User's Guide

ROOT

An Object-Oriented
Data Analysis Framework

ROOT

An Object-Oriented
Data Analysis Framework

User's Guide:

Table of Contents

1= = o PP XViii
O g 11 oo 1 o o PP 1
The ROOT Mailing LISES ..vvuiiiiiiiieiiiii et e 1
ContaCt INFOMMIBEIONceeeei ettt e e e e e e s 1
Conventions Used in ThiS BOOKuiiiiiiiiiiiii e 2
THE FramEWOIKeiiie e ettt e e e ea e 2
What 1S @ FrameWOorK?oooeiiiiieei e 2

Why OBJECE-Oriented?ccooriieiiii e 3
INSEAIING ROOIT ...ttt ettt e e et e e e e e e b e e eenans 3
The Organization of the ROOT Frameworkvviiiiiiiiiiiiiiiciii e 4
PROOTSY SN e e et e e e e e e aeaaenas 6
PROOTSY TID . e et e e e e e eeeaes 6
PROOTSY SHULOMTAIS ... e 9
PROOTSY SHESE vttt ettt e e e e ettt e e e e e e e ettt e e e e e e eeeeeeannns 9
PROOTSY SNCIUAE ..ttt eeeeees 10
PROOTSY SI<HBIrary> ..o e 10

How to Find More INfOrMEationcoouuuiiiiiiie e 10
Class REFEIENCE GUITEoeeiiiiieiiii e 10

2. GEING SEAMEceeeee ettt e 12
Setting the Environment Variablesooouiiiiiiiiii e 12
Start and QUit 8 ROOT SESSIONeeuuiiiiieiiieeii e et e e e et e e e et e a et e e e e et eeeneeenns 13
USING the GUI .. ettt e 14
Main Menus and TOOIDANccouuuiiiiiiiie e 15

The EdITOr Frameo it 19
Classes, Methods and CONSITUCLOTSuivuiiniieiieieeeeee e e aee e e 20

USEN TNEEFACTION ..eivtieeeeei ettt et e e e e e e ena s 21
Building a Multi-pad CanvVasccuuuiiiiiiieieii e 22
SAVING e CANVESuuiiiiiiii et 23
Printing the CanVasoooiiiiiiiii e 23

The ROOT Command LiNecoouuiiiiiiiiiee e 24
MUIti-liNE COMMEBINGSceevteieeiii ettt et e et e e e eeees 24
CINT EXEENSIONS ...ttt ettt e e e e e e e e eraa s 24
Helpful Hints for Command Ling TYPINGcoevuiieiiiiieiiiiiieeeeiie e 24
REGUIAI EXPIrESSIONieieitiee ettt et et e 25
1600011/ ¢ 1110 0 SO PP PR PPPTTOP 26
CoUiNG CONVENTIONSceieiiieeeeii ettt ettt e et et e e e e eannns 26
Machine INdependent TYPEScoeuuu ittt e e e 26

LG 1= v PP PP PPPPTIN 27
Global Vari@hlEscoeeiieeeii e e 27
OROOIT ittt aas 27
ORIl e e 28
ODIFECEONY .ttt ettt 28

OPA0 ettt e e e e et e e aaeaee 28

0] = 010 (o] o £ IR PPTPUPPPPTRRPPPIN 28
DIV e 29
ENVIFONMENE SELUD ...vveiieiie ettt e e e e e e 29
Logon and LOgoff SCIHPLS ...ceevuueiiiii et 30
HISIOTY FILE oo ettt e 30
Tracking MEmMOPY LEAKSiiiiiiii it 30
MEMOTY CRECKEY ... it 30
Converting from PAW 0 ROOTooiiiiiiiiiiiieiie ettt 31
Converting HBOOK/PAW FilESccoouiiiiiiiiiieeee et 31

I o T 0] =0 £ TP PP PPPPPTI 32
The Histogram ClaSSESccvuiiieiiiii ettt 32
Creating HiStOQraIMSiieit ettt ettt e e et et et e e e erb e e e enbaeeees 33

User's Guide

Fixed or Variable Bin SIZEooveuiiiiiii e e 34
Bin Numbering CONVENLIONoeiiiiiiicie e e e e e e e aeas 34
RE-DINNING L. 34

Filling HIiSIOOramMSuuiii e e e e e e e e e e e e e aaaees 34
Automatic Re-biNNING OPLtiONuiiiicii e e 35

Random Numbers and HiStOgramsoovviiiiiiiie e e 35

Adding, Dividing, and MUItiplYingccoouiiiiiiii e 36

[(0= ox (o) 37
(D= VYT I 1T (0o = 0 1 37
SEttiNg the SEYIE c.vne e 37

[= VT © o1 o] = 38
The SCATEEr PIOt OPLiONcvviiiii e e e e e e 40
The ARROW OPLiONiiiiieiii e e e e e e e e e e e e e eaaes 41
The BOX OPION ..evuiciiieeii e e e e e e e e e e e e s e e et e e e aaeeaneees 41
The ERROr BarsS OPLiONScivuiiiii i e e e s e e e et e et e e e e eaaees 41
The Color OPtioN ...ccuu e e e e 41
The TEXT OPtiON ..eeeiiii e e e e e e e et e e e e e e aaaas 42
The CONTOUN OPLIONSevuiiiiiieeiee e e e e e e e e e e e e e et e e e e e eeeen 42
The LEGO OPLiONS ...vvuiiiiiieii et e e et e e e e e e e e et e e et e e et e e e eeanns 44
The SURFACE OPLIONSuciiiiiii e e e e e e e e e e et e et e e e eaaeees 45
The BAR OPLONSivtiiiiiici et e e e e e e e e e eaens 45
The Z Option: Display the Color Paletteonthe Padccoocoiieiiiiiiiniin, 47
The SPEC OPLiON ..ovvuiiiiieii e e e e e e e e e e e et e e et e e e eannnas 48
G B F 0 o =10 1Y 50

Drawing a Sub-range of a2-D HiStogramccoveiiiieiiiiiiie e 50

Superimposing Histograms with Different SCaleS..........ooovviveiiiiiiiiie e, 51

S 1S (1o 1 o] = Y PPN 52

Setting Line, Fill, Marker, and Text AttribUEScoevviiiiiii e 53

Setting Tick Marks 0N the AXIScuueiiii e 53

Giving Titlesto the X, Y and Z AXIS ...ceuniiiiiiiiie et e e 53

Making a Copy Of an HiStOgramocvuuieiiiiiii e e e e 54

NOrMaliZING HiSLOGraMSuuiviiieii e e e e e e e e e e e e eaanas 54

Saving/Reading Histograms to/from a Filecocoiiiiiiiiii e 54

MiSCEIlaNEOUS OPEIGLIONScevuieiiieeiiie e e e e e e e e e e e e e e e e et e e et e eeanaas 55

Alphanumeric Bin LabElSoovi e 55
Option 1: SEBINLADEcooviiiiie e 55
OPLON 2: Fll oo 56
(O o]0 JRC N B (= =] - 1 P 56
0] A 1o T P 57

HISIOgram SEACKS ...vuiiiiicii e 57

[o = o TE 0o = 10 1 58
(210 T Lo I @ o4 o] = 59
Drawing a Profile without Error Barsc.ccueeeiiiiiiiiiiiii e 60
Create a Profile from a 2D HiStOgramccceuiiiiiieiiii e e e e 60
Create a Histogram from a Profile ..o 60
Generating a Profile from @ TTree ...ovu i 61
2D PrOfIES oottt e 61

[SO SUITACES ...ttt ettt e et et eans 62

3D IMPLICIE FUNCHIONS .. oovicciecii e e e e e e e e e e e e e et e e aaeees 62

LI =2 PSP 63

The User Interface for HiStOgramsocvuueiiiiiiiii e e e 64
LI 1 =] o PP 65
LI 22 = 1 (o PP 67

=0 70

1 o o 70
Graph Draw OPLiONSu.iiueiiiieiie e e e e e e e e e e e et e et e e et e e eanaaees 70

SUPerimMpPOSING TWO GIapiScvveciii e e e e e e e e e e e e eees 73

Graphs With EITOF BalISciivuiiiieii e e e et e e e e e e e e et e e et e e eanaaees 74

User's Guide

Graphs with ASymMELriC Error Barscooouiiiiiiiiiii e e 75
Graphs with ASymmELriC BENt ENTOrScovviiii e e 77
I =] 1 o - 78
TGraph EXCIUSION ZONEuuiiiiiici e e e e e e e e e e e e 78
LI = 1o 1 L SO SPPTRTSPPIN 80
TWO DBEBSELS ...eueeieeieeee et e 80

ONE DEESEL ...cenieeiee e 80
TMUIGIapN L. e e 8l
1= o 724 5 L PSP 82
LI To] 012 (o) 85
Fitting @ Graph ...ooee e 85
Setting the Graph's AXIiS Title ...covu i 85
Z00MING & Graph ...coee e 86
The User Interface for Graphscccouiiiiiiiie e 87
o T 0ol TS (0 = o 1P 88
The FIt MEENOA ... e e et e e et eeeees 88
Fit with a Predefined FUNCLIONoooiiiiiiii e e 89
Fit with @ User-Defined FUNCLIONooiiiiiiiiiii e 89
Creating a TFL With @ FOrmMUIAcoviiiiii e 89
Creating a TFL With Parametersccviiiiiieiii e 89
Creating a TFL with aUser FUNCHIONooiiiiiiii e 90
Fixing and Setting Parameters’ Boundsooeviiiiiiiiiiiii e 91
Fitting SUD RANGESciiiiiii e e e e e et e et e e e e eans 91
THE FIt Panel ... 92
Function Choice and SEttINGS ... cvvviiiiicii e e 92
[T =111 o 93
(D= VLT © o1 o] = 93

PriNt OPtioNS ...ovuiiiii e e 94
ComMMANd BULLONSueiiiiiieeiiis ettt e et e eeeaa e e eenens 94
Fitting MUltiple SUD RENGEScovviiiiiiiiii e e e 94
Adding FUNCLIONS t0 the LISt ..ouvuiiiiiii e 95
CombinNiNG FUNCLIONScuuiiiiiiciii e e e e e e e e e e e e eaa s 95
ASSOCIAEEA FUNCHION ...t e e et e et e e e e e e e eae s 97
Access to the Fit Parameters and RESUILSvviiiiiiiiiiiiii e 97
F S o e 1= o B o] £ TSP 98
LS = 111 s S 98
The Minimization PaCKageoeviiiiiiii e e e e e e e e e een 98
Basic Concepts Of MINUITo.uuiiii e e e e 99

The Transformation of Limited Parametersoovevvvvinieiiiiinieiiiiin e 99

How to Get the Right Answer from Minuitcoocoiiiiiiiiiini e, 100
Reliability of Minuit Error ESmatesccocuviiiiiiiiiiecccein e 101
FUMILI Minimization PaCkagecccuuiiiiiiiii et e e e e e e 102
NEUFAl INEBEWOTKS ...t e et e e e et s e e e et e e e eeaaaeeeees 103
F g1 (8o [o PRSPPI 103

THE MLP e e 103
Learning MEthOOSuiiiiiiii e 104
USING the NEIWOTKciiicii e e e e e e e 104
EXAMPIES oo 105

ST N 1 = 3 PO 108
Classes, Methods and CONSITUCLOIScvevvuneiiiiiiie et e e e et e e e e eeaees 108
Inheritance and Data ENCapSUIELIONu.iiiiiiii e e e 108
VK= i aToTo I@ Y= 1 ¢ T 1 oo N 109

(D ir= W =g (o= o LU | = 1 o I 109
Creating Objects on the Stack and HEaPc.ooveviiiiiiii e 110
7. CINT the CHt INEIPraLEY ...ivve e e e e e e e et e e e et e e e e eaenns 114
LAY = S = O N ISP 114
The ROOT Command Line INtErfaceooevivuiiieiiiiiie e 115
The ROOT SCIPt PrOCESSON ...cvuuiiiiieiiii e e et e e e e e e e e et e et e e aa e eens 117

User's Guide

UN-NAME SCIIPES ©.ievieiii e e e e e e e e e e e e e et e e et eean e eeen 117

[N E= 1010 IS o T £ 118
Executing a Script from @ SCrPtviviiiieii e 119
Resetting the Interpreter ENVIFONMENTuiiiiiiiii e e 119
A Script Containing a Class DEfiNitionooeviiiiiiiiieie e 120
(D= o100 (0T 010 IS o (] o] =T PPN 122
Tt o= 1o @ o= ox N 122
ROOT/CINT EXtENSIONS 10 C ..uuiiiiiiieiiiii et e et e et e e e eai e aees 123
ACLIC - The Automatic Compiler of Librariesfor CINTcccoovviiiiiiiiieiineeieee, 124
{152 o PSPPSRIt 124
Setting the Include Path ... 126
Dictionary GENEFAtiONcvvueiiiieeie e e e e e e e e e e e e e e e ean e eees 127
Intermediate StePS and FIlESccvvn i 127
Moving between Interpreter and COMPIlercc.veviiiiiii i, 128
REFIEX et 129
L@ N YT PP 129
Selecting Types And MembBErs ..o 130
Genreflex and TEMPIALEScovvniiii e 130
GCCXML INSEABHION ... e s 131
REFIEX AP e 131

L] 01 = U PSPPT 134

SR o= o @ 1T/ 1= £ o o L PN 135
Ownership by Current Directory (gDITECIONY)vvveneiiieiii e 135
Ownership by the Master TROOT Object (QROOT) ...uvivviiiiiiiiiieeeeee e 135
The Collection Of SPECIAISuuiiiiiiiiii e 136
Access to the Collection CONENSvevevieiieiiiii e 136
Ownership by Other OBJECESovviiii e 136
OWNErship DY the USEr ...ouniii e e 137
The KCaNDEIELE Biluiiiiiiiiieeiiii e 137

The KMUSICIEANUP Bitceeiiiiiicie e e 138

9. Graphics and the Graphical User Interfacecooevviiiiiiiiiie e, 139
(D= 1T I @ o] =ox = 139
Interacting with Graphical OBJECEScceviiiiiic e 139
Moving, Resizing and Modifying ObjECESccoviviiiiiiiiiieiie e 139
S e] To [O o= v £ 140
Context Menus: the Right MoUSe BULIONcooviiiiiiieiiiiccie e 140
Executing Events when a Cursor Passes on Top of an Objectc.ccovevvnneann. 142
Graphical Containers; Canvas and Padccoceuiviiiiiiiiiie e 143
The Global Pad: gPadoiiiiiiiiii e 144

The Coordinate Systems of aPadccoevviiiiiiiiiiiiceee e, 145
Converting between Coordinate SyStEMScvvuieiiiiieiieeiiie e e 146
Dividing a Pad into SUD-Padscccouuiiiiiiiiiiii e 147
Updating the Padocoiiii e 148
Making a Pad TranSparentoeeeueeiiieiiie e e e e e e e e e e e e e eees 149
Setting the LOg SCAlEuiiiici e 149
WaitPrimitive Methodoouuiiiiiiii e 150
LocKing the Padoiiiiii e 150
(CTr=o] 1 Tor= IO o= ox 150
Lines, Arrows and POIYIINESco.uiiiiiiiii e 150
Circles and ElHlIPSES .vuuiiiiciie e e e e e 151
RECLANGIES ..o 152
IVLBIKEIS ettt e et e e et e e aae 152
Curly and Wavy Lines for Feynman Diagramscceeeeviieiiieeiiieciineeeieeeannn 153

Text and Latex Mathematical EXPreSSioNSccuvviiinieiiieiiii e e e e eeann 154
LC1(c s Q= 1 = T PP 155
Mathematical SYMBOIScouuiiiiiii e 156

TEXE N @ PAA ..eeiiiie e 159
AAXIS ittt et et e a e e et e e aaan s 160

Vi

User's Guide

AXIS TIHIE Lo 161

AXis Options and CharaCteristiCScouuiiiiiieiiiiieei e e 161
Setting the Number of DIVISIONSccvuiiiiiieiicc e 161
ZOOMING the AXIS .uuiiiieiii et e e e e e e e aen 161
Drawing Axis Independently of Graphs or Histogramsc.cccoeevviieiiineiinnen, 162
Orientation of TiCk Marks 0N AXIS ...cccuuniiiiiiiieeiiis e 162

L AEIS L. 162

AXIS WIth TIME UNITS ..uuiiiiiiiieii e 164

AXIS EXAMPIES ..oviiii e 168
Graphical Objects AttHDULESciiiiii e 171
TEXE ALIDULES ..oeeeee e 171

Ling AIITDULES ...oeevi e 174

FIL ATIDULES ..eeeee e et e e e e e e e e e 174
Color and Color PAlELESoceiiiiieeiiii e 175

The GraphiCs EItOrcouuiiii e e e 177
I S o T o USSP 178
LRG0] (o PP 178
COPY AN PASIEiie i 179
USING the GUI .eeiiic e e 179
ProgrammatiCallyoeiiniiiiiiii 180
=01 0o P 180
The POSESCript INTEITACE ...uiiiieci e e 182
SPECIAl CharaCterSivvicii e e e e e eaa s 183
Writing Several Canvases to the Same PostScript File.........ocoovvviiiiiiiiineeins 184
Create or MOdIfy @ Sty ovnii i 186
D VIBWETS ..ieitieeeett e ettt ettt ettt e ettt e e et e e et e e et e e et e e et e e e et aaaes 187
INVOKING @ 3D VIBWET ...uuiiiiiieiiii et e e e e e e e e e e e et e et e e ean e ean s 188

THE GL VIBWEN i e e e eaenas 188

THE X3BD VIBWEL .euiiieeiiiii et s et e e e e e e e e et n e e e e aaeeaannes 195
Common 3D Viewer ArchiteCturec.ooovvuiiiiiiiiii e 195

10. FOIAErS @N0 TASKS .. ieeetieeiiii ettt e et e e e e et a e e e et e e e eetaaeaees 204
010 L= £ PP 204
WHY USE FOIAEIS? ...t e e e e e e e e aens 204
HOW 10 USE FOIAEIS ..ottt e et e et 205
Creating a Folder Hierarchycoooviiiiiiii e 205
Posting Data to a Folder (ProducCer)oeevnieiiiiieii e 206
Reading Data from a Folder (CONSUMET)cccvuiviiieiiii e e e e e 207

LI = 5P 207
Execute and DEDUG TaSKSuivuniiiiieii e e e e e e e e e e e e e e e e e e e 209
T 1o 01 @ 11 211
The Physical Layout of ROOT Fl€Sccvuuiiiiieii e 211
The File HEBOENccovvi e e 213

The Top Directory DESCIIPLONccuuiiiiieii e e e e e 213

The Histogram RECOIASoiiiiiiii e e e e e 213

The Class Description List (Streamerinfo List)ooevvniiiiiiiiiiiiiieeciecveeeeee 214

The List of Keys and the List of Free BIOCKScoocvviiiiiiiiiiiiicin e, 215

FilE RECOVEIY .ot e e e e e e aen 216

The Logical ROOT File: TFile and TKEY ...ccvuiiiiiiiiicieeee e 216
Viewing the Logical File Contentsoevviiiiiiiiiiie e, 218

The CUITENt DITECIONY ...vvueiiiieii e et e e e e e e e e e e aaeeaens 219
Objects in Memory and Objects 0N DisKevviiiiiiiiciiiiccin e 220
Saving Histograms t0 DiSKicuuieiiiieiiiieiie e e e e e e e eaens 222
Histograms and the Current DIreCtOrycccouuviiiiiieiiieeiii e 223
Saving ODJECES t0 DISK ..ivvuiiiiiiii e e 224
Saving CollectionS t0 DisSKiiiuiiiii e 224

A TFile Object GOINg OUt Of SCOPE .. .cvvuiiieiiii e e 225
Retrieving Objects from DisSKcccuuiiiiiiiiiii e 225
Subdirectories and Navigationoeeiuiiiiiieiiii e e 226

vii

User's Guide

S (=2 0 PP PPN 228
Automatically Generated SIrEaMENSc.uviivniiiiieiie e e e 228
Transient Data MembBErs (/1)ceun e 229
The Pointer 10 ODJECES (/1) ..vniiii e e 229
Variable Length AITayccooviiiiiiii e e e e 230
D018 o) 1=C v22 P 230
Prevent SpPHLNG (/]]) «veoeeeeeeieeeeee et 231
Streamers with Special AdditionSc.oviiiiiiiiiic 231
WIHHING ODJECES ...ivviiiiii e e e e e e e e e e e eanees 232
IgNOre ODJECt SITEAMENSuiiviciii e e e e e e e e e eeen 233
Streaming @ TCIONESAITAYuuevieeeiii e e e et e e e e e e e e et e ea e eees 233

Pointers and References in PErSIStENCYoovvuiiiiiiiiicci e e 233
Streaming CH+ POINTEISouviiiii e e e e aaaas 233
Motivation for the TRef Classoooiiiiiiiiiii e 234
USING TRES L.t e 234
HOW DOES [T WOTK? .t eeeate e eees 234
ACHION ON DEMANG ..ot e e e et e e e eeeens 236
Array Of TRE ..o 237

SChEMA EVOIULION ...t e e et e e e e s 238
The TSreamerinfo ClaSsviiiiuiiiiii e 239
The TStreamerElement Classovviviiiiiiiiiie e e 239
Example: THL Streamerinfoooveeiiiiiie e 240
Optimized Streamerinfooiiii i 240
Automatic Schema EVOIULIONcoouuiiiiiiisi e 241
Manual Schema EVOIULIONcoooiiiiiiiiii e 241
Building Class Definitions with the StreamerInfoc.ccoeveviiiiiiiiee, 241
EXample: MaKePIrOJECE ... cvvniiii e e e 242

Migrating t0 ROOT 3 ...t e e e e e e e e e et e e e e e e aanas 244

Compression and PerformanCeco.iiiiiiiiii e 245

Remotely Access to ROOT Files viaarootdooevvveiiiiiiiiiiciieecce e 246
TNEFITE URL .ottt e et e et e e e 246
Remote AULNENtICALIONiiiiii e 246
A SIMPIE SESSION ..iitiiiiiieee e 246
L= 000 B =" 1 1o o PP 247
Starting rootd VIa iNEtdcooviiiiiieiii e 247
Command Line Arguments for rootdc.coeiviiiiiiiiii e 248

Reading ROOT Files via Apache WED SEIVErcc.cvviiiiiiiieciic e 248
Using the General Open Function of TFIleccocoiiiiiiiiii e, 249

XML INEEITACE ..ot e 249

2 I 1= == PN 251

Why Should YOU USE @ TIEE? ...t e e e 251

YN 0] o] 1T I I == 251

Show an Entry With TTree:iShOWive e e 252

Print the Tree Structure with TTree:Printoviiiiiiiiii e 253

Scan aVariable the Tree With TTree:SCaNvvvvvviiieiiii e 253

THE TIEE VIBWES ..oeeiiiiii et e e et e e eeaens 253

Creating and SaVING TIEEScuuuiiii e e e e e e e e e e e eaa e eees 256
Creating a Tree from a Folder Hierarchyc..ccooiiiiiiiii e, 257
Tree and TREF OBJECESuuiiiicii e e 257
AULOSAVE ...ttt ettt et ees 258
Trees with Circular BUFFESuiiii e 258
Size of TTreeinthe FIle ..ocovvniiii e 258
User Info Attached to a TTree ObJectoovvviiiiiiiii e 259
FgTo L] oo = T (= TN 259

BIaNChES ... 260

Adding a Branch to Hold a List of Variables.........ccocoiiiiiiiiiii e 260

Adding a TBranch to Hold an ObjECEcocviiiiiiieii e 262
Setting the SPlt-1eVElooei 262

viii

User's Guide

Exempt a Data Member from Splittingccoooieiiiiiiiiin e, 264
Adding a Branch to Hold @ TCIONESAITAYccevveiiieeiiieciieeee e e e e 264
Identical Branch NAIMESuiiiiiiiiieiii e 264
Adding aBranch With @ FOIErccoviiiii e 264
Adding a Branch with @ ColleCtioncoevuiiiiiiiiiii e, 265
Examples for Writing and Reading TreEScvvviiiiiiiiii e 265
Example 1: A Tree with Simple Variablesccooiiiiiiiiii i 266
WIHEING the TrEE covn i e e e e 266
VIaWING the TrEE ..o e 267
REAAING the TrEE ..oove i e 268
Example 2: A Tree With @ C SHUCIUMEvvvniiie e 269
WIHEING the TrEE covn i e e e e 271

F N 47z Y= 1 273
Example 3: Adding FriendSto TreeSciiiiiiii i 274
Adding a Branch to an EXiSting Treeccvvviiiiiieiii i e 274
LGS0 e (o 1T o o PP 275
Example 4: A Tree with an EVENt ClasSccuoieiiiiiiiiieiii e 277
THE EVENE ClESS 1.vvtiiiiii et e et e e 278

The EventHEader Classooviiiiiiiiiiiii et 278

THE TraCK ClaSS cevvuiiiiii e 279
WIHEING the TIEE ovn i e e e e 279
REAAING the TrEE «.cove i e 280
Example 5: Import an ASCIl FIleinto @ TTre ...c.uuveiiiiii i e e 282
TEEES IN ANAYSIS 1o neiiiieii e et e aaa e 282
Simple AnalysiS USING TTIEEIDIAWcvvviiiii e e e e e e e 283
Using Selection With TTreeDIraWcveviiiiiiii e 283
Using TCut ObJectsS in TTreE:IDIAW c.vuvvviiiii e e e e 284
Accessing the Histogram in Batch Modecocoiiiiiiiiiii e, 284
Using Draw Options in TTreE:DIaWcovvuviiiiiiii e e e e e 285
Superimposing TWO HiStOgramSeiiviiiii e 285
Setting the RaNQGE iN TTIEE:IDIAWivveiiie e e 286
TTree:Draw EXaMPIEScviiiii e 286

UL Tl I I = s o= o 294
TEventList and TENIYLIS ..oouniiiiiii e e e e e eeas 295

[T aTo = W L1 oo =1 o S 298
USING TTrEE:MEKECIBSS .. .cvuiii e e e e e e e e e e een 300
Creating a Class With MaKeCIaSScccvviiiiiieiiii e 301

Y Y@ = 3 302
YL = S USSP 303
Modifying MYCIass::LOO0Poviiieiiiei e e 303
(o7 o 1 0o 1Y, Y O F- N 304
USING TTree::MaKESEIECIONcvu i e e e 305
Performance Benchmarksoviiiiiiiiiii e 306
Impact of CoMPression ON 1/Ocouniii e 307
CINS ... 308
TChaN:AAAFIEN ..oevvieeei e 309

13. Math Libraries in ROOTciiiiiiiiiiiii i e e e e e e e e ae s e s e e e eaeesnnnes 310
111 0 PSS 310
RaNAOM NUMDENS ... e 310
I 2= 110 o TSP 311

LI =110 010 PPN 311

LI =110 12122 PP 311

LI =110 01101 PP 311
Seeding the GENEIAOrSccuuiiii e e 311
Examples of USiNg the GENEratorsovvevieiii e e 312
Random Number DisStribDULIONSccooviiiiiiiiiiecc e 312
UNURAN it e e e e et et e e e e e e ae e et s e aeeaeaaeseenns 313
Performances of Random NUMDBErSccoovviiiiiiiiiiii e 314

User's Guide

MENCOrE Libraryoiiiuiieiii e e e e e aaas 315
Generic Vectors for 2, 3 and 4 Dimensions (GENVECLON)ccevveiiiiiiiieeiiiieeiieeeiiees 315
MaiN CharaCleiSHICS ..vvvveieiiie e e e e e e s 316
EXxample: 3D VECIOr ClaSSESccuuuiiiiiiiiii e et e e e e e e e e e e e e eaes 318
Example: 3D POINt ClaSSESuuiviieiiiiiiiii e e e e e e e 321
Example: LorentzZVector ClaSSeSovvvuiiiiiieiiiiecie e e e e e e 322
Example: Vector Transformationscccuuveiiieiiiiieiie e ee e 325
Example with External Packagescoovuuieiiiiiiiiiice e 327

V= a1\ Lo T =T T = 328
Mathematical FUNCHIONSoouiiiei e 329
Special FUNCtions iN MathCoreccuuiiiiiiiie e 329
Special FUNctions in MathMOreooiviiiiii e 330
Probability Density FUNCtioNS (PDF)cocvviiiiiiciii e e 332
Cumulative Distribution FUNCLIONS (CDF)cvvviiiiieceieee e 332
Linear Algebra SMatrix Packagec.uoeiuuiiiiiiiiiii e e e 333
Example: VECtor Class (SVECION) .uuuvviuiiiiiieeiii e e e eee e e e e e 334
Example: MatriX Class (SMatfiX)oeeeuieiiiieeiiieiiiieeiie e e e e e e e e e s eaanees 335
Example: Matrix and Vector Functions and Operatorscoovevvueevinieeiineennnnnnn. 338
Matrix and VECLOr FUNCLIONScvvuviieiiiiiiee e 339
MINUIT2 PaCKAJE ...vuniiiiicii e e e e e e e e e e e e e e e aaas 339
ROOT SEALISHCS CIaSS8S ... evevviieiiiiiie et et e et e et e e e e et e e et e eeeaan s 340
Classes for Computing Limits and Confidence Levels..........ccooveviiviiiiiiiiineennnnn, 340
Specialized Classes fOr Fitlingcceuiiiiiiiiiiieeiie e e 341
Multi-variate ANAlYSIS ClaSSESuuiiiiiiiiii e e e 341

14. Linear AIgebrain ROOTciiiiiii i e e e e e e e e e aane e 342
OVENVIEW OF MEETX ClESSES ...vuuiiiiiii ettt e e e et e e e 342
= D = (0] (1= 343
ACCESSING PrOPEITIES .. cvviciiiieii e e e e s 343
SEtiNG PrOPEItIES . .ovviiiii e 344
Creating and FilliNg @ MatriXovuunieiiieiiie e e e e e e e e e e e 345
Matrix Operators and MethOdsScooiiiiiiiii i, 347
Arithmetic Operations between MatriCeScccviiiiiiieiiii i 347
Arithmetic Operations between Matrices and Real Numbers.............cccoeevveneeenn. 348
Comparisons and Boolean OPErationsc.ccuuveiuiieeiineeiiiieeiieeeiieeeaeeaa e eannes 348
MBEFTIX NOFITIS .t e e et e e et e e e et e e e eaan s 349
MiSCEIlANEOUS OPEIBEOISvvvieeii et ee e e e e et e e e e e e e e e e et e ean e eeen 349

= 1D G AT N PP SOPPRTRPI 350
A L= @0 1= - (o] =T 351
VIBW EXBMPIES ..ovniiiiii e e 353
MatriX DECOMPOSITIONSiiiieiiieiii et e e et eeanaees 353
Tolerances and SCaliNGccvveiiii e 355
Condition NUMDBET ..o 356

0 OSSPSR 357
BUNCh-KaUFMEN ..o e eaees 357
CROLESKY .ottt 358

QRH e e e a e aen 358

SV D e e et aea 358
MaEriX EIgEN ANAIYSIS ..iviniiii e 358
S 0 1c c o I O00] 0T 1 o] = S 359
T Ao o[o = W 361
The ROIE Of TODJECE ...uiiiiicii e e 361
Introspection, Reflection and Run Time Type Identificationc..ccceeevvnnnee. 361
L000] 1 1= 1 o) PP 361

g1 1 7A@ 0 oL | P 361
=TT 017 = PN 362
ClONE/DIAWCIONE ... cieeiiiee e e e e e 362
BIOW S .ot 362
SAVEPTIMITIVE ..t 362

User's Guide

(€1 (@] 1= ot {1 o TP 362

S o] L= PSP 362

Bit Masks and UNiqUE IDc.uuiiiii i 362
KoY 1 o TSP 363
TEMPIAEE SUPPOIT .. ceeneiiie et e e e e e e e e e e e e et e e et eeaaeeaens 364

The Default CONSLIUCTOTiivveiieeiiis ettt e e e e e e e eeaen s 365
rootcint: The CINT Dictionary GENEIELOreveunieeiieeieeeiieeeieee e e e e e e eeaes 366
DICHONATES FOI STL iivvtiieiiiiiiee st e e e 368
Adding a Class with a Shared Libraryccoooviiiiiiiiiiiin e 368
The LIiNKDEf.n FIlE ... e 369
Adding a Class With ACLIC ..o e e e e 375
16. COlECIION ClASSES .. vuuieiiiii et ettt e et e et e et e e et e e e et e e e et e e e eaen s 377
Understanding CollECHIONSueiiiiiiiie e e e e e e e eaes 377
General CharaCteriStCSuuuieeieiiiee e e e e e e e e et eaeee 377
Determining the Class of Contained ObjECEScccviviiiiiiiiiieiie e 377
TyPeS Of COIECHONScvvniiii e e 378
Ordered ColleCtions (SEQUENCES)uuvivrieiiieeiie e e e e e e e e eaens 378
Iterators: Processing @ CollECHiONooiiiiiii i e 379
FOUNAALION ClIASSES ...ievviiiiieii e e et e e e e e e e e 379
A COlECIADIE ClESS ...t 380
The TIEr GENENIC ITEIEION ...vevuneieii e e e e e e 381
The TLISE COHECHION ..evviieiiii e e e e s 382
[terating OVEr @ TLISE .oovuiiiiii e e e e e e e 383

The TObJArray COlECHONcovecii e e 384
TClonesArray — An Array of Identical ObjectS........ccoviviiiiiiii i, 384
The Idea Behind TCIONESAITAYccuueiiiiiiiieeiii e ee e e e e e e e e e e eanas 385
Template ContaiNerS @A STLoiiiiiiiiiciie e e e e e e e e 385
A 017 Tor Y Ao (o] ¢ T PN 387
The PhySICS VECIOr ClaSSESiivuiiiiiciie e e et e e e e e e e et e e e e e eeen 387
V4= (o TP UPTPT 387
Declaration / Access to the COMPONENLSccevuieiiiieiiii e aen 388
(@141 000 147 =P 388
Arithmetic / COmMPAriSONoiiiii i e e 389

R S YA o (o] £ PP 389
Scalar and VECIOr PrOOUCESuiiiiiiieiiiis e e e 389
ANgle between TWO VECLOISiviiiiiiii e e e e e 389
ROLALION @rOUNG AXES .. ittt e e et e e et e e e eatenaeeees 389
ROtation arouNd @ VECLOTcvivveiiiiiii e eaees 389
Rotation by TROtaHiON ClaSSuiiiieiiiiii e e e e e 389
Transformation from Rotated Frameccooovvviiiiiiiiiii e 390
1301 Lo o PSP 390
Declaration, ACCESS, COMPANISONSvvuuiiiiieeiieeeiiieeeteeete e et e e e e eereeranas 390
ROLALION @rOUNG AXES ...ttt et e et e e e et e e e eatnnaeeees 390
Rotation around Arbitrary AXISc.ueiiiiiiiiii e 391
ROLAtiON Of LOCAl AXES ...uiieiiiieieii ettt e e e 391
INVEISE ROLALION ...iiiiiiii e e e e e 391
Compound ROLALIONSueiiieeii e e e e e e e e e e e eaa e eaen 391
ROtation Of TVECIOI3 ...ociiiiieiii e e e e eaaens 391

Lo (< 074V < o o PP 392
(D<o == o] o PSPPSR 392
ACCESS 10 COMPONENTS ...ttt ettt e et e e e et e ranans 392
Vector Components in Non-Cartesian Coordinatesc.ccuvvevveevinieiinneeinnennn, 393
Arithmetic and CompariSoN OPEFatOrScceuueieinieeiieeeiiie e eeiieeriee e eaanans 393
Magnitude/Invariant mass, beta, gamma, scalar productccceceveiiiieeennnn. 394
LOFENZ BOOSEeeiieeeeeie e e e e 394
[0 110 SRR 394

TS ol T == o PP 395

L o)1= g4 2 o] 1o o NP 395

Xi

User's Guide

(D<o == o] o PSPPSR 395
Access to the Matrix Components/CoMPariSoNSccvuevivnierriieeiineeeinieeaeeeannns 396
Transformations of a Lorentz ROEHIONcc.uuveiiiiiniieiiin e 396
Transformation of @ TLOreNtZVECIOrviviiiiiieiiiii e 397
Physics VECtor EXAMPIEiviiiiii e 397

18. The GEOMELTY PaCKaQeuivvriiii e et e e e e e e e e e e e eaeas 398
Quick Start: Creating the “World”cc.oiiiii i 398
Example 1: Creating the Worldcccooiiiiiiiii e 398
Example 2: A Geometrical Hierarchy Look and Feelcoocoveveiiiiiiiincinnen, 399
Materials and Tracking Mediaocoviiiiiiii e e 402
Elements, Materials and MiXIUrESuuiieiiiiiieiiiiieee e 402
RAJIONUCTIAESvveeeeii e 403
Tracking MeEdiaoooini e 406

User Interface for Handling Materials and Media..........ccoocoiveiiineiiiieiineeiieee, 406

S =0 407
LU T £ 408
Primitive SNapESoiiiiiie e 408
COMPOSItE ShAPESvn i 420
Navigation Methods Performed By Shapescooevvieiiiiiiiiiiceie e, 423
(O g To [7= o == 424
DiVIAING SNAPES .vuiii e 424
ParametriC ShapES ... vvviiiii e 424
GEOMELTY CrEAION ...ivvniiii e eii e e e e e e e e e e e e e e e e e et e e et e e et e e aaeeaenns 425
The Volume HIErarChyccoouuiiiiii i 426
Creating and Positioning VOIUMESoiiiiiiiiiiiciii e 427
Geometrical TransforMatioNScuuuieieeiiie e e 435
Ownership of GEOMELTY ODJECESc.uuiiiiiieiiiieiii e e 438
Navigation and TraCKingceuueiiiiiiiiie e e e e e e e e eeen 439
TGEONAVIGAOr ClASSivvniiieiiii e e e e e e e e e e eees 439
Initializing the Starting POINtcooiiiiiii e 440
Initializing the DIr€CIONcuuiiii e 440
INItIAlIZING the SEAEcvvecii e 440
Checking the CUITeNt SEaeccuuiiiiiiiii e e 441
Saving and Restoring the Current Stateooeevviiiiiiiiii e, 442
NaVIigation QUETIESuueiiiieiii e e e e e e e e e e e e e et e e e e e eaaes 443
Creating and Visualizing Trackscc.viiiiiiiiiiicii e 446
Checking the GEOMELTYcoviieii e e e e e e 448
The Overlap ChECKErcvnii e e 448
Graphical Checking Methodscccoviiiiiii e 450

The Drawing PaCkageccuuiiiiiiii e e e e e 451
Drawing Volumes and Hierarchies of VOlUMEScccooevviiieiiiniiiinicieeeeie, 451
Visualization Settings and ARIBULESoevviiiiii i 452

LR VA 1 - 1 1o [P 453
Representing Misalignments of the Ideal GEOMELTYcoevviiiiiiiiiiiiii e, 454
[)Y o= I N oo L= 454
170107 12 L 455
DML e 457
Navigation AlGOrithmScouii e e 457
Finding the State Corresponding to a Location (X,V,2) «..ccuuvevvveiiineeniieeiiieeeineeenn, 457
Finding the Distance to Next Crossed Boundarycccoceevveiiieeiiiieviineeiineennn, 459
Geometry Graphical UsSer INErfateoiviiiiiiii i 462
Editing @ GEOMELTY ...uciviciiie e e e e e e e e e e aaaas 462

The Geometry Manager Editoroviiiiiiiii e 463
Editing EXIiSting ObJECESuiiiiiciie e e 464
Creation Of NEW ODJECES ... ccvuiiiii e e e e e aaas 465
Editing VOIUMES ... e 465

How to Create a Valid Geometry with Geometry EAitors.............ccoevvvvvieinnennnnn. 467

19. Python and RUby INtEFaCEScuuiii e 469

Xii

User's Guide

PYROOT OVEIVIBW ..uiiiiiiieiieiie e ee ettt e e s e et e e et a e e eat e e e eaan s e e e esen e eeenens 469
Glue-iNG APPIICALIONS .. .oveieeii e e e 469

Access to ROOT from Pythoncoooviiiiii e, 470

Access to Python from ROOTcoviiiiiiccie e 470

FgS = = o) o PSP 471

U o Y (O @ I LT 472

MemMOry Handlingcooeuniiiiiiiii e e e e 476
PEITOIMMANCE ...eeee et e a77

Use of Python FUNCLIONSoiiiiiic e e e 478

WOTKING WIth TIEES ...evuiii it e e 479

USING YOUr OWN ClaSSE5 . ..uuiiiiiiciii e e e e e e e e e e e e aaaas 481

How to Use ROOT With RUDYuiiiiii e e 482
Building and Installing the Ruby Moduleccocoviiiiiiiiii e 482

20. The TULOMTEIS @N0 TESES ..vuueiiiiieeeiiii ettt e e e et e e e et e e e et e e e eaen s 485
PROOTSY SHULOMTAIS .. eeeeeiiieeeeii ettt et e e et e e e aee e e eaeen 485
BROOTSY SHESE ettt e e et r e e e et e e eata e e e eanens 486
Event — An Example of a ROOT Applicationcocoevviiiiiiiiiiiecieece e 487

stress - Test and Benchmarkoooeuiiiiiiiiiii e 490

guitest — A Graphical User Interfacecovveviiiiiiiin e, 492

21, EXAMPIE ANAIYSIS oouiiiiieiii et et 493
(o] = = [493

S 1o P 495

b7 L= T (o (1 PN 500
Setting-Up @ CONNECLIONuiiii e e e e e e e e e e e st e e e e e e eaanas 500
Sending Objects over the NEWOIKoiiiiiiiiiiic e 500
Closing the CONNECHIONccvuiii i e e e e e 501

A Server With MUltiple SOCKELSivvici e 501

P T 1= o LSRR 503
THreads @nd PrOCESSESuuiiiiiii i eiiiie ettt e s et e e et e e eaenns 503
ProCESS PrOPEITIES ...cvuiiiiiiciii e e 503

THread ProPartiES i e 503

The Initial TAreadoiiiiii s 504
Implementation of Threads in ROOTooiiiiiiiiiiiii e 504

FgS = = o) o PSP 504

L aSES ettt 504

TThread fOr PEESIIANSviieii e 504

TThread in MOre DEailSoeviviiiiiii e 505

Advanced TThread: Launching aMethod inaThreadccooooiiviiiiiiinece e, 508
KNOWN ProbIEMSouii e 510

The SIgNals Of ROOTiiiiiiiiec e e e e et e e e e e aaaas 510
L1105 510

24, PROOF: Parallel PrOCESSINGcccvuieiiieiiiieiiie e e e e et e e e e e e eaens 513
25. Writing a Graphical User INterfateoovviiiiii e 514
The ROOT GUI ClaSSE5ievitiieiiiiiis ettt ettt e et e et e e et e e e et a e e et eas 514
WidQELS and FramESciiiiiii e 514

LI 1110 = . PP 515

A SIMPIE EXAMPIE .en e 515

A SEENAIONE VEISION ...ceviiiciiiiii et e e 519

ATAY e o 1= S @Y= A= 522
TGODJECL ..ttt e et e e e aae 522

LI C1TL Lo o= P UPPT 522
TGWINGOW ... et e et e e e e et e e e e et e e e eetaaeeees 523

TS .o 523

LayOout ManagemENtieeiiiie e 526
Event Processing: Signals and SIOtScovviiiiiiiiii e 528
WIAQELS IN DELAIcevniiiei e 534
BULIONS ... e 534

B 11 = PP 537

Xiii

User's Guide

NUMDEr ENLIES .. e e e e e e e eee 538
IVLBINUS .. e 540
TOOIEN ..t 541

I ES 20 == PP 543
(000] 171 o 0 I =10 (-~ PSP 544
SIS e 545
THPIE SHAEr e e 546
PrOQIESS BalS ...vuiiiiitiiiii it 547

S 1oL [o £ 547
SEBLUS Bl ...eieee e e 548

S o] 11 (= £ 549
TGCanvas, ViewPort and CONTAINESoeeiiiiiieeiiiiiie e 551
EmMBbedded CanVasc.uuiiiiiiiiiieiiiie e 551

The ROOT Graphics Editor (GED)ccuuiiiiiiiiiii e e e e e 552
(@ o= o =l [(o) £ 552
Editor Design ElEMENtScoouiiiiiiii e 553

[T B0 o B 0 (o] o P 554
Drag and Drop Data Classccuueeiuiiiiiiieei e e e e 555
Handling Drag and Drop EVENEScoouiiiiiiiii e 556

26. ROOT/Qt Integration INEErfateSuuiiii et e eaas 558
Qt-ROOT Implementation of TVirtual X Interface (BNL)coevvvviiiiiiiiiiiiiiieeieeeeen, 558
FgS = = o) o PSP 558

PN oo 1= 1 o] PPN 559
TQtWidget Class, Qt Signals/ Slots and TCanvas Interfacecoocevevevinnen. 566

LS @ 1 2@ 2 P 567
Create a New Project in the DESIgNEScooviiiiiiiiie e 568

0= o 569

27. Automatic HTML DOCUMENEELIONuueiiiiiieeiiiiiie et e e et e e e e e et e e e e e e aen s 571
REFEIENCE GUITE ... et e e e e et eeeai e eeees 571
Product and Module DOCUMENLELIONcevevvnieeeiiiieeeeiie e et e e e e e e eeens 572
Converting Sources (and Other Files) to HTMLcoooviiiiiiiiiii e, 572
Specia Documentation Elements: DIr€CtiVESccovvviiiiiiiiiieeii e 572
LAEEX DITECLIVE L..iiiiiii ettt e e e e et e e e e et e e e eataaeaees 573
MBCTO DITECHIVE ..evviieeiiii ettt e e e e et e e e aaaeeeannns 573
CustomiziNG HTIML ..oouiiiiii e e e e e e e e e aaas 574
Referencing Documentation for other Libraries...........ccooocoiviiiiiiiiin e, 574
SEACh ENQING .. i e 574
VIBWECV'S it e e 574

WIKI PAOES ..ottt 574

LI L £ - P 574
28. Appendix A: Install and Build ROOTcocuuiiiiiiiiiieiiiii e eeeeen 576
Lot g1 576
Fats = [T o T (@ S SUPR 576
(01310701 1o I BNV A= 6 o] o [N 576
Installing Precompiled BiNariesooiiiiiiiiiiciie e 576
INSEAlING thE SOUICEevviiii e e e s 576
Installing and Building the Source from a Compressed Fileccoooovvieeenne, 577
More Build OPLIONSuiiiiiciiiec e e e aens 577

File SYSEIM.IOOLIC ...ieie e e e e e e e e e e e aanas 578
TCanvas SPECITIC SEINGSvuiii e e e e eens 580
THMI SPECITIC SEINGS ...ovvni i e 581

GUI SPECITIC SEINGS ..evveiiiieiiiee e e e e e e aaas 583
TBIOWSEN SEEINGS .. uivvteiii e e e e e e e e e e e e e e e et e e et e e et e e eanaees 584
TRINt SPECITIC SEHINGS ..vuiiiii e e et e e eaes 584
ACLIC SPECITIC SEINGS . ovvveiii i e e s 585
PROOF Related Variablesuuiiiiiiiiieiiiie e 585
Documentation t0 DOWNIOAAovviiiiiiiiiii e e e 590
g0 1= PSP 591

Xiv

List of Figures

1.1. ROOT framework ifECIOMESeiiiriieeeiii et 5
1.2. ROOT framework if€CIOMESeeiiiiieeeiii et 5
1.3. ROOT libraries dependenCieseieuueeieiiie ettt 8
2.1 A CanVas WIth raWingueeeeiieeiei et 15
2.2, A CONEEXE MEINU ..ttt et et e e e e e e e ea e ena e 22
2.3. The SAVEAS... QIBlOQ .. .ceeeeneeeiii et 23
3.1. The class hierarchy oOf hiStOgram ClasseSvviiiiiiiiiiii e 33
3.2. The "EL" DArS OPLION ... eiiiii ettt ettt e e et e e e e e eeees 41
3.3. Different draw OPLIONScceureieeiii et e ettt e et 42
34 THE TEXT OPION .tueeeiitii ettt ettt ettt ettt ettt et e ettt e e et et e e e eebn e e eennnaaeees 42
3.5. Different CONLOUr OPLIONScieueieieii ettt et e e e e e 43
3.6. The ear t . CMACIO OULPULcouvtneiiiii ettt ettt e e e eeeeni e eees 44
3.7. "LEGO" and "SURF" OPLIONSueeiiitiieeiiiti ettt e e e e 44
3.8. Different SUrface OpLIONScc.uuiiiiiie e 45
3.9. Vertical Dar ChartSooiiiiiii e e e 46
3.10. Horizontal Dar Cartsocieeuiieiie e 47
3.11. The picture produced by spectrumpainter.C MaCIOvvveerenieiiiiiieeeeiie e eeeeenns 50
3.12. The picture produced by fit28.C MACIOoviiiiiiiiiiii e 50
3.13. Superimposed histograms with different scales ..o 51
3.14. Histograms with alphanumeric bin [abelS ..o, 56
3.15. Using a *char variable type in TTree:iDraWoveiiiviiieeiiiie e 56
3.16. StaCKEd NISLOGraMScieiiiee ettt ettt et e e e e eaaas 57
3.17. A profile histogram EXamMPIEooeuuiiiii e 60
3.18. A TProfile2D histogram eXampleoooiiiiiiiii e 62
319, IS0 SUIMTBCES ... ettt ettt e ettt e e et e e e e e e e 62
3.20. 3D imPIlICIt FUNCLION ...cooutiiii e e 63
3.21. The picture generated by tutorial macro piechart.Ccociiieiiiiiiiiii e 64
4.1. A graph drawn with axis, * markers and continuous line (Option AC*)cccevviieeiiiinnenes 71
4.2. A graph drawn with axis and bar (0ption AB)iiiiiiiiiiiii e 71
4.3. A graph drawn with axis and fill (Option AF)coouuiiiiii e 72
4.4. Graph markers created in different Waysoooeueiieiiiiiii e 73
4.5. SUPEriMPOSING tWO GraDNSueiiii et 74
4.6. Graphs with different draw options of €Tor Darsovveieiiiiieiiiiee e 75
4.7. A graph with asymmetric eor DarsScooouuviiiiiiiici e 76
4.8. A graph with asymmetric bent error Dars ... 77
4.9 A POLAE GIAPN <.ttt 78
4.10. Graphs With EXCIUSION ZONESccovviieeiiiii ettt 79
4.11. Examples of gg-plotS Of 2 dalaSatScccvvunieiiriieiii et 80
4.12. Examples of gg-plotS Of 1 datasatcccevenieeiiiiiieiii e 81
4.13. A MUItIgraph EXamMPIEccooue e 82
4.14. Delaunay triangles and VOronoi didgraimcc.uuieiiiiiieiiiiieeece e 82
4.15. Graph2D drawn with option "surfl” and "tril pO"cooiiiiiiiiii e 84
4.16. Output of Macro graph2dfit.Coeiiiiiiieii e 85
4.17. A graph With axiS titESco.uuiiii e 86
4.18. A ZOOME GraPN ... et 86
5.1. The fUNCHION X* ST M X)) teriieiiiiie ettt e 20
5.2. Fitting a histogram with several Gaussian fuNCtioNScoovviiiiiiiiinieiii e, 94
5.3. The output of the FittingDemo() eXampPlecoouuiiiiiii e 97
5.4. The NeUral NEL OULPULuiiiieie ettt e e s 107
5.5. The original and the neural Net fOr Brooooiiiiiiiiii e 107
7.1. ROOT object inspector Of THIIEoiiiii e 123
7.2. The object inspector of f Keys, thelist of keysinthememorycccoooveiiiiniiinnn. 123
8.1. The ROOT ODJECE BIOWSEY ... ceeitieeiiiii e eeeei ettt e ettt ettt e e et e e e et e e e ena e eeens 136
9.1. Context menus of different ObjeCtS IN A CANVAScccvvuiiiiiiiieeii e 141
9.2. A histogram drawn iN @ Pccuuuiiiiiii e 144

XV

User's Guide

9.3. Pad COOrdiNate SYSLEIMSuiiiiiiciiieii e e e e e e e e e e e e e e e et e e et e e et e eanaees 145
9.4, THE SEBEUS DI .e. it e e et e e e aaans 146
9.5. Dividing apad iNt0 6 SUD-PaASoiiiiiiiii e 148
9.6. Different arrOW FOMMIBESuuiiiiiii e e et e e e e e eanen 151
9.7. Different types Of ElliPSES ...ovuiiii i 151
9.8. A rectangle With @ borderccoviiiiii 152
0.0, IMAIKENS ...t 152
9.10. Different Marker SIZESuiiiiiiiie e et e e e e e e a e aeae 153
9.11. The use of NON-SYMMELIIC MArKEIScvviiiii e 153
9.12. The picture generated by the tutorial macro feynman.Cccocoiveiiiiiiiiiin e, 154
9.13. The picture generated by the tutorial macro 1atex.Ccccoeeeiiiiiiiiiie e, 157
9.14. The picture generated by the tutorial macro latex2.Ccooeviiiiiiiiiiiii e 158
9.15. The picture generated by the tutorial macro latex3.Cccoveviiiiiiiiiiiie e 159
9.16. PavelLabel s drawn with different optionsccoooiiiiiiiii 159
9.17. PaVETEXE EXAMPIES .. .ivieiiiieiii e e e e e e e e s e e e e e e e e et e e e e aaa s 160
9.18. A PavETEXt EXAMPIE .. iiiiiii e e e e e e e e 160
9.19. Y-axis with and without exponent 1abelscooeviiiiiii i, 163
9.20. TiME aXiS EXAMPIES .. .cviiiiiii e e e e e e e e e e e e et e e et e e et e e e eeaens 166
9.21. A histogram With tiMeE @XiS Xciiuuieiiiieiiii e e e e e e e eeas 167
9.22. The first axis EXAMPIEiiii i e e e 168
9.23. The Second aXiS EXAMPIEiiu i e e e e e e e eaaas 169
9.24. An axis example With time displayc.ooviiiiiiii i 170
0.25. FONE'S BXAMPIES ...outiiiii et e e e e e e e e e aaaas 172
9.26. The VAriOUS PAtEINSivveeiiieeiieee e et e e e e e e e e e e e e e et e e e e e e e eatnaeeaneeeenees 175
9.27. The basic ROOT COIOIScveueiieiiiiiie ettt et e e e e e e e 176
0.28. DIfferent draw OPLIONSeiiiieii e e e e e e e e e e e e e et e e e eeeas 179
9.29. A legend EXamPIEciiiiiii e 182
9.30. Invoking external 3D viewers from Canvas MENUSeeeuneeiiieriieeriieerineeeneesanas 188
O.31. T GL 3D VIBWEN ...uiieeiiiieiii et s e et s e e e e e e et s e e e e e e e aa e eees 189
9.32. GL Viewer Camera iNtEraCtioNScveuuuuieriiiiieeeiineeeeiin s e et e e e et e e et e e eeranaaens 190
0.33. GL Viewer draw StYIES ...vuiiiicii e 191
9.34. GL Viewer interactive BoX ClIPPING «...uueiieeiiieii e e e e e e e e 192
9.35. GL Viewer object ManipUIAiOrScc.uuiiiiiiiii e e e e e e e e aens 193
9.36. Overview of 3D Viewer arChiteCtUrevvviiiiieiii e 197
9.37. TBUFfer3D class hierarChycocuiiiiiiiiie e 198
10.1. Tasks in the ROOT DIOWSESuueiieiiieeiiiis ettt s et et s e et s e e et s e e eatn s e e eaae e eeannns 209
11.1. The browser with 15 created histOgramscocvuiiiiiiiiii e 212
11.2. ROQOT File/Directory/Key deSCriptioncc.uveiiiieiiieiii e e e e e e aanas 218
11.3. The SIrUCLUrE OF TR .oivviti e e e e e e 219
11.4. Thefile before and after the call tOW it € ..uvvveiiiiiiiiiiiiie e 222
11.5. Compression and precision of DoUbIE32 t.........couvieiiiiiiiii e 231
11.6. A diagram of astreamed THAIF inthe buffercccoooiiiiii i 232
11.7. Streaming ObJECE POIMEEISuiiiiiii e e e e e e e e e e e e et e eeanaeeees 234
11.8. The ROOT SChemMa EVOIULIONc.uuieiiiiiie e e e e e e e e e 238
11.9. The schema evolution for objects written on disk and in Memoryccccoevveeevnnn. 239
12.1. ACtivating the trE8 VIBWENiiiii i e e e e e aens 254
12.2. ThE TrEEVIBWET ..eiiiiiii et et e et e e et e e e e et e e e e aen s 255
12.3. A COUPIE OF GraphS ...eiiiiii e 256
124, ThE TTIEE ClaSS ..iieii e e e e e e eeeas 257
12.5. The treel.root file and itstree in the Browsercoovvviiiiiii e, 267
A SR N = g TE oo = P 267
12,7, TRE TrEB VIBWES ..oeuiiieiii ettt e e et e e et e e e et eeeeaa s 267
12.8. The tree viewer With treed eXampleoovviiiiiii e 281
12.9. USiNg draw OPLiONS IN IrEESivueciiiieiii eaaeees 285
13.1. Math libraries and Packagesuvviinieiiie e 310
13.2. PDF, CDF and quantiles in the case of the normal distributionccoooceiveenne. 333
14.1. Overview Of MatriX ClaSSESciiiuiieiiiii et e e et e et eeeaa e e eees 342
14.2. Speed comparison between the different matrix packagesccooveviiieiiviiiieeineeen, 360

XVi

User's Guide

16.1. The inheritance hierarchy of the primary collection classes..........cccocvvveiiiiiinieineenn, 378
16.2. Theinternal data structure of @ TLISEovvvvviiiiiii e 383
16.3. The internal data structure of @ TODJAITAYcovviiiiiiii e 384
16.4. The internal data structure of @ TCIONESAITAYccvvuiviinieiii e e 384
18.1. Concentration of C14 derived elemMentsSoviiiiiiiieiii e 405
18.2. Concentracion of elements derived fromCab3+SI78ovvviiiiiiiiiiiiiieeeiiiieeee e 406
18.3. Primitive Shapes - the general inheritance schemeccoovvviiiiiiin i, 407
18.4. TGEOBBOX ClaSS .. ciivtiieiiiiii ettt e e ettt e e e et e e e et e e e et e e e et e e e e eba e 408
18.5. TGEOPAIA ClaSS ...evvviieieiii ettt ettt e e et eaera s 409
18.6. TGEOTTAL ClESS ...eeeitieeeiiii ettt et e et e e et e e e et e e e e et s e e e eate s e e e antaaeeaees 409
18.7. TGEOTTAZ ClESS ...eeiivieee ittt et e ettt e e e et e e e e et e e e e e et s e e e aatnneeeees 410
R T T o] I o TN PN 410
18.9. TGEOGIIA ClESS ..evvvieieiii ettt e et e et e e et eeeeaa s 411
18.10. TGEOAIDB Classciiveeiiiiii it e et e e e e e et aeeeaaeaennes 411
18.11. TGEOTUDE ClSS ...civvviveiiieeeeeeeeeeie e e e e e e e e e ettt e e e e e e e e eeaa e e e e e eaaeasattanaeeeeeeaenes 412
18.12. TGEOTUDESEY ClESS ...evvvvrnieieeeiieiiiiiiies s e e eeeeetti e s e e e e eeeesat s s s e e eaaeaasane e aeeeaaeesnnns 412
18.13. TGEOCHUD ClaSSceiveeiiiiiiii e e e e ee et e e e e et ettt e e e e e e e e et e e e e e e e e e aeataa e e eeeaeeaenes 413
18.14. TGEOEITU ClaSS ..evvvvviieiieeeeiieitiiie s e e e e e e et s e e e e e e e e ettt e e e e e e e e e aataa e e s e eeeeeeaeannnnes 413
18.15. TGEOHYPE ClaSS ..oevvvviiiiieeeeeieieti e e s e e e et e et e e e e e e e e e aa e e e e eeaeeesata s e aaeeaeeesnnnns 414
18.16. TGEOCONE ClESS . .evvviieiiiiii ettt e ettt e et e et e e et e e e et e e e e et e e e e et eas 415
18.17. TGEOCONESEY ClaASSeeiieeeiiiiiii i e e e eeteeeitis s e e e e et e e ettt s e s e e e e e e e st e s e e eaaeeasrean s 415
18.18. TGEOSPNEIE ClaSS ...vvvvuieeeiiiiiiiiiii st e e e ettt e e e e et e e e e e e e e et e e s e e e e e e aaarnenas 415
18.19. TGEOTONUS ClaSS ..eevvueeiiiiiiee et e et e et e e et e e et e e e e et e e e e et s e e eett e eaeeteaeaees 416
18.20. TGEOParalolOid ClasSuuueuiieeeiieeiiiiiesse e e e e e et s e e e e e e e e e e e e e eeeaaae e e e eeeees 417
18.21. TGEOPCON Cl@SSuuiieeeiiiiiiiie i et e e ettt e s e e e e ettt e e e e e e e e e et s e s e e e e e e arataan e e aeeees 418
18.22. TGEOPGON ClBSS ...evvvivviiiiieeeeeteettitis s e e e e e e e eettt e e s e e e e eeeaata e s aeeaaaeasaassnaeaeeeeaenes 418
18.23. TGEOXIIU ClASS .. .ceiiieeiiiiiiieeeeeteeite e e s e e et e e et e et e e e aeeaattsa s s aeeaeeaestnaaaaaeeeeeaennes 419
18.24. The cOMPOSItE SNAPES SITUCIUIEcevueei e e e e e e e e e e e e e e e e e 420
18.25. Representation Of A+B+Ciiiiiiiiiicii e 421
18.26. Internal representation for COMPOSItE SNAPESu.cvvuieiiii i e 421
18.27. A compoSite ShaPE EXAMPIEive it e e 423
18.28. A geometry hierarchy in MEMOIYooivuniiiiiieiie e e e e 426
18.29. ASSEMbIIES OF VOIUMESccoviiiiiiii e e 435
18.30. EXIruding VOIUMESciiiiiiiiiici e e e e e e e e e e ea e eaas 448
18.31. OVErlap ChECKING ..ovuniiiiiiii e e e e e e e 449
18.32. Safety computation CheCKiNgooiuiiiii e 450
R TC e T = =0 To o0 T oo 1 £ 450
HECTC Y B o =g o o] T = V£ 450
18.35. Ray-traced VIEW 1N @ Palcovueiiieiii e e e e e e e e e 453
18.36. Ray-tracing example with BOX-Clippingccovuiiiiiiiiii e 454
18.37. Navigation in the geometry hierarchyccoooeiiiiiiiiii e, 457
18.38. Finding the location of a point in the geometry hierarchyc..ccooeiiiiiiiiniinennnn, 459
18.39. Finding the distance to the next crossed boundaryccocevviiiiieiii i, 460
18.40. The geometry manager EditOrcooviiiiiiii e 463
18.41. Accessing/creating different categories of editable objects.........coccevvveiiiiiiiiiiinnnnnnnn, 463
18.42. Selection dialogs for different TG0 ObJECtSvvivvniiiiiiiii e 464
18.43. Editors for shapes, materials, media, MatfiCeScceuuiiiiiiiiiiieeii e, 465
18.44. Setting volume properties and modifying volume hierarchyccocooiiiiiiiiiinn, 466
18.45. Volume visualisation settings and division interface for volumes..............cccooeeveeenn.n. 467
20.1. NatiVe GUI WILGELS ...evvvuenieieeeiie et e e et e e e e e e e et s e s e e e e e e aasaa e aeaeaaeeannes 492
22.1. Server - Client setting-up and closing the CONNECLIONccvvviiiiiiiie e, 501
24.1. The Multi-tier structure of @ PROOF CIUSLENcovvviiieiiiiiieeein e 513
25.1. Widgets created by ROOT GUI ClaSSESuucivniiiiii e 522
25.2. The GUI classes NI€rarChycocvuiiiiiiieie e e 524
25.3. The layout classes hierarChyoooiiiiiiii i 527
25.4. Histogram, pad and axiS €dItOrSccuueeiiiiiiiieeie e e e e 553

XVii

Preface

Draft, November 2000 - version 0.6.2In late 1994, we decided to learn and investigate Object
Oriented programming and C++ to better judge the suitability of these relatively new techniques
for scientific programming. We knew that there is no better way to learn a new programming
environment than to use it to write a program that can solve a rea problem. After a few weeks,
we had our first histogramming package in C++. A few weeks later we had a rewrite of the same
package using the, at that time, very new template features of C++. Again, a few weeks later we
had another rewrite of the package without templates since we could only compile the version with
templates on one single platform using a specific compiler. Finaly, after about four months we had
a histogramming package that was faster and more efficient than the well-known FORTRAN based
HBOOK histogramming package. This gave us enough confidence in the new technologies to decide
to continue the development. Thus was born ROOT. Since its first public release at the end of 1995,
ROOT has enjoyed an ever-increasing popularity. Currently it isbeing used in all major High Energy
and Nuclear Physicslaboratories around the world to monitor, to store and to analyze data. In the other
sciencesaswell asthemedical and financial industries, many people are using ROOT. We estimate the
current user base to be around several thousand people. In 1997, Eric Raymond analyzed in his paper
"The Cathedral and the Bazaar" the devel opment method that makes Linux such asuccess. The essence
of that method is: "release early, release often and listen to your customers®. Thisis precisely how
ROOT is being developed. Over the last five years, many of our "customers' became co-developers.
Here we would like to thank our main co-developers and contributors:

Masaharu Goto wrote the CINT C++ interpreter that became an essential part of ROOT. Despite
being 8 time zones ahead of us, we have the feeling he has been sitting in the room next door since
1995.

Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and
Virtual Monte-Carlo. They have been working with the ROOT team since 2000.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT
team in 2000 and has been working on the graphics sub-system.

Ilka Antcheva has been working on the Graphical User Interface classes. She is also responsible for
this latest edition of the Users Guide with a better style, improved index and several new chapters
(since 2002).

Bertrand Bellenot has been devel oping and maintaining the Win32GDK version of ROOT. Bertrand
has also many other contributions like the nice RootShower example (since 2001).

Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-
system for Windows and the GUI Builder (since 2000).

Gerri Ganis has been working on the authentication procedures to be used by the root daemons and
the PROOF system (since 2002).

Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system (since 1995).

Valeri Fine (now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He
is currently working on the Qt layer of ROOT (since 1995).

Victor Perevoztchikov (BNL) worked on key elements of the 1/0O system, in particular the improved
support for STL collections (1997-2001).

Nenad Buncic devel oped the HTML documentation generation system and integrated the X 3D viewer
inside ROOT (1995-1997).

Suzanne Panacek was the author of thefirst version of this User’s Guide and very activein preparing
tutorials and giving lectures about ROOT (1999-2002).

XViii

Preface

Axel Naumann has been devel oping further the HTML Reference Guide and helpsin porting ROOT
under Windows (cygwin/gcc implementation) (since 2000).

Anna Kreshuk has developed the Linear Fitter and Robust Fitter classes as well as many functions
in TMath, TF1, TGraph (since 2005).

Richard Maunder has contributed to the GL viewer classes (since 2004).

Timur Pocheptsov has contributed to the GL viewer classes and GL in pad classes (since 2004).
Sergei Linev has developed the XML driver and the TSQLFile classes (since 2003).

Stefan Roiser has been contributing to the reflex and cintex packages (since 2005).

L or enzo M oneta has been contributing the MathCore, MathMore, Smatrix & Minuit2 packages(since
2005).

Wim Lavrijsen isthe author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the SROOTSYS/ README/ CREDI TSfile
for their contributions, and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!

Rene Brun & Fons Rademakers

Geneva, July 2007

XiX

Chapter 1. Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of experience developing
interactive tools and simulation packages. They had lead successful projects such as PAW, PIAF, and
GEANT, and they knew the twenty-year-old FORTRAN libraries had reached their limits. Although
still very popular, thesetools could not scale up to the challenges offered by the Large Hadron Collider,
where the datais afew orders of magnitude larger than anything seen before.

