PyML :: classifiers :: modelSelection :: Param :: Class Param
[frames] | no frames]

Class Param

source code

base.pymlObject.PyMLobject --+        
                             |        
    baseClassifiers.Classifier --+    
                                 |    
baseClassifiers.IteratorClassifier --+
                                     |
                                    Param

A class for training a classifier with several values of a parameter. Training trains a classifier for each value of the parameter. Testing returns a list evaluating each trained classifier on the given dataset.

Example:

p = Param(svm.SVM(), 'C', [0.1, 1, 10, 100, 1000])
Nested Classes
    Inherited from baseClassifiers.Classifier
  resultsObject
Instance Methods
 
__init__(self, arg, attribute='C', values=[0.1,1,10,100,1000]) source code
 
__len__(self) source code
 
__repr__(self) source code
 
train(self, data, **args) source code
    Inherited from baseClassifiers.IteratorClassifier
 
__iter__(self) source code
 
cv(self, data, **args)
perform k-fold cross validation
source code
 
getClassifier(self) source code
 
loo(self, data, **args)
perform Leave One Out
source code
 
next(self) source code
 
stratifiedCV(self, data, **args)
perform k-fold stratified cross-validation; in each fold the number of patterns from each class is proportional to the relative fraction of the class in the dataset
source code
 
test(self, data, **args)
test a classifier on a given dataset
source code
    Inherited from baseClassifiers.Classifier
 
classify(self, data, i) source code
 
getTrainingTime(self) source code
 
logger(self) source code
 
nCV(classifier, data, **args)
runs CV n times, returning a 'ResultsList' object.
source code
 
project(self, data)
project a test dataset to the training data features.
source code
 
save(self, fileHandle) source code
 
trainFinalize(self) source code
 
trainTest(classifierTemplate, data, trainingPatterns, testingPatterns, **args)
Train a classifier on the list of training patterns, and test it on the test patterns
source code
 
twoClassClassify(self, data, i) source code
Class Variables
    Inherited from baseClassifiers.Classifier
  deepcopy = False
  type = 'classifier'
Method Details

__init__(self, arg, attribute='C', values=[0.1,1,10,100,1000])
(Constructor)

source code 
Parameters:
  • arg - another Param object, or the classifier to be used
  • attribute - the attribute of the classifier that needs tuning
  • values - a list of values to try
Overrides: baseClassifiers.Classifier.__init__

__repr__(self)
(Representation operator)

source code 
Overrides: baseClassifiers.Classifier.__repr__

train(self, data, **args)

source code 
Overrides: baseClassifiers.Classifier.train