4.01·10-5 4.08·10-6 4.02·10-5 4.08·10-6

GBSAOBCForce (no cutoff) 2.91·10-6 1.76·10-7 3.03·10-6 9.40·10-8

GBSAOBCForce (cutoff, nonperiodic) 2.66·10-6 1.76·10-7 2.76·10-6 9.33·10-8

GBSAOBCForce (cutoff, periodic) 2.56·10-6 1.78·10-7 2.61·10-6 9.24·10-8

149

14.2.2 Energy Conservation

Figure 14-1 shows the total system energy versus time for three simulations of ubiquitin in

OBC implicit solvent. All three simulations used the CUDA platform, a Verlet integrator, a

time step of 0.5 fs, no constraints, and no cutoff on the nonbonded interactions. They differ

only in the level of numeric precision that was used for calculations (see Chapter 11).

Figure	 14-‐1:	 Total	 energy	 versus	 time	 for	 simulations	 run	 in	 three	 different	
precision	 modes.	

For the mixed and double precision simulations, the drift in energy is almost entirely

diffusive with negligible systematic drift. The single precision simulation has a more

significant upward drift with time, though the rate of drift is still small compared to the rate

of short term fluctuations. Fitting a straight line to each curve gives a long term rate of

energy drift of 3.98 kJ/mole/ns for single precision, 0.217 kJ/mole/ns for mixed precision,

and 0.00100 kJ/mole/ns for double precision. In the more commonly reported units of

kT/ns/dof, these correspond to 4.3·10-4 for single precision, 2.3·10-5 for mixed precision, and

1.1·10-7 for double precision.

150

Be aware that different simulation parameters will give different results. These simulations

were designed to minimize all sources of error except those inherent in OpenMM. There are

other sources of error that may be significant in other situations. In particular:

• Using a larger time step increases the integration error (roughly proportional to dt2).

• If a system involves constraints, the level of error will depend strongly on the

constraint tolerance specified by the Integrator.

• When using Ewald summation or Particle Mesh Ewald, the accuracy will depend

strongly on the Ewald error tolerance.

• Applying a distance cutoff to implicit solvent calculations will increase the error, and

the shorter the cutoff is, the greater the error will be.

As a result, the rate of energy drift may be much greater in some simulations than in the

ones shown above.

14.2.3 Comparison to Gromacs

OpenMM and Gromacs 4.5.5 were each used to compute the atomic forces for dihydrofolate

reductase (DHFR) in implicit and explicit solvent. The implicit solvent calculations used the

OBC solvent model and no cutoff on nonbonded interactions. The explicit solvent

calculations used Particle Mesh Ewald and a 1 nm cutoff on direct space interactions. For
OpenMM, the Ewald error tolerance was set to 10-6. For Gromacs, fourierspacing was

set to 0.07 and ewald_rtol to 10-6. No constraints were applied to any degrees of freedom.

Both programs used single precision. The test was repeated for OpenCL and CUDA

platforms.

For every atom, the relative difference between OpenMM and Gromacs was computed as

2·|FMM–FGro|/(|FMM|+|FGro|), where FMM is the force computed by OpenMM and FGro is the

force computed by Gromacs. The median over all atoms is shown in Table 14.2

151

Median Relative Difference

Solvent Model
OpenCL CUDA

Implicit 8.03·10-6 8.08·10-6

Explicit 6.78·10-5 6.80·10-5

Table	 14.2:	 	 Median	 relative	 difference	 in	 forces	 between	 OpenMM	 and	 Gromacs	

15 AMOEBA Plugin

OpenMM 5.1 provides a plugin that implements the AMOEBA polarizable atomic multipole

force field7, 16 from Jay Ponder’s lab. The AMOEBA force field may be used through

OpenMM’s Python application layer. We have also created a modified version of TINKER

(referred to as TINKER-OpenMM here) that uses OpenMM to accelerate AMOEBA

simulations. TINKER-OpenMM can be created from a TINKER package using three files

made available through the OpenMM home page. OpenMM AMOEBA Force and System

objects containing AMOEBA forces can be serialized.

At present, AMOEBA is only supported on the CUDA and Reference platforms, not on the

OpenCL platform.

In the following sections, the individual forces and options available in the plugin are listed,

and the steps required to build and use the plugin and TINKER-OpenMM are outlined.

Validation results are also reported. Benchmarks can be found on the OpenMM wiki at

http://wiki.simtk.org/openmm/Benchmarks.

15.1 OpenMM AMOEBA Supported Forces and Options

15.1.1 Supported Forces and Options

The AMOEBA force terms implemented in OpenMM are listed in Table 15.1 along with the

supported and unsupported options. TINKER options that are not supported for any

OpenMM force include the grouping of atoms (e.g. protein chains), the infinite polymer

check, and no exclusion of particles from energy/force calculations (‘active’/’inactive’

particles). The virial is not calculated for any force.

All rotation axis types are supported: ‘Z-then-X’, ‘Bisector’, ‘Z-Bisect’, ‘3-Fold’, ‘Z-Only’.

153

TINKER Force

(key file parameter)
OpenMM Force Option/Note

ebond1(bondterm) AmoebaBondForce bndtyp='HARMONIC' supported,

'MORSE' not implemented

Eangle71(angleterm) AmoebaAngleForce angtyp='HARMONIC' and 'IN-

PLANE' supported; 'LINEAR' and

'FOURIER' not implemented

etors1a(torsionterm) PeriodicTorsionForce All options implemented; smoothing

version(etors1b) not supported

etortor1(tortorterm) AmoebaTorsionTorsionForce All options implemented

eopbend1(opbendterm) AmoebaOutOfPlaneBendForce opbtyp = 'ALLINGER' implemented;

'W-D-C' not implemented

epitors1(pitorsterm) AmoebaPiTorsionForce All options implemented

estrbnd1(strbndterm) AmoebaStretchBendForce All options implemented

ehal1a(vdwterm) AmoebaVdwForce ehal1b(LIGHTS) not supported

empole1a(mpoleterm) AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT'

supported

empole1c(mpoleterm)

PME

AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT'

supported; boundary= 'VACUUM'

unsupported

esolv1 (solvateterm) AmoebaWcaDispersionForce,

AmoebaGeneralizedKirkwoodForce

Only born-radius=’grycuk’ and

solvate=’GK’ supported; unsupported

solvate settings: ‘ASP’, ‘SASA’,

‘ONION’, ‘pb’, 'GB-HPMF’, 'Gk-

HPMF’; SASA computation is based

on ACE approximation

eurey1(ureyterm) HarmonicBondForce All options implemented

Table	 15.1:	 	 Mapping	 between	 TINKER	 and	 OpenMM	 AMOEBA	 forces	

154

Some specific details to be aware of are the following:

• Forces available in TINKER but not implemented in the OpenMM AMOEBA plugin

include the following: angle-angle, out-of-plane distance, improper dihedral,

improper torsion, stretch-torsion, charge-charge, atomwise charge-dipole, dipole-

dipole, reaction field, ligand field, restraint, scf molecular orbital calculation; strictly

speaking, these are not part of the AMOEBA force field.