At the same time, computer science had made leaps of progress especialy in the area of Object
Oriented Design, and René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an
impressive amount of data, around 10 Terabytes per run. Thisrate provided the ideal environment to
develop and test the next generation data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa
Goto in Japan. It is an independent product, which ROOT is using for the command line and script
processor.

ROOT was, and till is, developed in the "Bazaar style", aterm from the book "The Cathedral and
the Bazaar" by Eric S. Raymond. It means a liberal, informal development style that heavily relies
on the diverse and deep talent of the user community. The result is that physicists developed ROOT
for themselves; this made it specific, appropriate, useful, and over time refined and very powerful.
The development of ROOT is a continuous conversation between users and developers with the line
between the two blurring at times and the users becoming co-developers.

When it comesto storing and mining large amount of data, physics plows the way with its Terabytes,
but other fields and industry follow close behind as they acquiring more and more data over time.
They are ready to use the true and tested technologies physics has invented. In this way, other fields
and industries have found ROOT useful and they have started to use it al so.

In the bazaar view, software is released early and frequently to expose it to thousands of eager
co-developers to pound on, report bugs, and contribute possible fixes. More users find more bugs,
because they stress the program in different ways. By now, after ten years, the age of ROOT is quite
mature. Most likely, you will find the features you are looking for, and if you have found a hole,
you are encouraged to participate in the dialog and post your suggestion or even implementation on
roott al k, the ROOT mailing list.

The ROOT Mailing Lists

The r oot t al k was the very first active ROOT mailing list. People can subscribe to it by
registering at the ROOT web site: htt p: //root. cern. ch/root/ Regi stration. phtm .
The Root Tal k Forum http://root. cern.ch/ phpBB2/ has been gradually replaced this
mailing list since September 2003. The Root Tal k Forum is aweb-based news group with about 10
discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in ther oot t al k or
Root Tal k Forum archives. Please use the search engine to see if your question has already been
answered before sending amail to ther oot t al k list or post atopic in the Forum.

You <can browse the roottalk archives at: http://root.cern.ch/root/
roottal k/ About Root Tal k. ht M. You can send your question without subscribing to:
roottal k@oot. cern.ch

Contact Information

Severa authors wrote this book and you may see a "change of voice" from one chapter to the
next. We felt we could accept this in order to have the expert explain what they know best. If you

Introduction

would like to contribute a chapter or add to a section, please contact r oot doc @ oot . cer n. ch.
We count on you to send us suggestions on additional topics or on the topics that need more
documentation. Please send your comments, corrections, questions, and suggestionsto ther oot doc
list: r oot doc@ oot . cern. ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the
elementary functionality and progressesin complexity reaching the specialized topics at the end. The

experienced user looking for special topics may find these chapters useful: see* Networking”, “Writing
a Graphical User Interface”, “Threads’, and “PROOF: Parallel Processing”.

Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. The stylesin used are described below.

To show source code in scripts or source files:

{

cout << " Hello" << endl;

float x = 3.;

float y = 5.;

i nt i = 101,

cout <<" X = "<<x<<" y = "<<y<<" | = "<<i<< endl;
}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive
system, the ROOT prompt hasalinenumber (r oot [12]); for the sake of simplicity, theline numbers
are left off. Bold monotype font indicates the ROOT class hames as TObj ect , T ass, and text
for you to enter at verbatim.

root[] TLine |
root[] I|.Print()
TLi ne X1=0. 000000 Y1=0. 000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDi r ect ory. We also used the
italic font to hi ghl i ght t he conmment s inthe code listing.

When a variable term is used, it is shown between angled brackets. In the example below the
variable term <library> can be replaced with any library in the $ROOTSYS directory: $ROOTSYS/
<library>/inc.

The Framework

ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy
physics. There are two key words in this definition, object oriented and framework. First, we explain
what we mean by aframework and then why it is an object-oriented framework.

What Is a Framework?

Programming inside a framework isalittle like living in a city. Plumbing, electricity, telephone, and
transportation are services provided by thecity. In your house, you have interfacesto the services such
as light switches, electrical outlets, and telephones. The details, for example, the routing algorithm of
the phone switching system, are transparent to you asthe user. Y ou do not care; you are only interested
in using the phone to communicate with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have
transportation and water, you will have to build aroad and dig awell. To have services like telephone

Introduction

and electricity you will need to route the wiresto your home. In addition, you cannot build somethings
yourself. For example, you cannot build a commercia airport on your patch of land. From a global
perspective, it would make no sense for everyone to build his or her own airport. Y ou see you will be
very busy building the infrastructure (or framework) before you can use the phone to communicate
with your collaborators and have adrink of water at the sametime. In software engineering, it ismuch
the same way. In aframework, the basic utilities and services, such as 1/0 and graphics, are provided.
In addition, ROOT being a HEP analysis framework, it provides a large selection of HEP specific
utilities such as histograms and fitting. The drawback of aframework isthat you are constrained to it,
asyou are constraint to use the routing algorithm provided by your telephone service. Y ou also haveto
learn the framework interfaces, which in this analogy is the same as learning how to use a telephone.

If you areinterested in doing physics, agood HEP framework will save you much work. Next isalist of
the more commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting,
Writing a Graphical User Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run
Time Type Identification (RTTI), Socket and Network Communication, Threads.

Advantages of Frameworks
The benefits of frameworks can be summarized as follows:
* Less code to write — the programmer should be able to use and reuse the mgjority of the existing
code. Basic functionality, such asfitting and histogramming are implemented and ready to use and

customize.

» Morereliable and robust code — the code inherited from a framework has already been tested and
integrated with the rest of the framework.

» More consistent and modular code — the code reuse provides consistency and common capabilities
between programs, no matter who writes them. Frameworks make it easier to break programs into
smaller pieces.

» Morefocus on areas of expertise — users can concentrate on their particular problem domain. They

do not have to be experts at writing user interfaces, graphics, or networking to use the frameworks
that provide those services.

Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented
Programming:

» Encapsulation enforces data abstraction and increases opportunity for reuse.
» Sub classing and inheritance make it possible to extend and modify objects.

* Class hierarchies and containment hierarchies provide a flexible mechanism for modeling real-
world objects and the relationships among them.

» Complexity isreduced because thereislittle growth of the global state, the state is contained within
each object, rather than scattered through the program in the form of global variables.

» Objectsmay come and go, but the basic structure of the program remainsrel atively static, increases
opportunity for reuse of design.

Installing ROOT

Introduction

Toinstall ROOT you will need to go to the ROOT websiteat: htt p: //root. cern. ch/ root/

Avai l abi l'ity. ht m . You have a choice to download the binaries or the source. The source is
quicker to transfer since it is only ~22 MB, but you will need to compile and link it. The binaries
compiled with no degug information range from ~35 MB to ~45 M B depending on the target platform.
Theinstallation and building of ROOT isdescribed in Appendix A: Install and Build ROOT. Y ou can
download the binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile
ROOT.

Before downloading abinary version make sure your machine containstheright run-time environment.
In most casesit is not possible to run aversion compiled with, e.g., gcc4.0 on a platform where only
gce 3.2isinstaled. In such cases you'll havetoinstall ROOT from source.

ROOT is currently running on the following platforms:

 GNU/ Li nux x86-32 (1 A32) and x86-64 (AMD64) (CCC, Intel/icc, Portland/
PGCC, KAI / KCC)

* Intel Itanium (1A64) GNU Linux (GCC, Intel/ecc, SG/CC
* FreeBSD and OpenBSD (GCC)

e GNU Hurd (GCQ)

« HP HP- UX 10.x (1A32) and 11 (1A64) (HP CC, aCC, GCC)

* IBMAIX 4.1 (xI C compiler, GCO

* Sun Solaris for SPARC (SUN C++ conpil er, GCQC)

* Sun Solaris for x86 (SUN C++ conpiler, KAI/KCC

e Conpaq Al pha (GCC, KAI/KCC, DEC/ CXX)

« SA Irix 32 and 64 bits (GCC, KAI/KCC, SE@ C++ conpiler)
e Wndows # 95 (Mcrosoft Visual C++ conpiler, Cygw n/ GCC)
e MacOS X PPC, x86-32, x86-64 (GCC, Intel/lICC, |BMXxl)

* Power PC with GNU/ Li nux and GCC, Debian v2

* Power PC64 with GNU Li nux and GCC

* ARMwith GNU Li nux and GCC

* LynxCS

The Organization of the ROOT Framework

Now after we know in abstract terms what the ROOT framework is, let us look at the physical
directories and files that come with the ROOT installation. Y ou may work on a platform where your
system administrator has already installed ROOT. Y ou will need to follow the specific devel opment
environment for your setup and you may not have write access to the directories. In any case, you will
need an environment variable called ROOTSYS, which holds the path of the top ROOT directory.

> echo $ROOTSYS
/ opt/root

Introduction

In the ROOTSYS directory are examples, executables, tutorials, header files, and, if you opted to
download it, the source is here. The directories of special interesttousarebi n,tutorial s,lib,
t est,and i ncl ude. The next figure shows the contents of these directories.

Figure 1.1. ROOT framework directories

$ROOTSYS
bin lib tutorials test include
" libAslmage Fft *hfiles
o it libGint e iy)
libCare Cifosm simple.cxx
rlibmap IIbEG Sgeam MainEvent.cxx
o IibEGPythia Od Event.crx
. “libEGPythias Cooraphics AASOGEE €
rootcint libFitPanel Dgraphs clorture.cxx
raoin libGed Cigui teollex.cxx
rootd libGeom Chist teollbm.cxx
genmap libGpad Caimage tstring.cxx
hzroot libGraf Do wmatrix.cxx
hadd libGraf3d Dmath WVector.cxx
rmkdepend libGui (Dmatrix stressLinear.cxx
proofd libGuiBId Simip QpRandomDriver.cxx
proofsery libGuil Dnet vlazy.cxx
ibGuiHtml Cphysics Pworld
libGX11 Spvroot AL o
“bGX11TTF Sievtria guitest.cxx
* Optional libHbook ~ guiviewer.cxx
Installation libHist by Hello.cxx
lipHtm! Caspectrum Aclack cxx
libMatrix Sysplot Tetris.cxx
libMathCore Dsal stress.cxx
libMathMore thvead slress*.cxx
libMinuit Cotree bench.cxx
libNet (Caunuran
libNew el DrawTest.sh & dt_"\
libPhysics benchmarks.C
libPostscript demos.C
libProof demoshelp.C
libPython geant3tasks.C
*libRFIO hsimple.C
*libRGL htmlex.C
libReflex MyTasks.cxx
libRint README
libRIO regexp.C
libRooF it rootalias.C
libRuby rootlogon.C
libSpectrum rootlogoff.C
“libThread rootmarks.C
libTMVA staff root
libTree hsimple.root
libTreePlayer gallery.root
libTreeViewer tasks.C

Figure 1.2. ROOT framework directories

$ROOTSYS
bin lib tutorials test include
il *
=
makecint libCore Efoam hsimple.cxx -
rlibmap lIbEG Sgeam MainEvent oxx
o “lbEGPythia = Event cix
root.exe “IbEGPythias Saoraphics minexam.cxx
rootcint libFitPanel Dgraphs clorture.cxx
raoin libGed Sigui teollex.cxx
roold libGeom Cahist teollbm.cxx
genmap libGpad (image tstring.cxx
hzroot libGraf Do wmatrix.cxx
hadd libGraf3d Oymath WVeGtor.cxx
rmkdepend libGui Omatrix stressLinear.cxx
proofd libGuiBIld Qimlp QpRandomDriver.cxx
proofsery lipGuiHmi — vlazy.cxc
libGX11 jp V"‘: hworld.cxx
pyroo "
“bGX11TTF Sapriria guitest.cxx
* Optional libHbook i guiviewer cxx
Installation libHist Cruby Hello.cxx
lipHtm! Caspectrum Aclack cxx
libMatrix Casplot ASS o
libMathCore Osal stress,oxx
libMathMore Oithread slress” Gxx
libMinuit Catree bench.cxx
libNet (Dunuran
libNew el DrawTest.sh & dt_"\
libPhysics benchmarks.C
libPostscript demos.C
libProof demoshelp.C
libPython geant3tasks.C
*libRFIO hsimpla.C
“libRGL htmlex.C
libReflex MyTasks.cxx
libRint README
libRIO regexp.C
libRooF it rootalias.C
libRuby rootlogon.C
libSpectrum rootlogoff.C
“libThread rootmarks.C
libTMVA staff root
libTree hsimple.root
libTreePlayer gallery.root
libTreeViewer tasks.C

Introduction

$ROOTSYS/bin

Thebi n directory

contains severa executables.

r oot shows the ROOT splash screen and callsr oot . exe

r oot . exe the executablethat r oot calls, if you use adebugger such asgdb, you will need
torunr oot . exe directly

r oot ci nt isthe utility ROOT usesto create a class dictionary for CINT

r tkdepend amodified version of makedepend that is used by the ROOT build system

root-config

a script returning the needed compile flags and libraries for projects that compile
and link with ROOT

ci nt the C++ interpreter executable that isindependent of ROOT

makeci nt the pure CINT version of r oot ci nt , used to generate adictionary; It is used by
some of CINT install scriptsto generate dictionariesfor external system libraries

proofd a small daemon used to authenticate a user of ROOT paraléel processing
capability (PROOF)

proof serv the actual PROOF process, which is started by proof d after a user, has
successfully been authenticated

rootd isthe daemon for remote ROOT file access (seethe TNet Fi | e)

$ROOTSYS/lib

There are several waysto use ROOT, one way isto run the executable by typing r oot at the system
prompt another way isto link with the ROOT libraries and make the ROOT classes availablein your

own program.

Here is a short description of the most relevant libraries, the ones marked with a* are only installed
when the options specified them.

* | i bAsl mage istheimage manipulation library

|'i bG nt isthe C++ interpreter (CINT)

e | i bCor e isthe Base classes

| i bEGisthe abstract event generator interface classes

e *| i bEGPyt hi a isthe Pythiab event generator interface

* *| i bEGPyt hi a6 isthe Pythia6 event generator interface

i bFi t Panel

contains the GUI used for fitting

* | i bGed contains the GUI used for editing the properties of histograms, graphs, etc.

* | i bGeomisthe geometry package (with builder and painter)

| i bGpad isthe pad and canvas classes which depend on low level graphics
|'i bGraf isthe 2D graphics primitives (can be used independent of libGpad)

| i bGr af 3d isthe 3D graphics primitives

e | i bGQui isthe GUI classes (depend on low level graphics)

Introduction

| i bGui Bl d isthe GUI designer

I'i bGui Ht M contains the embedded HTML browser

| i bGX11 isthelow level graphicsinterface to the X11 system

*| i bGX11TTF isan add-on library to libGX 11 providing TrueType fonts
| i bHbook isfor interface ROOT - HBOOK

| i bHi st isthe histogram classes (with accompanying painter library)

|'i bHt M isthe HTML documentation generation system

| i bMat ri x isthe matrix and vector manipulation

I i bMat hCor e contains the core mathematics and physics vector classes
I i bMat hMbr e contains additional functions, interfacing the GSL math library
I'i bM nui t isthe MINUIT fitter

| i bNet containsfunctionality related to network transfer

| i bNewisthe specia global new/delete, provides extramemory checking and interface for shared
memory (optional)

| i bPhysi cs contains the legacy physics classes (TLorentzVector, etc.)

| i bPost scri pt isthe PostScript interface

I i bProof isthe paralel ROOT Facility classes

| i bPyt hon provides the interface to Python

*| i bRFI Oisthe interface to CERN RFIO remote /O system.

*| i bRGL istheinterface to OpenGL.

| i bRef | ex isthe runtime type database library used by CINT

I i bRi nt istheinteractive interface to ROOT (provides command prompt)
| i bRI Oprovides the functionality to write and read objects to and from ROOT files
| i bRooFi t isthe RooFit fitting framework

| i bRuby istheinterface to Ruby

| i bSpect r umprovides functionality for spectral analysis

*| i bThr ead istheinterface to TThread classes

| i bTMVA contains the multivariate analysis toolkit

| i bTr ee isthe TTree object container system

|'i bTr eePl ayer isthe TTree drawing classes

|'i bTr eeVi ewer isthe graphical TTree query interface

Introduction

Library Dependencies

Figure 1.3. ROOT libraries dependencies

Root CORE Cl |

|Base Jcont 2 s] |

' Physics] Geom | " Matrix ‘ Hist | | Tree | Rint
T T b-. T '_' T

1 \ LN Alien Castor
EG \ Quad . A L

—|—I | Quads | Graf | [HistPainter | RXML Chirp

| \ T f k Dcache RFIO

| EGPythia ' . Minuit Fumili
[GeomPainter | o Grafid | RGL X3D

| VirtualMC | \ Postscript | html
[Gs_vmc. o] GPad T F I Oracle SapDB
Ql—' e - "MLP | |p|-“°(] Table Hbook
- d h ~ Thread | Asimage
. Gui I_ [—.‘L——l Ruby PYROOT

I Al libs need Cors 11 ewinaz X r T 1
e || o] | | [exinmiE] [eat |
| cemrseseymmee | | ROOT Libraries Dependencies |

Thelibraries are designed and organized to minimize dependencies, such that you can load just enough
code for the task at hand rather than having to load all libraries or one monoalithic chunk. The core
library (I i bCor e. s0) contains the essentials; it is a part of all ROOT applications. In the Figure
1-2 you see that libCore.so is made up of base classes, container classes, meta information classes,
operating system specific classes, and the ZIP algorithm used for compression of the ROOT files.

The CINT library (I i bCi nt . so) isalso needed in al ROOT applications, and even by | i bCor e.
It can be used independently of | i bCor e, in case you only need the C++ interpreter and not ROOT.
A program referencing only TObj ect only needs | i bCore and | i bCi nt . To add the ability to
read and write ROOT objects one also hasto load libRIO. As one would expect, none of that depends
on graphics or the GUI.

Library dependencies have different consegquences; depending on whether you try to build a binary,
or you just try to access aclass that is defined in alibrary.

Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes
you use. The ROQOT reference guide states the library a class is defined in. Almost all relevant
classes can be found in libraries returned by r oot - confi g —gl i bs; the graphics libraries are
retuned by r oot - confi g - -1 i bs. These commands are commonly used in Makef i | es. Using
r oot - confi g instead of enumerating the libraries by hand allows you to link them in a platform
independent way. Also, if ROOT library names change you will not need to change your Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms
and trees, only needs to link the core libraries (1 i bCore, i bCint, i bR O, i bH st and
i bTree. If ROOT needs access to other libraries, it loads them dynamically. For example, if the
TreeVi ewer isused,| i bTr eePl ayer andall librariesl i bTr eePl ayer dependsonareloaded
also. The dependent libraries are shown in the ROOT reference guide’s library dependency graph.
The difference between | i bHi st and | i bHi st Pai nt er isthat the former needs to be explicitly
linked and the latter will be loaded automatically at runtime when ROOT needs it, by means of the
Plugin Manager.

Inthe Figure 1-2, the libraries represented by green boxes outside of the core are loaded viathe plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a
plugin library directly, it has to be explicitly linked. An example of aplugin library isl i bM nui t .
To create and fill histogramsyou needtolink | i bHi st . so. If thecodehasacall tofit the histogram,
the "fitter" will dynamically load libMinuit if it is not yet loaded.

Introduction

Plugins: Runtime Library Dependencies for Linking

The Plugin Manager TPl ugi nManager alows postponing library dependencies to runtime: a
plugin library will only be loaded when it is needed. Non-plugins will need to be linked, and are
thus loaded at start-up. Plugins are defined by a base class (e.g. TFi | €) that will be implemented
in a plugin, a tag used to identify the plugin (e.g. *rfi o: as part of the protocol string), the
plugin class of which an object will be created (e.g. TRFI OFi | e), the library to be loaded (in
short | i bRFI O. so to RFIO), and the constructor to be called (e.g. “TRFI OFi | e()). Thiscan be
specified in the . r oot r ¢ which aready contains many plugin definitions, or by calls to gROOT-
>Cet Pl ugi nManager () - >AddHandl er () .

Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the
library that definesthis class. On start-up, ROOT parsesall filesendingon. r oot map that arein one
of the $LD_LI BRARY_PATH (or $DYLD_LI BRARY_PATH for MacCS, or $PATH for W ndows).
They contain class names and the library names that the class depends on. After reading them, ROOT
knows which classes are available, and which librariesto load for them.

When TSyst em : Load(" ALi b") is caled, ROOT uses this information to determine which
libraries| i bALi b. so dependson. It will load these librariesfirst. Otherwise, loading the requested
library could cause a system (dynamic loader) error due to unresolved symbols.

$ROOTSYS/tutorials

Thetutorialsdirectory contains many example scripts. They assume some basic knowledge of ROOT,
and for the new user we recommend reading the chapters: “Histograms’ and “Input/Output” before
trying the examples. The more experienced user can jump to chapter “The Tutorialsand Tests” to find
more explicit and specific information about how to build and run the examples.

The SROOTSYS/ t ut ori al s/ directory include the following sub-directories:

f f t : Fast Fourier Transform with the fftw packagef i t : Several examplesillustrating minimization/
fitting f oam Random generator in multidimensional space geom Examples of use of the geometry
package (TCGeo classes) gl : Visualisation with OpenGL gr aphi cs: Basicgraphicsgr aphs: Use of
TG aph, TG aphEr r or s, etc. gui : Scriptsto create Graphical User Interfacehi st : Histograming
i mage: Image Processingi o: Input/Output mat h: Mathsand Statisticsfunctionsrrat r i x: Matrices
(TMat ri x) examples m p: Neural networks with TMul ti Layer Per cept ron net : Network
classes (client/server examples) physi cs: LorentzVectors, phase space pyr oot : Python tutorials
pyt hi a: Examplewithpyt hi a6 quadp: Quadratic Programming r uby: ruby tutorialssmat r i x:
Matrices with a templated package spect r um Peak finder, background, deconvolutions spl ot :
Example of the TSpl ot class (signal/background estimator) sql : Interfacesto SQL (mysql, oracle,
etc) t hr ead: Using Threadst mva: Examples of the MultiVariate Analysisclassest r ee: Creating
Trees, Playingwith Treesunur an: Interface with the unuram random generator library xmi : Writing/
Reading xml files

Y ou can execute the scriptsin $ROOTSYS/ t ut or i al s (or sub-directories) by setting your current
directory in the script directory or from any user directory with write access. Several tutorials create
new files. If you havewrite accessto thetutorialsdirectory, the new fileswill be created in thetutorials
directory, otherwise they will be created in the user directory.

$ROOTSYS/test

The test directory contains a set of examples that represent al areas of the framework. When a new
release is cut, the examples in this directory are compiled and run to test the new release's backward
compatibility. Thelist of source filesis described in chapter “The Tutorials and Tests’.

The $ROOTSYS/ t est directory is a gold mine of ROOT-wisdom nuggets, and we encourage you
to explore and exploit it. We recommend the new users to read the chapter “ Getting Started”. The

Introduction

chapter “The Tutorials and Tests’ has instructions on how to build all the programs and it goes over
the examplesEvent andstress.

$ROOTSYS/include

Thei ncl ude directory contains al header files. It is especially important because the header files
contain the class definitions.

$ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading
the source you also get a directory for each library with the corresponding header and source files,
located in the i nc and sr ¢ subdirectories. To see what classes are in a library, you can check
the <l i brary>/i nc directory for the list of class definitions. For example, the physics library
I i bPhysi cs. so contains these class definitions:

> | s -m $ROOTSYS/ physi cs/inc
CVS, Li nkDef . h, TLor ent zRot ati on. h, TLor ent zVect or . h, TRot ati on. h,
TVector 2. h, TVector 3. h

How to Find More Information

The ROOT web site has up to date documentation. The ROOT source code automatically generates
this documentation, so each class is explicitly documented on its own web page, which is aways up
to date with the latest official release of ROOT.

The ROOT Reference Guideweb pagescanbefoundat http://root. cern.ch/root/htm/
C assl ndex. ht m . Each page contains a class description, and an explanation of each method. It
shows the class inheritance tree and lets you jump to the parent class page by clicking on the class
name. If you want more details, you can even see the source. Thereisahelp page availablein thelittle
box on the upper right hand side of each class documentation page. Y ou can see on the next page what
atypical class documentation web page looks like. The ROOT web site also contains in addition to
this Reference Guide, "How To's", alist of publications and example applications.

Class Reference Guide

The top of any class reference page lets you jump to different parts of the documentation. The first
line links to the class index and the index for the current module (a group of classes, often alibrary).
The second line links to the ROOT homepage and the class overviews. The third line links the
source information —a HTML version of the source and header file as well as the CV S (the source
management system used for the ROOT development) information of the files. The last line links the
different parts of the current pages.

Location: {ROOT =i BASE »i TAttText

Quick Links: i ROOT : Class Index i Class Hierarchy

Source: i header file | source file : viewCV'S header @ viewCWS source
Sections: i class description | function members | data members | class charts

Thisis an example for function documentation, with automatically generated LaTeX-like graphics:

Int_t GetQuantiles (Int_t nprobSum, Double_t* ¢, const Double_t* probSum)

Compute Quantiles for density distribution of this function
Quantile % q of a probability distribution Functicn F is defined as

Xy
Flx)= _[fdx=qwith0 <=gq<=1.

10

Introduction

The class diagrams show e. g. the inheritance tree, so you know what the current class derives from,
and which classes inherit from it:

TVirtualX TGX11 TGX1IITTF
TStyle TeQ
TPaveLabel +———— TPaveClass

TPie TSVG
TGraphPolargram TPDF
TVirtualPS TPostScript
TInspectCanvas TImageDump
TText — TLatex
——
TLegend TLink
TLegendEntry
TGaxis

ialonC PaveStats
D v
ialogCanvas ___— vesText
TPaveText *— .
TDiamond

TButt
won - —— TGroupButton

The HTML version of the source file links all types and most functions so you can study what's
happening inside ROOT itself:

'y

woid TList::AddLast (TObject *obj)

{
/f Bdd object at the end of the list.
if (IsArgNull ("RddLast", obj)) return;
if (Y1EFirst) {
fFirst = NewlLink (ocbj):
flast = [Fiez=t-
| else [TOBiLink= TList::NewLink(TObject™ obj, TObiLink™ prev=0) |
fLazst = Newlink (obj, fLast):
fSize++:
Changed () ;
i

11

Chapter 2. Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click through
and learn how to use the GUI. We continue by using the command line, and explaining the coding
conventions, global variables and the environment setup. If you have not installed ROOT, you
can do so by following the instructions in the appendix, or on the ROOT web site: http://
root.cern.ch/root/Availability. htm

Setting the Environment Variables

Before you can run ROOT you need to set the environment variable ROOTSYS and change your path
toincluder oot / bi n and library path variablesto includer oot / | i b. Please note; the syntax isfor
bash, if you are runningt csh you will haveto use set env instead of export .

1. Define the variable $ROOTSY Sto the directory where you unpacked the ROOT:
$ export ROOTSYS=$HOVE/ r oot

2. Add ROOTSY S/hin to your PATH:

$ export PATH=$PATH $ROOTSYS/ bi n

3. Setting the Library Path

On HP-UX, before executing the interactive module, you must set the library path:
$ export SHLI B_PATH=$SHLI B_PATH: $ROOTSYS/ | i b

On AlX, before executing the interactive module, you must set the library path:

$[-z "$LIBPATH'] && export LIBPATH=/lib:/usr/lib
$ export LI BPATH=$LI BPATH: $ROOTSYS/ | i b

On Linux, Solaris, Alpha OSF and SGlI, before executing the interactive module, you must set the
library path:

$ export LD LI BRARY_PATH=$LD LI BRARY_PATH $ROOTSYS/ | i b

On Solaris, in caseyour LD_LIBRARY _PATH is empty, you should set it:

$ export LD LI BRARY PATH=$LD LI BRARY PATH: $ROOTSYS/ | i b:/usr/dt/lib
If you usethe af s version you should set (vers = version number, arch = architecture):

$ export ROOTSYS=/ af s/ cern.ch/sw | cg/external/root/
vers

/

arch

/r oot

If ROOT wasinstalled in $SHOVE/ nmyr oot directory on alocal machine, one can do:

cd $HOVE/ nyr oot
bi n/t hi sroot. sh // or source bin/thisroot.sh

The new $ROOTSYS/ bin/thisroot.[c]sh scripts will set correctly the ROOTSYS,
LD LI BRARY_PATH or other paths depending on the platform and the MANPATH. To run the
program just type: r oot .

12

Getting Started

Start and Quit a ROOT Session

% r oot

IR I I I I S S I S S I R S S R I S S S S

WELCOME to ROOT
Ver si on 5. 20/ 00 24 June 2007

You are welcone to visit our Web site
http://root.cern. ch

*
*
*
*
*
*
*
*
*

R I S S S I I S A I I S I R I O S O

ROOT 5.20/00 (trunk@4525, Jun 25 2008, 12:52:00 on |inux)

CI NT/ ROOT C/ C++ Interpreter version 5.16.29, June 08, 2008
Type ? for hel p. Conmands nust be C++ statenents.

Encl ose nmultiple statenments between { }.

root [O0]

To start ROOT you can typer oot at the system prompt. This starts up CINT, the ROOT command
line C/C++ interpreter, and it gives you the ROOT prompt (r oot [0])

It is possible to launch ROOT with some command line options, as shown below:

% root -/?
Usage: root [-1] [-b] [-n] [-q] [filel.C ... fileN
Opt i ons:
-b : run in batch node w thout graphics
-n : do not execute |ogon and | ogoff macros as
specified in .rootrc
-gq : exit after processing command |[ine script files
-1 : do not show the image | ogo (splash screen)

» —bROOQT session runs in batch mode, without graphics display. This mode is useful in case one
does not want to set the DISPLAY or cannot do it for some reason.

» —nusualy, launching a ROOT session will execute alogon script and quitting will execute alogoff
script. This option prevents the execution of these two scripts.

* itisalso possible to execute a script without entering a ROOT session. One simply adds the name
of the script(s) after the ROOT command. Be warned: after finishing the execution of the script,
ROOT will normally enter anew session.

» —gprocess command line script files and exit.

For exampleif you would like to run a script my Macr o. Cin the background, redirect the output into
afilemyMacr o. | og, and exit after the script execution, use the following syntax:

root -b -gq nyMacro.C > nyMacro. | og

If you need to pass a parameter to the script use:

root -b -q 'nyMacro. C(3)’ > nyMacro. | og

Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:

root -b -q "nmyMacro. C("text")’ > nmyMacro. | og

13

Getting Started

You can build a shared library with ACLiC and then use this shared library on the command line for

a quicker execution (i.e. the compiled speed rather than the interpreted speed). See aso “CINT the
C++ Interpreter”.

root -b -gq myMacro.so > myMacro. | og

ROOT has a powerful C/C++ interpreter giving you access to al available ROOT classes, global
variables, and functions viathe command line. By typing C++ statements at the prompt, you can create
objects, call functions, execute scripts, etc. For example:

root[] 1+sqrt(9)
(const doubl e) 4. 00000000000000000e+00

root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl
Hello O

Hello 1

Hello 2

Hello 3

root[] .q

To exit the ROOT session, type. d.

root[] .q

Using the GUI

The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the class
TCanvas). Every object in the canvasis agraphical object in the sense that you can grab it, resizeiit,
and change some characteristics using the mouse. The canvas area can be divided in several sub areas,
so-called pads (the class TPad). A pad is a canvas sub area that can contain other pads or graphical
objects. At any onetime, just one pad isthe so-called active pad. Any object at the moment of drawing
will be drawn in the active pad. The obvious question is: what is the relation between a canvas and
apad? In fact, a canvas is a pad that spans through an entire window. This is nothing else than the
notion of inheritance. The TPad class is the parent of the TCanvas class. In ROOT, most objects
derive from a base class TObj ect . This class has a virtual method Dr aw() such as al objects are
supposed to be able to be "drawn". If several canvases are defined, there is only one active at atime.
One draws an object in the active canvas by using the statement:

obj ect . Drawm()

Thisinstructsthe object "obj ect " to draw itself. If no canvasis opened, a default one (hamed "c1")
is created. In the next example, the first statement defines a function and the second one draws it.
A default canvas is created since there was no opened one. Y ou should see the picture as shown in
the next figure.

root[] TF1 f1("funcl","sin(x)/x",O0,10)
root[] f1.Draw()
<TCanvas: : MakeDef Canvas>: created default TCanvas with nanme cl

14

Getting Started

Figure 2.1. A canvaswith drawing

|Ele Edit Miew Optoms jnspect Clatses —m— Menu bar
Il Qslels] 2lel wiE) el olo] dololwln|kl4|o[L]|s/s] «———— Tool bar
stye | sin(x}/x

Hame
E1-TC v 1
PadiCanval
™ Fied aspect rain
™ Crosshair F Eont
I gagx [Gidy
ek Tieey
Log Scale
Fix Cia 2
Barder Mode
™ Sunken border
£ Mo border
' Ralsed border

=
o

=
L

Canvas

=
=

=
B3

00 o T e
T T T T 1 1

S |2
Fill

i

T T . Status bar

Editor frame

The following components comprise the canvas window:

e Menu bar — contains main menus for global operations with files, print, clear canvas, inspect, etc.
» Tool bar — has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.

» Canvas—an areato draw objects.

* Status bar — displays descriptive messages about the selected object.

« Editor frame - responds dynamically and presents the user interface according to the sel ected object
in the canvas.

Main Menus and Toolbar
At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

File Menu

Mew Canvas
Open

Save 3
Save Az

Print...
Quit ROOT

* New Canvas: creates a new canvas window in the current ROOT session.

* Open...: popup adialog to open afile.

* Close Canvas: close the canvas window.

» Save: save the drawing of the current canvasin aformat selectable from the submenu. The current

canvas hame is used as a file name for various formats such as PostScript, GIF, JPEG, C macro
file, root file.

15

Getting Started

e Save As...: popup adialog for saving the current canvas drawing in a new filename.
 Print: popup adialog to print the current canvas drawing

* Quit ROOT: exit the ROOT session

Edit Menu

Thereis only one active menu entry in the Edit menu. The others menu entries will be implemented
and will become active in the near future.

o |
Toalbar
Event Status

Colars
BEomts
harkers

lconify
Wiew wWith b

L ==""" “IClear: delete al objects in the canvas or in the selected pad according to the
selected entry in the submenu.

View Menu

« Editor: toggles the view of the editor. If it is selected activates and shows up the editor on the left
side of the canvas window. According to the sel ected object, the editor |oads the corresponding user
interface for easy change of the object’ s attributes.

» Toolbar: toggles the view of the toolbar. If it is selected activates and shows up the toolbar. It
contains buttons for easy and fast access to most frequently used commands and for graphics
primitive drawing. Tool tips are provided for helping users.

» StatusBar: togglestheview of the statusbar. If itisselected, the status bar bel ow the canvaswindow
shows up. There the identification of the objectsis displayed when moving the mouse (such as the
object’ s name, the object’ stype, its coordinates, etc.).

» Colors: creates a new canvas showing the color palette.
» Markers: creates a new canvas showing the various marker styles.
« Iconify: create the canvas window icon, does not close the canvas

» View With...: If the last selected pad contains a 3-d structure, a new canvas is created with a 3-D
picture according to the selection made from the cascaded menu: X3D or OpenGL. The 3-D image
can be interactively rotated, zoomed in wire-frame, solid, hidden line or stereo mode.

Options Menu

v Auto Resize Canvas
Besize Canvas

Mowve Opague

Resize Opague

Interrupt
Refrash
Pad Auto Exec
v Statistics
v Histogram Title
Fit Parameters
Can Edit Histograms

16

Getting Started

* Auto Resize Canvas: turns auto-resize of the canvas on/off:

» ON —the canvas fits to the window when changing the window size;

* OFF —the canvas stays fixed when changing the window size.

* Resize Canvas: resizes and fits the canvas to the window size.

» Move Opaque: if selected, graphics objects are moved in opague mode; otherwise, only the outline
of objects is drawn when moving them. The option opaque produces the best effect but it requires

areasonably fast workstation or response time.

» Resize Opaque: if selected, graphics objects are resized in opagque mode; otherwise, only the outline
of objectsis drawn when resizing them.

* Interrupt: interrupts the current drawing process.

* Refresh: redraws the canvas contents.

» Pad Auto Exec: executes thelist of TExecs in the current pad.

» Satistics: toggles the display of the histogram statistics box.

» Histogram Title: toggles the display of the histogram title.

» Fit Parameters: toggles the display of the histogram or graph fit parameters.

» Can Edit Histogram: enables/disables the possibility to edit histogram bin contents.

Inspect Menu

BOOT

Start Browser
Gui Builder

» ROOT: inspects the top-level gROOT abject (in a new canvas).

» Start Browser: starts a new object browser (in a separate window).

e GUI Builder: starts the GUI builder application (in a separate window).
Classes Menu

» Classes: starts the ClassTree viewer that draws inheritance tree for alist of classes.

Help Menu

Basic Help On... |

Graphics Editor
Browser
Dhjects
PostScript

&hout ROOT...

17

Getting Started

e Canvas. help on canvas as awhiteboard areafor drawing.

» Menus: help on canvas menus.

 Graphics Editor: help on primitives' drawing and objects’ editor.

» Browser: help on the ROOT objects’ and files' browser.

» Objects: help on DrawClass, Inspect and Dump context menu items.
» Postript: help on how to print a canvas to a PostScript file format.

» About ROOT: pops up the ROOT Logo with the version number.

Toolbar

The following menu shortcuts and utilities are available from the toolbar:
QI Create anew canvas window.

ﬂ Popup the Open File dialog.

Popup the Save As... dialog.

% Popup the Print dialog.

ﬂ Interrupts the current drawing process.

@ Redraw the canvas.

ﬂ Inspect the gROOT object.

Create anew objects’ browser.

Y ou can create the following graphical objects using the toolbar buttons for primitive drawing. Tool
tips are provided for helping your choice.

SI An Arc or circle: Click on the center of the arc, and then move the mouse. A rubber band circle
is shown. Click again with the left button to freeze the arc.

LI A Line Click with the left button at the point where you want to start the line, then move the
mouse and click again with the left button to freeze the line.

M An Arrow: Click with the left button at the point where you want to start the arrow, then move
the mouse and click again with the left button to freeze the arrow.

ﬂ A Diamond: Click with the left button and freeze again with the left button. The editor draws a
rubber band box to suggest the outline of the diamond.

= | An Ellipse: Proceed like for an arc. Y ou can grow/shrink the ellipse by pointing to the sensitive
points. They are highlighted. You can move the €ellipse by clicking on the €ellipse, but not on the

18

Getting Started

sensitive points. If, with the ellipse context menu, you have selected afill area color, you can move a
filled-ellipse by pointing inside the ellipse and dragging it to its new position.

J A Pad: Click with the left button and freeze again with the left button. The editor draws a rubber
band box to suggest the outline of the pad.

| A Pavel abel: Proceed like for a pad. Type the text of label and finish with a carriage return. The
text will appear in the box.

A Pave Text: Proceed likefor apad. Y ou can then click on the TPaveText object with theright
mouse button and select the option | nser t Text .

Paves Text: Proceed likefor aTPaveText .

ﬂ A Poly Line: Click with the left button for the first point, move the moose, click again with the
left button for a new point. Close the poly-line with a double click. To edit one vertex point, pick it
with the left button and drag to the new point position.

G | A Curly Line: Proceed as for the arrow or line. Once done, click with the third button to change
the characteristics of the curly line, like transform it to wave, change the wavelength, etc.

@ A Curly Arc: Proceed like for an ellipse. The first click is located at the position of the center,
the second click at the position of the arc beginning. Once done, one obtains acurly €ellipse, for which
one can click with the third button to change the characteristics, like transform it to wavy, change the
wavelength, set the minimum and maximum angle to make an arc that is not closed, etc.

L | A Text/Latex string: Click with the left button where you want to draw the text and then typein
thetext terminated by carriagereturn. All TLat ex expressionsarevalid. To movethetext or formula,
point on it keeping the left mouse button pressed and drag the text to its new position. Y ou can grow/
shrink the text if you position the mouse to the first top-third part of the string, then move the mouse
up or down to grow or shrink the text respectively. If you position the mouse near the bottom-end of
the text, you can rotate it.

|i| A Marker: Click with the left button where to place the marker. The marker can be modified by
using the method Set Mar ker St yl e() of TSyst em

|§E A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected
area. Close the cut by double clicking on the last point. A TCut Gobject is created. It can be used as
aselectionfor aTTr ee: : Dr aw. You can get apointer to this object with:

TCut G cut = (TCut G*) gPad- >Get Prini ti ve(" CUTG')

Onceyou are happy withyour picture, youcan selecttheSave as canvas. CiteminthecanvasFile
menu. Thiswill automatically generate a script with the C++ statements corresponding to the picture.
Thisfacility also works if you have other objects not drawn with the graphics editor (histograms for
example).

The Editor Frame

The ROQOT graphics editor loads the corresponding object editor obj Edi t or according to the
selected object obj in the canvas respecting the class inheritance. An object in the canvasis selected
after the left mouse click on it. For example, if the selected object isTAXi s, the TAXi sEdi t or will
shows up in the editor frame giving the possibility for changing different axis attributes. The graphics
editor can be;

19

Getting Started

Embedded — connected only with the canvas in the application window that appears on the left of the
canvas window after been activated via View menu / Editor. It appears on the left side if the canvas
window allowing usersto edit the attributes of the selected object viaprovided user interface. Thename
of the selected object is displayed on the top of the editor framein red color. If the user interface needs
more space then the height of the canvas window, a vertical scroll bar appears for easer navigation.

£5-11 Momentum distribution \E!IEIE
File Edit ¥iew Options |nspect Classes Help
st Jaming| Using TH1Editor e
mamentumn:TH1F Mean 54.85
Ling —————— RMS 32.37
I =

1 -

Fill

CO - .-

Title —————————

Using TH1Editor

Histogram

Flot
@ 2D 3D

Error: | Edges ~
Style: |MoLine >

¥ Bar option
[add outer line
Bar

w:[100'2] o[00a g
Percentage lm

" Horizontal Bar
Marker

M e |- 05]

of Particles

_t [MeV]

Global — has own application window and can be connected to any created canvasin aROOT session.
It can be activated via the context menu entries for setting line, fill, text and marker attributes for
backward compatibility, but there will be a unique entry in the near future.

hdzdemo_Editor E3[=lk JWLdMonte Carlo Study of Z scaling =ik
Style I File Edit Wiew Options Inspect Classes Heln
MName
Graph:TGraph | Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies I
Ling ————
1B lﬁ M. Tokarev, E.Potrebenikova JINR preprint E2-98-64, Dubug, 1998
|1 —— vI
o ——— o i
- o e o e
Direct 10" Direct
Title ———————————— 107 6=90" b 6=90"
IGraph s 102
Shape = 10
© No Line L7 10 Hiz)
© Smaoth Line 1wl 10 (barn)
& simple Line 3 3
I Edoldg 107
 Bar Chant 10" {barniGev?) b
 Fill area e
g 1075
il s, GeV
¥ Show Marker 107°F W V5 = 63(GeV) 1wk 53
Marker ——————————— w0l ¥ 5 = 200(GeV) 107F :g:
& : | # 5 = 500(GeV) 109
W (el-]2 = o SR R | SN RO I
1 10 q (Gevie) 1¢° 1 10 10 10z
L —

Theuser interfacefor thefollowing classesisavailablesince ROOT v.4.04: TAt t Li ne, TAttFi | |,
TAt t Mar ker , TAt t Text , TArrow, TAXi s, TCur | yArc, TCur | yLi ne, TFrame, TH1, TH2,
TG aph, TPad, TCanvas, TPaveSt at s. For more details, see “ The Graphics Editor”, “The User
Interface for Histograms”, “ The User Interface for Graphs”.

Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members and methods. The next
line creates an object named f 1 of the class TF1 that is a one-dimensional function. The type of an
object is called a class. The object itself is called an instance of a class. When a method builds an
object, it is called a constructor.

20

Getting Started

TFL f1("funcl”, "sin(x)/x",0, 10)

In our constructor the function sin(x)/x is defined for use, and 0 and 10 are the limits. The first
parameter, f unc 1 isthename of theobject f 1. Most objectsin ROOT have aname. ROOT maintains
alist of objectsthat can be searched to find any object by its given name (in our examplef unc1).

The syntax to call an object's method, or if one prefers, to make an object to do something is:
obj ect . net hod_name(par anet er s)

Thedot can bereplaced by “- >" if obj ect isapointer. In compiled code, the dot MUST bereplaced
by a"- >" if object is a pointer.

obj ect _ptr->net hod_name(par anet ers)

So now, we understand the two lines of codethat allowed usto draw our function.f 1. Dr aw() stands
for “call the method Dr aw() associated with the object f 1 of the class TF1”. Other methods can be
applied to the object f 1 of the class TF1. For example, the evaluating and calculating the derivative
and the integral are what one would expect from a function.

root[] f1.Eval (3)

(Doubl e_t) 4. 70400026866224020e- 02
root[] f1.Derivative(3)

(Doubl e_t) (-3.45675056671992330e- 01)
root[] f1l.Integral (0, 3)

(Doubl e_t) 1. 84865252799946810e+00
root[] f1.Draw()

By default the method TF1: : Pai nt (), that draws the function, computes 100 equidistant points to
draw it. The number of points can be set to a higher value with:

root[] f1.SetNpx(2000);

Note that while the ROOT framework is an object-oriented framework, this does not prevent the user
from calling plain functions.

User Interaction

Now we will look at some interactive capabilities. Try to draw the function si n(x) / x again. Every
object in awindow (which is called a canvas) is, in fact, a graphical object in the sense that you can
grab it, resizeit, and change its characteristics with amouse click. For example, bring the cursor over
the x-axis. The cursor changes to a hand with a pointing finger when it is over the axis. Now, left click
and drag the mouse along the axis to the right. Y ou have a very simple zoom.

When you move the mouse over any object, you can get access to selected methods by pressing the
right mouse button and obtaining a context menu. If you try this on the function TF1, you will get a
menu showing available methods. The other objectson thiscanvasarethetitle, aTPaveText object;
the x and y-axis, TAXi s objects, the frame, a TFr ane object, and the canvas a TCanvas object.
Try clicking on these and observe the context menu with their methods.

21

Getting Started

Figure 2.2. A context menu

& c1 [_[O[x]

Eile Edit ¥iew Options Inspect Classes Help
sin(x)x |

1

TH ::funcl

DrawiPanel
Sethdaximurm
Sethinimum
Sethme
SetRange
SetParhlames

0.8

0.6

Sethlame
0.4 SefTitle

Delete
DrawClass
DrawClone
Dump

Inspect
SetDrawOption
Sellineatributes
SetFillattributes

Sefidarkeratiributes T IR N SR ININRrI INRT AT I
1 2 3 4 5 6 7 8] 10

A R R LR LA R

(=1

For example try selecting the Set Range() method and putting - 10, 10 in the dialog box fields.
This is equivalent to executing f 1. Set Range(- 10, 10) from the command line, followed by
f 1. Dr aw() . Here are some other options you can try.

Oncethe picture suits your wishes, you may want to seethe code you should put in ascript to obtain the
sameresult. To do that, choose Save/ canvas. Centry of the File menu. Thiswill generate a script
showing the options set in the current canvas. Notice that you can also save the picture into various
file formats such as PostScript, GIF, etc. Another interesting possibility isto save your canvasinto the
native ROOT format (. r oot file). Thiswill enable you to open it again and to change whatever you
like. All objects associated to the canvas (histograms, graphs) are saved at the same time.

Building a Multi-pad Canvas

Let us now try to build a canvas with several pads.

root[] TCanvas *MyC = new TCanvas("M/C', "Test canvas", 1)
root[] MyC >Divide(2,2)

Once again, we call the constructor of a class, thistime the class TCanvas. The difference between
thisand the previous constructor call (TF1) isthat here we are creating a pointer to an object. Next, we
call themethod Di vi de() of the TCanvas class(thatisTCanvas: : Di vi de()), which divides
the canvas into four zones and sets up a pad in each of them. We set the first pad as the active one
and than draw the function f 1 there.

root[] MyG >cd(1)
root[] f1->Draw()

All objects will be drawn in that pad because it is the active one. The ways for changing the active
pad are:

* Click the middie mouse button on a pad will set this pad as the active one.
» Usethe method TCanvas: : cd() with the pad number, as was done in the example above:
root[] MyGC >cd(3)

Pads are numbered from left to right and from top to bottom. Each new pad created by
TCanvas: : Di vi de() has a name, which is the name of the canvas followed by 1, 2, etc. To
apply the method cd() to thethird pad, you would write:

22

Getting Started

root[] MyC 3->cd()

» Third padwill beselected sinceyou called TPad: : cd() fortheobject MyC_3. ROOT will find the
pad that wasnamed MyC_3 when you typed it on the command line (see ROOT/CINT Extensions
to C++).

Saving the Canvas

Mew Canvas

Qpen...

Close Canvas

Save As... zdemo.gps

Print... zdemo.pdf
T 2demo.gif

Quit ROOT zdemo.jpg

zdemo.C

zdemo.foot

Using the File menu / Save cascade menu users can save the canvas as one of the files from the list.
Please note that saving the canvas this way will overwrite the file with the same name without a
warning.

All supported file types can be saved viaFile menu / SaveAs... Thisdialog gives a choice to show or
suppress the confirmation message for overwriting an existing file.

Figure 2.3. The SaveAs... dialog

hdsaveas.. ix)
Save in: tutarials - d |k ml ite]
ave in: [=l & il 28T ovenwrite
[cvs G+ DOMParsePerson.C Gt
G* binomi i
x
G+ foam_k:
G moitest & File name mymacro.C already exists, OK to overwrite it?
G+ rucleus
G+triangle Yes I Mo |
G+ ContowrbistT EFFitngDemo. C FF Surfaces.
2
File name: |mymacr0.c Save |
Files oftyps: [ROOT macros (*.C) = Cancel |

If the Ovewrite check box is not selected, a message dialog appears asking the user to overwrite the
file (Yes/No). The user choiceis saved for the next time the Save As... dialog shows up.

Printing the Canvas

The Print command in the canvas File menu pops-up a print dialog where the user can specify a
preferred print command and the printer name.

L 4P x

Print command: prrint—P Erint |
Printer: |32—rb20—hp cancel |

Both print parameters can be set via the new Print. Command and Print.Printer rootrc resources as
follows:

Printer settings.
W nNT. *. Pri nt . Command: Acr oRd32. exe

23

Getting Started

Uni x. *. Pri nt. Command: xprint -P% %
Print.Printer: 32-rb205- hp
Print.Directory: .

If the %p and % are specified as a part of the print command, they will be replaced by the specified
printer name and the file name. All other parameters will be kept asthey are written. A print button is
available in the canvas toolbar (activated via View menu/Toolbar).

The ROOT Command Line

We have briefly touched on how to use the command line. There are different types of commands.
1. CINT commands start with . ”

root[] .? //this command will list all the CI NT commands
root[] .L <filename> //load [fil enane]
root[] .x <filename> //|oad and execute [fil enane]

2. SHELL commands start with“. ! ” for example:
root[] .! Is
3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser ()

Multi-line Commands

Y ou can use the command line to execute multi-line commands. To begin a multi-line command you
must type a single left curly bracket {, and to end it you must type a single right curly bracket } .
For example:

root[] {
end with '
end with '
end with '
end with '
end with '
end with '
end with '
i 0, j
i 1, j
i 2, j

Int_t j = 0;

for (Int_t i =0; i < 3; i++)

S

=] +1;

cout << "i =" << j << ", j =" <<] << endl;
}

}

VVVVYVVYV

e e e T e

0
1
3

It is more convenient to edit a script than the command line, and if your multi line commands are
getting unmanageabl e, you may want to start with a script instead.

CINT Extensions

We should say that some things are not standard C++. The CINT interpreter has severa extensions.
See “ROOT/CINT Extensionsto C++".

Helpful Hints for Command Line Typing

Theinterpreter knows al the classes, functions, variables, and user defined types. This enablesROOT
to help users to complete the command line. For example, if we do not know anything about the
TLi ne class, the Tab feature helpsusto get alist of al classes starting with TL(where <TAB> means
type the Tab key).

24

Getting Started

root[] | = new TLi <TAB>
TLi st

TLi stlter

TLi nk

TLi ne

TLi m t Dat aSour ce

TLimt

To list the different constructors and parametersfor TLi ne use the <TAB> key asfollows:

root[] | = new TLi ne(<TAB>

TLi ne TLi ne()

TLi ne TLi ne(Doubl e _t x1, Doubl e t y1, Double t x2, Double t y2)
TLi ne TLi ne(const TLi ne& | i ne)

Regular Expression

The meta-characters below can be used in aregular expression:

o "' start-of-line anchor

* '$' end-of-line anchor

 '. "matches any character

e '[' start acharacter class

» '] "end acharacter class

e ''negates character classif first character

» 'Kl eene closure (matches 0 or more)

» '+’Positive closure (1 or more)

e 2’ Optional closure (0 or 1)

When using wildcards the regular expression is assumed to be preceded by a**' (BOL) and terminated
by '$' (EOL). All *' (closures) are assumed to be preceded by a". ', i.e. any character, except slash _/
_. Its special treatment allows the easy matching of pathnames. For example, _*. r oot _ will match
_aap. root _, butnot_pi po/ aap. root _.

The escape characters are:

* \ backslash

 bbackspace

o fform feed

* nnew line

* r carriagereturn

* sspace

o ttab

« eASCI| ESC character ('033)

» DDDnumber formed of 1-3 octal digits

25

Getting Started

» xDDnumber formed of 1-2 hex digits
e "CC = any letter. Control code

The class TRegexp can be used to create aregular expression from an input string. If wi | dcar d is
true then the input string contains a wildcard expression.

TRegexp(const char *re, Bool t wildcard)
Regular expression and wildcards can be easily used in methods like:
Ssiz_t Index(const TString& string,Ssiz t* len,Ssiz_t i) const

The method findsthefirst occurrence of theregular expressioninthest r i ng and returnsits position.

Conventions

In this paragraph, we will explain some of the conventions used in ROOT source and examples.

Coding Conventions

From the first days of ROOT development, it was decided to use a set of coding conventions. This
allows a consistency throughout the source code. Learning these will help you identify what type of
information you are dealing with and enable you to understand the code better and quicker. Of course,
you can use whatever convention you want but if you are going to submit some code for inclusion
into the ROOT sources, you will need to use these.

These are the coding conventions:

* Classesbeginwith T: TLi ne, TTree

* Non-classtypesend with _t: I nt t

» Datamembersbeginwith f:f Tree

» Member functions begin with a capital: Loop()

» Constantsbeginwithk: kil niti al Si ze, kRed

* Global variables begin with g: gEnv

 Static datamembers begin with f g: f gTokend i ent
» Enumeration types begin with E:ECol or Level
 Localsand parameters begin with alower case: nbyt es

+ Getters and setters begin with Get and Set :Set Last (), Get Fi r st ()

Machine Independent Types

Different machines may have different lengths for the same type. The most famous example is the
i nt type. It may be 16 bits on some old machines and 32 bits on some newer ones. To ensure the size
of your variables, use these pre defined typesin ROOT:

e Char _t Signed Character 1 byte
e UChar _t Unsigned Character 1 byte

e Short _t Signed Short integer 2 bytes

26

Getting Started

UShort _t Unsigned Short integer 2 bytes

I nt _t Signed integer 4 bytes

Ul nt _t Unsigned integer 4 bytes

Long64_t Portable signed long integer 8 bytes

ULong64 t Portable unsigned long integer 8 bytes

Fl oat _t Float 4 bytes

Doubl e_t Float 8 bytes

Doubl e32_t Double 8 bytesin memory, written as a Float 4 bytes

Bool _t Boolean (O=false, 1=true)

If you do not want to save avariable on disk, you canusei nt or | nt _t, theresult will be the same
and the interpreter or the compiler will treat them in exactly the same way.

TODbject

In ROOT, amost al classes inherit from a common base class called TObj ect . This kind of
architecture is also used in the Java language. The TCbj ect class provides default behavior and
protocol for all objects in the ROOT system. The main advantage of this approach is that it enforces
the common behavior of the derived classes and consequently it ensures the consistency of the whole
system. See "The Role of TObject".

TObj ect provides protocal, i.e. (abstract) member functions, for:

Object 1/0 (Read() ,Wite())
Error handling (War ni ng() ,Error(),SysError(),Fatal ())
Sorting (I sSort abl e(), Conpare(), | sEqual (),Hash())
Inspection (Dunp(), I nspect ())

Printing (Pri nt ())

Drawing (Dr aw() , Pai nt (), Execut eEvent ())

Bit handling (Set Bit (), TestBit())

Memory allocation (operator new and del et e, | sOnHeap())
Accessto metainformation (I SA(), I nheritsFrom())

Object browsing (Br owse() , 1 sFol der ())

Global Variables

ROOT has a set of global variables that apply to the session. For example, gDhi r ect ory aways
holds the current directory, and gSt y| e holds the current style. All global variables begin with “g”
followed by a capital |etter.

gROOT

The single instance of TROOT is accessible via the global gROOT and holds information relative
to the current session. By using the gROOT pointer, you get the access to every object created in a

27

Getting Started

gFile

ROOT program. The TROOT object has severa lists pointing to the main ROOT objects. During a
ROOT session, the gROOT keeps a series of collections to manage objects. They can be accessed via
gROOT: : Get Li st O ... methods.

gROOT- >Get Li st OF Cl asses()

gROOT- >Get Li st O Col ors()

gROOT- >Get Li st O Types()

gROOT- >Get Li st OF d obal s()

gROOT- >Get Li st OF @ obal Functi ons()
gROOT- >Get Li st OF Fi | es()

gROOT- >CGet Li st OF MappedFi | es()
gROOT- >Get Li st OF Socket s()

gROOT- >Get Li st OF Canvases()

gROOT- >Get Li st OF Styl es()

gROOT- >Get Li st OF Funct i ons()
gROOT- >Get Li st OF Speci al s()

gROOT- >Get Li st OF Geonetri es()
gROOT- >Get Li st OF Br owser s()

gROOT- >Get Li st OF MessageHandl er s()

These methods return a TSeqCol | ect i on, meaning a collection of objects, and they can be used
to do list operations such as finding an object, or traversing the list and calling a method for each of
the members. See the TCol | ect i on class description for the full set of methods supported for a
collection. For example, to find acanvascaled c1 you can do:

root [] gROOT- >Get Li st O Canvases() - >Fi ndCbj ect ("c1")

This returns a pointer to a TQhj ect , and before you can use it as a canvas you need to cast it to a
TCanvas*.

gFi | e isthe pointer to the current opened file in the ROOT session.

gDirectory

gPad

gDi rect ory isapointer to the current directory. The concept and role of a directory is explained
in the chapter “Input/Output”.

A graphic object isalways drawn on the active pad. It is convenient to access the active pad, no matter
what it is. For that, we have gPad that is always pointing to the active pad. For example, if you want
to change the fill color of the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFill Col or (38)

To get thelist of colors, if you have an open canvas, click in the "View" menu, selecting the "Colors"
entry.

gRandom

gRandom is a pointer to the current random number generator. By default, it points to a
TRandonB object, based on the "Mersenne-Twister" generator. This generator is very fast
and has very good random proprieties (a very long period of 10600). Setting the seed to
0 implies that the seed will be uniquely generated using the TUUI D. Any other value will
be used as a constant. The following basic random distributions are provided: Rndn{) or

28

Getting Started

gEnv

Uni f or m(m n, max), Gaus(nean, si gma), Exp(tau), Brei t Wgner (mean, si gna) ,
Landau(nean, si gma), Poi sson(nean), Bi noni al (ntot, prob). You can customize
your ROOT session by replacing the random number generator. You can delete gRandom and
recreate it with your own. For example;

root[] del ete gRandom
root[] gRandom = new TRandon2(0); //seed=0

TRandon?® isanother generator, which is also very fast and uses only three words for its state.

gEnv is the global variable (of type TEnv) with al the environment settings for the current
session. This variable is set by reading the contents of a . r oot r ¢ file (or $ROOTSYS/ et c/
system rootrc) at the beginning of the root session. See Environment Setup below for more
information.

Environment Setup

The behavior of a ROOT session can be tailored with the options in the .r oot r ¢ file. At start-up,
ROOT looksfor a.r oot r ¢ filein the following order:

e ./.rootrc//local directory
« $HOVE/ .rootrc //user directory
» $ROOTSYS/ etc/systemrootrc //global ROOT directory

If more than one . r oot r ¢ files are found in the search paths above, the options are merged, with
precedence local, user, global. Whilein a session, to see current settings, you can do:

root[] gEnv->Print()
Ther oot r ¢ filetypicaly lookslike:

Path used by dynanic |oader to find shared |ibraries
Uni x. *. Root . Dynami cPath: .:~/rootlibs: $(ROOTSYS)/lib
Uni x. *. Root . Macr oPat h: ..~/ r oot macr os: $(ROOTSYS) / nacr os

Path where to | ook for TrueType fonts
Uni x. *. Root . UseTTFont s: true
Uni x. *. Root . TTFont Pat h:

Activate nenory statistics

Ri nt . Root . Mentt at : 1

Ri nt. Load: rootalias.C
Ri nt . Logon: root | ogon. C
Ri nt. Logoff: root | ogoff.C

Ri nt . Canvas. MoveQpaque: fal se
Ri nt . Canvas. Hi ghLi ghtCol or: 5

The various options are explained in $ROOTSYS/ et ¢/ system rootrc. The . rootrc file
contents are combined. For example, if the flag to use true type fonts is set to true in the
system r oot r c file, you have to set explicitly it falsein your local . r oot r ¢ file if you do not
want to use true type fonts. Removing the UseTTFont s statement in the local . r oot r ¢ file will
not disable true fonts. The value of the environment variable ROOTDEBUG overrides the value in the
. rootrc file at startup. Its value is used to set gDebug and helps for quick turn on debug mode
in TROOT startup.

29

Getting Started

ROOT looks for scripts in the path specified in the . r oot r ¢ file in the Root . Macro. Pat h
variable. You can expand this path to hold your own directories.

Logon and Logoff Scripts

The r oot | ogon. C and r oot | ogof f . C files are scripts loaded and executed at start-up and
shutdown. The r oot al i as. Cfile is loaded but not executed. It typically contains small utility
functions. For example, ther oot al i as. Cscript that comeswith the ROOT distributions (located in
$ROOTSYS/ t ut ori al s) definesthefunctionedi t (char *fil e).Thisalowsthe user to call
the editor from the command line. This particular function will start the VI editor if the environment
variable EDI TORis not set.

root[0] edit("cl.C")

For more details, see $ROOTSYS/ t ut ori al s/rootal i as. C.

History File

Y ou can use the up and down arrow at the command line, to access the previous and next command.
The commands are recorded in the history file SHOVE/ . r oot _hi st . It isatext file, and you can
edit, cut, and paste from it. Y ou can specify the history fileinthe syst em r oot r c file, by setting
theRi nt. Hi st ory option. You can aso turn off the command logging inthesyst em r oot r ¢
filewith the option: R nt . Hi story: -

The number of history linesto be kept can be set also in .rootrc by:

Rint. Hi stSize: 500
Ri nt. Hi st Save: 400

The first value defines the maximum of lines kept; once it is reached al, the last Hi st Save lines
will be removed. One can set Hi st Si ze to 0 to disable history line management. There is also
implemented an environment variable called ROOT_HI ST. By setting ROOT_HI ST=300: 200 the
above values can be overriden - the first value correspondsto Hi st Si ze, the (optional) second one
toHi st Save. You can set ROOT_HI ST=0 to disable the history.

Tracking Memory Leaks

You can track memory usage and detect leaks by monitoring the number of objects that are
created and deleted (see TObj ect Tabl e). To use this facility, edit the file SROOTSYS/ et ¢/
system rootrcor. rootrc if you havethisfile and add the two following lines:

Root . Mentst at : 1
Root . Obj ect St at : 1

In your code or on the command line you can type the line:
gObj ect Tabl e->Print();

Thislinewill print thelist of al active classesand the number of instancesfor each class. By comparing
consecutive print outs, you can see objectsthat you forgot to delete. Note that this method cannot show
leaks coming from the allocation of non-objects or classes unknown to ROOT.

Memory Checker

A memory checking system was developed by D.Bertini and M.lvanov and added in ROOT version
3.02.07. To activate the memory checker you can set the resource Root . MentCheck to 1 (e.g.:
Root . MentCheck: 1 inthe.rootrc file). You aso have to link with | i bNew. so (e.g. use
root-config --new --1ibs)ortouserootn. exe. When these settings are in place, you

30

Getting Started

will find a file "mentheck. out " in the directory where you started your ROOT program after
the completion of the program execution. You can also set the resource Root . MentCheckFi | e
to the name of a file. The memory information will be written to that file. The contents of this
nmenctheck. out can be analyzed and transformed into printable text via the menpr obe program
(in $ROOTSYS/ bi n).

Converting from PAW to ROOT

Theweb page at: htt p: //root. cern. ch/root/ Howt oConvert Fr onPAW ht ml #TABLE
gives the "trandation" table of some commonly used PAW commands into ROQOT.
If you move the mouse cursor over the picture at: http://root.cern.ch/root/
Howt oConvert Fr onPAW ht ml #SET, you will get the corresponding ROOT commands as
tooltips.

Converting HBOOK/PAW Files

ROOT has a utility called h2r oot that you can use to convert your HBOOK/PAW histograms or
ntuple filesinto ROQOT files. To use this program, you type the shell script command:

h2r oot <hbookfile> <rootfil e>

If you do not specify the second parameter, a file name is automatically generated for you. If
hbookf i | e is of the form fi | e. hbook, then the ROOT file will be called fi | e. r oot . This
utility converts HBOOK histograms into ROOT histograms of the class THLF. HBOOK profile
histograms are converted into ROOT profile histograms (see class TPr of i | €). HBOOK row-wise
and column-wise ntuples are automatically converted to ROOT Trees. See “Trees’. Some HBOOK
column-wise ntuples may not be fully converted if the columns are an array of fixed dimension (e.g.
var [6]) or if they are amulti-dimensional array.

HBOOK integer identifiersare converted into ROOT named objects by prefixing theinteger identifier
withtheletter "h" if theidentifier isapositiveintegerand by " h_" if itisanegativeinteger identifier.
In case of row-wise or column-wise ntuples, each column is converted to a branch of atree. Note
that h2r oot isableto convert HBOOK files containing several levels of sub-directories. Once you
have converted your file, you can look at it and draw histograms or process ntuples using the ROOT
command line. An example of session is shown below:

// this connects the file hbookconvert ed. root
root[] TFile f("hbookconverted.root");

/1 di spl ay histogram named h10 (was HBOOK id 10)
root[] h10.Draw();

[/ display colum "var" from ntuple h30
root[] h30.Draw "var");

Y ou can aso use the ROOT browser (see TBr owser) to inspect thisfile.

The chapter on trees explains how to read atree. ROOT includes afunction TTr ee: : Maked ass
to generate automatically the code for a skeleton analysis function. See “Example Analysis’.

In case one of the ntuple columns has a variable length (e.g. px(nt rack)), h. Draw(" px") will
histogram the px column for all tracksin the same histogram. Use the script quoted above to generate
the skeleton function and create/fill the relevant histogram yourself.

31

Chapter 3. Histograms

This chapter covers the functionality of the histogram classes. We begin with an overview of the
histogram classes and their inheritance relationship. Then we give instructions on the histogram
features.

We have put this chapter ahead of the graphics chapter so that you can begin working with histograms
as soon as possible. Some of the examples have graphics commands that may look unfamiliar to you.
These are covered in the chapter “Input/Output”.

