
User's Guide

User's Guide:

iii

Table of Contents
Preface ... xviii
1. Introduction .. 1

The ROOT Mailing Lists ... 1
Contact Information .. 1
Conventions Used in This Book .. 2
The Framework .. 2

What Is a Framework? ... 2
Why Object-Oriented? ... 3

Installing ROOT ... 3
The Organization of the ROOT Framework ... 4

$ROOTSYS/bin .. 6
$ROOTSYS/lib ... 6
$ROOTSYS/tutorials ... 9
$ROOTSYS/test ... 9
$ROOTSYS/include ... 10
$ROOTSYS/<library> .. 10

How to Find More Information .. 10
Class Reference Guide ... 10

2. Getting Started .. 12
Setting the Environment Variables ... 12
Start and Quit a ROOT Session ... 13
Using the GUI .. 14

Main Menus and Toolbar ... 15
The Editor Frame .. 19
Classes, Methods and Constructors ... 20
User Interaction .. 21
Building a Multi-pad Canvas ... 22
Saving the Canvas ... 23
Printing the Canvas ... 23

The ROOT Command Line ... 24
Multi-line Commands .. 24
CINT Extensions ... 24
Helpful Hints for Command Line Typing .. 24
Regular Expression .. 25

Conventions ... 26
Coding Conventions .. 26
Machine Independent Types .. 26
TObject ... 27

Global Variables ... 27
gROOT ... 27
gFile ... 28
gDirectory .. 28
gPad ... 28
gRandom ... 28
gEnv ... 29

Environment Setup .. 29
Logon and Logoff Scripts ... 30
History File .. 30
Tracking Memory Leaks ... 30
Memory Checker ... 30

Converting from PAW to ROOT ... 31
Converting HBOOK/PAW Files ... 31

3. Histograms ... 32
The Histogram Classes ... 32
Creating Histograms .. 33

User's Guide

iv

Fixed or Variable Bin Size ... 34
Bin Numbering Convention ... 34
Re-binning ... 34

Filling Histograms ... 34
Automatic Re-binning Option .. 35

Random Numbers and Histograms ... 35
Adding, Dividing, and Multiplying ... 36
Projections ... 37

Drawing Histograms .. 37
Setting the Style .. 37

Draw Options ... 38
The SCATter Plot Option ... 40
The ARRow Option ... 41
The BOX Option .. 41
The ERRor Bars Options .. 41
The Color Option .. 41
The TEXT Option ... 42
The CONTour Options ... 42
The LEGO Options ... 44
The SURFace Options .. 45
The BAR Options ... 45
The Z Option: Display the Color Palette on the Pad ... 47
The SPEC Option .. 48
3-D Histograms ... 50

Drawing a Sub-range of a 2-D Histogram .. 50
Superimposing Histograms with Different Scales .. 51
Statistics Display ... 52
Setting Line, Fill, Marker, and Text Attributes .. 53
Setting Tick Marks on the Axis ... 53
Giving Titles to the X, Y and Z Axis .. 53
Making a Copy of an Histogram .. 54
Normalizing Histograms ... 54
Saving/Reading Histograms to/from a File ... 54
Miscellaneous Operations ... 55
Alphanumeric Bin Labels ... 55

Option 1: SetBinLabel .. 55
Option 2: Fill ... 56
Option 3: TTree::Draw ... 56
Sort Options ... 57

Histogram Stacks .. 57
Profile Histograms ... 58

Build Options ... 59
Drawing a Profile without Error Bars .. 60
Create a Profile from a 2D Histogram ... 60
Create a Histogram from a Profile .. 60
Generating a Profile from a TTree .. 61
2D Profiles ... 61

Iso Surfaces .. 62
3D Implicit Functions .. 62
TPie .. 63
The User Interface for Histograms ... 64

TH1Editor .. 65
TH2Editor .. 67

4. Graphs ... 70
TGraph .. 70

Graph Draw Options .. 70
Superimposing Two Graphs .. 73
Graphs with Error Bars .. 74

User's Guide

v

Graphs with Asymmetric Error Bars ... 75
Graphs with Asymmetric Bent Errors ... 77
TGraphPolar ... 78
TGraph Exclusion Zone ... 78
TGraphQQ ... 80

Two Datasets .. 80
One Dataset ... 80

TMultiGraph .. 81
TGraph2D .. 82
TGraph2DErrors ... 85
Fitting a Graph ... 85
Setting the Graph's Axis Title .. 85
Zooming a Graph .. 86
The User Interface for Graphs ... 87

5. Fitting Histograms ... 88
The Fit Method ... 88
Fit with a Predefined Function ... 89
Fit with a User-Defined Function ... 89

Creating a TF1 with a Formula .. 89
Creating a TF1 with Parameters ... 89
Creating a TF1 with a User Function .. 90

Fixing and Setting Parameters’ Bounds ... 91
Fitting Sub Ranges .. 91
The Fit Panel .. 92

Function Choice and Settings .. 92
Fitter Settings ... 93
Draw Options ... 93
Print Options .. 94
Command Buttons ... 94

Fitting Multiple Sub Ranges .. 94
Adding Functions to the List ... 95
Combining Functions ... 95
Associated Function ... 97
Access to the Fit Parameters and Results ... 97
Associated Errors .. 98
Fit Statistics ... 98
The Minimization Package .. 98

Basic Concepts of Minuit ... 99
The Transformation of Limited Parameters .. 99
How to Get the Right Answer from Minuit .. 100
Reliability of Minuit Error Estimates ... 101

FUMILI Minimization Package .. 102
Neural Networks ... 103

Introduction .. 103
The MLP ... 103
Learning Methods .. 104
Using the Network ... 104
Examples ... 105

6. A Little C++ ... 108
Classes, Methods and Constructors ... 108
Inheritance and Data Encapsulation ... 108

Method Overriding .. 109
Data Encapsulation .. 109

Creating Objects on the Stack and Heap .. 110
7. CINT the C++ Interpreter .. 114

What is CINT? .. 114
The ROOT Command Line Interface .. 115
The ROOT Script Processor .. 117

User's Guide

vi

Un-named Scripts .. 117
Named Scripts ... 118
Executing a Script from a Script .. 119

Resetting the Interpreter Environment ... 119
A Script Containing a Class Definition .. 120
Debugging Scripts ... 122
Inspecting Objects ... 122
ROOT/CINT Extensions to C++ .. 123
ACLiC - The Automatic Compiler of Libraries for CINT .. 124

Usage .. 124
Setting the Include Path .. 126
Dictionary Generation .. 127
Intermediate Steps and Files .. 127
Moving between Interpreter and Compiler .. 128

Reflex .. 129
Overview ... 129
Selecting Types And Members ... 130
Genreflex and Templates .. 130
GCCXML Installation .. 131
Reflex API ... 131
Cintex .. 134

8. Object Ownership .. 135
Ownership by Current Directory (gDirectory) ... 135
Ownership by the Master TROOT Object (gROOT) ... 135

The Collection of Specials .. 136
Access to the Collection Contents ... 136

Ownership by Other Objects .. 136
Ownership by the User ... 137

The kCanDelete Bit ... 137
The kMustCleanup Bit .. 138

9. Graphics and the Graphical User Interface .. 139
Drawing Objects .. 139
Interacting with Graphical Objects .. 139

Moving, Resizing and Modifying Objects .. 139
Selecting Objects ... 140
Context Menus: the Right Mouse Button ... 140
Executing Events when a Cursor Passes on Top of an Object 142

Graphical Containers: Canvas and Pad .. 143
The Global Pad: gPad .. 144
The Coordinate Systems of a Pad ... 145
Converting between Coordinate Systems .. 146
Dividing a Pad into Sub-pads .. 147
Updating the Pad ... 148
Making a Pad Transparent ... 149
Setting the Log Scale ... 149
WaitPrimitive method ... 150
Locking the Pad .. 150

Graphical Objects .. 150
Lines, Arrows and Polylines .. 150
Circles and Ellipses .. 151
Rectangles .. 152
Markers ... 152
Curly and Wavy Lines for Feynman Diagrams .. 153
Text and Latex Mathematical Expressions .. 154
Greek Letters .. 155
Mathematical Symbols .. 156
Text in a Pad .. 159

Axis .. 160

User's Guide

vii

Axis Title ... 161
Axis Options and Characteristics .. 161
Setting the Number of Divisions .. 161
Zooming the Axis .. 161
Drawing Axis Independently of Graphs or Histograms 162
Orientation of Tick Marks on Axis ... 162
Labels .. 162
Axis with Time Units ... 164
Axis Examples .. 168

Graphical Objects Attributes .. 171
Text Attributes .. 171
Line Attributes .. 174
Fill Attributes ... 174
Color and Color Palettes ... 175

The Graphics Editor ... 177
TAxisEditor .. 178
TPadEditor ... 178

Copy and Paste ... 179
Using the GUI .. 179
Programmatically ... 180

Legends ... 180
The PostScript Interface .. 182

Special Characters ... 183
Writing Several Canvases to the Same PostScript File 184

Create or Modify a Style .. 186
3D Viewers .. 187

Invoking a 3D viewer ... 188
The GL Viewer ... 188
The X3D Viewer ... 195
Common 3D Viewer Architecture ... 195

10. Folders and Tasks .. 204
Folders .. 204
Why Use Folders? ... 204
How to Use Folders ... 205

Creating a Folder Hierarchy .. 205
Posting Data to a Folder (Producer) .. 206
Reading Data from a Folder (Consumer) .. 207

Tasks ... 207
Execute and Debug Tasks ... 209

11. Input/Output .. 211
The Physical Layout of ROOT Files ... 211

The File Header .. 213
The Top Directory Description ... 213
The Histogram Records .. 213
The Class Description List (StreamerInfo List) .. 214
The List of Keys and the List of Free Blocks .. 215
File Recovery ... 216

The Logical ROOT File: TFile and TKey .. 216
Viewing the Logical File Contents .. 218
The Current Directory .. 219
Objects in Memory and Objects on Disk .. 220
Saving Histograms to Disk .. 222
Histograms and the Current Directory ... 223
Saving Objects to Disk ... 224
Saving Collections to Disk .. 224
A TFile Object Going Out of Scope .. 225
Retrieving Objects from Disk .. 225
Subdirectories and Navigation .. 226

User's Guide

viii

Streamers ... 228
Automatically Generated Streamers ... 228
Transient Data Members (//!) ... 229
The Pointer to Objects (//->) .. 229
Variable Length Array .. 230
Double32_t ... 230
Prevent Splitting (//||) .. 231
Streamers with Special Additions ... 231
Writing Objects ... 232
Ignore Object Streamers .. 233
Streaming a TClonesArray .. 233

Pointers and References in Persistency .. 233
Streaming C++ Pointers .. 233
Motivation for the TRef Class .. 234
Using TRef ... 234
How Does It Work? ... 234
Action on Demand ... 236
Array of TRef ... 237

Schema Evolution .. 238
The TStreamerInfo Class .. 239
The TStreamerElement Class ... 239
Example: TH1 StreamerInfo .. 240
Optimized StreamerInfo .. 240
Automatic Schema Evolution ... 241
Manual Schema Evolution ... 241
Building Class Definitions with the StreamerInfo .. 241
Example: MakeProject .. 242

Migrating to ROOT 3 ... 244
Compression and Performance ... 245
Remotely Access to ROOT Files via a rootd .. 246

TNetFile URL ... 246
Remote Authentication ... 246
A Simple Session .. 246
The rootd Daemon ... 247
Starting rootd via inetd ... 247
Command Line Arguments for rootd ... 248

Reading ROOT Files via Apache Web Server ... 248
Using the General Open Function of TFile ... 249

XML Interface .. 249
12. Trees .. 251

Why Should You Use a Tree? ... 251
A Simple TTree .. 251
Show an Entry with TTree::Show ... 252
Print the Tree Structure with TTree::Print .. 253
Scan a Variable the Tree with TTree::Scan ... 253
The Tree Viewer ... 253
Creating and Saving Trees .. 256

Creating a Tree from a Folder Hierarchy .. 257
Tree and TRef Objects ... 257
Autosave .. 258
Trees with Circular Buffers ... 258
Size of TTree in the File ... 258
User Info Attached to a TTree Object .. 259
Indexing a Tree ... 259

Branches .. 260
Adding a Branch to Hold a List of Variables .. 260
Adding a TBranch to Hold an Object .. 262

Setting the Split-level ... 262

User's Guide

ix

Exempt a Data Member from Splitting .. 264
Adding a Branch to Hold a TClonesArray .. 264
Identical Branch Names .. 264

Adding a Branch with a Folder .. 264
Adding a Branch with a Collection ... 265
Examples for Writing and Reading Trees ... 265
Example 1: A Tree with Simple Variables ... 266

Writing the Tree .. 266
Viewing the Tree ... 267
Reading the Tree ... 268

Example 2: A Tree with a C Structure ... 269
Writing the Tree .. 271
Analysis ... 273

Example 3: Adding Friends to Trees ... 274
Adding a Branch to an Existing Tree .. 274
TTree::AddFriend .. 275

Example 4: A Tree with an Event Class .. 277
The Event Class .. 278
The EventHeader Class ... 278
The Track Class .. 279
Writing the Tree .. 279
Reading the Tree ... 280

Example 5: Import an ASCII File into a TTree ... 282
Trees in Analysis ... 282
Simple Analysis Using TTree::Draw ... 283

Using Selection with TTree:Draw ... 283
Using TCut Objects in TTree::Draw .. 284
Accessing the Histogram in Batch Mode .. 284
Using Draw Options in TTree::Draw ... 285
Superimposing Two Histograms ... 285
Setting the Range in TTree::Draw .. 286
TTree::Draw Examples ... 286
Using TTree::Scan ... 294
TEventList and TEntryList .. 295
Filling a Histogram .. 298

Using TTree::MakeClass ... 300
Creating a Class with MakeClass .. 301
MyClass.h .. 302
MyClass.C .. 303
Modifying MyClass::Loop ... 303
Loading MyClass .. 304

Using TTree::MakeSelector ... 305
Performance Benchmarks .. 306

Impact of Compression on I/O ... 307
Chains ... 308

TChain::AddFriend .. 309
13. Math Libraries in ROOT ... 310

TMath ... 310
Random Numbers .. 310

TRandom ... 311
TRandom1 .. 311
TRandom2 .. 311
TRandom3 .. 311
Seeding the Generators ... 311
Examples of Using the Generators .. 312
Random Number Distributions ... 312
UNURAN .. 313
Performances of Random Numbers ... 314

User's Guide

x

MathCore Library .. 315
Generic Vectors for 2, 3 and 4 Dimensions (GenVector) ... 315

Main Characteristics ... 316
Example: 3D Vector Classes .. 318
Example: 3D Point Classes ... 321
Example: LorentzVector Classes .. 322
Example: Vector Transformations ... 325
Example with External Packages .. 327

MathMore Library ... 328
Mathematical Functions .. 329

Special Functions in MathCore .. 329
Special Functions in MathMore .. 330
Probability Density Functions (PDF) ... 332
Cumulative Distribution Functions (CDF) .. 332

Linear Algebra: SMatrix Package ... 333
Example: Vector Class (SVector) ... 334
Example: Matrix Class (SMatrix) ... 335
Example: Matrix and Vector Functions and Operators 338
Matrix and Vector Functions ... 339

Minuit2 Package .. 339
ROOT Statistics Classes ... 340

Classes for Computing Limits and Confidence Levels 340
Specialized Classes for Fitting ... 341
Multi-variate Analysis Classes ... 341

14. Linear Algebra in ROOT ... 342
Overview of Matrix Classes .. 342
Matrix Properties ... 343

Accessing Properties .. 343
Setting Properties .. 344

Creating and Filling a Matrix ... 345
Matrix Operators and Methods ... 347

Arithmetic Operations between Matrices .. 347
Arithmetic Operations between Matrices and Real Numbers 348
Comparisons and Boolean Operations .. 348
Matrix Norms ... 349
Miscellaneous Operators ... 349

Matrix Views .. 350
View Operators ... 351
View Examples ... 353

Matrix Decompositions ... 353
Tolerances and Scaling ... 355
Condition number .. 356
LU .. 357
Bunch-Kaufman .. 357
Cholesky .. 358
QRH ... 358
SVD .. 358

Matrix Eigen Analysis .. 358
Speed Comparisons .. 359

15. Adding a Class .. 361
The Role of TObject .. 361

Introspection, Reflection and Run Time Type Identification 361
Collections ... 361
Input/Output ... 361
Paint/Draw ... 362
Clone/DrawClone .. 362
Browse .. 362
SavePrimitive .. 362

User's Guide

xi

GetObjectInfo ... 362
IsFolder ... 362
Bit Masks and Unique ID ... 362

Motivation .. 363
Template Support .. 364

The Default Constructor ... 365
rootcint: The CINT Dictionary Generator ... 366

Dictionaries for STL .. 368
Adding a Class with a Shared Library ... 368

The LinkDef.h File .. 369
Adding a Class with ACLiC .. 375

16. Collection Classes .. 377
Understanding Collections ... 377

General Characteristics ... 377
Determining the Class of Contained Objects ... 377
Types of Collections .. 378
Ordered Collections (Sequences) .. 378

Iterators: Processing a Collection .. 379
Foundation Classes .. 379
A Collectable Class ... 380
The TIter Generic Iterator ... 381
The TList Collection .. 382

Iterating Over a TList ... 383
The TObjArray Collection ... 384
TClonesArray – An Array of Identical Objects .. 384

The Idea Behind TClonesArray .. 385
Template Containers and STL .. 385

17. Physics Vectors .. 387
The Physics Vector Classes ... 387
TVector3 .. 387

Declaration / Access to the Components .. 388
Other Coordinates .. 388
Arithmetic / Comparison ... 389
Related Vectors ... 389
Scalar and Vector Products .. 389
Angle between Two Vectors .. 389
Rotation around Axes ... 389
Rotation around a Vector .. 389
Rotation by TRotation Class .. 389
Transformation from Rotated Frame .. 390

TRotation ... 390
Declaration, Access, Comparisons .. 390
Rotation around Axes ... 390
Rotation around Arbitrary Axis .. 391
Rotation of Local Axes ... 391
Inverse Rotation .. 391
Compound Rotations .. 391
Rotation of TVector3 ... 391

TLorentzVector ... 392
Declaration ... 392
Access to Components .. 392
Vector Components in Non-Cartesian Coordinates ... 393
Arithmetic and Comparison Operators ... 393
Magnitude/Invariant mass, beta, gamma, scalar product 394
Lorentz Boost ... 394
Rotations .. 394
Miscellaneous ... 395

TLorentzRotation ... 395

User's Guide

xii

Declaration ... 395
Access to the Matrix Components/Comparisons .. 396
Transformations of a Lorentz Rotation .. 396
Transformation of a TLorentzVector ... 397
Physics Vector Example ... 397

18. The Geometry Package .. 398
Quick Start: Creating the “world” ... 398

Example 1: Creating the World .. 398
Example 2: A Geometrical Hierarchy Look and Feel .. 399

Materials and Tracking Media ... 402
Elements, Materials and Mixtures ... 402
Radionuclides ... 403
Tracking Media ... 406
User Interface for Handling Materials and Media ... 406

Shapes ... 407
Units ... 408
Primitive Shapes .. 408
Composite Shapes .. 420
Navigation Methods Performed By Shapes ... 423
Creating Shapes ... 424
Dividing Shapes .. 424
Parametric Shapes .. 424

Geometry Creation ... 425
The Volume Hierarchy ... 426
Creating and Positioning Volumes .. 427
Geometrical Transformations ... 435
Ownership of Geometry Objects ... 438

Navigation and Tracking ... 439
TGeoNavigator Class ... 439
Initializing the Starting Point ... 440
Initializing the Direction ... 440
Initializing the State ... 440
Checking the Current State .. 441
Saving and Restoring the Current State .. 442
Navigation Queries .. 443
Creating and Visualizing Tracks ... 446

Checking the Geometry .. 448
The Overlap Checker ... 448
Graphical Checking Methods ... 450

The Drawing Package .. 451
Drawing Volumes and Hierarchies of Volumes ... 451
Visualization Settings and Attributes ... 452
Ray Tracing .. 453

Representing Misalignments of the Ideal Geometry .. 454
Physical Nodes .. 454

Geometry I/O .. 455
GDML ... 457

Navigation Algorithms .. 457
Finding the State Corresponding to a Location (x,y,z) 457
Finding the Distance to Next Crossed Boundary .. 459

Geometry Graphical User Interface ... 462
Editing a Geometry .. 462
The Geometry Manager Editor ... 463
Editing Existing Objects ... 464
Creation of New Objects ... 465
Editing Volumes .. 465
How to Create a Valid Geometry with Geometry Editors 467

19. Python and Ruby Interfaces .. 469

User's Guide

xiii

PyROOT Overview .. 469
Glue-ing Applications ... 469
Access to ROOT from Python ... 470
Access to Python from ROOT ... 470
Installation .. 471
Using PyROOT ... 472
Memory Handling .. 476
Performance .. 477
Use of Python Functions ... 478
Working with Trees ... 479
Using Your Own Classes .. 481

How to Use ROOT with Ruby ... 482
Building and Installing the Ruby Module ... 482

20. The Tutorials and Tests ... 485
$ROOTSYS/tutorials .. 485
$ROOTSYS/test .. 486

Event – An Example of a ROOT Application ... 487
stress - Test and Benchmark .. 490
guitest – A Graphical User Interface ... 492

21. Example Analysis ... 493
Explanation .. 493
Script ... 495

22. Networking ... 500
Setting-up a Connection .. 500
Sending Objects over the Network .. 500
Closing the Connection ... 501
A Server with Multiple Sockets ... 501

23. Threads .. 503
Threads and Processes .. 503

Process Properties .. 503
Thread Properties .. 503
The Initial Thread .. 504

Implementation of Threads in ROOT .. 504
Installation .. 504
Classes .. 504
TThread for Pedestrians .. 504
TThread in More Details ... 505

Advanced TThread: Launching a Method in a Thread .. 508
Known Problems ... 510

The Signals of ROOT .. 510
Glossary ... 510

24. PROOF: Parallel Processing ... 513
25. Writing a Graphical User Interface .. 514

The ROOT GUI Classes ... 514
Widgets and Frames ... 514
TVirtualX ... 515
A Simple Example ... 515

A Standalone Version ... 519
Widgets Overview ... 522

TGObject ... 522
TGWidget .. 522
TGWindow ... 523
Frames ... 523

Layout Management ... 526
Event Processing: Signals and Slots .. 528
Widgets in Detail .. 534

Buttons .. 534
Text Entries .. 537

User's Guide

xiv

Number Entries ... 538
Menus ... 540
Toolbar .. 541
List Boxes .. 543
Combo Boxes ... 544
Sliders ... 545
Triple Slider ... 546
Progress Bars .. 547
Static Widgets ... 547
Status Bar .. 548
Splitters ... 549
TGCanvas, ViewPort and Container .. 551
Embedded Canvas ... 551

The ROOT Graphics Editor (GED) ... 552
Object Editors ... 552
Editor Design Elements .. 553

Drag and Drop .. 554
Drag and Drop Data Class .. 555
Handling Drag and Drop Events ... 556

26. ROOT/Qt Integration Interfaces .. 558
Qt-ROOT Implementation of TVirtualX Interface (BNL) .. 558

Installation .. 558
Applications .. 559
TQtWidget Class, Qt Signals / Slots and TCanvas Interface 566

GSI QtROOT .. 567
Create a New Project in the Designer .. 568
main() .. 569

27. Automatic HTML Documentation ... 571
Reference Guide .. 571

Product and Module Documentation .. 572
Converting Sources (and Other Files) to HTML .. 572
Special Documentation Elements: Directives .. 572

Latex Directive ... 573
Macro Directive .. 573

Customizing HTML ... 574
Referencing Documentation for other Libraries ... 574
Search Engine ... 574
ViewCVS ... 574
Wiki Pages ... 574

Tutorial .. 574
28. Appendix A: Install and Build ROOT .. 576

License .. 576
Installing ROOT .. 576
Choosing a Version ... 576
Installing Precompiled Binaries .. 576
Installing the Source .. 576

Installing and Building the Source from a Compressed File 577
More Build Options ... 577

File system.rootrc .. 578
TCanvas Specific Settings ... 580
THtml Specific Settings .. 581
GUI Specific Settings ... 583
TBrowser Settings ... 584
TRint Specific Settings ... 584
ACLiC Specific Settings ... 585
PROOF Related Variables ... 585

Documentation to Download ... 590
Index ... 591

xv

List of Figures
1.1. ROOT framework directories .. 5
1.2. ROOT framework directories .. 5
1.3. ROOT libraries dependencies .. 8
2.1. A canvas with drawing .. 15
2.2. A context menu .. 22
2.3. The SaveAs... dialog .. 23
3.1. The class hierarchy of histogram classes .. 33
3.2. The "E1" bars' option .. 41
3.3. Different draw options ... 42
3.4. The TEXT option .. 42
3.5. Different contour options .. 43
3.6. The earth.C macro output ... 44
3.7. "LEGO" and "SURF" options .. 44
3.8. Different surface options .. 45
3.9. Vertical bar charts ... 46
3.10. Horizontal bar charts .. 47
3.11. The picture produced by spectrumpainter.C macro ... 50
3.12. The picture produced by fit2a.C macro .. 50
3.13. Superimposed histograms with different scales .. 51
3.14. Histograms with alphanumeric bin labels ... 56
3.15. Using a *char variable type in TTree::Draw ... 56
3.16. Stacked histograms .. 57
3.17. A profile histogram example ... 60
3.18. A TProfile2D histogram example ... 62
3.19. Iso surfaces .. 62
3.20. 3D implicit function ... 63
3.21. The picture generated by tutorial macro piechart.C .. 64
4.1. A graph drawn with axis, * markers and continuous line (option AC*) 71
4.2. A graph drawn with axis and bar (option AB) .. 71
4.3. A graph drawn with axis and fill (option AF) ... 72
4.4. Graph markers created in different ways .. 73
4.5. Superimposing two graphs .. 74
4.6. Graphs with different draw options of error bars ... 75
4.7. A graph with asymmetric error bars .. 76
4.8. A graph with asymmetric bent error bars ... 77
4.9. A polar graph ... 78
4.10. Graphs with exclusion zones ... 79
4.11. Examples of qq-plots of 2 datasets .. 80
4.12. Examples of qq-plots of 1 dataset ... 81
4.13. A multigraph example .. 82
4.14. Delaunay triangles and Voronoi diagram .. 82
4.15. Graph2D drawn with option "surfl" and "tril p0" ... 84
4.16. Output of macro graph2dfit.C .. 85
4.17. A graph with axis titles .. 86
4.18. A zoomed graph .. 86
5.1. The function x*sin(x) .. 90
5.2. Fitting a histogram with several Gaussian functions ... 94
5.3. The output of the FittingDemo() example .. 97
5.4. The neural net output ... 107
5.5. The original and the neural net for Br ... 107
7.1. ROOT object inspector of TFile ... 123
7.2. The object inspector of fKeys, the list of keys in the memory 123
8.1. The ROOT Object Browser ... 136
9.1. Context menus of different objects in a canvas .. 141
9.2. A histogram drawn in a pad .. 144

User's Guide

xvi

9.3. Pad coordinate systems ... 145
9.4. The status bar ... 146
9.5. Dividing a pad into 6 sub-pads .. 148
9.6. Different arrow formats .. 151
9.7. Different types of ellipses ... 151
9.8. A rectangle with a border ... 152
9.9. Markers ... 152
9.10. Different marker sizes ... 153
9.11. The use of non-symmetric markers ... 153
9.12. The picture generated by the tutorial macro feynman.C ... 154
9.13. The picture generated by the tutorial macro latex.C .. 157
9.14. The picture generated by the tutorial macro latex2.C .. 158
9.15. The picture generated by the tutorial macro latex3.C .. 159
9.16. PaveLabels drawn with different options .. 159
9.17. PaveText examples ... 160
9.18. A PaveText example .. 160
9.19. Y-axis with and without exponent labels .. 163
9.20. Time axis examples .. 166
9.21. A histogram with time axis X .. 167
9.22. The first axis example .. 168
9.23. The second axis example ... 169
9.24. An axis example with time display .. 170
9.25. Font’s examples ... 172
9.26. The various patterns ... 175
9.27. The basic ROOT colors .. 176
9.28. Different draw options .. 179
9.29. A legend example .. 182
9.30. Invoking external 3D viewers from canvas menus .. 188
9.31. The GL 3D Viewer .. 189
9.32. GL Viewer camera interactions .. 190
9.33. GL Viewer draw styles ... 191
9.34. GL Viewer interactive box clipping ... 192
9.35. GL Viewer object manipulators .. 193
9.36. Overview of 3D viewer architecture .. 197
9.37. TBuffer3D class hierarchy ... 198
10.1. Tasks in the ROOT browser .. 209
11.1. The browser with 15 created histograms .. 212
11.2. ROOT File/Directory/Key description .. 218
11.3. The structure of TFile ... 219
11.4. The file before and after the call to Write .. 222
11.5. Compression and precision of Double32_t .. 231
11.6. A diagram of a streamed TH1F in the buffer ... 232
11.7. Streaming object pointers .. 234
11.8. The ROOT schema evolution ... 238
11.9. The schema evolution for objects written on disk and in memory 239
12.1. Activating the tree viewer ... 254
12.2. The TreeViewer ... 255
12.3. A couple of graphs .. 256
12.4. The TTree class ... 257
12.5. The tree1.root file and its tree in the browser .. 267
12.6. A leaf histogram .. 267
12.7. The tree viewer ... 267
12.8. The tree viewer with tree4 example ... 281
12.9. Using draw options in trees ... 285
13.1. Math libraries and packages ... 310
13.2. PDF, CDF and quantiles in the case of the normal distribution 333
14.1. Overview of matrix classes .. 342
14.2. Speed comparison between the different matrix packages .. 360

User's Guide

xvii

16.1. The inheritance hierarchy of the primary collection classes .. 378
16.2. The internal data structure of a TList ... 383
16.3. The internal data structure of a TObjArray ... 384
16.4. The internal data structure of a TClonesArray ... 384
18.1. Concentration of C14 derived elements .. 405
18.2. Concentracion of elements derived fromCa53+Sr78 .. 406
18.3. Primitive Shapes - the general inheritance scheme .. 407
18.4. TGeoBBox class .. 408
18.5. TGeoPara class .. 409
18.6. TGeoTrd1 class ... 409
18.7. TGeoTrd2 class ... 410
18.8. TGeoTrap Class ... 410
18.9. TGeoGtra class .. 411
18.10. TGeoArb8 class ... 411
18.11. TGeoTube Class .. 412
18.12. TGeoTubeSeg Class ... 412
18.13. TGeoCtub Class ... 413
18.14. TGeoEltu Class .. 413
18.15. TGeoHype Class .. 414
18.16. TGeoCone Class .. 415
18.17. TGeoConeSeg Class ... 415
18.18. TGeoSphere Class .. 415
18.19. TGeoTorus Class ... 416
18.20. TGeoParaboloid Class ... 417
18.21. TGeoPcon Class ... 418
18.22. TGeoPgon Class .. 418
18.23. TGeoXtru Class ... 419
18.24. The composite shapes structure ... 420
18.25. Representation of A+B+C .. 421
18.26. Internal representation for composite shapes .. 421
18.27. A composite shape example ... 423
18.28. A geometry hierarchy in memory .. 426
18.29. Assemblies of volumes .. 435
18.30. Extruding volumes ... 448
18.31. Overlap checking ... 449
18.32. Safety computation checking .. 450
18.33. Random points ... 450
18.34. Random rays ... 450
18.35. Ray-traced view in a pad ... 453
18.36. Ray-tracing example with box-clipping .. 454
18.37. Navigation in the geometry hierarchy ... 457
18.38. Finding the location of a point in the geometry hierarchy ... 459
18.39. Finding the distance to the next crossed boundary .. 460
18.40. The geometry manager editor ... 463
18.41. Accessing/creating different categories of editable objects .. 463
18.42. Selection dialogs for different TGeo objects .. 464
18.43. Editors for shapes, materials, media, matrices .. 465
18.44. Setting volume properties and modifying volume hierarchy 466
18.45. Volume visualisation settings and division interface for volumes 467
20.1. Native GUI widgets ... 492
22.1. Server - Client setting-up and closing the connection .. 501
24.1. The Multi-tier structure of a PROOF cluster ... 513
25.1. Widgets created by ROOT GUI classes .. 522
25.2. The GUI classes hierarchy ... 524
25.3. The layout classes hierarchy .. 527
25.4. Histogram, pad and axis editors .. 553

xviii

Preface
Draft, November 2000 - version 0.6.2In late 1994, we decided to learn and investigate Object
Oriented programming and C++ to better judge the suitability of these relatively new techniques
for scientific programming. We knew that there is no better way to learn a new programming
environment than to use it to write a program that can solve a real problem. After a few weeks,
we had our first histogramming package in C++. A few weeks later we had a rewrite of the same
package using the, at that time, very new template features of C++. Again, a few weeks later we
had another rewrite of the package without templates since we could only compile the version with
templates on one single platform using a specific compiler. Finally, after about four months we had
a histogramming package that was faster and more efficient than the well-known FORTRAN based
HBOOK histogramming package. This gave us enough confidence in the new technologies to decide
to continue the development. Thus was born ROOT. Since its first public release at the end of 1995,
ROOT has enjoyed an ever-increasing popularity. Currently it is being used in all major High Energy
and Nuclear Physics laboratories around the world to monitor, to store and to analyze data. In the other
sciences as well as the medical and financial industries, many people are using ROOT. We estimate the
current user base to be around several thousand people. In 1997, Eric Raymond analyzed in his paper
"The Cathedral and the Bazaar" the development method that makes Linux such a success. The essence
of that method is: "release early, release often and listen to your customers". This is precisely how
ROOT is being developed. Over the last five years, many of our "customers" became co-developers.
Here we would like to thank our main co-developers and contributors:

Masaharu Goto wrote the CINT C++ interpreter that became an essential part of ROOT. Despite
being 8 time zones ahead of us, we have the feeling he has been sitting in the room next door since
1995.

Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and
Virtual Monte-Carlo. They have been working with the ROOT team since 2000.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT
team in 2000 and has been working on the graphics sub-system.

Ilka Antcheva has been working on the Graphical User Interface classes. She is also responsible for
this latest edition of the Users Guide with a better style, improved index and several new chapters
(since 2002).

Bertrand Bellenot has been developing and maintaining the Win32GDK version of ROOT. Bertrand
has also many other contributions like the nice RootShower example (since 2001).

Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-
system for Windows and the GUI Builder (since 2000).

Gerri Ganis has been working on the authentication procedures to be used by the root daemons and
the PROOF system (since 2002).

Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system (since 1995).

Valeri Fine (now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He
is currently working on the Qt layer of ROOT (since 1995).

Victor Perevoztchikov (BNL) worked on key elements of the I/O system, in particular the improved
support for STL collections (1997-2001).

Nenad Buncic developed the HTML documentation generation system and integrated the X3D viewer
inside ROOT (1995-1997).

Suzanne Panacek was the author of the first version of this User’s Guide and very active in preparing
tutorials and giving lectures about ROOT (1999-2002).

Preface

xix

Axel Naumann has been developing further the HTML Reference Guide and helps in porting ROOT
under Windows (cygwin/gcc implementation) (since 2000).

Anna Kreshuk has developed the Linear Fitter and Robust Fitter classes as well as many functions
in TMath, TF1, TGraph (since 2005).

Richard Maunder has contributed to the GL viewer classes (since 2004).

Timur Pocheptsov has contributed to the GL viewer classes and GL in pad classes (since 2004).

Sergei Linev has developed the XML driver and the TSQLFile classes (since 2003).

Stefan Roiser has been contributing to the reflex and cintex packages (since 2005).

Lorenzo Moneta has been contributing the MathCore, MathMore, Smatrix & Minuit2 packages (since
2005).

Wim Lavrijsen is the author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the $ROOTSYS/README/CREDITS file
for their contributions, and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!

Rene Brun & Fons Rademakers

Geneva, July 2007

1

Chapter 1. Introduction
In the mid 1990's, René Brun and Fons Rademakers had many years of experience developing
interactive tools and simulation packages. They had lead successful projects such as PAW, PIAF, and
GEANT, and they knew the twenty-year-old FORTRAN libraries had reached their limits. Although
still very popular, these tools could not scale up to the challenges offered by the Large Hadron Collider,
where the data is a few orders of magnitude larger than anything seen before.

At the same time, computer science had made leaps of progress especially in the area of Object
Oriented Design, and René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an
impressive amount of data, around 10 Terabytes per run. This rate provided the ideal environment to
develop and test the next generation data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa
Goto in Japan. It is an independent product, which ROOT is using for the command line and script
processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book "The Cathedral and
the Bazaar" by Eric S. Raymond. It means a liberal, informal development style that heavily relies
on the diverse and deep talent of the user community. The result is that physicists developed ROOT
for themselves; this made it specific, appropriate, useful, and over time refined and very powerful.
The development of ROOT is a continuous conversation between users and developers with the line
between the two blurring at times and the users becoming co-developers.

When it comes to storing and mining large amount of data, physics plows the way with its Terabytes,
but other fields and industry follow close behind as they acquiring more and more data over time.
They are ready to use the true and tested technologies physics has invented. In this way, other fields
and industries have found ROOT useful and they have started to use it also.

In the bazaar view, software is released early and frequently to expose it to thousands of eager
co-developers to pound on, report bugs, and contribute possible fixes. More users find more bugs,
because they stress the program in different ways. By now, after ten years, the age of ROOT is quite
mature. Most likely, you will find the features you are looking for, and if you have found a hole,
you are encouraged to participate in the dialog and post your suggestion or even implementation on
roottalk, the ROOT mailing list.

The ROOT Mailing Lists
The roottalk was the very first active ROOT mailing list. People can subscribe to it by
registering at the ROOT web site: http://root.cern.ch/root/Registration.phtml.
The RootTalk Forum http://root.cern.ch/phpBB2/ has been gradually replaced this
mailing list since September 2003. The RootTalk Forum is a web-based news group with about 10
discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in the roottalk or
RootTalk Forum archives. Please use the search engine to see if your question has already been
answered before sending a mail to the roottalk list or post a topic in the Forum.

You can browse the roottalk archives at: http://root.cern.ch/root/
roottalk/AboutRootTalk.html. You can send your question without subscribing to:
roottalk@root.cern.ch

Contact Information
Several authors wrote this book and you may see a "change of voice" from one chapter to the
next. We felt we could accept this in order to have the expert explain what they know best. If you

Introduction

2

would like to contribute a chapter or add to a section, please contact rootdoc@root.cern.ch.
We count on you to send us suggestions on additional topics or on the topics that need more
documentation. Please send your comments, corrections, questions, and suggestions to the rootdoc
list: rootdoc@root.cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the
elementary functionality and progresses in complexity reaching the specialized topics at the end. The
experienced user looking for special topics may find these chapters useful: see “Networking”, “Writing
a Graphical User Interface”, “Threads”, and “PROOF: Parallel Processing”.

Conventions Used in This Book
We tried to follow a style convention for the sake of clarity. The styles in used are described below.

To show source code in scripts or source files:

{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive
system, the ROOT prompt has a line number (root[12]); for the sake of simplicity, the line numbers
are left off. Bold monotype font indicates the ROOT class names as TObject, TClass, and text
for you to enter at verbatim.

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory. We also used the
italic font to highlight the comments in the code listing.

When a variable term is used, it is shown between angled brackets. In the example below the
variable term <library> can be replaced with any library in the $ROOTSYS directory: $ROOTSYS/
<library>/inc.

The Framework
ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy
physics. There are two key words in this definition, object oriented and framework. First, we explain
what we mean by a framework and then why it is an object-oriented framework.

What Is a Framework?
Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and
transportation are services provided by the city. In your house, you have interfaces to the services such
as light switches, electrical outlets, and telephones. The details, for example, the routing algorithm of
the phone switching system, are transparent to you as the user. You do not care; you are only interested
in using the phone to communicate with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have
transportation and water, you will have to build a road and dig a well. To have services like telephone

Introduction

3

and electricity you will need to route the wires to your home. In addition, you cannot build some things
yourself. For example, you cannot build a commercial airport on your patch of land. From a global
perspective, it would make no sense for everyone to build his or her own airport. You see you will be
very busy building the infrastructure (or framework) before you can use the phone to communicate
with your collaborators and have a drink of water at the same time. In software engineering, it is much
the same way. In a framework, the basic utilities and services, such as I/O and graphics, are provided.
In addition, ROOT being a HEP analysis framework, it provides a large selection of HEP specific
utilities such as histograms and fitting. The drawback of a framework is that you are constrained to it,
as you are constraint to use the routing algorithm provided by your telephone service. You also have to
learn the framework interfaces, which in this analogy is the same as learning how to use a telephone.

If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of
the more commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting,
Writing a Graphical User Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run
Time Type Identification (RTTI), Socket and Network Communication, Threads.

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

• Less code to write – the programmer should be able to use and reuse the majority of the existing
code. Basic functionality, such as fitting and histogramming are implemented and ready to use and
customize.

• More reliable and robust code – the code inherited from a framework has already been tested and
integrated with the rest of the framework.

• More consistent and modular code – the code reuse provides consistency and common capabilities
between programs, no matter who writes them. Frameworks make it easier to break programs into
smaller pieces.

• More focus on areas of expertise – users can concentrate on their particular problem domain. They
do not have to be experts at writing user interfaces, graphics, or networking to use the frameworks
that provide those services.

Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented
Programming:

• Encapsulation enforces data abstraction and increases opportunity for reuse.

• Sub classing and inheritance make it possible to extend and modify objects.

• Class hierarchies and containment hierarchies provide a flexible mechanism for modeling real-
world objects and the relationships among them.

• Complexity is reduced because there is little growth of the global state, the state is contained within
each object, rather than scattered through the program in the form of global variables.

• Objects may come and go, but the basic structure of the program remains relatively static, increases
opportunity for reuse of design.

Installing ROOT

Introduction

4

To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/
Availability.html. You have a choice to download the binaries or the source. The source is
quicker to transfer since it is only ~22 MB, but you will need to compile and link it. The binaries
compiled with no degug information range from ~35 MB to ~45 MB depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can
download the binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile
ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment.
In most cases it is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only
gcc 3.2 is installed. In such cases you'll have to install ROOT from source.

ROOT is currently running on the following platforms:

• GNU/Linux x86-32 (IA32) and x86-64 (AMD64)(GCC,Intel/icc,Portland/
PGCC,KAI/KCC)

• Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)

• FreeBSD and OpenBSD (GCC)

• GNU/Hurd (GCC)

• HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

• IBM AIX 4.1 (xlC compiler, GCC)

• Sun Solaris for SPARC (SUN C++ compiler, GCC)

• Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

• Compaq Alpha (GCC, KAI/KCC, DEC/CXX)

• SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)

• Windows # 95 (Microsoft Visual C++ compiler, Cygwin/GCC)

• MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/xl)

• PowerPC with GNU/Linux and GCC, Debian v2

• PowerPC64 with GNU/Linux and GCC

• ARM with GNU/Linux and GCC

• LynxOS

The Organization of the ROOT Framework
Now after we know in abstract terms what the ROOT framework is, let us look at the physical
directories and files that come with the ROOT installation. You may work on a platform where your
system administrator has already installed ROOT. You will need to follow the specific development
environment for your setup and you may not have write access to the directories. In any case, you will
need an environment variable called ROOTSYS, which holds the path of the top ROOT directory.

> echo $ROOTSYS
/opt/root

Introduction

5

In the ROOTSYS directory are examples, executables, tutorials, header files, and, if you opted to
download it, the source is here. The directories of special interest to us are bin, tutorials, lib,
test, and include. The next figure shows the contents of these directories.

Figure 1.1. ROOT framework directories

Figure 1.2. ROOT framework directories

Introduction

6

$ROOTSYS/bin
The bin directory contains several executables.

root shows the ROOT splash screen and calls root.exe

root.exe the executable that root calls, if you use a debugger such as gdb, you will need
to run root.exe directly

rootcint is the utility ROOT uses to create a class dictionary for CINT

rmkdepend a modified version of makedepend that is used by the ROOT build system

root-config a script returning the needed compile flags and libraries for projects that compile
and link with ROOT

cint the C++ interpreter executable that is independent of ROOT

makecint the pure CINT version of rootcint, used to generate a dictionary; It is used by
some of CINT install scripts to generate dictionaries for external system libraries

proofd a small daemon used to authenticate a user of ROOT parallel processing
capability (PROOF)

proofserv the actual PROOF process, which is started by proofd after a user, has
successfully been authenticated

rootd is the daemon for remote ROOT file access (see the TNetFile)

$ROOTSYS/lib
There are several ways to use ROOT, one way is to run the executable by typing root at the system
prompt another way is to link with the ROOT libraries and make the ROOT classes available in your
own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed
when the options specified them.

• libAsImage is the image manipulation library

• libCint is the C++ interpreter (CINT)

• libCore is the Base classes

• libEG is the abstract event generator interface classes

• *libEGPythia is the Pythia5 event generator interface

• *libEGPythia6 is the Pythia6 event generator interface

• libFitPanel contains the GUI used for fitting

• libGed contains the GUI used for editing the properties of histograms, graphs, etc.

• libGeom is the geometry package (with builder and painter)

• libGpad is the pad and canvas classes which depend on low level graphics

• libGraf is the 2D graphics primitives (can be used independent of libGpad)

• libGraf3d is the 3D graphics primitives

• libGui is the GUI classes (depend on low level graphics)

Introduction

7

• libGuiBld is the GUI designer

• libGuiHtml contains the embedded HTML browser

• libGX11 is the low level graphics interface to the X11 system

• *libGX11TTF is an add-on library to libGX11 providing TrueType fonts

• libHbook is for interface ROOT - HBOOK

• libHist is the histogram classes (with accompanying painter library)

• libHtml is the HTML documentation generation system

• libMatrix is the matrix and vector manipulation

• libMathCore contains the core mathematics and physics vector classes

• libMathMore contains additional functions, interfacing the GSL math library

• libMinuit is the MINUIT fitter

• libNet contains functionality related to network transfer

• libNew is the special global new/delete, provides extra memory checking and interface for shared
memory (optional)

• libPhysics contains the legacy physics classes (TLorentzVector, etc.)

• libPostscript is the PostScript interface

• libProof is the parallel ROOT Facility classes

• libPython provides the interface to Python

• *libRFIO is the interface to CERN RFIO remote I/O system.

• *libRGL is the interface to OpenGL.

• libReflex is the runtime type database library used by CINT

• libRint is the interactive interface to ROOT (provides command prompt)

• libRIO provides the functionality to write and read objects to and from ROOT files

• libRooFit is the RooFit fitting framework

• libRuby is the interface to Ruby

• libSpectrum provides functionality for spectral analysis

• *libThread is the interface to TThread classes

• libTMVA contains the multivariate analysis toolkit

• libTree is the TTree object container system

• libTreePlayer is the TTree drawing classes

• libTreeViewer is the graphical TTree query interface

Introduction

8

Library Dependencies

Figure 1.3. ROOT libraries dependencies

The libraries are designed and organized to minimize dependencies, such that you can load just enough
code for the task at hand rather than having to load all libraries or one monolithic chunk. The core
library (libCore.so) contains the essentials; it is a part of all ROOT applications. In the Figure
1-2 you see that libCore.so is made up of base classes, container classes, meta information classes,
operating system specific classes, and the ZIP algorithm used for compression of the ROOT files.

The CINT library (libCint.so) is also needed in all ROOT applications, and even by libCore.
It can be used independently of libCore, in case you only need the C++ interpreter and not ROOT.
A program referencing only TObject only needs libCore and libCint. To add the ability to
read and write ROOT objects one also has to load libRIO. As one would expect, none of that depends
on graphics or the GUI.

Library dependencies have different consequences; depending on whether you try to build a binary,
or you just try to access a class that is defined in a library.

Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes
you use. The ROOT reference guide states the library a class is defined in. Almost all relevant
classes can be found in libraries returned by root-config –glibs; the graphics libraries are
retuned by root-config --libs. These commands are commonly used in Makefiles. Using
root-config instead of enumerating the libraries by hand allows you to link them in a platform
independent way. Also, if ROOT library names change you will not need to change your Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms
and trees, only needs to link the core libraries (libCore, libCint, libRIO), libHist and
libTree. If ROOT needs access to other libraries, it loads them dynamically. For example, if the
TreeViewer is used, libTreePlayer and all libraries libTreePlayer depends on are loaded
also. The dependent libraries are shown in the ROOT reference guide’s library dependency graph.
The difference between libHist and libHistPainter is that the former needs to be explicitly
linked and the latter will be loaded automatically at runtime when ROOT needs it, by means of the
Plugin Manager.

In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a
plugin library directly, it has to be explicitly linked. An example of a plugin library is libMinuit.
To create and fill histograms you need to link libHist.so. If the code has a call to fit the histogram,
the "fitter" will dynamically load libMinuit if it is not yet loaded.

Introduction

9

Plugins: Runtime Library Dependencies for Linking

 The Plugin Manager TPluginManager allows postponing library dependencies to runtime: a
plugin library will only be loaded when it is needed. Non-plugins will need to be linked, and are
thus loaded at start-up. Plugins are defined by a base class (e.g. TFile) that will be implemented
in a plugin, a tag used to identify the plugin (e.g. ^rfio: as part of the protocol string), the
plugin class of which an object will be created (e.g. TRFIOFile), the library to be loaded (in
short libRFIO.so to RFIO), and the constructor to be called (e.g. “TRFIOFile()”). This can be
specified in the .rootrc which already contains many plugin definitions, or by calls to gROOT-
>GetPluginManager()->AddHandler().

Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the
library that defines this class. On start-up, ROOT parses all files ending on .rootmap that are in one
of the $LD_LIBRARY_PATH (or $DYLD_LIBRARY_PATH for MacOS, or $PATH for Windows).
They contain class names and the library names that the class depends on. After reading them, ROOT
knows which classes are available, and which libraries to load for them.

When TSystem::Load("ALib") is called, ROOT uses this information to determine which
libraries libALib.so depends on. It will load these libraries first. Otherwise, loading the requested
library could cause a system (dynamic loader) error due to unresolved symbols.

$ROOTSYS/tutorials
 The tutorials directory contains many example scripts. They assume some basic knowledge of ROOT,
and for the new user we recommend reading the chapters: “Histograms” and “Input/Output” before
trying the examples. The more experienced user can jump to chapter “The Tutorials and Tests” to find
more explicit and specific information about how to build and run the examples.

The $ROOTSYS/tutorials/ directory include the following sub-directories:

fft: Fast Fourier Transform with the fftw package fit: Several examples illustrating minimization/
fitting foam: Random generator in multidimensional space geom: Examples of use of the geometry
package (TGeo classes) gl: Visualisation with OpenGL graphics: Basic graphics graphs: Use of
TGraph, TGraphErrors, etc. gui: Scripts to create Graphical User Interface hist: Histograming
image: Image Processing io: Input/Output math: Maths and Statistics functions matrix: Matrices
(TMatrix) examples mlp: Neural networks with TMultiLayerPerceptron net: Network
classes (client/server examples) physics: LorentzVectors, phase space pyroot: Python tutorials
pythia: Example with pythia6 quadp: Quadratic Programming ruby: ruby tutorials smatrix:
Matrices with a templated package spectrum: Peak finder, background, deconvolutions splot:
Example of the TSplot class (signal/background estimator) sql: Interfaces to SQL (mysql, oracle,
etc) thread: Using Threads tmva: Examples of the MultiVariate Analysis classes tree: Creating
Trees, Playing with Trees unuran: Interface with the unuram random generator library xml: Writing/
Reading xml files

You can execute the scripts in $ROOTSYS/tutorials (or sub-directories) by setting your current
directory in the script directory or from any user directory with write access. Several tutorials create
new files. If you have write access to the tutorials directory, the new files will be created in the tutorials
directory, otherwise they will be created in the user directory.

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the framework. When a new
release is cut, the examples in this directory are compiled and run to test the new release's backward
compatibility. The list of source files is described in chapter “The Tutorials and Tests”.

The $ROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage you
to explore and exploit it. We recommend the new users to read the chapter “Getting Started”. The

Introduction

10

chapter “The Tutorials and Tests” has instructions on how to build all the programs and it goes over
the examples Event and stress.

$ROOTSYS/include
The include directory contains all header files. It is especially important because the header files
contain the class definitions.

$ROOTSYS/<library>
The directories we explored above are available when downloading the binaries. When downloading
the source you also get a directory for each library with the corresponding header and source files,
located in the inc and src subdirectories. To see what classes are in a library, you can check
the <library>/inc directory for the list of class definitions. For example, the physics library
libPhysics.so contains these class definitions:

> ls -m $ROOTSYS/physics/inc
CVS,LinkDef.h,TLorentzRotation.h,TLorentzVector.h,TRotation.h,
TVector2.h,TVector3.h

How to Find More Information
 The ROOT web site has up to date documentation. The ROOT source code automatically generates
this documentation, so each class is explicitly documented on its own web page, which is always up
to date with the latest official release of ROOT.

The ROOT Reference Guide web pages can be found at http://root.cern.ch/root/html/
ClassIndex.html. Each page contains a class description, and an explanation of each method. It
shows the class inheritance tree and lets you jump to the parent class page by clicking on the class
name. If you want more details, you can even see the source. There is a help page available in the little
box on the upper right hand side of each class documentation page. You can see on the next page what
a typical class documentation web page looks like. The ROOT web site also contains in addition to
this Reference Guide, "How To's", a list of publications and example applications.

Class Reference Guide
The top of any class reference page lets you jump to different parts of the documentation. The first
line links to the class index and the index for the current module (a group of classes, often a library).
The second line links to the ROOT homepage and the class overviews. The third line links the
source information – a HTML version of the source and header file as well as the CVS (the source
management system used for the ROOT development) information of the files. The last line links the
different parts of the current pages.

This is an example for function documentation, with automatically generated LaTeX-like graphics:

Introduction

11

The class diagrams show e. g. the inheritance tree, so you know what the current class derives from,
and which classes inherit from it:

The HTML version of the source file links all types and most functions so you can study what’s
happening inside ROOT itself:

12

Chapter 2. Getting Started
We begin by showing you how to use ROOT interactively. There are two examples to click through
and learn how to use the GUI. We continue by using the command line, and explaining the coding
conventions, global variables and the environment setup. If you have not installed ROOT, you
can do so by following the instructions in the appendix, or on the ROOT web site: http://
root.cern.ch/root/Availability.html

Setting the Environment Variables
Before you can run ROOT you need to set the environment variable ROOTSYS and change your path
to include root/bin and library path variables to include root/lib. Please note: the syntax is for
bash, if you are running tcsh you will have to use setenv instead of export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:

$ export ROOTSYS=$HOME/root

2. Add ROOTSYS/bin to your PATH:

$ export PATH=$PATH:$ROOTSYS/bin

3. Setting the Library Path

On HP-UX, before executing the interactive module, you must set the library path:

$ export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AIX, before executing the interactive module, you must set the library path:

$ [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib
$ export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive module, you must set the
library path:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

If you use the afs version you should set (vers = version number, arch = architecture):

$ export ROOTSYS=/afs/cern.ch/sw/lcg/external/root/
vers
/
arch
/root

If ROOT was installed in $HOME/myroot directory on a local machine, one can do:

cd $HOME/myroot
. bin/thisroot.sh // or source bin/thisroot.sh

The new $ROOTSYS/bin/thisroot.[c]sh scripts will set correctly the ROOTSYS,
LD_LIBRARY_PATH or other paths depending on the platform and the MANPATH. To run the
program just type: root.

Getting Started

13

Start and Quit a ROOT Session
% root

* *
* W E L C O M E to R O O T *
* *
* Version 5.20/00 24 June 2007 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *

ROOT 5.20/00 (trunk@24525, Jun 25 2008, 12:52:00 on linux)

CINT/ROOT C/C++ Interpreter version 5.16.29, June 08, 2008
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root [0]

To start ROOT you can type root at the system prompt. This starts up CINT, the ROOT command
line C/C++ interpreter, and it gives you the ROOT prompt (root[0])

It is possible to launch ROOT with some command line options, as shown below:

% root -/?
Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]
 Options:
 -b : run in batch mode without graphics
 -n : do not execute logon and logoff macros as
 specified in .rootrc
 -q : exit after processing command line script files
 -l : do not show the image logo (splash screen)

• –bROOT session runs in batch mode, without graphics display. This mode is useful in case one
does not want to set the DISPLAY or cannot do it for some reason.

• –nusually, launching a ROOT session will execute a logon script and quitting will execute a logoff
script. This option prevents the execution of these two scripts.

• it is also possible to execute a script without entering a ROOT session. One simply adds the name
of the script(s) after the ROOT command. Be warned: after finishing the execution of the script,
ROOT will normally enter a new session.

• –qprocess command line script files and exit.

For example if you would like to run a script myMacro.C in the background, redirect the output into
a file myMacro.log, and exit after the script execution, use the following syntax:

root -b -q myMacro.C > myMacro.log

If you need to pass a parameter to the script use:

root -b -q ’myMacro.C(3)’ > myMacro.log

Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:

root -b -q ’myMacro.C("text")’ > myMacro.log

Getting Started

14

You can build a shared library with ACLiC and then use this shared library on the command line for
a quicker execution (i.e. the compiled speed rather than the interpreted speed). See also “CINT the
C++ Interpreter”.

root -b -q myMacro.so > myMacro.log

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes, global
variables, and functions via the command line. By typing C++ statements at the prompt, you can create
objects, call functions, execute scripts, etc. For example:

root[] 1+sqrt(9)
(const double)4.00000000000000000e+00
root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl
Hello 0
Hello 1
Hello 2
Hello 3
root[] .q

To exit the ROOT session, type .q.

root[] .q

Using the GUI
The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the class
TCanvas). Every object in the canvas is a graphical object in the sense that you can grab it, resize it,
and change some characteristics using the mouse. The canvas area can be divided in several sub areas,
so-called pads (the class TPad). A pad is a canvas sub area that can contain other pads or graphical
objects. At any one time, just one pad is the so-called active pad. Any object at the moment of drawing
will be drawn in the active pad. The obvious question is: what is the relation between a canvas and
a pad? In fact, a canvas is a pad that spans through an entire window. This is nothing else than the
notion of inheritance. The TPad class is the parent of the TCanvas class. In ROOT, most objects
derive from a base class TObject. This class has a virtual method Draw() such as all objects are
supposed to be able to be "drawn". If several canvases are defined, there is only one active at a time.
One draws an object in the active canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1")
is created. In the next example, the first statement defines a function and the second one draws it.
A default canvas is created since there was no opened one. You should see the picture as shown in
the next figure.

root[] TF1 f1("func1","sin(x)/x",0,10)
root[] f1.Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

Getting Started

15

Figure 2.1. A canvas with drawing

The following components comprise the canvas window:

• Menu bar – contains main menus for global operations with files, print, clear canvas, inspect, etc.

• Tool bar – has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.

• Canvas – an area to draw objects.

• Status bar – displays descriptive messages about the selected object.

• Editor frame - responds dynamically and presents the user interface according to the selected object
in the canvas.

Main Menus and Toolbar
At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

File Menu

• New Canvas: creates a new canvas window in the current ROOT session.

• Open…: popup a dialog to open a file.

• Close Canvas: close the canvas window.

• Save: save the drawing of the current canvas in a format selectable from the submenu. The current
canvas name is used as a file name for various formats such as PostScript, GIF, JPEG, C macro
file, root file.

Getting Started

16

• Save As…: popup a dialog for saving the current canvas drawing in a new filename.

• Print: popup a dialog to print the current canvas drawing

• Quit ROOT: exit the ROOT session

Edit Menu

There is only one active menu entry in the Edit menu. The others menu entries will be implemented
and will become active in the near future.

•

Clear: delete all objects in the canvas or in the selected pad according to the
selected entry in the submenu.

View Menu

• Editor: toggles the view of the editor. If it is selected activates and shows up the editor on the left
side of the canvas window. According to the selected object, the editor loads the corresponding user
interface for easy change of the object’s attributes.

• Toolbar: toggles the view of the toolbar. If it is selected activates and shows up the toolbar. It
contains buttons for easy and fast access to most frequently used commands and for graphics
primitive drawing. Tool tips are provided for helping users.

• Status Bar: toggles the view of the status bar. If it is selected, the status bar below the canvas window
shows up. There the identification of the objects is displayed when moving the mouse (such as the
object’s name, the object’s type, its coordinates, etc.).

• Colors: creates a new canvas showing the color palette.

• Markers: creates a new canvas showing the various marker styles.

• Iconify: create the canvas window icon, does not close the canvas

• View With...: If the last selected pad contains a 3-d structure, a new canvas is created with a 3-D
picture according to the selection made from the cascaded menu: X3D or OpenGL. The 3-D image
can be interactively rotated, zoomed in wire-frame, solid, hidden line or stereo mode.

Options Menu

Getting Started

17

• Auto Resize Canvas: turns auto-resize of the canvas on/off:

• ON – the canvas fits to the window when changing the window size;

• OFF – the canvas stays fixed when changing the window size.

• Resize Canvas: resizes and fits the canvas to the window size.

• Move Opaque: if selected, graphics objects are moved in opaque mode; otherwise, only the outline
of objects is drawn when moving them. The option opaque produces the best effect but it requires
a reasonably fast workstation or response time.

• Resize Opaque: if selected, graphics objects are resized in opaque mode; otherwise, only the outline
of objects is drawn when resizing them.

• Interrupt: interrupts the current drawing process.

• Refresh: redraws the canvas contents.

• Pad Auto Exec: executes the list of TExecs in the current pad.

• Statistics: toggles the display of the histogram statistics box.

• Histogram Title: toggles the display of the histogram title.

• Fit Parameters: toggles the display of the histogram or graph fit parameters.

• Can Edit Histogram: enables/disables the possibility to edit histogram bin contents.

Inspect Menu

• ROOT: inspects the top-level gROOT object (in a new canvas).

• Start Browser: starts a new object browser (in a separate window).

• GUI Builder: starts the GUI builder application (in a separate window).

Classes Menu

• Classes: starts the ClassTree viewer that draws inheritance tree for a list of classes.

Help Menu

Getting Started

18

• Canvas: help on canvas as a whiteboard area for drawing.

• Menus: help on canvas menus.

• Graphics Editor: help on primitives’ drawing and objects’ editor.

• Browser: help on the ROOT objects’ and files’ browser.

• Objects: help on DrawClass, Inspect and Dump context menu items.

• PostScript: help on how to print a canvas to a PostScript file format.

• About ROOT: pops up the ROOT Logo with the version number.

Toolbar

The following menu shortcuts and utilities are available from the toolbar:

 Create a new canvas window.

 Popup the Open File dialog.

 Popup the Save As… dialog.

 Popup the Print dialog.

 Interrupts the current drawing process.

 Redraw the canvas.

 Inspect the gROOT object.

 Create a new objects’ browser.

You can create the following graphical objects using the toolbar buttons for primitive drawing. Tool
tips are provided for helping your choice.

 An Arc or circle: Click on the center of the arc, and then move the mouse. A rubber band circle
is shown. Click again with the left button to freeze the arc.

 A Line: Click with the left button at the point where you want to start the line, then move the
mouse and click again with the left button to freeze the line.

 An Arrow: Click with the left button at the point where you want to start the arrow, then move
the mouse and click again with the left button to freeze the arrow.

 A Diamond: Click with the left button and freeze again with the left button. The editor draws a
rubber band box to suggest the outline of the diamond.

 An Ellipse: Proceed like for an arc. You can grow/shrink the ellipse by pointing to the sensitive
points. They are highlighted. You can move the ellipse by clicking on the ellipse, but not on the

Getting Started

19

sensitive points. If, with the ellipse context menu, you have selected a fill area color, you can move a
filled-ellipse by pointing inside the ellipse and dragging it to its new position.

 A Pad: Click with the left button and freeze again with the left button. The editor draws a rubber
band box to suggest the outline of the pad.

 A PaveLabel: Proceed like for a pad. Type the text of label and finish with a carriage return. The
text will appear in the box.

 A Pave Text: Proceed like for a pad. You can then click on the TPaveText object with the right
mouse button and select the option InsertText.

 Paves Text: Proceed like for a TPaveText.

 A Poly Line: Click with the left button for the first point, move the moose, click again with the
left button for a new point. Close the poly-line with a double click. To edit one vertex point, pick it
with the left button and drag to the new point position.

 A Curly Line: Proceed as for the arrow or line. Once done, click with the third button to change
the characteristics of the curly line, like transform it to wave, change the wavelength, etc.

 A Curly Arc: Proceed like for an ellipse. The first click is located at the position of the center,
the second click at the position of the arc beginning. Once done, one obtains a curly ellipse, for which
one can click with the third button to change the characteristics, like transform it to wavy, change the
wavelength, set the minimum and maximum angle to make an arc that is not closed, etc.

 A Text/Latex string: Click with the left button where you want to draw the text and then type in
the text terminated by carriage return. All TLatex expressions are valid. To move the text or formula,
point on it keeping the left mouse button pressed and drag the text to its new position. You can grow/
shrink the text if you position the mouse to the first top-third part of the string, then move the mouse
up or down to grow or shrink the text respectively. If you position the mouse near the bottom-end of
the text, you can rotate it.

 A Marker: Click with the left button where to place the marker. The marker can be modified by
using the method SetMarkerStyle() of TSystem.

 A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected
area. Close the cut by double clicking on the last point. A TCutG object is created. It can be used as
a selection for a TTree::Draw. You can get a pointer to this object with:

TCutG cut = (TCutG*)gPad->GetPrimitive("CUTG")

Once you are happy with your picture, you can select the Save as canvas.C item in the canvas File
menu. This will automatically generate a script with the C++ statements corresponding to the picture.
This facility also works if you have other objects not drawn with the graphics editor (histograms for
example).

The Editor Frame
The ROOT graphics editor loads the corresponding object editor objEditor according to the
selected object obj in the canvas respecting the class inheritance. An object in the canvas is selected
after the left mouse click on it. For example, if the selected object is TAxis, the TAxisEditor will
shows up in the editor frame giving the possibility for changing different axis attributes. The graphics
editor can be:

Getting Started

20

Embedded – connected only with the canvas in the application window that appears on the left of the
canvas window after been activated via View menu / Editor. It appears on the left side if the canvas
window allowing users to edit the attributes of the selected object via provided user interface. The name
of the selected object is displayed on the top of the editor frame in red color. If the user interface needs
more space then the height of the canvas window, a vertical scroll bar appears for easer navigation.

Global – has own application window and can be connected to any created canvas in a ROOT session.
It can be activated via the context menu entries for setting line, fill, text and marker attributes for
backward compatibility, but there will be a unique entry in the near future.

The user interface for the following classes is available since ROOT v.4.04: TAttLine, TAttFill,
TAttMarker, TAttText, TArrow, TAxis, TCurlyArc, TCurlyLine, TFrame, TH1, TH2,
TGraph, TPad, TCanvas, TPaveStats. For more details, see “The Graphics Editor”, “The User
Interface for Histograms”, “The User Interface for Graphs”.

Classes, Methods and Constructors
Object oriented programming introduces objects, which have data members and methods. The next
line creates an object named f1 of the class TF1 that is a one-dimensional function. The type of an
object is called a class. The object itself is called an instance of a class. When a method builds an
object, it is called a constructor.

Getting Started

21

TF1 f1("func1","sin(x)/x",0,10)

In our constructor the function sin(x)/x is defined for use, and 0 and 10 are the limits. The first
parameter, func1 is the name of the object f1. Most objects in ROOT have a name. ROOT maintains
a list of objects that can be searched to find any object by its given name (in our example func1).

The syntax to call an object's method, or if one prefers, to make an object to do something is:

object.method_name(parameters)

The dot can be replaced by “->" if object is a pointer. In compiled code, the dot MUST be replaced
by a "->" if object is a pointer.

object_ptr->method_name(parameters)

So now, we understand the two lines of code that allowed us to draw our function. f1.Draw() stands
for “call the method Draw() associated with the object f1 of the class TF1”. Other methods can be
applied to the object f1 of the class TF1. For example, the evaluating and calculating the derivative
and the integral are what one would expect from a function.

root[] f1.Eval(3)
(Double_t)4.70400026866224020e-02
root[] f1.Derivative(3)
(Double_t)(-3.45675056671992330e-01)
root[] f1.Integral(0,3)
(Double_t)1.84865252799946810e+00
root[] f1.Draw()

By default the method TF1::Paint(), that draws the function, computes 100 equidistant points to
draw it. The number of points can be set to a higher value with:

root[] f1.SetNpx(2000);

Note that while the ROOT framework is an object-oriented framework, this does not prevent the user
from calling plain functions.

User Interaction

Now we will look at some interactive capabilities. Try to draw the function sin(x)/x again. Every
object in a window (which is called a canvas) is, in fact, a graphical object in the sense that you can
grab it, resize it, and change its characteristics with a mouse click. For example, bring the cursor over
the x-axis. The cursor changes to a hand with a pointing finger when it is over the axis. Now, left click
and drag the mouse along the axis to the right. You have a very simple zoom.

When you move the mouse over any object, you can get access to selected methods by pressing the
right mouse button and obtaining a context menu. If you try this on the function TF1, you will get a
menu showing available methods. The other objects on this canvas are the title, a TPaveText object;
the x and y-axis, TAxis objects, the frame, a TFrame object, and the canvas a TCanvas object.
Try clicking on these and observe the context menu with their methods.

Getting Started

22

Figure 2.2. A context menu

For example try selecting the SetRange() method and putting -10, 10 in the dialog box fields.
This is equivalent to executing f1.SetRange(-10,10) from the command line, followed by
f1.Draw(). Here are some other options you can try.

Once the picture suits your wishes, you may want to see the code you should put in a script to obtain the
same result. To do that, choose Save / canvas.C entry of the File menu. This will generate a script
showing the options set in the current canvas. Notice that you can also save the picture into various
file formats such as PostScript, GIF, etc. Another interesting possibility is to save your canvas into the
native ROOT format (.root file). This will enable you to open it again and to change whatever you
like. All objects associated to the canvas (histograms, graphs) are saved at the same time.

Building a Multi-pad Canvas
Let us now try to build a canvas with several pads.

root[] TCanvas *MyC = new TCanvas("MyC","Test canvas",1)
root[] MyC->Divide(2,2)

Once again, we call the constructor of a class, this time the class TCanvas. The difference between
this and the previous constructor call (TF1) is that here we are creating a pointer to an object. Next, we
call the method Divide() of the TCanvas class (that is TCanvas::Divide()), which divides
the canvas into four zones and sets up a pad in each of them. We set the first pad as the active one
and than draw the function f1 there.

root[] MyC->cd(1)
root[] f1->Draw()

All objects will be drawn in that pad because it is the active one. The ways for changing the active
pad are:

• Click the middle mouse button on a pad will set this pad as the active one.

• Use the method TCanvas::cd() with the pad number, as was done in the example above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom. Each new pad created by
TCanvas::Divide() has a name, which is the name of the canvas followed by _1, _2, etc. To
apply the method cd() to the third pad, you would write:

Getting Started

23

root[] MyC_3->cd()

• Third pad will be selected since you called TPad::cd() for the object MyC_3. ROOT will find the
pad that was named MyC_3 when you typed it on the command line (see ROOT/CINT Extensions
to C++).

Saving the Canvas

Using the File menu / Save cascade menu users can save the canvas as one of the files from the list.
Please note that saving the canvas this way will overwrite the file with the same name without a
warning.

All supported file types can be saved via File menu / SaveAs… This dialog gives a choice to show or
suppress the confirmation message for overwriting an existing file.

Figure 2.3. The SaveAs... dialog

If the Ovewrite check box is not selected, a message dialog appears asking the user to overwrite the
file (Yes/No). The user choice is saved for the next time the Save As… dialog shows up.

Printing the Canvas
The Print command in the canvas File menu pops-up a print dialog where the user can specify a
preferred print command and the printer name.

Both print parameters can be set via the new Print.Command and Print.Printer rootrc resources as
follows:

Printer settings.
WinNT.*.Print.Command: AcroRd32.exe

Getting Started

24

Unix.*.Print.Command: xprint -P%p %f
Print.Printer: 32-rb205-hp
Print.Directory: .

If the %p and %f are specified as a part of the print command, they will be replaced by the specified
printer name and the file name. All other parameters will be kept as they are written. A print button is
available in the canvas toolbar (activated via View menu/Toolbar).

The ROOT Command Line
We have briefly touched on how to use the command line. There are different types of commands.

1. CINT commands start with “.”

root[] .? //this command will list all the CINT commands
root[] .L <filename> //load [filename]
root[] .x <filename> //load and execute [filename]

2. SHELL commands start with “.!” for example:

root[] .! ls

3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser()

Multi-line Commands
You can use the command line to execute multi-line commands. To begin a multi-line command you
must type a single left curly bracket {, and to end it you must type a single right curly bracket }.
For example:

root[] {
end with '}'> Int_t j = 0;
end with '}'> for (Int_t i = 0; i < 3; i++)
end with '}'> {
end with '}'> j= j + i;
end with '}'> cout << "i = " << i << ", j = " << j << endl;
end with '}'> }
end with '}'> }
i = 0, j = 0
i = 1, j = 1
i = 2, j = 3

It is more convenient to edit a script than the command line, and if your multi line commands are
getting unmanageable, you may want to start with a script instead.

CINT Extensions
We should say that some things are not standard C++. The CINT interpreter has several extensions.
See “ROOT/CINT Extensions to C++”.

Helpful Hints for Command Line Typing
The interpreter knows all the classes, functions, variables, and user defined types. This enables ROOT
to help users to complete the command line. For example, if we do not know anything about the
TLine class, the Tab feature helps us to get a list of all classes starting with TL(where <TAB> means
type the Tab key).

Getting Started

25

root[] l = new TLi<TAB>
TList
TListIter
TLink
TLine
TLimitDataSource
TLimit

To list the different constructors and parameters for TLine use the <TAB> key as follows:

root[] l = new TLine(<TAB>
TLine TLine()
TLine TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)
TLine TLine(const TLine& line)

Regular Expression
The meta-characters below can be used in a regular expression:

• '^' start-of-line anchor

• '$' end-of-line anchor

• '.' matches any character

• '[' start a character class

• ']’end a character class

• '^’negates character class if first character

• '*’Kleene closure (matches 0 or more)

• '+’Positive closure (1 or more)

• '?’ Optional closure (0 or 1)

When using wildcards the regular expression is assumed to be preceded by a '^' (BOL) and terminated
by '$' (EOL). All '*' (closures) are assumed to be preceded by a '.', i.e. any character, except slash _/
_. Its special treatment allows the easy matching of pathnames. For example, _*.root_ will match
aap.root, but not _pipo/aap.root_.

The escape characters are:

• \backslash

• bbackspace

• fform feed

• nnew line

• rcarriage return

• sspace

• ttab

• eASCII ESC character ('033')

• DDDnumber formed of 1-3 octal digits

Getting Started

26

• xDDnumber formed of 1-2 hex digits

• ^CC = any letter. Control code

The class TRegexp can be used to create a regular expression from an input string. If wildcard is
true then the input string contains a wildcard expression.

TRegexp(const char *re, Bool_t wildcard)

Regular expression and wildcards can be easily used in methods like:

Ssiz_t Index(const TString& string,Ssiz_t* len,Ssiz_t i) const

The method finds the first occurrence of the regular expression in the string and returns its position.

Conventions
In this paragraph, we will explain some of the conventions used in ROOT source and examples.

Coding Conventions
From the first days of ROOT development, it was decided to use a set of coding conventions. This
allows a consistency throughout the source code. Learning these will help you identify what type of
information you are dealing with and enable you to understand the code better and quicker. Of course,
you can use whatever convention you want but if you are going to submit some code for inclusion
into the ROOT sources, you will need to use these.

These are the coding conventions:

• Classes begin with T: TLine, TTree

• Non-class types end with _t: Int_t

• Data members begin with f: fTree

• Member functions begin with a capital: Loop()

• Constants begin with k: kInitialSize, kRed

• Global variables begin with g: gEnv

• Static data members begin with fg: fgTokenClient

• Enumeration types begin with E:EColorLevel

• Locals and parameters begin with a lower case: nbytes

• Getters and setters begin with Get and Set:SetLast(), GetFirst()

Machine Independent Types
Different machines may have different lengths for the same type. The most famous example is the
int type. It may be 16 bits on some old machines and 32 bits on some newer ones. To ensure the size
of your variables, use these pre defined types in ROOT:

• Char_t Signed Character 1 byte

• UChar_t Unsigned Character 1 byte

• Short_t Signed Short integer 2 bytes

Getting Started

27

• UShort_t Unsigned Short integer 2 bytes

• Int_t Signed integer 4 bytes

• UInt_t Unsigned integer 4 bytes

• Long64_t Portable signed long integer 8 bytes

• ULong64_t Portable unsigned long integer 8 bytes

• Float_t Float 4 bytes

• Double_t Float 8 bytes

• Double32_t Double 8 bytes in memory, written as a Float 4 bytes

• Bool_t Boolean (0=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the result will be the same
and the interpreter or the compiler will treat them in exactly the same way.

TObject
In ROOT, almost all classes inherit from a common base class called TObject. This kind of
architecture is also used in the Java language. The TObject class provides default behavior and
protocol for all objects in the ROOT system. The main advantage of this approach is that it enforces
the common behavior of the derived classes and consequently it ensures the consistency of the whole
system. See "The Role of TObject".

TObject provides protocol, i.e. (abstract) member functions, for:

• Object I/O (Read(), Write())

• Error handling (Warning(), Error(), SysError(), Fatal())

• Sorting (IsSortable(), Compare(), IsEqual(), Hash())

• Inspection (Dump(), Inspect())

• Printing (Print())

• Drawing (Draw(), Paint(), ExecuteEvent())

• Bit handling (SetBit(), TestBit())

• Memory allocation (operator new and delete, IsOnHeap())

• Access to meta information (IsA(), InheritsFrom())

• Object browsing (Browse(), IsFolder())

Global Variables
ROOT has a set of global variables that apply to the session. For example, gDirectory always
holds the current directory, and gStyle holds the current style. All global variables begin with “g”
followed by a capital letter.

gROOT
The single instance of TROOT is accessible via the global gROOT and holds information relative
to the current session. By using the gROOT pointer, you get the access to every object created in a

Getting Started

28

ROOT program. The TROOT object has several lists pointing to the main ROOT objects. During a
ROOT session, the gROOT keeps a series of collections to manage objects. They can be accessed via
gROOT::GetListOf… methods.

gROOT->GetListOfClasses()
gROOT->GetListOfColors()
gROOT->GetListOfTypes()
gROOT->GetListOfGlobals()
gROOT->GetListOfGlobalFunctions()
gROOT->GetListOfFiles()
gROOT->GetListOfMappedFiles()
gROOT->GetListOfSockets()
gROOT->GetListOfCanvases()
gROOT->GetListOfStyles()
gROOT->GetListOfFunctions()
gROOT->GetListOfSpecials()
gROOT->GetListOfGeometries()
gROOT->GetListOfBrowsers()
gROOT->GetListOfMessageHandlers()

These methods return a TSeqCollection, meaning a collection of objects, and they can be used
to do list operations such as finding an object, or traversing the list and calling a method for each of
the members. See the TCollection class description for the full set of methods supported for a
collection. For example, to find a canvas called c1 you can do:

root[]gROOT->GetListOfCanvases()->FindObject("c1")

This returns a pointer to a TObject, and before you can use it as a canvas you need to cast it to a
TCanvas*.

gFile
gFile is the pointer to the current opened file in the ROOT session.

gDirectory
gDirectory is a pointer to the current directory. The concept and role of a directory is explained
in the chapter “Input/Output”.

gPad
A graphic object is always drawn on the active pad. It is convenient to access the active pad, no matter
what it is. For that, we have gPad that is always pointing to the active pad. For example, if you want
to change the fill color of the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor(38)

To get the list of colors, if you have an open canvas, click in the "View" menu, selecting the "Colors"
entry.

gRandom
gRandom is a pointer to the current random number generator. By default, it points to a
TRandom3 object, based on the "Mersenne-Twister" generator. This generator is very fast
and has very good random proprieties (a very long period of 10600). Setting the seed to
0 implies that the seed will be uniquely generated using the TUUID. Any other value will
be used as a constant. The following basic random distributions are provided: Rndm() or

Getting Started

29

Uniform(min,max), Gaus(mean,sigma), Exp(tau), BreitWigner(mean,sigma),
Landau(mean,sigma), Poisson(mean), Binomial(ntot,prob). You can customize
your ROOT session by replacing the random number generator. You can delete gRandom and
recreate it with your own. For example:

root[] delete gRandom;
root[] gRandom = new TRandom2(0); //seed=0

TRandom2 is another generator, which is also very fast and uses only three words for its state.

gEnv
gEnv is the global variable (of type TEnv) with all the environment settings for the current
session. This variable is set by reading the contents of a .rootrc file (or $ROOTSYS/etc/
system.rootrc) at the beginning of the root session. See Environment Setup below for more
information.

Environment Setup
The behavior of a ROOT session can be tailored with the options in the .rootrc file. At start-up,
ROOT looks for a .rootrc file in the following order:

• ./.rootrc //local directory

• $HOME/.rootrc //user directory

• $ROOTSYS/etc/system.rootrc //global ROOT directory

If more than one .rootrc files are found in the search paths above, the options are merged, with
precedence local, user, global. While in a session, to see current settings, you can do:

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$(ROOTSYS)/lib
Unix.*.Root.MacroPath: .:~/rootmacros:$(ROOTSYS)/macros

Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true
Unix.*.Root.TTFontPath:
…
Activate memory statistics
Rint.Root.MemStat: 1
Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C
…
Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The various options are explained in $ROOTSYS/etc/system.rootrc. The .rootrc file
contents are combined. For example, if the flag to use true type fonts is set to true in the
system.rootrc file, you have to set explicitly it false in your local .rootrc file if you do not
want to use true type fonts. Removing the UseTTFonts statement in the local .rootrc file will
not disable true fonts. The value of the environment variable ROOTDEBUG overrides the value in the
.rootrc file at startup. Its value is used to set gDebug and helps for quick turn on debug mode
in TROOT startup.

Getting Started

30

ROOT looks for scripts in the path specified in the .rootrc file in the Root.Macro.Path
variable. You can expand this path to hold your own directories.

Logon and Logoff Scripts
The rootlogon.C and rootlogoff.C files are scripts loaded and executed at start-up and
shutdown. The rootalias.C file is loaded but not executed. It typically contains small utility
functions. For example, the rootalias.C script that comes with the ROOT distributions (located in
$ROOTSYS/tutorials) defines the function edit(char *file). This allows the user to call
the editor from the command line. This particular function will start the VI editor if the environment
variable EDITOR is not set.

root[0] edit("c1.C")

For more details, see $ROOTSYS/tutorials/rootalias.C.

History File
You can use the up and down arrow at the command line, to access the previous and next command.
The commands are recorded in the history file $HOME/.root_hist. It is a text file, and you can
edit, cut, and paste from it. You can specify the history file in the system.rootrc file, by setting
the Rint.History option. You can also turn off the command logging in the system.rootrc
file with the option: Rint.History: -

The number of history lines to be kept can be set also in .rootrc by:

Rint.HistSize: 500
Rint.HistSave: 400

The first value defines the maximum of lines kept; once it is reached all, the last HistSave lines
will be removed. One can set HistSize to 0 to disable history line management. There is also
implemented an environment variable called ROOT_HIST. By setting ROOT_HIST=300:200 the
above values can be overriden - the first value corresponds to HistSize, the (optional) second one
to HistSave. You can set ROOT_HIST=0 to disable the history.

Tracking Memory Leaks
You can track memory usage and detect leaks by monitoring the number of objects that are
created and deleted (see TObjectTable). To use this facility, edit the file $ROOTSYS/etc/
system.rootrc or .rootrc if you have this file and add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code or on the command line you can type the line:

gObjectTable->Print();

This line will print the list of all active classes and the number of instances for each class. By comparing
consecutive print outs, you can see objects that you forgot to delete. Note that this method cannot show
leaks coming from the allocation of non-objects or classes unknown to ROOT.

Memory Checker
A memory checking system was developed by D.Bertini and M.Ivanov and added in ROOT version
3.02.07. To activate the memory checker you can set the resource Root.MemCheck to 1 (e.g.:
Root.MemCheck: 1 in the .rootrc file). You also have to link with libNew.so (e.g. use
root-config --new --libs) or to use rootn.exe. When these settings are in place, you

Getting Started

31

will find a file "memcheck.out" in the directory where you started your ROOT program after
the completion of the program execution. You can also set the resource Root.MemCheckFile
to the name of a file. The memory information will be written to that file. The contents of this
memcheck.out can be analyzed and transformed into printable text via the memprobe program
(in $ROOTSYS/bin).

Converting from PAW to ROOT
The web page at: http://root.cern.ch/root/HowtoConvertFromPAW.html#TABLE
gives the "translation" table of some commonly used PAW commands into ROOT.
If you move the mouse cursor over the picture at: http://root.cern.ch/root/
HowtoConvertFromPAW.html#SET, you will get the corresponding ROOT commands as
tooltips.

Converting HBOOK/PAW Files
ROOT has a utility called h2root that you can use to convert your HBOOK/PAW histograms or
ntuple files into ROOT files. To use this program, you type the shell script command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically generated for you. If
hbookfile is of the form file.hbook, then the ROOT file will be called file.root. This
utility converts HBOOK histograms into ROOT histograms of the class TH1F. HBOOK profile
histograms are converted into ROOT profile histograms (see class TProfile). HBOOK row-wise
and column-wise ntuples are automatically converted to ROOT Trees. See “Trees”. Some HBOOK
column-wise ntuples may not be fully converted if the columns are an array of fixed dimension (e.g.
var[6]) or if they are a multi-dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by prefixing the integer identifier
with the letter "h" if the identifier is a positive integer and by "h_" if it is a negative integer identifier.
In case of row-wise or column-wise ntuples, each column is converted to a branch of a tree. Note
that h2root is able to convert HBOOK files containing several levels of sub-directories. Once you
have converted your file, you can look at it and draw histograms or process ntuples using the ROOT
command line. An example of session is shown below:

// this connects the file hbookconverted.root
root[] TFile f("hbookconverted.root");

//display histogram named h10 (was HBOOK id 10)
root[] h10.Draw();

//display column "var" from ntuple h30
root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a tree. ROOT includes a function TTree::MakeClass
to generate automatically the code for a skeleton analysis function. See “Example Analysis”.

In case one of the ntuple columns has a variable length (e.g. px(ntrack)), h.Draw("px") will
histogram the px column for all tracks in the same histogram. Use the script quoted above to generate
the skeleton function and create/fill the relevant histogram yourself.

32

Chapter 3. Histograms
This chapter covers the functionality of the histogram classes. We begin with an overview of the
histogram classes and their inheritance relationship. Then we give instructions on the histogram
features.

We have put this chapter ahead of the graphics chapter so that you can begin working with histograms
as soon as possible. Some of the examples have graphics commands that may look unfamiliar to you.
These are covered in the chapter “Input/Output”.

The Histogram Classes
ROOT supports the following histogram types:

1-D histograms:

• TH1C: are histograms with one byte per channel. Maximum bin content = 255

• TH1S: are histograms with one short per channel. Maximum bin content = 65 535

• TH1I: are histograms with one integer per channel. Maximum bin content = 2147483647

• TH1F: are histograms with one float per channel. Maximum precision 7 digits

• TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

• TH2C: are histograms with one byte per channel. Maximum bin content = 255

• TH2S: are histograms with one short per channel. Maximum bin content = 65 535

• TH2I: are histograms with one integer per channel. Maximum bin content = 2147483647

• TH2F: are histograms with one float per channel. Maximum precision 7 dig

• TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

• TH3C: are histograms with one byte per channel. Maximum bin content = 255

• TH3S: are histograms with one short per channel. Maximum bin content = 65 535

• TH3I: are histograms with one integer per channel. Maximum bin content = 2147483647

• TH3F: are histograms with one float per channel. Maximum precision 7 digits

• TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

• TProfile: one dimensional profiles

• TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for each bin in X. Profile
histograms are in many cases an elegant replacement of two-dimensional histograms. The inter-
relation of two measured quantities X and Y can always be visualized with a two-dimensional

Histograms

33

histogram or scatter-plot. If Y is an unknown but single-valued approximate function of X, it will have
greater precisions in a profile histogram than in a scatter plot.

Figure 3.1. The class hierarchy of histogram classes

All histogram classes are derived from the base class TH1. The figure above shows the class hierarchy.

The TH*C classes also inherit from the array class TArrayC.

The TH*S classes also inherit from the array class TArrayS.

The TH*F classes also inherit from the array class TArrayF.

The TH*D classes also inherit from the array class TArrayD.

Creating Histograms
Histograms are created with constructors:

TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);
TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters of the TH1 constructor are the name of the histogram, the title, the number of bins,
the x minimum, and x maximum. Histograms may also be created by:

• Calling the Clone method of an existing histogram (see below)

• Making a projection from a 2-D or 3-D histogram (see below)

• Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the list of in-memory objects
for the current file or directory. This default behavior can be disabled for an individual histogram or
for all histograms by setting a global switch. Here is the syntax to set the directory of the histogram h:

// to set the in-memory directory for the current histogram h
h->SetDirectory(0);
// global switch to disable
TH1::AddDirectory(kFALSE);

When the histogram is deleted, the reference to it is removed from the list of objects in memory. In
addition, when a file is closed, all histograms in memory associated with this file are automatically
deleted. See the chapter “Input/Output”.

Histograms

34

Fixed or Variable Bin Size
All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size bins along
X and variable size bins along Y or vice-versa. The functions to fill, manipulate, draw, or access
histograms are identical in both cases.

To create a histogram with variable bin size one can use this constructor:

TH1(const char name,const *title,Int_t nbins,*xbins)

The parameters to this constructor are:

• title: histogram title

• nbins: number of bins

• xbins: array of low-edges for each bin. It is an array of size nbins+1

Each histogram always contains three TAxis objects: fXaxis, fYaxis, and fZaxis. To access
the axis parameters first get the axis from the histogram h, and then call the TAxis access methods.

TAxis *xaxis = h->GetXaxis();
Double_t binCenter = xaxis->GetBinCenter(bin);

See the class TAxis for a description of all the access methods. The axis range is always stored
internally in double precision.

Bin Numbering Convention
For all histogram types: nbins, xlow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (xlow INCLUDED).

The second to last bin (bin# nbins) contains the upper-edge (xup EXCLUDED).

The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For example, assuming a 3-D
histogram h with binx, biny, binz, the function returns a global/linear bin number.

Int_t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the dimension.

Re-binning
At any time, a histogram can be re-binned via the TH1::Rebin() method. It returns a new histogram
with the re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

Filling Histograms
A histogram is typically filled with statements like:

h1->Fill(x);

Histograms

35

h1->Fill(x,w); //with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,z);
h3->Fill(x,y,z,w);

The Fill method computes the bin number corresponding to the given x, y or z argument and
increments this bin by the given weight. The Fill() method returns the bin number for 1-D
histograms or global bin number for 2-D and 3-D histograms. If TH1::Sumw2() has been called
before filling, the sum of squares is also stored. One can increment a bin number directly by calling
TH1::AddBinContent(), replace the existing content via TH1::SetBinContent(), and
access the bin content of a given bin via TH1::GetBinContent() .

Double_t binContent = h->GetBinContent(bin);

Automatic Re-binning Option
By default, the number of bins is computed using the range of the axis. You can change this to re-bin
automatically by setting the automatic re-binning option:

h->SetBit(TH1::kCanRebin);

Once this is set, the Fill() method will automatically extend the axis range to accommodate the
new value specified in the Fill() argument. The used method is to double the bin size until the
new value fits in the range, merging bins two by two. The TTree::Draw() method extensively
uses this automatic binning option when drawing histograms of variables in TTree with an unknown
range. The automatic binning option is supported for 1-D, 2-D and 3-D histograms. During filling,
some statistics parameters are incremented to compute the mean value and root mean square with
the maximum precision. In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a
check is made that the bin contents do not exceed the maximum positive capacity (127 or 65 535).
Histograms of all types may have positive or/and negative bin contents.

Random Numbers and Histograms
TH1::FillRandom() can be used to randomly fill a histogram using the contents of an existing
TF1 function or another TH1 histogram (for all dimensions). For example, the following two
statements create and fill a histogram 10 000 times with a default Gaussian distribution of mean 0
and sigma 1:

root[] TH1F h1("h1","Histo from a Gaussian",100,-3,3);
root[] h1.FillRandom("gaus",10000);

TH1::GetRandom() can be used to get a random number distributed according the contents of
a histogram. To fill a histogram following the distribution in an existing histogram you can use
the second signature of TH1::FillRandom(). Next code snipped assumes that h is an existing
histogram (TH1).

root[] TH1F h2("h2","Histo from existing histo",100,-3,3);
root[] h2.FillRandom(&h1,1000);

The distribution contained in the histogram h1 (TH1) is integrated over the channel contents. It is
normalized to one. The second parameter (1000) indicates how many random numbers are generated.

Getting 1 random number implies:

• Generating a random number between 0 and 1 (say r1)

• Find the bin in the normalized integral for r1

Histograms

36

• Fill histogram channel

You can see below an example of the TH1::GetRandom() method which can be used to get a
random number distributed according the contents of a histogram.

void getrandomh() {
 TH1F *source = new TH1F("source","source hist",100,-3,3);
 source->FillRandom("gaus",1000);
 TH1F *final = new TH1F("final","final hist",100,-3,3);
// continued…
 for (Int_t i=0;i<10000;i++) {
 final->Fill(source->GetRandom());
 }
 TCanvas *c1 = new TCanvas("c1","c1",800,1000);
 c1->Divide(1,2);
 c1->cd(1);
 source->Draw();
 c1->cd(2);
 final->Draw();
 c1->cd();
}

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:

• Addition of a histogram to the current histogram

• Additions of two histograms with coefficients and storage into the current histogram

• Multiplications and divisions are supported in the same way as additions.

• The Add, Divide and Multiply methods also exist to add, divide or multiply a histogram by
a function.

Histograms objects (not pointers) TH1F h1 can be multiplied by a constant using:

h1.Scale(const)

A new histogram can be created without changing the original one by doing:

TH1F h3 = 8*h1;

To multiply two histogram objects and put the result in a 3rd one do:

TH1F h3 = h1*h2;

The same operations can be done with histogram pointers TH1F *h1, *h2 following way:

h1->Scale(const)
TH1F h3 = 8*(*h1);
TH1F h3 = (*h1)*(*h2);

Of course, the TH1 methods Add, Multiply and Divide can be used instead of these operators.

If a histogram has associated error bars (TH1::Sumw2() has been called), the resulting error bars
are also computed assuming independent histograms. In case of divisions, binomial errors are also
supported.

Histograms

37

Projections
One can make:

• a 1-D projection of a 2-D histogram or profile. See TH2::ProfileX, TH2::ProfileY,
TProfile::ProjectionX, TProfile2D::ProjectionXY, TH2::ProjectionX,
TH2::ProjectionY.

• a 1-D, 2-D or profile out of a 3-D histogram see TH3::ProjectionZ, TH3::Project3D.

These projections can be fit via: TH2::FitSlicesX, TH2::FitSlicesY,
TH3::FitSlicesZ.

Drawing Histograms
When you call the Draw method of a histogram (TH1::Draw) for the first time, it creates a
THistPainter object and saves a pointer to painter as a data member of the histogram. The
THistPainter class specializes in the drawing of histograms. It allows logarithmic axes (x, y, z)
when the CONT drawing option is using. The THistPainter class is separated from the histogram
so that one can have histograms without the graphics overhead, for example in a batch program. The
choice to give each histogram has its own painter rather than a central singleton painter, allows two
histograms to be drawn in two threads without overwriting the painter's values. When a displayed
histogram is filled again, you do not have to call the Draw method again. The image is refreshed the
next time the pad is updated. A pad is updated after one of these three actions:

• A carriage control on the ROOT command line

• A click inside the pad

• A call to TPad::Update()

By default, the TH1::Draw clears the pad before drawing the new image of the histogram. You can
use the "SAME" option to leave the previous display in tact and superimpose the new histogram. The
same histogram can be drawn with different graphics options in different pads. When a displayed
histogram is deleted, its image is automatically removed from the pad. To create a copy of the
histogram when drawing it, you can use TH1::DrawClone(). This will clone the histogram
and allow you to change and delete the original one without affecting the clone. You can use
TH1::DrawNormalized() to draw a normalized copy of a histogram.

TH1 *TH1::DrawNormalized(Option_t *option,Double_t norm) const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the normalized
histogram is returned. The contents of the histogram copy are scaled such that the new sum of weights
(excluding under and overflow) is equal to norm.

Note that the returned normalized histogram is not added to the list of histograms in the current
directory in memory. It is the user's responsibility to delete this histogram. The kCanDelete bit is
set for the returned object. If a pad containing this copy is cleared, the histogram will be automatically
deleted. See “Draw Options” for the list of options.

Setting the Style
Histograms use the current style gStyle, which is the global object of class TStyle. To change the
current style for histograms, the TStyle class provides a multitude of methods ranging from setting
the fill color to the axis tick marks. Here are a few examples:

void SetHistFillColor(Color_t color = 1)

Histograms

38

void SetHistFillStyle(Style_t styl = 0)
void SetHistLineColor(Color_t color = 1)
void SetHistLineStyle(Style_t styl = 0)
void SetHistLineWidth(Width_t width = 1)

When you change the current style and would like to propagate the change to a previously
created histogram you can call TH1::UseCurrentStyle(). You will need to call
UseCurrentStyle() on each histogram. When reading many histograms from a file and you wish
to update them to the current style, you can use gROOT::ForceStyle and all histograms read after
this call will be updated to use the current style. See “Graphics and the Graphical User Interface”.
When a histogram is automatically created as a result of a TTree::Draw, the style of the histogram
is inherited from the tree attributes and the current style is ignored. The tree attributes are the ones set
in the current TStyle at the time the tree was created. You can change the existing tree to use the
current style, by calling TTree::UseCurrentStyle().

Draw Options
The following draw options are supported on all histogram classes:

• "AXIS": Draw only the axis.

• "HIST": When a histogram has errors, it is visualized by default with error bars. To visualize it
without errors use HIST together with the required option (e.g. "HIST SAME C").

• "SAME": Superimpose on previous picture in the same pad.

• "CYL": Use cylindrical coordinates.

• "POL": Use polar coordinates.

• "SPH": Use spherical coordinates.

• "PSR": Use pseudo-rapidity/phi coordinates.

• "LEGO": Draw a lego plot with hidden line removal.

• "LEGO1": Draw a lego plot with hidden surface removal.

• "LEGO2": Draw a lego plot using colors to show the cell contents.

• "SURF": Draw a surface plot with hidden line removal.

• "SURF1": Draw a surface plot with hidden surface removal.

• "SURF2": Draw a surface plot using colors to show the cell contents.

• "SURF3": Same as SURF with a contour view on the top.

• "SURF4": Draw a surface plot using Gouraud shading.

• “SURF5”:Same as SURF3 but only the colored contour is drawn. Used with option CYL, SPH or
PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In
Cartesian or polar coordinates, option SURF3 is used.

The following options are supported for 1-D histogram classes:

• "AH": Draw the histogram, but not the axis labels and tick marks

• "B": Draw a bar chart

Histograms

39

• "C": Draw a smooth curve through the histogram bins

• "E": Draw the error bars

• "E0": Draw the error bars including bins with 0 contents

• "E1":Draw the error bars with perpendicular lines at the edges

• "E2": Draw the error bars with rectangles

• "E3": Draw a fill area through the end points of the vertical error bars

• "E4": Draw a smoothed filled area through the end points of the error bars

• "L": Draw a line through the bin contents

• "P": Draw a (poly)marker at each bin using the histogram's current marker style

• "P0":Draw current marker at each bin including empty bins

• "PIE":Draw a Pie Chart

• "*H": Draw histogram with a * at each bin

• "LF2":Draw histogram as with option "L" but with a fill area. Note that "L” also draws a fill area
if the histogram fill color is set but the fill area corresponds to the histogram contour.

• "9”:Force histogram to be drawn in high resolution mode. By default, the histogram is drawn in
low resolution in case the number of bins is greater than the number of pixels in the current pad

• “][“:Draw histogram without the vertical lines for the first and the last bin. Use it when superposing
many histograms on the same picture.

The following options are supported for 2-D histogram classes:

• "ARR": Arrow mode. Shows gradient between adjacent cells

• "BOX": Draw a box for each cell with surface proportional to contents

• "BOX1": A sunken button is drawn for negative values, a raised one for positive values

• "COL": Draw a box for each cell with a color scale varying with contents

• "COLZ": Same as "COL" with a drawn color palette

• "CONT": Draw a contour plot (same as CONT0)

• "CONTZ": Same as "CONT" with a drawn color palette

• "CONT0": Draw a contour plot using surface colors to distinguish contours

• "CONT1": Draw a contour plot using line styles to distinguish contours

• "CONT2": Draw a contour plot using the same line style for all contours

• "CONT3": Draw a contour plot using fill area colors

• "CONT4": Draw a contour plot using surface colors (SURF2 option at theta = 0)

• "CONT5":Use Delaunay triangles to compute the contours

Histograms

40

• "LIST": Generate a list of TGraph objects for each contour

• "FB": To be used with LEGO or SURFACE, suppress the Front-Box

• "BB": To be used with LEGO or SURFACE, suppress the Back-Box

• "A": To be used with LEGO or SURFACE, suppress the axis

• "SCAT": Draw a scatter-plot (default)

• “SPEC”Use TSpectrum2Painter tool for drawing

• "TEXT":Draw bin contents as text (format set via gStyle->SetPaintTextFormat).

• "TEXTnn" :Draw bin contents as text at angle nn (0<nn<90).

• "[cutg]":Draw only the sub-range selected by the TCutG name "cutg".

• "Z":The "Z" option can be specified with the options: BOX, COL, CONT, SURF, and LEGO to display
the color palette with an axis indicating the value of the corresponding color on the right side of
the picture.

The following options are supported for 3-D histogram classes:

• " ": Draw a 3D scatter plot.

• "BOX": Draw a box for each cell with volume proportional to contents

• "LEGO": Same as "BOX"

• "ISO": Draw an iso surface

• "FB": Suppress the Front-Box

• "BB": Suppress the Back-Box

• "A": Suppress the axis

Most options can be concatenated without spaces or commas, for example, if h is a histogram pointer:

h->Draw("E1SAME");
h->Draw("e1same");

The options are not case sensitive. The options BOX, COL and COLZ use the color palette defined
in the current style (see TStyle::SetPalette). The options CONT, SURF, and LEGO have by
default 20 equidistant contour levels, you can change the number of levels with TH1::SetContour.
You can also set the default drawing option with TH1::SetOption. To see the current option use
TH1::GetOption. For example:

h->SetOption("lego");
h->Draw(); // will use the lego option
h->Draw("scat") // will use the scatter plot option

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i,j) a number of points
proportional to the cell content are drawn. A maximum of 500 points per cell are drawn. If the
maximum is above 500 contents are normalized to 500.

Histograms

41

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i,j) an arrow is drawn.
The orientation of the arrow follows the cell gradient

The BOX Option

For each cell (i,j) a box is drawn with surface proportional to contents. The size of the box is
proportional to the absolute value of the cell contents. The cells with negative contents are drawn with
an X on top of the boxes. With option BOX1 a button is drawn for each cell with surface proportional to
contents’ absolute value. A sunken button is drawn for negative values, a raised one for positive values.

The ERRor Bars Options

• ”E” Default. Draw only error bars, without markers

• ”E0” Draw also bins with 0 contents (turn off the symbols clipping).

• ”E1” Draw small lines at the end of error bars

• ”E2” Draw error rectangles

• ”E3” Draw a fill area through the end points of vertical error bars

• ”E4” Draw a smoothed filled area through the end points of error bars

Figure 3.2. The "E1" bars' option

Note that for all options, the line and fill attributes of the histogram are used for the errors or errors
contours. Use gStyle->SetErrorX(dx) to control the size of the error along x. The parameter dx
is a percentage of bin width for errors along X. Set dx=0 to suppress the error along X. Use gStyle-
>SetEndErrorSize(np) to control the size of the lines at the end of the error bars (when option
1 is used). By default np=1 (np represents the number of pixels).

The Color Option

For each cell (i,j) a box is drawn with a color proportional to the cell content. The color table
used is defined in the current style (gStyle). The color palette in TStyle can be modified with
TStyle::SetPalette.

Histograms

42

Figure 3.3. Different draw options

The TEXT Option
For each cell (i,j) the cell content is printed. The text attributes are:

• Text font = current font set by TStyle

• Text size= 0.02* pad-height * marker-size

• Text color= marker color

Figure 3.4. The TEXT option

The CONTour Options

The following contour options are supported:

• "CONT":Draw a contour plot (same as CONT0)

• "CONT0":Draw a contour plot using surface colors to distinguish contours

Histograms

43

• "CONT1":Draw a contour plot using line styles to distinguish contours

• "CONT2":Draw a contour plot using the same line style for all contours

• "CONT3":Draw a contour plot using fill area colors

• "CONT4":Draw a contour plot using surface colors (SURF2 option at theta = 0); see also options
"AITOFF", "MERCATOR", etc. below

• "CONT5":Use Delaunay triangles to compute the contours

Figure 3.5. Different contour options

The default number of contour levels is 20 equidistant levels. It can be changed with
TH1::SetContour. When option "LIST" is specified together with option "CONT", all points used
for contour drawing, are saved in the TGraph object and are accessible in the following way:

TObjArray *contours = gROOT->GetListOfSpecials()->FindObject("contours");
Int_t ncontours = contours->GetSize();
TList *list = (TList*)contours->At(i);

Where "i" is a contour number and list contains a list of TGraph objects. For one given contour,
more than one disjoint poly-line may be generated. The TGraph numbers per contour are given by
list->GetSize(). Here we show how to access the first graph in the list.

TGraph *gr1 = (TGraph*)list->First();

• "AITOFF": Draw a contour via an AITOFF projection

• "MERCATOR": Draw a contour via a Mercator projection

• “SINUSOIDAL": Draw a contour via a Sinusoidal projection

• "PARABOLIC": Draw a contour via a Parabolic projection

The tutorial macro earth.C uses these four options and produces the following picture:

Histograms

44

Figure 3.6. The earth.C macro output

The LEGO Options
In a lego plot, the cell contents are drawn as 3D boxes, with the height of the box proportional to the
cell content.

Figure 3.7. "LEGO" and "SURF" options

• "LEGO": Draw a lego plot with hidden line removal

• "LEGO1": Draw a lego plot with hidden surface removal

• "LEGO2": Draw a lego plot using colors to show the cell contents

A lego plot can be represented in several coordinate systems; the default system is Cartesian
coordinates. Other possible coordinate systems are CYL, POL, SPH, and PSR.

• "CYL": Cylindrical coordinates: x-coordinate is mapped on the angle; y-coordinate - on the cylinder
length.

• "POL": Polar coordinates: x-coordinate is mapped on the angle; y-coordinate - on the radius.

• "SPH": Spherical coordinates: x-coordinate is mapped on the latitude; y-coordinate - on the
longitude.

Histograms

45

• "PSR": PseudoRapidity/Phi coordinates: x-coordinate is mapped on Phi.

With TStyle::SetPalette the color palette can be changed. We suggest you use palette 1 with
the call:

gStyle->SetPalette(1);

The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the mesh is proportional to the
cell content. A surface plot can be represented in several coordinate systems. The default is Cartesian
coordinates, and the other possible systems are CYL, POL, SPH, and PSR. The following picture uses
SURF1. With TStyle::SetPalette the color palette can be changed. We suggest you use palette
1 with the call:

gStyle->SetPalette(1);

Figure 3.8. Different surface options

• "SURF": Draw a surface plot with hidden line removal

• "SURF1": Draw a surface plot with hidden surface removal

• "SURF2": Draw a surface plot using colors to show the cell contents

• "SURF3": Same as SURF with a contour view on the top

• "SURF4": Draw a surface plot using Gouraud shading

• "SURF5": Same as SURF3 but only the colored contour is drawn. Used with options CYL, SPH
or PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In
Cartesian or polar coordinates, option SURF3 is used.

The BAR Options

When the option "bar" or "hbar" is specified, a bar chart is drawn.

The options for vertical bar chart are "bar", "bar0", "bar1", "bar2", "bar3", "bar4".

Histograms

46

Figure 3.9. Vertical bar charts

• The bar is filled with the histogram fill color.

• The left side of the bar is drawn with a light fill color.

• The right side of the bar is drawn with a dark fill color.

• The percentage of the bar drawn with either the light or dark color is:

• 0 per cent for option "bar" or "bar0"

• 10 per cent for option "bar1"

• 20 per cent for option "bar2"

• 30 per cent for option "bar3"

• 40 per cent for option "bar4"

Use TH1::SetBarWidth() to control the bar width (default is the bin width). Use
TH1::SetBarOffset to control the bar offset (default is 0). See the example $ROOTSYS/
tutorials/hist/hbars.C

The options for the horizontal bar chart are "hbar", "hbar0", "hbar1", "hbar2", "hbar3", and
" hbar4".

• A horizontal bar is drawn for each bin.

• The bar is filled with the histogram fill color.

• The bottom side of the bar is drawn with a light fill color.

• The top side of the bar is drawn with a dark fill color.

• The percentage of the bar drawn with either the light or dark color is:

• 0 per cent for option "hbar" or "hbar0"

• 10 per cent for option "hbar1"

• 20 per cent for option "hbar2"

• 30 per cent for option "hbar3"

• 40 per cent for option "hbar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width). Use
TH1::SetBarOffset to control the bar offset (default is 0). See the example $ROOTSYS/
tutorials/hist/hbars.C

Histograms

47

Figure 3.10. Horizontal bar charts

The Z Option: Display the Color Palette on the Pad
The "Z" option can be specified with the options: COL, CONT, SURF, and LEGO to display the color
palette with an axis indicating the value of the corresponding color on the right side of the picture. If
there is not enough space on the right side, you can increase the size of the right margin by calling
TPad::SetRightMargin(). The attributes used to display the palette axis values are taken from
the Z axis of the object. For example, you can set the labels size on the palette axis with:

hist->GetZaxis()->SetLabelSize();

Setting the Color Palette

You can set the color palette with TStyle::SetPalette, e.g.

gStyle->SetPalette(ncolors,colors);

For example, the option COL draws a 2-D histogram with cells represented by a box filled with a color
index, which is a function of the cell content. If the cell content is N, the color index used will be the
color number in colors[N]. If the maximum cell content is greater than ncolors, all cell contents
are scaled to ncolors. If ncolors<=0, a default palette of 50 colors is defined. This palette is
recommended for pads, labels. It defines:

• Index 0 to 9: shades of gray

• Index 10 to 19:shades of brown

• Index 20 to 29:shades of blue

• Index 30 to 39: shades of red

• Index 40 to 49:basic colors

The color numbers specified in this palette can be viewed by selecting the menu entry Colors in
the View menu of the canvas menu bar. The color's red, green, and blue values can be changed via
TColor::SetRGB. If ncolors == 1 && colors == 0, a pretty palette with a violet to
red spectrum is created. We recommend you use this palette when drawing lego plots, surfaces, or
contours. If ncolors > 0 and colors == 0, the default palette is used with a maximum of
ncolors.

TPaletteAxis

A TPaletteAxis object is used to display the color palette when drawing 2D histograms. The
object is automatically created when drawing a 2D histogram when the option "z" is specified. It is
added to the histogram list of functions. It can be retrieved and its attributes can be changed with:

TPaletteAxis *palette=(TPaletteAxis*)h->FindObject("palette");

The palette can be interactively moved and resized. The context menu can be used to set the axis
attributes. It is possible to select a range on the axis, to set the min/max in z.

Histograms

48

The SPEC Option
The “SPEC” option offers a large set of options/attributes to visualize 2D histograms thanks to
"operators" following the "SPEC" keyword. For example, to draw the 2-D histogram h2 using all
default attributes except the viewing angles, one can do:

h2->Draw("SPEC a(30,30,0)");

The operators' names are case unsensitive (i.e. one can use "a" or "A") and their parameters are
seperated by coma ",". Operators can be put in any order in the option and must be separated by a space
" ". No space characters should be put in an operator. All the available operators are described below.

The way how a 2D histogram will be painted is controled by 2 parameters: the "Display modes groups"
and the "Display Modes". "Display modes groups" can take the following values:

• 0 = Simple - simple display modes using one color only

• 1 = Light - the shading is carried out according to the position of the fictive light source

• 2 = Height - the shading is carried out according to the channel contents

• 3 = LightHeight - combination of two previous shading algorithms (one can control the weight
between both algorithms).

"Display modes" can take the following values:

1 = Points2 = Grid3 = Contours4 = Bars5 = LinesX6 = LinesY

7 = BarsX8 = BarsY9 = Needles10 = Surface11 = Triangles

These parameters can be set by using the "dm" operator in the option.

h2->Draw("SPEC dm(1,2)");

The above example draws the histogram using the "Light Display mode group" and the "Grid Display
mode". The following table summarizes all the possible combinations of both groups:

Points Grid Cont-
ours

Bars LinesX LinesY BarsX BarsY Needles Surface Trian-
gles

Simple x x x x x x x x x - x

Light x x - - x x - - - x x

Height x x x x x x x x - x x

LightHeightx x - - x x - - - x x

The "Pen Attributes" can be changed using pa(color,style,width). Next example sets line
color to 2, line type to 1 and line width to 2. Note that if pa() is not specified, the histogram line
attributes are used:

h2->Draw("SPEC dm(1,2) pa(2,1,2)");

The number of "Nodes" can be changed with n(nodesx,nodesy). Example:

h2->Draw("SPEC n(40,40)");

Sometimes the displayed region is rather large. When displaying all channels the pictures become
very dense and complicated. It is very difficult to understand the overall shape of data. "n(nx,ny)"
allows to change the density of displayed channels. Only the channels coinciding with given nodes
are displayed.

The visualization "Angles" can be changed with "a(alpha,beta,view)": "alpha" is the angle
between the bottom horizontal screen line and the displayed space on the right side of the picture and

Histograms

49

"beta" on the left side, respectively. One can rotate the 3-d space around the vertical axis using the
"view" parameter. Allowed values are 0, 90, 180 and 270 degrees.

h2->Draw("SPEC n(40,40) dm(0,1) a(30,30,0)");

The operator "zs(scale)" changes the scale of the Z-axis. The possible values are: 0 = Linear
(default), 1 = Log, 2 = Sqrt. If gPad->SetLogz() has been set, the log scale on Z-axis is set
automatically, i.e. there is no need for using the zs() operator. Note that the X and Y axis are always
linear.

The operator "ci(r,g,b)" defines the colors increments (r, g and b are floats). For sophisticated
shading (Light, Height and LightHeight Display Modes Groups) the color palette starts from the basic
pen color (see pa() function). There is a predefined number of color levels (256). Color in every
level is calculated by adding the increments of the r, g, b components to the previous level. Using
this function one can change the color increments between two neighboring color levels. The function
does not apply on the Simple Display Modes Group. The default values are: (1,1,1).

The operator “ca(color_algorithm)" allows to choose the Color Algorithm. To define the
colors one can use one of the following color algorithms (RGB, CMY, CIE, YIQ, HVS models). When
the level of a component reaches the limit value one can choose either smooth transition (by decreasing
the limit value) or a sharp modulo transition (continuing with 0 value). This allows various visual
effects. One can choose from the following set of the algorithms:

0 = RGB Smooth, 1 = RGB Modulo, 2 = CMY Smooth, 3 = CMY Modulo, 4 = CIE Smooth

5 = CIE Modulo, 6 = YIQ Smooth, 7 = YIQ Modulo, 8 = HVS Smooth, 9 = HVS Modulo

This function does not apply on Simple display modes group. Default value is 0. Example choosing
CMY Modulo to paint the 2D histogram:

h2->Draw("SPEC c1(3) dm(0,1) a(30,30,0)");

The operator "lp(x,y,z)" sets the light position. In Light and LightHeight display modes groups
the color palette is calculated according to the fictive light source position in 3-d space. Using this
function one can change the source's position and thus achieve various graphical effects. This function
does not apply for Simple and Height display modes groups. Default is: lp(1000,1000,100).

The operator "s(shading,shadow)" allows to set the shading. The surface picture is composed
of triangles. The edges of the neighboring triangles can be smoothed (shaded). The shadow can be
painted as well. The function does not apply on Simple display modes group. The possible values for
shading are: 0 = Not Shaded, 1 = Shaded. The possible values for shadow are: 0 = Shadows are not
painted, 1 = Shadows are painted. Default values: s(1,0).

The operator "b(bezier)" sets the Bezier smoothing. For Simple display modes group and for
Grid, LinesX and LinesY display modes one can smooth data using Bezier smoothing algorithm. The
function does not apply on other display modes groups and display modes. Possible values are: 0 =
No bezier smoothing, 1 = Bezier smoothing. Default value is: b(0).

The operator "cw(width)" sets the contour width. This function applies only on for the Contours
display mode. One can change the width between horizontal slices and thus their density. Default
value: cw(50).

The operator "lhw(weight)" sets the light height weight. For LightHeight display modes group
one can change the weight between both shading algorithms. The function does not apply on other
display modes groups. Default value is lhw(0.5).

The operator "cm(enable,color,width,height,style)" allows to draw a marker on each
node. In addition to the surface drawn using any above given algorithm one can display channel marks.
One can control the color as well as the width, height (in pixels) and the style of the marks. The
parameter enable can be set to 0 = Channel marks are not drawn or 1 = Channel marks drawn. The
possible styles are:

Histograms

50

1 = Dot, 2 = Cross, 3 = Star, 4 = Rectangle, 5 = X, 6 = Diamond, 7 = Triangle.

The operator "cg(enable,color)" channel grid. In addition to the surface drawn using any above
given algorithm one can display grid using the color parameter. The parameter enable can be set to:
0 = Grid not drawn, 1 = Grid drawn.

See the example in $ROOTSYS/tutorials/spectrum/spectrumpainter.C.

Figure 3.11. The picture produced by spectrumpainter.C macro

3-D Histograms
By default a 3D scatter plot is drawn. If the "BOX" option is specified, a 3D box with a volume
proportional to the cell content is drawn.

Drawing a Sub-range of a 2-D Histogram
Figure 3.12. The picture produced by fit2a.C macro

Histograms

51

Using a TCutG object, it is possible to draw a 2D histogram sub-range. One must create a graphical
cut (mouse or C++) and specify the name of the cut between ‘[‘ and ‘]’ in the Draw option.

For example, with a TCutG named "cutg", one can call:

myhist->Draw("surf1 [cutg]");

Or, assuming two graphical cuts with name "cut1" and "cut2", one can do:

h1.Draw("lego");
h2.Draw("[cut1,-cut2],surf,same");

The second Draw will superimpose on top of the first lego plot a subset of h2 using the "surf"
option with:

• all the bins inside cut1

• all the bins outside cut2

Up to 16 cuts may be specified in the cut string delimited by "[..]". Currently only the following
drawing options are sensitive to the cuts option: col, box, scat, hist, lego, surf and
cartesian coordinates only. See a complete example in the tutorial $ROOTSYS/tutorials/
fit/fit2a.C.

Superimposing Histograms with Different
Scales

The following script creates two histograms; the second histogram is the bins integral of the first one.
It shows a procedure to draw the two histograms in the same pad and it draws the scale of the second
histogram using a new vertical axis on the right side.

Figure 3.13. Superimposed histograms with different scales

void twoscales() {
TCanvas *c1 = new TCanvas("c1","different scales hists",600,400);
//create, fill and draw h1
gStyle->SetOptStat(kFALSE);
TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);
for (Int_t i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));
h1->Draw();
c1->Update();
//create hint1 filled with the bins integral of h1
TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3);
Float_t sum = 0;
for (Int_t i=1;i<=100;i++) {
sum += h1->GetBinContent(i);

Histograms

52

hint1->SetBinContent(i,sum);
}
 //scale hint1 to the pad coordinates
Float_t rightmax = 1.1*hint1->GetMaximum();
Float_t scale = gPad->GetUymax()/rightmax;
hint1->SetLineColor(kRed);
hint1->Scale(scale);
hint1->Draw("same");
//draw an axis on the right side
TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),
gPad->GetUxmax(),gPad->GetUymax(),0,rightmax,510,"+L");
axis->SetLineColor(kRed);
axis->SetLabelColor(kRed);
axis->Draw();
}

Statistics Display
By default, a histogram drawing includes the statistics box. Use TH1::SetStats(kFALSE) to
eliminate the statistics box. If the statistics box is drawn, gStyle->SetOptStat(mode) allow
you to select the type of displayed information. The parameter mode has up to nine digits that can
be set OFF (0) or ON as follows: mode = ksiourmen (default = 000001111)

• n= 1 the name of histogram is printed

• e= 1 the number of entries

• m= 1 the mean value

• m= 2 the mean and mean error values

• r= 1 the root mean square (RMS)

• r= 2 the RMS and RMS error

• u= 1 the number of underflows

• o= 1 the number of overflows

• i= 1 the integral of bins

• s= 1 the skewness

• s= 2 the skewness and the skewness error

• k= 1 the kurtosis

• k= 2 the kurtosis and the kurtosis error

Never call SetOptStat(0001111), but SetOptStat(1111), because 0001111 will be taken
as an octal number.

The method TStyle::SetOptStat(Option_t *option) can also be called with a character
string as a parameter. The parameter option can contain:

• nfor printing the name of histogram

• ethe number of entries

• mthe mean value

• Mthe mean and mean error values

Histograms

53

• rthe root mean square (RMS)

• Rthe RMS and RMS error

• uthe number of underflows

• othe number of overflows

• ithe integral of bins

• sthe skewness

• Sthe skewness and the skewness error

• kthe kurtosis

• Kthe kurtosis and the kurtosis error

gStyle->SetOptStat("ne"); // prints the histogram name and
 // number of entries
gStyle->SetOptStat("n"); // prints the histogram name
gStyle->SetOptStat("nemr"); // the default value

With the option "same", the statistic box is not redrawn. With the option "sames", it is re-drawn.
If it hides the previous statistics box, you can change its position with the next lines (where h is the
histogram pointer):

root[] TPaveStats *s =
 (TPaveStats*)h->GetListOfFunctions()->FindObject("stats");
root[] s->SetX1NDC (newx1); //new x start position
root[] s->SetX2NDC (newx2); //new x end position

Setting Line, Fill, Marker, and Text Attributes
The histogram classes inherit from the attribute classes: TAttLine, TAttFill, TAttMarker and
TAttText. See the description of these classes for the list of options.

Setting Tick Marks on the Axis
The TPad::SetTicks() method specifies the type of tick marks on the axis. Let tx=gPad-
>GetTickx() and ty=gPad->GetTicky().

• tx = 1; tick marks on top side are drawn (inside)

• tx = 2; tick marks and labels on top side are drawn

• ty = 1; tick marks on right side are drawn (inside)

• ty = 2; tick marks and labels on right side are drawn

• tx=ty=0by default only the left Y axis and X bottom axis are drawn

Use TPad::SetTicks(tx,ty) to set these options. See also the methods of TAxis that set
specific axis attributes. If multiple color-filled histograms are drawn on the same pad, the fill area may
hide the axis tick marks. One can force the axis redrawing over all the histograms by calling:

gPad->RedrawAxis();

Giving Titles to the X, Y and Z Axis
Because the axis title is an attribute of the axis, you have to get the axis first and then call
TAxis::SetTitle.

Histograms

54

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles are part of the persistent
histogram. For example if you wanted to write E with a subscript (T) you could use this:

h->GetXaxis()->SetTitle("E_{T}");

For a complete explanation of the Latex mathematical expressions, see "Graphics and the Graphical
User Interface". It is also possible to specify the histogram title and the axis titles at creation time.
These titles can be given in the "title" parameter. They must be separated by ";":

TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);

Any title can be omitted:

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);
TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

The method SetTitle has the same syntax:

h->SetTitle("Histogram title;An other X title Axis");

Making a Copy of an Histogram
Like for any other ROOT object derived from TObject, the Clone method can be used. This makes
an identical copy of the original histogram including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone(); // renaming is recommended,
 // because otherwise you
hnew->SetName("hnew"); // will have two histograms with
 // the same name

Normalizing Histograms
You can scale a histogram (TH1 *h) such that the bins integral is equal to the normalization parameter
norm:

Double_t scale = norm/h->Integral();
h->Scale(scale);

Saving/Reading Histograms to/from a File
The following statements create a ROOT file and store a histogram on the file. Because TH1 derives
from TNamed, the key identifier on the file is the histogram name:

TFile f("histos.root","new");
TH1F h1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);
h1->Write();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get("hgaus");

One can save all histograms in memory to the file by:

file->Write();

For a more detailed explanation, see “Input/Output”.

Histograms

55

Miscellaneous Operations
• TH1::KolmogorovTest(TH1* h2,Option_t *option) is statistical test of compatibility

in shape between two histograms. The parameter option is a character string that specifies:

• "U" include Underflows in test (also for 2-dim)

• "O" include Overflows (also valid for 2-dim)

• "N" include comparison of normalizations

• "D" put out a line of "Debug" printout

• "M" return the maximum Kolmogorov distance instead of prob

• "X" run the pseudo experiments post-processor with the following procedure: it makes pseudo
experiments based on random values from the parent distribution and compare the KS distance of
the pseudo experiment to the parent distribution. Bin the KS distances in a histogram, and then take
the integral of all the KS values above the value obtained from the original data to Monte Carlo
distribution. The number of pseudo-experiments NEXPT is currently fixed at 1000. The function
returns the integral. Note that this option "X" is much slower.

• TH1::Smooth - smoothes the bin contents of a 1D histogram.

• TH1::Integral(Option_t *opt)- returns the integral of bin contents in a given bin range.
If the option "width" is specified, the integral is the sum of the bin contents multiplied by the
bin width in x.

• TH1::GetMean(int axis) - returns the mean value along axis.

• TH1::GetRMS(int axis) - returns the Root Mean Square along axis.

• TH1::GetEntries() - returns the number of entries.

• TH1::GetAsymmetry(TH1* h2,Double_t c2,Double_t dc2) - returns an histogram
containing the asymmetry of this histogram with h2, where the asymmetry is defined as:

Asymmetry = (h1 - h2)/(h1 + h2) //where h1 = this

• It works for 1D, 2D, etc. histograms. The parameter c2 is an optional argument that gives a relative
weight between the two histograms, and dc2 is the error on this weight. This is useful, for example,
when forming an asymmetry between two histograms from two different data sets that need to be
normalized to each other in some way. The function calculates the errors assuming Poisson statistics
on h1 and h2 (that is, dh=sqrt(h)). In the next example we assume that h1 and h2 are already
filled:

h3 = h1->GetAsymmetry(h2)

• Then h3 is created and filled with the asymmetry between h1 and h2; h1 and h2 are left Intact.

• Note that the user’s responsibility is to ménage the created histograms.

• TH1::Reset() - resets the bin contents and errors of a histogram

Alphanumeric Bin Labels
By default, a histogram axis is drawn with its numeric bin labels. One can specify alphanumeric labels
instead.

Option 1: SetBinLabel
To set an alphanumeric bin label call:

Histograms

56

TAxis::SetBinLabel(bin,label);

This can always be done before or after filling. Bin labels will be automatically drawn with the
histogram.

Figure 3.14. Histograms with alphanumeric bin labels

See example in $ROOTSYS/tutorials/hist/hlabels1.C, hlabels2.C

Option 2: Fill
You can also call a Fill() function with one of the arguments being a string:

hist1->Fill(somename,weigth);
hist2->Fill(x,somename,weight);
hist2->Fill(somename,y,weight);
hist2->Fill(somenamex,somenamey,weight);

Option 3: TTree::Draw
You can use a char* variable type to histogram strings with TTree::Draw().

// here "Nation" and "Division" are two char* branches of a Tree
tree.Draw("Nation::Division");

Figure 3.15. Using a *char variable type in TTree::Draw

There is an example in $ROOTSYS/tutorials/tree/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You change that and draw the value
of char[0] as an integer by adding an arithmetic operation to the expression as shown below.

Histograms

57

tree.Draw("MyChar + 0");
//this will draw the integer value of MyChar[0]
 // where "MyChar" is char[5]

Sort Options
When using the options 2 or 3 above, the labels are automatically added to the list (THashList)
of labels for a given axis. By default, an axis is drawn with the order of bins corresponding to
the filling sequence. It is possible to reorder the axis alphabetically or by increasing or decreasing
values. The reordering can be triggered via the TAxis context menu by selecting the menu item
"LabelsOption" or by calling directly.

TH1::LabelsOption(option,axis)

Here axis may be X, Y, or Z. The parameter option may be:

• "a" sort by alphabetic order

• ">" sort by decreasing values

• "<" sort by increasing values

• "h" draw labels horizontal

• "v" draw labels vertical

• "u" draw labels up (end of label right adjusted)

• "d" draw labels down (start of label left adjusted)

When using the option second above, new labels are added by doubling the current number of bins in
case one label does not exist yet. When the filling is terminated, it is possible to trim the number of
bins to match the number of active labels by calling:

TH1::LabelsDeflate(axis)

Here axis may be X, Y, or Z. This operation is automatic when using TTree::Draw. Once bin
labels have been created, they become persistent if the histogram is written to a file or when generating
the C++ code via SavePrimitive.

Histogram Stacks
A THStack is a collection of TH1 (or derived) objects. Use THStack::Add(TH1 *h) to add a
histogram to the stack. The THStack does not own the objects in the list.

Figure 3.16. Stacked histograms

Histograms

58

By default, THStack::Draw draws the histograms stacked as shown in the left pad in the picture
above. If the option "nostack” is used, the histograms are superimposed as if they were drawn
one at a time using the "same" draw option. The right pad in this picture illustrates the THStack
drawn with the "nostack" option.

hs->Draw("nostack");

Next is a simple example, for a more complex one see $ROOTSYS/tutorials/hist/
hstack.C.

{ THStack hs("hs","test stacked histograms");
 TH1F *h1 = new TH1F("h1","test hstack",100,-4,4);
 h1->FillRandom("gaus",20000);
 h1->SetFillColor(kRed);
 hs.Add(h1);
 TH1F *h2 = new TH1F("h2","test hstack",100,-4,4);
 h2->FillRandom("gaus",15000);
 h2->SetFillColor(kBlue);
hs.Add(h2);
 TH1F *h3 = new TH1F("h3","test hstack",100,-4,4);
 h3->FillRandom("gaus",10000);
 h3->SetFillColor(kGreen);
 hs.Add(h3);
 TCanvas c1("c1","stacked hists",10,10,700,900);
 c1.Divide (1,2);
 c1.cd(1);
 hs.Draw();
 c1.cd(2);
 hs->Draw("nostack");
}

Profile Histograms
Profile histograms are in many cases an elegant replacement of two-dimensional histograms. The
relationship of two quantities X and Y can be visualized by a two-dimensional histogram or a scatter-
plot; its representation is not particularly satisfactory, except for sparse data. If Y is an unknown [but
single-valued] function of X, it can be displayed by a profile histogram with much better precision
than by a scatter-plot. Profile histograms display the mean value of Y and its RMS for each bin in X.
The following shows the contents [capital letters] and the values shown in the graphics [small letters]
of the elements for bin j. When you fill a profile histogram with TProfile.Fill[x,y]:

• H[j] will contain for each bin j the sum of the y values for this bin

• L[j] contains the number of entries in the bin j

• e[j] or s[j] will be the resulting error depending on the selected option. See “Build Options“.

E[j] = sum Y**2
L[j] = number of entries in bin J
H[j] = sum Y
h[j] = H[j] / L[j]
s[j] = sqrt[E[j] / L[j] - h[j]**2]
e[j] = s[j] / sqrt[L[j]]

In the special case where s[j] is zero, when there is only one entry per bin, e[j] is computed from
the average of the s[j] for all bins. This approximation is used to keep the bin during a fit operation.
The TProfile constructor takes up to eight arguments. The first five parameters are similar to TH1D
constructor.

Histograms

59

TProfile(const char *name,const char *title,Int_t nbinsx,
 Double_t xlow, Double_t xup, Double_t ylow, Double_t yup,
 Option_t *option)

All values of y are accepted at filling time. To fill a profile histogram, you must
use TProfile::Fill function. Note that when filling the profile histogram the method
TProfile::Fill checks if the variable y is between fYmin and fYmax. If a minimum or
maximum value is set for the Y scale before filling, then all values below ylow or above yup will be
discarded. Setting the minimum or maximum value for the Y scale before filling has the same effect
as calling the special TProfile constructor above where ylow and yup are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the same value Y, which is
the case when dealing with integers, the spread in Y for that bin is zero, and the uncertainty assigned
is also zero, and the bin is ignored in making subsequent fits. If SQRT(Y) was the correct error in the
case above, then SQRT(Y)/SQRT(N) would be the correct error here. In fact, any bin with non-zero
number of entries N but with zero spread (spread = s[j]) should have an uncertainty SQRT(Y)/
SQRT(N). Now, is SQRT(Y)/SQRT(N) really the correct uncertainty? That it is only in the case
where the Y variable is some sort of counting statistics, following a Poisson distribution. This is the
default case. However, Y can be any variable from an original NTUPLE, and does not necessarily
follow a Poisson distribution. The computation of errors is based on Y = values of data points; N =
number of data points.

• ' ' - the default is blank, the errors are:

• spread/SQRT(N)for a non-zero spread

• SQRT(Y)/SQRT(N) for a spread of zero and some data points

• 0for no data points

• ‘s’ - errors are:

• spread for a non-zero spread

• SQRT(Y) for a Spread of zero and some data points

• 0 for no data points

• ‘i’ - errors are:

• spread/SQRT(N)for a non-zero spread

• 1/SQRT(12*N) for a Spread of zero and some data points

• 0for no data points

• ‘G’ - errors are:

• spread/SQRT(N) for a non-zero spread

• sigma/SQRT(N) for a spread of zero and some data points

• 0 for no data points

The option 'i' is used for integer Y values with the uncertainty of ±0.5, assuming the probability that Y
takes any value between Y-0.5 and Y+0.5 is uniform (the same argument for Y uniformly distributed

Histograms

60

between Y and Y+1). An example is an ADC measurement. The 'G ' option is useful, if all Y variables
are distributed according to some known Gaussian of standard deviation Sigma. For example when
all Y's are experimental quantities measured with the same instrument with precision Sigma. The next
figure shows the graphic output of this simple example of a profile histogram.

{
 // Create a canvas giving the coordinates and the size
 TCanvas *c1 = new TCanvas("c1","Profile example",200,10,700,500);
// Create a profile with the name, title, the number of bins, the
 // low and high limit of the x-axis and the low and high limit
 // of the y-axis. No option is given so the default is used.
 hprof = new TProfile("hprof","Profile of pz versus px",100,-4,4,0,20);
 // Fill the profile 25000 times with random numbers
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
// Use the random number generator to get two numbers following a
 //gaussian distribution with mean=0 and sigma=1
 gRandom->Rannor(px,py);

 pz = px*px + py*py;
 hprof->Fill(px,pz,1);
 }
 hprof->Draw();
}

Figure 3.17. A profile histogram example

Drawing a Profile without Error Bars
To draw a profile histogram and not show the error bars use the "HIST" option in the
TProfile::Draw method. This will draw the outline of the TProfile.

Create a Profile from a 2D Histogram
You can make a profile from a histogram using the methods TH2::ProfileX and
TH2::ProfileY.

Create a Histogram from a Profile
To create a regular histogram from a profile histogram, use the method TProfile::ProjectionX
.This example instantiates a TH1D object by copying the TH1D piece of TProfile.

Histograms

61

TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile using the method TProfile2D::ProjectionXY.

Generating a Profile from a TTree
The 'prof' and 'profs' options in the TTree::Draw method generate a profile histogram
(TProfile), given a two dimensional expression in the tree, or a TProfile2D given a
three dimensional expression. See “Trees”. Note that you can specify 'prof'or 'profs':
'prof'generates a TProfile with error on the mean, 'profs' generates a TProfile with error
on the spread.

2D Profiles
The class for a 2D Profile is called TProfile2D. It is in many cases an elegant replacement of a three-
dimensional histogram. The relationship of three measured quantities X, Y and Z can be visualized by
a three-dimensional histogram or scatter-plot; its representation is not particularly satisfactory, except
for sparse data. If Z is an unknown (but single-valued) function of (X,Y), it can be displayed with a
TProfile2D with better precision than by a scatter-plot. A TProfile2D displays the mean value
of Z and its RMS for each cell in X, Y. The following shows the cumulated contents (capital letters)
and the values displayed (small letters) of the elements for cell i,j.

When you fill a profile histogram with TProfile2D.Fill [x,y,z]:

• E[i,j] contains for each bin i,j the sum of the z values for this bin

• L[i,j] contains the number of entries in the bin j

• e[j] or s[j] will be the resulting error depending on the selected option. See “Build Options“.

E[i,j] = sum z
L[i,j] = sum l
h[i,j] = H[i,j] / L[i,j]
s[i,j] = sqrt[E[i,j] / L[i,j]- h[i,j]**2]
e[i,j] = s[i,j] / sqrt[L[i,j]]

In the special case where s[i,j] is zero, when there is only one entry per cell, e[i,j] is computed
from the average of the s[i,j] for all cells. This approximation is used to keep the cell during a
fit operation.

{
 // Creating a Canvas and a TProfile2D
 TCanvas *c1 = new TCanvas("c1","Profile histogram example",
 200,10,700,500);
 hprof2d = new TProfile2D("hprof2d",
 "Profile of pz versus px and py",40,-4,4,40,-4,4,0,20);

 // Filling the TProfile2D with 25000 points

 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof2d->Fill(px,py,pz,1);
 }

 hprof2d->Draw();
}

Histograms

62

Figure 3.18. A TProfile2D histogram example

Iso Surfaces
Paint one Gouraud shaded 3d iso surface though a 3d histogram at the value computed as follow:

SumOfWeights/(NbinsX*NbinsY*NbinsZ).

Figure 3.19. Iso surfaces

void hist3d() {
TH3D *h3=new TH3D(« h3 », »h3 »,20,-2,2,20,-2,2,20,0,4);
Double_t x,y,z;
for (Int_t i=0; i<10000; i++) {
gRandom->Rannor(x,y);
z=x*x+y*y;
h3->Fill(x,y,z);
}
h3->Draw(“iso”);
}

3D Implicit Functions
TF3 *fun3 = new TF3(“fun3”, “sin(x*x+y*y+z*z-36”,-2,2,-2,2,-2,2);

Histograms

63

Fun3->Draw();

Figure 3.20. 3D implicit function

TPie
The TPie class allows to create a Pie Chart representation of a one dimensional data set. The data
can come from an array of Double_t (or Float_t) or from a 1D-histogram. The possible options
to draw a TPie are:

• "R"Paint the labels along the central "R"adius of slices.