• Implicit solvent in TINKER-OpenMM is implemented with key file entry ‘solvate

GK’. The entry ‘born-radius grycuk’ should also be included; only the ‘grycuk’ option

for calculating the Born radii is available in the plugin.

• In TINKER, the nonpolar cavity contribution to the solvation term is calculated using

an algorithm that does not map well to GPUs. Instead the OpenMM plugin uses the

TINKER version of the ACE approximation to estimate the cavity contribution to the

SASA.

• Calculations using the CUDA platform may be done in either single or double

precision; for the Reference platform, double precision is used. TINKER uses double

precision.

• The TINKER parameter files for the AMOEBA force-field parameters are based on

units of kilocalorie/Å, whereas OpenMM uses units of kilojoules/nanometer; both

TINKER and OpenMM use picoseconds time units. Hence, in mapping the force-field

parameters from TINKER files to OpenMM, many of the parameter values must be

converted to the OpenMM units. The setup methods in the TINKER-OpenMM

application perform the required conversions.

155

15.1.2 Supported Integrators

In addition to the limitations to the forces outlined above, TINKER-OpenMM can only use

either the ‘Verlet’ or ‘Stochastic’ integrators when the OpenMM plugin is used; an equivalent

to the TINKER ‘Beeman’ integrator is unavailable in OpenMM.

15.2 TINKER-OpenMM

15.2.1 Building TINKER-OpenMM (Linux)

Below are instructions for building TINKER-OpenMM in Linux.

1. To build and install the OpenMM plugin libraries, follow the steps outlined in

Chapter 9 (Compiling OpenMM from Source Code). You will need to set the

following options to ‘ON’ when you run CMake:

i. OPENMM_BUILD_AMOEBA_PLUGIN

ii. OPENMM_BUILD_AMOEBA_CUDA_LIB

iii. OPENMM_BUILD_CUDA_LIB

iv. OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS

2. Download the complete TINKER distribution from http://dasher.wustl.edu/ffe/ and

unzip/untar the file.

3. Obtain the modified TINKER file dynamic.f, the interface file

dynamic_openmm.c and the Makefile from the “Downloads” section of

OpenMM’s homepage (https://simtk.org/home/openmm) and place them in the

TINKER source directory. These files are compatible with TINKER 6.0.4. If you are

using later versions of TINKER, some minor edits may be required to get the

program to compile.

4. In the Makefile, edit the following fields, as needed:

a. TINKERDIR – This should point to the head of the TINKER distribution

directory, e.g., ‘/home/user/tinker-5.1.09’

156

b. LINKDIR – directory in executable path containing linked copies of the

TINKER executables; typical directory would be ‘/usr/local/bin’

c. CC – This is an added field that should point to the C compiler (e.g.,

‘/usr/bin/gcc’)

d. OpenMM_INSTALL_DIR - This should identify the directory where the

OpenMM files were installed, i.e., the OPENMM_INSTALL_PREFIX setting

when CMake was run in step (1)

5. At the command line, type
make dynamic_openmm.x

to create the executable.

6. Check that the environment variable ‘OPENMM_PLUGIN_DIR’ is set to the

installed plugins directory and that the environment variable ‘LD_LIBRARY_PATH’

includes both the installed lib and plugins directory; for example:

OPENMM_PLUGIN_DIR=/home/usr/install/openmm/lib/plugins

LD_LIBRARY_PATH=/usr/local/cuda/lib64:/home/usr/install/openmm

/lib:/home/usr/install/openmm/lib/plugins

15.2.2 Using TINKER-OpenMM

Run dynamic_openmm.x with the same command-line options as you would dynamic.x.

Consult the TINKER documentation and Table 15.1 for more details.

15.2.2.1 Available outputs

Only the total force and potential energy are returned by TINKER-OpenMM; a breakdown of

the energy and force into individual terms (bond, angle, …), as is done in TINKER, is

unavailable through the OpenMM plugin. Also, the pressure cannot be calculated since the

virial is not calculated in the plugin.

15.2.2.2 Setting the frequency of output data updates

Frequent retrieval of the state information from the GPU board can use up a substantial

portion of the total wall clock time. This is due to the fact that the forces and energies are

recalculated for each retrieval. Hence, if the state information is obtained after every

157

timestep, the wall clock time will approximately double over runs where the state

information in only gathered infrequently (say every 50-100 timesteps).

Two options are provided for updating the TINKER data structures:

(i) (DEFAULT) If the logical value of ‘oneTimeStepPerUpdate’ in dynamic.f is

true, then a single step is taken and the TINKER data structures are populated at

each step. This option is conceptually simpler and is consistent with the TINKER

md loops; for example, the output from the TINKER subroutine mdstat() will be

accurate for this choice. However, the performance will be degraded since the

forces and energy are recalculated with each call, doubling the required time.

This is the default option.

(ii) If ‘oneTimeStepPerUpdate’ is false, then depending on the values of iprint

(TINKER keyword ‘PRINTOUT’) and iwrite (=dump time/dt), multiple time

steps are taken on the GPU before data is transferred from the GPU to the CPU;

here dump time is the value given to the TINKER command-line query ‘Enter

Time between Dumps in Picoseconds’. Under this option, every iprint and every

iwrite timesteps, the state information will be retrieved. For example if

‘PRINTOUT’ is 10 and iwrite is 15, then the information will be retrieved at time

steps { 10, 15, 20, 30, 40, 45, …}. This option will lead to better performance than

option 1. However, a downside to this approach is that the fluctuation values

printed by the Tinker routine mdstat() will be incorrect.

15.2.2.3 Specify the GPU board to use

To specify a GPU board other than the default, set the environment variable

‘CUDA_DEVICE’ to the desired board id. A line like the following will be printed to stderr

for the setting CUDA_DEVICE=2:

Platform Cuda: setting device id to 2 based on env variable

CUDA_DEVICE.

158

15.2.2.4 Running comparison tests between TINKER and OpenMM routines

To turn on testing (comparison of forces and potential energy for the initial conformation

calculated using TINKER routines and OpenMM routines), set ‘applyOpenMMTest’ to a
non-zero value in dynamic.f. Note: the program exits after the force/energy comparisons;

it does not execute the main molecular dynamics loop.