The Histogram Classes

ROOT supports the following histogram types:

1-D histograms:

e THLC: are histograms with one byte per channel. Maximum bin content = 255

» TH1S: are histograms with one short per channel. Maximum bin content = 65 535

o THLI : are histograms with one integer per channel. Maximum bin content = 2147483647
» TH1F: are histograms with one float per channel. Maximum precision 7 digits

e THLD: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

» TH2C: are histograms with one byte per channel. Maximum bin content = 255

e TH2S: are histograms with one short per channel. Maximum bin content = 65 535

» TH2I : are histograms with one integer per channel. Maximum bin content = 2147483647
e TH2F: are histograms with one float per channel. Maximum precision 7 dig

» TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

» TH3C: are histograms with one byte per channel. Maximum bin content = 255

» TH3S: are histograms with one short per channel. Maximum bin content = 65 535

» TH3I : are histograms with one integer per channel. Maximum bin content = 2147483647
» TH3F: are histograms with one float per channel. Maximum precision 7 digits

e TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

e TProfil e: onedimensional profiles

* TProfil e2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for each bin in X. Profile
histograms are in many cases an elegant replacement of two-dimensional histograms. The inter-
relation of two measured quantities X and Y can aways be visualized with a two-dimensional

32

Histograms

histogram or scatter-plot. If Y isan unknown but single-valued approximate function of X, it will have
greater precisionsin a profile histogram than in a scatter plot.

Figure 3.1. The class hierarchy of histogram classes

All histogram classes are derived from the base class THL. Thefigure above showsthe class hierarchy.
The TH* C classes also inherit from the array class TAr r ay C.
The TH* S classes also inherit from the array class TAr r ay S.
The TH* F classes also inherit from the array class TAr r ayF.

The TH* D classes also inherit from the array class TAr r ayD.

Creating Histograms

Histograms are created with constructors:

THLF *hl
TH2F *h2

new THLF("h1","h1l title", 100, 0, 4. 4);
new TH2F("h2","h2 title", 40,0, 4, 30, -3, 3);

The parameters of the TH1 constructor are the name of the histogram, the title, the number of bins,
the x minimum, and X maximum. Histograms may also be created by:

* Cdling the Clone method of an existing histogram (see below)
» Making aprojection from a 2-D or 3-D histogram (see below)
* Reading a histogram from afile

When a histogram is created, areference to it is automatically added to the list of in-memory objects
for the current file or directory. This default behavior can be disabled for an individual histogram or
for all histograms by setting aglobal switch. Hereisthe syntax to set the directory of the histogram h:

/[l to set the in-menory directory for the current histogramh
h->Set Di rect ory(0) ;

/1 global switch to disable

TH1: : AddDi r ect or y(kKFALSE) ;

When the histogram is deleted, the reference to it is removed from the list of objects in memory. In
addition, when afileis closed, all histograms in memory associated with this file are automatically
deleted. See the chapter “Input/Output”.

33

Histograms

Fixed or Variable Bin Size

All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size binsalong
X and variable size bins along Y or vice-versa. The functions to fill, manipulate, draw, or access
histograms are identical in both cases.

To create a histogram with variable bin size one can use this constructor:

TH1(const char nane, const *title,Int_t nbins, *xbins)

The parameters to this constructor are:

* titl e: histogramtitle

* nbi ns: number of bins

» xbi ns: array of low-edges for each bin. It isan array of sizenbi ns+1

Each histogram always contains three TAXi s objects: f Xaxi s, f Yaxi s, andf Zaxi s. To access
the axis parametersfirst get the axis from the histogram h, and then call the TAXi s access methods.

TAXi s *xaxis = h->Cet Xaxi s();
Doubl e_t bi nCenter = xaxi s->Get Bi nCent er (bi n);

See the class TAXi s for a description of all the access methods. The axis range is aways stored
internally in double precision.

Bin Numbering Convention

For all histogram types: nbi ns, x| ow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (x| ow INCLUDED).

The second to last bin (bin# nbi ns) contains the upper-edge (xup EXCLUDED).
The Last bin (bin# nbi ns+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For example, assuming a 3-D
histogram h with bi nx, bi ny, bi nz, the function returns a global/linear bin number.

Int_ t bin = h->GetBi n(bi nx, bi ny, bi nz);
Thisglobal binis useful to access the bin information independently of the dimension.
Re-binning

At any time, ahistogram can bere-binned viathe TH1: : Rebi n() method. It returnsanew histogram
with the re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

Filling Histograms
A histogram istypically filled with statements like:

h1l->Fill (x);

Histograms

hi->Fill(x,w); [/w th weight
h2->Fi Il (x,y);

h2->Fill (x,y,w;

h3->Fill (x,y,2);
h3->Fi Il (x,y,z,W;

The Fi I'| method computes the bin number corresponding to the given x, y or z argument and
increments this bin by the given weight. The Fi | | () method returns the bin number for 1-D
histograms or global bin number for 2-D and 3-D histograms. If TH1: : Sumw2() has been called
before filling, the sum of squaresis also stored. One can increment a bin number directly by calling
THL: : AddBi nCont ent (), replace the existing content via TH1: : Set Bi nCont ent (), and
access the bin content of agiven binviaTHL: : Get Bi nCont ent () .

Doubl e_t bi nContent = h->Get Bi nCont ent (bi n) ;

Automatic Re-binning Option

By default, the number of binsis computed using the range of the axis. Y ou can change thisto re-bin
automatically by setting the automatic re-binning option:

h->Set Bi t (THL: : kCanRebi n) ;

Oncethisis set, the Fi | | () method will automatically extend the axis range to accommodate the
new value specified inthe Fi | | () argument. The used method is to double the bin size until the
new value fits in the range, merging bins two by two. The TTr ee: : Draw() method extensively
uses this automatic binning option when drawing histograms of variablesin TTr ee with an unknown
range. The automatic binning option is supported for 1-D, 2-D and 3-D histograms. During filling,
some statistics parameters are incremented to compute the mean value and root mean square with
the maximum precision. In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a
check is made that the bin contents do not exceed the maximum positive capacity (127 or 65 535).
Histograms of all types may have positive or/and negative bin contents.

Random Numbers and Histograms

THL1: : Fi | | Randon{) can be used to randomly fill a histogram using the contents of an existing
TF1 function or another TH1 histogram (for all dimensions). For example, the following two
statements create and fill a histogram 10 000 times with a default Gaussian distribution of mean 0
and si grma 1:

root[] TH1F h1("h1","Hi sto from a Gaussi an", 100, - 3, 3);
root[] hl.Fill Randon("gaus", 10000);

TH1: : Get Random() can be used to get a random number distributed according the contents of
a histogram. To fill a histogram following the distribution in an existing histogram you can use
the second signature of TH1: : Fi | | Randon() . Next code snipped assumes that h is an existing
histogram (TH1).

root[] TH1F h2("h2","Hi sto from existing histo", 100, -3, 3);
root[] h2.Fill Random &h1, 1000);

The distribution contained in the histogram h1 (TH1) is integrated over the channel contents. It is
normalized to one. The second parameter (1000) indicates how many random numbers are generated.

Getting 1 random number implies:
» Generating arandom number between O and 1 (say r 1)

* Find the bin in the normalized integral for r 1

35

Histograms

« Fill histogram channel

You can see below an example of the THL: : Get Randon{) method which can be used to get a
random number distributed according the contents of a histogram.

voi d getrandonmh() {
THLF *source = new TH1F("source", "source hist", 100, -3, 3);
sour ce- >Fi | | Randon{ " gaus", 1000) ;
THLF *final = new THLIF("final","final hist", 100, -3, 3);
[/l continued...
for (Int_t i=0;i<10000;i++) {
final->Fill(source->CGet Random());

}
TCanvas *cl = new TCanvas("cl1l","cl1l", 800, 1000);

cl->Divide(1,2);
cl->cd(1);
source->Draw() ;
cl->cd(2);
final->Draw();
cl->cd();

}

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:
 Addition of a histogram to the current histogram
» Additions of two histograms with coefficients and storage into the current histogram

» Multiplications and divisions are supported in the same way as additions.

» The Add, Di vi de and Mul ti pl y methods also exist to add, divide or multiply a histogram by
afunction.

Histograms objects (not pointers) THLF h1 can be multiplied by a constant using:

hl. Scal e(const)

A new histogram can be created without changing the original one by doing:

TH1F h3 = 8*hi;

To multiply two histogram objects and put the result in a 3rd one do:

TH1F h3 = hl*h2;

The same operations can be done with histogram pointers THLF * h1, * h2 following way:
hl- >Scal e(const)

THLF h3 = 8*(*hl);
THIF h3 = (*h1)*(*h2);

Of course, the TH1 methods Add, Mul t i pl y and Di vi de can be used instead of these operators.

If a histogram has associated error bars (THL: : Sumn2() has been called), the resulting error bars
are also computed assuming independent histograms. In case of divisions, binomial errors are also
supported.

36

Histograms

Projections

One can make:

* a 1-D projection of a 2-D histogram or profile. See TH2: : Profil eX, TH2: : Profil eY,
TProfile::ProjectionX, TProfile2D::ProjectionXY, TH2::ProjectionX
TH2: : Proj ecti onY.

» al-D, 2-D or profile out of a3-D histogram see TH3: : Pr oj ecti onZ, TH3: : Pr oj ect 3D.

These projections can be fit via TH2::FitSlicesX, TH2::FitSlicesY,
TH3: : FitSlicesZ

Drawing Histograms

When you call the Dr aw method of a histogram (THL: : Dr aw) for the first time, it creates a
THi st Pai nt er object and saves a pointer to painter as a data member of the histogram. The
THi st Pai nt er class specializesin the drawing of histograms. It allows logarithmic axes (x, y, 2)
when the CONT drawing optionisusing. The THi st Pai nt er classis separated from the histogram
so that one can have histograms without the graphics overhead, for example in a batch program. The
choice to give each histogram has its own painter rather than a central singleton painter, allows two
histograms to be drawn in two threads without overwriting the painter's values. When a displayed
histogram is filled again, you do not have to call the Dr aw method again. The image is refreshed the
next time the pad is updated. A pad is updated after one of these three actions:

* A carriage control on the ROOT command line
» A click inside the pad
» AcdltoTPad: : Updat e()

By default, the TH1: : Dr aw clears the pad before drawing the new image of the histogram. Y ou can
usethe" SAME" option to leave the previous display in tact and superimpose the new histogram. The
same histogram can be drawn with different graphics options in different pads. When a displayed
histogram is deleted, its image is automatically removed from the pad. To create a copy of the
histogram when drawing it, you can use TH1: : Dr awCl one() . This will clone the histogram
and alow you to change and delete the original one without affecting the clone. You can use
TH1: : Dr awNor mal i zed() todraw anormalized copy of a histogram.

TH1 *THL: : DrawNor mal i zed(Opti on_t *opti on, Doubl e t norm const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the normalized
histogram is returned. The contents of the histogram copy are scaled such that the new sum of weights
(excluding under and overflow) isequal to nor m

Note that the returned normalized histogram is not added to the list of histograms in the current
directory in memory. It is the user's responsibility to delete this histogram. The kCanDel et e bit is
set for the returned object. If apad containing this copy is cleared, the histogram will be automatically
deleted. See “Draw Options’ for thelist of options.

Setting the Style

Histogramsusethe current stylegSt yl e, whichistheglobal object of classTSt y| e. To changethe
current style for histograms, the TSt y| e class provides a multitude of methods ranging from setting
thefill color to the axistick marks. Here are afew examples:

void SetHistFill Color(Color_t color = 1)

37

Histograms

void SetH stFillStyle(Style t styl = 0)

voi d Set Hi stLineCol or(Color_t color = 1)

void SetHi stLineStyle(Style t styl = 0)

voi d Set Hi stLineWdth(Wdth_t width = 1)

When you change the current style and would like to propagate the change to a previously
created histogram you can call THL:: UseCurrentStyle(). You will need to cal
UseCurrent St yl e() oneach histogram. When reading many histogramsfrom afile and you wish
to update them to the current style, you can use gROOT: : For ceSt yl e and all histogramsread after
this call will be updated to use the current style. See “Graphics and the Graphical User Interface”.
When ahistogram is automatically created asaresult of aTTr ee: : Dr aw, the style of the histogram
isinherited from the tree attributes and the current styleisignored. The tree attributes are the ones set
in the current TSt y1 e at the time the tree was created. Y ou can change the existing tree to use the
current style, by calling TTr ee: : UseCurrent Styl e() .

Draw Options

The following draw options are supported on all histogram classes:
e "AXI S": Draw only the axis.

e "HI ST": When a histogram has errors, it is visualized by default with error bars. To visualize it
without errors use HI ST together with the required option (e.g. "Hl ST SAVE C").

» "SANME": Superimpose on previous picture in the same pad.

» "CYL": Usecylindrical coordinates.

« "PQOL": Use polar coordinates.

» "SPH'": Use spherical coordinates.

» "PSR': Use pseudo-rapidity/phi coordinates.

» "LEGQO'": Draw alego plot with hidden line removal.

» "LEGOL": Draw alego plot with hidden surface removal.

« "LEGOR": Draw alego plot using colors to show the cell contents.

» "SURF": Draw asurface plot with hidden line removal.

» "SURF1": Draw asurface plot with hidden surface removal.

» "SURF2": Draw asurface plot using colors to show the cell contents.

» "SURF3": Same as SURF with a contour view on the top.

» "SURF4": Draw asurface plot using Gour aud shading.

e “SURF5":Same as SURF3 but only the colored contour is drawn. Used with option CYL, SPH or
PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In
Cartesian or polar coordinates, option SURF3 is used.

The following options are supported for 1-D histogram classes:

» "AH": Draw the histogram, but not the axis labels and tick marks

e "B": Draw abar chart

38

Histograms

"C": Draw a smooth curve through the histogram bins

"E": Draw the error bars

"EQ": Draw the error bars including bins with O contents

"E1":Draw the error bars with perpendicular lines at the edges

"E2": Draw the error bars with rectangles

"E3": Draw afill areathrough the end points of the vertical error bars
"E4": Draw a smoothed filled area through the end points of the error bars
"L": Draw aline through the bin contents

"P": Draw a (poly)marker at each bin using the histogram's current marker style
"PO":Draw current marker at each bin including empty bins

"PI E":Draw aPie Chart

"* H': Draw histogram with a* at each bin

"LF2":Draw histogram as with option "L" but with afill area. Note that "L” also draws afill area
if the histogram fill color is set but the fill area corresponds to the histogram contour.

"9”:Force histogram to be drawn in high resolution mode. By default, the histogram is drawn in
low resolution in case the number of binsis greater than the number of pixelsin the current pad

“1 [“:Draw histogram without the vertical linesfor thefirst and thelast bin. Useit when superposing
many histograms on the same picture.

The following options are supported for 2-D histogram classes:

"ARR'": Arrow mode. Shows gradient between adjacent cells

"BOX": Draw abox for each cell with surface proportional to contents

"BOX1": A sunken button is drawn for negative values, araised one for positive values
"COL": Draw abox for each cell with a color scale varying with contents
"COLZ": Same as "COL" with a drawn color palette

"CONT": Draw acontour plot (same as CONTO)

"CONTZ": Same as "CONT" with adrawn color palette

"CONTO": Draw a contour plot using surface colors to distinguish contours
"CONT1": Draw acontour plot using line styles to distinguish contours
"CONT2": Draw acontour plot using the same line style for all contours
"CONT3": Draw acontour plot using fill area colors

"CONT4": Draw a contour plot using surface colors (SURF2 option at theta = 0)

" CONT5" : Use Delaunay triangles to compute the contours

39

Histograms

e "LI ST": Generate alist of TGr aph objects for each contour

» "FB": To be used with LEGO or SURFACE, suppress the Front-Box

» "BB": To be used with LEGO or SURFACE, suppress the Back-Box

* "A": To be used with LEGO or SURFACE, suppress the axis

e "SCAT": Draw ascatter-plot (default)

e “SPEC’'Use TSpect r unPai nt er tool for drawing

o "TEXT":Draw bin contents as text (format set viagSt yl e- >Set Pai nt Text For mat) .

» "TEXTnn" :Draw bin contents as text at angle nn (0<nn<90).

« "[cut g] ":Draw only the sub-range selected by the TCut Gname"cut g".

» "Z":The"Z" option can be specified with the options: BOX, COL, CONT, SURF, and LEGOto display
the color palette with an axis indicating the value of the corresponding color on the right side of
the picture.

The following options are supported for 3-D histogram classes:

o "": Draw a3D scatter plot.

» "BOX": Draw abox for each cell with volume proportional to contents

» "LEGO'": Same as "BOX"

* "I SO'": Draw aniso surface

» "FB": Suppress the Front-Box

* "BB": Suppress the Back-Box

e "A": Suppressthe axis

M ost options can be concatenated without spaces or commas, for example, if h isahistogram pointer:

h- >Dr awm(" ELSAME") ;
h- >Dr am "elsane");

The options are not case sensitive. The options BOX, COL and COLZ use the color palette defined
in the current style (see TSt yl e: : Set Pal et t e). The options CONT, SURF, and LEGO have by
default 20 equidistant contour levels, you can changethe number of levelswith THL: : Set Cont our .
You can also set the default drawing option with THL: : Set Opt i on. To see the current option use
TH1: : Get Opt i on. For example:

h->Set Opti on(" | ego");
h->Drawm(); // will use the |lego option
h->Drawm "scat ") /1 will use the scatter plot option

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i, j) a number of points
proportional to the cell content are drawn. A maximum of 500 points per cell are drawn. If the
maximum is above 500 contents are normalized to 500.

40

Histograms

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i , j) an arrow is drawn.
The orientation of the arrow follows the cell gradient

The BOX Option

For each cedll (i,]) abox isdrawn with surface proportional to contents. The size of the box is
proportional to the absolute value of the cell contents. The cells with negative contents are drawn with
an X ontop of the boxes. With option BOX1 abuttonisdrawn for each cell with surface proportional to
contents’ absolutevalue. A sunken button isdrawn for negative values, araised onefor positivevalues.

The ERRor Bars Options

« "E" Default. Draw only error bars, without markers

" E0” Draw aso binswith O contents (turn off the symbols clipping).
e "E1” Draw small lines at the end of error bars

e "E2” Draw error rectangles

« "E3" Draw afill areathrough the end points of vertical error bars

» "E4” Draw asmoothed filled area through the end points of error bars

Figure3.2. The" E1" bars option

This i% the total distrbution | [tota
Feol J0ron
F M [N K
< [) L | AME - 14163
: ey
50 / s iy : !
| S
on ., I L7
L e (2 g
F n - .y
20 —] L
[- [& .
o0 | i %
150 e :
o0 - . 'n'f L *
o %
50 ,‘-“*1 1
E .""—M
i i L T M. |
q 1 Fd [1 2 3 <

Note that for all options, the line and fill attributes of the histogram are used for the errors or errors
contours. UsegSt yl e- >Set Er r or X(dx) tocontrol thesizeof theerror along x. The parameter dx
isapercentage of bin width for errorsalong X. Set dx=0 to suppressthe error dlong X. UsegSt yl e-
>Set EndEr r or Si ze(np) to control the size of the lines at the end of the error bars (when option
lisused). By default np=1 (np represents the number of pixels).

The Color Option

For each cell (i, j) abox is drawn with a color proportional to the cell content. The color table
used is defined in the current style (gSt yl e). The color paette in TSt yl e can be modified with
TStyle:: SetPal ette.

41

Histograms

Figure 3.3. Different draw options

Ty - mypeit) - mianda6)

PR T S

The TEXT Option

Foreachcell (i,]) thecell content is printed. The text attributes are:
» Text font = current font set by TSt yl e
e Text size= 0.02* pad-height * marker-size

» Text color= marker color

Figure3.4. The TEXT option

[xygaus + xygaus(s) + xylandau(10) |
4 -1 7 % M B X N N N O™ H M 17 TEXT
:ﬂ IOW OO M & M M OB O % D Om I 13 s n 3 1 2
3:19 LR BRSO R LD IR P L R R R TR R R S R] L L] 1
:II. MF 1 S S M2 M M1 M3 6 16 AR] ™ o - " " L3 3
:!I A HI HE M OFM XM M NI MI M 18 133 G 3 3 98 L] L]
2;! WE I OITW Q3 XM OIS N4 M4 MY T T 1 e 1 W ¥ O 17 s
;'R 5 M1 I N M W XM OME XM OTI ONMT T 1M M oM 11 11 W T
1 :r- R R R R LR S LR I DR SR BT SRt U T R R e R R k] ¥
;Ul 18 1 I O M MR M M 1N ITS 1@ W T & »m o 17 T 5
:Il H O M3 184 151 WT 187 TR 1% T = m “» “ I u 10 LY 1
o ; & TA W k4 1l KX 14 M T4 @ &7 & 33 XM i3 W L] - 5
:ﬁ noW & W M O & & & M MM 1N W L] 1
.1 :P A8 T e e MR L R L R |] T 1"
:l M O R @ N W @ W & T R M O ME M IR N L] L]
:l MO TS 1MW M WM W @ 2 3 Ol e M M e B 1 W
-z—_lu - 3B O 1 1 153 W M (el 3 9 W A OIM o e - ”w T
:14 oM M M8 N B 1M M M M TS K R M M 1T W W M
SR T MR I N6 R CIET MZ N6 M T W B TR
El! HO1H M3 M M4 R 1 T M B2 TR O T WM 4 T oW
‘PP I T T N P T TR I SPT J J (P JOP
-4 -3 -2 -1 0 1 2 3 4

The CONTour Options

The following contour options are supported:
o " CONT": Draw acontour plot (same as CONTO)

« " CONTOQ": Draw acontour plot using surface colors to distinguish contours

42

Histograms

e "CONT1": Draw acontour plot using line styles to distinguish contours
e "CONT2": Draw acontour plot using the same line style for al contours
e " CONT3": Draw acontour plot using fill areacolors

e "CONT4" : Draw acontour plot using surface colors (SURF2 option at theta= 0); see also options
"Al TOFF", "MERCATOR", etc. below

e "CONT5" : Use Delaunay triangles to compute the contours
Figure 3.5. Different contour options

—[conT |

R S Y
pos gy ’ 0

o

T e

L

o

The default number of contour levels is 20 equidistant levels. It can be changed with
TH1: : Set Cont our . Whenoption"LI ST" isspecified together with option"CONT", all pointsused
for contour drawing, are saved in the TG aph object and are accessible in the following way:

TObj Array *contours = gROOT->Cet Li st Of Speci al s() - >Fi ndQbj ect ("cont ours");
Int_t ncontours = contours->CetSize();

TLi st *list = (TList*)contours->At(i);

Where "i " is a contour number and list contains a list of TGr aph objects. For one given contour,
more than one digoint poly-line may be generated. The TG aph numbers per contour are given by
list->CetSize(). Herewe show how to accessthe first graph in thelist.

TGraph *grl = (TG aph*)list->First();

» "Al TOFF": Draw acontour viaan Al TOFF projection

» "MERCATOR': Draw acontour viaa Mercator projection

» “SI NUSO DAL": Draw acontour viaa Sinusoidal projection

* "PARABQOLI C': Draw acontour viaa Parabolic projection

Thetutorial macro ear t h. Cuses these four options and produces the following picture:

43

Histograms

Figure 3.6. Theear t h. Cmacro output

100 130

The LEGO Options

In alego plot, the cell contents are drawn as 3D boxes, with the height of the box proportional to the
cell content.

Figure3.7."LEGO" and " SURF" options

« "LEGO'": Draw alego plot with hidden line removal
» "LEGOL": Draw alego plot with hidden surface removal
» "LEGOR": Draw alego plot using colors to show the cell contents

A lego plot can be represented in several coordinate systems; the default system is Cartesian
coordinates. Other possible coordinate systems are CYL, POL, SPH, and PSR.

e "CYL": Cylindrical coordinates: x-coordinate is mapped on the angle; y-coordinate - on the cylinder
length.

» "PCL": Polar coordinates. x-coordinate is mapped on the angle; y-coordinate - on the radius.

e "SPH': Spherical coordinates. x-coordinate is mapped on the latitude; y-coordinate - on the
longitude.

Histograms

» "PSR': PseudoRapidity/Phi coordinates: x-coordinate is mapped on Phi.

With TSt yl e: : Set Pal et t e the color palette can be changed. We suggest you use palette 1 with
thecall:

gStyl e->Set Pal ette(1);

The SURFace Options

In asurface plot, cell contents are represented as amesh. The height of the mesh is proportional to the
cell content. A surface plot can be represented in several coordinate systems. The default is Cartesian
coordinates, and the other possible systemsare CYL, POL, SPH, and PSR. The following picture uses
SURF1.With TSt yl e: : Set Pal et t e the color palette can be changed. We suggest you use pal ette
1 with the call:

gStyl e->Set Pal ette(1);

Figure 3.8. Different surface options

» "SURF": Draw asurface plot with hidden line removal

» "SURF1": Draw a surface plot with hidden surface removal

» "SURF2": Draw asurface plot using colors to show the cell contents

» "SURF3": Same as SURF with a contour view on the top

» "SURF4": Draw asurface plot using Gour aud shading

» "SURF5": Same as SURF3 but only the colored contour is drawn. Used with options CYL, SPH

or PSRt allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly space. In
Cartesian or polar coordinates, option SURF3 is used.

The BAR Options

When the option "bar " or "hbar " is specified, abar chart is drawn.

The options for vertical bar chart are"bar ", "bar 0", "bar 1", "bar 2", "bar 3", "bar 4".

45

Histograms

Figure 3.9. Vertical bar charts

s00 - : : : .
foo 0 M0 [Allnations
wobd L e Eenchony |

300

200

100

L] P EP 8T BPE LEF EF R PE) oo ne =)

» The bar isfilled with the histogram fill color.

» Theleft side of the bar is drawn with alight fill color.

» Theright side of the bar is drawn with adark fill color.

» The percentage of the bar drawn with either the light or dark color is:
0 per cent for option" bar " or " bar 0"

10 per cent for option " bar 1"

» 20 per cent for option " bar 2"

30 per cent for option " bar 3"

* 40 per cent for option " bar 4"

Use THL:: SetBarWdth() to control the bar width (default is the bin width). Use
THL1: : Set Bar Of f set to control the bar offset (default is 0). See the example $ROOTSYS/
tutorial s/hist/hbars.C

The options for the horizontal bar chart are "hbar ", "hbar 0", "hbar 1", "hbar 2", "hbar 3", and
" hbar 4".

A horizontal bar is drawn for each bin.

» The bar isfilled with the histogram fill color.

» The bottom side of the bar is drawn with alight fill color.

» Thetop side of the bar is drawn with adark fill color.

» The percentage of the bar drawn with either the light or dark color is:
* 0 per cent for option "hbar " or "hbar 0"

10 per cent for option "hbar 1"

* 20 per cent for option "hbar 2"

* 30 per cent for option "hbar 3"

* 40 per cent for option "hbar 4"

Use THL1::SetBarWdth to control the bar width (default is the bin width). Use
THL: : Set Bar O f set to control the bar offset (default is 0). See the example $ROOTSYS/
tutorial s/hist/hbars.C

46

Histograms

Figure 3.10. Horizontal bar charts

The Z Option: Display the Color Palette on the Pad

The"Z" option can be specified with the options: CCL, CONT, SURF, and LEGOto display the color
palette with an axis indicating the value of the corresponding color on the right side of the picture. If
there is not enough space on the right side, you can increase the size of the right margin by calling
TPad: : Set Ri ght Mar gi n() . The attributes used to display the pal ette axis values are taken from
the Z axis of the object. For example, you can set the |abels size on the pal ette axis with:

hi st - >Get Zaxi s() - >Set Label Si ze() ;

Setting the Color Palette

You can set the color palettewith TSt yl e: : Set Pal ett e, eg.
gStyl e- >Set Pal et t e(ncol ors, col ors) ;

For example, the option COL draws a 2-D histogram with cells represented by abox filled with a color
index, which is afunction of the cell content. If the cell content is N, the color index used will be the
color numberincol or s[N] . If themaximum cell content isgreater thanncol or s, al cell contents
are scaled to ncol or s. If ncol or s<=0, a default palette of 50 colors is defined. This palette is
recommended for pads, labels. It defines:

* Index 0to 9: shades of gray

* Index 10 to 19:shades of brown
* Index 20 to 29:shades of blue

* Index 30 to 39: shades of red

* Index 40 to 49:basic colors

The color numbers specified in this palette can be viewed by selecting the menu entry Colors in
the View menu of the canvas menu bar. The color's red, green, and blue values can be changed via
TCol or:: Set RGB. If ncolors == 1 && colors == 0, apretty palette with a violet to
red spectrum is created. We recommend you use this palette when drawing lego plots, surfaces, or
contours. If ncol ors > 0 andcol ors == 0, the default palette is used with a maximum of
ncol ors.

TPaletteAxis

A TPal et t eAxi s object is used to display the color palette when drawing 2D histograms. The
object is automatically created when drawing a 2D histogram when the option "z" is specified. It is
added to the histogram list of functions. It can be retrieved and its attributes can be changed with:

TPal ett eAxi s *pal ette=(TPal ett eAxi s*) h- >Fi ndCbj ect ("pal ette");

The palette can be interactively moved and resized. The context menu can be used to set the axis
attributes. It is possible to select arange on the axis, to set the min/max in z.

47

Histograms

The SPEC Option

The “SPEC” option offers a large set of optiongattributes to visualize 2D histograms thanks to
"operators' following the "SPEC" keyword. For example, to draw the 2-D histogram h2 using all
default attributes except the viewing angles, one can do:

h2- >Dr aw(" SPEC a(30, 30,0)");

The operators names are case unsensitive (i.e. one can use "a' or "A") and their parameters are
seperated by coma",". Operators can be put in any order in the option and must be separated by aspace
" ". No space characters should be put in an operator. All the available operators are described below.

Theway how a2D histogram will be painted is controled by 2 parameters: the " Display modes groups’
and the "Display Modes". "Display modes groups' can take the following values:

» 0= Simple - simple display modes using one color only
« 1=Light - theshading is carried out according to the position of the fictive light source
» 2 =Height - the shading is carried out according to the channel contents

» 3 = LightHeight - combination of two previous shading algorithms (one can control the weight
between both algorithms).

"Display modes" can take the following values:

1 = Points2 = Grid3 = Contours4 = Barsb = LinesX6 = LinesY

7 = BarsX8 = BarsY 9 = Needles10 = Surfacell = Triangles

These parameters can be set by using the "dni' operator in the option.
h2- >Dr aw(" SPEC dn{ 1, 2)");

The above example draws the histogram using the "Light Display mode group" and the " Grid Display
mode". The following table summarizes all the possible combinations of both groups:

Points | Grid |Cont- |Bars |LinesX |LinesY |BarsX |BarsY |Needles | Surface | Trian-
ours gles
Simple X X X X X X X X X - X
Light X X - - X X - - - X X
Height X X X X X X X X - X X
LightHeightx X - - X X - - - X X

The "Pen Attributes’ can be changed using pa(col or, styl e, wi dt h) . Next example sets line
color to 2, line type to 1 and line width to 2. Note that if pa() is not specified, the histogram line
attributes are used:

h2->Dr aw(" SPEC dn(1, 2) pa(2,1,2)");
The number of "Nodes" can be changed with n(nodesx, nodesy) . Example:
h2- >Dr aw(" SPEC n(40, 40)");

Sometimes the displayed region is rather large. When displaying all channels the pictures become
very dense and complicated. It isvery difficult to understand the overall shape of data. "n(nx, ny) "
allows to change the density of displayed channels. Only the channels coinciding with given nodes
are displayed.

The visualization "Angles' can be changed with "a(al pha, bet a, vi ew) ": "al pha" istheangle
between the bottom horizontal screen line and the displayed space on the right side of the picture and

48

Histograms

"bet a" on the left side, respectively. One can rotate the 3-d space around the vertical axis using the
"vi ew' parameter. Allowed values are 0, 90, 180 and 270 degrees.

h2- >Dr aw(" SPEC n(40, 40) dnm(0, 1) a(30,30,0)");

The operator "zs(scal e) " changes the scale of the Z-axis. The possible values are: 0 = Linear
(default), 1 = Log, 2 = Sort. If gPad- >Set Logz() has been set, the log scale on Z-axis is set
automatically, i.e. thereisno need for usingthezs () operator. Notethat the X and Y axisare aways
linear.

The operator "ci (r, g, b)" defines the colors increments (r , g and b are floats). For sophisticated
shading (Light, Height and LightHeight Display Modes Groups) the color palette starts from the basic
pen color (see pa() function). There is a predefined number of color levels (256). Color in every
level is calculated by adding the increments of ther, g, b components to the previous level. Using
this function one can change the color increments between two neighboring color levels. The function
does not apply on the Simple Display Modes Group. The default values are: (1,1,1).

The operator “ca(col or _al gorithm) " allows to choose the Color Algorithm. To define the
colorsone can use one of thefollowing color algorithms (RGB, CMY, CIE, Y1Q, HVSmodels). When
thelevel of acomponent reachesthelimit value one can choose either smooth transition (by decreasing
the limit value) or a sharp modulo transition (continuing with O value). This alows various visual
effects. One can choose from the following set of the algorithms:

0=RGB Smooth, 1 = RGB Modulo, 2 =CMY Smooth, 3= CMY Modulo, 4 = CIE Smooth
5=CIE Modulo, 6 = YIQ Smooth, 7 = YIQ Modulo, 8 = HV S Smooth, 9 = HVS Modulo

This function does not apply on Simple display modes group. Default value is 0. Example choosing
CMY Modulo to paint the 2D histogram:

h2- >Dr aw(" SPEC ¢1(3) dn(0, 1) a(30,30,0)");

The operator "l p(X, y, z) " setsthelight position. In Light and LightHeight display modes groups
the color palette is calculated according to the fictive light source position in 3-d space. Using this
function one can change the source's position and thus achieve various graphical effects. Thisfunction
does not apply for Simple and Height display modes groups. Default is: | p(1000, 1000, 100) .

The operator "s(shadi ng, shadow) " allows to set the shading. The surface picture is composed
of triangles. The edges of the neighboring triangles can be smoothed (shaded). The shadow can be
painted as well. The function does not apply on Simple display modes group. The possible values for
shading are: 0 = Not Shaded, 1 = Shaded. The possible values for shadow are: 0 = Shadows are not
painted, 1 = Shadows are painted. Default values: s(1, 0) .

The operator "b(bezi er) " sets the Bezier smoothing. For Simple display modes group and for
Grid, LinesX and LinesY display modes one can smooth data using Bezier smoothing algorithm. The
function does not apply on other display modes groups and display modes. Possible values are: 0 =
No bezier smoothing, 1 = Bezier smoothing. Default valueis: b(0) .

The operator "cw(wi dt h) " sets the contour width. This function applies only on for the Contours
display mode. One can change the width between horizontal slices and thus their density. Default
value: cw(50) .

The operator "I hw(wei ght) " sets the light height weight. For LightHeight display modes group
one can change the weight between both shading algorithms. The function does not apply on other
display modes groups. Default valueis| hw(0. 5) .

The operator "cn(enabl e, col or, wi dt h, hei ght, styl e) " allowsto draw amarker on each
node. In addition to the surface drawn using any above given algorithm one can display channel marks.
One can control the color as well as the width, height (in pixels) and the style of the marks. The
parameter enabl e can be set to 0 = Channel marks are not drawn or 1 = Channel marks drawn. The
possible styles are:

49

Histograms

1=Daot, 2= Cross, 3 = Star, 4 = Rectangle, 5 = X, 6 = Diamond, 7 = Triangle.

Theoperator "cg(enabl e, col or) " channel grid. In addition to the surface drawn using any above
given agorithm one can display grid using the color parameter. The parameter enable can be set to:
0 = Grid not drawn, 1 = Grid drawn.

Seethe examplein $ROOTSYS/ t ut ori al s/ spect runi spectrunpai nter. C

Figure 3.11. The picture produced by spectrumpainter.C macro

3-D Histograms

By default a 3D scatter plot is drawn. If the "BOX" option is specified, a 3D box with a volume
proportional to the cell content is drawn.

Drawing a Sub-range of a 2-D Histogram

Figure 3.12. The picture produced by fit2a.C macro

w2
Nent = 100000

Mean x = -2.462
Mean y = -2.465
RMS x = 3.006
o RMSy = 3.006

50

Histograms

Using a TCut Gobject, it is possible to draw a 2D histogram sub-range. One must create a graphical
cut (mouse or C++) and specify the name of the cut between ‘[* and ‘] * in the Draw option.

For example, with a TCut Gnamed "cut g", one can call:
nyhi st->Draw"surfl [cutg]");
Or, assuming two graphical cuts with name "cut 1" and "cut 2", one can do:

hl. Draw("l ego");
h2. Drawm "[cut 1, -cut 2], surf, same");

The second Dr aw will superimpose on top of the first lego plot a subset of h2 using the "sur f "
option with:

e dl thebinsinsidecut 1
» dl thebinsoutsidecut 2

Up to 16 cuts may be specified in the cut string delimited by "[. .] " . Currently only the following
drawing options are sensitive to the cuts option: col , box, scat, hi st, | ego, surf and
cart esi an coordinates only. See a complete example in the tutorial $ROOTSYS/ t ut ori al s/
fit/fit2a.C

Superimposing Histograms with Different
Scales

The following script creates two histograms; the second histogram is the binsintegral of the first one.
It shows a procedure to draw the two histograms in the same pad and it draws the scale of the second
histogram using a new vertical axis on the right side.

Figure 3.13. Superimposed histograms with different scales

my histogram |

10000

n
a
o

8000

N
=
=

=
=
' =]
WOETT T T[T T T T[T T T T[T T T T[T T TT[TT
T T I T T

o
@
=]

6000

4000

o
S

2000

o
n
&y
o
|
n
bl |11

voi d twoscal es() {

TCanvas *cl = new TCanvas("cl","different scal es hists", 600, 400);
[lcreate, fill and draw hl

gSt yl e- >Set Opt St at (KFALSE) ;

THLF *hl = new TH1F("h1", "my histogrant, 100, -3, 3);

for (Int_t i=0;i<10000;i++) hl->Fill (gRandom >Gaus(0, 1));
hl->Draw();

cl- >Update() ;

/lcreate hintl filled with the bins integral of hl

TH1F *hint1l = new THLF("hint1","h1l bins integral", 100, -3, 3);
Float t sum = 0;
for (Int_t i=1;i<=100;i++) {

sum += hil->Get Bi nContent (i) ;

51

Histograms

hi nt 1- >Set Bi nCont ent (i, sum ;

}
//scale hintl to the pad coordi nat es
Float _t rightmax = 1.1*hint1->CGet Maxi nun{();
Fl oat _t scal e = gPad->Get Uymax()/ri ght max;
hi nt 1- >Set Li neCol or (kRed) ;
hi nt 1- >Scal e(scal e);
hi nt 1- >Dr aw(" sane") ;
//draw an axis on the right side
TGaxi s *axis = new TGaxi s(gPad- >CGet Uxmax(), gPad- >Get Uymi n(),
gPad- >CGet Uxmax(), gPad- >Get Uymax(), O, ri ght max, 510, " +L") ;
axi s- >Set Li neCol or (kRed) ;
axi s- >Set Label Col or (kRed) ;
axi s->Draw() ;
}

Statistics Display

By default, a histogram drawing includes the statistics box. Use THL: : Set St at s(KFALSE) to
eliminate the statistics box. If the statistics box is drawn, gSt yl e- >Set Opt St at (node) alow
you to select the type of displayed information. The parameter node has up to nine digits that can
be set OFF (0) or ON asfollows: nrode = ksi our men (default = 000001111)

» n=1the name of histogram is printed
+ e=1the number of entries

* ¥ 1 the mean value

* nr 2 the mean and mean error values
» r=1theroot mean square (RMYS)

* r=2theRMSand RMSerror

» u=1the number of underflows

» 0= 1 the number of overflows

e i =1theintegra of bins

* s=1the skewness

» s=2 the skewness and the skewness error
* k=1thekurtosis

» k=2 thekurtosis and the kurtosis error

Never call Set Opt St at (0001111) ,butSet Opt St at (1111) , because0001111 will betaken
as an octal number.

Themethod TSt yl e: : Set Opt Stat (Opti on_t *opti on) canalso becalled with acharacter
string as a parameter. The parameter opt i on can contain:

 nfor printing the name of histogram
» ethe number of entries
* nthe mean value

* Mhe mean and mean error values

52

Histograms

* 1 theroot mean square (RMS)

* RtheRMSand RMS error

* uthe number of underflows

+ othe number of overflows

* i theintegral of bins

* sthe skewness

* Sthe skewness and the skewness error
+ kthekurtosis

» Kthe kurtosis and the kurtosis error

gStyl e->Set Opt St at (" ne"); [l prints the histogram name and
/1 nunmber of entries
gStyl e->Set Opt Stat ("n"); /1 prints the histogram nane

gStyle->Set Opt Stat ("nenr"); // the default val ue

With the option " sane" , the statistic box is not redrawn. With the option " sanes" , it isre-drawn.
If it hides the previous statistics box, you can change its position with the next lines (where h isthe
histogram pointer):

root[] TPaveStats *s =

(TPaveSt at s*) h- >Get Li st O Functi ons() - >Fi ndCbj ect ("stats");
root[] s->Set XINDC (newxl); //new x start position
root[] s->Set X2NDC (newx?2); //new x end position

Setting Line, Fill, Marker, and Text Attributes

The histogram classesinherit from the attribute classes: TAt t Li ne, TAtt Fi | | , TAt t Mar ker and
TAt t Text . See the description of these classes for the list of options.

Setting Tick Marks on the Axis

The TPad: : Set Ti cks() method specifies the type of tick marks on the axis. Let t x=gPad-
>Cet Ti ckx() and t y=gPad- >Get Ti cky().

e t x = 1; tick marks on top side are drawn (inside)

* t x =2; tick marks and labels on top side are drawn

» ty =1, tick marks on right side are drawn (inside)

» ty =2; tick marks and labels on right side are drawn

» t x=t y=0by default only the left Y axisand X bottom axis are drawn

Use TPad: : Set Ti cks(tx, ty) to set these options. See also the methods of TAxi s that set
specific axis attributes. If multiple color-filled histograms are drawn on the same pad, thefill areamay
hide the axis tick marks. One can force the axis redrawing over all the histograms by calling:

gPad- >Redr awAxi s() ;

Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first and then call
TAXi s::SetTitle.

53

Histograms

h->Get Xaxi s()->SetTitle("X axis title");
h->Get Yaxi s()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLat ex string. The titles are part of the persistent
histogram. For example if you wanted to write E with a subscript (T) you could use this:

h->Get Xaxis()->SetTitle("E {T}");

For a complete explanation of the Latex mathematical expressions, see "Graphics and the Graphical
User Interface”. It is also possible to specify the histogram title and the axis titles at creation time.
These titles can be given in the "title" parameter. They must be separated by ";":

TH1F* h=new THLF("h","Hi stogramtitle; X Axis;Y Axis;Z Axis", 100,0, 1);
Any title can be omitted:

TH1F* h=new THLF("h","Hi stogramtitle;;Y Axis", 100,0,1);
THLF* h=new THLF("h",";;Y Axis", 100,0, 1);

The method Set Ti t | e has the same syntax:

h->Set Title("Hi stogramtitle; An other X title Axis");

Making a Copy of an Histogram

Likefor any other ROOT object derived from TObj ect , the Cl one method can be used. This makes
an identical copy of the original histogram including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone(); // renaming i s reconmended,
/| because ot herw se you

hnew >Set Name(" hnew") ; [/ will have two histograns with
/1 the sane name

Normalizing Histograms

Y ou can scaleahistogram (THL * h) such that the binsintegral isequal to the normalization parameter
norm:

Doubl e t scale = norm h->Integral ();
h- >Scal e(scal e) ;

Saving/Reading Histograms to/from a File

The following statements create a ROOT file and store a histogram on the file. Because TH1 derives
from TNaned, the key identifier on the file is the histogram name:

TFile f("histos.root", "new');

TH1F hl("hgaus", "histo from a gaussi an", 100, - 3, 3);
hi. Fi | | Randon{ " gaus", 10000) ;

hl->Wite();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
THLF *h = (THLF*)f. Get ("hgaus");

One can save all histogramsin memory to the file by:
file->Wite();

For a more detailed explanation, see “ Input/Output”.

54

Histograms

Miscellaneous Operations

e THL: : Kol nogor ovTest (TH1* h2, Opti on_t *opti on) isstatistical test of compatibility
in shape between two histograms. The parameter opt i on isacharacter string that specifies:

* "U" include Underflowsin test (also for 2-dim)

e "Q'include Overflows (also valid for 2-dim)

» "N include comparison of normalizations

» "D" put out aline of "Debug" printout

* "M return the maximum Kolmogorov distance instead of pr ob

» "X" run the pseudo experiments post-processor with the following procedure: it makes pseudo
experiments based on random values from the parent distribution and compare the KS distance of
the pseudo experiment to the parent distribution. Bin the KS distancesin a histogram, and then take
the integral of all the KS values above the value obtained from the original data to Monte Carlo
distribution. The number of pseudo-experiments NEXPT is currently fixed at 1000. The function
returns the integral. Note that this option " X" is much slower.

e THL: : Snoot h - smoothes the bin contents of a 1D histogram.

e TH1::Integral (Option_t *opt) - returnstheintegral of bin contentsin agiven bin range.
If the option "wi dt h" is specified, the integral is the sum of the bin contents multiplied by the
bin width in x.

e THL:: Get Mean(int axis) - returnsthe mean value aong axis.
e THL:: Get RMS(i nt axi s) - returnsthe Root Mean Square along axis.
e THL1:: GetEntries() - returnsthe number of entries.

e THL:: Get Asymretry(TH1* h2, Doubl e _t c¢2, Doubl e_t dc2) - returnsan histogram
containing the asymmetry of this histogram with h2, where the asymmetry is defined as:

Asymmetry = (hl - h2)/(hl + h2) [/where hl = this

 Itworksfor 1D, 2D, etc. histograms. The parameter ¢ 2 isan optional argument that givesarelative
weight between the two histograms, and dc 2 isthe error on thisweight. Thisisuseful, for example,
when forming an asymmetry between two histograms from two different data sets that need to be
normalized to each other in someway. The function cal culatesthe errors assuming Poisson statistics
onhl and h2 (that is, dh=sqrt (h)). Inthe next example we assume that h1 and h2 are already
filled:

h3 = hl->CGet Asymmet ry(h2)
* Then h3 iscreated and filled with the asymmetry between h1l and h2; h1 and h2 areleft Intact.
» Note that the user’ s responsibility isto ménage the created histograms.

e TH1:: Reset () - resetsthe bin contents and errors of a histogram

Alphanumeric Bin Labels

By default, ahistogram axisis drawn with its numeric bin labels. One can specify alphanumeric labels
instead.

Option 1: SetBinLabel

To set an alphanumeric bin label call:

55

Histograms

TAXi s: : Set Bi nLabel (bi n, | abel) ;

This can always be done before or after filling. Bin labels will be automatically drawn with the
histogram.

Figure 3.14. Histograms with alphanumeric bin labels

See examplein SROOTSYS/ t ut ori al s/ hi st/ hl abel s1. C hl abel s2. C
Option 2: Fill
Youcanasocal aFi || () function with one of the arguments being a string:

hi st 1- >Fi | | (sonmenan®e, wei gt h) ;

hi st 2->Fi | | (x, sonenane, wei ght) ;

hi st 2->Fi | | (sonenan®, y, wei ght) ;

hi st 2->Fi | | (somenanex, sonenaney, wei ght) ;

Option 3: TTree::Draw

Y ou can use a char* variable type to histogram stringswith TTr ee: : Draw() .

// here "Nation" and "Di vision" are two char* branches of a Tree
tree. Draw("Nati on:: Division");

Figure 3.15. Using a *char variabletypein TTree::Draw

BT H H H
=z
GR
8E
DK
ES
NO

BE [17

a7

GB
HL

m

DE| 40 |55 | 7 |3 |27 |43 |2 |5 |1 [20|7 |6 |2
PS Ep 5T 8Ps LEP - Fl PE oG oo TIS AG TH

Thereisan examplein $ROOTSYS/ t ut ori al s/tree/ cernstaff. C.

If avariableisdefined aschar * itisdrawn asastring by default. Y ou change that and draw the value
of char [0] asan integer by adding an arithmetic operation to the expression as shown below.

56

Histograms

tree. Draw("MyChar + 0");
[/this will draw the integer value of MyChar[0]
/1l where "MyChar" is char[5]

Sort Options

When using the options 2 or 3 above, the labels are automatically added to the list (THashLi st)
of labels for a given axis. By default, an axis is drawn with the order of bins corresponding to
the filling sequence. It is possible to reorder the axis alphabetically or by increasing or decreasing
values. The reordering can be triggered via the TAxi s context menu by selecting the menu item
"Label sOpti on" or by calling directly.

TH1: : Label sOpti on(opti on, axi s)

Hereaxi s may be X, Y, or Z. The parameter opt i on may be:

» "a" sort by alphabetic order

e ">" sort by decreasing values

e "<" sort by increasing values

» "h" draw labels horizontal

o "v" draw labels vertical

» "u" draw labels up (end of label right adjusted)

» "d" draw labels down (start of label left adjusted)

When using the option second above, new labels are added by doubling the current number of binsin
case one label does not exist yet. When the filling is terminated, it is possible to trim the number of

bins to match the number of active labels by calling:

TH1: : Label sDef | at e(axi s)

Here axi s may be X, Y, or Z. This operation is automatic when using TTr ee: : Dr aw. Once bin
label s have been created, they become persistent if the histogram iswritten to afile or when generating
the C++ codeviaSavePriniti ve.

Histogram Stacks

A THSt ack isacollection of TH1 (or derived) objects. Use THSt ack: : Add(THL *h) toadd a
histogram to the stack. The THSt ack does not own the objectsin thelist.

Figure 3.16. Stacked histograms

% stacked hists =[O x|
File Edit Wiew Options Inspect Classes Help

be5t stacked histograms| peststacked histograms |

1400

1200

1000

57

Histograms

By default, THSt ack: : Dr aw draws the histograms stacked as shown in the left pad in the picture
above. If the option " nost ack” i s used, the histograms are superimposed as if they were drawn
one at atime using the" sanme" draw option. Theright pad in this pictureillustrates the THSt ack
drawn with the" nost ack" option.

hs- >Dr aw(" host ack") ;

Next is a simple example, for a more complex one see $ROOTSYS/tutori al s/ hi st/
hst ack. C.

{ THStack hs("hs","test stacked histograns");
THLF *hl = new TH1F("h1", "test hstack", 100, -4, 4);
h1->Fi | | Randon{(" gaus", 20000) ;
hl->Set Fi || Col or (kRed) ;
hs. Add(h1);
THLF *h2 = new TH1F("h2", "test hstack", 100, -4, 4);
h2->Fi | | Randon{ " gaus"”, 15000) ;
h2->Set Fi | | Col or (kBl ue) ;
hs. Add(h2) ;
THLF *h3 = new TH1F("h3", "test hstack", 100, -4, 4);
h3->Fi | | Randon{ " gaus", 10000) ;
h3->Set Fi | | Col or (kG een) ;
hs. Add(h3) ;
TCanvas c1("cl1", "stacked hists", 10, 10, 700, 900) ;
cl.Divide (1, 2);
cl.cd(1);
hs. Draw() ;
cl.cd(2);
hs- >Dr aw(" nost ack") ;
}

Profile Histograms

Profile histograms are in many cases an elegant replacement of two-dimensional histograms. The
relationship of two quantities X and Y can be visualized by atwo-dimensional histogram or a scatter-
plot; its representation is not particularly satisfactory, except for sparse data. If Y isan unknown [but
single-valued] function of X, it can be displayed by a profile histogram with much better precision
than by a scatter-plot. Profile histograms display the mean value of Y and its RMS for each binin X.
The following shows the contents [capital letters] and the values shown in the graphics [small |etters]
of the elements for bin j. When you fill aprofile hissogramwith TProfile. Fill [X, y]:

* Hj] will contain for each binj the sum of they valuesfor thishin
e L[j] containsthe number of entriesin the bin
e e[j] ors[j] will betheresulting error depending on the selected option. See “Build Options®.

sum Y**2

nurmber of entries in bin J
sum Y

Hijl 7 L[j]

sqrt[E[j] / L[j] - h[j]**2]
s[j] / sart[L[j]]

Bl
L[j]
Hjl
h[j]
sLi]
e[j]

In the special casewheres|[j] iszero, when thereisonly oneentry per bin, e[j] iscomputed from
theaverageof thes[j] for al bins. Thisapproximation is used to keep the bin during afit operation.
TheTPr of i | e constructor takes up to eight arguments. Thefirst five parametersare similar to THLD
constructor.

58

Histograms

Build

TProfil e(const char *name, const char *title,Int_t nbinsx,
Doubl e t x|l ow, Double t xup, Double t ylow Double t yup,
Option_t *option)
All vaues of y are accepted at filling time. To fill a profile histogram, you must
use TProfile::Fill function. Note that when filling the profile histogram the method
TProfile::Fill checks if the variable y is between f Ymi n and f Yrmax. If a minimum or
maximum valueis set for the Y scale beforefilling, then all values below yl owor aboveyup will be

discarded. Setting the minimum or maximum value for the Y scale before filling has the same effect
as calling the special TPr of i | e constructor above whereyl owand yup are specified.

Options

The last parameter is the build option. If abin has N data points all with the same value Y, which is
the case when dealing with integers, the spread in Y for that bin is zero, and the uncertainty assigned
isalso zero, and the bin isignored in making subsequent fits. If SQRT(Y) wasthe correct error in the
case above, then SQRT(Y) / SQRT(N) would bethe correct error here. In fact, any bin with non-zero
number of entries N but with zero spread (spr ead = s[j]) should have an uncertainty SQRT(Y) /
SQRT(N) . Now, is SQRT(Y)/ SQRT(N) realy the correct uncertainty? That it is only in the case
wherethe Y variable is some sort of counting statistics, following a Poisson distribution. Thisis the
default case. However, Y can be any variable from an original NTUPLE, and does not necessarily

follow a Poisson distribution. The computation of errorsis based on Y = values of data points; N =
number of data points.

o ' ' -thedefault isblank, the errors are:

» spread/ SQRT(N) for anon-zero spread

e SQRT(Y)/ SQRT(N) for aspread of zero and some data points
 Ofor no data points

* ‘s’ -errorsare:

» spread foranon-zero spread

* SQRT(Y) for aSpread of zero and some data points

0 for no data points

o ‘i’ -errorsare:

» spread/ SQRT(N) for anon-zero spread

* 1/ SQRT(12*N) for a Spread of zero and some data points
 Ofor no data points

* ‘G -errorsare:

» spread/ SQRT(N) for anon-zero spread

* si gma/ SQRT(N) for aspread of zero and some data points
* 0 for no datapoints

Theoption'i "isused for integer Y valueswith the uncertainty of +0.5, assuming the probability that Y
takes any value between Y-0.5 and Y +0.5 is uniform (the same argument for Y uniformly distributed

59

Histograms

betweenY and Y+1). An exampleisan ADC measurement. The'G' optionisuseful, if all Y variables
are distributed according to some known Gaussian of standard deviation Sigma. For example when
all Y'sare experimental quantities measured with the sameinstrument with precision Sigma. The next
figure shows the graphic output of this simple example of a profile histogram.

{

/l Create a canvas giving the coordi nates and the size
TCanvas *cl = new TCanvas("cl","Profile exanple", 200, 10, 700, 500) ;
/[l Create a profile with the nanme, title, the nunber of bins, the
/!l low and high limt of the x-axis and the low and high limt
/[l of the y-axis. No option is given so the default is used.
hprof = new TProfile("hprof","Profile of pz versus px", 100, -4, 4, 0, 20);
[/ Fill the profile 25000 times with random nunbers
Float _t px, py, pz;
for (Int_t i=0; i<25000; i++) {
/!l Use the random nunber generator to get two nunbers follow ng a
// gaussi an distribution with nmean=0 and si gma=1
gRandom >Rannor (px, py) ;

Pz = px*px + py*py;
hprof ->Fi | | (px, pz, 1);
}
hpr of - >Dr aw() ;
}

Figure 3.17. A profile histogram example

[Profile of pz versus px | hprof
Nent = 25000

Mean = -0.007956
RMS =0.996142

,,,,,,,,,,,,,,,,,,,

Drawing a Profile without Error Bars

To draw a profile histogram and not show the error bars use the "Hl ST" option in the
TProfil e: : Drawmethod. Thiswill draw the outline of the TPr of i | e.

Create a Profile from a 2D Histogram

You can make a profile from a histogram using the methods TH2:: Profil eX and
TH2: : Profil eY.

Create a Histogram from a Profile

Tocreatearegular histogram from aprofile histogram, usethemethod TPr of i | e: : Proj ecti onX
.This example instantiates a TH1 D object by copying the THLD piece of TPr of i | e.

60

Histograms

THID *sum = myProfile. ProjectionX()

Y ou can do the same with a 2D profile using the method TPr of i | e2D: : Pr oj ect i onXY.

Generating a Profile from a TTree

The' prof' and' profs' optionsin the TTr ee: : Dr aw method generate a profile histogram
(TProfile), given a two dimensional expression in the tree, or a TProfil e2D given a
three dimensional expression. See “Trees’. Note that you can specify ' prof' or ' profs':
' prof ' generatesaTPr of i | e witherroronthemean,' pr of s' generatesaTPr of i | e witherror
on the spread.

2D Profiles

Theclassfora2D Profileiscalled TPr of i | e2D. Itisin many casesan elegant replacement of athree-
dimensional histogram. The relationship of three measured quantities X, Y and Z can be visualized by
athree-dimensional histogram or scatter-plot; its representation is not particularly satisfactory, except
for sparse data. If Z is an unknown (but single-valued) function of (X,Y), it can be displayed with a
TPr of i | e2Dwith better precision than by a scatter-plot. A TPr of i | e2D displays the mean value
of Z and its RMS for each cell in X, Y. The following shows the cumulated contents (capital |etters)
and the values displayed (small letters) of the elementsfor cell i, j .

When you fill aprofile histogram with TProf i e2D. Fi Il | [x,y, z]:
e E[i,]] containsforeachhini,j thesum of the z valuesfor thisbin
e L[i,]j] containsthe number of entriesin the bin |

e e[j] ors[j] will betheresulting error depending on the selected option. See “Build Options®.

Bli,jl
LLi,j]
hli,j]
slii]
efi,j]

sum z
sum |

Hi,j I /7 L[i,j]

sqrt[E[i,j] / L[i,j]- h[i,j]**2]
sfi,jl 7 sart[L[i,j]]

Inthe special casewheres[i, j] iszero,whenthereisonly oneentry percell,e[i,] iscomputed
from the average of the s[i, j] for all cells. This approximation is used to keep the cell during a
fit operation.

{
/Il Creating a Canvas and a TProfil e2D

TCanvas *cl = new TCanvas("cl","Profil e histogram exanple",
200, 10, 700, 500) ;

hprof 2d = new TProfil e2D(" hpr of 2d",
"Profile of pz versus px and py", 40, -4, 4, 40, -4, 4,0, 20) ;

/[l Filling the TProfile2D with 25000 points

Float t px, py, pz;

for (Int_t i=0; i<25000; i++) {
gRandom >Rannor (px, py) ;
Pz = px*px + py*py;
hpr of 2d- >Fi | | (pXx, py, pz, 1);

}

hpr of 2d- >Dr aw() ;

61

Histograms

Figure 3.18. A TProfile2D histogram example

Profile of pz versus pxand py

hprof2d

Nent= 25000
Mean x = 0.00971
Mean y=-0.0023
RMS % =0.9884

C Lo .
Cooo by by o b fn o by gy Bwig g

-3 -2 -1 0 1

Iso Surfaces

Paint one Gouraud shaded 3d iso surface though a 3d histogram at the value computed as follow:

Suntf Vi ght s/ (Nbi nsX* Nbi nsY*Nbi nsZ) .

Figure 3.19. I so surfaces

void hist3d() {

TH3D *h3=new TH3D(« h3 », »h3 », 20, -2, 2, 20, -2, 2, 20, 0, 4);
Doubl e t x,vy, z;

for (Int_t i=0; i<10000; i++) {

gRandom >Rannor (x, y) ;

Z=X*X+Y*Y,
h3->Fill (x,y,2);
}

h3->Draw(“i s0”);
}

3D Implicit Functions

TF3 *fun3 = new TF3(“fun3”, “sin(x*x+y*y+z*z-36",-2,2,-2,2,-2,2);

62

Histograms

TPie

Fun3- >Dr aw() ;

Figure 3.20. 3D implicit function

: S o =
N o Ao e aN

o

The TPi e class alows to create a Pie Chart representation of a one dimensional data set. The data
can come from an array of Doubl e_t (or Fl oat _t) or from a 1D-histogram. The possible options
todraw aTPi e are;

» "R'Paint the labels along the central "R"adius of dlices.

» "T"Paint thelabelsin adirection "T"angent to circle that describesthe TPie.

» "3D'Draw the pie-chart with a pseudo 3D effect.

» "NOL"No OutLine: do not draw the dlices' outlines; any property over the dices' lineisignored.

The method Set Label For mat () is used to customize the label format. The format string must
contain one of these modifiers:

o - 04 xt : to print the text label associated with the slice
* -%val :to print the numeric value of the dlice

* -9 rac : to print the relative fraction of thisdlice

» - Yper c : to print the % of thisdlice

nypi e- >Set Label Format ("% xt (%rac)");

See the macro $ROOTSYS/ t ut ori al s/ gr aphi cs/ pi echart. C

63

Histograms

Figure 3.21. The picture generated by tutorial macro piechart.C

Pie with offset and no colors Pie with radial labels

o
4

Slice1

Slice2 Sliced
Sﬁce‘?
Slice

[Pie with tangential labels | Pie with verbose labels |

0.60 (11.8 %)
Slice2

0.90 (17.6 %)
Slice3

1.10 (21.6 %)
lice1

0.20 (3.9 %)
Slicel

2.30 (451 %)
Sliced

The User Interface for Histograms

The classes THLEdi t or and TH2Edi t or provides the user interface for setting histogram’s
attributes and rebinning interactively.

Histograms

TH1Editor

et ci [BEE]
File Edit View Opfions Inspect Classes Help
sty | sinning | [_Arbitrary Distribution | ﬁ%
MName ntries
plot1:THIF M 2775
2000 R:nas" 162.3
4500
4000~
vor [WoEro]| 3500
e < L
. r
* 3000~
M Bar option C
e L
w g oftadf| 25090
Poihage: [2: 5=] F 1
it I AN il A i MR I i i S K L
™ H tal B
e e 100 200 300 400 500
[| ‘v m ‘v 08 x)
Eel DICIEs)
File Edit View Options Inspect Classes Help
s | sinning| Arbitrary Distribution L
Name. ntries
IR Mean 277.5
RMS 162.3

——=

Bar
w:[1.00/2] 0:[0002]
Marker ——————
IR

Style Tab:

Titlesets the title of the histogram.

Plotdraw a 2D or 3D plot; according to the dimension, different drawing possibilities can be set.
Erroradd different error bars to the histogram (no errors, simple, etc.).

Addfurther things which can be added to the histogram (None, simple/smooth line, fill area, etc.)
2-D Plot:

Simple Drawingdraw a simple histogram without errors (= "HIST" draw option). In combination with
some other draw options an outer line is drawn on top of the histogram

Show markersdraw a marker on to of each bin (="P" draw option).

Draw bar chartdraw a bar chart (="B" draw option).

Bar optiondraw a bar chart (="BAR" draw option); if selected, it will show an additional interface
elements for bars: width, offset, percentage and the possibility to draw horizontal bars.

3-D Plot:

Addset histogram type Lego-Plot or Surface draw (Lego, Legol.2, Surf, Surfl...5).

Coordsset the coordinate system (Cartesian, Spheric, etc.).

65

Histograms

Errorsame as for 2D plot.

Barset the bar attributes: width and offset.

Horizontal Bar draw a horizontal bar chart.

The Binning tab has two different layouts. Oneisfor a histogram, which is not drawn from an ntuple.

The other one is available for a histogram, which is drawn from an ntuple. In this case, the rebin
algorithm can create arebinned histogram from the original datai.e. the ntuple.

el [BICIE —
Eile Edit ¥iew Options |nspect Classes Help Style Blﬂmngl
Mame
Styls Binning | Arbit Distributi plot1
Nane _Arbitrary Distribution _} Entries 100000 | | |PiEmpsTHIE
platl=THIF i Mean 3342 Rehin
Rebin 5000— RMS 200.6 1
e r + S
F F 2 2 5
oTBins £ 4500 4 #ofBins | 48
_eeply | _igrore | - BinOfsst | 1.8000
il Range :
e . S —
3.00 [71729 C & fxis Range
- 3 rrrrr ettt
™ Delayed drawing 3500 "i“+ F A .'_. —
C 545 I 16045
3000#_% B + ¥ Delayed drawing
I HrH i
- Pty
2500—
C +++“§‘Hb+'+
It I S A I I O S P A I O O O B P A
100 200 300 400 500 600 700

To see the differences do:

TFile f("hsinple.root");
hpx- >Dr awm(" BARL") ; /1 non ntuple histogram
nt upl e- >Dr awm " px") ; /1 ntuple histogram

Non ntupl e hi stogram

Rebin with a slider and the number of bins (shown in the field below the dlider). The number of bins
can be changed to any number, which divides the number of bins of the original histogram. A click on
the Apply button will delete the origin histogram and will replace it by the rebinned one on the screen.
A click on the Ignore button will restore the origin histogram.

Hi st ogram drawn from an ntupl e:

Rebin - With the dlider, the number of bins can be enlarged by afactor of 2,3,4,5 (moving to the right)
or reduced by afactor of 1/2, 1/3, 1/4, 1/5.

BinOffset with a BinOffset dlider - the origin of the histogram can be changed within one binwidth.
Using this slider the effect of binning the datainto bins can be made visible (statistical fluctuations).

Axis Range - with adouble dlider it is possible to zoom into the specified axisrange. It isalso possible
to set the upper and lower limit in fields below the dlider.

Delayed drawing - all the Binning diders can set to delay draw mode. Then the changes on the
histogram are only updated, when the Slider is released. This should be activated if the redrawing of
the histogram is time consuming.

66

Histograms

TH2Editor

e~ cl [=]mllx]
Eile Edit ¥iew Opfions Inspect Classes Help
Style | Binnin
] Using TH2Editor
Name
emp:THEF £
1200—
Line E 350
- ha L
f———=| oo
L 300
Title =
Uising TH2Editor G E 250
Plot 600
G 2D € 3D E 200
Contour: [Cont0 =) “m} '
Cont ¥ EC| L 20
200—
I amow ™ Box E 100
I co T scat E
[Tet [Pastis o
il —————————— -ZDD: 50
O - ST 8
Marker -0.6 04 -0.2 0.2 0.6
m [
[Erret [=)(]
Eile Edit Miew Options Inspect Classes Help
Style | ginning |
Using TH2Editor
Itemp:THF
Line —————
| IS <
1 ~
Title
Using THZEditor
Plot
2D 3D
Type: [surm]
Coords: | Cartesian ¥
Cont#: E|
I Emors P Front
I Palette [Back
Bar
w: 1002 o000 4
Frame Fill
|- .-
Fill
C - -
Marker
L |

Titleset the title of the histogram

Histogramchange the draw options of the histogram.

Plotdraw a 2D or 3D plot of the histogram; according to the dimension, the drawing possibilities are
different.

2-D Plot:

Contour draw a contour plot (None, ContO...5)

Cont # set the number of Contours;

Arrow set the arrow mode and shows the gradient between adjacent cells;
Col abox isdrawn for each cell with a color scale varying with contents;
Text draw bin contents as text;

Boxabox is drawn for each cell with surface proportional to contents;
Scat draw a scatter-plot (default);

Palette the color palette is drawn.

3-D Plot:

67

Histograms

Type set histogram type to Lego or surface plot; draw (Lego, Legol.2, Surf, Surfl...5)
Coords set the coordinate system (Cartesian, Spheric, etc.);

Cont # set the number of Contours (for e.g. Lego2 draw option);

Errorsdraw errorsin a Cartesian lego plot;

Pal ette draw the color palette;

Front draw the front box of a Cartesian lego plot;

Back draw the back box of a Cartesian lego plot;

Bar change the bar attributes: the width and offset.