• "T"Paint the labels in a direction "T"angent to circle that describes the TPie.

• "3D"Draw the pie-chart with a pseudo 3D effect.

• "NOL"No OutLine: do not draw the slices' outlines; any property over the slices' line is ignored.

The method SetLabelFormat() is used to customize the label format. The format string must
contain one of these modifiers:

• - %txt: to print the text label associated with the slice

• - %val : to print the numeric value of the slice

• - %frac : to print the relative fraction of this slice

• - %perc : to print the % of this slice

mypie->SetLabelFormat("%txt (%frac)");

See the macro $ROOTSYS/tutorials/graphics/piechart.C.

Histograms

64

Figure 3.21. The picture generated by tutorial macro piechart.C

The User Interface for Histograms
The classes TH1Editor and TH2Editor provides the user interface for setting histogram’s
attributes and rebinning interactively.

Histograms

65

TH1Editor

Style Tab:

Titlesets the title of the histogram.

Plotdraw a 2D or 3D plot; according to the dimension, different drawing possibilities can be set.

Erroradd different error bars to the histogram (no errors, simple, etc.).

Addfurther things which can be added to the histogram (None, simple/smooth line, fill area, etc.)

2-D Plot:

Simple Drawingdraw a simple histogram without errors (= "HIST" draw option). In combination with
some other draw options an outer line is drawn on top of the histogram

Show markersdraw a marker on to of each bin (="P" draw option).

Draw bar chartdraw a bar chart (="B" draw option).

Bar optiondraw a bar chart (="BAR" draw option); if selected, it will show an additional interface
elements for bars: width, offset, percentage and the possibility to draw horizontal bars.

3 -D Plot:

Addset histogram type Lego-Plot or Surface draw (Lego, Lego1.2, Surf, Surf1…5).

Coordsset the coordinate system (Cartesian, Spheric, etc.).

Histograms

66

Errorsame as for 2D plot.

Barset the bar attributes: width and offset.

Horizontal Bar draw a horizontal bar chart.

The Binning tab has two different layouts. One is for a histogram, which is not drawn from an ntuple.
The other one is available for a histogram, which is drawn from an ntuple. In this case, the rebin
algorithm can create a rebinned histogram from the original data i.e. the ntuple.

To see the differences do:

TFile f("hsimple.root");
hpx->Draw("BAR1"); // non ntuple histogram
ntuple->Draw("px"); // ntuple histogram

Non ntuple histogram:

Rebin with a slider and the number of bins (shown in the field below the slider). The number of bins
can be changed to any number, which divides the number of bins of the original histogram. A click on
the Apply button will delete the origin histogram and will replace it by the rebinned one on the screen.
A click on the Ignore button will restore the origin histogram.

Histogram drawn from an ntuple:

Rebin - With the slider, the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right)
or reduced by a factor of 1/2, 1/3, 1/4, 1/5.

BinOffset with a BinOffset slider - the origin of the histogram can be changed within one binwidth.
Using this slider the effect of binning the data into bins can be made visible (statistical fluctuations).

Axis Range - with a double slider it is possible to zoom into the specified axis range. It is also possible
to set the upper and lower limit in fields below the slider.

Delayed drawing - all the Binning sliders can set to delay draw mode. Then the changes on the
histogram are only updated, when the Slider is released. This should be activated if the redrawing of
the histogram is time consuming.

Histograms

67

TH2Editor

Style Tab:

Titleset the title of the histogram

Histogramchange the draw options of the histogram.

Plotdraw a 2D or 3D plot of the histogram; according to the dimension, the drawing possibilities are
different.

2-D Plot:

Contour draw a contour plot (None, Cont0...5)

Cont # set the number of Contours;

Arrow set the arrow mode and shows the gradient between adjacent cells;

Col a box is drawn for each cell with a color scale varying with contents;

Text draw bin contents as text;

Boxa box is drawn for each cell with surface proportional to contents;

Scat draw a scatter-plot (default);

Palette the color palette is drawn.

3 -D Plot:

Histograms

68

Type set histogram type to Lego or surface plot; draw (Lego, Lego1.2, Surf, Surf1…5)

Coords set the coordinate system (Cartesian, Spheric, etc.);

Cont # set the number of Contours (for e.g. Lego2 draw option);

Errors draw errors in a Cartesian lego plot;

Palette draw the color palette;

Front draw the front box of a Cartesian lego plot;

Back draw the back box of a Cartesian lego plot;

Bar change the bar attributes: the width and offset.

Rebinning Tab:

The Rebinning tab has two different layouts. One is for a histogram that is not drawn from an ntuple;
the other one is available for a histogram, which is drawn from an ntuple. In this case, the rebin
algorithm can create a rebinned histogram from the original data i.e. the ntuple. To see the differences
do for example:

TFile f("hsimple.root");
hpxpy->Draw("Lego2"); // non ntuple histogram
ntuple->Draw("px:py","","Lego2"); // ntuple histogram

Non-ntuple histogram:

Rebin with sliders (one for the x, one for the y-axis) and the number of bins (shown in the field below
them can be changed to any number, which divides the number of bins of the original histogram.
Selecting the Apply button will delete the origin histogram and will replace it by the rebinned one on
the screen. Selecting the Ignore the origin histogram will be restored.

Histograms

69

Histogram drawn from an ntuple:

Rebin with the sliders the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right) or
reduced by a factor of 1/2, 1/3, 1/4, 1/5. BinOffset with the BinOffset slider the origin of the histogram
can be changed within one binwidth. Using this slider the effect of binning the data into bins can be
made visible (=> statistical fluctuations).

Axis Range - with a double slider that gives the possibility for zooming. It is also possible to set the
upper and lower limit in fields below the slider.

Delayed drawing - all the binning sliders can be set to delay draw mode. Then the changes on the
histogram are only updated, when the Slider is released. This should be activated if the redrawing of
the histogram is too time consuming.

70

Chapter 4. Graphs
A graph is a graphics object made of two arrays X and Y, holding the x, y coordinates of n points.
There are several graph classes; they are TGraph, TGraphErrors, TGraphAsymmErrors, and
TMultiGraph.

TGraph
The TGraph class supports the general case with non-equidistant points, and the special case with
equidistant points. Graphs are created with the TGraph constructor. First, we define the arrays of
coordinates and then create the graph. The coordinates can be arrays of doubles or floats.

Int_t n = 20;
Double_t x[n], y[n];
for (Int_t i=0; i<n; i++) {
x[i] = i*0.1;
y[i] = 10*sin(x[i]+0.2);
}
TGraph *gr1 = new TGraph (n, x, y);

An alternative constructor takes only the number of points n. It is expected that the coordinates will
be set later.

TGraph *gr2 = new TGraph(n);

The default constructor can also be used. Further calls to SetPoint() will extend the internal
vectors.

TGraph *gr3 = new TGraph();

Graph Draw Options
The various draw options for a graph are explained in TGraph::PaintGraph. They are:

• "L"A simple poly-line between every points is drawn

• "F"A fill area is drawn

• “F1”Idem as "F" but fill area is no more repartee around X=0 or Y=0

• "F2"draw a fill area poly line connecting the center of bins

• "A"Axis are drawn around the graph

• "C"A smooth curve is drawn

• "*"A star is plotted at each point

• "P"The current marker of the graph is plotted at each point

• "B"A bar chart is drawn at each point

• "[]" Only the end vertical/horizontal lines of the error bars are drawn. This option only applies to
the TGraphAsymmErrors.

• "1"ylow = rwymin

The options are not case sensitive and they can be concatenated in most cases. Let us look at some
examples.

Graphs

71

Continuous Line, Axis and Stars (AC*)

Figure 4.1. A graph drawn with axis, * markers and continuous line (option
AC*)

{
 Int_t n = 20;
 Double_t x[n], y[n];
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }
 // create graph
 TGraph *gr = new TGraph(n,x,y);
 TCanvas *c1 = new TCanvas("c1","Graph Draw Options",200,10,600,400);
 // draw the graph with axis, contineous line, and put a * at each point
gr->Draw("AC*");
}

Bar Graphs (AB)

Figure 4.2. A graph drawn with axis and bar (option AB)

Graphs

72

root[] TGraph *gr1 = new TGraph(n,x,y);
root[] gr1->SetFillColor(40);
root[] gr1->Draw("AB");

This code will only work if n, x, and y is defined. The previous example defines these. You need to
set the fill color, because by default the fill color is white and will not be visible on a white canvas.
You also need to give it an axis, or the bar chart will not be displayed properly.

Filled Graphs (AF)

Figure 4.3. A graph drawn with axis and fill (option AF)

root[] TGraph *gr3 = new TGraph(n,x,y);
root[] gr3->SetFillColor(45);
root[] gr3->Draw("AF")

This code will only work if n, x, y are defined. The first example defines them. You need to set the
fill color, because by default the fill color is white and will not be visible on a white canvas. You also
need to give it an axis, or the bar chart will not be displayed properly. Currently one cannot specify
the "CF" option.

Graphs

73

Marker Options

Figure 4.4. Graph markers created in different ways

{
 Int_t n = 20;
 Double_t x[n], y[n];
// build the arrays with the coordinate of points
 for (Int_t i=0; i<n; i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }
 // create graphs
TGraph *gr3 = new TGraph(n,x,y);
TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",200,10,600,400);

 // draw the graph with the axis,contineous line, and put
 // a marker using the graph's marker style at each point
gr3->SetMarkerStyle(21);
c1->cd(4);
gr3->Draw("APL");

// get the points in the graph and put them into an array
Double_t *nx = gr3->GetX();
Double_t *ny = gr3->GetY();

// create markers of different colors
for (Int_t j=2; j<n-1; j++) {
TMarker *m = new TMarker(nx[j], 0.5*ny[j], 22);
m->SetMarkerSize(2);
m->SetMarkerColor(31+j);
m->Draw();
}
}

Superimposing Two Graphs
To super impose two graphs you need to draw the axis only once, and leave out the "A" in the draw
options for the second graph. Next is an example:

Graphs

74

Figure 4.5. Superimposing two graphs

{
Int_t n = 20;
Double_t x[n], y[n], x1[n], y1[n];

// create a blue graph with a cos function and red one with sin function
for (Int_t i=0; i<n; i++) {
x[i] = i*0.5;
y[i] = 5*cos(x[i]+0.2);
x1[i] = i*0.5;
y1[i] = 5*sin(x[i]+0.2);
}
TGraph *gr1 = new TGraph(n,x,y);
TGraph *gr2 = new TGraph(n,x1,y1);
TCanvas *c1 = new TCanvas("c1","Two Graphs",200,10,600,400);
 // draw the graph with axis, contineous line, and put a * at each point
gr1->SetLineColor(4);
gr1->Draw("AC*");
 // superimpose the second graph by leaving out the axis option "A"
gr2->SetLineWidth(3);
gr2->SetMarkerStyle(21);
gr2->SetLineColor(2);
gr2->Draw("CP");
}

Graphs with Error Bars
A TGraphErrors is a TGraph with error bars. The various draw format options of
TGraphErrors::Paint() are derived from TGraph.

void TGraphErrors::Paint(Option_t *option)

Graphs

75

Figure 4.6. Graphs with different draw options of error bars

In addition, it can be drawn with the "Z" option to leave off the small lines at the end of the error bars.
If option contains ">", an arrow is drawn at the end of the error bars. If option contains "|>", a full
arrow is drawn at the end of the error bars. The size of the arrow is set to 2/3 of the marker size.

The option “[]” is interesting to superimpose systematic errors on top of the graph with the statistical
errors. When it is specified, only the end vertical/horizontal lines of the error bars are drawn.

To control the size of the lines at the end of the error bars (when option 1 is chosen) use
SetEndErrorSize(np). By default np=1; np represents the number of pixels.

gStyle->SetEndErrorSize(np);

The four parameters of TGraphErrors are: X, Y (as in TGraph), X-errors, and Y-errors - the
size of the errors in the x and y direction. Next example is $ROOTSYS/tutorials/graphs/
gerrors.C.

{
c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);
c1->SetFillColor(42);
c1->SetGrid();
c1->GetFrame()->SetFillColor(21);
c1->GetFrame()->SetBorderSize(12);
 // create the coordinate arrays
Int_t n = 10;
 Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Float_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
// create the error arrays
 Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Float_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
// create the TGraphErrors and draw it
gr = new TGraphErrors(n,x,y,ex,ey);
gr->SetTitle("TGraphErrors Example");
gr->SetMarkerColor(4);
gr->SetMarkerStyle(21);
gr->Draw("ALP");
c1->Update();
}

Graphs with Asymmetric Error Bars
A TGraphAsymmErrors is a TGraph with asymmetric error bars. It inherits the various
draw format options from TGraph. Its method Paint(Option_t *option) paints the

Graphs

76

TGraphAsymmErrors with the current attributes. You can set the following additional options for
drawing:

• "z" or “Z”the horizontal and vertical small lines are not drawn at the end of error bars

• “>”an arrow is drawn at the end of the error bars

• “|>”a full arrow is drawn at the end of the error bar; its size is 2/3 of the marker size

• “[]”only the end vertical/horizontal lines of the error bars are drawn; this option is interesting to
superimpose systematic errors on top of a graph with statistical errors.

The constructor has six arrays as parameters: X and Y as TGraph and low X-errors and high X-errors,
low Y-errors and high Y-errors. The low value is the length of the error bar to the left and down, the
high value is the length of the error bar to the right and up.

Figure 4.7. A graph with asymmetric error bars

{
c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);
c1->SetFillColor(42);
c1->SetGrid();
c1->GetFrame()->SetFillColor(21);
c1->GetFrame()->SetBorderSize(12);
 // create the arrays for the points
Int_t n = 10;
Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 // create the arrays with high and low errors
Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};
// create TGraphAsymmErrors with the arrays
gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
gr->SetTitle("TGraphAsymmErrors Example");
gr->SetMarkerColor(4);
gr->SetMarkerStyle(21);
gr->Draw("ALP");
}

Graphs

77

Graphs with Asymmetric Bent Errors
A TGraphBentErrors is a TGraph with bent, asymmetric error bars. The various format options
to draw a TGraphBentErrors are explained in TGraphBentErrors::Paint method. The
TGraphBentErrors is drawn by default with error bars and small horizontal and vertical lines at
the end of the error bars. If option "z" or "Z" is specified, these small lines are not drawn. If the option
"X" is specified, the errors are not drawn (the TGraph::Paint method equivalent).

• if option contains ">", an arrow is drawn at the end of the error bars

• if option contains "|>", a full arrow is drawn at the end of the error bars

• the size of the arrow is set to 2/3 of the marker size

• if option "[]" is specified, only the end vertical/horizontal lines of the error bars are drawn. This
option is interesting to superimpose systematic errors on top of a graph with statistical errors.

Figure 4.8. A graph with asymmetric bent error bars

This figure has been generated by the following macro:

{
Int_t n = 10;
Double_t x[n] = {-0.22,0.05,0.25,0.35,0.5,0.61,0.7,0.85,0.89,0.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};
Double_t exld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double_t eyld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double_t exhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double_t eyhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.05,.0};
gr = new TGraphBentErrors(n,x,y,exl,exh,eyl,eyh,exld,exhd,eyld,eyhd);
gr->SetTitle("TGraphBentErrors Example");
gr->SetMarkerColor(4);
gr->SetMarkerStyle(21);
gr->Draw("ALP");
}

Graphs

78

TGraphPolar
The TGraphPolar class creates a polar graph (including error bars). A TGraphPolar is a
TGraphErrors represented in polar coordinates. It uses the class TGraphPolargram to draw
the polar axis.

Figure 4.9. A polar graph

{
TCanvas *CPol = new TCanvas("CPol","TGraphPolar Examples",600,600);
Double_t rmin=0;
Double_t rmax=TMath::Pi()*2;
Double_t r[1000];
Double_t theta[1000];
TF1 * fp1 = new TF1("fplot","cos(x)",rmin,rmax);
for (Int_t ipt = 0; ipt < 1000; ipt++) {
r[ipt] = ipt*(rmax-rmin)/1000+rmin;
theta[ipt] = fp1->Eval(r[ipt]);
}
TGraphPolar * grP1 = new TGraphPolar(1000,r,theta);
grP1->SetLineColor(2);
grP1->Draw("AOL");
}

The TGraphPolar drawing options are:

"O" Polar labels are paint orthogonally to the polargram radius.

"P" Polymarker are paint at each point position.

"E" Paint error bars.

"F" Paint fill area (closed polygon).

"A"Force axis redrawing even if a polagram already exists.

TGraph Exclusion Zone
When a graph is painted with the option "C" or "L", it is possible to draw a filled area on one side of the
line. This is useful to show exclusion zones. This drawing mode is activated when the absolute value

Graphs

79

of the graph line width (set thanks to SetLineWidth) is greater than 99. In that case the line width
number is interpreted as 100*ff+ll = ffll. The two-digit numbers "ll" represent the normal
line width whereas "ff" is the filled area width. The sign of "ffll" allows flipping the filled area
from one side of the line to the other. The current fill area attributes are used to draw the hatched zone.

Figure 4.10. Graphs with exclusion zones

{
c1 = new TCanvas("c1","Exclusion graphs examples",200,10,700,500);
c1->SetGrid();
TMultiGraph *mg = new TMultiGraph();
mg->SetTitle("Exclusion graphs");
const Int_t n = 35;
Double_t x1[n], x2[n], x3[n], y1[n], y2[n], y3[n];
for (Int_t i=0;i<n;i++) {
x1[i] = i*0.1; y1[i] = 10*sin(x1[i]);
x2[i] = x1[i]; y2[i] = 10*cos(x1[i]);
x3[i] = x1[i]+.5; y3[i] = 10*sin(x1[i])-2;
}
gr1 = new TGraph(n,x1,y1);
gr1->SetLineColor(2);
gr1->SetLineWidth(1504);
gr1->SetFillStyle(3005);
gr2 = new TGraph(n,x2,y2);
gr2->SetLineColor(4);
gr2->SetLineWidth(-2002);
gr2->SetFillStyle(3004);
gr2->SetFillColor(9);
gr3 = new TGraph(n,x3,y3);
gr3->SetLineColor(5);
gr3->SetLineWidth(-802);
gr3->SetFillStyle(3002);
gr3->SetFillColor(2);
mg->Add(gr1);
mg->Add(gr2);
mg->Add(gr3);
mg->Draw("AC");
}

Graphs

80

TGraphQQ
A TGraphQQ allows drawing quantile-quantile plots. Such plots can be drawn for two datasets, or
for one dataset and a theoretical distribution function.

Two Datasets

Quantile-quantile plots are used to determine whether two samples come from the same distribution.
A qq-plot draws the quantiles of one dataset against the quantile of the other. The quantiles of the
dataset with fewer entries are on Y-axis, with more entries - on X-axis. A straight line, going through
0.25 and 0.75 quantiles is also plotted for reference. It represents a robust linear fit, not sensitive to
the extremes of the datasets. If the datasets come from the same distribution, points of the plot should
fall approximately on the 45 degrees line. If they have the same distribution function, but different
parameters of location or scale, they should still fall on the straight line, but not the 45 degrees one.

Figure 4.11. Examples of qq-plots of 2 datasets

The greater their departure from the straight line, the more evidence there is that the datasets come
from different distributions. The advantage of qq-plot is that it not only shows that the underlying
distributions are different, but, unlike the analytical methods, it also gives information on the nature
of this difference: heavier tails, different location/scale, different shape, etc.

One Dataset

Quantile-quantile plots are used to determine if the dataset comes from the specified theoretical
distribution, such as normal. A qq-plot draws quantiles of the dataset against quantiles of the specified
theoretical distribution. Note, that density, not CDF should be specified a straight line, going through
0.25 and 0.75 quantiles could also be plotted for reference. It represents a robust linear fit, not sensitive
to the extremes of the dataset. As in the two datasets case, departures from straight line indicate
departures from the specified distribution. Next picture shows an example of a qq-plot of a dataset
from N(3, 2) distribution and TMath::Gaus(0, 1) theoretical function. Fitting parameters are estimates
of the distribution mean and sigma.

Graphs

81

Figure 4.12. Examples of qq-plots of 1 dataset

TMultiGraph
A TMultiGraph is a collection of TGraph (or derived) objects. Use TMultiGraph::Add to
add a new graph to the list. The TMultiGraph owns the objects in the list. The drawing and fitting
options are the same as for TGraph.

{
// create the points
Int_t n = 10;
Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
// create the width of errors in x and y direction
Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
// create two graphs
TGraph *gr1 = new TGraph(n,x2,y2);
TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);
 // create a multigraph and draw it
TMultiGraph *mg = new TMultiGraph();
mg->Add(gr1);
mg->Add(gr2);
mg->Draw("ALP");
}

Graphs

82

Figure 4.13. A multigraph example

TGraph2D
This class is a set of N points x[i], y[i], z[i] in a non-uniform grid. Several visualization
techniques are implemented, including Delaunay triangulation. Delaunay triangulation is defined as
follow: ‘for a set S of points in the Euclidean plane, the unique triangulation DT(S) of S such that
no point in S is inside the circum-circle of any triangle in DT(S). DT(S) is the dual of the Voronoi
diagram of S. If n is the number of points in S, the Voronoi diagram of S is the partitioning of the
plane containing S points into n convex polygons such that each polygon contains exactly one point
and every point in a given polygon is closer to its central point than to any other. A Voronoi diagram
is sometimes also known as a Dirichlet tessellation.

Figure 4.14. Delaunay triangles and Voronoi diagram

The TGraph2D class has the following constructors:

• With an arrays’ dimension n and three arrays x, y, and z (can be arrays of doubles, floats, or
integers):

TGraph2D *g = new TGraph2D(n,x,y,z);

• With an array dimension only:

TGraph2D *g = new TGraph2D(n);

• Internal arrays are filled with the method SetPoint at the position "i" with the values x, y, z:

g->SetPoint(i,x,y,z);

Graphs

83

• Without parameters; the method SetPoint must be used to fill the internal arrays.

TGraph2D *g = new TGraph2D();

• From a file:

TGraph2D *g = new TGraph2D("graph.dat");

The arrays are read from the ASCII file "graph.dat" according to a specified format. The format's
default value is "%lg %lg %lg". Note that in any of last three cases, the SetPoint method can
be used to change a data point or to add a new one. If the data point index (i) is greater than the size
of the internal arrays, they are automatically extended.

Specific drawing options can be used to paint a TGraph2D:

• "TRI" the Delaunay triangles are drawn using filled area. A hidden surface drawing technique is
used. The surface is painted with the current fill area color. The edges of the triangles are painted
with the current line color;

• "TRIW"the Delaunay triangles are drawn as wire frame;

• "TRI1" the Delaunay triangles are painted with color levels. The edges of the triangles are painted
with the current line color;

• "TRI2" the Delaunay triangles are painted with color levels;

• "P"draws a marker at each vertex;

• "P0" draws a circle at each vertex. Each circle background is white.

A TGraph2D can be also drawn with ANY options valid for 2D histogram drawing. In this case,
an intermediate 2D histogram is filled using the Delaunay triangles technique to interpolate the data
set. TGraph2D linearly interpolate a Z value for any (X,Y) point given some existing (X,Y,Z)
points. The existing (X,Y,Z) points can be randomly scattered. The algorithm works by joining
the existing points to make Delaunay triangles in (X,Y). These are then used to define flat planes
in (X,Y,Z) over which to interpolate. The interpolated surface thus takes the form of tessellating
triangles at various angles. Output can take the form of a 2D histogram or a vector. The triangles
found can be drawn in 3D. This software cannot be guaranteed to work under all circumstances. It
was originally written to work with a few hundred points in an XY space with similar X and Y ranges.

Graphs

84

Figure 4.15. Graph2D drawn with option "surfl" and "tril p0"

{
 TCanvas *c = new TCanvas("c","Graph2D example",0,0,700,600);
 Double_t x, y, z, P = 6.;
 Int_t np = 200;
 TGraph2D *dt = new TGraph2D();
 TRandom *r = new TRandom();

 for (Int_t N=0; N<np; N++) {
 x = 2*P*(r->Rndm(N))-P;
 y = 2*P*(r->Rndm(N))-P;
 z = (sin(x)/x)*(sin(y)/y)+0.2;
 dt->SetPoint(N,x,y,z);
 }
 gStyle->SetPalette(1);
 dt->Draw("surf1"); // use “surf1” to generate the left picture
} // use “tri1 p0” to generate the right one

A more complete example is $ROOTSYS/tutorials/fit/graph2dfit.C that produces the
next figure.

Graphs

85

Figure 4.16. Output of macro graph2dfit.C

TGraph2DErrors
A TGraph2DErrors is a TGraph2D with errors. It is useful to perform fits with errors on a 2D
graph. An example is the macro $ROOTSYS/tutorials/graphs/graph2derrorsfit.C.

Fitting a Graph
The graph Fit method in general works the same way as the TH1::Fit. See “Fitting Histograms”.

Setting the Graph's Axis Title
To give the axis of a graph a title you need to draw the graph first, only then does it actually have
an axis object. Once drawn, you set the title by getting the axis and calling the TAxis::SetTitle
method, and if you want to center it, you can call the TAxis::CenterTitle method.

Assuming that n, x, and y are defined. Next code sets the titles of the x and y axes.

root[] gr5 = new TGraph(n,x,y)
root[] gr5->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] gr5->Draw("ALP")
root[] gr5->GetXaxis()->SetTitle("X-Axis")
root[] gr5->GetYaxis()->SetTitle("Y-Axis")
root[] gr5->GetXaxis()->CenterTitle()
root[] gr5->GetYaxis()->CenterTitle()
root[] gr5->Draw(“ALP”)

For more graph examples see the scripts: $ROOTSYS/tutorials directory graph.C,
gerrors.C, zdemo.C, and gerrors2.C.

Graphs

86

Figure 4.17. A graph with axis titles

Zooming a Graph
To zoom a graph you can create a histogram with the desired axis range first. Draw the empty histogram
and then draw the graph using the existing axis from the histogram.

{ gROOT->Reset();
c1 = new TCanvas("c1","A Zoomed Graph",200,10,700,500);
hpx = new TH2F("hpx","Zoomed Graph Example",10,0,0.5,10,1.0,8.0); // axis range
hpx->SetStats(kFALSE); // no statistics
hpx->Draw();
Int_t n = 10;
Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
gr = new TGraph(n,x,y);
gr->SetMarkerColor(4);
gr->SetMarkerStyle(20);
gr->Draw("LP");// and draw it without an axis
}

The next example is the same graph as above with a zoom in the x and y directions.

Figure 4.18. A zoomed graph

Graphs

87

The User Interface for Graphs

The class TGraphEditor provides the user interface for setting the following graph attributes
interactively:

Title text entry field – sets the title of the graph.

Shape radio button group – sets the graph shapes:

No Line:draw unconnected points;

Smooth Line: a smooth curve;

Simple Line:a simple poly-line;

Bart Chart:a bar chart at each point.

Fill Area:a fill area is drawn.

Show Marker - sets markers as visible or invisible.

Exclusion Zone – specifies the exclusion zone parameters :

’+-‘ check button: sets on which side of the line the exclusion zone will be drawn;

Width combo box: defines the width of the zone.

88

Chapter 5. Fitting Histograms
To fit a histogram you can use the Fit Panel on a visible histogram via the context menu, or you can
use the TH1::Fit method. The Fit Panel, which is limited, is best for prototyping. The histogram
needs to be drawn in a pad before the Fit Panel is invoked. The method TH1::Fit is more powerful
and is used in scripts and programs.

The Fit Method
To fit a histogram programmatically, you can use the TH1::Fit method. Here is the signature of
TH1::Fit and an explanation of the parameters:

void Fit(const char *fname, Option_t *option, Option_t *goption,
Axis_t xxmin, Axis_t xxmax)

• *fname: The name of the fitted function (the model) is passed as the first parameter. This name
may be one of ROOT pre-defined function names or a user-defined function. The functions below
are predefined, and can be used with the TH1::Fit method:

• "gaus" Gaussian function with 3 parameters: f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

• "expo"An Exponential with 2 parameters: f(x) = exp(p0+p1*x)

• "polN" A polynomial of degree N: f(x) = p0 + p1*x + p2*x2 +...

• "landau" Landau function with mean and sigma. This function has been adaptedfrom the
CERNLIB routine G110 denlan.

• *option:The second parameter is the fitting option. Here is the list of fitting options:

• "W" Set all weights to 1 for non empty bins; ignore error bars

• "WW" Set all weights to 1 including empty bins; ignore error bars

• "I" Use integral of function in bin instead of value at bin center

• "L" Use log likelihood method (default is chi-square method)

• "U" Use a user specified fitting algorithm

• "Q" Quiet mode (minimum printing)

• "V" Verbose mode (default is between Q and V)

• "E" Perform better errors estimation using the Minos technique

• "M" Improve fit results

• "R" Use the range specified in the function range

• "N" Do not store the graphics function, do not draw

• "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option "N"
above is specified.

• "+" Add this new fitted function to the list of fitted functions (by default, the previous function is
deleted and only the last one is kept)

Fitting Histograms

89

• "B"Use this option when you want to fix one or more parameters and the fitting function is like
polN, expo, landau, gaus.

• “LL”An improved Log Likelihood fit in case of very low statistics and when bincontentsare not
integers. Do not use this option if bin contents are large (greater than 100).

• “C”In case of linear fitting, don't calculate the chisquare (saves time).

• “F”If fitting a polN, switch to Minuit fitter (by default, polN functions are fitted by the linear
fitter).

• *goption: The third parameter is the graphics option that is the same as in the TH1::Draw
(see the chapter Draw Options).

• xxmin, xxmax:Thee fourth and fifth parameters specify the range over which to apply the fit.

By default, the fitting function object is added to the histogram and is drawn in the current pad.

Fit with a Predefined Function
To fit a histogram with a predefined function, simply pass the name of the function in the first
parameter of TH1::Fit. For example, this line fits histogram object hist with a Gaussian.

root[] hist.Fit("gaus");

The initial parameter values for pre-defined functions are set automatically.

Fit with a User-Defined Function
You can create a TF1 object and use it in the call the TH1::Fit. The parameter in to the Fit method
is the NAME of the TF1 object. There are three ways to create a TF1.

• Using C++ expression using x with a fixed set of operators and functions defined in TFormula.

• Same as first one, with parameters

• Using a function that you have defined

Creating a TF1 with a Formula

Let's look at the first case. Here we call the TF1 constructor by giving it the formula: sin(x)/x.

root[] TF1 *f1 = new TF1("f1","sin(x)/x",0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("f2","f1*2",0,10)

Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression. Here we use two parameters:

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

Fitting Histograms

90

Figure 5.1. The function x*sin(x)

The parameter index is enclosed in square brackets. To set the initial parameters explicitly you can use:

root[] f1->SetParameter(0,10);

This sets parameter 0 to 10. You can also use SetParameters to set multiple parameters at once.

root[] f1->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:

root[] f1->Draw()

Creating a TF1 with a User Function
The third way to build a TF1 is to define a function yourself and then give its name to the constructor.
A function for a TF1 constructor needs to have this exact signature:

Double_t fitf(Double_t *x,Double_t *par)

The two parameters are:

• x a pointer to the dimension array. Each element contains a dimension. For a 1D histogram only
x[0] is used, for a 2D histogram x[0] and x[1] is used, and for a 3D histogram x[0], x[1],
and x[2] are used. For histograms, only 3 dimensions apply, but this method is also used to fit
other objects, for example an ntuple could have 10 dimensions.

• par a pointer to the parameters array. This array contains the current values of parameters when
it is called by the fitting function.

The following script $ROOTSYS/tutorials/fit/myfit.C illustrates how to fit a 1D histogram
with a user-defined function. First we declare the function.

// define a function with 3 parameters
Double_t fitf(Double_t *x,Double_t *par)
{
Double_t arg = 0;
if (par[2] != 0) arg = (x[0] - par[1])/par[2];
Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
return fitval;
}

Now we use the function:

// this function used fitf to fit a histogram
void fitexample() {

Fitting Histograms

91

 // open a file and get a histogram
TFile *f = new TFile("hsimple.root");
TH1F *hpx = (TH1F*)f->Get(*hpx);

 // Create a TF1 object using the function defined above. The last three
 // parameters specify the number of parameters for the function.
TF1 *func = new TF1("fit",fitf,-3,3,3);
 // set the parameters to the mean and RMS of the histogram
func->SetParameters(500,hpx->GetMean(),hpx->GetRMS());

 // give the parameters meaningful names
func->SetParNames ("Constant","Mean_value","Sigma");

 // call TH1::Fit with the name of the TF1 object
hpx->Fit("fit");
}

Fixing and Setting Parameters’ Bounds
Parameters must be initialized before invoking the Fit method. The setting of the parameter initial
values is automatic for the predefined functions: poln, exp, gaus, and landau. You can fix one or
more parameters by specifying the "B" option when calling the Fit method. When a function is not
predefined, the fit parameters must be initialized to some value as close as possible to the expected
values before calling the fit function.

To set bounds for one parameter, use TF1::SetParLimits:

func->SetParLimits(0,-1,1);

When the lower and upper limits are equal, the parameter is fixed. Next two statements fix parameter
4 at 10.

func->SetParameter(4,10);
func->SetParLimits(4,10,10);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter(4,0);
func->FixParameter(4,0);

Note that you are not forced to set the limits for all parameters. For example, if you fit a function with
6 parameters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits(3,-10,4);
func->FixParameter(4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries [-10, 4] with initial
value –1.5, and parameter 4 is fixed to 0.

Fitting Sub Ranges
By default, TH1::Fit will fit the function on the defined histogram range. You can specify the
option "R" in the second parameter of TH1::Fit to restrict the fit to the range specified in the TF1
constructor. In this example, the fit will be limited to –3 to 3, the range specified in the TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1","R");

Fitting Histograms

92

You can also specify a range in the call to TH1::Fit:

root[] hist->Fit("f1","","",-2,2)

See macros $ROOTSYS/tutorials/fit/myfit.C and multifit.C as more completed
examples.

The Fit Panel

To display the Fit Panel right click on a histogram
to pop up the context menu, and then select the menu entry Fit Panel.

The new Fit Panel GUI is available in ROOT v5.14. Its goal is to replace the old Fit Panel and to
provide more user friendly way for performing, exploring and comparing fits.

By design, this user interface is planned to contain two tabs: “General” and “Minimization”. Currently,
the “General” tab provides user interface elements for setting the fit function, fit method and different
fit, draw, print options.

The new fit panel is a modeless dialog, i.e. when opened, it does not prevent users from interacting
with other windows. Its first prototype is a singleton application. When the Fit Panel is activated, users
can select an object for fitting in the usual way, i.e. by left-mouse click on it. If the selected object
is suitable for fitting, the fit panel is connected with this object and users can perform fits by setting
different parameters and options.

Function Choice and Settings
‘Predefined’ combo box - contains a list of predefined functions in ROOT. You have a choice of
several polynomials, a Gaussian, a Landau, and an Exponential function. The default one is Gaussian.

Fitting Histograms

93

‘Operation’ radio button group defines the selected operational mode between functions:

Nop - no operation (default);

Add – addition;

Conv - convolution (will be implemented in the future).

Users can enter the function expression into the text entry field below the ‘Predefined’ combo box.
The entered string is checked after the Enter key was pressed and an error message shows up, if the
function string is not accepted.

‘Set Parameters’ button opens a dialog for parameters settings, which will be explaned later.

Fitter Settings
‘Method’ combo box currently provides only two fit model choices: Chi-square and Binned
Likelihood. The default one is Chi-square. The Binned Likelihood is recomended for bins with low
statistics.

‘Linear Fit’ check button sets the use of Linear fitter when is selected. Otherwise the minimization
is done by Minuit, i.e. fit option "F" is applied. The Linear fitter can be selected only for functions
linears in parameters (for example - polN).

‘Robust’ number entry sets the robust value when fitting graphs.

‘No Chi-square’ check button switch On/Off the fit option “C” - do not calculate Chi-square (for
Linear fitter).

‘Integral’ check button switch On/Off the option “I” - use integral of function instead of value in
bin center.

‘Best Errors’ sets On/Off the option “E” - better errors estimation by using Minos technique.

‘All weights = 1’ sets On/Off the option “W”- all weights set to 1 excluding empty bins; error bars
ignored.

‘Empty bins, weights=1’ sets On/Off the option "WW" - all weights equal to 1 including empty bins;
error bars ignored.

‘Use range’ sets On/Off the option “R” - fit only data within the specified function range. Sliders
settings are used if this option is set to On. Users can change the function range values by pressing the
left mouse button near to the left/right slider edges. It is possible to change both values simultaneously
by pressing the left mouse button near to the slider center and moving it to a new position.

‘Improve fit results’ sets On/Off the option “M”- after minimum is found, search for a new one.

‘Add to list’ sets On/Off the option “+”- add function to the list without deleting the previous one.
When fitting a histogram, the function is attached to the histogram's list of functions. By default, the
previously fitted function is deleted and replaced with the most recent one, so the list only contains one
function. Setting this option to On will add the newly fitted function to the existing list of functions
for the histogram. Note that the fitted functions are saved with the histogram when it is written to a
ROOT file. By default, the function is drawn on the pad displaying the histogram.

Draw Options
‘SAME’ sets On/Off function drawing on the same pad. When a fit is executed, the image of the
function is drawn on the current pad.

Fitting Histograms

94

‘No drawing’ sets On/Off the option “0”- do not draw the fit results.

‘Do not store/draw’ sets On/Off option “N”- do not store the function and do not draw it.

Print Options
This set of options specifies the amount of feedback printed on the root command line after performed
fits.

‘Verbose’ - prints fit results after each iteration.

‘Quiet’ - no fit information is printed.

‘Default’ - between Verbose and Quiet.

Command Buttons
Fit button - performs a fit taking different option settings via the Fit Panel interface.

Reset - sets the GUI elements and related fit settings to the default ones.

Close - closes the Fit panel window.

Fitting Multiple Sub Ranges
The script for this example is $ROOTSYS/tutorials/fit/multifit.C. It shows how to use
several Gaussian functions with different parameters on separate sub ranges of the same histogram.
To use a Gaussian, or any other ROOT built in function, on a sub range you need to define a new TF1.
Each is 'derived' from the canned function gaus.

Figure 5.2. Fitting a histogram with several Gaussian functions

First, four TF1 objects are created – one for each sub-range:

g1 = new TF1("m1","gaus",85,95);
g2 = new TF1("m2","gaus",98,108);
g3 = new TF1("m3","gaus",110,121);
// The total is the sum of the three, each has 3 parameters
total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

Next, we fill a histogram with bins defined in the array x.

// Create a histogram and set it's contents

Fitting Histograms

95

h = new TH1F("g1","Example of several fits in subranges",np,85,134);
h->SetMaximum(7);
for (int i=0; i<np; i++) {
 h->SetBinContent(i+1,x[i]);
}
// Define the parameter array for the total function
Double_t par[9];

When fitting simple functions, such as a Gaussian, the initial values of the parameters are automatically
computed by ROOT. In the more complicated case of the sum of 3 Gaussian functions, the initial
values of parameters must be set. In this particular case, the initial values are taken from the result of
the individual fits. The use of the "+" sign is explained below:

// Fit each function and add it to the list of functions
h->Fit(g1,"R");
h->Fit(g2,"R+");
h->Fit(g3,"R+");

// Get the parameters from the fit
g1->GetParameters(&par[0]);
g2->GetParameters(&par[3]);
g3->GetParameters(&par[6]);

// Use the parameters on the sum
total->SetParameters(par);
h->Fit(total,"R+");

Adding Functions to the List
The example $ROOTSYS/tutorials/fit/multifit.C also illustrates how to fit several
functions on the same histogram. By default a Fit command deletes the previously fitted function in
the histogram object. You can specify the option "+" in the second parameter to add the newly fitted
function to the existing list of functions for the histogram.

root[] hist->Fit("f1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

Combining Functions
You can combine functions to fit a histogram with their sum as it is illustrated in the macro
FitDemo.C ($ROOTSYS/tutorials/fit/FittingDemo.C). We have a function that is the
combination of a background and Lorentzian peak. Each function contributes 3 parameters:

BackgroundLorentzian Peak

par[0] = par[0] =

par[1] = par[1] =

Fitting Histograms

96

par[2] = par[2] =

The combination function (fitFunction) has six parameters:

fitFunction = background(x,par) + LorentzianPeak(x,&par[3])

par[0]= par[1]= par[2]= par[3]= par[4]= par[5]=

This script creates a histogram and fits it with the combination of two functions. First we define the
two functions and the combination function:

// Quadratic background function
Double_t background(Double_t *x, Double_t *par) {
return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];
}
// Lorentzian Peak function
Double_t lorentzianPeak(Double_t *x, Double_t *par) {
return (0.5*par[0]*par[1]/TMath::Pi()) / TMath::Max(1.e-10,
(x[0]-par[2])*(x[0]-par[2])+ .25*par[1]*par[1]);
}

// Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
return background(x,par) + lorentzianPeak(x,&par[3]);
}
void FittingDemo() {
// bevington exercise by P. Malzacher, modified by R. Brun
const int nBins = 60;
Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
23,26,36,25,27,35,40,44,66,81,
75,57,48,45,46,41,35,36,53,32,
40,37,38,31,36,44,42,37,32,32,
43,44,35,33,33,39,29,41,32,44,
26,39,29,35,32,21,21,15,25,15};
TH1F *histo = new TH1F("example_9_1",
"Lorentzian Peak on Quadratic Background",60,0,3);

for(int i=0; i < nBins; i++) {
// we use these methods to explicitly set the content
 // and error instead of using the fill method.
histo->SetBinContent(i+1,data[i]);
histo->SetBinError(i+1,TMath::Sqrt(data[i]));
}
 // create a TF1 with the range from 0 to 3 and 6 parameters
TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

 // first try without starting values for the parameters
 // this defaults to 1 for each param.
histo->Fit("fitFcn");
 // this results in an ok fit for the polynomial function however
 // the non-linear part (Lorentzian) does not respond well
 // second try: set start values for some parameters
fitFcn->SetParameter(4,0.2); // width
fitFcn->SetParameter(5,1); // peak
histo->Fit("fitFcn","V+");

 // improve the picture:

Fitting Histograms

97

TF1 *backFcn = new TF1("backFcn",background,0,3,3);
backFcn->SetLineColor(3);
TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
signalFcn->SetLineColor(4);
Double_t par[6];

// writes the fit results into the par array
fitFcn->GetParameters(par);
backFcn->SetParameters(par);
backFcn->Draw("same");
signalFcn->SetParameters(&par[3]);
signalFcn->Draw("same");
}

For another example see: http://root.cern.ch/root/html/examples/
backsig.C.html

Figure 5.3. The output of the FittingDemo() example

Associated Function
One or more objects (typically a TF1*) can be added to the list of functions (fFunctions) associated
to each histogram. A call to TH1::Fit adds the fitted function to this list. Given a histogram h, one
can retrieve the associated function with:

TF1 *myfunc = h->GetFunction("myfunc");

Access to the Fit Parameters and Results
If the histogram (or graph) is made persistent, the list of associated functions is also persistent. Retrieve
a pointer to the function with the TH1::GetFunction() method. Then you can retrieve the fit
parameters from the function (TF1) with calls such as:

root[] TF1 *fit = hist->GetFunction(function_name);
root[] Double_t chi2 = fit->GetChisquare();
// value of the first parameter
root[] Double_t p1 = fit->GetParameter(0);

Fitting Histograms

98

// error of the first parameter
root[] Double_t e1 = fit->GetParError(0);

Associated Errors
By default, for each bin, the sum of weights is computed at fill time. One can also call TH1::Sumw2
to force the storage and computation of the sum of the square of weights per bin. If Sumw2 has been
called, the error per bin is computed as the sqrt (sum of squares of weights); otherwise, the error
is set equal to the sqrt (bin content). To return the error for a given bin number, do:

Double_t error = h->GetBinError(bin);

Empty bins are excluded in the fit when using the Chi-square fit method. When fitting the histogram
with the low statistics, it is recommended to use the Log-Likelihood method (option ‘L’ or “LL”).

Fit Statistics
You can change the statistics box to display the fit parameters with the
TStyle::SetOptFit(mode) method. This parameter has four digits: mode = pcev
(default = 0111)

• p= 1print probability

• c = 1print Chi-square/number of degrees of freedom

• e= 1print errors (if e=1, v must be 1)

• v= 1print name/values of parameters

For example, to print the fit probability, parameter names/values, and errors, use:

gStyle->SetOptFit(1011);

The Minimization Package
This package was originally written in FORTRAN by Fred James and part of PACKLIB (patch
D506). It has been converted to a C++ class by Rene Brun. The current implementation in C++ is a
straightforward conversion of the original FORTRAN version. The main changes are:

• The variables in the various Minuit labeled common blocks have been changed to the TMinuit
class data members

• The internal arrays with a maximum dimension depending on the maximum number of parameters
are now data members’ arrays with a dynamic dimension such that one can fit very large problems
by simply initializing the TMinuit constructor with the maximum number of parameters

• The include file Minuit.h has been commented as much as possible using existing comments in
the code or the printed documentation

• The original Minuit subroutines are now member functions

• Constructors and destructor have been added

• Instead of passing the FCN function in the argument list, the addresses of this function is stored as
pointer in the data members of the class. This is by far more elegant and flexible in an interactive
environment. The member function SetFCN can be used to define this pointer

• The ROOT static function Printf is provided to replace all format statements and to print on
currently defined output file

Fitting Histograms

99

• The derived class TMinuitOld contains obsolete routines from the FORTRAN based version

• The functions SetObjectFit/GetObjectFit can be used inside the FCN function to set/get
a referenced object instead of using global variables

• By default fGraphicsMode is true. When calling the Minuit functions such as mncont,
mnscan, or any Minuit command invoking mnplot, TMinuit::mnplot() produces a
TGraph object pointed by fPlot. One can retrieve this object with TMinuit::GetPlot().
For example:

h->Fit("gaus");
gMinuit->Command("SCAn 1");
TGraph *gr = (TGraph*)gMinuit->GetPlot();
gr->SetMarkerStyle(21);
gr->Draw("alp");

• To set Minuit in no graphics mode, call

gMinuit->SetGraphicsMode(kFALSE);

Basic Concepts of Minuit
The Minuit package acts on a multi parameter FORTRAN function to which one must give the
generic name FCN. In the ROOT implementation, the function FCN is defined via the Minuit
SetFCN member function when a HistogramFit command is invoked. The value of FCN will in
general depend on one or more variable parameters.

To take a simple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F, TH1D) the Fit
function defines the Minuit fitting function as being H1FitChisquare or H1FitLikelihood
depending on the options selected. H1FitChisquare calculates the chi-square between the user
fitting function (Gaussian, polynomial, user defined, etc) and the data for given values of the
parameters. It is the task of Minuit to find those values of the parameters which give the lowest
value of chi-square.

The Transformation of Limited Parameters
For variable parameters with limits, Minuit uses the following transformation:

Pint = arcsin(2((Pext-a)/(b-a))-1)

Pext = a+((b-a)/(2))(sinPint+1)

so that the internal value Pint can take on any value, while the external value Pext can take on values
only between the lower limit a and the ext upper limit b. Since the transformation is necessarily non-
linear, it would transform a nice linear problem into a nasty non-linear one, which is the reason why
limits should be avoided if not necessary. In addition, the transformation does require some computer
time, so it slows down the computation a little bit, and more importantly, it introduces additional
numerical inaccuracy into the problem in addition to what is introduced in the numerical calculation
of the FCN value. The effects of non-linearity and numerical round off both become more important
as the external value gets closer to one of the limits (expressed as the distance to nearest limit divided
by distance between limits). The user must therefore be aware of the fact that, for example, if he puts
limits of (0, 1010) on a parameter, then the values 0.0 and 1. 0 will be indistinguishable to the accuracy
of most machines.

The transformation also affects the parameter error matrix, of course, so Minuit does a transformation
of the error matrix (and the ''parabolic'' parameter errors) when there are parameter limits. Users
should however realize that the transformation is only a linear approximation, and that it cannot give
a meaningful result if one or more parameters is very close to a limit, where partial Pext/partial
Pint#0. Therefore, it is recommended that:

Fitting Histograms

100

• Limits on variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values

• When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits

How to Get the Right Answer from Minuit
Minuit offers the user a choice of several minimization algorithms. The MIGRAD algorithm is in
general the best minimized for nearly all functions. It is a variable-metric method with inexact line
search, a stable metric updating scheme, and checks for positive-definiteness. Its main weakness is that
it depends heavily on knowledge of the first derivatives, and fails miserably if they are very inaccurate.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following
techniques to alleviate problems caused by limits:

Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the
existence of limits has probably not prevented Minuit from finding the right minimum. On the other
hand, if one or more parameters is near its limit at the minimum, this may be because the true minimum
is indeed at a limit, or it may be because the minimized has become ''blocked'' at a limit. This may
normally happen only if the parameter is so close to a limit (internal value at an odd multiple of
#((pi)/(2)) that Minuit prints a warning to this effect when it prints the parameter values. The
minimized can become blocked at a limit, because at a limit the derivative seen by the minimized
partial F/partial Pint is zero no matter what the real derivative partial F/partial
Pext is.

((partial F)/(partial Pint)) =

((partial F)/(partial Pext))((partial Pext)/(partial Pint)) =

((partial F)/(partial Pext)) = 0

Getting the Right Parameter Errors with Limits

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you would not need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless.

Interpretation of Parameter Errors

There are two kinds of problems that can arise: the reliability of Minuit’s error estimates, and their
statistical interpretation, assuming they are accurate.

Statistical Interpretation

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting
of exact confidence levels see the articles:

• F.James. Determining the statistical Significance of experimental Results. Technical Report
DD/81/02 and CERN Report 81-03, CERN, 1981

• W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in Experimental
Physics. North-Holland, 1971

Fitting Histograms

101

Reliability of Minuit Error Estimates
Minuit always carries around its own current estimates of the parameter errors, which it will print
out on request, no matter how accurate they are at any given point in the execution. For example, at
initialization, these estimates are just the starting step sizes as specified by the user. After a HESSE
step, the errors are usually quite accurate, unless there has been a problem. Minuit, when it prints out
error values, also gives some indication of how reliable it thinks they are. For example, those marked
CURRENT GUESS ERROR are only working values not to be believed, and APPROXIMATE ERROR
means that they have been calculated but there is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least Minuit believes the errors are accurate, although
there is always a small chance that Minuit has been fooled. Some visible signs that Minuit may
have been fooled:

• Warning messages produced during the minimization or error analysis

• Failure to find new minimum

• Value of EDM too big (estimated Distance to Minimum)

• Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated
with the others

• Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parameterized so that individual errors are not very
meaningful because they are so highly correlated

• Parameter at limit. This condition, signaled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See the discussion above ‘Getting the right
parameter errors with limits'

The best way to be absolutely sure of the errors is to use ''independent'' calculations and compare
them, or compare the calculated errors with a picture of the function. Theoretically, the covariance
matrix for a ''physical'' function must be positive-definite at the minimum, although it may not be so
for all points far away from the minimum, even for a well-determined physical problem. Therefore,
if MIGRAD reports that it has found a non-positive-definite covariance matrix, this may be a sign of
one or more of the following:

A Non-physical Region

On its way to the minimum, MIGRAD may have traversed a region that has unphysical behavior, which
is of course not a serious problem as long as it recovers and leaves such a region.

An Underdetermined Problem

If the matrix is not positive-definite even at the minimum, this may mean that the solution is not
well defined, for example that there are more unknowns than there are data points, or that the
parameterization of the fit contains a linear dependence. If this is the case, then Minuit (or any
other program) cannot solve your problem uniquely. The error matrix will necessarily be largely
meaningless, so the user must remove the under determinedness by reformulating the parameterization.
Minuit cannot do this itself.

Numerical Inaccuracies

It is possible that the apparent lack of positive-definiteness is due to excessive round off errors in
numerical calculations (in the user function), or not enough precision. This is unlikely in general, but
becomes more likely if the number of free parameters is very large, or if the parameters are badly
scaled (not all of the same order of magnitude), and correlations are large. In any case, whether the

Fitting Histograms

102

non-positive-definiteness is real or only numerical is largely irrelevant, since in both cases the error
matrix will be unreliable and the minimum suspicious.

An Ill-posed Problem

For questions of parameter dependence, see the discussion above on positive-definiteness. Possible
other mathematical problems are the following:

• Excessive numerical round off - be especially careful of exponential and factorial functions which
get big very quickly and lose accuracy.

• Starting too far from the solution - the function may have unphysical local minima, especially at
infinity in some variables.

FUMILI Minimization Package
FUMILI is used to minimize Chi-square function or to search maximum of likelihood function.

Experimentally measured values are fitted with theoretical functions , where are

coordinates, and - vector of parameters. For better convergence Chi-square function has to be the
following form

where are errors of the measured function. The minimum condition is:

where m is the quantity of parameters. Expanding left part of this equation over parameter increments
and retaining only linear terms one gets

here is some initial value of parameters. In general case:

In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last
term in previous equation is discarded. It is often done, not always wittingly, and sometimes causes

troubles, for example, if user wants to limit parameters with positive values by writing down

instead of . FUMILI will fail if one tries minimize where an arbitrary function
is. Approximate value is:

Fitting Histograms

103

Then the equations for parameter increments are:

Remarkable feature of algorithm is the technique for step restriction. For an initial value of parameter

 a parallelepiped is built with the center at and axes parallel to coordinate axes . The

lengths of parallelepiped sides along -axis is , where is such a value that the functions
are quasi-linear all over the parallelepiped. FUMILI takes into account simple linear inequalities in

the form:

They form parallelepiped (may be deformed by). Very similar step formulae are used
in FUMILI for negative logarithm of the likelihood function with the same idea - linearization of
functional argument.

Neural Networks

Introduction
Neural Networks are used in various fields for data analysis and classification, both for research and
commercial institutions. Some randomly chosen examples are image analysis, financial movements’
predictions and analysis, or sales forecast and product shipping optimization. In particles physics
neural networks are mainly used for classification tasks (signal over background discrimination). A
vast majority of commonly used neural networks are multilayer perceptrons. This implementation of
multilayer perceptrons is inspired from the MLPfit package, which remains one of the fastest tools
for neural networks studies.

The MLP
The multilayer perceptron is a simple feed-forward network with the following structure showed on

the left.

It is made of neurons characterized by a bias and weighted links in between - let's call those links
synapses. The input neurons receive the inputs, normalize them and forward them to the first hidden
layer. Each neuron in any subsequent layer first computes a linear combination of the outputs of the
previous layer. The output of the neuron is then function of that combination with f being linear for
output neurons or a sigmoid for hidden layers.

Such a structure is very useful because of two theorems:

1. A linear combination of sigmoids can approximate any continuous function.

2. Trained with output=1 for the signal and 0 for the background, the approximated function of
inputs X is the probability of signal, knowing X.

Fitting Histograms

104

Learning Methods
The aim of all learning methods is to minimize the total error on a set of weighted examples. The error
is defined as the sum in quadrate, divided by two, of the error on each individual output neuron. In
all methods implemented in this library, one needs to compute the first derivative of that error with
respect to the weights. Exploiting the well-known properties of the derivative, one can express this
derivative as the product of the local partial derivative by the weighted sum of the outputs derivatives
(for a neuron) or as the product of the input value with the local partial derivative of the output neuron
(for a synapse). This computation is called "back-propagation of the errors". Six learning methods
are implemented.

Stochastic Minimization

This is the most trivial learning method. The Robbins-Monro stochastic approximation is applied to
multilayer perceptrons. The weights are updated after each example according to the formula:

The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

Steepest Descent With Fixed Step Size (Batch Learning)

It is the same as the stochastic minimization, but the weights are updated after considering all the
examples, with the total derivative dEdw. The parameters for this method are Eta, EtaDecay,
Delta and Epsilon.

Steepest Descent Algorithm

Weights are set to the minimum along the line defined by the gradient. The only parameter for this
method is Tau. Lower Tau = higher precision = slower search. A value Tau=3 seems reasonable.

Conjugate Gradients With the Polak-Ribiere Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau
and Reset, which defines the epochs where the direction is reset to the steepest descent (estimated
by using the Polak-Ribiere formula).

Conjugate Gradients With the Fletcher-Reeves Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau
and Reset, which defines the epochs where the direction is reset to the steepest descent (estimated
by using the Fletcher-Reeves formula).

The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

It implies the computation of a NxN matrix, but seems more powerful at least for less than 300 weights.
Parameters are Tau and Reset, which defines the epochs where the direction is reset to the steepest
descent.

Using the Network
Neural network are build from a set of "samples". A sample is a set of values defining the inputs and
the corresponding output that the network should ideally provide. In ROOT this is a TTree entry.
The first thing to be decided is the network layout. This layout is described in a string where the layers

Fitting Histograms

105

are separated by semicolons. The input/output layers are defined by giving the expression for each
neuron, separated by comas. Hidden layers are just described by the number of neurons.

In addition, input and output layer formulas can be preceded by '@' (e.g. "@out") if one wants to
normalize the corresponding value. Also, if the string ends with '!', output neurons are set up for
classification, i.e. with a sigmoid (1 neuron) or softmax (more neurons) activation function.

Many questions on the good usage of neural network, including rules of dumb to determine the best
network topology are addressed at ftp://ftp.sas.com/pub/neural/FAQ.html

// a simple network: 2 inputs, 10 hidden and 1 normalized output neuron
TMultiLayerPerceptron network("r,z:10:@Br",tree);

Expressions are evaluated as for TTree::Draw(). Input and outputs are taken from the TTree
associated with the network. This TTree can be given as argument of the constructor or defined
later with TMultiLayerPerceptron::SetData(). Events can also be weighted. The weight
expression can be given in the constructor or set later with the method SetWeight() of the class
TMultiLayerPerceptron. Two datasets must be defined before learning the network: a training
dataset that is used when minimizing the error, and a test dataset that will avoid bias. Those two
datasets can be build aside and then given to the network, or can be build from a standard expression.
By default, half of the events are put in both datasets.

// a more complex 4:8:1 network
// the ptsumf branch is used as weigh; default event lists are explicit
TMultiLayerPerceptron network("m,pt,acol,acopl:8:type","pt",tree,
"Entry$%2","Entry$/2");

The method TMultiLayerPerceptron::SetLearningMethod() defines the learning
method. Learning methods are:

TMultiLayerPerceptron::kStochastic,
TMultiLayerPerceptron::kBatch,
TMultiLayerPerceptron::kSteepestDescent,
TMultiLayerPerceptron::kRibierePolak,
TMultiLayerPerceptron::kFletcherReeves,
TMultiLayerPerceptron::kBFGS // default

The training can start with TMultiLayerPerceptron::Train(Int_t
nepoch,Option_t* options). The first argument is the number of epochs while option is a
string that can contain "text" (simple text output), "graph" (evaluating graphical training curves),
"update = X" (step for the text/graph output update) or "+" (will skip the randomization and start
from the previous values). All combinations are available.

network.Train(1000,"text,graph,update=10"); //full output every 10 epochs
network.Train(100,"text,+"); //100 more epochs
 //starts with existing weights

The weights can be saved to a file (DumpWeights) and then reloaded (LoadWeights) to a new
compatible network. The output can also be evaluated (Evaluate) for a given output neuron and an
array of double input parameters or the network can be exported (Export) as a standalone code. Up
to now, this is only as a C++ or PYTHON class, but other languages could be implemented.

Examples
An example of how to use TMultiLayerPerceptron is the macro mlpHiggs.C in
$ROOTSYS/tutorials. Using some standard simulated information that could have been obtained
at LEP, a neural network is build, which can make the difference between WW events and events
containing a Higgs boson. Starting with a TFile containing two TTrees: one for the signal, the other
for the background, a simple script is used:

void mlpHiggs(Int_t ntrain=100)

Fitting Histograms

106

{ if (!gROOT->GetClass("TMultiLayerPerceptron"))
gSystem->Load("libMLP");
 // prepare inputs - the 2 trees are merged into one, and a "type"
 // branch, equal to 1 for the signal and 0 for the background is added
TFile input("mlpHiggs.root");
TTree *signal = (TTree *)input.Get("sig_filtered");
TTree *background = (TTree *)input.Get("bg_filtered");
TTree *simu = new TTree("MonteCarlo","Filtered Monte Carlo Events");
...

Since the input is a TTree and we are starting from two different TTrees (with different names),
they are first merged into one, and a "type" branch is added, that says whether there is a signal or a
background event. Those irrelevant details are skipped here.

...
TMultiLayerPerceptron *mlp = new TMultiLayerPerceptron("msumf,ptsumf, acolin,
acopl:8:type","ptsumf",simu,"Entry$%2","Entry$/2");
mlp->Train(ntrain, "text,graph,update=10");

The neural network is instantiated and trained. "ptsumf" is used as a weight, and the standard event
lists are explicit. The network that is then build has four input neurons, eight additional ones in the
only hidden layer and one single output neuron.

 // Use the NN to plot the results for each sample
TH1F *bg = new TH1F("bgh","NN output",50,-.5,1.5);
TH1F *sig = new TH1F("sigh","NN output",50,-.5,1.5);
bg->SetDirectory(0);
sig->SetDirectory(0);
Double_t params[4];
for (i = 0; i < background->GetEntries(); i++) {
background->GetEntry(i);
params[0] = msumf; params[1] = ptsumf;
params[2] = acolin; params[3] = acopl;
bg->Fill(mlp->Evaluate(0,params));
}
for (i = 0; i < signal->GetEntries(); i++) {
signal->GetEntry(i);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
params[3] = acopl;
sig->Fill(mlp->Evaluate(0,params));
}
TCanvas *cv = new TCanvas("NNout_cv","Neural net output");
bg->SetFillStyle(3008);
bg->SetFillColor(kBlue);
sig->SetFillStyle(3003);
sig->SetFillColor(kRed);
bg->SetStats(0);
sig->SetStats(0);
bg->Draw();
sig->Draw("same");
TLegend *legend = new TLegend(.75,.80,.95,.95);
legend->AddEntry(bg,"Background(WW)");
legend->AddEntry(sig,"Signal(Higgs)");
legend->Draw();

The neural net output is then used to display the final difference between background and signal events.
The next figure shows this plot.

Fitting Histograms

107

Figure 5.4. The neural net output

As it can be seen, this is a quite efficient technique. As mentioned earlier, neural networks are also used
for fitting function. For some application with a cylindrical symmetry, a magnetic field simulation
gives as output the angular component of the potential vector A, as well as the radial and z components
of the B field.

One wants to fit those distributions with a function in order to plug them into the Geant simulation
code. Polynomial fits could be tried, but it seems difficult to reach the desired precision over the full
range. One could also use a spline interpolation between known points. In all cases, the resulting
field would not be C-infinite.

An example of output (for Br) is shown. First the initial function can be seen as the target. Then, the
resulting (normalized) neural net output. In order to ease the learning, the "normalize output" was used
here. The initial amplitude can be recovered by multiplying by the original RMS and then shifting
by the original mean.

Figure 5.5. The original and the neural net for Br

108

Chapter 6. A Little C++
This chapter introduces you to some useful insights into C++, to allow you to use of the most advanced
features in ROOT. It is in no case a full course in C++.

Classes, Methods and Constructors
C++ extends C with the notion of class. If you’re used to structures in C, a class is a struct that is
a group of related variables, which is extended with functions and routines specific to this structure
(class). What is the interest? Consider a struct that is defined this way:

struct Line {
float x1;
float y1;
float x2;
float y2; }

This structure represents a line to be drawn in a graphical window. (x1,y1) are the coordinates of
the first point, (x2,y2) the coordinates of the second point. In the standard C, if you want to draw
effectively such a line, you first have to define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1 = 0.2;
firstline.y1 = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To draw this line,
you will have to write a function, say LineDraw(Line l) and call it with your object as argument:

LineDraw(firstline);

In C++, we would not do that. We would instead define a class like this:

class TLine {
Double_t x1;
Double_t y1;
Double_t x2;
Double_t y2;
TLine(int x1, int y1, int x2, int y2);
void Draw();
}

Here we added two functions, that we will call methods or member functions, to the TLine class.
The first method is used for initializing the line objects we would build. It is called a constructor. The
second one is the Draw method itself. Therefore, to build and draw a line, we have to do:

TLine l(0.2,0.2,0.8,0.9);
l.Draw();

The first line builds the object l by calling its constructor. The second line calls the
TLine::Draw() method of this object. You don’t need to pass any parameters to this method since
it applies to the object l, which knows the coordinates of the line. These are internal variables x1, y1,
x2, y2 that were initialized by the constructor.

Inheritance and Data Encapsulation
We have defined a TLine class that contains everything necessary to draw a line. If we want to draw
an arrow, is it so different from drawing a line? We just have to draw a triangle at one end. It would

A Little C++

109

be very inefficient to define the class TArrow from scratch. Fortunately, inheritance allows a class to
be defined from an existing class. We would write something like:

class TArrow : public TLine {
int ArrowHeadSize;
void Draw();
void SetArrowSize(int arrowsize); }

The keyword "public" will be explained later. The class TArrow now contains everything that the
class TLine does, and a couple of things more, the size of the arrowhead and a function that can
change it. The Draw method of TArrow will draw the head and call the draw method of TLine. We
just have to write the code for drawing the head!

Method Overriding
Giving the same name to a method (remember: method = member function of a class) in the child class
(TArrow) as in the parent (TLine) does not give any problem. This is called overriding a method.
Draw in TArrow overrides Draw in TLine. There is no possible ambiguity since, when one calls the
Draw() method; this applies to an object which type is known. Suppose we have an object l of type
TLine and an object a of type TArrow. When you want to draw the line, you do:

l.Draw()

Draw() from TLine is called. If you do:

a.Draw()

Draw() from TArrow is called and the arrow a is drawn.

Data Encapsulation
We have seen previously the keyword "public". This keyword means that every name declared
public is seen by the outside world. This is opposed to "private" that means only the class where
the name was declared private could see this name. For example, suppose we declare in TArrow the
variable ArrowHeadSize private.

private:
int ArrowHeadSize;

Then, only the methods (i.e. member functions) of TArrow will be able to access this variable. Nobody
else will see it. Even the classes that we could derive from TArrow will not see it. On the other hand,
if we declare the method Draw() as public, everybody will be able to see it and use it. You see that
the character public or private does not depend of the type of argument. It can be a data member,
a member function, or even a class. For example, in the case of TArrow, the base class TLine is
declared as public:

class TArrow : public TLine { ...

This means that all methods of TArrow will be able to access all methods of TLine, but this will be
also true for anybody in the outside world. Of course, this is true if TLine accepts the outside world
to see its methods/data members. If something is declared private in TLine, nobody will see it, not
even TArrow members, even if TLine is declared as a public base class.

What if TLine is declared "private" instead of "public"? Well, it will behave as any other name
declared private in TArrow: only the data members and methods of TArrow will be able to access
TLine, its methods and data members, nobody else. This may seem a little bit confusing and readers
should read a good C++ book if they want more details. Especially since, besides public and private,
a member can be protected. Usually, one puts private the methods that the class uses internally, like
some utilities classes, and that the programmer does not want to be seen in the outside world.

A Little C++

110

With "good" C++ practice (which we have tried to use in ROOT), all data members of a class are
private. This is called data encapsulation and is one of the strongest advantages of Object Oriented
Programming (OOP). Private data members of a class are not visible, except to the class itself. So,
from the outside world, if one wants to access those data members, one should use so called "getters"
and "setters" methods, which are special methods used only to get or set the data members. The
advantage is that if the programmers want to modify the inner workings of their classes, they can
do so without changing what the user sees. The user does not even have to know that something
has changed (for the better, hopefully). For example, in our TArrow class, we would have set the
data member ArrowHeadSize private. The setter method is SetArrowSize(), we do not need
a getter method:

class TArrow : public TLine {
private:
int ArrowHeadSize;
public:
void Draw();
void SetArrowSize(int arrowsize);
}

To define an arrow object you call the constructor. This will also call the constructor of TLine, which
is the parent class of TArrow, automatically. Then we can call any of the line or arrow public methods:

root[] TArrow *myarrow = new TArrow(1,5,89,124);
root[] myarrow->SetArrowSize(10);
root[] myarrow->Draw();

Creating Objects on the Stack and Heap
To explain how objects are created on the stack and on the heap we will use the Quad class. You can
find the definition in $ROOTSYS/tutorials/quadp/Quad.h and Quad.cxx. The Quad class
has four methods. The constructor and destructor, Evaluate that evaluates ax**2 + bx +c, and
Solve which solves the quadratic equation ax**2 + bx +c = 0.

Quad.h :

class Quad {
public:
Quad(Float_t a, Float_t b, Float_t c);
~Quad();
Float_t Evaluate(Float_t x) const;
void Solve() const;
private:
Float_t fA;
Float_t fB;
Float_t fC;
};

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad::Quad(Float_t a, Float_t b, Float_t c) {
fA = a;
fB = b;
fC = c;
}

A Little C++

111

Quad::~Quad() {
Cout <<"deleting object with coeffts: "<< fA << "," << fB << "," << fC << endl;
}
Float_t Quad::Evaluate(Float_t x) const {
return fA*x*x + fB*x + fC;
}
void Quad::Solve() const {
Float_t temp = fB*fB - 4.*fA*fC;
if (temp > 0.) {
temp = sqrt(temp);
cout << "There are two roots: " << (-fB - temp) / (2.*fA)
<< " and " << (-fB + temp) / (2.*fA) << endl;
} else {
if (temp == 0.) {
cout << "There are two equal roots: " << -fB / (2.*fA) << endl;
} else {
cout << "There are no roots" << endl;
}
}
}

Let us first look how we create an object. When we create an object by:

root[] Quad my_object(1.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with the idea; it is
not unlike a local variable in a function or subroutine. Although there are still a few old timers who do
not know it, FORTRAN is under no obligation to save local variables once the function or subroutine
returns unless the SAVE statement is used. If not then it is likely that FORTRAN will place them on
the stack and they will "pop off" when the RETURN statement is reached. To give an object more
permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(1.,2.,-3.);

The second line declares a pointer to Quad called my_objptr. From the syntax point of view, this
is just like all the other declarations we have seen so far, i.e. this is a stack variable. The value of the
pointer is set equal to

new Quad(1.,2.,-3.);

new, despite its looks, is an operator and creates an object or variable of the type that comes next, Quad
in this case, on the heap. Just as with stack objects it has to be initialized by calling its constructor.
The syntax requires that the argument list follow the type. This one statement has brought two items
into existence, one on the heap and one on the stack. The heap object will live until the delete operator
is applied to it.

There is no FORTRAN parallel to a heap object; variables either come or go as control passes in and out
of a function or subroutine, or, like a COMMON block variables, live for the lifetime of the program.
However, most people in HEP who use FORTRAN will have experience of a memory manager and
the act of creating a bank is a good equivalent of a heap object. For those who know systems like
ZEBRA, it will come as a relief to learn that objects do not move, C++ does not garbage collect, so
there is never a danger that a pointer to an object becomes invalid for that reason. However, having
created an object, it is the user's responsibility to ensure that it is deleted when no longer needed, or
to pass that responsibility onto to some other object. Failing to do that will result in a memory leak,
one of the most common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->" operator e.g.:

root[] my_objptr->Solve();

A Little C++

112

Although we chose to call our pointer my_objptr, to emphasize that it is a pointer, heap objects are
so common in an object-oriented program that pointer names rarely reflect the fact - you have to be
careful that you know if you are dealing with an object or its pointer! Fortunately, the compiler won't
tolerate an attempt to do something like:

root[] my_objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised not to follow!
As we have seen, heap objects have to be accessed via pointers, whereas stack objects can be accessed
directly. They can also be accessed via pointers:

root[] Quad stack_quad(1.,2.,-3.);
root[] Quad *stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very
careful if you take the address of stack objects. As we shall see soon, they are deleted automatically,
which could leave you with an illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that releases
resources for (or destroy) an object of a class. It is opposite of a constructor that create the object of a
class when is called. The compiler will provide a destructor that does nothing if none is provided. We
will add one to our Quad class so that we can see when it is called. The class names the destructor but
with a prefix ~ which is the C++ one's complement i.e. bit wise complement, and hence has destruction
overtones! We declare it in the .h file and define it in the .cxx file. It does not do much except print
out that it has been called (still a useful debug technique despite today's powerful debuggers!).

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(1.,2.,-3.);

To delete the object:

root[] delete my_objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly
necessary (and CINT does it automatically), but the object is no more accessible, and any attempt to
use the pointer again will, as has already been stated, cause grief. So much for heap objects, but how
are stack objects deleted? In C++, a stack object is deleted as soon as control leaves the innermost
compound statement that encloses it. Therefore, it is singularly futile to do something like:

root[] { Quad my_object(1.,2.,-3.); }

CINT does not follow this rule; if you type in the above line, you will not see the destructor message.
As explained in the Script lesson, you can load in compound statements, which would be a bit pointless
if everything disappeared as soon as it was loaded! Instead, to reset the stack you have to type:

root[] gROOT->Reset();

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many
roles, acts as a resource manager. Start ROOT again and type in the following:

root[] .L Quad.cxx
root[] Quad my_object(1.,2.,-3.);
root[] Quad *my_objptr = new Quad(4.,5.,-6.);
root[] gROOT->Reset();

You will see that this deletes the first object but not the second. We have also painted ourselves into
a corner, as my_objptr was also on the stack. This command will fail.

A Little C++

113

root[] my_objptr->Solve();

CINT no longer knows what my_objptr is. This is a great example of a memory leak; the heap
object exists but we have lost our way to access it. In general, this is not a problem. If any object will
outlive the compound statement in which it was created then a more permanent pointer will point to
it, which frequently is part of another heap object. See Resetting the Interpreter Environment in the
chapter “CINT the C++ Interpreter”.

114

Chapter 7. CINT the C++ Interpreter
The subject of this chapter is CINT, ROOT command line interpreter and script processor. First, we
explain what CINT is and why ROOT uses it. Then we discuss CINT as the command line interpreter,
the CINT commands, and CINT extensions to C++ are discussed. CINT as the script interpreter is
explained and illustrated with several examples.

What is CINT?
CINT, which is pronounced ['sint], is a C++ interpreter. An interpreter takes a program, in this case
a C++ program, and carries it out by examining each instruction and in turn executing the equivalent
sequence of machine language. For example, an interpreter translates and executes each statement in
the body of a loop "n" times. It does not generate a machine language program. This may not be a
good example, because most interpreters have become 'smart' about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable. Once
compiled the execution is very fast, which makes a compiler best suited for the case of "built once,
run many times". For example, the ROOT executable is compiled occasionally and executed many
times. It takes anywhere from 1 to 45 minutes to compile ROOT for the first time (depending on the
CPU). Once compiled it runs very fast. On the average, a compiled program runs roughly ten times
faster than an interpreted one. Because compiling is slow, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as once per minute. An interpreter, on the other
hand, is the perfect tool for code that changes often and runs a few times. Most of the time, interpreters
are built for scripting languages, such as JavaScript, IDL, or Python. These languages are specifically
designed to be interpreted rather than compiled. The advantage of using a normally compiled language
is that code can be compiled once the prototype is debugged and refined. CINT is a C++ interpreter,
making it a tool for rapid prototyping and scripting in C++. It is also available as a stand-alone product,
see http://root.cern.ch/cint. This page also has links to all the CINT documentation. The
downloadable tar file contains documentation, the CINT executable, and many demo scripts that are
not included in the regular ROOT distribution. Here is the list of CINT main features:

• Supports K&R-C, ANSI-C, and ANSI-C++

• CINT covers 85-95% of the C++, ANSI-C and K&R-C language constructs. It supports multiple
inheritance, virtual function, function overloading, operator overloading, default parameters,
templates, and much more. CINT is robust enough to interpret its own source code. CINT is not
designed to be a 100% ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

• Interprets Large C/C++ source code

• CINT can handle huge C/C++ source code, and loads source files quickly. It can interpret its own,
over 70,000 lines source code – more than 150,000 lines.

• Enables mixing Interpretation & Native Code

• Depending on the need for execution speed or the need for interaction, one can mix native code
execution and interpretation. "makecint" encapsulates arbitrary C/C++ objects as precompiled
libraries. A precompiled library can be configured as a dynamically linked library. Accessing
interpreted code and precompiled code can be done seamlessly in both directions.

• Provides a Single-Language solution

• CINT/makecint is a single-language environment. It works with any ANSI-C/C++ compiler to
provide the interpreter environment on top of it.

• Simplifies C++

CINT the C++ Interpreter

115

• CINT is meant to bring C++ to the non-software professional. C++ is simpler to use in the interpreter
environment. It helps the non-software professional (the domain expert) to talk the same language
as the software counterpart.

• Provides RTTI and a Command Line

• CINT can process C++ statements from command line, dynamically define/erase class definition
and functions; load/unload source files and libraries. Extended Run Time Type Identification is
provided, allowing you to explore imaginative new ways of using C++.

• CINT has a built-in debugger for complex C++ code and a text based class browser is part of it.

• It is portable.

• CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris, AIX, Alpha-
OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox, WindowsNT, Windows9x,
MS-DOS, MacOS, VMS, NextStep, Convex.

The ROOT Command Line Interface
Start up a ROOT session by typing root at the system prompt.

> root

* *
* W E L C O M E to R O O T *
* *
* Version 5.16/00 27 June 2007 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root[0]

Now we create a TLine object:

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root[] l.SetX1(10)
root[] l.SetY1(11)
root[] l.Print()
TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root[] .g
...
0x4038f080 class TLine l , size=40
0x0 protected: Double_t fX1 //X of 1st point
0x0 protected: Double_t fY1 //Y of 1st point
0x0 protected: Double_t fX2 //X of 2nd point

CINT the C++ Interpreter

116

0x0 protected: Double_t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

Here we note:

• Terminating with ‘;‘ is not required, see “ROOT/CINT Extensions to C++”.

• Emacs style command line editing.

• Raw interpreter commands start with a dot (.).

root[] .class TLine
===
class TLine //A line segment
size=0x38
(tagnum=289,voffset=-1,isabstract=0,parent=-1,gcomp=0:-1,d21=~cd=f7)
List of base class-------------------------------
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable--------------------------
Defined in TLine
(compiled) 0x0 protected: Double_t fX1 //X of 1st point
(compiled) 0x0 protected: Double_t fY1 //Y of 1st point
(compiled) 0x0 protected: Double_t fX2 //X of 2nd point
(compiled) 0x0 protected: Double_t fY2 //Y of 2nd point
(compiled) 0x8a3a718 static const enum TLine:: kLineNDC
(compiled) 0x0 private: static TClass* fgIsA
List of member function--------------------------
filename line:size busy function type and name (in TLine)
(compiled) 0:0 0 public: virtual void ~TLine(void);
(compiled) 0:0 0 public: TLine TLine(void);
(compiled) 0:0 0 public: TLine TLine(Double_t x1,Double_t y1,Double_t x2,
Double_t y2);
(compiled) 0:0 0 public: TLine TLine(const TLine& line);
(compiled) 0:0 0 public: virtual void Copy(TObject& line) const;
(compiled) 0:0 0 public: virtual Int_t DistancetoPrimitive(Int_t px,Int_t py);
...
(compiled) 0:0 0 public: static int ImplFileLine(void);
(compiled) 0:0 0 public: static const char* ImplFileName(void);
(compiled) 0:0 0 public: static int DeclFileLine(void);
(compiled) 0:0 0 public:TLine& operator=(const TLine&);
root[] l.Print(); > test.log
root[] l.Dump(); >> test.log
root[] ?

Here we see:

• Use .class as quick help and reference

• Unix like I/O redirection (; is required before >)

• Use ? to get help on all ‘‘raw'' interpreter commands

• Use @ to abort a multi-line command

Now let us execute a multi-line command:

root[] {
end with '}', '@':abort > TLine l;

CINT the C++ Interpreter

117

end with '}', '@':abort > for (int i = 0; i < 5; i++) {
end with '}', '@':abort > l.SetX1(i);
end with '}', '@':abort > l.SetY1(i+1);
end with '}', '@':abort > l.Print();
end with '}', '@':abort > }
end with '}', '@':abort > }
TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root[] .q

Here we note:

• A multi-line command starts with a { and ends with a }.

• Every line has to be correctly terminated with a ; (like in "real'' C++).

• All objects are created in global scope.

• There is no way to back up; you are better off writing a script.

• Use .q to exit root.

The ROOT Script Processor
ROOT script files contain pure C++ code. They can contain a simple sequence of statements like in the
multi command line example given above, but also arbitrarily complex class and function definitions.

Un-named Scripts
Let us start with a script containing a simple list of statements (like the multi-command line example
given in the previous section). This type of script must start with a { and end with a } and is called an
un-named script. Assume the file is called script1.C

{
#include <iostream.h>
cout << " Hello" << endl;
float x = 3.;
float y = 5.;
int i = 101;
cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To execute the stream of statements in script1.C do:

root[] .x script1.C

This loads the contents of file script1.C and executes all statements in the interpreter's global
scope. One can re-execute the statements by re-issuing ".x script1.C" (since there is no function
entry point). Scripts are searched for in the Root.MacroPath as defined in your .rootrc file.
To check which script is being executed use:

root[] .which script1.C
/home/rdm/root/./script1.C

CINT the C++ Interpreter

118

Named Scripts
Let us change the un-named script to a named script. Copy the file script1.C to script2.C and
add a function statement:

#include <iostream.h>

int run()
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i= 101;
 cout <<" x = "<< x <<" y = "<< y <<" i = "<< i << endl;
 return 0;
}

Notice that no surrounding {} are required in this case. To execute function run() in script2.C
do:

root[] .L script2.C // load script in memory
root[] run() // execute entry point run
Hello
x = 3 y = 5 i = 101
(int)0
root[] run() // execute run() again
Hello
x = 3 y = 5 i = 101
(int)0
root[] .func // list all functions known by CINT
filename line:size busy function type and name
...
script2.C 4:9 0 public: int run();

The last command shows that run() has been loaded from file script2.C, that the function run()
starts on line 4 and is 9 lines long. Notice that once a function has been loaded it becomes part of
the system just like a compiled function. Now we copy the file script2.C to the script3.C and
change the function name from run() to script3(int j = 10):

#include <iostream.h>
int script3(int j = 10) {
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = j;
 cout <<" x = "<< x <<", y = "<< y <<", i = "<< i << endl;
 return 0;
}

To execute script3() in script3.C type:

root[] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3(8). Note that the
above only works when the filename (minus extension) and function entry point are both the same.

CINT the C++ Interpreter

119

The function script3() can still be executed multiple times:

root[] script3()
Hello
x = 3, y = 5, i = 10
(int)0
root[] script3(33)
Hello
x = 3, y = 5, i = 33
(int)0

In a named script, the objects created on the stack are deleted when the function exits. For example,
this scenario is very common. You create a histogram in a named script on the stack. You draw the
histogram, but when the function exits the canvas is empty and the histogram disappeared. To avoid
histogram from disappearing you can create it on the heap (by using new). This will leave the histogram
object intact, but the pointer in the named script scope will be deleted. Since histograms (and trees)
are added to the list of objects in the current directory, you can always retrieve them to delete them
if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get("myHist"); // or
root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

In addition, histograms and trees are automatically deleted when the current directory is closed. This
will automatically take care of the clean up. See “Input/Output”.

Executing a Script from a Script
You may want to execute a script conditionally inside another script. To do it you need to call
the interpreter and you can do that with TROOT::ProcessLine(). The example $ROOTSYS/
tutorials/tree/cernstaff.C calls a script to build the root file if it does not exist:

void cernstaff() {
 if (gSystem->AccessPathName("cernstaff.root")) {
 gROOT->ProcessLine(".x cernbuild.C");
 }

ProcessLine takes a parameter, which is a pointer to an int or to a
TInterpreter::EErrorCode to let you access the CINT error code after an attempt to interpret.
This will contain the CINT error as defined in enum TInterpreter::EErrorCode.

Resetting the Interpreter Environment
Variables created on the command line and in un-named scripts are in the interpreter's global scope,
which makes the variables created in un-named scripts available on the command line event after the
script is done executing. This is the opposite of a named script where the stack variables are deleted
when the function in which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since un-named scripts
are used to prototype, one should reset the global environment to clear the variables. This is done by
calling gROOT->Reset(). It is good practice, and you will see this in the examples, to begin an un-
named script with gROOT->Reset(). It clears the global scope to the state just before executing
the previous script (not including any logon scripts). The gROOT->Reset() calls the destructor
of the objects if the object was created on the stack. If the object was created on the heap (via new)
it is not deleted, but the variable is no longer associated with it. Creating variables on the heap in
un-named scripts and calling gROOT->Reset() without you calling the destructor explicitly will
cause a memory leak. This may be surprising, but it follows the scope rules. For example, creating

CINT the C++ Interpreter

120

an object on the heap in a function (in a named script) without explicitly deleting it will also cause a
memory leak. Since when exiting the function only the stack variables are deleted. The code below
shows gROOT->Reset() calling the destructor for the stack variable, but not for the heap variable.
In the end, neither variable is available, but the memory for the heap variable is not released. Here
is an example:

root[] gDebug = 1
(const int)1
root[] TFile stackVar("stack.root","RECREATE")
TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root[] TFile *heapVar = new TFile("heap.root","RECREATE")
TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two variables, one on
the stack and one on the heap.

root[] gROOT->Reset()
TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

When we call gROOT->Reset(), CINT tells us that the destructor is called for the stack variable,
but it does not mention the heap variable.

root[] stackVar
Error: No symbol stackVar in current scope FILE:/var/tmp/faaa01jWe_cint LINE:1
*** Interpreter error recovered ***
root[] heapVar
Error: No symbol heapVar in current scope FILE:/var/tmp/gaaa01jWe_cint LINE:1
*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

root[] gROOT->FindObject("stack.root")
(class TObject*)0x0
root[] gROOT->FindObject("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a FindObject. However,
the heap object is still around and taking up memory.

Note gROOT->Reset() should be never called in a named script or a compiled program.

A Script Containing a Class Definition
Lets create a small class TMyClass and a derived class TChild. The virtual method
TMyClass::Print() is overridden in TChild. Save this in file called script4.C.

#include <iostream.h>

class TMyClass {
private:
float fX; //x position in centimeters
float fY; //y position in centimeters

CINT the C++ Interpreter

121

public:
TMyClass() { fX = fY = -1; }
virtual void Print() const;
void SetX(float x) { fX = x; }
void SetY(float y) { fY = y; }
};
void TMyClass::Print() const // parent print method
{
cout << "fX = " << fX << ", fY = " << fY << endl;
}
class TChild : public TMyClass {
public:
void Print() const;
};
void TChild::Print() const // child print metod
{
cout << "This is TChild::Print()" << endl;
TMyClass::Print();
}

To execute script4.C do:

root[] .L script4.C
root[] TMyClass *a = new TChild
root[] a->Print()
This is TChild::Print()
fX = -1, fY = -1
root[] a->SetX(10)
root[] a->SetY(12)
root[] a->Print()
This is TChild::Print()
fX = 10, fY = 12
root[] .class TMyClass
===
class TMyClass
size=0x8 FILE:script4.C LINE:3
List of base class-----------------------------------
List of member variable------------------------------
Defined in TMyClass
0x0 private: float fX
0x4 private: float fY
List of member function------------------------------
Defined in TMyClass
filename line:size busy function type and name
script4.C 16:5 0 public: class TMyClass TMyClass(void);
script4.C 22:4 0 public: void Print(void);
script4.C 12:1 0 public: void SetX(float x);
script4.C 13:1 0 public: void SetY(float y);
root[] .q

As you can see, an interpreted class behaves just like a compiled class.

There are some limitations for a class created in a script:

• They cannot inherit from TObject. Currently the interpreter cannot patch the virtual table of
compiled objects to reference interpreted objects.

• Because the I/O is encapsulated in TObject and a class defined in a script cannot inherit from
TObject, it cannot be written to a ROOT file.

CINT the C++ Interpreter

122

See “Adding a Class” for ways how to add a class with a shared library and with ACLiC.

Debugging Scripts
A powerful feature of CINT is the ability to debug interpreted functions by means of setting
breakpoints and being able to single step through the code and print variable values on the way. Assume
we have script4.C still loaded, we can then do:

root[] .b TChild::Print
Break point set to line 26 script4.C
root[] a.Print()

26 TChild::Print() const
27 {
28 cout << "This is TChild::Print()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
This is TChild::Print()

29 MyClass::Print();
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print() const
17 {
18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p fX
(float)1.000000000000e+01
FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
fX = 10, fY = 12

19 }

30 }

2 }
root[] .q

Inspecting Objects
An object of a class inheriting from TObject can be inspected, with the Inspect() method. The
TObject::Inspect method creates a window listing the current values of the objects members.
For example, the next picture is of TFile.

root[] TFile f("staff.root")
root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object. If you
clicked on fList, the list of objects in memory and there were none, no new canvas would be shown.
On top of the page are the navigation buttons to see the previous and next screen.

CINT the C++ Interpreter

123

Figure 7.1. ROOT object inspector of TFile

Figure 7.2. The object inspector of fKeys, the list of keys in the memory

ROOT/CINT Extensions to C++
In the next example, we demonstrate three of the most important extensions ROOT/CINT makes
to C++. Start ROOT in the directory $ROOTSYS/tutorials (make sure to have first run ".x
hsimple.C"):

root[] f = new TFile("hsimple.root")
(class TFile*)0x4045e690
root[] f.ls()

CINT the C++ Interpreter

124

TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py ps px
KEY: THProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root[] hpx.Draw()
NULL
Warning in <MakeDefCanvas>: creating a default canvas with name c1
root[] .q

The first command shows the first extension; the declaration of f may be omitted when "new" is used.
CINT will correctly create f as pointer to object of class TFile.

The second extension is shown in the second command. Although f is a pointer to TFile we don't
have to use the pointer de-referencing syntax "->" but can use the simple "." notation.

The third extension is more important. In case CINT cannot find an object being referenced, it
will ask ROOT to search for an object with an identical name in the search path defined by
TROOT::FindObject(). If ROOT finds the object, it returns CINT a pointer to this object and a
pointer to its class definition and CINT will execute the requested member function. This shortcut is
quite natural for an interactive system and saves much typing. In this example, ROOT searches for
hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a line. The difference
between having it and leaving it off is that when you leave it off the return value of the command will
be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return value
(int)28
root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when a compiler replaces the interpreter. Your code will
not compile, hence when writing large scripts, it is best to stay away from these shortcuts. It will save
you from having problems compiling your scripts using a real C++ compiler.

ACLiC - The Automatic Compiler of Libraries
for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled, linked
and dynamically loaded using the C++ compiler and linker. The advantage of this is that your scripts
will run with the speed of compiled C++ and that you can use language constructs that are not
fully supported by CINT. On the other hand, you cannot use any CINT shortcuts (see ROOT/CINT
Extensions to C++) and for small scripts, the overhead of the compile/link cycle might be larger than
just executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++ script, using the compiler
and the compiler options that were used to compile the ROOT executable. You do not have to write a
makefile remembering the correct compiler options, and you do not have to exit ROOT.

Usage
Before you can compile your interpreted script you need to add include statements for the classes used
in the script. Once you did that, you can build and load a shared library containing your script. To load
it use the command .L and append the file name with a "+".

CINT the C++ Interpreter

125

root[] .L MyScript.C+
root[] .files
…
*file="/home/./MyScript_C.so"

The + option generates the shared library and names it by taking the name of the file "filename"
but replacing the dot before the extension by an underscore and by adding the shared library
extension for the current platform. For example on most platforms, hsimple.cxx will generate
hsimple_cxx.so. If we execute a .files command we can see the newly created shared library
is in the list of loaded files.

The + command rebuild the library only if the script or any of the files it includes are newer than the
library. When checking the timestamp, ACLiC generates a dependency file which name is the same as
the library name, just replacing the 'so' extension by the extension ’d’. For example on most platforms,
hsimple.cxx will generate hsimple_cxx.d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the .x command.
This is the same as executing a named script. You can have parameters and use .x or .X. The only
difference is you need to append a + or a ++.

root[] .x MyScript.C+ (4000)
Creating shared library /home/./MyScript_C.so

You can select whether the script in compiled with debug symbol or with optimization by appending
the letter 'g' or 'O' after the '+' or '++'. Without the specification, the script is compiled with the same
level of debugging symbol and optimization as the currently running ROOT executable. For example:

root[] .L MyScript.C++g

will compile MyScript.C with debug symbols; usually this means giving the -g option to compiler.

root[] .L MyScript.C++O

will compile MyScript.C with optimizations; usually this means giving the -O option to compiler.
The syntax:

root[] .L MyScript.C++

is using the default optimization level. The initial default is to compile with the same level of
optimization as the root executable itself. The default can be changed by:

root[] gSystem->SetAclicMode(TSystem::kDebug);
root[] gSystem->SetAclicMode(TSystem::kOpt);

Note that the commands:

root[] .L MyScript.C+g
root[] .L MyScript.C+O

CINT the C++ Interpreter

126

respectively compile MyScript.C with debug and optimization if the library does not exist yet;
they will not change the debug and the optimization level if the library already exist and it is up to
date. To use ACLiC from compiled code or from inside another macro, we recommend using the
ProcessLine() method of TROOT. For example, in one script you can use ACLiC to compile and
load another script.

gROOT->ProcessLine(".L MyScript.C+")
gROOT->ProcessLine(".L MyScript.C++")

Setting the Include Path
You can get the include path by typing:

root[] .include

You can append to the include path by typing:

root[] .include $HOME/mypackage/include

In a script you can append to the include path:

gSystem->AddIncludePath(" -I$HOME/mypackage/include ")

You can also overwrite the existing include path:

gSystem->SetIncludePath(" -I$HOME/mypackage/include ")

The $ROOTSYS/include directory is automatically appended to the include path, so you do not
have to worry about including it. To add library that should be used during linking of the shared library
use something like:

gSystem->AddLinkedLibs("-L/my/path -lanylib");

This is especially useful for static libraries. For shared ones you can also simply load them before
trying to compile the script:

gSystem->Load("mydir/mylib");

ACLiC uses the directive fMakeSharedLibs to create the shared library. If loading the shared
library fails, it tries to output a list of missing symbols by creating an executable (on some platforms
like OSF, this does not HAVE to be an executable) containing the script. It uses the directive
fMakeExe to do so. For both directives, before passing them to TSystem::Exec(), it expands
the variables $SourceFiles, $SharedLib, $LibName, $IncludePath, $LinkedLibs,
$ExeName and $ObjectFiles. See SetMakeSharedLib() for more information on those
variables. When the file being passed to ACLiC is on a read only file system, ACLiC warns the user
and creates the library in a temporary directory:

root[] .L readonly/t.C++
Warning in <ACLiC>: /scratch/aclic/subs/./readonly is not writeable!
Warning in <ACLiC>: Output will be written to /tmp
Info in <TUnixSystem::ACLiC>: creating shared library
/tmp//scratch/aclic/subs/./readonly/t_C.so

CINT the C++ Interpreter

127

To select the temporary directory ACLiC looks at $TEMP, $TEMP_DIR, $TEMPDIR, $TMP,
$TMPDIR, $TMP_DIR or uses /tmp (or C:/). Also, a new interface TSystem::Get/
SetBuildDir is introduced to let users select an alternative 'root' for building of the ACLiC libraries.
For filename/full/path/name/macro.C, the library is created as fBuildDir/full/
path/name/macro_C.so.

Dictionary Generation
You can direct what is added to the dictionary generated by ACLiC in two ways. The simplest way is
to add at the end of script (i.e. after the symbols have been defined) something like:

#if defined(__MAKECINT__)
#pragma link C++ class MyOtherClass;
#endif

You can also write this portion of code in a file name MyScript_linkdef.h where the suffix
'_linkdef' is the prefix defined by the key ‘ACLiC.Linkdef‘ in the currently used resource
file (usually .rootrc or $ROOTSYS/etc/system.rootrc) and the prefix is the name of your
script.

In ROOT 3.05/03 and above, the default behavior of rootcint is to not link in (i.e. generate the
dictionary for) any of the symbols. In particular, this means that the following lines are now, in the
general case, unnecessary.

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

This also means that linking the instantiation of a class template:

#pragma link C++ class mytemplate<int>;

ONLY links this specific class. In previous versions of ROOT, depending on many factors, this might
also have included the linking of many other instantiation of class template used directly or indirectly
by 'mytemplate'.

A typical case would have been to rely on:

#pragma link C++ class vector<MyClass>;

to also induce the generation of the iterators. You now need to request them explicitly. Another
advantage of the change is that now, if you omit the 'pragma link off' line from your linkdef file,
you can actually sprinkle the 'pragma link C++ class' across as many of you header as file as you need.

See the documentation of rootcint for details how pragma can be used.

NOTE: You should not call ACLiC with a script that has a function called main(). When ACLiC
calls rootcint with a function called main it tries to add every symbol it finds while parsing the
script and the header files to the dictionary. This includes the system header files and the ROOT header
files. It will result in duplicate entries at best and crashes at worst, because some classes in ROOT
need special attention before they can be added to the dictionary.

Intermediate Steps and Files
ACLiC executes two steps and a third one if needed. These are:

CINT the C++ Interpreter

128

• Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific version of
makecint, CINT generic dictionary generator.

• Calling the compiler to build the shared library from the script

• If there are errors, it calls the compiler to build a dummy executable to report clearly unresolved
symbols.

ACLiC makes a shared library with a CINT dictionary containing the classes and functions declared
in the script. It also adds the classes and functions declared in included files with the same name as
the script file and any of the following extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This means
that, by default, you cannot combine scripts from different files into one library by using #include
statements; you will need to compile each script separately. In a future release, we plan to add the
global variables declared in the script to the dictionary also. If you are curious about the specific calls,
you can raise the ROOT debug level: gDebug=3 and ACLiC will print these steps. If you need to keep
the intermediate files around, for example when debugging the script using gdb, use gDebug=7.

Moving between Interpreter and Compiler
The best way to develop portable scripts is to make sure you can always run them with both, the
interpreter and with ACLiC. To do so, do not use the CINT extensions and program around the CINT
limitations. When it is not possible or desirable to program around the CINT limitations, you can use
the C preprocessor symbols defined for CINT and rootcint.

The preprocessor symbol __CINT__ is defined for both CINT and rootcint. The symbol
__MAKECINT__ is only defined in rootcint.

Use !defined(__CINT__) || defined(__MAKECINT__) to bracket code that needs to be
seen by the compiler and rootcint, but will be invisible to the interpreter.

Use !defined(__CINT__) to bracket code that should be seen only by the compiler and not by
CINT or rootcint. For example, the following will hide the declaration and initialization of the
array gArray from both CINT and rootcint.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#endif

Because ACLiC calls rootcint to build a dictionary, the declaration of gArray will not be included
in the dictionary, and consequently, gArray will not be available at the command line even if
ACLiC is used. CINT and rootcint will ignore all statements between the "#if !defined
(__CINT__)" and "#endif". If you want to use gArray in the same script as its declaration,
you can do so. However, if you want use the script in the interpreter you have to bracket the usage of
gArray between #if's, since the definition is not visible. If you add the following preprocessor
statements:

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#elif defined(__MAKECINT__)
int gArray[];
#endif

gArray will be visible to rootcint but still not visible to CINT. If you use ACLiC, gArray will
be available at the command line and be initialized properly by the compiled code.

We recommend you always write scripts with the needed include statements. In most cases, the script
will still run with the interpreter. However, a few header files are not handled very well by CINT.

CINT the C++ Interpreter

129

These types of headers can be included in interpreted and compiled mode:

• The subset of standard C/C++ headers defined in $ROOTSYS/cint/include.

• Headers of classes defined in a previously loaded library (including ROOT own). The defined class
must have a name known to ROOT (i.e. a class with a ClassDef).

A few headers will cause problems when they are included in interpreter mode, because the interpreter
itself already includes them. In general, the interpreter needs to know whether to use the interpreted
or compiled version. The mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for rootcint. Bracket
these with: !defined(__CINT__) || defined(__MAKECINT__)

• All CINT headers, see $ROOTSYS/cint/inc

• Headers with classes named other than the file name. For example Rtypes.h and GuiTypes.h.

• Headers with a class defined in libraries before the library is loaded. For example: having
#include "TLorentzVector.h before gSystem->Load("libPhysics"). This will
also cause problems when compiling the script, but a clear error message will be given. With the
interpreter, it may core dump. Bracket these type of include statements with #if !defined
(__CINT__), this will print an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional for the interpreter
can lead to a subtle but fatal error. For example:

#ifndef __CINT__
#include "TTree.h"
#else
class TTree;
#endif

class subTree : public TTree {
};

In this case, rootcint does not have enough information about the TTree class to produce
the correct dictionary file. If you try this, rootcint and compiling will be error free, however,
instantiating a subTree object from the CINT command line will cause a fatal error. In general, it is
recommended to let rootcint see as many header files as possible.

Reflex
Reflection is the ability of a programming language to introspect its data structures and interact with
them at runtime without prior knowledge. Reflex provides reflection capabilities for C++. With the
ROOT v5.08, Reflex is an optional package. It will become a mandatory package (loaded by default)
with the next ROOT versions. In order to build it you have to ./configure --enable-reflex

Overview
Inside ROOT Reflex is thought to replace the current reflection system, which is inherent to CINT.
This is an ongoing work and not part of this release. Nevertheless, Reflex dictionaries can be used
inside ROOT while populating the current CINT data structures via a special gateway called Cintex
(see “Cintex”).

In order to use reflection a dictionary of the data structures involved has to be generated. Before
generating the dictionaries, the source code has to be parsed and the information extracted. In the
ROOT environment, there are two ways to generate dictionaries for the Reflex library.

CINT the C++ Interpreter

130

• Using CINT as a source code parser - the command to issue when using CINT for parsing C++
constructs is:

rootcint -reflex -f module/src/G__Module.cxx -c module/inc/TMod1.h
module/inc/TMod2.h module/inc/Linkdef.h

• Using the gcc compiler as a source code parser: With this option a special program called
"gccxml" has to be installed. This program is an extension to gcc and produces xml code out of
parsed C++ definitions which will be further used to generate the proper dictionary source code via
a python script. For parsing C++ constructs using the gcc compiler the command will be:

rootcint -gccxml -f module/src/G__Module.cxx -c module/inc/TMod1.h
module/inc/TMod2.h module/inc/Linkdef.h

Note: an installation of Python and gccxml is required for using this option.

Selecting Types And Members
You can use selection files to tell genreflex what it should generate a dictionary for. If you do not use
it, it will generate a dictionary for all types in the files passed at the command line, or when specifying
--deep for all types it finds.

The selection file is passed to genreflex with the -s parameters like this:

genreflex -s selection.xml header1.h header2.h.

It is an XML file with the following structure:

<lcgdict>
[<selection>]
<class [name="classname"] [pattern="wildname"]
[file_name="filename"] [file_pattern="wildname"]
[id="xxxx"] [type="vector"]/>
<class name="classname" >
<field name="m_transient" transient="true"/>
<field name="m_anothertransient" transient="true"/>
<properties prop1="value1" [prop2="value2"]/>
</class>
<function [name="funcname"] [pattern="wildname"]
[proto_name="name(int)"] [proto_pattern="name(int,*)"] />
<enum [name="enumname"] [patter="wildname"] />
<variable [name="varname"] [patter="wildname"] />
[</selection>]
<exclusion>
<class [name="classname"] [pattern="wildname"] />
<method name="unwanted" />
</class>
...
</lcgdict>

Genreflex and Templates
The program parsing the header files and providing genreflex with the information what's in them
is called GCCXML. It only sees templates if they are instantiated. See the C++ standard on when
template instantiation happens. The rule of thumb is: if you design a templated class then it probably
does not happen in that templated class's header.

CINT the C++ Interpreter

131

So you need to help GCCXML. There are two common approaches: the struct member, and the
"proper" C++ way.

Explicit Template Instantiation

This is the preferred method, but it is not widely used. Suppose you have a templated template class
C and a templated function template T A::f(const T&) const;. You can instantiate them (say with
template parameter long long) using:

#ifdef __GCCXML__
// GCCXML explicit template instantiation block
template class C<long long>;
template long long A::f(const long long&);
#endif

You can even put this into your regular header file: it is surrounded by an #ifdef __GCCXML__ and
will thus be invisible to any other compiler.

Template Instantiation by struct Members

Suppose you have a templated template class C and a templated function template T f(const T&) const;
defined in file C.h. For the templated class you can use:

#include "C.h"
#ifdef __GCCXML__
// GCCXML explicit template instantiation block
namespace {
struct GCCXML_DUMMY_INSTANTIATION {
C<long long> dummyMember;
};
}
#endif

Often people put these instantiations into a separate header which in turn #includes the actual header,
such that the C++ sources do not see the GCCXML_DUMMY_INSTANTIATION.

GCCXML Installation
Gccxml is a front-end to the gcc compiler suite, which generates xml code out of parsed C++
definitions. Gccxml needs to be installed in order to use this option. Now we are using a patched
version of gccxml release 0.6.0 called (0.6.0_patch3). This installation can be downloaded from
http://spi.cern.ch/lcgsoft/.

Once the dictionary sources have been generated, they can be compiled into a library and loaded via
the Reflex builder system. The dictionary information can be used via the Reflex API. For this purpose,
Reflex provides eight classes, which exploit the whole functionality of the system.

Reflex API
Reflex offers a simple yet powerful API to access Reflex reflection database. The following classes are
defined in the namespace ROOT::Reflex and documented at http://root.cern.ch/root/
html/REFLEX_Index.html.

An object is an abstraction of a user object. It contains the information about its type and it is location
in memory.

Type is an abstraction of a C++ type. Types in Reflex are:

CINT the C++ Interpreter

132

• Array

• Class/struct

• Templated class/struct

• Enum

• Function

• Fundamental

• Pointer

• Pointer to member

• Typedef

• Union

A scope is an abstraction of a C++ type. It holds information such as its declaring scope, it is underlying
scope and it is data/function members. Scopes are:

• Namespace

• Class/Struct

• Templated class/struct

• Union

• Enum

A member lives inside a scope and is of a given Type. Members can be distinguished as:

• DataMember

• FunctionMember

• Templated member

Base holds the information about the inheritance structure of classes. It contains information such as
the offset to the base class and the type of the base class.

Properties are key/value pairs where the key is a string and the value an Any object (Boost::Any).
Any objects can hold any type of information be it a string, int or any arbitrary object. Properties can
be attached to Types, Scopes and Members and hold any kind of information that is not specific to C
++. Examples for Properties would be the class author, a description of a member or the class id.

A MemberTemplate is an abstraction of a templated member. It holds the information about its
template parameters and a list of its instantiations.

A TypeTemplate is an abstraction of a templated type (e.g. class). It holds the same information as
the MemberTemplate (e.g. template parameters, list of instantiations)

The Reflex package lives in the namespace ROOT::Reflex. Below some examples of usage of the
package are given. For further information please see the documentation of the different API classes.

The next examples will refer to the example class MyClass:

class MyClass {

CINT the C++ Interpreter

133

public:
MyClass() : fMem1(47), fMem2("foo") { }
int GetMem1() { return fMem1; }
int GetMem1(int i) { return fMem1*i; }
void SetMem1(int i) { fMem1 = i; }
std::string GetMem2() { return fMem2; }
void SetMem2(const std::string & str) { fMem2 = str; }

private:
int fMem1;
std::string fMem2;
};

The first thing after loading a dictionary (which is done at the moment at the same time as the
implemenation library), will be to look up a certain Type or Scope.

Type t1 = Type::ByName("MyClass");

Every API class provides the operator bool, which will return true if the information retrieved
for this instance is valid and further actions on this instance can be taken.

if (t1) {
if (t1.IsClass()) std::cout << "Class ";
std::cout << t1.Name();
}

As a class is also a scope (as enum and union) we can now also iterate over its members. This can be
done either with stl like iterators or with an iteration by number:

For (Member_Iterator mi = t1.DataMember_Begin(); mi != DataMember_End(); ++mi) {
std::cout << (*mi).Name(SCOPED) << " " << (*mi).TypeOf().Name(QUALIFIED);
}

Member m;
for (size_t i = 0; i < t1.FunctionMemberSize(); ++i) {
m = t1.FunctionMemberAt(i);
std::cout << m.Name() << " " << m.TypeOf().Name();
for (Type_Iterator ti = m.FunctionParaeter_Begin(); ti !=
m.FunctionParameter_End(); ++ti) {
std::cout << (*ti).Name() << std::endl;
}
}

It is not only possible to introspect information through Reflex but also take actions. E.g. instantiate
classes/structs, invoke functions, set data members, etc. The instantiation of a type which represents
a class struct can be done with:

Object o1 = t1.Construct();

which will call the default constructor for this type and allocate the memory for this type inside the
Object. The Object will also contain the type information constructed.

Now the object of a certain type has been constructed one may interact with it. E.g. getting the value
of a data member can be done via which will return an Object of the data member in question.

CINT the C++ Interpreter

134

Object mem_obj = o1.Get("fMem1");
int real_value = 0;
if (mem_obj.TypeOf().Name() == "int)
int real_value = Object_Cast<int>(mem_obj);

It is also possible to invoke function members via the Object class. A function member can be looked
up by name, if the member is overloaded an additional parameter which is the string representation of
the type can be passed. Currently parameters for the function to invoke shall be passed as a vector of
memory addresses of the parameters. This may change in the future to pass a vector of Objects.

int par1 = 2;
std::vector<void*> parVec;
parVec.push_back(&par1);
int ret_val = Object_Cast<int>(o1.Invoke("GetMem1","int (int)",parVec));

Calling the destructor of an Object can be done via, this will call both the destructor and of the object
type and deallocate the memory.

o1.Destruct();

Cintex
Cintex is an optional package inside ROOT. In order to build it you have to

./configure --enable-cintex at the ROOT configuration step.

The purpose of the Cintex package is to bridge uni-directional information from the Reflex to the
CINT dictionary system. This package will be needed as long as the unification of the Reflex and
CINT dictionaries has not been completed. This unification is work ongoing. In order to use Cintex
functionality it will be needed to load the Cintex library (e.g. libCintex.so on linux systems) and enable
the Cintex gateway with

Cintex::Enable();

After these two steps have been taken, any Reflex dictionary information should be propagated to the
CINT dictionaries and subsequently usable inside the CINT environment (e.g. from the root prompt).
If wanted debugging information while loading Reflex dictionaries can be turned on with (any number
greater than 0 can be used as argument but will not make any difference in the amount of debugging
output for the time being).

Cintex::SetDebug(1);

135

Chapter 8. Object Ownership
An object has ownership of another object if it has permission to delete it. Usually a collection or a
parent object such as a pad holds ownership. To prevent memory leaks and multiple attempts to delete
an object, you need to know which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.

• Histograms, trees, and event lists created by the user are owned by current directory
(gDirectory). When the current directory is closed or deleted the objects it owns are deleted.

• The TROOT master object (gROOT) has several collections of objects. Objects that are members of
these collections are owned by gROOT see "Ownership by the Master TROOT Object (gROOT)”.

• Objects created by another object, for example the function object (e.g.TF1) created by the
TH1::Fit method is owned by the histogram.

• An object created by DrawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule
and user ownership in more detail.

Ownership by Current Directory (gDirectory)
When a histogram, tree, or event list (TEventList) is created, it is added to the list of objects in the
current directory by default. You can get the list of objects in a directory and retrieve a pointer to a
specific object with the GetList method. This example retrieves a histogram.

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. It looks in
memory, and is implemented in all ROOT collections. You can change the directory of a histogram,
tree, or event list with the SetDirectory method. Here we use a histogram for an example, but
the same applies to trees and event lists.

h->SetDirectory(newDir)

You can also remove a histogram from a directory by using SetDirectory(0). Once a histogram
is removed from the directory, it will not be deleted when the directory is closed. It is now your
responsibility to delete this histogram once you have finished with it. To change the default that
automatically adds the histogram to the current directory, you can call the static function:

TH1::AddDirectory(kFALSE);

Not all histograms created here after will be added to the current directory. In this case, you own all
histogram objects and you will need to delete them and clean up the references. You can still set the
directory of a histogram by calling SetDirectory once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

Ownership by the Master TROOT Object
(gROOT)

The master object gROOT, maintains several collections of objects. For example, a canvas is added
to the collection of canvases and it is owned by the canvas collection.

Object Ownership

136

TSeqCollection* fFiles List of files (TFile)
TSeqCollection* fMappedFiles List of memory mapped files (TMappedFile)
TSeqCollection* fSockets List of network sockets (TSocket and TServerSocket)
TSeqCollection* fCanvases List of canvases (TCanvas)
TSeqCollection* fStyles List of styles (TStyle)
TSeqCollection* fFunctions List of analytic functions(TF1, TF2, TF3)
TSeqCollection* fTasks List of tasks (TTask)
TSeqCollection* fColors List of colors (TColor)
TSeqCollection* fGeometries List of geometries (?)
TSeqCollection* fBrowsers List of browsers (TBrowser)
TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove collections

These collections are also displayed in the root folder of the Object Browser. Most of these
collections are self explanatory. The special cases are the collections of specials and cleanups.

The Collection of Specials
This collection contains objects of the following classes: TCutG, TMultiDimFit, TPrincipal,
TChains. In addition it contains the gHtml object, gMinuit objects, and the array of contours
graphs (TGraph) created when calling the Draw method of a histogram with the "CONT, LIST"
option.

Access to the Collection Contents
The current content for a collection listed above can be accessed with the corresponding gROOT-
>GetListOf method (for example gROOT->GetListOfCanvases). In addition, gROOT-
>GetListOfBrowsables returns a collection of all objects visible on the left side panel in the
browser. See the image of the Object Browser in the next figure.

Figure 8.1. The ROOT Object Browser

Ownership by Other Objects
When an object creates another, the creating object is the owner of the created one. For example:

myHisto->Fit("gaus")

Object Ownership

137

The call to Fit copies the global TF1 Gaussian function and attaches the copy to
the histogram. When the histogram is deleted, the copy is deleted
also.

When a pad is deleted or cleared, all objects in the pad with the
kCanDelete bit set are deleted automatically. Currently the objects created by the DrawCopy
methods, have the kCanDelete bit set and are therefore owned by the pad.

Ownership by the User
The user owns all objects not described in one of the above cases. TObject has two
bits, kCanDelete and kMustCleanup, that influence how an object is managed (in
TObject::fBits). These are in an enumeration in TObject.h. To set these bits do:

MyObject->SetBit(kCanDelete)
MyObject->SetBit(kMustCleanup)

The bits can be reset and tested with the TObject::ResetBit and TObject::TestBit
methods.

The kCanDelete Bit
The gROOT collections (see above) own their members and will delete them regardless of the
kCanDelete bit. In all other collections, when the collection Clear method is called (i.e.
TList::Clear()), members with the kCanDelete bit set, are deleted and removed from the
collection. If the kCanDelete bit is not set, the object is only removed from the collection but not
deleted.

If a collection Delete (TList::Delete()) method is called, all objects in the collection are
deleted without considering the kCanDelete bit. It is important to realize that deleting the collection
(i.e. delete MyCollection), DOES NOT delete the members of the collection.

If the user specified MyCollection->SetOwner() the collection owns the objects and delete
MyCollection will delete all its members. Otherwise, you need to:

// delete all member objects in the collection
MyCollection->Delete();

// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and the user can set it for any
object. For example, the user must manage all graphics primitives. If you want TCanvas to delete
the primitive you created you have to set the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::ls(). The last number is either 1 or 0
and is the kCanDelete bit.

root[] TCanvas MyCanvas("MyCanvas")
root[] MyCanvas.Divide(2,1)
root[] MyCanvas->cd(MyCanvas_1)
root[] hstat.Draw() // hstat is an existing TH1F
root[] MyCanvas->cd(MyCanvas_2)
root[] hstat.DrawCopy() // DrawCopy sets the kCanDelete bit
(class TH1*)0x88e73f8
root[] MyCanvas.ls()

Object Ownership

138

Canvas Name=MyCanvas …
 TCanvas … Name= MyCanvas …
 TPad … Name= MyCanvas_1 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 0
 TPaveText … title
 TPaveStats … stats
 TPad … Name= MyCanvas_2 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 1
 TPaveText … title
TPaveStats … stats

The kMustCleanup Bit
When the kMustCleanup bit is set, the object destructor will remove the object and its references
from all collections in the clean up collection (gROOT::fCleanups). An object can be in several
collections, for example if an object is in a browser and on two canvases. If the kMustCleanup bit
is set, it will be removed automatically from the browser and both canvases when the destructor of
the object is called.

The kMustCleanup bit is set:

• When an object is added to a pad (or canvas) in TObject::AppendPad.

• When an object is added to a TBrowser with TBrowser::Add.

• When an object is added to a TFolder with TFolder::Add.

• When creating an inspector canvas with TInspectCanvas::Inspector.

• When creating a TCanvas.

• When painting a frame for a pad, the frame's kMustCleanup is set in TPad::PaintPadFrame

The user can add his own collection to the collection of clean ups,
to take advantage of the automatic garbage collection. For example:

// create two list
TList *myList1, *myList2;

// add both to of clean ups
gROOT->GetListOfCleanUps()->Add(myList1);
gROOT->GetListOfCleanUps()->Add(myList2);

// assuming myObject is in myList1 and myList2, when calling:
delete myObject;

// the object is deleted from both lists

139

Chapter 9. Graphics and the
Graphical User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various plots,
histograms, and 3D graphical objects. In this chapter, we are going to focus on principals of graphics
and 2D objects. Plots and histograms are discussed in a chapter of their own.

Drawing Objects
In ROOT, most objects derive from a base class TObject. This class has a virtual method Draw()
so all objects are supposed to be able to be "drawn". The basic whiteboard on which an object is drawn
is called a canvas (defined by the class TCanvas). If several canvases are defined, there is only one
active at a time. One draws an object in the active canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1")
is instantiated and is drawn.

root[] TLine a(0.1,0.1,0.6,0.6)
root[] a.Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

The first statement defines a line and the second one draws it. A default canvas is drawn since there
was no opened one.

Interacting with Graphical Objects
When an object is drawn, one can interact with it. For example, the line drawn in the previous paragraph
may be moved or transformed. One very important characteristic of ROOT is that transforming an
object on the screen will also transform it in memory. One actually interacts with the real object, not
with a copy of it on the screen. You can try for instance to look at the starting X coordinate of the line:

root[] a.GetX1()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now move it interactively
by clicking with the left mouse button in the line's middle and try to do again:

root[] a.GetX1()
(Double_t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have changed. As said, interacting
with an object on the screen changes the object in memory.

Moving, Resizing and Modifying Objects
Changing the graphic objects attributes can be done with the GUI or programmatically. First, let's see
how it is done in the GUI.

The Left Mouse Button

As was just seen moving or resizing an object is done with the left mouse button. The cursor changes
its shape to indicate what may be done:

Point the object or one part of it:

Graphics and the
Graphical User Interface

140

Rotate:

Resize (exists also for the other directions):

Enlarge (used for text):

Move:

Here are some examples of:

Moving: Resizing:

Rotating:

With C++ Statements (Programmatically)

How would one move an object in a script? Since there is a tight correspondence between what is seen
on the screen and the object in memory, changing the object changes it on the screen. For example,
try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens on the screen. Why is that?
In short, the canvas is not updated with each change for performance reasons. See "Updating the Pad".

Selecting Objects

The Middle Mouse Button

Objects in a canvas, as well as in a pad, are stacked on top of each other in the order they were drawn.
Some objects may become “active” objects, which mean they are reordered to be on top of the others.
To interactively make an object "active", you can use the middle mouse button. In case of canvases
or pads, the border becomes highlighted when it is active.

With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the objects are drawn in the
active canvas. To activate a canvas you can use the TPad::cd() method.

root[] c1->cd()

Context Menus: the Right Mouse Button
The context menus are a way to interactively call certain methods of an object. When designing a
class, the programmer can add methods to the context menu of the object by making minor changes
to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context menu for it. The script
hsimple.C draws a histogram. The image below shows the context menus for some of the objects

Graphics and the
Graphical User Interface

141

on the canvas. Next picture shows that drawing a simple histogram involves as many as seven objects.
When selecting a method from the context menu and that method has options, the user will be asked
for numerical values or strings to fill in the option. For example, TAxis::SetTitle will prompt
you for a string to use for the axis title.

Figure 9.1. Context menus of different objects in a canvas

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu corresponds to a method of
the class. Look for example to the menu named TAxis::xaxis. xaxis is the name of the object
and TAxis the name of its class. If we look at the list of TAxis methods, for example in http://
root.cern.ch/root/htmldoc/TAxis.html, we see the methods SetTimeDisplay()
and UnZoom(), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list
of the class methods; the second division is a list of the parent class methods. The subsequent
divisions are the methods other parent classes in case of multiple inheritance. For example, see the
TPaveText::title context menu. A TPaveText inherits from TAttLine, which has
the method SetLineAttributes().

Adding Context Menus for a Class

For a method to appear in the context menu of the object it has to be marked by // *MENU* in the
header file. Below is the line from TAttLine.h that adds the SetLineAttribute method to
the context menu.

virtual void SetLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It takes advantage of that
to create the context menu on the fly when the object is clicking on. If you click on an axis, ROOT
will ask the interpreter what are the methods of the TAxis and which ones are set for being displayed
in a context menu.

Now, how does the interpreter know this? Remember, when you build a class that you want to use in the
ROOT environment, you use rootcint that builds the so-called stub functions and the dictionary.
These functions and the dictionary contain the knowledge of the used classes. To do this, rootcint
parses all the header files. ROOT has defined some special syntax to inform CINT of certain things,
this is done in the comments so that the code still compiles with a C++ compiler.

Graphics and the
Graphical User Interface

142

For example, you have a class with a Draw() method, which will display itself. You would like
a context menu to appear when on clicks on the image of an object of this class. The recipe is the
following:

• The class has to contain the ClassDef/ClassImp macros

• For each method you want to appear in the context menu, put a comment after the declaration
containing *MENU* or *TOGGLE* depending on the behavior you expect. One usually uses Set
methods (setters). The *TOGGLE* comment is used to toggle a boolean data field. In that case,
it is safe to call the data field fMyBool where MyBool is the name of the setter SetMyBool.
Replace MyBool with your own boolean variable.

• You can specify arguments and the data members in which to store the arguments.

For example:

class MyClass : public TObject {
private:
 int fV1; // first variable
 double fV2; // second variable
public:
 int GetV1() {return fV1;}
 double GetV2() {return fV2;}
 void SetV1(int x1) { fV1 = x1;} // *MENU*
 void SetV2(double d2) { fV2 = d2;} // *MENU*
 void SetBoth(int x1, double d2) {fV1 = x1; fV2 = d2;}

 ClassDef (MyClass,1)
}

To specify arguments:

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more than one argument, these
arguments are separated by commas, where fX1 and fY2 are data fields in the same class.

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when selecting SetXXX field
will show the values of variables. We indicate to the system which argument corresponds to which
data member of the class.

Executing Events when a Cursor Passes on Top of an
Object

This paragraph is for class designers. When a class is designed, it is often desirable to include drawing
methods for it. We will have a more extensive discussion about this, but drawing an object in a canvas
or a pad consists in "attaching" the object to that pad. When one uses object.Draw(), the object
is NOT painted at this moment. It is only attached to the active pad or canvas.

Another method should be provided for the object to be painted, the Paint() method. This is all
explained in the next paragraph. As well as Draw() and Paint(), other methods may be provided
by the designer of the class. When the mouse is moved or a button pressed/released, the TCanvas
function named HandleInput() scans the list of objects in all it's pads and for each object calls
some standard methods to make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive(px,py). This function computes a "distance" to an
object from the mouse position at the pixel position (px, py, see definition at the end of this paragraph)
and returns this distance in pixel units. The selected object will be the one with the shortest computed

Graphics and the
Graphical User Interface

143

distance. To see how this works, select the "Event Status" item in the canvas "Options"
menu. ROOT will display one status line showing the picked object. If the picked object is, for
example, a histogram, the status line indicates the name of the histogram, the position x,y in histogram
coordinates, the channel number and the channel content.

It is nice for the canvas to know what the closest object from the mouse is, but it's even nicer to be
able to make this object react. The third standard method to be provided is ExecuteEvent(). This
method actually does the event reaction. Its prototype is where px and py are the coordinates at which
the event occurred, except if the event is a key press, in which case px contains the key code.

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the following (defined in Buttons.h):

kNoEvent, kButton1Down, kButton2Down,
kButton3Down, kKeyDown, kButton1Up,
kButton2Up, kButton3Up, kButton1Motion,
kButton2Motion, kButton3Motion, kKeyPress,
kButton1Locate, kButton2Locate, kButton3Locate,
kKeyUp, kButton1Double, kButton2Double,
kButton3Double, kMouseMotion, kMouseEnter,
kMouseLeave

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants very basic treatment.
We will not go into that and let the reader refer to the sources of classes like TLine or TBox. Go
and look at their ExecuteEvent method! We can nevertheless give some reference to the various
actions that may be performed. For example, one often wants to change the shape of the cursor when
passing on top of an object. This is done with the SetCursor method:

gPad->SetCursor(cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft,
kTopRight, kBottomSide, kLeftSide,
kTopSide, kRightSide, kMove,
kCross, kArrowHor, kArrowVer,
kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch

They are defined in TVirtualX.h and again we hope the names are self-explanatory. If not, try
them by designing a small class. It may derive from something already known like TLine.

Note that the ExecuteEvent() functions may in turn; invoke such functions for other objects, in
case an object is drawn using other objects. You can also exploit at best the virtues of inheritance.
See for example how the class TArrow (derived from TLine) use or redefine the picking functions
in its base class.

The last comment is that mouse position is always given in pixel units in all these standard functions.
px=0 and py=0 corresponds to the top-left corner of the canvas. Here, we have followed the standard
convention in windowing systems. Note that user coordinates in a canvas (pad) have the origin at the
bottom-left corner of the canvas (pad). This is all explained in the paragraph "The Coordinate Systems
of a Pad".

Graphical Containers: Canvas and Pad
We have talked a lot about canvases, which may be seen as windows. More generally, a graphical
entity that contains graphical objects is called a Pad. A Canvas is a special kind of Pad. From now on,

Graphics and the
Graphical User Interface

144

when we say something about pads, this also applies to canvases. A pad (class TPad) is a graphical
container in the sense it contains other graphical objects like histograms and arrows. It may contain
other pads (sub-pads) as well. More technically, each pad has a linked list of pointers to the objects
it holds.

Drawing an object is nothing more than adding its pointer to this list. Look for example at the code of
TH1::Draw(). It is merely ten lines of code. The last statement is AppendPad(). This statement
calls method of TObject that just adds the pointer of the object, here a histogram, to the list of
objects attached to the current pad. Since this is a TObject’s method, every object may be "drawn",
which means attached to a pad. We can illustrate this by the Figure 9-2. This image corresponds to
the following structure:

Figure 9.2. A histogram drawn in a pad

When is the painting done then? The answer is: when needed. Every object that derives from TObject
has a Paint() method. It may be empty, but for graphical objects, this routine contains all the
instructions to paint effectively it in the active pad. Since a Pad has the list of objects it owns, it will
call successively the Paint() method of each object, thus re-painting the whole pad on the screen. If
the object is a sub-pad, its Paint() method will call the Paint() method of the objects attached,
recursively calling Paint() for all the objects.

The Global Pad: gPad
When an object is drawn, it is always in the so-called active pad. For every day use, it is comfortable
to be able to access the active pad, whatever it is. For that purpose, there is a global pointer, called
gPad. It is always pointing to the active pad. If you want to change the fill color of the active pad to
blue but you do not know its name, do this.

root[] gPad->SetFillColor(38)

To get the list of colors, go to the paragraph "Color and color palettes" or if you have an opened canvas,
click on the View menu, selecting the Colors item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this pad contains some objects,
it is sometimes interesting to access one of those objects. The method GetPrimitive() of TPad,

Graphics and the
Graphical User Interface

145

i.e. TPad::GetPrimitive(const char* name) does exactly this. Since most of the objects
that a pad contains derive from TObject, they have a name. The following statement will return a
pointer to the object myobjectname and put that pointer into the variable obj. As you can see, the
type of returned pointer is TObject*.

root[] obj = gPad->GetPrimitive("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F, this is normal. A function
cannot return more than one type. So the one chosen was the lowest common denominator to all
possible classes, the class from which everything derives, TObject. How do we get the right pointer
then? Simply do a cast of the function output that will transform the output (pointer) into the right
type. For example if the object is a TPaveLabel:

root[] obj = (TPaveLabel*)(gPad->GetPrimitive("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question remains. An object has a
name if it derives from TNamed, not from TObject. For example, an arrow (TArrow) doesn't have
a name. In that case, the "name" is the name of the class. To know the name of an object, just click with
the right button on it. The name appears at the top of the context menu. In case of multiple unnamed
objects, a call to GetPrimitive("className") returns the instance of the class that was first
created. To retrieve a later instance you can use GetListOfPrimitives(), which returns a list
of all the objects on the pad. From the list you can select the object you need.

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects owned by that pad.
This list is accessible by the GetListOfPrimitives() method of TPad. This method returns
a pointer to a TList. Suppose we get the pointer to the object, we want to hide, call it obj (see
paragraph above). We get the pointer to the list:

root[] li = gPad->GetListOfPrimitives()

Then remove the object from this list:

root[] li->Remove(obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for example). If
one wants to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many histograms drawn on the same
plot (with the option "same"). There are other ways! Try to use the method described here for simple
objects.

The Coordinate Systems of a Pad
There are coordinate systems in a TPad: user coordinates, normalized coordinates (NDC), and pixel
coordinates.

Figure 9.3. Pad coordinate systems

Graphics and the
Graphical User Interface

146

The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use the user coordinates, and
all graphic primitives have their parameters defined in terms of user coordinates. By default, when
an empty pad is drawn, the user coordinates are set to a range from 0 to 1 starting at the lower left
corner. At this point they are equivalent of the NDC coordinates (see below). If you draw a high level
graphical object, such as a histogram or a function, the user coordinates are set to the coordinates of
the histogram. Therefore, when you set a point it will be in the histogram coordinates.

For a newly created blank pad, one may use TPad::Range to set the user coordinate system. This
function is defined as:

void Range(float x1,float y1,float x2,float y2)

The arguments x1, x2 defines the new range in the x direction, and the y1, y2 define the new range
in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100,-100,100,100)

This will set the active pad to have both coordinates to go from -100 to 100, with the center of the pad
at (0,0). You can visually check the coordinates by viewing the status bar in the canvas. To display
the status bar select Event Status entry in the View canvas menu.

Figure 9.4. The status bar

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user system. The coordinates
range from 0 to 1 and (0, 0) corresponds to the bottom-left corner of the pad. Several internal ROOT
functions use the NDC system (3D primitives, PostScript, log scale mapping to linear scale). You may
want to use this system if the user coordinates are not known ahead of time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as
DistanceToPrimitive() and ExecuteEvent(). Its primary use is for cursor position, which
is always given in pixel coordinates. If (px,py) is the cursor position, px=0 and py=0 corresponds
to the top-left corner of the pad, which is the standard convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But sometimes, you will want to use
NDC. For example, if you want to draw text always at the same place over a histogram, no matter
what the histogram coordinates are. There are two ways to do this. You can set the NDC for one object
or may convert NDC to user coordinates. Most graphical objects offer an option to be drawn in NDC.
For instance, a line (TLine) may be drawn in NDC by using DrawLineNDC(). A latex formula or
a text may use TText::SetNDC() to be drawn in NDC coordinates.

Converting between Coordinate Systems
There are a few utility functions in TPad to convert from one system of coordinates to another. In the
following table, a point is defined by (px,py) in pixel coordinates, (ux,uy) in user coordinates,
(ndcx,ndcy) in normalized coordinates, (apx, apy) are in absolute pixel coordinates.

Conversion TPad’s Methods Returns

Graphics and the
Graphical User Interface

147

NDC to Pixel UtoPixel(ndcx)

VtoPixel(ndcy)

Int_t

Int_t

Pixel to User PixeltoX(px)

PixeltoY(py)

PixeltoXY(px,py,&ux,&uy)

Double_t

Double_t

Double_t ux,uy

User to Pixel XtoPixel(ux)

YtoPixel(uy)

XYtoPixel(ux,uy,&px,&py)

Int_t

Int_t

Int_t px,py

User to absolute pixel XtoAbsPixel(ux)

YtoAbsPixel(uy)

XYtoAbsPixel(ux,uy,&apx,&apy)

Int_t

Int_t

Int_t apx,apy

Absolute pixel to user AbsPixeltoX(apx)

AbsPixeltoY(apy)

AbsPixeltoXY(apx,apy,&ux,&uy)

Double_t

Double_t

Double_t ux,uy

Note: all the pixel conversion functions along the Y axis consider that py=0 is at the top of the pad
except PixeltoY() which assume that the position py=0 is at the bottom of the pad. To make
PixeltoY() converting the same way as the other conversion functions, it should be used the
following way (p is a pointer to a TPad):

p->PixeltoY(py – p->GetWh());

Dividing a Pad into Sub-pads
Dividing a pad into sub pads in order for instance to draw a few histograms, may be done in two ways.
The first is to build pad objects and to draw them into a parent pad, which may be a canvas. The second
is to automatically divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to explicitly
indicate the size and position of those sub-pads. Suppose we want to build a sub-pad in the active pad
(pointed by gPad). First, we build it, using a TPad constructor:

root[] spad1 = new TPad("spad1","The first subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5, 0.5). These
coordinates are in NDC. This means that they are independent of the user coordinates system, in
particular if you have already drawn for example a histogram in the mother pad. The only thing left
is to draw the pad:

root[] spad1->Draw()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way to
automatically generate horizontal and vertical sub-pads inside a given pad.

root[] pad1->Divide(3,2)

Graphics and the
Graphical User Interface

148

Figure 9.5. Dividing a pad into 6 sub-pads

If pad1 is a pad then, it will divide the pad into 3 columns of 2 sub-pads. The generated sub-pads get
names pad1_i where the index i=1 to nxm (in our case pad1_1, pad1_2...pad1_6). The names
pad1_1 etc… correspond to new variables in CINT, so you may use them as soon as the executed
method was pad->Divide(). However, in a compiled program, one has to access these objects.
Remember that a pad contains other objects and that these objects may themselves be pads. So we can
use the GetPrimitive() method:

TPad* pad1_1 = (TPad*)(pad1->GetPrimitive("pad1_1"))

One question remains. In case one does an automatic divide, how one can set the default margins
between pads? This is done by adding two parameters to Divide(), which are the margins in x and y:

root[] pad1->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Updating the Pad
For performance reasons, a pad is not updated with every change. For example, changing the
coordinates of the pad does not automatically redraw it. Instead, the pad has a "bit-modified" that
triggers a redraw. This bit is automatically set by:

• Touching the pad with the mouse - for example resizing it with the mouse.

• Finishing the execution of a script.

• Adding a new primitive or modifying some primitives for example the name and title of an object.

• You can also set the "bit-modified" explicitly with the Modified method:

// the pad has changed
root[] pad1->Modified()
// recursively update all modified pads:
root[] c1->Update()

A subsequent call to TCanvas::Update() scans the list of sub-pads and repaints the pads
declared modified.

In compiled code or in a long macro, you may want to access an object created during
the paint process. To do so, you can force the painting with a TCanvas::Update(). For

Graphics and the
Graphical User Interface

149

example, a TGraph creates a histogram (TH1) to paint itself. In this case the internal histogram
obtained with TGraph::GetHistogram() is created only after the pad is painted. The pad
is painted automatically after the script is finished executing or if you force the painting with
TPad::Modified() followed by a TCanvas::Update(). Note that it is not necessary to call
TPad::Modified() after a call to Draw(). The "bit-modified" is set automatically by Draw(). A
note about the "bit-modified" in sub pads: when you want to update a sub pad in your canvas, you need
to call pad->Modified() rather than canvas->Modified(), and follow it with a canvas-
>Update(). If you use canvas->Modified(), followed by a call to canvas->Update(),
the sub pad has not been declared modified and it will not be updated. Also note that a call to pad-
>Update() where pad is a sub pad of canvas, calls canvas->Update() and recursively updates
all the pads on the canvas.

Making a Pad Transparent
As we will see in the paragraph "Fill Attributes", a fill style (type of hatching) may be set for a pad.

root[] pad1->SetFillStyle(istyle)

This is done with the SetFillStyle method where istyle is a style number, defined in "Fill
Attributes". A special set of styles allows handling of various levels of transparency. These are styles
number 4000 to 4100, 4000 being fully transparent and 4100 fully opaque. So, suppose you have an
existing canvas with several pads. You create a new pad (transparent) covering for example the entire
canvas. Then you draw your primitives in this pad. The same can be achieved with the graphics editor.
For example:

root[] .x tutorials/hist/h1draw.C
root[] TPad *newpad=new TPad("newpad","Transparent pad",0,0,1,1);
root[] newpad->SetFillStyle(4000);
root[] newpad->Draw();
root[] newpad->cd();
root[] // create some primitives, etc

Setting the Log Scale
Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the histogram. The
scale is an attribute of the pad because you may want to draw the same histogram in linear scale in
one pad and in log scale in another pad. Frequently, we see several histograms on top of each other in
the same pad. It would be very inconvenient to set the scale attribute for each histogram in a pad.

Furthermore, if the logic was set in the histogram class (or each object) the scale setting in each Paint
method of all objects should be tested.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame will
convince you. The SetLogx(), SetLogy() and SetLogz() methods are there. As you see,
TPad defines log scale for the two directions x and y plus z if you want to draw a 3D representation
of some function or histogram.

The way to set log scale in the x direction for the active pad is:

root[] gPad->SetLogx(1)

To reset log in the z direction:

root[] gPad->SetLogz(0)

If you have a divided pad, you need to set the scale on each of the sub-pads. Setting it on the containing
pad does not automatically propagate to the sub-pads. Here is an example of how to set the log scale
for the x-axis on a canvas with four sub-pads:

root[] TCanvas MyCanvas("MyCanvas","My Canvas")
root[] MyCanvas->Divide(2,2)

Graphics and the
Graphical User Interface

150

root[] MyCanvas->cd(1)
root[] gPad->SetLogx()
root[] MyCanvas->cd(2)
root[] gPad->SetLogx()
root[] MyCanvas->cd(3)
root[] gPad->SetLogx()

WaitPrimitive method
When the TPad::WaitPrimitive() method is called with no arguments, it will wait until a
double click or any key pressed is executed in the canvas. A call to gSystem->Sleep(10) has been
added in the loop to avoid consuming at all the CPU. This new option is convenient when executing
a macro. By adding statements like:

canvas->WaitPrimitive();

You can monitor the progress of a running macro, stop it at convenient places with the possibility to
interact with the canvas and resume the execution with a double click or a key press.