Testing individual forces: An example key file for testing the harmonic bond term is as

follows:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius grycuk

polar-eps 0.0001

integrate verlet

bondterm only

For the other covalent and Van der Waals forces, replace the line ‘bondterm only’ above

with the following lines depending on the force to be tested:

angle force: angleterm only

out-of-plane bend: opbendterm only

stretch bend force strbndterm only

pi-torsion force: pitorsterm only

torsion force: torsionterm only

torsion-torsion force: tortorterm only

Urey-Bradley force: ureyterm only

Van der Waals force: vdwterm only

A sample key file for the multipole force with no cutoffs is given below:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius grycuk

159

polar-eps 0.0001

integrate verlet

mpoleterm only

polarizeterm

A sample key file for PME multipole tests

parameters /home/user/tinker/params/amoebabio09

verbose

randomseed 123456789

neighbor-list

vdw-cutoff 12.0

ewald

ewald-cutoff 7.0

pme-grid 64 64 64

polar-eps 0.01

fft-package fftw

integrate verlet

mpoleterm only

polarizeterm

For the Generalized Kirkwood force, the following entries are needed:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius grycuk

polar-eps 0.0001

integrate verlet

solvateterm only

polarizeterm

mpoleterm

160

For the implicit solvent (‘solvate GK’ runs) test, the forces and energies will differ due to the

different treatments of the cavity term (see Section 15.1.1 above). With these options for the

Generalized Kirkwood force, the test routine will remove the cavity contribution from the

TINKER and OpenMM forces/energy when performing the comparisons between the two

calculations.

To test the multipole force or the Generalized Kirkwood forces with direct polarization, add

the following line to the end of the above files:

polarization DIRECT

15.2.2.5 Turning off OpenMM / Reverting to TINKER routines

To use the TINKER routines, as opposed to the OpenMM plugin, to run a simulation, set
‘useOpenMM’ to .false. in dynamic.f.

15.3 OpenMM AMOEBA Validation

OpenMM and TINKER 6.1.01 were each used to compute the atomic forces for dihydrofolate

reductase (DHFR) in implicit and explicit solvent. Calculations used the CUDA platform,

and were repeated for both single and double precision. For every atom, the relative

difference between OpenMM and TINKER was computed as 2·|FMM–FT|/(|FMM|+|FT|),

where FMM is the force computed by OpenMM and FT is the force computed by TINKER. The

median over all atoms is shown inTable 15.2.

Because OpenMM and TINKER use different approximations to compute the cavity term,

the differences in forces are much larger for implicit solvent than for explicit solvent. We

therefore repeated the calculations, removing the cavity term. This yields much closer

agreement between OpenMM and TINKER, demonstrating that the difference comes

entirely from that one term.

161

Median Relative Difference

Solvent Model single double

Implicit 1.04·10-2 1.04·10-2

Implicit (no cavity term) 9.23 ·10-6 1.17·10-6

Explicit 3.73·10-5 1.83·10-7

Table	 15.2:	 	 Median	 relative	 difference	 in	 forces	 between	 OpenMM	 and	 TINKER	

16 Ring Polymer Molecular
Dynamics (RPMD) Plugin

Ring Polymer Molecular Dynamics (RPMD) provides an efficient approach to include

nuclear quantum effects in molecular simulations.17 When used to calculate static

equilibrium properties, RPMD reduces to path integral molecular dynamics and gives an

exact description of the effect of quantum fluctuations for a given potential energy model.18

For dynamical properties RPMD is no longer exact but has shown to be a good

approximation in many cases.

For a system with a classical potential energy E(q), the RPMD Hamiltonian is given by

This Hamiltonian resembles that of a system of classical ring polymers where different

copies of the system are connected by harmonic springs. Hence each copy of the classical

system is commonly referred to as a “bead”. The spread of the ring polymer representing

each particle is directly related to its De Broglie thermal wavelength (uncertainty in its

position).

RPMD calculations must be converged with respect to the number n of beads used. Each

bead is evolved at the effective temperature nT, where T is the temperature for which

properties are required. The number of beads needed to converge a calculation can be

estimated using19

163

where ωmax is the highest frequency in the problem. For example, for flexible liquid water

the highest frequency is the OH stretch at around 3000 cm-1, so around 24 to 32 beads are

needed depending on the accuracy required. For rigid water where the highest frequency is

only around 1000 cm-1, only 6 beads are typically needed. Due to the replication needed of

the classical system, the extra cost of the calculation compared to a classical simulation

increases linearly with the number of beads used.

Due to the stiff spring terms between the beads, NVE RPMD trajectories can suffer from

ergodicity problems and hence thermostatting is highly recommended, especially when

dynamical properties are not required.20 The thermostat implemented here is the path

integral Langevin equation (PILE) approach.21 This method couples an optimal white noise

Langevin thermostat to the normal modes of each polymer, leaving only one parameter to be

chosen by the user which controls the friction applied to the center of mass of each ring

polymer. A good choice for this is to use a value similar to that used in a classical calculation

of the same system.

Part III
Theory Guide

17 The Theory Behind
OpenMM: an Introduction

17.1 Overview

This guide describes the mathematical theory behind OpenMM. For each computational

class, it describes what computations the class performs and how it should be used. This

serves two purposes. If you are using OpenMM within an application, this guide teaches you

how to use it correctly. If you are implementing the OpenMM API for a new Platform, it

teaches you how to correctly implement the required kernels.

On the other hand, many details are intentionally left unspecified. Any behavior that is not

specified either in this guide or in the API documentation is left up to the Platform, and may

be implemented in different ways by different Platforms. For example, an Integrator is

required to produce a trajectory that satisfies constraints to within the user specified

tolerance, but the algorithm used to enforce those constraints is left up to the Platform.

Similarly, this guide provides the functional form of each Force, but does not specify what

level of numerical precision it must be calculated to.

This is an essential feature of the design of OpenMM, because it allows the API to be

implemented efficiently on a wide variety of hardware and software platforms, using

whatever methods are most appropriate for each platform. On the other hand, it means that

a single program may produce meaningfully different results depending on which Platform it

uses. For example, different constraint algorithms may have different regions of

convergence, and thus a time step that is stable on one platform may be unstable on a

different one. It is essential that you validate your simulation methodology on each Platform

you intend to use, and do not assume that good results on one Platform will guarantee good

results on another Platform when using identical parameters.

166

17.2 Units

There are several different sets of units widely used in molecular simulations. For example,

energies may be measured in kcal/mol or kJ/mol, distances may be in Angstroms or nm,

and angles may be in degrees or radians. OpenMM uses the following units everywhere.

Quantity Units

distance nm

time ps

mass atomic mass units

charge proton charge

temperature Kelvin

angle radians

energy kJ/mol

Table	 17.1:	 	 Units	 used	 within	 OpenMM	

These units have the important feature that they form an internally consistent set. For

example, a force always has the same units (kJ/mol/nm) whether it is calculated as the

gradient of an energy or as the product of a mass and an acceleration. This is not true in

some other widely used unit systems, such as those that express energy in kcal/mol.

The header file Units.h contains predefined constants for converting between the OpenMM

units and some other common units. For example, if your application expresses distances in

Angstroms, you should multiply them by OpenMM::NmPerAngstrom before passing them to

OpenMM, and positions calculated by OpenMM should be multiplied by

OpenMM::AngstromsPerNm before passing them back to your application.

18 Standard Forces

The following classes implement standard force field terms that are widely used in molecular

simulations.