Rebinning Tah:

The Rebinning tab has two different layouts. Oneisfor a histogram that is not drawn from an ntuple;
the other one is available for a histogram, which is drawn from an ntuple. In this case, the rebin
algorithm can create arebinned histogram from the original datai.e. the ntuple. To seethe differences
do for example:

TFile f("hsinple.root");
hpxpy- >Dr aw(" Lego2") ; /1 non ntuple histogram
nt upl e- >Dr awm " px: py","", "Lego2"); [/ ntuple histogram

Non-ntuple histogram:

Rebin with sliders (one for the x, one for the y-axis) and the number of bins (shown in the field below
them can be changed to any number, which divides the number of bins of the original histogram.
Selecting the Apply button will delete the origin histogram and will replace it by the rebinned one on
the screen. Selecting the Ignore the origin histogram will be restored.

68

Histograms

Eile Edit Wiew Options Inspect Classes Help

e B! Two Peaks

;{ii?SITHZF . 180

ey 160

g 2 I3 5 f . |

#ofEins: [a3 _ IR AL -

BinOfiset: | 0.0205 ?ggz = “m{" 1 —140

I M i
| 1202 e ' 0 T DA |

528 s 128— . Im"l‘}’;}"i‘ 100

of Bins: 41 = L A ¢ ' Dyl |

o | 602 . st/ AT 80

403
""""""" 20
Axis Range |
[o[o5
¥ Delayed drawing 100-200

Style Binning
MName

hpspy: THZF
Rehin

SN TN

of Bins I 10

of Bins | 40
Apply | Ignore |

£xis Range
I -4.00 I 0.go
I -4.00 I z.00

W Delayed drawing

Histogram drawn from an ntuple:

Rebin with the slidersthe number of bins can be enlarged by afactor of 2,3,4,5 (moving to theright) or
reduced by afactor of 1/2, 1/3, 1/4, 1/5. BinOffset with the BinOffset slider the origin of the histogram
can be changed within one binwidth. Using this slider the effect of binning the data into bins can be

made visible (=> statistical fluctuations).

Axis Range - with a double dlider that gives the possibility for zooming. It is also possible to set the

upper and lower limit in fields below the slider.

Delayed drawing - @l the binning sliders can be set to delay draw mode. Then the changes on the
histogram are only updated, when the Slider is released. This should be activated if the redrawing of

the histogram is too time consuming.

69

Chapter 4. Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y coordinates of n points.
There are several graph classes; they are TGr aph, TGr aphError s, TG aphAsymEr r or s, and
TMWul ti Graph.

TGraph

The TG aph class supports the general case with non-equidistant points, and the special case with
equidistant points. Graphs are created with the TGr aph constructor. First, we define the arrays of
coordinates and then create the graph. The coordinates can be arrays of doubles or floats.

Int_ t n = 20;

Double t x[n], y[n];

for (Int_t i=0; i<n; i++) {

x[i] i *0.1;

yli] 10*si n(x[i]+0. 2);

}

TGraph *grl = new TGraph (n, X, Vy);

An alternative constructor takes only the number of pointsn. It is expected that the coordinates will
be set later.

TGraph *gr2 = new TGraph(n);

The default constructor can also be used. Further calls to Set Poi nt () will extend the internal
Vectors.

TG aph *gr3 = new TG aph() ;

Graph Draw Options

The various draw options for agraph are explained in TGr aph: : Pai nt Gr aph. They are:
» "L"A simple poly-line between every pointsis drawn

* "F"Afill areaisdrawn

* “F1”"ldemas"F" but fill areais no more repartee around X=0 or Y=0

« "F2"draw afill areapoly line connecting the center of bins

» "A"Axis are drawn around the graph

* "C'A smooth curveisdrawn

o "*"A star isplotted at each point

» "P"The current marker of the graph is plotted at each point

e "B"A bar chart isdrawn at each point

"[1" Only the end vertical/horizontal lines of the error bars are drawn. This option only appliesto
the TGr aphAsymrEr r or s.

e "1"yl ow=rwymin

The options are not case sensitive and they can be concatenated in most cases. Let us look at some
examples.

70

Graphs

Continuous Line, Axis and Stars (AC¥)

Figure 4.1. A graph drawn with axis, * markers and continuous line (option

AC*)
@ Graph Draw Options M= =
File Edit ¥ieww Opfions |nspect Classes Help
Graph |
e
s
st
i
oE
SE-
af-
3E
2
= I I I L [I I I I
L1] 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.4 Z

Int_ t n = 20;
Double_t x[n], y[n];
for (Int_t i=0;i<n;i++) {
x[i] =1i*0.1;
y[i] = 10*sin(x[i]+0.2);
}
/] create graph
TG aph *gr = new TG aph(n, x,Yy);
TCanvas *cl = new TCanvas("cl", "G aph Draw Options", 200, 10, 600, 400) ;
/] draw the graph with axis, contineous line, and put a * at each point
gr->Draw("AC*");
}

Bar Graphs (AB)

Figure4.2. A graph drawn with axisand bar (option AB)

@Elaph Draw Options
File Edit Wiew Options Inspect Classes Help

Graph I

10

2]
III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

L T L 1
0.2 04 0.6 0.8 1 1.2 14 1.6 1.4 Z

=

71

Graphs

root[] TGraph *grl = new TG aph(n, x,Yy);
root[] grl->SetFill Col or(40);
root[] grl->Draw("AB");

This code will only work if n, x, and y is defined. The previous example defines these. Y ou need to

set the fill color, because by default the fill color is white and will not be visible on awhite canvas.
You aso need to giveit an axis, or the bar chart will not be displayed properly.

Filled Graphs (AF)

Figure4.3. A graph drawn with axisand fill (option AF)

@ Graph Draw Options (_ O
File Edit ¥iew Options Inspect Classes Help
Graph |

1d

)
=
ra
=
L
[=]
(]
s
=
n
-
ra
-
L
-
=
-
[=:]
N

root[] TG aph *gr3 = new TG aph(n, X, Yy);
root[] gr3->SetFill Col or(45);
root[] gr3->Draw("AF")

This code will only work if n, x, y are defined. The first example defines them. Y ou need to set the
fill color, because by default thefill color iswhite and will not be visible on awhite canvas. Y ou also
need to give it an axis, or the bar chart will not be displayed properly. Currently one cannot specify
the "CF" option.

72

Graphs

Marker Options

Figure4.4. Graph markerscreated in different ways

@ Graph Draw Dptions O]
File Edit Wiew Options Inspect Classes Help
Graph |

10

A

Int_ t n = 20;
Double t x[n], y[n];
[/ build the arrays with the coordi nate of points
for (Int_t i=0; i<n; i++) {
x[i] i *0.1;
yli] 10*si n(x[i]+0. 2);

}

/] create graphs
TGraph *gr3 = new TG aph(n,X,VY);
TCanvas *cl = new TCanvas ("cl","Gaph Draw Options", 200, 10, 600, 400) ;

[/l draw the graph with the axis, contineous |ine, and put
/1 a marker using the graph's marker style at each point
gr 3- >Set Mar ker St yl e(21) ;
cl->cd(4);
gr 3- >Drawm " APL") ;

/[l get the points in the graph and put theminto an array
Doubl e t *nx = gr3->Cet X();
Double t *ny = gr3->Cet Y();

[l create markers of different colors

for (Int_t j=2; j<n-1; j++) {

TMarker *m = new TMarker (nx[j], 0.5*ny[j], 22);
m >Set Mar ker Si ze(2) ;

m >Set Mar ker Col or (31+j) ;

m >Draw() ;

}

}

Superimposing Two Graphs

To super impose two graphs you need to draw the axis only once, and leave out the "A" in the draw
options for the second graph. Next is an example:

73

Graphs

Figure 4.5. Superimposing two graphs

@Two Graphs H=l E
Eile Edit ¥iew Options [nspect Classes Help
Graph |

=
]
L
=
-]
-
=]

{
Int t n = 20;
Double_t x[n], y[n], x1[n], yl[n];

/[l create a blue graph with a cos function and red one with sin function
for (Int_t i=0; i<n; i++) {

x[1] =1*0.5;

y[i] = 5*cos(x[i]+0.2);
x1[i] = i1*0.5;

y1[i] = 5*sin(x[i]+0.2);
}

TGraph *grl1 = new TG aph(n, X, Yy);
TGraph *gr2 = new TG aph(n, x1,yl);
TCanvas *cl = new TCanvas("cl","Two G aphs", 200, 10, 600, 400) ;
/1 draw the graph with axis, contineous |line, and put a * at each point
gr 1- >Set Li neCol or (4) ;
gr1->Drawm "AC");
/1 superinpose the second graph by |eaving out the axis option "A"
gr 2- >Set Li neW dt h(3) ;
gr 2- >Set Mar ker St yl e(21) ;
gr 2- >Set Li neCol or (2) ;
gr 2- >Draw " CP") ;
}

Graphs with Error Bars

A TGraphErrors is a TG aph with error bars. The various draw format options of
TG aphErrors:: Pai nt () arederived from TGr aph.

void TG aphErrors:: Paint(Option_t *option)

74

Graphs

Figure 4.6. Graphswith different draw options of error bars

[&1A Simple Graph with error bars ISI[=] B3 \W 7 A Simple Graph with emor bars [_ o] =]
File Edit ¥iew Opfions Inspect Classes Help | File Edit Wiew Options Inspect Classes Help

TCraphErrors Example I TGraphErvors Example I

In addition, it can be drawn with the"Z" option to leave off the small lines at the end of the error bars.
If option contains ">", an arrow is drawn at the end of the error bars. If option contains | >", a full
arrow is drawn at the end of the error bars. The size of the arrow is set to 2/3 of the marker size.

Theoption“[] ” isinteresting to superimpose systematic errors on top of the graph with the statistical
errors. When it is specified, only the end vertical/horizontal lines of the error bars are drawn.

To control the size of the lines at the end of the error bars (when option 1 is chosen) use
Set EndEr r or Si ze(np) . By default np=1; np represents the number of pixels.

gSt yl e- >Set EndEr r or Si ze(np) ;

The four parameters of TGr aphErrors are: X, Y (asin TGraph), X-errors, and Y-errors - the
size of the errors in the x and y direction. Next example is $ROOTSYS/ t ut ori al s/ gr aphs/
gerrors. C

{
cl = new TCanvas("cl1","A Sinple Gaph with error bars", 200, 10, 700, 500) ;

cl->SetFill Col or(42);

cl->SetGid();

cl->Cet Frame()->Set Fi |l | Col or (21);

cl- >Cet Frame() - >Set Bor der Si ze(12) ;
/1 create the coordinate arrays

Int_ t n = 10;
Float t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Float t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

[/l create the error arrays
Float _t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Float_t ey[n] ={.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

[/l create the TG aphErrors and draw it

gr = new TG aphErrors(n, x,Yy, ex, ey);

gr->SetTitl e("TG aphErrors Exanple");

gr - >Set Mar ker Col or (4) ;

gr - >Set Mar ker St yl e(21) ;

gr->Draw(" ALP");

cl- >Update();

}

Graphs with Asymmetric Error Bars

A TG aphAsymErrors is a TG aph with asymmetric error bars. It inherits the various
draw format options from TG aph. Its method Pai nt (Option_t *option) pants the

75

Graphs

TG aphAsynmEr r or s with the current attributes. Y ou can set the following additional options for
drawing:

e "z" or “Z"the horizontal and vertical small lines are not drawn at the end of error bars
e “>"an arrow isdrawn at the end of the error bars
» “| >"afull arrow is drawn at the end of the error bar; itssizeis 2/3 of the marker size

» “[] "only the end vertical/horizontal lines of the error bars are drawn; this option is interesting to
superimpose systematic errors on top of a graph with statistical errors.

The constructor has six arraysas parameters. X and Y as TGraph and low X-errorsand high X-errors,
low Y-errors and high Y -errors. The low value is the length of the error bar to the left and down, the
high value is the length of the error bar to the right and up.

Figure4.7. A graph with asymmetric error bars

@A Simple Graph with error bars [_ O] %]

File Edit ¥iew Options Inspect Classes Help
| TGraphAsymmErrors Example |

10

cl = new TCanvas("cl","A Sinple G aph with error bars", 200, 10, 700, 500) ;
cl->SetFill Col or(42);
cl->SetGid();
cl->Get Frame()->Set Fi |l | Col or (21);
cl- >Get Frame() - >Set Bor der Si ze(12) ;
/] create the arrays for the points
Int_t n = 10;
Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
Double t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
/! create the arrays with high and | ow errors
Doubl e_t exl [n] {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Doubl e_t eyl [n] {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
Doubl e_t exh[n] {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
Doubl e_t eyh[n] {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};
/1 create TG aphAsymmErrors with the arrays
gr = new TG aphAsymmErrors(n, x, Yy, exl, exh, eyl , eyh);
gr->SetTitl e(" TG aphAsymrErrors Exanpl e");
gr - >Set Mar ker Col or (4) ;
gr - >Set Mar ker Styl e(21) ;
gr->Draw(" ALP");
}

76

Graphs

Graphs with Asymmetric Bent Errors

A TG aphBent Er r or s isaTGr aph with bent, asymmetric error bars. The various format options
to draw a TGr aphBent Err or s are explained in TGr aphBent Err or s: : Pai nt method. The
TG aphBent Err or s isdrawn by default with error bars and small horizontal and vertical lines at
the end of the error bars. If option"z" or "Z" is specified, these small lines are not drawn. If the option
"X" is specified, the errors are not drawn (the TGr aph: : Pai nt method equivalent).

* if option contains">", an arrow is drawn at the end of the error bars
« if option contains"| >", afull arrow isdrawn at the end of the error bars

the size of the arrow is set to 2/3 of the marker size

if option"[] " is specified, only the end vertical/horizontal lines of the error bars are drawn. This
option isinteresting to superimpose systematic errors on top of a graph with statistical errors.

Figure 4.8. A graph with asymmetric bent error bars

[TGraphBentErrors Example |

10

Thisfigure has been generated by the following macro:

{

Int_ t n = 10;

Doubl e_t x[n] = {-0.22,0.05,0.25,0.35,0.5,0.61,0.7,0.85,0.89, 0. 95};
Doubl e t y[n] ={1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5, 1};
Double t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t eyl[n] ={.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

Doubl e_t exh[n] = {.02, 08,.05,.05,.03 03, .04, .05, .06, .03};
Double t eyh[n] ={.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

Double t exld[n] ={.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

Double t eyld[n] ={.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

Doubl e t exhd[n] =¢{.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

Doubl e t eyhd[n] ={.0,.0,.0,.0,.0,.0,.0,.0,.05,.0};

gr = new TG aphBent Errors(n,X,Yy, exl, exh, eyl, eyh, exl d, exhd, eyl d, eyhd) ;
gr->SetTitle("TG aphBent Errors Exarrpl e");

gr - >Set Mar ker Col or (4) ;

gr - >Set Mar ker Styl e(21) ;

gr->Draw("ALP");

}

77

Graphs

TGraphPolar

The TGraphPol ar class creates a polar graph (including error bars). A TGraphPol ar is a
TG aphEr ror s represented in polar coordinates. It uses the class TG aphPol ar gr amto draw
the polar axis.

Figure4.9. A polar graph

Bl

TCanvas *CPol = new TCanvas("CPol ", " TG aphPol ar Exanpl es", 600, 600) ;
Doubl e _t rm n=0;

Doubl e t rmax=TMat h:: Pi () *2;

Doubl e_t r[1000];

Doubl e_t thetal 1000];

TF1 * fpl = new TF1("fplot", "cos(x)",rm n, rnmax);

for (Int_t ipt = 0; ipt < 1000; ipt++) {

riipt] = ipt*(rmax-rmn)/1000+rm n;
thetal[ipt] = fpl->Eval (r[ipt]);
}

TG aphPol ar * grP1 = new TG aphPol ar (1000, r, t het a) ;
gr P1- >Set Li neCol or (2);

gr P1- >Dr aw(" AOL") ;

}

The TGraphPolar drawing options are;

"O" Polar labels are paint orthogonally to the polargram radius.
"P" Polymarker are paint at each point position.

"E" Paint error bars.

"F" Paint fill area (closed polygon).

"A"Force axis redrawing even if a polagram already exists.

TGraph Exclusion Zone

When agraphispainted withtheoption"C" or "L", itispossible to draw afilled areaon one side of the
line. Thisis useful to show exclusion zones. This drawing mode is activated when the absol ute value

78

Graphs

of the graph line width (set thanksto Set Li neW dt h) isgreater than 99. In that case the line width
number isinterpreted as 100*ff +I | = ffl | . Thetwo-digit numbers”l | " represent the normal
line width whereas "f f " is the filled area width. The sign of "f f | | " allows flipping the filled area
from one side of the line to the other. The current fill area attributes are used to draw the hatched zone.

Figure 4.10. Graphswith exclusion zones

[Exclusion graphs examples I8 [=] B3
File Edit View Options Inspect Classes Help

swe | | Exclusion graphs |
Name
Graph:TGraph
e ———————— 10
| E—|

1 -
Fin
M |-)
Marker ————
M- -0
Title

Graph
Shape
C No Line
@ Smooth Line
" simple Line
' BarChant
€ Fill area

(5]

Wl‘\w\

o

&

I~ Show Marker
Exclusion Zone

A T
~ - [= 0 0.5 1 15 2 2.5 3 35 4

{

cl = new TCanvas("c1l", "Excl usi on graphs exanpl es", 200, 10, 700, 500) ;

cl->SetGrid();

TMul ti Graph *nmg = new TMul ti Graph();

ng->Set Ti t | e(" Excl usi on graphs");

const Int_t n = 35;

Double t x1[n], x2[n], x3[n], yl[n], y2[n], y3[n];

for (Int_t i=0;i<n;i++) {

x1[i] = i*0.1; yi[i] = 10*sin(x1[i]);
x2[i] = x1[i]; y2[i] = 10*cos(x1[i]);
x3[i] = x1[i]+.5; y3[i] = 10*sin(x1[i])-2;
}

grl = new TG aph(n, x1, yl);
gr 1- >Set Li neCol or (2) ;

gr 1- >Set Li neW dt h(1504) ;
grl->SetFill Styl e(3005);
gr2 = new TG aph(n, x2,y2);
gr 2- >Set Li neCol or (4) ;

gr 2- >Set Li neW dt h(-2002) ;
gr2->SetFill Styl e(3004);
gr2->Set Fill Col or(9);

gr3 = new TG aph(n, x3,y3);
gr 3- >Set Li neCol or (5) ;

gr 3- >Set Li neW dt h(-802) ;
gr3->SetFill Styl e(3002);
gr3->Set Fill Col or(2);

ng- >Add(grl);

ng- >Add(gr 2) ;

ng- >Add(gr 3) ;

ng- >Dr aw(" AC") ;

}

79

Graphs

TGraphQQ

A TG aphQQ alows drawing quantile-quantile plots. Such plots can be drawn for two datasets, or
for one dataset and a theoretical distribution function.

Two Datasets

Quantile-quantile plots are used to determine whether two samples come from the same distribution.
A qgg-plot draws the quantiles of one dataset against the quantile of the other. The quantiles of the
dataset with fewer entries are on Y -axis, with more entries - on X-axis. A straight line, going through
0.25 and 0.75 quantiles is aso plotted for reference. It represents a robust linear fit, not sensitive to
the extremes of the datasets. If the datasets come from the same distribution, points of the plot should
fall approximately on the 45 degrees line. If they have the same distribution function, but different
parameters of location or scale, they should still fall on the straight line, but not the 45 degrees one.

Figure4.11. Examples of qg-plots of 2 datasets

il of 2 samalis from e same panmal distiouten | an-plal of 2 samalis from differsnt nennal datibuticns |

PR 7

1 1

o =

[wa-plotof 1 normal 2nd 1 cauchy =ample |

*

The greater their departure from the straight line, the more evidence there is that the datasets come
from different distributions. The advantage of qg-plot is that it not only shows that the underlying
distributions are different, but, unlike the analytical methods, it aso gives information on the nature
of this difference: heavier tails, different location/scale, different shape, etc.

One Dataset

Quantile-quantile plots are used to determine if the dataset comes from the specified theoretical
distribution, such asnormal. A qg-plot draws quantiles of the dataset against quantiles of the specified
theoretical distribution. Note, that density, not CDF should be specified a straight line, going through
0.25and 0.75 quantiles could also be plotted for reference. It representsarobust linear fit, not sensitive
to the extremes of the dataset. As in the two datasets case, departures from straight line indicate
departures from the specified distribution. Next picture shows an example of a qg-plot of a dataset
from N(3, 2) distribution and TMath::Gaus(0, 1) theoretical function. Fitting parameters are estimates
of the distribution mean and sigma.

80

Graphs

Figure 4.12. Examples of qg-plots of 1 dataset

po 3.187 + 0.2236
p1 1.784 + 0.2381

data quantiles
(=

¥ ¥ E

P S o AR ISP AP IR IV U A
-2 -1.5 -1 -0.5 0 05 1 15 2
theoretical quantiles

TMultiGraph

A TMul ti Graph isacollection of TG aph (or derived) objects. Use TMul ti Graph: : Add to
add anew graphto thelist. The TMul t i Gr aph ownsthe objectsin thelist. The drawing and fitting
options arethe same asfor TGr aph.

{

/1 create the points
Int t n = 10;
Doubl e t x[n]
Doubl e t y[n]

-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5, 1};
Double_t x2[n] = {- 2 .15,.35,.45,.6,.71,.8,.95,.99, 1. 05};
Double_t y2[n] = {1 956749968763451};
/1 create the width f errors in x and y direction
Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t ey[n] ={.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
/1 create two graphs
TGraph *grl = new TG aph(n, x2,y2);
TGraphErrors *gr2 = new TG aphErrors(n, x, Yy, ex, ey);
/1 create a multigraph and draw it
TMulti Graph *ng = new TMul ti Graph();
ng- >Add(grl);
ng- >Add(gr 2) ;
ng- >Dr aw(" ALP") ;
}

{
{

81

Graphs

Figure 4.13. A multigraph example

et B

File Edit Wiew Options |nspect Classes Help

10

5]
II\|III|III|III|III|I

0 | | | | | | |
-02-05 0 002 0G4 0.4 0.81.5 1 2

TGraph2D

This classis a set of N points x[i], y[i], z[i] in a non-uniform grid. Severa visuaization
techniques are implemented, including Delaunay triangulation. Delaunay triangulation is defined as
follow: ‘for aset S of pointsin the Euclidean plane, the unique triangulation DT(S) of S such that
no point in S isinside the circum-circle of any trianglein DT(S) . DT(S) isthe dual of the VVoronoi
diagram of S. If n is the number of pointsin S, the Voronoi diagram of Sis the partitioning of the
plane containing S points into n convex polygons such that each polygon contains exactly one point
and every point in agiven polygon is closer to its central point than to any other. A Voronoi diagram
is sometimes also known as a Dirichlet tessellation.

Figure 4.14. Delaunay triangles and VVoronoi diagram

Delaunay Triangles

“oronal Diagram

The TG aph2D class has the following constructors:

» With an arrays dimension n and three arrays x, y, and z (can be arrays of doubles, floats, or
integers):

TG aph2D *g = new TG aph2D(n, x, VY, z);

» With an array dimension only:

TG aph2D *g = new TG aph2D(n);

* Internal arrays are filled with the method Set Poi nt at the position "i " with thevaluesx,y, z:

g->SetPoint (i, x,y,z);

82

Graphs

» Without parameters; the method Set Poi nt must be used to fill theinternal arrays.

TG aph2D *g new TG aph2DX();

* Fromafile

TG aph2D *g = new TG aph2D(" graph. dat");

The arrays are read from the ASCI| file"gr aph. dat " according to a specified format. The format's
default valueis"% g % g % g". Note that in any of last three cases, the Set Poi nt method can
be used to change a data point or to add a new one. If the data point index (i) is greater than the size
of the internal arrays, they are automatically extended.

Specific drawing options can be used to paint aTGr aph2D:

e "TRI " the Delaunay triangles are drawn using filled area. A hidden surface drawing technique is

used. The surface is painted with the current fill area color. The edges of the triangles are painted
with the current line color;

"TRI Wthe Delaunay triangles are drawn as wire frame;

e "TRI 1" the Delaunay triangles are painted with color levels. The edges of the triangles are painted
with the current line color;

e "TRI 2" the Delaunay triangles are painted with color levels;
» "P"draws amarker at each vertex;
« "PO" drawsacircle at each vertex. Each circle background is white.

A TG aph2D can be aso drawn with ANY options valid for 2D histogram drawing. In this case,
an intermediate 2D histogram is filled using the Delaunay triangles technique to interpolate the data
set. TGr aph2D linearly interpolate a Z value for any (X, Y) point given some existing (X, Y, Z)

points. The existing (X, Y, Z) points can be randomly scattered. The algorithm works by joining
the existing points to make Delaunay trianglesin (X, Y) . These are then used to define flat planes
in (X, Y, Z) over which to interpolate. The interpolated surface thus takes the form of tessellating
triangles at various angles. Output can take the form of a 2D histogram or a vector. The triangles
found can be drawn in 3D. This software cannot be guaranteed to work under all circumstances. It
was originally written to work with afew hundred pointsinan XY space with similar X and Y ranges.

83

Graphs

Figure 4.15. Graph2D drawn with option " surfl" and " tril p0"

i

%O 1)

BN
; ﬁ%ﬁ‘:“‘“\\\ oy
e

TCanvas *c = new TCanvas("c", " G aph2D exanpl e", 0, 0, 700, 600) ;
Double_ t x, vy, z, P = 6.;

Int_t np = 200;

TG aph2D *dt = new TG aph2DX);

TRandom *r = new TRandom();

for (Int_t N=O; N<np; N++) {
X 2*P*(r->Rndnm(N)) - P;
y 2*P*(r->Rndm(N)) - P;
z (sin(x)/x)*(sin(y)/y)+0. 2;
dt - >Set Poi nt (N, X, y, 2);

}

gStyl e->Set Pal ette(1);

dt->Draw("surf1"); /] use “surfl” to generate the left picture
} [/ use “tril p0” to generate the right one

A more complete example is SROOTSYS/ t ut ori al s/ fit/graph2dfit. Cthat produces the
next figure.

Graphs

Figure 4.16. Output of macro graph2dfit.C

TEITTT
33691 9.1
0.7284 1 0.7484
BT.751 1.67

[Oniginal function with Graphald peInts sniep | Difference between Original funclion TTrEr
and Function with nolse f‘“"’“m
— ean
N E Sigma

TEHETTT

D551 T3

41415 0676
60.33 1 0.88

Difference between Orbginal function o Indf
and Minuit fit (B

asog

TGraph2DErrors

A TG aph2DEr ror s isa TG aph2D with errors. It is useful to perform fits with errors on a 2D
graph. An example isthe macro $ROOTSYS/ t ut or i al s/ gr aphs/ graph2derrorsfit.C

Fitting a Graph

The graph Fi t method in general worksthe sameway asthe THL: : Fi t . See “Fitting Histograms”.

Setting the Graph's Axis Title

To give the axis of a graph atitle you need to draw the graph first, only then does it actually have
an axis object. Once drawn, you set thetitle by getting the axisand callingthe TAxi s: : Set Titl e
method, and if you want to center it, you can call the TAXi s: : Cent er Ti t | e method.

Assumingthatn, x, andy are defined. Next code setsthetitles of the x andy axes.

root[] gr5 = new TG aph(n, X, Yy)
root[] gr5->Draw()

<TCanvas: : MakeDef Canvas>: created default TCanvas with nanme cl

root[] gr5->Draw("ALP")

root[] grb5->CetXaxis()->SetTitle("X-Axis")
root[] gr5->CGetYaxis()->SetTitle("Y-Axis")
root[] gr5->CGetXaxis()->CenterTitle()
root[] gr5->CetYaxis()->CenterTitle()
root[] gr5->Draw(“ALP")

For more graph examples see the scriptss $ROOTSYS/ t
gerrors. C,zdenpo. C,andgerrors2. C.

BESETE

3607 & 9147

8954 1 4448
9602 1 1976

utorials directory graph. C,

85

Graphs

Figure4.17. A graph with axistitles

[Gcl =] E3
Eile Edit View Options Inspect Classes Help
Graph

10

[- -]

W - Pxis

ML L A

s Lo by b b b b b b 1
1] 0.2 04 0.6 048 1 12 14 1.6 18 2
X- Axis

Zooming a Graph

Tozoom agraphyou can create ahistogram with the desired axisrangefirst. Draw the empty histogram
and then draw the graph using the existing axis from the histogram.

{ gROOT- >Reset () ;

cl = new TCanvas("cl1","A Zooned G aph", 200, 10, 700, 500) ;
hpx = new TH2F(" hpx", " Zooned G aph Exanple", 10,0,0.5,10,1.0,8.0); // axis range
hpx- >Set St at s(KFALSE) ; /1l no statistics

hpx->Draw() ;

Int_ t n = 10;

Doubl e_t x[n] {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Doubl e_t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5, 1};

gr = new TG aph(n, X,Y);

gr - >Set Mar ker Col or (4) ;

gr - >Set Mar ker St yl e(20) ;

gr->Draw("LP");// and draw it without an axis

}

The next example is the same graph as above with azoom in the x and y directions.

Figure 4.18. A zoomed graph

@A Zoomed Graph M=] B3
Eile Edit Miew Options |nspect Classes Help
| Zoomed Graph Cxzample |

a_

=

G

4

aE

el

e

-|: | | | | | 1 | | |

Li] 005 01 015 02 025 03 035 04 04 08

86

Graphs

The User Interface for Graphs

R Simole Graph Example 777777 P o o o o)
Eile Edit Miew Options Inspect Classes

style |

| A Simple Graph |

Mame
Graph:TGragh

Line

=Y
(=]

Y title

-

@ Smooth Line
© Simple Line
~
I

Bar Chart
Fill area

¥ Shaw Marker

Exclusion Zone
& S I |
Marker

C 1w 1072 0 02 04 06 08 1 12 14 16 1.8 2
X title

N W s N W

The class TG aphEdi t or provides the user interface for setting the following graph attributes
interactively:

Title text entry field — sets the title of the graph.

Shape radio button group — sets the graph shapes:

No Line:draw unconnected points;

Smooth Line: asmooth curve;

Smple Linezasimple poly-line;

Bart Chart:a bar chart at each point.

Fill Area:afill areaisdrawn.

Show Marker - sets markers asvisible or invisible.

Exclusion Zone — specifies the exclusion zone parameters :

"+-* check button: sets on which side of the line the exclusion zone will be drawn;

Width combo box: defines the width of the zone.

87

Chapter 5. Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram via the context menu, or you can
usethe TH1: : Fi t method. The Fit Panel, which is limited, is best for prototyping. The histogram
needs to be drawn in apad before the Fit Panel isinvoked. The method TH1: : Fi t ismore powerful
and is used in scripts and programs.

The Fit Method

To fit a histogram programmatically, you can use the THL: : Fi t method. Here is the signature of
THL: : Fi t and an explanation of the parameters:

void Fit(const char *fnanme, Option_t *option, Option_t *goption,
Axis t xxmin, AXis_t xxmax)

e *fnanme: Thename of the fitted function (the model) is passed as the first parameter. This name
may be one of ROOT pre-defined function names or a user-defined function. The functions below
are predefined, and can be used with the TH1: : Fi t method:

e "gaus" Gaussian function with 3 parameters. f (x) = pO*exp(-0.5*((x-pl)/p2)"2))

» "expo"An Exponential with 2 parameters. f (x) = exp(pO+pl*x)

* "pol N' A polynomial of degreeN: f (x) = p0 + pl*x + p2*x2 +...

* "l andau" Landau function with mean and sigma. This function has been adaptedfrom the
CERNLI Broutine GL10 denl an.

e *opti on: The second parameter is the fitting option. Hereis the list of fitting options:
» "W Set al weightsto 1 for non empty bins; ignore error bars

o "WV Set all weightsto 1 including empty bins; ignore error bars
* "l " Useintegral of function in bin instead of value at bin center
» "L" Uselog likelihood method (default is chi-square method)

» "U'" Useauser specified fitting algorithm

* "Q' Quiet mode (minimum printing)

* "V" Verbose mode (default is between Q and V)

» "E" Perform better errors estimation using the Minos technique
* "M Improvefit results

» "R" Usethe range specified in the function range

« "N' Do not store the graphics function, do not draw

« "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option "N
aboveis specified.

"+" Add this new fitted function to the list of fitted functions (by default, the previous function is
deleted and only the last one is kept)

88

Fitting Histograms

» "B"Use this option when you want to fix one or more parameters and the fitting function is like
pol N, expo, | andau, gaus.

e “LL"An improved Log Likelihood fit in case of very low statistics and when bincontentsare not
integers. Do not use this option if bin contents are large (greater than 100).

e “C’In case of linear fitting, don't calculate the chisquare (savestime).

“F"If fitting apol N, switchto M nui t fitter (by default, pol N functions are fitted by the linear
fitter).

e *goption: Thethird parameter is the graphics option that is the same asin the TH1: : Dr aw
(see the chapter Draw Options).

e xxm n, xxmax: Thee fourth and fifth parameters specify the range over which to apply thefit.

By defaullt, the fitting function object is added to the histogram and is drawn in the current pad.

Fit with a Predefined Function

To fit a histogram with a predefined function, simply pass the name of the function in the first
parameter of THL: : Fi t . For example, thisline fits histogram object hi st with a Gaussian.

root[] hist.Fit("gaus");

Theinitial parameter values for pre-defined functions are set automatically.

Fit with a User-Defined Function

You cancreasteaTF1 object and useitinthecall the THL: : Fi t . The parameter intotheFi t method
isthe NAME of the TF1 object. There are three ways to create a TF1.

» Using C++ expression using x with afixed set of operators and functions defined in TFor mul a.
» Same asfirst one, with parameters

» Using afunction that you have defined

Creating a TF1 with a Formula
Let'slook at thefirst case. Here we call the TF1 constructor by giving it the formula: si n(x) / x.
root[] TF1 *f1 = new TF1("f1","sin(x)/x",O0,10)
You can aso use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TFL("f2","f1*2",0, 10)

Creating a TF1 with Parameters

The second way to construct aTF1 isto add parametersto the expression. Here we usetwo parameters:

root[] TF1 *f1 = new TF1("f1","[0] *x*sin([1]*x)",-3,3);

89

Fitting Histograms

Figure5.1. Thefunction x*si n(x)

] [O[]
File Edit ¥iew Options Inspect Classes Help
[oT%*sin{[1T")

30

The parameter index isenclosed in square brackets. To set theinitial parameters explicitly you can use:
root[] f1->Set Paraneter(0, 10);

This sets parameter 0 to 10. Y ou can also use Set Par arret er s to set multiple parameters at once.
root[] f1->Set Paraneters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:

root[] f1->Draw()

Creating a TF1 with a User Function

Thethird way to build aTF1 isto define afunction yourself and then give its name to the constructor.
A function for aTF1 constructor needs to have this exact signature:

Double_t fitf(Double_t *x, Double_t *par)
The two parameters are:

* X apointer to the dimension array. Each element contains a dimension. For a 1D histogram only
X[0] isused, for a2D histogram x[0] and X[1] isused, and for a 3D histogram x[0] , x[1] ,
and x[2] are used. For histograms, only 3 dimensions apply, but this method is also used to fit
other objects, for example an ntuple could have 10 dimensions.

e par apointer to the parameters array. This array contains the current values of parameters when
itis called by the fitting function.

Thefollowing script $ROOTSYS/ tut ori al s/ fit/ myfit. CillustrateshowtofitalD histogram
with a user-defined function. First we declare the function.

/1 define a function with 3 paraneters

Double t fitf(Double t *x,Double_t *par)

{

Double_ t arg = O;

if (par[2] '=0) arg = (x[0] - par[1])/par][2];
Doubl e t fitval = par[O0]*Tiath::Exp(-0.5*arg*arg);
return fitval;

}

Now we use the function:

[/l this function used fitf to fit a histogram
void fitexanmple() {

90

Fitting Histograms

/[l open a file and get a histogram
TFile *f = new TFil e("hsinple.root");
THLF *hpx = (THLF*)f->Get (*hpx);

[/l Create a TF1l object using the function defined above. The | ast three
/! paraneters specify the nunber of paranmeters for the function.

TF1 *func = new TFL("fit",fitf,-3,3,3);
/] set the parameters to the nean and RM5 of the histogram

func- >Set Par anet er s(500, hpx- >Get Mean() , hpx- >Get RM5()) ;

/1 give the paraneters meani ngful names
func- >Set Par Names (" Constant","Mean_val ue","Si gna");

/[l call THl::Fit with the name of the TF1l obj ect
hpx->Fit("fit");
}

Fixing and Setting Parameters’ Bounds

Parameters must be initialized before invoking the Fi t method. The setting of the parameter initial
valuesisautomatic for the predefined functions: pol n, exp, gaus, andl andau. You canfix oneor
more parameters by specifying the "B" option when calling the Fi t method. When a function is not
predefined, the fit parameters must be initialized to some value as close as possible to the expected
values before calling the fit function.

To set bounds for one parameter, use TF1: : Set ParLi m ts:
func->Set ParLimts(0,-1,1);

When the lower and upper limits are equal, the parameter is fixed. Next two statements fix parameter
4 a 10.

f unc- >Set Par anet er (4, 10) ;
func->Set Par Li m ts(4, 10, 10);

However, to fix a parameter to 0, one must call the Fi xPar anet er function:

f unc- >Set Par anet er (4, 0) ;
func- >Fi xPar anet er (4, 0) ;

Notethat you are not forced to set the limitsfor all parameters. For example, if you fit afunction with
6 parameters, you can:

func- >Set Paraneters(0,3.1,1.e-6,-1.5,0, 100);
func->Set ParLimts(3,-10,4);
f unc- >Fi xPar anet er (4, 0) ;

With this setup, parameters 0- >2 can vary freely, parameter 3 has boundaries [-10, 4] with initial
value—1.5, and parameter 4 isfixed to 0.

Fitting Sub Ranges

By default, THL: : Fi t will fit the function on the defined histogram range. You can specify the
option "R" in the second parameter of THL: : Fi t to restrict the fit to the range specified in the TF1
constructor. Inthisexample, thefit will belimited to—3to 3, therange specifiedinthe TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1","R");

91

Fitting Histograms

You can also specify arangeinthecall to THL: : Fi t :
root[] hist->Fit("f1","","",-2,2)

See macros $ROOTSYS/ tutorials/fit/nyfit.Candnultifit.C as more completed
examples.

The Fit Panel

Current selection: hp=:TH1F

General | Minimizatiunl

—Function
Predefined: Dperation
us = ’7

Iga I @ Mop ¢ add ¢ Conv

g
Selected:

aL

faus Set Parameters... |
—Fit Settings
Method
| Chi-square =] User-Defined.. |
[Linear fit
£y
HObUst I 1.00 EI ™ Mo Chi-square
Fit Options
" Integral M Use range
" Best errars ™ Improve fit results
[T Al weights =1 T Add to list

" Empty bins, weights=1
Drawe Cptions

[T saME

™ Mo drawing

" Do not store/draw Arvanced.. |
Frint Options

& Default = erhose = GQuiet

el e s

Todisplay theFit Panel right click on ahistogram
to pop up the context menu, and then select the menu entry Fit Panel.

The new Fit Panel GUI is available in ROOT v5.14. Its god is to replace the old Fit Panel and to
provide more user friendly way for performing, exploring and comparing fits.

By design, thisuser interfaceis planned to contain two tabs: “General” and “Minimization”. Currently,
the“ General” tab provides user interface elementsfor setting the fit function, fit method and different
fit, draw, print options.

The new fit panel is amodeless dialog, i.e. when opened, it does not prevent users from interacting
with other windows. Itsfirst prototype isasingleton application. When the Fit Panel is activated, users
can select an object for fitting in the usual way, i.e. by left-mouse click on it. If the selected object
is suitable for fitting, the fit panel is connected with this object and users can perform fits by setting
different parameters and options.

Function Choice and Settings

‘Predefined’ combo box - contains a list of predefined functions in ROOT. You have a choice of
several polynomials, a Gaussian, aLandau, and an Exponential function. The default oneis Gaussian.

92

Fitting Histograms

Fitter

Draw

‘Operation’ radio button group defines the selected operational mode between functions;
Nop - no operation (default);

Add — addition;

Conv - convolution (will be implemented in the future).

Users can enter the function expression into the text entry field below the ‘ Predefined’ combo box.
The entered string is checked after the Enter key was pressed and an error message shows up, if the
function string is not accepted.

‘Set Parameters’ button opens a dialog for parameters settings, which will be explaned later.

Settings

‘Method” combo box currently provides only two fit model choices: Chi-square and Binned
Likelihood. The default one is Chi-square. The Binned Likelihood is recomended for bins with low
statistics.

‘Linear Fit' check button sets the use of Linear fitter when is selected. Otherwise the minimization
is done by Minuit, i.e. fit option "F" is applied. The Linear fitter can be selected only for functions
linears in parameters (for example - pol N) .

‘Robust’” number entry sets the robust value when fitting graphs.

‘No Chi-square’ check button switch On/Off the fit option “C’ - do not calculate Chi-square (for
Linear fitter).

‘Integral’ check button switch On/Off the option “1 ” - use integral of function instead of value in
bin center.

‘Best Errors’ sets On/Off the option “E” - better errors estimation by using Minos technique.

‘All weights = 1" sets On/Off the option “W - al weights set to 1 excluding empty bins; error bars
ignored.

‘Empty bins, weights=1" sets On/Off the option "W\ - all weights equal to 1 including empty bins;
error barsignored.

‘Use range’ sets On/Off the option “R’ - fit only data within the specified function range. Sliders
settings are used if thisoption is set to On. Users can change the function range values by pressing the
left mouse button near to the left/right slider edges. It is possible to change both values simultaneously
by pressing the left mouse button near to the slider center and moving it to a new position.

‘Improvefit results’ sets On/Off the option “M - after minimum is found, search for anew one.

‘Add to list’ sets On/Off the option “+”- add function to the list without deleting the previous one.
When fitting a histogram, the function is attached to the histogram's list of functions. By default, the
previoudly fitted function is deleted and replaced with the most recent one, so thelist only contains one
function. Setting this option to On will add the newly fitted function to the existing list of functions
for the histogram. Note that the fitted functions are saved with the histogram when it is written to a
ROOT file. By default, the function is drawn on the pad displaying the histogram.

Options

‘SAME’ sets On/Off function drawing on the same pad. When a fit is executed, the image of the
function is drawn on the current pad.

93

Fitting Histograms

‘No drawing’ sets On/Off the option “0” - do not draw the fit resullts.

‘Do not store/draw’ sets On/Off option “N’- do not store the function and do not draw it.

Print Options

This set of options specifies the amount of feedback printed on the root command line after performed
fits.

‘Verbose' - printsfit results after each iteration.
‘Quiet’ - no fit information is printed.

‘Default’ - between Verbose and Quiet.

Command Buttons

Fit button - performs afit taking different option settings via the Fit Panel interface.
Reset - setsthe GUI elements and related fit settings to the default ones.

Close - closes the Fit panel window.

Fitting Multiple Sub Ranges

The script for this exampleis$ROOTSYS/ tut orial s/ fit/mul tifit. C. It showshow to use
several Gaussian functions with different parameters on separate sub ranges of the same histogram.
To useaGaussian, or any other ROOT built in function, on asub range you need to defineanew TF1.
Each is'derived' from the canned function gaus.

Figure 5.2. Fitting a histogram with several Gaussian functions

i cl =] B3
Eile Edit ¥iew Options Inspect Classes Help

XM pla 07 86vera 1IN subrangs s

Lov b lp o lvpa by b b Lo Lol
uﬂi Bl BE 100 108 110 116 120 126 130

First, four TF1 objects are created — one for each sub-range:

gl new TF1("ml", "gaus", 85, 95);

g2 new TF1("nmR2", "gaus", 98, 108);

g3 = new TF1("nB", "gaus", 110, 121);

[/l The total is the sumof the three, each has 3 paraneters
total = new TF1("nstotal ", "gaus(0)+gaus(3) +gaus(6)", 85, 125);

Next, we fill ahistogram with bins defined in the array x.

/!l Create a histogramand set it's contents

94

Fitting Histograms

h = new THLF("gl", "Exanpl e of several fits in subranges", np, 85, 134);
h- >Set Maxi mum(7) ;
for (int i=0; i<np; i++) {
h- >Set Bi nCont ent (i +1, x[i]);
}
[/l Define the paraneter array for the total function
Doubl e t par[9];

When fitting simplefunctions, such asaGaussian, theinitial valuesof the parametersare automatically
computed by ROOT. In the more complicated case of the sum of 3 Gaussian functions, the initial
values of parameters must be set. In this particular case, the initial values are taken from the result of
theindividual fits. The use of the "+" sign is explained below:

[/l Fit each function and add it to the |list of functions
h->Fit(gl,"R');

h->Fit (g2, "Rt");

h->Fit (g3, "Rt");

[/l Get the paranmeters fromthe fit
gl- >Get Par anet er s(&par [0]) ;
g2- >CGet Par anet er s(&par|[3]) ;
g3- >Cet Par anet er s(&par [6]) ;

/1l Use the paranmeters on the sum

t ot al - >Set Par anet er s(par) ;
h->Fit(total ,"R+");

Adding Functions to the List

The example $ROOTSYS/ tutorial s/fit/nmultifit. C aso illustrates how to fit severa
functions on the same histogram. By default a Fit command deletes the previoudly fitted function in
the histogram object. Y ou can specify the option "+" in the second parameter to add the newly fitted
function to the existing list of functions for the histogram.

root[] hist->Fit("f1", "+", "" -2 2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

Combining Functions

You can combine functions to fit a histogram with their sum as it is illustrated in the macro
Fi t Deno. C($ROOTSYS/ tutorial s/fit/FittingDenp. C).Wehaveafunctionthatisthe
combination of abackground and L orentzian peak. Each function contributes 3 parameters:

BackgroundL orentzian Peak

par[0] ="tpar[0] =*F

par[1] ="par[1] ="

95

Fitting Histograms

par[2] = *par[2] =™
The combination function (f i t Funct i on) hassix parameters:

fitFunction = background(x, par) + Lorentzi anPeak(x, &ar[3])

(S R

par [0] ==t par[1] =2 par[2] ="'3 par[3] =7 par[4] =" par[5] ="
This script creates a histogram and fits it with the combination of two functions. First we define the
two functions and the combination function:

/1 Quadratic background function

Doubl e _t background(Doubl e t *x, Double t *par) {

return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];

}

/1 Lorentzian Peak function

Doubl e t | orentzi anPeak(Double t *x, Double t *par) {
return (0.5*par[0] *par[1]/TMath::Pi()) / TMath:: Max(1. e- 10,
(X[O]-par[2])*(x[0O]-par[2])+ .25*par[1] *par[1]);

}

/1 Sum of background and peak function

Doubl e t fitFunction(Double t *x, Double t *par) {
return background(x, par) + |orentzianPeak(x, &ar|[3]);
}

void FittingDenmo() {

/'l bevington exercise by P. Ml zacher, nodified by R Brun
const int nBins = 60;

Stat _t data[nBins] ={ 6, 1,10,12, 6,13, 23, 22, 15, 21,
23, 26, 36, 25, 27, 35, 40, 44, 66, 81,

75, 57, 48, 45, 46, 41, 35, 36, 53, 32,

40, 37, 38, 31, 36, 44, 42, 37, 32, 32,

43, 44, 35, 33, 33, 39, 29, 41, 32, 44,

26, 39, 29, 35, 32, 21, 21, 15, 25, 15};

THLF *histo = new THLF("exanple 9 1",

"Lorentzi an Peak on Quadratic Background", 60, 0, 3);

for(int i=0; i < nBins; i++) {
/1 we use these nethods to explicitly set the content
/1 and error instead of using the fill nethod.

hi st 0- >Set Bi nContent (i +1, data[i]);
hi st o- >Set Bi nError (i +1, TMat h: : Sgrt (dataf[i]));

}
/!l create a TF1 with the range fromO0 to 3 and 6 paraneters
TF1 *fitFcn = new TF1("fitFcn",fitFunction,O, 3, 6);

/[l first try without starting values for the paraneters
/1 this defaults to 1 for each param
histo->Fit("fitFcn");
/[l this results in an ok fit for the pol ynom al function however
/! the non-linear part (Lorentzian) does not respond well
/1 second try: set start values for sone paraneters
fitFcn->Set Paraneter(4,0.2); /1 width
fitFcn->Set Paraneter(5,1); /1 peak
histo->Fit("fitFcn", "V+");

/1 inprove the picture:

96

Fitting Histograms

TF1 *backFcn = new TF1("backFcn", background, 0, 3, 3) ;
backFcn- >Set Li neCol or (3);

TF1 *signal Fcn = new TF1("si gnal Fcn", | orent zi anPeak, 0, 3, 3) ;
si gnal Fcn->Set Li neCol or (4);

Doubl e_t par[6];

/[l wites the fit results into the par array
fitFcn->CGet Par anmet er s(par) ;

backFcn- >Set Par anet er s(par) ;

backFcn- >Dr aw(" sanme") ;

si gnal Fcn- >Set Par anmet er s(&par|[3]) ;

si gnal Fcn- >Dr aw("sane") ;

}

For another example see http://root.cern.ch/root/htm/exanpl es/
backsig. C. htm

Figure 5.3. The output of the FittingDemo() example

6 1 M= E3
File Edit ¥iew Options [nspect Classes Help
[Lorentzian Peak on Quadratic Backgrougd exampie_ 31
Hent=10
F Mean = 1.56
50 - RMS = 0.7277
80|
1]
60
a0 ;—
10
30
20
10 =
'3
0 0.5 1 1.5 2 2.5 3

Associated Function

Oneor moreobjects(typically aTF1*) can beadded tothelist of functions(f Funct i ons) associated
to each histogram. A call to TH1: : Fi t addsthefitted function to thislist. Given a histogram h, one
can retrieve the associated function with:

TF1 *nmyfunc = h->Get Functi on(" nyfunc");

Access to the Fit Parameters and Results

If the histogram (or graph) ismade persistent, thelist of associated functionsisalso persistent. Retrieve
a pointer to the function with the THL: : Get Functi on() method. Then you can retrieve the fit
parameters from the function (TF1) with calls such as:

root[] TF1 *fit = hist->Get Functi on(function_nane);
root[] Double t chi2 = fit->GetChisquare();

/1 value of the first paraneter

root[] Double t pl = fit->GetParaneter(0);

97

Fitting Histograms

[l error of the first paraneter
root[] Double t el = fit->GetParError(0);

Associated Errors

By default, for each bin, the sum of weightsis computed at fill time. One can also call TH1: : Suma2
to force the storage and computation of the sum of the square of weights per bin. If Sumw2 has been
called, the error per bin is computed asthe sqr t (sum of squares of weights) ; otherwise, the error
isset equal tothesqrt (bi n cont ent). Toreturn the error for a given bin number, do:

Doubl e t error = h->GetBi nError(bin);

Empty bins are excluded in the fit when using the Chi-square fit method. When fitting the histogram
with the low statistics, it is recommended to use the Log-Likelihood method (option ‘L’ or “LL").

Fit Statistics

You can change the statistics box to display the fit parameters with the
TStyl e:: Set Opt Fi t (node) method. This parameter has four digitss node = pcev
(default = 0111)

* p=1print probability

e ¢ = 1print Chi-square/number of degrees of freedom

» e=lprint errors (if e=1, v must be 1)

» v=1print name/values of parameters

For example, to print the fit probability, parameter names/values, and errors, use:

gStyl e->Set Opt Fit (1011);

The Minimization Package

This package was originaly written in FORTRAN by Fred James and part of PACKLI B (patch
D506). It has been converted to a C++ class by Rene Brun. The current implementation in C++ isa
straightforward conversion of the original FORTRAN version. The main changes are:

e ThevariablesinthevariousM nui t labeled common blocks have been changed to the TM nui t
class data members

» Theinternal arrayswith a maximum dimension depending on the maximum number of parameters
are now data members' arrays with a dynamic dimension such that one can fit very large problems
by simply initializing the TM nui t constructor with the maximum number of parameters

» TheincludefileM nui t . h has been commented as much as possible using existing commentsin
the code or the printed documentation

e Theoriginad M nui t subroutines are now member functions
» Constructors and destructor have been added

* Instead of passing the FCN function in the argument list, the addresses of this function is stored as
pointer in the data members of the class. Thisis by far more elegant and flexible in an interactive
environment. The member function Set FCN can be used to define this pointer

e The ROOT static function Pri nt f is provided to replace all format statements and to print on
currently defined output file

98

Fitting Histograms

» Thederived class TM nui t A d contains obsol ete routines from the FORTRAN based version

» Thefunctions Set Cbj ect Fi t / Get Obj ect Fi t can be used inside the FCN function to set/get
areferenced object instead of using global variables

» By default f G aphi csMbde is true. When calling the M nui t functions such as rmcont ,
mscan, or any M nui t command invoking mpl ot , TM nui t:: nmpl ot () produces a
TG aph object pointed by f PI ot . One can retrieve this object with TM nui t : : Get Pl ot () .
For example:

h->Fit ("gaus");

gM nui t - >Conmand(" SCAn 1");

TG aph *gr = (TG aph*)gM nuit->Get Pl ot ();
gr - >Set Mar ker Styl e(21) ;

gr->Draw("al p");

e TosetM nui t inno graphics mode, call

gM nui t - >Set G aphi csMbde(kFALSE) ;

Basic Concepts of Minuit

The M nui t package acts on a multi parameter FORTRAN function to which one must give the
generic name FCN. In the ROOT implementation, the function FCN is defined via the M nui t
Set FCN member function when aHi st ogr anfi t command isinvoked. The value of FCNwill in
general depend on one or more variable parameters.

To takeasimple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F, TH1D) theFi t
function definesthe M nui t fitting function asbeing HLFi t Chi squar e or HLFi t Li kel i hood
depending on the options selected. HLFi t Chi squar e calculates the chi-square between the user
fitting function (Gaussian, polynomial, user defined, etc) and the data for given values of the
parameters. It is the task of M nui t to find those values of the parameters which give the lowest
value of chi-square.

The Transformation of Limited Parameters

For variable parameters with limits, M nui t uses the following transformation:

Pi nt arcsin(2((Pext-a)/(b-a))-1)

Pext

a+((b-a)/(2)) (sinPint+1)

so that theinternal value Pi nt cantake on any value, whilethe external value Pext can take on values
only between the lower limit a and the ext upper limit b. Since the transformation is necessarily non-
linear, it would transform a nice linear problem into a nasty non-linear one, which is the reason why
limits should be avoided if not necessary. In addition, the transformation does require some computer
time, so it sows down the computation a little bit, and more importantly, it introduces additional
numerical inaccuracy into the problem in addition to what is introduced in the numerical calculation
of the FCN value. The effects of non-linearity and numerical round off both become more important
asthe external value gets closer to one of the limits (expressed as the distance to nearest limit divided
by distance between limits). The user must therefore be aware of the fact that, for example, if he puts
limitsof (0, 1010) on aparameter, thenthevalues 0.0 and 1. O will be indistinguishable to the accuracy
of most machines.

The transformation al so affects the parameter error matrix, of course, so Minuit does atransformation
of the error matrix (and the "parabolic" parameter errors) when there are parameter limits. Users
should however realize that the transformation is only alinear approximation, and that it cannot give
a meaningful result if one or more parameters is very close to a limit, where partial Pext / partial
Pi nt #0. Therefore, it is recommended that:

99

Fitting Histograms

 Limits on variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values

* When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits

How to Get the Right Answer from Minuit

M nui t offers the user a choice of several minimization algorithms. The M GRAD algorithm isin
genera the best minimized for nearly all functions. It is a variable-metric method with inexact line
search, astable metric updating scheme, and checksfor positive-definiteness. Its main weaknessisthat
it depends heavily on knowledge of thefirst derivatives, and failsmiserably if they are very inaccurate.

If parameter limitsare needed, in spite of the side effects, then the user should be aware of thefollowing
techniques to alleviate problems caused by limits:

Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the
existence of limits has probably not prevented M nui t from finding the right minimum. On the other
hand, if one or more parametersisnear itslimit at the minimum, thismay be because the true minimum
isindeed at alimit, or it may be because the minimized has become "blocked" at a limit. This may
normally happen only if the parameter is so close to a limit (internal value at an odd multiple of
#((pi)/(2)) that M nui t printsawarning to this effect when it prints the parameter values. The
minimized can become blocked at a limit, because at a limit the derivative seen by the minimized
partial F/ partial Pint iszeronomatter what therea derivativepartial F/ parti al
Pext is.

((partial F)/(partial Pint)) =
((partial F)/(partial Pext))((partial Pext)/(partial Pint)) =

((partial F)/(partial Pext)) =0

Getting the Right Parameter Errors with Limits

In the best case, where the minimum isfar from any limits, M nui t will correctly transform the error
matrix, and the parameter errorsit reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you would not need
limits), the very meaning of parameter errors becomes problematic. Mathematically, sincethelimitis
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless.

Interpretation of Parameter Errors

There are two kinds of problemsthat can arise: the reliability of M nui t 's error estimates, and their
statistical interpretation, assuming they are accurate.

Statistical Interpretation

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting
of exact confidence levels see the articles:

» F.James. Determining the statistical Significance of experimental Results. Technica Report
DD/81/02 and CERN Report 81-03, CERN, 1981

» W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Satistical Methods in Experimental
Physics. North-Holland, 1971

100

Fitting Histograms

Reliability of Minuit Error Estimates

M nui t always carries around its own current estimates of the parameter errors, which it will print
out on request, no matter how accurate they are at any given point in the execution. For example, at
initialization, these estimates are just the starting step sizes as specified by the user. After a HESSE
step, theerrorsare usually quite accurate, unlessthere hasbeen aproblem. M nui t , whenit printsout
error values, also gives someindication of how reliable it thinks they are. For example, those marked
CURRENT GUESS ERRORare only working values not to be believed, and APPROXI MATE ERROR
means that they have been calculated but there is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least M nui t believes the errors are accurate, although
there is aways a small chance that M nui t has been fooled. Some visible signsthat M nui t may
have been fooled:

* Warning messages produced during the minimization or error analysis
* Failureto find new minimum
» Value of EDM too big (estimated Distance to Minimum)

 Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrel ated
with the others

» Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parameterized so that individual errorsare not very
meaningful because they are so highly correlated

e Parameter at limit. This condition, signaled by aM nui t warning message, may make both the
function minimum and parameter errors unreliable. See the discussion above ‘ Getting the right
parameter errors with limits

The best way to be absolutely sure of the errors is to use "independent” calculations and compare
them, or compare the calculated errors with a picture of the function. Theoretically, the covariance
matrix for a "physical" function must be positive-definite at the minimum, although it may not be so
for al points far away from the minimum, even for a well-determined physical problem. Therefore,
if M GRAD reports that it has found a non-positive-definite covariance matrix, this may be a sign of
one or more of the following:

A Non-physical Region

Onitsway to the minimum, M GRAD may havetraversed aregion that has unphysical behavior, which
is of course not a serious problem as long as it recovers and leaves such aregion.

An Underdetermined Problem

If the matrix is not positive-definite even at the minimum, this may mean that the solution is not
well defined, for example that there are more unknowns than there are data points, or that the
parameterization of the fit contains a linear dependence. If this is the case, then M nui t (or any
other program) cannot solve your problem uniquely. The error matrix will necessarily be largely
meaningless, so the user must removethe under determinedness by reformul ating the parameterization.
M nui t cannot do thisitself.

Numerical Inaccuracies

It is possible that the apparent lack of positive-definiteness is due to excessive round off errors in
numerical calculations (in the user function), or not enough precision. Thisis unlikely in general, but
becomes more likely if the number of free parameters is very large, or if the parameters are badly
scaled (not al of the same order of magnitude), and correlations are large. In any case, whether the

101

Fitting Histograms

non-positive-definiteness is real or only numerical is largely irrelevant, since in both cases the error
matrix will be unreliable and the minimum suspicious.

An lll-posed Problem

For questions of parameter dependence, see the discussion above on positive-definiteness. Possible
other mathematical problems are the following:

» Excessive numerical round off - be especially careful of exponential and factorial functions which
get big very quickly and lose accuracy.

 Starting too far from the solution - the function may have unphysical local minima, especially at
infinity in some variables.

FUMILI Minimization Package

FUMILI is used to minimize Chi-square function or to search maximum of likelihood function.

j o f r
Experimentally measured values™ © are fitted with theoretical functions’:' Ry , Where *: are

;
coordinates, and # - vector of parameters. For better convergence Chi-square function has to be the
following form

3 A -!' o
i _|1,||—-| __-'_I'...EI—.'_|
= _'i -—
1 ‘\-.-

where oF are errors of the measured function. The minimum condition is:
- N, P R

"._' =E = — [r.ll_._:tl—.'_.|=':'_ i=1..m
at, o

where m isthe quantity of parameters. Expanding left part of this equation over parameter increments
and retaining only linear terms one gets

-
[
-

here % issomeinitial value of parameters. In general case:

In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last
term in previous equation is discarded. It is often done, not always wittingly, and sometimes causes

troubles, for example, if user wants to limit parameters with positive values by writing down o
. ~ ~ I'
instead of 9, . FUMILI will fail if one tries minimize ¥~ =271 | where & an arbitrary function
is. Approximate valueis:
@yt v & o
&5_&5 o "rT, gl 0. B

102

Fitting Histograms

Then the equations for parameter increments are:

;o

ay”] .)
- = IH =B = =
- l . +E; . rlg G 1= 1..m
-‘\'}-

= ¢

Remarkabl e feature of algorithm isthe technique for step restriction. For an initial value of parameter
8% aparalelepiped ' # is built with the center at #° and axes parallel to coordinate axes ~ . The
i i L
lengths of parallelepiped sidesalong i -axisis~™ * , where™ ¢ issuch avaluethat thefunctions’:'® !
are quasi-linear al over the paralelepiped. FUMILI takes into account simple linear inequalities in

the form;

They form parallelepiped ¥ (‘@ may be deformed by F). Very similar step formulae are used
in FUMILI for negative logarithm of the likelihood function with the same idea - linearization of
functional argument.

Neural Networks

Introduction

Neural Networks are used in various fields for data analysis and classification, both for research and
commercia ingtitutions. Some randomly chosen examples are image analysis, financial movements
predictions and analysis, or sales forecast and product shipping optimization. In particles physics
neural networks are mainly used for classification tasks (signal over background discrimination). A
vast mgjority of commonly used neural networks are multilayer perceptrons. This implementation of
multilayer perceptronsisinspired from the MLPf i t package, which remains one of the fastest tools
for neural networks studies.

The MLP

The multilayer perceptron is a ssmple feed-forward network with the following structure showed on
input vaues
input layer
weight matrixc 1
hidden layer
weight matri 2

output layer

the left. output values

It is made of neurons characterized by a bias and weighted links in between - let's call those links
synapses. The input neurons receive the inputs, normalize them and forward them to the first hidden
layer. Each neuron in any subsequent layer first computes a linear combination of the outputs of the
previous layer. The output of the neuron is then function of that combination with f being linear for
output neurons or asigmoid for hidden layers.

Such a structure is very useful because of two theorems:
1. A linear combination of si gnoi ds can approximate any continuous function.

2. Trained with out put =1 for the signal and 0 for the background, the approximated function of
inputs X is the probability of signal, knowing X.

103

Fitting Histograms

Learning Methods

Theaim of all learning methods isto minimizethetotal error on a set of weighted examples. The error
is defined as the sum in quadrate, divided by two, of the error on each individua output neuron. In
all methods implemented in this library, one needs to compute the first derivative of that error with
respect to the weights. Exploiting the well-known properties of the derivative, one can express this
derivative asthe product of the local partial derivative by the weighted sum of the outputs derivatives
(for aneuron) or asthe product of the input value with the local partial derivative of the output neuron
(for a synapse). This computation is called "back-propagation of the errors'. Six learning methods
are implemented.

Stochastic Minimization

Thisisthe most trivial learning method. The Robbins-Monro stochastic approximation is applied to
multilayer perceptrons. The weights are updated after each example according to the formula:

n".f.[_.i‘-I-I}Zu.'ﬂ.(!'_]—f—ﬂu'ﬁ[f'] Aw, (t)=—n(de Jow; +0)+eAw; (1—1)

The parameters for this method are Et a, Et aDecay, Del t a and Epsi | on.

Steepest Descent With Fixed Step Size (Batch Learning)
It is the same as the stochastic minimization, but the weights are updated after considering all the

examples, with the total derivative dEdw. The parameters for this method are Et a, Et aDecay,
Del t a and Epsi | on.

Steepest Descent Algorithm

Weights are set to the minimum along the line defined by the gradient. The only parameter for this
method is Tau. Lower Tau = higher precision = ower search. A value Tau=3 seems reasonable.

Conjugate Gradients With the Polak-Ribiere Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau
and Reset , which defines the epochs where the direction is reset to the steegpest descent (estimated
by using the Polak-Ribiere formula).

Conjugate Gradients With the Fletcher-Reeves Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau
and Reset , which defines the epochs where the direction is reset to the steepest descent (estimated
by using the Fletcher-Reeves formula).

The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

It impliesthe computation of aNx N matrix, but seems more powerful at |east for |essthan 300 weights.
Parameters are Tau and Reset , which defines the epochs where the direction is reset to the steepest
descent.

Using the Network

Neural network are build from a set of "samples'. A sampleisaset of values defining the inputs and
the corresponding output that the network should ideally provide. In ROOT thisisa TTr ee entry.
Thefirst thing to be decided isthe network layout. Thislayout is described in astring where the layers

104

Fitting Histograms

are separated by semicolons. The input/output layers are defined by giving the expression for each
neuron, separated by comas. Hidden layers are just described by the number of neurons.

In addition, input and output layer formulas can be preceded by ‘@' (e.g. "@out") if one wants to
normalize the corresponding value. Also, if the string ends with 'l *; output neurons are set up for
classification, i.e. with asigmoid (1 neuron) or softmax (more neurons) activation function.

Many questions on the good usage of neural network, including rules of dumb to determine the best
network topology areaddressedat ft p: // ft p. sas. com pub/ neur al / FAQ ht n

[/l a sinple network: 2 inputs, 10 hidden and 1 nornalized output neuron
TMul ti Layer Perceptron network("r,z:10: @r",tree);

Expressions are evaluated as for TTr ee: : Dr aw() . Input and outputs are taken from the TTr ee
associated with the network. This TTr ee can be given as argument of the constructor or defined
later with TMul t i Layer Per cept ron: : Set Dat a() . Events can also be weighted. The weight
expression can be given in the constructor or set later with the method Set Wei ght () of the class
TMul ti Layer Per cept r on. Two datasets must be defined before learning the network: atraining
dataset that is used when minimizing the error, and a test dataset that will avoid bias. Those two
datasets can be build aside and then given to the network, or can be build from a standard expression.
By default, half of the events are put in both datasets.

/1l a nore conplex 4:8:1 network

/1 the ptsunf branch is used as weigh; default event lists are explicit
TMul ti Layer Perceptron network("m pt, acol , acopl : 8:type", "pt", tree,
"Entry$9@", "Entry$/ 2");

The method TMul ti Layer Per ceptron: : Set Lear ni ngMet hod() defines the learning
method. Learning methods are;

TMul ti Layer Perceptron: : kSt ochasti c,

TMul ti Layer Perceptron: : kBat ch,

TMul ti Layer Percept ron: : kSt eepest Descent ,

TMul ti Layer Percept ron: : kRi bi er ePol ak,

TMul ti Layer Percept ron: : kFl et cher Reeves,

TMul ti Layer Per cept ron: : kBFGS /1 default

The training can start with TMWul ti Layer Perceptron:: Train(lnt_t

nepoch, Option_t* options). Thefirst argument isthe number of epochs while optionisa
string that can contain "t ext " (ssimple text output), "gr aph™ (evaluating graphical training curves),
"updat e = X" (step for the text/graph output update) or "+" (will skip the randomization and start
from the previous values). All combinations are available.

net wor k. Trai n(1000, "t ext, graph, updat e=10"); //full output every 10 epochs
net wor k. Trai n(100, "t ext, +"); /1100 nore epochs
//starts with existing weights

The weights can be saved to afile (DunpWei ght s) and then reloaded (LoadWei ght s) to a new
compatible network. The output can also be evaluated (Eval uat e) for agiven output neuron and an
array of doubleinput parameters or the network can be exported (Expor t) as a standalone code. Up
to now, thisisonly asa C++ or PY THON class, but other languages could be implemented.