Locking the Pad
You can make the TPad non-editable. Then no new objects can be added, and the existing objects and
the pad can not be changed with the mouse or programmatically. By default the TPad is editable.

TPad::SetEditable(kFALSE)

Graphical Objects
In this paragraph, we describe the various simple 2D graphical objects defined in ROOT. Usually, one
defines these objects with their constructor and draws them with their Draw() method. Therefore,
the examples will be very brief. Most graphical objects have line and fill attributes (color, width) that
will be described in “Graphical objects attributes”. If the user wants more information, the class names
are given and he may refer to the online developer documentation. This is especially true for functions
and methods that set and get internal values of the objects described here. By default 2D graphical
objects are created in User Coordinates with (0, 0) in the lower left corner.

Lines, Arrows and Polylines
The simplest graphical object is a line. It is implemented in the TLine class. The line constructor is:

TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and second point. It can be used:

root[] l = new TLine(0.2,0.2,0.8,0.3)
root[] l->Draw()

The arrow constructor is:

TArrow(Double_t x1, Double_t y1,
 Double_t x2, Double_t y2,
 Float_t arrowsize, Option_t *option)

It defines an arrow between points x1,y1 and x2,y2. The arrow size is in percentage of the pad
height. The option parameter has the following meanings:

">" "<|"

"<" "|>"

Graphics and the
Graphical User Interface

151

"<>"

"<|>"

Once an arrow is drawn on the screen, one can:

• click on one of the edges and move this edge.

• click on any other arrow part to move the entire arrow.

Figure 9.6. Different arrow formats

If FillColor is 0, an open triangle is drawn; else a full triangle is filled with the set fill color. If
ar is an arrow object, fill color is set with:

ar.SetFillColor(icolor);

Where icolor is the color defined in “Color and Color Palettes”.

The default-opening angle between the two sides of the arrow is 60 degrees. It can be changed with
the method ar–>SetAngle(angle), where angle is expressed in degrees.

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D space. Its constructor is:

TPolyLine(Int_t n,Double_t* x,Double_t* y,Option_t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates of the
points. TPolyLine can be used by it self, but is also a base class for other objects, such as curly arcs.

Circles and Ellipses
An ellipse can be truncated and rotated. It is defined by its center (x1,y1) and two radii r1 and
r2. A minimum and maximum angle may be specified (phimin,phimax). The ellipse may be
rotated with an angle theta. All these angles are in degrees. The attributes of the outline line are
set via TAttLine, of the fill area – via TAttFill class. They are described in “Graphical Objects
Attributes”.

Figure 9.7. Different types of ellipses

Graphics and the
Graphical User Interface

152

When an ellipse sector is drawn only, the lines between the center and the end points of the sector are
drawn by default. By specifying the drawn option “only”, these lines can be avoided. Alternatively,
the method SetNoEdges() can be called. To remove completely the ellipse outline, specify zero
(0) as a line style.

The TEllipse constructor is:

TEllipse(Double_t x1, Double_t y1, Double_t r1, Double_t r2,
 Double_t phimin, Double_t phimax, Double_t theta)

An ellipse may be created with:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)
root[] e->Draw()

Rectangles
The class TBox defines a rectangle. It is a base class for many different higher-level graphical
primitives. Its bottom left coordinates x1, y1 and its top right coordinates x2, y2, defines a box. The
constructor is:

TBox(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

It may be used as in:

root[] b = new TBox(0.2,0.2,0.8,0.3)
root[] b->SetFillColor(5)
root[] b->Draw()

Figure 9.8. A rectangle with a border

A TWbox is a rectangle (TBox) with a border size and a border mode. The attributes of the outline
line and of the fill area are described in “Graphical Objects Attributes”

Markers
A marker is a point with a fancy shape! The possible markers are shown in the next figure.

Figure 9.9. Markers

The marker constructor is:

TMarker(Double_t x,Double_t y,Int_t marker)

Graphics and the
Graphical User Interface

153

The parameters x and y are the marker coordinates and marker is the marker type, shown in
the previous figure. Suppose the pointer ma is a valid marker. The marker size is set via ma-
>SetMarkerSize(size), where size is the desired size. Note, that the marker types 1,
6 and 7 (the dots) cannot be scaled. They are always drawn with the same number of pixels.
SetMarkerSize does not apply on them. To have a "scalable dot" a circle shape should be used
instead, for example, the marker type 20. The default marker type is 1, if SetMarkerStyle is not
specified. It is the most common one to draw scatter plots.

Figure 9.10. Different marker sizes

The user interface for changing the marker color, style and size looks like shown in this picture. It
takes place in the editor frame anytime the selected object inherits the class TAttMarker.

Non-symmetric symbols should be used carefully in plotting. The next two graphs show how the
misleading a careless use of symbols can be. The two plots represent the same data sets but because
of a bad symbol choice, the two on the top appear further apart from the next example.

Figure 9.11. The use of non-symmetric markers

A TPolyMaker is defined by an array on N points in a 2D space. At each point x[i], y[i] a
marker is drawn. The list of marker types is shown in the previous paragraph. The marker attributes
are managed by the class TAttMarker and are described in “Graphical Objects Attributes”. The
TPolyMarker constructor is:

TPolyMarker(Int_t n,Double_t *x,Double_t *y,Option_t *option)

Where x and y are arrays of coordinates for the n points that form the poly-marker.

Curly and Wavy Lines for Feynman Diagrams
This is a peculiarity of particle physics, but we do need sometimes to draw Feynman diagrams. Our
friends working in banking can skip this part. A set of classes implements curly or wavy poly-lines

Graphics and the
Graphical User Interface

154

typically used to draw Feynman diagrams. Amplitudes and wavelengths may be specified in the
constructors, via commands or interactively from context menus. These classes are TCurlyLine and
TCurlyArc. These classes make use of TPolyLine by inheritance; ExecuteEvent methods are
highly inspired from the methods used in TPolyLine and TArc.

Figure 9.12. The picture generated by the tutorial macro feynman.C

The TCurlyLine constructor is:

TCurlyLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2,
 Double_t wavelength, Double_t amplitude)

The coordinates (x1, y1) define the starting point, (x2, y2) – the end-point. The wavelength
and the amplitude are given in percent of the pad height.

The TCurlyArc constructor is:

TCurlyArc(Double_t x1, Double_t y1, Double_t rad,
 Double_t phimin, Double_t phimax,
 Double_t wavelength, Double_t amplitude)

The curly arc center is (x1, y1) and the radius is rad. The wavelength and the amplitude are given
in percent of the line length. The parameters phimin and phimax are the starting and ending angle
of the arc (given in degrees). Refer to $ROOTSYS/tutorials/graphics/feynman.C for the
script that built the figure above.

Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (TPaveLabel), or titles of graphs
or many other objects but it can live a life of its own. All text displayed in ROOT graphics is an object
of class TText. For a physicist, it will be most of the time a TLatex expression (which derives from
TText). TLatex has been conceived to draw mathematical formulas or equations. Its syntax is very
similar to the Latex in mathematical mode.

Subscripts and Superscripts

Subscripts and superscripts are made with the _ and ^ commands. These commands can be
combined to make complex subscript and superscript expressions. You may choose how to
display subscripts and superscripts using the 2 functions SetIndiceSize(Double_t) and
SetLimitIndiceSize(Int_t). Examples of what can be obtained using subscripts and
superscripts:

The expression Gives The expression Gives The expression Gives

x^{2y} x^{y^{2}} x_{1}^{y_{1}}

x_{2y} x^{y_{1}} x_{1}^{y}

Graphics and the
Graphical User Interface

155

Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac command is used for large
fractions in displayed formula; it has two arguments: the numerator and the denominator. For example,

the equation is obtained by following expression x=#frac{y+z/2}{y^{2}+1}.

Roots

The #sqrt command produces the square ROOT of its argument; it has an optional first argument
for other roots.

Example: #sqrt{10} #sqrt[3]{10}

Delimiters

You can produce three kinds of proportional delimiters.

#[]{....} or "à la" Latex

#left[.....#right] big square brackets

#{}{....} or #left{.....#right}big curly brackets

#||{....} or #left|.....#right|big absolute value symbol

#(){....} or#left(.....#right)big parenthesis

Changing Style in Math Mode

You can change the font and the text color at any moment using:

#font[font-number]{...} and #color[color-number]{...}

Line Splitting

A TLatex string may be split in two with the following command: #splitline{top}
{bottom}. TAxis and TGaxis objects can take advantage of this feature. For example, the date
and time could be shown in the time axis over two lines with: #splitline{21 April 2003}
{14:23:56}

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding # to the name of the letter.
For an uppercase Greek letter, just capitalize the first letter of the command name.

#alpha #beta #chi #delta #varepsilon #phi
#gamma #eta #iota #varphi #kappa #lambda
#mu #nu #omicron #pi #theta #rho
#sigma #tau #upsilon #varomega #omega #xi
#psi #zeta #Alpha #Beta #Chi #Delta
#Epsilon #Phi #Gamma #Eta #Iota #Kappa
#vartheta #Lambda #Mu #Nu #Omicron #Pi
#Theta #Rho #Sigma #Tau #Upsilon #Omega

Graphics and the
Graphical User Interface

156

#varsigma #Xi #Psi #epsilon #varUpsilon #Zeta

Mathematical Symbols

TLatex can make mathematical and other symbols. A few of them, such as + and >, are produced
by typing the corresponding keyboard character. Others are obtained with the commands as shown
in the table above.

Accents, Arrows and Bars

Symbols in a formula are sometimes placed one above another. TLatex provides special commands
for that.

#hat{a} = hat

#check = inverted hat

#acute = acute

Graphics and the
Graphical User Interface

157

#grave = accent grave

#dot = derivative

#ddot = double derivative

#tilde = tilde

#slash = special sign. Draw a slash on top of the text between brackets for example

#slash{E}_{T} generates "Missing ET"

 is obtained with #bar{a}

 is obtained with #vec{a}

Example 1

The script $ROOTSYS/tutorials/graphics/latex.C:

{
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(12);
 l.SetTextSize(0.04);

 l.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}_{0}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.4,"3) R = |A|^{2} =
 #frac{1}{2}(#[]{#frac{1}{2}+C(V)}^{2}+
 #[]{#frac{1}{2}+S(V)}^{2})");
 l.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=
 -#infty}^{#infty}A(i)cos#[]{#frac{i}{t+i}}");
}

Figure 9.13. The picture generated by the tutorial macro latex.C

Graphics and the
Graphical User Interface

158

Example 2

The script $ROOTSYS/tutorials/graphics/latex2.C:

{
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(23);
 l.SetTextSize(0.1);
 l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}
 #rightarrowI#bar{I}, q#bar{q}");
 l.DrawLatex(0.5,0.75,"|#vec{a}#bullet#vec{b}|=
 #Sigmaa^{i}_{jk}+b^{bj}_{i}");
 l.DrawLatex(0.5,0.5,"i(#partial_{#mu}#bar{#psi}#gamma^{#mu}
 +m#bar{#psi}=0
 #Leftrightarrow(#Box+m^{2})#psi=0");
 l.DrawLatex(0.5,0.3,"L_{em}=eJ^{#mu}_{em}A_{#mu} ,
 J^{#mu}_{em}=#bar{I}#gamma_{#mu}I
 M^{j}_{i}=#SigmaA_{#alpha}#tau^{#alphaj}_{i}");
}

Figure 9.14. The picture generated by the tutorial macro latex2.C

Example 3

The script $ROOTSYS/tutorials/graphics/latex3.C:

{
 TCanvas c1("c1");
 TPaveText pt(.1,.5,.9,.9);
 pt.AddText("#frac{2s}{#pi#alpha^{2}}
 #frac{d#sigma}{dcos#theta} (e^{+}e^{-}
 #rightarrow f#bar{f}) = ");
 pt.AddText("#left| #frac{1}{1 - #Delta#alpha} #right|^{2}
 (1+cos^{2}#theta");
 pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi(s)
 #[]{#hat{g}_{#nu}^{e}#hat{g}_{#nu}^{f}
 (1 + cos^{2}#theta) + 2 #hat{g}_{a}^{e}
 #hat{g}_{a}^{f} cos#theta) } #right}");
 pt.SetLabel("Born equation");
 pt.Draw();
}

Graphics and the
Graphical User Interface

159

Figure 9.15. The picture generated by the tutorial macro latex3.C

Text in a Pad
Text displayed in a pad may be embedded into boxes, called paves, or may be drawn alone. In any
case, it is recommended to use a Latex expression, which is covered in the previous paragraph. Using
TLatex is valid whether the text is embedded or not. In fact, you will use Latex expressions without
knowing it since it is the standard for all the embedded text. A pave is just a box with a border size
and a shadow option. The options common to all types of paves and used when building those objects
are the following:

option = "T" top frame

option = "B" bottom frame

option = "R" right frame

option = "L" left frame

option = "NDC" x1,y1,x2,y2 are given in NDC

option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more functional objects like
TPaveLabels. There are several categories of paves containing text: TPaveLabel, TPaveText
and TPavesText. TPaveLabels are panels containing one line of text. They are used for labeling.

TPaveLabel(Double_t x1, Double_t y1, Double_t x2, Double_t y2,
 const char *label, Option_t *option)

Where (x1, y1) are the coordinates of the bottom left corner, (x2,y2) - coordinates of the upper
right corner. “label” is the text to be displayed and “option” is the drawing option, described
above. By default, the border size is 5 and the option is “br”. If one wants to set the border size to
some other value, one may use the method SetBorderSize(). For example, suppose we have a
histogram, which limits are (-100,100) in the x direction and (0, 1000) in the y direction. The following
lines will draw a label in the center of the histogram, with no border. If one wants the label position
to be independent of the histogram coordinates, or user coordinates, one can use the option “NDC”.
See “The Coordinate Systems of a Pad”.

root[] pl = new TPaveLabel(-50,0,50,200,”Some text”)
root[] pl->SetBorderSize(0)
root[] pl->Draw()

Figure 9.16. PaveLabels drawn with different options

Graphics and the
Graphical User Interface

160

A TPaveLabel can contain only one line of text. A TPaveText may contain several lines. This is
the only difference. This picture illustrates and explains some of the points of TPaveText. Once a
TPaveText is drawn, a line can be added or removed by brining up the context menu with the mouse.

Figure 9.17. PaveText examples

A TPavesText is a stack of text panels (see TPaveText). One can set the number of stacked
panels at building time. It has the following constructor: By default, the number of stacked panels is
5, option=”br”.

TPavesText(Double_t x1,Double_t y1,Double_t x2,Double_t y2,Int_t npaves,
Option_t* option)

Figure 9.18. A PaveText example

Axis
The axis objects are automatically built by various high level objects such as histograms or graphs.
Once build, one may access them and change their characteristics. It is also possible, for some
particular purposes to build axis on their own. This may be useful for example in the case one wants
to draw two axis for the same plot, one on the left and one on the right.

For historical reasons, there are two classes representing axis. TAxis * axis is the axis object, which
will be returned when calling the TH1::GetAxis() method.

TAxis *axis = histo->GetXaxis()

Of course, you may do the same for Y and Z-axis. The graphical representation of an axis is done
with the TGaxis class. The histogram classes and TGraph generate instances of this class. This is
internal and the user should not have to see it.

Graphics and the
Graphical User Interface

161

Axis Title
The axis title is set, as with all named objects, by

axis->SetTitle("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first extract the axis object:

h->GetXaxis()->SetTitle("Whatever title you want")

Axis Options and Characteristics
The axis options are most simply set with the styles. The available style options controlling specific
axis options are the following:

TAxis *axis = histo->GetXaxis();
axis->SetAxisColor(Color_t color = 1);
axis->SetLabelColor(Color_t color = 1);
axis->SetLabelFont(Style_t font = 62);
axis->SetLabelOffset(Float_t offset = 0.005);
axis->SetLabelSize(Float_t size = 0.04);
axis->SetNdivisions(Int_t n = 510, Bool_t optim = kTRUE);
axis->SetNoExponent(Bool_t noExponent = kTRUE);
axis->SetTickLength(Float_t length = 0.03);
axis->SetTitleOffset(Float_t offset = 1);
axis->SetTitleSize(Float_t size = 0.02);

The getters corresponding to the described setters are also available. The general options, not
specific to axis, as for instance SetTitleTextColor() are valid and do have an effect on axis
characteristics.

Setting the Number of Divisions
Use TAxis::SetNdivisions(ndiv,optim) to set the number of divisions for an axis. The
ndiv and optim are as follows:

• ndiv = N1 + 100*N2 + 10000*N3

• N1 = number of first divisions.

• N2 = number of secondary divisions.

• N3 = number of tertiary divisions.

• optim = kTRUE (default), the divisions’ number will be optimized around the specified value.

• optim = kFALSE, or n < 0, the axis will be forced to use exactly n divisions.

For example:

ndiv = 0: no tick marks.

ndiv = 2: 2 divisions, one tick mark in the middle of the axis.

ndiv = 510: 10 primary divisions, 5 secondary divisions

ndiv = -10: exactly 10 primary divisions

Zooming the Axis
You can use TAxis::SetRange or TAxis::SetRangeUser to zoom the axis.

TAxis::SetRange(Int_t binfirst,Int_t binlast)

Graphics and the
Graphical User Interface

162

The SetRange method parameters are bin numbers. They are not axis. For example if a histogram
plots the values from 0 to 500 and has 100 bins, SetRange(0,10) will cover the values 0 to 50.
The parameters for SetRangeUser are user coordinates. If the start or end is in the middle of a
bin the resulting range is approximation. It finds the low edge bin for the start and the high edge bin
for the high.

TAxis::SetRangeUser(Axis_t ufirst,Axis_t ulast)

Both methods, SetRange and SetRangeUser, are in the context menu of any axis and can be used
interactively. In addition, you can zoom an axis interactively: click on the axis on the start, drag the
cursor to the end, and release the mouse button.

Drawing Axis Independently of Graphs or Histograms
An axis may be drawn independently of a histogram or a graph. This may be useful to draw for
example a supplementary axis for a graph. In this case, one has to use the TGaxis class, the graphical
representation of an axis. One may use the standard constructor for this kind of objects:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax, Double_t ymax,
 Double_t wmin, Double_t wmax, Int_t ndiv = 510,
 Option_t* chopt,Double_t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user coordinates system, and
xmax, ymax are the end coordinates. The arguments wmin and wmax are the minimum (at the start)
and maximum (at the end) values to be represented on the axis; ndiv is the number of divisions. The
options, given by the “chopt” string are the following:

• chopt = 'G': logarithmic scale, default is linear.

• chopt = 'B': Blank axis (it is useful to superpose the axis).

Instead of the wmin,wmax arguments of the normal constructor, i.e. the limits of the axis, the name
of a TF1 function can be specified. This function will be used to map the user coordinates to the axis
values and ticks.

The constructor is the following:

TGaxis(Double_t xmin,Double_t ymin,Double_t xmax,Double_t ymax,
const char* funcname,Int_t ndiv=510,Option_t* chopt,Double_t gridlength=0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or even
decreasing. In fact, anything you like.

Orientation of Tick Marks on Axis
Tick marks are normally drawn on the positive side of the axis, however, if xmin = xmax, then
negative.

• chopt = '+’: tick marks are drawn on Positive side. (Default)

• chopt = '-’: tick marks are drawn on the negative side.

• chopt = '+-’: tick marks are drawn on both sides of the axis.

• chopt = ‘U’: unlabeled axis, default is labeled.

Labels

Position

Labels are normally drawn on side opposite to tick marks. However, chopt = '=': on Equal side.
The function TAxis::CenterLabels() sets the bit kCenterLabels and it is visible from

Graphics and the
Graphical User Interface

163

TAxis context menu. It centers the bin labels and it makes sense only when the number of bins is equal
to the number of tick marks. The class responsible for drawing the axis TGaxis inherits this property.

Orientation

Labels are normally drawn parallel to the axis. However, if xmin = xmax, then they are drawn
orthogonal, and if ymin=ymax they are drawn parallel.

Labels for Exponents

By default, an exponent of the form 10^N is used when the label values are either all very small or
very large. One can disable the exponent by calling:

TAxis::SetNoExponent(kTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less
than the fgMaxDigits global member. If the property SetNoExponent was set in TAxis
(via TAxis::SetNoExponent), the TGaxis will inherit this property. TGaxis is the class
responsible for drawing the axis. The method SetNoExponent is also available from the axis
context menu.

Figure 9.19. Y-axis with and without exponent labels

Number of Digits in Labels

TGaxis::fgMaxDigits is the maximum number of digits permitted for the axis labels above
which the notation with 10^N is used. It must be greater than 0. By default fgMaxDigits is 5 and to
change it use the TGaxis::SetMaxDigits method. For example to set fgMaxDigits to accept
6 digits and accept numbers like 900000 on an axis call:

TGaxis::SetMaxDigits(6)

Tick Mark Positions

Labels are centered on tick marks. However, if xmin = xmax, then they are right adjusted.

• chopt = 'R': labels are right adjusted on tick mark (default is centered)

• chopt = 'L': labels are left adjusted on tick mark.

• chopt = 'C': labels are centered on tick mark.

Graphics and the
Graphical User Interface

164

• chopt = 'M': In the Middle of the divisions.

Label Formatting

Blank characters are stripped, and then the label is correctly aligned. The dot, if last character of
the string, is also stripped. In the following, we have some parameters, like tick marks length and
characters height (in percentage of the length of the axis, in user coordinates). The default values are
as follows:

• Primary tick marks: 3.0 %

• Secondary tick marks: 1.5 %

• Third order tick marks: .75 %

• Characters height for labels: 4%

• Labels offset: 1.0 %

Stripping Decimals

Use the TStyle::SetStripDecimals to strip decimals when drawing axis labels. By default,
the option is set to true, and TGaxis::PaintAxis removes trailing zeros after the dot in the axis
labels, e.g. {0, 0.5, 1, 1.5, 2, 2.5, etc.}

TStyle::SetStripDecimals (Bool_t strip=kTRUE)

If this function is called with strip=kFALSE, TGaxis::PaintAxis() will draw labels with
the same number of digits after the dot, e.g. {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, etc.}

Optional Grid

chopt = 'W': cross-Wire

Axis Binning Optimization

By default, the axis binning is optimized.

• chopt = 'N': No binning optimization

• chopt = 'I': Integer labeling

Axis with Time Units
Histograms' axis can be defined as "time axis". To do that it is enough to activate the
SetTimeDisplay attribute on a given axis. If h is a histogram, it is done the following way:

h->GetXaxis()->SetTimeDisplay(1); // X axis is a time axis

Two parameters can be adjusted in order to define time axis: the time format and the time offset.

Time Format

It defines the format of the labels along the time axis. It can be changed using the TAxis method
SetTimeFormat. The time format is the one used by the C function strftime(). It is a string
containing the following formatting characters:

For the date: %a abbreviated weekday name

%b abbreviated month name

%d day of the month (01-31)

Graphics and the
Graphical User Interface

165

%m month (01-12)

%y year without century

%Y year with century

For the time: %H hour (24-hour clock)

%I hour (12-hour clock)

%p local equivalent of AM or PM

%M minute (00-59)

%S seconds (00-61)

%% %

The other characters are output as is. For example to have a format like dd/mm/yyyy one should do:

h->GetXaxis()->SetTimeFormat("%d/%m/%Y");

If the time format is not defined, a default one will be computed automatically.

Time Offset

This is a time in seconds in the UNIX standard UTC format (the universal time, not the local one),
defining the starting date of a histogram axis. This date should be greater than 01/01/95 and is given
in seconds. There are three ways to define the time offset:

1. By setting the global default time offset:

TDatime da(2003,02,28,12,00,00);
gStyle->SetTimeOffset(da.Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the example
above, notice the usage of TDatime to translate an explicit date into the time in seconds required
by SetTimeFormat.

2. By setting a time offset to a particular axis:

TDatime dh(2001,09,23,15,00,00);
h->GetXaxis()->SetTimeOffset(dh.Convert());

3. Together with the time format using SetTimeFormat. The time offset can be specified using the
control character %F after the normal time format. %F is followed by the date in the format: yyyy-
mm-dd hh:mm:ss.

h->GetXaxis()->SetTimeFormat("%d/%m/%y%F2000-02-28 13:00:01");

Notice that this date format is the same used by the TDatime function AsSQLString. If needed,
this function can be used to translate a time in seconds into a character string which can be appended
after %F. If the time format is not specified (before %F) the automatic one will be used. The following
example illustrates the various possibilities.

{
 gStyle->SetTitleH(0.08);
 TDatime da(2003,02,28,12,00,00);
 gStyle->SetTimeOffset(da.Convert());
 ct = new TCanvas("ct","Time on axis",0,0,600,600);
 ct->Divide(1,3);
 ht1 = new TH1F("ht1","ht1",30000,0.,200000.);
 ht2 = new TH1F("ht2","ht2",30000,0.,200000.);

Graphics and the
Graphical User Interface

166

 ht3 = new TH1F("ht3","ht3",30000,0.,200000.);
 for (Int_t i=1;i<30000;i++) {
 Float_t noise = gRandom->Gaus(0,120);
 ht1->SetBinContent(i,noise);
 ht2->SetBinContent(i,noise*noise);
 ht3->SetBinContent(i,noise*noise*noise);
 }
 ct->cd(1);
 ht1->GetXaxis()->SetLabelSize(0.06);
 ht1->GetXaxis()->SetTimeDisplay(1);
 ht1->GetXaxis()->SetTimeFormat("%d/%m/%y%F2000-02-2813:00:01");
 ht1->Draw();
 ct->cd(2);
 ht2->GetXaxis()->SetLabelSize(0.06);
 ht2->GetXaxis()->SetTimeDisplay(1);
 ht2->GetXaxis()->SetTimeFormat("%d/%m/%y");
 ht2->Draw();
 ct->cd(3);
 ht3->GetXaxis()->SetLabelSize(0.06);
 TDatime dh(2001,09,23,15,00,00);
 ht3->GetXaxis()->SetTimeDisplay(1);
 ht3->GetXaxis()->SetTimeOffset(dh.Convert());
 ht3->Draw();
}

The output is shown in the figure below. If a time axis has no specified time offset, the global time
offset will be stored in the axis data structure. The histogram limits are in seconds. If wmin and wmax
are the histogram limits, the time axis will spread around the time offset value from TimeOffset
+wmin to TimeOffset+wmax. Until now all examples had a lowest value equal to 0. The following
example demonstrates how to define the histogram limits relatively to the time offset value.

Figure 9.20. Time axis examples

{
 // Define the time offset as 2003, January 1st
 TDatime T0(2003,01,01,00,00,00);
 int X0 = T0.Convert();
 gStyle->SetTimeOffset(X0);

 // Define the lowest histogram limit as 2002,September 23rd

Graphics and the
Graphical User Interface

167

 TDatime T1(2002,09,23,00,00,00);
 int X1 = T1.Convert()-X0;

 // Define the highest histogram limit as 2003, March 7th
 TDatime T2(2003,03,07,00,00,00);
 int X2 = T2.Convert(1)-X0;

 TH1F * h1 = new TH1F("h1","test",100,X1,X2);

 TRandom r;
 for (Int_t i=0;i<30000;i++) {
 Double_t noise = r.Gaus(0.5*(X1+X2),0.1*(X2-X1));
 h1->Fill(noise);
 }

 h1->GetXaxis()->SetTimeDisplay(1);
 h1->GetXaxis()->SetLabelSize(0.03);
 h1->GetXaxis()->SetTimeFormat("%Y/%m/%d");
 h1->Draw();
}

The output is shown in the next figure. Usually time axes are created automatically via histograms,
but one may also want to draw a time axis outside a "histogram context". Therefore, it is useful to
understand how TGaxis works for such axis. The time offset can be defined using one of the three
methods described before. The time axis will spread around the time offset value. Actually, it will
go from TimeOffset+wmin to TimeOffset+wmax where wmin and wmax are the minimum
and maximum values (in seconds) of the axis. Let us take again an example. Having defined "2003,
February 28 at 12h”, we would like to see the axis a day before and a day after.

Figure 9.21. A histogram with time axis X

A TGaxis can be created the following way (a day has 86400 seconds):

TGaxis *axis = new TGaxis(x1,y1,x2,y2,-100000,150000,2405,"t");

the "t" option (in lower case) means it is a "time axis". The axis goes form 100000 seconds before
TimeOffset and 150000 seconds after. So the complete macro is:

{
 c1 = new TCanvas("c1","Examples of TGaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);
 TGaxis *axis = new TGaxis(-8,-0.6,8,-0.6,-100000,150000,2405,"t");
 axis->SetLabelSize(0.03);

Graphics and the
Graphical User Interface

168

 TDatime da(2003,02,28,12,00,00);
 axis->SetTimeOffset(da.Convert());
 axis->SetTimeFormat("%d/%m/%Y");
 axis->Draw();
}

The time format is specified with:

axis->SetTimeFormat("%d/%m/%Y");

The macro gives the following output:

Thanks to the TLatex directive #splitline it is possible to write the time labels on two lines. In
the previous example changing the SetTimeFormat line by:

axis->SetLabelOffset(0.02);
axis->SetTimeFormat("#splitline{%Y}{%d/%m}");

will produce the following axis:

Axis Examples
To illustrate what was said, we provide two scripts. The first one creates the picture shown in the
next figure.

Figure 9.22. The first axis example

The first script is:

{
 c1 = new TCanvas("c1","Examples of Gaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);

 TGaxis *axis1 = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
 axis1->SetName("axis1");
 axis1->Draw();
 TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,0.001,10000,510,"G");
 axis2->SetName("axis2");

Graphics and the
Graphical User Interface

169

 axis2->Draw();

 TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
 axis3->SetName("axis3");
 axis3->Draw();
 TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
 axis4->SetName("axis4");
 axis4->Draw();

 TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32,80506,"-+");
 axis5->SetName("axis5");
 axis5->SetLabelSize(0.03);
 axis5->SetTextFont(72);
 axis5->SetLabelOffset(0.025);
 axis5->Draw();

 TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,100,900,50510,"-");
 axis6->SetName("axis6");
 axis6->Draw();
 TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
 axis7->SetName("axis7");
 axis7->SetLabelOffset(0.01);
 axis7->Draw();

 // one can make axis top->bottom. However because of a problem,
 // the two x values should not be equal
 TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,0,90,50510,"-");
 axis8->SetName("axis8");
 axis8->Draw();
}

Figure 9.23. The second axis example

The second example shows the use of the second form of the constructor, with axis ticks position
determined by a function TF1:

void gaxis3a()
{
 gStyle->SetOptStat(0);

 TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
 h2->Draw();

Graphics and the
Graphical User Interface

170

 TF1 *f1=new TF1("f1","-x",-10,10);
 TGaxis *A1 = new TGaxis(0,2,10,2,"f1",510,"-");
 A1->SetTitle("axis with decreasing values");
 A1->Draw();

 TF1 *f2=new TF1("f2","exp(x)",0,2);
 TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
 A2->SetTitle("exponential axis");
 A2->SetLabelSize(0.03);
 A2->SetTitleSize(0.03);
 A2->SetTitleOffset(1.2);
 A2->Draw();

 TF1 *f3=new TF1("f3","log10(x)",0,800);
 TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
 A3->SetTitle("logarithmic axis");
 A3->SetLabelSize(0.03);
 A3->SetTitleSize(0.03);
 A3->SetTitleOffset(1.2);
 A3->Draw();
}

Figure 9.24. An axis example with time display

// strip chart example
void seism() {

 TStopwatch sw; sw.Start();
 //set time offset
 TDatime dtime;
 gStyle->SetTimeOffset(dtime.Convert());
 TCanvas *c1 = new TCanvas("c1","Time on axis",10,10,1000,500);
 c1->SetFillColor(42);
 c1->SetFrameFillColor(33);
 c1->SetGrid();

 Float_t bintime = 1;
 // one bin = 1 second. change it to set the time scale
 TH1F *ht = new TH1F("ht","The ROOT seism",10,0,10*bintime);
 Float_t signal = 1000;
 ht->SetMaximum(signal);
 ht->SetMinimum(-signal);

Graphics and the
Graphical User Interface

171

 ht->SetStats(0);
 ht->SetLineColor(2);
 ht->GetXaxis()->SetTimeDisplay(1);
 ht->GetYaxis()->SetNdivisions(520);
 ht->Draw();

 for (Int_t i=1;i<2300;i++) {
 // Build a signal : noisy damped sine
 Float_t noise = gRandom->Gaus(0,120);
 if (i > 700)
 noise += signal*sin((i-700.)*6.28/30)*exp((700.-i)/300.);
 ht->SetBinContent(i,noise);
 c1->Modified();
 c1->Update();
 gSystem->ProcessEvents();
 //canvas can be edited during the loop
 }
 printf("Real Time = %8.3fs,Cpu Time = %8.3fsn",sw.RealTime(),sw.CpuTime());
}

Graphical Objects Attributes
Text Attributes

When a class contains text or derives from a text class, it needs to be able to set text attributes like font
type, size, and color. To do so, the class inherits from the TAttText class (a secondary inheritance),
which defines text attributes. TLatex and TText inherit from TAttText.

Setting Text Alignment
Text alignment may be set by a method call. What is said here applies to all objects deriving from
TAttText, and there are many. We will take an example that may be transposed to other types.
Suppose "la" is a TLatex object. The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:

align = 10*HorizontalAlign + VerticalAlign

For horizontal alignment, the following convention applies:

• 1 = left

• 2 = centered

• 3 = right

For vertical alignment, the following convention applies:

• 1 = bottom

• 2 = centered

• 3 = top

For example, align: 11 = left adjusted and bottom adjusted; 32 = right adjusted and vertically centered.

Setting Text Angle
Use TAttText::SetTextAngle to set the text angle. The angle is the degrees of the horizontal.

Graphics and the
Graphical User Interface

172

root[] la->SetTextAngle(angle)

Setting Text Color

Use TAttText::SetTextColor to set the text color. The color is the color index. The colors
are described in "Color and Color Palettes".

root[] la->SetTextColor(color)

Setting Text Font

Use TAttText::SetTextFont to set the font. The parameter font is the font code, combining the
font and precision: font = 10 * fontID + precision

root[] la->SetTextFont(font)

The table below lists the available fonts. The font IDs must be between 1 and 14. The precision can be:

• Precision = 0 fast hardware fonts (steps in the size)

• Precision = 1 scalable and rotate-able hardware fonts (see below)

• Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used. The fonts have a
minimum (4) and maximum (37) size in pixels. These fonts are fast and are of good quality. Their size
varies with large steps and they cannot be rotated. Precision 1 and 2 fonts have a different behavior
depending if True Type Fonts (TTF) are used or not. If TTF are used, you always get very good
quality scalable and rotate-able fonts. However, TTF are slow. Precision 1 and 2 fonts have a different
behavior for PostScript in case of TLatex objects:

• With precision 1, the PostScript text uses the old convention (see TPostScript) for some special
characters to draw sub and superscripts or Greek text.

• With precision 2, the "PostScript" special characters are drawn as such. To draw sub and superscripts
it is highly recommended to use TLatex objects instead.

For example: font = 62 is the font with ID 6 and precision 2.

Figure 9.25. Font’s examples

Graphics and the
Graphical User Interface

173

The available fonts are:

Font ID X11 True Type name Is italic "boldness"

1 times-medium-i-normal "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r-normal "Arial" No 4

5 helvetica-medium-o-normal "Arial" Yes 4

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o-normal "Courier New" Yes 4

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r-normal "Symbol" No 6

13 times-medium-r-normal "Times New Roman" No 4

14 "Wingdings" No 4

This script makes the image of the different fonts:

{
 textc = new TCanvas("textc","Example of text",1);
 for (int i=1;i<15;i++) {
 cid = new char[8];
 sprintf(cid,"ID %d :",i);
 cid[7] = 0;
 lid = new TLatex(0.1,1-(double)i/15,cid);
 lid->SetTextFont(62);
 lid->Draw();
 l = new TLatex(.2,1-(double)i/15,"The quick brown fox is not here anymore")
 l->SetTextFont(i*10+2);
 l->Draw();
 }
}

How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your .rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the TTF is active, you get the
following message at the start of a session: "Free Type Engine v1.x used to render TrueType fonts."
You can also check with the command:

gEnv->Print()

Setting Text Size

Use TAttText::SetTextSize to set the text size.

root[] la->SetTextSize(size)

Graphics and the
Graphical User Interface

174

The size is the text size expressed in percentage of the current pad size.

The text size in pixels will be:

• If current pad is horizontal, the size in pixels = textsize * canvas_height

• If current pad is vertical, the size in pixels = textsize * canvas_width

 The user interface for changing the text color, size, font and allignment looks like
shown in this picture. It takes place in the editor frame anytime the selected object inherits the class
TAttText.

Line Attributes

All classes manipulating lines have to deal with line attributes: color, style and width. This is done
by using secondary inheritance of the class TAttLine. The line color may be set by a method call.
What is said here applies to all objects deriving from TAttLine, and there are many (histograms,
plots). We will take an example that may be transposed to other types. Suppose "li" is a TLine
object. The line color is set with:

root[] li->SetLineColor(color)

The argument color is a color number. The colors are described in "Color and Color Palettes"

The line style may be set by a method call. What is said here applies to all objects deriving from
TAttLine, and there are many (histograms, plots). We will take an example that may be transposed
to other types. Suppose "li" is a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of: 1=solid, 2=dash, 3=dot, 4=dash-dot.

The line width may be set by a method call. What is said here applies to all objects deriving from
TAttLine, and there are many (histograms, plots). We will take an example that may be transposed
to other types. Suppose "li" is a TLine object. The line width is set with:

root[] li->SetLineWidth(width)

The width is the width expressed in pixel units.

 The user interface for changing the line color, line width and style looks like
shown in this picture. It takes place in the editor frame anytime the selected object inherits the class
TAttLine.

Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have to deal with fill attributes.
This is done by using secondary inheritance of the class TAttFill. Fill color may be set by a method
call. What is said here applies to all objects deriving from TAttFill, and there are many (histograms,
plots). We will take an example that may be transposed to other types. Suppose "h" is a TH1F (1 dim
histogram) object. The histogram fill color is set with:

Graphics and the
Graphical User Interface

175

root[] h->SetFillColor(color)

The color is a color number. The colors are described in "Color and color palettes"

Fill style may be set by a method call. What is said here applies to all objects deriving from TAttFill,
and there are many (histograms, plots). We will take an example that may be transposed to other types.
Suppose "h" is a TH1F (1 dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is: 0:hollow, 1001:solid, 2001:hatch style, 3000+pattern number:patterns,
4000 to 4100:transparency, 4000:fully transparent, 4100: fully opaque.

Fill styles >3100 and <3999 are hatches. They are defined according to the FillStyle=3ijk value
as follows:

• i(1-9) specifies the space between each hatch (1=minimum space, 9=maximum). The final
spacing is set by SetHatchesSpacing() method and it is*GetHatchesSpacing().

• j(0-9) specifies the angle between 0 and 90 degres as follows: 0=0, 1=10, 2=20, 3=30, 4=45,
5=not drawn, 6=60, 7=70, 8=80 and 9=90.

• k(0-9) specifies the angle between 0 and 90 degres as follows: 0=180, 1=170, 2=160, 3=150,
4=135, 5=not drawn, 6=120, 7=110, 8=100 and 9=90.

Figure 9.26. The various patterns

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first Canvas constructor
is called. This table is a linked list, which can be accessed from the gROOT object (see
TROOT::GetListOfColors()). Each color has an index and when a basic color is defined, two
"companion" colors are defined:

• the dark version (color index + 100)

• the bright version (color index + 150)

The dark and bright colors are used to give 3-D effects when drawing various boxes (see TWbox,
TPave, TPaveText, TPaveLabel, etc). If you have a black and white copy of the manual, here
are the basic colors and their indices.

Graphics and the
Graphical User Interface

176

Figure 9.27. The basic ROOT colors

The list of currently supported basic colors (here dark and bright colors are not shown) are shown.
The color numbers specified in the basic palette, and the picture above, can be viewed by selecting
the menu entry Colors in the View canvas menu. The user may define other colors. To do this, one
has to build a new TColor:

TColor(Int_t color,Float_t r,Float_t g,Float_t b,const char* name)

One has to give the color number and the three Red, Green, Blue values, each being defined from 0
(min) to 1(max). An optional name may be given. When built, this color is automatically added to the
existing list of colors. If the color number already exists, one has to extract it from the list and redefine
the RGB values. This may be done for example with:

root[] color=(TColor*)(gROOT->GetListOfColors()->At(index_color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index_color is the color number you wish to change.

 The user interface for changing the fill color and style looks like shown in this
picture. It takes place in the editor frame anytime the selected object inherits the class TAttFill.

Color Palette (for Histograms)

Defining one color at a time may be tedious. The histogram classes (see Draw Options) use the color
palette. For example, TH1::Draw("col") draws a 2-D histogram with cells represented by a box

Graphics and the
Graphical User Interface

177

filled with a color CI function of the cell content. If the cell content is N, the color CI used will be the
color number in colors[N]. If the maximum cell content is >ncolors, all cell contents are scaled
to ncolors. The current color palette does not have a class or global object of its own. It is defined
in the current style as an array of color numbers. The current palette can be changed with:

TStyle::SetPalette(Int_t ncolors,Int_t*color_indexes).

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is defined. The colors
defined in this palette are good for coloring pads, labels, and other graphic objects. If ncolors > 0
and colors = 0, the default palette is used with a maximum of ncolors. If ncolors == 1 &&
colors == 0, then a pretty palette with a spectrum Violet->Red is created. It is recommended
to use this pretty palette when drawing lego(s), surfaces or contours. For example, to set the current
palette to the “pretty” one, do:

root[] gStyle->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a custom palette. You can
adapt it to suit your needs. In case you use it for contour coloring, with the current color/contour
algorithm, always define two more colors than the number of contours.

void palette() {
 // Example of creating new colors (purples)
 const Int_t colNum = 10; // and defining of a new palette
 Int_t palette[colNum];
 for (Int_t i=0; i<colNum; i++) {
 // get the color and if it does not exist create it
 if (! gROOT->GetColor(230+i)){
 TColor *color = new TColor(230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
 } else {
 TColor *color = gROOT->GetColor(230+i);
 color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);
 }
 palette[i] = 230+i;
 }
 gStyle->SetPalette(colNum,palette);
 TF2 *f2 = new TF2("f2","exp(-(x^2)-(y^2))",-3,3,-3,3);
 // two contours less than the number of colors in palette
 f2->SetContour(colNum-2);
 f2->Draw("cont");
}

The Graphics Editor
A new graphics editor took place in ROOT v4.0. The editor can be activated by selecting the Editor
menu entry in the canvas View menu or one of the context menu entries for setting line, fill, marker
or text attributes. The following object editors are available for the current ROOT version.

Graphics and the
Graphical User Interface

178

TAxisEditor

This user interface gives the possibility for changing the following axis attributes:

• color of the selected axis, the axis’ title and labels;

• the length of thick parameters and the possibility to set them on both axis sides (if +- is selected);

• to set logarithmic or linear scale along the selected axis with a choice for optimized or more
logarithmic labels;

• primary, secondary and tertiary axis divisions can be set via the three number fields;

• the axis title can be added or edited and the title’s color, position, offset, size and font can be set
interactively;

• the color, size, and offset of axis labels can be set similarly. In addition, there is a check box for no
exponent choice, and another one for setting the same decimal part for all labels.

TPadEditor

• It provides the following user interface:

• Fixed aspect ratio – can be set for pad resizing.

• Edit – sets pad or canvas as editable.

• Cross-hair – sets a cross hair on the pad.

• TickX – set ticks along the X axis.

• TickY – set ticks along the Y axis.

Graphics and the
Graphical User Interface

179

• GridX – set a grid along the X axis.

• GridY – set a grid along the Y axis.

• The pad or canvas border size can be set if a sunken or a raised border mode is

• selected; no border mode can be set too.

Copy and Paste
You can make a copy of a canvas using TCanvas::DrawClonePad. This method is unique
to TCanvas. It clones the entire canvas to the active pad. There is a more general method
TObject::DrawClone, which all objects descendent of TObject, specifically all graphic objects
inherit. Below are two examples, one to show the use of DrawClonePad and the other to show the
use of DrawClone.

Using the GUI

In this example we will copy an entire canvas to a new one with DrawClonePad. Run the script
draw2dopt.C.

root[] .x tutorials/hist/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas follow the steps:

• Right-click on it to bring up the context menu

• Select DrawClonePad

This copies the entire canvas and all its sub-pads to a new canvas. The copied canvas is a deep clone,
and all the objects on it are copies and independent of the original objects. For instance, change the fill
on one of the original histograms, and the cloned histogram retains its attributes. DrawClonePad
will copy the canvas to the active pad; the target does not have to be a canvas. It can also be a pad
on a canvas.

Figure 9.28. Different draw options

If you want to copy and paste a graphic object from one canvas or pad to another canvas or pad,
you can do so with DrawClone method inherited from TObject. All graphics objects inherit the

Graphics and the
Graphical User Interface

180

TObject::DrawClone method. In this example, we create a new canvas with one histogram from
each of the canvases from the script draw2dopt.C.

• Start a new ROOT session and execute the script draw2dopt.C

• Select a canvas displayed by the script, and create a new canvas c1 from the File menu.

• Make sure that the target canvas (c1) is the active one by middle clicking on it. If you do this step
right after step 2, c1 will be active.

• Select the pad with the first histogram you want to copy and paste.

• Right click on it to show the context menu, and select DrawClone.

• Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by the script, until you have
one pad from each type. If you wanted to put the same annotation on each of the sub pads in the new
canvas, you could use DrawClone to do so. Here we added the date to each pad. The steps to this are:

• Create the label in on of the pads with the graphics editor.

• Middle-click on the target pad to make it the active pad

• Use DrawClone method of the label to draw it in each of the other panels.

The option in the DrawClone method argument is the Draw option for a histogram or graph. A call
to TH1::DrawClone can clone the histogram with a different draw option.

Programmatically
To copy and paste the four pads from the command line or in a script you would execute the following
statements:

root[] .x tutorials/hist/draw2dopt.C
root[] TCanvas c1("c1","Copy Paste",200,200,800,600);
root[] surfaces->cd(1); // get the first pad
root[] TPad *p1 = gPad;
root[] lego->cd(2);// get the next pad
root[] TPad *p2 = gPad;
root[] cont->cd(3);// get the next pad
root[] TPad *p3 = gPad;
root[] c2h->cd(4);// get the next pad
root[] TPad *p4 = gPad;
root[] // to draw the four clones
root[] c1->cd();
root[] p1->DrawClone();
root[] p2->DrawClone();
root[] p3->DrawClone();
root[] p4->DrawClone();

Note that the pad is copied to the new canvas in the same location as in the old canvas. For example
if you were to copy the third pad of surf to the top left corner of the target canvas you would have
to reset the coordinates of the cloned pad.

Legends
Legends for a graph are obtained with a TLegend object. This object points to markers, lines, boxes,
histograms, graphs and represent their marker, line, fill attributes. Any object that has a marker or

Graphics and the
Graphical User Interface

181

line or fill attribute may have an associated legend. A TLegend is a panel with several entries (class
TLegendEntry) and is created by the constructor

TLegend(Double_t x1,Double_t y1,Double_t x2,Double_t y2,const char *header,
Option_t *option)

The legend is defined with default coordinates, border size and option. The legend coordinates (NDC)
in the current pad are x1, y1, x2, y2. The default text attributes for the legend are:

• Alignment = 12 left adjusted and vertically centered

• Angle = 0 (degrees)

• Color = 1 (black)

• Size = calculate when number of entries is known

• Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title

The title is a regular entry and supports TLatex. The default is no title (header = 0). The options
are the same as for TPave; by default, they are "brand". Once the legend box is created, one has
to add the text with the AddEntry() method:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char *label,Option_t *option)

The parameters are:

• *obj is a pointer to an object having marker, line, or fill attributes (a histogram, or a graph)

• label is the label to be associated to the object

• option:

• ”L” draw line associated with line attributes of obj, if obj inherits from TAttLine.

• ”P” draw poly-marker associated with marker attributes of obj, if obj inherits TAttMarker.

• ”F” draw a box with fill associated with fill attributes of obj, if obj inherits TAttFill.

One may also use the other form of the method AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name,const char *label, Option_t *option)

Here name is the name of the object in the pad. Other parameters are as in the previous case. Next
example shows how to create a legend:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry(fun1,"One Theory","l");
leg->AddEntry(fun3,"Another Theory","f");
leg->AddEntry(gr,"The Data","p");
leg->Draw();
// oops we forgot the blue line... add it after
leg->AddEntry(fun2,"#sqrt{2#pi} P_{T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader("The Legend Title");
leg->Draw();

Here fun1, fun2, fun3 and gr are pre-existing functions and graphs. You can edit the TLegend
by right clicking on it.

Graphics and the
Graphical User Interface

182

Figure 9.29. A legend example

The PostScript Interface
To generate a PostScript (or encapsulated PostScript) file for a single image in a canvas, you can:

• Select to print the canvas in the PostScript file format from the File menu / Save or Save As menu
entries. By default, a PostScript file is generated, if you do not specify the file format.

• Click in the canvas area, near the edges, with the right mouse button and select the Print context
menu entry. This will generate a file of canvas pointed to by c1. You can select the name of the
PostScript file. If the file name is xxx.ps, you will generate a PostScript file named xxx.ps. If
the file name is xxx.eps, you generate an encapsulated Postscript file instead. In your program
(or script), you can type:

c1->Print("xxx.ps") // or
c1->Print("xxx.eps")

Next example prints the picture in the pad pointed by pad1.

pad1->Print("xxx.ps")

The TPad::Print method has a second parameter called option. Its value can be:

• 0 which is the default and is the same as "ps"

• "ps" a Postscript file is produced

• "Portrait" a Postscript file is produced with Portrait orientation

• "Landscape" a Postscript file is produced with Landscape orientation

• "eps"an Encapsulated Postscript file

• "Preview"an Encapsulated Postscript file with preview is produced

• "gif" a Graphics Interchange Format file

• "cxx" a C++ macro file is generated

• "pdf"a Portable Document Format file

Graphics and the
Graphical User Interface

183

• "xml" a eXtensible Mark-up Language file

• "jpg"a Joint Photographic Experts Group file

• "png" a Portable Network Graphics Format (PNG file)

• "xpm" a X11 Pixel Map Format

• "svg" a Scalable Vector Graphics file

• "tiff" a Tagged-Image File Format

• “root”a ROOT binary file is produced

You do not need to specify this second parameter; you can indicate by the filename extension what
format you want to save a canvas in (i.e. canvas.ps, canvas.gif, canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the picture on the
screen, where the size along x is always 20 cm. You can set the size of the PostScript picture before
generating the picture with a command such as:

TPostScript myps("myfile.ps",111)
myps.Range(xsize,ysize);
object->Draw();
myps.Close();

The first parameter in the TPostScript constructor is the name of the file; the second one is the
format option:

• 111 - ps portrait

• 112 - ps landscape

• 113 - eps

You can set the default paper size with:

gStyle->SetPaperSize(xsize,ysize);

You can resume writing again in this file with myps.Open(). Note that you may have several Post
Script files opened simultaneously. Use TPostScript::Text(x,y,"string") to add text to
a postscript file. This method writes the string in quotes into a PostScript file at position x, y in
world coordinates.

Special Characters
The following characters have a special action on the PostScript file:

• ` - go to Greek

• ' - go to special

• ~ - go to Zapf Dingbats

• ? - go to subscript

• ^ - go to superscript

• ! - go to normal level of script

• & - backspace one character

• # - end of Greek or of ZapfDingbats

Graphics and the
Graphical User Interface

184

These special characters are printed as such on the screen. To generate one of these characters on the
PostScript file, you must escape it with the escape character "@". The use of these special characters
is illustrated in several scripts referenced by the TPostScript constructor.

Writing Several Canvases to the Same PostScript File
The following sequence writes the canvas to "c1.ps" and closes the postscript file:

TCanvas c1("c1");
h1.Draw();
c1.Print("c1.ps");

If the Postscript file name finishes with "(", the file remains opened (it is not closed). If the Postscript
file name finishes with ")" and the file has been opened with "(", the file is closed.

{
 TCanvas c1("c1");
 h1.Draw();
 c1.Print("c1.ps("); // write canvas and keep the ps file open
 h2.Draw();
 c1.Print("c1.ps"); // canvas is added to "c1.ps"
 h3.Draw();
 c1.Print("c1.ps)"); //canvas is added to "c1.ps"; ps file is closed
}

The TCanvas::Print("file.ps(") mechanism is very useful, but it can be a little
inconvenient to have the action of opening/closing a file being atomic with printing a page. Particularly
if pages are being generated in some loop, one needs to detect the special cases of first and last page.
The "[" and "]" can be used instead of "(" and ")" as shown in the next example.

c1.Print("file.ps["); // no actual print; just open file.ps
for (i=0; i<10; ++i) {
 // fill canvas for context i
 ...
 c1.Print("file.ps"); // actually print canvas to file.ps
} // end loop
c1.Print("file.ps]"); // no actual print; just close file.ps

The following script illustrates how to open a postscript file and draw several pictures. The generation
of a new postscript page is automatic when TCanvas::Clear is called by object->Draw().

{
 TFile f("hsimple.root");
 TCanvas c1("c1","canvas",800,600);
 //select PostScript output type
 Int_t type = 111; //portrait ps
 // Int_t type = 112; //landscape ps
 // Int_t type = 113; //eps
//create a PostScript file and set the paper size
 TPostScript ps("test.ps",type);
 ps.Range(16,24); //set x,y of printed page
 //draw 3 histograms from file hsimple.root on separate pages
 hpx->Draw();
 c1.Update(); //force drawing in a script
 hprof->Draw();
 c1.Update();
 hpx->Draw("lego1");
 c1.Update();

Graphics and the
Graphical User Interface

185

 ps.Close();
}

The next example does the same:

{
TFile f("hsimple.root");
TCanvas c1("c1","canvas",800,600);
 //set x,y of printed page
 gStyle->SetPaperSize(16,24);

 //draw 3 histograms from file hsimple.root on separate pages
 hpx->Draw();
 c1->Print(“test1.ps(“, “Portrait”);
 hprof->Draw();
 c1->Print(“test1.ps”);
 hpx->Draw(“lego1”);
 c1->Print(“test1.ps)“);
}

This following example shows two pages. The canvas is divided. TPostScript::NewPage must
be called before starting a new picture. object->Draw does not clear the canvas in this case because
we clear only the pads and not the main canvas. Note that c1->Update must be called at the end
of the first picture.

{
TFile *f1 = new TFile("hsimple.root");
TCanvas *c1 = new TCanvas("c1");
TPostScript *ps = new TPostScript("file.ps",112);
 // picture 1
c1->Divide(2,1);
ps->NewPage();
c1->cd(1);
hpx->Draw();
c1->cd(2);
hprof->Draw();
 // picture 2
c1->Update();
ps->NewPage();
c1->cd(1);
hpxpy->Draw();
c1->cd(2);
ntuple->Draw("px");
c1->Update();
ps->Close();
 // invoke PostScript viewer
gSystem->Exec("gs file.ps");
}

The next one does the same:

{
TFile *f1 = new TFile("hsimple.root");
TCanvas *c1 = new TCanvas("c1");
c1->Divide(2,1);
 // picture 1
c1->cd(1);
hpx->Draw();
c1->cd(2);

Graphics and the
Graphical User Interface

186

hprof->Draw();
c1->Print(“test2.ps(”, “Landscape”);
 // picture 2
c1->cd(1);
hpxpy->Draw();
c1->cd(2);
ntuple->Draw(“px”);
c1->Print(“test2.ps)”);
gSystem->Exec("gs file.ps"); // invoke PostScript viewer
}

Create or Modify a Style
All objects that can be drawn in a pad inherit from one or more attribute classes like TAttLine,
TAttFill, TAttText, TAttMarker. When objects are created, their default attributes are taken
from the current style. The current style is an object of the class TStyle and can be referenced via the
global variable gStyle (in TStyle.h). See the class TStyle for a complete list of the attributes
that can be set in one style.

ROOT provides several styles called:

• "Default" - the default style

• "Plain" - the simple style (black and white)

• "Bold" - bolder lines

• "Video" - suitable for html output or screen viewing

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you want to get a "conventional" PostScript output or if you are
working on a monochrome display. The following example shows how to create it.

TStyle *plain = new TStyle("Plain","Plain Style(no colors/fill areas)");
plain->SetCanvasBorderMode(0);
plain->SetPadBorderMode(0);
plain->SetPadColor(0);
plain->SetCanvasColor(0);
plain->SetTitleColor(0);
plain->SetStatColor(0);

You can set the current style by:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style by:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles by:

TStyle *st1 = new TStyle("st1","my style");
st1->Set...
st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via statements like:

gStyle->SetStatX(0.7);

Graphics and the
Graphical User Interface

187

gStyle->SetStatW(0.2);
gStyle->SetLabelOffset(1.2);
gStyle->SetLabelFont(72);

Note that when an object is created, its attributes are taken from the current style. For example, you
may have created a histogram in a previous session and saved it in a file. Meanwhile, if you have
changed the style, the histogram will be drawn with the old attributes. You can force the current style
attributes to be set when you read an object from a file by calling ForceStyle before reading the
objects from the file.

gROOT->ForceStyle();

When you call gROOT->ForceStyle() and read an object from a ROOT file, the object's method
UseCurrentStyle is called. The attributes saved with the object are replaced by the current style
attributes. You call also call myObject->UseCurrentStyle() directly. For example if you
have a canvas or pad with your histogram or any other object, you can force these objects to get the
attributes of the current style by:

canvas->UseCurrentStyle();

The description of the style functions should be clear from the name of the TStyle setters or getters.
Some functions have an extended description, in particular:

• TStyle::SetLabelFont

• TStyle::SetLineStyleString: set the format of dashed lines.

• TStyle::SetOptStat

• TStyle::SetPalette to change the colors palette

• TStyle::SetTitleOffset

• TStyle::SetOptDate(Int_t optdate) to support several date formats. If optdate is
non-null, the current date/time will be printed in the canvas. The position of the date string can be
controlled by: optdate = 10*format + mode

• mode = 1 the date is printed in the bottom/left corner

• mode = 2 date is printed in the bottom/right corner

• mode = 3 date is printed in the top/right corner

• format = 0 (default) date format is like: "Wed Sep 25 17:10:35 2002"

• format = 1 date format is: "2002-09-25"

• format = 2 date format is: "2002-09-25 17:10:35"

3D Viewers
ROOT provides several viewers capable of displaying 3D content:

• the Pad – simple line drawing using TPad and associated projection class TView;

• GL Viewer – high quality and performance viewer(See “The GL Viewer”);

• X3D viewer – simple legacy viewer (See “The X3D Viewer”);

• GL-in-pad – combination of basic GL viewer in TPad, with no hardware acceleration.

The X3D and GL viewers are created as external windows, associated with a pad, and displaying the
same content as it. Only these external viewers are detailed here – for Pad (TPad, TView classes)
you should refer to “Graphical Containers: Canvas and Pad” and the class definitions.

Graphics and the
Graphical User Interface

188

All viewers use a common architecture to publish 3D objects to the viewer - described in “Common
3D Viewer Architecture” below. In most cases, you will not need to use this, working instead
with a package, such as the “The Geometry Package”, which provides comprehensive, high level
functionality to create and place objects into complex 3D scenes, and uses the viewer architecture
internally to show the result in your chosen viewer.

Invoking a 3D viewer
A 3D viewer can be created in a script by passing the appropriate option to Draw() when attaching
the drawn object(s) to a pad. For a fuller explanation of pads, attaching objects with Draw() etc. refer
to “Graphical Containers: Canvas and Pad”.

root[] myShapes->Draw(“ogl”);

Valid option strings are:

• “ogl” : external GL viewer

• “x3d”: external X3D viewer

• “pad”: pad viewer

If no option is passed to Draw() then the “pad” is used by default. If you already have content in
a pad, which you would like to display in one of the external viewers you can select from the canvas
View menu / View With, and pick the viewer type.

Figure 9.30. Invoking external 3D viewers from canvas menus

Note: A current limitation means that when an external viewer is created the pad is no longer redrawn.
When the external viewer is closed, clicking in the pad will refresh.

The GL Viewer
The GL Viewer uses OpenGL® (or compliant libraries such as Mesa3D) to generate high quality,
high-performance 3D renderings, with sophisticated lighting, materials and rendering styles for 3D
scenes. Many users will be able to take advantage of hardware acceleration of the underlying OpenGL
commands by their computer's video card, resulting is considerable performance gains – up to
interactive manipulation of 1000’s of complex shapes in real-time.

The GL Viewer is supported on all official ROOT platforms (assuming you have suitable OpenGL®
libraries), and is the main 3D viewer, which development effort is concentrated upon. As OpenGL®
is a trademark we refer to our viewer built on this technology as the ‘GL Viewer’. The code for it can
be found under $ROOTSYS/gl.

Graphics and the
Graphical User Interface

189

Figure 9.31. The GL 3D Viewer

You can manipulate the viewer via the GUI or via the base TGLViewer object behind the interface.
These are detailed below - see also $ROOTSYS/tutorials/gl/glViewerExercise.C.

Projections Modes (Cameras)

The GL Viewer supports two basic types of camera, which affect how the 3D world is projected onto
the 2D render area:

• Perspective: Objects are drawn with characteristic ‘foreshortening’ effect, where distant objects
appear smaller than near ones. This is useful for obtaining a ‘real world’ views. The degree of
foreshortening is affected by the current camera field of view (focal length of its ‘lens’) – see
“Adjusting Cameras”.

• Orthographic: Distance from camera does not affect object size. These projections are useful for
measurement or checking alignments, as the sizes and angles between objects are preserved.

You can select the active camera from the viewer's Camera menu on the top menu bar. There are three
perspective camera choices:

• Perspective (Floor XOZ) Default

• Perspective (Floor YOZ)

• Perspective (Floor XOY)

In each case the perspective camera is constrained to keep the chosen floor plane, defined by a pair of
world axes, appearing level at all times – i.e. there is no banking of the ‘horizon’ that you experience
when a plane rolls. There are also three orthographic camera choices:

• Orthographic (XOY)

• Orthographic (XOZ)

• Orthographic (ZOY)

Orthographic projections are generally constrained to look down one of the global axes of the world,
with the other two axes lying horizontal/vertical on the viewer window. Therefore, XOY has the X-axis
horizontal, the Y-axis vertical. You can always confirm the orientation and constraints of the camera

Graphics and the
Graphical User Interface

190

in the world by enabling axis drawing in the “Guides” tab – see sections “Guides” and “Clipping”
below. For orthographic camera a ruler-depicting current scene units is also available.

You can also pick the current camera by obtaining a handle to the GL Viewer object behind the
interface:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

calling the method TGLViewer::SetCurrentCamera with one of the
TGLViewer::ECameraType types:

v->SetCurrentCamera(TGLViewer::kCameraPerspXOZ);

See also $ROOTSYS/tutorials/gl/glViewerExercise.C.

Adjusting Cameras

The interactions with the camera are summarized above. In each case the interaction is listed, along
with description and user actions required to achieve it. For all cameras you can reset the original
default view, framing the entire scene, by double clicking any mouse button.

Figure 9.32. GL Viewer camera interactions

For the Zoom interaction you can use the following modifiers combinations to adjust the sensitivity:

• Shiftx 10

• Ctrlx 0.1

• Shift + Ctrlx 0.01

The modifiers must be applied after the zoom action has started (right mouse button is down).

Note for orthographic cameras:

• There is no field of view of view/focal length – dollying and zooming producing an identical scaling
action.

• There is a fixed eye direction – so the ‘Orbit’ action is disabled.

Note for perspective cameras:

Graphics and the
Graphical User Interface

191

• Dollying (moving the camera backwards/forwards) and zooming are often confused, and may
appear very similar.

• When you dolly the camera the lens focal length does not change, hence the distortions associated
with the projections are unaffected. However the movement can result in objects coming ‘through
the front’ of the camera and disappearing.

• When you zoom, the camera does not move – hence clipping of near objects is unaffected. However
with extremely small zooms (FOV large/focal length short) noticeable distortions, causing straight
lines to become curved, can be seen with objects near the camera – the ‘fisheye’ lens effect.

• Generally dollying is more ‘natural’, but you may need to use both to achieve the desired perspective
and eye position – particularly when you are working inside or very close to 3D objects.

Configure the camera by calling the methods SetPerspectiveCamera() or
SetOrthographicCamera() of TGLViewer:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();
v->SetOrthoCamera(TGLViewer::kCameraOrthoXOY,left,right,top,bottom);
...
v->SetPerspectiveCamera (camera,fov,dolly,center,hRotate,vRotate);

Note – you can configure any of the six cameras in the viewer at any time, but you will not see the
result until the camera is made current.

Draw Styles

The GL Viewer supports three different rendering modes, which are applied to all the objects in your
scene, but not Clip Shapes and Guides (See “Clipping” and “Manipulators”). These are shown below,
along with the key used to activate the style.

Figure 9.33. GL Viewer draw styles

Filled Polygons Wireframe Outline Enable with ‘r’ key Enable with ‘w’ key Enable with ‘t’ key
Solid polygons, with hidden surface Object edges in color, with Combination of Filled Polygons
removal, color surface materials, no surface filling/hiding. and Outline styles. Solid opacity, specular
reflection etc. shapes with edges. Black background. Black background. White background.

Call method TGLViewer::SetStyle with one of TGLRnrCtx::EDrawStyle flags kFill,
kOutline, kWireFrame:

v->SetStyle(TGLRnrCtx::kFill);

Lighting / Style

The GL viewer creates five diffuse lights (left, right, top, bottom, and front) arranged around the 3D
scene. These lights are carried with the camera – that is they are always in same position relative to
your eye – the left light always shines from the left.

Light controls are located: Viewer Controls Pane ‘Style’.

Graphics and the
Graphical User Interface

192

Each light has a checkbox to enable/disable it. Set lights on/off with TGLLightSet::SetLight
e.g.

v->GetLightSet()->SetLight(TGLLightSet::kLightBottom, kFALSE);

Clipping

The GL viewer supports interactive clipping, enabling you to remove sections of your 3D scene and
the shapes, revealing internal details.

Figure 9.34. GL Viewer interactive box clipping

The controls for clipping can be found under: Viewer Controls Pane ‘Clipping’ tab.

Two clipping ‘shapes’ are currently supported:

• Single plane

• Box

Pick the type from the radio buttons – only one (or none) may be active at one time.

The clip object can be adjusted by:

• Adjusting the values in the properties panel GUI

• Directly manipulating the clip object in the viewer

To show and/or directly manipulate the object check the ‘Show / Edit in Viewer’ checkbox. The clip
object is drawn in semi-transparent light brown. The current manipulator is attached to it, allowing
you direct control over its position, scale and rotation. See “Manipulators” section below for details
on using viewer manipulators.

The clip plane is described by the standard plane equation: ax+by+cz+d=0, where the factors a, b,
c, d are entered into the edit boxes, and applied using the ‘Apply’ button.

The clip box is described by its center position, entered in the ‘Center X’, ‘Center Y’ and ‘Center Z’
edit boxes, and its lengths (extents) entered in the ‘Length X’, ‘Length Y’ and ‘Length Z’ edit boxes.

This clipping is achieved using OpenGL clip plane support; as such, there are certain limitations:

Graphics and the
Graphical User Interface

193

• Solid shapes are not capped – they appear hollow.

• Only shapes, which can be described with combination of planes, can be rendered in this fashion
– e.g. a clipping tube is not possible.

• Each additional clipping plane requires an additional render pass – so the more active planes the
more time the render will take.

Set the current clip object with TGLClipSet::SetClipType

v->GetClipSet()->SetClipType(TGLClipSet::kClipPlane);

Configure the clip object with TGLClipSet::SetClipState

Double_t planeEq[4] = {0.5,1.0,-1.0, 2.0};
v->GetClipSet()->SetClipState(TGLClipSet::kClipPlane, planeEq);

As with cameras, any clip can be configured at any time, but you must set the clip current to see the
effect.

Manipulators

Manipulators are GUI ‘widgets’ or controls attached to a 3D object in the viewer, allowing a direct
manipulation of the object's geometry. There are three manipulators for the three basic geometries
transformations. In each case, the manipulator consists of three components, one for each local axis
of the object, shown in standard colors: red (X), green (Y) and blue (Z).

Figure 9.35. GL Viewer object manipulators

Activate the manipulator by moving the mouse over one of these components (which turns yellow
to indicate active state). Click with left mouse and drag this active component to perform the
manipulation. Toggle between the manipulator types using the ‘x’, ‘c’, ‘v’ keys while the mouse
cursoris above the manipulator. Note: Manipulators cannot be controlled via the API at present.

Graphics and the
Graphical User Interface

194

Guides

Guides are visual aids drawn into the viewer world. Controls for these are under the “Guides” tab:

Viewer Controls Pane Guides Tab

Axes show the world (global) frame coordinate directions: X (red), Y (green) and Z (blue). The
negative portion of the axis line is shown in dark color, the positive in bright. The axis name and
minimum / maximum values are labeled in the same color. There are three options for axes drawing
– selected by radio buttons:

• None – not drawn (default).

• Edge – draw axes on the (minimum) edge of the scene extents box.

• Origin – drawn axes through the origin.

For edge axes, the zero value for each axis is marked on the axis line with a colored sphere. For origin
axes, a single white sphere is shown at the origin.

Edge axes are depth clipped – i.e. are obscured by 3D objects in front of them. Origin axes (which
generally pass through the middle of the 3D scene) are not depth clipped – so always visible.

A single orange sphere of fixed view port (window) size can be shown at any arbitrary position.
Enable / disable the drawing with ‘Show’ checkbox. Enter X/Y/Z position in the edit boxes to set
position. Initial position is at the center of the scene.

Set the guides using TGLViewer::SetGuideState e.g. to enable edge axes, and enable a
reference marker at world position 50, 60, 100:

Double_t refPos[3] = {50.0,60.0,100.0};
v->SetGuideState(TGLUtil::kAxesEdge, kTRUE, refPos);

Selecting Scene Shapes

You can select a single shape from your scene by pressing ‘Shift’ key, pointing and left clicking
anywhere on the shape in the viewer. Selection is currently shown by drawing the shape-bounding
box (not depth clipped) in white (polygon or wire frame render styles) or red (outline render style).
Manipulators supported by the shape are drawn in red, green and blue while the non-supported ones
are drawn in grey. To deselect a shape, either select another, or shift/click anywhere on the background
(empty space) in the viewer. You cannot select Manipulators or Guides (Axes / Reference Marker).

Editing Shapes

When a shape is selected, the viewer's control pane shows the user interface that allows you to review
and adjust the color and geometry properties of the shape.

Note: At present modifications to the shapes are local to the viewer – they are not propagated back to
external objects/client that published to the viewer. The changes are preserved only until the viewer is
closed. In some cases, this will never be feasible as there is not a one-to-one correspondence between
a shape in the viewer and a single external object in which the modification could be stored.

Colors / Style

Viewer Controls Pane ‘Style’ tab.

A full description of OpenGL materials, colors and lighting is beyond the scope of this document.
You should refer to the OpenGL programming manual (Red Book) for a full discussion. In most cases
adjustment of the Diffuse color material + Opacity/Shine properties is sufficient to achieve desired
results.

A shape has four-color materials (components):

Graphics and the
Graphical User Interface

195

• Diffuse

• Ambient

• Specular

• Emissive

For each of these you can select the component via the radio buttons. Each component can have the
red, green and blue values for the component adjusted via the sliders. You can apply this adjustment to
the shape itself, or to all shapes sharing a common ‘family’. Shapes of the same family have external
objects with the same TObject name string. You can also adjust the ‘Opacity’ and ‘Shine’ for the
shapes materials via the sliders.

Geometry

Viewer Controls Pane ‘Geometry’ tab.

Review and modify the shapes X/Y/Z center and scaling factors via the edit boxes. Selection and
editing of shapes is not available via the API at present.

Outputting Viewer Contents

The current viewer rendering can be output to an external EPS or PDF, using the options under the
‘File’ menu on the top menu bar. The file is named ‘viewer.eps’ or ‘viewer.pdf’ and written
to the current ROOT directory.

The X3D Viewer
The X3D viewer is a fairly simple and limited viewer, capable of showing basic lines and polygons. It
lacks the quality, performance and more advanced features of the GL Viewer, and additionally is not
supported on Windows. It is not actively developed and you are encouraged to use the GL Viewer out
of preference. The below table presents the main interactions – these are repeated in the Help dialog
of the viewer.

Action KeyActionKey

Wireframe Mode wRotate about xx a

Hidden Line Mode eRotate about yy b

Hidden Surface Mode rRotate about zz c

Move object down uAuto-rotate about x1 2 3

Move object up iAuto-rotate about y4 5 6

Move object left lAuto-rotate about z7 8 9

Move object right hToggle controls styleo

Move object forward jToggle stereo displays

Move object backward kToggle blue stereo viewd

Adjust focus (stereo mode) [] { }Toggle double bufferf

Rotate object Left mouse button down + move.

Common 3D Viewer Architecture
The 3D Viewer Architecture provides a common mechanism for viewer clients to publish 3D objects
to it. It enables:

Graphics and the
Graphical User Interface

196

• Decoupling of producers (geometry packages etc) who model collection of 3D objects from
consumers (viewers) which display them.

• Producer code free of explicit drawing commands & viewer specific branching.

• Support differing viewers and clients capabilities, e.g.

• Mix of native (in viewer) shapes and generic client side tessellation.

• Local/global frame object description

• Bounding boxes

• Placing copies sharing common geometry (logical/physical shapes).

The architecture consists of:

• TVirtualViewer3D interface: An abstract handle to the viewer, allowing client to add objects,
test preferences etc.

• TBuffer3D class hierarchy: Used to describe 3D objects ("shapes") - filled /added by negotiation
with viewer via TVirtualViewer3D.

A typical interaction between viewer and client using these, taken from TGeoPainter is:

TVirtualViewer3D * viewer = gPad->GetViewer3D();
// Does viewer prefer local frame positions?
Bool_t localFrame = viewer->PreferLocalFrame();
// Perform first fetch of buffer from the shape and try adding it to the viewer
const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |
TBuffer3D::kBoundingBox |
TBuffer3D::kShapeSpecific,
localFrame);
Int_t reqSections = viewer->AddObject(buffer, &addDaughters);

// If the viewer requires additional sections fetch from the shape
// (if possible) and add again
if (reqSections != TBuffer3D::kNone)
shape.GetBuffer3D(reqSections, localFrame);

Together these allow clients to publish objects to any one of the 3D viewers free of viewer specific
drawing code. They allow our simple x3d viewer, and considerably more sophisticated OpenGL one
to both work with both geometry libraries (g3d and geom) efficiently.

In addition to external viewers, created in separate windows, this architecture is also used by internal
TPad drawing when it requires 3D projections. Publishing to a viewer consists of the following steps:

1. Create / obtain viewer handle.

2. Begin scene on viewer.

3. Fill mandatory parts of TBuffer3D describing object.

4. Add to viewer.

5. Fill optional parts of TBuffer3D as requested by viewer.

[.... repeat 3/4/5 as required for other/child objects]

6. End scene on viewer.

You should attach the top-level node of your external geometry (or the manager) to a TPad
object using TObject::Draw(), and perform the publishing to the viewer in your object's

Graphics and the
Graphical User Interface

197

TObject::Paint() overloaded method. See “Scene Rebuilds”, and example scripts, for more
details.

Creating / Obtaining Viewer Handle

External viewers are bound to a TPad object (this may be removed as a requirement in the future).
You can create or obtain the current viewer handle via the method:

TVirtualViewer3D * v = gPad->GetViewer3D("type");

Here the “type” string defines the viewer type – currently one of:

• “ogl” : External GL viewer

• “x3d”: External X3D viewer

• “pad”: Pad viewer

If no type is passed (null string), and there is no current viewer, then the type is defaulted to “pad”. If
no type is passed and there is a current viewer, then this is returned – hence once a viewer is created
it can be obtained elsewhere by:

TVirtualViewer3D * v = gPad->GetViewer3D();

Opening / Closing Scenes

Objects must be added to viewer between BeginScene() and EndScene() calls e.g.

viewer->BeginScene();
// Add objects
viewer ->EndScene();

These calls enable the viewer to suspend redraws, and perform internal caching/setup. If the object
you attach to the pad derives from TAtt3D, then the pad will take responsibility for calling
BeginScene() and EndScene() for you. You can always test if the scene is already open for
object addition with:

viewer->BuildingScene();

Figure 9.36. Overview of 3D viewer architecture

Graphics and the
Graphical User Interface

198

Note: the x3d viewer does not support rebuilding of scenes - objects added after the first Open/Close
Scene pair will be ignored.

Describing Objects - Filling TBuffer3D

The viewers behind the TVirtualViewer3D interface differ greatly in their capabilities e.g.

• Some support native shape (e.g. spheres/tubes in OpenGL) and can draw these based on an abstract
description. Others always require a tessellation description based on TBuffer3D’s kRaw /
kRawSizes points/lines/segments sections.

• Some need the 3D object positions in the master (world) frame, others can cope with local frames
and a translation matrix to place the object.

• Some require bounding boxes for objects – others do not.

Similarly some viewer clients are only capable of providing positions in master frame, cannot provide
bounding boxes etc. Additionally we do not want to incur the cost of expensive tessellation operations
if the viewer does not require them. To cope with these variations the TBuffer3D objects are filled
by negotiation with the viewer.

Figure 9.37. TBuffer3D class hierarchy

TBuffer3D classes are conceptually divided into enumerated sections: kCore, kBoundingBox,
kRaw – see the class diagram and the file TBuffer3D.h for more details. The TBuffer3D methods
SectionsValid(), SetSectionsValid(), ClearSectionsValid() are used to test, set,
clear these section validity flags e.g.

buffer.SetSectionsValid(TBuffer3D::kShapeSpecific);

Graphics and the
Graphical User Interface

199

…
if (buffer.SectionsValid(TBuffer3D:: kShapeSpecific)) {
 …
}

The sections found in the base TBuffer3D (kCore/kBoundingBox/kRawSizes/kRaw) are
sufficient to describe any tessellated shape in a generic fashion. An additional kShapeSpecific
section is added in TBuffer3D derived classes, allowing a more abstract shape description ("a sphere
of inner radius x, outer radius y"). This enables a viewer, which knows how to draw (tessellate) the
shape itself to do so, while providing a generic fallback suitable for all viewers. The rules for client
negotiation with the viewer are:

• If suitable specialized TBuffer3D class exists, use it, otherwise use TBuffer3D.

• Complete the mandatory kCore section.

• Complete the kShapeSpecific section if applicable.

• Complete the kBoundingBox if you can.

• Pass this buffer to the viewer using one of the TBuffer3D::AddObject() methods.

If the viewer requires more sections to be completed (kRaw/kRawSizes)
TBuffer3D::AddObject() will return flags indicating which ones, otherwise it returns kNone.
If requested, you must fill the buffer, mark these sections valid, and call TBuffer3D::AddObject
again, to complete adding the object. For example, in out TGeo geometry package, in
TGeoPainter::PaintShape, we perform the negotiation with viewer:

TVirtualViewer3D * viewer = gPad->GetViewer3D();
if (shape.IsA() != TGeoCompositeShape::Class()) {
 // Does viewer prefer local frame positions?
Bool_t localFrame = viewer->PreferLocalFrame();
 // Perform first fetch of buffer from the shape and adding it to the viewer
const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |
TBuffer3D::kBoundingBox |
TBuffer3D::kShapeSpecific
,localFrame);
Int_t reqSections = viewer->AddObject(buffer, &addDaughters);
 // If the viewer requires additional sections fetch from the shape
// (if possible) and add again
if (reqSections != TBuffer3D::kNone) {
shape.GetBuffer3D(reqSections, localFrame);
viewer->AddObject(buffer, &addDaughters);
}
}

The buffer is supplied/filled by the appropriate TShape::GetBuffer3D() and
TShape::FillBuffer3D overloads e.g. for a sphere in TGeoSphere.

const TBuffer3D &TGeoSphere::GetBuffer3D(Int_t reqSections,
Bool_t localFrame) const {
 // Fills a static 3D buffer and returns a reference.
static TBuffer3DSphere buffer;
 // Filling of kBoundingBox is defered to TGeoBBox, and
 // kCore on up to TGeoShape
TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
 // Complete kShapeSpecific section for sphere
if (reqSections & TBuffer3D::kShapeSpecific) {
buffer.fRadiusInner = fRmin;
buffer.fRadiusOuter = fRmax;

Graphics and the
Graphical User Interface

200

…
buffer.SetSectionsValid(TBuffer3D::kShapeSpecific);
}
 // Complete kRawSizes section
if (reqSections & TBuffer3D::kRawSizes) {
…
buffer.SetSectionsValid(TBuffer3D::kRawSizes);
}
}
 // Complete kRaw tesselation section
if ((reqSections & TBuffer3D::kRaw) &&
buffer.SectionsValid(TBuffer3D::kRawSizes)) {
SetPoints(buffer.fPnts);
 // Transform points to master frame if viewer requires it
 // The fLocalFrame flag and translation matrix will have already
 // been set in TGeoShape::FillBuffer3D() as requried
if (!buffer.fLocalFrame)
TransformPoints(buffer.fPnts, buffer.NbPnts());
SetSegsAndPols(buffer);
buffer.SetSectionsValid(TBuffer3D::kRaw);
}
return buffer;
}

Note:

• we use a static TBuffer3D derived object for efficiency – once the object is added the buffer can
be reused.

• kRawSize (the calculation of tessellation sizing required in buffer) and kRaw (the actual filling
of tessellation) is split, as the X3D viewer requires two publication passes – one to establish the full
tessellation capacity for all shapes, and another to actually add them. Splitting avoids having to do
the expensive tessellation on the first pass.

Shape Specific TBuffer3D Derived Classes

Currently we provide the following shape specific classes, which the GL Viewer can take advantage
of (see TBuffer3D.h and TBuffer3DTypes.h)

• TBuffer3DSphere - solid, hollow and cut spheres (GL Viewer only supports solid spheres at
present – cut / hollow ones will be requested as tessellated objects by client.)

• TBuffer3DTube – basic tube with inner/outer radius and length.

• TBuffer3DTubeSeg - angle tube segment.

• TBuffer3DCutTube - angle tube segment with plane cut ends.

See the above example from TGeoSphere::GetBuffer3D and also equivalent functions in
TGeoTube, TGeoTubeSeg and TGeoCtub. Anyone is free to add new TBuffer3D classes, but
it should be clear that one or more viewers will require updating to be able to take advantage of them.
Hence we only provide classes which existing viewers can benefit from. The number of native shapes
in GL Viewer will be expanded in the future.

Master / Local Reference Frames

The Core section of TBuffer3D contains two members relating to reference frames:

• fLocalFrame: indicates if any positions in the buffer (bounding box and tessellation vertexes)
are in local or master (world frame).

Graphics and the
Graphical User Interface

201

• fLocalMaster: is a standard 4x4 translation matrix (OpenGL column major ordering) for placing
the object into the 3D master frame.

If fLocalFrame is false, fLocalMaster should contain an identity matrix. This is set by default,
and can be reset using the TBuffer3D::SetLocalMasterIdentity() method.

Bounding Boxes

You are not obliged to complete the kBoundingBox section, as any viewer requiring one internally
(GL Viewer) will build it if you do not provide. However to do this the viewer will force you to
provide the (expensive) raw tessellation, and the resulting box will be axis aligned with the overall
scene, which is non-ideal for rotated shapes. As we need to support orientated (rotated) bounding
boxes, TBuffer3D requires the 6 vertices of the box. We also provide a convenience function,
TBuffer::SetAABoundingBox(), for simpler case of setting an axis aligned bounding box.
The bounding box should be filled in same frame (local / master) as the rest of the TBuffer3D, and
inaccordance with fLocalFrame flag.

A typical example from TGeoBBox::FillBuffer3D:

if (reqSections & TBuffer3D::kBoundingBox) {
Double_t halfLengths[3] = { fDX, fDY, fDZ };
buffer.SetAABoundingBox(fOrigin, halfLengths);
if (!buffer.fLocalFrame) {
TransformPoints(buffer.fBBVertex[0], 8);
}
buffer.SetSectionsValid(TBuffer3D::kBoundingBox);
}

Logical and Physical Objects

Some viewers can support two types of object placement:

• Add object as a single independent entity in the world reference frame – e.g. a sphere, radius r,
at x, y, z.

• Repeated placement (copying) in world frame of this locally unique piece of geometry (described
in local reference frame) e.g. define a sphere S (radius r), place copy at x1, y1, z1, another copy
at x2, y2, z2 etc.

The second case is very typical in geometry packages, e.g. ROOT’s TGeo package, GEANT4 etc,
where we have very large number repeated placements of relatively few unique “shapes”.

Some viewers (GL Viewer only at present) are able to take advantage of this by identifying unique
logical shapes from the fID logical ID member of TBuffer3D. If repeated addition of the same fID
is found, the shape is cached already - and the costly tessellation does not need to be sent again. The
viewer can also perform internal GL specific caching (display lists) with considerable performance
gains in these cases. For this to work correctly the logical object in must be described in TBuffer3D
in the local reference frame, complete with the local/master translation. In some cases you will
not have a real object you can reasonably set TBuffer3D::fID to, or the object is recycled or
temporary. To suppress internal caching in the GL Viewer in these cases, set TBuffer3D::fID
to 0 (null).

The viewer indicates it can support local frame objects through the TVirtualViewer3D
interface method: PreferLocalFrame(). If this returns kTRUE you can make repeated calls
to AddObject(), with TBuffer3D containing the same fID, and different fLocalMaster
placements.

For viewers supporting logical/physical objects, the TBuffer3D content refers to the properties of the
logical object, with the exception of:

Graphics and the
Graphical User Interface

202

• fLocalMaster transform

• fColor

• fTransparency

attributes, which can be varied for each physical object.

As a minimum requirement all clients must be capable of filling the raw tessellation of the object
buffer, in the master reference frame. Conversely viewers must always be capable of displaying the
object described by this buffer. If either does not meet this requirement the object may not be displayed.

Scene Rebuilds

TBuffer3D::AddObject is not an explicit command to the viewer - it may for various reasons
decide to ignore it:

• It already has the object internally cached.

• The object falls outside some 'interest' limits of the viewer camera.

• The object is too small to be worth drawing.

In all these cases TBuffer3D::AddObject() returns kNone, as it does for successful addition,
indicating it does not require further information about this object. Hence you should not try to make
any assumptions about what the viewer did with the object. The viewer may decide to force the client
to rebuild (republish) the scene, obtaining a different collection of objects, if the internal viewer state
changes .e.g. significant camera move. It does this presently by forcing a repaint on the attached TPad
object – hence you should attach you master geometry object to the pad (via TObject::Draw()),
and perform the publishing to the viewer in response to TObject::Paint().

Physical IDs

TVirtualViewer3D provides for two methods of object addition:

virtual Int_t AddObject(const TBuffer3D &buffer, Bool_t * addChildren = 0)
virtual Int_t AddObject(UInt_t physicalID, const TBuffer3D & buffer,
Bool_t *addChildren = 0)

If you use the first (simple) case a viewer using logical/physical pairs will generate sequential IDs for
each physical object internally. Scene rebuilds will require destruction and recreation of all physical
objects. For the second you can specify an identifier from the client side, which must be unique and
stable – i.e. the IDs of a published object is consistent, regardless of changes in termination of contained
child geometry branches. In this case the viewer can safely cache the physical objects across scene
rebuilds, discarding those no longer of interest.

Child Objects

In many geometries there is a rigid containment hierarchy, and so if the viewer is not interested in
a certain object due to limits/size then it will also not be interest in any of the contained branch of
siblings. Both TBuffer3D::AddObject() methods have an addChildren return parameter.
The viewer will complete this (if passed) indicating if children of the object just sent are worth sending.

Recycling TBuffer3D

Once add TBuffer3D::AddObject() has been called, the contents are copied to the viewer’s
internal data structures. You are free to destroy this TBuffer3D, or recycle it for the next object if
suitable.

Graphics and the
Graphical User Interface

203

Examples

For an example of a simple geometry, working in master reference frame examine the code under
$ROOTSYS/g3d. For a more complex example, which works in both master and local frames,
and uses logical/physical division of shape geometry and placement, examine the code under
$ROOTSYS/geom – in particular TGeoShape hierarchy, and the painter object TGeoPainter
(under geopainter) where the negotiation with the viewer is performed.

204

Chapter 10. Folders and Tasks
Folders

A TFolder is a collection of objects visible
and expandable in the ROOT object browser. Folders have a name and a title and are identified in
the folder hierarchy by an "UNIX-like" naming convention. The base of all folders is //root. It is
visible at the top of the left panel in the browser. The browser shows several folders under //root.

New folders can be added and removed to/from a folder.

Why Use Folders?
One reason to use folders is to reduce class dependencies and improve modularity. Each set of data
has a producer class and one or many consumer classes. When using folders, the producer class places
a pointer to the data into a folder, and the consumer class retrieves a reference to the folder.

Folders and Tasks

205

The consumer can access the objects in a folder by specifying the path name of the folder.

Here is an example of a folder's path name:

//root/Event/Hits/TCP

One does not have to specify the full path name. If the partial path name is unique, it will find it;
otherwise it will return the first occurrence of the path.

The first diagram shows a system without folders. The objects have pointers to each other to access
each other's data. Pointers are an efficient way to share data between classes. However, a direct pointer
creates a direct coupling between classes. This design can become a very tangled web of dependencies
in a system with a large number of classes.

In the second diagram, a reference to the data is in the folder and the consumers refer to the folder
rather than each other to access the data. The naming and search service provided by the ROOT folders
hierarchy provides an alternative. It loosely couples the classes and greatly enhances I/O operations.
In this way, folders separate the data from the algorithms and greatly improve the modularity of an
application by minimizing the class dependencies.

In addition, the folder hierarchy creates a picture of the data organization. This is useful when
discussing data design issues or when learning the data organization. The example below illustrates
this point.

How to Use Folders
Using folders means to build a hierarchy of folders, posting the reference to the data in the folder by
the producer, and creating a reference to the folder by the user.

Creating a Folder Hierarchy
To create a folder hierarchy you add the top folder of your hierarchy to //root. Then you add a folder
to an existing folder with the TFolder::AddFolder method. This method takes two parameters:
the name and title of the folder to be added. It returns a pointer of the newly created folder.

The code below creates the folder hierarchy shown in the browser. In this macro, the folder is also
added to the list of browsable. This way, it is visible in the browser on the top level.

{
// Add the top folder of my hierary to //root
TFolder *aliroot=gROOT->GetRootFolder()->AddFolder("aliroot",

Folders and Tasks

206

 "aliroot top level folders");
// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables()->Add(aliroot,"aliroot");

// Create and add the constants folder
TFolder *constants=aliroot->AddFolder("Constants","Detector constants");

// Create and add the pdg folder to pdg
TFolder *pdg = constants->AddFolder("DatabasePDG","PDG database");

// Create and add the run folder
TFolder *run = aliroot->AddFolder("Run","Run dependent folders");

// Create and add the configuration folder to run
TFolder *configuration = run->AddFolder("Configuration","Run configuration");

// Create and add the run_mc folder
TFolder *run_mc = aliroot->AddFolder("RunMC","MonteCarlo run dependent folders");

// Create and add the configuration_mc folder to run_mc
TFolder *configuration_mc = run_mc->AddFolder("Configuration",
 "MonteCarlo run configuration");
}

Posting Data to a Folder (Producer)

A TFolder can contain other folders as shown above or any TObject descendents. In general,
users will not post a single object to a folder; they will store a collection or multiple collections in a
folder. For example, to add an array to a folder:

Folders and Tasks

207

TObjArray *array;
run_mc->Add(array);

Reading Data from a Folder (Consumer)
One can search for a folder or an object in a folder using the TROOT::FindObjectAny method.
It analyzes the string passed as its argument and searches in the hierarchy until it finds an object or
folder matching the name. With FindObjectAny, you can give the full path name, or the name
of the folder. If only the name of the folder is given, it will return the first instance of that name.
A string-based search is time consuming. If the retrieved object is used frequently or inside a loop,
you should save a pointer to the object as a class data member. Use the naming service only in the
initialization of the consumer class. When a folder is deleted, any reference to it in the parent or other
folder is deleted also.

conf=(TFolder*)gROOT->FindObjectAny("/aliroot/Run/Configuration"); // or
conf=(TFolder*)gROOT->FindObjectAny("Configuration");

By default, a folder does not own the object it contains. You can overwrite that with
TFolder::SetOwner. Once the folder is the owner of its contents, the contents are deleted when
the folder is deleted. Some ROOT objects are automatically added to the folder hierarchy. For example,
the following folders exist on start up:

//root/ROOT Files with the list of open Root files

//root/Classes with the list of active classes

//root/Geometries with active geometries

//root/Canvases with the list of active canvases

//root/Styles with the list of graphics styles

//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a pointer to the
corresponding TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny("/ROOTFiles/myFile.root"); //or
TFile *myFile = (TFile*)gROOT->FindObjectAny("myFile.root");

Tasks
Tasks can be organized into a hierarchy and displayed in the browser. The TTask class is the base class
from which the tasks are derived. To give task functionality, you need to subclass the TTask class
and override the Exec method. An example of TTask subclasses is $ROOTSYS/tutorials/
MyTasks.cxx. The script that creates a task hierarchy and adds it to the browser is $ROOTSYS/
tutorials/tasks.C. Here is a part of MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask see macro tasks.C. The Exec
// function of each class prints one line when it is called.
#include "TTask.h"
class MyRun : public TTask {
public:
 MyRun() { ; }
 MyRun(const char *name,const char *title);
 virtual ~MyRun() { ; }
 void Exec(Option_t *option="");

Folders and Tasks

208

 ClassDef(MyRun,1) // Run Reconstruction task
};

class MyEvent : public TTask {
public:
 MyEvent() { ; }
 MyEvent(const char *name,const char *title);
 virtual ~MyEvent() { ; }
 void Exec(Option_t *option="");
 ClassDef(MyEvent,1) // Event Reconstruction task
};

Later in MyTasks.cxx, we can see examples of the constructor and overridden Exec() method:

ClassImp(MyRun)
MyRun::MyRun(const char *name,const char *title):TTask(name,title)
{
...
}
void MyRun::Exec(Option_t *option)
{
 printf("MyRun executingn");
}

Each TTask derived class may contain other TTasks that can be executed recursively. In this way,
a complex program can be dynamically built and executed by invoking the services of the top level
task or one of its subtasks. The constructor of TTask has two arguments: the name and the title. This
script creates the task defined above, and creates a hierarchy of tasks.

// Show the tasks in a browser. To execute a Task, select
// “ExecuteTask” in the context menu see also other functions in the
// TTask context menu, such as:
// -setting a breakpoint in one or more tasks
// -enabling/disabling one task, etc
void tasks()
{
gROOT->ProcessLine(".L MyTasks.cxx+");

TTask *run = new MyRun("run","Process one run");
TTask *event = new MyEvent("event","Process one event");
TTask *geomInit = new MyGeomInit("geomInit", "Geometry Initialisation");
TTask *matInit = new MyMaterialInit("matInit","MaterialsInitialisation");
TTask *tracker = new MyTracker("tracker","Tracker manager");
TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");
TTask *its = new MyRecITS("its","ITS Reconstruction");
TTask *muon = new MyRecMUON("muon","MUON Reconstruction");
TTask *phos = new MyRecPHOS("phos","PHOS Reconstruction");
TTask *rich = new MyRecRICH("rich","RICH Reconstruction");
TTask *trd = new MyRecTRD("trd","TRD Reconstruction");
TTask *global = new MyRecGlobal("global","Global Reconstruction");

 // Create a hierarchy by adding sub tasks
run->Add(geomInit);
run->Add(matInit);
run->Add(event);
event->Add(tracker);
event->Add(global);

Folders and Tasks

209

tracker->Add(tpc);
tracker->Add(its);
tracker->Add(muon);
tracker->Add(phos);
tracker->Add(rich);
tracker->Add(trd);
 // Add the top level task
gROOT->GetListOfTasks()->Add(run);
 // Add the task to the browser
gROOT->GetListOfBrowsables()->Add(run);
new TBrowser;
}

Figure 10.1. Tasks in the ROOT browser

Note that the first line loads the class definitions in MyTasks.cxx with ACLiC. ACLiC builds a
shared library and adds the classes to the CINT dictionary. See "Adding a Class with ACLiC".

To execute a TTask, you call the ExecuteTask method. ExecuteTask will recursively call:

- the TTask::Exec method of the derived class;

- the TTask::ExecuteTasks to execute for each task the list of its subtasks;

If the top level task is added to the list of ROOT browseable objects, the tree of tasks can be seen
in the ROOT browser. To add it to the browser, get the list of browseable objects first and add it to
the collection.

gROOT->GetListOfBrowsables()->Add(run);

The first parameter of the Add method is a pointer to a TTask, the second parameter is the string to
show in the browser. If the string is left out, the name of the task is used.

After executing, the script above the browser will look like in this figure.

Execute and Debug Tasks
The browser can be used to start a task, set break points at the beginning of a task or when the task has
completed. At a breakpoint, data structures generated by the execution up this point may be inspected

Folders and Tasks

210

asynchronously and then the execution can be resumed by selecting the "Continue" function of a
task.

A task may be active or inactive (controlled by TTask::SetActive). When a task is inactive, its
sub tasks are not executed. A task tree may be made persistent, saving the status of all the tasks.

211

Chapter 11. Input/Output
This chapter covers the saving and reading of objects to and from ROOT files. It begins with an
explanation of the physical layout of a ROOT file. It includes a discussion on compression, and file
recovery. Then we explain the logical file, the class TFile and its methods. We show how to navigate
in a file, how to save objects and read them back. We also include a discussion on Streamers.
Streamers are the methods responsible to capture an objects current state to save it to disk or send
it over the network. At the end of the chapter is a discussion on the two specialized ROOT files:
TNetFile and TWebFile.

The Physical Layout of ROOT Files
A ROOT file is like a UNIX file directory. It can contain directories and objects organized in unlimited
number of levels. It also is stored in machine independent format (ASCII, IEEE floating point, Big
Endian byte ordering). To look at the physical layout of a ROOT file, we first create one. This example
creates a ROOT file and 15 histograms, fills each histogram with 1000 entries from a Gaussian
distribution, and writes them to the file.

{
char name[10], title[20];
TObjArray Hlist(0); // create an array of Histograms
TH1F* h; // create a pointer to a histogram
 // make and fill 15 histograms and add them to the object array
for (Int_t i = 0; i < 15; i++) {
sprintf(name,"h%d",i);
sprintf(title,"histo nr:%d",i);
h = new TH1F(name,title,100,-4,4);
Hlist.Add(h);
h->FillRandom("gaus",1000);
}
 // open a file and write the array to the file
TFile f("demo.root","recreate");
Hlist->Write();
f.Close();
}

The example begins with a call to the TFile constructor. This class is describing the ROOT file (that
has the extension ".root”). In the next section, we will cover TFile in details. The last line of the
example closes the file. To view its contents we need to open it again, and to create a TBrowser
object by:

root[] TFile f("demo.root")
root[] TBrowser browser;

Input/Output

212

Figure 11.1. The browser with 15 created histograms

You can check if the file is correctly opened by:

TFile f(“demo.root”);
if (f.IsZombie()) {
cout << “Error opening file” << endl;
exit(-1);
} else {
…
}

Once we have the TFile object, we can call the TFile::Map() method to view the physical layout.
The output prints the date/time, the start record address, the number of bytes in the record, the class
name of the record and the compression factor.

root[] f.Map()
20051208/124502 At:100 N=114 TFile
20051208/124502 At:214 N=413 TH1F CX = 2.35
20051208/124502 At:627 N=410 TH1F CX = 2.36
20051208/124502 At:1037 N=396 TH1F CX = 2.45
20051208/124502 At:1433 N=400 TH1F CX = 2.42
20051208/124502 At:1833 N=402 TH1F CX = 2.41
20051208/124502 At:2235 N=416 TH1F CX = 2.33
20051208/124502 At:2651 N=406 TH1F CX = 2.39
20051208/124502 At:3057 N=403 TH1F CX = 2.40
20051208/124502 At:3460 N=411 TH1F CX = 2.36
20051208/124502 At:3871 N=400 TH1F CX = 2.42
20051208/124502 At:4271 N=409 TH1F CX = 2.38
20051208/124502 At:4680 N=409 TH1F CX = 2.38
20051208/124502 At:5089 N=420 TH1F CX = 2.32
20051208/124502 At:5509 N=406 TH1F CX = 2.40
20051208/124502 At:5915 N=405 TH1F CX = 2.40
20051208/124503 At:6320 N=3052 StreamerInfo CX = 3.16
20051208/124503 At:9372 N=732 KeysList
20051208/124503 At:10104 N=53 FreeSegments
20051208/124503 At:10157 N=1 END

Here we see the fifteen histograms (TH1F's) with the first one starting at byte 148. We also see an
entry TFile. You may notice that the first entry starts at byte 100. The first 100 bytes are taken by
the file header.

Input/Output

213

The File Header
This table shows the file header information. When fVersion is greater than 1000000, the file is a
large file (> 2 GB) and the offsets will be 8 bytes long. The location in brackets are the location in
the case of a large file.

Byte Value Name Description

1 -> 4 "root" Root file identifier

5 -> 8 fVersion File format version

9 -> 12 fBEGIN Pointer to first data record

13 -> 16 [13->20] fEND Pointer to first free word at the EOF

17 -> 20 [21->28] fSeekFree Pointer to FREE data record

21 -> 24 [29->32] fNbytesFree Number of bytes in FREE data record

25 -> 28 [33->36] nfree Number of free data records

29 -> 32 [37->40] fNbytesName Number of bytes in TNamed at creation time

33 -> 33 [41->41] fUnits Number of bytes for file pointers

34 -> 37 [42->45] fCompress Zip compression level

34 -> 37 [46->53] fSeekInfo Pointer to TStreamerInfo record

34 -> 37 [54->57] fNBytesInfo Number of bytes in TStreamerInfo record

34 -> 37 [58->75] fCompress Universal Unique ID

The first four bytes of the file header contain the string "root" which identifies a file as a ROOT file.
Because of this identifier, ROOT is not dependent on the ".root" extension. It is still a good idea
to use the extension, just for us to recognize them easier. The nfree and value is the number of free
records. This variable along with FNBytesFree keeps track of the free space in terms of records
and bytes. This count also includes the deleted records, which are available again.

The Top Directory Description
The 84 bytes after the file header contain the top directory description, including the name, the date
and time it was created, and the date and time of the last modification.

20010404/092347 At:64 N=84 TFile

The Histogram Records
What follows are the 15 histograms, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51

The first 4 bytes of each record is an integer holding the number of bytes in this record. A negative
number flags the record as deleted, and makes the space available for recycling in the next writing.
The rest of bytes in the header contain all the information to identify uniquely a data block on the file.
It is followed by the object data.

The next table explains the values in each individual record. If the key is located past the 32 bit file
limit (> 2 GB) then some fields will be 8 bytes instead of 4 bytes (values between the brackets):

Input/Output

214

Byte Value Name Description

1 -> 4 Nbytes Length of compressed object (in bytes)

5 -> 6 Version TKey version identifier

7 -> 10 ObjLen Length of uncompressed object

11 -> 14 Datime Date and time when object was written to file

15 -> 16 KeyLen Length of the key structure (in bytes)

17 -> 18 Cycle Cycle of key

19 -> 22 [19->26] SeekKey Pointer to record itself (consistency check)

23 -> 26 [27->34] SeekPdir Pointer to directory header

27 -> 27 [35->35] lname Number of bytes in the class name

28 -> … [36->…] ClassName Object Class Name

… -> … lname Number of bytes in the object name

… -> … Name lName bytes with the name of the object

… -> … lTitle Number of bytes in the object title

… -> … Title Title of the object

… -> … DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (StreamerInfo List)
The histogram records are followed by the StreamerInfo list of class descriptions. The list contains
the description of each class that has been written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors and object data
members have to be described also. In demo.root, the class description list contains the description
for:

• TH1F

• all classes in the TH1F inheritance tree

• all classes of the object data members

• all classes in the object data members' inheritance tree.

This description is implemented by the TStreamerInfo class, and is often referred
to as simply StreamerInfo. You can print a file's StreamerInfolist with the
TFile::ShowStreamerInfo method. Below is an example of the output. Only the first line of
each class description is shown. The demo.root example contains only TH1F objects. Here we see
the recursive nature of the class description; it contains the StreamerInfoof all the classes needed
to describe TH1F.

root[] f.ShowStreamerInfo()
StreamerInfo for class: TH1F, version=1
 BASE TH1 offset=0 type= 0 1-Dim histogram base class
 BASE TArrayF offset=0 type= 0 Array of floats

Input/Output

215

StreamerInfo for class: TH1, version=3
 BASE TNamed offset=0 type=67 The basis for named object(name,title)
 BASE TAttLine offset=0 type=0 Line attributes
 BASE TAttFill offset=0 type=0 Fill area attributes
 BASE TAttMarker offset=0 type=0 Marker attributes
 Int_t fNcells offset=0 type=3 number bins(1D),cells(2D)+U/Overflows
 TAxis fXaxis offset=0 type=61 X axis descriptor
 TAxis fYaxis offset=0 type=61 Y axis descriptor
 TAxis fZaxis offset=0 type=61 Z axis descriptor
 Short_t fBarOffset offset=0 type=2 (1000*offset) for barcharts or legos
 Short_t fBarWidth offset=0 type=2 (1000*width) for bar charts or legos
 Stat_t fEntries offset=0 type=8 Number of entries//continued…
 Stat_t fTsumw offset=0 type=8 Total Sum of weights
 Stat_t fTsumw2 offset=0 type=8 Total Sum of squares of weights
 Stat_t fTsumwx offset=0 type=8 Total Sum of weight*X
 Stat_t fTsumwx2 offset=0 type=8 Total Sum of weight*X*X
 Double_t fMaximum offset=0 type=8 Maximum value for plotting
 Double_t fMinimum offset=0 type=8 Minimum value for plotting
 Double_t fNormFactor offset=0 type=8 Normalization factor
 TArrayD fContour offset=0 type=62 Array to display contour levels
 TArrayD fSumw2 offset=0 type=62 Array of sum of squares of weights
 TString fOption offset=0 type=65 histogram options
 TList* fFunctions offset=0 type=63 ->Pointer to list of functions(fits,user)

StreamerInfo for class: TNamed, version=1
…
StreamerInfo for class: TAttLine, version=1
…
StreamerInfo for class: TAttFill, version=1
…
StreamerInfo for class: TAttMarker, version=1
…
StreamerInfo for class: TArrayF, version=1
…
StreamerInfo for class: TArray, version=1
…
StreamerInfo for class: TAxis, version=6
…
StreamerInfo for class: TAttAxis, version=4
…

ROOT allows a class to have multiple versions, and each version has its own description in form of a
StreamerInfo. Above you see the class name and version number. The StreamerInfolist has
only one description for each class/version combination it encountered. The file can have multiple
versions of the same class, for example objects of old and new versions of a class can be in the same
file. The StreamerInfois described in detail in the section on Streamers.

The List of Keys and the List of Free Blocks
The last three entries on the output of TFile::Map() are the list of keys, the list of free segments,
and the address where the data ends.. When a file is closed, it writes a linked list of keys at the end
of the file. This is what we see in the third to the last entry. In our example, the list of keys is stored
in 732 bytes beginning at byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments

Input/Output

216

20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976 and is not very long, only
53 bytes, since we have not deleted any objects. The last entry is the address of the last byte in the file.

File Recovery
A file may become corrupted or it may be impossible to write it to disk and close it properly. For
example if the file is too large and exceeds the disk quota, or the job crashes or a batch job reaches its
time limit before the file can be closed. In these cases, it is imperative to recover and retain as much
information as possible. ROOT provides an intelligent and elegant file recovery mechanism using the
redundant directory information in the record header.

If a file that has been not properly closed is opened again, it is scanned and rebuilt according to the
information in the record header. The recovery algorithm reads the file and creates the saved objects in
memory according to the header information. It then rebuilds the directory and file structure. If the file
is opened in write mode, the recovery makes the correction on disk when the file is closed; however if
the file is opened in read mode, the correction can not be written to disk. You can also explicitly invoke
the recovery procedure by calling the TFile::Recover() method. You can recover the directory
structure, but you cannot save what you recovered to the file on disk. In the following example, we
interrupted and aborted the previous ROOT session, causing the file not to be closed. When we start a
new session and attempt to open the file, it gives us an explanation and status on the recovery attempt.

root[] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not closed, trying to recover successfully recovered 15 keys

The Logical ROOT File: TFile and TKey
We saw that the TFile::Map() method reads the file sequentially and prints information about
each record while scanning the file. It is not feasible to support only sequential access and hence ROOT
provides random or direct access, i.e. reading a specified object at a time. To do so, TFile keeps a
list of TKeys, which is essentially an index to the objects in the file. The TKey class describes the
record headers of objects in the file. For example, we can get the list of keys and print them. To find
a specific object on the file we can use the TFile::Get() method.

root[] TFile f("demo.root")
root[] f.GetListOfKeys()->Print()
TKey Name = h0, Title = histo nr:0, Cycle = 1
TKey Name = h1, Title = histo nr:1, Cycle = 1
TKey Name = h2, Title = histo nr:2, Cycle = 1
TKey Name = h3, Title = histo nr:3, Cycle = 1
TKey Name = h4, Title = histo nr:4, Cycle = 1
TKey Name = h5, Title = histo nr:5, Cycle = 1
TKey Name = h6, Title = histo nr:6, Cycle = 1
TKey Name = h7, Title = histo nr:7, Cycle = 1
TKey Name = h8, Title = histo nr:8, Cycle = 1
TKey Name = h9, Title = histo nr:9, Cycle = 1
TKey Name = h10, Title = histo nr:10, Cycle = 1
TKey Name = h11, Title = histo nr:11, Cycle = 1
TKey Name = h12, Title = histo nr:12, Cycle = 1
TKey Name = h13, Title = histo nr:13, Cycle = 1
TKey Name = h14, Title = histo nr:14, Cycle = 1
root[] TH1F *h9 = (TH1F*)f.Get("h9");

The TFile::Get() finds the TKey object with name "h9". Using the TKey info it will import in
memory the object in the file at the file address #3352 (see the output from the TFile::Map above).

Input/Output

217

This is done by the Streamer method that is covered in detail in a later section. Since the keys are
available in a TList of TKeys we can iterate over the list of keys:

{
TFile f("demo.root");
TIter next(f.GetListOfKeys());
TKey *key;
while ((key=(TKey*)next())) {
printf("key: %s points to an object of class: %s at %dn",
key->GetName(),
key->GetClassName(),key->GetSeekKey());
}
}

The output of this script is:

root[] .x iterate.C
key: h0 points to an object of class: TH1F at 150
key: h1 points to an object of class: TH1F at 503
key: h2 points to an object of class: TH1F at 854
key: h3 points to an object of class: TH1F at 1194
key: h4 points to an object of class: TH1F at 1539
key: h5 points to an object of class: TH1F at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: TH1F at 2582
key: h8 points to an object of class: TH1F at 2937
key: h9 points to an object of class: TH1F at 3293
key: h10 points to an object of class: TH1F at 3639
key: h11 points to an object of class: TH1F at 3986
key: h12 points to an object of class: TH1F at 4339
key: h13 points to an object of class: TH1F at 4694
key: h14 points to an object of class: TH1F at 5038

In addition to the list of keys, TFile also keeps two other lists: TFile::fFree is a TList of
free blocks used to recycle freed up space in the file. ROOT tries to find the best free block. If a
free block matches the size of the new object to be stored, the object is written in the free block
and this free block is deleted from the list. If not, the first free block bigger than the object is used.
TFile::fListHead contains a sorted list (TSortedList) of objects in memory. The diagram
below illustrates the logical view of the TFile and TKey.

Input/Output

218

Figure 11.2. ROOT File/Directory/Key description

Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a TDirectory. We can
list the contents, print the name, and create subdirectories. In a ROOT session, you are always in a
directory and the directory you are in is called the current directory and is stored in the global variable
gDirectory. Let us look at a more detailed example of a ROOT file and its role as the current
directory. First, we create a ROOT file by executing a sample script.

root[] .x $ROOTSYS/tutorials/hsimple.C

Now you should have hsimple.root in your directory. The file was closed by the script so we
have to open it again to work with it. We open the file with the intent to update it, and list its contents.

root[] TFile f ("hsimple.root","UPDATE")
root[] f.ls()
TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

Input/Output

219

It shows the two lines starting with TFile followed by four lines starting with the word "KEY". The
four keys tell us that there are four objects on disk in this file. The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk, called hpx. It is
of the class TH1F (one-dimensional histogram of floating numbers). The object's title is "This is the
px distribution". If the line starts with OBJ, the object is in memory. The <class> is the name of the
ROOT class (T-something). The <variable> is the name of the object. The cycle number along with
the variable name uniquely identifies the object. The <title> is the string given in the constructor of
the object as title.

Figure 11.3. The structure of TFile

The figure shows a TFile with five objects in the top directory (kObjA;1, kObjA;2,
kObjB;1, kObjC;1 and kObjD;1). ObjA is on file twice with two different cycle numbers.
It also shows four objects in memory (mObjE, mObjeF, mObjM, mObjL). It also shows several
subdirectories.

The Current Directory
When you create a TFile object, it becomes the current directory. Therefore, the last file to be opened
is always the current directory. To check your current directory you can type:

root[] gDirectory->pwd()
Rint:/

This means that the current directory is the ROOT session (Rint). When you create a file, and repeat
the command the file becomes the current directory.

root[] TFile f1("AFile1.root");
root[] gDirectory->pwd()
AFile1.root:/

If you create two files, the last becomes the current directory.

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the TDirectory::cd
method. The next command changes the current directory back to the first file.

Input/Output

220

root[] f1.cd();
root[] gDirectory->pwd()
AFile1.root:/

Note that even if you open the file in "READ" mode, it still becomes the current directory. CINT also
offers a shortcut for gDirectory->pwd() and gDirectory->ls(), you can type:

root[] .pwd
AFile1.root:/
root[] .ls
TFile** AFile1.root
TFile* AFile1.root

To return to the home directory where we were before:

root[] gROOT->cd()
(unsigned char)1
root[] gROOT->pwd()
Rint:/

Objects in Memory and Objects on Disk
The TFile::ls() method has an option to list the objects on disk ("-d") or the objects in memory
("-m"). If no option is given it lists both, first the objects in memory, then the objects on disk. For
example:

root[] TFile *f = new TFile("hsimple.root");
root[] gDirectory->ls("-m")
TFile** hsimple.root
TFile* hsimple.root

Remember that gDirectory is the current directory and at this time is equivalent to "f". This
correctly states that no objects are in memory.

The next command lists the objects on disk in the current directory.

root[] gDirectory->ls("-d")
TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly. When we use the
object, ROOT gets it for us. Any reference to hprof will read it from the file. For example drawing
hprof will read it from the file and create an object in memory. Here we draw the profile histogram,
and then we list the contents.

root[] hprof->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0

Input/Output

221

KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class TProfile, called
hprof has been added in memory to this directory. This new hprof in memory is independent from
the hprof on disk. If we make changes to the hprof in memory, they are not propagated to the
hprof on disk. A new version of hprof will be saved once we call Write.

You may wonder why hprof is added to the objects in the current directory. hprof is of the
class TProfile that inherits from TH1D, which inherits from TH1. TH1 is the basic histogram.
All histograms and trees are created in the current directory (also see "Histograms and the Current
Directory"). The reference to "all histograms" includes objects of any class descending directly or
indirectly from TH1. Hence, our TProfile hprof is created in the current directory f.There was
another side effect when we called the TH1::Draw method. CINT printed this statement:

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

It tells us that a TCanvas was created and it named it c1. This is where ROOT is being nice, and it
creates a canvas for drawing the histogram if no canvas was named in the draw command, and if no
active canvas exists. The newly created canvas, however, is NOT listed in the contents of the current
directory. Why is that? The canvas is not added to the current directory, because by default ONLY
histograms and trees are added to the object list of the current directory. Actually, TEventList
objects are also added to the current directory, but at this time, we don't have to worry about those.
If the canvas is not in the current directory then where is it? Because it is a canvas, it was added to
the list of canvases.

This list can be obtained by the command gROOT->GetListOfCanvases()->ls(). The ls()
will print the contents of the list. In our list, we have one canvas called c1. It has a TFrame, a
TProfile, and a TPaveStats.

root[] gROOT->GetListOfCanvases()->ls()
Canvas Name=c1 Title=c1
Option=TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1
Name= c1 Title= c1
Option=TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
OBJ: TProfile hprof Profile of pz versus px : 0
TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
TPaveStats X1=2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one more OBJ entry.

root[] hpx->Draw()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

TFile::ls() loops over the list of objects in memory and the list of objects on disk. In both cases,
it calls the ls() method of each object. The implementation of the ls method is specific to the class
of the object, all of these objects are descendants of TObject and inherit the TObject::ls()

Input/Output

222

implementation. The histogram classes are descendants of TNamed that in turn is a descent of
TObject. In this case, TNamed::ls() is executed, and it prints the name of the class, and the
name and title of the object. Each directory keeps a list of its objects in the memory. You can get this
list by TDirectory::GetList() . To see the lists in memory contents you can do:

root[]f->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Since the file f is the current directory (gDirectory), this will yield the same result:

root[] gDirectory->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Saving Histograms to Disk
At this time, the objects in memory (OBJ) are identical to the objects on disk (KEY). Let's change that
by adding a fill to the hpx we have in memory.

root[] hpx->Fill(0)

Now the hpx in memory is different from the histogram (hpx) on disk. Only one version of the
object can be in memory, however, on disk we can store multiple versions of the object. The
TFile::Write method will write the list of objects in the current directory to disk. It will add a
new version of hpx and hprof.

root[] f->Write()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0
KEY: TH1F hpx;2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

Figure 11.4. The file before and after the call to Write

Input/Output

223

The TFile::Write method wrote the entire list of objects in the current directory to the file. You
see that it added two new keys: hpx;2 and hprof;2 to the file. Unlike memory, a file is capable
of storing multiple objects with the same name. Their cycle number, the number after the semicolon,
differentiates objects on disk with the same name. If you wanted to save only hpx to the file, but not
the entire list of objects, you could use the TH1::Write method of hpx:

root[] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName() to find the name of the
object and use it to create a key with the same name. You can specify a new name by giving it as a
parameter to the Write method.

root[] hpx->Write("newName")

If you want to re-write the same object, with the same key, use the overwrite option.

root[] hpx->Write("",TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the matching name is
overwritten if such an object exists. If not, a new object with the new name will be created.

root[] hpx->Write("newName",TObject::kOverwrite)

The Write method did not affect the objects in memory at all. However, if the file is closed, the
directory is emptied and the objects on the list are deleted.

root[] f->Close()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root

In the code snipped above, you can see that the directory is now empty. If you followed along so far,
you can see that c1 which was displaying hpx is now blank. Furthermore, hpx no longer exists.

root[] hpx->Draw()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the objects or any attempt
to reference the objects will fail.

Histograms and the Current Directory
When a histogram is created, it is added by default to the list of objects in the current directory. You
can get the list of histograms in a directory and retrieve a pointer to a specific histogram.

TH1F *h = (TH1F*)gDirectory->Get("myHist"); // or
TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. You can
change the directory of a histogram with the SetDirectory method.

Input/Output

224

h->SetDirectory(newDir);

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory(0);

Once a histogram is removed from the directory, it will no longer be deleted when the directory is
closed. It is now your responsibility to delete this histogram object once you are finished with it. To
change the default that automatically adds the histogram to the current directory, you can call the
static function:

TH1::AddDirectory(kFALSE);

In this case, you will need to do all the bookkeeping for all the created histograms.

Saving Objects to Disk
In addition to histograms and trees, you can save any object in a ROOT file. For
example to save a canvas to the ROOT file you can use either TObject::Write() or
TDirectory::WriteTObject(). The example:

root[] c1->Write()

This is equivalent to:

root[] f->WriteTObject(c1)

For objects that do not inherit from TObject use:

root[] f->WriteObject(ptr,"nameofobject")

Another example:

root[] TFile *f = new TFile("hsimple.root","UPDATE")
root[] hpx->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] c1->Write()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TH1F hpx This is the px distribution : 0
KEY: TH1F hpx;2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
KEY: TCanvas c1;1 c1

Saving Collections to Disk
All collection classes inherit from TCollection and hence inherit the
TCollection::Write() method. When you call TCollection::Write() each object in

Input/Output

225

the container is written individually into its own key in the file. To write all objects into one key you
can specify the name of the key and use the option TObject::kSingleKey. For example:

root[] TList * list = new TList;
root[] TNamed * n1, * n2;
root[] n1 = new TNamed("name1","title1");
root[] n2 = new TNamed("name2","title2");
root[] list->Add(n1);
root[] list->Add(n2);
root[] gFile->WriteObject(list,"list",TObject::kSingleKey);

A TFile Object Going Out of Scope
There is another important point to remember about TFile::Close and TFile::Write. When
a variable is declared on the stack in a function such as in the code below, it will be deleted when
it goes out of scope.

void foo() {
 TFile f("AFile.root","RECREATE");
}

As soon as the function foo has finished executing, the variable f is deleted. When a TFile object
is deleted an implicit call to TFile::Close is made. This will save only the file descriptor to disk.
It contains the file header, the StreamerInfo list, the key list, the free segment list, and the end
address. See "The Physical Layout of ROOT Files". The TFile::Close does not make a call to
Write(), which means that the objects in memory will not be saved in the file. You need to explicitly
call TFile::Write() to save the object in memory to file before the exit of the function.

void foo() {
 TFile f("AFile.root","RECREATE");
 … stuff …
 f.Write();
}

To prevent an object in a function from being deleted when it goes out of scope, you can create it on
the heap instead of on the stack. This will create a TFile object f, that is available on a global scope,
and it will still be available when exiting the function.

void foo() {
 TFile *f = new TFile("AFile.root","RECREATE");
}

Retrieving Objects from Disk
If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name could be in a ROOT file. In our
example, we saved a modified histogram hpx to the file, which resulted in two hpx's uniquely
identified by the cycle number: hpx;1 and hpx;2. The question is how we can retrieve the right
version of hpx. When opening the file and using hpx, CINT retrieves the one with the highest cycle
number. To read the hpx;1 into memory, rather than the hpx:2 we would get by default, we have
to explicitly get it and assign it to a variable.

Input/Output

226

root[] TFile *f1 = new TFile("hsimple.root")
root[] TH1F *hpx1; f1->GetObject("hpx;1",hpx)
root[] hpx1->Draw()

Subdirectories and Navigation

The TDirectory class lets you organize its contents into subdirectories, and TFile being
a descendent of TDirectory inherits this ability. Here is an example of a ROOT file with
multiple subdirectories as seen in the ROOT browser. To add a subdirectory to a file use
TDirectory::mkdir. The example below opens the file for writing and creates a subdirectory
called "Wed011003". Listing the contents of the file shows the new directory in the file and the
TDirectory object in memory.

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] f->mkdir("Wed011003")
(class TDirectory*)0x1072b5c8

root[] f->ls()
TFile** AFile.root
TFile* AFile.root
TDirectory* Wed011003 Wed011003
KEY: TDirectory Wed011003;1 Wed011003

We can change the current directory by navigating into the subdirectory, and after changing directory;
we can see that gDirectory is now "Wed011003".

root[] f->cd("Wed011003")
root[] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gDirectory we have gFile, another global that points to the current file. In our
example, gDirectory points to the subdirectory, and gFile points to the file (i.e. the files' top
directory).

root[] gFile->pwd()
AFile.root:/

Use cd() without any arguments to return to the file's top directory.

root[] f->cd()
AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the current directory, which
is the subdirectory "Wed011003".

root[] f->cd("Wed011003")
root[] TH1F *histo = new TH1F("histo","histo",10,0,10)
root[] gDirectory->ls()
TDirectory* Wed011003 Wed011003
OBJ: TH1F histo histo : 0

Input/Output

227

If you are in a subdirectory and you want to have a pointer to the file containing the subdirectory,
you can do:

root[] gDirectory->GetFile()

If you are in the top directory gDirectory is the same as gFile. We write the file to save the
histogram on disk, to show you how to retrieve it later.

root[] f->Write()
root[] gDirectory->ls()
TDirectory* Wed011003 Wed011003
OBJ: TH1F histo histo : 0
KEY: TH1F histo;1 histo

When retrieving an object from a subdirectory, you can navigate to the subdirectory first or give it the
path name relative to the file. The read object is created in memory in the current directory. In this
first example, we get histo from the top directory and the object will be in the top directory.

root[] TH1 *h; f->GetObject("Wed011003/histo;1",h)

If file is written, a copy of histo will be in the top directory. This is an effective way to copy an
object from one directory to another. In contrast, in the code box below, histo will be in memory
in the subdirectory because we changed the current directory.

root[] f->cd("Wed011003")
root[] TH1 *h; gDirectory->GetObject("histo;1",h)

Note that there is no warning if the retrieving was not successful. You need to explicitly check the
value of h, and if it is null, the object could not be found. For example, if you did not give the path
name the histogram cannot be found and the pointer to h is null:

root[] TH1 *h; gDirectory->GetObject("Wed011003/histo;1",h)
root[] h
(class TH1*)0x10767de0
root[] TH1 *h; gDirectory->GetObject("histo;1",h)
root[] h
(class TH1*)0x0

To remove a subdirectory you need to use TDirectory::Delete. There is no
TDirectory::rmdir. The Delete method takes a string containing the variable name and cycle
number as a parameter.

void Delete(const char *namecycle)

The namecycle string has the format name;cycle. The next are some rules to remember:

• name = * means all, but don't remove the subdirectories

• cycle =* means all cycles (memory and file)

• cycle ="" means apply to a memory object

• cycle = 9999 also means apply to a memory object

• namecycle = "" means the same as namecycle ="T*"

Input/Output

228

• namecycle = T* delete subdirectories

For example to delete a directory from a file, you must specify the directory cycle:

root[] f->Delete("Wed011003;1")

Some other examples of namecycle format are:

• foo:delete the object named foo from memory

• foo;1: delete the cycle 1 of the object named foo from the file

• foo;*: delete all cycles of foo from the file and also from memory

• *;2: delete all objects with cycle number 2 from the file

• *;*: delete all objects from memory and from the file

• T*;*: delete all objects from memory and from the file including all subdirectories

Streamers
To follow the discussion on Streamers, you need to know what a simple data type is. A variable
is of a simple data type if it cannot be decomposed into other types. Examples of simple data types
are longs, shorts, floats, and chars. In contrast, a variable is of a composite data type if it can be
decomposed. For example, classes, structures, and arrays are composite types. Simple types are also
called primitive types, basic types, and CINT sometimes calls them fundamental types.

When we say, "writing an object to a file", we actually mean writing the current values of the data
members. The most common way to do this is to decompose (also called the serialization of) the object
into its data members and write them to disk. The decomposition is the job of the Streamer. Every
class with ambitions to be stored in a file has a Streamer that decomposes it and "streams" its
members into a buffer.

The methods of the class are not written to the file, it contains only the persistent data members.
To decompose the parent classes, the Streamer calls the Streamer of the parent classes. It
moves up the inheritance tree until it reaches an ancestor without a parent. To serialize the object data
members it calls their Streamer. They in turn move up their own inheritance tree and so forth. The
simple data members are written to the buffer directly. Eventually the buffer contains all simple data
members of all the classes that make up this particular object. Data members that are references (as
MyClass &fObj;) are never saved, it is always the responsibility of the object's constructor to set
them properly.

Automatically Generated Streamers
A Streamer usually calls other Streamers: the Streamer of its parents and data members.
This architecture depends on all classes having Streamers, because eventually they will be called.
To ensure that a class has a Streamer, rootcint automatically creates one in the ClassDef
macro that is defined in $ROOTSYS/include/Rtypes.h. ClassDef defines several methods
for any class, and one of them is the Streamer. The automatically generated Streamer is complete
and can be used as long as no customization is needed.

The Event class is defined in $ROOTSYS/test/Event.h. Looking at the class definition, we
find that it inherits from TObject. It is a simple example of a class with diverse data members.

class Event : public TObject {

Input/Output

229

private:
 TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
char fType[20];
Int_t fNtrack;
Int_t fNseg;
Int_t fNvertex;
UInt_t fFlag;
Float_t fTemperature;
EventHeader fEvtHdr; //|| don't split
TClonesArray *fTracks; //->
TH1F *fH; //->
Int_t fMeasures[10];
Float_t fMatrix[4][4];
Float_t *fClosestDistance; //[fNvertex]
…

The Event class is added to the CINT dictionary by the rootcint utility. This is the rootcint
statement in the $ROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the automatically generated Streamer for Event:

void Event::Streamer(TBuffer &R__b){
 // Stream an object of class Event.
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

When writing an Event object, TClass::WriteBuffer is called. WriteBuffer writes the
current version number of the Event class, and its contents into the buffer R__b. The Streamer
calls TClass::ReadBuffer when reading an Event object. The ReadBuffer method reads
the information from buffer R__b into the Event object.

Transient Data Members (//!)
To prevent a data member from being written to the file, insert a "!" as the first character after the
comment marks. It tells ROOT not to save that data member in a root file when saving the class. For
example, in this version of Event, the fPt and fTransient data members are not persistent.

class Event : public TObject {
private:
TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
…

The Pointer to Objects (//->)
The string "->" in the comment field of the members *fH and *fTracks instruct the automatic
Streamer to assume these will point to valid objects and the Streamer of the objects can be
called rather than the more expensive R__b << fH. It is important to note that no check is done on

Input/Output

230

the validity of the pointer value. In particular if the pointer points, directly or indirectly, back to the
current object, this will result in an infinite recursion and the abrupt end of the process.

TClonesArray *fTracks; //->
TH1F *fH; //->

Variable Length Array
When the Streamer comes across a pointer to a simple type, it assumes it is an array. Somehow, it
has to know how many elements are in the array to reserve enough space in the buffer and write out
the appropriate number of elements. This is done in the class definition. For example:

class Event : public TObject {
private:
char fType[20];
Int_t fNtrack;
Int_t fNseg;
Int_t fNvertex;
…
Float_t *fClosestDistance; //[fNvertex]

The array fClosestDistance is defined as a pointer of floating point numbers. A comment mark
(//), and the number in square brackets tell the Streamer the length of the array for this object. In
general the syntax is:

<simple type> *<name>//[<length>]

The length cannot be an expression. If a variable is used, it needs to be an integer data member of the
class. It must be defined ahead of its use, or in a base class.

The same notation also applies to variable length array of object and variable length array of pointer
to objects.

MyObject *obj; //[fNojbs]
MyObject **objs; //[fDatas]

Double32_t
Math operations very often require double precision, but on saving single usually precision is
sufficient. For this purpose we support the typedef Double32_t which is stored in memory as a double
and on disk as a float or interger. The actual size of disk (before compression) is determined by the
parameter next to the data member declartion. For example:

Double32_t m_data; //[min,max<,nbits>]

If the comment is absent or does not contain min, max, nbit, the member is saved as
a float.

If min and max are present, they are saved as a 32 bits precision. min and max can be explicit
values or be expressions of values known to CINT (e.g. "pi").

If nbits is present, the member is saved as int with 'nbit'. For more details see the io tutorials
double32.C.

Input/Output

231

Figure 11.5. Compression and precision of Double32_t

Prevent Splitting (//||)
If you want to prevent a data member from being split when writing it to a tree, append the characters
|| right after the comment string. This only makes sense for object data members. For example:

EventHeader fEvtHdr; //|| do not split the header

Streamers with Special Additions
Most of the time you can let rootcint generate a Streamer for you. However if you want to write
your own Streamer you can do so. For some classes, it may be necessary to execute some code
before or after the read or write block in the automatic Streamer. For example after the execution
of the read block, one can initialize some non persistent members. There are two reasons why you
would need to write your own Streamer: 1) if you have a non-persistent data member that you want to
initialize to a value depending on the read data members; 2) if you want or need to handle the schema
evolution on your own. In addition, the automatic Streamer does not support C-structures. It is
best to convert the structure to a class definition.

First, you need to tell rootcint not to build a Streamer for you. The input to the rootcint
command (in the makefile) is a list of classes in a LinkDef.h file. For example, the list of classes
for Event is listed in $ROOTSYS/test/EventLinkDef.h. The "-" at the end of the class name
tells rootcint not to generate a Streamer. In the example, you can see the Event class is the
only one for which rootcint is instructed not to generate a Streamer.

#ifdef __CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class EventHeader+;
#pragma link C++ class Event-;
#pragma link C++ class HistogramManager+;
#pragma link C++ class Track+;

Input/Output

232

#endif
#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new Streamer system introduced in ROOT 3.0. The
following is an example of a customized Streamer for Event. The Streamer takes a TBuffer
as a parameter, and first checks to see if this is a case of reading or writing the buffer.

void Event::Streamer(TBuffer &R__b) {
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 fTransient = gDirectory; //save current directory
 fPt= TMath::Sqrt(fPx*fPx + fPy*fPy + fPz*fPz);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

Writing Objects
The Streamer decomposes the objects into data members and writes them to a buffer. It does not
write the buffer to a file, it simply populates a buffer with bytes representing the object. This allows us
to write the buffer to a file or do anything else we could do with the buffer. For example, we can write
it to a socket to send it over the network. This is beyond the scope of this chapter, but it is worthwhile
to emphasize the need and advantage of separating the creation of the buffer from its use. Let us look
how a buffer is written to a file. The dictionary for a class needs to be loaded before any object of
that type can be saved.

The TObject::Write method does the following:

• Creates a TKey object in the current directory

• Creates a TBuffer object which is part of the newly created TKey

• Fills the TBuffer with a call to the class::Streamer method

• Creates a second buffer for compression, if needed

• Reserves space by scanning the TFree list. At this point, the size of the buffer is known.

• Writes the buffer to the file

• Releases the TBuffer part of the key

In other words, the TObject::Write calls the Streamer method of the class to build the buffer.
The buffer is in the key and the key is written to disk. Once written to disk the memory consumed by
the buffer part is released. The key part of the TKey is kept.

Figure 11.6. A diagram of a streamed TH1F in the buffer

The key consumes about 60 bytes, whereas the buffer, since it contains the object data, can be very
large.

Input/Output

233

Ignore Object Streamers
Your class can ignore the TObject Streamer with the
MyClass->Class::IgnoreObjectStreamer() method. When the class
kIgnoreTObjectStreamer bit is set (by calling the IgnoreTObjectStreamer method),
the automatically generated Streamer will not call TObject::Streamer, and the TObject
part of the class is not streamed to the file. This is useful in case you do not use the TObject fBits
and fUniqueID data members. You gain space on the file, and you do not loose functionality if
you do not use the fBits and fUniqueID. See “The Role of TObject” on the use of fBits and
fUniqueID.

Streaming a TClonesArray
When writing a TClonesArray it bypasses by default the Streamer of the member
class and uses a more efficient internal mechanism to write the members to the file. You can
override the default and specify that the member class Streamer is used by setting the
TClonesArray::BypassStreamer bit to false:

TClonesArray *fTracks;
fTracks->BypassStreamer(kFALSE); // use the member Streamer

When the kBypassStreamer bit is set, the automatically generated Streamer can call directly
the method TClass::WriteBuffer. Bypassing the Streamer improves the performance
when writing/reading the objects in the TClonesArray. However, the drawback is when a
TClonesArray is written with split=0 bypassing the Streamer, the StreamerInfo of the
class in the array being optimized, one cannot later use the TClonesArray with split > 0. For
example, there is a problem with the following scenario: a class Foo has a TClonesArray of Bar
objects the Foo object is written with split=0 to Tree T1. In this case the StreamerInfo for
the class Bar is created in optimized mode in such a way that data members of the same type are
written as an array improving the I/O performance. In a new program, T1 is read and a new Tree T2
is created with the object Foo in split > 1.

When the T2 branch is created, the StreamerInfo for the class Bar is created with no
optimization (mandatory for the split mode). The optimized Bar StreamerInfo is going to be
used to read the TClonesArray in T1. The result will be Bar objects with data member values
not in the right sequence. The solution to this problem is to call BypassStreamer(kFALSE)
for the TClonesArray. In this case, the normal Bar::Streamer function will be called. The
Bar::Streamer function works OK independently if the Bar StreamerInfo had been
generated in optimized mode or not.

Pointers and References in Persistency
An object pointer as a data member presents a challenge to the streaming software. If the object pointed
to is saved every time, it could create circular dependencies and consume a large amount of disk space.
The network of references must be preserved on disk and recreated upon reading the file.

If you use independent I/O operations for pointers and their referenced objects you can use the TRef
class. Later in this section is an example that compares disk space, memory usage, and I/O times of
C++ pointers and TRefs. In general, a TRef is faster than C++ but the advantage of a C++ pointer
is that it is already C++.

Streaming C++ Pointers
When ROOT encounters a pointer data member it calls the Streamer of the object and labels it
with a unique object identifier. The object identifier is unique for one I/O operation. If there is another
pointer to the object in the same I/O operation, the first object is referenced i.e. it is not saved again.
When reading the file, the object is rebuilt and the references recalculated.

Input/Output

234

Figure 11.7. Streaming object pointers

In this way, the network of pointers and their objects is rebuilt and ready to use the same way it was
used before it was persistent. If the pointer hold the address of an object which in embedded in another
object (as opposed to being pointed to by a pointer), the object will be duplicate at read time. To avoid
this, make the pointer a transient data member.

Motivation for the TRef Class
If the object is split into several files or into several branches of one or more TTrees, standard C+
+ pointers cannot be used because each I/O operation will write the referenced objects, and multiple
copies will exist. In addition, if the pointer is read before the referenced object, it is null and may cause
a run time system error. To address these limitations, ROOT offers the TRef class.

TRef allows referencing an object in a different branch and/or in a different file. TRef also supports
the complex situation where a TFile is updated multiple times on the same machine or a different
machine. When a TRef is read before its referenced object, it is null. As soon as the referenced object
is read, the TRef points to it. In addition, one can specify an action to be taken by TRef in the case
it is read before its reference object (see”Action on Demand” below).

Using TRef
A TRef is a lightweight object pointing to any TObject. This object can be used instead of normal
C++ pointers in case:

• The referenced object R and the pointer P are not written to the same file

• P is read before R

• R and P are written to different Tree branches

Below is a line from the example in $ROOTSYS/test/Event.cxx.