18.1 HarmonicBondForce

Each harmonic bond is represented by an energy term of the form

where x is the distance between the two particles, x0 is the equilibrium distance, and k is the

force constant. This produces a force of magnitude k(x-x0).

Be aware that some force fields define their harmonic bond parameters in a slightly different

way: E = k´(x-x0)2, leading to a force of magnitude 2k´(x-x0). Comparing these two forms,

you can see that k = 2k´. Be sure to check which form a particular force field uses, and if

necessary multiply the force constant by 2.

18.2 HarmonicAngleForce

Each harmonic angle is represented by an energy term of the form

where θ is the angle formed by the three particles, θ0 is the equilibrium angle, and k is the

force constant.

168

As with HarmonicBondForce, be aware that some force fields define their harmonic angle
parameters as E = k´(θ-θ0)2. Be sure to check which form a particular force field uses, and if

necessary multiply the force constant by 2.

18.3 PeriodicTorsionForce

Each torsion is represented by an energy term of the form

where θ is the dihedral angle formed by the four particles, θ0 is the equilibrium angle, n is

the periodicity, and k is the force constant.

18.4 RBTorsionForce

Each torsion is represented by an energy term of the form

where φ is the dihedral angle formed by the four particles and C0 through C5 are constant

coefficients.

For reason of convention, PeriodicTorsionForce and RBTorsonForce define the torsion angle
differently. θ is zero when the first and last particles are on the same side of the bond formed

by the middle two particles (the cis configuration), whereas φ is zero when they are on

opposite sides (the trans configuration). This means that θ = φ - π.

18.5 CMAPTorsionForce

Each torsion pair is represented by an energy term of the form

169

where θ1 and θ2 are the two dihedral angles coupled by the term, and f(x,y) is defined by a

user supplied grid of tabulated values. A natural cubic spline surface is fit through the
tabulated values, then evaluated to determine the energy for arbitrary (θ1, θ2) pairs.

18.6 NonbondedForce

18.6.1 Lennard-Jones Interaction

The Lennard-Jones interaction between each pair of particles is represented by an energy

term of the form

where r is the distance between the two particles, σ is the distance at which the energy

equals zero, and ε sets the strength of the interaction. If the NonbondedMethod in use is

anything other than NoCutoff and r is greater than the cutoff distance, the energy and force

are both set to zero. Because the interaction decreases very quickly with distance, the cutoff

usually has little effect on the accuracy of simulations.

When an exception has been added for a pair of particles, σ and ε are the parameters

specified by the exception. Otherwise they are determined from the parameters of the

individual particles using the Lorentz-Bertelot combining rule:

When using periodic boundary conditions, NonbondedForce can optionally add a term

(known as a long range dispersion correction) to the energy that approximately represents

the contribution from all interactions beyond the cutoff distance:22

170

where N is the number of particles in the system, V is the volume of the periodic box, rc is

the cutoff distance, σij and εij are the interaction parameters between particle i and particle j,

and 〈...〉 represents an average over all pairs of particles in the system. The long range

dispersion correction is primarily useful when running simulations at constant pressure,

since it produces a more accurate variation in system energy with respect to volume.

The Lennard-Jones interaction is often parameterized in two other equivalent ways. One is

where rmin (sometimes known as dmin; this is not a radius) is the center-to-center distance at
which the energy is minimum. It is related to σ by

In turn, rmin is related to the van der Waals radius by rmin = 2 rvdw.

Another common form is

The coefficients A and B are related to σ and ε by

171

18.6.2 Coulomb Interaction Without Cutoff

The form of the Coulomb interaction between each pair of particles depends on the

NonbondedMethod in use. For NoCutoff, it is given by

where q1 and q2 are the charges of the two particles, and r is the distance between them.

18.6.3 Coulomb Interaction With Cutoff

For CutoffNonPeriodic or CutoffPeriodic, it is modified using the reaction field

approximation. This is derived by assuming everything beyond the cutoff distance is a

solvent with a uniform dielectric constant.23

where rcutoff is the cutoff distance and εsolvent is the dielectric constant of the solvent. In the

limit εsolvent >> 1, this causes the force to go to zero at the cutoff.

18.6.4 Coulomb Interaction With Ewald Summation

For Ewald, the total Coulomb energy is the sum of three terms: the direct space sum, the

reciprocal space sum, and the self-energy term.24

172

In the above expressions, the indices i and j run over all particles, n = (n1, n2, n3) runs over

all copies of the periodic cell, and k = (k1, k2, k3) runs over all integer wave vectors from (-

kmax, -kmax, -kmax) to (kmax, kmax, kmax) excluding (0, 0, 0). ri is the position of particle i, while
rij is the distance between particles i and j. V is the volume of the periodic cell, and α is an

internal parameter.

In the direct space sum, all pairs that are further apart than the cutoff distance are ignored.

Because the cutoff is required to be less than half the width of the periodic cell, the number

of terms in this sum is never greater than the square of the number of particles.

The error made by applying the direct space cutoff depends on the magnitude of erfc(αrcutoff).

Similarly, the error made in the reciprocal space sum by ignoring wave numbers beyond kmax
depends on the magnitude of exp(-(πkmax/α)2). By changing α, one can decrease the error in

either term while increasing the error in the other one.

Instead of having the user specify α and kmax, NonbondedForce instead asks the user to

choose an error tolerance δ. It then calculates α as

Finally, it estimates the error in the reciprocal space sum as

173

where d is the width of the periodic box, and selects the smallest value for kmax which gives
error < δ. (If the box is not square, kmax will have a different value along each axis.)

This means that the accuracy of the calculation is determined by δ. rcutoff does not affect the

accuracy of the result, but does affect the speed of the calculation by changing the relative

costs of the direct space and reciprocal space sums. You therefore should test different

cutoffs to find the value that gives best performance; this will in general vary both with the

size of the system and with the Platform being used for the calculation. When the optimal

cutoff is used for every simulation, the overall cost of evaluating the nonbonded forces scales

as O(N3/2) in the number of particles.

Be aware that the error tolerance δ is not a rigorous upper bound on the errors. The

formulas given above are empirically found to produce average relative errors in the forces
that are less than or similar to δ across a variety of systems and parameter values, but no

guarantees are made. It is important to validate your own simulations, and identify

parameter values that produce acceptable accuracy for each system.

18.6.5 Coulomb Interaction With Particle Mesh Ewald

The Particle Mesh Ewald (PME) algorithm25 is similar to Ewald summation, but instead of

calculating the reciprocal space sum directly, it first distributes the particle charges onto

nodes of a rectangular mesh using 5th order B-splines. By using a Fast Fourier Transform,

the sum can then be computed very quickly, giving performance that scales as O(N log N) in

the number of particles (assuming the volume of the periodic box is proportional to the

number of particles).