Examples

An example of how to use TMul ti Layer Perceptron is the macro m pHi ggs. C in
$ROOTSY Situtorials. Using some standard simulated information that could have been obtained
at LEP, a neura network is build, which can make the difference between W\ events and events
containing aHiggs boson. StartingwithaTFi | e containingtwo TTr ees. onefor the signal, the other
for the background, a simple script is used:

void m pHi ggs(lnt _t ntrai n=100)

105

Fitting Histograms

{ if (1gROOT->CGetd ass("TMul ti Layer Perceptron™))
gSystem >Load("li bM.P");
/] prepare inputs - the 2 trees are nerged into one, and a "type"
/1 branch, equal to 1 for the signal and 0 for the background is added
TFil e input("m pH ggs.root");
TTree *signal = (TTree *)input.CGet("sig filtered");
TTree *background = (TTree *)input.Get("bg filtered");
TTree *sinmu = new TTree("MnteCarlo","Filtered Monte Carl o Events");

Since the input isa TTr ee and we are starting from two different TTr ees (with different names),
they are first merged into one, and a"t ype" branch is added, that says whether thereisasignal or a
background event. Those irrelevant details are skipped here.

TMul ti Layer Perceptron *m p = new TMul ti Layer Per ceptron("nmsunf, ptsunf, acolin,
acopl : 8:type", "ptsunf", simu, "Entry$%R", "Entry$/ 2");
m p->Trai n(ntrain, "text, graph, update=10");

The neural network isinstantiated and trained. "pt sunf " is used as aweight, and the standard event
lists are explicit. The network that is then build has four input neurons, eight additional ones in the
only hidden layer and one single output neuron.

/] Use the NN to plot the results for each sanple
THLF *bg = new TH1F("bgh", "NN out put", 50, -.5, 1. 5);
TH1F *sig = new TH1F("sigh","NN output", 50,-.5,1.5);
bg- >Set Di rect ory(0);
sig->Set Di rectory(0);

Doubl e_t parans[4];
for (i = 0; i < background->CGetEntries(); i++) {
background->CGet Entry(i);

paranms[0] = msunf; paranms[1] = ptsunf;
paranms[2] = acolin; parans[3] = acopl ;
bg->Fi I | (M p->Eval uat e(0, par ans)) ;

}

for (i = 0; i < signal->CGetEntries(); i++) {
signal ->Cet Entry(i);

paranms[0] = msunf;

paranms[1] = ptsunf;

paranms[2] = acolin;

paranms[3] = acopl ;

sig->Fill (m p->Eval uat e(0, parans)) ;
}

TCanvas *cv = new TCanvas("NNout cv", "Neural net output");
bg->SetFill Styl e(3008);

bg- >Set Fi | | Col or (kBl ue) ;

sig->SetFill Styl e(3003);

si g->Set Fi |l | Col or (kRed) ;

bg- >Set St at s(0) ;

si g->Set St at s(0) ;

bg->Draw() ;

si g- >Dr aw(" sanme") ;

TLegend *l egend = new TLegend(. 75, . 80, . 95, .95);
| egend- >AddEnt r y(bg, "Background(VWN ") ;

| egend- >AddEnt ry(si g, " Si gnal (Hi ggs)");

| egend- >Draw) ;

Theneural net output isthen used to display thefinal difference between background and signal events.
The next figure shows this plot.

106

Fitting Histograms

Figure5.4. The neural net output
MN autput
a1 by omi W
L eE
i e—
200

150

L)

©4 ©% 0 0z o4 00 o8 1 1z 14

Asit can be seen, thisisaquite efficient technique. Asmentioned earlier, neural networksare also used
for fitting function. For some application with a cylindrical symmetry, a magnetic field ssmulation
gives as output the angular component of the potential vector A, aswell astheradial and z components
of the Bfield.

One wants to fit those distributions with a function in order to plug them into the Geant simulation
code. Polynomial fits could be tried, but it seems difficult to reach the desired precision over the full
range. One could also use aspl i ne interpolation between known points. In all cases, the resulting
field would not be C-infinite.

An example of output (for Br) is shown. First the initial function can be seen as the target. Then, the
resulting (normalized) neural net output. In order to ease the learning, the"normalize output” was used
here. The initial amplitude can be recovered by multiplying by the original RMS and then shifting
by the original mean.

Figure5.5. Theoriginal and the neural net for Br

Oreganal Heural haf

107

Chapter 6. A Little C++

This chapter introduces you to some useful insightsinto C++, to allow you to use of the most advanced
featuresin ROOT. It isin no case afull coursein C++.

Classes, Methods and Constructors

C++ extends C with the notion of class. If you're used to structuresin C, aclassisast r uct thatis
a group of related variables, which is extended with functions and routines specific to this structure
(class). What isthe interest? Consider ast r uct that is defined this way:

struct Line {
float x1;
float yi;
float x2;
float y2; }

This structure represents a line to be drawn in a graphical window. (x1, y1) are the coordinates of
the first point, (x2, y2) the coordinates of the second point. In the standard C, if you want to draw
effectively such aline, you first have to define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1
firstline. .yl
firstline.x2
firstline.y2

IR
Peee
SONCONI N

This defines a line going from the point (0. 2, 0. 2) to the point (0. 8, 0. 9) . To draw this line,
you will havetowriteafunction, say Li neDr aw(Li ne |) and call it with your object as argument:

Li neDraw(firstline);
In C++, we would not do that. We would instead define a class like this:

class TLine {

Doubl e t x1;

Doubl e t y1;

Doubl e t x2;

Doubl e t y2;

TLine(int x1, int yl, int x2, int y2);
void Draw();

}

Here we added two functions, that we will call methods or member functions, to the TLi ne class.
Thefirst method is used for initializing the line objects we would build. It is called a constructor. The
second one is the Dr aw method itself. Therefore, to build and draw aline, we have to do:

TLine 1(0.2,0.2,0.8,0.9);

| .Draw);

The first line builds the object | by caling its constructor. The second line calls the
TLi ne: : Draw() method of thisobject. Y ou don’t need to pass any parametersto this method since

it appliesto the object I, which knows the coordinates of the line. These are internal variablesx1,y1,
x2,y2 that wereinitialized by the constructor.

Inheritance and Data Encapsulation

We have defined aTLiI ne classthat contains everything necessary to draw aline. If we want to draw
an arrow, is it so different from drawing aline? We just have to draw atriangle at one end. It would

108

A Little C++

be very inefficient to define the class TAr r owfrom scratch. Fortunately, inheritance allows a classto
be defined from an existing class. We would write something like:

class TArrow : public TLine {

i nt ArrowHeadSi ze;

voi d Draw();

voi d Set ArrowSi ze(int arrowsize); }

The keyword "publ i ¢c" will be explained later. The class TAr r ow now contains everything that the
class TLi ne does, and a couple of things more, the size of the arrowhead and a function that can
change it. The Draw method of TAr r owwill draw the head and call the draw method of TLi ne. We
just have to write the code for drawing the head!

Method Overriding

Giving the same name to amethod (remember: method = member function of aclass) inthe child class
(TAr r ow) asinthe parent (TLi ne) does not give any problem. Thisis called overriding a method.
Draw in TAr r owoverridesDraw in TLi ne. Thereisno possible ambiguity since, when one callsthe
Dr aw() method; this appliesto an object which typeis known. Suppose we have an abject | of type
TLi ne and an object a of type TAr r ow. When you want to draw the line, you do:

| . Draw()
Draw() from TLi ne iscaled. If you do:

a. Draw()

Draw() from TAr r owis caled and the arrow a isdrawn.

Data Encapsulation

We have seen previoudly the keyword "publ i ¢". This keyword means that every name declared
public is seen by the outside world. Thisis opposed to "pr i vat e" that means only the class where
the name was declared private could see this name. For example, suppose we declarein TAr r owthe
variable Ar r onHeadSi ze private.

private:
i nt ArrowHeadSi ze;

Then, only the methods (i.e. member functions) of TAr r owwill beableto accessthisvariable. Nobody
elsewill seeit. Even the classesthat we could derive from TAr r owwill not seeit. On the other hand,
if we declare the method Dr aw() as public, everybody will be able to see it and use it. Y ou see that
the character public or private does not depend of the type of argument. It can be a data member,
a member function, or even a class. For example, in the case of TAr r ow, the base class TLi ne is
declared as public:

class TArrow : public TLine {

This meansthat all methods of TAr r owwill be able to access all methods of TLi ne, but thiswill be
also true for anybody in the outside world. Of course, thisistrueif TLi ne accepts the outside world
to see its methods/data members. If something is declared private in TLi ne, nobody will seeit, not
even TAr r owmembers, even if TLi ne isdeclared as apublic base class.

What if TLi ne isdeclared"pri vat e" instead of "publ i ¢c"?Wéll, it will behave asany other name
declared private in TAr r ow: only the data members and methods of TAr r ow will be able to access
TLi ne, itsmethods and data members, nobody else. This may seem alittle bit confusing and readers
should read a good C++ book if they want more details. Especially since, besides public and private,
amember can be protected. Usually, one puts private the methods that the class uses internaly, like
some utilities classes, and that the programmer does not want to be seen in the outside world.

109

A Little C++

With "good" C++ practice (which we have tried to use in ROOT), all data members of a class are
private. Thisis called data encapsulation and is one of the strongest advantages of Object Oriented
Programming (OOP). Private data members of a class are not visible, except to the class itself. So,
from the outside world, if one wants to access those data members, one should use so called "getters"
and "setters' methods, which are special methods used only to get or set the data members. The
advantage is that if the programmers want to modify the inner workings of their classes, they can
do so without changing what the user sees. The user does not even have to know that something
has changed (for the better, hopefully). For example, in our TAr r ow class, we would have set the
data member Ar r owHeadSi ze private. The setter method is Set Ar r owSi ze() , we do not need
a getter method:

class TArrow : public TLine {
privat e:

i nt ArrowHeadSi ze;

publi c:

void Draw();

voi d Set ArrowSi ze(int arrowsize);

}

To define an arrow object you call the constructor. Thiswill also call the constructor of TLi ne, which
isthe parent classof TAr r ow, automatically. Then wecan call any of theline or arrow public methods:

root[] TArrow *nyarrow = new TArrow(1, 5, 89, 124);
root[] nyarrow >Set ArrowSi ze(10) ;
root[] nyarrow >Draw);

Creating Objects on the Stack and Heap

To explain how objects are created on the stack and on the heap we will use the Quad class. You can
find the definitionin $ROOTSYS/ t ut ori al s/ quadp/ Quad. h and Quad. cxx. TheQuad class
has four methods. The constructor and destructor, Eval uat e that evaluatesax**2 + bx +c,and
Sol ve which solvesthe quadratic equation ax**2 + bx +c = 0.

Quad. h:

class Quad {

publi c:

Quad(Float t a, Float t b, Float t c);
~Quad() ;

Fl oat t Eval uate(Float _t x) const;

voi d Sol ve() const;

private:

Float t fA;

Fl oat _t fB;

Float t fC

s

Quad. cxx:

#i ncl ude <i ostream h>
#i ncl ude <mat h. h>

#i ncl ude "Quad. h"

Quad: : Quad(Float t a, Float t b, Float t c) {

fA = a;
fB = b;
fC = c;
}

110

A Little C++

Quad: : ~Quad() {
Cout <<"deleting object with coeffts: "<< fA << "," << fB << "," << fC << endl;
}

Fl oat t Quad::Eval uate(Fl oat _t x) const {

return fA*x*x + fB*x + fC

}

voi d Quad: : Sol ve() const {

Float t tenp = fB*fB - 4. *f A*fC,

if (temp > 0.) {

temp = sqrt(tenmp);

cout << "There are two roots: " << (-fB - tenmp) / (2.*fA)
<< " and " << (-fB + temp) / (2.*fA) << endl;

} else {

if (temp == 0.) {

cout << "There are two equal roots: " << -fB/ (2.*fA) << endl;
} else {

cout << "There are no roots" << endl;

}

}

}

Let usfirst look how we create an object. When we create an object by:
root[] Quad ny_object(1.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with theides; itis
not unlike alocal variablein afunction or subroutine. Although there are still afew old timerswho do
not know it, FORTRAN is under no obligation to save local variables once the function or subroutine
returns unless the SAVE statement is used. If not then it is likely that FORTRAN will place them on
the stack and they will "pop off" when the RETURN statement is reached. To give an object more
permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad *nmy_objptr = new Quad(1l.,2.,-3.);

The second line declares a pointer to Quad called my_obj pt r . From the syntax point of view, this
isjust like all the other declarations we have seen so far, i.e. thisis a stack variable. The value of the
pointer is set equal to

new Quad(1.,2.,-3.);

new, despiteitslooks, isan operator and createsan object or variable of thetypethat comesnext, Quad
in this case, on the heap. Just as with stack objects it has to be initialized by calling its constructor.
The syntax requires that the argument list follow the type. This one statement has brought two items
into existence, one on the heap and one on the stack. The heap object will live until the delete operator
isappliedtoit.

Thereisno FORTRAN parallel to aheap object; variableseither comeor go ascontrol passesin and out
of afunction or subroutine, or, likea COMMON block variables, live for the lifetime of the program.
However, most people in HEP who use FORTRAN will have experience of a memory manager and
the act of creating a bank is a good equivalent of a heap object. For those who know systems like
ZEBRA, it will come as arelief to learn that objects do not move, C++ does not garbage collect, so
there is never a danger that a pointer to an object becomes invalid for that reason. However, having
created an object, it is the user's responsibility to ensure that it is deleted when no longer needed, or
to pass that responsibility onto to some other object. Failing to do that will result in a memory leak,
one of the most common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->" operator e.g.:

root[] ny_objptr->Sol ve();

111

A Little C++

Although we chose to call our pointer my _obj pt r, to emphasize that it is a pointer, heap objects are
so common in an object-oriented program that pointer names rarely reflect the fact - you have to be
careful that you know if you are dealing with an object or its pointer! Fortunately, the compiler won't
tolerate an attempt to do something like:

root[] ny_objptr. Solve();

Although thisisapermitted by the CINT shortcuts, it isonethat you are strongly advised not to follow!
Aswe have seen, heap abjects have to be accessed via pointers, whereas stack objects can be accessed
directly. They can also be accessed via pointers:

root[] Quad stack quad(l.,2.,-3.);
root[] Quad *stack ptr = &stack_ quad;
root[] stack ptr->Sol ve();

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very
careful if you take the address of stack objects. Aswe shall see soon, they are deleted automatically,
which could leave you with anillegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that releases
resources for (or destroy) an object of aclass. It is opposite of a constructor that create the object of a
classwhenis called. The compiler will provide adestructor that does nothing if noneis provided. We
will add one to our Quad class so that we can see when it is called. The class names the destructor but
with aprefix ~whichisthe C++ one'scomplement i.e. bit wise complement, and hence has destruction
overtones! We declareit in the .h file and define it in the . cxx file. It does hot do much except print
out that it has been called (still auseful debug technique despite today's powerful debuggers!).

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx
root[] Quad *ny_objptr = new Quad(1.,2.,-3.);

To delete the object:

root[] delete my_objptr;
root[] ny_objptr = 0;

Y ou should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly
necessary (and CINT does it automatically), but the object is no more accessible, and any attempt to
use the pointer again will, as has already been stated, cause grief. So much for heap objects, but how
are stack objects deleted? In C++, a stack object is deleted as soon as control leaves the innermost
compound statement that enclosesit. Therefore, it is singularly futile to do something like:

root[] { Quad ny_object(1.,2.,-3.); }

CINT does not follow thisrule; if you typein the above line, you will not see the destructor message.
Asexplainedin the Script lesson, you can load in compound statements, which would be abit pointless
if everything disappeared as soon as it was loaded! Instead, to reset the stack you have to type:

root[] gROOT->Reset ();

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many
roles, acts as a resource manager. Start ROOT again and type in the following:

root[] .L Quad.cxx

root[] Quad ny_object(1.,2.,-3.);

root[] Quad *ny_objptr = new Quad(4.,5.,-6.);
root[] gROOT->Reset ();

You will see that this deletes the first object but not the second. We have also painted ourselves into
acorner, asny_obj pt r wasalso on the stack. This command will fail.

112

A Little C++

root[] ny_objptr->Sol ve();

CINT no longer knows what ny_obj ptr is. Thisis a great example of a memory leak; the heap
object exists but we have lost our way to accessit. In general, thisis not a problem. If any object will
outlive the compound statement in which it was created then a more permanent pointer will point to
it, which frequently is part of another heap object. See Resetting the Interpreter Environment in the
chapter “CINT the C++ Interpreter”.

113

Chapter 7. CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT command line interpreter and script processor. First, we
explain what CINT isand why ROOT usesit. Then we discuss CINT asthe command line interpreter,
the CINT commands, and CINT extensions to C++ are discussed. CINT as the script interpreter is
explained and illustrated with several examples.

What is CINT?

CINT,whichispronounced[' si nt],isaC++interpreter. Aninterpreter takesaprogram, inthiscase
a C++ program, and carries it out by examining each instruction and in turn executing the equivalent
seguence of machine language. For example, an interpreter translates and executes each statement in
the body of aloop "n" times. It does not generate a machine language program. This may not be a
good exampl e, because most interpreters have become 'smart' about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable. Once
compiled the execution is very fast, which makes a compiler best suited for the case of "built once,
run many times'. For example, the ROOT executable is compiled occasionally and executed many
times. It takes anywhere from 1 to 45 minutes to compile ROOT for the first time (depending on the
CPU). Once compiled it runs very fast. On the average, a compiled program runs roughly ten times
faster than an interpreted one. Because compiling is slow, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as once per minute. An interpreter, on the other
hand, isthe perfect tool for code that changes often and runs afew times. Most of thetime, interpreters
are built for scripting languages, such as JavaScript, IDL, or Python. These languages are specifically
designed to beinterpreted rather than compiled. The advantage of using anormally compiled language
isthat code can be compiled once the prototype is debugged and refined. CINT is a C++ interpreter,
making it atool for rapid prototyping and scripting in C++. It isal so avail able as astand-al one product,
seehttp://root.cern.ch/cint.Thispagealsohaslinksto all the CINT documentation. The
downloadable tar file contains documentation, the CINT executable, and many demo scripts that are
not included in the regular ROOT distribution. Here isthe list of CINT main features:

e Supports K&R-C, ANSI-C, and ANSI-C++

» CINT covers 85-95% of the C++, ANSI-C and K& R-C language constructs. It supports multiple
inheritance, virtual function, function overloading, operator overloading, default parameters,
templates, and much more. CINT is robust enough to interpret its own source code. CINT is not
designed to be a 100% ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

* Interprets Large C/C++ source code

e CINT can handle huge C/C++ source code, and loads source files quickly. It can interpret its own,
over 70,000 lines source code — more than 150,000 lines.

» Enables mixing Interpretation & Native Code

» Depending on the need for execution speed or the need for interaction, one can mix native code
execution and interpretation. "makeci nt " encapsulates arbitrary C/C++ objects as precompiled
libraries. A precompiled library can be configured as a dynamically linked library. Accessing
interpreted code and precompiled code can be done seamlessly in both directions.

 Provides a Single-Language solution

» CI NT/ makeci nt isasingle-language environment. It works with any ANSI-C/C++ compiler to
provide the interpreter environment on top of it.

e Simplifies C++

114

CINT the C++ Interpreter

e CINT ismeant to bring C++ to the non-software professional . C++ issimpler to usein theinterpreter
environment. It helps the non-software professional (the domain expert) to talk the same language
as the software counterpart.

e Provides RTTI and aCommand Line

» CINT can process C++ statements from command line, dynamically define/erase class definition
and functions; load/unload source files and libraries. Extended Run Time Type Identification is
provided, allowing you to explore imaginative new ways of using C++.

e CINT has abuilt-in debugger for complex C++ code and atext based class browser is part of it.
* Itisportable.

» CINT works on number of operating systems: HP- UX, Li nux, SunCS, Sol ari s, Al X, Al pha-
OSF, | RI X, Fr eeBSD, Net BSD, NECEWS4800, News CS, BeBox, W ndows NT, W ndows 9x,
M5- DOS, Mac S, VMS, Next St ep, Convex.

The ROOT Command Line Interface

Start up a ROOT session by typing r oot at the system prompt.

> root

R I I I I I S L S S b I L S S S S I S L I I I S
* *
E WELCOME to ROOT *
* *
K Ver si on 5.16/ 00 27 June 2007 *
* *
* You are welcome to visit our Wb site *
B http://root.cern.ch *
* *

khkhkkhkhkkhkhkhhkhkhhkhkhhkhkhkhkhkhkkhhkhkk hkhkhkkhkhkkhkrkk kkk**x

FreeType Engine v2.1.9 used to render TrueType fonts.
Conpi |l ed on 28 June 2007 for linux with thread support.

CI NT/ ROOT C/ C++ Interpreter version 5.16.21, June 22, 2007
Type ? for hel p. Conmands rmust be C++ statenents.

Encl ose multiple statements between { }.

r oot [0]

Now we create a TLi ne object:

root[] TLine |

root[] |.Print()

TLi ne X1=0. 000000 Y1=0. 000000 X2=0. 000000 Y2=0.000000
root[] |.SetX1(10)

root[] |.SetY1l(11)

root[] |.Print()

TLi ne X1=10. 000000 Y1=11.000000 X2=0.000000 Y2=0. 000000

root[] .g

0x4038f 080 class TLine | , size=40

0x0 protected: Double t fX1 //X of 1st point
0x0 protected: Double t fY1 //Y of 1st point
0x0 protected: Double t fX2 //X of 2nd point

115

CINT the C++ Interpreter

0x0
0x0

Here we note:

e Terminating with *; * isnot required, see “ROOT/CINT Extensionsto C++".

protected: Double t fY2 //Y of 2nd point
private:

static class TC ass* fglsA

* Enmcs style command line editing.

* Raw interpreter commands start with adot (.).

root|]

.cl ass TLi ne

class TLine //A line segnent

si ze=0x38

(tagnum=289, vof f set =- 1, i sabstract =0, parent =- 1, gconp=0: - 1, d21=~cd=f 7)
Li st of base cl ass

0x0 public: TObject //Basic ROOT object

Oxc public: TAttLine //Line attributes

Li st of nenber variable--------------------------

Defined in TLine

(conpi | ed) 0x0 protected: Double t fX1 //X of 1st point
(conpi | ed) 0x0 protected: Double t fY1 //Y of 1st point
(conpi | ed) 0x0 protected: Double t fX2 //X of 2nd point
(conpi | ed) 0x0 protected: Double t fY2 //Y of 2nd point
(conpi | ed) 0x8a3a718 static const enum TLi ne:: kLi neNDC
(conpi | ed) 0x0 private: static Td ass* fglsA

Li st of nmenmber function--------------------------

fil enane | ine:size busy function type and nane (in TLi ne)
(conpiled) 0:0 O public: virtual void ~TLi ne(void);

(conpiled) 0:0 O public: TLine TLi ne(void);

(conpiled) 0:0 O public: TLine TLi ne(Doubl e t x1, Double t y1, Double t x2,
Doubl e t y2);

(conpiled) 0:0 O public: TLine TLi ne(const TLine& |ine);
(conpiled) 0:0 0 public: virtual void Copy(TCbjecté& |line) const;
(conpiled) 0:0 O public: virtual Int_t DistancetoPrimtive(lnt_t px,Int_t
(conpiled) 0:0 O public: static int InplFileLine(void);
(conpiled) 0:0 0 public: static const char* |nplFil eNane(void);
(conpiled) 0:0 O public: static int DeclFileLine(void);
(conpiled) 0:0 O public: TLi ne& operat or =(const TLi ne&);

root[] |.Print(); > test.log

root[] |.Dunp(); >> test.log

root[] ?

Here we see:

* Use. cl ass asquick help and reference

* Unix like /O redirection (; is required before >)

* Use?toget helponall *‘raw" interpreter commands

» Use @ to abort amulti-line command

Now let us execute a multi-line command:

root[] {

end with '}',

'@:abort > TLine |;

116

py.

CINT the C++ Interpreter

end with *'}', '@:abort > for (int i =0; i <5; i++) {
end with '}', '@:abort > | . Set X1(i);

end with '}', '@:abort > | . Set Y1(i+1);

end with '}', '@:abort > [.Print();

end with '}', '@:abort >}

end with '}', '@:abort >}

TLi ne X1=0. 000000 Y1=1.000000 X2=0. 000000 Y2=0. 000000
TLi ne X1=1. 000000 Y1=2. 000000 X2=0. 000000 Y2=0. 000000
TLi ne X1=2. 000000 Y1=3. 000000 X2=0. 000000 Y2=0. 000000
TLi ne X1=3. 000000 Y1=4.000000 X2=0. 000000 Y2=0. 000000
TLi ne X1=4. 000000 Y1=5. 000000 X2=0. 000000 Y2=0. 000000
root[] .q

Here we note:

* A multi-line command starts with a{ and endswith a}.

» Every line hasto be correctly terminated with a; (likein "real" C++).

All objects are created in global scope.
e Thereisno way to back up; you are better off writing a script.

* Use. g to exit root.

The ROOT Script Processor

ROOT script files contain pure C++ code. They can contain asimple sequence of statementslikeinthe
multi command line example given above, but also arbitrarily complex class and function definitions.

Un-named Scripts

Let us start with ascript containing asimple list of statements (like the multi-command line example
given in the previous section). Thistype of script must start with a{ and end witha} andiscaled an
un-named script. Assumethefileiscaledscript1l. C

{

#i ncl ude <i ostream h>
cout << " Hell 0" << endl;

float x = 3.;

float y = 5.;

i nt i = 101;

cout <<" x = "<<x<<" y = "<<y<<" | = "<<j<< endl;
}

To execute the stream of statementsinscri pt 1. Cdo:

root[] .x scriptl.C

This loads the contents of file scri pt 1. C and executes all statements in the interpreter's global
scope. One can re-execute the statements by re-issuing”. x scri pt 1. C' (sincethereisno function
entry point). Scripts are searched for in the Root . Macr oPat h as defined in your . r oot r ¢ file.
To check which script is being executed use:

root[] .which scriptl.C
/honme/rdmiroot/./scriptl.C

117

CINT the C++ Interpreter

Named Scripts

L et us change the un-named script to a named script. Copy thefilescri pt 1. Ctoscri pt 2. Cand
add a function statement:

#i ncl ude <i ostream h>

int run()
{
cout << " Hello" << endl;
float x 3.;
float y 5.;
i nt i= 101;
cout <<" X = "<< X <" y = "<y <<" | = "<< | << endl;
return O;

}

Notice that no surrounding {} arerequired in thiscase. To execute functionr un() inscri pt2. C
do:

root[] .L script2.C /1 load script in nenory
root[] run() /1 execute entry point run
Hel | o

x =3y =5i =101

(int)0

root[] run() /1 execute run() again
Hel | o

x =3y =5i =101

(int)0

root[] .func /1 list all functions known by CI NT
filename i ne:size busy function type and nane

script2.C 4:9 O public: int run();

Thelast command showsthat r un() hasbeenloadedfromfilescri pt 2. C, thatthefunctionr un()
starts on line 4 and is 9 lines long. Notice that once a function has been loaded it becomes part of
the system just like a compiled function. Now we copy thefilescri pt 2. Ctothescri pt 3. Cand
change the function namefromr un() toscript3(int j = 10):

#i ncl ude <i ostream h>
int script3(int j = 10) {
cout << " Hell o" << endl;

float x = 3.;

float y = 5.;

i nt i =

cout <<" X = "<< x <<", y = "<y <<", | = "<< | << endl;
return O;

}

Toexecutescri pt 3() inscri pt 3. Ctype:

root[] .x script3.C((8)

This loads the contents of file scri pt 3. C and executes entry point scri pt 3(8) . Note that the
above only works when the filename (minus extension) and function entry point are both the same.

118

CINT the C++ Interpreter

Thefunctionscri pt 3() can still be executed multiple times:

root[] script3()

Hell o

x =3, y=5 1 =10
(int)0

root[] script3(33)
Hell o

x =3, y=5 1i =33
(int)0

In anamed script, the objects created on the stack are deleted when the function exits. For example,
this scenario is very common. Y ou create a histogram in a named script on the stack. You draw the
histogram, but when the function exits the canvas is empty and the histogram disappeared. To avoid
histogram from di sappearing you can createit on the heap (by using new). Thiswill leavethe histogram
object intact, but the pointer in the named script scope will be deleted. Since histograms (and trees)
are added to the list of objects in the current directory, you can always retrieve them to delete them
if needed.

root[] THLF *h
root[] THLF *h

(TH1IF*)gDirectory->Get ("nmyHi st"); [l or
(THLF*) gDi rect ory->Get Li st () - >Fi ndQbj ect ("myHi st");

In addition, histograms and trees are automatically deleted when the current directory is closed. This
will automatically take care of the clean up. See “Input/Output”.

Executing a Script from a Script

You may want to execute a script conditionally inside another script. To do it you need to call
the interpreter and you can do that with TROOT: : Pr ocessLi ne() . The example $ROOTSYS/
tutorial s/tree/cernstaff. Ccalsascriptto build theroot fileif it does not exist:

void cernstaff () {
if (gSystem >AccessPat hName("cernstaff.root")) {
gROOT- >Pr ocessLi ne(".x cernbuild.C");

}

ProcessLi ne takes a parameter, which is a pointer to an int or to a
TInterpreter:: EError Code tolet youaccessthe CINT error code after an attempt to interpret.
Thiswill contain the CINT error as defined inenumTI nt er pr et er : : EEr r or Code.

Resetting the Interpreter Environment

Variables created on the command line and in un-named scripts are in the interpreter's global scope,
which makes the variables created in un-named scripts available on the command line event after the
script is done executing. This is the opposite of a named script where the stack variables are deleted
when the function in which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since un-named scripts
are used to prototype, one should reset the global environment to clear the variables. Thisis done by
calling gROOT- >Reset () . Itisgood practice, and you will seethisin the examples, to begin an un-
named script with gROOT- >Reset () . It clears the global scope to the state just before executing
the previous script (not including any logon scripts). The gROOT- >Reset () cals the destructor
of the objects if the object was created on the stack. If the object was created on the heap (via new)
it is not deleted, but the variable is no longer associated with it. Creating variables on the heap in
un-named scripts and calling gROOT- >Reset () without you calling the destructor explicitly will
cause a memory leak. This may be surprising, but it follows the scope rules. For example, creating

119

CINT the C++ Interpreter

an object on the heap in a function (in a named script) without explicitly deleting it will also cause a
memory leak. Since when exiting the function only the stack variables are deleted. The code below
shows gROOT- >Reset () calling the destructor for the stack variable, but not for the heap variable.
In the end, neither variable is available, but the memory for the heap variable is not released. Here
isan example:

root[] gDebug =1

(const int)1l

root[] TFile stackVar("stack.root","RECREATE")

TKey Witing 86 bytes at address 64 for |ID= stack.root Title=
root[] TFile *heapVar = new TFi | e("heap. root", " RECREATE")
TKey Witing 84 bytes at address 64 for | D= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two variables, one on
the stack and one on the heap.

root[] gROOT->Reset ()

TKey Witing 48 bytes at address 150 for |ID= stack.root Title=
TKey Witing 54 bytes at address 198 for |ID= stack.root Title=
TFile dtor called for stack.root

TDirectory dtor called for stack.root

When we call gROOT- >Reset (), CINT tells us that the destructor is called for the stack variable,
but it does not mention the heap variable.

root[] stackVar

Error: No synbol stackVar in current scope FILE:/var/tnp/faaa0ljWe_cint LINE 1
*** |nterpreter error recovered ***

root[] heapVar

Error: No synbol heapVar in current scope FILE: /var/tnp/gaaa0ljW_cint LINE 1
*** | nterpreter error recovered ***

Neither variable is available in after the call to reset.

root[] gROOT->Fi ndCbj ect (" st ack.root")
(class Tnhj ect *) 0x0

root[] gROOT->Fi ndCbj ect (" heap. root")
(class Thj ect *) 0x106bf b30

The object on the stack is deleted and shows a null pointer when we do aFi ndCbj ect . However,
the heap object is still around and taking up memory.

Note gROOT- >Reset () should be never called in anamed script or a compiled program.

A Script Containing a Class Definition

Lets create a small class TMyO ass and a derived class TChil d. The virtual method
TWMyd ass: : Print() isoveriddeninTChi |l d. Savethisinfilecalledscri pt 4. C.

#i ncl ude <i ostream h>

class TM/d ass {

privat e:
fl oat fX; //x position in centineters
fl oat fy; /ly position in centineters

120

CINT the C++ Interpreter

publi c:

TWdass() { fX=fY =-1; }
virtual void Print() const;
void SetX(float x) { fX = x; }
void SetY(float y) { fY=1y; }

b

void TM/Cl ass::Print() const // parent print method
{

cout << "fX =" << fX<<", fY=" << fY << endl;
}

class TChild : public TM/d ass {

publi c:

void Print() const;

b

void TChild::Print() const // child print netod
{

cout << "This is TChild::Print()" << endl;
TWyd ass: :Print();
}

Toexecutescri pt 4. Cdo:

root[] .L script4.C
root[] TMyCl ass *a = new TChild
root[] a->Print()

This is TChild::Print()
fX=-1, fy=-1
root[] a->Set X(10)
root[] a->SetY(12)
root[] a->Print()

This is TChild::Print()
fX =10, fYy = 12
root[] .class TWMyd ass

cl ass TWd ass

si ze=0x8 FI LE: script4.C LINE: 3

List of base class--------------“-“---“---------------
Li st of menber variable------------------------------
Defined in TM/O ass

0x0 private: float fX

0x4 private: float fY

Li st of menber function------------------------------
Defined in TM/O ass

fil enane line:size busy function type and nane

scriptd.C 16: 5 O public: class TMyd ass TM/Cl ass(voi d);
script4.C 22: 4 0 public: void Print(void);

script4.C 12:1 O public: void SetX(float x);

scriptd.C 13:1 O public: void SetY(float y);

root[] .q

Asyou can see, an interpreted class behaves just like a compiled class.
There are some limitations for a class created in a script:

» They cannot inherit from TCObj ect . Currently the interpreter cannot patch the virtual table of
compiled objects to reference interpreted objects.

» Because the 1/0 is encapsulated in TObj ect and a class defined in a script cannot inherit from
TObj ect, it cannot be written to a ROOT file.

121

CINT the C++ Interpreter

See “Adding aClass’ for ways how to add a class with a shared library and with ACL.iC.

Debugging Scripts

A powerful feature of CINT is the ability to debug interpreted functions by means of setting
breakpointsand being ableto single step through the code and print variable valueson theway. Assume
wehavescri pt 4. Ctill loaded, we can then do:

root[] .b TChild::Print
Break point set to line 26 script4.C
root[] a.Print()

26 TChild::Print() const

27 {

28 cout << "This is TChild::Print()" << endl;
FI LE: script4.C LINE: 28 cint> .s

311 operator<<(ostreanm% ostr,G_CINT_ENDL& i) {return(endl (ostr));
FILE:i ostream h LINE:311 cint> .s

}
This is TChild::Print()

29 MyCl ass: :Print();
FI LE: script4.C LINE: 29 cint> .s

16 MyCl ass: : Print() const

17 |

18 cout << "fX =" << fX<<", fY=" << fY << endl;
FI LE: script4.C LINE: 18 cint> .p fX
(float)1.000000000000e+01

FI LE: script4.C LINE: 18 cint> .s

311 operator<<(ostreanX ostr,G _CINT_ENDL& i) {return(endl (ostr));
FILE:i ostream h LINE:311 cint> .s

}
fX =10, fY =12

19 }
30 }
2 }
root[] .q

Inspecting Objects

An object of aclassinheriting from TCbj ect can be inspected, with the | nspect () method. The
TObj ect : : I nspect method creates a window listing the current values of the objects members.
For example, the next pictureisof TFi | e.

root[] TFile f("staff.root")
root[] f.Ilnspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object. If you
clickedonf Li st , thelist of objectsin memory and there were none, no new canvas would be shown.
On top of the page are the navigation buttons to see the previous and next screen.

122

CINT the C++ Interpreter

Figure 7.1. ROOT object inspector of TFile

@ ROOT Object Inspector [_ O] =]
File Edit Miew Options Inspect Classes Help
backward | forward |
TFile staff root:0
Member Name Yalue Title
jin] File descriptor
fBEGIN 64 First used byte in file
fEND 38474 Last used byle in file
fVersion 22600 File format version
fCompress 1 (=1 file is compressed, 0 otherwise)
{Option.*fData READ
fUnits 4 Number of bytes for file pointers
{SeekFree 38420 Location on'disk of free segments structure
fNbytesFree 54 Number of bytes for free segments structuie
f¥ritten 0 Nember of objects written so far
fSumBufler 0 Sum of buffer sizes of objects written so far
{Sum2Butter 0 Swm of squares of buffer sizes of ohjects written so far
fFree -=0 Free segments linked list table
fBytesWrite g Number of bytes written to this file
fBytesRead 352 Number of bytes read from this file
fModitied 1 trae if diveciory has been modified
fWritable 0

draee of divectory is writable
20001012/173203

20001012/173204
116

[=]

fCatimeC.1Datime
{CatimeM.{Datime

fNbytesKeys Number of bytes for the keys
fibytesName 56 Number of bytes'in TNamed af creation time
fSeekDir 64 Location of directory on file
fSeekParent Location of parent Q;‘rece‘ory on file

iSeekkeys 38304 Location of Keys record on file

| fFile ->10711b80 | pojuter to curvent file in mémory
tMother -=0 pointer to mother of the directoly

[fList ->10613918 | ‘Pojurer fo objects list in memory
tKeys ->10711808 | Posnter to keys list in memory
fName."fData stafl.root

fTitle." fCala

fUniguelD 0 object unique identifier

Bits 50331649 bif field status won

Figure7.2. The object inspector of f Keys, thelist of keysin the memory

File Edit ¥iew Options Inspect Classes Help
backward | forward | =
THashLisi A Doubly linked list with hashtable for lookup
Member Neme Valne Title
*Mable ->10711e30 Hushtabie used for guick lookup of objects
“fFirst -+106a7ddo polnter to first entvy in linked list
*fLast -+106a7ddo pointer to last entry in linked list
*fCache =0 cacke to speedup seguentinl cafling of Before() and After() functions
fAscending o sorting order (when calling Sort() or for TSortedList)
Sorted o true if collection has been sorted
Hame *Data
TSize 1 number of elements in collection i
{Uniquellr 0 object unigue identifier
fIBiIS 50331648 &i2 field statis word , _lﬂ
4 3

ROOT/CINT Extensions to C++

In the next example, we demonstrate three of the most important extensions ROOT/CINT makes
to C++. Start ROOT in the directory $ROOTSYS/ t ut ori al s (make sure to have first run " . x
hsinple.C"):

root[] f = new TFile("hsinple.root")
(class TFil e*) 0x4045e690
root[] f.ls()

123

CINT the C++ Interpreter

TFi | e** hsi mpl e. r oot

TFi | e* hsi mpl e. r oot

KEY: THL1F hpx; 1 This is the px distribution

KEY: TH2F hpxpy; 1 py ps px

KEY: THProfile hprof ;1 Profile of pz versus px

KEY: TNtuple ntuple;1l Deno ntupl e

root[] hpx.Draw()

NULL

Warni ng i n <MakeDef Canvas>: creating a default canvas with name cl
root[] .q

Thefirst command showsthefirst extension; the declaration of f may be omitted when" new" isused.
CINT will correctly create f as pointer to object of class TFi | e.

The second extension is shown in the second command. Although f is a pointer to TFi | e we don't
have to use the pointer de-referencing syntax "- >" but can use the simple"." notation.

The third extension is more important. In case CINT cannot find an object being referenced, it
will ask ROOT to search for an object with an identical name in the search path defined by
TROOT: : Fi ndObj ect () . If ROOT finds the object, it returns CINT a pointer to this object and a
pointer to its class definition and CINT will execute the requested member function. This shortcut is
quite natural for an interactive system and saves much typing. In this example, ROOT searches for
hpx and findsitinsi npl e. r oot .

The fourth is shown below. There is no need to put a semicolon at the end of aline. The difference
between having it and leaving it off isthat when you leave it off the return value of the command will
be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return val ue
(int)28

root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when a compiler replaces the interpreter. Y our code will
not compile, hence when writing large scripts, it is best to stay away from these shortcuts. It will save
you from having problems compiling your scripts using areal C++ compiler.

ACLIC - The Automatic Compiler of Libraries
for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled, linked
and dynamically loaded using the C++ compiler and linker. The advantage of thisis that your scripts
will run with the speed of compiled C++ and that you can use language constructs that are not
fully supported by CINT. On the other hand, you cannot use any CINT shortcuts (see ROOT/CINT
Extensions to C++) and for small scripts, the overhead of the compile/link cycle might be larger than
just executing the script in the interpreter.

ACLIC will build a CINT dictionary and a shared library from your C++ script, using the compiler
and the compiler options that were used to compile the ROOT executable. Y ou do not have to write a
makef i | e remembering the correct compiler options, and you do not have to exit ROOT.

Usage

Before you can compile your interpreted script you need to add include statements for the classes used
in the script. Once you did that, you can build and load a shared library containing your script. To load
it use the command . L and append the file name with a"+".

124

CINT the C++ Interpreter

root[] .L MyScript.C+
root[] .files

*file="/home/./M/Script_C. so"

The + option generates the shared library and names it by taking the name of the file "filename"
but replacing the dot before the extension by an underscore and by adding the shared library
extension for the current platform. For example on most platforms, hsi npl e. cxx will generate
hsi mpl e_cxx. so. If weexecutea. f i | es command we can see the newly created shared library
isin thelist of loaded files.

The + command rebuild the library only if the script or any of the filesit includes are newer than the
library. When checking the timestamp, ACLiC generates a dependency file which nameisthe sameas
thelibrary name, just replacing the 'so’ extension by the extension'd’ . For example on most platforms,
hsi npl e. cxx will generate hsi npl e_cxx. d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the . x command.
Thisis the same as executing a named script. Y ou can have parametersand use . x or . X. The only
difference is you need to append a+ or a ++.

root[] .x MyScript.C+ (4000)

Creating shared library /hone/./MScript_ C. so

Y ou can select whether the script in compiled with debug symbol or with optimization by appending
the letter 'g' or 'O’ after the '+' or "++'. Without the specification, the script is compiled with the same
level of debugging symbol and optimization as the currently running ROOT executable. For example:
root[] .L MyScript.C++g

will compileMy Scri pt . Cwith debug symbols; usually thismeans giving the- g option to compiler.

root[] .L MyScript.C++O

will compile MyScr i pt . Cwith optimizations; usually this means giving the - Ooption to compiler.
The syntax:

root[] .L MyScript.C++

is using the default optimization level. The initial default is to compile with the same level of
optimization as the root executable itself. The default can be changed by:

root[] gSystem >Set Acl i cMode(TSyst em : kDebug) ;

root[] gSystem >Set Acl i cMode(TSystem : kOpt) ;

Note that the commands:

root[] .L MyScript.C+g
root[] .L MyScript.C+O

125

CINT the C++ Interpreter

respectively compile MyScr i pt . C with debug and optimization if the library does not exist yet;
they will not change the debug and the optimization level if the library already exist and it is up to
date. To use ACLIC from compiled code or from inside another macro, we recommend using the
Pr ocessLi ne() method of TROOT. For example, in one script you can use ACLiC to compile and
load another script.

gROOT- >Pr ocessLine(".L M/Script.C+")
gROOT- >Pr ocessLine(".L MyScri pt.C++")

Setting the Include Path

Y ou can get the include path by typing:

root[] .include

Y ou can append to the include path by typing:

root[] .include $HOVE/ mypackage/i ncl ude

In a script you can append to the include path:

gSyst em >Addl ncl udePat h(" -1 $HOVE/ nypackage/ i ncl ude ")

Y ou can a'so overwrite the existing include path:

gSyst em >Set | ncl udePat h(" -1 $HOVE/ nypackage/ i ncl ude ")

The $ROOTSYS/ i ncl ude directory is automatically appended to the include path, so you do not
haveto worry about including it. To add library that should be used during linking of the shared library
use something like:

gSyst em >AddLi nkedLi bs("-L/ my/ path -l anylib");

This is especially useful for static libraries. For shared ones you can also simply load them before
trying to compile the script:

gSystem >Load(" mydi r/ mylib");

ACLIC uses the directive f MakeShar edLi bs to create the shared library. If loading the shared
library fails, it tries to output alist of missing symbols by creating an executable (on some platforms
like OSF, this does not HAVE to be an executable) containing the script. It uses the directive
f MakeExe to do so. For both directives, before passing them to TSyst em : Exec(), it expands
the variables $Sour ceFi | es, $Shar edLi b, $Li bNane, $I ncl udePat h, $Li nkedLi bs,
$ExeNane and $bj ect Fi | es. See Set MakeShar edLi b() for more information on those
variables. When the file being passed to ACLIC ison aread only file system, ACLiC warns the user
and creates the library in atemporary directory:

root[] .L readonly/t.C++

Warning in <ACLi C: /scratch/aclic/subs/./readonly is not writeabl e!
Warning in <ACLIiC: CQutput will be witten to /tnp

Info in <TUni xSystem : ACLi C: creating shared library
/tmp//scratch/aclic/subs/./readonly/t C. so

126

CINT the C++ Interpreter

To select the temporary directory ACLIC looks at $TEMP, $TEMP_DI R, $TEMPDI R, $TMP,
$TVPDIR, $TMP_DIR oruses/tnp (or C /). Also, a new interface TSystem : Get /
Set Bui | dDi r isintroducedtolet usersselect an alternative'root' for building of the ACLiClibraries.
For fil enane/ ful |/ path/ name/ macro. C, the library is created as f Bui | dDi r/ful |/
pat h/ nane/ macro_C. so.

Dictionary Generation

Y ou can direct what is added to the dictionary generated by ACLiC in two ways. The smplest way is
to add at the end of script (i.e. after the symbols have been defined) something like:

#i f defined(__MAKECI NT_)
#pragma | i nk C++ class MyQt her d ass;
#endi f

You can also write this portion of code in a file name MyScri pt _| i nkdef . h where the suffix
" _linkdef' isthe prefix defined by thekey * ACLi C. Li nkdef * in the currently used resource
file(usually . r oot rc or $ROOTSYS/ et ¢/ syst em r oot r ¢) and the prefix isthe name of your
script.

In ROOT 3.05/03 and above, the default behavior of r oot ci nt isto not link in (i.e. generate the
dictionary for) any of the symbols. In particular, this means that the following lines are now, in the
general case, unnecessary.

#pragma |link off all gl obals;
#pragma |link off all classes;
#pragma |link off all functions;

This also means that linking the instantiation of a class template:

#pragma | ink C++ cl ass nytenpl at e<i nt >;

ONLY linksthis specific class. In previous versions of ROOT, depending on many factors, this might
also have included the linking of many other instantiation of classtemplate used directly or indirectly

by' nytenpl ate'.

A typical case would have been to rely on:

#pragma | i nk C++ cl ass vect or<M/C ass>;

to also induce the generation of the iterators. You now need to request them explicitly. Another
advantage of the change is that now, if you omit the 'pragma link off' line from your | i nkdef file,
you can actually sprinklethe 'pragmalink C++ class across as many of you header asfile asyou need.

See the documentation of r oot ci nt for details how pr agnma can be used.

NOTE: You should not call ACLiIC with a script that has afunction called mai n() . When ACLIC
calsr oot ci nt with afunction called mai n it tries to add every symbol it finds while parsing the
script and the header filesto thedictionary. Thisincludesthe system header filesand the ROOT header
files. It will result in duplicate entries at best and crashes at worst, because some classes in ROOT
need special attention before they can be added to the dictionary.

Intermediate Steps and Files

ACLIC executes two steps and athird one if needed. These are;

127

CINT the C++ Interpreter

e Cadling root ci nt to create a CINT dictionary. r oot ci nt is a ROOT specific version of
makeci nt, CINT generic dictionary generator.

« Calling the compiler to build the shared library from the script

« If there are errors, it calls the compiler to build a dummy executable to report clearly unresolved
symbols.

ACLIC makes a shared library with a CINT dictionary containing the classes and functions declared
in the script. It also adds the classes and functions declared in included files with the same name as
the script file and any of the following extensions: . h, . hh,. hpp, . hxx, . hPP,. hXX. This means
that, by default, you cannot combine scripts from different filesinto onelibrary by using #i ncl ude
statements; you will need to compile each script separately. In a future release, we plan to add the
global variables declared in the script to the dictionary also. If you are curious about the specific cals,
you can raise the ROOT debug level: gDebug=3 and ACLiC will print these steps. If you need to keep
the intermediate files around, for example when debugging the script using gdb, use gDebug=7.

Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them with both, the
interpreter and with ACLIiC. To do so, do not usethe CINT extensions and program around the CINT
limitations. When it is not possible or desirable to program around the CINT limitations, you can use
the C preprocessor symbols defined for CINT and r oot ci nt .

The preprocessor symbol __ CI NT___ is defined for both CINT and r oot ci nt. The symbol
__ MAKECI NT___isonly defined inr oot ci nt .

Use!defined(__CINT__) || defined(__MAKECI NT__) to bracket codethat needsto be
seen by the compiler and r oot ci nt , but will be invisible to the interpreter.

Use! defined(__CI NT__) tobracket code that should be seen only by the compiler and not by
CINT orroot ci nt. For example, the following will hide the declaration and initialization of the
array gAr r ay from both CINT and r oot ci nt .

#if ldefined(__CINT_)
int gArray[] = { 2, 3, 4};
#endi f

Because ACLICcallsr oot ci nt tobuildadictionary, thedeclaration of gAr r ay will not beincluded
in the dictionary, and consequently, gAr r ay will not be available at the command line even if
ACLIC isused. CINT and r oot ci nt will ignore all statements between the "#i f ! defi ned
(__CINT_)" and"#endi f". If you want to use gAr r ay in the same script as its declaration,
you can do so. However, if you want use the script in the interpreter you have to bracket the usage of
gArray between#i f' s, since the definition is not visible. If you add the following preprocessor
statements:

#if ldefined(__CINT_)

int gArray[] = { 2, 3, 4};
#el i f defined(__ MAKECI NT_)
int gArray[];

#endi f

gAr ray will bevisibletor oot ci nt but still not visibleto CINT. If you use ACLIC, gAr r ay will
be available at the command line and be initialized properly by the compiled code.

We recommend you always write scripts with the needed include statements. In most cases, the script
will still run with the interpreter. However, afew header files are not handled very well by CINT.

128

CINT the C++ Interpreter

These types of headers can be included in interpreted and compiled mode:
e The subset of standard C/C++ headers defined in $ROOTSYS/ ci nt /i ncl ude.

* Headersof classesdefined in apreviously loaded library (including ROOT own). The defined class
must have a name known to ROOT (i.e. aclasswithaCl assDef).

A few headerswill cause problemswhen they areincluded ininterpreter mode, because the interpreter
itself already includes them. In general, the interpreter needs to know whether to use the interpreted
or compiled version. The mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for r oot ci nt . Bracket
thesewith: ! defined(__CINT__) || defined(__MAKECI NT_)

* All CINT headers, see $ROOTSYS/ ci nt /i nc
» Headerswith classes named other than the file name. For example Rt ypes. h and Gui Types. h.

» Headers with a class defined in libraries before the library is loaded. For example: having
#i ncl ude "TLorent zVector. h beforegSyst em >Load("I| i bPhysi cs") . Thiswill
also cause problems when compiling the script, but a clear error message will be given. With the
interpreter, it may core dump. Bracket these type of include statements with #i f ! defi ned
(__CINT__), thiswill printan error in both modes.

Hiding header filesfromr oot ci nt that are necessary for the compiler but optional for theinterpreter
can lead to a subtle but fatal error. For example:

#ifndef _ CINT__
#i ncl ude "TTree. h"
#el se

class TTree;
#endi f

cl ass subTree : public TTree {

s

In this case, r oot ci nt does not have enough information about the TTr ee class to produce
the correct dictionary file. If you try this, r oot ci nt and compiling will be error free, however,
instantiating asubTr ee object from the CINT command linewill cause afatal error. In general, itis
recommended to let r oot ci nt see as many header files as possible.

Reflex

Reflection is the ability of a programming language to introspect its data structures and interact with
them at runtime without prior knowledge. Reflex provides reflection capabilities for C++. With the
ROOT v5.08, Reflex is an optional package. It will become a mandatory package (loaded by default)
with the next ROOT versions. In order to build it you haveto. / confi gure --enabl e-refl ex

Overview

Inside ROOT Reflex is thought to replace the current reflection system, which is inherent to CINT.
This is an ongoing work and not part of this release. Nevertheless, Reflex dictionaries can be used
inside ROOT while populating the current CINT data structures via a special gateway called Cintex
(see“Cintex”).

In order to use reflection a dictionary of the data structures involved has to be generated. Before
generating the dictionaries, the source code has to be parsed and the information extracted. In the
ROOT environment, there are two ways to generate dictionaries for the Reflex library.

129

CINT the C++ Interpreter

e Using CINT as a source code parser - the command to issue when using CINT for parsing C++
constructsis:

rootcint -reflex -f nodul e/src/G__Modul e. cxx -c¢ nodul e/i nc/ TMod1. h
nmodul e/ i nc/ TMbd2. h nodul e/ i nc/ Li nkdef . h

e Using the gcc compiler as a source code parser: With this option a special program called
"gcexm " hasto beinstalled. This program is an extension to gcc and produces xm code out of
parsed C++ definitionswhich will be further used to generate the proper dictionary source code via
apython script. For parsing C++ constructs using the gcc compiler the command will be:

rootcint -gccxm -f nodul e/src/G__Mdul e. cxx -c¢ nmodul e/i nc/ TMod1. h
nmodul e/ i nc/ TMbd2. h nodul e/ i nc/ Li nkdef . h

Note: an installation of Python and gccxmi isrequired for using this option.

Selecting Types And Members

Y ou can use selection files to tell genreflex what it should generate a dictionary for. If you do not use
it, it will generate adictionary for all typesin the files passed at the command line, or when specifying
--deep for all typesit finds.

The selection file is passed to genreflex with the -s parameters like this:
genreflex -s selection.xml headerl.h header2.h.

Itisan XML file with the following structure:

<l cgdi ct >

[<sel ecti on>]

<cl ass [name="cl assnane"] [pattern="wi | dnane"]
[file_name="filenane"] [file_pattern="wi |l dnane"]
[1d="xxxx"] [type="vector"]/>

<cl ass nanme="cl assnanme" >

<field nane="mtransient" transient="true"/>

<field nane="m anot hertransi ent" transient="true"/>
<properties propl="val uel" [prop2="val ue2"]/>

</ cl ass>

<function [nanme="funcnane"] [pattern="wi | dnane"]

[proto_name="nane(int)"] [proto_pattern="name(int,*)"] />
<enum [nane="enumane"] [patter="w | dname"] />
<vari abl e [nane="varnane"] [patter="wi | dnanme"] />

[</sel ection>]

<excl usi on>

<cl ass [name="cl assnane"] [pattern="wi | dname"] />
<met hod nane="unwant ed" />

</ cl ass>

</ I cgdi ct >
Genreflex and Templates

The program parsing the header files and providing genreflex with the information what's in them
is called GCCXML. It only sees templates if they are instantiated. See the C++ standard on when
template instantiation happens. The rule of thumb is: if you design atemplated class then it probably
does not happen in that templated class's header.

130

CINT the C++ Interpreter

So you need to help GCCXML. There are two common approaches. the struct member, and the
"proper" C++ way.

Explicit Template Instantiation

This is the preferred method, but it is not widely used. Suppose you have a templated template class
C and a templated function template T A::f(const T&) const;. You can instantiate them (say with
template parameter long long) using:

#i fdef _ GCCXM___

/] GCCXML explicit tenplate instantiation bl ock
tenpl ate cl ass C<l ong | ong>;

tenplate long long A :f(const [ong | ong&);
#endi f

Y ou can even put thisinto your regular header file: it is surrounded by an #ifdef _ GCCXML__ and
will thus be invisible to any other compiler.

Template Instantiation by struct Members

Supposeyou have atemplated template class C and atemplated function template T f(const T&) const;
defined in file C.h. For the templated class you can use:

#i ncl ude "C. h"

#i fdef __ GCCXM___

/1l GCCXM. explicit tenplate instantiation bl ock
nanespace {

struct GCCXM._DUMWY_| NSTANTI ATI ON {

C<l ong | ong> dunmyMenber

1

}

#endi f

Often people put these instantiations into a separate header which in turn #includes the actual header,
such that the C++ sources do not see the GCCXML_DUMMY _INSTANTIATION.

GCCXML Installation

Geexml is a front-end to the gec compiler suite, which generates xml code out of parsed C++
definitions. Geexml needs to be installed in order to use this option. Now we are using a patched
version of gcexml release 0.6.0 caled (0.6.0_patch3). This installation can be downloaded from
http://spi.cern.ch/lcgsoft/.

Once the dictionary sources have been generated, they can be compiled into alibrary and loaded via
the Reflex builder system. Thedictionary information can be used viathe Reflex API. For this purpose,
Reflex provides eight classes, which exploit the whole functionality of the system.

Reflex API

Reflex offersasimpleyet powerful API to access Reflex reflection database. Thefollowing classesare
defined in the namespace ROOT: : Ref | ex and documentedatht t p: // r oot . cern. ch/ r oot/
ht m / REFLEX_| ndex. htm .

An object isan abstraction of auser object. It contains the information about itstype and it islocation
in memory.

Typeisan abstraction of a C++ type. Typesin Reflex are:

131

CINT the C++ Interpreter

e Array

» Clasg/struct

» Templated class/struct
* Enum

+ Function

* Fundamental

* Pointer

* Pointer to member

» Typedef

» Union

A scopeisan abstraction of aC++ type. It holdsinformation such asitsdeclaring scope, it isunderlying
scope and it is data/ function members. Scopes are:

» Namespace

» Class/Struct

e Templated class/struct

* Union

e Enum

A member livesinside a scope and is of agiven Type. Members can be distinguished as:
» DataMember

* FunctionMember

» Templated member

Base holds the information about the inheritance structure of classes. It contains information such as
the offset to the base class and the type of the base class.

Properties are key/value pairs where the key is a string and the value an Any object (Boost::Any).
Any objects can hold any type of information be it astring, int or any arbitrary object. Properties can
be attached to Types, Scopes and Members and hold any kind of information that is not specific to C
++. Examples for Properties would be the class author, a description of amember or the classid.

A MemberTemplate is an abstraction of a templated member. It holds the information about its
template parameters and a list of its instantiations.

A TypeTemplate is an abstraction of atemplated type (e.g. class). It holds the same information as
the MemberTemplate (e.g. template parameters, list of instantiations)

The Reflex package livesin the namespace ROOT: : Ref | ex. Below some examples of usage of the
package are given. For further information please see the documentation of the different API classes.

The next examples will refer to the example class MyCl ass:

class Myd ass {

132

CINT the C++ Interpreter

publi c:

M/Cl ass() : fMenl(47), fMen2("foo") { }

int GetMemil() { return fMenil; }

int GetMemil(int i) { return fMenil*i; }

void SetMenll(int i) { fMenl = i; }

std::string Get Men2() { return fMenR; }

voi d Set Men2(const std::string & str) { fMen2 = str; }

private:

int fMent,;
std::string fMeng;
b

The first thing after loading a dictionary (which is done at the moment at the same time as the
implemenation library), will be to look up a certain Type or Scope.

Type t1 = Type:: ByName("Myd ass") ;

Every API class providesthe oper at or bool , which will return true if the information retrieved
for thisinstance is valid and further actions on thisinstance can be taken.

if (t1) {
if (tl.1sCass()) std::cout << "Class ";
std::cout << t1.Nanme();

}

Asaclassisalso ascope (as enum and union) we can now also iterate over its members. This can be
done either with stl like iterators or with an iteration by number:

For (Menber_lterator mi = t1.DataMenber_Begin(); m != DataMenber_End(); ++m)
std::cout << (*mi).Nane(SCOPED) << " " << (*m). TypeCOf (). Name(QUALI FI ED);

}

Mermber m

for (size t i =0; i < tl. FunctionMenberSize(); ++i) {

m = t 1. Functi onMenber At (i) ;

std::cout << mName() << " " << m TypeO (). Nane();

for (Type lterator ti = m FunctionParaeter Begin(); ti !=

m Functi onParaneter End(); ++ti) {
std::cout << (*ti).Nanme() << std::endl;
}

}

It is not only possible to introspect information through Reflex but also take actions. E.g. instantiate
classeg/structs, invoke functions, set data members, etc. The instantiation of a type which represents
aclass struct can be done with:

nject 01 = t1. Construct();

which will call the default constructor for this type and allocate the memory for this type inside the
Object. The Object will also contain the type information constructed.

Now the object of a certain type has been constructed one may interact with it. E.g. getting the value
of adata member can be done viawhich will return an Object of the data member in question.

133

CINT the C++ Interpreter

oj ect nemobj = ol. Get("fMenl");

int real value = 0;

if (mem.obj.TypeOi (). Nane() == "int)

int real value = (Object_Cast<int>(nemobj);

It isaso possible to invoke function members viathe Object class. A function member can be looked
up by name, if the member is overloaded an additional parameter which is the string representation of
the type can be passed. Currently parameters for the function to invoke shall be passed as a vector of
memory addresses of the parameters. This may change in the future to pass a vector of Objects.

int parl = 2;

st d: : vect or <voi d*> par Vec;

par Vec. push_back(&par 1) ;

int ret_val = Object_Cast<int>(ol.lnvoke("GetMem","int (int)", parVec));

Calling the destructor of an Object can be done via, thiswill call both the destructor and of the object
type and deallocate the memory.

0l. Destruct();

Cintex

Cintex is an optional package inside ROOT. In order to build it you have to

./configure --enable-cintex at the ROOT configuration step.

The purpose of the Cintex package is to bridge uni-directional information from the Reflex to the
CINT dictionary system. This package will be needed as long as the unification of the Reflex and
CINT dictionaries has not been completed. This unification is work ongoing. In order to use Cintex
functionality it will be needed to load the Cintex library (e.g. libCintex.so on linux systems) and enable
the Cintex gateway with

Ci ntex: : Enabl e();

After these two steps have been taken, any Reflex dictionary information should be propagated to the
CINT dictionaries and subsequently usable inside the CINT environment (e.g. from the root prompt).
If wanted debugging information whileloading Reflex dictionaries can be turned on with (any number
greater than 0 can be used as argument but will not make any difference in the amount of debugging
output for the time being).

Ci nt ex: : Set Debug(1) ;

134

Chapter 8. Object Ownership

An object has ownership of another object if it has permission to delete it. Usually a collection or a
parent object such as apad holds ownership. To prevent memory leaks and multiple attemptsto delete
an object, you need to know which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.

» Histograms, trees, and event lists created by the user are owned by current directory
(gDi r ect or y). When the current directory is closed or deleted the objects it owns are deleted.

» The TROOT master object (gROOT) has several collections of objects. Objectsthat are members of
these collections are owned by gROOT see "Ownership by the Master TROOT Object (JROOT)”.

» Objects created by another object, for example the function object (e.g.TF1) created by the
THL: : Fit method is owned by the histogram.

» An object created by Dr awCopy methods, is owned by the pad it isdrawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule
and user ownership in more detail.

Ownership by Current Directory (gDirectory)

When a histogram, tree, or event list (TEvent Li st) iscreated, it isadded to thelist of objectsin the
current directory by default. You can get the list of objects in a directory and retrieve a pointer to a
specific object with the Get Li st method. This example retrieves a histogram.

TH1IF *h = (TH1F*) gDirectory->CetLi st ()->Fi ndOoj ect ("nmyHi st");

The method TDi rect ory: : Get Li st () returnsaTLi st of objects in the directory. It looks in
memory, and isimplemented in all ROOT collections. Y ou can change the directory of a histogram,
tree, or event list with the Set Di r ect or y method. Here we use a histogram for an example, but
the same applies to trees and event lists.

h- >Set Di r ect ory(newbi r)

Y ou can aso remove a histogram from adirectory by using Set Di r ect or y(0) . Once ahistogram
is removed from the directory, it will not be deleted when the directory is closed. It is now your
responsibility to delete this histogram once you have finished with it. To change the default that
automatically adds the histogram to the current directory, you can call the static function:

TH1: : AddDi r ect or y(kKFALSE) ;

Not al histograms created here after will be added to the current directory. In this case, you own all
histogram objects and you will need to delete them and clean up the references. Y ou can still set the
directory of ahistogram by calling Set Di r ect or y once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are del eted.

Ownership by the Master TROOT Object
(gROOT)

The master object gROOT, maintains several collections of objects. For example, a canvas is added
to the collection of canvases and it is owned by the canvas collection.

135

Object Ownership

TSeqCol | ection* fFiles List of files (TFile)

TSeqCol | ecti on* fMappedFiles List of nmenory mapped files (TMappedFil e)
TSeqCol | ecti on* f Sockets Li st of network sockets (TSocket and TServer Socke
TSeqCol | ecti on* fCanvases Li st of canvases (TCanvas)
TSeqCol | ecti on* fStyl es Li st of styles (TStyle)

TSeqCol | ecti on* fFuncti ons Li st of analytic functions(TF1, TF2, TF3)
TSeqCol | ecti on* f Tasks Li st of tasks (TTask)

TSeqCol | ecti on* fCol ors Li st of colors (TCol or)

TSeqCol | ecti on* fGeonetries Li st of geometries (?)

TSeqCol | ecti on* fBrowsers Li st of browsers (TBrowser)
TSeqCol | ecti on* f Speci al s Li st of special objects

TSeqCol | ecti on* fCl eanups Li st of recursiveRenove col |l ections

These collections are also displayed in the root folder of the Obj ect Browser. Most of these
collections are self explanatory. The special cases are the collections of specials and cleanups.

The Collection of Specials

This collection contains objects of the following classes: TCut G TMul ti Di nFi t, TPri nci pal ,
TChai ns. In addition it contains the gHt m object, gM nui t objects, and the array of contours
graphs (TG aph) created when calling the Dr aw method of a histogram with the " CONT, LI ST"
option.

Access to the Collection Contents

The current content for a collection listed above can be accessed with the corresponding gROOT-
>Cet Li st O method (for example gROOT- >Get Li st Of Canvases). In addition, gROOT-
>Cet Li st OF Browsabl es returns a collection of all objects visible on the left side panel in the
browser. See the image of the Object Browser in the next figure.

Figure 8.1. The ROOT Object Browser

3 ROOT Dbject Browser =] E3

Eile ¥Miew Options

Iarnnt jil—_

| &l Faolders | Contents af “froot"
E |:| Browsers D Canvases
([Amomeispanacek [Classes [Cleanups
(IROOT Files [colors [Functions

|:| Geornetries D Handlers
[Z2) e Files [IROOT Files
(L0 Sockets (L specials
|:| Streamer Info D Styles

[:lTasks

| 15 Ohiects. | Doubly linked list v

Ownership by Other Objects

When an object creates another, the creating object is the owner of the created one. For example:

nyH st o- >Fi t (" gaus")

136

Object Ownership

Thecall to Fit copiestheglobal TF1 Gaussi an function and attaches the copy to
the histogram Wen the histogram is deleted, the copy is deleted
al so.