TRef fLastTrack; //pointer to last track
…
Track *track = (Track*)fTracks->ConstructedAt(fNtrack++);
track->Set(random);
// Save reference to last Track in the collection of Tracks
fLastTrack = track;

The track and its reference fLastTrack can be written with two separate I/O calls in the same
or in different files, in the same or in different branches of a TTree. If the TRef is read and the
referenced object has not yet been read, TRef will return a null pointer. As soon as the referenced
object will be read, TRef will point to it.

How Does It Work?
A TRef is itself a TObject with an additional transient pointer fPID. When a TRef is used to point
to a TObject *R, for example in a class with

Input/Output

235

TRef P;

one can do:

P = R; //to set the pointer

When the statement P = R is executed, the following happens:

• The pointer fPID is set to the current TProcessID (see below).

• The current ObjectNumber (see below) is incremented by one.

• R.fUniqueID is set to ObjectNumber.

• In the fPID object, the element fObjects[ObjectNumber] is set to R

• P.fUniqueID is also set to ObjectNumber.

After having set P, one can immediately return the value of R using P.GetObject(). This function
returns the fObjects[fUniqueID] from the fPID object.

When the TRef is written, the process id number pidf of fPID is written in addition to the TObject
part of the TRef (fBits,fUniqueID). When the TRef is read, its pointer fPID is set to the value
stored in the TObjArray of TFile::fProcessIDs (fProcessIDs[pidf]).

When a referenced object is written, TObject::Streamer writes the pidf in addition to the
standard fBits and fUniqueID. When TObject::Streamer reads a reference object,
the pidf is read. At this point, the referenced object is entered into the table of objects of the
TProcessID corresponding to pidf.

WARNING: If MyClass is the class of the referenced object, The TObject part of MyClass must
be streamed. One should not call MyClass::Class()->IgnoreTObjectStreamer().

TProccessID and TUUID

A TProcessID uniquely identifies a ROOT job. The TProcessID title consists of a TUUID object,
which provides a globally unique identifier. The TUUID class implements the UUID (Universally
Unique Identifier), also known as GUID (Globally Unique Identifier). A UUID is 128 bits long, and
if generated according to this algorithm, is either guaranteed to be different from all other UUID
generated until 3400 A.D. or extremely likely to be different.

The TROOT constructor automatically creates a TProcessID. When a TFile contains referenced
objects, the TProcessID object is written to the file. If a file has been written in multiple sessions
(same machine or not), a TProcessID is written for each session. The TProcessID objects are
used by TRef to uniquely identify the referenced TObject.

When a referenced object is read from a file (its bit kIsReferenced is set), this object is entered
into the objects table of the corresponding TProcessID. Each TFile has a list of TProcessIDs
(see TFile::fProcessIDs) also accessible from TProcessID::fgPIDs (for all files).
When this object is deleted, it is removed from the table via the cleanup mechanism invoked by the
TObject destructor. Each TProcessID has a table (TObjArray *fObjects) that keeps track
of all referenced objects. If a referenced object has a fUniqueID, a pointer to this unique object may
be found using fObjects->At(fUniqueID). In the same way, when a TRef::GetObject
is called, GetObject uses its own fUniqueID to find the pointer to the referenced object. See
TProcessID::GetObjectWithID and PutObjectWithID.

Object Number

When an object is referenced, a unique identifier is computed and stored in both the fUniqueID
of the referenced and referencing object. This uniqueID is computed by incrementing by

Input/Output

236

one the static global in TProcessID::fgNumber. The fUniqueID is the serial object
number in the current session. One can retrieve the current fgNumber value by calling the
static function TProcessID::GetObjectCount at any time or can set this number by
TProcessID::SetObjectCount. To avoid a growing table of fObjects in TProcessID,
in case, for example, one processes many events in a loop, it might be necessary to reset the object
number at the end of processing of one event. See an example in $ROOTSYS/test/Event.cxx
(look at function Build). The value of ObjectNumber may be saved at the beginning of one event
and reset to this original value at the end of the event. These actions may be nested.

saveNumber = TProcessID::GetObjectCount();
…
TProcessID::SetObjectCount(savedNumber);

Action on Demand
The normal behavior of a TRef has been described above. In addition, TRef supports "Actions on
Demand". It may happen that the referenced object is not yet in the memory, on a separate file or not
yet computed. In this case, TRef is able to execute automatically an action:

• Call to a compiled function (static function of member function)

• Call to an interpreted function

• Execution of a CINT script

How to Select This Option?

In the definition of the TRef data member in the original class, do:

TRef fRef; //EXEC:execName points to something

When the special keyword "EXEC:" is found in the comment field of the member, the next string is
assumed to be the name of a TExec object. When a file is connected, the dictionary of the classes on the
file is read in memory (see TFile::ReadStreamerInfo). When the TStreamerElement
object is read, a TExec object is automatically created with the name specified after the keyword
"EXEC:" in case a TExec with a same name does not already exist.

The action to be executed via this TExec can be specified with:

• A call to the TExec constructor, if the constructor is called before

• Opening the file.

• A call to TExec::SetAction at any time.

One can compute a pointer to an existing TExec with a name with:

TExec *myExec = gROOT->GetExec(execName);
myExec->SetAction(actionCommand);

The parameter actionCommand is a string containing a CINT instruction. Examples:

myExec->SetAction("LoadHits()");
myExec->SetAction(".x script.C");

Input/Output

237

When a TRef is de-referenced via TRef::GetObject, its TExec is automatically executed. The
TExec function/script can do one or more of the following:

• Load a file containing the referenced object. This function typically looks in the file catalog.

• Compute a pointer to the referenced object and communicate this pointer back to the calling function
TRef::SetObject via:

TRef::SetObject(object)

As soon as an object is returned to GetObject, the fUniqueID of the TRef is set to the
fUniqueID of the referenced object. At the next call to GetObject, the pointer stored in
fPid:fObjects[fUniqueID] will be returned directly. An example of action on demand is in
$ROOTSYS/test/Event.h:

TRef fWebHistogram; //EXEC:GetWebHistogram

When calling fWebHistogram.GetObject(), the function GetObject will automatically
invoke the script GetWebHistogram.C via the interpreter. An example of a
GetWebHistogram.C script is shown below:

void GetWebHistogram() {
 TFile *f=TFile::Open("http://root.cern.ch/files/pippa.root");
 f->cd("DM/CJ");
 TH1 *h6 = (TH1*)gDirectory->Get("h6");
 h6->SetDirectory(0);
 delete f;
 TRef::SetObject(h6);
}

In the above example, a call to fWebHistogram.GetObject() executes the script with the
function GetWebHistogram. This script connects a file with histograms: pippa.root on the
ROOT Web site and returns the object h6 to TRef::GetObject.

TRef fWebHistogram; //EXEC:GetWebHistogram()

Note that if the definition of the TRef fWebHistogram had been changed the compiled or
interpreted function GetWebHistogram() would have been called instead of the CINT script
GetWebHistogram.C.

Array of TRef
When storing multiple TRefs, it is more efficient to use a TRefArray. The efficiency is due
to having a single pointer fPID for all TRefs in the array. It has a dynamic compact table of
fUniqueIDs. We recommend that you use a TRefArray rather then a collection of TRefs.

Example:

• Suppose a TObjArray *mytracks containing a list of Track objects.

• Suppose a TRefArray *pions containing pointers to the pion tracks in mytracks. This list
is created with statements like: pions->Add(track);

• Suppose a TRefArray *muons containing pointers to the muon tracks in mytracks.

The 3 arrays mytracks, pions and muons may be written separately.

Input/Output

238

Schema Evolution
Schema evolution is a problem faced by long-lived data. When a schema changes, existing persistent
data can become inaccessible unless the system provides a mechanism to access data created with
previous versions of the schema. In the lifetime of collaboration, the class definitions (i.e. the schema)
are likely to change frequently. Not only can the class itself change, but any of its parent classes or
data member classes can change also. This makes the support for schema evolution necessary.

ROOT fully supports schema evolution. The next figure below illustrates some of the scenarios.

Figure 11.8. The ROOT schema evolution

The top half represents different versions of the shared library with the class definitions. These are
the in-memory class versions. The bottom half represents data files that contain different versions of
the classes.

• An old version of a shared library and a file with new class definitions - this can be the case when
someone has not updated the library and is reading a new file.

• Reading a file with a shared library that is missing a class definition (i.e. missing class D).

• Reading a file without any class definitions. This can be the case where the class definition is lost,
or unavailable.

• The current version of a shared library and an old file with old class versions (backward
compatibility). This is often the case when reading old data.

• Reading a file with a shared library built with MakeProject. This is the case when someone
has already read the data without a shared library and has used ROOT MakeProject feature to
reconstruct the class definitions and shared library (MakeProject is explained in detail later on).

In case of a mismatch between the in-memory version and the persistent version of a class, ROOT
maps the persistent one to the one in memory. This allows you to change the class definition at will,
for example:

• Change the order of data members in the class.

• Add new data members. By default, the value of the missing member will be 0 or in case of an
object it will be set to null.

• Remove data members.

• Move a data member to a base class or vice-versa.

• Change the type of a member if it is a simple type or a pointer to a simple type. If a loss of precision
occurs, a warning is given.

Input/Output

239

• Add or remove a base class

Figure 11.9. The schema evolution for objects written on disk and in memory

ROOT supports schema evolution by keeping a class description of each version of the class that was
ever written to disk, with the class. When it writes an object to file, it also writes the description of the
current class version along with it. This description is implemented in the StreamerInfo class.

The TStreamerInfo Class
Each class has a list of StreamerInfo objects, one for each version of the class if that version
was written to disk at least once. When reading an object from a file, the system uses the
StreamerInfo list to decode an object into the current version. The StreamerInfo is made up
of TStreamerElements . Each describes one persistent data member of the class. By default, all
data members of a class are persistent. To exclude a data member (i.e. make it not persistent), add a
“!" after the comment marks. For example the pointer *fPainter of a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

The TStreamerElement Class
A TStreamerElement describes a data member of a simple type, object, array, pointer, or
container. The offset in the TStreamerElement is the starting address of the data for that data
member.

BASE TNamed offset= 0 type=67 The basis for a named object
BASE TAttLine offset= 28 type= 0 Line attributes

In this example, the TNamed data starts at byte 0, and TAttLine starts at byte 28. The offset is
machine and compiler dependent and is computed when the StreamerInfo is analyzed. The types
are defined in the file TStreamerInfo.h and listed here:

enum EReadWrite {
kBase=0, kChar=1,kShort=2,kInt=3,kLong=4,
kFloat=5, kCounter=6,kCharStar=7, kDouble=8,kUChar=11,
kUShort=12, kUInt=13,kULong=14,kBits=15,kOffsetL=20,
kOffsetP=40, kObject=61,kAny=62,kObjectp=63,kObjectP=64,
kTString=65, kTObject=66,kTNamed=67,kSkip=100,kSkipL=120,
kSkipP=140, kConv=200, kConvL=220,kConvP=240,kStreamer=500,
kStreamLoop=501, kMissing=99999
};

The method TClass::GetStreamerInfo analyzes the StreamerInfo the same way it would
be analyzed by referring to the class. While analyzing the StreamerInfo, it computes the offsets.
The type field is the type of the TStreamerElement. It is specific to the StreamerInfo
definition.

Input/Output

240

Example: TH1 StreamerInfo
In the StreamerInfo of the TH1 class we see the four base classes: TNamed, TAttLine,
TAttFill, and TAttMarker. These are followed by a list of the data members. Each data member
is implemented by a TStreamerElement object.

root[] TH1::Class()->GetStreamerInfo()->ls()
StreamerInfo for class: TH1, version=3
BASE TNamed offset= 0 type=67 The basis for a named object
BASE TAttLine offset= 28 type= 0 Line attributes
BASE TAttFill offset= 40 type= 0 Fill area attributes
BASE TAttMarker offset= 48 type= 0 Marker attributes
Int_t fNcells offset= 60 type= 3 number of bins(1D
TAxis fXaxis offset= 64 type=61 X axis descriptor
TAxis fYaxis offset=192 type=61 Y axis descriptor
TAxis fZaxis offset=320 type=61 Z axis descriptor
Short_t fBarOffset offset=448 type= 2(1000*offset)for bar charts or legos
Short_t fBarWidth offset=450 type= 2 (1000*width)for bar charts or legos
Stat_t fEntries offset=452 type= 8 Number of entries
Stat_t fTsumw offset=460 type= 8 Total Sum of weights
Stat_t fTsumw2 offset=468 type= 8 Total Sum of squares of weights
Stat_t fTsumwx offset=476 type= 8 Total Sum of weight*X
Stat_t fTsumwx2 offset=484 type= 8 Total Sum of weight*X*X
Double_t fMaximum offset=492 type= 8 Maximum value for plotting
Double_t fMinimum offset=500 type= 8 Minimum value for plotting
Double_t fNormFactor offset=508 type= 8 Normalization factor
TArrayD fContour offset=516 type=62 Array to display contour levels
TArrayD fSumw2 offset=528 type=62 Array of sum of squares of weights
TString fOption offset=540 type=65 histogram options
TList* fFunctions offset=548 type=63 ->Pointer to list of functions
i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
i= 4, fNcells type= 3, offset= 60, len=1, method=0
i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424
i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548
i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676
i= 8, fBarOffset type= 22, offset=448, len=2, method=0
i= 9, fEntries type= 28, offset=452, len=8, method=0
i=10, fContour type= 62, offset=516, len=1, method=1081287804
i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924
i=12, fOption type= 65, offset=540, len=1, method=1081288044
i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

Optimized StreamerInfo
The entries starting with "i = 0" is the optimized format of the StreamerInfo. Consecutive data
members of the same simple type and size are collapsed and read at once into an array for performance
optimization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

Input/Output

241

For example, the five data members beginning with fEnties and the three data members beginning
with fMaximum, are put into an array called fEntries (i = 9) with the length 8.

i= 9, fEntries type= 28, offset=452, len=8, method=0

Only simple type data members are combined, object data members are not combined. For example the
three axis data members remain separate. The "method" is a handle to the method that reads the object.

Automatic Schema Evolution
When a class is defined in ROOT, it must include the ClassDef macro as the last line in the header
file inside the class definition. The syntax is:

ClassDef(<ClassName>,<VersionNumber>)

The version number identifies this particular version of the class. When a class has version 0 it is not
stored in a root file but its base class(es) is(are). The reason can be that this class has no data members
worth saving or all real info is in the base classes. The version number is written to the file in the
Streamer by the call TBuffer::WriteVersion. You, as the designer of the class, do not need
to do any manual modification in the Streamer. ROOT schema evolution mechanism is automatic
and handled by the StreamerInfo.

Manual Schema Evolution
If you have written your own Streamer as described in the section "Streamers with Special
Additions", you will have to manually add code for each version and manage the evolution of your
class. When you add or remove data members, you must modify the Streamer by hand. ROOT
assumes that you have increased the class version number in the ClassDef statement and introduced
the relevant test in the read part of the Streamer. For example, if a new version of the Event class
above includes a new member: Int_t fNew the ClassDef statement should be changed to
ClassDef(Event,2) and the following lines should be added to the read part of the Streamer:

if (R__v > 1) R__b >> fNew;
else fNew = 0; // set to some default value

If, in the same new version 2 you remove the member fH, you must add the following code to read
the histogram object into some temporary object and delete it:

if (R__v) < 2 {
 TH1F *dummy = 0;
 R__b >> dummy;
 delete dummy;
}

Our experience with manual schema evolution shows that it is easy to make and mismatches between
Streamer writers and readers are frequent and increase as the number of classes increase. We
recommend you use rootcint generated Streamers whenever you can, and profit from the
automatic schema evolution.

Building Class Definitions with the StreamerInfo
A ROOT file's StreamerInfo list contains the description of all versions of all classes in the file.
When a file is opened the StreamerInfo is read into memory and it provides enough information
to make the file browsable. The TStreamerInfo enables us to recreate a header file for the class

Input/Output

242

in case the compiled class is not available. This is done with the TFile::MakeProject method.
It creates a directory with the header files for the named classes and a makefile to compile a shared
library with the class definitions.

Example: MakeProject
To explain the details, we use the example of the ATLFast project that is a fast simulation
for the ATLAS experiment. The complete source for ATLFast can be down loaded at ftp://
root.cern.ch/root/atlfast.tar.gz. Once we compile and run ATLFast we get a ROOT
file called atlfast.root, containing the ATLFast objects. When we open the file, we get a
warning that the file contains classes that are not in the CINT dictionary. This is correct since we did
not load the class definitions.

root[] TFile f("atlfast.root")
Warning in <TClass::TClass>: no dictionary for class TMCParticle is available
Warning in <TClass::TClass>: no dictionary for class ATLFMuon available

We can see the StreamerInfo for the classes:

root[] f.ShowStreamerInfo()
…
StreamerInfo for class: ATLFMuon, version=1
BASE TObject offset= 0 type=66 Basic ROOT object
BASE TAtt3D offset= 0 type= 0 3D attributes
Int_t m_KFcode offset= 0 type= 3 Muon KF-code
Int_t m_MCParticle offset= 0 type= 3 Muon position in MCParticles list
Int_t m_KFmother offset= 0 type= 3 Muon mother KF-code
Int_t m_UseFlag offset= 0 type= 3 Muon energy usage flag
Int_t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)
Float_t m_Eta offset= 0 type= 5 Eta coordinate
Float_t m_Phi offset= 0 type= 5 Phi coordinate
Float_t m_PT offset= 0 type= 5 Transverse energy
Int_t m_Trigger offset= 0 type= 3 Result of trigger…

However, when we try to use a specific class we get a warning because the class is not in the CINT
dictionary. We can create a class using gROOT->GetClass() which makes a fake class from the
StreamerInfo.

// Build a 'fake' class
root[] gROOT->GetClass("ATLFMuon")
(const class TClass*)0x87e5c08
// The fake class has a StreamerInfo
root[] gROOT->GetClass("ATLFMuon")->GetStreamerInfo()->ls()
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 16 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 20 type= 3 Muon position in MCParticles list
 Int_t m_KFmother offset= 24 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 28 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 32 type= 3 Muon isolation
 Float_t m_Eta offset= 36 type= 5 Eta coordinate
 Float_t m_Phi offset= 40 type= 5 Phi coordinate
 Float_t m_PT offset= 44 type= 5 Transverse energy
 Int_t m_Trigger offset= 48 type= 3 Result of trigger
 i= 0, TObject type= 66, offset= 0, len=1, method=0

Input/Output

243

 i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688
 i= 2, m_KFcode type= 23, offset= 16, len=5, method=0
 i= 3, m_Eta type= 25, offset= 36, len=3, method=0
 i= 4, m_Trigger type= 3, offset= 48, len=1, method=0

MakeProject has three parameters:

MakeProject(const char *dirname,const char *classes,Option_t *option)

The first is the directory name in which to place the generated header files. The second parameter is
the name of the classes to include in the project. By default, all classes are included. It recognizes
the wild card character *, for example, "ATLF*" includes all classes beginning with ATLF. The third
parameter is an option with the following values:

• "new" If the directory does not exist, it is created.

• "recreate" If the directory does not exist, it is creates as in "new", in addition if the directory
does exist, all existing files are deleted before creating the new files.

• "update" The new classes are added to the existing directory and the existing classes are replaced
with the new definition. If the directory does not exist, it creates it as in "new".

• "+": This option can be used in combination with the other three. It will create the necessary files
to easily build a shared library containing the class definitions.Specifically it will:

• Generate a script called MAKE that builds the shared library containing the definition of all classes
in the directory.

• Generate a LinkDef.h files to use with rootcint in MAKE.

• Run rootcint to generate a <dirname>ProjectDict.cxx file.

• Compile the <dirname>ProjectDict.cxx with the current options in compiledata.h.

• Build a shared library <dirname>.so.

• "++":This option can be used instead of the single "+". It does everything the single "+" does, and
dynamically loads the shared library <dirname>.so.

This example makes a directory called MyProject that will contain all class definitions from the
atlfast.root file. The necessary makefile to build a shared library are also created, and since
the '++' is appended, the shared library is also loaded.

root[]f.MakeProject("MyProject","*", "recreate++")
MakeProject has generated 0 classes in MyProject
MyProject/MAKE file has been generated
Shared lib MyProject/MyProject.so has been generated
Shared lib MyProject/MyProject.so has been dynamically linked

The contents of MyProject:

root[] .! ls MyProject
ATLFCluster.h ATLFJet.h ATLFMiscMaker.h ATLFTrack.h TMCParticle.h ATLFClusterMaker.h ATLFJetMaker.h ATLFMuon.h ATLFElectron.h ATLFMCMaker.h ATLFMuonMaker.h ATLFElectronMaker.h ATLFMaker.h ATLFPhoton.h ATLFHistBrowser.h ATLFMisc.h ATLFPhotonMaker.h ATLFTrackMaker.h ATLFTrigger.h ATLFTriggerMaker.h LinkDef.h MAKE MyProject.so MyProjectProjectDict.h MyProjectProjectDict.cxx MyProjectProjectDict.o

Now you can load the shared library in any consecutive root session to use the atlfast classes.

Input/Output

244

root[]gSystem->Load("MyProject/MyProject")
root[]ATLFMuon muon

This is an example of a generated header file:

//
// This class has been generated by TFile::MakeProject
// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
// from the TStreamerInfo in file atlfast.root
//
#ifndef ATLFMuon_h
#define ATLFMuon_h
#include "TObject.h"
#include "TAtt3D.h"
class ATLFMuon : public TObject , public TAtt3D {
public:
 Int_t m_KFcode; //Muon KF-code
 Int_t m_MCParticle; //Muon position in MCParticles list
 Int_t m_KFmother; //Muon mother KF-code
 Int_t m_UseFlag; //Muon energy usage flag
 Int_t m_Isolated; //Muon isolation (1 for isolated)
 Float_t m_Eta; //Eta coordinate
 Float_t m_Phi; //Phi coordinate
 Float_t m_PT; //Transverse energy
 Int_t m_Trigger; //Result of trigger
 ATLFMuon() {;}
 virtual ~ATLFMuon() {;}
 ClassDef(ATLFMuon,1) //
};
 ClassImp(ATLFMuon)
#endif

Migrating to ROOT 3
We will distinguish the following cases:

Case A: You have your own Streamer method in your class implementation file. This also means
that you have specified MyClass in the LinkDef.h file.

• Keep MyClass - unchanged.

• Increment your class version id in ClassDef by 1, e.g. ClassDef(MyClass, 2)

• Change your Streamer function in the following way: The old write block can be replaced by
the new standard Write. Change the read block to use the new scheme for the new versions and the
old code for the old versions.

 void MyClass::Streamer(TBuffer &R__b) {
 // Stream an object of class MyClass.
 if (R__b.IsReading()) {
 UInt_t R__s, R__c;
 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
 if (R__v > 1) {
 MyClass::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
 return;
 }

Input/Output

245

 // process old versions before automatic schema evolution
 R__b >> xxxx;
 R__b >> .. etc
 R__b.CheckByteCount(R__s, R__c, MyClass::IsA()); // end of old versions
 } else
 MyClass::Class()->WriteBuffer(R__b,this);
}

Case B: You use the automatic Streamer in the dictionary file.

• Move the old Streamer from the file generated by rootcint to your class implementation file,
then modify the Streamer function as in Case A above.

• Increment your class version id in ClassDef by 1, i.e. ClassDef(MyClass, 2)

• Add option "-" in the pragma line of LinkDef.

Case C: You use the automatic Streamer in the dictionary file and you already use the option "+" in
the LinkDef file. If the old automatic Streamer does not contain any statement using the function
WriteArray, you have nothing to do, except running rootcint again to regenerate the new form
of the Streamer function, otherwise proceed like for case B.

Compression and Performance
ROOT uses a compression algorithm based on the well-known gzip algorithm. It supports nine levels
of compression. The default for ROOT is one. The compression level can be set with the method
TFile::SetCompressionLevel. The experience with this algorithm shows that a compression
level of 1.3 for raw data files and around two on most DST files is the optimum. The choice of one
for the default is a compromise between the time it takes to read and write the object vs. the disk
space savings.

To specify no compression, set the level to zero.

We recommend using compression when the time spent in I/O is small compared to the total processing
time. If the I/O operation is increased by a factor of 5 it is still a small percentage of the total time
and it may compress the data by a factor of 10. On the other hand if the time spend on I/O is large,
compression may have a large impact on the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of data. A buffer with a
same value array is compressed so that the value is only written once. For example, a track has the
mass of a pion that it is always the same, and the charge of the pion that is either positive or negative.
For 1000 pions, the mass will be written only once, and the charge only twice (positive and negative).
When the data is sparse, i.e. when there are many zeros, the compression factor is also high.

Compression level Bytes Write Time (sec) Read Time (sec.)

0 1,004,998 4.77 0.07

1 438,366 6.67 0.05

5 429,871 7.03 0.06

9 426,899 8.47 0.05

The time to uncompress an object is small compared to the compression time and is independent of the
selected compression level. Note that the compression level may be changed at any time, but the new
compression level will only apply to newly written objects. Consequently, a ROOT file may contain
objects with different compression levels. This table shows four runs of the demo script that creates 15
histograms with different compression parameters. To make the numbers more significant, the macro

Input/Output

246

was modified to create 1000 histograms. We have included two more examples to show the impact
of compression on Trees in the next chapter.

Remotely Access to ROOT Files via a rootd
Reading and writing ROOT files over the net can be done by creating a TNetFile object instead of
a TFile object. Since the TNetFile class inherits from the TFile class, it has exactly the same
interface and behavior. The only difference is that it reads and writes to a remote rootd daemon.

TNetFile URL
TNetFile file names are in standard URL format with protocol "root". The following are valid
TNetFile URL's:

root://hpsalo/files/aap.root
root://hpbrun.cern.ch/root/hsimple.root
root://pcna49a:5151/~na49/data/run821.root
root://pcna49d.cern.ch:5050//v1/data/run810.root

The only difference with the well-known http URL's is that the root of the remote file tree is the remote
user's home directory. Therefore an absolute pathname requires a // after the host or port (as shown
in the last example above). Further the expansion of the standard shell characters, like ~, $, .., etc.
is handled as expected. The default port on which the remote rootd listens is 1094 and TNetFile
(actually by TUrl that is used by TNetFile) assumes this default port. The port number has been
allocated by the IANA and is reserved for ROOT.

Remote Authentication
Connecting to a rootd daemon requires a remote user id and password. TNetFile supports several
ways for you to provide your login information:

● Setting it globally via the static methods TNetFile::SetUser and TNetFile::SetPasswd

● Via the ~/.netrc file (same format and file as used by ftp)

● Via command line prompt

● Setting the SPR password file via the option –P FILE, i.e. the next line will start the rootd
daemon using the files $HOME/.srootdpass2.conf and $HOME/.srootdpass2 for SPR
authentication: rootd –P $HOME/.srootdpass2

A Simple Session

root[] TFile *f1 = TFile::Open("local/file.root","update")
root[] TFile *f2 = TFile::Open("root://pcna49a.cern.ch/data/file.root","new")
Name (pcna49a:rdm):
Password:
root[] TFile *f3 = TFile::Open("http://root.cern.ch/~rdm/hsimple.root")
root[] f3.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

Input/Output

247

root[] hpx.Draw()

The rootd Daemon
The rootd daemon works with the TNetFile class. It allows remote access to ROOT database
files in read or read/write mode. The rootd daemon can be found in the directory $ROOTSYS/bin.
It can be started either via inetd or by hand from the command line (no need to be super user).
Its performance is comparable with NFS but while NFS requires all kind of system permissions to
setup, rootd can be started by any user. The simplest way to start rootd is by starting it from the
command line while being logged in to the remote machine. Once started rootd goes immediately
in the background (does not need &) and you can log out from the remote node. The only required
argument is the range of ports (specified using –p port1-port2). rootd will listen on the first
available port in this range. You can also specify -p 0-N to search relative to the service port
specified in /etc/services. If a single port is specified (rootd -p 1094) then no search is
made. Unless started by inetd (rootd -i), it prints information about the found port, something
like: ROOTD_PORT=5151, ROOTD_PID=14433 before spawning the daemon. This way the user
knows what was used (eval `rootd` will set these as variables in Bourne-like shells). Also, rootd
shows an error message (as well as sending the syslog message) if there is any problem binding
the port or forking the daemon.

Using TNetFile you can now read and write files on the remote machine.

In the example below, rootd runs on the remote node under user id minuser and searches for an
available port into the range 1094-1098. It finds and listens to port 1094. When creating a TNetFile
object you have to specify the same port number 1094 and use minuser (and corresponding
password) as login id. When rootd is started in this way, you can only login with the user id under
which rootd was started on the remote machine.

hpsalo[] telnet fsgi02.fnal.gov
login: minuser
Password:
<fsgi02> rootd -p 1094-1098
ROOTD_PORT=1094
ROOTD_PID=14433
<fsgi02> exit
hpsalo[] root
root[] TFile *f = TFile::Open("root://fsgi02.fnal.gov:1094/file.root","new")
Name (fsgi02.fnal.gov:rdm): minuser
Password:
root[] f.ls()

However, you can make many connections since the original rootd will fork (spawn) a new rootd
that will service the requests from the TNetFile. The original rootd keeps listening on the specified
port for other connections. Each time a TNetFile makes a connection; it gets a new private rootd
that will handle its requests. At the end of a ROOT, session when all TNetFiles are closed only the
original rootd will stay alive ready to service future TNetFiles.

Starting rootd via inetd
If you expect to often connect via TNetFile to a remote machine, it is more efficient to install rootd
as a service of the inetd super daemon. In this way, it is not necessary for each user to run a private
rootd. However, this requires a one-time modification of two system files (and super user privileges
to do so). Add to /etc/services the line: rootd 1094/tcp. To /etc/inetd.conf the line:

rootd stream tcp nowait root /usr/local/root/bin/rootd rootd -i

After these changes force inetd to reread its configuration file with: "kill -HUP <pid
inetd>". It is not necessary to specify a port number in the URL given to TNetFile when the

Input/Output

248

setup done this way. TNetFile assumes the default port to be 1094 as specified above in the /etc/
services file.

Command Line Arguments for rootd
rootd supports the following arguments:

• -i says that rootd is started by inetd

• -p port#-port# specifies the range of ports to be searched

• -p 0-N the service ports range in /etc/services

• -d level level of debug info written to syslogd

0 = no debug (default) 1 = minimum

2 = medium3 = maximum

Reading ROOT Files via Apache Web Server
By adding one ROOT specific module to your Apache web server, you can distribute ROOT files
to any ROOT user. There is no longer a need to send your files via FTP and risking (out of date)
histograms or other objects. Your latest up-to-date results are always accessible to all your colleagues.
To access ROOT files via a web server, create a TWebFile object instead of a TFile object with
a standard URL as file name. For example:

root[] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
root[] f.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root[] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as expected. However, due to
the nature of a web server a TWebFile is a read-only file. A TWebFile is ideally suited to read
relatively small objects (like histograms or other data analysis results). Although possible, you don't
want to analyze large TTree's via a TWebFile.

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server ROOT aware:

• Go to your Apache source directory and add the file ftp://root.cern.ch/root/
mod_root.c or ftp://root.cern.ch/root/mod_root133.c when your Apache
server is >1.2 (rename the file mod_root.c).

• Add to the end of the Configuration file the line: Module root_module mod_root.o

• Run the Configure script

• Type make

• Copy the new httpd to its expected place

• Go to the conf directory and add at the end of the srm.conf file the line:AddHandler root-
action root

Input/Output

249

• Restart the httpd server

Using the General Open Function of TFile
To make life simple we provide a general function to open any type of file (except shared memory
files of class TMapFile). This functionality is provided by the static TFile::Open() function:

TFile *TFile::Open(const Text_t *name,Option_t *option="",
const Text_t *title="",Int_t compress,Int_t netopt)

Depending on the name argument, the function returns a TFile, a TNetFile or a TWebFile
object. In case a TNetFile URL specifies a local file, a TFile object will be returned (and of course
no login information is needed). The arguments of the Open() function are the same as the ones for
the TFile constructor.

Using ReOpen() method it is possible to reopen a file with a different access mode, like from READ
to UPDATE or from NEW, CREATE, RECREATE, UPDATE to READ. Thus the mode argument
can be either "READ" or "UPDATE". The method returns:

• 0 in case the mode was successfully modified;

• 1 in case the mode did not change (it was already as requested or there were wrong input arguments);

• -1 in case of failure. In the last case the file cannot be used anymore.

XML Interface
A new module xml as implemented by Sergey Linev (GSI). It is an optional package that can be
used to save a canvas into file.xml file format instead of file.root. XML files do not have
any advantages compared to the normal ROOT files, except that the information in these files can be
edited via a normal editor. The main motivation for this new format is to facilitate the communication
with other non ROOT applications. Currently writing and reading XML files is limited to ROOT
applications. It is our intention to develop a simple reader independent of the ROOT libraries that
could be used as an example for real applications.

The XML format should be used only for small data volumes, typically histogram files, pictures,
geometries, calibrations. The XML file is built in memory before being dumped to disk. Like for
normal ROOT files, XML files use the same I/O mechanism exploiting the ROOT/CINT dictionary.
Any class having a dictionary can be saved in XML format. This first implementation does not support
subdirectories or trees.

The shared library libRXML.so may be loaded dynamically via gSystem-
>Load("libRXML"). This library is also automatically loaded by the plug-in manager as soon a
XML file is created. To create an XTM file, simply specify a filename with an .xml extension when
calling TFile::Open. TFile::Open will recognize that you are trying to open an XML file
and return a TXMLFile object. When a XML file is open in write mode, one can use the normal
TObject::Write to write an object in the file.

// example of a session saving a histogram to a XML file
TFile *f = TFile::Open("Example.xml","recreate");
TH1F *h = new TH1F("h","test",1000,-2,2)
h->FillRandom("gaus");
h->Write();
delete f;
// example of a session saving a histogram to a XML file
TFile *f = TFile::Open("Example.xml");
TH1F *h = (TH1F*)f->Get("h");

Input/Output

250

h->Draw();

The canvas can be saved as a XML file format via File menu / Save or Save As menu entries. One
can do also:

canvas->Print("Example.xml");

251

Chapter 12. Trees

Why Should You Use a Tree?
In the “Input/Output” chapter, we saw how objects can be saved in ROOT files. In case you want to
store large quantities of same-class objects, ROOT has designed the TTree and TNtuple classes
specifically for that purpose. The TTree class is optimized to reduce disk space and enhance access
speed. A TNtuple is a TTree that is limited to only hold floating-point numbers; a TTree on the
other hand can hold all kind of data, such as objects or arrays in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the buffers are written to disk
when it is full. Branches, buffers, and leafs, are explained a little later in this chapter, but for now,
it is important to realize that each object is not written individually, but rather collected and written
a bunch at a time.

This is where the TTree takes advantage of compression and will produce a much smaller file than
if the objects were written individually. Since the unit to be compressed is a buffer, and the TTree
contains many same-class objects, the header of the objects can be compressed.

The TTree reduces the header of each object, but it still contains the class name. Using compression,
the class name of each same-class object has a good chance of being compressed, since the
compression algorithm recognizes the bit pattern representing the class name. Using a TTree and
compression the header is reduced to about 4 bytes compared to the original 60 bytes. However, if
compression is turned off, you will not see these large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy of branches, and each
branch can be read independently from any other branch. Now, assume that Px and Py are data
members of the event, and we would like to compute Px2 + Py2 for every event and histogram
the result.

If we had saved the million events without a TTree we would have to:

• read each event in its entirety into memory

• extract the Px and Py from the event

• compute the sum of the squares

• fill a histogram

We would have to do that a million times! This is very time consuming, and we really do not need
to read the entire event, every time. All we need are two little data members (Px and Py). On the
other hand, if we use a tree with one branch containing Px and another branch containing Py, we
can read all values of Px and Py by only reading the Px and Py branches. This makes the use of the
TTree very attractive.

A Simple TTree
This script builds a TTree from an ASCII file containing statistics about the staff at CERN. This
script, staff.C and its input file staff.dat are in $ROOTSYS/tutorials/tree.

{
// example of macro to read data from an ascii file and
// create a root file with an histogram and a TTree
 gROOT->Reset();

Trees

252

// the structure to hold the variables for the branch

 struct staff_t {
 Int_t cat;
 Int_t division;
 Int_t flag;
 Int_t age;
 Int_t service;
 Int_t children;
 Int_t grade;
 Int_t step;
 Int_t nation;
 Int_t hrweek;
 Int_t cost;
 };
 staff_t staff;
// continued…
// open the ASCII file
FILE *fp = fopen("staff.dat","r");
char line[81];
// create a new ROOT file
TFile *f = new TFile("staff.root","RECREATE");
// create a TTree
TTree *tree = new TTree("T","staff data from ascii file");
// create one branch with all information from the stucture
tree->Branch("staff",&staff.cat,"cat/I:division:flag:age:service:
 children:grade:step:nation:hrweek:cost");
// fill the tree from the values in ASCII file
while (fgets(&line,80,fp)) {
 sscanf(&line[0],"%d%d%d%d",&staff.cat,&staff.division,&staff.flag,&staff.age);
 sscanf(&line[13],"%d%d%d%d",&staff.service,&staff.children,&staff.grade,
 &staff.step);
 sscanf(&line[24],"%d%d%d",&staff.nation,&staff.hrweek, &staff.cost);
 tree->Fill();
}
// check what the tree looks like
tree->Print();
fclose(fp);
f->Write();
}

The script declares a structure called staff_t, with several integers representing the relevant
attribute of a staff member. It opens the ASCII file, creates a ROOT file and a TTree. Then it creates
one branch with the TTree::Branch method. The first parameter of the Branch method is the
branch name. The second parameter is the address from which the first leaf is to be read. In this
example it is the address of the structure staff. Once the branch is defined, the script reads the data
from the ASCII file into the staff_t structure and fills the tree. The ASCII file is closed, and
the ROOT file is written to disk saving the tree. Remember, trees and histograms are created in the
current directory, which is the file in our example. Hence an f->Write() saves the tree.

Show an Entry with TTree::Show
An easy way to access one entry of a tree is the use the TTree::Show method. For example to look
at the 10th entry in the staff.root tree:

root[] TFile f("staff.root")
root[] T->Show(10)

Trees

253

======> EVENT:10
 Category = 361
 Flag = 15
 Age = 51
 Service = 29
 Children = 0
 Grade = 7
 Step = 13
 Hrweek = 40
 Cost = 7599
 Division = PS
 Nation = FR

Print the Tree Structure with TTree::Print
A helpful command to see the tree structure meaning the number of entries, the branches and the
leaves, is TTree::Print.

root[] T->Print()

*Tree :T : staff data from ascii file *
Entries :3354 : Total = 245417 bytes File Size = 59945
* Tree compression factor = 2.90 *

Br 0 :staff :Category/I:Flag:Age:Service:Children:Grade:Step:Hrweek:
* | Cost *
*Entries :3354 : Total Size = 154237 bytes File Size = 32316 *
*Baskets : 3 : Basket Size = 32000 bytes Compression= 2.97 *

Scan a Variable the Tree with TTree::Scan
The TTree::Scan method shows all values of the list of leaves separated by a colon.

root[] T->Scan("Cost:Age:Children")
**
* Row * Cost * Age * Children *
**
* 0 * 11975 * 58 * 0 *
* 1 * 10228 * 63 * 0 *
* 2 * 10730 * 56 * 2 *
* 3 * 9311 * 61 * 0 *
* 4 * 9966 * 52 * 2 *
* 5 * 7599 * 60 * 0 *
* 6 * 9868 * 53 * 1 *
* 7 * 8012 * 60 * 1 *
…

The Tree Viewer
The tree viewer is a quick and easy way to examine a tree. To start the tree viewer, open a file and
object browser. Right click on a TTree and select StartViewer. You can also start the tree viewer
from the command line. First load the viewer library.

Trees

254

Figure 12.1. Activating the tree viewer

root[] TFile f("staff.root")
root[] T->StartViewer()

If you want to start a tree viewer without a tree, you need to load the tree player library first:

root[] gSystem->Load("libTreeViewer.so")
root[] new TTreeViewer()

Below is what the tree viewer looks like for the example file staff.root. The left panel contains
the list of trees and their branches; in this case there is only one tree. You can add more trees with
the File-Open command to open the file containing the new tree, then use the context menu on the
right panel, select SetTreeName and enter the name of the tree to add. On the right are the leaves
or variables in the tree. You can double click on any leaf to a histogram it.

The toolbar in the upper part can be used for user commands, changing the drawing option and the
histogram name. The lower part contains three picture buttons that draw a histogram, stop the current
command, and refresh the tree.

Trees

255

Figure 12.2. The TreeViewer

The three check buttons toggle the following:

Hist- the histogram drawing mode;

Scan- enables redirecting of TTree::Scan command in an ASCII file;

Rec - enables recording of the last issued command.

To draw more than one dimension you can drag and drop any leaf to the X,Y,Z boxes". Then
push the Draw button, witch is marked with the purple icon on the bottom left.

All commands can be interrupted at any time by pressing this button.

The method TTree::Refresh is called by pressing the refresh button in TTreeViewer. It
redraws the current exposed expression. Calling TTree::Refresh is useful when a tree is produced
by a writer process and concurrently analyzed by one or more readers.

To add a cut/weight to the histogram, enter an expression in the "cut box". The cut box
is the one with the scissor icon.

Below them there are two text widgets for specifying the input and output event lists. A Tree Viewer
session is made by the list of user-defined expressions and cuts, applying to a specified tree. A session
can be saved using File / SaveSource menu or the SaveSource method from the context menu
of the right panel. This will create a macro having as default name treeviewer.C that can be ran
at any time to reproduce the session.

Besides the list of user-defined expressions, a session may contain a list of RECORDS. A record can
be produced in the following way: dragging leaves/expression on X/Y/Z; changing drawing options;
clicking the RED button on the bottom when happy with the histogram

NOTE that just double clicking a leaf will not produce a record: the histogram must be produced when
clicking the DRAW button on the bottom-left. The records will appear on the list of records in the

Trees

256

bottom right of the tree viewer. Selecting a record will draw the corresponding histogram. Records
can be played using the arrow buttons near to the record button. When saving the session, the list of
records is being saved as well.

Records have a default name corresponding to the Z: Y: X selection, but this can be changed using
SetRecordName() method from the right panel context menu. You can create a new expression
by right clicking on any of the E() boxes. The expression can be dragged and dropped into any of
the boxes (X, Y, Z, Cut, or Scan). To scan one or more variables, drop them into the Scan box,
then double click on the box. You can also redirect the result of the scan to a file by checking the
Scan box on top.

When the "Rec" box is checked, the Draw and Scan commands are recorded in the history file and
echoed on the command line. The "Histogram" text box contains the name of the resulting histogram.
By default it is htemp. You can type any name, if the histogram does not exist it will create one. The
Option text box contains the list of Draw options. See “Draw Options”. You can select the options with
the Options menu. The Command box lets you enter any command that you could also enter on the
command line. The vertical slider on the far left side can be used to select the minimum and maximum
of an event range. The actual start and end index are shown in on the bottom in the status window.

There is an extensive help utility accessible with the Help menu. The IList and OList are to
specify an input list of entry indices and a name for the output list respectively. Both need to be
of type TList and contain integers of entry indices. These lists are described below in the paragraph
"Error! Reference source not found.".

Figure 12.3. A couple of graphs

The first one is a plot of the age distribution, the second a scatter plot of the cost vs. age. The second one
was generated by dragging the age leaf into the Y-box and the cost leaf into the X-box, and pressing
the Draw button. By default, this will generate a scatter plot. Select a different option, for example
"lego" to create a 2D histogram.

Creating and Saving Trees
This picture shows the TTree class:

Trees

257

Figure 12.4. The TTree class

To create a TTree we use its constructor. Then we design our data layout and add the branches. A
tree can be created by giving a name and title:

TTree t("MyTree","Example Tree")

Creating a Tree from a Folder Hierarchy
An alternative way to create a tree and organize it is to use folders (see “Folders and Tasks”). You can
build a folder structure and create a tree with branches for each of the sub-folders:

TTree folder_tree("MyFolderTree","/MyFolder")

The second argument "/MyFolder" is the top folder, and the "/" signals the TTree constructor
that this is a folder not just the title. You fill the tree by placing the data into the folder structure and
calling TTree::Fill.

Tree and TRef Objects
MyTree->BranchRef();

Trees

258

This call requests the construction of an optional branch supporting table of references (TRefTable).
This branch (TBranchRef) will keep all the information needed to find the branches containing
referenced objects at each Tree::Fill, the branch numbers containing the referenced objects are
saved in the table of references. When the Tree header is saved (via TTree::Write for example),
the branch is saved, keeping the information with the pointers to the branches having referenced
objects. Enabling this optional table, allow TTree::Draw to automatically load the branches needed
to dereference a TRef (or TRefArray) object.

Autosave
Autosave gives the option to save all branch buffers every n byte. We recommend using Autosave
for large acquisitions. If the acquisition fails to complete, you can recover the file and all the
contents since the last Autosave. To set the number of bytes between Autosave you can use
the TTree::SetAutosave() method. You can also call TTree::Autosave in the acquisition
loop every n entry.

Trees with Circular Buffers
When a TTree is memory resident, you set it up so that it retains retain only the last few entries. For
example, this can be very useful for monitoring purpose.

void TTree::SetCircular(Long64_t maxEntries)

where maxEntries is the maximum number of entries to be kept in the buffers. When the number
of entries exceeds this value, the first entries in the Tree are deleted and the buffers used again. An
example of a script using a circular buffer is shown below:

void circular() {
gROOT->cd(); //make sure that the Tree is memory resident
TTree *T = new TTree("T","test circular buffers");
TRandom r;
Float_t px,py,pz;
Double_t random;
UShort_t i;
T->Branch("px",&px,"px/F");
T->Branch("py",&py,"py/F");
T->Branch("pz",&pz,"pz/F");
T->Branch("random",&random,"random/D");
T->Branch("i",&i,"i/s");
T->SetCircular(20000);
for (i = 0; i < 65000; i++) {
r.Rannor(px,py);
pz = px*px + py*py;
random = r.Rndm();
T->Fill();
}
T->Print();
}

Size of TTree in the File
When writing a TTree to a file, if the file size reaches the value stored in the
TTree::GetMaxTreeSize(), the current file is closed and a new file is created. If the original file
is named "myfile.root", subsequent files are named "myfile_1.root", "myfile_2.root",
etc.

Currently, the automatic change of file is restricted to the case where the tree is in the top level
directory. The file should not contain sub-directories. Before switching to a new file, the tree header

Trees

259

is written to the current file, then the current file is closed. To process the multiple files created by
ChangeFile(), one must use a TChain.

The new file name has a suffix "_N" where N is equal to fFileNumber+1. By default a
Root session starts with fFileNumber=0. One can set fFileNumber to a different value via
TTree::SetFileNumber(). In case a file named "_N" already exists, the function will try a
file named "__N", then "___N", etc. The maximum tree size can be set via the static function
TTree::SetMaxTreeSize(). The default value of fgMaxTreeSize is 1.9 GB. If the current
file contains other objects (like TH1 and TTree), these objects are automatically moved to the new
file.

User Info Attached to a TTree Object

The function TTree::GetUserInfo() allows adding any object defined by a user to the tree that
is not depending on the entry number. For example:

tree->GetUserInfo()->Add(myruninfo);

Indexing a Tree

Use TTree::BuildIndex(), to build an index table using expressions depending on the value
in the leaves.

tree->BuildIndex(majorname, minorname);

The index is built in the following way:

• a pass on all entries is made like in TTree::Draw()

• var1 = majorname

• var2 = minorname

• sel = 231 x majorname + minorname

• for each entry in the tree the sel expression is evaluated and the results array is sorted into
fIndexValues

Once the index is computed, using the TTree::GetEntryWithIndex(majornumber,
minornumber) one entry can be retrieved. Example:

// to create an index using leaves Run and Event
tree.BuildIndex("Run","Event");
// to read entry corresponding to Run=1234 and Event=56789
tree.GetEntryWithIndex(1234,56789);

Note that majorname and minorname may be expressions using original tree variables e.g.:
"run-90000", "event +3*xx". In case an expression is specified, the equivalent expression must
be computed when calling GetEntryWithIndex(). To build an index with only majorname,
specify minorname="0" (default).

Note that once the index is built, it can be saved with the TTree object with:

tree.Write(); //if the file has been open in "update" mode

The most convenient place to create the index is at the end of the filling process just before saving the
tree header. If a previous index was computed, it is redefined by this new call.

Trees

260

Note that this function can also be applied to a TChain. The return value is the number of entries
in the Index (< 0 indicates failure).

Branches
The organization of branches allows the designer to optimize the data for the anticipated use. The class
for a branch is called TBranch. If two variables are independent, and the designer knows the variables
will not be used together, they should be placed on separate branches. If, however, the variables are
related, such as the coordinates of a point, it is most efficient to create one branch with both coordinates
on it. A variable on a TBranch is called a leaf (yes - TLeaf). Another point to keep in mind when
designing trees is that branches of the same TTree can be written to separate files. To add a TBranch
to a TTree we call the method TTree::Branch(). Note that we DO NOT use the TBranch
constructor.

The TTree::Branch method has several signatures. The branch type differs by what is stored in
it. A branch can hold an entire object, a list of simple variables, contents of a folder, contents of a
TList, or an array of objects. Let's see some examples. To follow along you will need the shared
library libEvent.so. First, check if it is in $ROOTSYS/test. If it is, copy it to your own area. If
it is not there, you have to build it by typing make in $ROOTSYS/test.

Adding a Branch to Hold a List of Variables

As in the very first example (staff.root) the data we want to save is a list of simple
variables, such as integers or floats. In this case, we use the following TTree::Branch signature:

tree->Branch("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i ");

The first parameter is the branch name.

The second parameter is the address from which the first variable is to be read. In the code above,
“event” is a structure with one float and three integers and one unsigned integer. You should not
assume that the compiler aligns the elements of a structure without gaps. To avoid alignment problems,
you need to use structures with same length members. If your structure does not qualify, you need to
create one branch for each element of the structure.

The leaf name is NOT used to pick the variable out of the structure, but is only used as the name for
the leaf. This means that the list of variables needs to be in a structure in the order described in the
third parameter.

This third parameter is a string describing the leaf list. Each leaf has a name and a type separated by
a "/" and it is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called temp and an integer named
ntrack.

"temp/F:ntrack/I:"

The type can be omitted and if no type is given, the same type as the previous variable is assumed.
This leaf list has three integers called ntrack, nseg, and nvtex.

Trees

261

"ntrack/I:nseg:nvtex"

There is one more rule: when no type is given for the very first leaf, it becomes a float (F). This
leaf list has three floats called temp, mass, and px.

"temp:mass:px"

The symbols used for the type are:

• C:a character string terminated by the 0 character

• B: an 8 bit signed integer

• b: an 8 bit unsigned integer

• S: a 16 bit signed integer

• s: a 16 bit unsigned integer

• I: a 32 bit signed integer

• i: a 32 bit unsigned integer

• L: a 64 bit signed integer

• l: a 64 bit unsigned integer

• F: a 32 bit floating point

• D: a 64 bit floating point

The type is used for a byte count to decide how much space to allocate. The variable written is simply
the block of bytes starting at the starting address given in the second parameter. It may or may not
match the leaf list depending on whether or not the programmer is being careful when choosing the
leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the type descriptor symbol.
However, if the type consists of two characters, the number specifies the number of bytes to be used
when copying the variable to the output buffer. The line below describes ntrack to be written as a
16-bit integer (rather than a 32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of variables. To add an
array of floats use the f[n] notation when describing the leaf.

Float_t f[10];
tree->Branch("fBranch",f,"f[10]/F");

You can also add an array of variable length:

{
 TFile *f = new TFile("peter.root","recreate");
 Int_t nPhot;
 Float_t E[500];
 TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
 nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
 nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

Trees

262

See “Example 2: A Tree with a C Structure” below ($ROOTSYS/tutorials/tree/tree2.C)
and staff.C at the beginning of this chapter.

Adding a TBranch to Hold an Object
To write a branch to hold an event object, we need to load the definition of the Event class, which is in
$ROOTSYS/test/libEvent.so (if it doesn’t exist type make in $ROOTSYS/
test). An object can be saved in a tree if a ROOT dictionary for its class has been generated and
loaded.

root[] .L libEvent.so

First, we need to open a file and create a tree.

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] TTree *tree = new TTree("T","A Root Tree")

We need to create a pointer to an Event object that will be used as a reference in the
TTree::Branch method. Then we create a branch with the TTree::Branch method.

root[] Event *event = new Event()
root[] tree->Branch("EventBranch","Event",&event,32000,99)

To add a branch to hold an object we use the signature above. The first parameter is the name of the
branch. The second parameter is the name of the class of the object to be stored. The third parameter
is the address of a pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the object.

The fourth parameter is the buffer size and is by default 32000 bytes. It is the number of bytes of data
for that branch to save to a buffer until it is saved to the file. The last parameter is the split-level, which
is the topic of the next section. Static class members are not part of an object and thus not written
with the object. You could store them separately by collecting these values in a special "status" object
and write it to the file outside of the tree. If it makes sense to store them for each object, make them
a regular data member.

Setting the Split-level

To split a branch means to create a sub-branch for each data member in the object. The split-level
can be set to 0 to disable splitting or it can be set to a number between 1 and 99 indicating the depth
of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one branch. The TTree
will look like the one on the right, with one branch and one leaf holding the entire event object.

A tree that is split A tree that is not split

When the split-level is 1, an object data member is assigned a branch. If the split-level is 2, the data
member objects will be split also, and a split level of 3 its data members objects, will be split. As the

Trees

263

split-level increases so does the splitting depth. The ROOT default for the split-level is 99. This means
the object will be split to the maximum.

Memory Considerations when Splitting a Branch

Splitting a branch can quickly generate many branches. Each branch has its own buffer in memory.
In case of many branches (say more than 100), you should adjust the buffer size accordingly. A
recommended buffer size is 32000 bytes if you have less than 50 branches. Around 16000 bytes if
you have less than 100 branches and 4000 bytes if you have more than 500 branches. These numbers
are recommended for computers with memory size ranging from 32MB to 256MB. If you have more
memory, you should specify larger buffer sizes. However, in this case, do not forget that your file
might be used on another machine with a smaller memory configuration.

Performance Considerations when Splitting a Branch

A split branch is faster to read, but slightly slower to write. The reading is quicker because variables
of the same type are stored consecutively and the type does not have to be read each time. It is slower
to write because of the large number of buffers as described above. See “

Performance Benchmarks” for performance impact of split and non-split mode.

Rules for Splitting

When splitting a branch, variables of different types are handled differently. Here are the rules that
apply when splitting a branch.

• If a data member is a basic type, it becomes one branch of class TBranchElement.

• A data member can be an array of basic types. In this case, one single branch is created for the array.

• A data member can be a pointer to an array of basic types. The length can vary, and must be specified
in the comment field of the data member in the class definition. See “Input/Output”.

• Pointer data member are not split, except for pointers to a TClonesArray. The TClonesArray
(pointed to) is split if the split level is greater than two. When the split level is one, the
TClonesArray is not split.

• If a data member is a pointer to an object, a special branch is created. The branch will be filled by
calling the class Streamer function to serialize the object into the branch buffer.

• If a data member is an object, the data members of this object are split into branches according to
the split-level (i.e. split-level > 2).

• Base classes are split when the object is split.

• Abstract base classes are never split.

• All STL containers are supported.

// STL vector of vectors of TAxis*
vector<vector<TAxis *> > fVectAxis;
// STL map of string/vector
map<string,vector<int> > fMapString;
// STL deque of pair
deque<pair<float,float> > fDequePair;

• As of ROOT 4.01/00, only std::vector of objects can be split. Support for splitting the other
type of STL containers will be introduced in the near future.

Trees

264

• C-structure data members are not supported in split mode.

• An object that is not split may be slow to browse.

• A STL container that is not split will not be accessible in the browser.

Exempt a Data Member from Splitting
If you are creating a branch with an object and in general you want the data members to be split, but
you want to exempt a data member from the split. You can specify this in the comment field of the
data member:

class Event : public TObject {
private:
 EventHeader fEvtHdr; //|| Don't split the header

Adding a Branch to Hold a TClonesArray
ROOT has two classes to manage arrays of objects. The TObjArray can manage objects of different
classes, and the TClonesArray that specializes in managing objects of the same class (hence the
name Clones Array). TClonesArray takes advantage of the constant size of each element when
adding the elements to the array. Instead of allocating memory for each new object as it is added, it
reuses the memory. Here is an example of the time a TClonesArray can save over a TObjArray.
We have 100,000 events, and each has 10,000 tracks, which gives 1,000,000,000 tracks. If we use a
TObjArray for the tracks, we implicitly make a call to new and a corresponding call to delete for
each track. The time it takes to make a pair of new/delete calls is about 7 s (10-6). If we multiply the
number of tracks by 7 s, (1,000,000,000 * 7 * 10-6) we calculate that the time allocating and freeing
memory is about 2 hours. This is the chunk of time saved when a TClonesArray is used rather than
a TObjArray. If you do not want to wait 2 hours for your tracks (or equivalent objects), be sure to
use a TClonesArray for same-class objects arrays. Branches with TClonesArrays use the same
method (TTree::Branch) as any other object described above. If splitting is specified the objects
in the TClonesArray are split, not the TClonesArray itself.

Identical Branch Names
When a top-level object (say event), has two data members of the same class the sub branches end
up with identical names. To distinguish the sub branch we must associate them with the master branch
by including a “.” (a dot) at the end of the master branch name. This will force the name of the
sub branch to be master.sub branch instead of simply sub branch. For example, a tree has two
branches Trigger and MuonTrigger, each containing an object of the same class (Trigger).
To identify uniquely the sub branches we add the dot:

tree->Branch("Trigger.","Trigger",&b1,8000,1);
tree->Branch("MuonTrigger.","Trigger",&b2,8000,1);

If Trigger has three members, T1, T2, T3, the two instructions above will generate sub branches
called: Trigger.T1, Trigger.T2, Trigger.T3, MuonTrigger.T1, MuonTrigger.T2,
and MuonTrigger.T3.

Adding a Branch with a Folder
Use the syntax below to add a branch from a folder:

tree->Branch("/aFolder");

This method creates one branch for each element in the folder. The method returns the total number
of branches created.

Trees

265

Adding a Branch with a Collection
This Branch method creates one branch for each element in the collection.

tree->Branch(*aCollection, 8000, 99);
// Int_t TTree::Branch(TCollection *list, Int_t bufsize,Int_t splitlevel,
// const char *name)

The method returns the total number of branches created. Each entry in the collection becomes a top
level branch if the corresponding class is not a collection. If it is a collection, the entry in the collection
becomes in turn top level branches, etc. The split level is decreased by 1 every time a new collection
is found. For example if list is a TObjArray*

• If splitlevel = 1, one top level branch is created for each element of the TObjArray.

• If splitlevel = 2, one top level branch is created for each array element. If one of the
array elements is a TCollection, one top level branch will be created for each element of this
collection.

In case a collection element is a TClonesArray, the special Tree constructor for TClonesArray
is called. The collection itself cannot be a TClonesArray. If name is given, all branch names will
be prefixed with name_.

IMPORTANT NOTE1: This function should not be called if splitlevel<1. IMPORTANT
NOTE2: The branches created by this function will have names corresponding to the collection or
object names. It is important to give names to collections to avoid misleading branch names or identical
branch names. By default collections have a name equal to the corresponding class name, e.g. the
default name of TList is “TList”.

Examples for Writing and Reading Trees
The following sections are examples of writing and reading trees increasing in complexity from a
simple tree with a few variables to a tree containing folders and complex Event objects. Each example
has a named script in the $ROOTSYS/tutorials/tree directory. They are called tree1.C to
tree4.C. The examples are:

• tree1.C: a tree with several simple (integers and floating point) variables.

• tree2.C: a tree built from a C structure (struct). This example uses the Geant3 C wrapper
as an example of a FORTRAN common block ported to C with a C structure.

• tree3.C: in this example, we will show how to extend a tree with a branch from another tree
with the Friends feature. These trees have branches with variable length arrays. Each entry has a
variable number of tracks, and each track has several variables.

• tree4.C: a tree with a class (Event). The class Event is defined in $ROOTSYS/test. In this
example we first encounter the impact of splitting a branch.

Each script contains the main function, with the same name as the file (i.e. tree1), the function to
write - tree1w, and the function to read - tree1r. If the script is not run in batch mode, it displays
the tree in the browser and tree viewer. To study the example scripts, you can either execute the main
script, or load the script and execute a specific function. For example:

// execute the function that writes, reads, shows the tree
root[] x tree1.C
// use ACLiC to build shared library, check syntax, execute
root[] x tree1.C++
// Load the script and select a function to execute
root[] L tree1.C
root[] tree1w()

Trees

266

root[] tree1r()

Example 1: A Tree with Simple Variables
This example shows how to write, view, and read a tree with several simple (integers and floating-
point) variables.

Writing the Tree
Below is the function that writes the tree (tree1w). First, the variables are defined (px, py,
pz, random and ev). Then we add a branch for each of the variables to the tree, by calling the
TTree::Branch method for each variable.

void tree1w(){

 //create a tree file tree1.root - create the file, the Tree and a few branches
 TFile f("tree1.root","recreate");
 TTree t1("t1","a simple Tree with simple variables");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1.Branch("px",&px,"px/F");
 t1.Branch("py",&py,"py/F");
 t1.Branch("pz",&pz,"pz/F"); t1.Branch("ev",&ev,"ev/I");

//fill the tree
 for (Int_t i=0; i<10000; i++) {
gRandom->Rannor(px,py);
pz = px*px + py*py;
random = gRandom->Rndm();
 ev = i;
t1.Fill();
 }
 //save the Tree heade; the file will be automatically closed
 //when going out of the function scope
 t1.Write();
}

Creating Branches with A single Variable

This is the signature of TTree::Branch to create a branch with a list of variables:

TBranch* TTree::Branch(const char* name,void* address, const char* leaflist,
 Int_t bufsize = 32000)

The first parameter is the branch name. The second parameter is the address from which to read the
value. The third parameter is the leaf list with the name and type of each leaf. In this example, each
branch has only one leaf. In the box below, the branch is named px and has one floating point type
leaf also called px.

t1.Branch("px",&px,"px/F");

Filling the Tree

First we find some random values for the variables. We assign px and py a Gaussian with
mean = 0 and sigma = 1 by calling gRandom->Rannor(px,py), and calculate pz. Then we
call the TTree::Fill() method. The call t1.Fill() fills all branches in the tree because
we have already organized the tree into branches and told each branch where to get the value
from. After this script is executed we have a ROOT file called tree1.root with a tree called

Trees

267

t1. There is a possibility to fill branches one by one using the method TBranch::Fill().
In this case you do not need to call TTree::Fill() method. The entries can be set by
TTree::SetEntries(Double_t n). Calling this method makes sense only if the number of
existing entries is null.

Viewing the Tree

Figure 12.5. The tree1.root file and its tree in the browser

Figure 12.6. A leaf histogram

In the right panel of the ROOT object browse are the branches: ev, px, py, pz, and random. Note
that these are shown as leaves because they are "end" branches with only one leaf. To histogram a leaf,
we can simply double click on it in the browser. This is how the tree t1 looks in the Tree Viewer.
Here we can add a cut and add other operations for histogramming the leaves. See “The Tree Viewer”.
For example, we can plot a two dimensional histogram.

Figure 12.7. The tree viewer

Trees

268

Reading the Tree
The tree1r function shows how to read the tree and access each entry and each leaf. We first define
the variables to hold the read values.

Float_t px, py, pz;

Then we tell the tree to populate these variables when reading an entry. We do this with the method
TTree::SetBranchAddress. The first parameter is the branch name, and the second is the
address of the variable where the branch data is to be placed. In this example, the branch name is px.
This name was given when the tree was written (see tree1w). The second parameter is the address
of the variable px.

t1->SetBranchAddress("px",&px);

GetEntry

Once the branches have been given the address, a specific entry can be read into the variables
with the method TTree::GetEntry(n). It reads all the branches for entry (n) and populates
the given address accordingly. By default, GetEntry() reuses the space allocated by the previous
object for each branch. You can force the previous object to be automatically deleted if you call
mybranch.SetAutoDelete(kTRUE) (default is kFALSE).

Consider the example in $ROOTSYS/test/Event.h. The top-level branch in the tree T is declared
with:

Event *event = 0;
//event must be null or point to a valid object; it must be initialized
T.SetBranchAddress("event",&event);

When reading the Tree, one can choose one of these 3 options:

Option 1:

for (Int_t i = 0; i<nentries; i++) {
 T.GetEntry(i);
 //the object event has been filled at this point
 }

This is the default and recommended way to create an object of the class Event. It will be pointed
by event.

At the following entries, event will be overwritten by the new data. All internal members that are
TObject* are automatically deleted. It is important that these members be in a valid state when
GetEntry is called. Pointers must be correctly initialized. However these internal members will not
be deleted if the characters "->" are specified as the first characters in the comment field of the data
member declaration.

The pointer member is read via the pointer->Streamer(buf) if “->“ is specified. In this
case, it is assumed that the pointer is never null (see pointer TClonesArray *fTracks in the
$ROOTSYS/test/Event example). If “->" is not specified, the pointer member is read via buf
>> pointer. In this case the pointer may be null. Note that the option with “->" is faster to read
or write and it also consumes less space in the file.

Option 2 - the option AutoDelete is set:

TBranch *branch = T.GetBranch("event");
branch->SetAddress(&event);
branch->SetAutoDelete(kTRUE);
for (Int_t i=0; i<nentries; i++) {
 T.GetEntry(i); // the object event has been filled at this point
}

Trees

269

At any iteration, the GetEntry deletes the object event and a new instance of Event is created
and filled.

Option 3 - same as option 1, but you delete the event yourself:

for (Int_t i=0; i<nentries; i++) {
 delete event;
 event = 0; //EXTREMELY IMPORTANT
 T.GetEntry(i);
 // the objrect event has been filled at this point
}

It is strongly recommended to use the default option 1. It has the additional advantage that functions
like TTree::Draw (internally calling TTree::GetEntry) will be functional even when the
classes in the file are not available. Reading selected branches is quicker than reading an entire entry.
If you are interested in only one branch, you can use the TBranch::GetEntry method and only
that branch is read. Here is the script tree1r:

void tree1r(){
 //read the Tree generated by tree1w and fill two histograms
 //note that we use "new" to create the TFile and TTree objects,
 //to keep them alive after leaving this function.
 TFile *f = new TFile("tree1.root");
 TTree *t1 = (TTree*)f->Get("t1");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1->SetBranchAddress("px",&px);
 t1->SetBranchAddress("py",&py);
 t1->SetBranchAddress("pz",&pz);
 t1->SetBranchAddress("random",&random);
 t1->SetBranchAddress("ev",&ev);
//create two histograms
 TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);
 TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);
 //read all entries and fill the histograms
 Int_t nentries = (Int_t)t1->GetEntries();
 for (Int_t i=0; i<nentries; i++) {
 t1->GetEntry(i);
 hpx->Fill(px);
 hpxpy->Fill(px,py);
 }
 //We do not close the file. We want to keep the generated histograms
 //we open a browser and the TreeViewer
 if (gROOT->IsBatch()) return;
 new TBrowser ();
 t1->StartViewer();

 //In the browser, click on "ROOT Files", then on "tree1.root"
 //You can click on the histogram icons in the right panel to draw
 //them in the TreeViewer, follow the instructions in the Help.
}

Example 2: A Tree with a C Structure
The executable script for this example is $ROOTSYS/tutorials/tree/tree2.C. In this
example we show:

• how to build branches from a C structure

Trees

270

• how to make a branch with a fixed length array

• how to make a branch with a variable length array

• how to read selective branches

• how to fill a histogram from a branch

• how to use TTree::Draw to show a 3D plot

A C structure (struct) is used to build a ROOT tree. In general we discourage the use of C
structures, we recommend using a class instead. However, we do support them for legacy applications
written in C or FORTRAN. The example struct holds simple variables and arrays. It maps to a
Geant3 common block /gctrak/. This is the definition of the common block/structure:

const Int_t MAXMEC = 30;
// PARAMETER (MAXMEC=30)
// COMMON/GCTRAK/VECT(7),GETOT,GEKIN,VOUT(7)
// + ,NMEC,LMEC(MAXMEC)
// + ,NAMEC(MAXMEC),NSTEP
// + ,PID,DESTEP,DESTEL,SAFETY,SLENG
// + ,STEP,SNEXT,SFIELD,TOFG,GEKRAT,UPWGHT

typedef struct {
 Float_t vect[7];
 Float_t getot;
 Float_t gekin;
 Float_t vout[7];
 Int_t nmec;
 Int_t lmec[MAXMEC];
 Int_t namec[MAXMEC];
 Int_t nstep;
 Int_t pid;
 Float_t destep;
 Float_t destel;
 Float_t safety;
 Float_t sleng;
 Float_t step;
 Float_t snext;
 Float_t sfield;
 Float_t tofg;
 Float_t gekrat;
 Float_t upwght;
} Gctrak_t;

When using Geant3, the common block is filled by Geant3 routines at each step and only the
TTree::Fill method needs to be called. In this example we emulate the Geant3 step routine with
the helixStep function. We also emulate the filling of the particle values. The calls to the Branch
methods are the same as if Geant3 were used.

void helixStep(Float_t step, Float_t *vect, Float_t *vout)
{
 // extrapolate track in constant field
 Float_t field = 20; // field in kilogauss
 enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};
 vout[kPP] = vect[kPP];

 Float_t h4 = field*2.99792e-4;
 Float_t rho = -h4/vect[kPP];
 Float_t tet = rho*step;

Trees

271

 Float_t tsint = tet*tet/6;
 Float_t sintt = 1 - tsint;
 Float_t sint = tet*sintt;
 Float_t cos1t = tet/2;
 Float_t f1 = step*sintt;
 Float_t f2 = step*cos1t;
 Float_t f3 = step*tsint*vect[kPZ];
 Float_t f4 = -tet*cos1t;
 Float_t f5 = sint;
 Float_t f6 = tet*cos1t*vect[kPZ];

 vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);
 vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);
 vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);
 vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
 vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
 vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);
}

Writing the Tree
void tree2w() {
 // write tree2 example
 //create a Tree file tree2.root
 TFile f("tree2.root","recreate");

 //create the file, the Tree
 TTree t2("t2","a Tree with data from a fake Geant3");
 // declare a variable of the C structure type
 Gctrak_t gstep;

 // add the branches for a subset of gstep
 t2.Branch("vect",gstep.vect,"vect[7]/F");
 t2.Branch("getot",&gstep.getot,"getot/F");
 t2.Branch("gekin",&gstep.gekin,"gekin/F");
 t2.Branch("nmec",&gstep.nmec,"nmec/I");
 t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");
 t2.Branch("destep",&gstep.destep,"destep/F");
 t2.Branch("pid",&gstep.pid,"pid/I");

 //Initialize particle parameters at first point
 Float_t px,py,pz,p,charge=0;
 Float_t vout[7];
 Float_t mass = 0.137;
 Bool_t newParticle = kTRUE;
 gstep.step = 0.1;
 gstep.destep = 0;
 gstep.nmec = 0;
 gstep.pid = 0;

 //transport particles
 for (Int_t i=0; i<10000; i++) {
//generate a new particle if necessary (Geant3 emulation)
if (newParticle) {
px = gRandom->Gaus(0,.02);
py = gRandom->Gaus(0,.02);
pz = gRandom->Gaus(0,.02);
p = TMath::Sqrt(px*px+py*py+pz*pz);

Trees

272

charge = 1;
if (gRandom->Rndm() < 0.5) charge = -1;
gstep.pid += 1;
gstep.vect[0] = 0;
gstep.vect[1] = 0;
gstep.vect[2] = 0;
gstep.vect[3] = px/p;
gstep.vect[4] = py/p;
gstep.vect[5] = pz/p;
gstep.vect[6] = p*charge;
gstep.getot = TMath::Sqrt(p*p + mass*mass);
gstep.gekin = gstep.getot - mass;
newParticle = kFALSE;
}
// fill the Tree with current step parameters
t2.Fill();

//transport particle in magnetic field (Geant3 emulation)
 helixStep(gstep.step, gstep.vect, vout);
 //make one step
//apply energy loss
gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);
gstep.gekin -= gstep.destep;
gstep.getot = gstep.gekin + mass;
gstep.vect[6]= charge*TMath::Sqrt(gstep.getot*gstep.getot - mass*mass);
 gstep.vect[0] = vout[0];
gstep.vect[1] = vout[1];
gstep.vect[2] = vout[2];
gstep.vect[3] = vout[3];
gstep.vect[4] = vout[4];
gstep.vect[5] = vout[5];
gstep.nmec = (Int_t)(5*gRandom->Rndm());
for (Int_t l=0; l<gstep.nmec; l++) gstep.lmec[l] = l;
if (gstep.gekin < 0.001) newParticle = kTRUE;
if (TMath::Abs(gstep.vect[2]) > 30) newParticle = kTRUE;
 }
 //save the Tree header. The file will be automatically
 // closed when going out of the function scope
 t2.Write();
}

Adding a Branch with a Fixed Length Array

At first, we create a tree and create branches for a subset of variables in the C structure Gctrak_t.
Then we add several types of branches. The first branch reads seven floating-point values beginning
at the address of 'gstep.vect'. You do not need to specify &gstep.vect, because in C and C
++ the array variable holds the address of the first element.

t2.Branch("vect",gstep.vect,"vect[7]/F");
t2.Branch("getot",&gstep.getot,"getot/F");
t2.Branch("gekin",&gstep.gekin,"gekin/F");

Adding a Branch with a Variable Length Array

The next two branches are dependent on each other. The first holds the length of the variable length
array and the second holds the variable length array. The lmec branch reads nmec number of integers
beginning at the address gstep.lmec.

Trees

273

t2.Branch("nmec",&gstep.nmec,"nmec/I");
t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

The variable nmec is a random number and is reset for each entry.

gstep.nmec = (Int_t)(5*gRandom->Rndm());

Filling the Tree

In this emulation of Geant3, we generate and transport particles in a magnetic field and store the
particle parameters at each tracking step in a ROOT tree.

Analysis
In this analysis, we do not read the entire entry we only read one branch. First, we set the address
for the branch to the file dstep, and then we use the TBranch::GetEntry method. Then we fill
a histogram with the dstep branch entries, draw it and fit it with a Gaussian. In addition, we draw
the particle's path using the three values in the vector. Here we use the TTree::Draw method. It
automatically creates a histogram and plots the 3 expressions (see Trees in Analysis).

void tree2r() {

 // read the Tree generated by tree2w and fill one histogram
 // we are only interested by the destep branch

 // note that we use "new" to create the TFile and TTree objects because we
 // want to keep these objects alive when we leave this function
TFile *f = new TFile("tree2.root");
TTree *t2 = (TTree*)f->Get("t2");
static Float_t destep;
TBranch *b_destep = t2->GetBranch("destep");
b_destep->SetAddress(&destep);

 //create one histogram
TH1F *hdestep = new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);
 //read only the destep branch for all entries
Int_t nentries = (Int_t)t2->GetEntries();
for (Int_t i=0;i<nentries;i++) {
b_destep->GetEntry(i);
 // fill the histogram with the destep entry
hdestep->Fill(destep);
}

// we do not close the file; we want to keep the generated histograms;
 // we fill a 3-d scatter plot with the particle step coordinates
TCanvas *c1 = new TCanvas("c1","c1",600,800);
c1->SetFillColor(42);
c1->Divide(1,2);

c1->cd(1);
hdestep->SetFillColor(45);
hdestep->Fit("gaus");

c1->cd(2);
gPad->SetFillColor(37); // continued…
t2->SetMarkerColor(kRed);
t2->Draw("vect[0]:vect[1]:vect[2]");
if (gROOT->IsBatch()) return;

Trees

274

 // invoke the x3d viewer
gPad->GetViewer3D(“x3d”);
}

Example 3: Adding Friends to Trees
In this example, we will show how to extend a tree with a branch from another tree with the Friends
feature.

Adding a Branch to an Existing Tree
You may want to add a branch to an existing tree. For example, if one variable in the tree was computed
with a certain algorithm, you may want to try another algorithm and compare the results. One solution
is to add a new branch, fill it, and save the tree. The code below adds a simple branch to an existing
tree. Note that the kOverwrite option in the Write method overwrites the existing tree. If it is not
specified, two copies of the tree headers are saved.

void tree3AddBranch() {
TFile f("tree3.root","update");
Float_t new_v;
TTree *t3 = (TTree*)f->Get("t3");
TBranch *newBranch = t3-> Branch("new_v",&new_v,"new_v/F");
//read the number of entries in the t3
Int_t nentries = (Int_t)t3->GetEntries();
for (Int_t i = 0; i < nentries; i++){
new_v= gRandom->Gaus(0,1);
newBranch->Fill();
}
t3->Write("",TObject::kOverwrite); // save only the new version of the tree
}

Adding a branch is often not possible because the tree is in a read-only file and you do not have
permission to save the modified tree with the new branch. Even if you do have the permission, you

Trees

275

risk loosing the original tree with an unsuccessful attempt to save the modification. Since trees are
usually large, adding a branch could extend it over the 2GB limit. In this case, the attempt to write
the tree fails, and the original data is may also be corrupted. In addition, adding a branch to a tree
enlarges the tree and increases the amount of memory needed to read an entry, and therefore decreases
the performance. For these reasons, ROOT offers the concept of friends for trees (and chains). We
encourage you to use TTree::AddFriend rather than adding a branch manually.

TTree::AddFriend
A tree keeps a list of friends. In the context of a tree (or a chain), friendship means unrestricted access
to the friends data. In this way it is much like adding another branch to the tree without taking the risk of
damaging it. To add a friend to the list, you can use the TTree::AddFriend method. The TTree
(tree) below has two friends (ft1 and ft2) and now has access to the variables a,b,c,i,j,k,l
and m.

The AddFriend method has two parameters, the first is the tree name and the second is the name of
the ROOT file where the friend tree is saved. AddFriend automatically opens the friend file. If no
file name is given, the tree called ft1 is assumed to be in the same file as the original tree.

tree.AddFriend("ft1","friendfile1.root");

If the friend tree has the same name as the original tree, you can give it an alias in the context of the
friendship:

tree.AddFriend("tree1 = tree","friendfile1.root");

Once the tree has friends, we can use TTree::Draw as if the friend's variables were in the original
tree. To specify which tree to use in the Draw method, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to identify uniquely the variable, you can leave out the tree and/
or branch name.

For example, these commands generate a 3-d scatter plot of variable "var" in the TTree tree versus
variable v1 in TTree ft1 versus variable v2 in TTree ft2.

tree.AddFriend("ft1","friendfile1.root");
tree.AddFriend("ft2","friendfile2.root");
tree.Draw("var:ft1.v1:ft2.v2");

The picture illustrates the access of the tree and its friends with a Draw
command.

Trees

276

When AddFriend is called, the ROOT file is automatically opened and the friend tree (ft1) header
is read into memory. The new friend (ft1) is added to the list of friends of tree. The number of
entries in the friend must be equal or greater to the number of entries of the original tree. If the friend
tree has fewer entries, a warning is given and the missing entries are not included in the histogram.

Use TTree::GetListOfFriends to retrieve the list of friends from a tree.

When the tree is written to file (TTree::Write), the friends list is saved with it. Moreover, when
the tree is retrieved, the trees on the friends list are also retrieved and the friendship restored. When
a tree is deleted, the elements of the friend list are also deleted. It is possible to declare a friend tree
that has the same internal structure (same branches and leaves) as the original tree, and compare the
same values by specifying the tree.

tree.Draw("var:ft1.var:ft2.var")

The example code is in $ROOTSYS/tutorials/tree/tree3.C. Here is the script:

void tree3w() {

// Example of a Tree where branches are variable length arrays
// A second Tree is created and filled in parallel.
// Run this script with .x tree3.C
// In the function treer, the first Tree is open.
// The second Tree is declared friend of the first tree.
// TTree::Draw is called with variables from both Trees.
const Int_t kMaxTrack = 500;
Int_t ntrack;
Int_t stat[kMaxTrack];
Int_t sign[kMaxTrack];
Float_t px[kMaxTrack];
Float_t py[kMaxTrack];
Float_t pz[kMaxTrack];
Float_t pt[kMaxTrack];
Float_t zv[kMaxTrack];
Float_t chi2[kMaxTrack];
Double_t sumstat;

 // create the first root file with a tree
TFile f("tree3.root","recreate");
TTree *t3 = new TTree("t3","Reconst ntuple");
t3->Branch("ntrack",&ntrack,"ntrack/I");
t3->Branch("stat",stat,"stat[ntrack]/I");
t3->Branch("sign",sign,"sign[ntrack]/I");
t3->Branch("px",px,"px[ntrack]/F");
t3->Branch("py",py,"py[ntrack]/F");
t3->Branch("pz",pz,"pz[ntrack]/F");
t3->Branch("zv",zv,"zv[ntrack]/F");
t3->Branch("chi2",chi2,"chi2[ntrack]/F");

// create the second root file with a different tree
TFile fr("tree3f.root","recreate");
TTree *t3f = new TTree("t3f","a friend Tree");
t3f->Branch("ntrack",&ntrack,"ntrack/I");
t3f->Branch("sumstat",&sumstat,"sumstat/D");
t3f->Branch("pt",pt,"pt[ntrack]/F");

// Fill the trees
for (Int_t i=0;i<1000;i++) {
Int_t nt = gRandom->Rndm()*(kMaxTrack-1);

Trees

277

ntrack = nt;
sumstat = 0;
 // set the values in each track
for (Int_t n=0;n<nt;n++) {
stat[n] = n%3;
sign[n] = i%2;
px[n] = gRandom->Gaus(0,1);
py[n] = gRandom->Gaus(0,2);
pz[n] = gRandom->Gaus(10,5);
zv[n] = gRandom->Gaus(100,2);
chi2[n] = gRandom->Gaus(0,.01);
sumstat += chi2[n];
pt[n] = TMath::Sqrt(px[n]*px[n] + py[n]*py[n]);
}
t3->Fill();
t3f->Fill();
}
 // Write the two files
t3->Print();
f.cd();
t3->Write();
fr.cd();
t3f->Write();
}

// Function to read the two files and add the friend
void tree3r() {
TFile *f = new TFile("tree3.root");
TTree *t3 = (TTree*)f->Get("t3");
 // Add the second tree to the first tree as a friend
t3->AddFriend("t3f","tree3f.root");
 // Draw pz which is in the first tree and use pt
 // in the condition. pt is in the friend tree.
t3->Draw("pz","pt>3");
}

// This is executed when typing .x tree3.C
void tree3() {
tree3w();
tree3r();
}

Example 4: A Tree with an Event Class
This example is a simplified version of $ROOTSYS/test/MainEvent.cxx and where Event
objects are saved in a tree. The full definition of Event is in $ROOTSYS/test/Event.h. To
execute this macro, you will need the library $ROOTSYS/test/libEvent.so. If it does not exist
you can build the test directory applications by following the instruction in the $ROOTSYS/test/
README file.

In this example we will show

• the difference in splitting or not splitting a branch

• how to read selected branches of the tree,

• how to print a selected entry

Trees

278

The Event Class

Event is a descendent of TObject. As such it inherits the data members of TObject and its
methods such as Dump() and Inspect() and Write(). In addition, because it inherits from
TObject it can be a member of a collection. To summarize, the advantages of inheriting from a
TObject are:

• Inherit the Write, Inspect, and Dump methods

• Enables a class to be a member of a ROOT collection

• Enables RTTI

Below is the list of the Event data members. It contains a character array, several integers, a
floating-point number, and an EventHeader object. The EventHeader class is described in the
following paragraph. Event also has two pointers, one to a TClonesArray of tracks and one to a
histogram. The string "->" in the comment field of the members *fTracks and *fH instructs the
automatic Streamer to assume that the objects *fTracks and *fH are never null pointers and that
fTracks->Streamer can be used instead of the more time consuming form R__b << fTracks.

class Event : public TObject {
private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr;
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
 static TClonesArray *fgTracks;
 static TH1F *fgHist;
// … list of methods
 ClassDef(Event,1) //Event structure
};

The EventHeader Class

The EventHeader class (also defined in Event.h) does not inherit from TObject. Beginning
with ROOT 3.0, an object can be placed on a branch even though it does not inherit from TObject.
In previous releases branches were restricted to objects inheriting from the TObject. However, it
has always been possible to write a class not inheriting from TObject to a tree by encapsulating it
in a TObject descending class as is the case in EventHeader and Event.

class EventHeader {
private:
 Int_t fEvtNum;
 Int_t fRun;
 Int_t fDate;
 // … list of methods
 ClassDef(EventHeader,1) //Event Header
};

Trees

279

The Track Class
The Track class descends from TObject since tracks are in a TClonesArray (i.e. a ROOT
collection class) and contains a selection of basic types and an array of vertices. Its TObject
inheritance enables Track to be in a collection and in Event is a TClonesArray of Tracks.

class Track : public TObject {
private:
 Float_t fPx; //X component of the momentum
 Float_t fPy; //Y component of the momentum
 Float_t fPz; //Z component of the momentum
 Float_t fRandom; //A random track quantity
 Float_t fMass2; //The mass square of this particle
 Float_t fBx; //X intercept at the vertex
 Float_t fBy; //Y intercept at the vertex
 Float_t fMeanCharge; //Mean charge deposition of all hits
 Float_t fXfirst; //X coordinate of the first point
 Float_t fXlast; //X coordinate of the last point
 Float_t fYfirst; //Y coordinate of the first point
 Float_t fYlast; //Y coordinate of the last point
 Float_t fZfirst; //Z coordinate of the first point
 Float_t fZlast; //Z coordinate of the last point
 Float_t fCharge; //Charge of this track
 Float_t fVertex[3]; //Track vertex position
 Int_t fNpoint; //Number of points for this track
 Short_t fValid; //Validity criterion
// method definitions …
 ClassDef(Track,1) //A track segment
};

Writing the Tree
We create a simple tree with two branches both holding Event objects. One is split and the other is
not. We also create a pointer to an Event object (event).

void tree4w() {
 // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
if (!TClassTable::GetDict("Event")) {
gSystem->Load("$ROOTSYS/test/libEvent.so");
}
 // create a Tree file tree4.root
TFile f("tree4.root","RECREATE");
// create a ROOT Tree
TTree t4("t4","A Tree with Events");
 // create a pointer to an Event object
Event *event = new Event();
 // create two branches, split one
t4.Branch("event_branch", "Event", &event,16000,2);
t4.Branch("event_not_split", "Event", &event,16000,0);

 // a local variable for the event type
char etype[20];

 // fill the tree
for (Int_t ev = 0; ev <100; ev++) {
Float_t sigmat, sigmas;
gRandom->Rannor(sigmat,sigmas);

Trees

280

Int_t ntrack = Int_t(600 + 600 *sigmat/120.);
Float_t random = gRandom->Rndm(1);
sprintf(etype,"type%d",ev%5);
event->SetType(etype);
event->SetHeader(ev, 200, 960312, random);
event->SetNseg(Int_t(10*ntrack+20*sigmas));
event->SetNvertex(Int_t(1+20*gRandom->Rndm()));
event->SetFlag(UInt_t(random+0.5));
event->SetTemperature(random+20.);
for(UChar_t m = 0; m < 10; m++) {
event->SetMeasure(m, Int_t(gRandom->Gaus(m,m+1)));
}
// continued…
// fill the matrix
for(UChar_t i0 = 0; i0 < 4; i0++) {
for(UChar_t i1 = 0; i1 < 4; i1++) {
event->SetMatrix(i0,i1,gRandom->Gaus(i0*i1,1));
}
}
 // create and fill the Track objects
for (Int_t t = 0; t < ntrack; t++) event->AddTrack(random);
t4.Fill(); // Fill the tree
event->Clear(); // Clear before reloading event
}
f.Write(); // Write the file header
t4.Print(); // Print the tree contents
}

Reading the Tree
First, we check if the shared library with the class definitions is loaded. If not we load it. Then we
read two branches, one for the number of tracks and one for the entire event. We check the number of
tracks first, and if it meets our condition, we read the entire event. We show the fist entry that meets
the condition.

void tree4r() {
 // check if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
if (!TClassTable::GetDict("Event")) {
gSystem->Load("$ROOTSYS/test/libEvent.so");
}
// read the tree generated with tree4w

 // note that we use "new" to create the TFile and TTree objects, because we
 // want to keep these objects alive when we leave this function.
TFile *f = new TFile("tree4.root");
TTree *t4 = (TTree*)f->Get("t4");

 // create a pointer to an event object for reading the branch values.
Event *event = new Event();
 // get two branches and set the branch address
TBranch *bntrack = t4->GetBranch("fNtrack");
TBranch *branch = t4->GetBranch("event_split");
branch->SetAddress(&event);

Int_t nevent = t4->GetEntries();
Int_t nselected = 0;
Int_t nb = 0;

Trees

281

 for (Int_t i=0; i<nevent; i++) {
 //read branch "fNtrack"only
 bntrack->GetEntry(i);

 //reject events with more than 587 tracks
 if (event->GetNtrack() > 587)continue;

 //read complete accepted event in memory
 nb += t4->GetEntry(i);
 nselected++;

 //print the first accepted event
 if (nselected == 1) t4->Show();
 //clear tracks array
 event->Clear();
 }

 if (gROOT->IsBatch()) return;
 new TBrowser();
 t4->StartViewer();
}

Now, let's see how the tree looks like in the tree viewer.

Figure 12.8. The tree viewer with tree4 example

You can see the two branches in the tree in the left panel: the event branch is split and hence expands
when clicked on. The other branch event not split is not expandable and we can not browse the data
members.

The TClonesArray of tracks fTracks is also split because we set the split level to 2. The output
on the command line is the result of tree4->Show(). It shows the first entry with more than 587
tracks:

Trees

282

======> EVENT:26
 event_split =
 fUniqueID = 0
 fBits = 50331648
 fType[20] = 116 121 112 101 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 fNtrack = 585
 fNseg = 5834
 fNvertex = 17
 fFlag = 0
 fTemperature = 20.044315
 fEvtHdr.fEvtNum = 26
 fEvtHdr.fRun = 200
 fEvtHdr.fDate = 960312
 fTracks = 585
 fTracks.fUniqueID = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
…

Example 5: Import an ASCII File into a TTree
The method TTree::ReadFile can be used to automatic define the structure of the TTree and
read the data from a formatted ascii file.

Long64_t TTree::ReadFile(const char *filename, const char *branchDescriptor)

Creates or simply read branches from the file named whose name is passed in 'filename'.

{ gROOT->Reset();
 TFile *f = new TFile("basic2.root","RECREATE");
 TH1F *h1 = new TH1F("h1","x distribution",100,-4,4);
 TTree *T = new TTree("ntuple","data from ascii file");
 Long64_t nlines = T->ReadFile("basic.dat","x:y:z");
 printf(" found %lld pointsn",nlines);
 T->Draw("x","z>2");
 T->Write();
}

If branchDescriptor is set to an empty string (the default), it is assumed that the Tree descriptor
is given in the first line of the file with a syntax like: A/D:Table[2]/F:Ntracks/I:astring/
C.

Otherwise branchDescriptor must be specified with the above syntax.Lines in the input file starting
with "#" are ignored. A TBranch object is created for each variable in the expression. The total
number of rows read from the file is returned.

Trees in Analysis
The methods TTree::Draw, TTree::MakeClass and TTree::MakeSelector are available
for data analysis using trees. The TTree::Draw method is a powerful yet simple way to look and
draw the trees contents. It enables you to plot a variable (a leaf) with just one line of code. However, the
Draw method falls short once you want to look at each entry and design more sophisticated acceptance
criteria for your analysis. For these cases, you can use TTree::MakeClass. It creates a class that
loops over the trees entries one by one. You can then expand it to do the logic of your analysis.

The TTree::MakeSelector is the recommended method for ROOT data analysis. It is especially
important for large data set in a parallel processing configuration where the analysis is distributed over
several processors and you can specify which entries to send to each processor. With MakeClass the
user has control over the event loop, with MakeSelector the tree is in control of the event loop.

Trees

283

Simple Analysis Using TTree::Draw
We will use the tree in staff.root that was made by the macro in $ROOTSYS/tutorials/
tree/staff.C.

First, open the file and lists its contents.

root[] TFile f ("staff.root")
root[] f.ls()
TFile** staff.root
TFile* staff.root
KEY: TTree T;1 staff data from ascii file

We can see the TTree "T" in the file. We will use it to experiment with the TTree::Draw method,
so let’s create a pointer to it:

root[] TTree *MyTree = T

CINT allows us to get simply the object by using it. Here we define a pointer to a TTree object
and assign it the value of "T", the TTree in the file. CINT looks for "T" and returns it. To show the
different Draw options, we create a canvas with four sub-pads. We will use one sub-pad for each
Draw command.

root[] TCanvas *myCanvas = new TCanvas()
root[] myCanvas->Divide(2,2)

We activate the first pad with the TCanvas::cd statement:

root[] myCanvas->cd(1)

We then draw the variable Cost:

root[] MyTree->Draw("Cost")

As you can see, the last call TTree::Draw has only one parameter. It is a string containing the
leaf name. A histogram is automatically created as a result of a TTree::Draw. The style of the
histogram is inherited from the TTree attributes and the current style (gStyle) is ignored. The
TTree gets its attributes from the current TStyle at the time it was created. You can call the method
TTree::UseCurrentStyle to change to the current style rather than the TTree style. (See
gStyle; see also “Graphics and the Graphical User Interface”)

In the next segment, we activate the second pad and draw a scatter plot variables:

root[] myCanvas->cd(2)
root[] MyTree->Draw("Cost:Age")

This signature still only has one parameter, but it now has two dimensions separated by a colon
(“x:y”). The item to be plotted can be an expression not just a simple variable. In general, this
parameter is a string that contains up to three expressions, one for each dimension, separated by a
colon (“e1:e2:e3”). A list of examples follows this introduction.

Using Selection with TTree:Draw
Change the active pad to 3, and add a selection to the list of parameters of the draw command.

root[] myCanvas->cd(3)
root[] MyTree->Draw("Cost:Age","Nation == "FR"")

This will draw the Cost vs. Age for the entries where the nation is equal to “FR”. You can use any
C++ operator, and some functions defined in TFormula, in the selection parameter. The value of

Trees

284

the selection is used as a weight when filling the histogram. If the expression includes only Boolean
operations as in the example above, the result is 0 or 1. If the result is 0, the histogram is not filled.
In general, the expression is:

Selection = "weight *(boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a weight. If the weight is not
explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and the square root of z is
less than 3.2.

"x<y && sqrt(z)>3.2"

On the other hand, this selection will add x+y to the histogram if the square root of z is larger than 3.2.

"(x+y)*(sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for variables. This means
that any variable used in the selection must be defined in the tree. You cannot use an arbitrary global
variable in the TTree::Draw method.

Using TCut Objects in TTree::Draw
The TTree::Draw method also accepts TCutG objects. A TCut is a specialized string object used
for TTree selections. A TCut object has a name and a title. It does not have any data members
in addition to what it inherits from TNamed. It only adds a set of operators to do logical string
concatenation. For example, assume:

TCut cut1 = "x<1"
TCut cut2 = "y>2"

then

cut1 && cut2
//result is the string "(x<1)&&(y>2)"

Operators =, +=, +, *, !, &&, || are overloaded, here are some examples:

root[] TCut c1 = "x < 1"
root[] TCut c2 = "y < 0"
root[] TCut c3 = c1 && c2
root[] MyTree.Draw("x", c1)
root[] MyTree.Draw("x", c1 || "x>0")
root[] MyTree.Draw("x", c1 && c2)
root[] MyTree.Draw("x", "(x + y)" * (c1 && c2))

Accessing the Histogram in Batch Mode
The TTree::Draw method creates a histogram called htemp and puts it on the active pad. In a
batch program, the histogram htemp created by default, is reachable from the current pad.

// draw the histogram
nt->Draw("x", "cuts");
// get the histogram from the current pad
TH1F *htemp = (TH1F*)gPad->GetPrimitive("htemp");
// now we have full use of the histogram
htemp->GetEntries();

If you pipe the result of the TTree::Draw into a histogram, the histogram is also available in the
current directory. You can do:

Trees

285

// Draw the histogram and fill hnew with it
nt->Draw("x>>hnew","cuts");
// get hnew from the current directory
TH1F *hnew = (TH1F*)gDirectory->Get("hnew");
// or get hnew from the current Pad
TH1F *hnew = (TH1F*)gPad->GetPrimitive("hnew");

Using Draw Options in TTree::Draw
The next parameter is the draw option for the histogram:

root[] myCanvas->cd(4)
root[] MyTree->Draw("Cost:Age","Nation == "FR"","surf2”);

Figure 12.9. Using draw options in trees

The draw options are the same as for TH1::Draw. See “Draw Options” where they are listed. In
addition to the draw options defined in TH1, there are three more. The 'prof' and 'profs' draw
a profile histogram (TProfile) rather than a regular 2D histogram (TH2D) from an expression with
two variables. If the expression has three variables, a TProfile2D is generated.

The 'profs' generates a TProfile with error on the spread. The 'prof' option generates a
TProfile with error on the mean. The "goff" option suppresses generating the graphics. You can
combine the draw options in a list separated by commas. After typing the lines above, you should now
have a canvas that looks this.

Superimposing Two Histograms
When superimposing two 2-D histograms inside a script with TTree::Draw and using the "same"
option, you will need to update the pad between Draw commands.

{ // superimpose two 2D scatter plots
 // Create a 2D histogram and fill it with random numbers
TH2 *h2 = new TH2D ("h2","2D histo",100,0,70,100,0,20000);
for (Int_t i = 0; i < 10000; i++)
h2->Fill(gRandom->Gaus(40,10),gRandom->Gaus(10000,3000));
// set the color to differentiate it visually
h2->SetMarkerColor(kGreen);

Trees

286

h2->Draw();
 // Open the example file and get the tree
TFile f("staff.root");
TTree *myTree = (TTree*)f.Get("T");
 // the update is needed for the next draw command to work properly
gPad->Update();
myTree->Draw("Cost:Age", "","same");
}

In this example, h2->Draw is only adding the object h2 to the pad's list of primitives. It does not paint
the object on the screen. However, TTree::Draw when called with option "same" gets the current
pad coordinates to build an intermediate histogram with the right limits. Since nothing has been painted
in the pad yet, the pad limits have not been computed. Calling pad->Update() forces the painting
of the pad and allows TTree::Draw to compute the right limits for the intermediate histogram.

Setting the Range in TTree::Draw
There are two more optional parameters to the TTree::Draw method: one is the number of entries
and the second one is the entry to start with. For example, this command draws 1000 entries starting
with entry 100:

myTree->Draw("Cost:Age", "","",1000,100);

TTree::Draw Examples
The examples below use the Event.root file generated by the $ROOTSYS/test/Event
executable and the Event, Track, and EventHeader class definitions are in $ROOTSYS/test/
Event.h. The commands have been tested on the split-levels 0, 1, and 9. Each command is numbered
and referenced by the explanations immediately following the examples.

// Data members and methods
1 tree->Draw("fNtrack");
2 tree->Draw("event.GetNtrack()");
3 tree->Draw("GetNtrack()");
4 tree->Draw("fH.fXaxis.fXmax");
5 tree->Draw("fH.fXaxis.GetXmax()");
6 tree->Draw("fH.GetXaxis().fXmax");
7 tree->Draw("GetHistogram().GetXaxis().GetXmax()");
// Expressions in the selection paramter
8 tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");
9 tree->Draw("fPx","fEvtHdr.fEvtNum%10 == 0");
// Two dimensional arrays defined as: Float_t fMatrix[4][4] in Event class
10 tree->Draw("fMatrix");
11 tree->Draw("fMatrix[][]");
12 tree->Draw("fMatrix[2][2]");
13 tree->Draw("fMatrix[][0]");
14 tree->Draw("fMatrix[1][]");
// using two arrays… Float_t fVertex[3]; in Track class
15 tree->Draw("fMatrix - fVertex");
16 tree->Draw("fMatrix[2][1] - fVertex[5][1]");
17 tree->Draw("fMatrix[][1] - fVertex[5][1]");
18 tree->Draw("fMatrix[2][] - fVertex[5][]");
19 tree->Draw("fMatrix[][2] - fVertex[][1]");
20 tree->Draw("fMatrix[][2] - fVertex[][]");
21 tree->Draw("fMatrix[][] - fVertex[][]");
// variable length arrays
22 tree->Draw("fClosestDistance");
23 tree->Draw("fClosestDistance[fNvertex/2]");

Trees

287

// mathematical expressions
24 tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz))");
// external function call
25 tree->Draw("TMath::BreitWigner(fPx,3,2)");
// strings
26 tree->Draw("fEvtHdr.fEvtNum","fType=="type1" ");
27 tree->Draw("fEvtHdr.fEvtNum","strstr(fType,"1" ");
// Where fPoints is defined in the track class:
// Int_t fNpoint;
// Int_t *fPoints; [fNpoint]
28 tree->Draw("fTracks.fPoints");
29 tree->Draw("fTracks.fPoints – fTracks.fPoints[][fAvgPoints]");
30 tree->Draw("fTracks.fPoints[2][]- fTracks.fPoints[][55]");
31 tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]");
// selections
32 tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)");
33 tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
34 tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");
35 tree->Draw("fVertex","fVertex>10");
36 tree->Draw("fPx[600]");
37 tree->Draw("fPx[600]","fNtrack>600");
// alphanumeric bin histogram
// where Nation is a char* indended to be used as a string
38 tree->Draw("Nation");
// where MyByte is a char* intended to be used as a byte
39 tree->Draw("MyByte + 0");
// where fTriggerBits is a data member of TTrack of type TBits
40 tree->Draw("fTracks.fTriggerBits");
// using alternate values
41 tree->Draw("fMatrix-Alt$(fClosestDistance,0)");
// using meta information about the formula
42 tree->Draw("fMatrix:Iteration$")
43 T->Draw("fLastTrack.GetPx():fLastTrack.fPx");
44 T->Scan("((Track*)(fLastTrack@.GetObject())).GetPx()","","");
45 tree->Draw("This->GetReadEntry()");
46 tree->Draw("mybr.mystring");
47 tree->Draw("myTimeStamp");

Explanations:

1. tree->Draw("fNtrack");

It fills the histogram with the number of tracks for each entry. fNtrack is a member of event.

2. tree->Draw("event.GetNtrack()");

Same as case 1, but use the method of event to get the number of tracks. When using a method, you
can include parameters for the method as long as the parameters are literals.

3. tree->Draw("GetNtrack()");

Same as case 2, the object of the method is not specified. The command uses the first instance of the
GetNtrack method found in the objects stored in the tree. We recommend using this shortcut only
if the method name is unique.

4. tree->Draw ("fH.fXaxis.fXmax");

Draw the data member of a data member. In the tree, each entry has a histogram. This command draws
the maximum value of the X-axis for each histogram.

Trees

288

5. tree->Draw("fH.fXaxis.GetXmax()");

Same as case 4, but use the method of a data member.

6.tree->Draw("fH.GetXaxis().fXmax");

The same as case 4: a data member of a data member retrieved by a method.

7. tree->Draw("GetHis togram().GetXaxis().GetXmax()");

Same as case 4, but using methods.

8.tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

Use data members in the expression and in the selection parameter to plot fPx or all tracks in every
10th entry. Since fTracks is a TClonesArray of Tracks, there will be d values of fPx for
each entry.

9. tree->Draw(" fPx ","fEvtHdr.fEvtNum%10 == 0 ");

Same as case 8, use the name of the data member directly.

10.tree->Draw("fMatrix ");

When the index of the array is left out or when empty brackets are used [], all values of the array are
selected. Draw all values of fMatrix for each entry in the tree. If fMatrix is defined as: Float_t
fMatrix[4][4], all 16 values are used for each entry.

11. tree->Draw("fMatrix[][]");

The same as case 10, all values of fMatrix are drawn for each entry.

12. tree->Draw(" fMatrix[2][2]");

The single element at fMatrix[2][2] is drawn for each entry.

13. tree->Draw("fMatrix[][0]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[2][0], fMatrix[3][0],
fMatrix[4][0].

14. tree->Draw("fMatrix[1][]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[1][2], fMatrix[1][3],
fMatrix[1][4].

15. tree->Draw ("fMatrix - fVertex ");

With two arrays and unspecified element numbers, the number of selected values is the minimum of
the first dimension times the minimum of the second dimension. In this case fVertex is also a two
dimensional array since it is a data member of the tracks array. If fVertex is defined in the track
class as: Float_t *fVertex[3], it has fNtracks x 3 elements. fMatrix has 4 x 4 elements.
This case, draws 4 (the smaller of fNtrack and 4) times 3 (the smaller of 4 and 3), meaning 12
elements per entry. The selected values for each entry are:

fMatrix[0][0] – fVertex[0][0]

fMatrix[0][1] – fVertex[0][1]

fMatrix[0][2] – fVertex[0][2]

fMatrix[1][0] – fVertex[1][0]

Trees

289

fMatrix[1][1] – fVertex[1][1]

fMatrix[1][2] – fVertex[1][2]

fMatrix[2][0] – fVertex[2][0]

fMatrix[2][1] – fVertex[2][1]

fMatrix[2][2] – fVertex[2][2]

fMatrix[3][0] – fVertex[3][0]

fMatrix[3][1] – fVertex[3][1]

fMatrix[3][2] – fVertex[3][2]

16. tree->Draw ("fMatrix[2][1] - fVertex[5][1]");

This command selects one value per entry.

17. tree->Draw ("fMatrix[][1] - fVertex[5][1]");

The first dimension of the array is taken by the fMatrix.

fMatrix[0][1] - fVertex[5][1]

fMatrix[1][1] - fVertex[5][1]

fMatrix[2][1] - fVertex[5][1]

fMatrix[3][1] - fVertex[5][1]

18. tree->Draw ("("fMatrix[2][] - fVertex[5][]");

The first dimension minimum is 2, and the second dimension minimum is 3 (from fVertex). Three
values are selected from each entry:

fMatrix[2][0] - fVertex[5][0]

fMatrix[2][1] - fVertex[5][1]

fMatrix[2][2] - fVertex[5][2]

19. tree->Draw ("fMatrix[][2] - fVertex[][1]")

This is similar to case 18. Four values are selected from each entry:

fMatrix[0][2] - fVertex[0][1]

fMatrix[1][2] - fVertex[1][1]

fMatrix[2][2] - fVertex[2][1]

fMatrix[3][2] - fVertex[3][1]

20. tree->Draw ("fMatrix[][2] - fVertex[][]")

This is similar to case 19. Twelve values are selected (4x3) from each entry:

fMatrix[0][2] - fVertex[0][0]

fMatrix[0][2] - fVertex[0][1]

fMatrix[0][2] - fVertex[0][2]

Trees

290

fMatrix[1][2] - fVertex[1][0]

fMatrix[1][2] - fVertex[1][1]

fMatrix[1][2] - fVertex[1][2]

fMatrix[2][2] - fVertex[2][0]

fMatrix[2][2] - fVertex[2][1]

fMatrix[2][2] - fVertex[2][2]

fMatrix[3][2] - fVertex[3][0]

fMatrix[3][2] - fVertex[3][1]

fMatrix[3][2] - fVertex[3][2]

21. tree->Draw ("fMatrix[][] - fVertex[][]")

This is the same as case 15. The first dimension minimum is 4 (from fMatrix), and the second
dimension minimum is 3 (from fVertex). Twelve values are selected from each entry.

22. tree->Draw ("fClosestDistance")

This event data member fClosestDistance is a variable length array:

Float_t *fClosestDistance; //[fNvertex]

This command selects all elements, but the number per entry depends on the number of vertices of
that entry.

23. tree->Draw ("fClosestDistance[fNvertex/2]")

With this command the element at fNvertex/2 of the fClosestDistance array is selected.
Only one per entry is selected.

24. tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the square root of the sum of
the product.

25. tree->Draw("TMath::BreitWigner(fPx,3,2)")

The formula can contains call to a function that takes numerical arguments and returns a numerical
value. The function needs to be declared to the dictionary and need to be available from the global
namespace. In particular, global functions and public static member functions can be called.

26. tree->Draw("fEvtHdr.fEvtNum","fType=="type1" ")

You can compare strings, using the symbols == and !=, in the first two parameters of the Draw
command (TTreeFormula). In this case, the event number for ‘type1’ events is plotted.

27. tree->Draw("fEvtHdr.fEvtNum","strstr(fType,"1") ")

To compare strings, you can also use strstr. In this case, events having a '1' in fType are selected.

28. tree->Draw("fTracks.fPoints")

If fPoints is a data member of the Track class declared as:

Int_t fNpoint;

Trees

291

Int_t *fPoints; [fNpoint]

The size of the array fPoints varies with each track of each event. This command draws all the
value in the fPoints arrays.

29. tree->Draw("fTracks.fPoints - fTracks.fPoints[][fAvgPoints]");

When fAvgPoints is a data member of the Event class, this example selects:

fTracks[0].fPoints[0] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[1] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[2] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[4] - fTracks[0].fPoint[fAvgPoints]

…

fTracks[0].fPoints[max0]- fTracks[0].fPoint[fAvgPoints]

…

fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoints]

…

fTracks[1].fPoints[max1]- fTracks[1].fPoint[fAvgPoints]

…

fTracks[fNtrack-1].fPoints[0] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[1] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[2] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[3] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[4] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

…

fTracks[fNtrack-1].fPoints[maxn] -
fTracks[fNtrack-1].fPoint[fAvgPoints]

Where max0, max1, … max n, is the size of the fPoints array for the respective track.

30. tree->Draw("fTracks.fPoints[2][]– fTracks.fPoints[][55]")

Trees

292

For each event, this expression is selected:

fTracks[2].fPoints[0] - fTracks[0].fPoints[55]

fTracks[2].fPoints[1] - fTracks[1].fPoints[55]

fTracks[2].fPoints[2] - fTracks[2].fPoints[55]

fTracks[2].fPoints[3] - fTracks[3].fPoints[55]

...

fTracks[2].fPoints[max] - fTracks[max].fPoints[55]

where max is the minimum of fNtrack and fTracks[2].fNpoint.

31. tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the difference between fPoints and
of fVertex. The number of elements used for each track is the minimum of fNpoint and 3 (the
size of the fVertex array).

fTracks[0].fPoints[0] - fTracks[0].fVertex[0]

fTracks[0].fPoints[1] - fTracks[0].fVertex[1]

fTracks[0].fPoints[2] - fTracks[0].fVertex[2]

// with fTracks[1].fNpoint==7

fTracks[1].fPoints[0] - fTracks[1].fVertex[0]

fTracks[1].fPoints[1] - fTracks[1].fVertex[1]

fTracks[1].fPoints[2] - fTracks[1].fVertex[2]

// with fTracks[1].fNpoint==5

fTracks[2].fPoints[0] - fTracks[1].fVertex[0]

fTracks[2].fPoints[1] - fTracks[1].fVertex[1]

// with fTracks[2].fNpoint==2

fTracks[3].fPoints[0] - fTracks[3].fVertex[0]

// with fTracks[3].fNpoint==1

fTracks[4].fPoints[0] - fTracks[4].fVertex[0]

fTracks[4].fPoints[1] - fTracks[4].fVertex[1]

fTracks[4].fPoints[2] - fTracks[4].fVertex[2]

// with fTracks[4].fNpoint==3

32. tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)")

You can use bit patterns (&,|,<<) or Boolean operation.

33. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");

34. tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

Trees

293

The selection argument is used as a weight. The expression returns a multiplier and in case of a Boolean
the multiplier is either 0 (for false) or 1 (for true). The first command draws fPx for the range between
0.4 and –0.4, the second command draws fPx for the same range, but adds a weight using the result
of the second expression.

35. tree->Draw("fVertex","fVertex>10")

When using arrays in the selection and the expression, the selection is applied to each element of the
array.

if (fVertex[0]>10) fVertex[0]

if (fVertex[1]>10) fVertex[1]

if (fVertex[2]>10) fVertex[2]

36. tree->Draw("fPx[600]")

37. tree->Draw("fPx[600]","fNtrack > 600")

When using a specific element for a variable length array the entries with fewer elements are
ignored. Thus these two commands are equivalent.

38. tree->Draw("Nation")

Nation is a char* branch. When drawing a char* it will plot an alphanumeric histogram, of the
different value of the string Nation. The axis will have the Nation values. See “Histograms”.

39. tree->Draw("MyChar +0")

If you want to plot a char* variable as a byte rather than a string, you can use the syntax above.

40. tree->Draw("fTracks.fTriggerBits")

fTriggerBits is a data member of TTrack of type TBits. Objects of class TBits can be drawn
directly. This command will create a 1D histogram from 0 to nbits which is filled for each non-
null bit-number.

41. tree->Draw("fMatrix-Alt$(fClosestDistance,0)")

Alt$(primary,alternate) returns the value of "primary" if it is available for the current
iteration; otherwise return the value of "alternate". Assuming that fClosestDistance is a
smaller array than fMatrix. This example will draw fMatrix[i]+fClosestDistance[i]
for i less than the size of fClosestDistance, and will draw fMatrix[i]+0 for the other value
of i.

42. tree->Draw("fClosestDistance:Iteration$")

This example draws a 2D plot with, for all entries, fClosestDistance[i]:i for each value of
i between 0 and the size of fClosestDistance. Iterations$ is one of four special variables
giving some indications of the state of the loops implied by the formula:

Entry$: return the current entry number (TTree::GetReadEntry())

Entries$: return the total number of entries (TTree::GetEntries())

Length$: return the total number of element of this formula for this entry

Iteration$: return the current iteration over this formula for this entry (i.e. varies from 0 to
Length$).

43. T->Draw("fLastTrack.GetPx():fLastTrack.fPx");

Trees

294

TRef and TRefArray are automatically deferenced and this shows the value of the fPx of the track
referenced by fLastTrack. To access the TRef object itself use the '@' notation (see next example).
This auto dereferencing can be extended (via an implementation of TVirtualRefProxy) to any
reference type.

44. T->Scan("((Track*)(fLastTrack@.GetObject())).GetPx()","","");

Will cast the return value of GetObject() (which happens to be TObject* in this case) before
requesting the GetPx() member functions.

45. tree->Draw("This->GetReadEntry()");

You can refer to the tree (or chain) containing the data by using the string 'This'. You can also call
any TTree methods. Next example will display the name of the first 'user info' object:

tree->Draw("This->GetUserInfo()->At(0)->GetName()");

46. tree->Draw("mybr.mystring");

TString and std::string object are plotted directly. The example 45 draws the same results -
i.e. an histogram whose labels are the string value of 'mystring':

tree->Draw("mybr.mystring.c_str()");

or

tree->Draw("mybr.mytstring.Data()");

47. tree->Draw("myTimeStamp");

You can plot plot objects of any class which has either AsDouble or AsString (AsDouble has
priority). For such a class (for example TTimeStamp), the line 46 will plot the same as:

tree->Draw("myTimeStamp.AsDouble");

AsString can be returning either a char*, or a TString or an std::string.

Using TTree::Scan
TTree::Scan can be used to print the content of the tree's entries optional passing a selection.

root[] MyTree->Scan();

will print the first 8 variables of the tree.

root[] MyTree->Scan("*");

will print all the variable of the tree.

Specific variables of the tree can be explicit selected by list them in column separated list:

root[] MyTree->Scan("var1:var2:var3");

will print the values of var1, var2 and var3. A selection can be applied in the second argument:

root[] MyTree->Scan("var1:var2:var3","var1==0");

will print the values of var1, var2 and var3 for the entries where var1 is exactly 0.

TTree::Scan returns the number of entries passing the selection. By default 50 rows are
shown before TTree::Scan pauses and ask you to press the Enter key to see the next 50
rows. You can change the default number of rows to be shown before <CR> via mytree-
>SetScanfield(maxrows) where maxrows is 50 by default. If maxrows is set to 0 all rows of

Trees

295

the Tree are shown. This option is interesting when dumping the contents of a Tree to an ascii file,
eg from the command line:

root[] tree->SetScanField(0);
root[] tree->Scan("*"); >tree.log

will create a file tree.log.

Arrays (within an entry) are printed in their linear forms. If several arrays with multiple dimensions
are printed together, they will NOT be synchronized. For example, with a tree containing arr1[4]
[2] and arr2[2][3],

root[] MyTree("arr1:arr2");

will results in a printing similar to:

**
* Row * Instance * arr1 * arr2 *

* x * 0 * arr1[0][0]* arr2[0][0]*
* x * 1 * arr1[0][1]* arr2[0][1]*
* x * 2 * arr1[1][0]* arr2[0][2]*
* x * 3 * arr1[1][1]* arr2[1][0]*
* x * 4 * arr1[2][0]* arr2[1][1]*
* x * 5 * arr1[2][1]* arr2[1][2]*
* x * 6 * arr1[3][0]* *
* x * 7 * arr1[3][1]* *

However, if there is a selection criterium which is an array, then all the formulas will be synchronized
with the selection criterium (see TTree::Draw for more information).

The third parameter of TTree::Scan can be use to specific the layout of the table:

• lenmax=dd - where 'dd' is the maximum number of elements per array that should be printed. If
'dd' is 0, all elements are printed (this is the default).

• colsize=ss - where 'ss' will be used as the default size for all the column. If this options is not
specified, the default column size is 9.

• precision=pp - where 'pp' will be used as the default 'precision' for the printing format.

• col=xxx - where 'xxx' is colon (:) delimited list of printing format for each column if no format
is specified for a column, the default is used.

For example:

tree->Scan("a:b:c","","colsize=30 precision=3 col=::20.10");

will print 3 columns, the first 2 columns will be 30 characters long, the third columns will be 20
characters long. The printf format for the columns (assuming they are numbers) will be respectively:
%30.3g %30.3g %20.10g.

TEventList and TEntryList
The TTree::Draw method can also be used to build a list of the entries. When the first argument
is preceded by ">>" ROOT knows that this command is not intended to draw anything, but to save
the entries in a list with the name given by the first argument. As a result, a TEventList or a
TEntryList object is created in the current directory. For example, to create a TEventList of
all entries with more than 600 tracks, do:

root[] TFile *f = new TFile("Event.root");

Trees

296

root[] T->Draw(">> myList","fNtrack > 600");

To create a TEntryList, use the option "entrylist".

root[] T->Draw(">>myList", "fNtrack>600", "entrylist");

This list contains the entry number of all entries with more than 600 tracks. To see the entry numbers
use the Print("all") command.

root[] myList->Print("all");

When using the ">>" whatever was in the list is overwritten. The list can be grown by using the ">>
+" syntax. For example to add the entries, with exactly 600 tracks:

root[] T->Draw(">>+ myList","fNtrack == 600", "entrylist");

If the Draw command generates duplicate entries, they are not added to the list.

root[] T->Draw(">>+ myList"," fNtrack > 610", "entrylist");

This command does not add any new entries to the list because all entries with more than 610 tracks
have already been found by the previous command for entries with more than 600 tracks.

Main Differences between TEventList and TEntryList

The functionality is essentialy the same: both are used to store entry numbers. TEntryList,
however, uses considerably less memory for storage, and is optimized for both very high and very
low selectivity of cuts (see TEntryListBlock class description for the details of internal storage).
Unlike the TEventList, TEntryList makes a distinction between indices from a TChain
and from a TTree. While a TEntryList for a TTree can be seen as just a list of numbers, a
TEntryList for a TChain is a collection of TEntryList(s) for the TTree(s) that constitute this
TChain. Such "sub-lists" can be extracted by calling the function

TEntryList::GetEntryList(const char *treename, const char *filename)

and then be used to construct a new TEntryList for a new TChain, or processed independently
as normal TEntryList(s) for TTree(s). This modularity makes TEntryList much better suited
for PROOF processing than the TEventList.

Using an Event List

A TEventList or a TEntryList can be used to limit the TTree to the events in the list. The
methods SetEventList and SetEntryList tell the tree to use the list and hence limit all
subsequent calls to Draw, Scan, Process, Query, Principal and CopyTree methods to the
entries in the list. In general, it affects the GetEntryNumber method and all functions using it for
looping over the tree entries. The GetEntry and GetEntries methods are not affected. Note,
that in the SetEventList method, the TEventList argument is internally transformed into a
TEntryList, and this operation, in case of a TChain, requires loading of all the tree headers. In this
example, we create a list with all entries with more than 600 tracks and then set it so that the tree will
use this list. To reset the TTree to use all events use SetEventList(0) or SetEntryList(0).

1) Let’s look at an example. First, open the file and draw the fNtrack.

root[] TFile *f = new TFile("Event.root");
root[] TTree *T = (TTree*)f->Get("T");
root[] T->Draw("fNtrack");

2) Now, put the entries with over 600 tracks into a TEntryList called myList. We get the list
from the current directory and assign it to a variable list.

root[] T->Draw(">>myList","fNtrack > 600","entrylist");

Trees

297

root[]TEntryList *list=(TEntryList*)gDirectory->Get("myList");

3) Instruct the tree T to use the new list and draw it again. Note that this is exactly the same Draw
command. The list limits the entries.

root[] T->SetEntryList(list);
root[] T->Draw("fNtrack");

You should now see a canvas similar to this one.

Operations on TEntryLists

If you have entry lists that were created using different cuts, you can combine the lists to get a new
list, with entries passing at least one of the cuts. Example:

root[] T->Draw(">>list1","fNtrack>600","entrylist");
root[] TEntryList *list1 = (TEntryList*)gDirectory->Get("list1");
root[] T->Draw(">>list2","fNtrack<590","entrylist");
root[] TEntryList *list2 = (TEntryList*)gDirectory->Get("list2");
root[] list1->Add(list2);

list1 now contains entries with more than 600 or less than 590 tracks. Check this by calling:

root[] T->SetEntryList(list1);
root[] T->Draw("fNtrack");

You can also subtract TEntryList from each other, so that the first list contains only the entries,
passing the selection of the first list and not present in the second list.

To add some individual entries, use TEntryList::Enter() function. To remove the entries
you don't like, use TEntryList::Remove(). To see if the entry is in the list, use
TEntryList::Contains(). Remember, that all operation in a TEntryList for a TChain are
on the TTree level. This is illustrated by the following example:

root[] TEntryList *list1 = new TEntryList("list1","list1");
root[] list1->SetTree("tree1","file1")
root[] list1->Enter(0);
root[] list1->Enter(2);
root[] TEntryList *list2 = new TEntryList("list2", "list2");
root[] list2->SetTree("tree2", "file2");
root[] list2->Enter(0);
root[] list2->Enter(3);
root[] list1->Add(list2);
root[] list1->Print("all")

Trees

298

tree1 file1
0
2
tree2 file2
0
3

The result is a TEntryList for a TChain of tree1 and tree2. If the second list was for the same
TTree in the same file as the first list, the result would be as follows:

root[] TEntryList *list2_2 = new TEntryList("list2_2", "list2_2");
root[] list2_2->SetTree("tree2", "file2");
root[] list2_2->Enter(1);
root[] list2_2->Enter(2);
root[] list2->Add(list2_2);
root[] list2->Print("all")
tree2 file2
0
1
2
3

TEntryListFromFile

This is a special kind of TEntryList, used only when processing TChain objects (see the method
TChain::SetEntryListFile()). It is used in the case, when the entry lists, corresponding to
the trees of this chain, are stored in separate files. It allows to load the entry lists in memory one by
one, keeping only the list for the currently processed tree loaded.

For more details on entry lists, see TEntryList, TEntryListBlock and
TEntryListFromFile class descriptions, functions TChain::SetEntryList(),
TChain::SetEntryListFile(), and the macro $ROOTSYS/test/
stressEntryList.C.

Filling a Histogram
The TTree::Draw method can also be used to fill a specific histogram. The syntax is:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack >> myHisto")
root[] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100

As we can see, this created a TH1, called myHisto. If you want to append more entries to the
histogram, you can use this syntax:

root[] T->Draw("fNtrack >>+ myHisto")

If you do not create a histogram ahead of time, ROOT will create one at the time of the Draw command
(as is the case above). If you would like to draw the variable into a specific histogram where you, for
example, set the range and bin number, you can define the histogram ahead of time and use it in the
Draw command. The histogram has to be in the same directory as the tree.

root[] TH1 *h1 = new TH1("h1","h1",50,0.,150.);
root[] T->Draw("fNtrack>> h1");

When you project a TTree into a histogram, the histogram inherits the TTree attributes and not the
current style attributes. This allows you to project two Trees with different attributes into the same
picture. You can call the method TTree::UseCurrentStyle to change the histogram to use the
current style gStyle. See “Graphics and the Graphical User Interface.

Trees

299

The binning of the newly created histogram can be specified in two ways. You can set a default in the
.rootrc and/or you can add the binning information in the TTree::Draw command.

To set number of bins default for the 1-D, 2-D, 3-D histograms can be specified in the .rootrc file
via the environment variables, e.g.:

default binnings Hist.Binning.1D.x: 100

Hist.Binning.2D.x: 40
Hist.Binning.2D.y: 40
Hist.Binning.2D.Prof: 100

Hist.Binning.3D.x: 20
Hist.Binning.3D.y: 20
Hist.Binning.3D.z: 20
Hist.Binning.3D.Profx: 100
Hist.Binning.3D.Profy: 100

To set the number of bins for a specific histogram when using TTree::Draw, add up to nine
numbers following the histogram name. The numbers meaning is:

1 bins in x-direction

2 lower limit in x-direction

3upper limit in x-direction

4-6 same for y-direction

7-9 same for z-direction

When a bin number is specified, the value becomes the default. Any of the numbers can be skipped.
For example:

tree.Draw("sqrt(x)>>hsqrt(500,10,20)";
// plot sqrt(x) between 10 and 20 using 500 bins
tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)";
// plot sqrt(x) against sin(y) 100 bins in x-direction;
// lower limit on x-axis is 10; no upper limit
// 50 bins in y-direction; lower limit on y-axis is .1; upper limit is .5

When the name is followed by binning information, appending the histogram with a "+", will not reset
hsqrt, but will continue to fill it.

tree.Draw("sqrt(x)>>+hsqrt","y>0");

This works for 1-D, 2-D and 3-D histograms.

Projecting a Histogram

If you would like to fill a histogram, but not draw it you can use the TTree::Project() method.

root[] T->Project("quietHisto","fNtrack")

Making a Profile Histogram

In case of a two dimensional expression, you can generate a TProfile histogram instead of a
two dimensional histogram by specifying the 'prof' or 'profs' option. The prof option is
automatically selected when the output is redirected into a TProfile. For example y:x>>pf where
pf is an existing TProfile histogram.

Trees

300

Tree Information

Once we have drawn a tree, we can get information about the tree. These are the methods used to get
information from a drawn tree TTree:

• GetSelectedRows: Returns the number of entries accepted by the selection expression. In case
where no selection was specified, it returns the number of entries processed.

• GetV1: Returns a pointer to the float array of the first variable.

• GetV2: Returns a pointer to the float array of second variable

• GetV3: Returns a pointer to the float array of third variable.

• GetW: Returns a pointer to the float array of Weights where the weight equals the result of the
selection expression.

To read the drawn values of fNtrack into an array, and loop through the entries follow the lines
below. First, open the file and draw the fNtrack variable:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetV1 method to retrieve the first dimension of the tree.
In this example we only drew one dimension (fNtrack) if we had drawn two, we could use GetV2
to get the second one.

root[] Float_t *a
root[] a = T->GetV1()

Loop through the first 10 entries and print the values of fNtrack:

root[] for (int i = 0; i < 10; i++)
root[] cout << a[i] << " " << endl // need an endl to see the values
594 597 606 595 604 610 604 602 603 596

By default, TTree::Draw creates these arrays with fEstimate words where fEstimate can
be set via TTree::SetEstimate. If you have more entries than fEstimate only the first
fEstimate selected entries will be stored in the arrays. The arrays are used as buffers. When
fEstimate entries have been processed, ROOT scans the buffers to compute the minimum and
maximum of each coordinate and creates the corresponding histograms. You can use these lines to
read all entries into these arrays:

root[] Int_t nestimate = (Int_t)T->GetEntries();
 root[] T->SetEstimate(nestimate);

Obviously, this will not work if the number of entries is very large. This technique is useful in several
cases, for example if you want to draw a graph connecting all the x, y(or z) points. Note that
you may have a tree (or chain) with 1 billion entries, but only a few may survive the cuts and will fit
without problems in these arrays.

Using TTree::MakeClass
The TTree::Draw method is convenient and easy to use; however it falls short if you need to do
some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks, you would need to write
a program that loops over all events, finds all pairs of tracks, and calculates the required quantities.
We have shown how to retrieve the data arrays from the branches of the tree in the previous section,

Trees

301

and you could just write that program from scratch. Since this is a very common task, ROOT provides
a utility that generates a skeleton class designed to loop over the entries of the tree.

This is the TTree::MakeClass method. We will now go through the steps of using MakeClass
with a simplified example. The methods used here obviously work for complex event loop
calculations.

These are our assumptions: we would like to do selective plotting and loop through each entry of the
tree and tracks. We chose a simple example: we want to plot fPx of the first 100 tracks of each entry.
We have a ROOT tree with a branch for each data member in the "Event" object. To build this file
and tree follow the instructions on how to build the examples in $ROOTSYS/test. Execute Event
and instruct it to split the object with this command (from the UNIX command line).

> $ROOTSYS/test/Event 400 1 2 1

This creates an Event.root file with 400 events, compressed, split, and filled.

See $ROOTSYS/test/MainEvent.cxx for more info.

The person who designed the tree makes a shared library available to you, which defines the classes
needed. In this case, the classes are Event, EventHeader, and Track and they are defined in the
shared library libEvent.so. The designer also gives you the Event.h file to see the definition
of the classes. You can locate Event.h in $ROOTSYS/test, and if you have not yet built
libEvent.so, please see the instructions of how to build it (typing make in $ROOTSYS/test is
enough). If you have already built it, you can now use it again.

Creating a Class with MakeClass
First, we load the shared library and open Event.root.

root[] .L libEvent.so
root[] TFile *f = new TFile("Event.root");
root[] f->ls();
TFile** Event.root TTree benchmark ROOT file
TFile* Event.root TTree benchmark ROOT file
KEY: TH1F htime;1 Real-Time to write versus time
KEY: TTree T;1 An example of a ROOT tree

We can see there is a tree “T”, and just to verify that we are working with the correct one, we print
the tree, which will show us the header and branches.

root[] T->Print();

From the output of print we can see that the tree has one branch for each data member of Event,
Track, and EventHeader. Now we can use TTree::MakeClass on our tree “T”. MakeClass
takes one parameter, a string containing the name of the class to be made. In the command below, the
name of our class will be “MyClass”.

root[] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

CINT informs us that it has created two files. MyClass.h contains the class definition and
MyClass.C contains the MyClass::Loop() method. MyClass has more methods than just
Loop(). The other methods are a constructor, a destructor, GetEntry(), LoadTree(),
Notify(), Cut() and Show(). The implementations of these methods are in the .h file. This
division of methods was done intentionally. The .C file is kept as short as possible, and contains only
code that is intended for you to customize. The .h file contains all the other methods. It is clear that you
want to be as independent as possible of the header file (i.e. MyClass.h) generated by MakeClass.
The solution is to implement a derived class, for example MyRealClass deriving from MyClass
such that a change in your Tree or regeneration of MyClass.h does not force you to change

Trees

302

MyRealClass.h. You can imagine deriving several classes from MyClass.h, each with a specific
algorithm. To understand both files, let’s start with MyClass.h and the class declaration:

MyClass.h
class MyClass {
public :
//pointer to the analyzed TTree or TChain
TTree *fChain;
 //current Tree number in a TChain
Int_t fCurrent;
 //Declaration of leaves types
UInt_t fUniqueID;
UInt_t fBits;
Char_t fType[20];
Int_t fNtrack;
Int_t fNseg;
Int_t fNvertex;
UInt_t fFlag;
Float_t fTemperature;
Int_t fEvtHdr_fEvtNum;
 //List of branches
TBranch *b_fUniqueID;
TBranch *b_fBits;
TBranch *b_fType;
TBranch *b_fNtrack;
TBranch *b_fNseg;
TBranch *b_fNvertex;
TBranch *b_fFlag;
TBranch *b_fTemperature;
TBranch *b_fEvtHdr_fEvtNum;
…
MyClass(TTree *tree=0);
~MyClass();
Int_t Cut(Int_t entry);
Int_t GetEntry(Int_t entry);
Int_t LoadTree(Int_t entry);
void Init(TTree *tree);
void Loop();
Bool_t Notify();
void Show(Int_t entry = -1);
};

We can see data members in the generated class. The first data member is fChain. Once this class
is instantiated, fChain will point to the original tree or chain this class was made from. In our case,
this is “T” in “Event.root”. If the class is instantiated with a tree as a parameter to the constructor,
fChain will point to the tree named in the parameter. Next is fCurrent, which is also a pointer
to the current tree/chain. Its role is only relevant when we have multiple trees chained together in a
TChain. The class definition shows us that this tree has one branch and one leaf per data member.
The methods of MyClass are:

• MyClass(TTree *tree=0) - this constructor has an optional tree for a parameter. If you
pass a tree, MyClass will use it rather than the tree from which it was created.

• void Init(TTree *tree) – it is called by the constructor to initialize the tree for reading.
It associates each branch with the corresponding leaf data member.

• ~MyClass() - the destructor, nothing special.

Trees

303

• Int_t GetEntry(Int_t entry) - it loads the class with the entry specified. Once you
have executed GetEntry, the leaf data members in MyClass are set to the values of the entry.
For example, GetEntry(12) loads the 13th event into the event data member of MyClass (note
that the first entry is 0). GetEntry returns the number of bytes read from the file. In case the same
entry is read twice, ROOT does not have to do any I/O. In this case GetEntry returns 1. It does
not return 0, because many people assume a return of 0 means an error has occurred while reading.

• Int_t LoadTree(Int_t entry) and void Notify() - these two methods are related
to chains. LoadTree will load the tree containing the specified entry from a chain of trees. Notify
is called by LoadTree to adjust the branch addresses.

• void Loop() - it is the skeleton method that loops through each entry of the tree. This is
interesting to us, because we will need to customize it for our analysis.

MyClass.C
MyClass::Loop consists of a for-loop calling GetEntry for each entry. In the template, the
numbers of bytes are added up, but it does nothing else. If we were to execute it now, there would
be no output.

void MyClass::Loop() {
if (fChain == 0) return;

Int_t nentries = Int_t(fChain->GetEntries());
Int_t nbytes = 0, nb = 0;
for (Int_t jentry=0; jentry<nentries;jentry++) {
Int_t ientry = LoadTree(jentry);
// in case of a TChain , ientry is the entry number in the current file
nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;
}
}

At the beginning of the file are instructions about reading selected branches. They are not reprinted
here, but please read them from your own file

Modifying MyClass::Loop
Let us continue with the goal of going through the first 100 tracks of each entry and plot Px. To do
this we change the Loop method.

…
if (fChain == 0) return;
Int_t nentries = Int_t(fChain->GetEntries());
TH1F *myHisto = new TH1F("myHisto","fPx", 100, -5,5);
TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);
…

In the for-loop, we need to add another for-loop to go over all the tracks. In the outer for-loop, we get
the entry and the number of tracks. In the inner for-loop, we fill the large histogram (myHisto) with
all tracks and the small histogram (smallHisto) with the track if it is in the first 100.

…
for (Int_t jentry=0; jentry<nentries;jentry++) {
GetEntry(jentry);
for (Int_t j = 0; j < 100; j++){
myHisto->Fill(fTracks_fPx[j]);
if (j < 100){

Trees

304

smallHisto->Fill(fTracks_fPx[j]);
}
}
}
…

Outside of the for-loop, we draw both histograms on the same canvas.

…
myHisto->Draw();
smallHisto->Draw("Same");
…

Save these changes to MyClass.C and start a fresh root session. We will now load MyClass and
experiment with its methods.

Loading MyClass
The first step is to load the library and the class file. Then we can instantiate a MyClass object.

root[] .L libEvent.so
root[] .L MyClass.C
root[] MyClass m

Now we can get a specific entry and populate the event leaf. In the code snipped below, we get entry
0, and print the number of tracks (594). Then we get entry 1 and print the number of tracks (597).

root[] m.GetEntry(0)
(int)57503
root[] m.fNtrack()
(Int_t)594
root[] m.GetEntry(1)
(int)48045
root[] m.fNtrack()
(Int_t)597

Now we can call the Loop method, which will build and display the two histograms.

root[] m.Loop()

You should now see a canvas that looks like this.

Trees

305

To conclude the discussion on MakeClass let us lists the steps that got us here.

• Call TTree::MakeClass, which automatically creates a class to loop over the tree.

• Modify the MyClass::Loop() method in MyClass.C to fit your task.

• Load and instantiate MyClass, and run MyClass::Loop().

Using TTree::MakeSelector
With a TTree we can make a selector and use it to process a limited set of entries. This is especially
important in a parallel processing configuration where the analysis is distributed over several
processors and we can specify which entries to send to each processor. The TTree::Process
method is used to specify the selector and the entries. Before we can use TTree::Process we need
to make a selector. We can call the TTree::MakeSelector method. It creates two files similar
to TTree::MakeClass.

In the resulting files is a class that is a descendent of TSelector and implements the following
methods:

• TSelector::Begin() - this method is called every time a loop over the tree starts. This is a
convenient place to create your histograms.

• TSelector::Notify() - it is called at the first entry of a new tree in a chain.

• TSelector::Process() - it is called to process an event. It is the user's responsibility to
read the corresponding entry in memory (may be just a partial read). Once the entry is in memory
one can apply a selection and if the event is selected histograms can be filled. Processing stops
when this function returns kFALSE. It combines the methods TSelector::ProcessCut()
and TSelector::ProcessFill() in one, avoiding the necessity to maintain the state in the
class to communicate between these two functions. It reduces the information that needs to be shared
between them and promotes a more granular data access by reading branches as they are needed.

• TSelector::Terminate() - it is called at the end of a loop on a TTree. This is a convenient
place to draw and fit your histograms.

• TSelector::Version() - this function provides backward compatibility for old versions and
support for the future upgrades.

• The TSelector, unlike the resulting class from MakeClass, separates the processing into a
ProcessCut() and ProcessFill(), so we can limit reading of branches to the ones we need.