As with Ewald summation, the user specifies the direct space cutoff rcutoff and error tolerance
δ. NonbondedForce then selects α as

and the number of nodes in the mesh along each dimension as

174

where d is the width of the periodic box along that dimension. (Note that some Platforms

may choose to use a larger value of nmesh than that given by this equation. For example,

some FFT implementations require the mesh size to be a multiple of certain small prime

numbers, so a Platform might round it up to the nearest permitted value. It is guaranteed

that nmesh will never be smaller than the value given above.)

The comments in the previous section regarding the interpretation of δ for Ewald

summation also apply to PME, but even more so. The behavior of the error for PME is more

complicated than for simple Ewald summation, and while the above formulas will usually
produce an average relative error in the forces less than or similar to δ, this is not a rigorous

guarantee. PME is also more sensitive to numerical round-off error than Ewald summation.
For Platforms that do calculations in single precision, making δ too small (typically below

about 5⋅10-5) can actually cause the error to increase.

18.7 GBSAOBCForce

18.7.1 Generalized Born Term

GBSAOBCForce consists of two energy terms: a Generalized Born Approximation term to

represent the electrostatic interaction between the solute and solvent, and a surface area

term to represent the free energy cost of solvating a neutral molecule. The Generalized Born

energy is given by12

where the indices i and j run over all particles, εsolute and εsolvent are the dielectric constants of

the solute and solvent respectively, qi is the charge of particle i, and dij is the distance

between particles i and j. fGB(dij, Ri, Rj) is defined as

175

Ri is the Born radius of particle i, which calculated as

where α, β, and γ are the GBOBCII parameters α = 1, β = 0.8, and γ = 4.85. ρi is the adjusted

atomic radius of particle i, which is calculated from the atomic radius ri as ρi = ri-0.009 nm.

Ψi is calculated as an integral over the van der Waals spheres of all particles outside particle

i:

where θ(r) is a step function that excludes the interior of particle i from the integral.

18.7.2 Surface Area Term

The surface area term is given by26-27

where ri is the atomic radius of particle i, Ri is its Born radius, and rsolvent is the solvent

radius, which is taken to be 0.14 nm.

176

18.8 GBVIForce

The GBVI force is an implicit solvent force based on an algorithm developed by Paul

Labute.28 The GBVI force is currently undergoing testing to validate that it is correctly

implementing the algorithm. The GBVI energy is given by Equation 2 of the referenced

paper:

where the indices i and j run over all n particles, εsolute and εsolvent are the dielectric constants

of the solute and solvent respectively, qi is the charge of particle i, dij is the distance between
particles i and j, ri are the input particle radii, and the γi are adjustable parameters. fGB(dij, Ri,

Rj) is defined as above (Section 10.6) for the GBSAOBCForce. The Born radii, Ri, are defined

by the equation

where V(d,r,S) is given by

and

The Si are derived from the covalent topology of the solute:

177

and

where dij is the fixed covalent bond length between particles i and j, and the sum in the
calculation of the νi is over the particles j covalently bonded to particle i.

18.9 AndersenThermostat

AndersenThermostat couples the system to a heat bath by randomly selecting a subset of

particles at the start of each time step, then setting their velocities to new values chosen from

a Boltzmann distribution. This represents the effect of random collisions between particles

in the system and particles in the heat bath.29

The probability that a given particle will experience a collision in a given time step is

where f is the collision frequency and Δt is the step size. Each component of its velocity is

then set to

178

where T is the thermostat temperature, m is the particle mass, and R is a random number

chosen from a normal distribution with mean of zero and variance of one.

18.10 MonteCarloBarostat

MonteCarloBarostat models the effect of constant pressure by allowing the size of the

periodic box to vary with time.30-31 At regular intervals, it attempts a Monte Carlo step by

scaling the box vectors and the coordinates of each molecule’s center by a factor s. The scale
factor s is chosen to change the volume of the periodic box from V to V+δV:

The change in volume is chosen randomly as

where A is a scale factor and r is a random number uniformly distributed between -1 and 1.

The step is accepted or rejected based on the weight function

where ΔE is the change in potential energy resulting from the step, P is the system pressure,

N is the number of molecules in the system, kB is Boltzmann’s constant, and T is the system

temperature. In particular, if ΔW ≤ 0 the step is always accepted. If ΔW > 0, the step is

accepted with probability exp(-ΔW/kBT).

This algorithm tends to be more efficient than deterministic barostats such as the Berendsen

or Parrinello-Rahman algorithms, since it does not require an expensive virial calculation at

every time step. Each Monte Carlo step involves two energy evaluations, but this can be

done much less often than every time step. It also does not require you to specify the

compressibility of the system, which usually is not known in advance.

179

The scale factor A that determines the size of the steps is chosen automatically to produce an

acceptance rate of approximately 50%. It is initially set to 1% of the periodic box volume.

The acceptance rate is then monitored, and if it varies too much from 50% then A is

modified accordingly.

Each Monte Carlo step modifies particle positions by scaling the centroid of each molecule,

then applying the resulting displacement to each particle in the molecule. This ensures that

each molecule is translated as a unit, so bond lengths and constrained distances are

unaffected.

MonteCarloBarostat assumes the simulation is being run at constant temperature as well as

pressure, and the simulation temperature affects the step acceptance probability. It does not

itself perform temperature regulation, however. You must use another mechanism along

with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat.

18.11 CMMotionRemover

CMMotionRemover prevents the system from drifting in space by periodically removing all

center of mass motion. At the start of every n’th time step (where n is set by the user), it

calculates the total center of mass velocity of the system:

where mi and vi are the mass and velocity of particle i. It then subtracts vCM from the

velocity of every particle.

19 Custom Forces

In addition to the standard forces described in the previous chapter, OpenMM provides a

number of “custom” force classes. These classes provide detailed control over the

mathematical form of the force by allowing the user to specify one or more arbitrary

algebraic expressions. The details of how to write these custom expressions are described in

section 19.9.

19.1 CustomBondForce

CustomBondForce is similar to HarmonicBondForce in that it represents an interaction

between certain pairs of particles as a function of the distance between them, but it allows

the precise form of the interaction to be specified by the user. That is, the interaction energy

of each bond is given by

where f(r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an

arbitrary set of user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-bond parameters are defined by specifying a value for each bond.

19.2 CustomAngleForce

CustomAngleForce is similar to HarmonicAngleForce in that it represents an interaction

between sets of three particles as a function of the angle between them, but it allows the

181

precise form of the interaction to be specified by the user. That is, the interaction energy of

each angle is given by

where f(θ) is a user defined mathematical expression.

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of

user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-angle parameters are defined by specifying a value for each angle.

19.3 CustomTorsionForce

CustomTorsionForce is similar to PeriodicTorsionForce in that it represents an interaction

between sets of four particles as a function of the dihedral angle between them, but it allows

the precise form of the interaction to be specified by the user. That is, the interaction energy

of each angle is given by

where f(θ) is a user defined mathematical expression. The angle θ is guaranteed to be in the

range [-π, π]. Like PeriodicTorsionForce, it is defined to be zero when the first and last

particles are on the same side of the bond formed by the middle two particles (the cis

configuration).