Wen a pad is deleted or cleared, all objects in the pad with the
kCanDel et e bit set are deleted automatically. Currently the objects created by the Dr awCopy
methods, have the kCanDel et e hit set and are therefore owned by the pad.

Ownership by the User

The user owns al objects not described in one of the above cases. TObj ect has two
bits, kCanDel ete and kMuist Cl eanup, that influence how an object is managed (in
TObj ect:: fBits). Theseareinan enumerationin TObj ect . h. To set these bits do:

My Qbj ect - >Set Bi t (kCanDel et e)
MyQbj ect - >Set Bi t (kMust Cl eanup)

The bits can be reset and tested with the TObj ect:: ResetBit and TObj ect:: TestBit
methods.

The kCanDelete Bit

The gROOT callections (see above) own their members and will delete them regardless of the
kCanDel et e hit. In al other collections, when the collection Cl ear method is called (i.e.
TLi st::C ear()), memberswiththe kCanDel et e bit set, are deleted and removed from the
collection. If the kCanDel et e hit is not set, the object is only removed from the collection but not
deleted.

If a collection Del et e (TLi st: : Del et e()) method is called, al objects in the collection are
deleted without considering thek CanDel et e hit. It isimportant to realize that deleting the collection
(i.e. delete MyCol | ect i on), DOES NOT delete the members of the collection.

If the user specified MyCol | ect i on- >Set Oaner () the collection owns the objects and delete
MyCol | ect i on will delete @l its members. Otherwise, you need to:

/1 delete all menber objects in the collection
MyCol | ecti on->Del et e();

/1 and del ete the collection object
del ete MyCol | ecti on;

Notethat kCanDel et e isautomatically set by the Dr awCopy method and the user can set it for any
object. For example, the user must manage all graphics primitives. If you want TCanvas to delete
the primitive you created you have to set the kCanDel et e bit.

The kCanDel et e bhit setting is displayed with TObj ect : : | s() . Thelast number is either 1 or O
and isthekCanDel et e hit.

root[] TCanvas MyCanvas("M/Canvas")
root[] MyCanvas. D vide(2, 1)
root[] MyCanvas->cd(M/Canvas_1)

root[] hstat.Draw) I/l hstat is an existing THLF
root[] MyCanvas->cd(M/Canvas_2)
root[] hstat.DrawCopy() /1l DrawCopy sets the kCanDel ete bit

(class TH1*) 0x88e73f 8
root[] MyCanvas. | s()

137

Object Ownership

Canvas Name=MyCanvas ...
TCanvas ... Nanme= MyCanvas ...

TPad ... Nane= MyCanvas_1 ...
TFr ame
OBJ: THLF hst at Event Hi stogram: O
TPaveText ..title
TPaveStats ...stats

TPad ... Name= MyCanvas_2 ...
TFr ame
OBJ: THLF hst at Event Hi stogram: 1
TPaveText ..title

TPaveStats ...stats

The kMustCleanup Bit

When the kMust Cl eanup hit is set, the object destructor will remove the object and its references
from all collections in the clean up collection (gROOT: : f O eanups). An object can be in several
collections, for example if an object isin abrowser and on two canvases. If thekMust Cl eanup bit
is set, it will be removed automatically from the browser and both canvases when the destructor of
the object is called.

ThekMust O eanup bit is set:

» When an object is added to apad (or canvas) in TObj ect : : AppendPad.

» When an object isadded to a TBr owser with TBr owser : : Add.

* When an objectisaddedtoaTFol der with TFol der:: Add.

» When creating an inspector canvas with Tl nspect Canvas: : | nspect or.

» When creatingaTCanvas.

» When painting aframefor apad, theframe'skMust Cl eanup issetin TPad: : Pai nt PadFr ane

The user can add his own collection to the collection of clean ups,
to take advantage of the automatic garbage collection. For exanple:

[/ create two |i st
TLi st *myListl, *nyList2;

/! add both to of clean ups
gROOT- >Cet Li st OF Cl eanUps() - >Add(myLi st 1) ;
gROOT- >Cet Li st OF Cl eanUps() - >Add(myLi st 2) ;

/1 assuming myQoject is in myListl and nyList2, when calling:
del ete nyQbj ect ;

/1l the object is deleted fromboth lists

138

Chapter 9. Graphics and the
Graphical User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various plots,
histograms, and 3D graphical objects. In this chapter, we are going to focus on principals of graphics
and 2D objects. Plots and histograms are discussed in a chapter of their own.

Drawing Objects

In ROOT, most objects derive from a base class TObj ect . Thisclass has a virtual method Dr aw()
so all objects are supposed to be able to be"drawn". The basic whiteboard on which an object isdrawn
is called a canvas (defined by the class TCanvas). If several canvases are defined, thereis only one
active at atime. One draws an object in the active canvas by using the statement:

obj ect . Draw()

Thisinstructsthe object "obj ect " to draw itself. If no canvasis opened, a default one (hamed "c1")
isinstantiated and is drawn.

root[] TLine a(0.1,0.1,0.6,0.86)
root[] a.Draw)
<TCanvas: : MakeDef Canvas>: created default TCanvas with nanme cl

The first statement defines aline and the second one draws it. A default canvas is drawn since there
was no opened one.

Interacting with Graphical Objects

When an object isdrawn, onecan interact with it. For example, theline drawn inthe previousparagraph
may be moved or transformed. One very important characteristic of ROOT is that transforming an
object on the screen will also transform it in memory. One actually interacts with the real object, not
with acopy of it on the screen. Y ou can try for instance to ook at the starting X coordinate of theline:

root[] a.Cet X1()
(doubl e) 1. 000000000e- 1

X1 isthe x value of the starting coordinate given in the definition above. Now move it interactively
by clicking with the left mouse button in the line's middle and try to do again:

root[] a.Cet X1()
(Doubl e_t)1.31175468483816005e-01

Y ou do not obtain the same result as before, the coordinates of 'a' have changed. As said, interacting
with an object on the screen changes the object in memory.

Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or programmatically. First, let's see
how it is done in the GUI.

The Left Mouse Button

Aswas just seen moving or resizing an object is done with the left mouse button. The cursor changes
its shape to indicate what may be done:

Point the object or one part of it: * @

139

Graphics and the
Graphical User Interface

Rotate: =
Resize (exists also for the other directions): /= [T
Enlarge (used for text): *

Move: &

Here are some examples of:

File Edit ¥iew Options |nspect

B abs(sin(x)x} ||
| EE S i
A = -

Moving: _ Resizing:| osf -\ Te—

T

i \e =
i x‘ saﬂ\p
m }‘%ﬂ?f\%)‘i‘ o

B,

Rotating:
With C++ Statements (Programmatically)

How would one move an object in ascript? Since there isatight correspondence between what is seen
on the screen and the object in memory, changing the object changes it on the screen. For example,
try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens on the screen. Why isthat?
In short, the canvasis not updated with each change for performance reasons. See"Updating the Pad".

Selecting Objects
The Middle Mouse Button

Objectsin acanvas, aswell asin a pad, are stacked on top of each other in the order they were drawn.
Some objects may become “ active” objects, which mean they are reordered to be on top of the others.
To interactively make an object "active", you can use the middle mouse button. In case of canvases
or pads, the border becomes highlighted when it is active.

With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the objects are drawn in the
active canvas. To activate a canvas you can use the TPad: : cd() method.

root[] cl->cd()

Context Menus: the Right Mouse Button
The context menus are a way to interactively call certain methods of an object. When designing a

class, the programmer can add methods to the context menu of the object by making minor changes
to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context menu for it. The script
hsi npl e. Cdraws a histogram. The image below shows the context menus for some of the objects

140

Graphics and the
Graphical User Interface

on the canvas. Next picture shows that drawing a simple histogram involves as many as seven objects.
When selecting a method from the context menu and that method has options, the user will be asked
for numerical values or strings to fill in the option. For example, TAxi s: : Set Ti t | e will prompt
you for astring to use for the axistitle.

Figure9.1. Context menus of different objectsin a canvas

O=—————nynamic fillingkxampe ———— [0 &
Elle Edit ¥iew Options Inspect Classes Help
® ey
[® traverextutive [ibution npx |
| Nent = ggont
ey Mean - TPaveStalsustats
DeleteText ol o
EdifText T SaveSlyle
e 2% e SetFormatFit
InserTax _ Theme | SefFomaistats
Rl SetBordertode SatOpiFit
A SetBorderSize SetOpistat
SetLabel Delete Clear
Sethargin DrawClass InsenLine
T TS DrawClane SetLabel
SelC: (2L SefBorderSize
Satilame At Ui SeiComerRadius
e Fit SetDrawOpiion ——
DrawClass IFiFERE] SefLineAtiributes Delete
SetMann SefFillatiibues DrawClass
DrawClan Sathinirium il
Dump Smoath
Inspect Dump
SelDrawoption - —— 2 3 Inspect
el " e . SetDrawoption
— vas:ic
L sstFillatributss centerTils Setl|
- E etRange SeiCanvasSize T
SeflextAtibutes SelTimeDisplay i
SatTeriAtributes
SetTimeFormat UseCurrentstyle |— 09— —————
unzZoam Range
SelName ftam Savehs
SefTitle utes SetBordertodle
Delete s SetBorderSize
— ributes [SetEdiable
DrawClone SetGridx
By SelGridy
Inspect Seilags
SelDrawOplion Srilagg
Sehdivisions Slags

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu corresponds to a method of
the class. Look for example to the menu named TAXi s: : xaxi s. xaxi s isthe name of the object
and TAxi s the name of its class. If welook at thelist of TAXi s methods, for exampleinhttp://
root.cern.ch/root/htm doc/ TAXi s. ht m , we see the methods Set Ti neDi spl ay()
and UnZoont), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list
of the class methods; the second division is a list of the parent class methods. The subsequent
divisions are the methods other parent classes in case of multiple inheritance. For example, see the
TPaveText::title context nenu. A TPaveText inherits from TAtt Li ne, which has
themethod Set Li neAttri but es().

Adding Context Menus for a Class

For a method to appear in the context menu of the object it hasto be marked by / / * MENU* in the
header file. Below is the line from TAt t Li ne. h that adds the Set Li neAttri but e method to
the context menu.

virtual void SetLineAttributes(); // *MENU

Nothing else is needed, since CINT knows the classes and their methods. It takes advantage of that
to create the context menu on the fly when the object is clicking on. If you click on an axis, ROOT
will ask the interpreter what are the methods of the TAXi s and which ones are set for being displayed
in a context menu.

Now, how doestheinterpreter know this? Remember, when you build aclassthat you want to useinthe
ROOT environment, you user oot ci nt that builds the so-called stub functions and the dictionary.
These functions and the dictionary contain the knowledge of the used classes. To do this, r oot ci nt
parses al the header files. ROOT has defined some specia syntax to inform CINT of certain things,
thisis done in the comments so that the code still compiles with a C++ compiler.

141

Graphics and the
Graphical User Interface

For example, you have a class with a Dr aw() method, which will display itself. You would like
a context menu to appear when on clicks on the image of an object of this class. The recipe is the
following:

» Theclass hasto contain the Cl assDef / O ass| np macros

» For each method you want to appear in the context menu, put a comment after the declaration
containing * MENU* or * TOGGLE* depending on the behavior you expect. One usually uses Set
methods (setters). The* TOGALE* comment is used to toggle abool ean datafield. In that case,
it is safe to call the data field f MyBool where MyBool is the name of the setter Set MyBool .
Replace MyBool with your own bool ean variable.

* You can specify arguments and the data members in which to store the arguments.
For example:

class My ass : public TObject {

private:
i nt fVvi; [/ first variable
doubl e fVv2; // second vari abl e
publi c:

i nt GetV1() {return fVi;}

doubl e GetV2() {return fV2;}

void SetVi(int x1) { fVvl = x1;} /1 *MENU*

void SetV2(double d2) { fV2 = d2;} [/ *MENU

voi d Set Bot h(i nt x1, double d2) {fVl = x1; fV2 = d2;}

Cl assDef (M/Cl ass, 1)
}

To specify arguments:
void Set XXX(Int_t x1, Float_t y2); //*MENU* * ARGS={ x1=>f V1}

This statement is in the comment field, after the *MENU®*. If there is more than one argument, these
arguments are separated by commas, where fX1 and fY 2 are data fields in the same class.

void SetXXX(Int_t x1, Float t y2); //*MENU* *ARGS={x1=>f X1, y2=>f Y2}

If the arguments statement is present, the option dialog displayed when selecting Set XXX fi el d
will show the values of variables. We indicate to the system which argument corresponds to which
data member of the class.

Executing Events when a Cursor Passes on Top of an
Object

Thisparagraphisfor class designers. When aclassis designed, it is often desirable to include drawing
methodsfor it. We will have a more extensive discussion about this, but drawing an object in acanvas
or apad consistsin "attaching” the object to that pad. When one uses obj ect . Dr aw() , the object
isNOT painted at this moment. It is only attached to the active pad or canvas.

Another method should be provided for the object to be painted, the Pai nt () method. Thisis all
explained in the next paragraph. Aswell asDr aw() and Pai nt () , other methods may be provided
by the designer of the class. When the mouse is moved or a button pressed/released, the TCanvas
function named Handl el nput () scansthelist of objectsin all it's pads and for each object calls
some standard methods to make the object react to the event (mouse movement, click or whatever).

Thesecond oneisDi st anceToPri niti ve(px, py) . Thisfunction computes a"distance" to an
object from the mouse position at the pixel position (px, py, see definition at the end of this paragraph)
and returns this distance in pixel units. The selected object will be the one with the shortest computed

142

Graphics and the
Graphical User Interface

distance. To see how this works, select the "Event St at us” item in the canvas "Opt i ons"
menu. ROOT will display one status line showing the picked object. If the picked object is, for
exampl e, ahistogram, the statuslineindicatesthe nameof the histogram, the position x, y inhistogram
coordinates, the channel number and the channel content.

It is nice for the canvas to know what the closest object from the mouse is, but it's even nicer to be
able to make this object react. The third standard method to be provided isExecut eEvent () . This
method actually doesthe event reaction. Its prototypeiswhere px and py arethe coordinates at which
the event occurred, except if the event isakey press, in which case px contains the key code.

voi d ExecuteEvent (Int_t event, Int_t px, Int_t py);

Where event isthe event that occurs and is one of the following (defined in But t ons. h):

kNoEvent , kBut t on1Down, kBut t on2Down,
kBut t on3Down, kKeyDown, kBut t on1Up,
kBut t on2Up, kBut t on3Up, kButt on1Mot i on,
kBut t on2Mot i on, kBut t on3Mot i on, kKeyPr ess,
kButtonlLocat e, kButt on2Locat e, kBut t on3Locat e,
kKeyUp, kBut t on1Doubl e, kBut t on2Doubl e,
kBut t on3Doubl e, kMbuseMot i on, kMbuseEnt er,
kMbuselLeave

We hope the names are self-explanatory.

Designing an Execut eEvent method is not very easy, except if one wants very basic treatment.
We will not go into that and let the reader refer to the sources of classes like TLi ne or TBox. Go
and look at their Execut eEvent method! We can nevertheless give some reference to the various
actions that may be performed. For example, one often wants to change the shape of the cursor when
passing on top of an object. Thisis done with the Set Cur sor method:

gPad- >Set Cur sor (cur sor)
The argument cur sor isthetype of cursor. It may be:

kBottomLeft, kBottonRi ght, kTopLeft,

kTopRi ght, kBot t onSi de, kLeft Si de,
kTopSi de, kRi ght Si de, kMove,

kCr oss, KAr r owHor , kAr r owVer ,
kHand, kRot at e, kPoi nt er,
kArrowR ght, kCaret, kWat ch

They are defined in TVi rt ual X. h and again we hope the names are self-explanatory. If not, try
them by designing a small class. It may derive from something already known like TLi ne.

Note that the Execut eEvent () functions may in turn; invoke such functions for other objects, in
case an object is drawn using other objects. You can also exploit at best the virtues of inheritance.
See for example how the class TAr r ow (derived from TLi ne) use or redefine the picking functions
inits base class.

The last comment is that mouse position is always givenin pixel unitsin all these standard functions.
px=0 and py=0 correspondsto the top-1eft corner of the canvas. Here, we have followed the standard
convention in windowing systems. Note that user coordinates in a canvas (pad) have the origin at the
bottom-left corner of the canvas (pad). Thisisall explained in the paragraph " The Coordinate Systems
of aPad".

Graphical Containers: Canvas and Pad

We have talked a lot about canvases, which may be seen as windows. More generally, a graphical
entity that contains graphical objectsis called aPad. A Canvasisaspecia kind of Pad. From now on,

143

Graphics and the
Graphical User Interface

when we say something about pads, this also applies to canvases. A pad (class TPad) is a graphical
container in the sense it contains other graphical objects like histograms and arrows. It may contain
other pads (sub-pads) as well. More technically, each pad has a linked list of pointers to the objects
it holds.

Drawing an object is nothing more than adding its pointer to thislist. Look for example at the code of
THL: : Draw() . Itismerely ten lines of code. The last statement is AppendPad() . This statement
calls method of TChj ect that just adds the pointer of the object, here a histogram, to the list of
objects attached to the current pad. Since thisisaTObj ect s method, every object may be "drawn",
which means attached to a pad. We can illustrate this by the Figure 9-2. This image corresponds to
the following structure:

Padl

Figure 9.2. A histogram drawn in a pad

=i rall ——=——0H=
FEile Edit Yiew Options |nspect Classes Help

This is a Pad

\

e
.,HI_IJLI)J.I\H“J
Py ==

+

i

When isthe painting donethen? Theanswer is; when needed. Every object that derivesfrom TCbj ect

has a Pai nt () method. It may be empty, but for graphical objects, this routine contains all the
instructions to paint effectively it in the active pad. Since a Pad has the list of objectsit owns, it will
call successively thePai nt () method of each object, thusre-painting the whole pad on the screen. If
the object is a sub-pad, its Pai nt () method will call the Pai nt () method of the objects attached,
recursively calling Pai nt () for all the objects.

The Global Pad: gPad

When an object isdrawn, it is always in the so-called active pad. For every day use, it is comfortable
to be able to access the active pad, whatever it is. For that purpose, there is a global pointer, called
gPad. It is always pointing to the active pad. If you want to change the fill color of the active pad to
blue but you do not know its name, do this.

root[] gPad->SetFill Col or(38)

Toget thelist of colors, go to the paragraph "' Color and color palettes’ or if you have an opened canvas,
click onthe Vi ewmenu, selecting the Col or s item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this pad contains some objects,
it is sometimes interesting to access one of those objects. The method Get Pri mi ti ve() of TPad,

144

Graphics and the
Graphical User Interface

i.e.TPad:: GetPrimtive(const char* nane) doesexactly this. Since most of the objects
that a pad contains derive from TOhj ect , they have a name. The following statement will return a
pointer to the object myobj ect nane and put that pointer into the variable obj . Asyou can see, the
type of returned pointer is TChj ect *.

root[] obj = gPad->GetPrimtive("nmyobjectnanme")
(class Tnj ect*) 0x1063cbha8

Evenif your object is something more complicated, like a histogram THLF, thisisnormal. A function
cannot return more than one type. So the one chosen was the lowest common denominator to all
possible classes, the class from which everything derives, TObj ect . How do we get the right pointer
then? Simply do a cast of the function output that will transform the output (pointer) into the right
type. For example if the objectisaTPaveLabel :

root[] obj = (TPaveLabel *) (gPad->GetPrimitive("nyobjectnanme"))
(cl ass TPavelabel *) 0x1063cba8

This works for all objects deriving from TObj ect . However, a question remains. An object has a
nameif it derives from TNamed, not from TCObj ect . For example, an arrow (TAr r ow) doesn't have
aname. Inthat case, the "name" isthe name of the class. To know the name of an object, just click with
the right button on it. The name appears at the top of the context menu. In case of multiple unnamed
objects, acal toGet Pri m ti ve("cl assNane") returnsthe instance of the class that was first
created. To retrieve alater instance you can use Get Li st Of Primi ti ves(), whichreturns alist
of all the objects on the pad. From the list you can select the object you need.

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects owned by that pad.
Thislist is accessible by the Get Li st Of Pri m ti ves() method of TPad. This method returns
apointer to a TLi st . Suppose we get the pointer to the object, we want to hide, cal it obj (see
paragraph above). We get the pointer to the list:

root[] |i = gPad->CetListOPrimtives()
Then remove the object from this list:
root[] |i->Renpbve(obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for example). If
one wants to make the object reappear:

root[] obj->Draw()

Caution, thiswill not work with composed objects, for example many histograms drawn on the same
plot (with the option "samne"). There are other ways! Try to use the method described here for smple
objects.

The Coordinate Systems of a Pad

There are coordinate systems in a TPad: user coordinates, normalized coordinates (NDC), and pixel
coordinates.

Figure 9.3. Pad coor dinate systems

I =
(0,1 [K]
|

[a]] A

User coardinates HOC coordinates Fixel caordinates

145

Graphics and the
Graphical User Interface

The User Coordinate System

The most common isthe user coordinate system. Most methods of TPad use the user coordinates, and
all graphic primitives have their parameters defined in terms of user coordinates. By default, when
an empty pad is drawn, the user coordinates are set to a range from 0 to 1 starting at the lower left
corner. At this point they are equivalent of the NDC coordinates (see below). If you draw a high level
graphical object, such as a histogram or a function, the user coordinates are set to the coordinates of
the histogram. Therefore, when you set a point it will be in the histogram coordinates.

For a newly created blank pad, one may use TPad: : Range to set the user coordinate system. This
function is defined as:

voi d Range(float x1,float y1,float x2,float y2)

Thearguments x 1, x2 defines the new rangein the x direction, and they1, y2 define the new range
in the y-direction.

root[] TCanvas MyCanvas ("MCanvas")
root[] gPad->Range(-100, -100, 100, 100)

Thiswill set the active pad to have both coordinates to go from -100 to 100, with the center of the pad
at (0,0). You can visually check the coordinates by viewing the status bar in the canvas. To display
the status bar select Event Status entry in the View canvas menu.

Figure9.4. The status bar

[MyCanwas [321122 [x=1.26,y=-585

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user system. The coordinates
range from O to 1 and (0O, 0) corresponds to the bottom-left corner of the pad. Several internal ROOT
functions usethe NDC system (3D primitives, PostScript, log scale mapping to linear scale). Y ou may
want to use this system if the user coordinates are not known ahead of time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as
Di stanceToPrimtive() andExecut eEvent () .Itsprimary useisfor cursor position, which
isalways given in pixel coordinates. If (px, py) isthe cursor position, px=0 and py=0 corresponds
to the top-left corner of the pad, which is the standard convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But sometimes, you will want to use
NDC. For example, if you want to draw text always at the same place over a histogram, no matter
what the histogram coordinates are. There are two waysto do this. Y ou can set the NDC for one object
or may convert NDC to user coordinates. Most graphical objects offer an option to be drawn in NDC.
For instance, aline (TLi ne) may be drawnin NDC by using Dr awLi neNDC() . A latex formulaor
atext may use TText : : Set NDC() to bedrawnin NDC coordinates.

Converting between Coordinate Systems

Thereare afew utility functionsin TPad to convert from one system of coordinates to another. Inthe
following table, a point is defined by (px, py) in pixel coordinates, (ux, uy) in user coordinates,
(ndcx, ndcy) innormalized coordinates, (apx, apy) arein absolute pixel coordinates.

Conversion TPad's Methods Returns

146

Graphics and the
Graphical User Interface

NDC to Pixel Ut oPi xel (ndcx) Int_t

Vt oPi xel (ndcy) Int_t
Pixel to User Pi xel t oX(px) Double t

Pi xel t oY(py) Double t

Pi xel t oXY(px, py, &x, &uy) Double_t ux,uy
User to Pixel Xt oPi xel (ux) Int_t

Yt oPi xel (uy) Int_t

XYt oPi xel (ux, uy, &x, &py) Int_t px,py
User to absolute pixel Xt 0AbsPi xel (ux) Int_t

Yt 0AbsPi xel (uy) Int_t

XYt 0AbsPi xel (ux, uy, &px, &py) |Int_t apx,apy
Absolute pixel to user AbsPi xel t oX(apx) Double t

AbsPi xel t oY(apy) Double t

AbsPi xel t oXY(apx, apy, &x, &uy) [Double_t ux,uy

Note: all the pixel conversion functions along the Y axis consider that py=0 is at the top of the pad
except Pi xel t oY() which assume that the position py=0 is at the bottom of the pad. To make
Pi xel t oY() converting the same way as the other conversion functions, it should be used the
following way (p isapointer to aTPad):

p- >Pi xel toY(py — p->GetWa());

Dividing a Pad into Sub-pads

Dividing apad into sub padsin order for instance to draw afew histograms, may be donein two ways.
Thefirst isto build pad objects and to draw them into a parent pad, which may be acanvas. The second
isto automatically divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to explicitly
indicate the size and position of those sub-pads. Suppose we want to build a sub-pad in the active pad
(pointed by gPad). First, we build it, using a TPad constructor:

root[] spadl = new TPad("spadl","The first subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5, 0.5). These
coordinates are in NDC. This means that they are independent of the user coordinates system, in
particular if you have already drawn for example a histogram in the mother pad. The only thing left
isto draw the pad:

root[] spadl->Draw()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way to
automatically generate horizontal and vertical sub-pads inside a given pad.

root[] padl->Di vide(3, 2)

147

Graphics and the
Graphical User Interface

Figure 9.5. Dividing a pad into 6 sub-pads

[is [Yhew DypSces jropeci Tl lisig Eir Eif dew [pwrs proec Jwiepep

|- (O]
Eile Edit Miew Options [nspect Classes Help

padl_1 padi_2 padl_3

padi_4 padi_5 padi_6

If padl isapad then, it will divide the pad into 3 columns of 2 sub-pads. The generated sub-pads get
namespadl_i wheretheindexi =1 tonxm(inour casepadl_1,padl_2..padl_6) . The names
padl_1 etc... correspond to new variablesin CINT, so you may use them as soon as the executed
method was pad- >Di vi de() . However, in a compiled program, one has to access these objects.
Remember that a pad contains other objects and that these objects may themselves be pads. So we can
usetheGet Prim tive() method:

TPad* padl 1 = (TPad*)(padl->CetPrimtive("padl_1"))

One question remains. In case one does an automatic divide, how one can set the default margins
between pads? Thisisdone by adding two parameterstoDi vi de() ,whicharethemarginsinx andy:

root[] padl->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Updating the Pad

For performance reasons, a pad is not updated with every change. For example, changing the
coordinates of the pad does not automatically redraw it. Instead, the pad has a "bit-modified" that
triggers aredraw. This bit is automatically set by:

 Touching the pad with the mouse - for example resizing it with the mouse.

« Finishing the execution of a script.

» Adding anew primitive or modifying some primitives for example the name and title of an object.
* You can also set the "bit-modified" explicitly with the Modi f i ed method:

/1 the pad has changed

root[] padl->Modified()

[l recursively update all nodified pads:
root[] cl->Update()

A subsequent call to TCanvas: : Updat e() scans the list of sub-pads and repaints the pads
declared modified.

In compiled code or in a long macro, you may want to access an object created during
the paint process. To do so, you can force the painting with a TCanvas: : Updat e() . For

148

Graphics and the
Graphical User Interface

example, a TGr aph creates a histogram (THL) to paint itself. In this case the internal histogram
obtained with TGr aph: : Get Hi st ogran() is created only after the pad is painted. The pad
is painted automatically after the script is finished executing or if you force the painting with
TPad: : Modi fi ed() followed by aTCanvas: : Updat e() . Note that it is not necessary to call
TPad: : Modi fi ed() afteracall toDr aw() . The"bit-modified" isset automatically by Dr aw() . A
note about the "bit-modified" in sub pads: when you want to update a sub pad in your canvas, you need
to call pad- >Modi fi ed() rather than canvas- >Modi fi ed(), and follow it withacanvas-
>Updat e() . If you use canvas- >Mbodi fi ed(), followed by acall to canvas- >Updat e(),
the sub pad has not been declared modified and it will not be updated. Also note that a call to pad-
>Updat e() where padisasub pad of canvas, calscanvas- >Updat e() and recursively updates
all the pads on the canvas.

Making a Pad Transparent

Aswe will seein the paragraph "Fill Attributes', afill style (type of hatching) may be set for a pad.
root[] padl->SetFill Style(istyle)

This is done with the Set Fi | | St yl e method where i st yl e is a style number, defined in "Fill
Attributes'. A special set of stylesallows handling of various levels of transparency. These are styles
number 4000 to 4100, 4000 being fully transparent and 4100 fully opague. So, suppose you have an
existing canvas with several pads. Y ou create anew pad (transparent) covering for example the entire
canvas. Then you draw your primitivesin this pad. The same can be achieved with the graphics editor.

For example:

root[] .x tutorials/hist/hldraw C

root[] TPad *newpad=new TPad("newpad", " Transparent pad",0,0,1,1);
root[] newpad->SetFill Styl e(4000);

root[] newpad->Draw();

root[] newpad->cd();

root[] // create sone primtives, etc

Setting the Log Scale

Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the histogram. The
scale is an attribute of the pad because you may want to draw the same histogram in linear scale in
one pad and in log scale in another pad. Frequently, we see several histograms on top of each other in
the same pad. It would be very inconvenient to set the scale attribute for each histogram in a pad.

Furthermore, if thelogic was set in the histogram class (or each object) the scale setting in each Pai nt
method of all objects should be tested.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame will
convince you. The Set Logx(), Set Logy() and Set Logz() methods are there. As you see,
TPad defineslog scale for the two directions x and y plusz if you want to draw a 3D representation
of some function or histogram.

The way to set log scale in the x direction for the active pad is:
root[] gPad->Set Logx(1)

Toreset log in the z direction:

root[] gPad->Set Logz(0)

If you have adivided pad, you need to set the scal e on each of the sub-pads. Setting it on the containing
pad does not automatically propagate to the sub-pads. Here is an example of how to set the log scale
for the x-axis on a canvas with four sub-pads:

root[] TCanvas MyCanvas("M/Canvas","M/ Canvas")
root[] MyCanvas->Di vide(2, 2)

149

Graphics and the
Graphical User Interface

root[] MyCanvas->cd(1)
root[] gPad->SetLogx()
root[] MyCanvas->cd(2)
root[] gPad->SetLogx()
root[] MyCanvas->cd(3)
root[] gPad->SetLogx()

WaitPrimitive method

When the TPad: : Wai t Prinmitive() method is called with no arguments, it will wait until a
doubleclick or any key pressed isexecuted inthecanvas. A call togSyst em >S| eep(10) hasbeen
added in the loop to avoid consuming at all the CPU. This new option is convenient when executing
amacro. By adding statements like:

canvas->Wai tPrimtive();

Y ou can monitor the progress of a running macro, stop it at convenient places with the possibility to
interact with the canvas and resume the execution with a double click or akey press.

Locking the Pad

Y ou can make the TPad non-editable. Then no new objects can be added, and the existing objectsand
the pad can not be changed with the mouse or programmatically. By default the TPad is editable.

TPad: : Set Edi t abl e(kKFALSE)

Graphical Objects

In this paragraph, we describe the various simple 2D graphical objects defined in ROOT. Usualy, one
defines these objects with their constructor and draws them with their Dr aw() method. Therefore,
the examples will be very brief. Most graphical objects have line and fill attributes (color, width) that
will be described in “ Graphical objectsattributes’. If the user wants moreinformation, the class names
are given and he may refer to the online devel oper documentation. Thisis especially truefor functions
and methods that set and get internal values of the objects described here. By default 2D graphical
objects are created in User Coordinates with (0, 0) in the lower left corner.

Lines, Arrows and Polylines

The simplest graphical object isaline. It isimplemented in the TLi ne class. The line constructor is:
TLi ne(Doubl e_t x1, Doubl e t y1, Doubl e t x2, Double t y2)
Theargumentsx1, y1, x2, y2 are the coordinates of the first and second point. It can be used:

root[] | = new TLine(0.2,0.2,0.8,0.3)
root[] |->Draw)

The arrow constructor is:

TArrow(Doubl e t x1, Double t yl1,
Doubl e_t x2, Double_t y2,
Fl oat _t arrowsize, Option_t *option)

It defines an arrow between points x1, y1 and x2, y2. The arrow size is in percentage of the pad
height. The opt i on parameter has the following meanings:

s ||<|u

150

Graphics and the
Graphical User Interface

nest

||<|>n

Once an arrow is drawn on the screen, one can:
« click on one of the edges and move this edge.

« click on any other arrow part to move the entire arrow.

Figure 9.6. Different arrow formats

Examples of various arrow formats

If Fi Il Col or isO, an open triangle is drawn; else afull triangle is filled with the set fill color. If
ar isan arrow object, fill color is set with:

ar. SetFill Col or(icolor);
Wherei col or isthe color defined in “Color and Color Palettes”.

The default-opening angle between the two sides of the arrow is 60 degrees. It can be changed with
the method ar —>Set Angl e(angl e) , where angleis expressed in degrees.

A poly-lineisaset of joint segments. It is defined by aset of N pointsin a2D space. Its constructor is:
TPol yLi ne(Int_t n, Double_t* x,Double_t* y, Option_t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates of the
points. TPol yLi ne canbeused by it self, but isalso abase classfor other objects, such ascurly arcs.

Circles and Ellipses

An ellipse can be truncated and rotated. It is defined by its center (x1, y1) and two radii r 1 and
r 2. A minimum and maximum angle may be specified (phi m n, phi max) . The elipse may be
rotated with an angle t het a. All these angles are in degrees. The attributes of the outline line are
setviaTAt t Li ne, of thefill area—viaTAt t Fi | | class. They are described in “ Graphical Objects
Attributes’.

Figure 9.7. Different types of ellipses

‘ Examples of Ellipses l

151

Graphics and the
Graphical User Interface

When an ellipse sector is drawn only, the lines between the center and the end points of the sector are
drawn by default. By specifying the drawn option “onl y”, these lines can be avoided. Alternatively,
the method Set NoEdges() can be called. To remove completely the ellipse outline, specify zero
(0) asaline style.

TheTEl | i pse constructor is:

TEl i pse(Doubl e t x1, Double t yl1, Double t r1, Double_ t r2,
Doubl e_t phim n, Double_t phinmax, Double_ t theta)

An ellipse may be created with:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)
root[] e->Draw()

Rectangles

The class TBox defines a rectangle. It is a base class for many different higher-level graphical
primitives. Its bottom left coordinates x 1, y 1 and itstop right coordinatesx 2, y 2, defines abox. The
constructor is:

TBox(Doubl e t x1, Doubl e t y1, Doubl e t x2, Double t y2)
It may be used asin:

root[] b = new TBox(0.2,0.2,0.8,0.3)
root[] b->SetFill Col or(5)
root[] b->Draw()

Figure9.8. A rectanglewith a border

A TWhox is arectangle (TBox) with a border size and a border mode. The attributes of the outline
line and of the fill area are described in “Graphical Objects Attributes”

Markers

A marker is a point with afancy shape! The possible markers are shown in the next figure.

Figure9.9. Markers
O B AV O [JA O o ¥ 21
20 21 22 23 24 25 26 27 28 29 30

+ * O X - - @

3 4 5 6 7 8 9 10 11

The marker constructor is;

TMar ker (Doubl e_t x, Double_t y,Int_t marker)

152

Graphics and the
Graphical User Interface

The parameters x and y are the marker coordinates and mar ker is the marker type, shown in
the previous figure. Suppose the pointer ma is a valid marker. The marker size is set via na-
>Set Mar ker Si ze(si ze) , where si ze is the desired size. Note, that the marker types 1,
6 and 7 (the dots) cannot be scaled. They are always drawn with the same number of pixels.
Set Mar ker Si ze does not apply on them. To have a "scalable dot" a circle shape should be used
instead, for example, the marker type 20. The default marker typeis 1, if Set Mar ker St yl e isnot
specified. It is the most common one to draw scatter plots.

Figure9.10. Different marker sizes

0 O O O O

o (o) o] O O
o] s o o o]
klarker ———
M- m|-[0s =

The user interface for changing the marker color, style and size looks like shown in this picture. It
takes place in the editor frame anytime the selected object inherits the class TAt t Mar ker .

Non-symmetric symbols should be used carefully in plotting. The next two graphs show how the
misleading a careless use of symbols can be. The two plots represent the same data sets but because
of abad symbol choice, the two on the top appear further apart from the next example.

Figure9.11. The use of non-symmetric markers

T
"

L | 1 1 I L | L 1 1 L | L
100 200 300

4

H%%HWW*ii

gttt 1

N

GI\\

A TPol yMaker is defined by an array on N points in a 2D space. At each point x[i],y[i] a
marker is drawn. The list of marker types is shown in the previous paragraph. The marker attributes
are managed by the class TAt t Mar ker and are described in “Graphical Objects Attributes’. The
TPol yMar ker constructor is:

TPol yMarker (I nt _t n, Double_t *x, Double_ t *y, Option_t *option)

Where x andy are arrays of coordinates for the n points that form the poly-marker.

Curly and Wavy Lines for Feynman Diagrams

Thisis apeculiarity of particle physics, but we do need sometimes to draw Feynman diagrams. Our
friends working in banking can skip this part. A set of classes implements curly or wavy poly-lines

153

Graphics and the
Graphical User Interface

typicaly used to draw Feynman diagrams. Amplitudes and wavelengths may be specified in the
constructors, viacommandsor interactively from context menus. Theseclassesare TCur | yLi ne and
TCur | yAr c. Theseclassesmake use of TPol yLi ne by inheritance; Execut eEvent methodsare
highly inspired from the methods used in TPol yLi ne and TAr c.

Figure 9.12. The picture generated by the tutorial macro feynman.C

TheTCur | yLi ne constructor is:

TCurl yLi ne(Doubl e t x1, Double t yl, Double t x2, Double t y2,
Doubl e t wavel engt h, Doubl e t anplitude)

The coordinates (X1, y1) define the starting point, (X2, y2) —the end-point. The wavel engt h
andtheanpl i t ude are given in percent of the pad height.

The TCur | yAr ¢ constructor is:

TCurl yArc(Doubl e t x1, Double t yl1, Double t rad,
Doubl e_t phim n, Double_t phimax,
Doubl e_t wavel engt h, Doubl e t anplitude)

Thecurly arc centeris(x1,y1) andtheradiusisr ad. The wavelength and the amplitude are given
in percent of the line length. The parameters phi ni n and phi nax are the starting and ending angle
of thearc (given in degrees). Refer to $ROOTSYS/ t ut ori al s/ gr aphi cs/ f eynman. Cfor the
script that built the figure above.

Text and Latex Mathematical Expressions

Text displayed in apad may be embedded into boxes, called paves (TPaveLabel), or titles of graphs
or many other objectsbut it can live alife of itsown. All text displayed in ROOT graphicsisan object
of class TText . For aphysicist, it will be most of thetimeaTLat ex expression (which derivesfrom
TText). TLat ex has been conceived to draw mathematical formulas or equations. Its syntax isvery
similar to the Latex in mathematical mode.

Subscripts and Superscripts

Subscripts and superscripts are made with the _ and A commands. These commands can be
combined to make complex subscript and superscript expressions. You may choose how to
display subscripts and superscripts using the 2 functions Set | ndi ceSi ze(Doubl e_t) and
SetLimtlndiceSize(lnt_t). Examples of what can be obtained using subscripts and

superscripts:

The expression Gives |Theexpression Gives |Theexpression Gives
x~{2y} x2Y x*{y"{2}} 02 x ANy _{1}} |x
x_{2y} X2y x*y_{1}} 21 x_{1}3™M{y} xp

154

Graphics and the
Graphical User Interface

Fractions

Fractions denoted by the/ symbol are madein the obviousway. The#f r ac command isused for large

fractionsin displayed formulg; it hastwo arguments: the numerator and the denominator. For example,
2

+—
the equationx:% is obtained by following expression x=#f r ac{ y+z/ 2} { y*{ 2} +1} .

Roots

The#sqrt command produces the square ROOT of its argument; it has an optional first argument
for other roots.

Example: #sqrt { 10} #sqrt[3] {10}
Delimiters

Y ou can produce three kinds of proportional delimiters.

#[1{....} or"ala' Latex

#left[..... #right] bigsquare brackets

#{}{....} or #left{..... #ri ght } big curly brackets
#|{....} or #left|..... #ri ght | big absolute value symbol
#(O){....} or#left(..... #ri ght) big parenthesis

Changing Style in Math Mode
Y ou can change the font and the text color at any moment using:
#font[font-nunber]{...} and#col or[col or-nunber]{...}
Line Splitting
A TLatex string may be split in two with the following command: #splitline{top}
{botton}. TAxi s and TGaxi s objects can take advantage of this feature. For example, the date

and time could be shown in the time axis over two lineswith: #spl i tli ne{21 April 2003}
{14: 23: 56}

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding # to the name of the letter.
For an uppercase Greek letter, just capitalize the first letter of the command name.

#al pha #bet a #chi #del t a #var epsi |l on #phi
#ganmmma #et a #i ot a #var phi #kappa #| anbda
#mu #nu #om cron #pi #t het a #rho
#si gma #t au #upsi |l on #varonega #onega #Xi

#psi #zet a #Al pha #Bet a #Chi #Del t a
#Epsi | on #Phi #Gamma #Et a #l ot a #Kappa
#vartheta #Lanbda #M #Nu #Om cron #Pi
#Thet a #Rho #Si gma #Tau #Upsi | on #0Orega

155

Graphics and the
Graphical User Interface

#varsi gma #Xi #Psi #epsilon #varUpsilon #Zeta
Eile Edit View Qptions |nspect Classes Help
Lower case Upper case Variations

alpha : a Alpha : A

beta : B Beta : B

gamma : T Gamma : I

delta : & Delta : A

epsilon : € Epsilon : E varepsilon: &
zeta: 'Y Zeta : z

eta: n Eta : H

theta :] Theta : [C] vartheta : 3
iota : 1 lota : 1

kappa : K Kappa : K

lambda : A Lambda : A

mu : M Mu: M

nu: v Nu: N

xi: 13 Xi: =

omicron : Q Omicron : o]

pi: T Pi: 11

rho: il Rho : P

sigma : g Sigma : z varsigma : S
tau : T Tau : T

upsilon : v Upsilon : Y varUpsilon: T
phi : b Phi : L varphi : (]
chi: % Chi: X

psi: Wy Psi: W

omega : @ Omega : Q varomega: ®

Mathematical Symbols

+ #club + #diamond v #heart & #spade

2 #voidn N #aleph 3 #Jgothic % #Rgothic

< #leq > #geq { #LT y #GT

= #approx = #neq = #equiv « #propto

= #in £ #notin = #subset 2 #notsubset
o #supset < #subseteq > #supseteq #oslash

~ #cap w #cup ~ #wedge v fivee

@© #ocopyright @ #copyright ® #oright ® fvoidl

™ f#trademark ™ #void3 A #AA 4 #aa

x ftimes + #divide + #pm /oW

* #hullet ¢ #circ --- #3dots * #upoint

f #voidb = #infty V #nabla ¢ #partial

" fidoublequote #angle . #downleftarrow — #corner

| #lbar | #cbar ~— #topbar 4 #tbar

| #arcbottom [#arctop [#arcbar | #bottombar
| #idownarrow « #Hleftarrow 1 #uparrow — firightarrow
> #Hleftrightarrow ® #otimes @ #oplus y #surd

|, #Downarrow <« #Leftarrow I #Uparrow = #Rightarrow
<> #Leftrightarrow [| #prod Z#sum I #int

TLat ex can make mathematical and other symbols. A few of them, such as + and >, are produced
by typing the corresponding keyboard character. Others are obtained with the commands as shown
in the table above.

Accents, Arrows and Bars

Symbolsin aformula are sometimes placed one above another. TLat ex provides special commands
for that.

#hat{a} = hat

inverted hat

#check

#acut e = acute

156

Graphics and the
Graphical User Interface

#grave = accent grave

#dot = derivative

#ddot = doublederivative

#tilde = tilde

#sl ash = special sign. Draw a slash on top of the text between brackets for example
#sl ash{ E} {T} generates"Missing ET"

a isobtained with #bar { a}

a isobtained with #vec{ a}

Example 1
The script $ROOTSYS/ t ut ori al s/ graphi cs/ | atex. C

{
TCanvas c1("cl", "Latex", 600, 700);

TLatex | ;
| . Set Text Align(12);
| . Set Text Si ze(0. 04) ;

| .Drawlat ex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#l anbdaD}}
#intM{x}_{0}cos(#frac{#pi}{2}t~{2})dt");
| .Drawlat ex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#l anbdaD}}
#intM{x}cos(#frac{#pi }{2}t~{2})dt");
| .Drawlatex(0.1,0.4,"3) R = |A 2} =
#rac{1}{2} (#[]{# rac{1}{2} +q(V) } {2} +
#[1{#rac{1}{2}+S(V)}*{2})");
| .Drawlat ex(0.1,0.2,"4) F(t) = #sum{i=
-#Hinfty}M{#infty} A(i) cos#[] {#frac{i}{t+i}}");

}

Figure 9.13. The picture generated by thetutorial macro latex.C

P test [O] x|
File Edit Miew Options [nspect Classes Help

1) C=4d \I% 1[cos(zﬂtz)dt

2) C=d % Icos(zﬂlz)dt
3 R-if - d(cmf+Lsw]

4 F(y - i=S‘_A(i)cos tﬁ]

157

Graphics and the
Graphical User Interface

Example 2

The script $ROOTSYS/ t ut ori al s/ graphi cs/ | atex2. C.

{

}

TCanvas c1("cl", "Latex", 600, 700);

TLatex |;

| . Set Text Al'i gn(23);

| . Set Text Si ze(0. 1) ;

| . DrawLat ex(0.5, 0. 95, "er{+}en{-}#ri ght arr owz*{ 0}
#rightarrow #bar {1}, qg#bar{q}");

| . DrawLat ex(0.5,0.75,"| #vec{a} #bul | et #vec{ b} | =

#Si gmaa™{i} _{j k}+b”{bj}_{i}");

| . DrawLat ex(0.5,0.5,"i (#partial _{#nu}#bar{#psi } #ganma’{ #nmu}
+métbar { #psi } =0

#Lef t ri ght ar r om #Box+nt\{ 2}) #psi =0") ;

| . DrawLat ex(0.5,0.3,"L_{enm=ed*{#mu} {ent A {#nu}
JMN{#mu} {em} =#bar {|}#gamma_{#nmu} |

M)} _{i}=#Si gmaA {#al pha}#tau~{#al phaj} {i}");

Figure 9.14. The picture generated by the tutorial macro latex2.C

B S [=]
Eile Edit Miew Options [nspect Classes Help

e*e—7°=lIl, qq
- = . bi
|a-b|=Za'jk+bil
i(3, ¥y +mvy-0 e (o+m”)y=0
Lom=€JinA, , Jhn=ly | MI=ZA 1

em’

Example 3

The script $ROOTSYS/ t ut ori al s/ graphi cs/ | at ex3. C.

{

TCanvas c1("c1");

TPaveText pt(.1,.5,.9,.9);

pt . AddText (" #f rac{ 2s} { #pi #al pha"{2}}

#frac{d#si gma}{dcos#t heta} (e”{+}e"{-}

#rightarrow f#bar{f}) =");

pt. AddText ("#l eft| #frac{1}{1 - #Delt a#al pha} #right|~{2}
(1+cos™{2}#t heta");

pt. AddText ("+ 4 Re #left{ #frac{2}{1 - #Delta#al pha} #chi(s)
#[1{#hat{g}_{#nu}"{e}#hat{g} {#nu}"{f}

(1 + cos™{2}#theta) + 2 #hat{g} {a}"{e}

#hat {g} {a}"{f} cos#theta) } #right}");

pt. Set Label ("Born equation™);

pt. Draw();

158

Graphics and the
Graphical User Interface

Figure 9.15. The picture generated by the tutorial macro latex3.C

———— 1 Born equation B
2_5 do o =)= | 1 |2 26
T dcosD (ee — ff = (1+cos @)

+4 Re { 1%&& %(s) [351(1 sios e 26:@:‘ cosé)] }

+ 16l P [G + &2](& oot s 5 as Geomd)

Text in a Pad

Text displayed in a pad may be embedded into boxes, called paves, or may be drawn alone. In any
case, it isrecommended to use a L atex expression, which is covered in the previous paragraph. Using
TLat ex isvalid whether the text is embedded or not. In fact, you will use Latex expressions without
knowing it since it is the standard for all the embedded text. A pave isjust a box with aborder size
and a shadow option. The options common to all types of paves and used when building those objects
are the following:

option = "T" topframe

option = "B" bottom frame

option = "R right frame

option = "L" left frame

option = "NDC' x1,yl, x2,y2 aregiveninNDC
option = "ARC' corners are rounded

We will see the practical use of these options in the description of the more functional objects like
TPavelabel s. Thereare severa categories of paves containing text: TPavelLabel , TPaveText
and TPavesText . TPaveLabel s arepanelscontaining oneline of text. They are used for labeling.

TPavelLabel (Doubl e t x1, Double t yl, Double t x2, Double t y2,
const char *label, Option_t *option)

Where (x1, y1) are the coordinates of the bottom left corner, (X2, y2) - coordinates of the upper
right corner. “| abel " is the text to be displayed and “opt i on” is the drawing option, described
above. By default, the border size is 5 and the option is “br ”. If one wants to set the border size to
some other value, one may use the method Set Bor der Si ze() . For example, suppose we have a
histogram, which limitsare (-100,100) in thex direction and (0, 1000) in they direction. Thefollowing
lineswill draw alabel in the center of the histogram, with no border. If one wants the label position
to be independent of the histogram coordinates, or user coordinates, one can use the option “NDC".
See “The Coordinate Systems of a Pad”.

root[] pl = new TPavelabel (-50, 0, 50, 200, " Sone text")
root[] pl->SetBorderSi ze(0)
root[] pl->Draw()

Figure 9.16. PavelLabel s drawn with different options

This is a PavelLabel with eption TL This is a PaveLabel with option TR

This is a Pavelabel with option EL This is a Pavelabel with option BR|

159

Graphics and the
Graphical User Interface

A TPavelabel cancontainonly onelineof text. A TPaveText may contain severa lines. Thisis
the only difference. This picture illustrates and explains some of the points of TPaveText . Once a
TPaveText isdrawn, alinecan beadded or removed by brining up the context menu with the mouse.

Figure9.17. PaveT ext examples

File Edit Wiew Options Inspector Classes Help

A PaveText is a Pave with text lines andfor boxes
The Position of the text may be automatic
Text/Line/Box attrbutes may be set for individual elements

The PaveText below has been created automatically
by reading the macro file with the statements 0
used to generate this PaveText \N\th 0

Have e

TPaveText pt1{0.015,0.66,0.98,0.98)

TPaveText pt2{0.09,0.015,0.91,0.63)

pt2.SetFillColor(28)

TText “t1=pt1 AddText{"A PaveText is a Pave with text lines and/or boxes")
TText “t2=pt1 . AddText{"The Position of the text may be automatic")

TText “t3=pt1 AddText{"Text/Line/Box attributes may be set for individual elements "
£3.SetTextColor{2)

TText “t30=pt1.AddText{" "}

TLine “H=pt1 AddLine(0,0,0,0)

11 .5etLineColor{d)

11 SetLineWidth{6)

TText “t4=pt1 AddText{"The PaveText below has been created antomatically "y
TText “t5=pt1.AddText{"by reading the macro File with the statements")
TText “t6=pt1 AddText{"vzed to generate thisz PaveText")

TText “t7=pt1.AddText{"Have Fun with ROOT")

t7.SetTextColor{6)

t7 . SetTextAngle(12)

7 SetTextalign(22)

t7 SetTextSize{0.05)

pt1 Draw

pt2 ReadFile{pavet mac)

pt2 Drave

A TPavesText isastack of text panels (see TPaveText). One can set the number of stacked
panels at building time. It has the following constructor: By default, the number of stacked panelsis
5,0pti on="br".

TPavesText (Doubl e_t x1, Double t y1, Double t x2,Double_t y2,Int_t npaves,
Option_t* option)

Figure9.18. A PaveText example

C++ header files

*User.h

AXIS

The axis objects are automatically built by various high level objects such as histograms or graphs.
Once build, one may access them and change their characteristics. It is also possible, for some
particular purposes to build axis on their own. This may be useful for example in the case one wants
to draw two axis for the same plot, one on the left and one on the right.

For historical reasons, there aretwo classes representing axis. TAXi s * axi s istheaxisobject, which
will be returned when calling the THL: : Get Axi s() method.

TAXi s *axis = hi st o->Cet Xaxi s()

Of course, you may do the same for Y and Z-axis. The graphical representation of an axis is done
with the TGaxi s class. The histogram classes and TG aph generate instances of this class. Thisis
internal and the user should not have to seeit.

160

Graphics and the
Graphical User Interface

Axis Title

The axistitleis set, as with all named objects, by
axis->SetTitle("Whatever title you want");
When the axis is embedded into a histogram or a graph, one has to first extract the axis object:

h- >Get Xaxi s()->SetTitl e("Whatever title you want")

Axis Options and Characteristics

The axis options are most simply set with the styles. The available style options controlling specific
axis options are the following:

TAXi s *axis = hi st o->Cet Xaxi s();

axi s->Set Axi sCol or (Col or _t color = 1);

axi s- >Set Label Col or (Col or _t color = 1);

axi s->Set Label Font (Style t font = 62);

axi s->Set Label O fset (Fl oat _t of fset = 0.005);
axi s->Set Label Si ze(Fl oat _t size = 0.04);

axi s->Set Ndi visions(Int_t n = 510, Bool t optim= kTRUE);
axi s- >Set NoExponent (Bool _t noExponent = kTRUE);
axi s->Set Ti ckLengt h(Fl oat t [ength = 0.03);
axis->SetTitleOfset(Float t offset = 1);
axis->SetTitleSi ze(Float _t size = 0.02);

The getters corresponding to the described setters are also available. The genera options, not
specific to axis, as for instance Set Ti t | eText Col or () are vaid and do have an effect on axis
characteristics.

Setting the Number of Divisions

Use TAXi s: : Set Ndi vi si ons(ndi v, opti m to set the number of divisions for an axis. The
ndi v and opt i mare asfollows:

e ndiv = N1 + 100*N2 + 10000* N3

* N1 = number of first divisions.

* N2 = number of secondary divisions.

e N3 = number of tertiary divisions.

e opti m= kTRUE (default), thedivisions' number will be optimized around the specified value.
e optim= KFALSE, orn<Q0,theaxiswill beforcedto use exactly ndivisions.

For example:

ndi v = 0: notick marks.

ndi v = 2:2divisions, onetick mark in the middle of the axis.

ndi v = 510: 10 primary divisions, 5 secondary divisions

ndi v - 10: exactly 10 primary divisions

Zooming the Axis

Youcanuse TAXi s: : Set Range or TAXi s: : Set RangeUser to zoom the axis.

TAXi s:: Set Range(Int _t binfirst,Int_t binlast)

161

Graphics and the
Graphical User Interface

The Set Range method parameters are bin numbers. They are not axis. For example if a histogram
plots the values from 0 to 500 and has 100 hins, Set Range(0, 10) will cover the values 0 to 50.
The parameters for Set RangeUser are user coordinates. If the start or end is in the middle of a
bin the resulting range is approximation. It finds the low edge bin for the start and the high edge bin
for the high.

TAXi s: : Set RangeUser (Axis_t ufirst, Axis t ul ast)

Both methods, Set Range and Set RangeUser , arein the context menu of any axisand can be used
interactively. In addition, you can zoom an axis interactively: click on the axis on the start, drag the
cursor to the end, and release the mouse button.

Drawing Axis Independently of Graphs or Histograms

An axis may be drawn independently of a histogram or a graph. This may be useful to draw for
exampl e asupplementary axisfor agraph. Inthiscase, one hasto usethe TGaxi s class, the graphical
representation of an axis. One may use the standard constructor for this kind of objects:

TGaxi s(Doubl e t xnmin, Double t ym n, Double t xmax, Double t ymax,
Double t wnmin, Double t wrmax, Int_t ndiv = 510,
Option_t* chopt, Double t gridlength = 0)

Theargumentsxni n, yni n arethe coordinates of the axis' start in the user coordinates system, and
xmax, ynax aretheend coordinates. The argumentswm n and wnax are the minimum (at the start)
and maximum (at the end) valuesto be represented on the axis; ndi v isthe number of divisions. The
options, given by the “chopt " string are the following:

» chopt = ' G :logarithmic scale, default islinear.

» chopt " B' : Blank axis (it is useful to superpose the axis).

Instead of the wni n, wnax arguments of the normal constructor, i.e. the limits of the axis, the name
of aTF1 function can be specified. This function will be used to map the user coordinates to the axis
values and ticks.

The constructor is the following:

TGaxi s(Doubl e t xm n, Doubl e_t ym n, Doubl e t xnax, Doubl e_t ymax,
const char* funcname, I nt_t ndiv=510,Option_t* chopt, Doubl e _t gridl engt h=0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or even
decreasing. In fact, anything you like.

Orientation of Tick Marks on Axis

Tick marks are normally drawn on the positive side of the axis, however, if xmi n = xmax, then

negative.

e chopt = '+': tick marksaredrawn on Positive side. (Default)
e chopt = '-": tick marksaredrawn on the negative side.

e chopt = ' +-": tick marksaredrawn on both sides of the axis.

e chopt = ‘U : unlabeled axis, default islabeled.
Labels

Position

Labels are normally drawn on side opposite to tick marks. However, chopt = ' =' : on Equal side.
The function TAXi s: : Cent er Label s() setsthe bit kCent er Label s and it is visible from

162

Graphics and the
Graphical User Interface

TAXi s context menu. It centersthe bin labelsand it makes sense only when the number of binsisequal
to the number of tick marks. The classresponsible for drawing theaxis TGaxi s inheritsthis property.

Orientation

Labels are normally drawn paralel to the axis. However, if xmi n = xmnax, then they are drawn
orthogonal, and if ym n=ymnax they are drawn parallel.

Labels for Exponents

By default, an exponent of the form 10"N is used when the label values are either all very small or
very large. One can disable the exponent by calling:

TAXi s: : Set NoExponent (KTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less
than the f gMaxDi gi t s globa member. If the property Set NoExponent was set in TAXi s
(via TAXi s: : Set NoExponent), the TGaxi s will inherit this property. TGaxi s is the class
responsible for drawing the axis. The method Set NoExponent is also available from the axis
context menu.

Figure 9.19. Y-axiswith and without exponent labels

% Drawing from DhDraw =10 x|
File Edit ¥iew Options |nspect Classes Help
[This is the px distribufjon e [This is the px distribufjon =
Ment= 26000 Hent= 28000
X S s (e R

2
10 F

10 F

4 3 2 1 0 1 2 3 4 4 3 -2 1 0 1 2 3 4

Number of Digits in Labels

TGaxi s: : f gMaxDi gi t s is the maximum number of digits permitted for the axis labels above
which the notation with 10"N isused. It must be greater than 0. By default f gMaxDi gi t s is5andto
changeit usethe TGaxi s: : Set MaxDi gi t s method. For exampleto set f gMaxDi gi t s to accept
6 digits and accept numbers like 900000 on an axis call:

TGaxi s: : Set MaxDi gi t s(6)
Tick Mark Positions
Labels are centered on tick marks. However, if xm n = xmax, then they are right adjusted.
e chopt = 'R :labelsareright adjusted on tick mark (default is centered)
e chopt = 'L':labelsareleft adjusted on tick mark.

e chopt = ' C :labelsarecentered ontick mark.

163

Graphics and the
Graphical User Interface

e chopt = 'M :IntheMiddle of the divisions.

Label Formatting

Blank characters are stripped, and then the labdl is correctly aligned. The dot, if last character of
the string, is also stripped. In the following, we have some parameters, like tick marks length and
characters height (in percentage of the length of the axis, in user coordinates). The default values are
asfollows:

* Primary tick marks: 3.0 %

» Secondary tick marks: 1.5 %

» Third order tick marks: .75 %

» Characters height for labels: 4%

Labels offset; 1.0 %

Stripping Decimals

Usethe TStyl e:: Set Stri pDeci mal s to strip decimals when drawing axis labels. By default,
the option is set to true, and TGaxi s: : Pai nt Axi s removes trailing zeros after the dot in the axis
labels, e.g.{0,0.5,1, 15, 2, 2.5, etc.}

TStyle::SetStripDecimals (Bool _t strip=kTRUE)

If this function is called with st ri p=kFALSE, TGaxi s: : Pai nt Axi s() will draw labels with
the same number of digits after the dot, e.g. { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, etc.}

Optional Grid
chopt = 'W: crossWire
Axis Binning Optimization
By default, the axis binning is optimized.
* chopt = ' N : No binning optimization

e chopt = "1":Integerlabeling

AXis with Time Units

Histograms axis can be defined as "time axis'. To do that it is enough to activate the
Set Ti meDi spl ay attribute on agiven axis. If h isahistogram, it is done the following way:

h- >Get Xaxi s() - >Set Ti neDi spl ay(1); /[l Xaxis is atinme axis

Two parameters can be adjusted in order to define time axis: the time format and the time offset.

Time Format

It defines the format of the labels along the time axis. It can be changed using the TAXi s method
Set Ti meFor mat . The time format is the one used by the C function st rfti me() . Itisastring
containing the following formatting characters:

For the date: %a abbreviated weekday name
%b abbreviated month name

%(d day of the month (01-31)

164

Graphics and the
Graphical User Interface

%m month (01-12)
%y year without century

%Y year with century
For the time: %H hour (24-hour clock)

%I hour (12-hour clock)

%p local equivalent of AM or PM
%M minute (00-59)

%S seconds (00-61)

%% %

The other characters are output asis. For exampleto have aformat likedd/ mi yyyy one should do:
h- >Get Xaxi s() - >Set Ti neFor mat (" %/ % %) ;

If the time format is not defined, a default one will be computed automatically.

Time Offset

Thisisatime in seconds in the UNIX standard UTC format (the universal time, not the local one),
defining the starting date of a histogram axis. This date should be greater than 01/01/95 and is given
in seconds. There are three ways to define the time offset:

1. By setting the global default time offset:

TDati me da(2003, 02, 28, 12, 00, 00) ;
gStyl e->Set Ti mneX f set (da. Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the example
above, notice the usage of TDat i e to trandate an explicit date into the time in seconds required
by Set Ti meFor nat .

2. By setting atime offset to a particular axis:

Thati me dh(2001, 09, 23, 15, 00, 00) ;
h- >CGet Xaxi s() - >Set Ti neCf f set (dh. Convert());

3. Together with the time format using Set Ti meFor mat . Thetime offset can be specified using the
control character %F after the normal time format. %- is followed by the date in the format: yyyy-
nm dd hh: mm ss.

h- >Get Xaxi s() - >Set Ti meFor mat (" %/ %1 % %-2000- 02- 28 13: 00: 01");

Notice that this date format is the same used by the TDat i ne function AsSQLSt r i ng. If needed,
this function can be used to tranglate atime in seconds into a character string which can be appended
after %-. If thetime format is not specified (before %) the automatic one will be used. The following
exampleillustrates the various possibilities.

{
gStyl e->Set Titl eH(0.08);
TDat i me da(2003, 02, 28, 12, 00, 00) ;
gStyl e->Set Ti neX f set (da. Convert());
ct = new TCanvas("ct","Tine on axis", 0,0, 600, 600);
ct->Divide(1, 3);
ht1 = new TH1F("ht 1", "ht 1", 30000, 0., 200000.) ;
ht2 = new TH1F("ht 2", "ht 2", 30000, 0., 200000.) ;

165

Graphics and the
Graphical User Interface

}

Th
off

ht3 = new TH1F("ht 3", "ht 3", 30000, 0., 200000.) ;
for (Int_t i=1;i<30000;i++) {
Fl oat _t noi se = gRandom >Gaus(0, 120);
ht 1- >Set Bi nCont ent (i, noi se) ;
ht 2- >Set Bi nCont ent (i, noi se*noi se) ;
ht 3- >Set Bi nCont ent (i, noi se*noi se*noi se) ;
}
ct->cd(1);
ht 1- >Get Xaxi s() - >Set Label Si ze(0. 06) ;
ht 1- >Get Xaxi s() - >Set Ti meDi spl ay(1);
ht 1- >Get Xaxi s() - >Set Ti meFor mat (" %d/ % % %-2000- 02- 2813: 00: 01") ;
ht 1- >Dr aw() ;
ct->cd(2);
ht 2- >Get Xaxi s() - >Set Label Si ze(0. 06) ;
ht 2- >Get Xaxi s() - >Set Ti neDi spl ay(1);
ht 2- >Get Xaxi s() - >Set Ti meFor mat (" %a/ % %") ;
ht 2- >Dr aw() ;
ct->cd(3);
ht 3- >Get Xaxi s() - >Set Label Si ze(0. 06) ;
TDati me dh(2001, 09, 23, 15, 00, 00) ;
ht 3- >Get Xaxi s() - >Set Ti neDi spl ay(1);
ht 3- >Get Xaxi s() - >Set Ti meX f set (dh. Convert());
ht 3- >Dr aw() ;

e output is shown in the figure below. If atime axis has no specified time offset, the global time
set will be stored in the axis data structure. The histogram limitsarein seconds. If wiri n and wnax

are the histogram limits, the time axis will spread around the time offset value from Ti meCf f set
+wni nto Ti meOf f set +wrax. Until now all examples had alowest value equal to 0. Thefollowing
example demonstrates how to define the histogram limits relatively to the time offset value.

Fi

gure 9.20. Time axis examples

(13

2802100 28102000 49200 25102100 29102/00 290200 010300 0103d G13md 0170300

"
00

23-TSh Z32Th ZA03h Z309h ZA-15h Z42Th Z503h 2509h 25-16h 25.27h

/! Define the tine offset as 2003, January 1st
TDati me TO(2003, 01, 01, 00, 00, 00) ;

int X0 = TO. Convert ();

gSt yl e- >Set Ti mer f set (X0) ;

/1 Define the | owest histogramlimt as 2002, Sept enber 23rd

166

Graphics and the
Graphical User Interface

TDati me T1(2002, 09, 23, 00, 00, 00) ;
int X1 = T1. Convert () - X0;

/1 Define the highest histogramlimt as 2003, March 7th
TDati me T2(2003, 03, 07, 00, 00, 00) ;
int X2 = T2. Convert (1) -X0;

THLF * hl = new THLF("h1","test", 100, X1, X2);

TRandom r ;

for (Int_t i=0;i<30000;i++) {
Doubl e_t noise = r.Gus(0.5*(X1+X2), 0. 1*(X2- X1));
h1->Fill (noise);

}

h1- >CGet Xaxi s()->Set Ti meDi spl ay(1);
h1- >CGet Xaxi s() - >Set Label Si ze(0. 03) ;
h1- >CGet Xaxi s() - >Set Ti meFor mat (" %/ %n %") ;
h1->Draw();
}

The output is shown in the next figure. Usually time axes are created automatically via histograms,
but one may also want to draw a time axis outside a "histogram context". Therefore, it is useful to
understand how TGaxi s works for such axis. The time offset can be defined using one of the three
methods described before. The time axis will spread around the time offset value. Actually, it will
go from Ti meX f set +wm n to Ti meF f set +wnax where wiri n and wrax are the minimum
and maximum values (in seconds) of the axis. Let us take again an example. Having defined "2003,
February 28 at 12h”, we would like to see the axis a day before and a day after.