• When a selector is used with a TChain in methods Process(), ProcessFill(),
ProcessCut(), you must use the pointer to the current TTree to call the method
GetEntry(entry). The parameter entry is always the local entry number in the current tree.
Assuming that fChain is the pointer to the TChain being processed, use

fChain->GetTree()->GetEntry(entry);

To create a selector call:

root[] T->MakeSelector("MySelector");

Where T is the TTree and MySelector is the name of created class and the name of the .h and
.C files. The resulting TSelector is the argument to TTree::Process. The argument can be
the file name or a pointer to the selector object.

root[] T->Process("MySelector.C","",1000,100);

This call will interpret the class defined in MySelector.C and process 1000 entries beginning with
entry 100. The file name can be appended with a "+" or a "++" to use ACLiC.

Trees

306

root[] T->Process("MySelector.C++","",1000,100);

When appending a "++", the class will be compiled and dynamically loaded.

root[] T->Process("MySelector.C+","",1000,100);

When appending a "+", the class will also be compiled and dynamically loaded. When it is called
again, it recompiles only if the macro (MySelector.C) has changed since it was compiled last. If
not, it loads the existing library. The next example shows how to create a selector with a pointer:

MySelector *selector = (MySelector *)TSelector::GetSelector(“MySelector.C+”);
T->Process(selector);

Using this form, you can do things like:

selector->public_attribute1 = init_value;
for (int i=0; i<limit; i++) {
T->Process(selector);
 selector->public_attribute1 = function(selector->public_attribute2);
}

TTree::Process() is aware of PROOF, ROOT parallel processing facility. If PROOF is setup,
it divides the processing amongst the slave CPUs.

Performance Benchmarks

The program $ROOTSYS/test/bench.cxx compares the I/O performance of STL vectors to
the ROOT native TClonesArrays collection class. It creates trees with and without compression
for the following cases: vector<THit>, vector<THit*>, TClonesArray(TObjHit) not
split TClonesArray(TObjHit) split.

The next graphs show the two columns on the right which represent
the split and non-split TClonesArray, are significantly lower than the vectors. The
most significant difference is in reading a file without compression.

The file size with compression, write times with and without compression and the read times with and
without compression all favor the TClonesArray.

Trees

307

Impact of Compression on I/O
This benchmark illustrates the pros and cons of the compression option. We recommend using
compression when the time spent in I/O is small compared to the total processing time. In this case,
if the I/O operation is increased by a factor of 5 it is still a small percentage of the total time and it
may very well save a factor of 10 on disk space. On the other hand if the time spend on I/O is large,
compression may slow down the program's performance. The standard test program $ROOTSYS/
test/Event was used in various configurations with 400 events. The data file contains a TTree.
The program was invoked with:

Event 400 comp split

• comp = 0 means: no compression at all.

• comp = 1 means: compress everything if split = 0.

• comp = 1 means: compress only the tree branches with integers if split = 1.

• comp = 2 means: compress everything if split=1.

• split = 0 : the full event is serialized into one single buffer.

• split = 1 : the event is split into branches. One branch for each data member of the Event class. The
list of tracks (a TClonesArray) has the data members of the Track class also split into individual
buffers.

These tests were run on Pentium III CPU with 650 MHz.

Event
Parameters

File
Size

Total Time to
Write (MB/sec)

Effective Time
to Write (MB/
sec)

Total Time to
Read All (MB/
sec)

Total Time to
Read Sample
(MB/sec)

Comp = 0

Split = 1

19.75
MB

6.84 s.(2.8 MB/
s)

3.56 s.(5.4 MB/
s)

0.79s.(24.2 MB/s) 0.79 s.(24.2 MB/s)

Comp = 1

Split = 1

17.73
MB

6.44 s.(3.0 MB/
s)

4.02 s.(4.8 MB/
s)

0.90 s.(21.3 MB/
s)

0.90 s.(21.3 MB/s)

Comp = 2

Split = 1

13.78
MB

11.34s.(1.7 MB/
s)

9.51 s.(2.0 MB/
s)

2.17 s.(8.8 MB/s) 2.17 s.(8.8 MB/s)

The Total Time is the real time in seconds to run the program. Effective time is the real time minus
the time spent in non I/O operations (essentially the random number generator). The program Event
generates in average 600 tracks per event. Each track has 17 data members. The read benchmark runs
in the interactive version of ROOT. The ‘Total Time to Read All’ is the real time reported by the
execution of the script &ROOTSYS/test/eventa.

We did not correct this time for the overhead coming from the interpreter itself. The Total time to
read sample is the execution time of the script $ROOTSYS/test/eventb. This script loops on
all events. For each event, the branch containing the number of tracks is read. In case the number of
tracks is less than 585, the full event is read in memory. This test is obviously not possible in non-
split mode. In non-split mode, the full event must be read in memory. The times reported in the table
correspond to complete I/O operations necessary to deal with machine independent binary files. On
Linux, this also includes byte-swapping operations. The ROOT file allows for direct access to any
event in the file and direct access to any part of an event when split=1.

Note also that the uncompressed file generated with split=0 is 48.7 Mbytes and only 47.17 Mbytes for
the option split=1. The difference in size is due to the object identification mechanism overhead when

Trees

308

the event is written to a single buffer. This overhead does not exist in split mode because the branch
buffers are optimized for homogeneous data types. You can run the test programs on your architecture.
The program Event will report the write performance. You can measure the read performance by
executing the scripts eventa and eventb. The performance depends not only of the processor type,
but also of the disk devices (local, NFS, AFS, etc.).

Chains
A TChain object is a list of ROOT files containing the same tree. As an example, assume we have
three files called file1.root, file2.root, file3.root. Each file contains one tree called
"T". We can create a chain with the following statements:

TChain chain("T"); // name of the tree is the argument
chain.Add("file1.root");
chain.Add("file2.root");
chain.Add("file3.root");

The name of the TChain will be the same as the name of the tree; in this case it will be "T". Note
that two objects can have the same name as long as they are not histograms in the same directory,
because there, the histogram names are used to build a hash table. The class TChain is derived from
the class TTree. For example, to generate a histogram corresponding to the attribute "x" in tree "T"
by processing sequentially the three files of this chain, we can use the TChain::Draw method.

chain.Draw("x");

When using a TChain, the branch address(es) must be set with:

chain.SetBranchAdress(branchname,…) // use this for TChain

rather than:

branch->SetAddress(…); // this will not work

The second form returns the pointer to the branch of the current TTree in the chain, typically the first
one. The information is lost when the next TTree is loaded. The following statements illustrate how
to set the address of the object to be read and how to loop on all events of all files of the chain.

{
TChain chain("T"); // create the chain with tree "T"
chain.Add("file1.root"); // add the files
chain.Add("file2.root");
chain.Add("file3.root");
TH1F *hnseg = new TH1F("hnseg","Number of segments for selected tracks",
5000,0,5000);
// create an object before setting the branch address
Event *event = new Event();
// Specify the address where to read the event object
chain.SetBranchAddress("event", &event);

 // Start main loop on all events In case you want to read only a few
 // branches, use TChain::SetBranchStatus to activate a branch.
Int_t nevent = chain.GetEntries();
for (Int_t i=0;i<nevent;i++) {
// read complete accepted event in memory
chain.GetEvent(i);
// Fill histogram with number of segments
hnseg->Fill(event->GetNseg());
}
 // Draw the histogram

Trees

309

hnseg->Draw();
}

TChain::AddFriend
A TChain has a list of friends similar to a tree (see TTree::AddFriend). You can add a friend
to a chain with the TChain::AddFriend method. With TChain::GetListOfFriends you
can retrieve the list of friends. The next example has four chains each has 20 ROOT trees from 20
ROOT files.

TChain ch("t"); // a chain with 20 trees from 20 files
TChain ch1("t1");
TChain ch2("t2");
TChain ch3("t3");

Now we can add the friends to the first chain.

ch.AddFriend("t1")
ch.AddFriend("t2")
ch.AddFriend("t3")

The parameter is the name of friend chain (the name of a chain is always the name of the tree from
which it was created). The original chain has access to all variables in its friends. We can use the
TChain::Draw method as if the values in the friends were in the original chain. To specify the
chain to use in the Draw method, use:

<chainname>.<branchname>.<varname>

If the variable name is enough to identify uniquely the variable, you can leave out the chain and/or
branch name. For example, this generates a 3-d scatter plot of variable "var" in the TChain ch
versus variable v1 in TChain t1 versus variable v2 in TChain t2.

ch.Draw("var:t1.v1:t2.v2");

When a TChain::Draw is executed, an automatic call to TTree::AddFriend connects the trees
in the chain. When a chain is deleted, its friend elements are also deleted.

The number of entries in the friend must be equal or greater to the number of entries of the original
chain. If the friend has fewer entries a warning is given and the resulting histogram will have missing
entries. For additional information see TTree::AddFriends(). A full example of a tree and
friends is in Example #3 ($ROOTSYS/tutorials/tree/tree3.C) in the Trees section above.

310

Chapter 13. Math Libraries in ROOT
The aim of Math libraries in ROOT is to provide and to support a coherent set of mathematical and
statistical functions. The latest developments have been concentrated in providing first versions of the
MathCore and MathMore libraries, included in ROOT v5.08. Other recent developments include
the new version of MINUIT, which has been re-designed and re-implemented in the C++ language.
It is integrated in ROOT. In addition, an optimized package for describing small matrices and vector
with fixed sizes and their operation has been developed (SMatrix). The structure is shown in the
following picture.

Figure 13.1. Math libraries and packages

TMath
In the namespace, TMath a collection of free functions is provided for the following functionality:

• numerical constants (like pi, e, h, etc.);

• elementary and trigonometric functions;

• functions to find min and max of arrays;

• statistic functions to find mean and rms of arrays of data;

• algorithms for binary search/hashing sorting;

• special mathematical functions like Bessel, Erf, Gamma, etc.;

• statistical functions, like common probability and cumulative (quantile) distributions

For more details, see the reference documentation of TMath at http://root.cern.ch/root/
htmldoc/TMath.html.

Random Numbers
In ROOT pseudo-random numbers can be generated using the TRandom classes. 4 different types
exist: TRandom, TRandom1, TRandom2 and TRandom3. All they implement a different type of

Math Libraries in ROOT

311

random generators. TRandom is the base class used by others. It implements methods for generating
random numbers according to pre-defined distributions, such as Gaussian or Poisson.

TRandom
Pseudo-random numbers are generated using a linear congruential random generator. The multipliers
used are the same of the BSD rand() random generator. Its sequence is:

 with =1103515245, = 12345 and =231.

This type of generator uses a state of only a 32 bit integer and it has a very short period, 231,about
109, which can be exhausted in just few seconds. The quality of this generator is therefore BAD and
it is strongly recommended to NOT use for any statistical study.

TRandom1
This random number generator is based on the Ranlux engine, developed by M. Lüsher and
implemented in Fortran by F. James. This engine has mathematically proven random proprieties and a
long period of about 10171. Various luxury levels are provided (1,2,3,4) and can be specified by
the user in the constructor. Higher the level, better random properties are obtained at a price of longer
CPU time for generating a random number. The level 3 is the default, where any theoretical possible
correlation has very small chance of being detected. This generator uses a state of 24 32-bits words.
Its main disadvantage is that is much slower than the others (see timing table). For more information
on the generator see the following article:

• F. James, “RANLUX: A Fortran implementation of the high quality pseudo-random number
generator of Lüscher”, Computer Physics Communication, 79 (1994) 111.

TRandom2
This generator is based on the maximally equidistributed combined Tausworthe generator by L'Ecuyer.
It uses only 3 32-bits words for the state and it has a period of about 1026. It is fast and given its small
states, it is recommended for applications, which require a very small random number size. For more
information on the generator see the following article:

• P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of
Computation, 65, 213 (1996), 203-213.

TRandom3
This is based on the Mersenne and Twister pseudo-random number generator, developed in 1997 by
Makoto Matsumoto and Takuji Nishimura. The newer implementation is used, referred in the literature
as MT19937. It is a very fast and very high quality generator with a very long period of 106000.
The disadvantage of this generator is that it uses a state of 624 words. For more information on the
generator see the following article:

• M. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator”, ACM Trans. on Modeling and Computer Simulations,
8, 1, (1998), 3-20.

TRandom3 is the recommended random number generator, and it is used by default in ROOT using
the global gRandom object (see chapter gRandom).

Seeding the Generators
The seeds for the generators can be set in the constructor or by using the SetSeed method. When
no value is given the generator default seed is used, like 4357 for TRandom3. In this case identical

Math Libraries in ROOT

312

sequence will be generated every time the application is run. When the 0 value is used as seed, then a
unique seed is generated using a TUUID, for TRandom1, TRandom2 and TRandom3. For TRandom
the seed is generated using only the machine clock, which has a resolution of about 1 sec. Therefore
identical sequences will be generated if the elapsed time is less than a second.

Examples of Using the Generators
The method Rndm() is used for generating a pseudo-random number distributed between 0 and 1 as
shown in the following example:

// use default seed (same random numbers will be generated each time)
TRandom3 r; // generate a number in interval]0,1] (0 is excluded)
r.Rndm();
double x[100];
r.RndmArray(100,x); // generate an array of random numbers in]0,1]
TRandom3 rdm(111); // construct with a user-defined seed
// use 0: a unique seed will be automatically generated using TUUID
TRandom1 r1(0);
TRandom2 r2(0);
TRandom3 r3(0);
// use a seed generated using machine clock (different every second)
TRandom r0(0);

Random Number Distributions
The TRandom base class provides functions, which can be used by all the other derived classes for
generating random variates according to predefined distributions. In the simplest cases, like in the case
of the exponential distribution, the non-uniform random number is obtained by applying appropriate
transformations. In the more complicated cases, random variates are obtained using acceptance-
rejection methods, which require several random numbers.

TRandom3 r;
// generate a gaussian distributed number with mu=0, sigma=1 (default values)
double x1 = r.Gaus();
double x2 = r.Gaus(10,3); // use mu = 10, sigma = 3;

The following table shows the various distributions that can be generated using methods of the
TRandom classes. More information is available in the reference documentation for TRandom. In
addition, random numbers distributed according to a user defined function, in a limited interval, or
to a user defined histogram, can be generated in a very efficient way using TF1::GetRandom() or
TH1::GetRandom().

Distributions Description

Double_t Uniform(Double_t x1,Double_t
x2)

Uniform random numbers between
x1,x2

Double_t Gaus(Double_t mu,Double_t
sigma)

Gaussian random numbers.

Default values: mu=0, sigma=1

Double_t Exp(Double_t tau) Exponential random numbers with mean
tau.

Double_t Landau(Double_t mean,Double_t
sigma)

Landau distributed random numbers.

Default values: mean=0, sigma=1

Double_t BreitWigner(Double_t mean, Breit-Wigner distributed random
numbers.

Math Libraries in ROOT

313

Double_t gamma) Default values mean=0, gamma=1

Int_t Poisson(Double_t mean)

Double_t PoissonD(Double_t mean)

Poisson random numbers

Int_t Binomial(Int_t ntot,Double_t
prob)

Binomial Random numbers

Circle(Double_t &x,Double_t
&y,Double_t r)

Generate a random 2D point (x,y) in

a circle of radius r

Sphere(Double_t &x,Double_t &y,

Double_t &z,Double_t r)

Generate a random 3D point (x,y,z) in

a sphere of radius r

Rannor(Double_t &a,Double_t &b) Generate a pair of Gaussian random

numbers with mu=0 and sigma=1

UNURAN
An interface to a new package, UNU.RAN, (Universal Non Uniform Random number generator for
generating non-uniform pseudo-random numbers) was introduced in ROOT v5.16.

UNU.RAN is an ANSI C library licensed under GPL. It contains universal (also called automatic or
black-box) algorithms that can generate random numbers from large classes of continuous (in one
or multi-dimensions), discrete distributions, empirical distributions (like histograms) and also from
practically all standard distributions. An extensive online documentation is available at the UNU.RAN
Web Site http://statmath.wu-wien.ac.at/unuran/

The ROOT class TUnuran is used to interface the UNURAN package. It can be used as following:

• With the UNU.RAN native, string API for pre-defined distributions (see UNU.RAN documentation
for the allowed string values at http://statistik.wu-wien.ac.at/unuran/doc/
unuran.html):

TUnuran unr;
//initialize unuran to generate normal random numbers using a "arou" method
unr.Init("normal()","method=arou");
...
// sample distributions N times (generate N random numbers)
for (int i = 0; i<N; ++i)
double x = unr.Sample();

• For continous 1D distribution object via the class TUnuranContDist that can be created for
example from a TF1 function providing the pdf (probability density function) . The user can
optionally provide additional information via TUnuranContDist::SetDomain(min,max)
like the domain() for generating numbers in a restricted region.

//1D case: create a distribution from two TF1 object pointers pdfFunc
TUnuranContDist dist(pdfFunc);
//initialize unuran passing the distribution and a string defining the method
unr.Init(dist, "method=hinv");
// sample distribution N times (generate N random numbers)
for (int i = 0; i < N; ++i)
double x = unr.Sample();

• For multi-dimensional distribution via the class TUnuranMultiContDist, which can be created
from a the multi-dimensional pdf.

Math Libraries in ROOT

314

// Multi- dimensional case from a TF1 (TF2 or TF3) objects
TUnuranMultiContDist dist(pdfFuncMulti);
// the recommended method for multi-dimensional function is "hitro"
unr.Init(dist,"method=hitro");
// sample distribution N times (generate N random numbers)
double x[NDIM];
for (int i = 0; i<N; ++i)
unr.SampleMulti(x);

• For discrete distribution via the class TUnuranDiscrDist, which can be initialized from a TF1
or from a vector of probabilities.

// Create distribution from a vector of probabilities
double pv[NSize] = {0.1,0.2,...};
TUnuranDiscrDist dist(pv,pv+NSize);
// the recommended method for discrete distribution is
unr.Init(dist, "method=dgt");
// sample N times (generate N random numbers)
for (int i = 0; i < N; ++i)
int k = unr.SampleDiscr();

• For empirical distribution via the class TUnuranEmpDist. In this case one can generate random
numbers from a set of un-bin or bin data. In the first case the parent distribution is estimated by
UNU.RAN using a gaussian kernel smoothing algorithm. The TUnuranEmpDist distribution
class can be created from a vector of data or from TH1 (using the bins or from its buffer for un-
binned data).

// Create distribution from a set of data
// vdata is an std::vector containing the data
TUnuranEmpDist dist(vdata.begin(),vdata.end());
unr.Init(dist);
// sample N times (generate N random numbers)
for (int i = 0; i<N; ++i)
double x = unr.Sample();

• For some predefined distributions, like Poisson and Binomial, one can use directly a function
in the TUnuran class. This is more convenient in passing distribution parameters than using
directly the string interface.

TUnuran unr;
// Initialize unuran to generate normal random numbers from the Poisson
// distribution with parameter mu
unr.InitPoisson(mu);
...
// Sample distributions N times (generate N random numbers)
for (int i = 0; i<N; ++i)
int k = unr.SampleDiscr();

Functionality is also provided via the C++ classes for using a different random number generator by
passing a TRandom pointer when constructing the TUnuran class (by default the ROOT gRandom
is passed to UNURAN).

Performances of Random Numbers
Here are the CPU times obtained using the four random classes on an lxplus machine with an Intel
64 bit architecture and compiled using gcc 3.4:

Math Libraries in ROOT

315

TRandom (ns/
call)

TRandom1 (ns/
call)

TRandom2 (ns/
call)

TRandom3 (ns/
call)

Rndm() - - 6 9

Gaus () 31 161 35 42

R annor () 116 216 126 130

Poisson (m=10) 147 1161 162 239

Poisson (m=10)
UNURAN

80 294 89 99

MathCore Library
MathCore provides a collection of functions and C++ classes for numerical computing. This library
includes only the basic mathematical functions and algorithms and not all the functionality required by
the physics community. A more advanced mathematical functionality is provided by the MathMore
library. The current set included classes are:

• Basic special functions like the gamma, beta and error function.

• Mathematical functions used in statistics, such as the probability density functions and the
cumulative distributions functions (lower and upper integral of the pdf's).

• GenVector: physics and geometry vectors for 3 and 4 dimensions with their transformations
(rotations and boost).

• Generic (ROOT::Math::IFunction) and parametric
(ROOT::Math::IParamFunction) function interfaces for one and multi dimensions.

A detailed description for all MathCore classes is available in the online reference
documentation. The MathCore library presented in the ROOT distribution contains the CINT
dictionary for I/O and interactive usage. For the template classes, the dictionary is provided for some of
the possible types, such as those based on double and Double32_t. For the I/O or interactive use of other
types, the dictionary must be first generated. An example on how to generate the required dictionary
is provided in the tutorial mathcoreVectorFloatIO.C (in $ROOTSYS/tutorials/math).
MathCore can also be built as an independent package using configure/make. In this case the
library will not contain the dictionary information and cannot be used interactively in ROOT.

Generic Vectors for 2, 3 and 4 Dimensions
(GenVector)

GenVector is a package intended to represent vectors and their operations and transformations, such
as rotations and Lorentz transformations, in 3 and 4 dimensions. The 3D space is used to describe
the geometry vectors and points, while the 4D space-time is used for physics vectors representing
relativistic particles. These 3D and 4D vectors are different from vectors of the linear algebra package,
which describe generic N-dimensional vectors. Similar functionality is currently provided by the
CLHEP Vector and Geometry packages and the ROOT Physics vector classes (See “Physics
Vectors”). It also re-uses concepts and ideas from the CMS Common Vector package. In contrast
to CLHEP or the ROOT physics libraries, GenVector provides class templates for modeling the
vectors. The user can control how the vector is internally represented. This is expressed by a choice
of coordinate system, which is supplied as a template parameter when the vector is constructed.
Furthermore, each coordinate system is itself a template, so that the user can specify the underlying
scalar type.

The GenVector classes do not inherit from TObject, therefore cannot be used as in the case of
the physics vector classes in ROOT collections.

Math Libraries in ROOT

316

In addition, to optimize performances, no virtual destructors are provided. In the following paragraphs,
the main characteristics of GenVector are described. A more detailed description of all the
GenVector classes is available also at http://seal.cern.ch/documents/mathlib/
GenVector.pdf

Main Characteristics

Optimal Runtime Performances

We try to minimize any overhead in the run-time performance. We have deliberately avoided the use
of any virtual function and even virtual destructors in the classes. In addition, as much as possible
functions are defined as inline. For this reason, we have chosen to use template classes to implement the
GenVector concepts instead of abstract or base classes and virtual functions. It is then recommended
to avoid using the GenVector classes polymorphically and developing classes inheriting from them.

Points and Vector Concept

Mathematically vectors and points are two distinct concepts. They have different transformations, as
vectors only rotate while points rotate and translate. You can add two vectors but not two points and
the difference between two points is a vector. We then distinguish for the 3 dimensional case, between
points and vectors, modeling them with different classes:

• ROOT::Math::DisplacementVector2D and
ROOT::Math::DisplacementVector3D template classes describing 2 and 3 component
direction and magnitude vectors, not rooted at any particular point;

• ROOT::Math::PositionVector2D and ROOT::Math::PositionVector3D template
classes modeling the points in 2 and 3 dimensions.

For the 4D space-time vectors, we use the same class to model them,
ROOT::Math::LorentzVector, since we have recognized a limited need for modeling the
functionality of a 4D point.

Generic Coordinate System

The vector classes are based on a generic type of coordinate system, expressed as a template parameter
of the class. Various classes exist to describe the various coordinates systems:

2D coordinate system classes:

• ROOT::Math::Cartesian2D, based on (x,y);

• ROOT::Math::Polar2D, based on (r,phi);

3D coordinate system classes:

• ROOT::Math::Cartesian3D, based on (x,y,z);

• ROOT::Math::Polar3D, based on (r,theta,phi);

• ROOT::Math::Cylindrical3D, based on (rho,z,phi)

• ROOT::Math::CylindricalEta3D, based on (rho,eta,phi), where eta is the pseudo-
rapidity;

4D coordinate system classes:

• ROOT::Math::PxPyPzE4D, based on based on (px,py,pz,E);

• ROOT::Math::PxPyPzM4D, based on based on (px,py,pz,M);

Math Libraries in ROOT

317

• ROOT::Math::PtEtaPhiE4D, based on based on (pt,eta,phi,E);

• ROOT::Math::PtEtaPhiM4D, based on based on (pt,eta,phi,M);

Users can define the vectors according to the coordinate type, which is the most efficient for their use.
Transformations between the various coordinate systems are available through copy constructors or
the assignment (=) operator. For maximum flexibility and minimize memory allocation, the coordinate
system classes are templated on the scalar type. To avoid exposing templated parameter to the users,
typedefs are defined for all types of vectors based on doubles. See in the examples for all the possible
types of vector classes, which can be constructed by users with the available coordinate system types.

Coordinate System Tag

The 2D and 3D points and vector classes can be associated to a tag defining the coordinate
system. This can be used to distinguish between vectors of different coordinate systems
like global or local vectors. The coordinate system tag is a template parameter of the
ROOT::Math::DisplacementVector3D and ROOT::Math::PositionVector3D (and
also for 2D classes). A default tag exists for users who do not need this functionality,
ROOT::Math::DefaultCoordinateSystemTag.

Transformations

The transformations are modeled using simple (non-template) classes, using double as the scalar type
to avoid too large numerical errors. The transformations are grouped in rotations (in 3 dimensions),
Lorentz transformations and Poincare transformations, which are translation/rotation combinations.
Each group has several members which may model physically equivalent transformations but with
different internal representations. Transformation classes can operate on all type of vectors by using
the operator () or the operator * and the transformations can be combined via the operator *. The
available transformations are:

3D rotation classes

• rotation described by a 3x3 matrix (ROOT::Math::Rotation3D)

• rotation described by Euler angles (ROOT::Math::EulerAngles)

• rotation described by a direction axis and an angle (ROOT::Math::AxisAngle)

• rotation described by a quaternion (ROOT::Math::Quaternion)

• optimized rotation around x (ROOT::Math::RotationX), y (ROOT::Math::RotationY)
and z (ROOT::Math::RotationZ) and described by just one angle.

3D transformation: we describe the transformations defined as a composition between a rotation
and a translation using the class ROOT::Math::Transform3D. It is important to note that
transformations act differently on vectors and points. The vectors only rotate, therefore when applying
a transformation (rotation + translation) on a vector, only the rotation operates while the translation
has no effect. The Transform3D class interface is similar to the one used in the CLHEP Geometry
package (class HepGeom::Transform3D).

Lorentz rotation:

• generic Lorentz rotation described by a 4x4 matrix containing a 3D rotation part and a boost part
(class ROOT::Math::LorentzRotation)

• a pure boost in an arbitrary direction and described by a 4x4 symmetric matrix or 10 numbers (class
ROOT::Math::Boost)

• boost along the axis: x (ROOT::Math::BoostX), y (ROOT::Math::BoostY) and z
(ROOT::Math::BoostZ).

Math Libraries in ROOT

318

Minimal Vector Classes Interface

We have tried to keep the interface to a minimal level by:

• Avoiding methods that provide the same functionality but use different names (like getX() and
x()).

• Minimizing the number of setter methods, avoiding methods, which can be ambiguous and can set
the vector classes in an inconsistent state. We provide only methods which set all the coordinates at
the same time or set only the coordinates on which the vector is based, for example SetX() for a
Cartesian vector. We then enforce the use of transformations as rotations or translations (additions)
for modifying the vector contents.

• The majority of the functionality, which is present in the CLHEP package, involving operations on
two vectors, is moved in separated helper functions (see ROOT::Math::VectorUtil). This has
the advantage that the basic interface will remain more stable with time while additional functions
can be added easily.

Naming Convention

As part of ROOT, the GenVector package adheres to the prescribed ROOT naming convention,
with some (approved) exceptions, as described here:

• Every class and function is in the ROOT::Math namespace.

• Member function names start with upper-case letter, apart some exceptions (see the next section
about CLHEP compatibility).

Compatibility with CLHEP Vector Classes

• For backward compatibility with CLHEP the vector classes can be constructed from a CLHEP
HepVector or HepLorentzVector, by using a template constructor, which requires only that
the classes implement the accessors x(), y(), and z() (and t() for the 4D).

• We provide vector member function with the same naming convention as CLHEP for the most used
functions like x(), y() and z().

Connection to Linear Algebra Package

In some use cases, like in track reconstruction, it is needed to use the content of the vector and rotation
classes in conjunction with linear algebra operations. We prefer to avoid any direct dependency to
any linear algebra package. However, we provide some hooks to convert to and from linear algebra
classes. The vector and the transformation classes have methods which allow to get and set their data
members (like SetCoordinates and GetCoordinates) passing either a generic iterator or a
pointer to a contiguous set of data, like a C array. This allows an easy connection with the linear algebra
package, which in turn, allows creation of matrices using C arrays (like the ROOT TMatrix classes)
or iterators (SMatrix classes). Multiplication between linear algebra matrices and GenVector
vectors is possible by using the template free functions ROOT::Math::VectorUtil::Mult.
This function works for any linear algebra matrix, which implements the operator (i,j) and with first
matrix element at i=j=0.

Example: 3D Vector Classes
To avoid exposing template parameter to the users, typedef's are defined for all types of vectors
based on double's and float's. To use them, one must include the header file Math/Vector3D.h.
The following typedef's, defined in the header file Math/Vector3Dfwd.h, are available for the
different instantiations of the template class ROOT::Math::DisplacementVector3D:

• ROOT::Math::XYZVector vector based on x,y,z coordinates (Cartesian) in double precision

Math Libraries in ROOT

319

• ROOT::Math::XYZVectorF vector based on x,y,z coordinates (Cartesian) in float precision

• ROOT::Math::Polar3DVector vector based on r,theta,phi coordinates (polar) in
double precision

• ROOT::Math::Polar3DVectorF vector based on r,theta,phi coordinates (polar) in float
precision

• ROOT::Math::RhoZPhiVector vector based on rho,z,phi coordinates (cylindrical) in
double precision

• ROOT::Math::RhoZPhiVectorF vector based on rho,z,phi coordinates (cylindrical) in
float precision

• ROOT::Math::RhoEtaPhiVector vector based on rho,eta,phi coordinates (cylindrical
using eta instead of z) in double precision

• ROOT::Math::RhoEtaPhiVectorF vector based on rho,eta,phi coordinates
(cylindrical using eta instead of z) in float precision

Constructors and Assignment

The following declarations are available:

XYZVector v1; //an empty vector (x=0, y=0, z=0)
XYZVector v2(1,2,3); //vector with x=1, y=2, z=3;
Polar3DVector v3(1,PI/2,PI); //vector with r=1, theta=PI/2, phi=PI
RhoEtaPHiVector v4(1,2, PI); //vector with rho=1, eta=2, phi=PI

Note that each vector type is constructed by passing its coordinate representation, so a
XYZVector(1,2,3) is different from a Polar3DVector(1,2,3). In addition, the vector
classes can be constructed by any vector, which implements the accessors x(), y() and z(). This
can be another 3D vector based on a different coordinate system type. It can be even any vector of a
different package, like the CLHEP HepThreeVector that implements the required signature.

XYZVector v1(1,2,3);
RhoEtaPhiVector r2(v1);
CLHEP::HepThreeVector q(1,2,3);
XYZVector v3(q);

Coordinate Accessors

All coordinate accessors are available through the class
ROOT::Math::DisplacementVector3D:

//returns cartesian components for the cartesian vector v1
v1.X(); v1.Y(); v1.Z();
//returns cylindrical components for the cartesian vector v1
v1.Rho(); v1.Eta(); v1.Phi();
//returns cartesian components for the cylindrical vector r2
r2.X(); r2.Y(); r2.Z()

In addition, all the 3 coordinates of the vector can be retrieved with the GetCoordinates method:

double d[3];
v1.GetCoordinates(d); //fill d array with (x,y,z) components of v1
r2.GetCoordinates(d); //fill d array with (r,eta,phi) components of r2

Math Libraries in ROOT

320

std::vector vc(3);
//fill std::vector with (x,y,z) components of v1
v1.GetCoordinates(vc.begin(),vc.end());

See the reference documentation of ROOT::Math::DisplacementVector3D for more details
on all the coordinate accessors.

Setter Methods

One can set only all the three coordinates via:

v1.SetCoordinates(c1,c2,c3); //sets the (x,y,z) for a XYZVector
r2.SetCoordinates(c1,c2,c3); //sets r,theta,phi for a Polar3DVector
r2.SetXYZ(x,y,z); //sets the 3 cartesian components for Polar3DVector

Single coordinate setter methods are available for the basic vector coordinates, like SetX() for a
XYZVector or SetR() for a polar vector. Attempting to do a SetX() on a polar vector will not
compile.

XYZVector v1; v1.SetX(1); //OK setting x for a Cartesian vector
Polar3DVector v2; v2.SetX(1); //ERROR: cannot set X for a Polar vector.
//Method will not compile
v2.SetR(1); //OK setting r for a Polar vector

In addition, there are setter methods from C arrays or iterator

double d[3] = {1.,2.,3.};
XYZVector v;
v.SetCoordinates(d); //set (x,y,z) components of v using values from d

or, for example, from an std::vector using the iterator

std::vector w(3);
// set (x,y,z) components of v using values from w
v.SetCoordinates(w.begin(),w.end());

Arithmetic Operations

The following operations are possible between vector classes, even of different coordinate system
types: (v1,v2 are any type of ROOT::Math::DisplacementVector3D classes, v3 is the same
type of v1; a is a scalar value)

v1 += v2;
v1 -= v2;
v1 = - v2;
v1 *= a;
v1 /= a;
v2 = a * v1;
v2 = v1 / a;
v2 = v1 * a;
v3 = v1 + v2;
v3 = v1 - v2;

Comparison

For v1 and v2 of the same type (same coordinate system and same scalar type):

Math Libraries in ROOT

321

v1 == v2;
v1 != v2;

Dot and Cross Product

We support the dot and cross products, through the Dot() and Cross() method, with any vector
(q) implementing x(), y() and z().

XYZVector v1(x,y,z);
double s = v1.Dot(q);
XYZVector v2 = v1.Cross(q);

Note that the multiplication between two vectors using the operator * is not supported because it is
ambiguous.

Other Methods

XYZVector u = v1.Unit(); //return unit vector parallel to v1

Example: 3D Point Classes
To use all possible types of 3D points one must include the header file Math/Point3D.h. The
following typedef’s defined in the header file Math/Point3Dfwd.h, are available for different
instantiations of the template class ROOT::Math::PositionVector3D:

• ROOT::Math::XYZPoint point based on x, y, z coordinates (Cartesian) in double precision

• ROOT::Math::XYZPointF point based on x, y, z coordinates (Cartesian) in float precision

• ROOT::Math::Polar3DPoint point based on r, theta, phi coordinates (polar) in double
precision

• ROOT::Math::Polar3DPointF point based on r, theta, phi coordinates (polar) in float
precision

• ROOT::Math::RhoZPhiPoint point based on rho, z, phi coordinates (cylindrical using z)
in double precision

• ROOT::Math::RhoZPhiPointF point based on rho, z, phi coordinates (cylindrical using
z) in float precision

• ROOT::Math::RhoEtaPhiPoint point based on rho, eta, phi coordinates (cylindrical
using eta instead of z) in double precision

• ROOT::Math::RhoEtaPhiPointF point based on rho, eta, phi coordinates (cylindrical
using eta instead of z) in float precision

Constructors and Assignment

The following declarations are available:

XYZPoint p1; //an empty vector (x=0, y=0, z=0)
XYZPoint p2(1,2,3); //vector with x=1, y=2, z=3;
Polar3DPoint p3(1,PI/2,PI); //vector with r=1, theta=PI/2, phi=PI
RhoEtaPHiPoint p4(1,2,PI); //vector with rho=1, eta=2, phi=PI

Math Libraries in ROOT

322

Note that each point type is constructed by passing its coordinate representation, so a
XYZPoint(1,2,3) is different from a Polar3DPoint(1,2,3). In addition the point classes
can be constructed by any vector, which implements the accessors x(), y() and z(). This can be
another 3D point based on a different coordinate system type or even any vector of a different package,
like the CLHEP HepThreePoint that implements the required signatures.

XYZPoint p1(1,2,3);
RhoEtaPHiPoint r2(v1);
CLHEP::HepThreePoint q(1,2,3);
XYZPoint p3(q);

Coordinate Accessors and Setter Methods

For the points classes we have the same getter and setter methods as for the vector classes. See
“Example: 3D Vector Classes”.

Point-Vector Operations

The following operations are possible between points and vector classes: (p1, p2 and p3 are
instantiations of the ROOT::Math::PositionVector3D objects with p1 and p3 of the same
type; v1 and v2 are ROOT::Math::DisplacementVector3D objects).

p1 += v1;
p1 -= v1;
p3 = p1 + v1; //p1 and p3 are the same type
p3 = v1 + p1; //p3 is based on the same coordinate system as v1
p3 = p1 - v1;
p3 = v1 - p1;
v2 = p1 - p2; //difference between points returns a vector v2 based on the
//same coordinate system as p1

Note that the addition between two points is NOT possible and the difference between points returns
a vector.

Other Operations

Exactly as for the 3D Vectors, the following operations are allowed:

• comparison of points

• scaling and division of points with a scalar

• dot and cross product with any type of vector

Example: LorentzVector Classes
As in the 3D case, typedef’s are defined for user convenience. and can be used by including
the header file Math/Vector4D.h. The following typedef's, defined in the header file
Math/Vector4Dfwd.h, are available for the different instantiations of the template class
ROOT::Math::LorentzVector:

• ROOT::Math::XYZTVector vector based on x, y, z, t coordinates (Cartesian) in double
precision

• ROOT::Math::XYZTVectorF vector based on x, y, z, t coordinates (Cartesian) in float
precision

Math Libraries in ROOT

323

• ROOT::Math::PtEtaPhiEVector vector based on pt(rho), eta, phi and E(t)
coordinates in double precision

• ROOT::Math::PtEtaPhiMVector vector based on pt(rho), eta, phi and M(t)
coordinates in double precision

• ROOT::Math::PxPyPzMVector vector based on px, py, pz and M(mass) coordinates in
double precision

The metric used for all the LorentzVector is (-,-,-,+) .

Constructors and Assignment

The following declarations are available:

XYZTVector v1; //create an empty vector (x=0, y=0, z=0, t=0)
XYZTVector v2(1,2,3,4); //vector with x=1, y=2, z=3, t=4
PtEtaPhiEVector v3(1,2,PI,5); //vector with pt=1, eta=2, phi=PI, E=5

Note that each type of vector is constructed by passing its coordinate representation, so a
XYZTVector(1,2,3,4) is different from a PtEtaPhiEVector(1,2,3,4). In addition, the
Vector classes can be constructed by any vector, which implements the accessors x(), y(), z()
and t().

This can be another ROOT::Math::LorentzVector based on a different coordinate system
or any vector of a different package, like the CLHEP HepLorentzVector that implements the
required signature.

XYZTVector v1(1,2,3,4);
PtEtaPhiEVector v2(v1);
CLHEP::HepLorentzVector q(1,2,3,4);
XYZTVector v3(q);

Coordinate Accessors

All the same coordinate accessors are available through the interface of
ROOT::Math::LorentzVector. For example:

//returns cartesian components for the cartesian vector v1
v1.X(); v1.X(); v1.Z(); v1.T();
//returns cartesian components for the cylindrical vector v2
v2.Px(); v2.Py(); v2.Pz(); v2.E();
//returns other components for the cartesian vector v1
v1.Pt(); v1.Eta(); v1.Phi(); v1.M()

In addition, all 4 vector coordinates can be retrieved with the GetCoordinates method:

double d[4];
v1.GetCoordinates(d); //fill d array with (x,y,z,t) components of v1
v2.GetCoordinates(d); //fill d array with (pt,eta,phi,e) components of v2
std::vector w(4);
v1.GetCoordinates(w.begin(),w.end()); //fill std::vector with (x,y,z,t)
//components of v1

To get information on all the coordinate accessors see the ROOT::Math::LorentzVector
reference documentation.

Math Libraries in ROOT

324

Setter Methods

One can set only all the three coordinates via:

v1.SetCoordinates(c1,c2,c3,c4); //sets the (x,y,z,t) for a XYZTVector
v2.SetCoordinates(c1,c2,c3,c4); //sets pt,eta,phi,e for a PtEtaPhiEVector
v2.SetXYZ(x,y,z,t); //sets cartesian components for PtEtaPhiEVector

Single coordinate setter methods are available for the basic vector coordinates, like SetX() for a
XYZTVector or SetPt() for a PtEtaPhiEVector. Attempting to do a SetX() on a non-
Cartesian vector will not compile.

XYZTVector v1; v1.SetX(1); //OK setting x for a cartesian vector
PtEtaPhiEVector v2; v2.SetX(1); //ERROR: cannot set X for a non-cartesian
//vector. Method will not compile.
v2.SetR(1) // OK setting Pt for a PtEtaPhiEVector vector

In addition, there are setter methods from C arrays or iterators.

double d[4] = {1.,2.,3.,4.};
XYZTVector v;
v.SetCoordinates(d); //set (x,y,z,t) components of v using values from d

or for example from an std::vector using the iterators

std::vector w(4);
//set (x,y,z,t) components of v using values from w
v.SetCoordinates(w.begin(),w.end());

Arithmetic Operations

The following operations are possible between Lorentz vectors classes, even of different coordinate
system types: (v and w are two Lorentz vector of the same type, q is a generic Lorentz vector
implementing x(), y(), z() and t(), and a is a generic scalar type: double, float, int, etc.) .

v += q;
v -= q;
v = -q;
v *= a;
v /= a;
w = v + q;
w = v - q;
w = v * a;
w = a * v;
w = v / a;

Comparison

v == w;
v != w;

Other Methods

Math Libraries in ROOT

325

a = v.Dot(q); //dot product in metric(+,+,+,-) of 2 LorentzVectors
XYZVector s = v.Vect() //return the spatial components (x,y,z)
v.Beta(); //return beta and gamma value (vector must
v.Gamma() // be time-like otherwise result is meaningless)
XYZVector b = v.BoostToCM(); //return boost vector which will bring the Vector
//in its mas frame (P=0)

Example: Vector Transformations
Transformation classes are grouped in rotations (in three dimensions), Lorentz transformations and
Poincarre transformations, which are translation/rotation combinations. Each group has several
members which may model physically equivalent transformations but with different internal
representations. All the classes are non-template and use double precision as the scalar type. The
following types of transformation classes are defined:

3D rotations:

• ROOT::Math::Rotation3D, rotation described by a 3x3 matrix of doubles

• ROOT::Math::EulerAngles rotation described by the three Euler angles (phi, theta and
psi) following the GoldStein definition.

• ROOT::Math::RotationZYX rotation described by three angles defining a rotation first along
the Z axis, then along the rotated Y' axis and then along the rotated X'' axis.

• ROOT::Math::AxisAngle, rotation described by a vector (axis) and an angle

• ROOT::Math::Quaternion, rotation described by a quaternion (4 numbers)

• ROOT::Math::RotationX, specialized rotation along the X axis

• ROOT::Math::RotationY, specialized rotation along the Y axis

• ROOT::Math::RotationZ, specialized rotation along the Z axis

3D transformations (rotations + translations)

• ROOT::Math::Transform3D, (rotations and then translation) described by a 3x4 matrix (12
double numbers)

• ROOT::Math::Translation3D (only translation) described by a 3D Vector

Lorentz rotations and boosts

• ROOT::Math::LorentzRotation, 4D rotation (3D rotation plus a boost) described by a 4x4
matrix

• ROOT::Math::Boost, a Lorentz boost in an arbitrary direction and described by a 4x4
symmetrix matrix (10 numbers)

• ROOT::Math::BoostX, a boost in the X axis direction

• ROOT::Math::BoostY, a boost in the Y axis direction

• ROOT::Math::BoostZ, a boost in the Z axis direction

Constructors

All rotations and transformations are default constructible (giving the identity transformation). All
rotations are constructible taking a number of scalar arguments matching the number (and order of
components).

Math Libraries in ROOT

326

Rotation3D rI; //a summy rotation (Identity matrix)
RotationX rX(PI); //a RotationX with an angle PI
EulerAngles rE(phi,theta,psi); //an Euler rotation with phi,theta,psi angles
XYZVector u(ux,uy,uz);
AxisAngle rA(u,delta); //a rotation based on direction u, angle delta

In addition, all rotations and transformations (other than the axial rotations) and transformations are
constructible from (begin,end) iterators or from pointers behave like iterators.

double data[9];
Rotation3D r(data,data+9); //create a rotation from a rotation matrix
std::vector w(12);
Transform3D t(w.begin(),w.end()); //create Transform3D from std::vector content

All rotations, except the axial rotations, are constructible and assigned from any other type of rotation
(including the axial):

//create a rotation 3D from a rotation along X axis of angle PI
Rotation3D r(ROOT::Math::RotationX(PI));

//construct an Euler rotation from A Rotation3D
EulerAngles r2(r);

//assign an Axis rotation from an Euler Rotation
AxisAngle r3; r3 = r2;

Transform3D (rotation + translation) can be constructed from a rotation and a translation vector:

Rotation3D r;
XYZVector v;
Transform3D t1(r,v); //construct from rotation and then translation
Transform3D t2(v,r); //construct inverse from first translation then rotation
Transform3D t3(r); //construct from only a rotation (zero translation)
Transform3D t4(v); //construct from only translation (identity rotation)

Operations

All transformations can be applied to vector and points using the operator * or using the operator()

XYZVector v1(...);
Rotation3D r(...);
XYZVector v2 = r*v1; //rotate vector v1 using r
v2 = r(v1); //equivalent

Transformations can be combined using the operator *. Rotation, translation and Transform3D
classes can be all combined with the operator *. The result of a combination of a rotation and a
translation will be a Transform3D class. Note that the rotations are not commutative, the order is
then important.

Rotation3D r1(...);
Rotation3D r2(...);
Rotation3D r3 = r2*r1; //a combine rotation r3 by applying first r1 then r2

Math Libraries in ROOT

327

We can combine rotations of different types, like Rotation3D with any other type of rotations. The
product of two different axial rotations returns a Rotation3D:

RotationX rx(1.);
RotationY ry(2.);
Rotation3D r = ry * rx; //rotation along X and then Y axis

It is also possible to invert all the transformation or return their inverse:

Rotation3D r1(...);
r1.Invert(); //invert the rotation modifying its content
Rotation3D r2 =r1.Inverse(); //return the inverse in a new rotation class

We have used rotation as examples, but all these operations can be applied to all the transformation
classes.

Set/GetComponents Methods

Common methods to all transformations are Get and SetComponents. They can be used to retrieve
all the scalar values on which the transformation is based.

RotationX rx;
rx.SetComponents(1.); //set agle of the X rotation
double d[9] = {........};
Rotation3D r;
r.SetComponents(d,d+9); //set 9 components of 3D rotation
double d[16];
LorentzRotation lr;
lr.GetComponents(d,d+16); //get 16 components of a LorentzRotation
TMatrixD(3,4) m;
Transform3D t;
t.GetComponens(m); //fill 3x4 matrix with components of t

The GetComponents and SetComponents methods can be used with a signature based iterators
or by using any foreign matrix which implements the operator(i,j) or a different signatures
depending on the transformation type. For more details on all methods see the reference documentation
of any specific transformation class.

Example with External Packages

Connection to Linear Algebra Classes

It is possible to use the vector and rotation classes together with the linear algebra classes and to set and
get the contents of any 3D or 4D vector from a linear algebra vector class which implements an iterator
or something which behaves like an iterator. For example a pointer to a C array (double*) behaves
like an iterator. It is then assumed that the coordinates, like (x,y,z) will be stored contiguously.

TVectorD r2(N); //ROOT Linear Algebra Vector containing many vectors
XYZVector v2;
//construct vector from x=r[INDEX], y=r[INDEX+1], z=r[INDEX+2]
v2.SetCoordinates(&r2[INDEX],&r2[index]+3);

To fill a linear algebra vector from a 3D or 4D vector, with GetCoordinates() one can get the
internal coordinate data.

Math Libraries in ROOT

328

HepVector c(3); //CLHEP Linear algebra vector
//fill HepVector c with c[0]=x, c[1]=y, c[2]=z
v2.GetCoordinates(&c[0],&c[index]+3)

or using TVectorD:

double *data[3];
v2.GetCoordinates(data,data+3);
TVectorD r1(3,data); //create a new Linear Algebra vector copying the data

In the case of transformations, constructor and method to set/get components exist with linear algebra
matrices. The requisite is that the matrix data are stored, for example in the case of a Lorentz rotation,
from (0,0) thru (3,3)

TMatrixD(4,4) m;
LorentzRotation r(m); //create Lorentz rotation from matrix m
r.GetComponents(m); //fill matrix m with LorentzRotation components

Connection to Other Vector Classes

The 3D and 4D vectors of the GenVector package can be constructed and assigned from any vector
which satisfies the following requisites:

• for 3D vectors implementing the x(), y() and z() methods

• for Lorentz vectors implementing the x(), y(), z() and t() methods.

CLHEP::Hep3Vector hv;
XYZVector v1(hv); //create 3D vector from CLHEP 3D Vector
HepGeom::Point3D hp;
XYZPoint p1(hp); //create a 3D point from CLHEP geom Point
CLHEP::HepLorentzVector hq;
XYZTVector q(hq); //create a Lorentz vector from CLHEP L.V.

MathMore Library
The MathMore library provides an advanced collection of functions and C++ classes for numerical
computing. This is an extension of the functionality provided by the MathCore library. The current
set includes:

Special functions (see Special Functions in MathMore)

Mathematical functions used in statistics such as probability density functions, cumulative
distributions functions and their inverse.

Numerical algorithms for one dimensional functions based on implementation of the GNU Scientific
Library (GSL):

• Numerical integration using the class ROOT::Math::Integrator which is based on the
Adaptive integration algorithms of QUADPACK

• Numerical differentiation via ROOT::Math::Derivator

• Root finder via ROOT::Math::RootFinder which uses different solver algorithms from GSL

• Minimization via ROOT::Math::Minimizer1D

Math Libraries in ROOT

329

• Interpolation via ROOT::Math::Interpolation. All the GSL interpolation types are
supported

• Function approximation based on Chebyshev polynomials via the class
ROOT::Math::Chebyshev

• Random number generators and distributions

• Polynomial evaluation and root solvers

The mathematical functions are implemented as a set of free functions in the namespace
ROOT::Math. The naming used for the special functions is the same proposed for the C++ standard
(see C++ standard extension proposal document).The MathCore library is implemented
wrapping in C++ the GNU Scientific Library (GSL). Building MathMore requires a version of GSL
larger or equal 1.8. The source code of MathMore is distributed under the GNU General Public
License.

MathMore (and its ROOT CINT dictionary) can be built within ROOT whenever a GSL library is
found in the system. The GSL library and header file location can be specified in the ROOT configure
script, by doing: ./configure --with-gsl-incdir=... --with-gsl-libdir=...

MathMore can be built also a stand-alone library (without requiring ROOT) downloding the tar file
from the Web at this link. In this case the library will not contain the dictionary information and
therefore cannot be used interactively

More information on the classes and functions present in MathMore is available in the online
reference documentation.

Mathematical Functions
The mathematical functions are present in both MathCore and MathMore libraries. All
mathematical functions are implemented as free functions in the namespace ROOT::Math. The
most used functions are in the MathCore library while the others are in the MathMore library.
The functions in MathMore are all using the implementation of the GNU Scientific Library (GSL).
The naming of the special functions is the same defined in the C++ Technical Report on
Standard Library extensions. The special functions are defined in the header file Math/
SpecFunc.h.

Special Functions in MathCore
• ROOT::Math::beta(double x,double y) -evaluates the beta function:

• double ROOT::Math::erf(double x) - evaluates the error function encountered in

integrating the normal distribution:

• double ROOT::Math::erfc(double x) – evaluates the complementary error function:

• double ROOT::Math::tgamma(double x) - calculates the gamma function:

Math Libraries in ROOT

330

Special Functions in MathMore
• double ROOT::Math::assoc_legendre(unsigned l,unsigned m,double
x) -computes the associated Legendre polynomials (with m#0, l#m and |x|

<1):

• double ROOT::Math::comp_ellint_1(double k) - calculates the complete elliptic

integral of the first kind (with 0#k2#1):

• double ROOT::Math::comp_ellint_2(double k) - calculates the complete elliptic

integral of the second kind (with 0#k2#1):

• double ROOT::Math::comp_ellint_3(double n,double k) -
calculates the complete elliptic integral of the third kind (with 0#k2#1):

• double ROOT::Math::conf_hyperg(double a,double b,double z) - calculates

the confluent hyper-geometric functions of the first kind:

• double ROOT::Math:: conf_hypergU(double a,double b,double z) -
calculates the confluent hyper-geometric functions of the second
kind, known also as Kummer function of the second type. It is related
to the confluent hyper-geometric function of the first kind:

•

• double ROOT::Math::cyl_bessel_i(double nu,double x) - calculates the
modified Bessel function of the first kind, also called regular modified (cylindrical) Bessel function:

• double ROOT::Math::cyl_bessel_j(double nu,double x) - calculates the
(cylindrical) Bessel function of the first kind, also called regular (cylindrical) Bessel function:

• double ROOT::Math::cyl_bessel_k(double nu,double x)
- calculates the modified Bessel function of the second kind, also
called irregular modified (cylindrical) Bessel function for x>0, v>0:

Math Libraries in ROOT

331

• double ROOT::Math::cyl_neumann(double nu,double x) - calculates the
(cylindrical) Bessel function of the second kind, also called irregular (cylindrical) Bessel function or

(cylindrical) Neumann function:

• double ROOT::Math::ellint_1(double k,double phi) - calculates incomplete

elliptic integral of the first kind (with 0#k2#1):

• double ROOT::Math::ellint_2(double k,double phi) - calculates the complete

elliptic integral of the second kind (with 0#k2#1):

• double ROOT::Math::ellint_3(double n,double k,double phi)
- calculates the complete elliptic integral of the third kind (with 0#k2#1):

• double ROOT::Math::expint(double x) - calculates the exponential integral:

• double ROOT::Math::hyperg(double a,double b,double
c,double x) - calculates Gauss' hyper-geometric function:

• double ROOT::Math::legendre(unsigned l,double x) - calculates the Legendre

polynomials for l#0, |x|#1 in the Rodrigues representation:

• double ROOT::Math::riemann_zeta(double x) - calculates the Riemann zeta

function:

• double ROOT::Math::sph_bessel(unsigned n,double x) - calculates the
spherical Bessel functions of the first kind (also called regular spherical Bessel functions):

• double ROOT::Math::sph_neumann(unsigned n,double x) - calculates the
spherical Bessel functions of the second kind (also called irregular spherical Bessel functions or

spherical Neumann functions):

Math Libraries in ROOT

332

Probability Density Functions (PDF)
Probability density functions of various distributions. All the functions, apart from the discrete ones,
have the extra location parameter x0, which by default is zero. For example, in the case of a gaussian
pdf, x0 is the mean, mu, of the distribution. All the probability density functions are defined in the
header file Math/DistFunc.h and are part of the MathCore libraries. The definition of these
functions is documented in the reference doc for statistical functions:

double ROOT::Math::beta_pdf(double x,double a, double b);
double ROOT::Math::binomial_pdf(unsigned int k,double p,unsigned int n);
double ROOT::Math::breitwigner_pdf(double x,double gamma,double x0=0);
double ROOT::Math::cauchy_pdf(double x,double b=1,double x0=0);
double ROOT::Math::chisquared_pdf(double x,double r,double x0=0);
double ROOT::Math::exponential_pdf(double x,double lambda,double x0=0);
double ROOT::Math::fdistribution_pdf(double x,double n,double m,double x0=0);
double ROOT::Math::gamma_pdf(double x,double alpha,double theta,double x0=0);
double ROOT::Math::gaussian_pdf(double x,double sigma,double x0=0);
double ROOT::Math::landau_pdf(double x,double s,double x0=0);
double ROOT::Math::lognormal_pdf(double x,double m,double s,double x0=0);
double ROOT::Math::normal_pdf(double x,double sigma,double x0=0);
double ROOT::Math::poisson_pdf(unsigned int n,double mu);
double ROOT::Math::tdistribution_pdf(double x,double r,double x0=0);
double ROOT::Math::uniform_pdf(double x,double a,double b,double x0=0);

Cumulative Distribution Functions (CDF)
For all the probability density functions, we have the corresponding cumulative distribution functions
and their complements. The functions with extension _cdf calculate the lower tail integral of the
probability density function:

while those with the cdf_c extension calculate the upper tail of the probability density function, so-
called in statistics the survival function. For example, the function:

double ROOT::Math::gaussian_cdf(double x,double sigma,double x0=0);

evaluates the lower tail of the Gaussian distribution:

while the function:

double ROOT::Math::gaussian_cdf_c(double x, double sigma, double x0=0);

evaluates the upper tail of the Gaussian distribution:

Math Libraries in ROOT

333

The cumulative distributions functions are defined in the header file Math/ProbFunc.h.
The majority of the CDF's are present in the MathCore, apart from the chisquared,
fdistribution, gamma and tdistribution, which are in the MathMore library.

Inverse of the Cumulative Distribution Functions(Quantiles)

For almost all the cumulative distribution functions (_cdf) and their complements (_cdf_c) present
in the library, we provide the inverse functions. The inverse of the cumulative distribution function
is called in statistics quantile function. The functions with the extension _quantile calculate
the inverse of the cumulative distribution function (lower tail integral of the probability density
function), while those with the quantile_c extension calculate the inverse of the complement of the
cumulative distribution (upper tail integral). All the inverse distributions are in the MathMore library
and are defined in the header file Math/ProbFuncInv.h.

The following picture illustrates the available statistical functions (PDF, CDF and quantiles) in the
case of the normal distribution.

Figure 13.2. PDF, CDF and quantiles in the case of the normal distribution

Linear Algebra: SMatrix Package
The ROOT Linear algebra package is documented in a separate chapter (see “Linear Algebra in
ROOT”). SMatrix is a C++ package, for high performance vector and matrix computations. It has
been introduced in ROOT v5.08. It is optimized for describing small matrices and vectors and It can
be used only in problems when the size of the matrices is known at compile time, like in the tracking
reconstruction of physics experiments. It is based on a C++ technique, called expression templates, to
achieve an high level optimization. The C++ templates can be used to implement vector and matrix
expressions such that these expressions can be transformed at compile time to code which is equivalent
to hand optimized code in a low-level language like FORTRAN or C (see for example T. Veldhuizen,
Expression Templates, C++ Report, 1995).

The SMatrix has been developed initially by T. Glebe in Max-Planck-Institut, Heidelberg, as part
of the HeraB analysis framework. A subset of the original package has been now incorporated in
the ROOT distribution, with the aim to provide a stand-alone and high performance matrix package.
The API of the current package differs from the original one, in order to be compliant to the ROOT
coding conventions.

SMatrix contains the generic ROOT::Math::SMatrix and ROOT::Math::SVector classes
for describing matrices and vectors of arbitrary dimensions and of arbitrary type. The classes are
templated on the scalar type and on the size, like number of rows and columns for a matrix . Therefore,
the matrix/vector dimension has to be known at compile time. An advantage of using the dimension
as template parameters is that the correctness of dimension in the matrix/vector operations can be
checked at compile time.

SMatrix supports, since ROOT v5.10, symmetric matrices using a storage class
(ROOT::Math::MatRepSym) which contains only the N*(N+1)/2 independent element of a

Math Libraries in ROOT

334

NxN symmetric matrix. It is not in the mandate of this package to provide complete linear algebra
functionality. It provides basic matrix and vector functions such as matrix-matrix, matrix-vector,
vector-vector operations, plus some extra functionality for square matrices, like inversion and
determinant calculation. The inversion is based on the optimized Cramer method for squared matrices
of size up to 6x6.

The SMatrix package contains only header files. Normally one does not need to build any library. In
the ROOT distribution a library, libSmatrix is produced with the C++ dictionary information for
squared and symmetric matrices and vectors up to dimension 7 and based on Double_t, Float_t
and Double32_t. The following paragraphs describe the main characteristics of the matrix and
vector classes. More detailed information about the SMatrix classes API is available in the online
reference documentation.

Example: Vector Class (SVector)
The template class ROOT::Math::SVector represents n-dimensional vectors for objects of
arbitrary type. This class has 2 template parameters, which define at compile time, its properties: 1)
type of the contained elements (for example float or double); 2) size of the vector. The use of this
dictionary is mandatory if one want to use Smatrix in CINT and with I/O.

Creating a Vector

The following constructors are available to create a vector:

• Default constructor for a zero vector (all elements equal to zero).

• Constructor (and assignment) from a vector expression, like v=p*q+w. Due to the expression
template technique, no temporary objects are created in this operation.

• Constructor by passing directly the elements. This is possible only for vectors up to size 10.

• Constructor from an iterator copying the data referred by the iterator. It is possible to specify the
begin and end of the iterator or the begin and the size. Note that for the Vector the iterator is not
generic and must be of type T*, where T is the type of the contained elements.

In the following example we assume that we are using the namespace ROOT::Math

SVector<double,3> v; //create an empty vector of size 3 (v[0]=v[1]=v[2]=0)
double d[3] = {1,2,3};
SVector<double,3> v(d,3); //create a vector from a C array

Accessing and Setting Methods

The single vector elements can be set or retrieved using the operator[i], operator(i) or the
iterator interface. Notice that the index starts from zero and not from one as in FORTRAN. Also
no check is performed on the passed index. The full vector elements can be set also by using the
SetElements function passing a generic iterator.

double x = m(i); // return the i-th element
x = *(m.begin()+i); // return the i-th element
v[0] = 1; // set the first element
v(1) = 2; // set the second element
*(v.begin()+3) = 3; // set the third element
std::vector<double> w(3);

// set vector elements from a std::vector<double>::iterator
v.SetElements(w.begin(),w.end());

Math Libraries in ROOT

335

In addition there are methods to place a sub-vector in a vector. If the size of the sub-vector is larger
than the vector size a static assert (a compilation error) is produced.

SVector>double,N> v;
SVector>double,M> w;
// M <= N otherwise a compilation error is obtained later
// place a vector of size M starting from element ioff, v[ioff+i]=w[i]
v.Place_at(w,ioff);
// return a sub-vector of size M starting from v[ioff]: w[i]=v[ioff+i]
w = v.Sub < SVector>double,M> > (ioff);

For the vector functions see later in the Matrix and Vector Operators and Functions paragraph.

Example: Matrix Class (SMatrix)
The template class ROOT::Math::SMatrix represents a matrix of arbitrary type with nrows x
ncol dimension. The class has 4 template parameters, which define at compile time, its properties:

• type of the contained elements, T, for example float or double;

• number of rows;

• number of columns;

• representation type. This is a class describing the underlined storage model of the Matrix. Presently
exists only two types of this class:

• ROOT::Math::MatRepStd for a general nrows x ncols matrix. This class is itself a
template on the contained type T, the number of rows and the number of columns. Its data member
is an array T[nrows*ncols] containing the matrix data. The data are stored in the row-major
C convention. For example, for a matrix M, of size 3x3, the data {a0,a1,…,a8} are stored in
the following order:

•

• ROOT::Math::MatRepSym for a symmetric matrix of size NxN. This class is a template on the
contained type and on the symmetric matrix size N. It has as data member an array of type T of
size N*(N+1)/2, containing the lower diagonal block of the matrix. The order follows the lower
diagonal block, still in a row-major convention. For example for a symmetric 3x3 matrix the order
of the 6 independent elements {a0,a1,…,a5} is:

•

Creating a Matrix

The following constructors are available to create a matrix:

• Default constructor for a zero matrix (all elements equal to zero).

• Constructor of an identity matrix.

• Copy constructor (and assignment) for a matrix with the same representation, or from a different
one when possible, for example from a symmetric to a general matrix.

Math Libraries in ROOT

336

• Constructor (and assignment) from a matrix expression, like D=A*B+C. Due to the expression
template technique, no temporary objects are created in this operation. In the case of an operation
like A=A*B+C, a temporary object is needed and it is created automatically to store the intermediary
result in order to preserve the validity of this operation.

• Constructor from a generic STL-like iterator copying the data referred by the iterator, following its
order. It is both possible to specify the begin and end of the iterator or the begin and the size. In
case of a symmetric matrix, it is required only the triangular block and the user can specify whether
giving a block representing the lower (default case) or the upper diagonal part.

Here are some examples on how to create a matrix. We use typedef's in the following examples to
avoid the full C++ names for the matrix classes. Notice that for a general matrix the representation has
the default value, ROOT::Math::MatRepStd, and it is not needed to be specified. Furthermore,
for a general square matrix, the number of column may be as well omitted.

// typedef definitions used in the following declarations
typedef ROOT::Math::SMatrix<double,3> SMatrix33;
typedef ROOT::Math::SMatrix<double,2> SMatrix22;
typedef ROOT::Math::SMatrix<double,3,3,
ROOT::Math::MatRepSym<double,3>> SMatrixSym3;
typedef ROOT::Math::SVector>double,2> SVector2;
typedef ROOT::Math::SVector>double,3> SVector3;
typedef ROOT::Math::SVector>double,6> SVector6;
SMatrix33 m0; // create a zero 3x3 matrix
// create an 3x3 identity matrix
SMatrix33 i = ROOT::Math::SMatrixIdentity();
double a[9] = {1,2,3,4,5,6,7,8,9}; // input matrix data
// create a matrix using the a[] data
SMatrix33 m(a,9); // this will produce the 3x3 matrix
 // (1 2 3)
 // (4 5 6)
 // (7 8 9)

Example to fill a symmetric matrix from an std::vector:

std::vector<double> v(6);
for (int i = 0; i<6; ++i) v[i] = double(i+1);
SMatrixSym3 s(v.begin(),v.end()) // this will produce the symmetric matrix
// (1 2 4)
 // (2 3 5)
 // (4 5 6)
//create a general matrix from a symmetric matrix (the opposite will not compile)
SMatrix33 m2 = s;

Accessing and Setting Methods

The matrix elements can be set using the operator()(irow,icol), where irow and icol are
the row and column indexes or by using the iterator interface. Notice that the indexes start from zero
and not from one as in FORTRAN. Furthermore, all the matrix elements can be set also by using the
SetElements function passing a generic iterator. The elements can be accessed by the same methods as
well as by using the function ROOT::Math::SMatrix::apply. The apply(i) has exactly the
same behavior for general and symmetric matrices; in contrast to the iterator access methods which
behave differently (it follows the data order).

SMatrix33 m;
m(0,0) = 1; // set the element in first row and first column

Math Libraries in ROOT

337

*(m.begin()+1) = 2; // set the second element (0,1)
double d[9]={1,2,3,4,5,6,7,8,9};
m.SetElements(d,d+9); // set the d[] values in m
double x = m(2,1); // return the element in 3rd row and 1st column
x = m.apply(7); // return the 8-th element (row=2,col=1)
x = *(m.begin()+7); // return the 8-th element (row=2,col=1)
// symmetric matrices
//(note the difference in behavior between apply and the iterators)
x = *(m.begin()+4) // return the element (row=2,col=1)
x = m.apply(7); // returns again the (row=2,col=1) element

There are methods to place and/or retrieve ROOT::Math::SVector objects as rows or columns
in (from) a matrix. In addition one can put (get) a sub-matrix as another ROOT::Math::SMatrix
object in a matrix. If the size of the sub-vector or sub-matrix is larger than the matrix size a static assert
(a compilation error) is produced. The non-const methods are:

SMatrix33 m;
SVector2 v2(1,2);
// place a vector in the first row from element (0,1) : m(0,1)=v2[0]
m.Place_in_row(v2,0,1);
// place the vector in the second column from (0,1) : m(0,1) = v2[0]
m.Place in_col(v2,0,1);
SMatrix22 m2;
// place m2 in m starting from the element (1,1) : m(1,1) = m2(0,0)
m.Place_at(m2,1,1);
SVector3 v3(1,2,3);
// set v3 as the diagonal elements of m : m(i,i) = v3[i] for i=0,1,2
m.SetDiagonal(v3)

The const methods retrieving contents (getting slices of a matrix) are:

a = {1,2,3,4,5,6,7,8,9};
SMatrix33 m(a,a+9);
SVector3 irow = m.Row(0); // return as vector the first row
SVector3 jcol = m.Col(1); // return as vector the second column

// return a slice of the first row from (0,1): r2[0]= m(0,1); r2[1]=m(0,2)
SVector2 r2 = m.SubRow<SVector2> (0,1);
// return a slice of the second column from (0,1): c2[0] = m(0,1); c2[1] = m(1,1)
SVector2 c2 = m.SubCol<SVector2> (1,0);

// return a sub-matrix 2x2 with the upper left corner at(1,1)
SMatrix22 subM = m.Sub<SMatrix22> (1,1);

// return the diagonal element in a SVector
SVector3 diag = m.Diagonal();

// return the upper(lower) block of the matrix m
SVector6 vub = m.UpperBlock(); // vub = [1, 2, 3, 5, 6, 9]
SVector6 vlb = m.LowerBlock(); // vlb = [1, 4, 5, 7, 8, 9]

Linear Algebra Matrix Functions (Inversion, Determinant)

Only limited linear algebra functionality is available for SMatrix. It is possible for squared matrices
NxN, to find the inverse or to calculate the determinant. Different inversion algorithms are used if the
matrix is smaller than 6x6 or if it is symmetric. In the case of a small matrix, a faster direct inversion
is used. For a large (N>6) symmetric matrix the Bunch-Kaufman diagonal pivoting method is used

Math Libraries in ROOT

338

while for a large (N>6) general matrix an LU factorization is performed using the same algorithm
as in the CERNLIB routine dinv.

// Invert a NxN matrix.
// The inverted matrix replaces the existing one if the result is successful
bool ret = m.Invert(); // return the inverse matrix of m.

// If the inversion fails ifail is different than zero ???
int ifail = 0;
ifail = m.Inverse(ifail);

// determinant of a square matrix - calculate the determinant modyfing the
// matrix content and returns it if the calculation was successful
double det;
bool ret = m.Det(det);

// calculate determinant by using a temporary matrix; preserves matrix content
bool ret = n.Det2(det);

Example: Matrix and Vector Functions and Operators

Matrix and Vector Operators

The ROOT::Math::SVector and ROOT::Math::SMatrix classes define the following
operators described below. The m1, m2, m3 are vectors or matrices of the same type (and size) and
a is a scalar value:

m1 == m2 //returns whether m1 is equal to m2 (element by element comparison)
m1 != m2 //returns whether m1 is NOT equal to m2 (element by element comparison)
m1 < m2 //returns whether m1 is less than m2 (element wise comparison)
m1 > m2 //returns whether m1 is greater than m2 (element wise comparison)

//in the following m1 and m3 can be general and m2 symmetric, but not vice-versa

m1 += m2 // add m2 to m1
m1 -= m2 // subtract m2 to m1
m3 = m1 + m2 // addition
m1 - m2 // subtraction

// Multiplication and division via a scalar value a

m3 = a*m1; m3 = m1*a; m3 = m1/a;

Vector-Vector multiplication: The operator * defines an element by element multiplication between
vectors. For the standard vector-vector algebraic multiplication returning a scalar, vTv (dot product),
one must use the ROOT::Math::Dot function. In addition, the Cross (only for vector sizes of 3),
ROOT::Math::Cross, and the Tensor product, ROOT::Math::TensorProd, are defined.

Matrix - Vector multiplication: The operator * defines the matrix-vector multiplication:

. The operation compiles only if the matrix and the vectors have the right sizes.

// M is a N1xN2 matrix, x is a N2 size vector, y is a N1 size vector
y = M * x

Math Libraries in ROOT

339

Matrix - Matrix multiplication: The operator * defines the matrix-matrix multiplication:

.

// A is a N1xN2 matrix, B is a N2xN3 matrix and C is a N1xN3 matrix
C = A * B

The operation compiles only if the matrices have the right size. In the case that A and B are symmetric
matrices, C is a general one, since their product is not guaranteed to be symmetric.

Matrix and Vector Functions
The most used matrix functions are:

• ROOT::Math::Transpose(M) returns the transpose matrix MT

• ROOT::Math::Similarity(v,M) returns the scalar value resulting from the matrix-vector
product vTMv

• ROOT::Math::Similarity(U,M) returns the matrix resulting from the product: U M UT. If
M is symmetric, the returned resulting matrix is also symmetric

• ROOT::Math::SimilarityT(U,M) returns the matrix resulting from the product: UT M U.
If M is symmetric, the returned resulting matrix is also symmetric

The major vector functions are:

• ROOT::Math::Dot(v1,v2) returns the scalar value resulting from the vector dot product

• ROOT::Math::Cross(v1,v2) returns the vector cross product for two vectors of size 3. Note
that the Cross product is not defined for other vector sizes

• ROOT::Math::Unit(v) returns unit vector. One can use also the v.Unit() method.

• ROOT::Math::TensorProd(v1,v2) returns a general matrix M of size N1xN2 resulting
from the tensor product between the vector v1 of size N1 and v2 of size N2:

For a list of all the available matrix and vector functions see the SMatrix online reference
documentation.

Matrix and Vector I/O

One can print (or write in an output stream) Vectors and Matrices) using the Print method or the
<< operator:

// m is a SMatrix or a SVector object
m.Print(std::cout);
std::cout << m << std::endl;

In the ROOT distribution, the CINT dictionary is generated for SMatrix and SVector for for
Double_t, Float_t and Double32_t up to dimension 7. This allows the possibility to store
them in a ROOT file.

Minuit2 Package
Minuit2 is a new object-oriented implementation, written in C++, of the popular MINUIT
minimization package. Compared with the TMinuit class, which is a direct conversion from

Math Libraries in ROOT

340

FORTRAN to C++, Minuit2 is a complete redesign and re-implementation of the package. This new
version provides all the functionality present in the old FORTRAN version, with almost equivalent
numerical accuracy and computational performances. Furthermore, it contains new functionality, like
the possibility to set single side parameter limits or the FUMILI algorithm (see “FUMILI Minimization
Package” in “Fitting Histograms” chapter), which is an optimized method for least square and log
likelihood minimizations. Minuit2 has been originally developed by M. Winkler and F. James in the
SEAL project. More information can be found on the MINUIT Web Site and in particular at the
following documentation page at http://www.cern.ch/minuit/doc/doc.html.

The API has been then changed in this new version to follow the ROOT coding convention
(function names starting with capital letters) and the classes have been moved inside the namespace
ROOT::Minuit2. In addition, the ROOT distribution contains classes needed to integrate Minuit2
in the ROOT framework, like TFitterMinuit and TFitterFumili. Minuit2 can be used in
ROOT as another fitter plug-in. For example for using it in histogram fitting, one only needs to do:

TVirtualFitter::SetDefaultFitter("Minuit2"); //or Fumili2 for the FUMILI algorithmhistogram->Fit();

For minimization problem, providing an FCN function to minimize, one can do:

TVirtualFitter::SetDefaultFitter("Minuit2");
TVirtualFitter * minuit2 = TVirtualFitter::Fitter(0,2);

Then set the parameters, the FCN and minimize using the TVirtualFitter methods:
SetParameter, SetFCN and ExecuteCommand. The FCN function can also be given to Minuit2
as an instance of a class implementing the ROOT::Minuit2::FCNBase interface. In this case one
must use directly the TFitterMinuit class via the method SetMinuitFCN.

Examples on how to use the Minuit2 and Fumili2 plug-ins are provided in the tutorials’
directory $ROOTSYS/tutorials/fit: minuit2FitBench.C, minuit2FitBench2D.C
and minuit2GausFit.C. More information on the classes and functions present in
Minuit2 is available at online reference documentation. In addition, the C+
+ MINUIT User Guide provides all the information needed for using directly the package
without TVirtualFitter interface (see http://seal.cern.ch/documents/minuit/
mnusersguide.pdf). Useful information on MINUIT and minimization in general is provided in
the following documents:

F. James, Minuit Tutorial on Function Minimization (http://seal.cern.ch/documents/
minuit/mntutorial.pdf); F. James, The Interpretation of Errors in Minuit (http://
seal.cern.ch/documents/minuit/mnerror.pdf);

ROOT Statistics Classes

Classes for Computing Limits and Confidence Levels
TFeldmanCousins class calculates the CL upper/lower limit for a Poisson process using the
Feldman-Cousins method (as described in PRD V57 #7, p3873-3889). No treatment is provided in
this method for the uncertainties in the signal or the background.

TRolke computes confidence intervals for the rate of a Poisson process in the presence of background
and efficiency, using the profile likelihood technique for treating the uncertainties in the efficiency
and background estimate. The signal is always assumed to be Poisson; background may be Poisson,
Gaussian, or user-supplied; efficiency may be Binomial, Gaussian, or user-supplied. See publication
at Nucl. Instrum. Meth. A551:493-503,2005.

TLimit class computes 95% C.L. limits using the Likelihood ratio semi-Bayesian method (CLs
method; see e.g. T. Junk, NIM A434, p. 435-443, 1999). It takes signal background and data histograms

Math Libraries in ROOT

341

wrapped in a TLimitDataSource as input, and runs a set of Monte Carlo experiments in order to
compute the limits. If needed, inputs are fluctuated according to systematic.

Specialized Classes for Fitting
TFractionFitter fits Monte Carlo (MC) fractions to data histogram (a la HMCMLL, R. Barlow
and C. Beeston, Comp. Phys. Comm. 77 (1993) 219-228). It takes into account both data and Monte
Carlo statistical uncertainties through a likelihood fit using Poisson statistics. However, the template
(MC) predictions are also varied within statistics, leading to additional contributions to the overall
likelihood. This leads to many more fit parameters (one per bin per template), but the minimization
with respect to these additional parameters is done analytically rather than introducing them as formal
fit parameters. Some special care needs to be taken in the case of bins with zero content.

TMultiDimFit implements multi-dimensional function parameterization for multi-dimensional
data by fitting them to multi-dimensional data using polynomial or Chebyshev or Legendre polynomial

TSpectrum contains advanced spectra processing functions for 1- and 2-dimensional background
estimation, smoothing, deconvolution, peak search and fitting, and orthogonal transformations.

RooFit is a complete toolkit for fitting and data analysis modeling (see the RooFit User Guide at
ftp://root.cern.ch/root/doc/RooFit_Users_Manual_2.07-29.pdf)

TSplot - to disentangle signal from background via an extended maximum likelihood fit and with
a tool to access the quality and validity of the fit producing distributions for the control variables. (see
M. Pivk and F.R. Le Diberder, Nucl. Inst. Meth.A 555, 356-369, 2005).

Multi-variate Analysis Classes
TMultiLayerPerceptron is a Neural Network class (see for more details the chapter “Neural
Networks”).

TPrincipal provides the Principal Component Analysis.

TRobustEstimator is a robust method for minimum covariance determinant estimator (MCD).

TMVA is a package for multivariate data analysis (see http://tmva.sourceforge.net/
docu/TMVAUsersGuide.pdf the User’s Guide).

342

Chapter 14. Linear Algebra in ROOT
The linear algebra package is supposed to give a complete environment in ROOT to perform
calculations like equation solving and eigenvalue decompositions. Most calculations are performed in
double precision. For backward compatibility, some classes are also provided in single precision like
TMatrixF, TMatrixFSym and TVectorF. Copy constructors exist to transform these into their
double precision equivalent, thereby allowing easy access to decomposition and eigenvalue classes,
only available in double precision.

The choice was made not to provide the less frequently used complex matrix classes. If necessary,
users can always reformulate the calculation in 2 parts, a real one and an imaginary part. Although,
a linear equation involving complex numbers will take about a factor of 8 more computations, the
alternative of introducing a set of complex classes in this non-template library would create a major
maintenance challenge.

Another choice was to fill in both the upper-right corner and the bottom-left corner of a symmetric
matrix. Although most algorithms use only the upper-right corner, implementation of the different
matrix views was more straightforward this way. When stored only the upper-right part is written to
file.

For a detailed description of the interface, the user should look at the root reference guide at: http://
root.cern.ch/root/Reference.html

Overview of Matrix Classes
The figure below shows an overview of the classes available in the linear algebra library,
libMatrix.so. At the center is the base class TMatrixDBase from which three
different matrix classes, TMatrixD, TMatrixDSym and TMatrixDFSparse derive. The
user can define customized matrix operations through the classes TElementActionD and
TElementsPosActionD.

Figure 14.1. Overview of matrix classes

Reference to different views of the matrix can be created through the classes on the right-hand side,
see “Matrix Views”. These references provide a natural connection to vectors.

Matrix decompositions (used in equation solving and matrix inversion) are available through the
classes on the left-hand side (see “Matrix Decompositions”). They inherit from the TDecompBase
class. The Eigen Analysis is performed through the classes at the top, see “Matrix Eigen Analysis”. In

Linear Algebra in ROOT

343

both cases, only some matrix types can be analyzed. For instance, TDecompChol will only accept
symmetric matrices as defined TMatrixDSym. The assignment operator behaves somewhat different
than of most other classes. The following lines will result in an error:

TMatrixD a(3,4);
TMatrixD b(5,6);
b = a;

It required to first resize matrix b to the shape of a.

TMatrixD a(3,4);
TMatrixD b(5,6);
b.ResizeTo(a);
b = a;

Matrix Properties
A matrix has five properties, which are all set in the constructor:

• precision - float or double. In the first case you will use the TMatrixF class family, in the
latter case the TMatrixD one;

• type - general (TMatrixD), symmetric (TMatrixDSym) or sparse (TMatrixDSparse);

• size - number of rows and columns;

• index - range start of row and column index. By default these start at zero;

• sparse map - this property is only relevant for a sparse matrix. It indicates where elements are
unequal zero.

Accessing Properties
The following table shows the methods to access the information about the relevant matrix property:

Method Descriptions

Int_t GetRowLwb () row lower-bound index

Int_t GetRowUpb () row upper-bound index

Int_t GetNrows () number of rows

Int_t GetColLwb () column lower-bound index

Int_t GetColUpb () column upper-bound index

Int_t GetNcols () number of columns

Int_t GetNoElements () number of elements, for a dense matrix this equals: fNrows
x fNcols

Double_t GetTol () tolerance number which is used in decomposition operations

Int_t *GetRowIndexArray () for sparse matrices, access to the row index of fNrows+1
entries

Int_t *GetColIndexArray () for sparse matrices, access to the column index of fNelems
entries

The last two methods in this table are specific to the sparse matrix, which is implemented according to
the Harwell-Boeing format. Here, besides the usual shape/size descriptors of the matrix like fNrows,

Linear Algebra in ROOT

344

fRowLwb, fNcols and fColLwb, we also store a row index, fRowIndex and column index,
fColIndex for the elements unequal zero:

fRowIndex[0,..,fNrows]: Stores for each row the index range of the elements in the
data and column array

fColIndex[0,..,fNelems-1]:Stores the column number for each data element != 0.

The code to print all matrix elements unequal zero would look like:

TMatrixDSparse a;
const Int_t *rIndex = a.GetRowIndexArray();
const Int_t *cIndex = a.GetColIndexArray();
const Double_t *pData = a.GetMatrixArray();
for (Int_t irow = 0; irow < a.getNrows(); irow++) {
const Int_t sIndex = rIndex[irow];
const Int_t eIndex = rIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = cIndex[index];
const Double_t data = pData[index];
printf("data(%d,%d) = %.4en",irow+a.GetfRowLwb(),
icol+a.GetColLwb(),data);
}
}

Setting Properties
The following table shows the methods to set some of the matrix properties. The resizing procedures
will maintain the matrix elements that overlap with the old shape. The optional last argument
nr_zeros is only relevant for sparse matrices. If supplied, it sets the number of non-zero elements.
If it is smaller than the number overlapping with the old matrix, only the first (row-wise) nr_zeros
are copied to the new matrix.

Method Descriptions

SetTol (Double_t tol) set the tolerance number

ResizeTo (Int_t nrows,Int_t ncols,

Int_t nr_nonzeros=-1)

change matrix shape to nrows × ncols.
Index will start at zero

ResizeTo(Int_t row_lwb,Int_t
row_upb,

Int_t col_lwb,Int_t col_upb,

Int_t nr_nonzeros=-1)

change matrix shape to

row_lwb:row_upb ×
col_lwb:col_upb

SetRowIndexArray (Int_t *data) for sparse matrices, set the row index. The
array data should contains at least fNrows
+1 entries column lower-bound index

SetColIndexArray (Int_t *data) for sparse matrices, set the column index.
The array data should contains at least
fNelems entries

SetSparseIndex (Int_t nelems new) allocate memory for a sparse map of
nelems_new elements and copy (if exists)
at most nelems_new matrix elements over
to the new structure

Linear Algebra in ROOT

345

SetSparseIndex (const TMatrixDBase
&a)

copy the sparse map from matrix a Note that
this can be a dense matrix!

SetSparseIndexAB (const
TMatrixDSparse &a, const
TMatrixDSparse &b)

set the sparse map to the same of the map of
matrix a and b

The second half of the table is only relevant for sparse matrices. These methods define the
sparse structure. It should be clear that a call to any of these methods has to be followed by a
SetMatrixArray (...) which will supply the matrix data, see the next chapter “Creating and Filling
a Matrix”.

Creating and Filling a Matrix
The matrix constructors are listed in the next table. In the simplest ones, only the number of rows and
columns is given. In a slightly more elaborate version, one can define the row and column index range.
Finally, one can also define the matrix data in the constructor. In Matrix Operators and Methods we
will encounter more fancy constructors that will allow arithmetic operations.

TMatrixD(Int_t nrows,Int_t ncols)

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)

TMatrixD(Int_t nrows,Int_t ncols,const Double_t *data, Option_t
option="")

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,

const Double_t *data,Option_t *option="")

TMatrixDSym(Int_t nrows)

TMatrixDSym(Int_t row_lwb,Int_t row_upb)

TMatrixDSym(Int_t nrows,const Double_t *data,Option_t *option="")

TMatrixDSym(Int_t row_lwb,Int_t row_upb,const Double_t *data,
Option_t *opt="")

TMatrixDSparse(Int_t nrows,Int_t ncols)

TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb, Int_t
col_upb)

TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t
col_upb,

Int_t nr_nonzeros,Int_t *row,Int_t *col,Double_t *data)

If only the matrix shape is defined in the constructor, matrix data has to be supplied and possibly the
sparse structure. In “Setting Properties” was discussed how to set the sparse structure.

Several methods exist to fill a matrix with data:

SetMatrixArray(const Double_t*data,Option_t*option=""), copies the array
data. If option="F", the array fills the matrix column-wise else row-wise. This option is only
implemented for TMatrixD and TMatrixDSym. It is expected that the array data contains at least
fNelems entries.

SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data), is only
available for sparse matrices. The three arrays should each contain nr entries with row index, column
index and data entry. Only the entries with non-zero data value are inserted!

Linear Algebra in ROOT

346

operator() or operator[], these operators provide the easiest way to fill a matrix but are in
particular for a sparse matrix expensive. If no entry for slot (i,j) is found in the sparse index table it
will be entered, which involves some memory management! Therefore, before invoking this method
in a loop it is wise to set the index table first through a call to the SetSparseIndex method.

SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source), the
matrix to be inserted at position (row_lwb,col_lwb) can be both, dense or sparse.

Use(...) allows inserting another matrix or data array without actually copying the data. Next table
shows the different flavors for the different matrix types.

Use(TMatrixD &a)

Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t
col_upb,Double_t *data)

Use(Int_t nrows,Int_t ncols,Double_t *data)

Use(TMatrixDSym &a)

Use(Int_t nrows,Double_t *data)

Use(Int_t row_lwb,Int_t row_upb,Double_t *data)

Use(TMatrixDSparse &a)

Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Int_t
nr_nonzeros,

Int_t *pRowIndex,Int_t *pColIndex,Double_t *pData)

Use(Int_t nrows,Int_t ncols,Int_t nr_nonzeros,Int_t *pRowIndex,

Int_t *pColIndex,Double_t *pData)

Below follow a few examples of creating and filling a matrix. First we create a Hilbert matrix by
copying an array.

TMatrixD h(5,5);
TArrayD data(25);
for (Int_t = 0; i < 25; i++) {
const Int_t ir = i/5;
const Int_t ic = i%5;
data[i] = 1./(ir+ic);
}
h.SetMatrixArray(data.GetArray());

We also could assign the data array to the matrix without actually copying it.

TMatrixD h; h.Use(5,5,data.GetArray());
h.Invert();

The array data now contains the inverted matrix. Finally, create a unit matrix in sparse format.

TMatrixDSparse unit1(5,5);
TArrayI row(5),col(5);
for (Int_t i = 0; i < 5; i++) row[i] = col[i] = i;
TArrayD data(5); data.Reset(1.);
unit1.SetMatrixArray(5,row.GetArray(),col.GetArray(),data.GetArray());

Linear Algebra in ROOT

347

TMatrixDSparse unit2(5,5);
unit2.SetSparseIndex(5);
unit2.SetRowIndexArray(row.GetArray());
unit2.SetColIndexArray(col.GetArray());
unit2.SetMatrixArray(data.GetArray());

Matrix Operators and Methods
It is common to classify matrix/vector operations according to BLAS (Basic Linear Algebra
Subroutines) levels, see following table:

BLAS level operations example floating-point operations

1 vector-vector x T y n

2 matrix-vector matrix
 x

n2

3 matrix-matrix

n3

Most level 1, 2 and 3 BLAS are implemented. However, we will present them not according to that
classification scheme it is already boring enough.

Arithmetic Operations between Matrices
Description Format Comment

element

wise sum

C=A+B

A+=B

Add (A,alpha,B)

TMatrixD(A,TMatrixD::kPlus,B)

overwrites

A += # B
constructor

element wise
subtraction

C=A-B

A-=B

TMatrixD(A,TMatrixD::kMinus,B)

overwrites

constructor

matrix
multiplication

C=A*B

A*=B

C.Mult(A,B)

overwrites

TMatrixD(A, TMatrixD::kMult,B) constructor of

TMatrixD(A,
TMatrixD::kTransposeMult ,B)

constructor of

TMatrixD(A,
TMatrixD::kMultTranspose ,B)

constructor of

element wise

multiplication

element wise
division

ElementMult(A,B)

ElementDiv(A,B)

A(i,j)*= B(i,j)

A(i,j)/= B(i,j)

Linear Algebra in ROOT

348

Arithmetic Operations between Matrices and Real
Numbers

Description Format Comment

element wise sum C=r+A

C=A+r

A+=r

overwrites

element wise subtraction C=r-A

C=A-r

A-=r

overwrites

matrix multiplication C=r*A

C=A*r

A*=r

overwrites

Comparisons and Boolean Operations
The following table shows element wise comparisons between two matrices:

Format Output Description

A == B Bool_t equal to

A != B

A > B

A >= B

A < B

A <= B

matrix

matrix

matrix

matrix

matrix

Not equal

Greater than

Greater than or equal to

Smaller than

Smaller than or equal to

AreCompatible(A,B)

Compare(A,B)

VerifyMatrixIdentity(A,B,verb,
maxDev)

Bool_t

Bool_t

Compare matrix properties

return summary of comparison

Check matrix identity within
maxDev tolerance

The following table shows element wise comparisons between matrix and real:

Format Output Description

A == r

A != r

A > r

Bool_t

Bool_t

Bool_t
Bool_t

equal to

Not equal

Greater than

Linear Algebra in ROOT

349

A >= r

A < r

A <= r

Bool_t
Bool_t

Greater than or equal to

Smaller than

Smaller than or equal to

VerifyMatrixValue(A,r,verb,
maxDev)

Bool_t Compare matrix value with r within
maxDev tolerance

Matrix Norms

Format Output Description

A.RowNorm ()

A.NormInf ()

A.ColNorm ()

A.Norm1 ()

A.E2Norm ()

A.NonZeros ()

A.Sum ()

A.Min ()

A.Max ()

Double_t

Double_t

Double_t

Double_t

Double_t

Int_t

Double_t

Double_t

Double_t

norm induced by the infinity vector norm,

maxi

maxi

norm induced by the 1 vector norm, maxj

maxj

Square of the Euclidean norm,

number of elements unequal zero

minij

maxij

A.NormByColumn
(v,"D")

A.NormByRow (v,"D")

TMatrixD

TMatrixD

, divide each matrix column by vector v. If
the second argument is “M“, the column is multiplied.

, divide each matrix row by vector v. If the
second argument is “M“, the row is multiplied.

Miscellaneous Operators

Format Output Description

A.Zero () TMatrixX

Linear Algebra in ROOT

350

A.Abs () TMatrixX

A.Sqr () TMatrixX

A.Sqrt () TMatrixX

A.UnitMatrix () TMatrixX
for i ==j else 0

A.Randomize
(alpha,beta,seed)

TMatrixX
, a random

matrix is generated with elements uniformly
distributed between α and β

A. T () TMatrixX

A.Transpose (B) TMatrixX

A.Invert (&det) TMatrixX Invert matrix A. If the optional pointer to the
Double_t argument det is supplied, the
matrix determinant is calculated.

A.InvertFast (&det) TMatrixX like Invert but for matrices

i =(6x6)a faster but less accurate Cramer
algorithm is used

A.Rank1Update (v,alpha) TMatrixX Perform with vector v a rank 1 operation on

the matrix:

A.RandomizePD
(alpha,beta,seed)

TMatrixX
, a

random symmetric positive-definite matrix
is generated with elements uniformly

distributed between and

Output TMatrixX indicates that the returned matrix is of the same type as A, being TMatrixD,
TMatrixDSym or TMatrixDSparse. Next table shows miscellaneous operations for TMatrixD.

Format Output Description

A.Rank1Update(v1,v2,alpha) TMatrixD Perform with vector v1 and v2,
a rank 1 operation on the matrix:

Matrix Views
Another way to access matrix elements is through the matrix-view classes, TMatrixDRow,
TMatrixDColumn, TMatrixDDiag and TMatrixDSub (each has also a const version which
is obtained by simply appending const to the class name). These classes create a reference to the
underlying matrix, so no memory management is involved. The next table shows how the classes
access different parts of the matrix:

class view

Linear Algebra in ROOT

351

TMatrixDRow const(X,i)

TMatrixDRow(X,i)

TMatrixDColumn const(X,j)

TMatrixDColumn(X,j)

TMatrixDDiag const(X)

TMatrixDDiag(X)

TMatrixDSub const(X,i,l,j,k)

TMatrixDSub(X,i,l,j,k)

View Operators
For the matrix views TMatrixDRow, TMatrixDColumn and TMatrixDDiag, the necessary
assignment operators are available to interact with the vector class TVectorD. The sub matrix view
TMatrixDSub has links to the matrix classes TMatrixD and TMatrixDSym. The next table
summarizes how the access individual matrix elements in the matrix views:

Format Comment

TMatrixDRow(A,i)(j)

TMatrixDRow(A,i)[j]
element

TMatrixDColumn(A,j)(i)

TMatrixDColumn(A,j)[i]
element

TMatrixDDiag(A(i)

TMatrixDDiag(A[i]
element

TMatrixDSub(A(i)

TMatrixDSub(A,rl,rh,cl,ch)(i,j)
element

element

The next two tables show the possible operations with real numbers, and the operations between the
matrix views:

Description Format Comment

Linear Algebra in ROOT

352

assign real TMatrixDRow(A,i) = r

TMatrixDColumn(A,j) = r

TMatrixDDiag(A) = r

TMatrixDSub(A,i,l,j,k) =
r

row

column

matrix diagonal

sub matrix

add real TMatrixDRow(A,i) += r

TMatrixDColumn(A,j) += r

TMatrixDDiag(A) += r

TMatrixDSub(A,i,l,j,k)
+= r

row

column

matrix diagonal

sub matrix

multiply with

real

TMatrixDRow(A,i) *= r

TMatrixDColumn(A,j) *= r

TMatrixDDiag(A) *= r

TMatrixDSub(A,i,l,j,k)
*= r

row

column

matrix diagonal

sub matrix

Description Format Comment

add matrix
slice

TMatrixDRow(A,i1) +=

TMatrixDRow const(B,i2)

add row to row

TMatrixDColumn(A,j1) +=

TMatrixDColumn
const(A,j2)

add column to column

TMatrixDDiag(A) +=

TMatrixDDiag const(B)

add diagonal to diagonal

multiply
matrix slice

TMatrixDRow(A,i1) *=

TMatrixDRow const(B,i2)

multiply row with row element wise

TMatrixDColumn(A,j1) *=

TMatrixDColumn
const(A,j2)

multiply column with column element
wise

TMatrixDDiag(A) *=

TMatrixDDiag const(B)

multiply diagonal with diagonal
element wise

TMatrixDSub(A,i1,l1,j1,k1)
*=

TMatrixDSub(B,i2,l2,j2,k2)

multiply sub matrix of with sub matrix of

TMatrixDSub(A,i,l,j,k)
*= B

multiply sub matrix of with matrix of

In the current implementation of the matrix views, the user could perform operations on a symmetric
matrix that violate the symmetry. No checking is done. For instance, the following code violates the
symmetry.

Linear Algebra in ROOT

353

TMatrixDSym A(5);
A.UnitMatrix();
TMatrixDRow(A,1)[0] = 1;
TMatrixDRow(A,1)[2] = 1;

View Examples

Inserting row i1 into row i2 of matrix can easily accomplished through:

TMatrixDRow(A,i1) = TMatrixDRow(A,i2)

Which more readable than:

const Int_t ncols = A.GetNcols();
Double_t *start = A.GetMatrixArray();
Double_t *rp1 = start+i*ncols;
const Double_t *rp2 = start+j*ncols;
while (rp1 < start+ncols)
*rp1++ = *rp2++;

Check that the columns of a Haar -matrix of order order are indeed orthogonal:

const TMatrixD haar = THaarMatrixD(order);
TVectorD colj(1<<order);
TVectorD coll(1<<order);
for (Int_t j = haar.GetColLwb(); j <= haar.GetColUpb(); j++) {
colj = TMatrixDColumn_const(haar,j);
Assert(TMath::Abs(colj*colj-1.0) <= 1.0e-15);

for (Int_t l = j+1; l <= haar.GetColUpb(); l++) {
coll = TMatrixDColumn_const(haar,l);
Assert(TMath::Abs(colj*coll) <= 1.0e-15);
}
}

Multiplying part of a matrix with another part of that matrix (they can overlap)

TMatrixDSub(m,1,3,1,3) *= m.GetSub(5,7,5,7);

Matrix Decompositions
The linear algebra package offers several classes to assist in matrix decompositions. Each of the
decomposition methods performs a set of matrix transformations to facilitate solving a system of linear
equations, the formation of inverses as well as the estimation of determinants and condition numbers.
More specifically the classes TDecompLU, TDecompBK, TDecompChol, TDecompQRH and
TDecompSVD give a simple and consistent interface to the LU, Bunch-Kaufman, Cholesky, QR and
SVD decompositions. All of these classes are derived from the base class TDecompBase of which
the important methods are listed in next table:

Method Action

Bool_t Decompose () perform the matrix decomposition

Linear Algebra in ROOT

354

Double_t Condition () calculate ||A||1 ||A-1||1, see “Condition
number“

void Det (Double_t &d1,Double_t &d2)
the determinant is d1 2 . Expressing the
determinant this way makes under/over-flow
very unlikely

Bool_t Solve (TVectorD &b) solve Ax=b; vector b is supplied through the
argument and replaced with solution x

TVectorD Solve(const TVectorD &b,
Bool_t &ok)

solve Ax=b; x is returned

Bool_t Solve(TMatrixDColumn &b) solve Ax=column(B,j); column(B,j)
is supplied through the argument and replaced
with solution x

Bool_t TransSolve (TVectorD &b) solve ATx=b; vector b is supplied through
the argument and replaced with solution x

TVectorD TransSolve(const TVectorD
b, Bool_t &ok)

solve ATx=b; vector x is returned

Bool_t TransSolve(TMatrixDColumn
&b)

solve ATx=column(B,j);
column(B,j) is supplied through the
argument and replaced with solution x

Bool_t MultiSolve (TMatrixD &B) solve AX=B. matrix B is supplied through the
argument and replaced with solution X

void Invert (TMatrixD &inv) call to MultiSolve with as input argument
the unit matrix. Note that for a matrix (m x n)-
A with m>n, a pseudo-inverse is calculated

TMatrixD Invert() call to MultiSolve with as input argument
the unit matrix. Note that for a matrix (m x n)-
A with m>n, a pseudo-inverse is calculated

Through TDecompSVD and TDecompQRH one can solve systems for a (m x n) - A with m>n.
However, care has to be taken for methods where the input vector/matrix is replaced by the solution.
For instance in the method Solve(b), the input vector should have length m but only the first n
entries of the output contain the solution. For the Invert(B) method, the input matrix B should
have size (m x m) so that the returned (m x n) pseudo-inverse can fit in it.

The classes store the state of the decomposition process of matrix in the user-definable part of
TObject::fBits, see the next table. This guarantees the correct order of the operations:

kMatrixSet

kDecomposed

kDetermined

kCondition

kSingular

assigned

decomposed, bit kMatrixSet must have been set.

det () calculated, bit kDecomposed must have been set.

||A||1 ||A-1||1 is calculated bit kDecomposed must have been set.

is singular

The state is reset by assigning a new matrix through SetMatrix(TMatrixD &A)
for TDecompBK and TDecompChol (actually SetMatrix(TMatrixDSym &A) and
SetMatrix(TMatrixDSparse &A) for TMatrixDSparse).

Linear Algebra in ROOT

355

As the code example below shows, the user does not have to worry about the decomposition step
before calling a solve method, because the decomposition class checks before invoking Solve that
the matrix has been decomposed.

TVectorD b = ..;
TMatrixD a = ..;
.
TDecompLU lu(a);
Bool_t ok;
lu.Solve(b,ok);

In the next example, we show again the same decomposition but now performed in a loop and
all necessary steps are manually invoked. This example also demonstrates another very important
point concerning memory management! Note that the vector, matrix and decomposition class are
constructed outside the loop since the dimensions of vector/matrix are constant. If we would have
replaced lu.SetMatrix(a) by TDecompLU lu(a), we would construct/deconstruct the array
elements of lu on the stack.

TVectorD b(n);
TMatrixD a(n,n);
TDecompLU lu(n);
Bool_t ok;
for (....) {
b = ..;
a = ..;
lu.SetMatrix(a);
lu.Decompose();
lu.Solve(b,ok);
}

Tolerances and Scaling
The tolerance parameter fTol (a member of the base class TDecompBase) plays a crucial role in
all operations of the decomposition classes. It gives the user a tool to monitor and steer the operations
its default value is # where 1+#=1.

If you do not want to be bothered by the following considerations, like in most other linear algebra
packages, just set the tolerance with SetTol to an arbitrary small number. The tolerance number is
used by each decomposition method to decide whether the matrix is near singular, except of course
SVD that can handle singular matrices. This will be checked in a different way for any decomposition.
For instance in LU, a matrix is considered singular in the solving stage when a diagonal element of
the decomposed matrix is smaller than fTol. Here an important point is raised. The Decompose()
method is successful as long no zero diagonal element is encountered. Therefore, the user could
perform decomposition and only after this step worry about the tolerance number.

If the matrix is flagged as being singular, operations with the decomposition will fail and will return
matrices or vectors that are invalid. If one would like to monitor the tolerance parameter but not have
the code stop in case of a number smaller than fTol, one could proceed as follows:

TVectorD b = ..;
TMatrixD a = ..;
.
TDecompLU lu(a);
Bool_t ok;
TVectorD x = lu.Solve(b,ok);
Int_t nr = 0;

Linear Algebra in ROOT

356

while (!ok) {
lu.SetMatrix(a);
lu.SetTol(0.1*lu.GetTol());
if (nr++ > 10) break;
x = lu.Solve(b,ok);
}
if (x.IsValid())
cout << "solved with tol =" << lu.GetTol() << endl;
else
cout << "solving failed " << endl;

The observant reader will notice that by scaling the complete matrix by some small number the
decomposition will detect a singular matrix. In this case, the user will have to reduce the tolerance
number by this factor. (For CPU time saving we decided not to make this an automatic procedure).

Condition number
The numerical accuracy of the solution x in Ax = b can be accurately estimated by calculating the

condition number k of matrix , which is defined as:

k = where =

A good rule of thumb is that if the matrix condition number is 10n, the accuracy in x is 15-n digits
for double precision.

Hager devised an iterative method (W.W. Hager, Condition estimators, SIAM J. Sci. Stat. Comp., 5

(1984), pp. 311-316) to determine without actually having to calculate . It is used when
calling Condition ().

A code example below shows the usage of the condition number. The matrix is a (10x10) Hilbert
matrix that is badly conditioned as its determinant shows. We construct a vector b by summing the
matrix rows. Therefore, the components of the solution vector x should be exactly 1. Our rule of thumb
to the 2.1012 condition number predicts that the solution accuracy should be around 15-12 = 3 digits.
Indeed, the largest deviation is 0.00055 in component 6.

TMatrixDSym H = THilbertMatrixDSym(10);
TVectorD rowsum(10);
for (Int_t irow = 0; irow < 10; irow++)
for (Int_t icol = 0; icol < 10; icol++)
rowsum(irow) += H(irow,icol);
TDecompLU lu(H);
Bool_t ok;
TVectorD x = lu.Solve(rowsum,ok);
Double_t d1,d2;
lu.Det(d1,d2);
cout << "cond:" << lu.Condition() << endl;
cout << "det :" << d1*TMath:Power(2.,d2) << endl;
cout << "tol :" << lu.GetTol() << endl;
x.Print();
cond:3.9569e+12
det :2.16439e-53
tol :2.22045e-16
Vector 10 is as follows
| 1 |

Linear Algebra in ROOT

357

0 |1
1 |1
2 |0.999997
3 |1.00003
4 |0.999878
5 |1.00033
6 |0.999452
7 |1.00053
8 |0.999723
9 |1.00006

LU

Decompose an n×n matrix .

PA = LU

P permutation matrix stored in the index array fIndex: j=fIndex[i] indicates that row j and row
i should be swapped. Sign of the permutation, -1n, where n is the number of interchanges in the
permutation, stored in fSign.

L is lower triangular matrix, stored in the strict lower triangular part of fLU. The diagonal elements
of L are unity and are not stored.

U is upper triangular matrix, stored in the diagonal and upper triangular part of fU.

The decomposition fails if a diagonal element of fLU equals 0.

Bunch-Kaufman

Decompose a real symmetric matrix

A = UDUT

D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks Dk.

U is product of permutation and unit upper triangular matrices:

U = Pn-1Un-1 · · ·PkUk · · · where k decreases from n - 1 to 0 in steps of 1 or 2. Permutation matrix
Pk is stored in fIpiv. Uk is a unit upper triangular matrix, such that if the diagonal block Dk is of
order s (s = 1, 2), then

If s = 1, Dk overwrites (k, k), and v overwrites (0: k - 1, k).

If s = 2, the upper triangle of Dk overwrites (k-1, k-1), (k-1, k), and (k, k), and v overwrites

 (0 : k - 2, k - 1 : k).

Linear Algebra in ROOT

358

Cholesky

Decompose a symmetric, positive definite matrix .

A = UTU

U is an upper triangular matrix. The decomposition fails if a diagonal element of fU#0, the matrix
is not positive negative.

QRH

Decompose a (m x n) - matrix with m # n.

A = QRH

Q orthogonal (m x n) - matrix, stored in fQ;

R upper triangular (n x n) - matrix, stored in fR;

H (n x n) - Householder matrix, stored through;

fUp n - vector with Householder up’s;

fW n - vector with Householder beta’s.

The decomposition fails if in the formation of reflectors a zero appears, i.e. singularity.

SVD

Decompose a (m x n) - matrix with m # n.

A = USVT

U (m x m) orthogonal matrix, stored in fU;

S is diagonal matrix containing the singular values. Diagonal stored in vector fSig which is ordered
so that fSig[0] >= fSig[1] >= ... >= fSig[n-1];

V (n x n) orthogonal matrix, stored in fV.

The singular value decomposition always exists, so the decomposition will (as long as m ≥ n) never

fail. If m < n, the user should add sufficient zero rows to , so that m == n. In the SVD, fTol is
used to set the threshold on the minimum allowed value of the singular values: min singular =
fTol maxi(Sii).

Matrix Eigen Analysis
Classes TMatrixDEigen and TMatrixDSymEigen compute eigenvalues and eigenvectors

for general dense and symmetric real matrices, respectively. If matrix is symmetric,

then , where the eigenvalue matrix is diagonal and the eigenvector matrix is

orthogonal. That is, the diagonal values of are the eigenvalues, and , where - is the

Linear Algebra in ROOT

359

identity matrix. The columns of represent the eigenvectors in the sense that . If A

is not symmetric, the eigenvalue matrix is block diagonal with the real eigenvalues in 1-by-1
blocks and any complex eigenvalues, a+i*b, in 2-by-2 blocks, [a,b;-b,a]. That is, if the complex
eigenvalues look like:

 then looks like

This keeps a real matrix in both symmetric and non-symmetric cases, and .

The matrix may be badly conditioned, or even singular, so the validity of the equation

 depends upon the condition number of . Next table shows the methods of the
classes TMatrixDEigen and TMatrixDSymEigen to obtain the eigenvalues and eigenvectors.
Obviously, MatrixDSymEigen constructors can only be called with TMatrixDSym:

Format Output Description

eig.GetEigenVectors () TMatrixD eigenvectors for both TMatrixDEigen and
TMatrixDSymEigen

eig.GetEigenValues () TVectorD eigenvalues vector for
TMatrixDSymEigen

eig.GetEigenValues() TMatrixD eigenvalues matrix for TMatrixDEigen

eig.GetEigenValuesRe () TVectorD real part of eigenvalues for TMatrixDEigen

eig.GetEigenValuesIm () TVectorD imaginary part of eigenvalues for

TMatrixDEigen

Below, usage of the eigenvalue class is shown in an example where it is checked that the square of

the singular values of a matrix are identical to the eigenvalues of . :

const TMatrixD m = THilbertMatrixD(10,10);
TDecompSVD svd(m);
TVectorD sig = svd.GetSig(); sig.Sqr();
// Symmetric matrix EigenVector algorithm
TMatrixDSym mtm(TMatrixDBase::kAtA,m);
const TMatrixDSymEigen eigen(mtm);
const TVectorD eigenVal = eigen.GetEigenValues();
const Bool_t ok = VerifyVectorIdentity(sig,eigenVal,1,1.-e-14);

Speed Comparisons
Speed of four matrix operations have been compared between four matrix libraries, GSL CLHEP,
ROOT v3.10 and ROOT v4.0. Next figure shows the CPU time for these four operations as a
function of the matrix size:

1. A*B The execution time is measured for the sum of A * Bsym, Bsym* A and A * B. Notice the
matrix_size3 dependence of execution time. CLHEP results are hampered by a poor implementation

Linear Algebra in ROOT

360

of symmetric matrix multiplications. For instance, for general matrices of size 100x100, the time is
0.015 sec. while A * Bsym takes 0.028 sec and Bsym* A takes 0.059 sec.

Both GSL and ROOT v4.0 can be setup to use the hardware-optimized multiplication routines of the
BLAS libraries. It was tested on a G4 PowerPC. The improvement becomes clearly visible around sizes
of (50x50) were the execution speed improvement of the Altivec processor becomes more significant
than the overhead of filling its pipe.

2. A-1 Here, the time is measured for an in-place matrix inversion.

Except for ROOT v3.10, the algorithms are all based on an LU factorization followed by forward/
back-substitution. ROOT v3.10 is using the slower Gaussian elimination method. The numerical
accuracy of the CLHEP routine is poor:

- up to 6x6 the numerical imprecise Cramer multiplication is hard-coded. For instance, calculating
U=H*H-1, where H is a (5x5) Hilbert matrix, results in off-diagonal elements of 10-7 instead of the
10-13 using an LU according to Crout.

- scaling protection is non-existent and limits are hard-coded, as a consequence inversion of a Hilbert
matrix for sizes>(12x12) fails. In order to gain speed the CLHEP algorithm stores its permutation
info of the pivots points in a static array, making multi-threading not possible.

GSL uses LU decomposition without the implicit scaling of Crout. Therefore, its accuracy is not as
good. For instance a (10x10) Hilbert matrix has errors 10 times larger than the LU Crout result.
In ROOT v4.0, the user can choose between the Invert() and IvertFast() routines, where
the latter is using the Cramer algorithm for sizes<7x7. The speed graph shows the result for
InvertFast().

3. A*x=b the execution time is measured for solving the linear equation A*x=b. The same
factorizations are used as in the matrix inversion. However, only 1 forward/back-substitution has to
be used instead of msize as in the inversion of (msize x msize) matrix. As a consequence the same
differences are observed but less amplified. CLHEP shows the same numerical issues as in step the
matrix inversion. Since ROOT3.10 has no dedicated equation solver, the solution is calculated through
x=A-1*b. This will be slower and numerically not as stable.

4. (AT*A)-1*AT timing results for calculation of the pseudo inverse of matrix a. The sequence of
operations measures the impact of several calls to constructors and destructors in the C++ packages
versus a C library like GSL.

Figure 14.2. Speed comparison between the different matrix packages

361

Chapter 15. Adding a Class

The Role of TObject
The light-weight TObject class provides the default behavior and protocol for the objects in the
ROOT system. Specifically, it is the primary interface to classes providing object I/O, error handling,
inspection, introspection, and drawing. The interface to this service is via abstract classes.

Introspection, Reflection and Run Time Type
Identification

Introspection, which is also referred to as reflection, or run time type identification (RTTI) is the ability
of a class to reflect upon itself or to "look inside itself. ROOT implements reflection with the TClass
class. It provides all the information about a class, a full description of data members and methods,
including the comment field and the method parameter types. A class with the ClassDef macro has
the ability to obtain a TClass with the IsA method.

TClass *cl = obj->IsA();

It returns a TClass. In addition, an object can directly get the class name and the base classes by:

const char* name = obj->ClassName();

If the class is a descendent of TObject, you can check if an object inherits from a specific class,
you can use the InheritsFrom method. This method returns kTrue if the object inherits from the
specified class name or TClass.

Bool_t b = obj->InheritsFrom("TLine");
Bool_t b = obj->InheritsFrom(TLine::Class());

ROOT and CINT rely on reflection and the class dictionary to identify the type of a variable at run
time. With TObject inheritance come some methods that use Introspection to help you see the data
in the object or class. For instance:

obj->Dump(); // lists all data members and their current valsue
obj->Inspect(); // opens a window to browse data members
obj->DrawClass(); // Draws the class inheritance tree

For an example of obj->Inspect(), see "Inspecting Objects".

Collections
To store an object in a ROOT collection, it must be a descendent of TObject. This is convenient
if you want to store objects of different classes in the same collection and execute the method of the
same name on all members of the collection. For example, the list of graphics primitives are in a
ROOT collection called TList. When the canvas is drawn, the Paint method is executed on the
entire collection. Each member may be a different class, and if the Paint method is not implemented,
TObject::Paint will be executed.

Input/Output
The TObject::Write method is the interface to the ROOT I/O system. It streams the object into
a buffer using the Streamer method. It supports cycle numbers and automatic schema evolution.
See “Input/Output”.

Adding a Class

362

Paint/Draw
These graphics methods are defaults; their implementation in TObject does not use the graphics
subsystem. The TObject::Draw method is simply a call to AppendPad. The Paint method
is empty. The default is provided so that one can call Paint in a collection. The method
GetDrawOption returns the draw option that was used when the object was drawn on the canvas.
This is especially relevant with histograms and graphs.

Clone/DrawClone
Two useful methods are Clone and DrawClone. The Clone method takes a snapshot of the object
with the Streamer and creates a new object. The DrawClone method does the same thing and in
addition draws the clone.

Browse
This method is called if the object is browse-able and is to be displayed in the object browser. For
example the TTree implementation of Browse, calls the Browse method for each branch. The
TBranch::Browse method displays the name of each leaf. For the object's Browse method to be
called, the IsFolder() method must be overridden to return true. This does not mean it has to be
a folder, it just means that it is browse-able.

SavePrimitive
This method is called by a canvas on its list of primitives, when the canvas is saved as a script.
The purpose of SavePrimitve is to save a primitive as a C++ statement(s). Most ROOT
classes implement the SavePrimitive method. It is recommended that the SavePrimitive
is implemented in user defined classes if it is to be drawn on a canvas. Such that the command
TCanvas::SaveAs(Canvas.C) will preserve the user-class object in the resulting script.

GetObjectInfo
This method is called when displaying the event status in a canvas. To show the event status
window, select the Options menu and the EventStatus item. This method returns a string of
information about the object at position (x, y). Every time the cursor moves, the object under the cursor
executes the GetObjectInfo method. The string is then shown in the status bar. There is a default
implementation in TObject, but it is typically overridden for classes that can report peculiarities for
different cursor positions (for example the bin contents in a TH1).

IsFolder
By default an object inheriting from TObject is not brows-able, because
TObject::IsFolder() returns kFALSE. To make a class browse-able, the IsFolder method
needs to be overridden to return kTRUE. In general, this method returns kTRUE if the object contains
browse-able objects (like containers or lists of other objects).

Bit Masks and Unique ID
A TObject descendent inherits two data members: fBits and fUniqueID. fBits is 32-bit data
member used with a bit mask to get object information. Bits 0 – 13 are reserved as global bits, bits
14 – 23 can be used in different class hierarchies.

enum EObjBits {
 kCanDelete = BIT(0), //if can be deleted
 kMustCleanup = BIT(3), //if destructor must call

Adding a Class

363

 // RecursiveRemove()
 kObjInCanvas = BIT(3), //for backward compatibility only
 kIsReferenced = BIT(4), //if referenced by TRef or TRefArray
 kHasUUID = BIT(5), //if has a TUUID, fUniqueID=UUIDNumber
 kCannotPick = BIT(6), //if cannot be picked in a pad
 kNoContextMenu = BIT(8), //if does not want a context menu
 kInvalidObject = BIT(13) //object ctor succeeded but the object
 // should not be used

};

For example, the bits kMustCleanup and kCanDelete are used in TObject. See “The
kCanDelete Bit” and “The kMustCleanup Bit”. They can be set by any object and should not be reused.
Make sure to no overlap in any given hierarchy them. The bit 13 (kInvalidObject) is set when
an object could not be read from a ROOT file. It will check this bit and will skip to the next object
on the file.

The TObject constructor initializes the fBits to zero depending if the object is created on the stack
or allocated on the heap. When the object is created on the stack, the kCanDelete bit is set to false
to protect from deleting objects on the stack. The high 8 bits are reserved for the system usage; the low
24 bits are user settable. fUniqueID is a data member used to give a unique identification number to
an object. It is initialized to zero by the TObject constructor. ROOT does not use this data member.
The two data members (fBits and fUniqueID) are streamed out when writing an object to disk.
If you do not use them, you can save some space and time by specifying:

MyClass::Class()->IgnoreTObjectStreamer();

This sets a bit in the TClass object. If the file is compressed, the savings are minimal since
most values are zero; however, it saves some space when the file is not compressed. A call to
IgnoreTObjectStreamer also prevents the creation of two additional branches when splitting
the object. If left alone, two branches called fBits and fUniqueID will appear.

Motivation
If you want to integrate and use your classes with ROOT, to enjoy features like, extensive RTTI (Run
Time Type Information) and ROOT object I/O and inspection, you have to add the following line to
your class header files:

ClassDef(ClassName,ClassVersionID); //The class title

For example in TLine.h we have:

ClassDef(TLine,1); //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on the output stream and
during reading you can check this version ID and take appropriate action depending on the value of
the ID. See “Streamers”. Every time you change the data members of a class, you should increase its
ClassVersionID by one. The ClassVersionID should be >=1. Set ClassVersionID=0 in
case you don't need object I/O. To be able to generate properly documentation for your classes using
THtml you must add the statement:

ClassImp(ClassName)

For example in TLine.cxx:

ClassImp(TLine)

Note that you should provide a default constructor for your classes, i.e. a constructor with zero
parameters or with one or more parameters all with default values in case you want to use object I/O. If

Adding a Class

364

do not provide such a default contructor, you MUST implement an I/O constructor. If not you will get a
compile time error. See the “The Default Constructor” paragraph in this chapter. The ClassDef and
ClassImp macros are defined in the file Rtypes.h. This file is referenced by all ROOT include
files, so you will automatically get them if you use a ROOT include file.

Template Support
In ROOT version 3.03 and older, ROOT provided special ClassDef and ClassImp macros
for classes with two and three template arguments. In ROOT version 3.04 and above, the macros
ClassDef and ClassImp can be used directly even for a class template. ClassImp is used to
register an implementation file in a class. For class templates, the ClassImp can only be used for
a specific class template instance.

ClassImp(MyClass1<double>);

For multiple template arguments, you will need to use an intermediary typedef:

typedef MyClass2<int,float> myc_i_f;
ClassImp(myc_i_f);

You can also register an implementation for all instances of a class template by using
templateClassImp:

templateClassImp(MyClass3);

Here are examples of a header and a LinkDef file:

// in header file MyClass.h
template <typename T> class MyClass1 {
private:
 T fA;
 ...
public:
 ...
 ClassDef(MyClass1,1)
};
template <typename T1, typename T2> class MyClass2 {
private:
 T1 fA;
 T2 fB;
public:
 ...
 ClassDef(MyClass2,1)
};
template <typename T1, typename T2, typename T3> class MyClass3 {
private:
 T1 fA;
 T2 fB;
 T3 fC;
 ...
public:
 ...
 ClassDef(MyClass3,1)
};

// A LinkDef.h file with all the explicit template instances
// that will be needed at link time
#ifdef __CINT__

Adding a Class

365

#pragma link C++ class MyClass1<float>+;
#pragma link C++ class MyClass1<double>+;
#pragma link C++ class MyClass2<float,int>+;
#pragma link C++ class MyClass2<float,double>+;
#pragma link C++ class MyClass3<float,int,TObject*>+;
#pragma link C++ class MyClass3<float,TEvent*,TObject*>+;

#endif

The Default Constructor
ROOT object I/O requires every class to have either a default constructor or an I/O constructor. A
default constructor is a constructor with zero parameters or with one or more parameters all with
default values. An I/O constructor is a constructor with exactly one parameter which type is a pointer
to one of the type marked as an 'io constructor type'. We will come back to this context in a few
paragraphs. This default or I/O constructor is called whenever an object is being read from a ROOT
database. Be sure that you do not allocate any space for embedded pointer objects in this constructor.
This space will be lost (memory leak) while reading in the object. For example:

class T49Event : public TObject {
private:
Int_t fId;
TCollection *fTracks;
...
public:
 // Error space for TList pointer will be lost
T49Event() { fId = 0; fTrack = new TList; }
 // Correct default initialization of pointer
T49Event() { fId = 0; fTrack = 0; }
...
};

The memory will be lost because during reading of the object the pointer will be set to the object it
was pointing to at the time the object was written. Create the fTrack list when you need it, e.g. when
you start filling the list or in a not-default constructor.

...
if (!fTrack) fTrack = new TList;
...

The constructor actually called by the ROOT I/O can be customized by using the rootcint pragma:

#pragma link C++ ioctortype UserClass;

For example, with this pragma and a class named MyClass, the ROOT I/O will call the first of the
following 3 constructors which exists and is public:

MyClass(UserClass*);MyClass(TRootIOCtor*);
MyClass(); // Or a constructor with all its arguments defaulted.

When more than one pragma ioctortype is used, the first seen as priority. For example with:

#pragma link C++ ioctortype UserClass1;
#pragma link C++ ioctortype UserClass2;

We look for the first existing public constructor in the following order:

MyClass(UserClass1*);
MyClass(UserClass2*);

Adding a Class

366

MyClass(TRootIoCtor*);
MyClass(); // Or a constructor with all its arguments defaulted.

rootcint: The CINT Dictionary Generator
In the following example, we walk through the steps necessary to generate a dictionary, I/O, and
inspect member functions. Let's start with a TEvent class, which contains a collection of TTracks.

The TEvent.h header is:

#ifndef __TEvent__
#define __TEvent__
#include "TObject.h"
class TCollection;
class TTrack;

class TEvent : public TObject {
private:
Int_t fId; // event sequential id
Float_t fTotalMom; // total momentum
TCollection *fTracks; // collection of tracks
public:
TEvent() { fId = 0; fTracks = 0; }
TEvent(Int_t id);
~TEvent();
void AddTrack(TTrack *t);
Int_t GetId() const { return fId; }
Int_t GetNoTracks() const;
void Print(Option_t *opt="");
Float_t TotalMomentum();

ClassDef(TEvent,1); //Simple event class
};

The things to notice in these header files are:

• The usage of the ClassDef macro

• The default constructors of the TEvent and TTrack classes

• Comments to describe the data members and the comment after the ClassDef macro to describe
the class

These classes are intended for you to create an event object with a certain id, and then add tracks to
it. The track objects have a pointer to their event. This shows that the I/O system correctly handles
circular references.

The TTrack.h header is:

#ifndef __TTrack__
#define __TTrack__
#include "TObject.h"

class TEvent;
class TTrack : public TObject {
private:
Int_t fId; //track sequential id
TEvent *fEvent; //event to which track belongs

Adding a Class

367

Float_t fPx; //x part of track momentum
Float_t fPy; //y part of track momentum
Float_t fPz; //z part of track momentum
public:
 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
TTrack(Int_t id, Event *ev, Float_t px,Float_t py,Float_t pz);
Float_t Momentum() const;
TEvent *GetEvent() const { return fEvent; }
void Print(Option_t *opt="");

 ClassDef (TTrack,1); //Simple track class
};

#endif

Next is the implementation of these two classes.

TEvent.cxx:

#include <iostream.h>

#include "TOrdCollection.h"
#include "TEvent.h"
#include "TTrack.h"

ClassImp(TEvent)

...

TTrack.cxx:

#include <iostream.h>

#include "TMath.h"
#include "Track.h"
#include "Event.h"

ClassImp(TTrack)
...

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the name of static function
(G__cpp_reset_tabableeventdict() and G__set_cpp_environmenteventdict
()).

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.cxx we can see, besides the many member function calling stubs
(used internally by the interpreter), the Streamer() and ShowMembers() methods for the two
classes. Streamer() is used to stream an object to/from a TBuffer and ShowMembers() is used
by the Dump() and Inspect() methods of TObject. Here is the TEvent::Streamer method:

void TEvent::Streamer(TBuffer &R__b) {
 // Stream an object of class TEvent.
if (R__b.IsReading()) {
Version_t R__v = R__b.ReadVersion();
TObject::(R__b);
R__b >> fId;

Adding a Class

368

R__b >> fTotalMom;
R__b >> fTracks;
} else {
R__b.WriteVersion(TEvent::IsA());
TObject::Streamer(R__b);
R__b << fId;
R__b << fTotalMom;
R__b << fTracks;
}
}

The TBuffer class overloads the operator<<() and operator>>() for all basic types and for
pointers to objects. These operators write and read from the buffer and take care of any needed byte
swapping to make the buffer machine independent. During writing, the TBuffer keeps track of the
objects that have been written and multiple references to the same object are replaced by an index. In
addition, the object's class information is stored. TEvent and TTracks need manual intervention.
Cut and paste the generated Streamer() from the eventdict.cxx into the class' source file
and modify as needed (e.g. add counter for array of basic types) and disable the generation of the
Streamer() when using the LinkDef.h file for next execution of rootcint. In case you do not
want to read or write this class (no I/O) you can tell rootcint to generate a dummy Streamer()
by changing this line in the source file:

ClassDef(TEvent,0);

If you want to prevent the generation of Streamer(), see the chapter "Adding a Class with a Shared
Library".

Dictionaries for STL
Usually, headers are passed to rootcint at the command line. To generate a dictionary for a class from
the STL, e.g.

std::vector<MyClass>, you would normally pass the header defining MyClass and std::vector. The
latter is a compiler specific header and cannot be passed to rootcint directly. Instead, create a little
header file that includes both headers, and pass that to rootcint.

Often ROOT knows where MyClass and the templated class (e.g. vector) are defined, for example
because the files got #included. Knowing these header files ROOT can automatically generate the
dictionary for any template combination (e.g. vector<myClass>) when it is needed, by generating
files starting with AutoDict*. You can toggle this feature on or off at the ROOT prompt by executing
.autodict.

Adding a Class with a Shared Library
Step 1: Define your own class in SClass.h and implement it in SClass.cxx. You must provide a
default constructor or an I/O constructor for your class. See the "The Default Constructor" paragraph
in this chapter.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {
private:
Float_t fX; //x position in centimeters
Float_t fY; //y position in centimeters
Int_t fTempValue; //! temporary state value
public:

Adding a Class

369

SClass() { fX = fY = -1; }
void Print() const;
void SetX(float x) { fX = x; }
void SetY(float y) { fY = y; }

ClassDef(SClass, 1)
};

Step 2: Add a call to the ClassDef macro to at the end of the class definition (in the SClass.h
file). ClassDef(SClass,1). Add a call to the ClassImp macro in the implementation file
(SClass.cxx): ClassImp(SClass).

// SClass.cxx:
#include "SClass.h"
ClassImp(SClass);
void SClass::Print() const {
cout << "fX = " << fX << ", fY = " << fY << endl;
}

You can add a class without using the ClassDef and ClassImp macros; however, you will be
limited. Specifically the object I/O features of ROOT will not be available to you for these classes.
See "CINT the C++ Interpreter". The ShowMembers and Streamer method, as well as the >>
operator overloads, are implemented only if you use ClassDef and ClassImp. See $ROOTSYS/
include/Rtypes.h for the definition of ClassDef and ClassImp. To exclude a data member
from the Streamer, add a ! as the first character in the comments of the field:

Int_t fTempValue; //! temporary state value

The LinkDef.h File
Step 3: The LinkDef.h file tells rootcint for which classes to generate the method interface
stubs.

#ifdef __CINT__
#pragma link C++ class SClass;
#endif

Three options can trail the class name:

• - : tells rootcint not to generate the Streamer method for this class. This is necessary for
those classes that need a customized Streamer method.

#pragma link C++ class SClass-; // no streamer

• ! : tells rootcint not to generate the operator>>(TBuffer &b,MyClass *&obj)
method for this class. This is necessary to be able to write pointers to objects of classes not inheriting
from TObject.

#pragma link C++ class SClass!; // no >> operator
// or
#pragma link C++ class SClass-!; // no streamer, no >> operator

• + : in ROOT version 1 and 2 tells rootcint to generate a Streamer with extra byte count
information. This adds an integer to each object in the output buffer, but it allows for powerful error
correction in case a Streamer method is out of sync with data in the file. The + option is mutual
exclusive with both the - and ! options.

IMPORTANT NOTE: In ROOT Version 3, a "+" after the class name tells rootcint to use the new
I/O system. The byte count check is always added.

Adding a Class

370

#pragma link C++ class SClass+; // add byte count

For information on Streamers see “Input/Output”. To get help on rootcint type on the UNIX
command line: rootcint -h

The Order Matters

When using template classes, the order of the pragma statements matters. For example, here is a
template class Tmpl and a normal class Norm, which holds a specialized instance of a Tmpl:

class Norm {
private:
 Tmpl<int>* fIntTmpl;
public:
 ...
};

Then in Linkdef.h, the pragma statements must be ordered by listing all specializations before
any classes that need them:

// Correct Linkdef.h ordering
...
#pragma link C++ class Tmpl<int>;
#pragma link C++ class Norm;
...

And not vice versa:

// Bad Linkdef.h ordering
...
#pragma link C++ class Norm;
#pragma link C++ class Tmpl<int>;
...

In this case, rootcint generates Norm::Streamer() that makes reference to
Tmpl<int>::Streamer(). Then rootcint gets to process Tmpl<int> and generates a
specialized Tmpl<int>::Streamer() function. The problem is, when the compiler finds the first
Tmpl<int>::Streamer(), it will instantiate it. However, later in the file it finds the specialized
version that rootcint generated. This causes the error. However, if the Linkdef.h order is
reversed then rootcint can generate the specialized Tmpl<int>::Streamer() before it is
needed (and thus never instantiated by the compiler).

Other Useful Pragma Statements

The complete list of pragma statements currently supported by CINT is:

#pragma link [C|C++|off] all [class|function|global|typedef];
#pragma link [C|C++|off]
 [class|struct|union|enum|namespace|protected][name];
#pragma link [C|C++|off] [global|typedef][name];
#pragma link [C|C++|off] [nestedclass|nestedtypedef];

#pragma link [C++|C|off|MACRO] function [name]<(argtypes)>;
#pragma link
 [C++|C|off|MACRO] function [classname]::[name]<(argtypes)>;
#pragma link off all methods;
#pragma link [C|C++|off] defined_in [filename];
#pragma link
 [C|C++|off] defined_in [class|struct|namespace] [name];

Adding a Class

371

#pragma link [C|C++|off] all_function [classname];
#pragma link [C|C++|off] all_datamember [classname];

The [classname] and the [name] can also contain wildcards. For example:

#pragma link C++ class MyClass*;

This will request the dictionary for all the class whose name start with 'MyClass' and are already
known to CINT (class templates need to have already been instantiated to be considered).

#pragma link [C|C++|off] all [class|function|global|typedef];

This pragma statement turns on or off the dictionary generation for all classes, structures, namespaces,
global variables, global functions and typedefs seen so far by CINT. Example:

// some C++ header definition
#ifdef __MAKECINT__
// turns off dictionary generation for all
#pragma link off all class;
#pragma link off all function;
#pragma link off all global;
#pragma link off all typedef;
#endif

The next pragma statement selectively turns on or off the dictionary generation for the specified
classs, struct, union, enum or namespace:

#pragma link
[C|C++|off][class|class+protected|
struct|union|enum|namespace][name];

The Dictionary of all public members of class and struct will be generated. If the 'class
+protected' flag is used, the dictionary for protected members will also be generated. However,
dictionary for protected constructor and destructor will not be generated. This ' class+protected
' flag will help you only for plain protected member access, but not for virtual function resolution.

If you use the 'namespace' flag, it is recommended to add also:

#pragma link nestedclass;
#pragma link nestedtypedef;

The behavior of 'class', 'struct' and 'namespace' flag are identical. Example:

// some C++ header definition
#ifdef __MAKECINT__
#pragma link off all class;
#pragma link C++ class A;
#pragma link C++ class B;
#pragma link C++ class C<int>;
#pragma link C++ class+protected D;
#pragma link C++ namespace project1;
#pragma link C++ nestedclass;
#pragma link C++ nestedtypedef;
#endif

The next pragma statement selectively turns on or off the dictionary generation for global variables
and typedef.

#pragma link [C|C++|off] [global|typedef] [name];

Example:

Adding a Class

372

// some C/C++ header definition
#ifdef __MAKECINT__
#pragma link off all global;
#pragma link off all typedef;
#pragma link C++ global a;
#pragma link C++ typedef Int_t;
#endif

This pragma statement turns on the dictionary generation for nested classes and nested typedefs.

#pragma link [C|C++|off] [nestedclass|nestedtypedef];

Example:

// some C/C++ header definition
#ifdef __MAKECINT__
#pragma link off all global;
#pragma link off all typedef;
#pragma link C++ global a;
#pragma link C++ typedef Int_t;
#endif

The next pragma statements turn on or off the dictionary generation for the specified function(s) or
member function(s). The list of arguments' type is optional. If you omit argument types, all function
with specified [name] will be affected. If the list of arguments' type is specified, only the function
that has exactly same argument list will be affected.

#pragma link [C++|C|off|MACRO] function [fname]<(argtypes)>;
#pragma link
[C++|C|off|MACRO] function [classname]::[fname]<(argtypes)>;

The '#pragma link [C++|C] function' and '#pragma link MACRO function' behaves
similarly. The '#pragma link [C++|C] function' assumes the target to be a real function
which has pointer to it. A pointer to registered function is registered. On the other hand, '#pragma
link MACRO function' assumes target to be macro function. Pointer to function cannot be
referenced in this case.

For the next example:

void f(int a);
void f(double a);
int g(int a,double b);
int g(double x);
#define max(a,b) (a>b?a:b)

class A {
public:
int h(double y);
int h(int a,double b);
};

The pragma statements are:

#ifdef __MAKECINT__
#pragma link off all functions;
#pragma link C++ function f;
#pragma link C++ function g(int,double);
#pragma link C++ MACRO max;
#pragma link C++ class A;
#pragma link off function A::h(double);

Adding a Class

373

#endif

Until CINT version 5.15.60, in order to generate dictionary for a member function, not only the
member function but also the class itself has to be turned on for the linkage. There was an
inconvenience when generating dictionary for template member function afterwards.

From CINT v.5.15.61, a new behavior is introduced. If link for a member function is specified,
dictionary is generated even if link to the belonging class is off. For example, if you originally have
A.h as follows:

// A.h
template<class T> class A {

public:
template<class E> void f(E& x) { ... }
};

And generate dictionary for that:

#ifdef __MAKECINT__
#pragma link C++ class A<int>;
#endif

Then prepare another header file and instantiate the template member function of A.:

// B.h
#include "A.h"

class B {
...
};

You can generate dictionary for the newly instantiated template member function only.

#ifdef __MAKECINT__
#pragma link off defined_in A.h;
#pragma link C++ function A<int>::f(B&);
#endif

The next pragma turns off the dictionary generation of all the member functions in all classes.

#pragma link off all methods;

Example:

#ifdef __MAKECINT__
#pragma link off all methods;
#endif

The next pragma statements control the linking of all the member functions or data members for a
specified class.

#pragma link [C|C++|off] all_function [classname];
#pragma link [C|C++|off] all_datamember [classname];

At this moment, there should be no needs to use those statements. Example:

#ifdef __MAKECINT__
#pragma link off all_function A;
#pragma link off all_datamember A;
#endif

Adding a Class

374

See also: #pragma link function.

The next pragma statement turns on/off dictionary generation of the object defined in specific file.
The filename has to be the full pathname of the file.

#pragma link [C|C++|off] defined_in [filename];

Example:

// file1.h
// any C++ header definition

// file2.h

#ifdef __MAKECINT__
#pragma link off all classes;
#pragma link off all functions;
#pragma link off all globals;

#pragma link off all typedef;
#pragma link C++ defined_in file1.h;
#endif

The next pragma statements turn on or off the dictionary generation of the object defined in a specific
scope. The [scope_name] should be class name, struct name or namespace name. When
using these pragmas, it is recommended to use also:

#pragma link C++ nestedclass

Otherwise, definitions in enclosed scope do not appear in the dictionary.

#pragma link [C|C++|off] defined_in [scope_name];
#pragma link [C|C++|off] defined_in
[class|struct|namespace] [scope_name];

Example:

namespace ns {
int a;
double b;
};

The pragma statements are:

#ifdef __MAKECINT__
#pragma link C++ defined_in ns;
#pragma link C++ nestedclass;
#endif

This statements controls default link mode for makecint(cint -c-1|-c-2) and rootcint.