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of

user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-torsion parameters are defined by specifying a value for each torsion.

182

19.4 CustomNonbondedForce

CustomNonbondedForce is similar to NonbondedForce in that it represents a pairwise

interaction between all particles in the System, but it allows the precise form of the

interaction to be specified by the user. That is, the interaction energy between each pair of

particles is given by

where f(r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an

arbitrary set of user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-particle parameters are defined by specifying a value for each particle.

19.5 CustomExternalForce

CustomExternalForce represents a force that is applied independently to each particle as a

function of its position. That is, the energy of each particle is given by

where f(x, y, z) is a user defined mathematical expression.

In addition to depending on the particle’s (x, y, z) coordinates, the energy may also depend

on an arbitrary set of user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-particle parameters are defined by specifying a value for each particle.

19.6 CustomCompoundBondForce

183

CustomCompoundBondForce supports a wide variety of bonded interactions. It defines a

“bond” as a single energy term that depends on the positions of a fixed set of particles. The

number of particles involved in a bond, and how the energy depends on their positions, is

configurable. It may depend on the positions of individual particles, the distances between

pairs of particles, the angles formed by sets of three particles, and the dihedral angles

formed by sets of four particles. That is, the interaction energy of each bond is given by

€

E = f ({xi},{ri},{θ i},{φi})

where f(...) is a user defined mathematical expression. It may depend on an arbitrary set of

positions {xi}, distances {ri}, angles {θi}, and dihedral angles {φi}.

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from

among the particles that make up the bond. A distance variable is defined by two particles,

and equals the distance between them. An angle variable is defined by three particles, and

equals the angle between them. A dihedral variable is defined by four particles, and equals

the angle between the first and last particles about the axis formed by the middle two

particles. It is equal to zero when the first and last particles are on the same side of the axis.

In addition to depending on positions, distances, angles, and dihedrals, the energy may also

depend on an arbitrary set of user defined parameters. Parameters may be specified in two

ways:

• Global parameters have a single, fixed value.

• Per-bond parameters are defined by specifying a value for each bond.

19.7 CustomGBForce

CustomGBForce implements complex, multiple stage nonbonded interactions between

particles. It is designed primarily for implementing Generalized Born implicit solvation

models, although it is not strictly limited to that purpose.

184

The interaction is specified as a series of computations, each defined by an arbitrary

algebraic expression. These computations consist of some number of per-particle computed

values, followed by one or more energy terms. A computed value is a scalar value that is

computed for each particle in the system. It may depend on an arbitrary set of global and

per-particle parameters, and well as on other computed values that have been calculated

before it. Once all computed values have been calculated, the energy terms and their

derivatives are evaluated to determine the system energy and particle forces. The energy

terms may depend on global parameters, per-particle parameters, and per-particle

computed values.

Computed values can be calculated in two different ways:

• Single particle values are calculated by evaluating a user defined expression for each

particle:

where f(...) may depend only on properties of particle i (its coordinates and

parameters, as well as other computed values that have already been calculated).

• Particle pair values are calculated as a sum over pairs of particles:

where the sum is over all other particles in the System, and f(r, ...) is a function of the

distance r between particles i and j, as well as their parameters and computed values.

Energy terms may similarly be calculated per-particle or per-particle-pair.

• Single particle energy terms are calculated by evaluating a user defined expression

for each particle:

185

where f(...) may depend only on properties of that particle (its coordinates,

parameters, and computed values).

• Particle pair energy terms are calculated by evaluating a user defined expression

once for every pair of particles in the System:

where the sum is over all particle pairs i < j, and f(r, ...) is a function of the distance r

between particles i and j, as well as their parameters and computed values.

Note that energy terms are assumed to be symmetric with respect to the two interacting

particles, and therefore are evaluated only once per pair. In contrast, expressions for

computed values need not be symmetric and therefore are calculated twice for each pair:

once when calculating the value for the first particle, and again when calculating the value

for the second particle.

Be aware that, although this class is extremely general in the computations it can define,

particular Platforms may only support more restricted types of computations. In particular,

all currently existing Platforms require that the first computed value must be a particle pair

computation, and all computed values after the first must be single particle computations.

This is sufficient for most Generalized Born models, but might not permit some other types

of calculations to be implemented.

19.8 CustomHbondForce

CustomHbondForce supports a wide variety of energy functions used to represent hydrogen

bonding. It computes interactions between "donor" particle groups and "acceptor" particle

groups, where each group may include up to three particles. Typically a donor group

consists of a hydrogen atom and the atoms it is bonded to, and an acceptor group consists of

a negatively charged atom and the atoms it is bonded to. The interaction energy between

each donor group and each acceptor group is given by

186

where f(...) is a user defined mathematical expression. It may depend on an arbitrary set of
distances {ri}, angles {θi}, and dihedral angles {φi}.

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from

the interacting donor and acceptor groups (up to six atoms to choose from, since each group

may contain up to three atoms). A distance variable is defined by two particles, and equals

the distance between them. An angle variable is defined by three particles, and equals the

angle between them. A dihedral variable is defined by four particles, and equals the angle

between the first and last particles about the axis formed by the middle two particles. It is

equal to zero when the first and last particles are on the same side of the axis.

In addition to depending on distances, angles, and dihedrals, the energy may also depend on

an arbitrary set of user defined parameters. Parameters may be specified in three ways:

• Global parameters have a single, fixed value.

• Per-donor parameters are defined by specifying a value for each donor group.

• Per-acceptor parameters are defined by specifying a value for each acceptor group.

19.9 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions.

These expressions are specified as character strings, and may involve a variety of standard

operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^

(power). Parentheses “(“and “)” may be used for grouping.

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot,

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step, delta. step(x) = 0 if x < 0, 1

187

otherwise. delta(x) = 1 if x is 0, 0 otherwise. Some custom forces allow additional functions

to be defined from tabulated values.

Numbers may be given in either decimal or exponential form. All of the following are valid

numbers: 5, -3.1, 1e6, and 3.12e-2.

The variables that may appear in expressions are specified in the API documentation for

each force class. In addition, an expression may be followed by definitions for intermediate

values that appear in the expression. A semicolon “;” is used as a delimiter between value

definitions. For example, the expression

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses

of a value must appear before that value’s definition.

20 Integrators

20.1 VerletIntegrator

VerletIntegrator implements the leap-frog Verlet integration method. The positions and

velocities stored in the context are offset from each other by half a time step. In each step,

they are updated as follows:

where vi is the velocity of particle i, ri is its position, fi is the force acting on it, mi is its mass,
and Δt is the time step.

Because the positions are always half a time step later than the velocities, care must be used

when calculating the energy of the system. In particular, the potential energy and kinetic

energy in a State correspond to different times, and you cannot simply add them to get the

total energy of the system. Instead, it is better to retrieve States after two successive time

steps, calculate the on-step velocities as

then use those velocities to calculate the kinetic energy at time t.