Figure9.21. A histogram with time axis X

h1

Entries 30000

1200

Mean -1.5038+06
RMS 1.416e+06

1000

800

600

400

200

4 T I R T R N o |
2002.{10.'03 2002/11/02 20021202 2003/01/01 2003/01/31 2003/03/02

A TGaxi s can be created the following way (a day has 86400 seconds):
TGaxis *axis = new TGaxi s(x1,y1l, x2,y2,-100000, 150000, 2405, "t");

the "t " option (in lower case) means it is a "time axis'. The axis goes form 100000 seconds before
Ti meX f set and 150000 seconds after. So the complete macro is:

{
cl = new TCanvas("cl", "Exanpl es of TGaxis", 10, 10, 700, 500) ;
cl- >Range(-10, -1, 10, 1);
TGaxis *axis = new TGaxi s(-8,-0.6,8,-0.6, -100000, 150000, 2405, "t");
axi s- >Set Label Si ze(0. 03) ;

167

Graphics and the
Graphical User Interface

TDati me da(2003, 02, 28, 12, 00, 00) ;
axi s->Set Ti meX f set (da. Convert());
axi s->Set Ti meFor mat (" %a/ % %™) ;
axi s->Draw() ;

Thetime format is specified with:
axi s->Set Ti meFor mat (" %/ % %™) ;

The macro gives the following output:

b b b g
2710212003 28/02/2003 01/03/2003

Thankstothe TLat ex directive#spl i t| i ne itispossibletowritethetimelabelsontwolines. In
the previous example changing the Set Ti neFor nat line by:

axi s- >Set Label O f set (0. 02) ;
axi s->Set Ti meFor mat ("#splitline{%}{%/ %1}");

will produce the following axis:

co by e b
2003 2003 2003
27102 28102 01/03

Axis Examples

To illustrate what was said, we provide two scripts. The first one creates the picture shown in the
next figure.

Figure 9.22. Thefirst axis example

8 — E —0 —9000
eE F 100 200 300 400 500 600 700 80D 900 310 — 8000
L 0200 300 4003 500 600 =7 00 200 00 -
a0l —20 7000
L E —430 — 6000
2 r L L L L L L 3
- . 107 107 107 1 10 10° 10° —40 5000
0 10" = E
F —350 —] 4000
2 C (I 1 I L1 L |] 2
t B 5 4 2 0 2 4 6 8 —Js0 33000
4 10 —S70 — 2000
5 F st sdssrsbsssa] o0 4 1000
- 12 1.22 1.24 1.26 1.28 13 1.32
s 1 L —90 o

Thefirst scriptis:
{

cl

c1l- >Range(-

TGaxi s *axi sl

new TCanvas("c1", " Exanpl es

10, -1, 10, 1) ;

new TGaxi s(-4.5,

axi s1- >Set Nane("axi s1");
axi s1->Draw);

TGaxi s *axi s2

axi s2- >Set Nane(" axi s2") ;

of Gaxis", 10, 10, 700, 500) ;

-0.2,5.5,-0.2,-6,8,510,"");

new TGaxi s(4.5,0.2,5.5,0.2,0.001, 10000, 510, "G");

168

Graphics and the
Graphical User Interface

axi s2->Draw) ;

TGaxi s *axi s3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
axi s3- >Set Nane(" axi s3") ;

axi s3->Draw) ;

TGaxi s *axi s4 = new TGaxis(-7,-0.8,7,0.8,1,10000, 50510, "G");
axi s4- >Set Nane(" axi s4");

axi s4->Draw) ;

TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32, 80506, "-+");
axi s5- >Set Nane(" axi s5");

axi s5- >Set Label Si ze(0. 03) ;

axi s5- >Set Text Font (72) ;

axi sb5- >Set Label O f set (0. 025) ;

axi s5->Draw) ;

TGaxi s *axi s6 = new TGaxis(-4.5,0.6,5.5,0.6, 100, 900, 50510, "-");
axi s6- >Set Nane(" axi s6") ;

axi s6->Draw) ;

TGaxi s *axi s7 = new TGaxi s(8,-0.8, 8, 0.8, 0, 9000, 50510, "+L");

axi s7->Set Nane("axi s7");

axi s7->Set Label O f set (0. 01) ;

axi s7->Draw) ;

/1 one can make axi s top->bottom However because of a probl em
/[l the two x val ues should not be equal
TGaxi s *axi s8 = new TGaxi s(6.5, 0. 8, 6.499, -0. 8,0, 90, 50510, "-");
axi s8- >Set Nane(" axi s8") ;
axi s8->Draw) ;

}

Figure 9.23. The second axis example

Axes axis with decreasing values
2’I0 8 6 4 2 0 2 -4 £ 8 -10
O L B e L e o L
15—
1:_ fhorlmnflnnnflonnflnnnflnnnflonnflonnfl oo n I 0 o o
= 0020406 08 1 12 14 16 1.8 2
= exponential axis
05—
o “
S
C E 200
05— 5
£ g
e @
A 2
15—
2L | L gl | | 1 1 | | 1

o
-
N
w
IS
‘"4
mj
~
©
©
=
=)

The second example shows the use of the second form of the constructor, with axis ticks position
determined by afunction TF1:

voi d gaxi s3a()

{
gSt yl e- >Set Opt St at (0) ;

TH2F *h2 = new TH2F("h", "Axes", 2, 0, 10, 2, - 2, 2) ;
h2->Draw() ;

169

Graphics and the
Graphical User Interface

TF1 *fl=new TF1("f1","-x",-10, 10);

TGaxis *Al = new TGaxi s(O, 2, 10,2, "f1",510,"-");
Al->SetTitle("axis with decreasing val ues");
Al->Draw() ;

TF1 *f2=new TF1("f2","exp(x)", 0, 2);
TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
A2->Set Titl e("exponential axis");

A2- >Set Label Si ze(0. 03);

A2->Set Titl eSi ze(0. 03);
A2->SetTitl eOf fset(1.2);

A2->Draw() ;

TF1 *f3=new TF1("f3","l10gl10(x)", 0, 800);
TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
A3->SetTitle("l ogarithm c axis");
A3- >Set Label Si ze(0. 03);
A3->Set Titl eSi ze(0. 03);
A3->SetTitl eOf fset(1.2);
A3->Draw() ;
}

Figure9.24. An axis example with time display

X1 Time on axis ;|g|1|
Eile Edit ¥iew Options Inspect Classes Help
| The ROOT seism |

1000

15h16 15h20 15h24 15h28 15h33 15h3T 15h#H1 15h45

/1 strip chart exanple
void seism) {

TSt opwat ch sw;, sw. Start ();

//set tinme of fset

TDatine dtime;

gStyl e->Set Ti meX f set (dt i nme. Convert());

TCanvas *cl = new TCanvas("c1l","Tinme on axis", 10, 10, 1000, 500) ;
cl->SetFill Col or (42);

cl- >Set FraneFi | | Col or (33);

cl->SetGrid();

Float t bintime = 1;

/1 one bin = 1 second. change it to set the tinme scale
THLF *ht = new TH1IF("ht", " The ROOT seisni, 10, 0, 10*bi nti ne) ;
Float t signal = 1000;

ht - >Set Maxi mun{ si gnal) ;

ht - >Set M ni mun{ - si gnal) ;

170

Graphics and the
Graphical User Interface

ht - >Set St at s(0) ;

ht - >Set Li neCol or (2);

ht - >Get Xaxi s() - >Set Ti meDi spl ay(1);
ht - >Get Yaxi s() - >Set Ndi vi si ons(520) ;
ht - >Draw() ;

for (Int_t i=1;i<2300;i++) {
/] Build a signal : noisy danped sine
Fl oat _t noi se = gRandom >Gaus(O0, 120);
if (i > 700)
noi se += signal *sin((i-700.)*6.28/30)*exp((700.-i)/300.);
ht - >Set Bi nCont ent (i , noi se) ;
cl->Modified();
cl- >Update();
gSyst em >Pr ocessEvent s() ;
[/ canvas can be edited during the | oop

}
printf("Real Tine = 98.3fs,Cpu Tine = 9%B. 3f sn", sw. Real Ti me(), sw. CpuTi nme());

Graphical Objects Attributes
Text Attributes

When aclass contains text or derives from atext class, it needsto be able to set text attributes like font
type, size, and color. To do so, the classinherits from the TAt t Text class (asecondary inheritance),
which defines text attributes. TLat ex and TText inherit from TAt t Text .

Setting Text Alignment

Text alignment may be set by a method call. What is said here applies to all objects deriving from
TAt t Text , and there are many. We will take an example that may be transposed to other types.
Suppose "l a" isaTLat ex object. The alignment is set with:

root[] |a->Set Text Align(align)

The parameter al i gn isashort describing the alignment:
align = 10*Hori zontal Align + Vertical Align
For horizontal alignment, the following convention applies:

o 1=left

* 2 =centered

e 3=right

For vertical alignment, the following convention applies:

* 1= bottom

* 2 =centered

e 3=top

For example, align: 11 = |eft adjusted and bottom adjusted; 32 = right adjusted and vertically centered.

Setting Text Angle

UseTAt t Text : : Set Text Angl e toset thetext angle. Theangl e isthe degreesof the horizontal.

171

Graphics and the
Graphical User Interface

root[] | a->Set Text Angl e(angl e)

Setting Text Color

Use TAt t Text : : Set Text Col or to set the text color. The col or isthe color index. The colors
are described in "Color and Color Palettes'.

root[] | a->Set Text Col or (col or)

Setting Text Font

UseTAt t Text : : Set Text Font to set thefont. The parameter font isthe font code, combining the
font and precision: font = 10 * fontlD + precision

root[] | a->Set Text Font (font)

Thetable below liststhe available fonts. The font IDs must be between 1 and 14. The precision can be:
 Precision = 0 fast hardware fonts (steps in the size)

* Precision = 1 scalable and rotate-abl e hardware fonts (see below)

* Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used. The fonts have a
minimum (4) and maximum (37) sizein pixels. These fonts are fast and are of good quality. Their size
varies with large steps and they cannot be rotated. Precision 1 and 2 fonts have a different behavior
depending if True Type Fonts (TTF) are used or not. If TTF are used, you always get very good
quality scalable and rotate-able fonts. However, TTF are slow. Precision 1 and 2 fonts have adifferent
behavior for PostScript in case of TLat ex objects:

» With precision 1, the PostScript text usesthe old convention (see TPost Scr i pt) for some special
characters to draw sub and superscripts or Greek text.

» Withprecision 2, the"PostScript" special charactersaredrawn assuch. To draw sub and superscripts
it ishighly recommended to use TLat ex objects instead.

For example: f ont = 62 isthefont with ID 6 and precision 2.

Figure 9.25. Font’s examples

ID1: The quick brown fox is not here anymore

ID2: The quick brown fox is not here anymore

ID3: The quick brown fox is not here anymore

ID4: The quick brown fox is not here anymore

ID5: The quick brown fox is not here anymore

ID6: The quick brown fox is not here anymore

ID7: The quick brown fox is not here anymore

ID8: The quick brown fox is not here anymore
ID9: 7The guick brown fox 1is not here anymore
ID10: The quick brown fox is not here anymore
ID11: The gquick brown fox is not here anymore
ID 12 : Tme Buiyk fpowv ¢po& 10 vot nepe avrpope

ID 13 : The quick brown fox is not here anymore

ID 14 : The quick brown fox is not here anymore

172

Graphics and the
Graphical User Interface

The available fonts are:

Font ID X11 True Type name Isitalic |"boldness"
1 times-medium-i-normal "Times New Roman" Yes 4
2 times-bold-r-normal "Times New Roman" No 7
3 times-bold-i-normal "Times New Roman" Yes 7
4 helvetica-medium-r-normal "Arid" No 4
5 hel veti ca-medium-o-normal "Aria" Yes 4
6 helvetica-bold-r-normal "Aria" No 7
7 helveti ca-bol d-o-normal "Arial" Yes 7
8 courier-medium-r-normal "Courier New" No 4
9 courier-medium-o-normal "Courier New" Yes 4
10 courier-bold-r-normal "Courier New" No 7
11 courier-bold-o-normal "Courier New" Yes 7
12 symbol-medium-r-normal "Symbol" No 6
13 times-medium-r-normal "Times New Roman" No 4
14 "Wingdings' No 4

This script makes the image of the different fonts:

{

textc = new TCanvas("textc", "Exanpl e of text",1);
for (int i=1;i<15;i++) {
cid = new char[8] ;
sprintf(cid,"ID % :",i);
cid[7] = 0;
lid = new TLat ex(0.1, 1- (doubl e)i/ 15, cid);
I'i d->Set Text Font (62) ;
l'id->Draw();
| = new TLatex(.2,1-(double)i/15,"The quick brown fox is not here anynore")
| - >Set Text Font (i *10+2) ;
| - >Draw();
}
}

How to use True Type Fonts
Y ou can activate the True Type Fonts by adding the following linein your . r oot r c file.
Uni x. *. Root . UseTTFont s: true
Y ou can check that you indeed usethe TTF in your Root session. When the TTF is active, you get the
following message at the start of a session: "Free Type Engine v1.x used to render TrueType fonts."
Y ou can also check with the command:
gEnv->Print ()

Setting Text Size

UseTAt t Text : : Set Text Si ze to set the text size.

root[] |a->SetTextSize(size)

173

Graphics and the
Graphical User Interface

Thesi ze isthetext size expressed in percentage of the current pad size.
The text sizein pixelswill be:
* If current pad is horizontal, the sizein pixels=t ext si ze * canvas_hei ght

* If current pad isvertical, thesizein pixels=t ext si ze * canvas_wi dt h

Test ————
|| |

[6. helvetica bod =]

2wl Mate =1 The yser interface for changing the text color, size, font and alignment looks like
shown in this picture. It takes place in the editor frame anytime the selected object inherits the class
TAt t Text .

Line Attributes

All classes manipulating lines have to deal with line attributes: color, style and width. This is done
by using secondary inheritance of the class TAt t Li ne. Theline color may be set by a method call.
What is said here applies to all objects deriving from TAt t Li ne, and there are many (histograms,
plots). We will take an example that may be transposed to other types. Suppose "l i " isa TLi ne
object. Theline color is set with:

root[] |i->SetLineCol or(col or)
The argument col or isacolor number. The colors are described in "Color and Color Palettes’

The line style may be set by a method call. What is said here applies to al objects deriving from
TAt t Li ne, and there are many (histograms, plots). We will take an example that may be transposed
to other types. Suppose”l i " isaTLi ne object. Theline styleis set with:

root[] |i->SetLineStyle(style)
The argument style is one of: 1=solid, 2=dash, 3=dot, 4=dash-dot.

The line width may be set by a method call. What is said here applies to all objects deriving from
TAt t Li ne, and there are many (histograms, plots). We will take an example that may be transposed
to other types. Suppose "l i " isaTLi ne object. The line width is set with:

root[] li->SetLineWdth(w dth)

Thewi dt h isthe width expressed in pixel units.

Line ———
M —3
I =l The user interface for changing the line color, line width and style looks like

shown in this picture. It takes place in the editor frame anytime the selected object inherits the class
TAt t Li ne.

Fill Attributes

Almost all graphics classes have afill area somewhere. These classes have to deal with fill attributes.
Thisisdone by using secondary inheritance of theclassTAt t Fi | | . Fill color may be set by amethod
call. What issaid here appliesto all objectsderivingfromTAt t Fi | | , and thereare many (histograms,
plots). Wewill take an example that may be transposed to other types. Suppose "h" isaTHLF (1 dim
histogram) object. The histogram fill color is set with:

174

Graphics and the
Graphical User Interface

root[] h->SetFill Col or(col or)

The color isacolor number. The colors are described in "Color and color palettes’

Fill stylemay be set by amethod call. What issaid hereappliesto all objectsderivingfromTAt t Fi | |,
and there are many (histograms, plots). We will take an examplethat may be transposed to other types.
Suppose "h" isa TH1F (1 dim histogram) object. The histogram fill styleis set with:

root[] h->SetFill Style(style)

The convention for style is: 0:hollow, 1001:solid, 2001:hatch style, 3000+pattern number:patterns,
4000 to 4100:transparency, 4000:fully transparent, 4100: fully opaque.

Fill styles>3100 and <3999 are hatches. They are defined accordingtotheFi | | St yl e=3i j k value
asfollows:

e i (1-9) specifiesthe space between each hatch (1=m ni num space, 9=nmaxi mum . Thefinal
spacing is set by Set Hat chesSpaci ng() method and it is* Get Hat chesSpaci ng() .

e j (0-9) specifiesthe angle between 0 and 90 degres asfollows: 0=0, 1=10, 2=20, 3=30, 4=45,
5=not dr awn, 6=60, 7=70, 8=80 and 9=90.

* k(0-9) specifiesthe angle between 0 and 90 degresasfollows: 0=180, 1=170,2=160, 3=150,
4=135,5=not drawn, 6=120,7=110,8=100 and 9=90.

Figure 9.26. Thevarious patterns

3001 3002 3003 3004 3005
—_— PR AN N AN 3
=——
e

RN
== W
e B UONOENG
3006 3007 3008
AR UL
okl 0000000000000 RR5050s0sstatelateiosss
Tkt 3000000000000 ::::::‘:::::::::::’:::::
SERRRRRR IR DOOCUUNETT KEEKICSRRRE
3011 3012 3013

ittt

GHpHa R e

3016 3019

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first Canvas constructor
is called. This table is a linked list, which can be accessed from the gROOT object (see
TROOT: : Get Li st O Col or s()). Each color has an index and when a basic color is defined, two
"companion” colors are defined:

* the dark version (color index + 100)
* the bright version (color index + 150)
The dark and bright colors are used to give 3-D effects when drawing various boxes (see TWhox,

TPave, TPaveText , TPavelabel , etc). If you have a black and white copy of the manual, here
are the basic colors and their indices.

175

Graphics and the
Graphical User Interface

Figure 9.27. The basic ROOT colors

1 =black
2=red
3 = bright green
4 = bright blug
5 = vallow
& = hot pink
7 =&qua
& = green
@ = blue

0-=% basic colore
10-=1% gray shades
20-=2% brown shades
A0->39: blue shades
4i0-=-4%9 rad shade

18 19 20

The list of currently supported basic colors (here dark and bright colors are not shown) are shown.
The color numbers specified in the basic palette, and the picture above, can be viewed by selecting
the menu entry Colors in the View canvas menu. The user may define other colors. To do this, one
hasto build anew TCol or :

TCol or(Int t color,Float t r,Float t g,Float t b,const char* nane)
One has to give the color number and the three Red, Green, Blue values, each being defined from 0
(min) to 1(max). An optional name may be given. When built, this color is automatically added to the

existing list of colors. If the color number aready exists, one hasto extract it from thelist and redefine
the RGB values. This may be done for example with:

root[] col or=(TCol or*) (gROOT- >Cet Li st Of Col ors()->At (i ndex_col or))
root[] col or->Set RGB(r, g, b)

Wherer,g andb gofrom0Oto1andi ndex_col or isthe color number you wish to change.
Fill

/"M - The user interface for changing the fill color and style looks like shown in this
picture. It takes place in the editor frame anytime the selected object inheritsthe classTAt t Fi | | .

Color Palette (for Histograms)

Defining one color at atime may be tedious. The histogram classes (see Draw Options) use the color
palette. For example, THL: : Draw(" col ") drawsa2-D histogram with cells represented by abox

176

Graphics and the
Graphical User Interface

filled withacolor Cl function of the cell content. If the cell content is N, the color Cl used will be the
color number incol or s[N] . If themaximum cell contentis>ncol or s, al cell contents are scaled
toncol or s. The current color palette does not have a class or global object of itsown. It is defined
in the current style as an array of color numbers. The current palette can be changed with:

TStyle:: SetPalette(lnt_t ncolors,Int_t*col or_i ndexes).

By default, or if ncol ors <= 0, adefault palette (see above) of 50 colorsis defined. The colors
defined in this palette are good for coloring pads, |abels, and other graphic objects. If ncol ors > 0
andcol ors = 0, thedefault paetteisused withamaximum of ncol ors.Ifncolors == 1 &&
col ors == 0, then apretty palette with a spectrum Vi ol et - >Red iscreated. It isrecommended
to use this pretty palette when drawing lego(s), surfaces or contours. For example, to set the current
paletteto the “pr et t y” one, do:

root[] gStyl e->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a custom palette. You can
adapt it to suit your needs. In case you use it for contour coloring, with the current color/contour
algorithm, always define two more col ors than the number of contours.

void palette() {
/'l Exanpl e of creating new col ors (purples)
const Int_t col Num = 10; /1 and defining of a new palette
Int_t palette[col Nuni;
for (Int_t i=0; i<colNum i++) {
/1 get the color and if it does not exist create it
if (! gROOT->Get Col or (230+i)){
TCol or *col or = new TCol or (230+i, 1-(i/((col Num*1.0)),0.3,0.5,"");
} else {
TCol or *col or = gROOT- >Cet Col or (230+i) ;
col or->Set RGB(1-(i/((col Num*1.0)),0.3,0.5);

}
palette[i] = 230+i;

gStyl e->Set Pal ett e(col Num pal ette);
TF2 *f2 = new TR2("f2", "exp(-(x*2)-(y"2))",-3,3,-3,3);
/[l two contours |ess than the nunber of colors in palette
f 2- >Set Cont our (col Num 2) ;
f2->Draw("cont");
}

The Graphics Editor

A new graphics editor took place in ROOT v4.0. The editor can be activated by selecting the Editor
menu entry in the canvas View menu or one of the context menu entries for setting line, fill, marker
or text attributes. The following object editors are available for the current ROOT version.

177

Graphics and the
Graphical User Interface

TAXIsEditor

Axis

M |- Ticks| 003 2
| = ¥ Optimize
[tag [orelog

NE-E-E-

IV title
M |- size 004
|6. helvetica hold vl

[C Centered Offset:

| Rotated | 100 i’

Lahely ———

M |- sice| 0045
™ noEsp [0005 2
|6. helvetica hold vl

This user interface gives the possibility for changing the following axis attributes:

» color of the selected axis, the axis' title and labels;

the length of thick parameters and the possibility to set them on both axis sides (if +- is selected);

 to set logarithmic or linear scale along the selected axis with a choice for optimized or more
logarithmic labels;

* primary, secondary and tertiary axis divisions can be set via the three number fields;

« the axistitle can be added or edited and the title's color, position, offset, size and font can be set
interactively;

« thecolor, size, and offset of axis labels can be set similarly. In addition, there is a check box for no
exponent choice, and another one for setting the same decimal part for al labels.

TPadEditor

FPad/Canvas
" Fixed aspect ratio
" Crosshair ¥ Edit
V Grigx M Gridy
¥ Tickx M Ticky
Log Scale
Chx Oy Oz
Border Mode

¢ Sinken border
Mo barder
@ Raised border

Size: |2

* It provides the following user interface:

* Fixed aspect ratio — can be set for pad resizing.
* Edit —sets pad or canvas as editable.

» Cross-hair — setsacross hair on the pad.

e TickX —set ticksalong the X axis.

e TickY —setticksalongtheY axis.

178

Graphics and the
Graphical User Interface

e GridX —set agrid along the X axis.

» GridY —setagrid along the Y axis.

The pad or canvas border size can be set if a sunken or araised border modeis

selected; no border mode can be set too.

Copy and Paste

You can make a copy of a canvas using TCanvas: : Dr awCl onePad. This method is unique
to TCanvas. It clones the entire canvas to the active pad. There is a more genera method
TOhj ect : : Dr anCl one, which all objects descendent of TObj ect , specifically all graphic objects
inherit. Below are two examples, one to show the use of Dr awCl onePad and the other to show the
use of Dr awCl one.

Using the GUI

In this example we will copy an entire canvas to a new one with Dr awCl onePad. Run the script
draw2dopt . C.

root[] .x tutorials/hist/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas follow the steps:
 Right-click onit to bring up the context menu

* Select Dr awCl onePad

This copies the entire canvas and al its sub-pads to anew canvas. The copied canvasis a deep clone,
and all the objectson it are copies and independent of the original objects. For instance, change thefill
on one of the origina histograms, and the cloned histogram retains its attributes. Dr awCl onePad

will copy the canvas to the active pad; the target does not have to be a canvas. It can aso be a pad
on acanvas.

Figure9.28. Different draw options
el (100
File Edit Yiew Options Inspect Classes Help

LEGO1

CEN RN N B ERTET)

o

- 1679000

=
]

If you want to copy and paste a graphic object from one canvas or pad to another canvas or pad,
you can do so with Dr awCl one method inherited from TObj ect . All graphics objects inherit the

179

Graphics and the
Graphical User Interface

TObj ect : : Dr anCl one method. In this example, we create anew canvas with one histogram from
each of the canvases from the script dr aw2dopt . C.

» Start anew ROOT session and execute the script dr aw2dopt . C
» Select acanvas displayed by the script, and create anew canvas c1 from the File menu.

» Make sure that the target canvas (c 1) is the active one by middle clicking on it. If you do this step
right after step 2, c1 will be active.

 Select the pad with the first histogram you want to copy and paste.
* Right click on it to show the context menu, and select Dr awCl one.
» Leavethe option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by the script, until you have
one pad from each type. If you wanted to put the same annotation on each of the sub padsin the new
canvas, you could use Dr awCl one to do so. Here we added the date to each pad. The stepsto thisare:

» Create thelabel in on of the pads with the graphics editor.
» Middle-click on the target pad to make it the active pad
* Use Dr anCl one method of the label to draw it in each of the other panels.

The option in the Dr awCl one method argument is the Draw option for a histogram or graph. A call
to TH1: : Dr awCl one can clone the histogram with a different draw option.

Programmatically

To copy and paste the four pads from the command line or in a script you would execute the following

r oot [
r oot [

p3- >Dr awCl one() ;
p4- >Dr awCl one() ;

statements:
root[] .x tutorials/hist/draw2dopt.C
root[] TCanvas cl("cl", " Copy Paste", 200, 200, 800, 600) ;
root[] surfaces->cd(1l); // get the first pad
root[] TPad *pl = gPad;
root[] |ego->cd(2);// get the next pad
root[] TPad *p2 = gPad;
root[] cont->cd(3);// get the next pad
root[] TPad *p3 = gPad;
root[] c2h->cd(4);// get the next pad
root[] TPad *p4 = gPad;
root[] // to draw the four clones
root[] cl->cd();
root[] pl->Drawd one();
root[] p2->DrawdC one();
]
]

Note that the pad is copied to the new canvas in the same location as in the old canvas. For example
if you were to copy the third pad of sur f to the top left corner of the target canvas you would have
to reset the coordinates of the cloned pad.

Legends

Legendsfor agraph are obtained with aTLegend object. This object points to markers, lines, boxes,
histograms, graphs and represent their marker, line, fill attributes. Any object that has a marker or

180

Graphics and the
Graphical User Interface

line or fill attribute may have an associated legend. A TLegend is apane with several entries (class
TLegendEnt ry) and is created by the constructor

TLegend(Doubl e_t x1, Doubl e t y1, Double t x2, Double_t y2,const char *header,
Option_t *option)

Thelegend is defined with default coordinates, border size and option. The legend coordinates (NDC)
inthe current pad are x1, y1, x2, y2. The default text attributes for the legend are:

» Alignment = 12 left adjusted and vertically centered

e Angle =0 (degrees)

Color = 1 (black)

* Size = calculate when number of entriesis known

* Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title

Thetitleisaregular entry and supports TLat ex. Thedefaultisnotitle (header = 0). Theoptions

are the same as for TPave; by default, they are "br and". Once the legend box is created, one has

to add the text with the AddEnt r y() method:

TLegendEntry* TLegend: : AddEntry(TObj ect *obj, const char *| abel, Option_t *optiol

The parameters are:

« *0obj isapointer to an object having marker, line, or fill attributes (a histogram, or a graph)

| abel isthelabel to be associated to the object
e option:

e "L” draw line associated with line attributes of obj , if obj inheritsfrom TAt t Li ne.

"P" draw poly-marker associated with marker attributes of obj , if obj inherits TAt t Mar ker .

« "F" draw abox with fill associated with fill attributes of obj , if obj inherits TAttFi | | .

One may also use the other form of the method AddEnt ry:

TLegendEnt ry* TLegend: : AddEntry(const char *name, const char *label, Option_t *o

Here nane is the name of the object in the pad. Other parameters are as in the previous case. Next
exampl e shows how to create alegend:

| eg = new TLegend(O0. 4, 0. 6, 0. 89, 0. 89);

| eg- >AddEnt ry(funl, "One Theory","|");

| eg- >AddEnt ry(fun3, " Anot her Theory","f");

| eg- >AddEnt ry(gr, "The Data", "p");

| eg->Draw() ;

/'l oops we forgot the blue line... add it after

| eg- >AddEnt ry(fun2, "#sqrt{2#pi} P {T} (#gamm) latex fornula","f");
/! and add a header (or "title") for the | egend

| eg- >Set Header (" The Legend Title");

| eg->Draw() ;

Heref unl, fun2,fun3 andgr are pre-existing functions and graphs. Y ou can edit the TLegend
by right clicking on it.

181

Graphics and the
Graphical User Interface

Figure 9.29. A legend example

abs(sin(x)/(x)) |
1= The Legend Title
i One Theory
i . Another Theary
0.8
= * The Data
i [E Pr y) latex fonmula
0.6
L ~
L Y
0.4 A iy
L £ A
r i 3
L ¢ i %]
021 ’! !‘ i
Lt i " g
! i L g
p ! 1]
ol IR

0 1 2 3 4 5 6 7 8 9 10

The PostScript Interface

To generate a PostScript (or encapsulated PostScript) file for asingle image in a canvas, you can:

» Select to print the canvas in the PostScript file format from the File menu / Save or Save As menu
entries. By default, a PostScript fileis generated, if you do not specify the file format.

 Click in the canvas area, near the edges, with the right mouse button and select the Print context
menu entry. This will generate a file of canvas pointed to by cl. You can select the name of the
PostScript file. If the file nameis xxx. ps, you will generate a PostScript file named xxx. ps. If
the file name is xxx. eps, you generate an encapsulated Postscript file instead. In your program
(or script), you can type:

cl->Print("xxx.ps") // or
cl->Print ("xxx.eps")

Next example prints the picture in the pad pointed by padl.
padl->Print (" xxx.ps")

TheTPad: : Pri nt method has a second parameter called option. Its value can be:
* 0 whichisthe default and isthe same as"ps"

e "ps" aPostscript fileis produced

» "Portrait" aPostscript fileis produced with Portrait orientation

» "Landscape" aPostscript fileis produced with Landscape orientation
» "eps"an Encapsulated Postscript file

* "Previ ew'an Encapsulated Postscript file with preview is produced

e "gi f" aGraphics Interchange Format file

» "cxx" aC++ macrofileis generated

» "pdf "aPortable Document Format file

182

Graphics and the
Graphical User Interface

o "xm " aeXtensible Mark-up Language file

* "] pg"aJdoint Photographic Experts Group file

» "png" aPortable Network Graphics Format (PNG file)
o "xpn' aX11 Pixel Map Format

» "svg" aScalable Vector Graphicsfile

« "tiff" aTagged-Image File Format

* “root "aROOT binary fileis produced

You do not need to specify this second parameter; you can indicate by the filename extension what
format you want to save acanvasin (i.e. canvas. ps, canvas. gi f,canvas. C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the picture on the
screen, where the size along x is aways 20 cm. Y ou can set the size of the PostScript picture before
generating the picture with a command such as:

TPost Scri pt myps("nmyfile.ps", 111)
nyps. Range(xsi ze, ysi ze) ;

obj ect->Draw() ;

nyps. Cl ose();

The first parameter in the TPost Scri pt constructor is the name of the file; the second one is the
format option:

e 111-ps portrait

* 112-ps | andscape

e 113-eps

Y ou can set the default paper size with:

gSt yl e- >Set Paper Si ze(xsi ze, ysi ze) ;

Y ou can resume writing again in thisfile with myps. Open() . Note that you may have several Post
Script files opened simultaneously. Use TPost Scri pt:: Text (X, Yy, "string") toadd textto
a postscript file. This method writes the string in quotes into a PostScript file at position X, y in
world coordinates.

Special Characters

The following characters have a specia action on the PostScript file:
e ~ -goto Greek

e ' -goto special

» ~-goto Zapf Dingbats

e ? - goto subscript

e " - go to superscript

» | -gotonormal level of script

* & - backspace one character

- end of Greek or of Zapf Di ngbat s

183

Graphics and the
Graphical User Interface

These specia characters are printed as such on the screen. To generate one of these characters on the
PostScript file, you must escape it with the escape character " @". The use of these special characters
isillustrated in several scripts referenced by the TPost Scri pt constructor.

Writing Several Canvases to the Same PostScript File

The following sequence writes the canvasto "c 1. ps" and closes the postscript file:

TCanvas c1("cl1");
hl. Draw();
cl.Print("cl.ps");

If the Postscript file name finisheswith (", the file remains opened (it is not closed). If the Postscript
file name finisheswith ") " and the file has been opened with (", thefileis closed.

{

TCanvas c1("c1");

hl. Draw();

cl.Print("cl.ps("); // wite canvas and keep the ps file open

h2. Draw() ;

cl.Print("cl.ps"); /! canvas is added to "cl.ps"

h3. Draw() ;

cl.Print("cl.ps)"); [//canvas is added to "cl.ps"; ps file is closed
}

The TCanvas::Print("file.ps(") mechanism is very useful, but it can be a little
inconvenient to have the action of opening/closing afile being atomic with printing apage. Particularly
if pages are being generated in some loop, one needs to detect the special cases of first and last page.
The"[" and"] " can be used instead of "(" and ") " as shown in the next example.

cl.Print("file.ps["); /1 no actual print; just open file.ps
for (i=0; i<10; ++i) {
/1 fill canvas for context i
cl.Print("file.ps"); /1 actually print canvas to file.ps
} // end | oop
cl.Print("file.ps]"); // no actual print; just close file.ps

Thefollowing script illustrates how to open a postscript file and draw several pictures. The generation
of anew postscript page is automatic when TCanvas: : C ear iscaled by obj ect - >Draw() .

TFile f("hsinple.root");
TCanvas cl1("c1", "canvas", 800, 600) ;
//sel ect PostScript output type

Int t type = 111; /[l portrait ps
/1l Int_t type = 112; /Il andscape ps
/1l Int_t type = 113; /| eps

//create a PostScript file and set the paper size
TPost Scri pt ps("test.ps",type);

ps. Range(16, 24) ; //set x,y of printed page

//draw 3 histograns fromfile hsinple.root on separate pages
hpx->Draw() ;

cl. Updat e(); //force drawing in a script

hpr of - >Dr aw() ;

cl. Updat e();
hpx->Draw "I egol") ;
cl. Updat e();

184

Graphics and the
Graphical User Interface

ps. Cl ose();
}
The next example does the same:
{

TFile f("hsinple.root");

TCanvas c1("cl", "canvas", 800, 600) ;
//set x,y of printed page
gStyl e- >Set Paper Si ze(16, 24) ;

//draw 3 histograns fromfile hsinple.root on separate pages
hpx->Draw) ;
cl->Print(“testl. ps(“, “Portrait”);
hpr of - >Dr aw() ;
cl->Print(“testl. ps”);
hpx->Draw “l egol”);
cl->Print(“testl.ps)“);
}

This following example shows two pages. The canvasisdivided. TPost Scri pt : : NewPage must
be called before starting anew picture. obj ect - >Dr awdoes not clear the canvasin this case because
we clear only the pads and not the main canvas. Note that c1- >Updat e must be called at the end
of thefirst picture.

{
TFile *f1 = new TFi |l e("hsinple.root");

TCanvas *cl = new TCanvas("cl");
TPost Scri pt *ps = new TPost Script("file.ps", 112);
/1 picture 1
cl->Divide(2,1);
ps- >NewPage() ;
cl->cd(1);
hpx->Draw() ;
cl->cd(2);
hpr of - >Dr aw() ;
/] picture 2
cl- >Updat e() ;
ps- >NewPage() ;
cl->cd(1);
hpxpy->Draw() ;
cl->cd(2);
nt upl e- >Dr awm " px") ;
cl- >Update() ;
ps->Cl ose();
/1 invoke PostScript viewer
gSyst em >Exec("gs file.ps");
}

The next one does the same:

{
TFile *f1 = new TFi |l e("hsi nple.root");

TCanvas *cl = new TCanvas("cl");
cl->Divide(2,1);
/] picture 1
cl->cd(1);
hpx->Draw() ;
cl->cd(2);

185

Graphics and the
Graphical User Interface

hpr of - >Dr aw() ;
cl->Print(“test2. ps(”, “Landscape”);
[l picture 2
cl->cd(1);
hpxpy->Draw() ;
cl->cd(2);
nt upl e- >Dr awm “ px”) ;
cl->Print(“test2.ps)”);
gSystem >Exec("gs file.ps"); [/ invoke PostScript viewer

}
Create or Modify a Style

All objects that can be drawn in a pad inherit from one or more attribute classes like TAt t Li ne,
TAttFi ||, TAtt Text, TAt t Mar ker . When objects are created, their default attributes are taken
fromthe current style. The current styleisan object of theclass TSt y| e and can bereferenced viathe
global variablegSt yl e (in TSt yl e. h). Seetheclass TSt yl e for acomplete list of the attributes
that can be set in one style.

ROOT provides several styles called:

« "Def aul t" - the default style

e "Pl ai n" - the smple style (black and white)

* "Bol d" - bolder lines

* "Vi deo" - suitable for html output or screen viewing

The"Def aul t " styleis created by:

TStyle *default = new TStyle("Default", "Default Style");

The "Pl ai n" style can be used if you want to get a "conventional" PostScript output or if you are
working on a monochrome display. The following example shows how to create it.

TStyle *plain = new TStyle("Plain","Plain Style(no colors/fill areas)");
pl ai n- >Set CanvasBor der Mode(0) ;

pl ai n- >Set PadBor der Mode(0) ;

pl ai n- >Set PadCol or (0) ;

pl ai n- >Set CanvasCol or (0) ;

pl ai n->Set Ti t | eCol or (0) ;

pl ai n- >Set St at Col or (0) ;

Y ou can set the current style by:
gROOT- >Set Styl e(styl e_nane) ;

Y ou can get a pointer to an existing style by:

TStyle *style = gROOT->Cet Styl e(styl e nane) ;
Y ou can create additional styles by:

TStyle *stl = new TStyle("st1","ny style");
st1->Set. ..
stl->cd(); // this beconmes now the current style gStyle

Inyour r oot | ogon. Cfile, you can redefine the default parameters via statements like:

gStyl e->Set St at X(0. 7) ;

186

Graphics and the
Graphical User Interface

gStyl e->Set St at W 0. 2) ;
gStyl e->Set Label Of fset (1. 2) ;
gSt yl e- >Set Label Font (72) ;

Note that when an object is created, its attributes are taken from the current style. For example, you
may have created a histogram in a previous session and saved it in a file. Meanwhile, if you have
changed the style, the histogram will be drawn with the old attributes. Y ou can force the current style
attributes to be set when you read an object from afile by calling For ceSt yl e before reading the
objects from the file.

gROOT- >For ceSt yl e() ;

When you call gROOT- >For ceSt yl e() and read an object from aROQT file, the object's method
UseCur rent St yl e iscaled. The attributes saved with the object are replaced by the current style
attributes. You call also cal myQhj ect - >UseCurrent Styl e() directly. For example if you
have a canvas or pad with your histogram or any other object, you can force these objects to get the
attributes of the current style by:

canvas->UseCurrent Styl e();

The description of the style functions should be clear from the name of the TSt y| e setters or getters.
Some functions have an extended description, in particular:

» TStyl e:: Set Label Font

 TStyl e:: SetLineStyl eString: settheformat of dashed lines.
 TStyl e:: Set Opt St at

» TStyl e:: Set Pal ett e to change the colors palette

e TStyle::SetTitl eOfset

e TStyle::SetOptDate(lnt_t optdate) tosupport severa date formats. If opt dat e is
non-null, the current date/time will be printed in the canvas. The position of the date string can be
controlled by: opt date = 10*f ornmat + node

* node = 1 thedateis printed in the bottom/Ieft corner

* node 2 dateis printed in the bottom/right corner

* node 3 dateis printed in the top/right corner
o format = 0 (default) date format islike: "Wed Sep 25 17:10:35 2002"

1 date format is; "2002-09-25"

e format

e format = 2 dateformatis; "2002-09-25 17:10:35"

3D Viewers

ROOT provides several viewers capable of displaying 3D content:

* the Pad — simple line drawing using TPad and associated projection class TVi ew;

* GL Viewer —high quality and performance viewer(See “The GL Viewer”);

» X3D viewer —simple legacy viewer (See“The X3D Viewer");

* GL-in-pad — combination of basic GL viewer in TPad, with no hardware acceleration.

The X3D and GL viewers are created as external windows, associated with a pad, and displaying the
same content as it. Only these external viewers are detailed here — for Pad (TPad, TVi ew classes)
you should refer to “Graphical Containers: Canvas and Pad” and the class definitions.

187

Graphics and the
Graphical User Interface

All viewers use a common architecture to publish 3D objects to the viewer - described in “Common
3D Viewer Architecture” below. In most cases, you will not need to use this, working instead
with a package, such as the “The Geometry Package’, which provides comprehensive, high level
functionality to create and place objects into complex 3D scenes, and uses the viewer architecture
internally to show the result in your chosen viewer.

Invoking a 3D viewer

A 3D viewer can be created in a script by passing the appropriate optionto Dr aw() when attaching
the drawn object(s) to apad. For afuller explanation of pads, attaching objectswith Dr aw() etc. refer
to “Graphical Containers: Canvas and Pad”.

root[] nyShapes->Draw(“ogl”);

Valid option strings are:

e “ogl " : external GL viewer

o “x3d": external X3D viewer

» “pad”: pad viewer

If no option is passed to Dr aw() then the “pad” is used by default. If you already have content in

apad, which you would like to display in one of the external viewers you can select from the canvas
View menu/ View With, and pick the viewer type.

Figure 9.30. Invoking external 3D viewersfrom canvas menus

-0 x|
File Edit BHEE Options Inspect Classes Help
Editor
Toolhar

Event Status

Calors
Eorts
Markers

Note: A current limitation means that when an external viewer is created the pad isno longer redrawn.
When the external viewer is closed, clicking in the pad will refresh.

The GL Viewer

The GL Viewer uses OpenGL® (or compliant libraries such as Mesa3D) to generate high quality,
high-performance 3D renderings, with sophisticated lighting, materials and rendering styles for 3D
scenes. Many userswill be able to take advantage of hardware acceleration of the underlying OpenGL
commands by their computer's video card, resulting is considerable performance gains — up to
interactive manipulation of 1000's of complex shapesin real-time.

The GL Viewer is supported on al official ROOT platforms (assuming you have suitable CpenGL®
libraries), and is the main 3D viewer, which development effort is concentrated upon. As OpenGL®
isatrademark we refer to our viewer built on this technology asthe ‘GL Viewer’. The code for it can
be found under $ROOTSYS/ gl .

188

Graphics and the
Graphical User Interface

Figure9.31. The GL 3D Viewer

Eile Camera Help

Style | Guides | Clipping |
Mame
GLYiewer TGLSAViewat

Light sources:
~ Top

~ Right

v Bottom

IV Left

~ Front

Clearcolor [||~
Update hehaviour
I~ Ignore sizes
7 Reset on update
¥ Reset on dbl-click

Update Scene
Camera Home >

Y ou can manipulate the viewer viathe GUI or viathe base TGLVi ewer object behind the interface.
These are detailed below - see also SROOTSYS/ t ut ori al s/ gl / gl Vi ewer Exerci se. C.

Projections Modes (Cameras)

The GL Viewer supports two basic types of camera, which affect how the 3D world is projected onto
the 2D render area:

 Perspective: Objects are drawn with characteristic ‘foreshortening’ effect, where distant objects
appear smaller than near ones. This is useful for obtaining a ‘real world’ views. The degree of
foreshortening is affected by the current camera field of view (focal length of its ‘lens’) — see
“Adjusting Cameras’.

» Orthographic: Distance from camera does not affect object size. These projections are useful for
measurement or checking alignments, as the sizes and angles between objects are preserved.

Y ou can select the active camerafrom the viewer's Camera menu on the top menu bar. There are three
perspective camera choices:

» Perspective (Floor XOZ) Default
* Perspective (Floor YOZ)
* Perspective (Floor XQY)

In each case the perspective camerais constrained to keep the chosen floor plane, defined by a pair of
world axes, appearing level at all times—i.e. there is no banking of the ‘horizon’ that you experience
when aplanerolls. There are also three orthographic camera choices:

* Orthographic (XOY)
* Orthographic (XOZ)
* Orthographic (ZOY)

Orthographic projections are generally constrained to look down one of the global axes of the world,
with the other two axeslying horizontal/vertical on theviewer window. Therefore, XOY hasthe X-axis
horizontal, the Y-axis vertical. Y ou can always confirm the orientation and constraints of the camera

189

Graphics and the
Graphical User Interface

in the world by enabling axis drawing in the “Guides’ tab — see sections “Guides’ and “Clipping”
below. For orthographic camera a ruler-depicting current scene unitsis also available.

You can also pick the current camera by obtaining a handle to the GL Viewer object behind the
interface:

TG Viewer * v = (TGVi ewer *)gPad->Cet Vi ewer 3IX() ;

caling the method TG.Viewer::SetCurrentCanera with one of the
TGLVi ewer : : ECaner aType types:

V- >Set Curr ent Caner a(TALVi ewer : : kCamer aPer spXQz) ;
See also $SROOTSYS/ t ut ori al s/ gl / gl Vi ewer Exerci se. C.
Adjusting Cameras

The interactions with the camera are summarized above. In each case the interaction is listed, along
with description and user actions required to achieve it. For al cameras you can reset the original
default view, framing the entire scene, by double clicking any mouse button.

Figure 9.32. GL Viewer camerainteractions

Orbit

"rofate round scene canfer”
Left Mouse Button + Drag

—_
DO"y \ 4 Truck

« - ! g ftel to fitm planeg”
maove camera along eye Ime/ i pan pard
Right Mouse Button + : Middle Mouse Button +

Horizontal Drag ar Arl:r)tg?ﬁgkeys

For the Zoom interaction you can use the following modifiers combinations to adjust the sensitivity:
» Shiftx 10

* Ctrlx 0.1

 Shift + Ctrlx 0.01

The modifiers must be applied after the zoom action has started (right mouse button is down).

Note for orthographic cameras:

» Thereisnofield of view of view/focal length—dollying and zooming producing an identical scaling
action.

» Thereisafixed eye direction — so the * Orhit’ action is disabled.

Note for perspective cameras:

190

Graphics and the
Graphical User Interface

e Dallying (moving the camera backwards/forwards) and zooming are often confused, and may
appear very similar.

» When you dolly the camerathe lens focal length does not change, hence the distortions associated
with the projections are unaffected. However the movement can result in objects coming ‘through
the front’ of the camera and disappearing.

» When you zoom, the camera does not move —hence clipping of near objectsis unaffected. However
with extremely small zooms (FOV large/focal length short) noticeable distortions, causing straight
lines to become curved, can be seen with objects near the camera—the ‘fisheye’ lens effect.

» Generadly dollyingismore " natural’, but you may need to use both to achieve the desired perspective
and eye position — particularly when you are working inside or very close to 3D objects.

Configure the camera by caling the methods Set PerspectiveCanera() or
Set Ot hogr aphi cCanera() of TALVi ewer :

TAViewer * v = (TGVi ewer *)gPad->GCet Vi ewer 3D() ;
v->Set Ot hoCaner a(TGLVi ewer : : kCanmer aOrt hoXOY, | eft, ri ght, t op, botton);

v- >Set Per spect i veCanera (canera, f ov, dol |y, cent er, hRot at e, vRot at e) ;

Note — you can configure any of the six cameras in the viewer at any time, but you will not see the
result until the camerais made current.

Draw Styles

The GL Viewer supports three different rendering modes, which are applied to al the objectsin your
scene, but not Clip Shapes and Guides (See “ Clipping” and “Manipulators’). These are shown below,
along with the key used to activate the style.

Figure 9.33. GL Viewer draw styles

Filled Polygons Wireframe Outline Enable with ‘r’ key Enable with ‘w’ key Enable with ‘t’ key
Solid polygons, with hidden surface Object edges in color, with Combination of Filled Polygons
removal, color surface materials, no surface filling/hiding. and Outline styles. Solid opacity, specular
reflection etc. shapes with edges. Black background. Black background. White background.

Call method TAVi ewer : : Set St yl e withoneof TGLRnr Ct x: : EDrawsSt yl e flagskFi | |,
kQutline, kW reFrame:

v->Set Styl e(TGRnrCt x: : kFi | 1) ;
Lighting / Style

The GL viewer creates five diffuse lights (l€eft, right, top, bottom, and front) arranged around the 3D
scene. These lights are carried with the camera — that is they are always in same position relative to
your eye — the left light always shines from the lft.

Light controls are located: Viewer Controls Pane ‘ Styl€'.

191

Graphics and the
Graphical User Interface

Each light has a checkbox to enable/disable it. Set lights on/off with TGLLiI ght Set : : Set Li ght
eg.

v->Get Li ght Set () - >Set Li ght (TGLLi ght Set : : kLi ght Bott om kFALSE) ;
Clipping

The GL viewer supports interactive clipping, enabling you to remove sections of your 3D scene and
the shapes, reveding internal details.

Figure9.34. GL Viewer interactive box clipping

The controls for clipping can be found under: Viewer Controls Pane ‘ Clipping’ tab.
Two clipping ‘shapes’ are currently supported:

¢ Single plane

* Box

Pick the type from the radio buttons — only one (or none) may be active at one time.
The clip object can be adjusted by:

¢ Adjusting the values in the properties panel GUI

« Directly manipulating the clip object in the viewer

To show and/or directly manipulate the object check the ‘ Show / Edit in Viewer’ checkbox. Theclip
object is drawn in semi-transparent light brown. The current manipulator is attached to it, alowing
you direct control over its position, scale and rotation. See “Manipulators’ section below for details
on using viewer manipulators.

The clip planeis described by the standard plane equation: ax+by+cz+d=0, where thefactorsa, b,
c, d are entered into the edit boxes, and applied using the ‘ Apply’ button.

The clip box is described by its center position, entered in the ‘ Center X', ‘Center Y’ and ‘ Center Z’
edit boxes, and itslengths (extents) entered in the ‘Length X', ‘Length Y’ and ‘Length Z’ edit boxes.

Thisclipping is achieved using OpenGL clip plane support; as such, there are certain limitations:

192

Graphics and the
Graphical User Interface

* Solid shapes are not capped — they appear hollow.

 Only shapes, which can be described with combination of planes, can be rendered in this fashion
—e.g. aclipping tubeis not possible.

 Each additional clipping plane requires an additional render pass — so the more active planes the
more time the render will take.

Set the current clip object with TGLCl i pSet: : Set d i pType
v->Cet Qi pSet ()->Setd i pType(TG.d i pSet:: kd i pPl ane) ;
Configuretheclip object with TGLCl i pSet: : Setd i pState

Doubl e_t planeEq[4] = {0.5,1.0,-1.0, 2.0};
v->Cet ClipSet()->SetdipState(TAC i pSet:: kd i pPl ane, planeEq);

As with cameras, any clip can be configured at any time, but you must set the clip current to see the
effect.

Manipulators

Manipulators are GUI ‘widgets' or controls attached to a 3D object in the viewer, alowing a direct
manipulation of the object's geometry. There are three manipulators for the three basic geometries
transformations. In each case, the manipulator consists of three components, one for each local axis
of the object, shown in standard colors: red (X), green (Y) and blue (2).

Figure9.35. GL Viewer object manipulators

Translation

Move the object along one of a
local axis. Axis lines with arrow
heads.

T

i
“F

{enable with v' key)

Scale

Scale the object along one of a

il - local axis. Axis lines with box
¥ heads.
&
{enable with ¥’ key)
C\ Rotation
L] Rotate the object along one of a

local axis. Axis rings in plane
ot with axis normal.

{enable with 'c’ key)

Activate the manipulator by moving the mouse over one of these components (which turns yellow
to indicate active state). Click with left mouse and drag this active component to perform the
manipulation. Toggle between the manipulator types using the ‘x’, ‘c’, ‘v’ keys while the mouse
cursoris above the manipulator. Note: Manipulators cannot be controlled viathe API at present.

193

Graphics and the
Graphical User Interface

Guides

Guides are visual aids drawn into the viewer world. Controls for these are under the “ Guides” tab:
Viewer Controls Pane Guides Tab

Axes show the world (global) frame coordinate directions. X (red), Y (green) and Z (blue). The
negative portion of the axis line is shown in dark color, the positive in bright. The axis name and
minimum / maximum values are labeled in the same color. There are three options for axes drawing
— selected by radio buttons:

* None— not drawn (default).
» Edge — draw axes on the (minimum) edge of the scene extents box.
 Origin —drawn axes through the origin.

For edge axes, the zero value for each axisis marked on the axis line with acolored sphere. For origin
axes, a single white sphereis shown at the origin.

Edge axes are depth clipped — i.e. are obscured by 3D objects in front of them. Origin axes (which
generaly pass through the middle of the 3D scene) are not depth clipped — so always visible.

A single orange sphere of fixed view port (window) size can be shown at any arbitrary position.
Enable / disable the drawing with ‘Show' checkbox. Enter X/Y/Z position in the edit boxes to set
position. Initial position is at the center of the scene.

Set the guides using TGLVi ewer : : Set Gui deSt at e eg. to enable edge axes, and enable a
reference marker at world position 50, 60, 100:

Doubl e_t refPos[3] = {50.0, 60.0, 100. 0};
v->Set Qui deSt at e(TG Ut i | : : kAxesEdge, kTRUE, ref Pos);

Selecting Scene Shapes

You can select a single shape from your scene by pressing ‘ Shift’ key, pointing and left clicking
anywhere on the shape in the viewer. Selection is currently shown by drawing the shape-bounding
box (not depth clipped) in white (polygon or wire frame render styles) or red (outline render style).
Manipulators supported by the shape are drawn in red, green and blue while the non-supported ones
aredrawningrey. To deselect ashape, either select another, or shift/click anywhere on the background
(empty space) in the viewer. Y ou cannot select Manipulators or Guides (Axes/ Reference Marker).

Editing Shapes

When ashape is selected, the viewer's control pane shows the user interface that allows you to review
and adjust the color and geometry properties of the shape.

Note: At present modifications to the shapes are local to the viewer —they are not propagated back to
external objects/client that published to the viewer. The changes are preserved only until the viewer is
closed. In some cases, thiswill never be feasible as there is not a one-to-one correspondence between
ashape in the viewer and a single external object in which the modification could be stored.

Colors / Style
Viewer Controls Pane ‘ Style’ tab.

A full description of OpenGL materials, colors and lighting is beyond the scope of this document.
Y ou should refer to the OpenGL programming manual (Red Book) for afull discussion. In most cases
adjustment of the Diffuse color material + Opacity/Shine properties is sufficient to achieve desired
results.

A shape has four-color materials (components):

194

Graphics and the
Graphical User Interface

* Diffuse

o Ambient
» Specular
* Emissive

For each of these you can select the component via the radio buttons. Each component can have the
red, green and blue values for the component adjusted viathe dliders. Y ou can apply this adjustment to
the shape itself, or to all shapes sharing a common ‘family’. Shapes of the same family have external
objects with the same TCbj ect name string. You can aso adjust the ‘Opacity’ and ‘ Shine' for the
shapes materials viathe diders.

Geometry

Viewer Controls Pane ‘ Geometry’ tab.

Review and modify the shapes X/Y/Z center and scaling factors via the edit boxes. Selection and
editing of shapesis not available viathe API at present.

Outputting Viewer Contents

The current viewer rendering can be output to an external EPS or PDF, using the options under the
‘File’ menu on the top menu bar. Thefileisnamed ‘vi ewer . eps’ or ‘vi ewer . pdf ' and written
to the current ROOT directory.

The X3D Viewer

The X3D viewer isafairly simple and limited viewer, capable of showing basic lines and polygons. It
lacks the quality, performance and more advanced features of the GL Viewer, and additionally is not
supported on Windows. It is not actively devel oped and you are encouraged to use the GL Viewer out
of preference. The below table presents the main interactions — these are repeated in the Help dialog
of the viewer.

Action KeyActionKey

Wireframe M ode wRotate about xx a

Hidden Line Mode eRotate about yy b

Hidden Surface Mode rRotate about zz ¢

Move object down uAuto-rotate about x1 2 3
Move object up iAuto-rotate about y4 5 6

Move object |eft |Auto-rotate about z7 8 9

Move object right hToggle controls styleo

Move object forward jToggle stereo displays
Move object backward kToggle blue stereo viewd
Adjust focus (stereo mode) [] { } Toggle double bufferf

Rotate object Left mouse button down + move.

Common 3D Viewer Architecture

The 3D Viewer Architecture provides acommon mechanism for viewer clientsto publish 3D objects
toit. It enables:

195

Graphics and the
Graphical User Interface

e Decoupling of producers (geometry packages etc) who model collection of 3D objects from
consumers (viewers) which display them.

 Producer code free of explicit drawing commands & viewer specific branching.
» Support differing viewers and clients capabilities, e.g.

» Mix of native (in viewer) shapes and generic client side tessellation.
 Local/global frame object description

» Bounding boxes

* Placing copies sharing common geometry (logical/physical shapes).

The architecture consists of:

* TVirtual Vi ewer 3Dinterface: An abstract handle to the viewer, allowing client to add objects,
test preferences etc.

» TBuf f er 3Dclass hierarchy: Used to describe 3D objects ("shapes') - filled /added by negotiation
with viewer viaTVi r t ual Vi ewer 3D.

A typical interaction between viewer and client using these, taken from TGeoPai nt er is:

TVirtual Vi ewer 3D * viewer = gPad->Cet Vi ewer 30X) ;

/1 Does viewer prefer |ocal frame positions?

Bool _t | ocal Frane = vi ewer->PreferLocal Frame();

[/l Performfirst fetch of buffer fromthe shape and try adding it to the viewer
const TBuf fer3D &buffer = shape. Get Buf f er 3D(TBuf f er 3D: : kCor e |

TBuf f er 3D: : kBoundi ngBox |

TBuf f er 3D: : kShapeSpeci fi c,

| ocal Frane);

Int _t reqSections = viewer->AddCbj ect (buffer, &addDaughters);

/1 1f the viewer requires additional sections fetch fromthe shape
[/l (if possible) and add again

if (regSections != TBuffer3D::kNone)

shape. Get Buf f er 3D(r eqSecti ons, | ocal Frane);

Together these allow clients to publish objects to any one of the 3D viewers free of viewer specific
drawing code. They allow our simple x3d viewer, and considerably more sophisticated OpenGL one
to both work with both geometry libraries (g3d and geom) efficiently.

In addition to external viewers, created in separate windows, this architecture is also used by internal
TPad drawing when it requires 3D projections. Publishing to aviewer consists of the following steps:

1. Create/ obtain viewer handle.

2. Begin scene on viewer.

3. Fill mandatory parts of TBuffer3D describing object.

4. Add to viewer.

5. Fill optional parts of TBuffer3D as requested by viewer.
[.... repeat 3/4/5 as required for other/child objects]

6. End scene on viewer.

You should attach the top-level node of your external geometry (or the manager) to a TPad
object using TChj ect: : Draw(), and perform the publishing to the viewer in your object's

196

Graphics and the
Graphical User Interface

TObj ect : : Pai nt () overloaded method. See “Scene Rebuilds’, and example scripts, for more
details.

Creating / Obtaining Viewer Handle

External viewers are bound to a TPad object (this may be removed as a requirement in the future).
Y ou can create or obtain the current viewer handle via the method:

TVirtual Viewer3D * v = gPad- >Cet Vi ewer 3D("t ype");
Here the “type” string defines the viewer type — currently one of:

e “ogl " : External GL viewer

» “x3d": External X3D viewer

e “pad”: Pad viewer

If no typeis passed (null string), and there is no current viewer, then the typeis defaulted to “pad”. If
no type is passed and there is a current viewer, then thisis returned — hence once a viewer is created
it can be obtained el sewhere by:

TVirtual Viewer3D * v = gPad->CGet Vi ewer 3D() ;

Opening / Closing Scenes

Objects must be added to viewer between Begi nScene() and EndScene() calse.g.

Vi ewer - >Begi nScene() ;
/1 Add objects
vi ewer ->EndScene();

These calls enable the viewer to suspend redraws, and perform internal caching/setup. If the object
you attach to the pad derives from TAtt 3D, then the pad will take responsibility for calling
Begi nScene() and EndScene() for you. You can always test if the scene is aready open for
object addition with:

vi ewer - >Bui | di ngScene() ;

Figure 9.36. Overview of 3D viewer architecture

Producers Intermediaries Consumers
TVirtualViewer3D & TBuffer3D

TVirtualViewer3D
Interface

New Geometry
TGeoXXX

AddObject(...) | TViewerOpenGL
Logical / physical
maps of objects.
Can be rebuilt.

TGeoPainter

TBufferiD

i

Old Geometry - o~ TViewerX3D
TNode/TBRIK etc. TNode -t = Scene of points
{g3d Geom)
| segments polys.
Single build.

‘Standalone’ shapes = .
TPolyLine3D etc. [l

@] TViewer3DPad
T T T T T e e e e e Direct draw each
Other clients == == time. Frame Buffered.

GEANT4 etc.

197

Graphics and the
Graphical User Interface

Note: the x3d viewer does not support rebuilding of scenes - objects added after the first Open/Close
Scene pair will be ignored.

Describing Objects - Filling TBuffer3D

The viewers behind the TVi r t ual Vi ewer 3D interface differ greatly in their capabilities e.g.

» Some support native shape (e.g. spheres/tubesin OpenGL) and can draw these based on an abstract
description. Others always require a tessellation description based on TBuf f er 3D's kRaw /
kRawSi zes points/lines/segments sections.

» Some need the 3D object positions in the master (world) frame, others can cope with local frames
and atranglation matrix to place the object.

» Some require bounding boxes for objects — others do not.

Similarly someviewer clients are only capable of providing positionsin master frame, cannot provide
bounding boxes etc. Additionally we do not want to incur the cost of expensive tessellation operations
if the viewer does not require them. To cope with these variations the TBuf f er 3D objects are filled
by negotiation with the viewer.

Figure 9.37. TBuffer 3D class hierarchy

TBuffer3D

Core
Logical Shape ID
Local/Master Translation
Attributes: Color, Transparency efc.

Generic Shapes

Bounding Box
Axis Aligned (Local Frame)
Orientated (Master Frame)

Raw Sizes
Nb Points/Segs/Polys

Raw
Points/Segs/Polys
| ”””””””” 1
TBuffer3DSphere TBuffer3DTube :
Shape Specific .
. Shape Specific
inner Redn_.ls lnne':Ra;'us additional
%‘fff ‘fﬁfﬂn‘f Outer Radius shape specific
? a. QRS Half Length classes
Phi Min/Max .
Q to be added in
future
TBuffer3DTubeSeg

Shape Specific

Phi Min

Phi Max

TBuffer3DCutTube

Shape Specific

Low Plane

High Plane

TBuf f er 3D classes are conceptually divided into enumerated sections: kCor e, kBoundi ngBox,
k Raw—seetheclassdiagram and thefile TBuf f er 3D. h for moredetails. The TBuf f er 3Dmethods
SectionsValid(),SetSectionsValid(),C earSectionsValid() areusedtotest, set,
clear these section validity flags e.g.

buf f er. Set Sect i onsVal i d(TBuf f er 3D: : kShapeSpeci fi c) ;

198

Graphics and the
Graphical User Interface

if (buffer.SectionsValid(TBuffer3D:: kShapeSpecific)) {

}

The sections found in the base TBuf f er 3D (kCor e/ kBoundi ngBox/ kRawSi zes/ kRaw) are
sufficient to describe any tessellated shape in a generic fashion. An additional kShapeSpeci fi c
sectionisadded in TBuf f er 3D derived classes, allowing amore abstract shape description ("asphere
of inner radius x, outer radius y"). This enables a viewer, which knows how to draw (tessellate) the
shape itself to do so, while providing a generic fallback suitable for all viewers. The rules for client
negotiation with the viewer are:

o If suitable specialized TBuf f er 3D class exists, use it, otherwise use TBuf f er 3D.

» Complete the mandatory k Cor e section.

» CompletethekShapeSpeci fi ¢ section if applicable.

e Completethe kBoundi ngBox if you can.

* Passthis buffer to the viewer using one of the TBuf f er 3D: : AddCbj ect () methods.

If the viewer requires more sections to be completed (kRaw kRawSi zes)
TBuf f er 3D: : AddObj ect () will return flagsindicating which ones, otherwiseit returnskNone.
If requested, you must fill the buffer, mark these sectionsvalid, and call TBuf f er 3D: : AddObj ect
again, to complete adding the object. For example, in out TGeo geometry package, in
TCGeoPai nt er : : Pai nt Shape, we perform the negotiation with viewer:

TVi rtual Vi ewer 3D * vi ewer = gPad->GCet Vi ewer 3D() ;
i f (shape.lsA() != TGeoConpositeShape::dass()) {

/| Does viewer prefer |ocal frame positions?
Bool _t | ocal Frane = vi ewer->PreferLocal Frame();

[l Performfirst fetch of buffer fromthe shape and adding it to the viewer
const TBuf fer3D &buffer = shape. Get Buf f er 3D(TBuf f er 3D: : kCor e |
TBuf f er 3D: : kBoundi ngBox |
TBuf f er 3D: : kShapeSpeci fi c
, | ocal Frane);

Int _t reqSections = viewer->Addbj ect (buffer, &addDaughters);

/1 1f the viewer requires additional sections fetch fromthe shape
/1 (if possible) and add again
if (regSections != TBuffer3D::kNone) ({
shape. Get Buf f er 3D(r eqSecti ons, | ocal Frane);

vi ewer - >AddObj ect (buf f er, &addDaught ers) ;
}
}

The buffer is suppliedffilled by the appropriate TShape:: Get Buffer3D() and
TShape: : Fi | | Buf f er 3Doverloads e.g. for aspherein TGeoSpher e.

const TBuf fer3D &TGeoSphere: : Get Buffer3D(Int_t reqgSections,
Bool t | ocal Frane) const {
/1 Fills a static 3D buffer and returns a reference.
static TBuffer3DSphere buffer;
/1 Filling of kBoundi ngBox is defered to TGeoBBox, and
/! kCore on up to TGeoShape
TGeoBBox: : Fi | | Buf f er3D(buffer, reqgSections, |ocal Frane);
/1 Conpl et e kShapeSpecific section for sphere
if (regSections & TBuffer3D:: kShapeSpecific) {
buf f er. f Radi usl nner = fRm n;
buf fer. f Radi usQuter = fRmax;

199

Graphics and the
Graphical User Interface

buf f er. Set Sect i onsVal i d(TBuf f er 3D: : kShapeSpeci fi c) ;

}
/1 Conpl ete kRawSi zes secti on
if (regSections & TBuffer3D:: kRawSi zes) {

buf f er. Set Sect i onsVal i d(TBuf f er 3D: : kRawSi zes) ;
}

}
/1 Conpl ete kRaw tessel ati on section

if ((reqSections & TBuffer3D: :kRaw) &&

buf f er. Secti onsVal i d(TBuf f er 3D: : kRawsSi zes)) {

Set Poi nt s(buffer.fPnts);
/1 Transform points to master frame if viewer requires it
/1 The fLocal Frane flag and translation matrix will have al ready
/1 been set in TGeoShape::FillBuffer3D() as requried

if (!buffer.fLocal Framne)

Transf or mPoi nt s(buffer.fPnts, buffer.NoPnts());

Set SegsAndPol s(buffer);

buf f er. Set Sect i onsVal i d(TBuf f er 3D: : kRaw) ;

}

return buffer;

}

Note:

» weuseastatic TBuf f er 3D derived object for efficiency — once the object is added the buffer can
be reused.

* kRawSi ze (the calculation of tessellation sizing required in buffer) and kRaw (the actual filling
of tessellation) is split, asthe X3D viewer requires two publication passes— oneto establish the full
tessellation capacity for al shapes, and another to actually add them. Splitting avoids having to do
the expensive tessellation on the first pass.

Shape Specific TBuffer3D Derived Classes

Currently we provide the following shape specific classes, which the GL Viewer can take advantage
of (see TBuf f er 3D. h and TBuf f er 3DTypes. h)

e TBuf f er 3DSpher e - solid, hollow and cut spheres (GL Viewer only supports solid spheres at
present — cut / hollow ones will be requested as tessellated objects by client.)