#pragma link default [on|off]

By turning default 'on', all language constructs in given header files will be included in generated
CINT dictionary (interface method source file). If default is set to 'off', nothing will be included in the
generated dictionary. The next statement explicitly set linkage to each item:

#pragma link [C|C++|off] [class|function|global]

This pragma statement must be given before cint/rootcint reads any C/C++ definitions from
header files. For pure CINT, default is on. For ROOT, including $ROOTSYSDIR/bin/cint, default

Adding a Class

375

is off. This feature was added from CINT v.5.15.57. Before this version, you had to use explicitly in
the ROOT LinkDef.h file the next statement:

#pragma link off [class|function|global];

From 5.15.57, you can omit them. Example:

#ifdef __MAKECINT__
#pragma link default off;
#endif

class A {
int a;
double b;
};

class B {
int d;
double e;
};

#ifdef __MAKECINT__
#pragma link C++ class A; // only class A is linked, not B
#endif

Compilation

Step 4: Compile the class using the Makefile. In the Makefile call rootcint to make the
dictionary for the class. Call it SClassDict.cxx. The rootcint utility generates the methods
Streamer, TBuffer &operator>>() and ShowMembers for ROOT classes.

gmake –f Makefile

Load the shared library:

root[] .L SClass.so
root[] SClass *sc = new SClass()
root[] TFile *f = new TFile("Afile.root","UPDATE");
root[] sc->Write();

For more information on rootcint see the $ROOTSYS/test directory Makefile, Event.cxx,
and Event.h for an example, or follow this link: http://root.cern.ch/root/
RootCintMan.html

Adding a Class with ACLiC
Step 1: Define your class

#include "TObject.h"

// define the ABC class and make it inherit from TObject so that
// we can write ABC to a ROOT file
class ABC : public TObject {

public:
Float_t a, b, c, p;
ABC() : a(0), b(0), c(0), p(0){};

// Define the class for the cint dictionary

Adding a Class

376

ClassDef (ABC,1)
};

// Call the ClassImp macro to give the ABC class RTTI and
// full I/O capabilities.

#if !defined(__CINT__)
ClassImp(ABC);
#endif

Step 2: Load the ABC class in the script.

// Check if ABC is already loaded
if (!TClass::GetDict("ABC")) {
gROOT->ProcessLine(".L ABCClass.C++");
}

// Use the Class
ABC *v = new ABC;
v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->c)));

377

Chapter 16. Collection Classes
Collections are a key feature of the ROOT system. Many, if not most, of the applications you write will
use collections. If you have used parameterized C++ collections or polymorphic collections before,
some of this material will be review. However, much of this chapter covers aspects of collections
specific to the ROOT system. When you have read this chapter, you will know

• How to create instances of collections

• The difference between lists, arrays, hash tables, maps, etc.

• How to add and remove elements of a collection

• How to search a collection for a specific element

• How to access and modify collection elements

• How to iterate over a collection to access collection elements

• How to manage memory for collections and collection elements

• How collection elements are tested for equality (IsEqual())

• How collection elements are compared (Compare()) in case of sorted collections

• How collection elements are hashed (Hash()) in hash tables

Understanding Collections
A collection is a group of related objects. You will find it easier to manage a large number of items
as a collection. For example, a diagram editor might manage a collection of points and lines. A set
of widgets for a graphical user interface can be placed in a collection. A geometrical model can be
described by collections of shapes, materials and rotation matrices. Collections can themselves be
placed in collections. Collections act as flexible alternatives to traditional data structures of computers
science such as arrays, lists and trees.

General Characteristics
The ROOT collections are polymorphic containers that hold pointers to TObjects, so:

• They can only hold objects that inherit from TObject

• They return pointers to TObjects, that have to be cast back to the correct subclass

Collections are dynamic; they can grow in size as required. Collections themselves are descendants of
TObject so can themselves be held in collections. It is possible to nest one type of collection inside
another to any level to produce structures of arbitrary complexity.

Collections do not own the objects they hold for the very good reason that the same object could be a
member of more than one collection. Object ownership is important when it comes to deleting objects;
if nobody owns the object it could end up as wasted memory (i.e. a memory leak) when no longer
needed. If a collection is deleted, its objects are not. The user can force a collection to delete its objects,
but that is the user’s choice.

Determining the Class of Contained Objects
Most containers may hold heterogeneous collections of objects and then it is left to the user to correctly
cast the TObject pointer to the right class. Casting to the wrong class will give wrong results and

Collection Classes

378

may well crash the program! Therefore, the user has to be very careful. Often a container only contains
one class of objects, but if it really contains a mixture, it is possible to ask each object about its class
using the InheritsFrom method.

For example if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {
 printf("myObject is a TParticlen");
}

As the name suggests, this test works even if the object is a subclass of TParticle. The
member function IsA() can be used instead of InheritsFrom to make the test exact. The
InheritsFrom and IsA methods use the extensive Run Time Type Information (RTTI) available
via the ROOT meta-classes.

Types of Collections
The ROOT system implements the following basic types of collections: unordered collections, ordered
collections and sorted collections. Next figure shows the inheritance hierarchy for the primary
collection classes. All primary collection classes derive from the abstract base class TCollection.

Figure 16.1. The inheritance hierarchy of the primary collection classes

Ordered Collections (Sequences)
Sequences are collections that are externally ordered because they maintain internal elements
according to the order in which they were added. The following sequences are available:

• TList

• THashList

• TOrdCollection

• TObjArray

• TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be sorted using their
Sort() member function (for this, the stored objects must provide a comparison function by overriding
TObject::Compare() and also must enable sorting by overriding TObject::IsSortable() to return true).
Ordered collections all derive from the abstract base class TSeqCollection. Sorted collections are
ordered by an internal (automatic) sorting mechanism. The following sorted collections are available
(the stored items must be sortable):

Collection Classes

379

• TSortedList

• TBtree

Unordered collections don't maintain the order in which the elements were added, i.e. when you iterate
over an unordered collection, you are not likely to retrieve elements in the same order they were added
to the collection. The following unordered collections are available:

• THashTable

• TMap

Iterators: Processing a Collection
The concept of processing all the members of a collection is generic, i.e. independent of any specific
representation of a collection. To process each object in a collection one needs some type of cursor
that is initialized and then steps over each member of the collection in turn. Collection objects could
provide this service but there is a snag: as there is only one collection object per collection there would
only be one cursor. Instead, to permit the use of as many cursors as required, they are made separate
classes called iterator. For each collection class there is an associated iterator class that knows how
to sequentially retrieve each member in turn. The relationship between a collection and its iterator is
very close and may require that the iterator has full access to the collection (i.e. it is a friend class). In
general iterator will be used via the TIter wrapper class. For example:

• TList TListIter

• TMap TMapIter

Foundation Classes
All collections are based on the fundamental classes: TCollection and TIterator. They are so
generic that it is not possible to create objects from them; they are only used as base classes for other
classes (i.e. they are abstract base classes).

The TCollection class provides the basic protocol (i.e. the minimum set of member functions)
that all collection classes have to implement. These include:

• Add Adds another object to the collection.

• GetSize Returns the number of objects in the collection.

• Clear Clears out the collection, but does not delete the removed
objects.

• Delete Clears out the collection and deletes the removed objects.
This should only be used if the collection owns its objects (which
are not normally the case).

• FindObject Finds an object given either its name or address.

• MakeIterator Returns an iterator associated with the collection.

• Remove Removes an object from the collection.

The code example below shows a class containing three lists, where the fTracks list is the owning
collection and the other two lists are used to store a sub-set of the track objects. In the destructor of
the class, the method Delete is called for the owning collection to delete correctly its entire track

Collection Classes

380

objects. To delete the objects in the container use fTrack->Delete(). To delete the container
itself, do 'delete fTracks'.

class TEvent : public TObject {
 private:
 TList *fTracks; //list of all tracks
 TList *fVertex1; //subset of tracks part of vertex1
 TList *fVertex2; //subset of tracks part of vertex2
};
TEvent::~TEvent()
{
 fTracks->Delete();
 delete fTracks;
 delete fVertex1;
 delete fVertex2;
}

The TIterator class defines the minimum set of member functions that all iterators must support.
These include:

• Next Returns the next member of the collection or 0 if no more
members.

• Reset Resets the iterator so that Next returns the first object.

A Collectable Class
By default, all objects of TObject derived classes can be stored in ROOT containers. However, the
TObject class provides some member functions that allow you to tune the behavior of objects in
containers. For example, by default two objects are considered equal if their pointers point to the same
address. This might be too strict for some classes where equality is already achieved if some or all
of the data members are equal. By overriding the following TObject member functions, you can
change the behavior of objects in collections:

• IsEqual()is used by the FindObject() collection method. By default, IsEqual()
compares the two object pointers.

• Compare()returns –1, 0 or 1 depending if the object is smaller, equal or larger than the other
object. By default, a TObject has not a valid Compare() method.

• IsSortable() returns true if the class is sort able (i.e. if it has a valid Compare() method).
By default, a TObject is not sort able.

• Hash() returns a hash value. It needs to be implemented if an object has to be stored in a
collection using a hashing technique, like THashTable, THashList and TMap. By default,
Hash() returns the address of the object. It is essential to choose a good hash function.

The example below shows how to use and override these member functions.

class TObjNum : public TObject {
 private:
 Int_t num; // TObjNum is a simple container for an integer.
public:
 TObjNum(Int_t i = 0) : num(i) { }
 ~TObjNum() { }
 void SetNum(Int_t i) { num = i; }

Collection Classes

381

 Int_t GetNum() const { return num; }
 void Print(Option_t *) const
 { printf("num = %dn", num); }
 Bool_t IsEqual(TObject *obj) const
 { return num == ((TObjNum*)obj)->num; }
 Bool_t IsSortable() const { return kTRUE; }
 Int_t Compare(const TObject *obj) const
 { if (num < ((TObjNum*)obj)->num) return -1;
 else if (num > ((TObjNum*)obj)->num) return 1;
 else return 0; }
 ULong_t Hash() const { return num; }
};

The TIter Generic Iterator
As stated above, the TIterator class is abstract; it is not possible to create TIterator objects.
However, it should be possible to write generic code to process all members of a collection so there
is a need for a generic iterator object. A TIter object acts as generic iterator. It provides the same
Next() and Reset() methods as TIterator although it has no idea how to support them! It
works as follows:

• To create a TIter object its constructor must be passed an object that inherits from
TCollection. The TIter constructor calls the MakeIterator() method of this collection
to get the appropriate iterator object that inherits from TIterator.

• The Next() and Reset() methods of TIter simply call the Next() and Reset() methods
of the iterator object.

Therefore, TIter simply acts as a wrapper for an object of a concrete class inheriting from
TIterator.

To see this working in practice, consider the TObjArray collection. Its associated iterator is
TObjArrayIter. Suppose myarray is a pointer to a TObjArray that contains MyClass objects,
i.e.

TObjArray *myarray;

To create a TIter object called myiter:

TIter myiter(myarray);

As shown in the diagram, this results in several methods being called:

• The TIter constructor is passed a TObjArray

Collection Classes

382

• TIter asks embedded TCollection to make an iterator

• TCollection asks TObjArray to make an iterator

• TObjArray returns a TObjArrayIter.

Now define a pointer for MyClass objects and set it to each member of the TObjArray:

MyClass *myobject;
while ((myobject = (MyClass *)myiter.Next())) {
 // process myobject
}

The heart of this is the myiter.Next() expression which does the following:

• The Next() method of the TIter object myiter is called

• The TIter forwards the call to the TIterator embedded in the TObjArrayIter

• TIterator forwards the call to the TObjArrayIter

• TObjArrayIter finds the next MyClass object and returns it

• TIter passes the MyClass object back to the caller

Sometimes the TIter object is called next, and then instead of writing: next.Next() which
is legal, but looks rather odd, iteration is written as next(). This works because the function
operator() is defined for the TIter class to be equivalent to the Next() method.

The TList Collection
A TList is a doubly linked list. Before being inserted into the list the object pointer is wrapped in a
TObjLink object that contains, besides the object pointer also a previous and next pointer.

Objects are typically added using:

• Add()

• AddFirst(), AddLast()

• AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer to vtable = 12 (or
24) bytes.

Next figure shows the internal data structure of a TList.

Collection Classes

383

Figure 16.2. The internal data structure of a TList

Iterating Over a TList
There are four ways to iterate over a TList:

• Using the ForEach script:

GetListOfPrimitives()->ForEach(TObject,Draw)();

• Using the TList iterator TListIter (via the wrapper class TIter):

TIter next(GetListOfTracks());
while ((TTrack *obj = (TTrack *)next()))
 obj->Draw();

• Using the TObjLink list entries (that wrap the TObject*):

TObjLink *lnk = GetListOfPrimitives()->FirstLink();
while (lnk) {
 lnk->GetObject()->Draw();
 lnk = lnk->Next();
}

• Using the TList's After() and Before() member functions:

TFree *idcur = this;
while (idcur) {
 ...
 idcur = (TFree*)GetListOfFree()->After(idcur);
}

Method 1 uses internally method 2.

Method 2 works for all collection classes. TIter overloads operator().

Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a backward TIter (using argument
kIterBackward) or by using LastLink() and lnk>Prev() or by using the Before() method.

Collection Classes

384

The TObjArray Collection
A TObjArray is a collection which supports traditional array semantics via the overloading of
operator[]. Objects can be directly accessed via an index. The array expands automatically when
objects are added. At creation time one specifies the default array size (default = 16) and lower bound
(default = 0). Resizing involves a re-allocation and a copy of the old array to the new. This can be
costly if done too often. If possible, set initial size close to expected final size. Index validity is always
checked (if you are 100% sure and maximum performance is needed you can use UnCheckedAt()
instead of At() or operator[]). If the stored objects are sort able the array can be sorted using
Sort(). Once sorted, efficient searching is possible via the BinarySearch() method. The figure
shows the internal data structure of a TObjArray:

Figure 16.3. The internal data structure of a TObjArray

Iterating can be done using a TIter iterator or via a simple for loop:

for (int i = 0; i <= fArr.GetLast(); i++)
if ((track = (TTrack*)fArr[i])) // or fArr.At(i)
 track->Draw();

Main features of TObjArray are simple, well-known array semantics. Overhead per element: none,
except possible over sizing of fCont.

TClonesArray – An Array of Identical Objects
A TClonesArray is an array of identical (clone) objects. The memory for the objects stored in the
array is allocated only once in the lifetime of the clones array. All objects must be of the same class.
For the rest this class has the same properties as a TObjArray.

Figure 16.4. The internal data structure of a TClonesArray

The figure above shows the internal data structure of a TClonesArray. The class is specially
designed for repetitive data analysis tasks, where in a loop many times the same objects, are created and

Collection Classes

385

deleted. The only supported way to add objects to a TClonesArray is via the new with placement
method. The different Add() methods of TObjArray and its base classes are not supported.

The Idea Behind TClonesArray
To reduce the very large number of new and delete calls in large loops like this (O(100000) x O(10000)
times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 a[i] = new TTrack(x,y,z,...);
 ...
 }
 ...
 a.Delete();
}

You better use a TClonesArray which reduces the number of new/delete calls to only O(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 TTrack *track = (Track*)a.ConstructedAt(i);
 track->Set(x,y,z,...);
 ...
 }
 ...
 a.Clear(); // Or Clear("C") if the track objects must be returned (via Track::Clear) to a default state.
}

Considering that a pair of new/delete calls on average cost about 70 #s, O(109) new/deletes will save
about 19 hours. For the other collections, see the class reference guide on the web and the test program
$ROOTSYS/test/tcollex.cxx.

Template Containers and STL
Some people dislike polymorphic containers because they are not truly “type safe”. In the end, the
compiler leaves it the user to ensure that the types are correct. This only leaves the other alternative:
creating a new class each time a new (container organization) / (contained object) combination is
needed. To say the least this could be very tedious. Most people faced with this choice would, for
each type of container:

Define the class leaving a dummy name for the contained object type. When a particular container
was needed, copy the code and then do a global search and replace for the contained class. C++ has a
built in template scheme that effectively does just this. For example:

template<class T>
class ArrayContainer {
 private:
 T *member[10];
 ...
};

Collection Classes

386

This is an array container with a 10-element array of pointers to T, it could hold up to 10 T objects.
This array is flawed because it is static and hard-coded, it should be dynamic. However, the important
point is that the template statement indicates that T is a template, or parameterized class. If we need
an ArrayContainer for Track objects, it can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list and substitutes Track for T throughout the definition of the class
ArrayContainer, then compiles the code so generated, effectively doing the same we could do
by hand, but with a lot less effort.

This produces code that is type safe, but does have different drawbacks:

• Templates make code harder to read.

• At the time of writing this documentation, some compilers can be very slow when dealing with
templates.

• It does not solve the problem when a container has to hold a heterogeneous set of objects.

• The system can end up generating a great deal of code; each container/object combination has its
own code, a phenomenon that is sometimes referred to as code bloat.

• The Standard Template Library (STL) is part on ANSI C++, and includes a set of template
containers.

387

Chapter 17. Physics Vectors
The physics vector classes describe vectors in three and four dimensions and their rotation algorithms.
The classes were ported to root from CLHEP see:

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/
vector.html

The Physics Vector Classes
In order to use the physics vector classes you will have to load the Physics library:

gSystem.Load("libPhysics.so");

There are four classes in this package. They are:

TVector3 is a general three-vector. A TVector3 may be expressed in Cartesian, polar, or
cylindrical coordinates. Methods include dot and cross products, unit vectors and magnitudes, angles
between vectors, and rotations and boosts. There are also functions of particular use to HEP, like
pseudo-rapidity, projections, and transverse part of a TVector3, and kinetic methods on 4-vectors
such as Invariant Mass of pairs or containers of particles.

TLorentzVector is a general four-vector class, which can be used either for the description
of position and time (x, y, z, t) or momentum and energy (px, py, pz, E). TRotation is a
class describing a rotation of a TVector3 object. TLorentzRotation is a class to describe the
Lorentz transformations including Lorentz boosts and rotations. In addition, a TVector2 is a basic
implementation of a vector in two dimensions and is not part of the CLHEP translation.

TVector3

TVector3 is a general three-vector class, which can be used
for description of different vectors in 3D. Components of three vectors:

x, y, z - basic components

= azimuth angle

= polar angle

magnitude = mag = sqrt(x2 + y2 + z2)

transverse component = perp = sqrt(x2 + y2)

Using the TVector3 class, you should remember that it contains only common features of three
vectors and lacks methods specific for some particular vector values. For example, it has no translated
function because translation has no meaning for vectors.

Physics Vectors

388

Declaration / Access to the Components
TVector3 has been implemented as a vector of three Double_t variables, representing the
Cartesian coordinates. By default the values are initialized to zero, however you can change them in
the constructor:

TVector3 v1; // v1 = (0,0,0)
TVector3 v2(1); // v2 = (1,0,0)
TVector3 v3(1,2,3); // v3 = (1,2,3)
TVector3 v4(v2); // v4 = v2

It is also possible (but not recommended) to initialize a TVector3 with a Double_t or Float_t
C array. You can get the components by name or by index:

xx = v1.X(); or xx = v1(0);
yy = v1.Y(); yy = v1(1);
zz = v1.Z(); zz = v1(2);

The methods SetX(), SetY(), SetZ() and SetXYZ() allow you to set the components:

v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);
v1.SetXYZ(1.,2.,3.);

Other Coordinates
To get information on the TVector3 in spherical (rho, phi, theta) or cylindrical (z, r, theta)
coordinates, the following methods can be used.

Double_t m = v.Mag();
// get magnitude (=rho=Sqrt(x*x+y*y+z*z)))
Double_t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle
Double_t ct = v.CosTheta();// get cos of theta
Double_t p = v.Phi(); // get azimuth angle
Double_t pp = v.Perp(); // get transverse component
Double_t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse component with respect to another vector:

Double_t ppv1 = v.Perp(v1);
Double_t pp2v1 = v.Perp2(v1);

The pseudo-rapidity (eta = -ln (tan (theta/2))) can be obtained by Eta() or
PseudoRapidity():

Double_t eta = v.PseudoRapidity();

These setters change one of the non-Cartesian coordinates:

v.SetTheta(.5); // keeping rho and phi
v.SetPhi(.8); // keeping rho and theta
v.SetMag(10.); // keeping theta and phi

Physics Vectors

389

v.SetPerp(3.); // keeping z and phi

Arithmetic / Comparison
The TVector3 class has operators to add, subtract, scale and compare vectors:

v3 = -v1;
v1 = v2+v3;
v1 += v3;
v1 = v1 - v3;
v1 -= v3;
v1 *= 10;
v1 = 5*v2;
if(v1 == v2) {...}
if(v1 != v2) {...}

Related Vectors

v2 = v1.Unit(); // get unit vector parallel to v1
v2 = v1.Orthogonal(); // get vector orthogonal to v1

Scalar and Vector Products

s = v1.Dot(v2);// scalar product
s = v1 * v2;// scalar product
v = v1.Cross(v2);// vector product

Angle between Two Vectors

Double_t a = v1.Angle(v2);

Rotation around Axes

v.RotateX(.5);
v.RotateY(TMath::Pi());
v.RotateZ(angle);

Rotation around a Vector

v1.Rotate(TMath::Pi()/4, v2); // rotation around v2

Rotation by TRotation Class
TVector3 objects can be rotated by TRotation objects using the Transform() method, the
operator *=, or the operator * of the TRotation class. See the later section on
TRotation.

TRotation m;
...

Physics Vectors

390

v1.Transform(m);
v1 = m*v1;
v1 *= m; // v1 = m*v1

Transformation from Rotated Frame
This code transforms v1 from the rotated frame (z' parallel to direction, x' in the theta plane and y' in
the xy plane as well as perpendicular to the theta plane) to the (x, y, z) frame.

TVector3 direction = v.Unit()
v1.RotateUz(direction); // direction must be TVector3 of unit length

TRotation
The TRotation class describes a rotation of TVector3 object. It is a 3 * 3 matrix of Double_t:

It describes a so-called active rotation, i.e. a rotation of objects inside a static system of coordinates.
In case you want to rotate the frame and want to know the coordinates of objects in the rotated system,
you should apply the inverse rotation to the objects. If you want to transform coordinates from the
rotated frame to the original frame you have to apply the direct transformation. A rotation around a
specified axis means counterclockwise rotation around the positive direction of the axis.

Declaration, Access, Comparisons

TRotation r; // r initialized as identity
TRotation m(r); // m = r

There is no direct way to set the matrix elements - to ensure that a TRotation always describes a
real rotation. But you can get the values by with the methods XX()..ZZ() or the (,) operator:

Double_t xx = r.XX();// the same as xx=r(0,0)
xx = r(0,0);
if (r==m) {...}// test for equality
if (r!=m) {..}// test for inequality
if (r.IsIdentity()) {...} // test for identity

Rotation around Axes
The following matrices describe counter-clockwise rotations around the coordinate axes and are
implemented in: RotateX(), RotateY() and RotateZ():

r.RotateX(TMath::Pi()); // rotation around the x-axis

Physics Vectors

391

Rotation around Arbitrary Axis
The Rotate() method allows you to rotate around an arbitrary vector (not necessary a unit one)
and returns the result.

r.Rotate(TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, which describe the same rotation as the current one:

Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);

Rotation of Local Axes
The RotateAxes()method adds a rotation of local axes to the current rotation and returns the
result:

TVector3 newX(0,1,0);
TVector3 newY(0,0,1);
TVector3 newZ(1,0,0);
a.RotateAxes(newX,newX,newZ);

Methods ThetaX(), ThetaY(), ThetaZ(), PhiX(), PhiY(), PhiZ() return azimuth and
polar angles of the rotated axes:

Double_t tx,ty,tz,px,py,pz;
tx= a.ThetaX();
...
pz= a.PhiZ();

Inverse Rotation

TRotation a,b;
...
b = a.Inverse();// b is inverse of a, a is unchanged
b = a.Invert();// invert a and set b = a

Compound Rotations
The operator * has been implemented in a way that follows the mathematical notation of a product
of the two matrices which describe the two consecutive rotations. Therefore, the second rotation should
be placed first:

r = r2 * r1;

Rotation of TVector3
The TRotation class provides an operator * which allows expressing a rotation of a TVector3
analog to the mathematical notation:

Physics Vectors

392

TRotation r;
TVector3 v(1,1,1);
v = r * v;

You can also use the Transform() method or the operator *= of the TVector3 class:

TVector3 v;
TRotation r;
v.Transform(r);

TLorentzVector
TLorentzVector is a general four-vector class, which can be used either for the description of
position and time (x, y, z, t) or momentum and energy (px, py, pz, E).

Declaration
TLorentzVector has been implemented as a set a TVector3 and a Double_t variable. By
default, all components are initialized by zero.

TLorentzVector v1; // initialized by (0.,0.,0.,0.)
TLorentzVector v2(1.,1.,1.,1.);
TLorentzVector v3(v1);
TLorentzVector v4(TVector3(1.,2.,3.),4.);

For backward compatibility there are two constructors from a Double_t and Float_t array.

Access to Components
There are two sets of access functions to the components of a TLorentzVector: X(), Y(), Z(),
T() and Px(), Py(), Pz() and E(). Both sets return the same values but the first set is more
relevant for use where TLorentzVector describes a combination of position and time and the
second set is more relevant where TLorentzVector describes momentum and energy:

Double_t xx =v.X();
...
Double_t tt = v.T();
Double_t px = v.Px();
...
Double_t ee = v.E();

The components of TLorentzVector can also accessed by index:

xx = v(0);orxx = v[0];
yy = v(1);yy = v[1];
zz = v(2);zz = v[2];
tt = v(3);tt = v[3];

Physics Vectors

393

You can use the Vect() method to get the vector component of TLorentzVector:

TVector3 p = v.Vect();

For setting components there are two methods: SetX(),.., SetPx(),..:

v.SetX(1.); orv.SetPx(1.);
......
v.SetT(1.);v.SetE(1.);

To set more the one component by one call you can use the SetVect() function for the TVector3
part or SetXYZT(), SetPxPyPzE(). For convenience there is also a SetXYZM():

v.SetVect(TVector3(1,2,3));
v.SetXYZT(x,y,z,t);
v.SetPxPyPzE(px,py,pz,e);
v.SetXYZM(x,y,z,m); // v = (x,y,z,e = Sqrt(x*x+y*y+z*z+m*m))

Vector Components in Non-Cartesian Coordinates
There are a couple of methods to get and set the TVector3 part of the parameters in spherical
coordinate systems:

Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
m = v.Rho();
t = v.Theta();
cost = v.CosTheta();
phi = v.Phi();
v.SetRho(10.);
v.SetTheta(TMath::Pi()*.3);
v.SetPhi(TMath::Pi());

or get information about the r-coordinate in cylindrical systems:

Double_t pp, pp2, ppv2, pp2v2;
pp = v.Perp(); // get transverse component
pp2 = v.Perp2(); // get transverse component squared
ppv2 = v.Perp(v1); // get transverse component with respect to another vector
pp2v2 = v.Perp(v1);

there are two more set functions SetPtEtaPhiE(pt,eta,phi,e) and
SetPtEtaPhiM(pt,eta,phi,m) for convenience.

Arithmetic and Comparison Operators
The TLorentzVector class provides operators to add subtract or compare four-vectors:

v3 = -v1;
v1 = v2+v3;
v1+= v3;
v1 = v2 + v3;
v1-= v3;
if(v1 == v2) {...}

Physics Vectors

394

if(v1 != v3) {...}

Magnitude/Invariant mass, beta, gamma, scalar
product

The scalar product of two four-vectors is calculated with the (-,-,-,+) metric:

s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2

The magnitude squared mag2 of a four-vector is therefore:

mag2 = v*v = t*t-x*x-y*y-z*z

If mag2 is negative: mag = -Sqrt(-mag*mag). The methods are:

Double_t s, s2;
s = v1.Dot(v2);// scalar product
s = v1*v2;// scalar product
s2 = v.Mag2();ors2 = v.M2();
s = v.Mag();s = v.M();

Since in case of momentum and energy the magnitude has the meaning of invariant mass
TLorentzVector provides the more meaningful aliases M2() and M(). The methods Beta()
and Gamma() returns beta and gamma = 1/Sqrt(1-beta*beta).

Lorentz Boost
A boost in a general direction can be parameterized with three parameters which can be taken as
the components of a three vector b=(bx,by,bz). With x=(x,y,z) and gamma=1/Sqrt(1-
beta*beta) (beta being the module of vector b), an arbitrary active Lorentz boost transformation
(from the rod frame to the original frame) can be written as:

x = x' + (gamma-1)/(beta*beta)*(b*x')*b + gamma*t'*b

t = gamma(t'+ b*x')

The Boost() method performs a boost transformation from the rod frame to the original frame.
BoostVector() returns a TVector3 of the spatial components divided by the time component:

TVector3 b;
v.Boost(bx,by,bz);
v.Boost(b);
b = v.BoostVector();// b=(x/t,y/t,z/t)

Rotations
There are four sets of functions to rotate the TVector3 component of a TLorentzVector:

Around Axes:

v.RotateX(TMath::Pi()/2.);
v.RotateY(.5);
v.RotateZ(.99);

Around an arbitrary axis:

Physics Vectors

395

v.Rotate(TMath::Pi()/4., v1); // rotation around v1

Transformation from rotated frame:

v.RotateUz(direction); // direction must be a unit TVector3

Rotation by TRotation:

TRotation r;
v.Transform(r);//or v *= r; (v = r*v)

Miscellaneous
Angle between two vectors:

Double_t a = v1.Angle(v2);// get angle between v1 and v2

Methods Plus() and Minus() return the positive and negative light-cone components:

Double_t pcone = v.Plus();
Double_t mcone = v.Minus();

A general Lorentz transformation (see class TLorentzRotation) can be used by the
Transform() method, the *=, or * operator of the TLorentzRotation class:

TLorentzRotation l;
v.Transform(l);
v = l*v;orv *= l;// v = l*v

TLorentzRotation
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and
rotations (see TRotation)

Declaration
By default it is initialized to the identity matrix, but it may also be initialized by other
TLorentzRotation, by a pure TRotation or by a boost:

TLorentzRotation l; // l is initialized as identity
TLorentzRotation m(l);// m = l
TRotation r;
TLorentzRotation lr(r);
TLorentzRotation lb1(bx,by,bz);
TVector3 b;

Physics Vectors

396

TLorentzRotation lb2(b);

The Matrix for a Lorentz boosts is:

#1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz gamma*bx #

gamma'*bx*bz 1+gamma'*by*by gamma'*by*by gamma*by

gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz gamma*bz

gamma*bx gamma*by gamma*bz gamma

with the boost vector b=(bx,by,bz); gamma=1/Sqrt(1-beta*beta);
gamma’=(gamma-1)/beta*beta.

Access to the Matrix Components/Comparisons
The access to the matrix components is possible with the methods XX(), XY() ... TT(), and with
the operator (int,int):

Double_t xx;
TLorentzRotation l;
xx = l.XX();// gets the xx component
xx = l(0,0);// gets the xx component
if (l == m) {...}// test for equality
if (l != m) {...}// test for inequality
if (l.IsIdentity()) {...} // test for identity

Transformations of a Lorentz Rotation
There are four possibilities to find the product of two TLorentzRotation transformations:

TLorentzRotation a,b,c;
c = b*a;// product
c = a.MatrixMultiplication(b);// a is unchanged
a *= b;// a=a*b
c = a.Transform(b)// a=b*a then c=a

Lorentz boosts:

Double_t bx, by, bz;
TVector3 v(bx,by,bz);
TLorentzRotation l;
l.Boost(v);
l.Boost(bx,by,bz);

Rotations:

TVector3 axis;
l.RotateX(TMath::Pi());// rotation around x-axis
l.Rotate(.5,axis);// rotation around specified vector

Inverse transformation: use the method Inverse() to return the inverse transformation keeping
the current one unchanged. The method Invert() inverts the current TLorentzRotation:

Physics Vectors

397

l1 = l2.Inverse();// l1 is inverse of l2, l2 unchanged
l1 = l2.Invert();// invert l2, then l1=l2

The matrix for the inverse transformation of a TLorentzRotation is as follows:

Transformation of a TLorentzVector
To apply TLorentzRotation to TLorentzVector you can use either the
VectorMultiplication() method or the * operator. You can also use the Transform()
function and the *= operator of the class TLorentzVector.

TLorentzVector v;
TLorentzRotation l;
...
v=l.VectorMultiplication(v);
v = l * v;
v.Transform(l);
v *= l; // v = l*v

Physics Vector Example
The test file $ROOTSYS/test/TestVectors.cxx is an example of using physics vectors. The
vector classes are not loaded by default, and to run it, you will need to load libPhysics.so first:

root[] .L $ROOTSYS/lib/libPhysics.so
root[] .x TestVectors.cxx

To load the physics vector library in a ROOT application use:

gSystem->Load("libPhysics");

The example $ROOTSYS/test/TestVectors.cxx does not return much, especially if all went
well, but when you look at the code you will find examples for many calls.

398

Chapter 18. The Geometry Package
The new ROOT geometry package is a tool for building, browsing, navigating and visualizing detector
geometries. The code works standalone with respect to any tracking Monte-Carlo engine; therefore,
it does not contain any constraints related to physics. However, the navigation features provided
by the package are designed to optimize particle transport through complex geometries, working in
correlation with simulation packages such as GEANT3, GEANT4 and FLUKA.

Quick Start: Creating the “world”
This chapter will provide a detailed description on how to build valid geometries as well as the ways
to optimize them. There are several components gluing together the geometrical model, but for the
time being let us get used with the most basic concepts.

The basic bricks for building-up the model are called volumes. These represent the un-positioned
pieces of the geometry puzzle. The difference is just that the relationship between the pieces is not
defined by neighbors, but by containment. In other words, volumes are put one inside another
making an in-depth hierarchy. From outside, the whole thing looks like a big pack that you can open
finding out other smaller packs nicely arranged waiting to be opened at their turn. The biggest one
containing all others defines the “world” of the model. We will often call this master reference
system (MARS). Going on and opening our packs, we will obviously find out some empty ones,
otherwise, something is very wrong... We will call these leaves (by analogy with a tree structure).

On the other hand, any volume is a small world by itself – what we need to do is to take it out and to
ignore all the rest since it is a self-contained object. In fact, the modeller can act like this, considering
a given volume as temporary MARS, but we will describe this feature later on. Let us focus on the
biggest pack – it is mandatory to define one. Consider the simplest geometry that is made of a single
box. Here is an example on how to build it:

Example 1: Creating the World
We first need to load the geometry library. This is not needed if one does make map in root folder.

root[] gSystem->Load(“libGeom”);

Second, we have to create an instance of the geometry manager class. This takes care of all the modeller
components, performing several tasks to insure geometry validity and containing the user interface
for building and interacting with the geometry. After its creation, the geometry manager class can be
accessed with the global gGeoManager:

root[] new TGeoManager(“world”, “the simplest geometry”);

We want to create a single volume in our geometry, but since any volume needs to have an associated
medium, we will create a dummy one. You can safely ignore the following lines for the time being,
since materials and media will be explained in detail later on.

root[] TGeoMaterial *mat = new TGeoMaterial(“Vacuum”,0,0,0);
root[] TGeoMedium *med = new TGeoMedium(“Vacuum”,1,mat);

We can finally make our volume having a box shape. Note that the world volume does not need to be
a box - it can be any other shape. Generally, boxes and tubes are the most recommendable shapes for
this purpose due to their fast navigation algorithms.

root[] TGeoVolume *top=gGeoManager->MakeBox(“Top”,med,10.,10.,10.);

The default units are in centimeters. Now we want to make this volume our world. We have to do this
operation before closing the geometry.

The Geometry Package

399

root[] gGeoManager->SetTopVolume(top);

This should be enough, but it is not since always after defining some geometry hierarchy, TGeo needs
to build some optimization structures and perform some checks. Note the messages posted after the
statement is executed. We will describe the corresponding operations later.

root[] gGeoManager->CloseGeometry();

Now we are really done with geometry building stage, but we would like to see our simple world:

root[] top->SetLineColor(kMagenta);
root[] gGeoManager->SetTopVisible(); // the TOP is invisible
root[] top->Draw();

Example 2: A Geometrical Hierarchy Look and Feel
Before going further, let us get a look and feel of interacting with the modeller. For this, we will use one
of the examples illustrating the geometry package. To get an idea on the geometry structure created in
this example, just look at the link: http://root.cern.ch/root/html/tutorials/geom/
rootgeom.C.html. You will notice that this is a bit more complex that just creating the “world”
since several other volumes are created and put together in a hierarchy. The purpose here is just to
learn how to interact with a geometry that is already built, but just few hints on the building steps in
this example might be useful. The geometry here represents the word ROOT that is replicated in some
symmetric manner. You might for instance ask some questions after having a first look:

Q: “OK, I understand the first lines that load the libGeom library and
create a geometry manager object. I also recognize from the previous
example the following lines creating some materials and media, but
what about the geometrical transformations below?”

A: As explained before, the model that we are trying to create is a hierarchy of volumes based
on containment. This is accomplished by positioning some volumes inside others. Any
volume is an un-positioned object in the sense that it defines only a local frame (matching the
one of its shape). In order to fully define the mother-daughter relationship between two volumes one
has to specify how the daughter will be positioned inside. This is accomplished by defining a local
geometrical transformation of the daughter with respect to the mother coordinate system.
These transformations will be subsequently used in the example.

Q: “I see the lines defining the top level volume as in the previous
example, but what about the other volumes named REPLICA and ROOT?”

A: You will also notice that several other volumes are created by using lines like:

TGeoVolume *someVolume = gGeoManager->MakeXXX(“someName”,
ptrMedium, /* parameters coresponding to XXX… */)

In the method above XXX represent some shape name (Box, Tube, etc.). This is just a simple way
of creating a volume having a given shape in one-step (see also section: “Creating and Positioning
Volumes”). As for REPLICA and ROOT volumes, they are just some virtual volumes used
for grouping and positioning together other real volumes. See “Positioned Volumes (Nodes)”.
The same structure represented by (a real or) a virtual volume can be replicated several times
in the geometry.

Q: “Fine, so probably the real volumes are the ones composing the
letters R, O and T. Why one have to define so many volumes to make
an R?”

A: Well, in real life some objects have much more complex shapes that an R. The modeller cannot
just know all of them; the idea is to make a complex object by using elementary building blocks that

The Geometry Package

400

have known shapes (called primitive shapes). Gluing these together in the appropriate way is
the user responsibility.

Q: “I am getting the global picture but not making much out of it…
There are also a lot of calls to TGeoVolume::AddNode() that I do
not understand.”

A: A volume is positioned inside another one by using this method. The relative geometrical
transformation as well as a copy number must be specified. When positioned, a volume becomes a
node of its container and a new object of the class TGeoNode is automatically created. This method
is therefore the key element for the creation of a hierarchical link between two volumes. As it will be
described further on in this document, there are few other methods performing similar actions, but let
us keep things simple for the time being. In addition, notice that there are some visualization-related
calls in the example followed by a final TGeoVolume::Draw() call for the top volume. These
are explained in details in the section “Visualization Settings and Attributes”. At this point, you will
probably like to see how this geometry looks like. You just need to run the example and you will get
the following picture that you can rotate using the mouse; or you can zoom / move it around (see what
the Help menu of the GL window displays).

% root rootgeom.C

Now let us browse the hierarchy that was just created. Start a browser and double-click on the item
simple1 representing the gGeoManager object. Note that right click opens the context menu of the
manager class where several global methods are available.

root[] new TBrowser;

The folders Materials, Media and Local transformations are in fact the containers where
the geometry manager stores the corresponding objects. The Illegal overlaps folder is empty
but can be filled after performing a geometry validity check (see section: “Checking the Geometry”).
If tracking is performed using TGeo, the folder Tracks might contain user-defined tracks that can be
visualized/animated in the geometry context (see section: “Creating and Visualizing Tracks”). Since

The Geometry Package

401

for the time being we are interested more in the geometrical hierarchy, we will focus on the last two
displayed items TOP and TOP_1. These are the top volume and the corresponding top node in the
hierarchy.

Double clicking on the TOP volume will unfold all different volumes contained by the top volume.
In the right panel, we will see all the volumes contained by TOP (if the same is positioned 4 times
we will get 4 identical items). This rule will apply to any clicked volume in the hierarchy. Note that
right clicking a volume item activates the volume context menu containing several specific methods.
We will call the volume hierarchy developed in this way as the logical geometry graph.
The volume objects are nodes inside this graph and the same volume can be accessed starting from
different branches.

On the other hand, the real geometrical objects that are seen when visualizing or tracking the geometry
are depicted in the TOP_1 branch. These are the nodes of the physical tree of positioned
volumes represented by TGeoNode objects. This hierarchy is a tree since a node can have only one
parent and several daughters. For a better understanding of the hierarchy, have a look at http://
root.cern.ch/root/htmldoc/TGeoManager.html.

Just close now the X3D window and focus at the wire frame picture drawn in a pad. Activate Options/
Event Status. Moving the mouse in the pad, you will notice that objects are sometimes changing color
to red. Volumes are highlighted in this way whenever the mouse pointer is close enough to one of
its vertices. When this happens, the corresponding volume is selected and you will see in the bottom
right size of the ROOT canvas its name, shape type and corresponding path in the physical tree. Right
clicking on the screen when a volume is selected will also open its context menu (picking). Note that
there are several actions that can be performed both at view (no volume selected) and volume level.

TView (mouse not selecting any volume):

• Click-and-drag rotates the view.

• Pressing some keys perform different actions:

• J/K – zoom / unzoom

• H, L, U, I – move the viewpoint

• Right click + SetParallel ()/SetPerspective () – switch from parallel to perspective
view.

• Right click + ShowAxis() – show coordinate axes.

• Right click + Centered/Left/Side/Top – change view direction.

TGeoVolume (mouse selecting a volume):

• Double click will focus the corresponding volume.

• Right click + CheckOverlaps() – run overlap checker on current volume.

• Right click + Draw () – draw that volume according current global visualization options

• Right click + DrawOnly() – draw only the selected volume.

• Right click + InspectShape/Material() – print info about shape or material.

• Right click + Raytrace() – initiate a ray tracing algorithm on current view.

• Right click + RandomPoints/Rays() – shoot random points or rays inside the bounding box
of the clicked volume and display only those inside visible volumes.

• Right click + Weight() – estimates the weight of a volume within a given precision.

Note that there are several additional methods for visibility and line attributes settings.

The Geometry Package

402

Materials and Tracking Media
We have mentioned that volumes are the building blocks for geometry, but they describe real objects
having well defined properties. In fact, there are just two of them: the material they are made from
and their geometrical shape. These have to be created before creating the volume itself, so we will
describe the bits and pieces needed for making the geometry before moving to an architectural point
of view.

As far as materials are concerned, they represent the physical properties of the solid from which a
volume is made. Materials are just a support for the data that has to be provided to the tracking engine
that uses this geometry package. Due to this fact, the TGeoMaterial class is more like a thin data
structure needed for building the corresponding native materials of the Monte-Carlo tracking code
that uses TGeo.

Elements, Materials and Mixtures
In order to make easier material and mixture creation, one can use the pre-built table of elements
owned by TGeoManager class:

TGeoElementTable *table = gGeoManager->GetElementTable();
TGeoElement *element1 = table->GetElement(Int_t Z);
TGeoElement *element2 = table->FindElement(“Copper”);

Materials made of single elements can be defined by their atomic mass (A), charge (Z) and density
(rho). One can also create a material by specifying the element that it is made of. Optionally the
radiation and absorption lengths can be also provided; otherwise they can be computed on-demand
[G3]. The class representing them is TGeoMaterial:

TGeoMaterial(const char *name,Double_t a,Double_t z,
 Double_t density, Double_t radlen=0,Double_t intlen=0);
TGeoMaterial(const char *name, TGeoElement *elem,
 Double_t density);
TGeoMaterial(const char* name, Double_t a, Double_t z,
 Double_t rho,
 TGeoMaterial::EGeoMaterialState state,
 Double_t temperature = STP_temperature,
 Double_t pressure = STP_pressure)

Any material or derived class is automatically indexed after creation. The assigned index is
corresponding to the last entry in the list of materials owned by TGeoManager class. This can be
changed using the TGeoMaterial::SetIndex() method, however it is not recommended while
using the geometry package interfaced with a transport MC. Radiation and absorption lengths can be
set using:

TGeoMaterial::SetRadLen(Double_t radlen, Double_t intlen);

• radlen: radiation length. If radlen<=0 the value is computed using GSMATE algorithm in
GEANT3

• intlen: absorption length

Material state, temperature and pressure can be changed via setters. Another material property is
transparency. It can be defined and used while viewing the geometry with OpenGL.

void SetTransparency (Char_t transparency = 0)

• transparency: between 0 (opaque default) to 100 (fully transparent)

One can attach to a material a user-defined object storing Cerenkov properties. Another hook for
material shading properties is currently not in use. Mixtures are materials made of several elements.

The Geometry Package

403

They are represented by the class TGeoMixture, deriving from TGeoMaterial and defined by
their number of components and the density:

TGeoMixture(const char *name,Int_t nel,Double_t rho);

Elements have to be further defined one by one:

void TGeoMixture::DefineElement(Int_t iel,Double_t a,Double_t z,
 Double_t weigth);
void TGeoMixture::DefineElement(Int_t iel, TGeoElement *elem,
 Double_t weight);
void TGeoMixture ::DefineElement(Int_t iel, Int_t z, Int_t natoms);

or:

void AddElement(TGeoMaterial* mat, Double_t weight);
void AddElement(TGeoElement* elem, Double_t weight);
void AddElement(TGeoElement* elem, Int_t natoms);
void AddElement(Double_t a, Double_t z, Double_t weight)

• iel: index of the element [0,nel-1]

• a and z: the atomic mass and charge

• weight: proportion by mass of the elements

• natoms: number of atoms of the element in the molecule making the mixture

The radiation length is automatically computed when all elements are defined. Since tracking MC
provide several other ways to create materials/mixtures, the materials classes are likely to evolve as
the interfaces to these engines are being developed. Generally in the process of tracking material
properties are not enough and more specific media properties have to be defined. These highly depend
on the MC performing tracking and sometimes allow the definition of different media properties (e.g.
energy or range cuts) for the same material.

Radionuclides
A new class TGeoElementRN was introduced in this version to provide support for radioactive
nuclides and their decays. A database of 3162 radionuclides can be loaded on demand via the table
of elements (TGeoElementTable class). One can make then materials/mixtures based on these
radionuclides and use them in a geometry

root[] TGeoManager *geom = new TGeoManager("geom","radionuclides");
root[] TGeoElementTable *table = geom->GetElementTable();
root[] TGeoElementRN *c14 = table->GetElementRN(14,6); // A,Z
root[] c14->Print();
6-C-014 ENDF=60140; A=14; Z=6; Iso=0; Level=0[MeV];
Dmass=3.0199[MeV];
Hlife=1.81e+11[s] J/P=0+;
Abund=0; Htox=5.8e-10;
Itox=5.8e-10; Stat=0
Decay modes:
BetaMinus Diso: 0 BR: 100.000% Qval: 0.1565

One can make materials or mixtures from radionuclides:

root[] TGeoMaterial *mat = new TGeoMaterial("C14", c14, 2.0);

The following properties of radionulides can be currently accessed via getters in the
TGeoElementRN class:

Atomic number and charge (from the base class TGeoElement)

The Geometry Package

404

• Isomeric number (ISO)

• ENDF code - following the convention: ENDF=10000*Z+100*A+ISO

• Isomeric energy level [MeV]

• Mass excess [MeV]

• Half life [s]

• Spin/Parity - can be retrieved with: TGeoElementRN::GetTitle()

• Hynalation and ingestion toxicities

• List of decays - TGeoElementRN::GetDecays()

The radioactive decays of a radionuclide are represented by the class TGeoDecayChannel and they
are stored in a TObjArray. Decay provides:

• Decay mode

• Variation of isomeric number

• Q value for the decay [GeV]

• Parent element

• Daughter element

Radionuclides are linked one to each other via their decays, until the last element in the decay chain
which must be stable. One can iterate decay chains using the iterator TGeoElemIter:

root[] TGeoElemIter next(c14);
root[] TGeoElementRN *elem;
root[] while ((elem=next())) next.Print();
6-C-014 (100% BetaMinus) T1/2=1.81e+11
7-N-014 stable

To create a radioactive material based on a radionuclide, one should use the constructor:

TGeoMaterial(const char *name, TGeoElement *elem, Double_t density)

To create a radioactive mixture, one can use radionuclides as well as stable elements:

TGeoMixture(const char *name, Int_t nelements, Double_t density);
TGeoMixture::AddElement(TGeoElement *elem,
 Double_t weight_fraction);

Once defined, one can retrieve the time evolution for the radioactive materials/mixtures by using one
of the next two methods:

1. TGeoMaterial::FillMaterialEvolution(TObjArray *population,

Double_t precision=0.001)

To use this method, one has to provide an empty TObjArray object that will be filled with all
elements coming from the decay chain of the initial radionuclides contained by the material/mixture.
The precision represent the cumulative branching ratio for which decay products are still considered.

The Geometry Package

405

Figure 18.1. Concentration of C14 derived elements

The population list may contain stable elements as well as radionuclides, depending on the initial
elements. To test if an element is a radionuclide:

Bool_t TGeoElement::IsRadioNuclide() const

All radionuclides in the output population list have attached objects that represent the time evolution of
their fraction of nuclei with respect to the top radionuclide in the decay chain. These objects (Bateman
solutions) can be retrieved and drawn:

TGeoBatemanSol *TGeoElementRN::Ratio();
void TGeoBatemanSol::Draw();

Another method allows to create the evolution of a given radioactive material/mixture at a given
moment in time:

2. TGeoMaterial::DecayMaterial(Double_t time, Double_t
precision=0.001)

The method will create the mixture that result from the decay of a initial material/mixture at time,
while all resulting elements having a fractional weight less than precision are excluded.

A demo macro for radioactive material features is $ROOTSYS/tutorials/geom/
RadioNuclides.C It demonstrates also the decay of a mixture made of radionuclides.

The Geometry Package

406

Figure 18.2. Concentracion of elements derived fromCa53+Sr78

Tracking Media
The class TGeoMedium describes tracking media properties. This has a pointer to a material and the
additional data members representing the properties related to tracking.

TGeoMedium(const char *name,Int_t numed,TGeoMaterial *mat,
 Double_t *params=0);

• name: name assigned to the medium

• mat: pointer to a material

• params: array of additional parameters

Another constructor allows effectively defining tracking parameters in GEANT3 style:

TGeoMedium(const char *name,Int_t numed,Int_t imat,Int_t ifield,
Double_t fieldm,Double_t tmaxfd,Double_t stemax,
Double_t deemax,Double_t epsil,Double_t stmin);

This constructor is reserved for creating tracking media from the VMC interface [...]:

• numed: user-defined medium index

• imat: unique ID of the material

• others: see G3 documentation

Looking at our simple world example, one can see that for creating volumes one needs to create
tracking media before. The way to proceed for those not interested in performing tracking with external
MC's is to define and use only one dummy tracking medium as in the example (or a NULL
pointer).

User Interface for Handling Materials and Media
The TGeoManager class contains the API for accessing and handling defined materials:

TGeoManager::GetMaterial(name);

The Geometry Package

407

Shapes
Shapes are geometrical objects that provide the basic modeling functionality. They provide the
definition of the local coordinate system of the volume. Any volume must have a shape. Any shape
recognized by the modeller has to derive from the base TGeoShape class, providing methods for:

• Finding out if a point defined in their local frame is contained or not by the shape;

• Computing the distance to enter/exit the shape from a local point, given a known direction;

• Computing the maximum distance in any direction from a local point that does NOT result in a
boundary crossing of the shape (safe distance);

• Computing the cosines of the normal vector to the crossed shape surface, given a starting local point
and an ongoing direction.

All the features above are globally managed by the modeller in order to provide navigation
functionality. In addition to those, shapes have also to implement additional specific abstract methods:

• Computation of the minimal box bounding the shape, given that this box have to be aligned with
the local coordinates;

• Algorithms for dividing the shape along a given axis.

The modeller currently provides a set of 20 basic shapes, which we will call primitives. It also
provides a special class allowing the creation of shapes as a result of Boolean operations between
primitives. These are called composite shapes and the composition operation can be recursive
(combined composites). This allows the creation of a quite large number of different shape topologies
and combinations. You can have a look and run the tutorial: http://root.cern.ch/root/
html/examples/geodemo.C.html

Figure 18.3. Primitive Shapes - the general inheritance scheme

Shapes are named objects and all primitives have constructors like:

TGeoXXX(const char *name,<type> param1,<type> param2, …);
TGeoXXX(<type> param1,<type> param2, …);

Naming shape primitive is mandatory only for the primitives used in Boolean composites (see
“Composite Shapes”). For the sake of simplicity, we will describe only the constructors in the second
form.

The Geometry Package

408

Units

The length units used in the geometry are arbitrary. However, there are certain functionalities that
work with the assumption that the used lengths are expressed in centimeters. This is the case for
shape capacity or volume weight computation. The same is valid when using the ROOT geometry as
navigator for an external transport MC package (e.g. GEANT) via the VMC interface.

Other units in use: All angles used for defining rotation matrices or some shape parameters are
expressed in degrees. Material density is expressed in [g/cm3].

Primitive Shapes

Boxes – TGeoBBox Class

Normally a box has to be build only with 3 parameters: DX,DY,DZ representing the half-lengths
on X, Y and Z-axes. In this case, the origin of the box will match the one of its reference frame
and the box will range from: -DX to DX on X-axis, from -DY to DY on Y and from -DZ to DZ on
Z. On the other hand, any other shape needs to compute and store the parameters of their minimal
bounding box. The bounding boxes are essential to optimize navigation algorithms. Therefore all other
primitives derive from TGeoBBox. Since the minimal bounding box is not necessary centered in the
origin, any box allows an origin translation (Ox,Oy,Oz). All primitive constructors automatically
compute the bounding box parameters. Users should be aware that building a translated box that
will represent a primitive shape by itself would affect any further positioning of other shapes inside.
Therefore it is highly recommendable to build non-translated boxes as primitives and translate/rotate
their corresponding volumes only during positioning stage.

TGeoBBox(Double_t dx,Double_t dy,Double_t dz,Double_t *origin=0);

Figure 18.4. TGeoBBox class

Parallelepiped – TGeoPara class

A parallelepiped is a shape having 3 pairs of parallel faces out of which one is parallel with the XY
plane (Z faces). All faces are parallelograms in the general case. The Z faces have 2 edges parallel
with the X-axis.

The Geometry Package

409

Figure 18.5. TGeoPara class

The shape has the center in the origin and it is defined by:

• dX, dY, dZ: half-lengths of the projections of the edges on X, Y and Z. The lower Z face is
positioned at -dZ, while the upper at +dZ.

• alpha: angle between the segment defined by the centers of the X-parallel edges and Y axis
[-90,90] in degrees

• theta: theta angle of the segment defined by the centers of the Z faces;

• phi: phi angle of the same segment

TGeoPara(dX,dY,dZ,alpha,theta,phi);

A box is a particular parallelepiped having the parameters: (dX,dY,dZ,0.,0.,0.).

Trapezoids

In general, we will call trapezoidall shapes having 8 vertices and up to 6 trapezoid faces. Besides that,
two of the opposite faces are parallel to XY plane and are positioned at dZ. Since general trapezoids
are seldom used in detector geometry descriptions, there are several primitives implemented in the
modeller for particular cases.

Trd1 is a trapezoid with only X varying with Z. It is defined by the half-length in Z, the half-length
in X at the lowest and highest Z planes and the half-length in Y:

TGeoTrd1(Double_t dx1,Double_t dx2,Double_t dy,Double_t dz);

Figure 18.6. TGeoTrd1 class

Trd2 is a trapezoid with both X and Y varying with Z. It is defined by the half-length in Z, the half-
length in X at the lowest and highest Z planes and the half-length in Y at these planes:

TGeoTrd2(Double_t dx1,Double_t dx2,Double_t dy1,Double_t dy2, Double_t dz);

The Geometry Package

410

Figure 18.7. TGeoTrd2 class

General Trapezoid – TGeoTrap Class

A general trapezoid is one for which the faces perpendicular to z are trapezes but their centers are not
necessary at the same x, y coordinates.

Figure 18.8. TGeoTrap Class

It has eleven parameters: the half length in z, the polar angles from the center of the face at low z to that
at high z, H1 the half length in y at low z, LB1 the half length in x at low z and y low edge, LB2 the half
length in x at low z and y high edge, TH1 the angle with respect to the y axis from the center of low y
edge to the center of the high y edge, and H2,LB2,LH2,TH2, the corresponding quantities at high z.

TGeoTrap(Double_t dz,Double_t theta,Double_t phi,
Double_t h1,Double_t bl1,Double_t tl1,Double_t alpha1,
Double_t h2,Double_t bl2,Double_t tl2,Double_t alpha2);

Twisted Trapezoid – TGeoGtra class

A twisted trapezoid is a general trapezoid defined in the same way but that is twisted along the Z-axis.
The twist is defined as the rotation angle between the lower and the higher Z faces.

TGeoGtra(Double_t dz,Double_t theta,Double_t phi,Double_t twist,
Double_t h1,Double_t bl1,Double_t tl1,Double_t alpha1,
Double_t h2,Double_t bl2,Double_t tl2,Double_t alpha2);

The Geometry Package

411

Figure 18.9. TGeoGtra class

Arbitrary 8 vertices shapes - TGeoArb8 class

An Arb8 is defined by two quadrilaterals sitting on parallel planes, at dZ. These are defined each
by 4 vertices having the coordinates (Xi,Yi,+/-dZ), i=0, 3. The lateral surface of the Arb8
is defined by the 4 pairs of edges corresponding to vertices (i,i+1) on both -dZ and +dZ. If M
and M' are the middles of the segments (i,i+1) at -dZ and +dZ, a lateral surface is obtained by
sweeping the edge at -dZ along MM' so that it will match the corresponding one at +dZ. Since the
points defining the edges are arbitrary, the lateral surfaces are not necessary planes – but twisted planes
having a twist angle linear-dependent on Z.

TGeoArb8::TGeoArb8(Double_t dz,Double_t ivert);

• dz: half-length in Z;

• ivert = [0,7]

Vertices have to be defined clockwise in the XY pane, both at +dz and –dz. The quadrilateral at -
dz is defined by indices [0,3], whereas the one at +dz by vertices [4,7]. The vertex with index=7
has to be defined last, since it triggers the computation of the bounding box of the shape. Any two or
more vertices in each Z plane can have the same (X,Y) coordinates. It this case, the top and bottom
quadrilaterals become triangles, segments or points. The lateral surfaces are not necessary defined by
a pair of segments, but by pair segment-point (making a triangle) or point-point (making a line). Any
choice is valid as long as at one of the end-caps is at least a triangle.

Figure 18.10. TGeoArb8 class

Tubes – TGeoTube Class

Tubes have Z as their symmetry axis. They have a range in Z, a minimum and a maximum radius:

The Geometry Package

412

TGeoTube(Double_t rmin,Double_t rmax,Double_t dz);

The full Z range is from -dz to +dz.

Figure 18.11. TGeoTube Class

Tube Segments – TGeoTubeSeg Class

A tube segment is a tube having a range in phi. The tube segment class derives from TGeoTube,
having 2 extra parameters: phi1 and phi2.

TGeoTubeSeg(Double_t rmin,Double_t rmax,Double_t dz,
Double_t phi1,Double_t phi2);

Here phi1 and phi2 are the starting and ending phi values in degrees. The general phi
convention is that the shape ranges from phi1 to phi2 going counterclockwise. The angles can
be defined with either negative or positive values. They are stored such that phi1 is converted to
[0,360] and phi2 > phi1.

Figure 18.12. TGeoTubeSeg Class

Cut Tubes – TGeoCtub Class

The cut tubes constructor has the form:

TGeoCtub(Double_t rmin,Double_t rmax,Double_t dz,
Double_t phi1,Double_t phi2,
Double_t nxlow,Double_t nylow,Double_t nzlow, Double_t nxhi,
Double_t nyhi,Double_t nzhi);

The Geometry Package

413

Figure 18.13. TGeoCtub Class

A cut tube is a tube segment cut with two planes. The centers of the 2 sections are positioned at dZ.
Each cut plane is therefore defined by a point (0,0,dZ) and its normal unit vector pointing outside
the shape:

Nlow=(Nx,Ny,Nz<0), Nhigh=(Nx’,Ny’,Nz’>0).

Elliptical Tubes – TGeoEltu Class

An elliptical tube is defined by the two semi-axes A and B. It ranges from –dZ to +dZ as all other
tubes:

TGeoEltu(Double_t a,Double_t b,Double_t dz);

Figure 18.14. TGeoEltu Class

Hyperboloids – TGeoHype Class

A hyperboloid is represented as a solid limited by two planes perpendicular to the Z axis (top and
bottom planes) and two hyperbolic surfaces of revolution about Z axis (inner and outer surfaces). The
class describing hyperboloids is TGeoHype has 5 input parameters:

TGeoHype(Double_t rin,Double_t stin,Double_t rout,
Double_t stout,Double_t dz);

The Geometry Package

414

Figure 18.15. TGeoHype Class

The hyperbolic surface equation is taken in the form:

r2 – z2tan2() = r2min

• r,z: cylindrical coordinates for a point on the surface

• : stereo angle between the hyperbola asymptotic lines and Z axis

• r2min: minimum distance between hyperbola and Z axis (at z=0)

The input parameters represent:

• rin, stin: minimum radius and tangent of stereo angle for inner surface

• rout, stout: minimum radius and tangent of stereo angle for outer surface

• dz: half length in Z (bounding planes positions at +/-dz)

The following conditions are mandatory in order to avoid intersections between the inner and outer
hyperbolic surfaces in the range +/-dz:

• rin<rout

• rout>0

• rin2 + dz2*stin2 > rout2 + dz2*stout2

Particular cases:

• rin=0, stin0: the inner surface is conical

• stin=0 / stout=0: cylindrical surface(s)

Cones – TGeoCone Class

The cones are defined by 5 parameters:

TGeoCone(Double_t dz,Double_t rmin1,Double_t rmax1,
Double_t rmin2,Double_t rmax2);

• rmin1: internal radius at Z is -dz

• rmax1: external radius at Z is -dz

• rmin2: internal radius at Z is +dz

• rmax2: external radius at Z is +dz

The Geometry Package

415

• dz: half length in Z (a cone ranges from –dz to +dz)

A cone has Z-axis as its symmetry axis.

Figure 18.16. TGeoCone Class

Cone Segments – TGeoConeSeg Class

A cone segment is a cone having a range in phi. The cone segment class derives from TGeoCone,
having two extra parameters: phi1 and phi2.

TGeoConeSeg(Double_t dz,Double_t rmin1,Double_t rmax1,
Double_t rmin2,Double_t rmax2,Double_t phi1,Double_t phi2);

Parameters phi1 and phi2 have the same meaning and convention as for tube segments.

Figure 18.17. TGeoConeSeg Class

Sphere – TGeoSphere Class

Spheres in TGeo are not just balls having internal and external radii, but sectors of a sphere having
defined theta and phi ranges. The TGeoSphere class has the following constructor.

Figure 18.18. TGeoSphere Class

The Geometry Package

416

TGeoSphere(Double_t rmin,Double_t rmax,Double_t theta1,
Double_t theta2,Double_t phi1, Double_t phi2);

• rmin: internal radius of the spherical sector

• rmax: external radius

• theta1: starting theta value [0, 180) in degrees

• theta2: ending theta value (0, 180] in degrees (theta1<theta2)

Torus : TGeoTorus Class

The torus is defined by its axial radius, its inner and outer radius.

Figure 18.19. TGeoTorus Class

It may have a phi range:

TGeoTorus(Double_t R,Double_t Rmin,Double_t Rmax,Double_t Phi1,
Double_t Dphi);

• R: axial radius of the torus

• Rmin: inner radius

• Rmax: outer radius

• Phi1: starting phi angle

• Dphi: total phi range

Paraboloid : TGeoParaboloid Class

A paraboloid is defined by the revolution surface generated by a parabola and is bounded by two
planes perpendicular to Z axis. The parabola equation is taken in the form: z = a·r2 + b, where:
r2 = x2 + y2. Note the missing linear term (parabola symmetric with respect to Z axis).

The coefficients a and b are computed from the input values which are the radii of the circular sections
cut by the planes at +/-dz:

• -dz = a*r2low + b

• dz = a*r2high + b

TGeoParaboloid(Double_t rlo,Double_t rhi,Double_t dz);

The Geometry Package

417

Figure 18.20. TGeoParaboloid Class

Polycone : TGeoPcon Class

A polycone is represented by a sequence of tubes/cones, glued together at defined Z planes. The
polycone might have a phi segmentation, which globally applies to all the pieces. It has to be defined
in two steps:

1. First call the TGeoPcon constructor to define a polycone:

TGeoPcon(Double_t phi1,Double_t dphi,Int_t nz

• phi1: starting phi angle in degrees

• dphi: total phi range

• nz: number of Z planes defining polycone sections (minimum 2)

2. Define one by one all sections [0, nz-1]

void TGeoPcon::DefineSection(Int_t i,Double_t z,
Double_t rmin, Double_t rmax);

• i: section index [0, nz-1]

• z: z coordinate of the section

• rmin: minimum radius corresponding too this section

• rmax: maximum radius.

The first section (i=0) has to be positioned always the lowest Z coordinate. It defines the radii of the
first cone/tube segment at its lower Z. The next section defines the end-cap of the first segment, but it
can represent also the beginning of the next one. Any discontinuity in the radius has to be represented
by a section defined at the same Z coordinate as the previous one. The Z coordinates of all sections
must be sorted in increasing order. Any radius or Z coordinate of a given plane have corresponding
getters:

Double_t TGeoPcon::GetRmin(Int_t i);
Double_t TGeoPcon::GetRmax(Int_t i);
Double_t TGeoPcon::GetZ(Int_t i);

Note that the last section should be defined last, since it triggers the computation of the bounding box
of the polycone.

The Geometry Package

418

Figure 18.21. TGeoPcon Class

Polygon: TGeoPgon Class

Polygons are defined in the same way as polycones, the difference being just that the segments between
consecutive Z planes are regular polygons. The phi segmentation is preserved and the shape is defined
in a similar manner, just that rmin and rmax represent the radii of the circles inscribed in the inner/
outer polygon.

Figure 18.22. TGeoPgon Class

The constructor of a polygon has the form:

TGeoPgon(Double_t phi1,Double_t dphi,Int_t nedges,Int_t nz);

The extra parameter nedges represent the number of equal edges of the polygons, between phi1
and phi1+dphi.

Polygonal extrusion: TGeoXtru Class

A TGeoXtru shape is represented by the extrusion of an arbitrary polygon with fixed outline between
several Z sections. Each Z section is a scaled version of the same “blueprint” polygon. Different global
XY translations are allowed from section to section. Corresponding polygon vertices from consecutive
sections are connected.

An extruded polygon can be created using the constructor:

TGeoXtru::TGeoXtru(Int_t nplanes);

• nplanes: number of Z sections (minimum 2)

The Geometry Package

419

Figure 18.23. TGeoXtru Class

The lists of X and Y positions for all vertices have to be provided for the “blueprint” polygon:

TGeoXtru::DefinePolygon (Int_t nvertices, Double_t *xv,
Double_t *yv) ;

• nvertices: number of vertices of the polygon

• xv,yv: arrays of X and Y coordinates for polygon vertices

The method creates an object of the class TGeoPolygon for which the convexity is automatically
determined . The polygon is decomposed into convex polygons if needed.

Next step is to define the Z positions for each section plane as well as the XY offset and scaling for
the corresponding polygons.

TGeoXtru::DefineSection(Int_t snum,Double_t zsection,Double_t x0,
Double_t y0, Double_t scale);

• snum: Z section index (0, nplanes-1). The section with snum = nplanes-1 must be defined
last and triggers the computation of the bounding box for the whole shape

• zsection: Z position of section snum. Sections must be defined in increasing order of Z (e.g.
snum=0 correspond to the minimum Z and snum=nplanes-1 to the maximum one).

• x0,y0: offset of section snum with respect to the local shape reference frame T

• scale: factor that multiplies the X/Y coordinates of each vertex of the polygon at section snum:

• x[ivert] = x0 + scale*xv[ivert]

• y[ivert] = y0 + scale*yv[ivert]

Half Spaces: TGeoHalfSpace Class

• A half space is limited just by a plane, defined by a point and the normal direction. The point lies
on the plane and the normal vector points outside the half space. The half space is the only shape
which is infinite and can be used only in Boolean operations that result in non-infinite composite
shapes (see also “Composite Shapes” below). A half space has to be defined using the constructor:

TGeoHalfSpace (const char *name, Double_t *point[3],
Double_t *norm[3]);

The Geometry Package

420

Composite Shapes
Composite shapes are Boolean combinations of two or more shape components. The supported
Boolean operations are union (+), intersection (*) and subtraction(-). Composite shapes derive from
the base TGeoShape class, therefore providing all shape features: computation of bounding box,
finding if a given point is inside or outside the combination, as well as computing the distance to
entering/exiting. They can be directly used for creating volumes or used in the definition of other
composite shapes.

Composite shapes are provided in order to complement and extend the set of basic shape primitives.
They have a binary tree internal structure, therefore all shape-related geometry queries are signals
propagated from top level down to the final leaves, while the provided answers are assembled and
interpreted back at top. This CSG (composite solid geometry) hierarchy is effective for
small number of components, while performance drops dramatically for large structures. Building a
complete geometry in this style is virtually possible but highly not recommended.

The Structure of Composite Shapes

A composite shape can always be looked as the result of a Boolean operation between only two shape
components. All information identifying these two components as well as their positions with respect
to the frame of the composite is represented by an object called Boolean node. A composite shape
has a pointer to such a Boolean node. Since the shape components may also be composites, they will
also contain binary Boolean nodes branching out other two shapes in the hierarchy. Any such branch
ends-up when the final leaves are no longer composite shapes, but basic primitives. The figure shows
the composite shapes structure.

Figure 18.24. The composite shapes structure

Suppose that A, B, C and D represent basic shapes, we will illustrate how the internal representation
of few combinations look like. We do this only for understanding how to create them in a proper
way, since the user interface for this purpose is in fact very simple. We will ignore for the time being
the positioning of components. The definition of a composite shape takes an expression where the
identifiers are shape names. The expression is parsed and decomposed in 2 sub-expressions and the
top-level Boolean operator.

1. Union: A+B+C

Just to illustrate the Boolean expression parsing and the composite shape structure, let’s take a simple
example. We will describe the union of A, B and C. Both union operators are at the same level. Since:

A+B+C = (A+B)+C = A+(B+C)

The first (+) is taken as separator, hence the expression split in: A and (B+C). A Boolean node of
type TGeoUnion("A","B+C") is created. This tries to replace the 2 expressions by actual pointers
to corresponding shapes. The first expression (A) contains no operators therefore is interpreted as
representing a shape. The shape named "A" is searched into the list of shapes handled by the manager
class and stored as the "left" shape in the Boolean union node. Since the second expression is not yet
fully decomposed, the "right" shape in the combination is created as a new composite shape. This will

The Geometry Package

421

split at its turn B+C into B and C and create a TGeoUnion("B","C"). The B and C identifiers
will be looked for and replaced by the pointers to the actual shapes into the new node. Finally, the
composite "A+B+C" will be represented as shown in Fig.17-23.

Figure 18.25. Representation of A+B+C

To build this composite shape:

TGeoCompositeShape *cs1 = new TGeoCompositeShape("CS1","A+B+C");

Any shape entering a Boolean combination can be prior positioned. In order to do so, one has to attach
a matrix name to the shape name by using a colon (:). As for shapes, the named matrix has to be prior
defined:

TGeoMatrix *mat;
// … code creating some geometrical transformation
mat->SetName(“mat1”);
mat->RegisterYourself(); // see Geometrical transformations

An identifier shape:matrix have the meaning: shape is translated or rotated with matrix with
respect to the Boolean combination it enters as operand. Note that in the expression A+B+C no matrix
identifier was provided, therefore the identity matrix was used for positioning the shape components.
The next example will illustrate a more complex case.

2. (A:m1+B):m2-(C:m3*D:m4):m5

Let’s try to understand the expression above. This expression means: subtract the intersection of C
and D from the union of A and B. The usage of parenthesis to force the desired precedence is always
recommended. One can see that not only the primitive shapes have some geometrical transformations,
but also their intermediate compositions.

Figure 18.26. Internal representation for composite shapes

The Geometry Package

422

TGeoCompositeShape *cs2 = new TGeoCompositeShape("CS2",
"(A:m1+B):m2-(C:m3*D:m4):m5");

Building composite shapes as in the first example is not always quite useful since we were using un-
positioned shapes. When supplying just shape names as identifiers, the created Boolean nodes will
assume that the shapes are positioned with an identity transformation with respect to the frame of
the created composite. In order to provide some positioning of the combination components, we have
to attach after each shape identifier the name of an existing transformation, separated by a colon.
Obviously all transformations created for this purpose have to be objects with unique names in order
to be properly substituted during parsing.

Composite Shape Example

One should have in mind that the same shape or matrix identifiers can be used many times in the same
expression, as in the following example:

const Double_t sq2 = TMath::Sqrt(2.);
gSystem->Load("libGeom");
TGeoManager *mgr =
 new TGeoManager("Geom","composite shape example");
TGeoMedium *medium = 0;
TGeoVolume *top = mgr->MakeBox("TOP",medium,100,250,250);
mgr->SetTopVolume(top);

// make shape components
TGeoBBox *sbox = new TGeoBBox("B",100,125*sq2,125*sq2);
TGeoTube *stub = new TGeoTube("T",0,100,250);
TGeoPgon *spgon = new TGeoPgon("P",0.,360.,6,2);
spgon->DefineSection(0,-250,0,80);
spgon->DefineSection(1,250,0,80);

// define some rotations
TGeoRotation *r1 = new TGeoRotation("r1",90,0,0,180,90,90);
r1->RegisterYourself();
TGeoRotation *r2 = new TGeoRotation("r2",90,0,45,90,45,270);
r2->RegisterYourself();
// create a composite
TGeoCompositeShape *cs = new TGeoCompositeShape("cs",
"((T+T:r1)-(P+P:r1))*B:r2");
TGeoVolume *comp = new TGeoVolume("COMP",cs);
comp->SetLineColor(5);

// put it in the top volume
top->AddNode(comp,1);
mgr->CloseGeometry();
// visualize it with ray tracing
top->Raytrace();

The Geometry Package

423

Figure 18.27. A composite shape example

Composite shapes can be subsequently used for defining volumes. Moreover, these volumes contain
other volumes, following the general criteria. Volumes created based on composite shapes cannot be
divided.

Navigation Methods Performed By Shapes
Shapes are named objects and register themselves to the manager class at creation time. This is
responsible for their final deletion. Shapes can be created without name if their retrieval by name is no
needed. Generally shapes are objects that are useful only at geometry creation stage. The pointer to a
shape is in fact needed only when referring to a given volume and it is always accessible at that level.
Several volumes may reference a single shape; therefore its deletion is not possible once volumes
were defined based on it.

The navigation features related for instance to tracking particles are performed in the following way:
Each shape implement its specific algorithms for all required tasks in its local reference system. Note
that the manager class handles global queries related to geometry. However, shape-related queries
might be sometimes useful:

Bool_t TGeoShape::Contains(Double_t *point[3]);

The method above returns kTRUE if the point *point is actually inside the shape. The point has to
be defined in the local shape reference. For instance, for a box having DX,DY and DZ half-lengths
a point will be considered inside if:

-DX <= point[0] <= DX

-DY <= point[1] <= DY

-DZ <= point[2] <= DZ

Double_t TGeoShape::DistFromInside(Double_t *point[3],
Double_t *dir[3], Int_t iact,Double_t step,Double_t *safe);

The method computes the distance to exiting a shape from a given point inside, along a given
direction. This direction is given by its director cosines with respect to the local shape coordinate
system. This method provides additional information according the value of iact input parameter:

• iact = 0computes only safe distance and fill it at the location given by SAFE;

• iact = 1a proposed STEP is supplied. The safe distance is computed first. If this is bigger than
STEP than the proposed step is approved and returned by the method since it does not cross the
shape boundaries. Otherwise, the distance to exiting the shape is computed and returned;

The Geometry Package

424

• iact = 2computes both safe distance and distance to exiting, ignoring the proposed step;

• iact > 2computes only the distance to exiting, ignoring anything else

Double_t TGeoShape::DistFromOutside(Double_t *point[3],
Double_t *dir[3],Int_t iact,Double_t step,Double_t *safe);

This method computes the distance to entering a shape from a given point outside. It acts in the
same way as the previous method.

Double_t TGeoShape::Safety(Double_t *point[3],Bool_t inside);

This computes the maximum shift of a point in any direction that does not change its inside/
outside state (does not cross shape boundaries). The state of the point has to be properly supplied.

Double_t *TGeoShape::ComputeNormal(Double_t *point[3],
Double_t *dir[3],Double_t *norm[3]);

The method above computes the director cosines of normal to the crossed shape surface from a given
point towards direction. This is filled into the norm array, supplied by the user. The normal vector is
always chosen such that its dot product with the direction is positive defined.

Creating Shapes
Shape objects embeds only the minimum set of parameters that are fully describing a valid physical
shape. For instance, the half-length, the minimum and maximum radius represent a tube. Shapes are
used together with media in order to create volumes, which in their turn are the main components of
the geometrical tree. A specific shape can be created stand-alone:

TGeoBBox *box = new TGeoBBox("s_box",halfX,halfY,halfZ); // named
TGeoTube *tub = new TGeoTube(rmin,rmax,halfZ); // no name
//... (See all specific shape constructors)

Sometimes it is much easier to create a volume having a given shape in one step, since shapes are not
directly linked in the geometrical tree but volumes are:

TGeoVolume *vol_box = gGeoManager->MakeBox("BOX_VOL",pmed,halfX,
halfY,halfZ);
TGeoVolume *vol_tub = gGeoManager->MakeTube("TUB_VOL",pmed,rmin,
rmax,halfZ);
// ...(See MakeXXX() utilities in TGeoManager class)

Dividing Shapes
Shapes can generally be divided along a given axis. Supported axes are: X, Y, Z, Rxy, Phi, Rxyz.
A given shape cannot be divided however on any axis. The general rule is that that divisions
are possible on whatever axis that produces still known shapes as slices. The division of shapes
are performed by the call TGeoShape::Divide(), but this operation can be done only via
TGeoVolume::Divide() method. In other words, the algorithm for dividing a specific shape is
known by the shape object, but is always invoked in a generic way from the volume level. Details
on how to do that can be found in the paragraph ‘Dividing volumes’. One can see how all division
options are interpreted and which their result inside specific shape classes is.

Parametric Shapes
Shapes generally have a set of parameters that is well defined at build time. In fact, when the final
geometrical hierarchy is assembled and the geometry is closed, all constituent shapes MUST have

The Geometry Package

425

well defined and valid parameters. In order to ease-up geometry creation, some parameterizations are
however allowed.

For instance let’s suppose that we need to define several volumes having exactly the same properties
but different sizes. A way to do this would be to create as many different volumes and shapes. The
modeller allows however the definition of a single volume having undefined shape parameters.

TGeoManager::Volume(const char *name,const char *shape,Int_t nmed);

• name: the name of the newly created volume;

• shape:the type of the associated shape. This has to contain the case-insensitive first 4 letters
of the corresponding class name (e.g. “tubs” will match TGeoTubeSeg, “bbox” will match
TGeoBBox)

• nmed: the medium number.

This will create a special volume that will not be directly used in the geometry, but whenever positioned
will require a list of actual parameters for the current shape that will be created in this process.
Such volumes having shape parameters known only when used have to be positioned only with
TGeoManager::Node() method (see ‘Creating and Positioning Volumes’).

Other case when shape parameterizations are quite useful is scaling geometry structures. Imagine that
we would like to enlarge/shrink a detector structure on one or more axes. This happens quite often in
real life and is handled by “fitting mother” parameters. This is accomplished by defining shapes with
one or more invalid (negative) parameters. For instance, defining a box having dx=10., dy=10.,
and dz=-1 will not generate an error but will be interpreted in a different way: A special volume
TGeoVolumeMulti will be created. Whenever positioned inside a mother volume, this will create
a normal TGeoVolume object having as shape a box with dz fitting the corresponding dz of the
mother shape. Generally, this type of parameterization is used when positioning volumes in containers
having a matching shape, but it works also for most reasonable combinations.

Geometry Creation
A given geometry can be built in various ways, but one has to follow some mandatory steps. Even if
we might use some terms that will be explained later, here are few general rules:

• Volumes need media and shapes in order to be created.

• Both containers and contained volumes must be created before linking them together, and the
relative transformation matrix must be provided.

• Any volume have to be positioned somewhere otherwise it will not be considered as part of the
geometry.

• Visibility or tracking properties of volumes can be provided both at build time or after geometry
is closed, but global visualization settings (see section: “The Drawing Package”) should not be
provided at build time, otherwise the drawing package will be loaded.

There is also a list of specific rules:

• Positioned volumes should not extrude their container or intersect with others within this unless it
is specified (see section: Overlapping Volumes).

• The top volume (containing all geometry trees) must be specified before closing the geometry and
must not be positioned - it represents the global reference frame.

• After building the full geometry tree, the geometry must be closed (see the method
TGeoManager::CloseGeometry()). Voxelization can be redone per volume after this
process.

The Geometry Package

426

The list is much bigger and we will describe in more detail the geometry creation procedure in the
following sections. Provided that geometry was successfully built and closed, the TGeoManager
class will register itself to ROOT and the logical/physical structures will become immediately
browsable.

The Volume Hierarchy
The basic components used for building the logical hierarchy of the geometry are the positioned
volumes called nodes. Volumes are fully defined geometrical objects having a given shape and
medium and possibly containing a list of nodes. Nodes represent just positioned instances of volumes
inside a container volume but users do not directly create them. They are automatically created as a
result of adding one volume inside other or dividing a volume. The geometrical transformation held
by nodes is always defined with respect to their mother (relative positioning). Reflection matrices are
allowed.

A hierarchical element is not fully defined by a node since nodes are not directly linked to each other,
but through volumes (a node points to a volume, which at its turn points to a list of nodes):

NodeTop VolTop NodeA VolA …

One can therefore talk about “the node or volume hierarchy”, but in fact, an element is made by a
pair volume-node. In the line above is represented just a single branch, but of course from any volume
other branches can also emerge. The index of a node in such a branch (counting only nodes) is called
depth. The top node have always depth=0.

Volumes need to have their daughter nodes defined when the geometry is closed. They will build
additional structures (called voxels) in order to fasten-up the search algorithms. Finally, nodes can
be regarded as bi-directional links between containers and contained volumes.

The structure defined in this way is a graph structure since volumes are replicable (same volume
can become daughter node of several other volumes), every volume becoming a branch in this
graph. Any volume in the logical graph can become the actual top volume at run time (see
TGeoManager::SetTopVolume()). All functionalities of the modeller will behave in this case
as if only the corresponding branch starting from this volume is the active geometry.

Figure 18.28. A geometry hierarchy in memory

Nodes are never instantiated directly by users, but created as a result of volume operations. Adding
a volume named A with a given user id inside a volume B will create a node named A_id.

The Geometry Package

427

This will be added to the list of nodes stored by B. In addition, when applying a division operation
in N slices to a volume A, a list of nodes B_1, B_2, ... , B_N is also created. A node B_i does not
represent a unique object in the geometry because its container A might be at its turn positioned as
node inside several other volumes. Only when a complete branch of nodes is fully defined up to the top
node in the geometry, a given path: /TOP_1/.../A_3/B_7 will represent a unique object. Its global
transformation matrix can be computed as the pile-up of all local transformations in its branch. We
will therefore call logical graph the hierarchy defined by nodes and volumes. The expansion of
the logical graph by all possible paths defines a tree structure where all nodes are unique "touchable"
objects. We will call this the "physical tree". Unlike the logical graph, the physical tree can become a
huge structure with several millions of nodes in case of complex geometries; therefore, it is not always
a good idea to keep it transient in memory. Since the logical and physical structures are correlated,
the modeller rather keeps track only of the current branch, updating the current global matrix at each
change of the level in geometry. The current physical node is not an object that can be asked for
at a given moment, but rather represented by the combination: current node/current global matrix.
However, physical nodes have unique ID's that can be retrieved for a given modeller state. These can
be fed back to the modeller in order to force a physical node to become current. The advantage of this
comes from the fact that all navigation queries check first the current node; therefore the location of
a point in the geometry can be saved as a starting state for later use.

Nodes can be declared as overlapping in case they do overlap with other nodes inside the same
container or extrude this container (see also ‘Checking the Geometry’). Non-overlapping nodes can
be created with:

TGeoVolume::AddNode(TGeoVolume *daughter,Int_t copy_No,
TGeoMatrix *matr);

The creation of overlapping nodes can be done with a similar prototype:

TGeoVolume::AddNodeOverlap(/*same arguments*/);

When closing the geometry, overlapping nodes perform a check of possible overlaps with their
neighbors. These are stored and checked all the time during navigation; therefore, navigation is slower
when embedding such nodes into geometry. Nodes have visualization attributes as the volume has.
When undefined by users, painting a node on a pad will take the corresponding volume attributes.

Creating and Positioning Volumes

Making Volumes

As mentioned before, volumes are the basic objects used in building the geometrical hierarchy. They
represent objects that are not positioned, but store all information about the placement of the other
volumes they may contain. Therefore a volume can be replicated several times in the geometry. As
it was explained, in order to create a volume, one has to put together a shape and a medium, which
are already defined.

Volumes have to be named by users at creation time. Every different name may represent a unique
volume object, but may also represent more general a family (class) of volume objects having the
same shape type and medium, but possibly different shape parameters. It is the user's task to provide
different names for different volume families in order to avoid ambiguities at tracking time.

A generic family rather than a single volume is created only in two cases: when a parametric shape
is used or when a division operation is applied. Each volume in the geometry stores a unique ID
corresponding to its family. In order to ease-up their creation, the manager class is providing an API
that allows making a shape and a volume in a single step.

Example of Volume Creation

// Making a volume out of a shape and a medium.

The Geometry Package

428

TGeoVolume *vol = new TGeoVolume(“VNAME”,ptrShape,ptrMed);

// Making a volume out of a shape but without a defined medium.
TGeoVolume *vol = new TGeoVolume(“VNAME”,ptrShape);

// Making a volume with a given shape in one step
TGeoVolume *vol = gGeoManager->MakeBox(“VNAME”,ptrMed,dx,dy,dz);
TGeoVolume *vol = gGeoManager->MakeTubs(“VNAME”,ptrMed,rmin,rmax,
dz,phi1,phi2);

// See class TGeoManager for the rest of shapes.
// Making a volume with a given shape with a unique prototype
TGeoVolume *vol = gGeoManager->Volume(“VNAME”,“XXXX”,nmed,upar,
npar);

// Where XXXX stands for the first 4 letters of the specific shape
// classes, nmed is the medium number, upar is an Double_t * array
// of the shape parameters and npar is the number of parameters.
// This prototype allows (npar = 0) to define volumes with shape
// defined only at positioning time (volumes defined in this way
// need to be positioned using TGeoManager::Node() method)

Positioned Volumes (Nodes)

Geometrical modeling is a difficult task when the number of different geometrical objects is 106-108.
This is more or less the case for detector geometries of complex experiments, where a ‘flat’ CSG
model description cannot scale with the current CPU performances. This is the reason why models
like GEANT [1] introduced an additional dimension (depth) in order to reduce the complexity of the
problem. This concept is also preserved by the ROOT modeller and introduces a pure geometrical
constraint between objects (volumes in our case) – containment. This means in fact that any positioned
volume has to be contained by another. Now what means contained and positioned?

• We will say that a volume contains a point if this is inside the shape associated to the volume. For
instance, a volume having a box shape will contain all points P=(X,Y,Z) verifying the conditions:
Abs(Pi)dXi. The points on the shape boundaries are considered as inside the volume. The volume
contains a daughter if it contains all the points contained by the daughter.

• The definition of containment works of course only with points defined in the local coordinate
system of the considered volume. Positioning a volume inside another have to introduce a
geometrical transformation between the two. If M defines this transformation, any point in the
daughter reference can be converted to the mother reference by: Pmother = MPdaughter

When creating a volume one does not specify if this will contain or not other volumes. Adding
daughters to a volume implies creating those and adding them one by one to the list of daughters.
Since the volume has to know the position of all its daughters, we will have to supply at the same time
a geometrical transformation with respect to its local reference frame for each of them.

TGeoVolume::AddNode(TGeoVolume *daughter,Int_t usernumber,
TGeoMatrix *matrix=gGeoIdentity)

The objects referencing a volume and a transformation are called NODES and their creation is fully
handled by the modeller. They represent the link elements in the hierarchy of volumes. Nodes are
unique and distinct geometrical objects ONLY from their container point of view. Since volumes can
be replicated in the geometry, the same node may be found on different branches.

In order to provide navigation features, volumes have to be able to find the proper container of any
point defined in the local reference frame. This can be the volume itself, one of its positioned daughter
volumes or none if the point is actually outside. On the other hand, volumes have to provide also
other navigation methods such as finding the distances to its shape boundaries or which daughter will

The Geometry Package

429

be crossed first. The implementation of these features is done at shape level, but the local mother-
daughters management is handled by volumes. These build additional optimization structures upon
geometry closure. In order to have navigation features properly working one has to follow some rules
for building a valid geometry.

• The daughter volume(s) must not extrude the mother shape. They are allowed however to have a
common boundaries.

• The volumes positioned in the same container must not overlap with each other. They may touch
on one boundaries or shape vertex.

The daughter nodes of a volume can be also removed or replaced with other nodes:

void RemoveNode(TGeoNode* node)
TGeoNode*ReplaceNode(TGeoNode* nodeorig, TGeoShape* newshape = 0,
TGeoMatrix* newpos = 0, TGeoMedium* newmed = 0)

The last method allows replacing an existing daughter of a volume with another one. Providing only the
node to be replaced will just create a new volume for the node but having exactly the same parameters
as the old one. This helps in case of divisions for decoupling a node from the logical hierarchy so
getting new content/properties. For non-divided volumes, one can change the shape and/or the position
of the daughter.

Virtual Containers and Assemblies of Volumes

Virtual containers are volumes that do not represent real objects, but they are needed for grouping
and positioning together other volumes. Such grouping helps not only geometry creation, but also
optimizes tracking performance; therefore, it is highly recommended. Virtual volumes need to inherit
material/medium properties from the volume they are placed into in order to be “invisible” at tracking
time.

Let us suppose that we need to group together two volumes A and B into a structure and position this
into several other volumes D,E, and F. What we need to do is to create a virtual container volume
C holding A and B, then position C in the other volumes.

Note that C is a volume having a determined medium. Since it is not a real volume, we need to manually
set its medium the same as that of D,E or F in order to make it ‘invisible’ (same physics properties). In
other words, the limitation in proceeding this way is that D,E, and F must point to the same medium.
If this was not the case, we would have to define different virtual volumes for each placement: C, C’
and C”, having the same shape but different media matching the corresponding containers. This might
not happen so often, but when it does, it forces the creation of several extra virtual volumes. Other
limitation comes from the fact that any container is directly used by navigation algorithms to optimize
tracking. These must geometrically contain their belongings (positioned volumes) so that these do
not extrude its shape boundaries. Not respecting this rule generally leads to unpredictable results.
Therefore A and B together must fit into C that has to fit also into D,E, and F. This is not always
straightforward to accomplish, especially when instead of A and B we have many more volumes.

In order to avoid these problems, one can use for the difficult cases the class
TGeoVolumeAssembly, representing an assembly of volumes. This behaves like a normal
container volume supporting other volumes positioned inside, but it has neither shape nor medium. It
cannot be used directly as a piece of the geometry, but just as a temporary structure helping temporary
assembling and positioning volumes.

If we define now C as an assembly containing A and B, positioning the assembly into D,E and F
will actually position only A and B directly into these volumes, taking into account their combined
transformations A/B to C and C to D/E/F. This looks much nicer, is it? In fact, it is and it is not. Of
course, we managed to get rid of the ‘unnecessary’ volume C in our geometry, but we end-up with a
more flat structure for D,E and F (more daughters inside). This can get much worse when extensively
used, as in the case: assemblies of assemblies.

The Geometry Package

430

For deciding what to choose between using virtual containers or assemblies for a specific case, one
can use for both cases, after the geometry was closed:

gGeoManager->SetTopVolume(ptr_D);
gGeoManager->Test();
gGeoManager->RestoreMasterVolume();

The ptr_D is a pointer to volume D containing the interesting structure. The test will provide the
timing for classifying 1 million random points inside D.

Examples of Volume Positioning

Now let us make a simple volume representing a copper wire. We suppose that a medium is already
created (see TGeoMedium class on how to create media).

We will create a TUBE shape for our wire, having Rmin=0cm, Rmax=0.01cm and a half-length
dZ=1cm:

TGeoTube *tube = new TGeoTube("wire_tube",0,0.01,1);

One may omit the name for the shape wire_tube, if no retrieving by name is further needed during
geometry building. Different volumes having different names and materials can share the same shape.

Now let's make the volume for our wire:

TGeoVolume *wire_co = new TGeoVolume("WIRE_CO",tube,
ptrCOPPER); //(*)

(*) Do not bother to delete the media, shapes or volumes that you have created since all will be
automatically cleaned on exit by the manager class.

If we would have taken a look inside TGeoManager::MakeTube() method, we would have been
able to create our wire with a single line:

TGeoVolume *wire_co = gGeoManager->MakeTube("WIRE_CO",ptrCOPPER,
0,0.01,1); //(*)

(*) The same applies for all primitive shapes, for which there can be found corresponding
MakeSHAPE() methods. Their usage is much more convenient unless a shape has to be shared
between more volumes.

Let us make now an aluminum wire having the same shape, supposing that we have created the copper
wire with the line above:

TGeoVolume *wire_al = new TGeoVolume("WIRE_AL",wire_co>GetShape(),
ptrAL);

We would like now to position our wire in the middle of a gas chamber. We need first to define the
gas chamber:

TGeoVolume *chamber = gGeoManager->MakeTube("CHAMBER",ptrGAS,
0,1,1);

Now we can put the wire inside:

chamber->AddNode(wire_co,1);

If we inspect now the chamber volume in a browser, we will notice that it has one daughter. Of course,
the gas has some container also, but let us keeps it like that for the sake of simplicity. Since we did
not supply the third argument, the wire will be positioned with an identity transformation inside the
chamber.

The Geometry Package

431

Overlapping Volumes

Positioning volumes that does not overlap their neighbors nor extrude their container is sometimes
quite strong constraint. Having a limited set of geometric shapes might force sometimes overlaps.
Since overlapping is contradictory to containment, a point belonging to an overlapping region will
naturally belong to all overlapping partners. The answer provided by the modeller to “Where am I?”
is no longer deterministic if there is no priority assigned.

There are two ways out provided by the modeller in such cases and we will illustrate them by examples.

• Suppose we have 2 crossing tubes that we have to describe. Such a structure cannot be decomposed
in a containment schema. This is a typical example of simple structure that can be handled by using
composite shapes. What we have to do is to define as shapes the inner and outer parts of the tubes
(tubes having Rmin=0, Rmax=inner/outer radius), then to make a composite:

• C = (Tub1out+Tub2out)-(Tub1in+Tub2in)

• On the other hand, if we have an EM calorimeter having a honeycomb structure, Boolean
combinations do not help anymore. Here the problem is that we usually have a very large number of
cells that are naturally belonging to the same container. This result in a very flat and slow structure
for that particular container, which we would very much want to avoid by introducing additional
levels in depth. We can describe the basic cell as a hexahedron that we can represent by using a
polygon primitive shape. Instead of putting one by one all cells in the same container, we can define
rows of such elements, fitting in box-shaped containers. Then we can put row-beside-row inside
the container, making life much easier for its navigation algorithms. The problem is that in order to
reproduce the honeycomb structure out of rows of cells, we have to overlap row containers. Woops
– we have not obeyed rule No. 2 in positioning. The way out is to position our rows with a special
prototype:

ptrCAL->AddNodeOverlap(“ROW”,nRow,matrixRow);

This will instruct the modeller that the daughter ROW inside CAL overlaps with something else. The
modeller will check this at closure time and build a list of possibly overlapping candidates. This option
is equivalent with the option MANY in GEANT3.

The modeller supports such cases only if user declares the overlapping nodes. In order to do that,
one should use TGeoVolume::AddNodeOverlap() instead of TGeoVolume::AddNode().
When two or more positioned volumes are overlapping, not all of them have to be declared so, but at
least one. A point inside an overlapping region equally belongs to all overlapping nodes, but the way
these are defined can enforce the modeller to give priorities.

The general rule is that the deepest node in the hierarchy containing a point has the highest priority. For
the same geometry level, non-overlapping is prioritized over overlapping. In order to illustrate this,
we will consider few examples. We will designate non-overlapping nodes as ONLY and the others
MANY as in GEANT3, where this concept was introduced:

1. The part of a MANY node B extruding its container A will never be "seen" during navigation, as
if B was in fact the result of the intersection of A and B.

2. If we have two nodes A (ONLY) and B (MANY) inside the same container, all points in the
overlapping region of A and B will be designated as belonging to A.

3. If A an B in the above case were both MANY, points in the overlapping part will be designated to
the one defined first. Both nodes must have the same medium.

4. The slices of a divided MANY will be as well MANY.

One needs to know that navigation inside geometry parts MANY nodes is much slower. Any
overlapping part can be defined based on composite shapes – might be in some cases a better way out.

The Geometry Package

432

Replicating Volumes

What can we do if our chamber contains two identical wires instead of one? What if then we would
need 1000 chambers in our detector? Should we create 2000 wires and 1000 chamber volumes? No,
we will just need to replicate the ones that we have already created.

chamber->AddNode(wire_co,1,new TGeoTranslation(0.2,0,0));
chamber->AddNode(wire_co,2,new TGeoTranslation(0.2,0,0));

The 2 nodes that we have created inside chamber will both point to a wire_co object, but will be
completely distinct: WIRE_CO_1 and WIRE_CO_2. We will want now to place symmetrically 1000
chambers on a pad, following a pattern of 20 rows and 50 columns. One way to do this will be to
replicate our chamber by positioning it 1000 times in different positions of the pad. Unfortunately,
this is far from being the optimal way of doing what we want. Imagine that we would like to find
out which of the 1000 chambers is containing a (x,y,z) point defined in the pad reference. You
will never have to do that, since the modeller will take care of it for you, but let's guess what it has
to do. The most simple algorithm will just loop over all daughters, convert the point from mother to
local reference and check if the current chamber contains the point or not. This might be efficient for
pads with few chambers, but definitely not for 1000. Fortunately the modeller is smarter than that and
creates for each volume some optimization structures called voxels to minimize the penalty having
too many daughters, but if you have 100 pads like this in your geometry you will anyway loose a
lot in your tracking performance. The way out when volumes can be arranged according to simple
patterns is the usage of divisions. We will describe them in detail later on. Let's think now at a different
situation: instead of 1000 chambers of the same type, we may have several types of chambers. Let's
say all chambers are cylindrical and have a wire inside, but their dimensions are different. However,
we would like all to be represented by a single volume family, since they have the same properties.

Volume Families

A volume family is represented by the class TGeoVolumeMulti. It represents a class of volumes
having the same shape type and each member will be identified by the same name and volume ID. Any
operation applied to a TGeoVolumeMulti equally affects all volumes in that family. The creation
of a family is generally not a user task, but can be forced in particular cases:

TGeoManager::Volume(const char *vname,const char *shape,
Int_t nmed);

Where: vname is the family name, nmed is the medium number and shape is the shape type that
can be:

• boxfor TGeoBBox

• trd1for TGeoTrd1

• trd2for TGeoTrd2

• trapfor TGeoTrap

• gtrafor TGeoGtra

• parafor TGeoPara

• tube, tubs for TGeoTube, TGeoTubeSeg

• cone, cons for TGeoCone, TGeoCons

• eltufor TGeoEltu

• ctubfor TGeoCtub

The Geometry Package

433

• pconfor TGeoPcon

• pgonfor TGeoPgon

Volumes are then added to a given family upon adding the generic name as node inside other volume:

TGeoVolume *box_family = gGeoManager->Volume("BOXES","box",nmed);
// ...
gGeoManager->Node("BOXES",Int_t copy_no,"mother_name",Double_t x,
Double_t y,Double_t z,Int_t rot_index,Bool_t is_only,
Double_t *upar,Int_t npar);

• BOXES- name of the family of boxes

• copy_no- user node number for the created node

• mother_name- name of the volume to which we want to add the node

• x,y,z- translation components

• rot_index- index of a rotation matrix in the list of matrices

• upar- array of actual shape parameters

• npar- number of parameters

The parameters order and number are the same as in the corresponding shape constructors. Another
particular case where volume families are used is when we want that a volume positioned inside a
container to match one ore more container limits. Suppose we want to position the same box inside 2
different volumes and we want the Z size to match the one of each container:

TGeoVolume *container1 = gGeoManager->MakeBox("C1",imed,10,10,30);
TGeoVolume *container2 = gGeoManager->MakeBox("C2",imed,10,10,20);
TGeoVolume *pvol = gGeoManager->MakeBox("PVOL",jmed,3,3,-1);
container1->AddNode(pvol,1);
container2->AddNode(pvol,1);

Note that the third parameter of PVOL is negative, which does not make sense as half-length on Z. This
is interpreted as: when positioned, create a box replacing all invalid parameters with the corresponding
dimensions of the container. This is also internally handled by the TGeoVolumeMulti class, which
does not need to be instantiated by users.

Dividing Volumes

Volumes can be divided according a pattern. The simplest division can be done along one axis that can
be: X,Y,Z,Phi,Rxy or Rxyz. Let's take a simple case: we would like to divide a box in N equal
slices along X coordinate, representing a new volume family. Supposing we already have created the
initial box, this can be done like:

TGeoVolume *slicex = box->Divide("SLICEX",1,N);

Here SLICEX is the name of the new family representing all slices and 1 is the slicing axis. The
meaning of the axis index is the following: for all volumes having shapes like box, trd1, trd2,
trap, gtra or para - 1, 2, 3 mean X, Y, Z; for tube, tubs, cone, cons - 1 means Rxy, 2
means phi and 3 means Z; for pcon and pgon - 2 means phi and 3 means Z; for spheres 1 means
R and 2 means phi.

In fact, the division operation has the same effect as positioning volumes in a given order inside the
divided container - the advantage being that the navigation in such a structure is much faster. When
a volume is divided, a volume family corresponding to the slices is created. In case all slices can be

The Geometry Package

434

represented by a single shape, only one volume is added to the family and positioned N times inside
the divided volume, otherwise, each slice will be represented by a distinct volume in the family.

Divisions can be also performed in a given range of one axis. For that, one has to specify also the
starting coordinate value and the step:

TGeoVolume *slicex = box->Divide("SLICEX",1,N,start,step);

A check is always done on the resulting division range: if not fitting into the container limits, an error
message is posted. If we will browse the divided volume we will notice that it will contain N nodes
starting with index 1 up to N. The first one has the lower X limit at START position, while the last
one will have the upper X limit at START+N*STEP. The resulting slices cannot be positioned inside
another volume (they are by default positioned inside the divided one) but can be further divided and
may contain other volumes:

TGeoVolume *slicey = slicex->Divide("SLICEY",2,N1);
slicey->AddNode(other_vol,index,some_matrix);

When doing that, we have to remember that SLICEY represents a family, therefore all members of
the family will be divided on Y and the other volume will be added as node inside all.

In the example above all the resulting slices had the same shape as the divided volume (box). This is
not always the case. For instance, dividing a volume with TUBE shape on PHI axis will create equal
slices having TUBESEG shape. Other divisions can also create slices having shapes with different
dimensions, e.g. the division of a TRD1 volume on Z.

When positioning volumes inside slices, one can do it using the generic volume family (e.g. slicey).
This should be done as if the coordinate system of the generic slice was the same as the one of the
divided volume. The generic slice in case of PHI division is centered with respect to X-axis. If the
family contains slices of different sizes, any volume positioned inside should fit into the smallest one.

Examples for specific divisions according to shape types can be found inside shape classes.

TGeoVolume::Divide(N,Xmin,Xmax,"X");

Create a new volume by dividing an existing one (GEANT3 like).

Divides MOTHER into NDIV divisions called NAME along axis IAXIS starting at coordinate value
START and having size STEP. The created volumes will have tracking media ID=NUMED (if
NUMED=0 -> same media as MOTHER).

The behavior of the division operation can be triggered using OPTION (case insensitive):

• Ndivide all range in NDIV cells (same effect as STEP<=0) (GSDVN in G3)

• NXdivide range starting with START in NDIV cells (GSDVN2 in G3)

• Sdivide all range with given STEP; NDIV is computed and divisions will be centered in full range
(same effect as NDIV<=0) (GSDVS, GSDVT in G3)

• SXsame as DVS, but from START position (GSDVS2, GSDVT2 in G3)

Volume Assemblies

In general, geometry contains structures of positioned volumes that have to be grouped and handled
together, for different possible reasons. One of these is that the structure has to be replicated in several
parts of the geometry, or it may simply happen that they really represent a single object, too complex
to be described by a primitive shape.

Usually handling structures like these can be easily done by positioning all components in the same
container volume, then positioning the container itself. However, there are many practical cases when

The Geometry Package

435

defining such a container is not straightforward or even possible without generating overlaps with the
rest of the geometry. There are few ways out of this:

• Defining the container for the structure as “overlapping” (see also “ Overlapping Volumes ”)

• Representing the container as a composite shape – the Boolean union of all components (see also
“ Composite Shapes ”)

• Using an assembly volume – this will be described in the following.

The first two approaches have the disadvantage of penalizing the navigation performance with a factor
increasing more than linear of the number of components in the structure. The best solution is the third
one because it uses all volume-related navigation optimizations. The class TGeoVolumeAssembly
represents an assembly volume. Its shape is represented by TGeoShapeAssembly class that is the
union of all components. It uses volume voxelization to perform navigation tasks.

An assembly volume creates a hierarchical level and it geometrically insulates the structure from the
rest (as a normal volume). Physically, a point that is INSIDE a TGeoShapeAssembly is always
inside one of the components, so a TGeoVolumeAssembly does not need to have a medium. Due to
the self-containment of assemblies, they are very practical to use when a container is hard to define due
to possible overlaps during positioning. For instance, it is very easy creating honeycomb structures. A
very useful example for creating and using assemblies can be found at: http://root.cern.ch/
root/html/examples/assembly.C.html.

Creation of an assembly is very easy: one has just to create a TGeoVolumeAssembly object and
position the components inside as for any volume:

TGeoVolume *vol = new TGeoVolumeAssembly(name);
vol->AddNode(vdaughter1, cpy1, matrix1);
vol->AddNode(vdaughter2, cpy2, matrix2);

Note that components cannot be declared as “overlapping” and that a component can be an assembly
volume. For existing flat volume structures, one can define assemblies to force a hierarchical structure
therefore optimizing the performance. Usage of assemblies does NOT imply penalties in performance,
but in some cases, it can be observed that it is not as performing as bounding the structure in a container
volume with a simple shape. Choosing a normal container is therefore recommended whenever
possible.

Figure 18.29. Assemblies of volumes

Geometrical Transformations
All geometrical transformations handled by the modeller are provided as a built-in package. This was
designed to minimize memory requirements and optimize performance of point/vector master-to-local

The Geometry Package

436

and local-to-master computation. We need to have in mind that a transformation in TGeo has two
major use-cases. The first one is for defining the placement of a volume with respect to its container
reference frame. This frame will be called 'master' and the frame of the positioned volume - 'local'. If
T is a transformation used for positioning volume daughters, then: MASTER = T * LOCAL

Therefore T is used to perform a local to master conversion, while T-1 for a master to local
conversion. The second use case is the computation of the global transformation of a given object
in the geometry. Since the geometry is built as 'volumes-inside-volumes', the global transformation
represents the pile-up of all local transformations in the corresponding branch. Once a given object in
the hierarchy becomes the current one, the conversion from master to local coordinates or the other
way around can be done from the manager class.

A general homogenous transformation is defined as a 4x4 matrix embedding a rotation, a translation
and a scale. The advantage of this description is that each basic transformation can be represented as
a homogenous matrix, composition being performed as simple matrix multiplication.

Rotation: Translation: Scale

Inverse rotation:Inverse translation:Inverse scale:

• rij are the 3x3 rotation matrix components

• tx,ty,tz are the translation components

• sx,sy,sz are arbitrary scale constants on each axis

The disadvantage in using this approach is that computation for 4x4 matrices is expensive. Even
combining two translations would become a multiplication of their corresponding matrices, which is
quite an undesired effect. On the other hand, it is not a good idea to store a translation as a block of 16
numbers. We have therefore chosen to implement each basic transformation type as a class deriving
from the same basic abstract class and handling its specific data and point/vector transformation
algorithms.

The base class TGeoMatrix defines abstract methods for:

• Translation, rotation and scale getters. Every derived class stores only its specific data, e.g.
a translation stores an array of 3 doubles and a rotation an array of 9. However, getting the
TGeoTranslation rotation array through the base TGeoMatrix interface is a legal operation.
The answer in this case is a pointer to a global constant array representing an identity rotation.

Double_t *TGeoMatrix::GetTranslation() const;
Double_t *TGeoMatrix::GetRotation() const;
Double_t *TGeoMatrix::GetScale() const;

• Master-to-local and local-to-master point and vector transformations :

void TGeoMatrix::MasterToLocal(const Double_t *master,

The Geometry Package

437

Double_t *local)
void TGeoMatrix::LocalToMaster(const Double_t *local,
Double_t *master)
void TGeoMatrix::MasterToLocalVect(const Double_t *master,
Double_t *local)
void TGeoMatrix::LocalToMasterVect(const Double_t *local,
Double_t *master)

Here master and local are arrays of size 3. These methods allow correct conversion also for
reflections.

• Transformation type finding:

Bool_t TGeoMatrix::IsIdentity() const;
Bool_t TGeoMatrix::IsTranslation() const;
Bool_t TGeoMatrix::IsRotation() const;
Bool_t TGeoMatrix::IsScale() const;
Bool_t TGeoMatrix::IsCombi() const; // (tr. + rot.)
Bool_t TGeoMatrix::IsGeneral() const; // (tr. + rot. + scale)

Specific classes deriving from TGeoMatrix represent combinations of basic transformations. In
order to define a matrix as a combination of several others, a special class TGeoHMatrix is provided.
Here is an example of matrix creation:

Matrix Creation Example

TGeoRotation r1,r2;
r1.SetAngles(90,0,30); //rotation defined by Euler angles
r2.SetAngles(90,90,90,180,0,0); //rotation defined by GEANT3 angles
TGeoTranslation t1(-10,10,0);
TGeoTranslation t2(10,-10,5);
TGeoCombiTrans c1(t1,r1);
TGeoCombiTrans c2(t2,r2);
TGeoHMatrix h = c1 * c2; // composition is done via TGeoHMatrix
TGeoHMatrix *ph = new TGeoHMatrix(hm); // class it is what we want
 // to use for positioning
 // a volume
ph->Print();
...
pVolume->AddNode(pVolDaughter,id,ph) // now ph is owned by
 the manager

Rule for Creation of Transformations

Unless explicitly used for positioning nodes (TGeoVolume::AddNode()) all matrices deletion
have to be managed by users. Matrices passed to geometry have to be created by using new() operator
and TGeoManager class is responsible for their deletion. Matrices that are used for the creation of
composite shapes have to be named and registered to the manager class:

transf->SetName(name); // if not already named in the constructor
transf->RegisterYourself();

Generally, it is advisable to create all intermediate transformations used for making the final combined
one on the heap:

TGeoRotation r1(…);
TGeoRotation r2(…);
TGeoHMatrix *mat = new TGeoHMatrix(“name”); // we want to use only

The Geometry Package

438

 // this one in geometry
*mat = r1 * r2;

Available Geometrical Transformations

• Translations (TGeoTranslation class) represent a (dx,dy,dz) translation. The only data
member is: Double_t fTranslation[3]. Translations can be added or subtracted.

TGeoTranslation t1;
t1->SetTranslation(-5,10,4);
TGeoTranslation *t2 = new TGeoTranslation(4,3,10);
t2->Subtract(&t1);

• Rotations (TGeoRotation class) represent a pure rotation. Data members are Double_t
fRotationMatrix[3*3]. Rotations can be defined either by Euler angles, either, by GEANT3
angles:

TGeoRotation *r1 = new TGeoRotation();
r1->SetAngles(phi,theta,psi); // all angles in degrees

This represents the composition of: first a rotation about Z axis with angle phi, then a rotation with
theta about the rotated X axis, and finally a rotation with psi about the new Z axis.

r1->SetAngles(th1,phi1,th2,phi2,th3,phi3)

This is a rotation defined in GEANT3 style. Theta and phi are the spherical angles of each axis of
the rotated coordinate system with respect to the initial one. This construction allows definition of
malformed rotations, e.g. not orthogonal. A check is performed and an error message is issued in this
case.

Specific utilities: determinant, inverse.

• Scale transformations (TGeoScale class) - represent a scaled shrinking/enlargement, possibly
different on all axes. Data members: Double_t fScale[3]. Not implemented yet.

• Combined transformations - represent a rotation followed by a translation. Data members:
Double_t fTranslation[3], TGeoRotation *fRotation.

TGeoRotation *rot = new TGeoRotation("rot",10,20,30);
TGeoTranslation trans;
...
TGeoCombiTrans *c1 = new TGeoCombiTrans(trans,rot);
TGeoCombiTrans *c2 = new TGeoCombiTrans("somename",10,20,30,rot)

• General transformations: (TGeoHMatrix class) represent combined transformations in any order.

• Identity transformation: (TGeoIdentity class) is a generic identity transformation represented
by a singleton class object gGeoIdentity.

Ownership of Geometry Objects
The class TGeoManager class contains the entire API needed for building and tracking geometry.
It defines a global pointer gGeoManager in order to be fully accessible from external code. The
manager class is the owner of all geometry objects defined in a session; therefore, users must not try
to control their deletion. It contains lists of media, materials, transformations, shapes and volumes. A
special case is the one of geometrical transformations. When creating a matrix or a translation, this
is by default owned by external objects. The manager class becomes owner of all transformations

The Geometry Package

439

used for positioning volumes. In order to force the ownership for other transformations, one can
use TGeoMatrix::RegisterYourself() method. Do not be therefore surprised that some
transformations cannot be found by name when creating a composite shape for instance if you did not
register them after creation.

Logical nodes (positioned volumes) are created and destroyed by the TGeoVolume class. Physical
nodes and their global transformations are subjected to a caching mechanism due to the sometimes
very large memory requirements of logical graph expansion. The total number of physical instances
of volumes triggers the caching mechanism and the cache manager is a client of TGeoManager. The
manager class also controls the drawing/checking package (TGeoPainter client). This is linked
with ROOT graphical libraries loaded on demand in order to control visualization actions.

Navigation and Tracking
Tracking is the feature allowing the transport of a given particle knowing its kinematics. A state

is determined by any combination of the position and direction with respect to the world

reference frame. The direction must be a unit vector having as components the director cosines.
The full classification of a given state will provide the following information: the deepest physical
node containing the position vector, the distance to the closest boundary along the direction vector,
the next physical node after propagating the current point with this distance and the safety distance to
the nearest boundary. This information allows the propagation of particles inside a detector geometry
by taking into account both geometrical and physical constraints.

We will hereby describe the user interface of TGeo to access tracking functionality. This allows either
developing a tracker for simple navigation within a given geometry, either interfacing to an external
tracking engine such as GEANT. Note that the abstract interface for external trackers can be found in
$ROOTSYS/vmc folder and it can be used to run GEANT3, GEANT4 and FLUKA-based simulations
(*) by using directly a geometry described with ROOT.

The interface methods related to tracking are incorporated into TGeoManager class and implemented
in the navigator class TGeoNavigator. In order to be able to start tracking, one has to define the

initial state providing the starting point and direction . There are several ways of doing that.

TGeoNavigator Class
One geometry may have several independent navigators to query to localize points or compute
distances. The geometry manager holds a list of active navigators accessible via:

TObjArray *navigators = gGeoManager->GetListOfNavigators();

Upon closing the geometry a default navigator is provided as first one in this list, but one may add
its own via:

TGeoNavigator *navig = new TGeoNavigator(gGeoManager);
// Store the index of the user navigator
Int_t inav = gGeoManager->AddNavigator(navig);
// Make its own navigator the active one
gGeoManager->SetCurrentNavigator(inav);
// Switch between navigators
gGeoManager->SetCurrentNavigator(0);

A navigator holds several variables describing the current navigation state: current point position,
current direction distance to next boundary, isotropic safety, pointer to current and next nods as
well as several tracking flags related to volume boundary conditions or other properties required
for track propagation in geometry. Each geometry query affects these variables, so the only way in

The Geometry Package

440

testing several navigation alternatives and remembering the active navigation state is to use parallel
navigation. The following paragraphs will describe the usage of a single navigator. All setters/getters
for navigation state parameters as well as navigation queries provided by TGeoNavigator are
interfaced by TGeoManager and will act on the current navigator.

Initializing the Starting Point
The current point (x,y,z) known by the modeller is stored as Double_t fCurrentPoint[3]
by the navigator class. This array of the three coordinates is defined in the current global reference
system and can be retrieved any time:

Const Double_t *cpoint = gGeoManager->GetCurrentPoint();

Initializing this point can be done like:

gGeoManager->SetCurrentPoint(x,y,z);
// or:
gGeoManager->SetCurrentPoint(Double_t *point[3]);

Initializing the Direction
In order to move inside geometry starting with the current point, the modeller needs to know the current
direction (nx,ny,nz). This direction is stored as Double_t fCurrentDirection[3] by
the navigator and it represents a direction in the global frame. It can be retrieved with:

Const Double_t *cdir = gGeoManager->GetCurrentDirection();

The direction can be initialized in a similar manner as the current point:

gGeoManager->SetCurrentDirection(nx,ny,nz);
// or:
gGeoManager->SetCurrentDirection(Double_t *dir);

Initializing the State
Setting the initial point and direction is not enough for initializing tracking. The modeller needs to
find out where the initial point is located in the geometrical hierarchy. Due to the containment based
architecture of the model, this is the deepest positioned object containing the point. For illustrating
this, imagine that we have a simple structure with a top volume A and another one B positioned inside.
Since A is a top volume, its associated node A_1 will define MARS and our simple hierarchy of nodes
(positioned volumes) will be: /A_1/B_1. Suppose now that the initial point is contained by B_1.
This implies by default that the point is also contained by A_1, since B_1 have to be fully contained
by this. After searching the point location, the modeller will consider that the point is located inside
B_1, which will be considered as the representative object (node) for the current state. This is stored
as: TGeoNode *TGeoManager::fCurrentNode and can be asked from the manager class only
after the ’Where am I?’ was completed:

TGeoNode *current = gGeoManager->GetCurrentNode();

In order to find the location of the current point inside the hierarchy of nodes, after setting this point
it is mandatory to call the ‘Where am I?’ method:

gGeoManager->FindNode();

In order to have more flexibility, there are in fact several alternative ways of initializing a modeller
state:

// Setting the point and finding the state in one step:

The Geometry Package

441

gGeoManager->FindNode(Double_t x,Double_t y,Double_t z);
gGeoManager->FindNode(Double_t *point[3]);
// Setting both initial point and direction and finding the state:
gGeoManager->InitTrack(Double_t x,Double_t y,Double_t z,
Double_t nx, Double_t ny, Double_t nz);
gGeoManager->InitTrack(Double_t *point[3],Double_t *dir[3]);

Note that the current point coordinates can be changed and the state re-initialized at any time. This
represents the ‘Where am I?’ geometrical query representing the basic navigation functionality
provided by the modeller.

Checking the Current State
The current state and all variables related to this are essential during tracking and have to be checked
several times. Besides the current point and direction, the following additional information can be
retrieved from TGeoManager interface:

• The current path. This represents a string containing the names and copy numbers of all
positioned objects in the current branch written in the /folder/folder/…/folder/file fashion. The
final node pointed by the path is the deepest object containing the current point and is representative
for the current state. All intermediate folders in the path are in fact also nodes “touched” by the
current point, but having some “touched” containment. The current path can be retrieved only after
the state was initialized and is useful for getting an idea of the current point location.

const char *path = gGeoManager->GetPath();
cout << “Current path is: “ << path << endl;
/A_1/B_34/C_3/D_1

• The current node, volume and material. In order to take decisions on post-step or further
stepping actions, one has to know these. In order to get a pointer to the current node one can do:

TGeoNode *cnode = gGeoManager->GetCurrentNode();
// then:
TGeoVolume *cvol = gGeoManager->GetCurrentVolume();
// or:
cvol = cnode->GetVolume(); // (*)
// then:
TGeoMaterial *cmat = cvol->GetMedium()->GetMaterial();

(*) Note: If the current point is in fact outside the geometry, the current node pointer will not be NULL,
but pointing to the top node.

In order to take decisions in such case one needs always to test:

if (gGeoManager->IsOutside()) {
 // current point is actually outside
 … // corresponding action
}

Specific information related to the current volume/node like ID’s or shape can be then retrieved from
the corresponding objects.

• Current state index. The number of possible different states of the modeller corresponds to the
number of different objects/paths in the geometry. This has nothing to do with the number of nodes,
since the same node can be found on different branches. In other words, the number of states
corresponds to the number of nodes in the expanded geometry tree. Since unfortunately this
expansion from logical to physical hierarchy cannot be stored on regular basis due to the large size
of the latter, one cannot directly assign state numbers. If the size of the expansion proves however to
be small enough (less than about 50 million objects), a parallel structure storing these state indices is

The Geometry Package

442

built and stored in memory. In such case each state automatically gets an index that can be retrieved
after any state initialization. These indices can prove to be quite useful for being able to keep track of
the navigation history and force certain states. Let’s illustrate how this works with a simple example:

• Suppose we have a simple geometry with a volume B positioned twice inside a container A. Then
A is positioned twice in a top container T. The complete list of logical nodes is: T_1, A_1, A_2,
B_1, B_2. On the other hand we will have more states than logical nodes:

• /T_1- 1 state at level = 0

• /T_1/A_1,/T_1/A_2- 2 states at level = 1

• /T_1/A_1/B_1,/T_1/A_1/B_2,/T_1/A_2/B_1,/T_1/A_2/B_2 - 4 states at level = 2

• All these states will get automatic numbers, starting with 0 corresponding to the top-level state and
ending with an integer corresponding to Ntotal_states-1. The mapping from a given logical node
to a state number is generally not possible, as for the node B_1 that appears as current node for 2
different states. The numbering order of states is therefore not important, but it can be used as in
the following lines:

gGeoManager->InitTrack(pt,dir); // anything to initialize a state
Int_t istate = gGeoManager->GetCurrentNodeId(); // in fact state Id
{
 //… code changing the current state
}
gGeoManager->CdNode(istate); // forces state's re-initialization

• Current global transformation. This represents the transformation from MARS to the local
reference of the current node, being the product of all local mother-daughter transformations in the
branch. The global transformation can be referenced or copied:

const TGeoHMatrix *global = gGeoManager->GetCurrentMatrix();
TGeoHMatrix *copy = new TGeoHMatrix(*global);

• One often needs to perform master-to-local and local-to-master point and vector
conversions to get from MARS to the local node coordinates. This can be done by using the global
transformation or directly the TGeoManager corresponding interfaces:

Double_t *glob_pt = gGeoManager->GetCurrentPoint();
Double_t *glob_dir = gGeoManager->GetCurrentDirection();
Double_t loc_pt[3], loc_dir[3];
// Go from MARS to local coordinates:
gGeoManager->MasterToLocal(glob_pt,loc_pt); // or:
global->MasterToLocal(glob_pt,loc_pt); // will be omitted from now
// on, but can be done just the same for all other conversions
gGeoManager->MasterToLocalVect(glob_dir,loc_dir);
… // perform some local computation changing the local
 // point/direction then go back to MARS:
Double_t new_pt[3],new_dir[3];
gGeoManager->LocalToMaster(loc_pt,new_pt);
gGeoManager->LocalToMasterVect(loc_dir,new_dir);

Saving and Restoring the Current State
As we already described, saving and restoring modeller states can be quite useful during tracking
and is a feature extensively used by external tracking engines. We will call this navigation history
management, which in most of the cases can be performed by handling the state identifiers. For quite
big geometries, state indexing is not possible anymore and will be automatically disabled by the
modeller. Fortunately there is a backup solution working in any condition: the modeller maintains a

The Geometry Package

443

stack of states that is internally used by its own navigation algorithms, but user code is also allowed to
access it. This works on any stack principle by using PUSH and POP calls and user code is responsible
for popping the pushed states in order to keep the stack clean.

// push the current state in the stack
Int_t index = gGeoManager->PushPath();
// push state and current point
Int_t index = gGeoManager->PushPoint();
// retrieves the last pushed state (decrements stack index)
gGeoManager->PopPath();
// the same but retrieves also the point location
gGeoManager->PopPoint();
// just decrement stack index without changing state
gGeoManager->PopDummy();
// retrieves a state at given index without changing stack index
gGeoManager->PopPath(Int_t index);

Navigation Queries
After initializing the current state related to a given point and direction defined in MARS (‘Where
am I?’), one can query for several geometrical quantities. All the related algorithms work
in the assumption that the current point has been localized inside the geometry (by the methods
TGeoManager::FindNode() or TGeoManager::InitTrack()) and the current node or
path has not been changed by the user.

Finding If Current State Is Changed For a New Point

One can find fast if a point different from the current one has or not the same location
inside the geometry tree. To do that, the new point should not be introduced by using
TGeoManager::SetCurrentPoint() method, but rather by calling the specific method:

Bool_t TGeoManager::IsSameLocation(Double_t x,Double_t y,
Double_t z,Bool_t change=kFALSE);

In the prototype above, x, y and z are the coordinates of the new point. The modeller will check
whether the current volume still contains the new point or its location has changed in the geometry
hierarchy. If the new location is different, two actions are possible according to the value of change:

• change = kFALSE (default) – the modeller does not change the current state but just inform
the caller about this change.

• change = kTRUE – the modeller will actually perform a new ‘Where am I?’ search after
finding out that the location has changed. The current state will be actualized accordingly.

Note that even when performing a normal search on the current state after changing the current point
coordinates (e.g. gGeoManager->FindNode(newX,newY,newZ)), users can always query if
the previous state has changed by using a method having the same name but without parameters:

Bool_t TGeoManager::IsSameLocation();

Finding the Distance to the Next Boundary

All tracking engines need to compare the currently proposed physical step with the maximum allowed
distance in the current material. The modeller provides this information by computing the distance to
the first boundary starting from the current point along a straight line. The starting point and direction
for this procedure are the ones corresponding to the current state. The boundary search is initialized
inside the current volume and the crossed boundary can belong either to the current node or to one of
its daughters. The full prototype of the method is:

The Geometry Package

444

TGeoNode *TGeoManager::FindNextBoundary(Double_t step=kBig);

In the prototype above, besides the current point and direction that are supposed already initialized, the
only input parameter is step. This represents the maximum step allowed by the tracking algorithm or
the physical step. The modeller will search for a boundary crossing only up to a distance equal
to this value. If a boundary is found, a pointer to the object (node) having it is returned; otherwise
the method returns NULL.

The computed value for the computed distance can be subsequently retrieved from the manager class:

Double_t snext = gGeoManager->GetStep();
Double_t safety = gGeoManager->GetSafeDistance();

According the step value, two use cases are possible:

• step = TGeoShape::kBig (default behavior; kBig = 1030). In this case, there is no
limitation on the search algorithm, the first crossed node is returned and the corresponding distance
computed. If the current point is outside geometry and the top node is not crossed, the corresponding
distance will be set to kBig and a NULL pointer returned. No additional quantity will be computed.

• step < kBig. In this case, the progressive search starting from the current point will be stopped
after a distance equal with the supplied step. In addition to the distance to the first crossed boundary,
the safety radius is also computed. Whenever the information regarding the maximum
required step is known it is recommended to be provided as input parameter in order to speed-up
the search.

In addition to the distance computation, the method sets an additional flag telling if the current track
will enter inside some daughter of the current volume or it will exit inside its container:

Bool_t TGeoManager::IsStepEntering() const;

A combined task is to first find the distance to the next boundary and then extrapolate the current
point/direction with this distance making sure that the boundary was crossed. Finally the goal
would be to find the next state after crossing the boundary. The problem can be solved in principle
using FindNextBoundary, but the boundary crossing can give unpredictable results due to numerical
roundings. The manager class provides a method that allows this combined task and ensures boundary
crossing. This should be used instead of the method FindNextBoundary() whenever the tracking
is not imposed in association with an external MC transport engine (which provide their own
algorithms for boundary crossing).

TGeoNode *TGeoManager::FindNextBoundaryAndStep(Double_t stepmax,
Bool_t comp_safe=kFALSE);

The meaning of the parameters here is the same as for FindNextBoundary, but the safety value is
triggered by an input flag. The output is the node after the boundary crossing.

Computing the Safe Radius

Other important navigation query for tracking is the computation of the safe distance. This represents
the maximum step that can be made from the current point in any direction that assures that
no boundary will be crossed. Knowing this value gives additional freedom to the stepping algorithm
to propagate the current track on the corresponding range without checking if the current state
has changed. In other words, the modeller insures that the current state does not change in any point
within the safety radius around the current point.

The computation of the safe radius is automatically computed any time when the next boundary
is queried within a limited step:

TGeoNode *crossed = gGeoManager->FindNextBoundary(pstep);
Double_t safety = gGeoManager->GetSafeDistance();

The Geometry Package

445

Otherwise, the computation of safety can always be forced:

Double_t safety = gGeoManager->Safety();

Making a Step

The modeller is able to make steps starting from the current point along the current direction and having
the current step length. The new point and its corresponding state will be automatically computed:

TGeoNode *TGeoManager::Step(Bool_t is_geom = kTRUE,
Bool_t cross = kTRUE);

We will explain the method above by its use cases. The input flag is_geom allows specifying if the
step is limited by geometrical reasons (a boundary crossing) or is an arbitrary step. The flag cross can
be used in case the step is made on a boundary and specifies if user wants to cross or not the boundary.
The returned node represents the new current node after the step was made.

• Making a geometrically contained step with boundary crossing (is_geom=kTRUE,
cross=kTRUE) – This is the default method behavior. In this case, the step size is supposed to be
already set by a previous TGeoManager::FindNextBoundary() call. Due to floating-point
boundary uncertainties, making a step corresponding exactly to the distance to next boundary
does not insure boundary crossing. If the method is called with this purpose, an extra small step will
be made in order to make the crossing the most probable event (epsil=10-6cm). Even with this
extra small step cannot insure 100% boundary crossing for specific crossed shapes at big incident
angles. After such a step is made, additional cross-checks become available:

gGeoManager->FindNextBoundary(pstep);
Double_t snext = gGeoManager->GetStep();
// The geometrical step is taken
TGeoNode *newNode = gGeoManager->Step();
// The step=snext+epsil is made
Bool_t hasCrossed = gGeoManager->IsEntering();
// Is the boundary crossed or not?
Bool_t isOnBoundary = gGeoManager->IsOnBoundary(); // The proposed
// geometrically limited step to be made was smaller
// than epsil value.
Bool_t isOutside = gGeoManager->IsOutside();
//Did we exit geometry ?

In case the desired end-point of the step should be in the same starting volume, the input flag cross
should be set to kFALSE. In this case, the epsil value will be subtracted from the current step.

• Making a step of arbitrary value (is_geom=kFALSE, cross=no matter). In this case, the step to
be made can be either resulting from a next computation, either set by hand:

gGeoManager->SetStep(stepvalue);
gGeoManager->Step(kFALSE);

The step value in this case will exactly match the desired step. In case a boundary crossing failed
after geometrically limited stepping, one can force as many small steps as required to really cross the
boundary. This is not what generally happens during the stepping, but sometimes small rounding of
boundary positions may occur and cause problems. These have to be properly handled by the stepping
code.

The Normal Vector to the Next Crossed Surface at Crossing Point

Supposing we have found out that a particle will cross a boundary during the next step, it is sometimes
useful to compute the normal to the crossed surface. The modeller uses the following convention: we

define as normal () the unit vector perpendicular to a surface in the next crossing point,

The Geometry Package

446

having the orientation such that: . Here represents the current direction. The next crossing
point represents the point where a ray shot from the current point along the current direction crosses
the surface.

Double_t *TGeoManager::FindNormal(Bool_t forward=kTRUE);

The method above computes the normal to the next crossed surface in forward or backward direction
(i.e. the current one), assuming the state corresponding to a current arbitrary point is initialized. An
example of usage of normal computation is ray tracing.

The two most important features of the geometrical modeller concerning tracking are scalability and
performance as function of the total number of physical nodes. The first refers to the possibility to make
use of the available memory resources and at the same time be able to resolve any geometrical query,
while the second defines the capability of the modeller to respond quickly even for huge geometries.
These parameters can become critical when simulating big experiments like those at LHC.

Creating and Visualizing Tracks
In case the modeller is interfaced with a tracking engine, one might consider quite useful being able
to store and visualize at least a part of the tracks in the context of the geometry. The base class
TVirtualGeoTrack provides this functionality. It currently has one implementation inside the
drawing package (TGeoTrack class). A track can be defined like:

TVirtualGeoTrack(Int_t id,Int_t pdg,TVirtualGeoTrack *parent=0,
TObject *particle=0);

Where: id is user-defined id of the track, pdg - pdg code, parent - a pointer to parent track,
particle - a pointer to an arbitrary particle object (may be a TParticle).

A track has a list of daughters that have to be filled using the following method:

TVirtualGeoTrack *TVirtualGeoTrack::AddDaughter(Int_t id,Int_t pdg,
TObject *particle=0);

The method above is pure virtual and have to create a track daughter object. Tracks are fully
customizable objects when inheriting from TVirtualGeoTrack class. We will describe the
structure and functionality provided by the default implementation of these, which are TGeoTrack
objects.

A TGeoTrack is storing a list of control points (x,y,z) belonging to the track, having
also time information (t). The painting algorithm of such tracks allows drawing them in any time
interval after their creation. The track position at a given time is computed by interpolation between
control points.

myTrack->AddPoint(x,y,z,t);

The creation and management of tracks is in fact fully controlled by the TGeoManager class.
This holds a list of primary tracks that is also visible during browsing as Tracks folder.
Primary tracks are tracks having no parent in the tracking history (for instance the output of particle
generators may be considered as primaries from tracking point of view). The manager class holds in
TGeoManager::fCurrentTrack a pointer to the current track. When starting tracking a particle,
one can create a track object like:

Int_t track_index = gGeoManager->AddTrack(id,pdg,ptrParticle);

Here track_index is the index of the newly created track in the array of primaries. One can get
the pointer of this track and make it known as current track by the manager class:

TVirtualGeoTrack *track = gGeoManager->GetTrack(track_index);

The Geometry Package

447

gGeoManager->SetCurrentTrack(track);
// or directly
gGeoManager->SetCurrentTrack(track_index);
TVirtualGeoTrack *current = gGeoManager->GetCurrentTrack();

One can also look for a track by user id or track index:

ptrTrack = gGeoManager->GetTrackOfId(user_id);
ptrParent = gGeoManager->GetParentTrackOfId(user_id);
ptrTrack = gGeoManager->GetTrack(index);

Supposing a particle represented by a primary track decays or interacts, one should not create new
primaries as described before, but rather add them as secondary:

TVirtualGeoTrack *secondary =
ptrTrack->AddTrack(secondId,pdg,secondParticle);

At any step made by the current track, one is able to add control points to either primary or secondary:

track->AddPoint(x,y,z,t);

After tracks were defined and filled during tracking, one will be able to browse directly the list of tracks
held by the manager class. Any track can be drawn using its Draw() and Animate() methods, but
there are also global methods for drawing or animation that can be accessed from TGeoManager
context menu:

TGeoManager::DrawTracks(Option_t *option);
TGeoManager::AnimateTracks(Double_t tmin=0.,Double_t tmax=1E-8,
Int_t nframes=200,Option_t *option=””) ;

The drawing/animation time range is a global variable that can be directly set:

gGeoManager->SetTminTmax(tmin, tmax);
// without arguments resets the time range to the maximum value

Once set, the time range will be active both for individual or global track drawing. For animation, this
range is divided to the desired number of frames and will be automatically updated at each frame in
order to get the animation effect.

The option provided to all track-drawing methods can trigger different track selections:

default: A track (or all primary tracks) drawn without daughters

/D: Track and first level descendents only are drawn

/*: Track and all descendents are drawn

/Ntype: All tracks having name=type are drawn

Generally several options can be concatenated in the same string (E.g. “/D /Npion-“).

For animating tracks, additional options can be added:

/G:Geometry animate. Generally when drawing or animating tracks, one has to first perform a
normal drawing of the geometry as convenient. The tracks will be drawn over the geometry. The
geometryitself will be animated (camera moving and rotating in order to “catch” the majority of current
track segments.)

/S:Save all frames in gif format in the current folder. This option allows creating a movie based on
individual frames.

The Geometry Package

448

Checking the Geometry
Several checking methods are accessible from the context menu of volume objects or of the manager
class. They generally apply only to the visible parts of the drawn geometry in order to ease geometry
checking, and their implementation is in the TGeoChecker class. The checking package contains
an overlap checker and several utility methods that generally have visualization outputs.

The Overlap Checker
An overlap is any region in the Euclidian space being contained by more than one positioned volume.
Due to the containment scheme used by the modeller, all points inside a volume have to be also
contained by the mother therefore are overlapping in that sense. This category of overlaps is ignored
due to the fact that any such point is treated as belonging to the deepest node in the hierarchy.

Figure 18.30. Extruding volumes

A volume containment region is in fact the result of the subtraction of all daughters. On the other hand,
there are two other categories of overlaps that are considered illegal since they lead to unpredictable
results during tracking.

A) If a positioned volume contains points that are not also contained by its mother, we will call the
corresponding region as an extrusion. When navigating from outside to inside (trying to enter such
a node) these regions are invisible since the current track has not yet reached its mother. This is not
the case when going the other way since the track has first to exit the extruding node before checking
the mother. In other words, an extrusion behavior is dependent on the track parameters, which is a
highly undesirable effect.

B) We will call overlaps only the regions in space contained by more than one node inside the
same container. The owner of such regions cannot be determined based on hierarchical considerations;
therefore they will be considered as belonging to the node from which the current track is coming from.

When coming from their container, the ownership is totally unpredictable. Again, the ownership of
overlapping regions highly depends on the current track parameters.