20.2 LangevinIntegator

LangevinIntegator simulates a system in contact with a heat bath by integrating the

Langevin equation of motion:

189

where vi is the velocity of particle i, fi is the force acting on it, mi is its mass, γ is the friction

coefficient, and Ri is an uncorrelated random force whose components are chosen from a
normal distribution with mean zero and variance 2miγkBT, where T is the temperature of the

heat bath.

The integration is done using a leap-frog method similar to VerletIntegrator.32 The same

comments about the offset between positions and velocities apply to this integrator as to that

one.

20.3 BrownianIntegrator

BrownianIntegrator simulates a system in contact with a heat bath by integrating the

Brownian equation of motion:

where ri is the position of particle i, fi is the force acting on it, γ is the friction coefficient, and

Ri is an uncorrelated random force whose components are chosen from a normal
distribution with mean zero and variance 2kBT/miγ, where T is the temperature of the heat

bath.

The Brownian equation of motion is derived from the Langevin equation of motion in the
limit of large γ. In that case, the velocity of a particle is determined entirely by the

instantaneous force acting on it, and kinetic energy ceases to have much meaning, since it

disappears as soon as the applied force is removed.

190

20.4 VariableVerletIntegrator

This is very similar to VerletIntegrator, but instead of using the same step size for every time

step, it continuously adjusts the step size to keep the integration error below a user specified

tolerance. It compares the positions generated by Verlet integration with those that would

be generated by an explicit Euler integrator, and takes the difference between them as an

estimate of the integration error:

where fi is the force acting on particle i and mi is its mass. (In practice, the error made by

the Euler integrator is usually larger than that made by the Verlet integrator, so this tends to

overestimate the true error. Even so, it can provide a useful mechanism for step size

control.)

It then selects the value of Δt that makes the error exactly equal the specified error tolerance:

where δ is the error tolerance. This is the largest step that may be taken consistent with the

user specified accuracy requirement.

(Note that the integrator may sometimes choose to use a smaller value for Δt than given

above. For example, it might restrict how much the step size can grow from one step to the

next, or keep the step size constant rather than increasing it by a very small amount. This

behavior is not specified and may vary between Platforms. It is required, however, that Δt

never be larger than the value given above.)

A variable time step integrator is generally superior to a fixed time step one in both stability

and efficiency. It can take larger steps on average, but will automatically reduce the step size

191

to preserve accuracy and avoid instability when unusually large forces occur. Conversely,

when each uses the same step size on average, the variable time step one will usually be

more accurate since the time steps are concentrated in the most difficult areas of the

trajectory.

Unlike a fixed step size Verlet integrator, variable step size Verlet is not symplectic. This

means that for a given average step size, it will not conserve energy as precisely over long

time periods, even though each local region of the trajectory is more accurate. For this

reason, it is most appropriate when precise energy conservation is not important, such as

when simulating a system at constant temperature. For constant energy simulations that

must maintain the energy accurately over long time periods, the fixed step size Verlet may be

more appropriate.

20.5 VariableLangevinIntegrator

This is similar to LangevinIntegrator, but it continuously adjusts the step size using the same

method as VariableVerletIntegrator. It is usually preferred over the fixed step size Langevin

integrator for the reasons given above. Furthermore, because Langevin dynamics involves a

random force, it can never be symplectic and therefore the fixed step size Verlet integrator’s

advantages do not apply to the Langevin integrator.

20.6 CustomIntegrator

CustomIntegrator is a very flexible class that can be used to implement a wide range of

integration methods. This includes both deterministic and stochastic integrators;

Metropolized integrators; multiple time step integrators; and algorithms that must integrate

additional quantities along with the particle positions and momenta.

The algorithm is specified as a series of computations that are executed in order to perform a

single time step. Each computation computes the value (or values) of a variable. There are

two types of variables: global variables have a single value, while per-DOF variables have a

separate value for every degree of freedom (that is, every x, y, or z component of a particle).

CustomIntegrator defines lots of variables you can compute and/or use in computing other

192

variables. Some examples include the step size (global), the particle positions (per-DOF),

and the force acting on each particle (per-DOF). In addition, you can define as many

variables as you want for your own use.

The actual computations are defined by mathematical expressions as described in section

19.9. Several types of computations are supported:

• Global: the expression is evaluated once, and the result is stored into a global

variable.

• Per-DOF: the expression is evaluated once for every degree of freedom, and the

results are stored into a per-DOF variable.

• Sum: the expression is evaluated once for every degree of freedom. The results for all

degrees of freedom are added together, and the sum is stored into a global variable.

There also are other, more specialized types of computations that do not involve

mathematical expressions. For example, there are computations that apply distance

constraints, modifying the particle positions or velocities accordingly.

CustomIntegrator is a very powerful tool, and this description only gives a vague idea of the

scope of its capabilities. For full details and examples, consult the API documentation.

21 Other Features

21.1 LocalEnergyMinimizer

This provides an implementation of the L-BFGS optimization algorithm.33 Given a Context

specifying initial particle positions, it searches for a nearby set of positions that represent a

local minimum of the potential energy. Distance constraints are enforced during

minimization by adding a harmonic restraining force to the potential function. The strength

of the restraining force is steadily increased until the minimum energy configuration

satisfies all constraints to within the tolerance specified by the Context's Integrator.

21.2 XMLSerializer

This provides the ability to “serialize” a System, Force, Integrator, or State object to a

portable XML format, then reconstruct it again later. When serializing a System, the XML

data contains a complete copy of the entire system definition, including all Forces that have

been added to it.

Here are some examples of uses for this class:

1. A model building utility could generate a System in memory, then serialize it to a file

on disk. Other programs that perform simulation or analysis could then reconstruct

the model by simply loading the XML file.

2. When running simulations on a cluster, all model construction could be done on a

single node. The Systems and Integrators could then be encoded as XML, allowing

them to be easily transmitted to other nodes.

XMLSerializer is a templatized class that, in principle, can be used to serialize any type of

object. At present, however, only System, Force, Integrator, and State are supported.

194

21.3 Force Groups

It is possible to split the Force objects in a System into groups. Those groups can then be

evaluated independently of each other. Some Force classes also provide finer grained

control over grouping. For example, NonbondedForce allows direct space computations to

be in one group and reciprocal space computations in a different group.

The most important use of force groups is for implementing multiple time step algorithms

with CustomIntegrator. For example, you might evaluate the slowly changing nonbonded

interactions less frequently than the quickly changing bonded ones. It also is useful if you

want the ability to query a subset of the forces acting on the system.

21.4 Virtual Sites

A virtual site is a particle whose position is computed directly from the positions of other

particles, not by integrating the equations of motion. An important example is the “extra

sites” present in 4 and 5 site water models. These particles are massless, and therefore

cannot be integrated. Instead, their positions are computed from the positions of the

massive particles in the water molecule.