We must say that even the overlaps of type A) and B) are allowed in case the corresponding nodes
are created using TGeoVolume::AddNodeOverlap() method. Navigation is performed in such
cases by giving priority to the non-overlapping nodes. The modeller has to perform an additional search
through the overlapping candidates. These are detected automatically during the geometry closing
procedure in order to optimize the algorithm, but we will stress that extensive usage of this feature
leads to a drastic deterioration of performance. In the following we will focus on the non-declared
overlaps of type A) and B) since this is the main source of errors during tracking. These are generally

The Geometry Package

449

non-intended overlaps due to coding mistakes or bad geometry design. The checking package is loaded
together with the painter classes and contains an automated overlap checker.

Figure 18.31. Overlap checking

This can be activated both at volume level (checking for illegal overlaps only one level inside a given
volume) and from the geometry manager level (checking full geometry):

myVolume->CheckOverlaps(precision, option);
gGeoManager->CheckOverlaps(precision);
myNode->CheckOverlaps(precision);

Here precision represents the desired maximum accepted overlap value in centimeters (default value
is 0.1). This tool checks all possible significant pairs of candidates inside a given volume (not declared
as overlapping or division volumes). The check is performed by verifying the mesh representation
of one candidate against the shape of the other. This sort of check cannot identify all possible
overlapping topologies, but it works for more than 95% and is much faster than the usual shape-to-
shape comparison. For a 100% reliability, one can perform the check at the level of a single volume
by using option="d" or option="d<number>" to perform overlap checking by sampling the
volume with <number> random points (default 1 million). This produces also a picture showing in
red the overlapping region and estimates the volume of the overlaps.

An extrusion A) is declared in any of the following cases:

• At least one of the vertices of the daughter mesh representation is outside the mother volume (in
fact its shape) and having a safety distance to the mother greater than the desired value;

• At least one of the mother vertices is contained also by one of its daughters, in the same conditions.

An overlap B) is declared if:

• At least one vertex of a positioned volume mesh is contained (having a safety bigger than the
accepted maximum value) by other positioned volume inside the same container. The check is
performed also by inverting the candidates.

The code is highly optimized to avoid checking candidates that are far away in space by performing
a fast check on their bounding boxes. Once the checking tool is fired-up inside a volume or at top
level, the list of overlaps (visible as Illegal overlaps inside a TBrowser) held by the manager class
will be filled with TGeoOverlap objects containing a full description of the detected overlaps. The
list is sorted in the decreasing order of the overlapping distance, extrusions coming first. An overlap
object name represents the full description of the overlap, containing both candidate node names and a
letter (x-extrusion, o-overlap) representing the type. Double-clicking an overlap item in a TBrowser

The Geometry Package

450

produces a picture of the overlap containing only the two overlapping nodes (one in blue and one in
green) and having the critical vertices represented by red points. The picture can be rotated/zoomed
or drawn in X3d as any other view. Calling gGeoManager->PrintOverlaps() prints the list
of overlaps.

Graphical Checking Methods

Figure 18.32. Safety computation checking

In order to check a given point, CheckPoint(x,y,z) method of TGeoManager draws the
daughters of the volume containing the point one level down, printing the path to the deepest physical
node holding this point. It also computes the closest distance to any boundary.

Figure 18.33. Random points

A method to check the validity of a given geometry is shooting random points. This can be called
with the method TGeoVolume::RandomPoints() and it draws a volume with the current
visualization settings. Random points are generated in the bounding box of the drawn volume. The
points are drawn with the color of their deepest container. Only points inside visible nodes are drawn.

Figure 18.34. Random rays

A ray tracing method can be called TGeoVolume::RandomRays(). This shoots rays from a given
point in the local reference frame with random directions. The intersections with displayed nodes
appear as segments having the color of the touched node.

The Geometry Package

451

The Drawing Package

The modeller provides a powerful drawing package,
supporting several different options of visualization. A library separated from the main one provides all
functionality being linked with the underlying ROOT visualization system. This library is dynamically
loaded by the plug-in manager only when drawing features are requested. The geometrical structures
that can be visualized are volumes and volume hierarchies.

The main component of the visualization system is volume primitive painting in a ROOT pad. Starting
from this one, several specific options or subsystems are available, like: X3D viewing using hidden
line and surface removal algorithms, OpenGL viewing* or ray tracing.

The method TGeoManager::GetGeomPainter()loads the painting library in memory.

This is generally not needed since it is called automatically by TGeoVolume::Draw() as well as
by few other methods setting visualization attributes.

Drawing Volumes and Hierarchies of Volumes
The first thing one would like to do after building some geometry is to visualize the volume tree.
This provides the fastest validation check for most common coding or design mistakes. As soon as the
geometry is successfully closed, one should draw it starting from the top-level volume:

//… code for geometry building
root[] gGeoManager->CloseGeometry();
root[] gGeoManager->GetMasterVolume()->Draw();

Doing this ensures that the original top-level volume of the geometry is drawn, even if another volume
is currently the geometry root. OK, I suppose you already did that with your simple geometry and
immediately noticed a new ROOT canvas popping-up and having some more or less strange picture
inside. Here are few questions that might come:

• Q: “The picture is strangely rotated; where are the coordinate
axes?”

A: If drawn in a new canvas, any view has some default viewpoint, center of view and size. One can
then perform mouse/keyboard actions to change them:

- Mouse left-click and drag will rotate the view;

- Some keys can be pressed when the view canvas is selected: J/K zoom/un-zoom, U/I move up/down,
L/H move left/right. The coordinate axes display as well as changing top or side viewpoints can be
activated from the TView context menu: right-click on the picture when no object is selected;

• Q: “Every line is black! I cannot figure out what is what…”

The Geometry Package

452

A: Volumes can have different colors (those known by ROOT of course). Think at using them after
each volume creation: myvolume->SetLineColor(Int_t color); otherwise everything is
by default black.

• Q: “The top volume of my geometry is a box but I see only its
content.”

A: By default the drawn volume is not displayed just because we do not want to hide its content when
changing the view to HLR or solid mode. In order to see it in the default wire frame picture one has
to call TGeoManager::SetTopVisible().

• Q: “I do not see all volumes in my tree but just something inside.”

A: By default, TGeoVolume::Draw() paints the content of a given volume three levels down.
You can change this by using: gGeoManager::SetVisLevel(n);

Not only that, but none of the volumes at intermediate levels (0-2) are visible on the
drawing unless they are final ‘leaves’ on their branch (e.g. have no other volumes positioned
inside). This behavior is the default one and corresponds to ‘leaves’ global visualization mode
(TGeoManager::fVisOption = 1). In order to see on the screen the intermediate containers,
one can change this mode: gGeoManager->SetVisOption(0).

• Q: “Volumes are highlighted when moving the mouse over their
vertices. What does it mean?”

A: Indeed, moving the mouse close to some volume vertices selects it. By checking the Event
Status entry in the root canvas Options menu, you will see exactly which is the selected node in
the bottom right. Right-clicking when a volume is selected will open its context menu where several
actions can be performed (e.g. drawing it).

• Q: “OK, but now I do not want to see all the geometry, but just a
particular volume and its content. How can I do this?”

A: Once you have set a convenient global visualization option and level, what you need is just call the
Draw() method of your interesting volume. You can do this either by interacting with the expanded
tree of volumes in a ROOT browser (where the context menu of any volume is available), either by
getting a pointer to it (e.g. by name): gGeoManager->GetVolume(“vol_name”)->Draw();

Visualization Settings and Attributes
Supposing you now understand the basic things to do for drawing the geometry or parts of it, you still
might be not happy and wishing to have more control on it. We will describe below how you can tune
some fine settings. Since the corresponding attributes are flags belonging to volume and node objects,
you can change them at any time (even when the picture is already drawn) and see immediately the
result.

Colors and Line Styles

We have already described how to change the line colors for volumes. In fact, volume objects inherit
from TAttLine class so the line style or width can also be changed:

myVolume->SetLineColor(kRed);
myVolume->SetLineWith(2);
myVolume->SetLineStyle(kDotted);

When drawing in solid mode, the color of the drawn volume corresponds to the line color.

Visibility Settings

The way geometry is build forces the definition of several volumes that does not represent real objects,
but just virtual containers used for grouping and positioning volumes together. One would not want

The Geometry Package

453

to see them in the picture. Since every volume is by default visible, one has to do this sort of tuning
by its own:

myVolumeContainer->SetVisibility(kFALSE);

As described before, the drawing package supports two main global options: 1 (default) – only final
volume leaves; 0 – all volumes down the drawn one appear on the screen. The global visible level put
a limitation on the maximum applied depth. Combined with visibility settings per volume, these can
tune quite well what should appear on the screen. However, there are situations when users want to
see a volume branch displayed down to the maximum depth, keeping at the same time a limitation or
even suppressing others. In order to accomplish that, one should use the volume attribute: Visible
daughters. By default, all daughters of all volumes are displayed if there is no limitation related
with their level depth with respect to the top drawn volume.

Ray Tracing
Ray tracing is a quite known drawing technique based on tracking rays from the eye position through
all pixels of a view port device. The pixel color is derived from the properties of the first crossed
surface, according some illumination model and material optical properties. While there are currently
existing quite sophisticated ray tracing models, TGeo is currently using a very simple approach where
the light source is matching the eye position (no shadows or back-tracing of the reflected ray). In future
we are considering providing a base class in order to be able to derive more complex models.

Due to the fact that the number of rays that have to be tracked matches the size in pixels of the pad, the
time required by this algorithm is proportional to the pad size. On the other hand, the speed is quite
acceptable for the default ROOT pad size and the images produced by using this technique have high
quality. Since the algorithm is practically using all navigation features, producing ray-traced pictures is
also a geometry validation check. Ray tracing can be activated at volume level as the normal Draw().

Figure 18.35. Ray-traced view in a pad

myVolume->Raytrace()

Once ray-tracing a view, this can be zoomed or rotated as a usual one. Objects on the screen are no
longer highlighted when picking the vertices but the corresponding volumes is still accessible.

Clipping Ray-traced Images

A ray-traced view can be clipped with any shape known by the modeller. This means that the region
inside the clipping shape is subtracted from the current drawn geometry (become invisible). In order
to activate clipping, one has to first define the clipping shape(s):

1. TGeoShape *clip1, *clip2, …

One might switch between several clipping shapes. Note that these shapes are considered defined in
the current MARS. Composite shapes may be used.

The Geometry Package

454

2. gGeoManager->SetClippingShape(clip1);

One can activate or deactivate clipping at any time: gGeoManager->SetClipping(flag);

3. Perform ray-tracing: gGeoManager->GetTopVolume()->Raytrace();

One can redo the steps 2-3 as many times as needed. Let us look how the rootgeom example looks
clipped with a tube.

Figure 18.36. Ray-tracing example with box-clipping

Representing Misalignments of the Ideal
Geometry

The ideal positioning of a detector does not match its position in the experimental hall. This generally
happens not only for the detector modules, but also for their components. The accurate knowledge of
the detector real misalignments can be extremely important for getting close to its designed resolution
and the expected tracking efficiency. TGeo offers tools for representing positioning misalignments,
applying them to the ideal geometry and performing navigation under these conditions. Detector
tracking algorithms can then directly query the geometry for navigation purposes or for retrieving
actual misalignment information.

Physical Nodes
Physical nodes are the actual “touchable” objects in the geometry, representing actually a path of
positioned volumes starting witrh the top node: path=/TOP/A_1/B_4/C_3 , where A, B, C
represent names of volumes. The number of physical nodes is given by the total number of possible of
branches in the geometry hierarchy. In case of detector geometries and specially for calorimeters this
number can be of the order 106-109, therefore it is impossible to create all physical nodes as objects
in memory. In TGeo, physical nodes are represented by the class TGeoPhysicalNode and can be
created on demand for alignment purposes:

TGeoPhysicalNode(const char* path)

The knowledge of the path to the objects that need to be misaligned is essential since there is no other
way of identifying them. One can however create “symbolic links” to any complex path to make it
more representable for the object it designates:

TGeoPNEntry(const char* unique_name, const char* path)
void TGeoPNEntry::SetPhysicalNode(TGeoPhysicalNode *node)

Such a symbolic link hides the complexity of the path to the align object and replaces it with a more
meaningful name. In addition, TGeoPNEntry objects are faster to search by name and they may
optionally store an additional user matrix.

The Geometry Package

455

// Creating a symlink object.
TGeoPNEntry *TGeoManager::SetAlignableEntry(const char *unique_n,
const char*path)
// Retrieving an existing alignable object.
TGeoPNEntry *TGeoManager::GetAlignableEntry(const char *name)
// Retrieving an existing alignable object at a given index.
TGeoPNEntry *GetAlignableEntry(Int_t index)

Physical nodes store internally the full list of logical nodes corresponding to the elements from the
string path, as well as the global transformation matrix for each of them. The top node corresponds to
the level 0 in the stored array, while the last node will correspond to level n. For each level, the node,
volume and global matrix can be retrieved using corresponding getters:

TGeoHMatrix *GetMatrix(Int_t level=-1) const
TGeoNode *GetNode(Int_t level=-1) const
TGeoShape *GetShape(Int_t level=-1) const
TGeoVolume *GetVolume(Int_t level=-1) const

By default the object at level n is retrieved (the alignable object).

Once created, a physical node can be misaligned, meaning that its positioning matrix or even the
shape.:

void Align(TGeoMatrix* newmat=0, TGeoShape* newshape=0,
Bool_t check=kFALSE)

The convention used is that newmat represents the new local matrix of the last node in the branch with
respect to its mother volume. The Align() method will actually duplicate the corresponding branch
within the logical hierarchy, creating new volumes and nodes. This is mandatory in order to avoid
problems due to replicated volumes and can create exhaustive memory consumption if used abusively.

Once aligned, a physical node is ready to be tracked. The operation can be done only after the geometry
was closed.

Important NOTE: Calling the Align() method for a physical node changes the node pointers for
the stored node branch in the active geometry, Due to this the other defined physical nodes containing
elements of this path will be invalid. Example:

TGeoPhysicalNode *pn1 =
gGeoManager->MakePhysicalNode(“/A_1/B_1/C_2”);
TGeoPhysicalNode *pn2 =
gGeoManager->MakePhysicalNode(“/A_1/B_1/C_3”);
…
pn1->Align(…);

The call to pn1->Align() will invalidate the pointer to the node B_1 in pn2 object.. The way out
is to either call pn1->Align() before the creation of pn2, eithr to use a global method that will
correct all existing physical nodes:

void RefreshPhysicalNodes(Bool_t lock = kTRUE)

The method above will optionally lock the possibility of doing any further misalignment.

Geometry I/O
Once geometry is successfully built, it can be saved in a root file, as C++ macro or as GDML file
by calling:

TGeoManager::Export(const char *filename,const char*keyname="",
Option_t *opt="vg")

The Geometry Package

456

• Filenameis the name of the file to be written (mandatory). Depending on the extension of the
file, the geometry is exported either as ,root file or .C(.cxx) macro or GDML file in case extension
is .gdml.

• keynameis the name of the key in the file (default "")

• opt = "v" is an export voxelization (default), otherwise voxelization is recomputed after loading
the geometry, "g" this option (default) is taken into account only for exporting to gdml file and
it ensures compatibility with Geant4 (e.g. it adds extra plane to incorrectly set polycone, it checks
whether offset of Phi division is in (-360;0> range, ...), for this gdml export there are two more
option, that are not set by default: "f" and "n". If none of this two options are set, then names
of solids and volumes in resulting gdml file will have incremental suffix (e.g. TGeoBBox_0x1,
TGeoBBox_0x2, ...). If "f" option is set then then suffix will contain pointer of object (e.g.
TGeoBBox_0xAAAAA01, ...). Finally if option "n" is set then no suffix will be added, though in
this case uniqness of the names is not ensured and it can cause that file will be invalid.

Loading geometry from a root file can be done in the same way as for any other ROOT object, but
a static method is also provided:

TGeoManager::Import(const char *filename,const char *keyname="",
Option_t *opt="")

Example:

// Writing to a file geometry definition ending with:
root[] gGeoManager->CloseGeometry();
// geometry is ready
root[] gGeoManager->Export("MyGeom.root");
// file MyGeom.root produced
root[] gGeoManager->Export(“MyGeom.C”);
 // C++ macro MyGeom.C produced
root[] gGeoManager->Export(“MyGeom.gdml”);
 // GDML file MyGeom.gdml produced
root[] myVolume->SaveAs(“MyVolume.C”);
 // C++ macro for the branch starting
 // with MyVolume
// Reading from a file
root[] gSystem->Load(“libGeom”);
root[] TGeoManager::Import("MyGeom.root"); // geometry is ready

Note that not all-current information held by the modeller is written on the file. For instance, the painter
and checker objects are not written, as well as the temporary current navigation properties: current
node path, point or direction. On the other hand, all objects belonging to the geometrical hierarchy will
always be written. The idea is to be able to retrieve the geometry in a ready state, ignoring what the state
variables that can be always re-initialized. When the code is generated for a given TGeoVolume in the
geometry, just the branch starting with that volume will be saved in the file. Executing the generated
code will create a geometry that has MyVolume as top volume. In this case, only the materials/media/
matrices used effectively in the MyVolume branch are exported to file.

Volumes can be made persistent in the same way the full geometry is. Exporting is straightforward
(module1, 2 are pointers to TGeoVolume objects):

module1->Export("file.root");
// by default file is overwritten
module2->Export("file.root","","update");
// to the same file

Importing will append the volume to the current TGeoManager or will create one:

TGeoManager *geom = new TGeoManager("myGeom", "");

The Geometry Package

457

TGeoVolume *top = geom->MakeBox(...);
geom->SetTopVolume(top);
//name of volume or key (depending on export usage)
TGeoVolume *module1 = TGeoVolume::Import("file.root", "MOD1");
TGeoVolume *module2 = TGeoVolume::Import("file.root", "MOD2");
top->AddNode(module1, 1, new TGeoTranslation(0,0,100));
top->AddNode(module2, 1, new TGeoTranslation(0,0,-100));
// One should close himself the geometry
geom->CloseGeometry();

GDML
Few lines above word GDML was used. GDML stands for Geometry Description Markup Language.
It is an application-indepedent geometry description format based on XML. It is mainly used for
geometry interchange between ROOT and Geant4 framework. More details about this project can
be found http://gdml.web.cern.ch. This feature (importing/exporting from/to gdml file format) is
disabled by default in ROOT installation. To enable this feature add --enable-gdml option to ./
configure script call.

Navigation Algorithms
This section will describe the main methods and algorithms used for implementing the navigation
features within the geometrical modeller. This includes navigation queries at shape level, global
geometrical queries and optimization mechanisms.

Finding the State Corresponding to a Location (x,y,z)
For reminder, a geometry state is a ‘touchable’ object in the geometry hierarchy. It is represented by
a path like: /TOP_1/A_1/B_3/C_1, where B_3 for instance is a copy of volume B positioned inside
volume A. A state is always associated to a transformation matrix M of the touchable with respect
to the global reference frame (obtained by piling-up all local transformations of nodes in the branch
with respect to their containers). The current state and the corresponding global matrix are updated
whenever the geometry depth is modified. The global transformations corresponding to all nodes in
the current branch are kept in an array: (MTOP_1, MA_1, MB_3, …).

Figure 18.37. Navigation in the geometry hierarchy

The Geometry Package

458

The elementary operations for changing the state are:

TGeoManager::CdUp();
TGeoManager::CdDown(i);
TGeoManager::CdTop()

The current state accounting and global matrix handling after these operations are depicted in the
figure below. Now let us suppose that we have a particle at position P(x,y,z). The first thing needed for
transporting it is the current object our particle is into, so that we can retrieve its material properties.
This task is done by:

TGeoNode *TGeoManager::FindNode(x,y,z)

Note that the current particle position can be set using SetCurrentPosition(x,y,z) method
of the manager class, in which case FindNode() can be called without arguments. The method
returns a pointer to the deepest node that geometrically contains P (in our case let us suppose it is B_3).
Since a node is just a positioned volume, we can then get a pointer to the volume, medium or material
objects related to it. Deepest means that B_3 still contains point P (as well as A_1 and TOP_1), but
none of the daughters of volume B does. After finding out the node containing the particle, one can
check if the geometry state is different compared to the last located point:

Bool_t *TGeoManager::IsSameLocation()

The algorithm for finding where a point is located in geometry is presented in the figure 17-36.

It always starts by checking if the last computed modeller state is the answer. This optimizes the search
when continuously tracking a particle. The main actions performed are:

• moving up and down in the logical node tree while updating the current node and its global matrix

• converting the global position into the local frame of the current node/volume

• checking whether the local position lies within the geometrical shape of the current volume – if this
is the case continue the search downwards for the daughters of the current node, otherwise search
upwards its containers until the top level is reached.

• the number of candidate nodes to be checked at a given level is minimized by an additional
optimization structure: voxels. This is effective even in case there is only one daughter of the current
volume.

• in case the current node is declared as possibly overlapping, the method FindInCluster() is invoked.
This method checks all different possibilities within the cluster of overlapping candidates. One of
the candidates is prioritized if one of the following conditions id fulfilled (in order):

• Is declared as non-overlapping (these are anyway searched first)

• Has at least one daughter that contains the current point

• Was already declared as containing the point at a previous step

The Geometry Package

459

Figure 18.38. Finding the location of a point in the geometry hierarchy

Finding the Distance to Next Crossed Boundary
The most important feature provided by the modeller related to track propagation is the computation
of the distance to the next boundary along a straight line.

The relevant state parameters used for this task are:

• Current particle position and direction (x,y,z,nx,ny,nz), where ni is the direction cosine with
axis (i).

• Current node (and path) in geometry must be set by calling
TGeoManager::FindNode(x,y,z) beforehand The method computing the distance to next
boundary is:

TGeoNode *TGeoManager::FindNextBoundary(stepmax, path)

The Geometry Package

460

The output node returned by the method is the object which shape boundary will be crossed first. The
distance to the next crossing can be retrieved after the call:

Double_t TGeoManager::GetStep()

• The main input parameter is stepmax, which act as a trigger for different features. The absolute
value of this parameter represents the step value proposed by the user. The algorithm will never try
o search for boundaries further than this distance. In case no boundary is found the returned node
will be the current one and the computed step to boundary will be equal to abs (stepmax) having
the meaning “step approved”. The default value for stepmax is TGeoShape::Big with the
meaning that boundaries are looked for without limitation.

Figure 18.39. Finding the distance to the next crossed boundary

According the values of the input parameters the method will perform additional optional tasks:

|stepmax| < TGeoShape::Big()

The Geometry Package

461

The safe distance in the current volume is also computed. Moving the particle from its current location
with this distance in any direction is safe in the sense that will never change the current state.

stepmax < 0

The global matrix for the object that will have the next crossed boundary is also computed. This can
be retrieved for masterlocal point or vector conversions: TGeoManager::GetNextMatrix()

In case the computation of the normal vector to the next crossed surface is required, using a negative
stepmax value is recommended. In this case one can subsequently call a method for fast normal
computation:

Double_t *TGeoManager::FindNormalFast()

path 0

In case a path to a given physical object is specified, the distance to its boundary is computed ignoring
the rest of the geometry

Output Values

TGeoManager::GetStep(): distance to next boundary.

TGeoManager::GetSafeDistance(): safe distance (in case it was computed).

TGeoManager::IsOnBoundary(): the initial point (x,y,z) was (or was not) on a boundary
within TGeoShape::Tolerance().

The algorithm checks first if the computation of safety was required. If this is the case and the global
point coordinates did not change from the last query, the last computed safety is taken. Otherwise,
the method TGeoManager ::Safety () is invoked. A safety value less than TGeoShape
::Tolerance() will set the flag IsOnBoundary to true. On the other hand, a safety value bigger
than the proposed step will stop the computation of the distance to next boundary, returning the current
geometry location with the meaning that the proposed step is safe.

The next stage is to check if computation of the distance to a give physical object specified by a path
was required. If this is the case, the modeller changes the state to point to the required object, converts
the current point and direction coordinates to the local frame of this object and c omputes the distance to
its shape. The node returned is the one pointed by the input path in case the shape is crossed; otherwise
the returned value is NULL. In case the distance to next crossed boundary is required, the current
point has to be physically INSIDE the shape pointed by the current volume. This is only insured in
case a call to TGeoManager::FindNode() was performed for the current point. Therefore, the
first step is to convert the global current point and direction in the local reference frame of the current
volume and to compute the distance to exit its shape from inside. The returned value is again compared
to the maximum allowed step (the proposed one) and in case the distance is safe no other action is
performed and the proposed step is approved. In case the boundary is closer, the computed distance
is taken as maximum allowed step. For optimization purposed, for particles starting very close to the
current volume boundary (less than 0.01 microns) and exiting the algorithm stops here.

After computing the distance to exit the current node, the distance to the daughter of the current volume
which is crossed next is computed by TGeoManager ::FindNextDaughterBoundary().
This computes the distance to all daughter candidates that can be possibly crossed by using volume
voxelization. The algorithm is efficient in average only in case the number of daughters is greater
than 4. For fewer nodes, a simple loop is performed and the minimum distance (from a point outside
each shape) is taken and compared to the maximum allowed step. The step value is again updated if
step<stepmax .

A special case is when the current node is declared as possibly overlapping with something else. If
this is the case, the distance is computed for all possibly overlapping candidates, taking into account
the overlapping priorities (see also: “ Overlapping volumes ”).

The Geometry Package

462

The global matrix describing the next crossed physical node is systematically computed in
case the value of t he proposed step is negative. In this case, one can subsequently call
TGeoManager::ComputeNormalFast() to get the normal vector to the crossed surface, after
propagating the current point with the TGeoManager::GetStep() value. This propagation can
be done like:

Double_t *current_point = gGeoManager->GetCurrentPoint();
Double_t *current_dir = gGeoManager->GetCurrentDirection() ;
for (Int_t i=0 ; i<3 ; i++)
 current_point[i] += step * current_dir[I];

Note: The method TGeoManager::FindNextBoundary() does not modify the current point/
direction nor the current volume/state. The returned node is the next crossed one, but the physical
path (state) AFTER crossing the boundary is not determined. In order to find out this new state, one
has to propagate the point with a distance slightly bigger that the computed step value (which is
accurate within numerical precision). A method that performs this task finding the next location is
TGeoManager::Step(), described in “ Making a Step ”, but users may implement more precise
methods to insure post-step boundary crossing.

Geometry Graphical User Interface
The geombuilder package allows you to create and edit geometries. The package provides a library
of all GUI classes related to geometry. Each editable geometry class TGeoXXX have a correspondent
editor TGeoXXXEditor that provides a graphics user interface allowing to edit some (or all)
parameters of a geometry object. The editable objects are geometry manager, volumes, nodes, shapes,
media, materials and matrices. The interfaces provide also access to specific functionality of geometry
objects. The editing mechanism is based on ROOT GED (Graphics Editors) functionality and the
library is loaded using the plug-in mechanism.

Editing a Geometry

There are two different use cases having different ways of invoking the geometry editors. The first one
applies when starting with geometry from scratch and using the builder functionality to create new
geometry objects. In this case, one should use the sequence:

root[] TGeoManager *geom = new TGeoManager(“MyGeom”,
“Test builder”);
root[] geom->Edit(Option_t *option=””);

The lines above will create a new TGeoManager class, create an empty canvas and start the editor
in the left-sided editor frame attached to the canvas. To open the editor in a separate frame one should
provide a non-empty string as option to the Edit() method.

The Geometry Package

463

Figure 18.40. The geometry manager editor

The Geometry Manager Editor

Figure 18.41. Accessing/creating different categories of editable objects

The second use case applies when starting to edit an existing geometry. Supposing the geometry
was loaded into memory, besides the first method that still applies one can also edit drawn geometry
objects. For this, the menu entry View/Editor of the canvas containing for instance a drawn volume
must be activated. For starting the volume editor one can click on a volume. The GUI of the
TGeoManager class can be started by clicking on the top-right 40x40 pixels corner of the pad with
a drawn geometry.

This is the main entry point for editing the geometry or creating new objects. Once the interface is
created (using one of the methods described above), several categories can be accessed via a shutter
GUI widget:

• General. This allows changing the name/title of the geometry, setting the top volume, closing the
geometry and saving the geometry in a file. The file name is formed by geometry_name.C or
.root depending if the geometry need to be saved as a C macro or a .root file.

• Shapes. The category provides buttons for creation of all supported shapes. The new shape name
is chosen by the interface, but can be changed from the shape editor GUI. Existing shapes can be
browsed and edited from the same category.

The Geometry Package

464

• Volumes. The category allows the creation of a new volume having a given name, shape and
medium. For creating a volume assembly only the name is relevant. Existing volumes can be
browsed or edited from this category.

• Materials. Allows creation of new materials/mixtures or editing existing ones.

• Media. The same for creation/editing of tracking media (materials having a set of properties related
to tracking)

• Matrices. Allows creation of translations, rotations or combined transformations. Existing matrices
can also be browser/edited.

Editing Existing Objects

For editing an existing object from one of the categories described above, the interface imposes first
a selection among all objects of the corresponding type stored in the geometry. This can be done by
clicking the button next to the blue label Select <object>. The dialog interfaces are generally different
for different types of objects. The volume selection dialog offers the possibility to select either a
volume already connected to the geometry hierarchy or non-connected ones. Selection for shapes and
matrices is split into categories represented by top-level list tree items for: boxes, tubes, translations,
rotations, etc.

Figure 18.42. Selection dialogs for different TGeo objects

Once a selection is made and the dialog is closed, the selected item name will appear in the
corresponding label and the button Edit will start the object editor in a transient frame. Closing these
transient frames will not delete, but just hide existing opened editors for later reuse. Their lifetime is
determined by the canvas to which the manager editor is attached to, since these will be destroyed
together.

The Geometry Package

465

Figure 18.43. Editors for shapes, materials, media, matrices

For most editors, the functionalities Apply and Undo are provided.

For shapes, changing any of the shape parameters will activate the “Apply” button only if the check
button “Delayed draw” is checked, otherwise the changes are immediately applied. Once the apply
button is pressed, the changes are applied to the edited shape and drawn. The “Undo” button becomes
active after the first modification has been applied. It allows restoring the initial parameters of the
shape.

NOTE: In this version the “Undo” does not allow restoring an intermediate state of the parameters
that was applied – it will always restore the parameters at the moment the shape was edited.

All material properties changes are undoable. The mixture editor currently allows adding elements one
by one in the mixture composition. This can be done either by element weight fraction or by number
of atoms. Once an element was added using one method the other mehod is not selectable anymore.
Summing component fractions up to 1 in the final mixture is the user responsability. Adding materials
as components of a mixture is not supported in this version.

The elements that were added to the mixture appear in the bottom of the mixture editor. The operations
performed on mixture are not undoable.

Creation of New Objects

As described above, all geometry object creators are accessible within the geometry manager editor
frame. Generally, if the new object that needs to be created does not depend on other objects, it will
be built with a set of default parameters. This is the case for all shapes (except composite shapes)
and matrices. For all the other objects the interface forces the selection of components before creating
the object.

Editing Volumes

Volumes are hierarchical components in the geometry, therefore their editor is more complex. It
provides the following functionalities:

The Geometry Package

466

• General. This category allows changing the name of the volume and selecting other shape or
medium among existing ones.

• Daughters. The category allows removing existing daughter nodes or adding new ones. The button
“Position” allows editing the positioning matrix of a given node.

Figure 18.44. Setting volume properties and modifying volume hierarchy

• Visualization. This category allows changing the visibility of the edited volume or for its daughters,
as well as other visualization settings. The radio button “All” allows viewing all volumes down to
the selected depth. “Leaves” will draw only the deepest nodes that have the selected depth or lower
level ones that have no daughters inside. “Only” will allow drawing only the edited volume. The
check button “Raytrace” will just draw the current selection in solid mode using the ray-tracing
algorithm provided by TGeo.

The Geometry Package

467

Figure 18.45. Volume visualisation settings and division interface for volumes

• Division. Allows dividing the edited volume according a given pattern. The division axes that are
allowed are presented in a radio-button group. The number entries labeled “From”, “Step” and
“Nslices” correspond to the divisioning parameters on the selected axis. The range of the division
is between start and start+ndiv*step values and its validity is checked upon changing one
of the values.

NOTE: When changing a value in a number entry by typing a number, press ENTER at the end to
validate. This applies for taking into account and validation of any number change in the geometry
editors.

How to Create a Valid Geometry with Geometry
Editors

1. Create a new geometry manager and start the editor as described at the beginning.

2. Create at least one material from the "Materials" shutter item category. Generally, for creating
objects, the interface is always in the TGeoManagerEditor in different categories - one should
just provide a name and requested parameters.

3. Create a shape that will be used for the top volume within the "Shapes" category. For the moment,
the shapes that have editors are Box, Para, Trd1, Trd2, Tube, Tube segment, Cone, Cone segment,
Hype, Pcon, Torus and Sphere.

4. Create a medium from one of the existing materials from the "Medium" category. You will notice
that some categories as "Volume" and "Medium" are inactive at the beginning because at that time
there is no material yet (for making a medium) and no shape (for making a volume). These categories
are dynamically activated once all the required components are defined.

The Geometry Package

468

5. Create a volume from the "Volumes" category. You will notice that contrary to the other editors,
the volume editor is opened in a tab, not transient - this is because it is more complex.

6. Go back to "General" category and select the newly created volume as the top one (you can do it also
from the volume category). This is just for starting. To create some hierarchy, one has to create several
other volumes and the matrices to position them. Once this is done, use the volume editor interface to:

• add/remove daughters, change shape, edit position of daughters

• change visualization settings

• divide the volume (only if there are no daughters yet)

7. Close the geometry from the “General” category.

469

Chapter 19. Python and Ruby
Interfaces

Python is a popular, open-source, dynamic programming language with an interactive interpreter. Its
interoperability with other programming languages, both for extending Python as well as embedding it,
is excellent and many existing third-party applications and libraries have therefore so-called "Python
bindings." PyROOT provides Python bindings for ROOT: it enables cross-calls from ROOT/CINT
into Python and vice versa, the intermingling of the two interpreters, and the transport of user-level
objects from one interpreter to the other. PyROOT enables access from ROOT to any application or
library that itself has Python bindings, and it makes all ROOT functionality directly available from
the python interpreter.

PyROOT Overview
The Python scripting language is widely used for scientific programming, including high performance
and distributed parallel code (see http://www.scipy.org). It is the second most popular
scripting language (after Perl) and enjoys a wide-spread use as a "glue language": practically every
library and application these days comes with Python bindings (and if not, they can be easily written
or generated).

PyROOT, a Python extension module, provides the bindings for the ROOT class library in a generic
way using the CINT dictionary. This way, it allows the use of any ROOT classes from the Python
interpreter, and thus the "glue-ing" of ROOT libraries with any non-ROOT library or applications that
provide Python bindings. Further, PyROOT can be loaded into the CINT interpreter to allow (as of
now still rudimentary) access to Python classes. The best way to understand the benefits of PyROOT
is through a few examples.

Glue-ing Applications
The PyQt library, see http://www.riverbankcomputing.co.uk/pyqt, provides Python
bindings for the Qt cross-platform GUI framework (http://www.trolltech.com). With
PyROOT and PyQt, adding ROOT application layer code to a Qt GUI, becomes children play. The
following example shows how a Python class can be used to have ROOT code respond to a click on
a Qt widget.

Glue-ing Qt and ROOT through Python
import sys, ROOT
from qt import *

theApp = QApplication(sys.argv)
box = QVBox()
box.resize(QSize(40,10).expandedTo(box.minimumSizeHint()))

class myButton(QPushButton):
def __init__(self,label,master):
QPushButton.__init__(self,label,master)
self.setFont(QFont('Times',18,QFont.Bold))

def browse(self):
self.b = ROOT.TBrowser()

bb = myButton('browser',box)
QObject.connect(bb,SIGNAL('clicked()'),bb.browse)

Python and Ruby Interfaces

470

theApp.setMainWidget(box)
box.show()
theApp.exec_loop()

When the example is run, a Qt button is displayed, and when the button is clicked, a TBrowser
instance is created and will appear on the screen. PyROOT takes care of feeding system events to
ROOT widgets, so the TBrowser instance and the button behave properly when users interact with
them.

Access to ROOT from Python
There are several tools for scientific analysis that come with bindings that allow the use of these
tools from the Python interpreter. PyROOT provides this for users who want to do analysis in Python
with ROOT classes. The following example shows how to fill and display a ROOT histogram while
working in Python. Of course, any actual analysis code may come from somewhere else through other
bindings, e.g. from a C++ program.

When run, the next example will display a 1-dimensional histogram showing a Gaussian distribution.
More examples like the one above are distributed with ROOT under the $ROOTSYS/tutorials
directory.

Example: displaying a ROOT histogram from Python
from ROOT import gRandom,TCanvas,TH1F

c1 = TCanvas('c1','Example',200,10,700,500)
hpx = TH1F('hpx','px',100,-4,4)

for i in xrange(25000):
px = gRandom.Gaus()
hpx.Fill(px)

hpx.Draw()
c1.Update()

Access to Python from ROOT
Access to Python objects from CINT is not completely fleshed out. Currently, ROOT objects and
built-in types can cross the boundary between the two interpreters, but other objects are much more
restricted. For example, for a Python object to cross, it has to be a class instance, and its class has to be
known to CINT first (i.e. the class has to cross first, before the instance can). All other cross-coding
is based on strings that are run on the Python interpreter and vise-versa.

With the ROOT v4.00/06 and later, the TPython class will be loaded automatically on use, for older
editions, the libPyROOT.so needs to be loaded first before use. It is possible to switch between
interpreters by calling TPython::Prompt() on the ROOT side, while returning with ^D (EOF).
State is preserved between successive switches, and string based cross calls can nest as long as shared
resources are properly handled.

// Example: accessing the Python interpreter from ROOT
// either load PyROOT explicitly or rely on auto-loading
root[] gSystem->Load("libPyROOT");
root[] TPython::Exec("print1+1");
2

// create a TBrowser on the Python side, and transfer it back and forth

Python and Ruby Interfaces

471

root[] TBrowser* b = (void*)TPython::Eval("ROOT.TBrowser()");
(class TObject*)0x8d1daa0
root[] TPython::Bind(b,"b");

// builtin variables can cross-over (after the call i==2)
root[] int i = TPython::Eval(“1+1”);
root[] i
(int)2

Installation
There are several ways of obtaining PyROOT, and which is best depends on your specific situation. If
you work at CERN, you can use the installation available on afs. Otherwise, you will want to build
from source, as PyROOT is not build by default in the binaries distributed from the ROOT project site.
If you download the ROOT binaries, take care to download and install the Python distribution from
http://www.python.org/ against which they were built.

Environment Settings

ROOT installations with the build of PyROOT enabled are available from the CERN afs cell /
afs/cern.ch/sw/root/<version>/<platform>. To use them, simply modify your shell
environment accordingly. For Unix:

export PATH=$ROOTSYS/bin:$PYTHONDIR/bin:$PATH

export LD_LIBRARY_PATH=$ROOTSYS/lib:$PYTHONDIR/lib:$LD_LIBRARY_PATH

export PYTHONPATH=$ROOTSYS/lib:$PYTHONPATH

For Windows:

set PATH=%ROOTSYS%/bin;%PYTHONDIR%/bin;%PATH%

set PYTHONPATH=%ROOTSYS%/bin;%PYTHONPATH%

where $ROOTSYS should be set to /afs/cern.ch/sw/root/<version>/<platform>, and
PYTHONDIR to /afs/cern.ch/sw/lcg/external/Python/2.3.4/<platform> with
<version> and <platform> as appropriate. Note that the latest version of Python is 2.4.1.

Building from Source

The standard installation instructions for building ROOT from source apply, with the addition that
the build of PyROOT needs to be enabled at the configuration step. First, follow the instructions for
obtaining and unpacking the source, and setting up the build environment.

Then, use the following command to configure the build process (of course, feel free to add any
additional flags you may need):

$./configure <arch> [--with-python-incdir=<dir>][--with-python-
libdir=>dir>]

For details on <arch> see the official build pages, the Python include directory should point to the
directory that contains Python.h and the library directory should point to the directory containing
libpythonx.y.so, where 'x' and 'y' are the major and minor version number, respectively. If
you do not specify include and library directories explicitly, the configuration process will try the
PYTHONDIR environment variable or, alternatively, the standard locations.

A recent distribution of Python is required: version 2.4.3 is preferred, but the older 2.2.x and 2.3.x
versions suffice and are supported as well. Versions older than 2.2 are not supported and will not work.
Note that one problem with 2.2 is that the shared library of the Python interpreter core is not build

Python and Ruby Interfaces

472

by default and the '--enable-shared' flag should thus be used when building Python from source. If
the Python interpreter that is installed on your system is too old, please obtain a new version from
http://www.python.org.

Once configured, you continue the build process the normal way:

$ make

$ make cintdlls

$ make install

After some time, a library called libPyROOT.so (or libPyROOT.dll, on Windows) will be
created in the $ROOTSYS/lib ($ROOTSYS/bin on Windows) directory and a top Python
module, ROOT.py, will be copied into the same place. The final step is to setup the shell environment,
which is similar to what is described in the chapter ‘Environment Settings’. Note that the $ROOTSYS
entries are probably already there if you followed the standard instructions, and that the PYTHONDIR
entries should be replaced as appropriate by your choice at configuration time, or be left out if you
had the configuration script pick up them up from a default location.

Using PyROOT
Since it is an extension module, the usage of PyROOT probably comes naturally if you're used to
Python. In general, PyROOT attempts to allow working in both Python and ROOT style, and although
it is succeeding, it isn't perfect: there are edges. The following sections explain in some detail what
you can expect, and what you need to watch out for.

Access to ROOT Classes

Before a ROOT class can be used from Python, its dictionary needs to be loaded into the current
process. Starting with ROOT version 4.00/06, this happens automatically for all classes that are
declared to the auto-loading mechanism through so-called rootmap files. Effectively, this means
that all classes in the ROOT distributions are directly available for import. For example:

from ROOT import TCanvas # available at startup
c = TCanvas()

from ROOT import TLorentzVector # triggers auto-load of libPhysics
l = TLorentzVector()

Although it is not recommended, a simple way of working with PyROOT is doing a global import:

from ROOT import *

c = TCanvas()
l = TLorentzVector()

Keeping the ROOT namespace ("import ROOT"), or only importing from ROOT those classes that
you will actually use (see above), however, will always be cleaner and clearer:

import ROOT

c = ROOT.TCanvas()
l = ROOT.TLorentzVector()

Since it is foreseen that most people will use the simple approach anyway, the request to copy all
from module ROOT will not actually result in copying all ROOT classes into the current namespace.

Python and Ruby Interfaces

473

Instead, classes will still be bound (and possibly loaded) on an as-needed basis. Note carefully how
this is different from other Python (extension) modules, and what to expect if you use the normal
inspection tools (such as e.g. 'dir()'). This feature prevents the inspection tools from being swamped
by an enormous amount of classes, but they can no longer be used to explore unknown parts of the
system (e.g. to find out which classes are available). Furthermore, because of this approach, <tab>-
completion will usually not be available until after the first use (and hence creation) of a class.

Access to class static functions, public data members, enums, etc. is as expected. Many more example
uses of ROOT classes from Python can be found in the tutorials directory in the ROOT distribution.
The recipes section contains a description on working with your own classes (see “Using Your Own
Classes”).

Access to STL Classes

Before STL classes can be used, you have to make sure that the CINT extension dlls are build (the
"cintdlls" make target). Note that they do not compile on as many platforms as ROOT itself.
Further, if you want to use template instantiations of STL classes with any of your own classes, make
sure that a dictionary is available, e.g. by using ACLiC.

The STL classes live in the ROOT.std namespace (or, if you prefer to get them from there, in the
ROOT module directly, but doing so makes the code less clear, of course). Be careful in their use,
because Python already has types called "string" and "list."

In order to understand how to get access to a templated class, think of the general template as a meta
class. By instantiating the meta class with the proper parameters, you get an actual class, which can
then be used to create object instances. An example usage:

>>> from ROOT import std
>>> v = std.vector(int)()
>>> for i in range(0,10):
... v.push_back(i)
...
>>> for i in v:
... print i,
1 2 3 4 5 6 7 8 9
>>>
>>> list(v)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>

The parameters to the template instantiation can either be an actual type or value (as is used here, "int"),
or a string representation of the parameters (e.g. "'double'"), or a mixture of both (e.g. "'TCanvas, 0'"
or "'double', 0"). The "std::vector<int>" class is one of the classes builtin by default into the CINT
extension dlls. You will get a non-functional class (instances of which can still be passed around to
C++) if the corresponding dictionary doesn't exist.

Access to ROOT Globals

Most globals and global functions can be imported directly from the ROOT.py module, but some
common ones (most notably gMinuit, although that variable now exists at startup from release 5.08
onward) do not exist yet at program startup, as they exist in modules that are loaded later (e.g. through
the auto-loading mechanims). An example session should make this clear:

>>> from ROOT import *
>>> gROOT # directly available
<ROOT.TROOT object at 0x399c30>
>>> gMinuit # library not yet loaded: not available

Python and Ruby Interfaces

474

Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name 'gMinuit' is not defined
>>> TMinuit # use of TMinuit class forces auto-loading
<class '__main__.TMinuit'>
>>> gMinuit # now gMinuit is available
<__main__.TMinuit object at 0x1458c70>
>>> not not gMinuit # but it is the null pointer, until set
False
>>> g = TMinuit()
>>> not not gMinuit
True

It is also possible to create globals interactively, either by executing a CINT macro, or by a call
to gROOT.ProcessLine(). These globals are made available in the same way: either use them
directly after creation in 'from ROOT import *' more, or get them from the ROOT namespace after
an 'import ROOT'.

As of 5.08, the behaviour of ROOT globals is the same as python globals, which is sometimes
counterintuitive: since they are references, they can be changed only if done so directly through their
containing module. The following session shows that in detail:

>>> from ROOT import *
>>> print gDebug
0
>>> gROOT.ProcessLine('gDebug = 7;')
>>> print gDebug
0 # local gDebug is unchanged
>>> gDebug = 5 # changes _local_ reference only
>>> print gDebug
5 # locally correct, but ...
>>> gROOT.ProcessLine('cout << gDebug << endl;')
7 # ... ROOT global unchanged
>>> import ROOT
>>> print ROOT.gDebug
7 # still the old value (not '5')
>>> ROOT.gDebug = 3 # changes ROOT module reference
>>> gROOT.ProcessLine('cout << gDebug << endl;')
3 # ROOT global properly changed
>>>

The above is another good reason to prefer 'import ROOT' over 'from ROOT import *'.

Access to Python

The access to Python from CINT goes through the TPython class, or directly if a Python object or
class has crossed the border. The TPython class, which looks approximately like this:

class TPython {

public:
 // load a Python script as if it were a macro
static void LoadMacro(const char* name);

 // execute a Python statement (e.g. "import ROOT")
static void Exec(const char* cmd);

Python and Ruby Interfaces

475

 // evaluate a Python expression (e.g. "1+1")
static const TPyReturn& Eval(const char* expr);

 // bind a ROOT object with, at the Python side, the name "label"
static bool Bind(TObject* obj,const char* label);

 // enter an interactive Python session (exit with ^D)
static void Prompt();
};

LoadMacro(const char* name) - the argument is a name of a Python file that is to be executed
('execfile'), after which any new classes are automatically made available to CINT. Since it is
non-selective, use with care.

ExecScript(const char* name,int argc=0,const char** argv=0) - the argument
is a name of a python file that is to be executed ('execfile') in a private namespace to minimize side-
effects. Optionally, you can add CLI-style arguments which are handed to the script through 'sys.argv'
in the normal way.

Exec(const char* cmd) - the argument is a string of Python code that is executed as a statement.
There is no return value, but an error message will be printed if there are problems such as syntax
errors.

Eval(const char* expr) - the argument is a string of Python code that is evaluated as an
expression. The result of the expression is returned, if it is either a builtin type (int, long, float, double,
and const char* are supported), a Python type that can cross, or a ROOT type. If a ROOT type
is returned, an explicit cast to void* is needed to assign the return value to a local pointer (which may
have a different type), whereas builtin types will be cast implicitly, if possible, to the type of the local
variable to which they are assigned.

Bind(TObject* obj,const char* label) - transfer a ROOT object from the CINT to the
Python interpreter, where it will be referenced with a variable called "label".

Prompt() – Transfer the interactive prompt to Python.

With the ROOT v4.00/06 and later, the TPython class will be loaded automatically on use, for older
editions, the libPyROOT.so needs to be loaded first with gSystem->Load() before use. Refer
back to the other example of the use of TPython that was given in “Access to Python from ROOT”.

To show in detail how Python access can be used, an example Python module is needed, as follows:

print 'creating class MyPyClass ... '
class MyPyClass:
def __init__(self):
print 'in MyPyClass.__init__'
self._browser = None
def gime(self,what):
return what

This module can now be loaded into a CINT session, the class used to instantiate objects, and their
member functions called for showing how different types can cross:

root[] TPython::LoadMacro("MyPyClass.py");
creating class MyPyClass ...
root[] MyPyClass m;
in MyPyClass.__init__
root[] char* s = m.gime("aap");
root[] s

Python and Ruby Interfaces

476

(char* 0x41ee7754)"aap"

Note that the LoadMacro() call makes the class automatically available, such that it can be used
directly. Otherwise, a gROOT->GetClass() call is required first.

Callbacks

The simplest way of setting a callback to Python from CINT, e.g. for a button, is by providing the
execution string. See for example tutorials/pyroot/demo.py that comes with the ROOT
installation:

[..]
bar = ROOT.TControlBar('vertical','Demos')
bar.AddButton('Help on Demos',r'TPython::Exec("execfile('demoshelp.py')");','Click Here For Help on Running the Demos')
bar.AddButton('browser',r'TPython::Exec("b = Tbrowser()");','Start the ROOT browser')
[..]

Here, the callback is a string that will be interpreted by CINT to call TPython::Exec(), which
will, in turn, interpret and execute the string given to it. Note the use of raw strings (the 'r' in front of
the second argument string), in order to remove the need of escaping the backslashes.

CINT Commands

In interactive mode, the Python exception hook is used to mimic some of the CINT commands
available. These are: .q, .!, .x, .L, .cd, .ls, .pwd, .? and .help. Note that .x translates to
Python 'execfile()' and thus accepts only Python files, not CINT macros.

Memory Handling
The Python interpreter handles memory for the user by employing reference counting and a garbage
collector (for new-style objects, which includes PyROOT objects). In C++, however, memory handling
is done either by hand, or by an application specific, customized mechanism (as is done in ROOT).
Although PyROOT is made aware of ROOT memory management, there are still a few boundary
conditions that need to be dealt with by hand. Also, the heuristics that PyROOT employs to deal with
memory management are not infallible. An understanding in some detail of the choices that are made
is thus important.

Automatic Memory Management

There are two global policies that can be set: heuristics and strict. By default, the heuristic policy is
used, in which the following rules are observed:

• A ROOT object created on the Python interpreter side is owned by Python and will be deleted once
the last Python reference to it goes away. If, however, such an object is passed by non-const address
as a parameter to a C++ function (with the exception of the use as "self" to a member function),
ownership is relinquished.

• A ROOT object coming from a ROOT call is not owned, but before it passes to the Python
interpreter, its "must cleanup" bit is set if its type is a class derived from TObject. When the object
goes out of scope on the C++ side, the Python object will change type into an object that largely
behaves like None.

The strict policy differs in that it will never relinquish ownership when passing an object as a parameter
to a function. It is then up to the developer to prevent double deletes. Choosing one or the other policy
is done by:

Python and Ruby Interfaces

477

ROOT.SetMemoryPolicy(ROOT.kMemoryStrict)

for the strict policy, or for the heuristic policy:

ROOT.SetMemoryPolicy(ROOT.kMemoryHeuristics)

Care must be taken in the case of graphic objects: when drawn on the current pad, a reference to the
graphics is kept that PyROOT isn't currently aware of, and it is up to the developer to keep at lease
one Python reference alive. See $ROOTSYS/tutorials/pyroot/zdemo.py (available in the
latest release) for an example. Alternatively, one can tell python to give up ownership for individual
instances:

o = ROOT.TObject()
ROOT.SetOwnership(o, False) # True to own, False to release

Memory Management by Hand

If needed, you can explicitly destroy a ROOT object that you own through its associated TClass:

myobject.IsA().Destructor(myobject)

which will send out the deletion notification to the system (thus you do not need to care anymore at
this point about Python reference counting, the object will go, even if it's reference count it non-zero),
and free the memory.

Performance
The performance of PyROOT when programming with ROOT in Python is similar to that of CINT.
Differences occur mainly because of differences in the respective languages: C++ is much harder to
parse, but once parsed, it is much easier to optimize. Consequently, individual calls to ROOT are
typically faster from PyROOT, whereas loops are typically slower.

When programming in Python, the modus operandi is to consider performance generally "good
enough" on the outset, and when it turns out that, it is not good enough; the performance critical part is
converted into C/C++ in an extension module. The school of thought where pre-mature optimization
is the root of all evil should find this way of working very satisfying. In addition, if you look at their
history, you will see that many of the standard Python modules have followed this path.

Your code should always make maximum use of ROOT facilities; such that most of the time is
spending in compiled code. This goes even for very simple things: e.g. do not compute invariant
masses in Python, use TLorentzVector instead. Moreover, before you start optimizing, make
sure that you have run a profiler to find out where the bottlenecks are. Some performance, without
cost in terms of programmer effort, may be gained by using psyco, see the next link: http://
psyco.sourceforge.net, a Python just in time compiler (JIT). Note, however, that psyco
is limited to Intel i386 CPUs. Since psyco optimizes Python, not PyROOT calls; it generally does
not improve performance that much if most of your code consists of ROOT API calls. Mathematical
computations in Python, on the other hand, benefit a lot.

Every call to a Python member function results in a lookup of that member function and an association
of this method with 'self'. Furthermore, a temporary object is created during this process that is
discarded after the method call. In inner loops, it may be worth your while (up to 30%), to short-cut
this process by looking up and binding the method before the loop, and discarding it afterwards. Here
is an example:

hpx = TH1F('hpx','px',100,-4,4)

Python and Ruby Interfaces

478

hpxFill = hpx.Fill # cache bound method
for i in xrange(25000):
px = gRandom.Gaus()
hpxFill(px) # use bound method: no lookup needed
del hpxFill # done with cached method

Note that if you do not discard the bound method, a reference to the histogram will remain outstanding,
and it will not be deleted when it should be. It is therefore important to delete the method when you're
done with it.

Use of Python Functions
It is possible to mix Python functions with ROOT and perform such operations as plotting and fitting
of histograms with them. In all cases, the procedure consists of instantiating a ROOT TF1, TF2, or
TF3 with the Python function and working with that ROOT object. There are some memory issues, so
it is for example not yet possible to delete a TF1 instance and then create another one with the same
name. In addition, the Python function, once used for instantiating the TF1, is never deleted.

Instead of a Python function, you can also use callable instances (e.g., an instance of a class that has
implemented the __call__ member function). The signature of the Python callable should provide
for one or two arrays. The first array, which must always be present, shall contain the x, y, z, and t
values for the call. The second array, which is optional and its size depends on the number given to
the TF1 constructor, contains the values that parameterize the function. For more details, see the TF1
documentation and the examples below.

Plotting Python Function

This is an example of a parameter less Python function that is plotted on a default canvas:

from ROOT import TF1, TCanvas

def identity(x):
return x[0]

create an identity function
f = TF1('pyf1',identity,-1.,1.)

plot the function
c = TCanvas()
f.Draw()

Because no number of parameters is given to the TF1 constructor, '0' (the default) is assumed. This
way, the 'identity' function need not handle a second argument, which would normally be used
to pass the function parameters. Note that the argument 'x' is an array of size 4. The following is an
example of a parameterized Python callable instance that is plotted on a default canvas:

from ROOT import TF1, TCanvas

class Linear:
def __call__(self, x, par):
return par[0] + x[0]*par[1]

create a linear function with offset 5, and pitch 2
f = TF1('pyf2',Linear(),-1.,1.,2)
f.SetParameters(5.,2.)

plot the function

Python and Ruby Interfaces

479

c = TCanvas()
f.Draw()

Note that this time the constructor is told that there are two parameters, and note in particular how
these parameters are set. It is, of course, also possible (and preferable if you only use the function
for plotting) to keep the parameters as data members of the callable instance and use and set them
directly from Python.

Fitting Histograms

Fitting a histogram with a Python function is no more difficult than plotting: instantiate a TF1 with the
Python callable and supply that TF1 as a parameter to the Fit() member function of the histogram.
After the fit, you can retrieve the fit parameters from the TF1 instance. For example:

from ROOT import TF1, TH1F, TCanvas

class Linear:
def __call__(self, x, par):
return par[0] + x[0]*par[1]

create a linear function for fitting
f = TF1('pyf3',Linear(),-1.,1.,2)

create and fill a histogram
h = TH1F('h','test',100,-1.,1.)
f2 = TF1('cf2','6.+x*4.5',-1.,1.)
h.FillRandom('cf2',10000)

fit the histo with the python 'linear' function
h.Fit(f)

print results
par = f.GetParameters()
print 'fit results: const =',par[0],',pitch =',par[1]

Working with Trees
Next to making histograms, working with trees is probably the most common part of any analysis.
The TTree implementation uses pointers and dedicated buffers to reduce the memory usage and to
speed up access. Consequently, mapping TTree functionality to Python is not straightforward, and
most of the following features are implemented in ROOT release 4.01/04 and later only, whereas you
will need 5.02 if you require all of them.

Accessing an Existing Tree

Let us assume that you have a file containing TTrees, TChains, or TNtuples and want to read
the contents for use in your analysis code. This is commonly the case when you work with the result of
the reconstruction software of your experiment (e.g. the combined ntuple in ATLAS). The following
example code outlines the main steps (you can run it on the result of the tree1.C macro):

from ROOT import TFile

open the file
myfile = TFile('tree1.root')

retrieve the ntuple of interest

Python and Ruby Interfaces

480

mychain = myfile.Get('t1')
entries = mychain.GetEntriesFast()

for jentry in xrange(entries):
get the next tree in the chain and verify
ientry = mychain.LoadTree(jentry)
if ientry < 0:
break

copy next entry into memory and verify
nb = mychain.GetEntry(jentry)
if nb<=0:
continue

use the values directly from the tree
nEvent = int(mychain.ev)
if nEvent<0:
continue

print mychain.pz, '=', mychain.px*mychain.px, '+', mychain.py*mychain.py

Access to arrays works the same way as access to single value tree elements, where the size of the
array is determined by the number of values actually read from the file. For example:

loop over array tree element
for d in mychain.mydoubles:
print d

direct access into an array tree element
i5 = mychain.myints[5]

Writing a Tree

Writing a ROOT TTree in a Python session is a little convoluted, if only because you will need a C
++ class to make sure that data members can be mapped, unless you are working with built-in types.
Here is an example for working with the latter only:

from ROOT import TFile, TTree
from array import array

h = TH1F('h1','test',100,-10.,10.)
f = TFile('test.root','recreate')
t = TTree('t1','tree with histos')
maxn = 10
n = array('i',[0])
d = array('f',maxn*[0.])
t.Branch('mynum',n,'mynum/I')
t.Branch('myval',d,'myval[mynum]/F')

for i in range(25):
n[0] = min(i,maxn)
for j in range(n[0]):
d[j] = i*0.1+j
t.Fill()

f.Write()

Python and Ruby Interfaces

481

f.Close()

The use of arrays is needed, because the pointer to the address of the object that is used for filling
must be given to the TTree::Branch() call, even though the formal argument is declared a
'void*'. In the case of ROOT objects, similar pointer manipulation is unnecessary, because the full
type information is available, and TTree::Branch() has been Pythonized to take care of the call
details. However, data members of such objects that are of built-in types, still require something extra
since they are normally translated to Python primitive types on access and hence their address cannot
be taken. For that purpose, there is the AddressOf() function. As an example:

from ROOT import TFile, TTree
from ROOT import gROOT, AddressOf

gROOT.ProcessLine(
"struct MyStruct { Int_t fMyInt1; Int_t fMyInt2; Int_t fMyInt3; Char_t fMyCode[4]; };");

from ROOT import MyStruct
mystruct = MyStruct()
f = TFile('mytree.root','RECREATE')
tree = TTree('T','Just A Tree')
tree.Branch('myints',mystruct,'MyInt1/I:MyInt2:MyInt3')
tree.Branch('mycode',AddressOf(mystruct,'fMyCode'),'MyCode/C')
for i in range(0,10):
mystruct.fMyInt1 = i
mystruct.fMyInt2 = i*i
mystruct.fMyInt3 = i*i*i
mystruct.fMyCode = "%03d" % i # note string assignment

tree.Fill()
f.Write()
f.Close()

The C++ class is defined through the gROOT.ProcessLine() call, and note how the
AddressOf() function is used for data members of built-in type. Most of the above is for ROOT
version 5.02 and later only. For older releases, and without further support, here is an example as to
how you can get hold of a pointer-to-pointer to a ROOT object:

h = TH1F()
addressofobject = array('i',[h.IsA().DynamicCast(h.IsA(),h)])

Using Your Own Classes
A user's own classes can be accessed after loading, either directly or indirectly, the library that contains
the dictionary. One easy way of obtaining such a library, is by using ACLiC:

$ cat MyClass.C
class MyClass {
public:

MyClass(int value = 0) {
m_value = value;
}

void SetValue(int value) {
m_value = value;
}

Python and Ruby Interfaces

482

int GetValue() {
return m_value;
}

private:
int m_value;
};

$ echo .L MyClass.C+ | root.exe -b
[...]
Info in <TUnixSystem::ACLiC>: creating shared library [..]/./MyClass_C.so
$

Then you can use it, for example, like so:

from ROOT import gSystem

load library with MyClass dictionary
gSystem.Load('MyClass_C')

get MyClass from ROOT
from ROOT import MyClass
use MyClass
m = MyClass(42)
print m.GetValue()

You can also load a macro directly, but if you do not use ACLiC, you will be restricted to use the
default constructor of your class, which is otherwise fully functional. For example:

from ROOT import gROOT

load MyClass definition macro (append '+' to use ACLiC)
gROOT.LoadMacro('MyClass.C')

get MyClass from ROOT
from ROOT import MyClass

use MyClass
m = MyClass()
m.SetValue(42)
print m.GetValue()

How to Use ROOT with Ruby
Ruby ROOT is a Ruby extension module that allows the user to interact with any ROOT class from the
Ruby scripting language. The Ruby module resolves ROOT Classes and Methods at run-time using
the CINT API, so there is no need for wrapping specific Classes to be used in Ruby. The Ruby module,
also, contains a TRuby class to execute Ruby statements via CINT and export C++ Objects to Ruby
objects, interactively.

Building and Installing the Ruby Module
The Ruby extension module is not built by default when building ROOT from sources. The user should
follow the standard installation instructions and enable the build of the Ruby module. Ruby version
>= 1.8 is required.

Python and Ruby Interfaces

483

./configure <arch> --enable-ruby --enable-explicitlink

[--with-ruby-incdir=<dir>] [--with-ruby-libdir=<dir>]

gmake

If you do not specify include and library directories configure will use Ruby to grab the directories
where Ruby's headers and library are located. A library called libRuby.so [libRuby.dll]
will be created in the $ROOTSYS/lib [$ROOTSYS/bin].

Setting up the Environment

For working with the Ruby module, the LD_LIBRARY_PATH [PATH] and RUBYLIB, need to
be set in addition to the standard $ROOTSYS.

For UNIX Platforms:

export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

export RUBYLIB=$ROOTSYS/lib:$RUBYLIB

For Windows:

set PATH=%ROOTSYS%/bin;%PATH%

set RUBYLIB=%ROOTSYS%/bin;%RUBYLIB%

Running ROOT scripts from Ruby

The user should make sure that the ruby command is the one of the installation that has been used to
build the Ruby extension module. If the RUBYLIB environment variable is set correctly, the user can
execute a Ruby script with ROOT functionality in the following way:

ruby -rlibRuby foo.rb

Another way is to start the Ruby script with the Ruby require command:

require 'libRuby'

An example is as follows:

require 'libRuby'
gROOT.Reset
c1 = TCanvas.new('c1','Example with Formula',200,10,700,500)
#
Create a one dimensional function and draw it
#
fun1 = TF1.new('fun1','abs(sin(x)/x)',0,10)
c1.SetGridx
c1.SetGridy
fun1.Draw
c1.Update

The user can find a number of examples in the $ROOTSYS/tutorials. To run them you need to
execute the command:

cd $ROOTSYS/tutorials

ruby demo.rb

Python and Ruby Interfaces

484

Invoking the Ruby Module from CINT Interpreter

A ROOT user can run any Ruby command and eventually to run IRB, the Interactive Ruby Shell.
The commands to execute are:

root[] TRuby::Exec("require '/usr/local/lib/root/libRuby'");
root[] TRuby::Exec("c1 = TBrowser.new");
root[] TRuby::Eval("c1.GetName");
root[] TRuby::Eval("puts c1.GetName");
Browser
root[] TCanvas *c2 = new TCanvas("ruby test", "test", 10, 10, 100, 100);
root[] TRuby::Bind(c2, "$c");
root[] TRuby::Eval("puts $c.GetTitle");
test
root[] TRuby::Prompt();
root[] TRuby::Prompt();
irb(main):001:0> print 1
1=> nil
irb(main):002:0>

Notice that whenever you bind a ROOT Object in the Ruby side, you need to use a global Ruby
variable, that is a variable with a leading "$".

485

Chapter 20. The Tutorials and Tests
This chapter is a guide to the examples that come with the installation of ROOT. They are located in
two directories: $ROOTSYS/tutorials and $ROOTSYS/test.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. To have all examples working
you must have write permission and you will need to execute hsimple.C first. If you do not have
write permission in the directory $ROOTSYS/tutorials, copy the entire directory to your area.
The script hsimple.C displays a histogram as it is being filled, and creates a ROOT file used by
the other examples.

To execute it type:

> cd $ROOTSYS/tutorials
> root

* *
* W E L C O M E to R O O T *
* *
* Version 5.16/00 27 June 2006 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *

The Tutorials and Tests

486

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root[0] .x hsimple.C

Now execute demos.C, which brings up the button bar shown on the left. You can click on any
button to execute another example. To see the source, open the corresponding source file (for example
fit1.C). Once you are done, and want to quit the ROOT session, you can do so by typing .q.

root[] .x demos.C
root[] .q

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the framework. When a new
release is cut, the examples in this directory are compiled and run to test the new release's backward
compatibility.

We see these source files:

Makefile Makefile to build all test programs.

hsimple.cxx Simple test program that creates and saves some histograms

MainEvent.cxx Simple test program that creates a ROOT Tree object and fills it with some
simple structures but also with complete histograms. This program uses
the files Event.cxx, EventCint.cxx and Event.h. An example
of a procedure to link this program is in bind_Event. Note that the
Makefile invokes the rootcint utility to generate the CINT interface
EventCint.cxx

Event.cxx Implementation for classes Event and Track

minexam.cxx Simple test program for data fitting

tcollex.cxx Example usage of the ROOT collection classes

tcollbm.cxx Benchmarks of ROOT collection classes

ctorture.cxx Test program for the class TComplex

tstring.cxx Example usage of the ROOT string class

vmatrix.cxx Verification program for the TMatrix class

vvector.cxx Verification program for the TVector class

vlazy.cxx Verification program for lazy matrices

hworld.cxx Small program showing basic graphics

guitest.cxx Example usage of the ROOT GUI classes

gui viewer .cxx Another ROOT GUI example program

Hello.cxx Dancing text example

Aclock.cxx Analog clock (a la X11 xclock)

Tetris.cxx The known Tetris game based on the ROOT graphics

stress.cxx Important ROOT stress testing program

stress*.cxx Stress testing of different ROOT classes

bench.cxx STL and ROOT container test and benchmarking program

The Tutorials and Tests

487

QpRandomDriver.cxx Verfication program for Quadratic programming classes in Quadp library

DrawTest.sh Entry script to extensive TTree query test suite

dt_* Scripts used by DrawTest.sh

The $ROOTSYS/test directory is a gold mine of root-wisdom nuggets, and we encourage you to
explore and exploit it. These instructions will compile all programs in $ROOTSYS/test:

If you do not have write permission in the $ROOTSYS/test directory, copy the entire $ROOTSYS/
test directory to your area. The Makefile is a useful example of how ROOT applications are
linked and built. Edit the Makefile to specify your architecture by changing the ARCH variable, for
example, on an SGI machine type: ARCH = sgikcc.

Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially interested in Event, stress,
and guitest.

Event – An Example of a ROOT Application
Event is created by compiling MainEvent.cxx, and Event.cxx. It creates a ROOT file with a
tree and two histograms. When running Event we have four optional arguments with defaults:

Argument Default

1 Number of Events (1 ... n) 400

2 Compression level:

0: no compression at all.

1: If the split level is set to zero, everything is compressed according to the
gzip level 1. If split level is set to 1, leaves that are not floating point numbers
are compressed using the gzip level 1.

2: If the split level is set to zero, everything is compressed according to
the gzip level 2. If split level is set to 1, all non floating point leaves are
compressed according to the gzip level 2 and the floating point leaves are
compressed according to the gzip level 1 (gzip level –1).

Floating point numbers are compressed differently because the gain when
compressing them is about 20 - 30%. For other data types it is generally better
and around 100%.

1

3 Split or not Split

0: only one single branch is created and the complete event is serialized in
one single buffer

1: a branch per variable is created.

1

(Split)

4 Fill

0: read the file

1: write the file, but don't fill the histograms

2: don't write, don’t fill the histograms

10: fill the histograms, don't write the file

1

(Write, no fill)

The Tutorials and Tests

488

11: fill the histograms, write the file

20: read the file sequentially

25: read the file at random

Effect of Compression on File Size and Write Times

You may have noticed that a ROOT file has up to nine compression level, but here only levels 0, 1,
and 2 are described. Compression levels above 2 are not competitive. They take up to much write time
compared to the gain in file space. Below are three runs of Event on a Pentium III 650 MHz and the
resulting file size and write and read times.

No Compression:

> Event 400 0 1 1
400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1, arg4=1
You write 2.800173 Mbytes/Realtime seconds
You write 5.380107 Mbytes/Cputime seconds

> ls -l Event.root
… 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20
400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds
You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84 seconds and the read
time is 0.79 seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1
400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1, split=1, arg4=1
You write 2.974096 Mbytes/Realtime seconds
You write 4.764473 Mbytes/Cputime seconds

> ls -l Event.root
… 17728188 Feb 23 18:28 Event.root

> Event 400 1 1 20
400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds
You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read time was 0.9 seconds.

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1

The Tutorials and Tests

489

400 events and 19153182 bytes processed.
RealTime=11.340000 seconds, CpuTime=9.510000 seconds
compression level=2, split=1, arg4=1
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds

> ls -l Event.root
… 13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20
400 events and 19153182 bytes processed.
RealTime=2.170000 seconds, CpuTime=2.170000 seconds
You read 8.826351 Mbytes/Realtime seconds
You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is 2.17 seconds.

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times

0 19.75 MB 6.84 sec. 0.79 sec.

1 17.73 MB 6.44 sec. 0.90 sec.

2 13.78 MB 11.34 sec. 2.17 sec.

Setting the Split Level

Split Level = 0:

Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1
> root
root[] TFile f("Event.root")
root[] TBrowser T

We notice that only one branch is visible (event). The individual data members of the Event object are
no longer visible in the browser. They are contained in the event object on the event branch, because
we specified no splitting. Split Level = 1:

Setting the split level to 1 will create a branch for each data member in the Event object. First we
execute Event and set the split level to 1 and start the browser to examine the split tree:

The Tutorials and Tests

490

> Event 400 1 1 1

> root
root[] TFile f("Event.root")
root[] TBrowser browser

stress - Test and Benchmark
The executable stress is created by compiling stress.cxx. It completes sixteen tests covering the
following capabilities of the ROOT framework.

• Functions, Random Numbers, Histogram Fits

• Size & compression factor of a ROOT file

• Purge, Reuse of gaps in TFile

• 2D Histograms, Functions, 2D Fits

• Graphics & PostScript

• Subdirectories in a ROOT file

• TNtuple, Selections, TCutG, TEventList

• Split and Compression modes for Trees

• Analyze Event.root file of stress 8

• Create 10 files starting from Event.root

The Tutorials and Tests

491

• Test chains of Trees using the 10 files

• Compare histograms of test 9 and 11

• Merging files of a chain

• Check correct rebuilt of Event.root in test 13

• Divert Tree branches to separate files

• CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to process. The default is 1000 events.
Be aware that executing stress with 1000 events will create several files consuming about 100 MB
of disk space; running stress with 30 events will consume about 20 MB. The disk space is released
once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter.

> cd $ROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

Start ROOT with the batch mode option (-b) to suppress the graphic output.

> root -b
root[] .L stress.cxx
root[] stress(1000)// test with 1000 events
root[] stress(30)// test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total number of bytes read and
written, and the elapsed real and CPU time. It also calculates a performance index for your machine
relative to a reference machine a DELL Inspiron 7500 (Pentium III 600 MHz) with 256 MB of
memory and 18GB IDE disk in ROOTMARKS. Higher ROOTMARKS means better performance.
The reference machine has 200 ROOTMARKS, so the sample run below with 53.7 ROOTMARKS
is about four times slower than the reference machine.

Here is a sample run:

% root –b
root[] .x stress.cxx(30)

Test 1 : Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile......................... OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScriptOK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCutG, TEventList.......... OK
Test 8 : Trees split and compression modes..................... OK
Test 9 : Analyze Event.root file of stress 8................... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 11................... OK
Test 13 : Test merging files of a chain......................... OK

The Tutorials and Tests

492

Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
**
* IRIX64 fnpat1 6.5 01221553 IP27
**
stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1
stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds
**
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

guitest – A Graphical User Interface
The guitest example, created by compiling guitest.cxx, tests and illustrates the use of the
native GUI widgets such as cascading menus, dialog boxes, sliders and tab panels. It is a very useful
example to study when designing a GUI. Some examples of the output of guitest are shown next.
To run it type guitest at the system prompt in the $ROOTSYS/test directory. We have included
an entire chapter on this subject where we explore guitest in detail and use it to explain how to
build our own ROOT application with a GUI. See “Writing a Graphical User Interface”.

Figure 20.1. Native GUI widgets

493

Chapter 21. Example Analysis
This chapter is an example of a typical physics analysis. Large data files are chained together and
analyzed using the TSelector class.

Explanation
This script uses four large data sets from the H1 collaboration at DESY Hamburg. One can access
these data sets (277 Mbytes) from the ROOT web site at: ftp://root.cern.ch/root/
h1analysis/

The physics plots generated by this example cannot be produced using smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

• Using TTree::Draw:

• This is very convenient and efficient for small tasks. A TTree::Draw call produces one histogram
at the time. The histogram is automatically generated. The selection expression may be specified
in the command line.

• Using the TTreeViewer:

• This is a graphical interface to TTree::Draw with the same functionality.

• Using the code generated by TTree::MakeClass:

• In this case, the user creates an instance of the analysis class. He has the control over the event loop
and he can generate an unlimited number of histograms.

• Using the code generated by TTree::MakeSelector: Like for the code generated by
TTree::MakeClass, the user can do complex analysis. However, he cannot control the event
loop. The event loop is controlled by TTree::Process called by the user. This solution is
illustrated by the code below. The advantage of this method is that it can be run in a parallel
environment using PROOF (the Parallel Root Facility).

A chain of four files (originally converted from PAW ntuples) is used to illustrate the various ways
to loop on ROOT data sets. Each contains a ROOT Tree named "h42". The class definition in
h1analysis.h has been generated automatically by the ROOT utility TTree::MakeSelector using
one of the files with:

h42->MakeSelector("h1analysis");

This produces two files: h1analysis.h and h1analysis.C. A skeleton of h1analysis.C file is
made for you to customize. The h1analysis class is derived from the ROOT class TSelector. The
following members functions of h1analyhsis (i.e. TSelector) are called by the TTree::Process
method.

• Begin: This function is called every time a loop over the tree starts. This is a convenient place
to create your histograms.

• Notify(): This function is called at the first entry of a new tree in a chain.

• ProcessCut: This function is called at the beginning of each entry to return a flag true if the
entry must be analyzed.

• ProcessFill: This function is called in the entry loop for all entries accepted by Select.

• Terminate: This function is called at the end of a loop on a TTree. This is a convenient place
to draw and fit your histograms.

Example Analysis

494

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time();

Step A: create a TChain with the four H1 data files. The chain can be created by executed this short
script h1chain.C below. $H1 is a system symbol pointing to the H1 data directory.

{
TChain chain("h42");
chain.Add("$H1/dstarmb.root");
//21330730 bytes, 21920 events
chain.Add("$H1/dstarp1a.root");
//71464503 bytes, 73243 events
chain.Add("$H1/dstarp1b.root");
//83827959 bytes, 85597 events
chain.Add("$H1/dstarp2.root");
//100675234 bytes, 103053 events
}

Run the above script from the command line:

root[] .x h1chain.C

Step B: Now we have a directory containing the four data files. Since a TChain is a descendent
of TTree we can call TChain::Process to loop on all events in the chain. The parameter to
the TChain::Process method is the name of the file containing the created TSelector class
(h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C: Same as step B, but in addition fill the event list with selected entries. The event list is saved to
a file "elist.root" by the TSelector::Terminate method. To see the list of selected events,
you can do elist->Print("all"). The selection function has selected 7525 events out of the
283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the file in elist.root
generated by step C.

root[] chain.Process("h1analysis.C","useList")

Step E: The above steps have been executed with the interpreter. You can repeat the steps B, C, and D
using ACLiC by replacing "h1analysis.C" by "h1analysis.C+" or "h1analysis.C++".

Step F: If you want to see the differences between the interpreter speed and ACLiC speed start a new
session, create the chain as in step 1, then execute

root[] chain.Process("h1analysis.C+","useList")

The commands executed with the four different methods B, C, D and E produce two canvases shown
below:

Example Analysis

495

Script
This is the h1analsysis.C file that was generated by TTree::MakeSelector and then
modified to perform the analysis.

#include "h1analysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double_t dxbin = (0.17-0.13)/40; // Bin-width
const Double_t sigma = 0.0012;
TEventList *elist = 0;
Bool_t useList, fillList;
TH1F *hdmd;

Example Analysis

496

TH2F *h2;

//___
Double_t fdm5(Double_t *xx, Double_t *par)
{
Double_t x = xx[0];
if (x <= 0.13957) return 0;
Double_t xp3 = (x-par[3])*(x-par[3]);
Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,par[1])
+ par[2]/2.5066/par[4]*TMath::Exp(-xp3/2/par[4]/par[4]));
return res;
}

//___
Double_t fdm2(Double_t *xx, Double_t *par)
{
Double_t x = xx[0];
if (x <= 0.13957) return 0;
Double_t xp3 = (x-0.1454)*(x-0.1454);
Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,0.25)
+ par[1]/2.5066/sigma*TMath::Exp(-xp3/2/sigma/sigma));
return res;
}

//___
void h1analysis::Begin(TTree *tree)
{
// function called before starting the event loop
// -it performs some cleanup
// -it creates histograms
// -it sets some initialization for the event list

 //initialize the Tree branch addresses
Init(tree);

 //print the option specified in the Process function
TString option = GetOption();
printf("Starting h1analysis with process option: %sn",option.Data());

//Some cleanup in case this function had already been executed
 //Delete any previously generated histograms or functions
gDirectory->Delete("hdmd");
gDirectory->Delete("h2*");
delete gROOT->GetFunction("f5");
delete gROOT->GetFunction("f2");

//create histograms
hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);
h2 = new TH2F("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

 //process cases with event list
fillList = kFALSE;
useList = kFALSE;
fChain->SetEventList(0);
delete gDirectory->GetList()->FindObject("elist");

 // case when one creates/fills the event list
if (option.Contains("fillList")) {

Example Analysis

497

fillList = kTRUE;
elist = new TEventList("elist","selection from Cut",5000);
}
 // case when one uses the event list generated in a previous call
if (option.Contains("useList")) {
useList = kTRUE;
TFile f("elist.root");
elist = (TEventList*)f.Get("elist");
if (elist) elist->SetDirectory(0);
//otherwise the file destructor will delete elist
fChain->SetEventList(elist);
}
}
//___
Bool_t h1analysis::ProcessCut(Int_t entry)
{ // Selection function to select D* and D0.

 //in case one event list is given in input,
 //the selection has already been done.
if (useList) return kTRUE;
 // Read only the necessary branches to select entries.
 // return as soon as a bad entry is detected
b_md0_d->GetEntry(entry);
if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;
b_ptds_d->GetEntry(entry);
if (ptds_d <= 2.5) return kFALSE;
b_etads_d->GetEntry(entry);
if (TMath::Abs(etads_d) >= 1.5) return kFALSE;
b_ik->GetEntry(entry); ik--;
//original ik used f77 convention starting at 1
b_ipi->GetEntry(entry);
ipi--;
b_ntracks->GetEntry(entry);
b_nhitrp->GetEntry(entry);
if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
b_rend->GetEntry(entry);
b_rstart->GetEntry(entry);
if (rend[ik]-rstart[ik] <= 22) return kFALSE;
if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;
b_nlhk->GetEntry(entry);
if (nlhk[ik] <= 0.1) return kFALSE;
b_nlhpi->GetEntry(entry);
if (nlhpi[ipi] <= 0.1) return kFALSE;
b_ipis->GetEntry(entry);
ipis--;
if (nlhpi[ipis] <= 0.1) return kFALSE;
b_njets->GetEntry(entry);
if (njets < 1) return kFALSE;

 // if option fillList, fill the event list
if (fillList) elist->Enter(fChain->GetChainEntryNumber(entry));

return kTRUE;
}

//___
void h1analysis::ProcessFill(Int_t entry)
{ // Function called for selected entries only

Example Analysis

498

 // read branches not processed in ProcessCut
b_dm_d->GetEntry(entry);
 //read branch holding dm_d
b_rpd0_t->GetEntry(entry);
 //read branch holding rpd0_t
b_ptd0_d->GetEntry(entry);
 //read branch holding ptd0_d //continued…
 //fill some histograms
hdmd->Fill(dm_d);
h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
}

//___
void h1analysis::Terminate()
{ // Function called at the end of the event loop

 //create the canvas for the h1analysis fit
gStyle->SetOptFit();
TCanvas *c1 = new TCanvas("c1","h1analysis analysis",10,10,800,600);
c1->SetBottomMargin(0.15);
hdmd->GetXaxis()->SetTitle("m_{K#pi#pi}-m_{K#pi}[GeV/c^{2}]");
hdmd->GetXaxis()->SetTitleOffset(1.4);

 //fit histogram hdmd with function f5 using
 //the loglikelihood option
TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);
f5->SetParameters(1000000,.25,2000,.1454,.001);
hdmd->Fit("f5","lr");

 //create the canvas for tau d0
gStyle->SetOptFit(0);
gStyle->SetOptStat(1100);
TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);
c2->SetGrid();
c2->SetBottomMargin(0.15);

 // Project slices of 2-d histogram h2 along X ,
 // then fit each slice with function f2 and make a
 // histogram for each fit parameter.
 // Note that the generated histograms are added
 // to the list of objects in the current directory.

TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);
f2->SetParameters(10000,10);
h2->FitSlicesX(f2,0,0,1,"qln");
TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
h2_1->GetXaxis()->SetTitle("#tau[ps]");
h2_1->SetMarkerStyle(21);
h2_1->Draw();
c2->Update();
TLine *line = new TLine(0,0,0,c2->GetUymax());
line->Draw();

 // save the event list to a Root file if one was
 // produced
if (fillList) {
TFile efile("elist.root","recreate");

Example Analysis

499

elist->Write();
}
}

500

Chapter 22. Networking
In this chapter, you will learn how to send data over the network using the ROOT socket classes.

Setting-up a Connection
On the server side, we create a TServerSocket to wait for a connection request over the network.
If the request is accepted, it returns a full-duplex socket. Once the connection is accepted, we can
communicate to the client that we are ready to go by sending the string "go", and we can close the
server socket.

{ // server
TServerSocket *ss = new TServerSocket(9090,kTRUE);
TSocket *socket = ss->Accept();
socket->Send("go");
ss->Close();
}

On the client side, we create a socket and ask the socket to receive input.

{ // client
TSocket *socket = new TSocket("localhost",9090);
Char str[32];
socket->Recv(str,32);
}

Sending Objects over the Network
We have just established a connection and you just saw how to send and receive a string with the
example "go". Now let’s send a histogram.

To send an object (in our case on the client side) it has to derive from TObject class because it
uses the Streamers to fill a buffer that is then sent over the connection. On the receiving side,
the Streamers are used to read the object from the message sent via the socket. For network
communication, we have a specialized TBuffer, a descendant of TBuffer called TMessage. In
the following example, we create a TMessage with the intention to store an object, hence the constant
kMESS_OBJECT in the constructor. We create and fill the histogram and write it into the message.
Then we call TSocket::Send to send the message with the histogram.

…
// create an object to be sent
TH1F *hpx = new TH1F("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000);

// create a TMessage to send the object
TMessage message(kMESS_OBJECT);

// write the histogram into the message buffer
message.WriteObject(hpx);

// send the message
socket->Send(message);
…

Networking

501

On the receiving end (in our case the server side), we write a while loop to wait and receive a message
with a histogram. Once we have a message, we call TMessage::ReadObject, which returns a
pointer to TObject. We have to cast it to a TH1 pointer, and now we have a histogram. At the end
of the loop, the message is deleted, and another one is created at the beginning.

while (1) {
TMessage *message;
socket->Recv(message);
TH1 *h = (TH1*)message->ReadObject(message->GetClass());
delete message;
}

Closing the Connection
Once we are done sending objects, we close the connection by closing the sockets at both ends.

Socket->Close();

This diagram summarizes the steps we just covered:

Figure 22.1. Server - Client setting-up and closing the connection

A Server with Multiple Sockets
Chances are that your server has to be able to receive data from multiple clients. The class we need for
this is TMonitor. It lets you add sockets and the TMonitor::Select method returns the socket
with data waiting. Sockets can be added, removed, or enabled and disabled. Here is an example of a
server that has a TMonitor to manage multiple sockets:

{
TServerSocket *ss = new TServerSocket (9090, kTRUE);

 // Accept a connection and return a full-duplex communication socket.
TSocket *s0 = ss->Accept();

Networking

502

TSocket *s1 = ss->Accept();

 // tell the clients to start
s0->Send("go 0");
s1->Send("go 1");

 // Close the server socket (unless we will use it
 // later to wait for another connection).
ss->Close();

TMonitor *mon = new TMonitor;
mon->Add(s0);
mon->Add(s1);

while (1) {
TMessage *mess;
TSocket *s;
s = mon->Select();
s->Recv(mess);
…
}

The full code for the example above is in $ROOTSYS/tutorials/net/hserv.C and

$ROOTSYS/tutorials/net/hclient.C.

503

Chapter 23. Threads
A thread is an independent flow of control that operates within the same address space as
other independent flows of controls within a process. In most UNIX systems, thread and process
characteristics are grouped into a single entity called a process. Sometimes, threads are called
"lightweight processes''.

Note: This introduction is adapted from the AIX 4.3 Programmer's Manual.

Threads and Processes
In traditional single-threaded process systems, a process has a set of properties. In multi-threaded
systems, these properties are divided between processes and threads.

Process Properties
A process in a multi-threaded system is the changeable entity. It must be considered as an execution
frame. It has all traditional process attributes, such as:

• Process ID, process group ID, user ID, and group ID

• Environment

• Working directory

A process also provides a common address space and common system resources:

• File descriptors

• Signal actions

• Shared libraries

• Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory)

Thread Properties
A thread is the schedulable entity. It has only those properties that are required to ensure its independent
flow of control. These include the following properties:

• Stack

• Scheduling properties (such as policy or priority)

• Set of pending and blocked signals

• Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-threaded systems, errno
is no longer a global variable, but usually a subroutine returning a thread-specific errno value. Some
other systems may provide other implementations of errno. With respect to ROOT, a thread specific
data is for example the gPad pointer, which is treated in a different way, whether it is accessed from
any thread or the main thread.

Threads within a process must not be considered as a group of processes (even though in Linux each
thread receives an own process id, so that it can be scheduled by the kernel scheduler). All threads
share the same address space. This means that two pointers having the same value in two threads refer

Threads

504

to the same data. Also, if any thread changes one of the shared system resources, all threads within
the process are affected. For example, if a thread closes a file, the file is closed for all threads.

The Initial Thread
When a process is created, one thread is automatically created. This thread is called the initial thread
or the main thread. The initial thread executes the main routine in multi-threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT
The TThread class has been developed to provide a platform independent interface to threads for
ROOT.

Installation
For the time being, it is still necessary to compile a threaded version of ROOT to enable some very
special treatments of the canvas operations. We hope that this will become the default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

This configures and builds ROOT using /usr/lib/libpthread.so as the Pthread library,
and defines R__THREAD.

This enables the thread specific treatment of gPad, and creates $ROOTSYS/lib/
libThread.so.

Note: The parameter linuxdeb2 has to be replaced with the appropriate ROOT keyword for your
platform.

Classes
TThread class implements threads . The platform dependent implementation is in the TThreadImp
class and its descendant classes (e.g. TPosixThread).

TMutex class implements mutex locks. A mutex is a mutually exclusive lock. The platform
dependent implementation is in the TMutexImp class and its descendant classes (e.g.
TPosixMutex)

TCondition class implements a condition variable. Use a condition variable to signal threads. The
platform dependent implementation is in the TConditionImp and TPosixCondition classes .

TSemaphore class implements a counting semaphore. Use a semaphore to synchronize threads. The
platform dependent implementation is in the TMutexImp and TConditionImp classes.

TThread for Pedestrians
To run a thread in ROOT, follow these steps:

1. Initialization

Threads

505

Add these lines to your rootlogon.C:

{
…
 // The next line may be unnecessary on some platforms
gSystem->Load("/usr/lib/libpthread.so");
gSystem->Load("$ROOTSYS/lib/libThread.so");
…
}

This loads the library with the TThread class and the pthread specific implementation file for
Posix threads.

2. Coding

Define a function (e.g. void* UserFun(void* UserArgs)) that should run as a thread. The
code for the examples is at the web site of the authors (Jörn Adamczewski, Marc Hemberger). After
downloading the code from this site, you can follow the example below:

http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html

3. Loading

Start an interactive ROOT session. Load the shared library:

root[] gSystem->Load("mhs3.so"); // or
root[] gSystem->Load("CalcPiThread.so");

4. Creating

Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root[] TThread *th = new TThread(UserFun,UserArgs);

When called from the interpreter, this gives the name “UserFun” to the thread. This name can be
used to retrieve the thread later. However, when called from compiled code, this method does not give
any name to the thread. So give a name to the thread in compiled use:

root[] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer. When you want to start
a method of a class as a thread, you have to give the pointer to the class instance as UserArgs.

5. Running

root[] th->Run();
root[] TThread::Ps(); // like UNIX ps c.ommand;

With the mhs3 example, you should be able to see a canvas with two pads on it. Both pads keep
histograms updated and filled by three different threads. With the CalcPi example, you should be
able to see two threads calculating Pi with the given number of intervals as precision.

TThread in More Details
CINT is not thread safe yet, and it will block the execution of the threads until it has finished executing.

Threads

506

Asynchronous Actions

Different threads can work simultaneously with the same object. Some actions can be dangerous. For
example, when two threads create a histogram object, ROOT allocates memory and puts them to the
same collection. If it happens at the same time, the results are undetermined. To avoid this problem,
the user has to synchronize these actions with:

TThread::Lock() // Locking the following part of code
... // Create an object, etc...
TThread::UnLock() // Unlocking

The code between Lock() and UnLock() will be performed uninterrupted. No other threads
can perform actions or access objects/collections while it is being executed. The methods
TThread::Lock() and TThread::UnLock() internally use a global TMutex instance for
locking.

The user may also define his own TMutex MyMutex instance and may locally protect his
asynchronous actions by calling MyMutex.Lock() and MyMutex.UnLock().

Synchronous Actions: TCondition

To synchronize the actions of different threads you can use the TCondition class, which provides a
signaling mechanism. The TCondition instance must be accessible by all threads that need to use it,
i.e. it should be a global object (or a member of the class which owns the threaded methods, see below).
To create a TCondition object, a TMutex instance is required for the Wait and TimedWait
locking methods. One can pass the address of an external mutex to the TCondition constructor:

TMutex MyMutex;
TCondition MyCondition(&MyMutex);

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition(0);

You can now use the following methods of synchronization:

• TCondition::Wait() waits until any thread sends a signal of the same
condition instance: MyCondition.Wait() reacts on MyCondition.Signal() or
MyCondition.Broadcast(). MyOtherCondition.Signal() has no effect.

• If several threads wait for the signal from the same TCondition MyCondition, at
MyCondition.Signal() only one thread will react; to activate a further thread another
MyCondition.Signal() is required, etc.

• If several threads wait for the signal from the same TCondition MyCondition, at
MyCondition.Broadcast() all threads waiting for MyCondition are activated at once.

In some tests of MyCondition using an internal mutex, Broadcast() activated only one thread
(probably depending whether MyCondition had been signaled before).

• MyCondition.TimedWait(secs,nanosecs) waits for MyCondition until the absolute
time in seconds and nanoseconds since beginning of the epoch (January, 1st, 1970) is reached; to
use relative timeouts ‘‘delta'', it is required to calculate the absolute time at the beginning of waiting
‘‘now''; for example:

Ulong_t now,then,delta; // seconds

Threads

507

TDatime myTime; // root daytime class
myTime.Set(); // myTime set to "now"
now=myTime.Convert(); // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait(then,0); // waiting

• Return value wait of MyCondition.TimedWait should be 0, if MyCondition.Signal()
was received, and should be nonzero, if timeout was reached.

The conditions example shows how three threaded functions are synchronized using TCondition:
a ROOT script condstart.C starts the threads, which are defined in a shared library
(conditions.cxx, conditions.h).

Xlib Connections

Usually Xlib is not thread safe. This means that calls to the X could fail, when it receives X-
messages from different threads. The actual result depends strongly on which version of Xlib has
been installed on your system. The only thing we can do here within ROOT is calling a special function
XInitThreads() (which is part of the Xlib), which should (!) prepare the Xlib for the usage
with threads.

To avoid further problems within ROOT some redefinition of the gPad pointer was done (that's the
main reason for the recompilation). When a thread creates a TCanvas, this object is actually created
in the main thread; this should be transparent to the user. Actions on the canvas are controlled via a
function, which returns a pointer to either thread specific data (TSD) or the main thread pointer. This
mechanism works currently only for gPad, gDirectory, gFile and will be implemented soon
for other global Objects as e.g. gVirtualX.

Canceling a TThread

Canceling of a thread is a rather dangerous action. In TThread canceling is forbidden by default. The
user can change this default by calling TThread::SetCancelOn(). There are two cancellation
modes: deferred and asynchronous.

Deferred

Set by TThread::SetCancelDeferred() (default): When the user knows safe places in his
code where a thread can be canceled without risk for the rest of the system, he can define these
points by invoking TThread::CancelPoint(). Then, if a thread is canceled, the cancellation
is deferred up to the call of TThread::CancelPoint() and then the thread is canceled
safely. There are some default cancel points for pthreads implementation, e.g. any call of the
TCondition::Wait(), TCondition::TimedWait(), TThread::Join().

Asynchronous

Set by TThread::SetCancelAsynchronous(): If the user is sure that his application is cancel
safe, he could call:

TThread::SetCancelAsynchronous();
TThread::SetCancelOn();
// Now cancelation in any point is allowed.
...
// Return to default
TThread::SetCancelOff();
TThread::SetCancelDeferred();

To cancel a thread TThread* th call:

Threads

508

th->Kill();

To cancel by thread name:

TThread::Kill(name);

To cancel a thread by ID:

TThread::Kill(tid);

To cancel a thread and delete th when cancel finished:

th->Delete();

Deleting of the thread instance by the operator delete is dangerous. Use th->Delete() instead. C
++ delete is safe only if thread is not running. Often during the canceling, some clean up actions must
be taken. To define clean up functions use:

void UserCleanUp(void *arg){
// here the user cleanup is done
...
}
TThread::CleanUpPush(&UserCleanUp,arg);
 // push user function into cleanup stack“last in, first out”
TThread::CleanUpPop(1); // pop user function out of stack and execute it,
// thread resumes after this call
TThread::CleanUpPop(0); // pop user function out of stack
// _without_ executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding pairs like brackets; unlike
pthreads cleanup stack (which is not implemented here), TThread does not force this usage.

Finishing thread

When a thread returns from a user function the thread is finished. It also can be finished by
TThread::Exit(). Then, in case of thread-detached mode, the thread vanishes completely.
By default, on finishing TThread executes the most recent cleanup function (CleanUpPop(1) is
called automatically once).

Advanced TThread: Launching a Method in a
Thread

Consider a class Myclass with a member function that shall be launched as a thread.

void* Myclass::Thread0((void* arg)

To start Thread0 as a TThread, class Myclass may provide a method:

Int_t Myclass::Threadstart(){
if(!mTh){

Threads

509

mTh= new TThread("memberfunction",(void(*)(void *))&Thread0,(void*) this);
mTh->Run();
return 0;
}
return 1;
}

Here mTh is a TThread* pointer which is member of Myclass and should be initialized to 0 in
the constructor. The TThread constructor is called as when we used a plain C function above, except
for the following two differences.

First, the member function Thread0 requires an explicit cast to (void(*) (void *)). This may
cause an annoying but harmless compiler warning:

Myclass.cxx:98: warning: converting from "void (Myclass::*)(void *)"to "void *")

Strictly speaking, Thread0 must be a static member function to be called from a thread. Some
compilers, for example gcc version 2.95.2, may not allow the (void(*) (void*))s cast and
just stop if Thread0 is not static. On the other hand, if Thread0 is static, no compiler warnings
are generated at all. Because the 'this' pointer is passed in 'arg' in the call to Thread0(void
*arg), you have access to the instance of the class even if Thread0 is static. Using the 'this'
pointer, non static members can still be read and written from Thread0, as long as you have provided
Getter and Setter methods for these members. For example:

Bool_t state = arg->GetRunStatus();
arg->SetRunStatus(state);

Second, the pointer to the current instance of Myclass, i.e. (void*) this, has to be passed as first
argument of the threaded function Thread0 (C++ member functions internally expect this pointer as
first argument to have access to class members of the same instance). pthreads are made for simple
C functions and do not know about Thread0 being a member function of a class. Thus, you have to
pass this information by hand, if you want to access all members of the Myclass instance from the
Thread0 function.

Note: Method Thread0 cannot be a virtual member function, since the cast of Thread0 to void(*)
in the TThread constructor may raise problems with C++ virtual function table. However, Thread0
may call another virtual member function virtual void Myclass::Func0() which then can be
overridden in a derived class of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop(){
if(mTh){
TThread::Delete(mTh);
delete mTh;
mTh=0;
return 0;
}
return 1;
}

Example TMhs3: Class TThreadframe (TThreadframe.h, TThreadframe.cxx) is
a simple example of a framework class managing up to four threaded methods. Class TMhs3
(TMhs3.h, TMhs3.cxx) inherits from this base class, showing the mhs3 example 8.1
(mhs3.h, mhs3.cxx) within a class. The Makefile of this example builds the shared libraries
libTThreadframe.so and libTMhs3.so. These are either loaded or executed by the ROOT
script TMhs3demo.C, or are linked against an executable: TMhs3run.cxx.

Threads

510

Known Problems
Parts of the ROOT framework, like the interpreter, are not yet thread-safe. Therefore, you should use
this package with caution. If you restrict your threads to distinct and `simple' duties, you will able
to benefit from their use. The TThread class is available on all platforms, which provide a POSIX
compliant thread implementation. On Linux, Xavier Leroy's Linux Threads implementation is widely
used, but the TThread implementation should be usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause crashes during threaded graphics
operations; this problem is independent of ROOT.

Object instantiation: there is no implicit locking mechanism for memory allocation and global ROOT
lists. The user has to explicitly protect his code when using them.

The Signals of ROOT
The list of default signals handled by ROOT is:

kSigChildkSigPipe
kSigBuskSigAlarm
kSigSegmentationViolationkSigUrgent
kSigIllegalInstructionkSigFloatingException
kSigSystemkSigWindowChanged

The signals kSigFloatingException, kSigSegmentationViolation,
kSigIllegalInstruction, and kSigBus cause the printing of the *** Break *** message
and make a long jump back to the ROOT prompt. No other custom TSignalHandler can be added
to these signals.

The kSigAlarm signal handles asynchronous timers. The kSigWindowChanged signal handles
the resizing of the terminal window. The other signals have no other behavior then that to call any
registered TSignalHandler::Notify().

When building in interactive application the use of the TRint object handles the kSigInterrupt
signal. It causes the printing of the message: *** Break *** keyboard interrupt and
makes a long jump back to the ROOT command prompt. If no TRint object is created, there will be
no kSigInterrupt handling. All signals can be reset to their default UNIX behavior via the call
of TSytem::ResetSignal(). All signals can be ignored via TSytem::IgnoreSignal().
The TSytem::IgnoreInterrupt() is a method to toggle the handling of the interrupt signal.
Typically it is called to prevent a SIGINT to interrupt some important call (like writing to a ROOT
file).

If TRint is used and the default ROOT interrupt handler is not desired, you should use
GetSignalHandler() of TApplication to get the interrupt handler and to remove it by
RemoveSignalHandler()of TSystem .

Glossary
The following glossary is adapted from the description of the Rogue Wave Threads.h++ package.

A process is a program that is loaded into memory and prepared for execution. Each process has a
private address space. Processes begin with a single thread.

A thread is a sequence of instructions being executed in a program. A thread has a program counter
and a private stack to keep track of local variables and return addresses. A multithreaded process is
associated with one or more threads. Threads execute independently. All threads in a given process
share the private address space of that process.

Threads

511

Concurrency exists when at least two threads are in progress at the same time. A system with only
a single processor can support concurrency by switching execution contexts among multiple threads.

Parallelism arises when at least two threads are executing simultaneously. This requires a system
with multiple processors. Parallelism implies concurrency, but not vice-versa.

A function is reentrant if it will behave correctly even if a thread of execution enters the function
while one or more threads are already executing within the function. These could be the same thread,
in the case of recursion, or different threads, in the case of concurrency.

Thread-specific data (TSD) is also known as thread-local storage (TLS). Normally, any data
that has lifetime beyond the local variables on the thread's private stack are shared among all threads
within the process. Thread-specific data is a form of static or global data that is maintained on a per-
thread basis. That is, each thread gets its own private copy of the data.

Left to their own devices, threads execute independently. Synchronization is the work that must
be done when there are, in fact, interdependencies that require some form of communication among
threads. Synchronization tools include mutexes, semaphores, condition variables, and other variations
on locking.

A critical section is a section of code that accesses a non-sharable resource. To ensure correct
code, only one thread at a time may execute in a critical section. In other words, the section is not
reentrant.

A mutex, or mutual exclusion lock, is a synchronization object with two states locked and unlocked.
A mutex is usually used to ensure that only one thread at a time executes some critical section of code.
Before entering a critical section, a thread will attempt to lock the mutex, which guards that section.
If the mutex is already locked, the thread will block until the mutex is unlocked, at which time it will
lock the mutex, execute the critical section, and unlock the mutex upon leaving the critical section.

A semaphore is a synchronization mechanism that starts out initialized to some positive value.
A thread may ask to wait on a semaphore in which case the thread blocks until the value of the
semaphore is positive. At that time the semaphore count is decremented and the thread continues.
When a thread releases semaphore, the semaphore count is incremented. Counting semaphores are
useful for coordinating access to a limited pool of some resource.

Readers/Writer Lock - a multiple-reader, single-writer lock is one that allows simultaneous
read access by many threads while restricting write access to only one thread at a time. When any
thread holds the lock for reading, other threads can also acquire the lock reading. If one thread holds
the lock for writing, or is waiting to acquire the lock for writing, other threads must wait to acquire
the lock for either reading or writing.

Use a condition variable in conjunction with a mutex lock to automatically block threads
until a particular condition is true.

Multithread Safe Levels - a possible classification scheme to describe thread-safety of
libraries:

• All public and protected functions are reentrant. The library provides protection against multiple
threads trying to modify static and global data used within a library. The developer must explicitly
lock access to objects shared between threads. No other thread can write to a locked object unless it
is unlocked. The developer needs to lock local objects. The spirit, if not the letter of this definition,
requires the user of the library only to be familiar with the semantic content of the objects in use.
Locking access to objects that are being shared due to extra-semantic details of implementation (for
example, copy-on-write) should remain the responsibility of the library.

• All public and protected functions are reentrant. The library provides protection against multiple
threads trying to modify static and global data used within the library. The preferred way of
providing this protection is to use mutex locks. The library also locks an object before writing to
it. The developer is not required to explicitly lock or unlock a class object (static, global or local)

Threads

512

to perform a single operation on the object. Note that even multithread safe level II hardly relieves
the user of the library from the burden of locking.

A thread suffers from deadlock if it is blocked waiting for a condition that will never occur.
Typically, this occurs when one thread needs to access a resource that is already locked by another
thread, and that other thread is trying to access a resource that has already been locked by the first
thread. In this situation, neither thread is able to progress; they are deadlocked.

A multiprocessor is a hardware system with multiple processors or multiple, simultaneous
execution units.

• Examples can be found at http://www-linux.gsi.de/~go4/HOWTOthreads/
howtothreadsbody.html (the thread authors' web site - Jörn Adamczewski and Marc
Hemberger).

513

Chapter 24. PROOF: Parallel
Processing

The Parallel ROOT Facility, PROOF, is an extension of ROOT allowing transparent analysis of large
sets of ROOT files in parallel on remote computer clusters or multi-core computers. The main design
goals for the PROOF system are:

Transparency : there should be as little difference as possible between a local ROOT based analysis
session and a remote parallel PROOF session, both being interactive and giving the same results.

Scalability : the basic architecture should not put any implicit limitations on the number of computers
that can be used in parallel.

Adaptability : the system should be able to adapt itself to variations in the remote environment
(changing load on the cluster nodes, network interruptions, etc.).

Being an extension of the ROOT system, PROOF is designed to work on objects in ROOT data stores,
though, for the time being, it mainly addresses the case of TTree based object collections.

PROOF is primarily meant as an interactive alternative to batch systems for Central Analysis Facilities
and departmental workgroups (Tier-2’s). However, thanks to a multi-tier architecture allowing
multiple levels of masters, it can be easily adapted to wide range virtual clusters distributed over
geographically separated domains and heterogeneous machines (GRIDs).

While pure interactivity might not always be possible when performing a complicated analysis on a
very large data set, PROOF still tries to give the user the interactive experience with something we call
"interactive batch". With "interactive batch" the user can start very long running queries, disconnect
the client and at any time, any location and from any computer reconnect to the query to monitor
its progress or retrieve the results. This feature gives it a distinct advantage over purely batch based
solutions, that only provide an answer once all sub-jobs have been finished.

Figure 24.1. The Multi-tier structure of a PROOF cluster

Details about the PROOF system and the way to use it can be found at PROOFWiki 1

The PROOF development is a joint effort between CERN and MIT.

1 http://root.cern.ch/twiki/bin/view/ROOT/PROOF

514

Chapter 25. Writing a Graphical User
Interface

The ROOT GUI classes support an extensive and rich set of widgets with the Windows 95 look and
feel. The widget classes interface to the underlying graphics system via a single abstract class. Concrete
versions of this abstract class have been implemented for X11 and Win32, thereby making the ROOT
GUI fully cross-platform. Originally the GUI classes were based on Hector Peraza's Xclass'95 widget
library http://xclass.sourceforge.net/

The ROOT GUI Classes
Features of the GUI classes in a nutshell:

• Originally based on the Xclass'95 widget library

• A rich and complete set of widgets

• Win'95 look and feel

• All machine dependent graphics calls abstracted via the TVirtualX "abstract" class

• Completely scriptable via the C++ interpreter (fast prototyping)

• Supports signal/slot event handling as pioneered by Trolltech’s Qt

• Full class documentation is generated automatically (as for all ROOT classes)

• Code generation for variety of GUI’s

Widgets and Frames
The ROOT GUI classes provide of set of components that allow an easy way to develop cross-platform
GUI applications with a Windows look and feel.

The main widgets are:

• Simple widgets: labels, icons, push buttons, either with text or pixmaps, check buttons, radio
buttons, menu bars and popup menus, scroll bars, list boxes, combo boxes, group frames, text entry
widgets, tab widgets, progress bars, sliders, tool tips

• Complex widgets: shutter, toolbar, status bar, list view, list tree

• Common dialogs: File Open/Save, File Properties, Font Selection, Color Selection, About

• The widgets are shown in frames:

• frame, composite frame, main frame, transient frame, group frame

• Arranged by layout managers:

• horizontal layout, vertical layout, row layout, list layout, tile layout, matrix layout

Using a combination of layout hints:

• left, right, center x, center y, top, bottom, expand x, expand y, fixed offsets

Event handling by signals/slots and messaging (as opposed to callbacks):

• in response to actions widgets send messages and emit signals

Writing a Graphical User Interface

515

• associated frames process these messages or the slot methods connected to the signals are executed

TVirtualX
The GUI classes interface to the platform dependent low level graphics system via the semi-abstract
graphics base class TVirtualX. Currently concrete implementations exist for X11 and Win32
(MacOS X is fully supported via Apple’s X11 implementation). Thanks to this single graphics
interface, porting the ROOT GUI to a new platform requires only the implementation of TVirtualX.

The TGQt interface is currently still under development.

A Simple Example
We will start with a simple example that builds a small application containing a canvas and two
buttons: Draw and Exit. Its functionality will be very simple: every time you click on Draw button, the
graphics of the function sin(x)/x will be drawn in randomly chosen interval in the canvas window,
if you click on Exit - you close the application. This example shows the basic concepts for almost
any GUI-application in ROOT and it is important to understand how it is constructed. The example
program is written as a named script. See "CINT the C++ Interpreter". Remember that the named
script can be executed via

root[] .x example.C

only if the filename (without extension) and the function entry point are both the same.

We need to say a few words about the parent-children relationship between the widgets before going
through the real code. The widgets' behaviors are based on this relationship. Every parent widget is
responsible for where the children are and it ensures all properties and behavior for them. For example,
if you want to hide several widgets, it will be enough to hide their parent widget. Later you can show
the parent and the children will appear too. Writing your code you have to specify the parent-child
relationship. Usually in a child constructor the address of the parent is passed as an argument. In
general frames are parents of simple widgets. In this example you will see how we organize the parent-
children relationship by using frame widgets in addition to the canvas window and button widgets.

Let’s now go through the code of the example.C.

The first lines include ROOT header files. The header file names are almost always as the class names
(TApplication, TF1, TCanvas), but there are cases when similar classes are grouped together
in one header file: all frames are declared in TGFrame.h, all buttons – in TGButton.h, etc. Our
small example is based on an object of the class MyMainFrame.

new MyMainFrame(gClient->GetRoot(),200,200);

Writing a Graphical User Interface

516

The first parameter gClient->GetRoot() makes the initial connection to the window server. It is
a pointer to the root window of the screen, which is obtained from gClient. The next two parameters
initialize the width and height of the application window in pixels. Let see what MyMainFrame is.
The three arguments pass to the TGMainFrame constructor when we create the fMain object.

The first thing to note is the inclusion of the RQ_OBJECT macro in the class declaration of
MyMainFrame. It is necessary to provide a standalone class signal/slot capability. The signal/slot
communication mechanism is described in a separate chapter. See “Event Processing: Signals and
Slots”.

// example.C

#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TGFrame.h>
#include <TRootEmbeddedCanvas.h>
#include <RQ_OBJECT.h>

class MyMainFrame {
 RQ_OBJECT("MyMainFrame")
private:
 TGMainFrame *fMain;
 TRootEmbeddedCanvas *fEcanvas;
public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame();
 void DoDraw();
};
MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) {
 // Create a main frame
 fMain = new TGMainFrame(p,w,h);

 // Create canvas widget
 fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);
 fMain->AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY, 10,10,10,1));
 // Create a horizontal frame widget with buttons
 TGHorizontalFrame *hframe = new TGHorizontalFrame(fMain,200,40);
 TGTextButton *draw = new TGTextButton(hframe,"&Draw");
 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");
 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate(0)");
 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 fMain->AddFrame(hframe, new TGLayoutHints(kLHintsCenterX,
 2,2,2,2));

 / Set a name to the main frame
 fMain->SetWindowName("Simple Example");

 // Map all subwindows of main frame
 fMain->MapSubwindows();

Writing a Graphical User Interface

517

 // Initialize the layout algorithm
 fMain->Resize(fMain->GetDefaultSize());

 // Map main frame
 fMain->MapWindow();
}
void MyMainFrame::DoDraw() {
 // Draws function graphics in randomly choosen interval
 TF1 *f1 = new TF1("f1","sin(x)/x",0,gRandom->Rndm()*10);
 f1->SetLineWidth(3);
 f1->Draw();
 TCanvas *fCanvas = fEcanvas->GetCanvas();
 fCanvas->cd();
 fCanvas->Update();
}
MyMainFrame::~MyMainFrame() {
 // Clean up used widgets: frames, buttons, layout hints
 fMain->Cleanup();
 delete fMain;
}
void example() {
 // Popup the GUI...
 new MyMainFrame(gClient->GetRoot(),200,200);
}

The TGMainFrame class defines a top level window that interacts with the system window manager.
Its method CloseWindow() is invoked when Alt+F4 are pressed or a window manager close/
exit command is used. To terminate the application when this happens you need to override the
CloseWindow() method and call gApplication->Terminate(0).

The main frame can be considered as a container where all widgets of the application are organized
with respect to their parent-child relationship. After the main frame we create fEcanvas – an object
of class TRootEmbeddedCanvas. It is a quite complex widget and we will explain it in detail
later. For the moment keep in mind only its main purpose – to create a TCanvas – the ROOT basic
whiteboard for drawing and editing different graphical objects.

fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);

In the TRootEmbeddedCanvas constructor we pass the address of the main frame widget fMain
as a second parameter. This pass is important because it makes fMain the parent of the canvas
window. The first parameter Ecanvas is the name of the TCanvas, the last two parameters give
the width and height of canvas window in pixels. Next step is to add fEcanvas to the parent frame
defining its appearance inside the parent window. We use the method AddFrame():

fMain->AddFrame(fEcanvas,new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY, 10, 10, 10, 1));

It adds the fEcanvas into the list of children widgets of the main frame fMain. The specification
of how it should be placed inside the parent frame is made by the TGLayoutHints object. Setting
its first parameter to kLHintsExpandX|kLHintsExpandY we define the canvas window as
expanded on x and y in the frame. The next four parameters define amounts of padding in left, right, top
and bottom in pixels. This means that the canvas window will be expanded when the parent window
expands, but it will keep around a frame of 10 pixels on left, right, top and 1 pixel on bottom.

Writing a Graphical User Interface

518

The laying out is always made with respect to the parent-children relationship. There is a special
chapter presenting the different layout managers, but we will quickly introduce the concept here. The
layout process will apply not to the embedded canvas window but to its parent – the main frame. A
popular layout manager and the one used in this case is the vertical layout manager which arranges
its widgets vertically in a column.

The next widget we create as a child of the main frame is the horizontal frame hframe:

TGHorizontalFrame *hframe=new TGHorizontalFrame(fMain,200,40);

The first parameter of its constructor is again the address of its parent, fMain. The next ones define
the frame width and height in pixels. The name of the class TGHorizontalFrame gives a hint
that a horizontal layout will apply on its children widgets. The Draw and Exit buttons will be laid out
horizontally. Here are their constructors:

TGTextButton *draw = new TGTextButton(hframe,"&Draw");
hframe ->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));
TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate(0)");
hframe ->AddFrame(exit,new TGLayoutHints(kLHintsCenterX,5,5,3,4));

They are created as objects of the TGTextButton class that represent the command buttons with
a text label. When you click on a command button it performs the action shown on its label. These
buttons are well known as “push buttons” or just “buttons”. The parent address hframe is passed as
first parameter. The second one defines the button label and normally indicates the action to be taken
when the button is clicked. It is possible to define a hot key for the button at that point using the hot
string for its label. A hot string is a string with a “hot” character underlined. This character we call
the button hot key. It shows the assigned keyboard mnemonic for the button choice. Following our
example, this means that you can use Alt+D to click on Draw button and Alt+E to click on Exit.
There is a possibility to specify a command string as third parameter of the button constructor. We use
it to assign the command gApplication->Terminate(0). The application will be terminated
when you click on the Exit button.

We call again AddFrame() to add the buttons to their parent widget giving layout hints for each of
them. This time we would like to have centered buttons with an amount of 5 pixels on the left, 5 on
the right, 3 on the top and 4 on the bottom. You can feel already that the same steps are repeated three
times: to create a new widget with passing a parent address as a parameter, to define layout hints for
it and to add it in the parent list. The next line is something new:

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

Here we connect a signal to a slot. Whenever the draw button is clicked, it emits a signal that
something has happened (it is clicked) to whom might be interesting in the outside world. The
widget does not know who will use this information. On the other side of the program world there
is some code which should be executed when the button is clicked. This code is called a slot.
Think about slots as normal C++ functions or class methods. The line above specifies that the slot
MyMainFrame::DoDraw() will be executed when the draw button is clicked. Our slot draws the

Writing a Graphical User Interface

519

graphics of sin(x)/x in randomly chosen interval every time the draw button sends a signal “I
am clicked”. The signal/slot communication mechanism originally featured in Qt by TrollTech(see
http://doc.trolltech.com/3.1/signalsandslots.html). ROOT supports its own
version of signals/slots. We will return to that point in details later. We specified all child widgets
of the horizontal frame (the Draw and Exit buttons in our case). Next, we need to add their parent
frame to the main frame:

fMain->AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

The last thing to do is to set the main window title and to make all widgets visible. Commonly in
all systems windows are assigned by name to be identified by users. This name is displayed in the
application’s title bar and can be set by:

fMain->SetWindowName("Simple Example");

The next lines make the widgets visible. The first one maps all child frames of the top-level frame;
the last one – the main frame itself, i.e. makes it appear on the screen.

fMain->MapSubwindows();
fMain->Resize(fMain->GetDefaultSize());
fMain->MapWindow();

The line in between has an important mission – to execute all layout specifications for the widgets
before the top-level window itself is shown on the screen. We can run the named script via the CINT
interpreter with the command:

root[].x example.C

The event processing starts. If you change the state of a widget, it emits a signal and the corresponding
slot is executed ensuring the functionality we want for this small example.

The steps we passed can be generalized as follows:

• Opening of the connection to the system

• Definition of main frame (top level window)

• Creation of widgets as children of the top-level frame; assign them desired properties following
the steps:

• Create a new widget passing its parent in the constructor

• Connect widget's signals with desired slots to ensure desired functionality

• Define widget’s layout and add it to the parent list of children

• Set main window attributes

• Map all sub windows

• Initialize the layout algorithm via Resize(GetDefaultSize()) method

• Map the main frame

• Execution of the even-processing loop

A Standalone Version
As usual a standalone program in C++ has to contain a main() function – the starting point for the
application execution. In this case it is better to separate the program code creating a program header

Writing a Graphical User Interface

520

file example2a.h with the MyMainFrame class declaration and example2a.cxx – with the class
methods implementation. To run our simple example as a standalone application we need to create in
addition an object of class TApplication. It will make a correct initialization of the dictionaries
if it is not yet done. It will be responsible for holding everything together and to handle all events in
the application. Its environment provides an interface to the ROOT graphics system and by calling
the Run() method the event loop starts and the application program is waiting for the user action.
The application exits only if the top level window is not closed. Two header files are used in addition:
TApplication.h – for the class TApplication and TGClient.h that is used to make initial
connection to the graphics system. The class TApplication must be instantiated only once in any
given application. The original list of argument options can be retrieved via the Argc() and Argv()
methods.

Note: to have signals/slots working we need to create a dictionary for the class MyMainFrame, i.e.
we create the file ex2aLinkDef.h containing the line:

#pragma link C++ class MyMainFrame;

We compile the example:

rootcint -f ex2aDict.cxx -c example2a.h ex2aLinkDef.h
g++ -o example2a example2a.cxx ex2aDict.cxx `root-config --cflags --glibs`

example2a.h

#include <TQObject.h>
#include <RQ_OBJECT.h>

class TGWindow;
class TGMainFrame;
class TRootEmbeddedCanvas;

class MyMainFrame {
 RQ_OBJECT("MyMainFrame")
private:
 TGMainFrame *fMain;
 TRootEmbeddedCanvas *fEcanvas;
public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame();
 void DoDraw();
};

example2a.cxx

#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TRootEmbeddedCanvas.h>
#include "example2a.h"

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) {...}
MyMainFrame::~MyMainFrame() { ... }
void MyMainFrame::DoDraw() { ... }
void example() { ... }

int main(int argc, char **argv) {

Writing a Graphical User Interface

521

 TApplication theApp("App",&argc,argv);
 example();
 theApp.Run();
 return 0;
}

The class MyMainFrame could derive from TGMainFrame. In that case the RQ_OBJECT macro
is not needed anymore, since the functionality it provides is obtained now via inheritance from
TGMainFrame. This will reflect in the MyMainFrame class declaration and in the code of the
MyMainFrame::MyMainFrame constructor as follows:

example2b.h

#include <TGFrame.h>
class MyMainFrame : public TGMainFrame {
private:
 TRootEmbeddedCanvas *fEcanvas;
public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame() { ... }
 void DoDraw(){ ... }
 ClassDef(MyMainFrame,0)
};

example2b.cxx

#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TRootEmbeddedCanvas.h>
#include "example2b.h"

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h)
 : TGMainFrame(p,w,h) {

 // Creates widgets of the example
 fEcanvas = new TRootEmbeddedCanvas ("Ecanvas",this,200,200);
 AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY, 10,10,10,1));
 TGHorizontalFrame *hframe=new TGHorizontalFrame(this, 200,40);
 TGTextButton *draw = new TGTextButton(hframe,"&Draw");
 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");
 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 TGTextButton *exit = new TGTextButton(hframe,"&Exit ",
 "gApplication->Terminate()");
 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

 // Sets window name and shows the main frame
 SetWindowName("Simple Example");
 MapSubwindows();
 Resize(GetDefaultSize());
 MapWindow();
}

Writing a Graphical User Interface

522

Widgets Overview
The word widget is a contraction of windows and gadget. Almost all GUI elements are widgets. A
button is a widget, a menu item is a widget, a scrollbar is a widget, and a complete dialog box is a
widget too. Some widgets may have sub widgets. For example, a dialog box can contain buttons, text
fields, a combo-box, etc.

On the screen widgets look like rectangular areas with special behaviors. In terms of the object-oriented
programming we can define a widget in ROOT as an object of a class deriving from TGObject.

This section presents all currently supported widgets in ROOT and their most useful methods. All of
them can be considered as building blocks for an application, and most of them can be found in dialogs.
Provided snippets of the code will give you practical guidelines where and how to use certain widgets.
The macro $ROOTSYS/tutorials/gui/guitest.C contains the complete source code.

Figure 25.1. Widgets created by ROOT GUI classes

Any custom widget can be created by sub classing existing widgets. To achieve a better understanding
of the widgets’ properties they are separated by their type and their inheritance. As all of them inherit
from TGObject and most from TGWidget, these base classes are described first.

TGObject
TGObject is the base class for all ROOT GUI classes. It inherits from TObject. The two data
members of this class contain important information about X11/Win32 window identifier and the
connection to the host’s graphics system. Every GUI element, which derives from TGObject has
access to the TGClient via the data member fClient of TGObject. TGClient creates the
connection with the host’s graphics system and sets up the complete graphics system for all widgets.

TGWidget
The widgets base class TGWidget is typically used as a mix-in class via multiple inheritances.
Its properties are available for all deriving widgets: TGButton, TGComboBox, TGTab,
TGColorPalette, TGColorPick, TGDoubleSlider, TGListTree, TGNumberEntry,
TGScrollBar, TGShutterItem, TGTextEntry, TGSlider, TGListBox, TGView.

Writing a Graphical User Interface

523

This class has four data members keeping information about the widget id – important for
event processing, the window which handles the widget’s events, the widget status flags and
the assigned command (if there is any). The general properties of TGWidget are specified
by SetFlags(Int_t flags) and ClearFlags(Int_t flags) methods. The status
flags are: kWidgetWantFocus, kWidgetHasFocus, and kWidgetIsEnabled. The method
Associate(const TGWindow* w) – sets the window which handles the widget events.
SetCommand(const char* command) – sets the command to be executed. The command
string can be gathering via GetCommand() method. For example, the third parameter in
TGTextButton constructor can be omitted and set later in your program, i.e. instead of:

TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate()");

You will have the following the two lines:

TGTextButton *exit = new TGTextButton(hframe,"&Exit");
exit->SetCommand("gApplication->Terminate()");

The method IsEnabled() – returns kTRUE if the widget has flag kWidgetIsEnabled and it
accepts user events. This method is very important for creating a good user interface because it allows
you to disable or enable a widget depending on the situation of your application. As a standard all
disabled widgets are displayed “grayed out”. HasFocus() – returns kTRUE if the widget has the
input focus (i.e. flag kWidgetHasFocus is set). Remember that only one item in a complex widget
as a dialog can have the value of HasFocus() sets as true. WantFocus() – returns kTRUE if the
flag kWidgetWantFocus is set.

TGWindow

TGWindow is a ROOT GUI window base class. It inherits from TGObject and TGFrame derives
from it. The application does not use it directly. It creates and registers a new window within the
system. This window has common characteristics: existing parent, location, size in height and width
(it has a default minimum size 1, 1 under which it cannot shrink), border with particular view, state,
specific attributes. If there are no specified arguments their values will be taken from the parent. It
receives events from the window system and can paint a representation of itself on the screen.

Frames

Most of the frame classes are mainly created for arranging widgets in a window. The class TGFrame
is a subclass of TGWindow providing additional window characteristics and overriding some methods
of TGWindow. It is a base class for the simple widgets as buttons, labels, etc. Its only purpose is to
draw a frame around widgets that do not have a frame of their own. The main groups of TGFrame
member functions are:

• Window’s functions: DoRedraw(), DeleteWindow(), Activate(), etc.

• Geometry functions: Move(), Resize(), SetSize(), etc.

• Graphics handlers: ChangeBackground(), ChangeOptions(), etc.

• Mouse and keyboard functions: HandleButton(), HandleFocusChange(),
HandleKey(), HandleMotion(), etc.

• Event handlers: HandleEvent(), ProcessEvent(), GetSender(), SendMessage(),
ProcessMessage(), GetLastClick(), etc.

Writing a Graphical User Interface

524

Figure 25.2. The GUI classes hierarchy

Ones of TGFrame member functions provide direct functionality; others – will be overridden by
TGFrame subclasses to ensure particular widget’s functionality. There are two constructors provided
in TGFrame class. One creates a frame using an externally created window:

TGFrame(TGClient *c,Window_t id,const TGWindow *parent = 0);

For example, it can register the root window (called by TGClient), or a window created via
TVirtualX::InitWindow() (window id is obtained by TVirtualX::GetWindowID()
method). The other TGFrame constructor is:

TGFrame(const TGWindow *p,UInt_t w,UInt_t h,UInt_t options=0,
ULong_t back = GetDefaultBackground());

The options parameter is the bitwise OR between defined frame types. Here is a short description of
these types:

Frame Type Description

kChildFrame a frame embedded in a parent

kMainFrame a main frame interacting with the system Window Manager

kTransientFrame a top level dialog’s frame

kVerticalFrame a frame that layouts its children in a column

kHorizontalFrame a frame that layouts its children in a row

kSunkenFrame a frame with a sunken board appearance

kRaisedFrame a frame with a raised board appearance

kFitWidth a frame with dynamically scaled width

kFitHeight a frame with dynamically scaled height

kFixedWidth a frame with fixed width

kFixedHeight a frame with fixed height

kFixedSize = kFixedWidth | kFixedHeight

Writing a Graphical User Interface

525

a frame with fixed width and height

kDoubleBorder a frame having a double line border

kOwnBackground a frame having own background

kTempFrame a temporary frame shown in certain circumstances; for example, it is
used for creation of tool tip widget

The method ChangeOpton(UInt_t options) allows you to change frame options. Next
example shows you how to change kVerticalFrame option to kHorizontalFrame:

frame->ChangeOptions((frame->GetOptions()& ~kVerticalFrame) |
 kHorizontalFrame);

The class TGCompositeFrame is the base class of all composite widgets as a menu bar, a list box,
a combo box, etc. It subclasses TGFrame and has in addition a layout manager and a list of child
frames/widgets. There are two steps to do the design using a composite frame widget. First you put
all widgets you need within this frame and assign them desired properties using AddFrame(), then
you lay them out by the Layout() method according to the assigned layout manager. The method
AddFrame() creates an instance of TGFrameElement class for every child widget of a composite
frame. This class has three public data members: the child pointer, its layout hints, and a status variable
showing if the child is visible or hidden. If no hints are specified, the default layout hints are used.
Because the layout is very important part of any design we include a special section about layout
management and layout hints.

You can set a layout manager for the composite frame via:

compFrame->SetLayoutManager(TGLayoutManager *l);

The child widgets cannot be added to different composite frames.

Any child frame can be removed from the parent list by:

compFrame->RemoveFrame(TGFrame *f);

You can hide or show a child frame of a composite frame using the methods: HideFrame(TGFrame
*f) or ShowFrame(TGFrame *f). You should call, for example HideFrame(TGFrame
*f), only after the frames have been laid out and the sub windows of the composite frame have been
mapped via method MapSubwindows(), i.e.

frame->AddFrame(hFrame1,fLayout1);
frame->AddFrame(hFrame2,fLayout2);
frame->Resize(frame->GetDefaultSize()); // lays out frames
frame->MapSubwindows(); // maps subwindows
frame->HideFrame(hFrame2); // hides frame hFrame2
frame->MapWindow(); // maps main frame

The state information about a child frame can be obtained from the methods GetState(TGframe
*f), IsArranged(TGFrame *f), and IsVisible(TGFrame *f).

The method Cleanup() deletes all objects of the composite frame added via AddFrame(). All
TGFrameElement objects (frames and layout hints) must be unique, i.e. cannot be shared.

We already mentioned that TGMainFrame class defines top level windows interacting with the
system window manager. It handles applications with a menu bar, toolbar, text entry fields and
other widgets surrounding a central area (e.g. a canvas widget). It lays out a set of related widgets
and provides the typical application main window behavior. As you can see from the Figure above,
it inherits from TGCompositeFrame and is inherited by TGTransientFrame and several
ROOT interface classes: TViewerX3D, TRootBrowser, TRootCanvas, TRootControlBar,
TTreeViewer.

To fix the size of a top level window you have to use the method TGMainFrame::SetWMSize().
This call tells the Window Manager that it should not resize the window. The option kFixedSize

Writing a Graphical User Interface

526

works only for embedded frames like TGCompositeFrame and derived classes (in combination
with layout hints).

The TGVerticalFrame and TGHorizontalFrame are composite frames that lay out their child
frames in vertical or horizontal way in the same order as they were added and according to their hints
preferences.

The TGTransientFrame class defines transient windows that typically are used for dialogs. They
extend and complete an interaction within a limited context. Always transient frames are displayed
from another window or another dialog. They may appear because of a command button being
activated or a menu item being selected. They may also present automatically when an additional input
and the user attention are required by a certain condition.

The TGGroupFrame class presents a very convenient frame which surrounds visually a group of
logically connected widgets: radio buttons, related check boxes, two or more functionally related
controls.

It is a composite frame with a border and a title. The title explains the purpose of the group and should
be a noun or noun phrase. Here is an example taken from guitest.C:

groupFrame = new TGGroupFrame(tf,"Options",kVerticalFrame);
groupFrame->SetTitlePos(TGGroupFrame::kLeft);

The second line sets the title position on the left. You can change it to be centered or right aligned if
you use TGGroupFrame::kCenter or TGGroupFrame::kRight as a parameter.

Be conservative in the use of borders because of the potential for clutter. Do not place them around
single entry fields, single combo boxes, list boxes and groups of command buttons. The design of
these widgets provides them with a border. The picture above provides kind of borders to avoid.

Layout Management
The layout process is an integral part of any GUI. When you create a simple message window, laying
out its few buttons and text widgets is quite simple. However, this process becomes increasingly
difficult if you have to implement large GUI’s with many widgets that should behave properly

Writing a Graphical User Interface

527

when the GUI is resized or uses a different font type or size. Layout management is the process of
determining the size and position of every widget in a container.

A layout manager is an object that performs layout management for the widgets within a container.
You already know that when adding a component (child widget) to a container (parent widget) you
can provide alignment hints (or rely on the default ones). These hints are used by the layout manager
to correctly position the widgets in the container. The TGLayoutManager is an abstract class
providing the basic layout functionality.

Figure 25.3. The layout classes hierarchy

The base “container” class is TGCmpositeFrame. You can easily change the layout manager using
the SetLayoutManager(TGLayoutManager *l) method. Setting the proper layout manager
for each container is the first step you have to do. The container uses that layout manager to position
and size the components before they are painted. ROOT currently provides the layout managers shown
on the picture above.

The next important step is to provide hints about every widget in the container, i.e. to provide positions
and right amount of space between the components. The TGLayoutHints objects set hints by
specifying the white space in pixels around every widget.

Let’s see an example with five buttons. First you put them in a container, assign them desired
properties, and then you lay them out according to the layout manager. This process can be repeated:
you go back and add, remove or change some of the widgets and lay them out again.

Once created, you can consider these widgets as elementary objects even though they are compound
ones. The pictures above present four different layouts of five buttons. The first one shows laid out
vertically buttons. Almost everywhere you can find this vertical orientation. Looking at dialogs you
see that often they consist of number of rows laid out below each other. Some of the rows could have an
internal vertical structure as well. The second picture shows the same buttons laid out horizontally – the
next common orientation. The other two show different layouts based on mixed use of the vertical and
horizontal orientation. You might recognize their pattern: two (third picture) and three (last picture)
rows that are vertically laid out.

As we already explained the layout process is always applying to a container. It will be enough to
define the container frame with vertical or horizontal layout to have buttons as in the first and second
pictures.

Writing a Graphical User Interface

528

To design them in several rows we need to use additional frames as invisible containers: two horizontal
frames, children of a vertical parent frame; or one horizontal frame laid out vertically with the Draw
and Exit buttons. For widgets in a group it is obvious to use a vertical layout.

The layout hints data member of TGLayoutHints is the bit wise OR between the hints:

Hints Description

kLHintsNoHints no specified layout hints, the default ones will be used

kLHintsLeft specifies the frame position to the left of the container frame after other frames
with the same hint into the list

kLHintsCenterX specifies the frame position centered horizontally (with vertical containers
only)

kLHintsRight specifies the frame position to the right of the container frame before any
other laid out frames with the same hint into the list

kLHintsTop specifies the frame position to the top of the container frame, below any laid
out frames with the same hint

kLHintsCenterY specifies the frame position centered vertically (with horizontal containers
only)

kLHintsBottom specifies the frame position to the bottom of the container frame, above any
laid out frames with the same hint

kLHintsExpandX specifies the frame to be expanded up to the width of the container frame. If
the container frame is a vertical frame – it will fit the whole width. If it is
a horizontal frame – after the positioning of all frames the available “free”
width space is shared between the frames having this hint

kLHintsExpandY specifies the frame to be expanded up to the height of the container frame. If
the container frame is a horizontal frame – it will fit the whole height. If the
container frame is a vertical frame – after the arrangement of all frames the
available “free” height space is shared between the frames having this hint

kLHintsNormal = kLHintsLeft | kLHintsTop – default hints

Layout policy:

Child frames never modify their container frame. The container frame can (or cannot) adapt its size
in the layout process. It can show all or a part of its frames. Every TGFrame object has a default
minimum size (1, 1) assured by TGWindow.

Event Processing: Signals and Slots
Event handling covers the interaction between different objects and between the user and the objects
in an application. There are two general ways for the user to interact with an application: the keyboard
and the mouse. The Graphical User Interface is as a bridge between the user and the program - it
provides methods to detect the user actions and instruments that do something as a reaction of these
actions. The user communicates with an application through the window system. The window system
reports interaction events to the application. The application in turn forwards them to the currently
active window. The objects/widgets receive the events and react to them according to the application
functionality.

Writing a Graphical User Interface

529

The signals/slot communication mechanism is an advanced object communication concept; it largely
replaces the concept of callback functions to handle actions in GUI’s. Signals and slots are just like
any object-oriented methods implemented in C++. The objects are the instances of classes that don’t
know anything about each other. They interact and allow method calls of other object’s methods.
The idea is simple: any object can send out (emit) a signal in certain situations saying that something
happened. This is all it does to communicate and it does not know whether anything is interested in this
information. On the other side there might be an object waiting for that signal and ready to react to it.
This object disposes of special instruments to listen to the sent out signals. To have a communication
we need a message transmission between the objects. In this simple example we use signals and slots.
The code of the method TGButton::Clicked() is:

virtual void Clicked() { Emit("Clicked()"); } // *SIGNAL*

I.e. any button emits the signal Clicked() any time someone clicks on it. As you can see this method
is virtual and could be overridden if you need to. In our simple example we call the Connect()
method to connect the Clicked() signal of Draw button with MyMainFrame::DoDraw():

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

In the same way we can connect to the signal Clicked() of the Exit button with the system call
gApplication->Terminate(0). We declare a new slot DoExit(), implement it to invoke
the termination call and associate this slot with the signal Clicked() of the Exit button.

The code of example.C can be changed as follows:

public:
...
 void DoExit(); // a new slot is added
}
void MyMainFrame::DoExit() {
 gApplication->Terminate(0);
}
MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) {
...
 TGTextButton *exit = new TGTextButton(hframe,"&Exit ");
 // connects signal Clicked() with slot DoExit()
 exit->Connect("Clicked()","MyMainFrame",this,"DoExit()");
...
}

Writing a Graphical User Interface

530

Here is an abstract view of the signal/slots connections in example.C:

To benefit from this mechanism your classes must inherit from TQObject or otherwise the class
definition must start with RQ_OBJECT(“ClassName”) macro. This macro allows the signals/slots
communication mechanism to be applied between compiled and interpreted classes in an interactive
ROOT session without having the class derive from TQObject. Every signal method declaration is
followed by a comment “*SIGNAL*”. Only instances of a class that defines a signal or instances of
its subclasses can emit the signal. The ROOT implementation of a popular example presenting signals
and slots is the next. Let’s have a minimal class declaration:

class MyClass {
private:
 Int_t fValue;
public:
 MyClass() { fValue=0; }
 Int_t GetValue() const { return fValue; }
 void SetValue(Int_t);
};

It will become the following as interpreted:

class MyClass {
 RQ_OBJECT("MyClass")
private:
 Int_t fValue;
public:
 MyClass() { fValue=0; }
 Int_t GetValue() const { return fValue; }
 void SetValue(Int_t); // *SIGNAL*
};

Both class declarations have the same data member and public methods to access the value. By placing
the RQ_OBJECT(“MyClass”) macro inside the MyClass body (MyClass is not inherited
from TQObject) we allow this class to use the signal/slot communication. Any instance of this
class can tell the outside world that the state of its data member has changed by emitting a signal
SetValue(Int_t). A possible implementation of MyClass::SetValue() can be:

void MyClass::SetValue(Int_t v) {
 if (v != fValue) {
 fValue = v;
 Emit("SetValue(Int_t)",v);
 }
}

The line Emit("SetValue(Int_t)",v) activates the signal SetValue(Int_t)
with argument v. You can use any of the methods

Writing a Graphical User Interface

531

TQObject::Emit(“full_method_name”,arguments) to emit a signal. We create two
instances of MyClass and connect them together:

MyClass *objA = new MyClass();
MyClass *objB = new MyClass();
objA->Connect("SetValue(Int_t)","MyClass",objB,"SetValue(Int_t)");
objB->SetValue(11);
objA->SetValue(79);
objB->GetValue(); // the value is 79

By calling the method objA->Connect(), objA connects its signal "SetValue(Int_t)"
to the "MyClass::SetValue(Int_t)" method (slot) of objB. Next, when you call objA-
>SetValue(79) object objA emits a signal which objB receives and objB-
>SetValue(79) is invoked.

It is executed immediately, just like a normal function call. objB will emit the same signal in turn,
but nobody is interested in this signal, since no slot has been connected to it. Signals are currently
implemented for all ROOT GUI classes, event handlers (TFileHandler, TSignalHandler,
etc.), timers (TTimer) and pads (TPad, TCanvas, etc.). To find all defined signals you just do:
grep ‘*SIGNAL*’ $ROOTSYS/include/*.h

As a programmer you build the sender-receiver part of object connections using the
TQObject::Connect() method. You can connect one signal to many different slots. The slots
will be activated in order they were connected to the signal. You can change this order using the
methods LowPriority() and HightPriority() of TQObject. Also, many signals can be
connected to one slot of a particular object or a slot can be connected to a signal for all objects of
a specific class. It is even possible to connect a signal directly to another signal – this will emit the
second signal immediately after the first one is emitted.

All signals and slots are normal class methods and can take any number of arguments of any type. The
common methods of TQObject that activate a signal with any number and type of parameters are:

Emit(signal_name,param);

With no parameters param the method will be:

ApplyButton->Emit("Clicked()");

param can be a single parameter or an array of Long_t parameters as it is shown below:

TQObject *processor; // data processor
TH1F *hist; // filled with processor results
...
processor->Connect("Evaluated(Float_t, Float_t)", "TH1F", hist,
 "Fill(Axis_t x, Axis_t y)");
...
Long_t args[2];
args[0]=(Long_t)processor->GetValue(1);
args[0]=(Long_t)processor->GetValue(2);
...
processor->Emit("Evaluated(Float_t, Float_t)", args);
...

To use signals and slot you need something that brings them together. The class TQObject has several
methods creating sender-receiver connections. Some of them are static and can be called without
having an instance of the class. The ROOT implementation of signals and slots allows connections to
any known CINT object. The class name parameter in the Connect() methods must be a class with
a dictionary (interpreted classes have an implicit dictionary).

TGButton *button;

Writing a Graphical User Interface

532

TH2 *hist;
...
TQObject::Connect(button,"Clicked()","TH2",hist,"Draw(Option_t*)");

You can replace it with 0 (zero) and in this case the slot string defines a global or interpreted function
name. The receiver parameter should be zero too. For example:

TQObject::Connect(button, "Clicked()",0,0, "hsimple()");

To make a single connection from all objects of a class you should write:

TQObject::Connect("Channel", "AllarmOn()","HandlerClass",handler,
 "HandleAllarm()");

The first argument specifies the class name Channel. The signal AllarmOn() of any object of the
class Channel is connected to the HandleAllarm() method of the handler object of the class
HandlerClass.

In example.C we have used the not-static Connect() method:

Bool_t Connect(const char *signal, const char *receiver_class,
 void *receiver, const char *slot);

It needs to know four things: the signal that should be connected, the receiver class, the object that
will receive the signal, and the slot that will be connected to the signal. Because this method is non-
static we can write this as a receiver parameter.

In all methods you have to specify the signal and the slot with their names and parameter types. Do
not write values instead of types in that place. It is possible to pass a parameter by value to a slot
method in the following way:

Connect(myButton, "Pressed()","TH1",hist, "SetMaximum(=123) ");
Connect(myButton, "Pressed()","TH1",hist, "Draw(="LEGO")");

As you see the parameter’s value is preceded by the equation symbol (=).

You have the possibility to destroy a signal/slot connection by using Disconnect() methods. There
are three ways to do this:

1/ to destroy all connections to an object’s signals;

2/ to destroy all connections to a particular object’s signal; 3/ to detach an object from a specific
receiver:

Disconnect(myObgect); // case 1
Disconnect(myObgect, "mySignal"); // case 2
Disconnect(myObgect,0,myReceiver,0); // case 3

Three parameters of these methods could be replaced by 0. The meaning in these cases would be “any
signal”, “any receiving object”, “any slot of the receiving object”, i.e. 0 is used as a wildcard. The
sender parameter cannot be 0, because you can disconnect signals from one given object. If the signal
parameter is 0, the receiver and the slot are disconnected from any signal. Giving the name of the
signal you disconnect this signal.

In addition to all Qt features the ROOT version of signals/slots gives you the possibility to connect
slots to a class. The slots will be executed every time the specified signal is emitted by any object
of this class. A slot can have default arguments and it can be either a class method or stand-alone
function (compiled or interpreted).

The method TQObject::HasConnection(signale_name) checks if there is an object
connected to this signal and returns true if it is the case.

Writing a Graphical User Interface

533

Using TQObject::NumberOfConnections(), TQObject::NumberOfSignals() you
can check how many signals or connections has the object.

The rules for using signals/slots mechanism in a standalone executable program do not differ from
what was described previously. Let’s remind that

• a slot can be any class method with a generated CINT dictionary

• a slot can be a function with a dictionary

Detailed information how to generate a dictionary can be found on http://root.cern.ch/
root/CintGenerator.html

The following example demonstrates how to use signals/slots mechanism in a standalone executable
program on linux platform with the gcc compiler.

tst.C

#include <TQObject.h>
#include <RQ_OBJECT.h>

class A {
 RQ_OBJECT("A")
private:
 Int_t fValue;
public:
 A() : fValue(0) { }
 ~A() { }
 void SetValue(Int_t value); // *SIGNAL*
 void PrintValue() const { printf("value = %d\n", fValue); }
};
void A::SetValue(Int_t value) { // Set new value
 // Emit signal "SetValue(Int_t)" with a single parameter
 if (value != fValue) {
 fValue = value;
 Emit("SetValue(Int_t)", fValue);
 }
}
// Main program
#ifdef STANDALONE
int main(int argc, char **argv) {
 A* a = new A();
 A* b = new A();
 a->Connect("SetValue(Int_t)", "A", b, "SetValue(Int_t)");
 printf("n******* Test of SetValue(Int_t) signal *******n");
 b->SetValue(10);
 printf("nt***** b before ******n");
 b->PrintValue();
 a->SetValue(20);
 printf("t***** b after a->SetValue(20) ******n");
 b->PrintValue();
 return 0;
}
#endif

ACLiC simplifies this procedure and allows the dictionary generation by:

root[] .L tst.C++

It will create the shared library tst_C.so.

Writing a Graphical User Interface

534

The next line will create an executable:

g++ -otst tst.C ̀ root-config --cflags --libs` ./tst_C.so -DSTANDALONE

The library tst_C.so is a dynamically loaded library and should be located in
$LD_LIBRARY_PATH. The current working directory should be added to $LD_LIBRARY_PATH
via:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./

To run it, you just do:

./tst

Widgets in Detail

Buttons
Buttons are a popular group of widgets designed to provide specific interfaces for user interaction.
TGButton is an abstract class defining the general button behavior: width, height, state, its group,
tool tip text, etc.

There are two main groups of buttons: command buttons with a text or graphics inside that indicate
the action to be accomplished and option buttons well known as radio and check buttons that
select or change properties. The first group is presented in ROOT by TGPictureButton and
TGTextButton classes. They yield an action as soon as they are clicked. It can be opening/closing
a dialog box or invoking a specific function in an application. Remember the Draw button from the
example. The radio and check buttons from the second group are used to select an option. There is a
visual difference between these two groups: the text buttons appear “pressed in” only while they are
clicked, while the radio and check buttons change their appearance when they are selected and keep
that appearance afterwards.

A text button is represented by the class TGTextButton. We already used its constructor in the
example. The button label indicates the action to be taken when the button is selected or pressed. The
text can be a hot string defining a hot key (known as shortcut key also) for this selection. The hot key
is an underlined character in a button label that shows the assigned keyboard mnemonic for its choice.
A button that prompts more information for users has the label generally followed by ellipsis (…).

As we saw the hot strings "&Draw" and "&Exit" define the text labels “Draw” and “Exit” and keyboard
mnemonics Alt+D, Alt+E for their selection. The letter D and E appear underlined on the screen.
All text buttons should have a unique shortcut key with the exception of OK and Cancel.

These buttons are usually placed within a window to provide fast access to frequently used or critical
commands. They help in situations where a command is not available through the menu bar. You
already know that a command string can be passed in the text button via the constructor:

TGTextButton(const TGWindow *p, const char *s, const char *cmd,
 Int_t id, GContext_t norm, FontStruct_t font,
 UInt_t options);

A button label can be changed by SetText(new_label). There are important guidelines to be
followed about a button label. The text has to provide a meaningful description of the performed
action. The single-word label should be used whenever possible, only two-three words for clarity,
if necessary. Do not number labels. Always follow all platform presentation and usage guidelines
for standard button functions. Let’s remember a few standard names and definitions of well known
buttons:

Writing a Graphical User Interface

535

OK - any changed information in a window is accepted and the window is closed;

Cancel – closes window without implementing submitted changes;

Reset – resets defaults and cancels any changed information that has not be submitted;

Apply – any changed information is accepted and again displayed in the window that remains open;

Close – closes the window;

Help – opens online Help.

Below are examples of text buttons. Note the two placement methods. The first example should be used
when there are one to three command buttons; the second one when there are more than three buttons.

Picture buttons are usually rectangular in shape with an icon or graphics label. These buttons may
appear alone or placed in a group at the window’s top or side. They are most frequently used to quickly
access commands, many of which are normally accessed through the tool bar. For example, the picture
buttons below can be used to provide different styles of a histogram drawing.

Here is the example how to create the first button:

TGPictureButton *fPicture = new TGPictureButton(parent,
 gClient->GetPicture("h1_s.xpm"), 11);

The picture of file h1_s.xpm is used in the button. All .xpm files are located in the directory
$ROOTSYS/icons. You can assign a command directly as a parameter of the picture button
constructor. The picture of TGPictureButton can be changed by:

fPicture->SetPicture("h2_s.xpm");

The advantage of command buttons is that they are always visible, providing a reminder of
their existence. They can be inscribed with a meaningful description of what they do by
TGToolTip(“Some describing text”). Their activation is much easier and faster than
using a two-step menu bar/pull-down sequence. The only disadvantage of the text and picture buttons
is that they consume considerable screen space if they are many. Having no more than six command
buttons per window or dialog box helps to appropriately balance the application’s effectiveness, its
real efficiency, and the operational simplicity.

The classes TGRadioButton and TGCheckButton present the option buttons in ROOT. Like the
text buttons, they have text or hot string as a label. Radio buttons are grouped in logical sets of two
or more and appear with a text label to the right. The choices are mutually exclusive and only one
setting is permitted at one time. They represent visually all alternatives and it is easy to access and
compare choices. They facilitate the situations where all alternatives cannot be easily remembered or
where displaying the alternatives together helps to understand and select the proper choice. It is very
useful to provide a default setting whenever it is possible. When it is not possible to establish a default
setting because of the nature of the information, it is better to leave all radio buttons blank.

Writing a Graphical User Interface

536

A columnar orientation is the preferred manner of radio buttons presentation. If the vertical space
on the window is limited, they can be oriented horizontally. Selection choices should be organized
logically in groups. Here is the example that produces the image above:

br = new TGButtonGroup(p,"Coordinate system",kVerticalFrame);
fR[0] = new TGRadioButton(bg,new TGHotString("&Pixel"));
fR[1] = new TGRadioButton(bg,new TGHotString("&NDC "));
fR[2] = new TGRadioButton(bg,new TGHotString("&User "));
fR[1]->SetState(kButtonDown);
br->Show();

It is enough to change kVerticalFrame to kHorizontalFrame in TGButtonGroup
constructor and you will have radio buttons aligned horizontally:

The class TGButtonGroup will help you to organize button widgets in a group. There is no need to
call AddFrame() since the buttons are added automatically with a default layout hint to their parent
by TGButtonGroup::Show() as shown in the previous example. The buttons in the group have
assigned identifiers. Any button in a group emits a Clicked() signal with this identifier when it is
clicked. This giving an ideal solution to connect several Clicked() signals to one slot.

An exclusive button group switches off all toggle buttons except the selected one. The group is by
default non-exclusive but its entire radio buttons will be mutually exclusive.

TGHButtonGroup and TGVButtonGroup are convenience classes that offer you a thin layer on
top of TGButtonGroup. TGHButtonGroup organize button widgets in a group of one horizontal
row, TGVButtonGroup in a group of one column. You can also organize buttons in rows and
columns using the provided constructor and TGMatrixLayout.

Do not use a radio button to indicate the presence or absence of a state – use a check box instead.

To have the check button “Event Status” and to set it as selected we need to write:

TGCheckButton *estat = new TGCheckButton(p, "Event Status",1);
estat->SetState(kButtonDown);

Check boxes show the selected choices and any number of them can be selected, including none. Their
proper usage is for setting attributes, properties or values; also for data or choices that are discrete,
small and fixed in number, not easily remembered. With check boxes all alternatives are visible: it
is easy to access and compare choices because they can all be seen together. Each option acts as a

Writing a Graphical User Interface

537

switch and can be either “on” or “off”. It is never changed in contents. Checkboxes differ from radio
buttons in that they permit selection of more than one alternative. Each box can be switched on or
off independently. These buttons can be used alone or grouped in sets. It is good practice to provide
default settings for check boxes whenever it is possible.

This can be done by:

SetState(EButtonState state)

The parameter state can be one of kButtonUp, kButtonDown, kButtonEngaged,
kButtonDisabled.

Check boxes can be used to affect other controls. The contents of a list can, for example, be filtered by
setting a check box. In any case, use a check box only when both states of a choice are clearly opposite
and unambiguous. If opposite states are not clear, it is better to use two radio buttons.

Choice description, i.e. check box label, must be clear, meaningful, fully spelled out, and displayed in
mixed-type text. Whenever the use of a given button is inappropriate, for whatever reason, that button
should be disabled:

button->SetState(kButtonDisabled);

Never make a button appear and disappear.

In general, option buttons should not offer more than eight choices. If the number of choices exceeds
this maximum, it is better to use a multiple selection list box.

The method IsToggleButton() gives the information whether a radio button or a check button
is selected. An option button can be set or unset via its method PSetState(EButtonState
state).

The method HandleKey(event) is called when the defined hotkey is hit for any button. It sets the
selected option button or clicks the selected text button and invokes its defined action.

Text Entries
A TGTextEntry is a one-line text input widget. It contains text that is entered or modified through
the keyboard. This text may be displayed in different way according to the set echo mode. Users can
control them by SetEchoMode(), GetEchoMode() methods.

• kNormal - display characters as they are entered (default);

• kNoEcho - do not display anything;

• kPassword - display asterisks instead of the characters actually entered.

The way in which typed characters are inserted in the text entry is defined by
TGTextEntry::EInsertMode and can be toggled by the Insert key:

• kInsert - typed character are inserted (cursor has shape of short line)

• kReplace - entered characters substitute already typed ones (cursor has the shape of filled
rectangle).

Writing a Graphical User Interface

538

There ate different text alignment modes defined by TGWidget::ETextJustification. They
are valid until text fits the frame width of the text entry field.

• kTextLeft - left-side text alignment

• kTextRight - right-side text alignment

• kTextCenterX - center text alignment along x direction

• kTextTop - top-side text alignment

• kTextBottom - bottom-side text alignment

• kTextCenterY - center text alignment along y direction

Number Entries
The TGNumberEntry class present number entry widgets. A number entry is a single-line field
followed by two small, vertically arranged up-down buttons. Its purpose is to make a selection
by either scrolling through a small set of meaningful predefined choices or typing numbers. The
TGNumberFormat class contains enum types to specify the numeric format. The number entry
widget is based on TGTextEntry. It allows only numerical input. The widget supports numerous
formats including integers, hex numbers, real numbers, fixed fraction real and time/date formats. It
also allows to restrict input values to non-negative or positive numbers and to specify explicit limits.

The following styles are supported:

• kNESInteger - integer number

• kNESRealOne - real number with one digit (no exponent)

• kNESRealTwo - real number with two digits (no exponent)

• kNESRealThree - real number with three digits (no exponent)

Writing a Graphical User Interface

539

• kNESRealFour - real number with four digits (no exponent)

• kNESReal - arbitrary real number

• kNESDegree - angle in degree:minutes:seconds format

• kNESMinSec - time in minutes:seconds format

• kNESHourMin - time in hour:minutes format

• kNESHourMinSec - time in hour:minutes:seconds format

• kNESDayMYear - date in day/month/year format

• kNESMDayYear - date in month/day/year format

• kNESHex- hexadecimal number

The following attributes can be specified:

• kNEAAnyNumber - any number is allowed

• kNEANonNegative - only non-negative numbers are allowed

• kNEAPositive - only positive numbers are allowed

Explicit limits can be specified individually:

• kNELNoLimits - no limits

• kNELLimitMin - lower limit only

• kNELLimitMax - upper limit only

• kNELLimitMinMax - both lower and upper limits

fN1 = new TGNumberEntry(parent, 0.005, 9, kENTRY1,
 TGNumberFormat::kNESRealThree, //style
 TGNumberFormat::kNEAAnyNumber, //input value filter
 TGNumberFormat::kNELLimitMinMax, //specify limits
 -1.,1.); //limit values

TGNumberEntryField is a number entry input widget.

Nent = new TGNumberEntryField(hgrunf2, kNENT_ID, 0.6,
 TGNumberFormat::kNESRealThree,
 TGNumberFormat::kNEAAnyNumber);

TGNumberEntryField is a plain vanilla entry field, whereas TGNumberEntry adds two small
buttons to increase and decrease the numerical value in the field. The number entry widgets also
support using the up and down cursor keys to change the numerical values. The step size can be
selected with control and shift keys:

• --small step (1 unit/factor of 3)

• Shift medium step (10 units/factor of 10)

• Controllarge step (100 units/factor of 30)

• Shift+Controlhuge step (1000 units/factor of 100)

The steps are either linear or logarithmic. The default behavior is set when the entry field is created,
but it can be changed by pressing the alt key at the same time.

Writing a Graphical User Interface

540

Menus
Menus provide a list of commands or options helping the user to select and to perform a task. The
menu system classes are TGMenuBar, TGMenuTitle, TGPopupMenu, and TGMenuEntry.

The TGMenuBar class implements a menu bar widget. It is used to specify and provide access
to common and frequently used application actions described in menu titles, implemented by
TGMenuTitle class. The menu bar is the highest-level of the menu system and it is a starting point
for all interactions. Also, it is always visible and allows using the keyboard equivalents. The geometry
of the menu bar is automatically set to the parent widget, i.e. the menu bar automatically resizes itself
so that it has the same width as its parent (typically TGMainFrame).

The menu bar is as a container for its menus – objects of the type TGPopupMenu. Popup menus
can appear in a menu bar. They can be a sub-menu of another popup menu (cascading menus) or
can be standalone (as a context menu). They are made of one or more menu items choices. When
displayed, the menu items are arranged in a vertical list. Usually they correspond to actions (e.g.
Open). These items can be labeled with text, graphics or a combination of both. Each of them should
have a character defined as its unique key for access. Grouped logically by their functionality, they are
separated visually by menu separators in groups. For example, The File menu is a common menu
title for tasks that apply to a file, as Open, Save, Close, Print…

// a popup menu
fMenuFile = new TGPopupMenu(gClient->GetRoot());

// adding menu entries
fMenuFile->AddEntry("&Open...",M_FILE_OPEN);
fMenuFile->AddEntry("&Save",M_FILE_SAVE);
fMenuFile->AddEntry("S&ave as...",M_FILE_SAVEAS);
fMenuFile->AddEntry("&Close", -1);

// adding separator
fMenuFile->AddSeparator();

// next group of menu entries
fMenuFile->AddEntry("&Print",M_FILE_PRINT);
fMenuFile->AddEntry("P&rint setup...",M_FILE_PRINTSETUP);
. . .
fMenuFile->AddSeparator();
fMenuFile->AddEntry("E&xit",M_FILE_EXIT);

First we create the File menu by creating an object of class TGPopupMenu and adding menu entries
with AddEntry method. Its first parameter is a hot string, the second – a menu ID. The ampersand
character (&) denotes shortcut for each menu entry; you can use the letter after it to manage the menu
via keyboard. There are three groups of menu entries separated visually by two separators.

You can add a sub-menu by using the method TGPopupMenu::AddPopup. Its first parameter is
again a string, the second one – a pointer to a TGPopupMenu object that will appear as a sub-menu
when the menu entry will be selected. The often used visual indicator of a sub- menu is a right-
facing arrow to the right of the parent menu item. Generally only one level of cascading menus is
recommended and you should be careful in using more. Next lines show how to create a menu bar
with File, Test and Help menus:

// menu bar item layout hints
fMBItemLayout = new TGLayoutHints(kLHintsTop|kLHintsLeft,0,4,0,0);
fMBHelpLayout = new TGLayoutHints(kLHintsTop|kLHintsRight);

// menu bar
fMenuBar = new TGMenuBar(fMain,100,20,kHorizontalFrame);

Writing a Graphical User Interface

541

// adding popup menus
fMenuBar->AddPopup("&File", fMenuFile, fMBItemLayout);
fMenuBar->AddPopup("&Test", fMenuTest, fMBItemLayout);
fMenuBar->AddPopup("&Help", fMenuHelp, fMBHelpLayout);

Using the method TGMenuBar::AddPopup we add three TGPopupMenu objects to the menu bar
fMenuBar. The first parameter is a hot string used by TGMenuTitle object. When you add a popup
menu to the menu bar, a TGMenuTitle object is created by the menu bar. It is the name of the popup
menu. A menu title should have a one-word name that reflects the purpose of all items within the
corresponding popup menu. It should also have a defined character as its unique access key. The second
parameter is the popup menu we would like to add. The third one is an object of TGLayoutHints
type that defines how the menu title will be laid out in the menu bar. In our example the File and
Test menus will be laid out to the left of the menu bar with 4 pixels distance in between, the Help
menu – will be laid out to the right.

The menu classes provide a very flexible menu system: you can enable, disable, add or remove menu
items dynamically. The method HideEntry(menuID) hides the menu entry (the entry will not be
shown in the popup menu). To enable a hidden entry you should call EnableEntry(menuID)
method. By default all entries are enabled. The method DisableEntry(menuID) helps you to
disable a menu entry – it will appear in sunken relieve. The DeleteEntry(menuID) method will
delete the specified entry from the menu.

A few words about the menu design. A menu should be kept consistent and simple. All related items
need to be in a popup menu. The cascade menus should be used judiciously. Try to limit them to one,
maximum two levels.

There are some rules for naming the menu objects:

• Define unique names within a menu

• Use capitalized one-word names allowing the quick scan of the menu

• Define unique access key for any menu item

• Indicate by ellipsis (…) after the title with no space when a menu item will pop-up a dialog box

The proper kind of graphical menus is a critical point to every application success and depends of
three main factors:

• number of presented items in the menu

• how often the menu is used

• how often the menu contents may change

Toolbar

A toolbar (TGToolBar) is a composite frame that contains TGPictureButton objects. It
provides an easy and fast access to most frequently used commands or options across multiple
application screens. Also, it invokes easily a sub application within an application. All its functions
can be obtained by application menus. It is located horizontally at the top of the main window just
below the menu bar. All other subtask and sub-feature bars are positioned along sides of window.

// toolbar icon files
const char *xpms[] = {
 "x_pic.xpm",
 "y_pic.xpm",

Writing a Graphical User Interface

542

 "z_pic.xpm",
 0
};
// toolbar tool tip text
const char *tips[] = {
 "X Settings",
 "Y Settings",
 "Z Settings",
 0
};
// toolbar button separator
int separator = 5;

// structure containing toolbar button information
ToolBarData_t t[3];

// creation of a toolbar object as a child of main frame
TGToolBar *tb = new TGToolBar(fMain,520,80);

for (int i = 0; i < 3; i++) {
 // filling the ToolBarData_t with information
 t[i].fPixmap = xpms[i]; // icon file
 t[i].fTipText = tips[i]; // tool tip text
 t[i].fStayDown = kFALSE; // button behavior if clicked
 t[i].fId = i+1; // button id
 t[i].fButton = NULL; // button pointer

 if (strlen(xpms[i]) == 0) {
 separator = 5;
 continue;
 }
 tb->AddButton(fMain,&t[i],separator);
 separator = 0;
}
// adding the tool bar to the main frame
fMain->AddFrame(tb, new TGLayoutHints(kLHintsTop|kLHintsExpandX));

// adding a horizontal line as a separator
TGHorizontal3DLine *lh = new TGHorizontal3DLine(fMain);
fMain->AddFrame(lh, new TGLayoutHints(kLHintsTop|kLHintsExpandX));

To have a tool bar in your application you do not need to do anything special – only to create objects:
a tool bar and its picture buttons. This sample code creates the following three toolbar buttons:

First we need to complete a ToolBarData_t structure for each tool bar button before adding it to
the tool bar. This structure contains:

• the icon file name “filename.xpm”

• the tool tip text – a short help message explaining the button purpose

• the Boolean variable defining the button behavior when is clicked

• kFALSE – do not stay down

• kTRUE – to stay down

Writing a Graphical User Interface

543

• the button ID

• the button pointer (TGButton *) – should be NULL

We create an array *xpms[] containing the icon file names that will be used for a picture button
creation. If you write only the file names here ROOT will search these files in $ROOTSYS/icons
directory. If the icon files are not there, you should provide the full path name also. The array
*tips[] contains the tool tip texts for buttons. The integer variable separator is used to set the
distance between two groups of toolbar buttons. It defines the amount of pixels to the left for each
button.

We create a tool bar object and add the buttons using the AddButton method. The variable separator
helps us to define no space between the buttons in a group (0), and 5 pixels extra-space before and
after. All buttons added via this method will be deleted by the toolbar. On return the TGButton field
of the ToolBarData_t structure is filled in (if the icon pixmap was valid). The first parameter
is the window to which the button messages will be sent. Lastly, we create an object of class
TGHorizontal3DLine – a horizontal 3D line. It will separate the toolbar from the menu bar
because the layout hints we define as kLHintsTop | kLHintsExpandX.

It is user friendly to allow the possibility for the tool bar to be turned on or off (via a menu). If you
use a single tool bar, it should fill the complete width of its parent. When using more than one, you
should also think about setting the bar size to the end of the most right button. This way other bars
can be displayed in the same row below the menu bar.

Tool bar buttons should have equal size, meaningful and unique icons, and short meaningful tool tip
text. The related buttons should be grouped together by frequency or sequence of use, or importance.
Potentially destructive buttons must be separated from them to avoid accidental activation and
potentially catastrophic results. Temporarily not available items should be displayed grayed out.

List Boxes
The purpose of a list box is to display a collection of items from which single or multiple selection
can be made. It is always visible, having a scroll bar when the displayed area is not enough to show
all items. The choices may be mutually exclusive (a list box with single selection) or not mutually
exclusive (a list box with multiple selection).

The proper usage of the list boxes is for selecting values, or objects, or setting attributes. You have to
create them to display 4 to 8 choices at one time (3 is a required minimum in case of lack of screen
space). The list should contain not more than 40 items accessible by scrolling view (vertical scroll bar).
If more are required, you should provide a method for using search criteria or scoping the options.
The best list boxes use is for textual data or choices. They should be wide enough to display fully
all items. When it is not possible, break the long items with ellipsis and provide tool tip that displays
the full item text.

The list box widget is represented by TGListBox, TGLBContainer, TGLBEntry and
TGTextLBEntry classes. Currently entries are simple text strings (TGTextLBEntry). A
TGListBox looks a lot like a TGCanvas. It has a TGViewPort containing a TGLBContainer
which contains the entries and it also has a vertical scrollbar which becomes visible if there are more
items than fit in the visible part of the container. The TGListBox is user callable. The other classes
are service classes of the list box. Here is a sample code showing how to create a list box with ten
entries:

Writing a Graphical User Interface

544

// list box widget containing 10 entries
int fFirstEntry = 0, fLastEntry = 10;
char tmp[20];
TGListBox *fListBox = new TGListBox(parent, 90);
for (i = fFirstEntry; i < fLastEntry; i++) {
 sprintf(tmp, "Entry %i", i+1);
 fListBox->AddEntry(tmp, i);
}
fListBox->Resize(150, 80);
parent->AddFrame(fListBox,new TGLayoutHints(kLHintsTop|kLHintsLeft,
 5, 5, 5, 5));

We create the list box widget passing the parent window pointer and giving an ID number. Next we
add entries with specified string and ID to the list box. Before adding the list box to its parent widget,
it should be resized via Resize(width, height) method. The list box width and height are in
pixels. The default entry layout hints are kLHintsExpandX | kLHintsTop. If you want to add
entries using different ones, call the method:

TGListBox::AddEntry(TGLBEntry *lbe, TGLayoutHints *lhints);

It adds the specified TGLBEntry and TGLayoutHints to the list box. There are several methods
providing a flexible entry manipulation: you can insert, add or remove list box items dynamically. The
list box entry IDs are used in these methods and also in event processing routines. In our example the
integer variables fFirstEntry and fLastEntry contain the information about the first and last
entry IDs. You can add or remove a list box entry using them in the following way:

// adding an entry
fLastEntry++;
sprintf(tmp, "Entry %i", fLastEntry);
fListBox->AddEntry(tmp, fLastEntry);
fListBox->MapSubwindows();
fListBox->Layout();
. . .
// removing an entry
if (fFirstEntry < fLastEntry) {
 fListBox->RemoveEntry(fFirstEntry);
 fListBox->Layout();
 fFirstEntry++;
}

A single-selection list box is used for selecting only one item in a list.

A multiple-selection list box permits selection of more than one item. The selected choices should be
visible – you have several choices to do this:

• to mark selected choices with a check mark or highlight them

• to provide a summary list box to the right of the list box, containing the selected choices

• to provide a display-only text control indicating the number of selected choices (its position should
be justified upper-right above the list box)

• if the actions Select All or Deselect All must be quickly or frequently performed, use
command buttons

Combo Boxes
A combo box is as single-selection list box that shows only the currently selected entry and a prompt
button displayed as a downward arrow. The prompt button provides a visual cue that a list box is

Writing a Graphical User Interface

545

hidden. Its main advantage is consuming of quite a bit of screen space. When the user clicks on it, a
list pops up, from which a new choice can be made. After a new item is chosen the combo box folds
again showing the new selection.

The combo box widget is represented by the user callable class TGComboBox. The class
TGComboBoxPopup is a service class. The combo box constructor is very similar to the list box one.
The first parameter is a parent widget pointer again, the second – an integer value that will be used
as combo box ID. The method used for adding entries is very similar to the list box method we used
before. The method Select(entryID) sets the current combo box entry.

char tmp[20];
// combo box layout hints
fLcombo = new TGLayoutHints(kLHintsTop | kLHintsLeft,5,5,5,5);
// combo box widget
TGComboBox *fCombo = new TGComboBox(parent,100);
for (i = 0; i < 10; i++) {
 sprintf(tmp, "Entry%i", i+1);
 fCombo->AddEntry(tmp, i+1);
}
fCombo->Resize(150, 20);
// Entry3 is selected as current
fCombo->Select(2);
parent->AddFrame(fCombo, fLcombo);

You have the same flexibility to add, insert or remove entries. As with list boxes you can retrieve the
information for currently selected item via GetSelected or GetSelectedEntry methods. The
first one returns the entry ID, the second – the current entry pointer (TGLBEntry *).

Sliders
A slider is a scale with an indicator (slider) that you can drag to choose a value from a predefined
range. It may be oriented horizontally or vertically. In both cases it provides an excellent indication
of where a value exists within a range of values.

The class TGHSlider represents the horizontal slider; TGVSlider – the vertical one. Both inherit
from the base class TGSlider that creates the main slider parameters: the range of values within
a value can be selected; the indicator type; the tick mark scale. Using its methods SetRange,
SetPosition and SetScale you can set these parameters. To retrieve the set slider value you
can call GetPosition method.

Next sample code creates a horizontal slider hslider with a tick mark of type kSlider1. Its
width is 150 pixels, and its scale is placed down (kScaleDownRight). The last parameter in

Writing a Graphical User Interface

546

the TGHSlider constructor is the slider ID. It will be used for event processing. The methods
SetRange and SetPosition set the range and the current tick mark position of the slider.

hslider = new TGHSlider(parent,150,kSlider1|kScaleDownRight,sID);
hslider->SetRange(0,50);
hslider->SetPosition(39);

Slider values can be set by using the mouse to drag the slider across the scale until the desired value
is reached. Another way is to click in the slider trough instead of dragging.

Double Slider

Double slider widgets allow easy selection of a min and a max value out of a range. They can be either
horizontal or vertical oriented. There is a choice of different types of tick marks: kDoubleScaleNo,
kScaleDownRight, kDoubleScaleBoth.

To change the min value you should press the left mouse button near to the left
(TGDoubleHSlider) or bottom (TGDoubleHSlider) edge of the slider. Alternatively, to
change the max value you need to press the mouse near to the right (TGDoubleHSlider) or top
(TGDoubleHSlider) edge of the slider. To change both values simultaneously you should press
the left mouse button near to the center of the slider.

TGDoubleSlider is an abstract base class that creates the main slider parameters. The concrete
class to use for a vertical double slider is TGDoubleVSlider and TGDoubleHSlider for a
horizontal one. The double slider constructors are similar to those of the other sliders. If you set
kDoubleScaleNo as a scale parameter no scale will be drawn. Here is an example:

vDslider = new TGDoubleVSlider(p,100,kDoubleScaleNo,dsliderID);
vDslider->SetRange(-10,10);

Triple Slider
The new TGTripleHSlider and TGTripleVSlider classes inherit from the double slider
widgets and allow easy selection of a range and a pointer value. The pointer position can be constrained
into the selected range or can be relative to it.

To change the slider range value press the left mouse button near to the left/right (top/bottom) edges
of the slider. To change both values simultaneously press the mouse button near to the slider center.
To change pointer value press the mouse on the pointer and drag it to the desired position.

fSlider = new TGTripleHSlider(parent,100,kDoubleScaleBoth,kSLD_ID,
 kHorizontalFrame);
parent->AddFrame(fSlider,new TGLayoutHints(kLHintsExpandX,5,5,5,5));
fSlider->SetConstrained(kTRUE);
fSlider->SetRange(rmin, rmax);
fSlider->SetPosition(pmin, pmax);
fSlider ->SetPointerPosition(pvalue);

Writing a Graphical User Interface

547

Progress Bars
A progress bar is a widget that shows that an operation is in progress and how much time is left. It is a
long rectangular bar, initially empty, that fills with a color as a process is being performed. The filled-
in area indicates the percentage of the process that has been completed. You should use this widget for
waits exceeding one minute. For a very time consuming operation it is better to break the operation
into subtasks and provide a progress bar for each of them.

A progress bar may be oriented horizontally or vertically. The horizontally oriented progress bar fills
with a color from left to right; the vertically oriented – from bottom to top. A percent complete message
provides an indication of the completed part of the process. It is a good practice to include some
descriptive text of the process to keep users informed and entertained while they are waiting for process
completion.

The picture below shows the progress bars you can create using the classes TGProgressBar,
TGHProgressBar, and TGHProgressBar.

// vertical frame with three horizontal progressive bars
TGVerticalFrame *vframe = new TGVerticalFrame(fMain, 10, 10);
fHProg1 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);
fHProg1->ShowPosition();
fHProg1->SetBarColor("yellow");
fHProg2 = new TGHProgressBar(vframe,TGProgressBar::kFancy,300);
fHProg2->SetBarColor("lightblue");
fHProg2->ShowPosition(kTRUE,kFALSE,"%.0f events");
fHProg3 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);
fHProg3->SetFillType(TGProgressBar::kBlockFill);

vframe->AddFrame(fHProg1,new TGLayoutHints(kLHintsTop|kLHintsLeft|
 kLHintsExpandX,5,5,5,10));
vframe->AddFrame(fHProg2,new TGLayoutHints(kLHintsTop|kLHintsLeft|
 kLHintsExpandX,5,5,5,10));
vframe->AddFrame(fHProg3,new TGLayoutHints(kLHintsTop|kLHintsLeft|
 kLHintsExpandX,5,5,5,10));
vframe->Resize(200, 200);

Static Widgets
The classes TGLabel and TGIcon show some information - text or graphics. The line below creates
a label object. The syntax is very simple: you specify the parent widget and a string object holding
the desired text.

TGLabel *label = new TGLabel(parentWidget, "Label’s string");

Next sample creates an icon object. First we create an object of type TGPicture. The TGPicture
objects are never created directly by the application code. We call TGClient telling it the pixmap’s
file name to create a TGPicture object and, in turn, it will return a pointer to the created object.
If the pixmap file cannot be found the returned pointer will be NULL. As usual, the first parameter

Writing a Graphical User Interface

548

of a TGIcon constructor is the parent frame. The second one is the TGPicture object holding the
pixmap we want to show. Last two parameters define the width and height of pixmap in pixels. In the
end we add the created icon object to its parent.

// icon widget
const TGPicture *ipic=(TGPicture *)gClient->GetPicture("leaf.xpm");
TGIcon *icon = new TGIcon(parent,ipic,40,40);
parent->AddFrame(icon,new TGLayoutHints(kLHintsLeft|kLHintsBottom,
 1, 15, 1, 1));

The TGPicture objects are cached by TGClient in order to keep the resource usage low and
to improve the efficiency of the client-server windowing systems. TGClient will check whether a
pixmap with the same name was already loaded before to register a new picture object. If it finds it, it
will return a pointer to the existing object. Also, it will increase the usage counter for the object.

All TGPicture objects are managed by the class TGPicturePool. TGClient creates an object
of this type upon initialization. Normally your application program does not deal directly with this
class because all manipulations go through TGClient class.

Once you have finished with using of the TGPicture object, you should call the method
TGClient::FreePicture(const TGPicture *pic) to free it. The usage counter of the
picture object will be decreased and when it reaches zero – the TGPicture object will be deleted.

Status Bar
The status bar widget is used to display some information about the current application state: what
is being viewed in the window, a descriptive message about selected objects, or other no interactive
information. It may also be used to explain highlighted menu and tool bar items.

An application can only have one status bar at a time.

There is nothing special to create a status bar in your application. You should decide how many fields
you need to present the current application state to the user. By default a status bar consists of one
part. Multiple parts can be created by SetParts method. Its first parameter is an array of integers
that give the percentage size of each part. The second parameter gives the number of status bar parts.
Using SetText method you can set a text for any part.

// status bar
Int_t parts[] = {33, 10, 10, 47};
fStatusBar = new TGStatusBar(fMain,50,10,kHorizontalFrame);
fStatusbar->SetParts(parts,4);
fMain->AddFrame(fStatusBar, new TGLayoutHints(kLHintsBottom |
 kLHintsLeft | kLHintsExpandX, 0, 0, 2, 0));
. . .
// fill status bar fields with information; selected is the object
// below the cursor; atext contains pixel coordinates info
fStatusBar->SetText(selected->GetTitle(),0);
fStatusBar->SetText(selected->GetName(),1);
fStatusBar->SetText(atext,2);
fStatusBar->SetText(selected->GetObjectInfo(px,py),3);

Writing a Graphical User Interface

549

Splitters
A window can be split into two parts (panes) by using a horizontal or a vertical splitter. A horizontal
splitter resizes the frames above and below of it; a vertical splitter resizes the frames left and right of it.

This widget is represented by TGSplitter, TGHSplitter, and TGVSplitter classes.
Currently there is no special graphics representation for splitter widgets; only the cursor changes when
crossing a splitter.

There is nothing special to create a splitter – two lines of code only:

TGHSplitter *hsplitter = new TGHSplitter(fVf);
hsplitter->SetFrame(fH1,kTRUE);

You call a horizontal TGHSplitter or a vertical TGVSplitter splitter constructor and after you
set the frame to be resized via SetFrame method. In spite of that, there are rules to be followed when
you create a splitter in your application.

For a horizontal splitter they are:

• the parent of a horizontal splitter must inherit from TGCompoziteFrame and must have a vertical
layout

• the above resized frame must have kFixedHeight option set

• use layout hints kLHintsTop | kLHintsExpandX when adding the above resized frame
to its parent

• use layout hints kLHintsBottom | kLHintsExpandX | kLHintsExpandY when adding
the bottom resized frame to its parent

• set the above frame to be resized using SetFrame method; the second parameter should be
kTRUE

You can see these rules in the code below:

// Create horizontal splitter
fVf = new TGVerticalFrame(fMain,10,10);
fH1 = new TGHorizontalFrame(fVf,10,10, kFixedHeight);
fH2 = new TGHorizontalFrame(fVf,10,10);
fFtop = new TGCompositeFrame(fH1,10,10, kSunkenFrame);
fFbottom = new TGCompositeFrame(fH2,10,10,kSunkenFrame);
fLtop = new TGLabel(fFtop,"Top Frame");
fLbottom = new TGLabel(fFbottom,"Bottom Frame");

fFtop->AddFrame(fLtop, new TGLayoutHints(kLHintsLeft |
 kLHintsCenterY,3,0,0,0));
fFbottom->AddFrame(fLbottom, new TGLayoutHints(kLHintsLeft |
 kLHintsCenterY,3,0,0,0));

Writing a Graphical User Interface

550

fH1->AddFrame(fFtop, new TGLayoutHints(kLHintsTop |
 kLHintsExpandY | kLHintsExpandX,0,0,1,2));
fH2->AddFrame(fFbottom,new TGLayoutHints(kLHintsTop |
 kLHintsExpandY | kLHintsExpandX,0,0,1,2));
fH1->Resize(fFtop->GetDefaultWidth(),fH1->GetDefaultHeight()+20);
fH2->Resize(fFbottom->GetDefaultWidth(),fH2->GetDefaultHeight()+20);
fVf->AddFrame(fH1, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

TGHSplitter *hsplitter = new TGHSplitter(fVf);
hsplitter->SetFrame(fH1,kTRUE);
fVf->AddFrame(hsplitter,new TGLayoutHints(kLHintsTop |
 kLHintsExpandX));
fVf->AddFrame(fH2, new TGLayoutHints(kLHintsBottom |
 kLHintsExpandX | kLHintsExpandY));

For a vertical splitter the rules are:

• the parent of a vertical splitter must inherit from TGCompoziteFrame and must have a horizontal
layout

• the left resized frame must have kFixedWidth option set

• use layout hints kLHintsLeft | kLHintsExpandY when adding the left resized frame
to the parent

• use layout hints kLHintsRight|kLHintsExpandX |kLHintsExpandY when adding the
right resized frame to the parent

• set the left frame to be resized using SetFrame method; the second parameter should be kTRUE

Next is a sample code for a vertical splitter:

// Create vertical splitter
fHf = new TGHorizontalFrame(fMain, 50, 50);
fV1 = new TGVerticalFrame(fHf, 10, 10, kFixedWidth);
fV2 = new TGVerticalFrame(fHf, 10, 10);
fFleft = new TGCompositeFrame(fV1, 10, 10, kSunkenFrame);
fFright = new TGCompositeFrame(fV2, 10, 10, kSunkenFrame);

fLleft = new TGLabel(fFleft, "Left Frame");
fLright = new TGLabel(fFright, "Right Frame");

fFleft->AddFrame(fLleft, new TGLayoutHints(kLHintsLeft |
 kLHintsCenterY,3,0,0,0));
fFright->AddFrame(fLright, new TGLayoutHints(kLHintsLeft |
 kLHintsCenterY,3,0,0,0));
fV1->AddFrame(fFleft,new TGLayoutHints(kLHintsTop |
 kLHintsExpandX | kLHintsExpandY,0,0,5,5));
fV2->AddFrame(fFright,new TGLayoutHints(kLHintsTop |
 kLHintsExpandX | kLHintsExpandY, 0, 0, 5, 5));
fV1->Resize(fFleft->GetDefaultWidth()+20, fV1->GetDefaultHeight());
fV2->Resize(fFright->GetDefaultWidth(), fV1->GetDefaultHeight());
fHf->AddFrame(fV1,new TGLayoutHints(kLHintsLeft | kLHintsExpandY));

splitter = new TGVSplitter(fHf,2,30);
splitter->SetFrame(fV1, kTRUE);
fHf->AddFrame(splitter,new TGLayoutHints(kLHintsLeft |
 kLHintsExpandY));
fHf->AddFrame(fV2,new TGLayoutHints(kLHintsRight | kLHintsExpandX |
 kLHintsExpandY));

Writing a Graphical User Interface

551

TGCanvas, ViewPort and Container
When all display information cannot be presented in a window, the additional information must be
found and made visible. A TGCanvas is a frame containing two scrollbars (horizontal and vertical)
and a viewport (TGViewPort). The viewport acts as the window through which we look at the
contents of the container frame. A TGContainer frame manages a content area. It can display and
control a hierarchy of multi-column items, and provides the ability to add new items at any time. By
default it doesn't map sub-windows, which are items of the container. In this case sub-window must
provide DrawCopy method, see for example TGLVEntry class. It is also possible to use option
which allows mapping sub-windows. This option has much slower drawing speed in case of more than
1000 items placed in container. To activate this option the fMapSubwindows data member must be
set to kTRUE (for example TTVLVContainer class).

A scroll bar only is available when scrolling is necessary. It consists of three elements: a slider box
and two directional scroll arrows (buttons).

fCanvas = new TGCanvas(parent, w, h);
fContents = new TGListTree(fCanvas, kHorizontalFrame);
fContents->Associate(parent);
parent->AddFrame(fCanvas, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY));
// or
fCanvas = new TGCanvas(parent, w, h);
fContents = new TGListTree(fCanvas->GetViewPort(),100,100,
 kHorizontalFrame);
fContents->SetCanvas(fCanvas);
fContents->Associate(parent);
fCanvas->SetContainer(fContents);
parent->AddFrame(fCanvas, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY));

The TGContainer class can handle the following keys:

F7, Ctnrl-Factivate a search dialog

F3, Ctnrl-Gcontinue to search

Endgo to the last item in container

Homego to the first item in container

PageUpnavigate up

PageDownnavigate down

arrow keysnavigate inside container

Return/Enterequivalent to double click of the mouse button

Contrl-Aselect all items

Spaceinvert selection.

Embedded Canvas
This class creates a TGCanvas in which a well known ROOT TCanvas is embedded. A pointer to
the TCanvas can be obtained via the GetCanvas() member function.

fEc1 = new TRootEmbeddedCanvas("ec1",fParent,100,100);
fParent ->AddFrame(fEc1, new TGLayoutHints(kLHintsExpandX |

Writing a Graphical User Interface

552

 kLHintsExpandY));
fEc2 = new TRootEmbeddedCanvas("ec2",fParent,100,100);
fParent ->AddFrame(fEc2, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY));
fEc1->GetCanvas()->SetBorderMode(0);
fEc2->GetCanvas()->SetBorderMode(0);
fEc1->GetCanvas()->SetBit(kNoContextMenu);
fEc1->GetCanvas()->Connect("ProcessedEvent(Int_t,Int_t,Int_t,TObject*)",
 "MyClass", this, "HandleMyCanvas(Int_t,Int_t,Int_t,TObject*)");

To embed a canvas derived from a TCanvas do the following:

TRootEmbeddedCanvas *embed = new TRootEmbeddedCanvas(0, p, w, h);
// note name must be 0, not null string ""
Int_t wid = embed->GetCanvasWindowId();
TCanvas *myc = new TCanvas("myname",10,10,wid);
embed->AdoptCanvas(myc);
// the TCanvas is adopted by the embedded canvas and will be
// destroyed by it

The ROOT Graphics Editor (GED)
Everything drawn in a ROOT canvas is an object. There are classes for all objects, and they fall into
hierarchies. In addition, the ROOT has fully cross-platform GUI classes and provides all standard
components for an application environment with common ‘look and feel’. The object-oriented, event-
driven programming model supports the modern signals/slots communication mechanism. It handles
user interface actions and allows total independence of interacting objects and classes. This mechanism
uses the ROOT dictionary information and the CINT the C++ Interpreter to connect signals to slots
methods.

Therefore, all necessary elements for an object-oriented editor design are in place. The editor
complexity can be reduced by splitting it into discrete units of so-called object editors. Any
object editor provides an object specific GUI. The main purpose of the ROOT graphics editor is the
organization of the object editors’ appearance and the task sequence between them.

Object Editors
Every object editor follows a simple naming convention: to have as a name the object class name
concatenated with ‘Editor’ (e.g. for TGraph objects the object editor is TGraphEditor). Thanks
to the signals/slots communication mechanism and to the method DistanceToPrimitive() that

Writing a Graphical User Interface

553

computes a ‘‘distance’’ to an object from the mouse position, it was possible to implement a signal
method of the canvas that says which is the selected object and to which pad it belongs. Having this
information the graphics editor loads the corresponding object editor and the user interface is ready
for use. This way after a click on ‘axis’—the axis editor is active; a click on a ‘pad’ activates the pad
editor, etc.

The algorithm in use is simple and is based on the object-oriented relationship and communication.
When the user activates the editor, according to the selected object <obj> in the canvas it looks for
a class name <obj>Editor. For that reason, the correct naming is very important. If a class with
this name is found, the editor verifies that this class derives from the base editor class TGedFrame.
If all checks are satisfied, the editor makes an instance of the object editor. Then, it scans all object
base classes searching the corresponding object editors. When it finds one, it makes an instance of
the base class editor too.

Once the object editor is in place, it sets the user interface elements according to the object’s status.
After that, it is ready to interact with the object following the user actions.

The graphics editor gives an intuitive way to edit objects in a canvas with immediate feedback.
Complexity of some object editors is reduced by hiding GUI elements and revealing them only on
users’ requests.

An object in the canvas is selected by clicking on it with the left mouse button. Its name is displayed on
the top of the editor frame in red color. If the editor frame needs more space than the canvas window,
a vertical scroll bar appears for easy navigation.

Figure 25.4. Histogram, pad and axis editors

Editor Design Elements
The next rules describe the path to follow when creating your own object editor that will be recognized
and loaded by the graphics editor in ROOT, i.e. it will be included as a part of it.

(a) Derive the code of your object editor from the base editor class TGedFrame.

(b) Keep the correct naming convention: the name of the object editor should be the object class name
concatenated with the word ‘Editor’.

(c) Provide a default constructor.

(d) Use the signals/slots communication mechanism for event processing.

(e) Implement the virtual method SetModel(TObject *obj) where all widgets are set with the
current object’s attributes. This method is called when the editor receives a signal from the canvas
saying that an object is the selected.

Writing a Graphical User Interface

554

(f) Implement all necessary slots and connect them to appropriate signals that GUI widgets send out.
The GUI classes in ROOT are developed to emit signals whenever they change a state that others
might be interested. As we noted already, the signals/slots communication mechanism allows total
independence of the interacting classes.

Creation and Destruction

GED-frames are constructed during traversal of class hierarchy of the selected object, executed from
method TGedEditor::SetModel(). When a new object of a different class is selected, the
unneeded GED-frames are cached in memory for potential reuse. The frames are deleted automatically
when the editor is closed.

Note: A deep cleanup is assumed for all frames put into the editor. This implies:

• do not share the layout-hints among GUI components;

• do not delete child widgets in the destructor as this is done automatically.

Using Several Tabs

Sometimes you might need to use several tabs to organize properly your class-editor. Each editor tab
is a resource shared among all the class-editors. Tabs must be created from the constructor of your
editor-class by using the method:

TGVerticalFrame* TGedFrame::CreateEditorTabSubFrame(const Text_t *name),

It returns a pointer to a new tab container frame ready for use in your class. If you need to hide/show
this frame depending on the object’s status, you should store it in a data member. See for examples:
TH1Editor, TH2Editor.

Base-Class Editors Control

Full control over base-class editors can be achieved by re-implementing virtual method void
TGedFrame::ActivateBaseClassEditors(TClass *cl). It is called during each
compound editor rebuild and the default implementation simply offers all base-classes to the
publishing mechanism.

To prevent inclusion of a base-class into the compound editor, call:

void TGedEditor::ExcludeClassEditor(TClass* class, Bool_t recurse)

Pointer to the compound GED-editor is available in TGedFrame‘s data-member:

TGedEditor *fGedEditor

Ordering of base-class editor frames follows the order of the classes in the class hierarchy. This order
can be changed by modifying the value of TGedFrame’s data member Int_t fPriority. The
default value is 50; smaller values move the frame towards to the top. This priority should be set in
the editor constructor.

Drag and Drop
Drag and Drop support is introduced for Linux (via Xdnd - the drag and drop protocol for X window
system) and for Windows (via Clipboard). Users can selects something in ROOT with a mouse press,
drags it (moves the mouse while keeping the mouse button pressed) and releases the mouse button
someplace else. When the button is released the selected data is "dropped" at that location. This way,
a histogram from an opened ROOT file in the browser can be dragged to any TCanvas.

Writing a Graphical User Interface

555

A script file from the browser can be dropped to a TGTextView or TGTextEdit widget in
TGTextEditor.

On Linux, it is possible to drag objects between ROOT and an external application. For example to
drag a macro file from the ROOT browser to the Kate editor. On Windows, drag and drop works only
within a single ROOT application (for the time being), but works also from Windows Explorer to
TCanvas ot to TGTextEdit.

Drag and Drop Data Class
The Drag and Drop Cata class TDNDdata is used to describe and handle the transferred data during
an drag and drop operation. It consists of:

Atom_t fDataType: atom describing the data type.

Atom_t fAction: atom describing the action (copy, move, link); currently, only copy is used.

void *fData: actual data (buffer).

Int_t fDataLength: length (size) of data buffer.

Currently two types are recognized by ROOT: "application/root" for ROOT objects and "text/uri-list"
for path/filenames (uri comes from Unique Resource Identifier). A text/uri-list is a standard file listing
format for drag and drop that specifies a list of files (each file per line). Each line ends with a carriage
return and newline rn. File names have to be valid, url-encoded URI's as shown below:

file://localhost/usr/bin/opera or file://localhost/c:/programs/
myfile.txt

file://server/data/software.xml or http://root.cern.ch/root/images/
ftpstats.gif

The atoms and the drag and drop manager (TGDNDManager), are created at the main application
creation time (class TGMainFrame).

Setting a Drag Source - first, create and fill data:

TH1F *h = new TH1F("h","h",1000,-3,3);
h->FillRandom("gaus",50000);
TDNDdata data;
TBufferFile *buf = new TBufferFile(TBuffer::kWrite);
buf->WriteObject(h);
data.fData = buf->Buffer();
data.fDataLength = buf->Length();
data.fDataType = gVirtualX->InternAtom("application/root");

Then, set a GUI widget as DND Source, and associate the data. Source widget can be any class
inheriting from TGFrame.

Writing a Graphical User Interface

556

SourceWidget=new TGIcon(this,gClient->GetPicture("f1_s.xpm"),32,32);
SourceWidget->SetDNDSource(kTRUE);
SourceWidget->SetDNDdata(&data);

Setting A Drop Target - set the widget as DND Target, and set the DND types it must be aware of: as
SourceWidget, TargetWidget can be any class inheriting from TGFrame.

TargetWidget = new TRootEmbeddedCanvas("Target", this, 700, 400);
TargetWidget->SetDNDTarget(kTRUE);
gVirtualX->SetDNDAware(TargetWidget->GetId(),
 gDNDManager->GetTypeList());

gDNDManager->GetTypeList() returns the list of types recognized by ROOT.

Note that the Widget may receive drag and drop messages with drop-data it does not understand, and
thus it should only accept drops of the proper type.

Handling Drag and Drop Events
Once a widget has been set as DND Target, it has to handle Drag and Drop events.

Atom_t HandleDNDenter(Atom_t *typelist) - this method is used to handle a drag
operation entering the widget. The typelist parameter is the list of types the data contains. If the list
contains one type the widget understands, it should return this type to notify the manager that the drop
would be accepted, i.e. :

for (int i = 0; typelist[i] != kNone; ++i) {
 if (typelist[i] == gVirtualX->InternAtom("application/root"))
 // accept "application/root" DND type
 return typelist[i];
}
// other type not accepted
return kNone;

Atom_t HandleDNDposition(Int_t x,Int_t y,Atom_t action,Int_t xroot,
Int_t yroot)- this method should be used to handle the drag position in widget coordinates
(x,y) or in root coordinates (xroot,yroot).

// get the pad over which the cursor is
TPad *pad = fCanvas->Pick(x, y, 0);
if (pad) {
 pad->cd();
 gROOT->SetSelectedPad(pad);
}
return action;

Bool_t HandleDNDdrop(TDNDdata *data) - this is the place where the widget actually
receives the data. First, check the data format (see description of TDNDData - Drag and Drop data
class) and then use it accordingly. In the case of ROOT object, here is an example of how to retrieve it:

if (data->fDataType == gVirtualX->InternAtom("application/root")) {
 TBufferFile buf(TBuffer::kRead, data->fDataLength,
 (void *)data->fData);
 buf.SetReadMode();
 TObject *obj = (TObject *)buf.ReadObjectAny(TObject::Class());
 if (obj->IsA()->GetMethodAllAny("Draw"))
 obj->Draw();
}

In the case of URI/list, the use is:

Writing a Graphical User Interface

557

if (data->fDataType == gVirtualX->InternAtom("text/uri-list")) {
 TString sfname((char *)data->fData);
 TUrl uri(sfname.Data());
 if (sfname.EndsWith(".jpg")
 TImage *img = TImage::Open(uri.GetFile());
}

Bool_t HandleDNDleave() is used if a specific action has to be performed when the drag
operation leaves the widget.

558

Chapter 26. ROOT/Qt Integration
Interfaces
Qt-ROOT Implementation of TVirtualX
Interface (BNL)

Qt-ROOT implementation of TVirtualX (Qt-layer) is to provide a convenient way of creating the
complex end-user applications that require both Qt GUI and ROOT features. The primary goal is
to allow “embedding” the ROOT classes like TCanvas and TPad into the arbitrary Qt widgets
and using it seamlessly with other Qt-based components and Qt-based third party libraries. TGQt
ROOT class, a Qt-based implementation of TVirtualX interface is an optional ROOT component.
The implementation was developed and is supported by the STAR collaboration at Brookhaven
National Laboratory.

Installation

Qt Package Installation and Configuration

ROOT Qt-layer requires a “good” properly configured Qt package version. To install it, one has to:

1. Make sure the adequate version of Qt system. Even though Qt ROOT implementation theoretically
can work with any Qt release version 3.xx, we found the earlier versions of the package not reliable and
recommend installing the Qt version 3.3 or higher. The package was tested against Qt 4.3 also (Qt 4.3
and higher versions contain some features introduced by TrollTech to back the ROOT applications).

2. Check the Qt package configuration and its compilation options are consistent with those used to
compile and install ROOT alone. For Qt 3.x, we recommend configuring Qt as follows:

./configure –thread –no-xft –qt-gif –no-exeptions

I.e. one is required to build the Qt version with the "thread" support and with “no exceptions".
Generally, you are free to select the remaining Qt options like the types of the different image formats
provided etc. You can check the Qt installation parameters by looking up the file:

more $QTDIR/config.status

No special flag for Qt 4.3 build and higher have been set yet to
make QtRoot working.

3. Attention. The Qt port for 4.3 and above versions should be
considered as an experimental one. Most examples in this manual are
for Qt version 3.3 and they need to be adjusted for Qt 4.3.x.

Qt-layer Installation

The Qt-layer is included into the ROOT distribution kit. To install it one has to configure ROOT. The
installation does not change any other components of the ROOT package. It produces several extra-
shared libraries that may be dynamically loaded into the ROOT session at start time with the regular
ROOT plug-in mechanism to replace the “native” GUI interface. To install Qt-layer one should follow
the ROOT installation procedure providing the QTDIR environment variable points to the proper
version of Qt system. Many Linux flavors come with the pre-installed Qt. May sure you are not going
to pick the obsolete version.

% cd root
% ./configure <target> --enable-qt
% gmake

ROOT/Qt Integration Interfaces

559

% gmake install

Qt Main C++ Classes CINT Dictionary

The ROOT CINT dictionary allows to call the Qt main classes directly from the ROOT command
prompt is an optional component and it is not created during the “Qt-layer installation”. To build / re-
build the Qt main classes ROOT dictionary one can invoke the make

% cd root
% gmake qtcint

The dictionary contains so-called Qt main classes as defined by TrollTech on the Web page:
http://doc.trolltech.com/3.3/mainclasses.html. The dictionary is NOT loaded
automatically and it should be loaded by the user ROOT macro as needed.

Qt-layer Configuration

Any ROOT-based application should be configured to use Qt-layer using ROOT “Environment
Setup”. The correct QTDIR environment variable to locate the proper version of Qt package should
be provided as well. There are several ways to customize the ROOT setup environment to activate
Qt-layer.

Look up at $ROOTSYS/etc/system.rootrc. Find there the definition of Gui.Backend and
Gui.Factory:

GUI specific settings
Gui.Backend: native
Gui.Factory: native

Now you can either edit the file $ROOTSYS/etc/system.rootrc or provide your own custom
.rootrc redefine the options:

GUI specific settings
Gui.Backend: qt
Gui.Factory: qt

If you need to switch often from native layer to qt one back and force you may find convenient to
define the type of GUI using some external environment variable defining options indirectly:

GUI specific settings
Gui.Backend: $(GUI)
Gui.Factory: $(GUI)

The last step is to make sure your LD_LIBRARY_PATH variable point to the $QTDIR/lib directory.
Optionally, you can define the Qt Widget “look and feel” using the option Gui.Style option. The
number of different styles to choose from is defined by your local Qt installation. Usually you can
choose from “window”, “motif”, “cde”, “motifplus”, “platinum”, “sgi”, “compact”,
“windowsxp”, “aqua” or “macintosh”. For example, the option defined below will force the
“windows” look and feel on any platform.

Qt GUI style setting
Gui.Style: windows

The default style is so-called “native” style. That is defined by the current application environment.

Applications
As soon as you customize ROOT “Environment Setup” to use Qt-layer you can start any ROOT session
or stand-alone ROOT-based applications and … even though your applications will be using the Qt
package you should not see any difference. This merely means if the only thing you want to do is
just use ROOT or some ROOT-based stand-alone application “as is” then you probably do not need

ROOT/Qt Integration Interfaces

560

to switch to Qt-layer and should skip this section entirely. It is recommended you communicate the
lower graphical layer via the generic TVirtualX interface provided by the global gVirtualX.

Qt-based ROOT Applications

“ROOT application” is the application that either instantiates the ROOT TApplication / TRint
class and enters the ROOT event loop or is the shared library that can be loaded into the already running
ROOT application via TSystem::Load method or via ROOT plug-in mechanism. You must neither
initialize Qt QApplication nor enter the Qt event loop. Qt-layer takes care about these two steps.
What you need is to instantiate the Qt object of your choice and to keep playing ROOT rules.

#include <TRint.h>
#include <qpushbutton.h>
int main(int argc, char **argv) {
 // Create an interactive ROOT application
 TRint *theApp = new TRint("Rint", &argc, argv);
 // Create Qt object within ROOT application
 QPushButton hello("Hello world!", 0);
 hello.resize(100, 30);
 hello.show();
 // and enter the ROOT event loop...
 theApp->Run();
}

Under UNIX, you can build the stand-alone ROOT HelloWord Qt-based application with the
command

g++ `root-config --cflags --glibs` -I$QTDIR/include -L$QTDIR/lib

-lqt-mt HelloWord.cxx -o HelloWord

ROOT-based Qt Applications

“Qt application” is the application that either instantiates the Qt QApplication and enters the Qt
event loop or is the shared library that can be loaded into the already running Qt application via
Qt plug-in mechanism. You must neither initialize ROOT TApplication / TRint nor enter the
ROOT event loop. Qt-layer takes care about both of these steps. What you need is just to instantiate
the embedded and regular ROOT objects of your choice and keep playing Qt rules. ROOT-based Qt
applications treat the “native” style of the ROOT Gui.Backend and Gui.Factory parameters
as “qt”. For example,

// Minimal ROOT based Qt example
#include <qapplication.h>
#include "TGraph.h"
#include "TQtWidget.h"
#include "TCanvas.h"

int main(int argc, char **argv) {

 QApplication *app = new QApplication(argc, argv);
 TQtWidget *MyWidget= new TQtWidget(0,"MyWidget");
 // Create any other Qt-widget here
 MyWidget->show();
 MyWidget->GetCanvas()->cd();
 TGraph *mygraph;
 float x[3] = {1,2,3};
 float y[3] = {1.5, 3.0, 4.5};
 mygraph = new TGraph(3,x,y);
 mygraph->SetMarkerStyle(20);

ROOT/Qt Integration Interfaces

561

 mygraph->Draw("AP");
 MyWidget->GetCanvas()->Update();
 app->exec();
 return 0;
}

The code above can be converted into the running application using qmake, TrollTech provided, build
utility. As soon as you have qmake project file HelloCanvas.pro:

Automatically generated by qmake (1.07a) Sun Jun 26 02:03:47 2005
Adjusted by hand to include $ROOTSYS/include/rootcint.pri file

TEMPLATE = app thread
CONFIG -= moc
INCLUDEPATH += .

include "by hand" the qmake include file from
ROOT distribution to define
1. include path to the ROOT system header files
2. the list of the ROOT shared libraries to link
Qt application against of
3. qmake rules to generate ROOT/Cint dictionaries

include("$(ROOTSYS)/include/rootcint.pri")

Input
SOURCES += HelloCanvas.cxx

You can get the running ROOT-based Qt application with the Unix shell commands:

qmake HelloCanvas.pro
make
HelloCanvas

Qt Project for Creation of ROOT Shared Libraries with Qt
Components and ROOT Dictionaries

It is possible and desirable to create the ROOT-based Qt application with TrollTech provided qmake
utility. To do that one should include one qmake include file, namely, $ROOTSYS/include/
rootcint.pri with one extra line in the project file (as the example above has revealed). The
include file defines all necessary components one needs to compile and link the healthy Qt application
against of the ROOT shared libraries. It contains the qmake rules to create the ROOT/CINT dictionary
from the list of the provided header files.

For example, we may convert the stand-alone Qt-based ROOT application above into C++ class with
RootCint dictionary, that one loads into the interactive ROOT session and invokes interactively.
This task requires four simple files.

1. Class dictionary definition file LinkDef.h:

#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class TMyQButton;

#endif

2. Class header file TMyQButton.h:

ROOT/Qt Integration Interfaces

562

#ifndef ROOT_TMyQButton
#define ROOT_TMyQButton
#include "Rtypes.h"

class QPushButton;
class TVirtualPad;

class TMyQButton {
private:
 QPushButton *fMyButton;
public:
 TMyQButton(const char*name="");
 virtual ~TMyQButton();
 void SetSize(UInt_t w, UInt_t h);
 void Show(Bool_t show=kTRUE);
 void SetText(const char *text);
 void SetOn(Bool_t on=kTRUE);
 void SetStyle(const char * style);
};
#endif

3. Class implementation file TMyQButton.cxx:

#include "TMyQButton.h"
#include <qpushbutton.h>

// This class allow you to create and manipulate the QPushButton
// interactively
TMyQButton::TMyQButton(const char *name) {
 // Create Qt QPushButton interactively
 fMyButton = new QPushButton(name,0);
}

TMyQButton::~TMyQButton() { delete fMyButton; }

void TMyQButton::SetSize(UInt_t w, UInt_t h) {
 // Resize the Qt button
 fMyButton->resize(w,h);
}
void TMyQButton::Show(Bool_t show) {
 // Show / hide the button
 if (show) fMyButton->show();
 else fMyButton->hide();
}
void TMyQButton::SetText(const char *text) {
 // Set / change the button text
 fMyButton->setText(text);
}
void TMyQButton::SetOn(Bool_t on) {
 fMyButton->setOn(on);
}
void TMyQButton::SetStyle(const char * style) {
 // Set button’s look and feel
 // The possible styles are defined by the local Qt installation.
 // For example the possible style can be: "window","motif",
 // "cde","sgi","motifplus","platinum","compact","windowsxp",
 // "aqua","macintosh"
 fMyButton->setStyle(style);

ROOT/Qt Integration Interfaces

563

}

4. qmake project file MyQButton.pro:

TEMPLATE = lib dll thread
Input
HEADERS += TMyQButton.h
SOURCES += TMyQButton.cxx

CREATE_ROOT_DICT_FOR_CLASSES = $$HEADERS LinkDef.h
include("$(ROOTSYS)/include/rootcint.pri")

At this point, you are ready to produce the class-shared library with the ROOT/CINT dictionary by
invoking two shell commands (as above):

qmake MyQButton.pro
make

In addition, get you class into the interactive Root session:

root[] gSystem->Load("libMyQButton.so")
root[] TMyQButton knopka;
root[] knopka.SetSize(100,60);
root[] knopka.SetText("Hello Cint");
root[] knopka.Show();

Please, pay your attention that class implementation does not contain any Qt system initialization call.
Since the above example is a ROOT application, do not forget, one needs the .rootrc file to assign
“qt” value for the options Gui.Backend and Gui.Factory.

Note: Do not mix the ROOT GUI and Qt GUI API within the same class implementation.

Using Qt “Designer” to Create Qt GUI with Embedded ROOT
Objects

Qt package is equipped with Qt designer – a powerful tool to create the high quality, robust GUI
interfaces for your applications. It is possible and desirable to use this utility to create the ROOT-
based Qt GUI. To do that one should add the $ROOTSYS/include/rootcint.pri in the project
file generated by designer and configure Qt designer to use the so-called “custom widget” defined by
$ROOTSYS/include/TQtWidget.cw. The file defines the custom TQtWidget Qt widget to
back the embedded TCanvas objects. To customize your designer start designer and select “Edit
Custom Widget” menu:

ROOT/Qt Integration Interfaces

564

Open “Edit Custom Widget” dialog and load the TQtWidget (“embedded” TCanvas) widget
definition into the designer. One should do this at once. Designer will remember the last configuration
and will be restoring it for all subsequent designer sessions.

Now, you can create your shining GUI interface that contains TCanvas / TPad object with all features
of these famous ROOT classes.

ROOT/Qt Integration Interfaces

565

We strongly recommend you to read the “Quick Start” section of the Qt designer manual http://
doc.trolltech.com/3.3/designer-manual.html. One can find further information, the
examples of the working ROOT-based Qt projects including all examples of this section as well as the
list of the references and publications on the Qt project Web site http://root.bnl.gov

Using Qt Class Library from the ROOT C++ Interpreter

Since the Qt package is a regular C++ class library to use it within ROOT C++ interpreter environment
one should either load the dedicated RootCint dictionary or apply ACLiC mode.

For example, the following ROOT interactive session is to popup the “Open File” Qt dialog box and
print out the file name selected by the user via the dialog.

root[] gSystem->Load("qtcint");
root[] cout << QFileDialog::getOpenFileName() << endl;

The ROOT session:

root[] gSystem->Load("qtcint");
root[] QPrinter p;
root[] p.setup(); // Display the Qt “Setup printer” dialog box
root[] Int_t id = gPad->GetPixmapID();
root[] QPixmap *pix = (QPixmap *)(TGQt::iwid(id));
root[] QPainter pnt(&p);
root[] pnt.drawPixmap(0,0,*pix);

is to display the Qt “Setup Printer” dialog and use QPrinter object to print the current TPad image
to the selected printer. To use the more complex Qt-related code one is advised to apply “ACLiC –
Automatic Compiler of Libraries for CINT” (see CINT the C++ Interpreter). For example:

#ifndef __CINT__
include <qfiledialog.h>
include <qstringlist.h>
include <qstring.h>
#endif
void FileDialog() {
 // This is small AClIC wrapper to use Qt 3.3 QFileDialog class
 // See: http://doc.trolltech.com/3.3/qfiledialog.html#getOpenFileNames
 // To use, invoke ACLiC from the ROOT prompt:
 // root [] .x FileDialog .C++
 QStringList files = QFileDialog::getOpenFileNames ();
 QStringList::Iterator it = files.begin();
 while (it != files.end()) {
 printf ("Next file selected: %sn", (const char *)(*it));
 ++it;
 }
}

With the ROOT ACLiC session:

root [0] .x FileDialog.C++
Info in <TUnixSystem::ACLiC>: creating shared library macros/./FileDialog_C.so
Next file selected: macros/QtFileDialog.C
Next file selected: macros/QtMultiFileDialog.C
Next file selected: macros/QtMultiFileDialog_C.so
Next file selected: macros/QtPrintDialog.C
Next file selected: macros/QtPrintDialog_C.so

ROOT/Qt Integration Interfaces

566

the Qt generated “Open File Dialog” pops up and prints out the list of the selected files.

TQtWidget Class, Qt Signals / Slots and TCanvas
Interface

TQtWidget is a QWidget with the QPixmap double buffer. It is designed to back the ROOT
TCanvasImp class interface and it can be used as a regular Qt Widget to create Qt-based GUI with
the embedded TCanvas objects. It was mentioned the class can used as a “custom widget” to create
the advanced GUI with the TrollTech “designer” utility.

To do that TQtWidget class can emit the set of the “Qt signals” and it is equipped with the collection
of the dedicated “Qt slots”.

TQtWidget Public Qt Slots

TQtWidget class inherits all slots of its base QWidget class (see: http://
doc.trolltech.com/3.3/qwidget.html). In addition, it is in possession of two groups of
the dedicated slots.

virtual void cd();
virtual void cd(int subpadnumber);

Make the associated TCanvas/TPad the current one, the proxy interface to the embedded
TCanvas::cd() and TCanvas::cd(int subpadnumber) methods.

virtual bool Save(const QString &fileName) const
virtual bool Save(const char *fileName) const
virtual bool Save(const QString &fileName,const char *format,
 int quality=60) const
virtual bool Save(const char *fileName,const char *format,
 int quality=60) const

The slots are to save the double buffer of the TQtWidget object using the default or specified save
format. The default save format is defined either by the “known” file extension or by the “default”
file format.

The default format can be changed by TQtWidget::SetSaveFormat method and it is set to be
“PNG” at the class constructor.

TQtWidget Qt Signals

The class object emits the different signals that can be used to create the sophisticated GUI
applications.

The signal CanvasPainted() is emitted to notify the GUI that the double buffer of the widget has
been filled and buffer has been painted onto the screen. In the other words, this signal means that all
TObject objects of the embedded TCanvas have been visualized on the screen. The signal:

ROOT/Qt Integration Interfaces

567

Saved(bool ok)

is emitted to notify the GUI that a TCanvas has been saved into the file:

RootEventProcessed(TObject *selected, unsigned int event, TCanvas *c)

This signal notifies the Qt framework that the Qt mouse/keyboard event has been process by ROOT.
The signal is disabled by default, i.e. the connected slot is not called unless the signal is explicitly
enabled with TQtWidget::EnableSignalEvents method.

For example, to create a custom response to the mouse crossing of a TCanvas, you need to connect
the RootEventProsecced signal with your qt slot. The next piece of the code demonstrates that:

connect(tQtWidget,SIGNAL(RootEventProcessed(TObject *,
 unsigned int, TCanvas *)),
this,SLOT(CanvasEvent(TObject *, unsigned int, TCanvas *)));
. . .
void qtrootexample1::CanvasEvent(TObject *obj, unsigned int event,
 TCanvas *)
{
 TQtWidget *tipped = (TQtWidget *)sender();
 const char *objectInfo = obj->GetObjectInfo(tipped->GetEventX(),
 tipped->GetEventY());
 QString tipText ="You have ";
 if (tipped == tQtWidget1)
 tipText +="clicked";
 else
 tipText +="passed";
 tipText += " the object <";
 tipText += obj->GetName();
 tipText += "> of class ";
 tipText += obj->ClassName();
 tipText += " : ";
 tipText += objectInfo;

 QWhatsThis::display(tipText)
}

GSI QtROOT
The Qt Interface developed at Darmstadt GSI is a lightweight interface that enables the user to write
a Qt 3 application, which can use ROOT. The Native Qt 4 support is planned and will be available
in the near future. Furthermore, existing Qt 3 Application can use this interface to have almost full
access to the Root functionality (see "Create the Main file for the project" below). Using this interface
a full access to both ROOT and Qt widgets is possible in one application.

An Embedded Root canvas can be set inside any Qt widget by C++ calls or using the Qt designer. To
use the Qt 3.x designer to make ROOT applications with Qt GUI's follow the steps described below:

1) Add the TQRootCanvas to the Qt Designer:

• Start the designer

• In the designer menu choose tools->custom->Edit Custom Widget

• In the Edit Custom Widget window choose "Load Description"

• From GSI Qt-Root interface directory load the file "TQRootCanvas.cw"

ROOT/Qt Integration Interfaces

568

Now you will see the TQRootCanvas in the Class field, you will also see all other parameters,
signals, slots and properties of the TQRootCanvas.

Now we are ready use the TQRootCanvas within the Qt 3.x designer.

Create a New Project in the Designer
1). Choose "File->New"

2). Select C++ Project

ROOT/Qt Integration Interfaces

569

3). Create the Project in a directory of your choice.

4). In the project settings (Project->Setting from the designer main window) select the C++ tab. Add
ROOT and GSI Qt-Root libraries into the Libs entry field. For example:

-L(ROOTSYS)/lib -lCore -lCint -lHist -lGraf -lGraf3d -lGpad -lTree
-lRint -lPostscript -lMatrix -lPhysics -lnsl -lm -ldl -rdynamic -
lqtgsi

Add $(ROOTSYS)/include into Includepath entry field.

These setting will be saved in project.pro file and qmake will generate the Makefile according
to them.

Now you can create your own widgets in the designer and add them to the project.

main()
The main file should look like:

ROOT/Qt Integration Interfaces

570

#include "TQtApplication.h"
#include "TQtRootApplication.h"
#include "MyWidget1.h"
int main(int argc, char ** argv){
 TQRootApplication a(argc, argv, 0);
 TQApplication app("uno",&argc,argv);
 MyWidget1 *w = new Mywidget1;
 w->show();
 a.connect(&a, SIGNAL(lastWindowClosed()), &a, SLOT(quit()));
 return a.exec();
}

571

Chapter 27. Automatic HTML
Documentation

THtml is ROOT’s documentation engine. It can be used to document your classes in a reference
guide, and to convert your text or source files to HTML.

Reference Guide
The Reference Guide for the ROOT classes at http://root.cern.ch/root/html/ has been
generated by ROOT's THtml class. Just as for ROOT's classes, it can generate (and update) a reference
guide for your classes, too. You document your classes using source code comments. All comments
will be automatically put into a <pre></pre> environment to keep the indentation and line length.
You can write "raw" HTML by enclosing comments in the keywords Begin_Html and End_Html.

To generate documentation for the class TObject you could run the following commands:

root[] THtml h
root[] h.SetInputDir("$(ROOTSYS)");
root[] h.MakeClass("TObject");
root[] h.CreateJavascript();
root[] h.CreateStylesheet();

The comments following the first comment of the form //____________________, before any method,
is assumed to be the class description. As with any other documentation part, it has to be a continuous
block of comments.

Any documented class will have an class index entry in the ClassIndex.html, showing their
name with a link to their documentation page and a miniature description. This description for e.g. the
class MyClass has to be given in MyClass’s header file as documentation.

A method description block starts immediately after '{' and looks like this:

void TWorld::HelloWorldFunc(string *text)
{
// This is a documentation example of the function TWorld::HelloWorldFunc
helloWorld.Print(text);
}

Like in a class description block, everything until the first non-commented line is considered as a valid
member function description block.

Data members are documented by putting a C++ comment behind their declaration in the header
file, e.g.

Int_t fIAmADataMember; // this is a data member

When documenting a class, THtml creates both a "beautified" version of the source file and a web
page containing the class documentation. The documentation also shows the author and a copyright
statement. This information is extracted from the source file. The author can be in the format

// Author: Enrico Fermi

for people that have an entry in CERN's XWho database, and for those who have not:

Automatic HTML Documentation

572

// Author: Enrico Fermi <mailto:enrico@fnal.gov>

The copyright statement is introduced by the string "* Copyright" inside a comment.

You should read the class reference page at http://root.cern.ch/root/html/
THtml.html to learn about all of THtml’s features.

Product and Module Documentation
For THtml, a product like ROOT is a combination of several modules. It can include user-
provided document for both products and modules. The name of the product can be set by calling
THtml::SetProductName(). By default, the documentation is searched for in the doc/
subdirectory of the source tree, and in the ../doc directory, relative to the directory of first
source file of a module. This can be set by calls to THtml::SetProductDocDir() and
THtml::SetModuleDocPath().

The documentation is generated as an index page with links to further files. This index page includes
the file index.txt converted to HTML (via THtml::Convert()) or the file index.html (without
conversion to HTML, of course), if any of these files exist. The index page will also contain a list of
links to all files in the directory that end on .html or .txt. Files ending on .txt will be converted
to HTML before they are copied to the output directory. For each file, the link's text will be the file
name without extension, with underscores replaced by spaces.

You can see an example of the module documentation including links, the corresponding
index.html, and the module class index at http://root.cern.ch/root/html/
HIST_Index.html.

Converting Sources (and Other Files) to
HTML

THtml can take a file (C++ or text) and convert it to HTML. There are two main use cases:

The output of a macro converted to HTML will almost look like the beautified source file of a
class reference. The Begin_Html/End_Html keywords are supported; comments, strings, and
keywords are colored like in THtml's output for source code.

The macro Event.cxx in $ROOTSYS/test can be seen as an example of documented ROOT
macros at http://root.cern.ch/root/html/examples/Event.cxx.html

THtml::Convert()converts a single text file to HTML. For example, it can be run on a change
log. Each known class name will be linked to its documentation page. An example is ROOT’s change
log at http://root.cern.ch/root/html/examples/V5.16.txt.html

To convert the source file MyCode.C to HTML, you can run

root[] THtml h
root[] h.Convert("MyCode.C", "Look At My Code", "htmlout/");

This will create the file htmlout/MyCode.C.html. The HTML page will have the title "Look
At My Code".

Special Documentation Elements: Directives
A common documentation problem is the inclusion of images. They are usually generated externally,
which poses problems with where to keep the images, and how to keep them up to date. THtml solves
this by offering a few special documentation elements: macro and latex directives.

Automatic HTML Documentation

573

Latex Directive
Documentation surrounded by the keywords BEGIN_LATEX / END_LATEX will be passed to
ROOT Latex engine TLatex. The keywords can be written with small or capital letters (case
insensitive). The output will be stored to an image file, which gets automatically included in the
documentation.

// This function calculates BEGIN_LATEX

// F(x_{#frac{1}{2}}) = #prod(x < x_{#frac{1}{2}}) = #frac{1}{2}

// END_LATEX

THtml will inject the following picture:

The image file name is generated from the formula and will be unique for all the documentation. It is
stored along-side the documentation, and it will be automatically regenerated when the documentation
is updated. The handling of the Latex directive is done by the class TDocLatexDirective.

The BEGIN_LATEX keyword can take the following parameters:

• fontsize: sets the TLatex font size. The default value is 16.

• separator: sets a list of characters for which a new column will be started. This allows aligned,
multi-line, multi-column layout, which can be useful for e.g. mathematical derivations. It is unset
by default, meaning the Latex directive will only generate one column.

• rseparator: like separator, but a regular expression. Columns start with a match of this regular
expression. Only one of separator or rseparator can be given.

• align: defines the alignment of the columns. Note that the column delimiter counts as a column
itself!

Example invocation, where the font size is set to 10, new columns are started by the characters '=' and
',', and the two columns are left aligned with the separator column centered:

Begin_Latex(fontsize=10, separator='=,', align=lcl)

Macro Directive
A more general approach is offered by the Macro directive, enclosed in the keywords
BEGIN_MACRO / END_MACRO. The keywords can be written with small or capital letters (case
insensitive). If the text enclosed by these keywords contains the character '{' the text is assumed to
be source code. Otherwise it is assumed to be a file name relative to the current file's path, and taking
into account the paths specified by THtml::AddMacroPath(). The macro file or the C++ source
is executed when generating the documentation. It is expected to return a TObject*, which will be
saved to a GIF file, by calling the virtual function TObject::SaveAs().

The BEGIN_MACRO keyword can take the following parameters:

• GUI: will end batch mode. This is needed e.g. for creating screen shots of GUI elements, where the
call to TObject::SaveAs() will invoke TGObject::SaveAs() which needs the graphics
system to be initialized.

• source: requests the source of the macro to be shown in a second tab on the HTML page. This
is useful e.g. for example macros, showing how the image was generated. Lines that should be
executed but not shown in the source tab can be hidden by ending them with *HIDE* (most

Automatic HTML Documentation

574

probably as a comment). Lines may be hidden because they are not needed for the understanding of
the macro or because they only make sense in the context of the documentation, like the statement
returning the TObject*.

Example invocation, with enabled ROOT graphics system and a source tab:

Begin_Macro(gui, source)

Customizing HTML
THtml allows a vast amount of customizations, from a custom style to custom links, to customized
java scripts. By default, the style sheet is taken from $ROOTSYS/etc/html/ROOT.css
when the documentation is generated. The path for ROOT.css can be changed by calling
THtml::SetEtcDir(); it should contain the same CSS classes and entity IDs as the original
ROOT.css. This style sheet is an easy means of customizing the layout and appearance of the
documentation pages. Many of THtml setting can be customized by calls to THtml member
functions or by settings in .rootrc, as documented in the THtml class reference page http://
root.cern.ch/root/html/THtml. The following will enumerate some of the highlights.

Referencing Documentation for other Libraries
When THtml generates documentation for classes it recognizes all class names known to ROOT. If
THtml does not have sources for a class it determines the class's library name. This has to be set
by means of rootmap files, see Library Autoloading of this User's Guide. Given the library name,
THtml searches for an entry in its map of libraries to documentation URLs. If it finds it, it will create
a link to the documentation at that URL for all occurrences of a given class name. One can set the
URL ../mylib/ for a library name MyLib by setting Root.Html.MyLib: ../mylib/ or by
calling THtml::SetLibURL("MyLib", "../mylib/"). Occurrences of class MyClass of
MyLib will now be referenced as ../mylib/MyClass.html.

Search Engine
THtml can invoke external search engines. The ROOT reference guide sets
Root.Html.Search to http://www.google.com/search?q=%s+site%3A%u. Calling
THtml::SetSearchStemURL() will set the same. If this URL stem is set, THtml will create
search fields in the index pages. It will send the words entered in these search fields as %s in the URL;
%u will be replaced by the current document's path, allowing a site- and directory-specific search.

ViewCVS
Most code is managed in a version control system like CVS. ViewCVS is a WWW reader interface
to the versioning control system that allows e.g. tracking a file's changes. THtml will reference these
pages automatically if the .rootrc variable Root.Html.ViewCVS is set to the URL stem of the
ViewCVS. installation. Alternatively, one can call THtml::SetViewCVS().

Wiki Pages
In some contexts it might be desirable to let users comment on classes, e.g. for suggestions of use or
alternatives, details of behavior, and cross references to other relevant classes. A successful example of
this is the PHP.net documentation with its user annotations. THtml can include a link to a class's Wiki
page by setting the Wiki base URL via Root.Html.WikiURL or THtml::SetWikiURL().

Tutorial
You can run the tutorial htmlex.C to see how THtml converts a script to HTML and how it creates
the corresponding class reference:

Automatic HTML Documentation

575

root[] .x $(ROOTSYS)/tutorials/htmlex.C+

Have a look at the HTML version of the macro in htmldoc/htmlex.C.html (which should be
the same as the one at http://root.cern.ch/root/html/examples/htmlex.C.html).

It demonstrates how to generate documentation for your classes and for ROOT classes and how to
"beautify" a macro.

576

Chapter 28. Appendix A: Install and
Build ROOT
License

ROOT is made available under the LGPL v2.1 license. For full details see the file LICENSE in the
ROOT distribution.

Installing ROOT
To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/drupal/
content/downloading-root

You have a choice to download the binaries or the source. The source is quicker to transfer since it
is only 31 MB, but you will need to compile and link it. The binaries range from 50 MB to 100 MB
depending on the target platform.

Choosing a Version
The ROOT developers follow the principle of "release early and release often", however a very large
portion of a user base requires a stable product therefore generally three versions of the system is
available for download – new, old and pro:

• The new version evolves quickly, with weekly or bi-weekly releases. Use this to get access to the
latest and greatest, but it may not be stable. By trying out the new version you can help us converge
quickly to a stable version that can then become the new pro version. If you are a new user we
would advice you to try the new version.

• The pro (production) version is a version we feel comfortable with to exposing to a large audience
for serious work. The change rate of this version is much lower than for the new version, it is about
3 to 6 months.

• The old version is the previous pro version that people might need for some time before switching
the new pro version. The old change rate is the same as for pro.

Installing Precompiled Binaries
The binaries are available for downloading from http://root.cern.ch/drupal/content/
downloading-root. Once downloaded you need to unzip and de-tar the file. For example, if you
have downloaded ROOT v2.25 for HPUX:

% gunzip root_v5.30.00.Linux-slc5-gcc4.3.tar.gz
% tar xvf root_v5.30.00.Linux-slc5-gcc4.3.tar

This will create the directory root. Before getting started read the file README/README. Also,
read the Introduction chapter for an explanation of the directory structure.

Installing the Source
You have a choice to download a compressed (tar ball) file containing the source, or you can use
the Subversion (svn) source code change control system and check out the most recent source. The
compressed file is a one time only choice; every time you would like to upgrade you will need to

Appendix A: Install
and Build ROOT

577

download the entire new version. Choosing the CVS option will allow you to get changes as they are
submitted by the developers and you can stay up to date.

Installing and Building the Source from a Compressed
File

To install the ROOT source you can download the tar file containing all the source files from the
ROOT website. The first thing you should do is to get the latest version as a tar file. Unpack the source
tar file, this creates directory ‘root’:

% tar zxvf root_v5.30.xx.source.tar.gz

Type the build commands:

% cd root
% ./configure --help
% ./configure [<arch>]
% (g)make

Add bin/ to PATH and lib/ to LD_LIBRARY_PATH. For the sh shell family do:

% . bin/thisroot.sh

and for the csh shell family do:

% source bin/thisroot.csh

Try running root:

% root

It is also possible to setup and build ROOT in a fixed location. Please check README/INSTALL for
more a detailed description of this procedure.

Target directory

By default, ROOT will be built in the $ROOTSYS directory. In that case the whole system (binaries,
sources, tutorials, etc.) will be located under the $ROOTSYS directory.

Makefile targets

The Makefile is documented in details in the README/BUILDSYSTEM file. It explains the build
options and targets.

More Build Options
To build the library providing thread support you need to define either the environment variable
‘THREAD=-lpthread’ or the configure flag ‘--with-thread=-lpthread’ (it is the default
for the linuxegcs architecture). [Note: this is only tested on Linux for the time being.] To build
the library providing CERN RFIO (remote I/O) support you need to define either the environment
variable ‘ RFIO=<path>/libshift.a’ or the configure flag ‘--with-rfio=<path>/
libshift.a’. For pre-built version of libshift.a see ftp://root.cern.ch/root/
shift/

Appendix A: Install
and Build ROOT

578

To build the PAW and Geant3 conversion programs h2root and g2root you need to define either
the environment variable ‘CERNLIB=<cernlibpath>’ or the configure flag ‘--with-cern-
libdir=<cernlibpath>’.

To build the MySQL interface library you need to install MySQL first. Visit http://
www.mysql.com/ for the latest versions.

To build the strong authentication module used by rootd, you first have to install the SRP (Secure
Remote Password) system. Visit http://srp.stanford.edu

To use the library you have to define either the environment variable ‘SRP=<srpdir>’ or the
configure flag ‘--with-srp=<srpdir>’.

To build the event generator interfaces for Pythia and Pythia6, you first have to get the Pythia libraries
available from ftp: ftp://root.cern.ch/root/pythia6.tar.gz.

To use the libraries you have to define either ‘PYTHIA=<pythiadir>’ or the configure flag ‘--
with-pythia=<pythiadir>’. The same applies for Pythia6.

Installing the Source from Subversion

This paragraph describes how to checkout and build ROOT from Subversion for Unix systems. For
description of a checkout for other platforms, please see ROOT installation web page: http://
root.cern.ch/drupal/content/installing-root-source.

% svn co http://root.cern.ch/svn/root/trunk root
U root/…
U …
% cd root
% ./configure –-help
% ./configure [<arch>]
% (g)make

If you are a part of collaboration, you may need to use setup procedures specific to the particular
development environment prior to running (g)make. For more install instructions and options, see
the file README/INSTALL.

Subversion for Windows

Although there exists a native version of Subversion for Windows, we only support the build process
under the Cygwin environment. You must have svn version 1.6 or newer. The checkout and build
procedure is similar to that for UNIX. For detailed install instructions, see the file REAMDE/
INSTALL.

Staying up-to-date

To keep your local ROOT source up-to-date with the Subversion repository you should regularly run
the command:

% svn up

File system.rootrc
ROOT Environment settings are handled via the class TEnv. gEnv->Print()shows which values
are active. Any settings can be obtained by TEnv::GetValue methods that return an integer, double
or character value for a named resource. If the resource is not found, the default value (given as the
second parameter) is returned.

Appendix A: Install
and Build ROOT

579

fShowEventStatus = gEnv->GetValue("Canvas.ShowEventStatus",kFALSE);

Via the method TEnv::SetValue allows you can set the value of a resource or create a new
resource:

gEnv->SetValue("Root.ObjectStat",1);

Path used by dynamic loader to find shared libraries and macros. Paths are different for Unix and
Windows. The example shows the defaults for all ROOT applications for either Unix or Windows:

Unix.*.Root.DynamicPath: .:$(ROOTSYS)/lib
Unix.*.Root.MacroPath: .:$(ROOTSYS)/macros
WinNT.*.Root.DynamicPath: .;$(ROOTSYS)/bin;$(PATH)
WinNT.*.Root.MacroPath: .;$(ROOTSYS)/macros

Path where to look for TrueType fonts:

Unix.*.Root.UseTTFonts: true
..Root.TTFontPath: $(ROOTSYS)/fonts

Use Net* API functions:

WinNT.UseNetAPI: true

Use thread library (if exists).

Unix.*.Root.UseThreads: false

Select the compression algorithm (0=old zlib, 1=new zlib). Setting this to `0' may be a security
vulnerability.

Root.ZipMode: 1

Show where item is found in the specified path:

Root.ShowPath: false

Activate memory statistics (size and cnt are used to trap allocation of blocks of a certain size
after cnt attempts).

Root.MemStat: 0
Root.MemStat.size: -1
Root.MemStat.cnt: -1
Root.ObjectStat: 0

Activate memory leak checker (use in conjunction with $ROOTSYS/bin/memprobe). Currently
only works on Linux with gcc.

Root.MemCheck: 0
Root.MemCheckFile: memcheck.out

Global debug mode. When >0 turns on progressively more details debugging.

Appendix A: Install
and Build ROOT

580

Root.Debug: 0
Root.Stacktrace: yes

Settings for X11 behaviour.

X11.Sync: no
X11.FindBestVisual: yes

Default editor in use.

Unix.*.Editor: vi
WinNT.*.Editor: notepad

Default 3d Viewer. By default 3-D views are shown in the pad, if the next line is activated, the default
viewer will be OpenGL.

Viewer3D.DefaultDrawOption: ogl

Default Fitter (current choices are Minuit, Minuit2, Fumili and Fumili2).

Root.Fitter: Minuit

Specify list of file endings which TTabCom (TAB completion) should ignore.

TabCom.FileIgnore: .cpp:.h:.cmz

TCanvas Specific Settings
Opaque move and resize show full pad during the operation instead of only the outline. Especially
for resize you will need serious CPU power. UseScreenFactor=true means to size canvas
according to size of screen, so a canvas still looks good on a low resolution laptop screen without
having to change canvas size in macros.

Canvas.MoveOpaque: false
Canvas.ResizeOpaque: false
Canvas.UseScreenFactor: true

Hight color 2 is the red one.

Canvas.HighLightColor: 2

Next three settings are related to different user interface parts of canvas window. If they are set to true,
the corresponding event status bar, tool bar, graphics editor to beactivated by default.

Canvas.ShowEventStatus: false
Canvas.ShowToolBar: false
Canvas.ShowEditor: false

AutoExec allows TExec objects to be executed on mouse and key events.

Appendix A: Install
and Build ROOT

581

Canvas.AutoExec: true

Canvas print directory is set to the current one by default:

Canvas.PrintDirectory .

Printer settings:

WinNT.*.Print.Command: AcroRd32.exe
#Unix.*.Print.Command: a2ps -P%p --landscape --columns=2 --margin=30 -rf8.0 %f
Print.Printer: 32-rb20-hp
Print.Directory: .
Print.FileType: pdf

Default histogram binnings used by TTree::Draw() method.

Hist.Binning.1D.x: 100
Hist.Binning.2D.x: 40
Hist.Binning.2D.y: 40
Hist.Binning.2D.Prof: 100
Hist.Binning.3D.x: 20
Hist.Binning.3D.y: 20
Hist.Binning.3D.z: 20
Hist.Binning.3D.Profx: 100
Hist.Binning.3D.Profy: 100

Default statistics names used for parameters in TPaveStats:

Hist.Stats.Entries Entries
Hist.Stats.Mean Mean
Hist.Stats.MeanX Mean x
Hist.Stats.MeanY Mean y
Hist.Stats.RMS RMS
Hist.Stats.RMSX RMS x
Hist.Stats.RMSY RMS y
Hist.Stats.Underflow Underflow
Hist.Stats.Overflow Overflow
Hist.Stats.Integral Integral
Hist.Stats.Skewness Skewness
Hist.Stats.SkewnessX Skewness x
Hist.Stats.SkewnessY Skewness y
Hist.Stats.Kurtosis Kurtosis
Hist.Stats.KurtosisX Kurtosis x
Hist.Stats.KurtosisY Kurtosis y

THtml Specific Settings
See the reference guide documentation of THtml class at http://root.cern.ch/root/
htmldoc/THtml.html for more details.

XHTML content charset (see http://www.w3.org/TR/2002/REC-xhtml1-20020801,
default: ISO-8859-1) is set by:

Root.Html.Charset:

Appendix A: Install
and Build ROOT

582

Stem of a search engine for the documentation, where %s is replaced by the term entered in the search
text box (example: http://www.google.com/search?q=%s+site%3Aroot.cern.ch
%2Froot%2Fhtml, default is "")

Root.Html.Search:

Link to the site's search engine (default: "", example: http://root.cern.ch/root/
Search.phtml)

Root.Html.SearchEngine:

String to prepend to TClass::GetImplFileName() names containing directories when looking
for source files (default: "", example: ../root)

Root.Html.SourcePrefix:

Link stem to ViewCVS entry for classes, where a class name is assumed to match a file name (default:
"", example: http://root.cern.ch/viewcvs).

Root.Html.ViewCVS:

Stem of the CERN XWho system (default: http://consult.cern.ch/xwho/people?)

Root.Html.XWho:

If set to Doc++, allow method documentation in front of method even for methods in the source file
(default: "")

Root.Html.DescriptionStyle:

Search path for the source and header files with their default settings:

Unix.*.Root.Html.SourceDir: .:src:include
WinNT.*.Root.Html.SourceDir: .;src;include

URL stem for ROOT documentation pages (default is "").

Root.Html.Root: http://root.cern.ch/root/html

Filesystem output directory for generated web pages (default: htmldoc).

Root.Html.OutputDir: htmldoc/

Address of the package's home page (default: http://root.cern.ch):

Root.Html.HomePage:

Location of user defined header and footer files, see http://root.cern.ch/root/html/
THtml#conf:header (defaults are "", example: ../header.txt, ../footer.txt):

Appendix A: Install
and Build ROOT

583

Root.Html.Header:
Root.Html.Footer:

Tag for detecting class description comments (default value is set below).

Root.Html.Description: //____________________

Tag for detecting "Author" comment (default value is set below).

Root.Html.Author: // Author:

Tag for detecting "last updated" comment. THtml uses the current date if this tag is not found in a
class source file (default value is set below).

Root.Html.LastUpdate: // @(#)

Tag for detecting "Copyright" comment (default value is set below).

Root.Html.Copyright: * Copyright

GUI Specific Settings
Set the “native” ROOT GUI interface to be used in a ROOT session. If set to “qt”, the “native”
GUI interface is replaced with one based on Qt by the regular ROOT plug-in mechanism.

Gui.Backend: native
Gui.Factory: native

GUI default fonts in use:

Gui.DefaultFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1
Gui.MenuFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1
Gui.MenuHiFont: -adobe-helvetica-bold-r-*-*-12-*-*-*-*-*-iso8859-1
Gui.DocFixedFont: -adobe-courier-medium-r-*-*-12-*-*-*-*-*-iso8859-1
Gui.DocPropFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1
Gui.IconFont: -adobe-helvetica-medium-r-*-*-10-*-*-*-*-*-iso8859-1
Gui.StatusFont: -adobe-helvetica-medium-r-*-*-10-*-*-*-*-*-iso8859-1

Regular background and foreground colors in use:

Gui.BackgroundColor: #c0c0c0
Gui.ForegroundColor: black

Selection background and foreground colors in use:

Gui.SelectBackgroundColor: #000080
Gui.SelectForegroundColor: white

Document background and foreground colors in use:

Gui.DocumentBackgroundColor: white

Appendix A: Install
and Build ROOT

584

Gui.DocumentForegroundColor: black

Tooltip background and foreground colors in use:

Gui.TooltipBackgroundColor: LightYellow
Gui.TooltipForegroundColor: black

Path where all GUI icons in use can be found:

Gui.IconPath: $(HOME)/icons:$(ROOTSYS)/icons:.

Mime type file setting:

Gui.MimeTypeFile: $(HOME)/.root.mimes

If $(HOME)/.root.mimes does not exists, defaults to this:

#Gui.MimeTypeFile: $(ROOTSYS)/etc/root.mimes

TBrowser Settings
Current icon style selection - can be either small, big, list, details:

Browser.IconStyle: small

Current sorting rule applied on the browser objects - can be name, type, size, date:

Browser.SortBy: name

Number of items in a group view:

Browser.GroupView: 10000

Show or not hidden items:

Browser.ShowHidden: no

Create a thumbnail view after executing the macro (default is yes).

Browser.AutoThumbnail: yes

TRint Specific Settings
Rint (interactive ROOT executable) specific alias, logon and logoff macros.

Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C

Record ROOT session commands in a given history file (default is $(HOME)/.root_hist). If set
to "-", it turn off the command recording.

Appendix A: Install
and Build ROOT

585

Rint.History: $(HOME)/.root_hist

Next two lines set the history file size handling. Once HistSize is reached, the last HistSave
entries are removed. If HistSize is set to 0, it turns off command recording. Both values can
be overridden by environment variable ROOT_HIST=size[:save], where the ":save" part is
optional.

Rint.HistSize: 500
Rint.HistSave: 400

ACLiC Specific Settings
ACLiC.Linkdef specifies the suffix that will be added to the script name to try to locate a custom
linkdef file when generating the dictionary.

ACLiC.Linkdef: _linkdef

The top directory for storing the libraries produced by ACLiC is set by:

ACLiC.BuildDir: /where/I/would/like/my/compiled/scripts

The additional include directives for ACLiC compilations are set by:

ACLiC.IncludePaths: -I/where/the/includes/are

PROOF Related Variables
PROOF debug options.

Proof.DebugLevel: 0
Proof.DebugMask:-1

PROOF GDB hooks allows a debugger to be attached early in the startup phase of proofserv: 0 -
don't wait; 1 - master proofserv enters wait loop; 2 - slave proofserv enters wait loop; 3 - any proofserv
enters wait loop

Proof.GdbHook: 0

On the master to enable the parallel startup of workers using threads set next to “yes” (default is
“no”):

Proof.ParallelStartup: no

Proof.StatsHist: no
Proof.StatsTrace: no
Proof.SlaveStatsTrace: no

Proof.CondorHome: /opt/condor

Appendix A: Install
and Build ROOT

586

Proof.CondorConfig: /opt/condor/etc/condor_config

PEAC.GmUrl: http://somewhere:8080/clarens/
PEAC.LmUrl: http://elsewhere:8080/clarens/

Certificate and key

Clarens.CertFile: $(HOME)/.globus/usercert.pem
Clarens.KeyFile: $(HOME)/.globus/userkey.pem

Settings Related to Authentication for rootd and proofd

Default authentication method for rootd and proofd. These are supported for backward
compatibility but have a very low priority. System defaults are generated by configure as a list in
system.rootauthrc in $ROOTSYS/etc/ or /etc/root; the file $HOME/.rootauthrc
can be used to override the system defaults.

The value meaning: 0=UsrPwd, 1=SRP, 2=Krb5, 3=Globus,4=SSH, 5=UidGid.

Rootd.Authentication: 0
Proofd.Authentication: 0

Connection is shutdown at timeout expiration. Timeout is in seconds. Negotiation cannot be attempted
at low level (i.e. inside TAuthenticate::Authenticate()) because of synchronization problems with
the server. At higher level, TAuthenticate::HasTimedOut() gives information about timeout: 0 = no
timeout; 1 = timeout, no methods left; 2 = timeout, still methods to be tried. Caller should decide
about an additional attempt. Timeout is disabled by default (< 0). It can be changed on-the-fly with
the method TAuthenticate::SetTimeOut(to_value).

Auth.Timeout: -1

Password dialog box is set to 0 if you do not want a dialog box to be popped-up when a password
is requested. Default setting is 1.

Auth.UsePasswdDialogBox: 0

Set the following to 1 if you want full SRP authentication in PROOF (Client-to-Master and Master-
to-Slave).

Proofd.SendSRPPwd: 0

Set next to 1 to use SSH authentication in PROOF servers (Master-to-Slave or Slaves-to-DataServers).
This is switched off by default because credentials forwarding for SSH is not controlled by the system;
however the user may have other ways to guarantee it, so it may want to switch it on.

ProofServ.UseSSH: 0

Default login name (if not defined it is taken from $(HOME)).

UsrPwd.Login: qwerty
SRP.Login: qwerty

Appendix A: Install
and Build ROOT

587

Krb5.Login: qwerty@LOCAL.DOM.AIN
Globus.Login: cd:~/.globus cf:usercert.pem kf:userkey.pem
ad:/etc/grid-security/certificates
SSH.Login: qwerty
UidGid.Login: qwerty

To be prompted for login information.

UsrPwd.LoginPrompt: yes
SRP.LoginPrompt: yes
Krb5.LoginPrompt: yes
Globus.LoginPrompt: yes
SSH.LoginPrompt: yes
UidGid.LoginPrompt: yes

To reuse established security context.

UsrPwd.ReUse: yes
SRP.ReUse: no
Krb5.ReUse: no
Globus.ReUse: yes
SSH.ReUse: yes

Duration validity of the sec context for UsrPwd, SRP and SSH. Format: <hours>:<minutes> (default
24:00)

#UsrPwd.Valid: 24:00
#SRP.Valid: 24:00
#SSH.Valid: 24:00

To control password encryption for UsrPwd authentication.

UsrPwd.Crypt: yes

Globus Miscellaneous - Globus Proxy duration: HH:MM (ex 12:15 for 12 hours and 15 min);
'default' for system default.

Globus.ProxyDuration: default
#Globus.ProxyDuration: 12:15

Number of bits for the initial key.

Globus.ProxyKeyBits: 1024

Path to alternative 'ssh' (to override $PATH if ever needed).

SSH.ExecDir: /usr/bin

In case of error, SSH returns 1 (or 256=0x100). To trap those errors for which one should retry, error
printouts must be parsed; any substring found under the TEnv SSH.ErrorRetry triggers a retry
condition; strings can be added here in the form (including double quotes):

+SSH.ErrorRetry: "<error_string>"

Appendix A: Install
and Build ROOT

588

This is what one usually gets if the server has reached the maximum number of sshd daemons (defined
by MaxStartups in sshd_config); this is a typical case in which one should retry.

SSH.ErrorRetry: "Connection closed by remote host"

Max number of retries for SSH in case of retry error (see above).

SSH.MaxRetry: 100

Type of key to be used for RSA encryption: 0=local; 1=SSL (default if openssl available).

RSA.KeyType: 1

In case of 'RSA.KeyType: 1' this specifies the number of bits to be used for the Blowfish key
used to encrypt the exchanged information: default - 256, minimum - 128, maximum - 15912.

SSL.BFBits: 256

Server Authentication in TServerSocket

General setting: file with server access rules

SrvAuth.DaemonRc: /etc/root/system.daemonrc

Check of host equivalence via /etc/hosts.equiv or $HOME/.rhosts.

SrvAuth.CheckHostsEquivalence: 1

SRP: pass file (default $HOME/.srootdpass).

SrvAuth.SRPpassfile: $HOME/.srootdpass

Globus/GSI: hostcert configuration file.

SrvAuth.HostCert: /etc/root/hostcert.conf

Globus/GSI: gridmap file.

SrvAuth.GridMap: /etc/grid-security/grid-mapfile

SSH: port for the sshd daemon.

SrvAuth.SshdPort: 22

Force file opening via TNetFile (TXNetFile) if a hostname is specified in the Url. By default,
for local files TFile::Open() invokes directly TFile.

TFile.ForceRemote: yes

Special cases for the TUrl parser, where the special cases are parsed in a protocol + file part,
like rfio:host:/path/file.root, castor:/path/file.root or /alien/path/file.root. In case the file namespace

Appendix A: Install
and Build ROOT

589

descriptor ends with - the namespace is not a part of the filename. Extend in private .rootrc with a
+Url.Special line.

Url.Special: file: rfio: hpss: castor: gfal: dcache:
+Url.Special: /alien/- /castor/

PROOF XRD Client Variables

Debug level (if <=0 : none, 1 : low, 2 : medium, 3 : high)

XProof.Debug: 0

Socket read timeout [in secs: default 10 secs]

XProof.ReadTimeout: 10

The following env vars are handled by TXNetFile and related classes (module netx,
libNetx.so).

XNet.ConnectTimeout - maximum time to wait before server's response on a connect [10 s]

XNet.RequestTimeout - maximum time to wait before considering a read/write failure [60 s]

XNet.ConnectDomainAllowRE - sequence of TRegexp regular expressions separated by a |.
A domain is granted access to for the first connection if it matches one of these regexps. Example:

slac.stanford.edu|pd.infn.it|fe.infn.it

XNet.ConnectDomainDenyRE - sequence of TRegexp regular expressions separated by a |. A
domain is denied access to for the first connection if it matches one of these regexps.

XNet.RedirDomainAllowRE - sequence of TRegexp regular expressions separated by a |. A
domain is granted access to for a redirection if it matches one of these regexps. Example:

XNet.RedirDomainDenyRE - sequence of TRegexp regular expressions separated by a |. A
domain is granted access to for a redirection if it matches one of these regexps.

XNet.MaxRedirectCount - maximum number of redirections from server [default - 255]

XNet.Debug - log verbosity level (0=nothing,1=messages of interest to the user, 2=messages of
interest to the developers (includes also user messages), 3=dump of all sent/received data buffers
(includes also user and developers messages). [default - 0]

XNet.ReconnectTimeout - sleep-time before going back to the load balancer (or rebouncing to
the same failing host) after a read/write error [default - 10s]

XNet.StartGarbageCollectorThread - for test/development purposes. Normally nonzero
(true), but as workaround for external causes someone could be interested in not having the garbage
collector thread around. [experimental!]

XNet.GoAsynchronous - default is 0. When activated, XTNetFile works in async mode,
allowing input buffering and unsolicited responses [experimental!]

XNet.TryConnect - Number of tries connect to a single server before giving up.

XNet.TryConnectServersList - number of connect retries to the whole server list given
[default - 240]

Appendix A: Install
and Build ROOT

590

XNet.PrintTAG - Print a particular string the developers can choose to quickly recognize the
version at run time [default - 0]

Example of custom setting for the Rint application (root.exe). This overrides the default specified
above for a generic application. Color 5 is yellow.

Rint.Canvas.HighLightColor: 5

Documentation to Download

• The latest ROOT Users Guide

• http://root.cern.ch/root/doc/RootDoc.html

• ROOT Reference Guide

• http://root.cern.ch/root/Reference.html

591

Index
C
CINT

debugger, 6
class index, 10
containment, 3

E
example, 9, 9

F
framework

components, 2
organization, 4

G
gDirectory, 2

I
install ROOT, 3

M
mailing list, 1

P
PAW, 1
plugin manager, 8, 8, 9

R
reference guide, 8, 8, 10, 10
rootd, 6
rootmap, 9
RTTI, 3

S
supported platforms, 4

T
tutorials, 5, 9

W
web

site, 10

	User's Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	The ROOT Mailing Lists
	Contact Information
	Conventions Used in This Book
	The Framework
	What Is a Framework?
	Advantages of Frameworks

	Why Object-Oriented?

	Installing ROOT
	The Organization of the ROOT Framework
	$ROOTSYS/bin
	$ROOTSYS/lib
	Library Dependencies
	Linktime Library Dependencies
	Plugins: Runtime Library Dependencies for Linking
	Library Autoloading

	$ROOTSYS/tutorials
	$ROOTSYS/test
	$ROOTSYS/include
	$ROOTSYS/<library>

	How to Find More Information
	Class Reference Guide

	Chapter 2. Getting Started
	Setting the Environment Variables
	Start and Quit a ROOT Session
	Using the GUI
	Main Menus and Toolbar
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Inspect Menu
	Classes Menu
	Help Menu
	Toolbar

	The Editor Frame
	Classes, Methods and Constructors
	User Interaction
	Building a Multi-pad Canvas
	Saving the Canvas
	Printing the Canvas

	The ROOT Command Line
	Multi-line Commands
	CINT Extensions
	Helpful Hints for Command Line Typing
	Regular Expression

	Conventions
	Coding Conventions
	Machine Independent Types
	TObject

	Global Variables
	gROOT
	gFile
	gDirectory
	gPad
	gRandom
	gEnv

	Environment Setup
	Logon and Logoff Scripts
	History File
	Tracking Memory Leaks
	Memory Checker

	Converting from PAW to ROOT
	Converting HBOOK/PAW Files

	Chapter 3. Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Bin Numbering Convention
	Re-binning

	Filling Histograms
	Automatic Re-binning Option

	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Drawing Histograms
	Setting the Style

	Draw Options
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The Color Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The BAR Options
	The Z Option: Display the Color Palette on the Pad
	Setting the Color Palette
	TPaletteAxis

	The SPEC Option
	3-D Histograms

	Drawing a Sub-range of a 2-D Histogram
	Superimposing Histograms with Different Scales
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a File
	Miscellaneous Operations
	Alphanumeric Bin Labels
	Option 1: SetBinLabel
	Option 2: Fill
	Option 3: TTree::Draw
	Sort Options

	Histogram Stacks
	Profile Histograms
	Build Options
	Drawing a Profile without Error Bars
	Create a Profile from a 2D Histogram
	Create a Histogram from a Profile
	Generating a Profile from a TTree
	2D Profiles

	Iso Surfaces
	3D Implicit Functions
	TPie
	The User Interface for Histograms
	TH1Editor
	TH2Editor

	Chapter 4. Graphs
	TGraph
	Graph Draw Options
	Continuous Line, Axis and Stars (AC*)
	Bar Graphs (AB)
	Filled Graphs (AF)
	Marker Options

	Superimposing Two Graphs
	Graphs with Error Bars
	Graphs with Asymmetric Error Bars
	Graphs with Asymmetric Bent Errors
	TGraphPolar
	TGraph Exclusion Zone
	TGraphQQ
	Two Datasets
	One Dataset

	TMultiGraph
	TGraph2D
	TGraph2DErrors
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph
	The User Interface for Graphs

	Chapter 5. Fitting Histograms
	The Fit Method
	Fit with a Predefined Function
	Fit with a User-Defined Function
	Creating a TF1 with a Formula
	Creating a TF1 with Parameters
	Creating a TF1 with a User Function

	Fixing and Setting Parameters’ Bounds
	Fitting Sub Ranges
	The Fit Panel
	Function Choice and Settings
	Fitter Settings
	Draw Options
	Print Options
	Command Buttons

	Fitting Multiple Sub Ranges
	Adding Functions to the List
	Combining Functions
	Associated Function
	Access to the Fit Parameters and Results
	Associated Errors
	Fit Statistics
	The Minimization Package
	Basic Concepts of Minuit
	The Transformation of Limited Parameters
	How to Get the Right Answer from Minuit
	Getting the Right Minimum with Limits
	Getting the Right Parameter Errors with Limits
	Interpretation of Parameter Errors
	Statistical Interpretation

	Reliability of Minuit Error Estimates
	A Non-physical Region
	An Underdetermined Problem
	Numerical Inaccuracies
	An Ill-posed Problem

	FUMILI Minimization Package
	Neural Networks
	Introduction
	The MLP
	Learning Methods
	Stochastic Minimization
	Steepest Descent With Fixed Step Size (Batch Learning)
	Steepest Descent Algorithm
	Conjugate Gradients With the Polak-Ribiere Updating Formula
	Conjugate Gradients With the Fletcher-Reeves Updating Formula
	The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

	Using the Network
	Examples

	Chapter 6. A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Method Overriding
	Data Encapsulation

	Creating Objects on the Stack and Heap

	Chapter 7. CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Un-named Scripts
	Named Scripts
	Executing a Script from a Script

	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	ACLiC - The Automatic Compiler of Libraries for CINT
	Usage
	Setting the Include Path
	Dictionary Generation
	Intermediate Steps and Files
	Moving between Interpreter and Compiler

	Reflex
	Overview
	Selecting Types And Members
	Genreflex and Templates
	Explicit Template Instantiation
	Template Instantiation by struct Members

	GCCXML Installation
	Reflex API
	Cintex

	Chapter 8. Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	The Collection of Specials
	Access to the Collection Contents

	Ownership by Other Objects
	Ownership by the User
	The kCanDelete Bit
	The kMustCleanup Bit

	Chapter 9. Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Moving, Resizing and Modifying Objects
	The Left Mouse Button
	With C++ Statements (Programmatically)

	Selecting Objects
	The Middle Mouse Button
	With C++ Statements (Programmatically)

	Context Menus: the Right Mouse Button
	Using Context Menus
	Structure of the Context Menus
	Adding Context Menus for a Class

	Executing Events when a Cursor Passes on Top of an Object

	Graphical Containers: Canvas and Pad
	The Global Pad: gPad
	Finding an Object in a Pad
	Hiding an Object

	The Coordinate Systems of a Pad
	The User Coordinate System
	The Normalized Coordinate System (NDC)
	The Pixel Coordinate System
	Using NDC for a particular Object

	Converting between Coordinate Systems
	Dividing a Pad into Sub-pads
	Creating a Single Sub-pad
	Dividing a Canvas into Sub-Pads

	Updating the Pad
	Making a Pad Transparent
	Setting the Log Scale
	WaitPrimitive method
	Locking the Pad

	Graphical Objects
	Lines, Arrows and Polylines
	Circles and Ellipses
	Rectangles
	Markers
	Curly and Wavy Lines for Feynman Diagrams
	Text and Latex Mathematical Expressions
	Subscripts and Superscripts
	Fractions
	Roots
	Delimiters
	Changing Style in Math Mode
	Line Splitting

	Greek Letters
	Mathematical Symbols
	Accents, Arrows and Bars
	Example 1
	Example 2
	Example 3

	Text in a Pad

	Axis
	Axis Title
	Axis Options and Characteristics
	Setting the Number of Divisions
	Zooming the Axis
	Drawing Axis Independently of Graphs or Histograms
	Orientation of Tick Marks on Axis
	Labels
	Position
	Orientation
	Labels for Exponents
	Number of Digits in Labels
	Tick Mark Positions
	Label Formatting
	Stripping Decimals
	Optional Grid
	Axis Binning Optimization

	Axis with Time Units
	Time Format
	Time Offset

	Axis Examples

	Graphical Objects Attributes
	Text Attributes
	Setting Text Alignment
	Setting Text Angle
	Setting Text Color
	Setting Text Font
	How to use True Type Fonts
	Setting Text Size

	Line Attributes
	Fill Attributes
	Color and Color Palettes
	Color Palette (for Histograms)

	The Graphics Editor
	TAxisEditor
	TPadEditor

	Copy and Paste
	Using the GUI
	Programmatically

	Legends
	The PostScript Interface
	Special Characters
	Writing Several Canvases to the Same PostScript File

	Create or Modify a Style
	3D Viewers
	Invoking a 3D viewer
	The GL Viewer
	Projections Modes (Cameras)
	Adjusting Cameras
	Draw Styles
	Lighting / Style
	Clipping
	Manipulators
	Guides
	Selecting Scene Shapes
	Editing Shapes
	Colors / Style
	Geometry
	Outputting Viewer Contents

	The X3D Viewer
	Common 3D Viewer Architecture
	Creating / Obtaining Viewer Handle
	Opening / Closing Scenes
	Describing Objects - Filling TBuffer3D
	Shape Specific TBuffer3D Derived Classes
	Master / Local Reference Frames
	Bounding Boxes
	Logical and Physical Objects
	Scene Rebuilds
	Physical IDs
	Child Objects
	Recycling TBuffer3D
	Examples

	Chapter 10. Folders and Tasks
	Folders
	Why Use Folders?
	How to Use Folders
	Creating a Folder Hierarchy
	Posting Data to a Folder (Producer)
	Reading Data from a Folder (Consumer)

	Tasks
	Execute and Debug Tasks

	Chapter 11. Input/Output
	The Physical Layout of ROOT Files
	The File Header
	The Top Directory Description
	The Histogram Records
	The Class Description List (StreamerInfo List)
	The List of Keys and the List of Free Blocks
	File Recovery

	The Logical ROOT File: TFile and TKey
	Viewing the Logical File Contents
	The Current Directory
	Objects in Memory and Objects on Disk
	Saving Histograms to Disk
	Histograms and the Current Directory
	Saving Objects to Disk
	Saving Collections to Disk
	A TFile Object Going Out of Scope
	Retrieving Objects from Disk
	Subdirectories and Navigation

	Streamers
	Automatically Generated Streamers
	Transient Data Members (//!)
	The Pointer to Objects (//->)
	Variable Length Array
	Double32_t
	Prevent Splitting (//||)
	Streamers with Special Additions
	Writing Objects
	Ignore Object Streamers
	Streaming a TClonesArray

	Pointers and References in Persistency
	Streaming C++ Pointers
	Motivation for the TRef Class
	Using TRef
	How Does It Work?
	TProccessID and TUUID
	Object Number

	Action on Demand
	How to Select This Option?

	Array of TRef

	Schema Evolution
	The TStreamerInfo Class
	The TStreamerElement Class
	Example: TH1 StreamerInfo
	Optimized StreamerInfo
	Automatic Schema Evolution
	Manual Schema Evolution
	Building Class Definitions with the StreamerInfo
	Example: MakeProject

	Migrating to ROOT 3
	Compression and Performance
	Remotely Access to ROOT Files via a rootd
	TNetFile URL
	Remote Authentication
	A Simple Session
	The rootd Daemon
	Starting rootd via inetd
	Command Line Arguments for rootd

	Reading ROOT Files via Apache Web Server
	Using the General Open Function of TFile

	XML Interface

	Chapter 12. Trees
	Why Should You Use a Tree?
	A Simple TTree
	Show an Entry with TTree::Show
	Print the Tree Structure with TTree::Print
	Scan a Variable the Tree with TTree::Scan
	The Tree Viewer
	Creating and Saving Trees
	Creating a Tree from a Folder Hierarchy
	Tree and TRef Objects
	Autosave
	Trees with Circular Buffers
	Size of TTree in the File
	User Info Attached to a TTree Object
	Indexing a Tree

	Branches
	Adding a Branch to Hold a List of Variables
	Adding a TBranch to Hold an Object
	Setting the Split-level
	Memory Considerations when Splitting a Branch
	Performance Considerations when Splitting a Branch
	Rules for Splitting

	Exempt a Data Member from Splitting
	Adding a Branch to Hold a TClonesArray
	Identical Branch Names

	Adding a Branch with a Folder
	Adding a Branch with a Collection
	Examples for Writing and Reading Trees
	Example 1: A Tree with Simple Variables
	Writing the Tree
	Creating Branches with A single Variable
	Filling the Tree

	Viewing the Tree
	Reading the Tree
	GetEntry

	Example 2: A Tree with a C Structure
	Writing the Tree
	Adding a Branch with a Fixed Length Array
	Adding a Branch with a Variable Length Array
	Filling the Tree

	Analysis

	Example 3: Adding Friends to Trees
	Adding a Branch to an Existing Tree
	TTree::AddFriend

	Example 4: A Tree with an Event Class
	The Event Class
	The EventHeader Class
	The Track Class
	Writing the Tree
	Reading the Tree

	Example 5: Import an ASCII File into a TTree
	Trees in Analysis
	Simple Analysis Using TTree::Draw
	Using Selection with TTree:Draw
	Using TCut Objects in TTree::Draw
	Accessing the Histogram in Batch Mode
	Using Draw Options in TTree::Draw
	Superimposing Two Histograms
	Setting the Range in TTree::Draw
	TTree::Draw Examples
	Explanations:

	Using TTree::Scan
	TEventList and TEntryList
	Main Differences between TEventList and TEntryList
	Using an Event List
	Operations on TEntryLists
	TEntryListFromFile

	Filling a Histogram
	Projecting a Histogram
	Making a Profile Histogram
	Tree Information

	Using TTree::MakeClass
	Creating a Class with MakeClass
	MyClass.h
	MyClass.C
	Modifying MyClass::Loop
	Loading MyClass

	Using TTree::MakeSelector
	Performance Benchmarks

	Impact of Compression on I/O
	Chains
	TChain::AddFriend

	Chapter 13. Math Libraries in ROOT
	TMath
	Random Numbers
	TRandom
	TRandom1
	TRandom2
	TRandom3
	Seeding the Generators
	Examples of Using the Generators
	Random Number Distributions
	UNURAN
	Performances of Random Numbers

	MathCore Library
	Generic Vectors for 2, 3 and 4 Dimensions (GenVector)
	Main Characteristics
	Optimal Runtime Performances
	Points and Vector Concept
	Generic Coordinate System
	Coordinate System Tag
	Transformations
	Minimal Vector Classes Interface
	Naming Convention
	Compatibility with CLHEP Vector Classes
	Connection to Linear Algebra Package

	Example: 3D Vector Classes
	Constructors and Assignment
	Coordinate Accessors
	Setter Methods
	Arithmetic Operations
	Comparison
	Dot and Cross Product
	Other Methods

	Example: 3D Point Classes
	Constructors and Assignment
	Coordinate Accessors and Setter Methods
	Point-Vector Operations
	Other Operations

	Example: LorentzVector Classes
	Constructors and Assignment
	Coordinate Accessors
	Setter Methods
	Arithmetic Operations
	Comparison
	Other Methods

	Example: Vector Transformations
	Constructors
	Operations
	Set/GetComponents Methods

	Example with External Packages
	Connection to Linear Algebra Classes
	Connection to Other Vector Classes

	MathMore Library
	Mathematical Functions
	Special Functions in MathCore
	Special Functions in MathMore
	Probability Density Functions (PDF)
	Cumulative Distribution Functions (CDF)
	Inverse of the Cumulative Distribution Functions(Quantiles)

	Linear Algebra: SMatrix Package
	Example: Vector Class (SVector)
	Creating a Vector
	Accessing and Setting Methods

	Example: Matrix Class (SMatrix)
	Creating a Matrix
	Accessing and Setting Methods
	Linear Algebra Matrix Functions (Inversion, Determinant)

	Example: Matrix and Vector Functions and Operators
	Matrix and Vector Operators

	Matrix and Vector Functions
	Matrix and Vector I/O

	Minuit2 Package
	ROOT Statistics Classes
	Classes for Computing Limits and Confidence Levels
	Specialized Classes for Fitting
	Multi-variate Analysis Classes

	Chapter 14. Linear Algebra in ROOT
	Overview of Matrix Classes
	Matrix Properties
	Accessing Properties
	Setting Properties

	Creating and Filling a Matrix
	Matrix Operators and Methods
	Arithmetic Operations between Matrices
	Arithmetic Operations between Matrices and Real Numbers
	Comparisons and Boolean Operations
	Matrix Norms
	Miscellaneous Operators

	Matrix Views
	View Operators
	View Examples

	Matrix Decompositions
	Tolerances and Scaling
	Condition number
	LU
	Bunch-Kaufman
	Cholesky
	QRH
	SVD

	Matrix Eigen Analysis
	Speed Comparisons

	Chapter 15. Adding a Class
	The Role of TObject
	Introspection, Reflection and Run Time Type Identification
	Collections
	Input/Output
	Paint/Draw
	Clone/DrawClone
	Browse
	SavePrimitive
	GetObjectInfo
	IsFolder
	Bit Masks and Unique ID

	Motivation
	Template Support

	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Dictionaries for STL

	Adding a Class with a Shared Library
	The LinkDef.h File
	The Order Matters
	Other Useful Pragma Statements
	Compilation

	Adding a Class with ACLiC

	Chapter 16. Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Types of Collections
	Ordered Collections (Sequences)

	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating Over a TList

	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	The Idea Behind TClonesArray

	Template Containers and STL

	Chapter 17. Physics Vectors
	The Physics Vector Classes
	TVector3
	Declaration / Access to the Components
	Other Coordinates
	Arithmetic / Comparison
	Related Vectors
	Scalar and Vector Products
	Angle between Two Vectors
	Rotation around Axes
	Rotation around a Vector
	Rotation by TRotation Class
	Transformation from Rotated Frame

	TRotation
	Declaration, Access, Comparisons
	Rotation around Axes
	Rotation around Arbitrary Axis
	Rotation of Local Axes
	Inverse Rotation
	Compound Rotations
	Rotation of TVector3

	TLorentzVector
	Declaration
	Access to Components
	Vector Components in Non-Cartesian Coordinates
	Arithmetic and Comparison Operators
	Magnitude/Invariant mass, beta, gamma, scalar product
	Lorentz Boost
	Rotations
	Miscellaneous

	TLorentzRotation
	Declaration
	Access to the Matrix Components/Comparisons
	Transformations of a Lorentz Rotation
	Transformation of a TLorentzVector
	Physics Vector Example

	Chapter 18. The Geometry Package
	Quick Start: Creating the “world”
	Example 1: Creating the World
	Example 2: A Geometrical Hierarchy Look and Feel

	Materials and Tracking Media
	Elements, Materials and Mixtures
	Radionuclides
	Tracking Media
	User Interface for Handling Materials and Media

	Shapes
	Units
	Primitive Shapes
	Boxes – TGeoBBox Class
	Parallelepiped – TGeoPara class
	Trapezoids
	General Trapezoid – TGeoTrap Class
	Twisted Trapezoid – TGeoGtra class
	Arbitrary 8 vertices shapes - TGeoArb8 class
	Tubes – TGeoTube Class
	Tube Segments – TGeoTubeSeg Class
	Cut Tubes – TGeoCtub Class
	Elliptical Tubes – TGeoEltu Class
	Hyperboloids – TGeoHype Class
	Cones – TGeoCone Class
	Cone Segments – TGeoConeSeg Class
	Sphere – TGeoSphere Class
	Torus : TGeoTorus Class
	Paraboloid : TGeoParaboloid Class
	Polycone : TGeoPcon Class
	Polygon: TGeoPgon Class
	Polygonal extrusion: TGeoXtru Class
	Half Spaces: TGeoHalfSpace Class

	Composite Shapes
	The Structure of Composite Shapes
	Composite Shape Example

	Navigation Methods Performed By Shapes
	Creating Shapes
	Dividing Shapes
	Parametric Shapes

	Geometry Creation
	The Volume Hierarchy
	Creating and Positioning Volumes
	Making Volumes
	Example of Volume Creation
	Positioned Volumes (Nodes)
	Virtual Containers and Assemblies of Volumes
	Examples of Volume Positioning
	Overlapping Volumes
	Replicating Volumes
	Volume Families
	Dividing Volumes
	Volume Assemblies

	Geometrical Transformations
	Matrix Creation Example
	Rule for Creation of Transformations
	Available Geometrical Transformations

	Ownership of Geometry Objects

	Navigation and Tracking
	TGeoNavigator Class
	Initializing the Starting Point
	Initializing the Direction
	Initializing the State
	Checking the Current State
	Saving and Restoring the Current State
	Navigation Queries
	Finding If Current State Is Changed For a New Point
	Finding the Distance to the Next Boundary
	Computing the Safe Radius
	Making a Step
	The Normal Vector to the Next Crossed Surface at Crossing Point

	Creating and Visualizing Tracks

	Checking the Geometry
	The Overlap Checker
	Graphical Checking Methods

	The Drawing Package
	Drawing Volumes and Hierarchies of Volumes
	Visualization Settings and Attributes
	Colors and Line Styles
	Visibility Settings

	Ray Tracing
	Clipping Ray-traced Images

	Representing Misalignments of the Ideal Geometry
	Physical Nodes

	Geometry I/O
	GDML

	Navigation Algorithms
	Finding the State Corresponding to a Location (x,y,z)
	Finding the Distance to Next Crossed Boundary
	Output Values

	Geometry Graphical User Interface
	Editing a Geometry
	The Geometry Manager Editor
	Editing Existing Objects
	Creation of New Objects
	Editing Volumes
	How to Create a Valid Geometry with Geometry Editors

	Chapter 19. Python and Ruby Interfaces
	PyROOT Overview
	Glue-ing Applications
	Access to ROOT from Python
	Access to Python from ROOT
	Installation
	Environment Settings
	Building from Source

	Using PyROOT
	Access to ROOT Classes
	Access to STL Classes
	Access to ROOT Globals
	Access to Python
	Callbacks
	CINT Commands

	Memory Handling
	Automatic Memory Management
	Memory Management by Hand

	Performance
	Use of Python Functions
	Plotting Python Function
	Fitting Histograms

	Working with Trees
	Accessing an Existing Tree
	Writing a Tree

	Using Your Own Classes

	How to Use ROOT with Ruby
	Building and Installing the Ruby Module
	Setting up the Environment
	Running ROOT scripts from Ruby
	Invoking the Ruby Module from CINT Interpreter

	Chapter 20. The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test
	Event – An Example of a ROOT Application
	Effect of Compression on File Size and Write Times
	Setting the Split Level

	stress - Test and Benchmark
	guitest – A Graphical User Interface

	Chapter 21. Example Analysis
	Explanation
	Script

	Chapter 22. Networking
	Setting-up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Chapter 23. Threads
	Threads and Processes
	Process Properties
	Thread Properties
	The Initial Thread

	Implementation of Threads in ROOT
	Installation
	Classes
	TThread for Pedestrians
	TThread in More Details
	Asynchronous Actions
	Synchronous Actions: TCondition
	Xlib Connections
	Canceling a TThread
	Deferred
	Asynchronous
	Finishing thread

	Advanced TThread: Launching a Method in a Thread
	Known Problems

	The Signals of ROOT
	Glossary

	Chapter 24. PROOF: Parallel Processing
	Chapter 25. Writing a Graphical User Interface
	The ROOT GUI Classes
	Widgets and Frames
	TVirtualX
	A Simple Example
	A Standalone Version

	Widgets Overview
	TGObject
	TGWidget
	TGWindow
	Frames

	Layout Management
	Event Processing: Signals and Slots
	Widgets in Detail
	Buttons
	Text Entries
	Number Entries
	Menus
	Toolbar
	List Boxes
	Combo Boxes
	Sliders
	Double Slider

	Triple Slider
	Progress Bars
	Static Widgets
	Status Bar
	Splitters
	TGCanvas, ViewPort and Container
	Embedded Canvas

	The ROOT Graphics Editor (GED)
	Object Editors
	Editor Design Elements
	Creation and Destruction
	Using Several Tabs
	Base-Class Editors Control

	Drag and Drop
	Drag and Drop Data Class
	Handling Drag and Drop Events

	Chapter 26. ROOT/Qt Integration Interfaces
	Qt-ROOT Implementation of TVirtualX Interface (BNL)
	Installation
	Qt Package Installation and Configuration
	Qt-layer Installation
	Qt Main C++ Classes CINT Dictionary
	Qt-layer Configuration

	Applications
	Qt-based ROOT Applications
	ROOT-based Qt Applications
	Qt Project for Creation of ROOT Shared Libraries with Qt Components and ROOT Dictionaries
	Using Qt “Designer” to Create Qt GUI with Embedded ROOT Objects
	Using Qt Class Library from the ROOT C++ Interpreter

	TQtWidget Class, Qt Signals / Slots and TCanvas Interface
	TQtWidget Public Qt Slots
	TQtWidget Qt Signals

	GSI QtROOT
	Create a New Project in the Designer
	main()

	Chapter 27. Automatic HTML Documentation
	Reference Guide
	Product and Module Documentation

	Converting Sources (and Other Files) to HTML
	Special Documentation Elements: Directives
	Latex Directive
	Macro Directive

	Customizing HTML
	Referencing Documentation for other Libraries
	Search Engine
	ViewCVS
	Wiki Pages

	Tutorial

	Chapter 28. Appendix A: Install and Build ROOT
	License
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	Installing and Building the Source from a Compressed File
	Target directory
	Makefile targets

	More Build Options
	Installing the Source from Subversion
	Subversion for Windows
	Staying up-to-date

	File system.rootrc
	TCanvas Specific Settings
	THtml Specific Settings
	GUI Specific Settings
	TBrowser Settings
	TRint Specific Settings
	ACLiC Specific Settings
	PROOF Related Variables
	Settings Related to Authentication for rootd and proofd
	Server Authentication in TServerSocket
	PROOF XRD Client Variables

	Documentation to Download

	Index