Virtual sites are specified by creating a VirtualSite object, then telling the System to use it for

a particular particle. The VirtualSite defines the rules for computing its position. It is an

abstract class with subclasses for specific types of rules. They are:

• TwoParticleAverageSite: The virtual site location is computed as a weighted average

of the positions of two particles:

€

r = w1r1 + w2r2

• ThreeParticleAverageSite: The virtual site location is computed as a weighted average

of the positions of three particles:

€

r = w1r1 + w2r21 + w3r3

195

• OutOfPlaneSite: The virtual site location is computed as a weighted average of the

positions of three particles and the cross product of their relative displacements:

€

r = r1 + w12r12 + w13r13 + wcross(r12 × r13)

where r12 = r2-r1 and r13 = r3-r1. This allows the virtual site to be located outside the

plane of the three particles.

22 Bibliography

1. Kollman, P. A.; Dixon, R.; Cornell, W.; Fox, T.; Chipot, C.; Pohorille, A., Computer
Simulation of Biomolecular Systems. Wilkinson, A.; Weiner, P.; van Gunsteren, W. F., Eds.
Elsevier: 1997; Vol. 3, pp 83-96.
2. Wang, J.; Cieplak, P.; Kollman, P. A., How well does a restrained electrostatic
potential (RESP) model perform in calculating conformational energies of organic and
biological molecules? Journal of Computational Chemistry 2000, 21, 1049-1074.
3. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C.,
Comparison of multiple Amber force fields and development of improved protein backbone
parameters. Proteins 2006, 65, 712-725.
4. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.; Dror, R. O.;
Shaw, D. E., Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins 2010, 78, 1950-1958.
5. Li, D. W.; Brü schweiler, R., NMR-based protein potentials. Angewandte Chemie
International Edition 2010, 49, 6778-6780.
6. Duan, Y. W., C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak,
P.; Luo, R.; Lee, T., A point-charge force field for molecular mechanics simulations of
proteins based on condensed-phase quantum mechanical calculations. Journal of
Computational Chemistry 2003, 24, 1999-2012.
7. Ren, P.; Ponder, J. W., A Consistent Treatment of Inter- and Intramolecular
Polarization in Molecular Mechanics Calculations. J. Comp. Chem. 2002, 23, 1497-1506.
8. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.,
Comparison of simple potential functions for simulating liquid water. Journal of Chemical
Physics 1983, 79, 926-935.
9. Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.;
Head-Gordon, T., Development of an improved four-site water model for biomolecular
simulations: TIP4P-Ew. Journal of Chemical Physics 2004, 120, 9665-9678.
10. Mahoney, M. W.; Jorgensen, W. L., A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of
Chemical Physics 2000, 112, 8910-8922.
11. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P., The missing term in effective
pair potentials. Journal of Physical Chemistry 1987, 91, 6269-6271.
12. Onufriev, A.; Bashford, D.; Case, D. A., Exploring protein native states and large-
scale conformational changes with a modified generalized born model. Proteins 2004, 55
(22), 383-394.
13. Schnieders, M. J.; Ponder, J. W., Polarizable Atomic Multipole Solutes in a
Generalized Kirkwood Continuum. Journal of Chemical Theory and Computation 2007, 3,
2083-2097.
14. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G., Pairwise solute descreening of solute
charges from a dielectric medium. Chem. Phys. Let. 1995, 246 (1-2), 122-129.
15. Mongan, J.; Simmerling, C.; McCammon, J. A.; Case, D. A.; Onufriev, A., Generalized
Born model with a simple, robust molecular volume correction. Journal of Chemical Theory
and Computation 2007, 3 (1), 156-169.

197

16. Ren, P.; Ponder, J. W., Polarizable Atomic Multipole Water Model for Molecular
Mechanics Simulation. J. Phys. Chem. B 2003, 107, 5933-5947.
17. Craig, I. R.; Manolopoulos, D. E., Quantum statistics and classical mechanics: Real
time correlation functions from ring polymer molecular dynamics. Journal of Chemical
Physics 2004, 121, 3368-3373.
18. Parrinello, M.; Rahman, A., Study of an F center in molten KCl. Journal of Chemical
Physics 1984, 80 (2), 860-867.
19. Markland, T. E.; Manolopoulos, D. E., An efficient ring polymer contraction scheme
for imaginary time path integral simulations. Journal of Chemical Physics 2008, 129 (2).
20. Hall, R. W.; Berne, B. J., Nonergodicity in path integral molecular dynamics. Journal
of Chemical Physics 1984, 81 (8).
21. Ceriotti, M.; Parrinello, M.; Markland, T. E.; Manolopoulos, D. E., Efficient
stochastic thermostatting of path integral molecular dynamics. J. Chem. Phys. 2010, 133
(12).
22. Shirts, M. R.; Mobley, D. L.; Chodera, J. D.; Pande, V. S., Accurate and Efficient
Corrections for Missing Dispersion Interactions in Molecular
Simulations. Journal of Physical Chemistry B 2007, 111, 13052-13063.
23. Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren, W. F., A generalized reaction
field method for molecular dynamics simulations. J. Chem. Phys. 1995, 102 (13), 5451-5459.
24. Toukmaji, A. Y.; Board Jr, J. A., Ewald summation techniques in perspective: a
survey. Computer Physics Communications 1996, 95, 73-92.
25. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A
smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103 (19), 8577-8593.
26. Schaefer, M.; Bartels, C.; Karplus, M., Solution conformations and thermodynamics
of structured peptides: molecular dynamics simulation with an implicit solvation model.
Journal of Molecular Biology 1998, 284 (3), 835-848.
27. Ponder, J., Personal communication. This expression differs slightly from that given
by Schaefer et al. This form was found to give a better correlation with surface area. ed.
28. Labute, P., The generalized Born/volume integral implicit solvent model: Estimation
of the free energy of hydration using London dispersion instead of atomic surface area. J.
Comp. Chem. 2008, 29 (10), 1693-1698.
29. Andersen, H. C., Molecular dynamics simulations at constant pressure and/or
temperature. J. Chem. Phys. 1980, 72 (4), 2384-2393.
30. Chow, K.-H.; Ferguson, D. M., Isothermal-isobaric molecular dynamics simulations
with Monte Carlo volume sampling. Computer Physics Communications 1995, 91, 283-289.
31. Åqvist, J.; Wennerström, P.; Nervall, M.; Bjelic, S.; Brandsdal, B. O., Molecular
dynamics simulations of water and biomolecules with a Monte Carlo constant pressure
algorithm. Chem. Phys. Let. 2004, 384, 288-294.
32. Izaguirre, J. A.; Sweet, C. R.; Pande, V. S., Multiscale dynamics of macromolecules
using Normal Mode Langevin. Pacific Symposium on Biocomputing 2010, 15, 240-251.
33. Liu, D. C.; Nocedal, J., On the Limited Memory BFGS Method For Large Scale
Optimization. Mathematical Programming 1989, 45, 503-528.