» TBuf f er 3DTube — basic tube with inner/outer radius and length.
» TBuf f er 3DTubeSeg - angle tube segment.
» TBuf f er 3DCut Tube - angle tube segment with plane cut ends.

See the above example from TGeoSpher e: : Get Buf f er 3D and also equivalent functions in
TGeoTube, TGeoTubeSeg and TGeoCt ub. Anyone is free to add new TBuf f er 3D classes, but
it should be clear that one or more viewers will require updating to be able to take advantage of them.
Hence we only provide classes which existing viewers can benefit from. The number of native shapes
in GL Viewer will be expanded in the future.

Master / Local Reference Frames
The Core section of TBuf f er 3D contains two members relating to reference frames:

« f Local Frane: indicates if any positions in the buffer (bounding box and tessellation vertexes)
areinloca or master (world frame).

200

Graphics and the
Graphical User Interface

e f Local Mast er :isastandard 4x4 trand ation matrix (OpenGL column major ordering) for placing
the object into the 3D master frame.

If f Local Frame isfase f Local Mast er should contain an identity matrix. Thisis set by default,
and can be reset using the TBuf f er 3D: : Set Local Master | dentity() method.

Bounding Boxes

Y ou are not obliged to complete the kBoundi ngBox section, as any viewer requiring oneinternally
(GL Viewer) will build it if you do not provide. However to do this the viewer will force you to
provide the (expensive) raw tessellation, and the resulting box will be axis aligned with the overall
scene, which is non-ideal for rotated shapes. As we need to support orientated (rotated) bounding
boxes, TBuf f er 3D requires the 6 vertices of the box. We aso provide a convenience function,
TBuf f er : : Set AABoundi ngBox (), for simpler case of setting an axis aligned bounding box.
The bounding box should befilled in same frame (local / master) asthe rest of the TBuf f er 3D, and
inaccordance with f Local Fr ane flag.

A typical example from TGeoBBox::FillBuffer3D:

if (regSections & TBuffer3D:: kBoundi ngBox) {
Doubl e t hal fLengths[3] = { fDX, fDY, fDZ };
buf f er. Set AABoundi ngBox(f Ori gi n, hal f Lengt hs) ;
if (!buffer.flLocal Frame) {

Tr ansf or mPoi nt s(buf fer. fBBVertex[0], 8);

}
buf f er. Set Sect i onsVal i d(TBuf f er 3D: : kBoundi ngBox) ;

}
Logical and Physical Objects

Some viewers can support two types of object placement:

» Add object as a single independent entity in the world reference frame — e.g. a sphere, radiusr ,
ax,y,z.

* Repeated placement (copying) in world frame of this locally unique piece of geometry (described
in local reference frame) e.g. define asphere S (radiusr), place copy at x1, y1, z1, another copy
atx2,y2,z2 etc.

The second case is very typical in geometry packages, e.g. ROOT's TGeo package, GEANT4 etc,
where we have very large number repeated placements of relatively few unique “ shapes’.

Some viewers (GL Viewer only at present) are able to take advantage of this by identifying unique
logical shapesfromthef | Dlogical ID member of TBuf f er 3D. If repeated addition of thesamef | D
is found, the shape is cached already - and the costly tessellation does not need to be sent again. The
viewer can also perform internal GL specific caching (display lists) with considerable performance
gainsin these cases. For thisto work correctly thelogical object in must be described in TBuf f er 3D
in the local reference frame, complete with the local/ master trandation. In some cases you will
not have a real object you can reasonably set TBuf f er 3D: : f | D to, or the object is recycled or
temporary. To suppress internal caching in the GL Viewer in these cases, set TBuf fer 3D: : fI D
to O (null).

The viewer indicates it can support local frame objects through the TVi rt ual Vi ewer 3D
interface method: Pr ef er Local Frane() . If this returns KTRUE you can make repeated calls
to AddQbj ect (), with TBuf f er 3D containing the same f | D, and different f Local Mast er
placements.

For viewers supporting logical/physical objects, the TBuffer3D content refersto the properties of the
logical object, with the exception of:

201

Graphics and the
Graphical User Interface

« fLocal Mast er transform

» fCol or

» f Transpar ency

attributes, which can be varied for each physical object.

As a minimum requirement all clients must be capable of filling the raw tessellation of the object
buffer, in the master reference frame. Conversely viewers must always be capable of displaying the
object described by thisbuffer. If either does not meet this requirement the object may not bedisplayed.

Scene Rebuilds

TBuf f er 3D: : AddObj ect isnot an explicit command to the viewer - it may for various reasons
decidetoignoreit:

« It aready hasthe object internally cached.
* The object falls outside some 'interest' limits of the viewer camera
e Theobject istoo small to be worth drawing.

In al these cases TBuf f er 3D: : AddObj ect () returns kNone, as it does for successful addition,
indicating it does not require further information about this object. Hence you should not try to make
any assumptions about what the viewer did with the object. The viewer may decide to force the client
to rebuild (republish) the scene, obtaining a different collection of objects, if the internal viewer state
changes .e.g. significant cameramove. It doesthis presently by forcing arepaint on the attached TPad
object — hence you should attach you master geometry object to the pad (viaTCbj ect : : Draw()),
and perform the publishing to the viewer in responseto TObj ect : : Pai nt ().

Physical IDs
TVirtua Viewer3D provides for two methods of object addition:

virtual Int_t AddOnoject(const TBuffer3D &buffer, Bool t * addChildren = 0)
virtual Int_t Addoject(U nt_t physicall D, const TBuffer3D & buffer,
Bool t *addChildren = 0)

If you usethefirst (ssmple) case aviewer using logical/physical pairswill generate sequential IDsfor
each physical object internally. Scene rebuilds will require destruction and recreation of all physical
objects. For the second you can specify an identifier from the client side, which must be unique and
stable—i.e. thel Dsof apublished object isconsistent, regardless of changesin termination of contained
child geometry branches. In this case the viewer can safely cache the physical objects across scene
rebuilds, discarding those no longer of interest.

Child Objects

In many geometries there is a rigid containment hierarchy, and so if the viewer is not interested in
a certain object due to limits/size then it will also not be interest in any of the contained branch of
siblings. Both TBuf f er 3D: : AddObj ect () methods have an addChi | dr en return parameter.
Theviewer will completethis(if passed) indicating if children of the object just sent areworth sending.

Recycling TBuffer3D

Once add TBuf f er 3D: : AddChj ect () has been called, the contents are copied to the viewer's
internal data structures. Y ou are free to destroy this TBuf f er 3D, or recycle it for the next object if
suitable.

202

Graphics and the
Graphical User Interface

Examples

For an example of a simple geometry, working in master reference frame examine the code under
$ROOTSYS/ g3d. For a more complex example, which works in both master and local frames,
and uses logical/ physical division of shape geometry and placement, examine the code under
$ROOTSYS/ geom— in particular TGeoShape hierarchy, and the painter object TGeoPai nt er
(under geopainter) where the negotiation with the viewer is performed.

203

Chapter 10. Folders and Tasks

Folders

[% ROOT Object Browser =] E3

Eile Miew Qptions

EREaE | ;
| &1l Folders | Contents of "froot/Clas
(Jront 2 [Base Classes
- D Claszes ([Data Members
E"am ([Methods

1|

:L - [Data. Memkers
:L- ([Tl Real Data Mem
-~ [Methods

“- I:l Base Classes

:L - [dkoal

- - (A Tsignal Handler

- (] TClass

- [(ATaCkss

- - [(ATFileHandler

-~ (A TParticle

- ([TOhiect

- (A TNamed

- [ATGMenuTitle

- [ATGTool Bar

:L - I:lTG Button Group

:L - I:lTG Composite Frame
:L - [CATGFrame

O ey

- [ATGOkiect

-~ [CATaObject

:L - LA TGHorizortal Frame
- (TG Listyiew

:L - [CATGCarvas

:L- [TTimer -
! | ;

I:l Feal Data Members

| 4 Ohiects.

| Doubly linked list

A TFol der isacollection of objects visible

and expandable in the ROOT object browser. Folders have a name and a title and are identified in
the folder hierarchy by an "UNIX-like" naming convention. The base of al foldersis/ / r oot . Itis
visible at the top of the left panel in the browser. The browser shows several foldersunder / / r oot .

New folders can be added and removed to/from afolder.

Why Use Folders?

One reason to use folders is to reduce class dependencies and improve modularity. Each set of data
has a producer class and one or many consumer classes. When using folders, the producer class places
apointer to the datainto afolder, and the consumer class retrieves areference to the folder.

204

Folders and Tasks

The consumer can access the objectsin afolder by specifying the path name of the folder.
Here is an example of afolder's path name:
//root/Event/H ts/ TCP

One does not have to specify the full path name. If the partia path name is unique, it will find it;
otherwise it will return the first occurrence of the path.

The first diagram shows a system without folders. The objects have pointers to each other to access
each other'sdata. Pointers are an efficient way to share data between classes. However, adirect pointer
createsadirect coupling between classes. This design can become avery tangled web of dependencies
in asystem with alarge number of classes.

In the second diagram, a reference to the data is in the folder and the consumers refer to the folder
rather than each other to accessthe data. The naming and search service provided by the ROOT folders
hierarchy provides an aternative. It loosely couples the classes and greatly enhances 1/0 operations.
In this way, folders separate the data from the algorithms and greatly improve the modularity of an
application by minimizing the class dependencies.

Producer Folder Consumers
o
oo o O] ’@

In addition, the folder hierarchy creates a picture of the data organization. This is useful when
discussing data design issues or when learning the data organization. The example below illustrates
this point.

How to Use Folders

Using folders means to build a hierarchy of folders, posting the reference to the data in the folder by
the producer, and creating a reference to the folder by the user.

Creating a Folder Hierarchy

To create afolder hierarchy you add thetop folder of your hierarchy to/ / r oot . Thenyou add afolder
to an existing folder with the TFol der : : AddFol der method. This method takes two parameters:
the name and title of the folder to be added. It returns a pointer of the newly created folder.

The code below creates the folder hierarchy shown in the browser. In this macro, the folder is aso
added to the list of browsable. Thisway, it isvisible in the browser on the top level.

{
/!l Add the top folder of nmy hierary to //root

TFol der *al i r oot =gROOT- >CGet Root Fol der () - >AddFol der ("al i root ",

205

Folders and Tasks

"aliroot top |level folders")
[/ Add the hierarchy to the list of browsabl es
gROOT- >Get Li st OF Browsabl es() - >Add(al i root, "aliroot");

[/l Create and add the constants fol der
TFol der *const ant s=al i r oot - >AddFol der (" Const ant s", "Det ect or constants");

[/l Create and add the pdg fol der to pdg
TFol der *pdg = const ant s- >AddFol der (" Dat abasePDG', " PDG dat abase") ;

/[l Create and add the run fol der
TFol der *run = aliroot->AddFol der ("Run", "Run dependent fol ders");

/Il Create and add the configuration folder to run
TFol der *configuration = run->AddFol der (" Confi guration”,"Run configuration");

[/l Create and add the run_nt fol der
TFol der *run_nt = aliroot->AddFol der (" RunMC*, "Mont eCarl o run dependent fol ders"

[/l Create and add the configuration _nt folder to run_nt

TFol der *configuration_nt = run_nt->AddFol der (" Confi guration”,
"MonteCarl o run configuration");
}

Posting Data to a Folder (Producer)

% ROOT Object Browser M=l
Eile Miew Qptions Help
Ia root ;I I EEI:-S‘ EEEEI
| All Falders | Cantents af “/roat"
b oot [CABrowsers
[momeighifspanacek/Use [Canvases
[CIROOT Files (] Classes
I;lallrmt D Cleanups
I$|- I:l Constants [Colors
E Ii-l [:I DatabaseP DG D Functions
I:Tl_ i Fiun |:| Geometries
S |:| Configuration
h D Handlers
E- I:I RurkdC EmaoF
- - ([Configuration apries
[CAROOT Files
[50ckets
[:l Specials
(L 5treamer nfo
[:l Styles
[COTasks
« i [CJ=tiront
| 16 Ohiects. | i

A TFol der can contain other folders as shown above or any TCbj ect descendents. In general,
users will not post a single object to afolder; they will store a collection or multiple collectionsin a
folder. For example, to add an array to afolder:

206

Folders and Tasks

TObj Array *array;
run_nc->Add(array) ;

Reading Data from a Folder (Consumer)

One can search for afolder or an object in afolder using the TROOT: : Fi ndChj ect Any method.
It analyzes the string passed as its argument and searches in the hierarchy until it finds an object or
folder matching the name. With Fi ndCbj ect Any, you can give the full path name, or the name
of the folder. If only the name of the folder is given, it will return the first instance of that name.
A string-based search is time consuming. If the retrieved object is used frequently or inside a loop,
you should save a pointer to the object as a class data member. Use the naming service only in the
initialization of the consumer class. When afolder is deleted, any referenceto it in the parent or other
folder is deleted also.

conf =(TFol der *) gROOT- >Fi ndObj ect Any("/al i root/Run/ Configuration"); // or
conf =(TFol der *) gROOT- >Fi ndObj ect Any(" Confi gurati on");

By default, a folder does not own the object it contains. You can overwrite that with
TFol der : : Set Onner . Once the folder is the owner of its contents, the contents are deleted when
thefolder isdeleted. Some ROOT objectsare automatically added to thefolder hierarchy. For example,
the following folders exist on start up:

/1 root/ROOT Fil es withthelist of open Root files
/1 root/ d asses withthelist of active classes

/I root/ CGeomnetri es with active geometries

/] root/ Canvases with thelist of active canvases
/1 root/ Styl es withthelist of graphics styles

/I root/ Col or s withthelist of active colors

For example, if afilenyFi | e. root isadded to the list of files, one can retrieve a pointer to the
corresponding TFi | e object with a statement like:

TFile *myFile
TFile *myFile

Tasks

Taskscan be organized into ahierarchy and displayed inthe browser. The TTask classisthebaseclass
from which the tasks are derived. To give task functionality, you need to subclass the TTask class
and override the Exec method. An example of TTask subclasses i s $ROOTSYS/ t ut ori al s/
MyTasks. cxx. The script that creates a task hierarchy and adds it to the browser is $SROOTSYS/
tutorial s/tasks. C Hereisapart of MyTasks. cxx that showshow to subclassfrom TTask.

(TFi | e*) gROOT- >Fi ndCbj ect Any("/ ROOTFi | es/ nyFile.root"); //or
(TFi | e*) gROOT- >Fi ndCbj ect Any("nyFil e.root");

/1l A set of classes deriving from TTask see macro tasks.C. The Exec
/1 function of each class prints one line when it is call ed.
#i ncl ude "TTask. h"
class MyRun : public TTask {
publi c:
MWRun() { ; }
M/Run(const char *nane, const char *title);
virtual ~M/Run() { ; }
voi d Exec(Option_t *option="");

207

Folders and Tasks

Cl assDef (MyRun, 1) /! Run Reconstruction task
b
cl ass MyEvent : public TTask {
publi c:

MEvent () { ; }

MyEvent (const char *nane, const char *title);

virtual ~MyEvent() { ; }

voi d Exec(Option_t *option="");

Cl assDef (MyEvent, 1) /1 Event Reconstruction task
b

Later in MyTasks. cxx, we can see examples of the constructor and overridden Exec() method:

d assl mp(MyRun)
MyRun: : MyRun(const char *name, const char *title): TTask(nane,title)

{

}
voi d MyRun: : Exec(Option_t *option)
{
printf("M/Run executingn");
}

Each TTask derived class may contain other TTasks that can be executed recursively. In thisway,
a complex program can be dynamically built and executed by invoking the services of the top level
task or one of its subtasks. The constructor of TTask has two arguments: the name and thetitle. This
script creates the task defined above, and creates a hierarchy of tasks.

// Show the tasks in a browser. To execute a Task, sel ect
[/ “Execut eTask” in the context nmenu see al so other functions in the
// TTask cont ext menu, such as:

/1 -setting a breakpoint in one or nore tasks
/1 -enabl i ng/ di sabl i ng one task, etc

voi d tasks()

{

gROOT- >Pr ocessLi ne(".L M/Tasks. cxx+");

TTask *run = new MyRun("run", "Process one run");
TTask *event = new MyEvent ("event","Process one event");

TTask *geom nit = new MyGeomlinit("geomnit", "Geonetry Initialisation");
TTask *mat | nit = new MyMateriallnit("matlnit","Materialslnitialisation");

TTask *tracker
TTask *tpc
TTask *its
TTask *rmuon
TTask *phos
TTask *rich
TTask *trd
TTask *gl obal

new MyTracker ("tracker","Tracker manager");

new MyRecTPC("t pc", " TPC Reconstruction");

new MyRecl TS("its","I TS Reconstruction");

new MyRecMUON(" muon", " MJON Reconstruction");

new MyRecPHOS(" phos", "PHOS Reconstruction");

new MyRecRI CH("rich", "Rl CH Reconstruction");

new MyRecTRD("trd", " TRD Reconstruction");

new MyRecd obal ("gl obal ", "d obal Reconstruction");

/1l Create a hierarchy by addi ng sub tasks
run- >Add(geom nit);
run->Add(matlnit);
run- >Add(event);
event - >Add(tracker);
event - >Add(gl obal) ;

208

Folders and Tasks

tracker->Add(t pc);
tracker->Add(its);
tracker - >Add(muon) ;
tracker - >Add(phos) ;
tracker->Add(rich);
tracker->Add(trd);
/!l Add the top |evel task
gROOT- >Cet Li st O Tasks() - >Add(run);
/] Add the task to the browser
gROOT- >Cet Li st Of Br owsabl es() - >Add(run) ;
new TBrowser ;

}
Figure 10.1. Tasksin the ROOT browser

2 ROOT Object Browser [_ (2]
Eile ¥iew Onptions Help

|atracker LI Eglfr-E

[&1l Folders [Contents of “frunfeventitrac|

Aroat its [Qruon CIphos
[:lMDme.l’ghiJ’spanacek.l'rootESJ'roc Drich [:“p.; D trl
(CARDOT Files
[CArun
:L - [:l geominit
- [matnit

| & Ohjects. | 4

Note that the first line loads the class definitions in My Tasks. cxx with ACLiC. ACLiC builds a
shared library and adds the classesto the CINT dictionary. See "Adding a Class with ACLiC".

To executeaTTask, you cal the Execut eTask method. Execut eTask will recursively call:
-the TTask: : Exec method of the derived class;
-the TTask: : Execut eTasks to execute for each task the list of its subtasks;

If the top level task is added to the list of ROOT browseable objects, the tree of tasks can be seen
in the ROOT browser. To add it to the browser, get the list of browseable objects first and add it to
the collection.

gROOT- >CGet Li st O Br owsabl es() - >Add(r un) ;

Thefirst parameter of the Add method is a pointer to a TTask, the second parameter is the string to
show in the browser. If the string is |eft out, the name of the task is used.

After executing, the script above the browser will look likein thisfigure.

Execute and Debug Tasks

The browser can be used to start atask, set break points at the beginning of atask or when the task has
completed. At abreakpoint, data structures generated by the execution up this point may be inspected

209

Folders and Tasks

asynchronously and then the execution can be resumed by selecting the "Cont i nue" function of a
task.

A task may be active or inactive (controlled by TTask: : Set Act i ve). When atask isinactive, its
sub tasks are not executed. A task tree may be made persistent, saving the status of all the tasks.

210

Chapter 11. Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It begins with an
explanation of the physical layout of a ROOT file. It includes a discussion on compression, and file
recovery. Thenwe explainthelogical file, theclass TFi | e and its methods. We show how to navigate
in afile, how to save objects and read them back. We also include a discussion on St r eaner s.
St r eamer s are the methods responsible to capture an objects current state to save it to disk or send
it over the network. At the end of the chapter is a discussion on the two specialized ROOT files:
TNet Fi | e and TWebFi | e.

The Physical Layout of ROOT Files

A ROOT fileislikeaUNIX filedirectory. It can contain directories and objects organized in unlimited
number of levels. It also is stored in machine independent format (ASCII, |EEE floating point, Big
Endian byte ordering). To look at the physical layout of aROOT file, wefirst create one. Thisexample
creates a ROQOT file and 15 histograms, fills each histogram with 1000 entries from a Gaussian
distribution, and writes them to thefile.

char nane[10], title[20];

TObj Array Hist(0); /] create an array of Hi stograns
TH1F* h; /] create a pointer to a histogram

/1 make and fill 15 histogranms and add themto the object array
for (Int_t i =0; i < 15; i++) {

sprintf(name, "ho%",i);
sprintf(title,"histo nr:%",i);
h = new THLF(nane,titl e, 100, -4, 4);

H i st.Add(h);
h->Fi | | Randonm(" gaus", 1000) ;
}

/[l open a file and wite the array to the file
TFile f("denp.root", "recreate");
Hist->Wite();
f.d ose();
}

The example beginswith acall tothe TFi | e constructor. Thisclassis describing the ROOT file (that
has the extension . r oot ”). In the next section, we will cover TFi | e in details. The last line of the
example closes the file. To view its contents we need to open it again, and to create a TBr owser

object by:

root[] TFile f("deno.root")
root[] TBrowser browser;

211

I nput/Output

Figure 11.1. The browser with 15 created histograms

% ROOT Object Browser H= E3
File “iew Options Help
Iademn.ruot LI I EEID:E" ==

[&1l Falders [Contents of "/ROCT Files/demo.root"
[root |Aaho;l [fa h10:1 g b1 1,1 |dg hi2;0
(O momeispanacek tutorials |Ah‘3il [kqu-] |khli‘ |.kh2il
CROOT Files [faba [ha ket [dans: g ket

:ir:-.rl'll:l.rl:ll:lt |kh?i1 lkhan |kh9;1
15 Ohigcts. 4

Y ou can check if thefileis correctly opened by:

TFile f(“deno.root”);
if (f.lsZombie()) {
cout << “Error opening file” << endl;

exit(-1);
} else {

OncewehavetheTFi | e object, wecancall theTFi | e: : Map() methodto view the physical layout.
The output prints the date/time, the start record address, the number of bytes in the record, the class
name of the record and the compression factor.

root[] f.Map()

20051208/ 124502 At: 100 N=114 TFi l e

20051208/ 124502 At: 214 N=413 THLF CX = 2.35
20051208/ 124502 At: 627 N=410 THLF CX = 2.36
20051208/ 124502 At: 1037 N=396 THLF CX = 2.45
20051208/ 124502 At: 1433 N=400 THLF CX = 2.42
20051208/ 124502 At: 1833 N=402 THLF CX = 241
20051208/ 124502 At:2235 N-=416 THLF CX = 2.33
20051208/ 124502 At: 2651 N=406 THLF CX = 2.39
20051208/ 124502 At: 3057 N=403 THLF CX = 2.40
20051208/ 124502 At: 3460 N=411 THLF CX = 2.36
20051208/ 124502 At: 3871 N=400 THLF CX = 2.42
20051208/ 124502 At: 4271 N=409 THLF CX = 2.38
20051208/ 124502 At: 4680 N=409 THLF CX = 2.38
20051208/ 124502 At: 5089 N=420 THLF CX = 2.32
20051208/ 124502 At : 5509 N=406 THLF CX = 2.40
20051208/ 124502 At:5915 N=405 THLF CX = 2.40
20051208/ 124503 At:6320 N=3052 Streanmerinfo CX = 3.16
20051208/ 124503 At: 9372 N=732 KeysLi st

20051208/ 124503 At: 10104 N-=53 FreeSegnent s

20051208/ 124503 At: 10157 N-=1 END

Here we see the fifteen histograms (TH1F's) with the first one starting at byte 148. We also see an
entry TFi | e. You may notice that the first entry starts at byte 100. The first 100 bytes are taken by
the file header.

212

I nput/Output

The File Header

This table shows the file header information. When fVersion is greater than 1000000, the file is a
large file (> 2 GB) and the offsets will be 8 bytes long. The location in brackets are the location in
the case of alargefile.

Byte Value Name Description

1->4 "root" Root file identifier

5->8 f Ver si on File format version

9->12 f BEG N Pointer to first datarecord

13- > 16 [13->20] f END Pointer to first free word at the EOF

17 - > 20 [21->28] f SeekFr ee Pointer to FREE data record

21 - > 24[29->32] f Nbyt esFree Number of bytesin FREE data record

25- > 28[33->36] nfree Number of free data records

29 - > 32[37->40] f Nbyt esName Number of bytesin TNamed at creation time
33->33[41->41] fUnits Number of bytesfor file pointers

34 - > 37 [42->45] f Conpr ess Zip compression level

34 - > 37 [46->53] f Seekl nfo Pointer to TSt r earrer | nf o record

34 - > 37 [54->57] f NByt esl nf o Number of bytesin TSt r earner | nf o record
34 - > 37 [58->75] f Conpr ess Universal Unique ID

Thefirst four bytes of the file header contain the string "root" which identifies afile as a ROOT file.
Because of thisidentifier, ROOT is not dependent on the ". r oot " extension. It is still a good idea
to use the extension, just for usto recognize them easier. The nf r ee and value is the number of free
records. This variable along with FNByt esFr ee keeps track of the free space in terms of records
and bytes. This count aso includes the deleted records, which are available again.

The Top Directory Description

The 84 bytes after the file header contain the top directory description, including the name, the date
and time it was created, and the date and time of the last modification.

20010404/ 092347 At:64 N=84 TFi |l e

The Histogram Records

What follows are the 15 histograms, in records of variable length.

2.49
2.51

20010404/ 092347 At: 148 N=380 THL1F CX
20010404/ 092347 At:528 N=377 THL1F CX

The first 4 bytes of each record is an integer holding the number of bytes in this record. A negative
number flags the record as deleted, and makes the space available for recycling in the next writing.
Therest of bytesin the header contain all the information to identify uniquely adata block on thefile.
It isfollowed by the object data.

The next table explains the values in each individual record. If the key is located past the 32 bit file
limit (> 2 GB) then some fields will be 8 bytes instead of 4 bytes (values between the brackets):

213

I nput/Output

Byte Value Name Description

1->4 Nbyt es Length of compressed object (in bytes)
5->6 Ver si on TKey version identifier

7->10 oj Len Length of uncompressed object

11->14 Dati ne Date and time when object was written to file
15->16 KeyLen Length of the key structure (in bytes)
17->18 Cycl e Cycle of key

19 - > 22 [19->26] SeekKey Pointer to record itself (consistency check)
23->26[27->34] SeekPdi r Pointer to directory header

27 - > 27[35->35] | name Number of bytesin the class name
28->...[36->...] Cl assNane Object Class Name

e m > | name Number of bytesin the object name

e m > Nane I Name bytes with the name of the object
s> [Title Number of bytesin the object title

R Title Title of the object

e m > DATA Data bytes associated to the object

You see areference to TKey. It isexplained in detail in the next section.

Thehistogram records arefollowed by the St r eamer | nf o list of classdescriptions. Thelist contains

The Class Description List (Streamerinfo List)

the description of each class that has been written to file.

20010404/ 092347 At: 5854 N=2390 Streaner | nfo CX = 3.41
The class description is recursive, because to fully describe a class, its ancestors and object data
members have to be described also. Indeno. r oot , the class description list contains the description

for:

« THIF

« al classesin the TH1F inheritance tree

« al classes of the object data members

« al classesin the object data members' inheritance tree.

This description is implemented by the TStreanmerInfo class, and is often referred
to as simply Streanerlnfo. You can print a files Streanerl nfolist with the
TFi | e: : Showst r eaner | nf o method. Below is an example of the output. Only the first line of
each class description is shown. Thedeno. r oot example contains only THLF objects. Here we see
the recursive nature of the class description; it containsthe St r eaner | nf oof al the classes needed
to describe THL1F.

root[] f.ShowStreaner!|nfo()

Streanerinfo for class: THLF, version=1
BASE TH1 of fset=0 type= 0 1-Di m hi st ogram base cl ass
BASE TArrayF of fset=0 type= 0 Array of floats

214

I nput/Output

Streanerlnfo for class:

BASE
BASE
BASE
BASE

I nt_t
TAXi s
TAXi s
TAXi s
Short t
Short t
Stat t
Stat t
Stat t
Stat t
Stat t
Doubl e_t
Doubl e_t
Doubl e_t
TArrayD
TArrayD
TString
TLi st *

TNaned
TAtt Li ne
TAttFill
TAt t Mar ker
fNcel |l s

f Xaxi s

f Yaxi s

f Zaxi s

f Bar Of f set
f Bar W dt h
fEntries

f Tsumwv

f Tsuma2

f Tsumax

f Tsumax2

f Maxi mnum
f M ni nrum
f Nor nFact or
f Cont our

f Sumv2
fOption

f Functi ons

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

Streanerlnfo for class:

TH1, version=3

of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0
of f set =0

TNaned,

type=67 The basis for nanmed object(nane,title)
type=0 Line attributes

type=0 Fill area attributes

type=0 Marker attributes

type=3 nunber bins(1D), cell s(2D)+U Overfl ows
type=61 X axi s descriptor

type=61 Y axi s descriptor

type=61 Z axi s descriptor

type=2 (1000*offset) for barcharts or |egos
type=2 (1000*wi dth) for bar charts or |egos
type=8 Nunber of entries//continued...

type=8 Total Sum of weights

type=8 Total Sum of squares of weights
type=8 Total Sum of weight*X

type=8 Total Sum of weight*X*X

type=8 Maxi mum value for plotting

type=8 M ni mum value for plotting

type=8 Nornmalization factor

type=62 Array to display contour |evels
type=62 Array of sum of squares of weights

t ype=65 hi st ogram opti ons

type=63 ->Pointer to list of functions(fits, use

ver si on=1

TAtt Li ne, version=1

TAttFill, version=1

TAt t Mar ker, versi on=1

TArrayF, version=1

TArray,

TAXi s,

ver si on=1

ver si on=6

TAtt AXi s, version=4

ROOT dlows aclass to have multiple versions, and each version has its own description in form of a
St r eaner | nf 0. Above you see the class name and version number. The St r eaner | nf olist has
only one description for each class/version combination it encountered. The file can have multiple
versions of the same class, for example objects of old and new versions of a class can be in the same
file. The St r eaner | nf oisdescribed in detail in the section on Streamers.

The List of Keys and the List of Free Blocks

Thelast three entries on the output of TFi | e: : Map() arethelist of keys, the list of free segments,
and the address where the data ends.. When afile is closed, it writes alinked list of keys at the end
of the file. Thisis what we see in the third to the last entry. In our example, the list of keysis stored
in 732 bytes beginning at byte# 8244.

20010404/ 092347
20010404/ 092347

At : 8244
At : 8976

N=732 KeysLi st
N=53 FreeSegnent s

215

I nput/Output

20010404/ 092347 At : 9029 N=1 END

Thesecondto last entry isalist of free segments. In our case, this starts 8976 and isnot very long, only
53 bytes, since we have not deleted any objects. Thelast entry isthe address of the last bytein thefile.

File Recovery

A file may become corrupted or it may be impossible to write it to disk and close it properly. For
exampleif thefileistoo large and exceeds the disk quota, or the job crashes or a batch job reaches its
time limit before the file can be closed. In these cases, it is imperative to recover and retain as much
information as possible. ROOT provides an intelligent and elegant file recovery mechanism using the
redundant directory information in the record header.

If afile that has been not properly closed is opened again, it is scanned and rebuilt according to the
information in the record header. The recovery algorithm readsthefile and creates the saved objectsin
memory according to the header information. It then rebuildsthe directory and file structure. If thefile
is opened in write mode, the recovery makes the correction on disk when the fileis closed; however if
thefileisopened in read mode, the correction can not bewritten to disk. Y ou can also explicitly invoke
the recovery procedure by callingthe TFi | e: : Recover () method. Y ou can recover the directory
structure, but you cannot save what you recovered to the file on disk. In the following example, we
interrupted and aborted the previous ROOT session, causing the file not to be closed. When we start a
new session and attempt to open thefilg, it gives us an explanation and status on the recovery attempt.

root[] TFile f("denn.root")
Warning in <TFile::TFile>: file denp.root probably not closed, trying to recove

The Logical ROOT File: TFile and TKey

We saw that the TFi | e: : Map() method reads the file sequentially and prints information about
each record while scanning thefile. It isnot feasible to support only sequential accessand hence ROOT
provides random or direct access, i.e. reading a specified object at atime. To do so, TFi | e keeps a
list of TKeys, which is essentially an index to the objects in the file. The TKey class describes the
record headers of objectsin the file. For example, we can get the list of keys and print them. To find
a specific object on the filewe can usethe TFi | e: : Get () method.

root[] TFile f("deno.root")
root[] f.CGetListOKeys()->Print()

TKey Name = hO, Title = histo nr:0, Cycle =1
TKey Name = hl, Title = histo nr:1, Cycle =1
TKey Name = h2, Title = histo nr:2, Cycle =1
TKey Name = h3, Title = histo nr:3, Cycle =1
TKey Name = h4, Title = histo nr:4, Cycle =1
TKey Name = h5, Title = histo nr:5, Cycle =1
TKey Name = h6, Title = histo nr:6, Cycle =1
TKey Name = h7, Title = histo nr:7, Cycle =1
TKey Name = h8, Title = histo nr:8, Cycle =1
TKey Name = h9, Title = histo nr:9, Cycle =1
TKey Name = h10, Title = histo nr:10, Cycle =1
TKey Name = hll, Title = histo nr:11, Cycle =1
TKey Name = h12, Title = histo nr:12, Cycle =1
TKey Name = h13, Title = histo nr:13, Cycle =1
TKey Name = h14, Title = histo nr:14, Cycle =1

root[] THIF *h9 = (THLF*)f.Get("h9");

TheTFi | e: : Get () findsthe TKey object with name "h9". Using the TKey info it will import in
memory the object in thefile at the file address #3352 (see the output from the TFi | e: : Map above).

216

I nput/Output

Thisisdone by the St r eanmer method that is covered in detail in alater section. Since the keys are
availableinaTLi st of TKeys we can iterate over the list of keys:

{
TFile f("deno.root");

Tlter next(f.GetListOKeys());

TKey *key;

while ((key=(TKey*)next())) {

printf("key: % points to an object of class: % at %n",
key- >Get Nane(),

key->Get Cl assNane(), key- >CGet SeekKey());

}

}

The output of this script is:

root[] .x iterate.C

key: hO points to an object of class: THIF at 150
key: hl points to an object of class: THLF at 503
key: h2 points to an object of class: THIF at 854
key: h3 points to an object of class: THIF at 1194
key: h4 points to an object of class: THLF at 1539
key: h5 points to an object of class: THLF at 1882
key: h6 points to an object of class: THLF at 2240
key: h7 points to an object of class: THLF at 2582
key: h8 points to an object of class: THLF at 2937
key: h9 points to an object of class: THLF at 3293
key: h10 points to an object of class: THLF at 3639
key: h1l points to an object of class: THLF at 3986
key: h12 points to an object of class: THLF at 4339
key: h13 points to an object of class: THLF at 4694
key: h14 points to an object of class: THLF at 5038

In addition to the list of keys, TFi | e also keeps two other lists: TFi | e: : f Free isa TLi st of
free blocks used to recycle freed up space in the file. ROOT tries to find the best free block. If a
free block matches the size of the new object to be stored, the object is written in the free block
and this free block is deleted from the list. If not, the first free block bigger than the object is used.
TFi | e: : f Li st Head contains a sorted list (TSor t edLi st) of objects in memory. The diagram
below illustrates the logical view of the TFi | e and TKey.

217

I nput/Output

Figure 11.2. ROOT File/Directory/Key description

ROOT File/Directory/Key description

TFlIe fFree = TList of free blocks

4{ First:Last H First:Last I—[>

fiKeys = TList of Keys

Key 0 Key 1 |—

Header

fListHead = TSortable of Objects in memory

Object |-~ SubDir Object

- 3 4
"’ - ’
,”’ /// "I
Lo - B
a=? P v :
: — : —Key 0}
Thodified: True iF tirectary is modified . . |
o ;. l
o - .

TWritable: True if directory is writable

. \
. v
1DatimeC: Creation DatefTime ¢ o B 2
g - Object]—
TDatimeM: Last mod DalefTime L . '
; L '
o . Y

THhytesKeys: Number of iytes of key

THhytesHame : Hezler lemglh up to Ltle

13eekDir: Start of Directory on file ,’f THhytes: Size of compressed Object
TOhjLen: Size of uncompressed Ohject
T3eekParent: 3lart of Parent Directory ~ _
TDatime: DatefTime when written 1o slore
TSeekKeys: Mointer lo Keys record . TKeylen: NHumber of bytes for the key
TCycle | Cycle number

T3eekkKey: Pointer 1o Dhjecl on file
T3eekPiir: Moinler to directory on file
TClasshName: TKey

THame: Ohject name

1Tiile: Object Title

Viewing the Logical File Contents

TFi | e is a descendent of TDi r ect ory, which means it behaves like a TDi r ect ory. We can
list the contents, print the name, and create subdirectories. In a ROOT session, you are adwaysin a
directory and the directory you areinis called the current directory and is stored in the global variable
gbhi rectory. Let uslook at a more detailed example of a ROOT file and its role as the current
directory. First, we create a ROOT file by executing a sample script.

root[] .x $ROOTSYS/tutorials/hsinple.C

Now you should have hsi npl e. r oot in your directory. The file was closed by the script so we
have to open it again to work with it. We open the file with the intent to update it, and list its contents.

root[] TFile f ("hsinple.root","UPDATE")
root[] f.ls()

TFi | e** hsi npl e. root

TFi | e* hsi npl e. r oot

KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Denb ntuple

218

I nput/Output

It shows the two lines starting with TFi | e followed by four lines starting with the word "KEY". The
four keystell usthat there are four objects on disk in thisfile. The syntax of thelisting is:

KEY: <cl ass> <vari abl e>; <cycl e nunber> <title>

For example, the first line in the list means there is an abject in the file on disk, called hpx. It is
of the class TH1F (one-dimensional histogram of floating numbers). The object's titleis"Thisis the
px distribution”. If the line starts with OBJ, the object isin memory. The <class> is the name of the
ROOT class (T-something). The <variable> is the name of the object. The cycle number along with
the variable name uniquely identifies the object. The <title> is the string given in the constructor of
the object astitle.

Figure 11.3. Thestructure of TFile

Cycle number
TFile (fop) A
/ | .
Y S e, AT -
‘ i_kaJi\:l_- { kObjA;2 | kOB T}—{ kCbiD; w_kOb]():]l

S mOEM [mOBE — mOkL | mObF |

(v N Directories
| KOLIG T kObH H{ kol |- BV [
o ' : SUbDI |

(ko) (KooK 1)

The figure shows a TFi | e with five objects in the top directory (kObj A; 1, kQObj A; 2,
kQbj B; 1, kObj C, 1 and kObj D; 1) . Obj Ais on file twice with two different cycle numbers.
It also shows four objects in memory (mObj E, nCbj eF, nCbj M mObj L). It also shows severa
subdirectories.

The Current Directory

WhenyoucreateaTFi | e object, it becomesthe current directory. Therefore, thelast file to be opened
is always the current directory. To check your current directory you can type:

root[] gDirectory->pwd()

Rint:/

Thismeans that the current directory isthe ROOT session (Ri nt). When you create afile, and repeat
the command the file becomes the current directory.

root[] TFile f1("AFilel.root");
root[] gDirectory->pwd()
AFi |l el. root:/

If you create two files, the last becomes the current directory.

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFi | e2. root : /

To switch back to thefirst file, or to switch to any filein general, you canusethe TDi r ect ory: : cd
method. The next command changes the current directory back to the first file.

219

I nput/Output

root[] f1.cd();
root[] gDirectory->pwd()
AFi | el. root:/

Note that even if you open thefilein "READ" mode, it still becomes the current directory. CINT also
offersashortcut for gbi r ect or y- >pwd() and gDi r ect ory- >l s(), you can type:

root[] .pwd

AFilel.root:/

root[] .Is

TFi | e** AFi | el. r oot
TFi | e* AFi | el. r oot

To return to the home directory where we were before:

root[] gROOT->cd()
(unsi gned char)1
root[] gROOT->pwd()
Rint:/

Objects in Memory and Objects on Disk

TheTFi | e: : 1 s() method has an option to list the objects on disk ("- d") or the objects in memory
("- m). If no option is given it lists both, first the objects in memory, then the objects on disk. For
example:

root[] TFile *f = new TFile("hsinple.root");
root[] gDirectory->ls("-nt)
TFi | e** hsi npl e. r oot
TFi | e* hsi npl e. r oot

Remember that gDi r ect ory is the current directory and at this time is equivalent to "f ". This
correctly states that no objects are in memory.

The next command lists the objects on disk in the current directory.

root[] gDirectory->ls("-d")

TFi | e** hsi npl e. r oot

TFi | e* hsi npl e. r oot

KEY: THLF hpx; 1 This is the px distribution
KEY: TH2F hpxpy; 1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Denp ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly. When we use the
object, ROOT getsit for us. Any referenceto hpr of will read it from the file. For example drawing
hpr of will read it from the file and create an object in memory. Here we draw the profile histogram,
and then we list the contents.

root[] hprof->Draw()

<TCanvas: : MakeDef Canvas>: created default TCanvas with name cl
root[] f->ls()

TFi | e** hsi npl e. root

TFi | e* hsi npl e. r oot

OBJ: TProfile hprof Profile of pz versus px : 0

220

I nput/Output

KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy; 1l py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class TPr of i | e, called
hpr of hasbeen added in memory to thisdirectory. Thisnew hpr of in memory isindependent from
the hpr of on disk. If we make changes to the hpr of in memory, they are not propagated to the
hpr of ondisk. A new version of hpr of will be saved oncewecall Wi t e.

You may wonder why hpr of is added to the objects in the current directory. hpr of is of the
class TPr of i | e that inherits from THLD, which inherits from THL1. TH1 is the basic histogram.
All histograms and trees are created in the current directory (also see "Histograms and the Current
Directory"). The reference to "all histograms" includes objects of any class descending directly or
indirectly from THL. Hence, our TPr of i | e hpr of iscreated in the current directory f . There was
another side effect when we called the THL: : Dr aw method. CINT printed this statement:

<TCanvas: : MakeDef Canvas>: created default TCanvas with nanme cl

It tellsusthat aTCanvas was created and it named it c1. Thisis where ROOT is being nice, and it
creates a canvas for drawing the histogram if no canvas was named in the draw command, and if no
active canvas exists. The newly created canvas, however, isNOT listed in the contents of the current
directory. Why is that? The canvas is nhot added to the current directory, because by default ONLY
histograms and trees are added to the object list of the current directory. Actually, TEvent Li st
objects are al'so added to the current directory, but at this time, we don't have to worry about those.
If the canvasis not in the current directory then where is it? Because it is a canvas, it was added to
thelist of canvases.

Thislist can be obtained by the command gROOT- >Get Li st OF Canvases() - >l s().Thel s()
will print the contents of the list. In our list, we have one canvas caled c1. It has a TFr ane, a
TProfil e,andaTPaveSt at s.

root[] gROOT->Cet Li st Of Canvases()- >l s()

Canvas Name=cl Title=cl

Opt i on=TCanvas f Xl owNDC=0 f Yl owNDC=0 fWADC=1 f HNDC=1

Name= cl1 Title= cl

Opti on=TFrane Xl1= -4.000000 Y1=0. 000000 X2=4. 000000 Y2=19. 384882
OBJ: TProfile hprof Profile of pz versus px : O

TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
TPaveSt ats X1=2. 800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

L ets proceed with our example and draw one more histogram, and we see one more OBJ entry.

root[] hpx->Draw()
root[] f->ls()

TFi | e** hsi mpl e. r oot

TFi | e* hsi mpl e. r oot

OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THLF hpx This is the px distribution : O
KEY: TH1F hpx; 1 This is the px distribution
KEY: TH2F hpxpy; 1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Denp ntuple

TFi |l e: : 1 s() loopsover thelist of objectsin memory and the list of objects on disk. In both cases,
it callsthel s() method of each object. The implementation of thel s method is specific to the class
of the object, al of these objects are descendants of TCbj ect and inherit the TCbj ect: : | s()

221

I nput/Output

implementation. The histogram classes are descendants of TNaned that in turn is a descent of
TObj ect . Inthiscase, TNaned: : | s() is executed, and it prints the name of the class, and the
name and title of the object. Each directory keeps alist of its objectsin the memory. Y ou can get this
lissby TDi rect ory: : Get Li st () . Toseethelistsin memory contents you can do:

root[]f->GetList()->Is()
OBJ: TProfile hpr of Profile of pz versus px : O
OBJ: THLF hpx This is the px distribution : O

Sincethefilef isthe current directory (gDi r ect or y), thiswill yield the same resullt:

root[] gDirectory->GetList()->ls()
OBJ: TProfile hpr of Profile of pz versus px : O
OBJ: THLF hpx This is the px distribution : O

Saving Histograms to Disk

At thistime, the objectsin memory (OBJ) areidentical to the objectson disk (KEY). Let's change that
by adding afill to the hpx we havein memory.

root[] hpx->Fill (0)

Now the hpx in memory is different from the histogram (hpx) on disk. Only one version of the
object can be in memory, however, on disk we can store multiple versions of the object. The
TFi | e: : Wit e method will write the list of objects in the current directory to disk. It will add a
new version of hpx and hpr of .

root[] f->Wite()
root[] f->ls()

TFi | e** hsi npl e. r oot

TFi | e* hsi npl e. r oot

OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THLF hpx This is the px distribution : O
KEY: THLF hpx;2 This is the px distribution

KEY: THLF hpx; 1 This is the px distribution
KEY: TH2F hpxpy; 1 py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Deno ntupl e

Figure 11.4. Thefile before and after thecall toWit e

hsimple.roof Legend

| 15 on Disk
|

Hhpxt —{hppyi —{hprof.1 j—':r.mme_: 1) kowii)
h[_x _I:h;,.-l-.,.--:i:‘f_ . ' Ob} 1:?ir| Iermaory
— ' Db
Cirectoes
|
| ':’hli-‘XfT -,':h;::-X;::-N} (hpref1) nfupls:) Iih;:-x:Q | (hpref:2)

(= :'.h[:-r-:.--:.-f |

222

I nput/Output

TheTFi | e: : Wi t e method wrote the entire list of objects in the current directory to thefile. You
see that it added two new keys: hpx; 2 and hpr of ; 2 to the file. Unlike memory, afileis capable
of storing multiple objects with the same name. Their cycle number, the number after the semicolon,
differentiates objects on disk with the same name. If you wanted to save only hpx to the file, but not
the entire list of objects, you could usethe THL: : Wit e method of hpx:

root[] hpx->Wite()

A cdl toobj - >W i t e without any parameterswill call obj - >Get Nane() tofind the name of the
object and use it to create a key with the same name. Y ou can specify a new name by giving it as a
parameter to the W i t e method.

root[] hpx->Wite("newNane")

If you want to re-write the same object, with the same key, use the overwrite option.

root[] hpx->Wite("", TCbject:: kOverwite)

If you give a new name and use the kOver wri t e, the object on disk with the matching name is
overwritten if such an object exists. If not, a new object with the new name will be created.

root[] hpx->Wite("newNane", TObj ect:: kQverwrite)

The Wi t e method did not affect the objects in memory at all. However, if the file is closed, the
directory is emptied and the objects on the list are del eted.

root[] f->Cl ose()

root[] f->ls()

TFi | e** hsi npl e. r oot
TFi | e* hsi npl e. r oot

In the code snipped above, you can see that the directory is now empty. If you followed along so far,
you can see that ¢ 1 which was displaying hpx is now blank. Furthermore, hpx no longer exists.
root[] hpx->Draw()

Error: No symbol hpx in current scope

Thisisimportant to remember, do not close the file until you are done with the objects or any attempt
to reference the objects will fail.

Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objectsin the current directory. You
can get thelist of histogramsin a directory and retrieve a pointer to a specific histogram.

THLF *h
THLF *h

(TH1F*)gDirectory->CGet ("nmyHist"); // or
(TH1F*) gDi rect ory- >Cet Li st () - >Fi ndOoj ect (" myHi st");

The method TDi rect ory: : Get Li st () returnsa TLi st of objects in the directory. You can
change the directory of a histogram with the Set Di r ect or y method.

223

I nput/Output

h->Set Directory(newDir) ;

If the parameter is 0, the histogram is no longer associated with a directory.

h->Set Di rect ory(0) ;

Once a histogram is removed from the directory, it will no longer be deleted when the directory is
closed. It is now your responsibility to delete this histogram object once you are finished with it. To
change the default that automatically adds the histogram to the current directory, you can call the
static function:

TH1: : AddDi r ect or y(kKFALSE) ;

In this case, you will need to do all the bookkeeping for all the created histograms.

Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file. For
example to save a canvas to the ROOT file you can use either TChject:: Wite() or
TDirectory:: WiteTCObject().Theexample:

root[] cl->Wite()

Thisisequivaent to:

root[] f->WiteTObject(cl)

For objects that do not inherit from TCbj ect use:

root[] f->WiteObject(ptr,"naneofobject")

Anot her exanpl e:

root[] TFile *f = new TFil e("hsinpl e.root", " UPDATE")

root[] hpx->Draw()

<TCanvas: : MakeDef Canvas>: created default TCanvas with nanme cl
root[] cl->Wite()

root[] f->ls()

TFi | e** hsi npl e. r oot

TFi | e* hsi npl e. r oot

OBJ: THLF hpx This is the px distribution : O
KEY: THL1F hpx; 2 This is the px distribution

KEY: THL1F hpx; 1 This is the px distribution

KEY: TH2F hpxpy; 1 py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1l Denp ntupl e

KEY: TCanvas cl;1 cl

Saving Collections to Disk

All collection classes inherit from TCollection and hence inherit the
TCol | ection:: Wite() method. When you call TCol | ection:: Wite() each object in

224

I nput/Output

the container is written individually into its own key in the file. To write al objects into one key you
can specify the name of the key and usethe option TQhj ect : : kSi ngl eKey. For example:

root[] TList * |ist = new TList;
root[] TNaned * nl, * n2;
root[] nl = new TNaned("nanmel","titlel");
root[] n2 = new TNaned("name2","title2");
root[] list->Add(nl);
root[] list->Add(n2);

]

r oot [

A TFile Object Going Out of Scope

There is another important point to remember about TFi | e: : Cl oseand TFi | e: : Wit e. When
avariable is declared on the stack in a function such as in the code below, it will be deleted when
it goes out of scope.

gFile->WiteObject(list,"list", TObject::kSingl eKey);

void foo() {
TFile f("AFile.root", " RECREATE");
}

Assoon asthe function f oo hasfinished executing, the variablef isdeleted. WhenaTFi | e object
isdeleted an implicit call to TFi | e: : Cl ose ismade. Thiswill save only the file descriptor to disk.
It contains the file header, the St r eaner | nf o list, the key list, the free segment list, and the end
address. See "The Physical Layout of ROOT Files'. The TFi | e: : C ose does not make a call to
Wit e(),whichmeansthat the objectsin memory will not be savedinthefile. Y ou need to explicitly
cal TFil e:: Wi te() tosavetheobject in memory to file before the exit of the function.

void foo() {
TFile f("AFile.root", " RECREATE");
..stuff ..
f.Wite();

}

To prevent an object in afunction from being deleted when it goes out of scope, you can create it on
the heap instead of on the stack. Thiswill createaTFi | e object f , that isavailable on aglobal scope,
and it will still be available when exiting the function.

void foo() {
TFile *f = new TFile("AFil e.root", " RECREATE") ;

}
Retrieving Objects from Disk

If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name could be in a ROOT file. In our
example, we saved a modified histogram hpx to the file, which resulted in two hpx' s uniquely
identified by the cycle number: hpx; 1 and hpx; 2. The question is how we can retrieve the right
version of hpx. When opening the file and using hpx, CINT retrieves the one with the highest cycle
number. To read the hpx; 1 into memory, rather than the hpx: 2 we would get by default, we have
to explicitly get it and assign it to avariable.

225

I nput/Output

root[] TFile *f1 = new TFile("hsinple.root")
root[] THLF *hpx1l; f1->CGet Qoject("hpx; 1", hpx)
root[] hpx1l->Draw)

Subdirectories and Navigation

The TDi rectory class lets you organize its contents into subdirectories, and TFi | e being
a descendent of TDi r ect ory inherits this ability. Here is an example of a ROOT file with
multiple subdirectories as seen in the ROOT browser. To add a subdirectory to a file use
TDi rectory: : mkdi r . The example below opens the file for writing and creates a subdirectory
called "Wed011003". Listing the contents of the file shows the new directory in the file and the
TDi r ect or y object in memory.

root[] TFile *f = new TFile("AFile.root", " RECREATE")
root[] f->nkdir("Wd011003")
(class TDirectory*)0x1072b5c8

root[] f->ls()

TFi | e** AFi | e. r oot
TFi | e* AFi | e. r oot
TDi r ect ory* Wed011003 Wed011003
KEY: TDirectory Wed011003; 1 Wed011003

We can change the current directory by navigating into the subdirectory, and after changing directory;
we can seethat gDi r ect ory isnow "Wd011003".

root[] f->cd("Wed011003")
root[] gDirectory->pwd()
AFi | e. root:/Wd011003

In addition to gDi r ect ory we have gFi | e, another global that points to the current file. In our
example, gDi r ect or y points to the subdirectory, and gFi | e points to the file (i.e. the files top
directory).

root[] gFile->pwd()
AFi | e.root :/

Usecd() without any arguments to return to the file's top directory.

root[] f->cd()
AFi |l e. root :/

Change to the subdirectory again, and create a histogram. It is added to the current directory, which
isthe subdirectory "Wed011003".

root[] f->cd("Wed011003")

root[] THLF *histo = new TH1F("hi sto", "hi sto", 10, 0, 10)
root[] gDirectory->ls()

TDi rect ory* Wed011003 Wed011003

OBJ: THLF hi sto histo : O

226

I nput/Output

If you are in a subdirectory and you want to have a pointer to the file containing the subdirectory,
you can do:

root[] gDirectory->GetFile()

If you are in the top directory gDi r ect ory is the same as gFi | e. We write the file to save the
histogram on disk, to show you how to retrieve it later.

root[] f->Wite()
root[] gDirectory->ls()

TDi rect or y* Wed011003 Wed011003
OBJ: THIF hi sto histo : O
KEY: THLF histo;1 histo

When retrieving an object from a subdirectory, you can navigate to the subdirectory first or giveit the
path name relative to the file. The read object is created in memory in the current directory. In this
first example, we get hi st o from the top directory and the object will be in the top directory.

root[] THL *h; f->Get Object ("Wed011003/ histo; 1", h)

If fileis written, a copy of hi st o will be in the top directory. This is an effective way to copy an
object from one directory to another. In contrast, in the code box below, hi st o will be in memory
in the subdirectory because we changed the current directory.

root[] f->cd("Wed011003")
root[] TH1 *h; gDirectory->Get Qbject("histo; 1", h)

Note that there is no warning if the retrieving was not successful. Y ou need to explicitly check the
value of h, and if it is null, the object could not be found. For example, if you did not give the path
name the histogram cannot be found and the pointer to h is null:

root[] TH1 *h; gDirectory->Cet Cbj ect ("Wed011003/ hi sto; 1", h)
root[] h

(class TH1*)0x10767de0

root[] TH1 *h; gDirectory->Get Cbject("histo; 1", h)

root[] h

(class TH1*) 0x0

To remove a subdirectory you need to use TDirectory::Delete. There is no
TDi rectory: : rmdir. The Delete method takes a string containing the variable name and cycle
number as a parameter.

voi d Del ete(const char *nanecycl e)
Thenanecycl e string hasthe format name; cycl e. The next are some rules to remember:
* nane =* meansall, but don't remove the subdirectories

e cycl e = meansall cycles (memory and file)

» cycl e ="" means apply to amemory object

» cycl e =9999 aso means apply to a memory object

e nanecycl e ="" meansthe sameasnanecycl e ="T*"

227

I nput/Output

e nanecycl e = T* delete subdirectories

For example to delete a directory from afile, you must specify the directory cycle:

root[] f->Delete("Wed011003;1")

Some other examples of nanmecycl e format are:

 f 00:delete the object named f oo from memory

» f00; 1: delete the cycle 1 of the object named f oo from the file

» foo; *: deletedl cyclesof f oo from thefile and also from memory

*; 2: delete all objects with cycle number 2 from thefile
o *;*: del et e al objectsfrom memory and from thefile

o T*; *: delete all objects from memory and from the file including all subdirectories

Streamers

To follow the discussion on St r eamer s, you need to know what a simple data type is. A variable
is of asimple data type if it cannot be decomposed into other types. Examples of simple data types
are longs, shorts, floats, and chars. In contrast, a variable is of a composite data type if it can be
decomposed. For example, classes, structures, and arrays are composite types. Simple types are also
called primitive types, basic types, and CINT sometimes calls them fundamental types.

When we say, "writing an object to afile", we actually mean writing the current values of the data
members. The most common way to do thisisto decompose (also called the serialization of) the object
into its data members and write them to disk. The decomposition isthe job of the St r eaner . Every
class with ambitions to be stored in a file has a St r eaner that decomposes it and "streams' its
membersinto a buffer.

The methods of the class are not written to the file, it contains only the persistent data members.
To decompose the parent classes, the St r eaner calls the St r eaner of the parent classes. It
moves up theinheritance tree until it reaches an ancestor without a parent. To serialize the object data
membersit calstheir St r eaner . They in turn move up their own inheritance tree and so forth. The
simple data members are written to the buffer directly. Eventually the buffer contains all ssimple data
members of all the classes that make up this particular object. Data members that are references (as
MyCl ass &f Qbj ;) are never saved, it is aways the responsibility of the object's constructor to set
them properly.

Automatically Generated Streamers

A Streamer usudly calls other St reaner s: the St r eaner of its parents and data members.
This architecture depends on all classes having St r eaner s, because eventually they will be called.
To ensure that a class has a St r ean®er, r oot ci nt automatically creates one in the O assDef

macro that is defined in $ROCTSYS/ i ncl ude/ Rt ypes. h. O assDef defines severa methods
for any class, and one of themisthe St r eaner . Theautomatically generated St r eaner iscomplete
and can be used as long as no customization is needed.

The Event class is defined in $ROOTSYS/ t est / Event . h. Looking at the class definition, we
find that it inherits from TObj ect . It isasimple example of a class with diverse data members.

class Event : public TObject {

228

I nput/Output

private:
TDi rectory *f Transi ent ; /[I! current directory
Fl oat _t fPt; /1! transient val ue

char f Type[20] ;

Int t f Nt rack;

Int _t f Nseg;

Int t f Nvert ex;

U nt_t f Fl ag;

Fl oat _t f Tenper at ur e;

Event Header f Evt Hdr ; [/]|] don't split

TCl onesArray *fTracks; []->

THLF *fH; /]->

Int _t f Measur es[10] ;

Fl oat _t fMatrix[4][4];

Fl oat _t *fCl osest Di stance; //[fNvertex]

The Event class is added to the CINT dictionary by ther oot ci nt utility. Thisisther oot ci nt
statement in the SROOTSYS/ t est / Makefi | e:

@ootcint -f EventDi ct.cxx -c Event.h EventLi nkDef. h

TheEvent Di ct . cxx file contains the automatically generated St r eaner for Event:

void Event:: Streamer(TBuffer &R b){
/1 Stream an object of class Event.
if (R_b.IsReading()) {
Event :: d ass()->ReadBuffer(R__b, this);
} else {
Event::d ass()->WiteBuffer(R b, this);
}
}

When writing an Event object, TCl ass: : Wi teBuffer iscaled. Wit eBuf f er writes the
current version number of theEvent cl ass, anditscontentsintothebuffer R__b. TheSt r eaner
cals TA ass: : ReadBuf f er when reading an Event object. The ReadBuf f er method reads
theinformation from buffer R__b into the Event object.

Transient Data Members (/')

To prevent a data member from being written to the file, insert a"! " as the first character after the
comment marks. It tells ROOT not to save that data member in aroot file when saving the class. For
example, in thisversion of Event, thef Pt and f Tr ansi ent data members are not persistent.

class Event : public TObject {

private:
TDi rectory *f Tr ansi ent ; /1! current directory
Fl oat _t fPt; /1! transient val ue

The Pointer to Objects (//->)

The string "- >" in the comment field of the members *f Hand *f Tr acks instruct the automatic
St r eaner to assume these will point to valid objects and the St r earrer of the objects can be
called rather than the moreexpensive R__ b << f H. It isimportant to note that no check is done on

229

I nput/Output

the validity of the pointer value. In particular if the pointer points, directly or indirectly, back to the
current object, thiswill result in an infinite recursion and the abrupt end of the process.

TC onesArray *fTracks; []->
THLF *fH; /] ->

Variable Length Array

Whenthe St r eanmer comes across a pointer to asimple type, it assumesit is an array. Somehow, it
has to know how many elements are in the array to reserve enough space in the buffer and write out
the appropriate number of elements. Thisis done in the class definition. For example:

cl ass Event : public TObject {

private:

char f Type[20] ;

Int t f Nt rack;

Int _t f Nseg;

Int t f Nvertex;

Fl oat _t *f Cl osest Di st ance; [1]fNvertex]

Thearray f Cl osest Di st ance isdefined as a pointer of floating point numbers. A comment mark
(/)), and the number in square brackets tell the St r eaner the length of the array for this object. In
genera the syntax is:

<si npl e type> *<nanme>//[<l engt h>]

The length cannot be an expression. If avariable isused, it needsto be an integer data member of the
class. It must be defined ahead of its use, or in abase class.

The same notation also applies to variable length array of object and variable length array of pointer

to objects.

MyQbj ect *obj; //[fNojbs]
MyQbj ect **objs; //][fDatas]

Double32_t

Math operations very often require double precision, but on saving single usually precision is
sufficient. For this purpose we support the typedef Double32_t which is stored in memory as adouble
and on disk as a float or interger. The actual size of disk (before compression) is determined by the
parameter next to the data member declartion. For example:

Doubl e32_t m dat a; /[m n, max<, nbi t s>]

If the comment is absent or does not contain m n, max, nbit, the nenber is saved as
a fl oat.

I f m n and max are present, they are saved as a 32 hits precision. m n and nax can be explicit
values or be expressions of values known to CINT (e.g. "pi ") .

I f nbits ispresent, the member issaved asi nt with 'nbi t '. For more details see theio tutorials
doubl e32. C.

230

I nput/Output

Figure 11.5. Compression and precision of Double32 t

| Double32_t compression and precision I
16
14:\
121
L Number of significative: digits ;'
10 /\\.\
SIlASAE
B ¥
C T /(
61
u e O
4" e
- Compression factor /.-+li<_\
2 /l—++++—l/ =
0

fD64 fF32 fi32 fi30 fi28 fi26 fiz4 fi22 fiz0 fi18 fl16 fil4 12 fi10 fi8 M6 fi4 A2

Prevent Splitting (/]|)

If you want to prevent adata member from being split when writing it to atree, append the characters
|| right after the comment string. This only makes sense for object data members. For example:

Event Header f Evt Hdr ; //||] do not split the header

Streamers with Special Additions

Most of thetimeyou canletr oot ci nt generateaSt r eaner for you. However if you want to write
your own St r eaner you can do so. For some classes, it may be necessary to execute some code
before or after the read or write block in the automatic St r eaner . For example after the execution
of the read block, one can initialize some non persistent members. There are two reasons why you
would need to write your own Streamer: 1) if you have anon-persistent data member that you want to
initialize to avalue depending on the read data members; 2) if you want or need to handle the schema
evolution on your own. In addition, the automatic St r eaner does not support C-structures. It is
best to convert the structure to a class definition.

First, you need to tell r oot ci nt not to build a St r eaner for you. The input to ther oot ci nt
command (inthemakef i | e)isalist of classesinaLi nkDef . h file. For example, thelist of classes
for Event islisted in BROOTSYS/ t est / Event Li nkDef . h. The"- " at the end of the class name
tellsr oot ci nt not to generate a St r eaner . In the example, you can see the Event classisthe
only onefor whichr oot ci nt isinstructed not to generate a St r eaner .

#ifdef __CINT__

#pragma |ink off all gl obals;

#pragma |ink off all classes;

#pragma |ink off all functions;

#pragma | i nk C++ cl ass Event Header +;
#pragma | i nk C++ cl ass Event-;

#pragma | i nk C++ cl ass Hi st ogr amVanager +;
#pragma | i nk C++ cl ass Track+;

231

I nput/Output

#endi f
#pragma | i nk C++ cl ass Event Header +;

The "+" sign tellsr oot ci nt to use the new St reaner system introduced in ROOT 3.0. The
following isan example of acustomized St r eaner for Event . The St r eaner takesaTBuf f er
as a parameter, and first checks to seeif thisis a case of reading or writing the buffer.

void Event:: Streamer(TBuffer &R _b) {
if (R_b.lIsReading()) {
Event:: Cl ass()->ReadBuffer(R__b, this);

f Transi ent = gDirectory; //save current directory
fPt= TMath:: Sgrt (fPx*fPx + fPy*fPy + fPz*fPz);
} else {

Event::Cl ass()->WiteBuffer(R __b, this);
}
}

Writing Objects

The St r eanmer decomposes the objects into data members and writes them to a buffer. It does not
write the buffer to afile, it ssmply populates a buffer with bytes representing the object. Thisallows us
to write the buffer to afile or do anything else we could do with the buffer. For example, we can write
it to a socket to send it over the network. Thisis beyond the scope of this chapter, but it isworthwhile
to emphasize the need and advantage of separating the creation of the buffer from its use. Let uslook
how a buffer is written to a file. The dictionary for a class needs to be loaded before any object of
that type can be saved.

The TChj ect : : Wi t e method does the following:

» Creates a TKey object in the current directory

» Createsa TBuf f er object which is part of the newly created TKey

» Fillsthe TBuf f er withacall tothecl ass: : St r eamer method

 Creates a second buffer for compression, if needed

» Reserves space by scanning the TFr ee list. At this point, the size of the buffer is known.
» Writes the buffer to thefile

» Releasesthe TBuf f er part of the key

In other words, the TCbj ect : : Wi t e callsthe St r eamer method of the class to build the buffer.
The buffer isin the key and the key iswritten to disk. Once written to disk the memory consumed by
the buffer part isreleased. The key part of the TKey is kept.

Figure 11.6. A diagram of a streamed TH1F in the buffer

(TH1F (TH1 (TNamed) (TAttLine) (TAttMarker) (TAxis (TNamed) (TAttAxis)) (TAxis (TNamed) (TAttAxis)) (TAxis (TNamed) (TAttAxis)))(TArrayF))

| THF |

| TH ‘ TAnayﬁ

H TNamed || TAttLine ||TAtha[ker H Thxis ‘ |TAst | ITAx\s |

‘ ‘TNamed ||TAt1Axis ‘ ‘ ITNamed HTAnAxis | | ’TNamed HTAttAxis |

The key consumes about 60 bytes, whereas the buffer, since it contains the object data, can be very
large.

232

I nput/Output

Ignore Object Streamers

Y our class can ignore the TObj ect St r eamer with the
MyCl ass->Cl ass: : 1 gnoreCbj ect St reaner () method. When the class
kl gnor eTObj ect St reamer bitisset (by callingthel gnor eTCbj ect St r eaner method) ,
the automatically generated St r eamer will not call TObj ect : : St r eamer, and the TObj ect
part of the classis not streamed to the file. Thisisuseful in case you do not usethe TCbj ect fBits
and f Uni quel D data members. You gain space on the file, and you do not loose functionality if
you do not usethef Bi t s and f Uni quel D. See“The Role of TObject” ontheuseof f Bi t s and
f Uni quel D.

Streaming a TClonesArray

When writing a TC onesArray it bypasses by default the Streanmer of the member
class and uses a more efficient internal mechanism to write the members to the file. You can
override the default and specify that the member class Streaner is used by setting the
TC onesArray: : BypassSt reaner bittofalse:

TC onesArray *fTracks;
f Tracks- >BypassStr eanmer (KFALSE) ; /] use the menber Streamer

When the kBypass St r eamer bit is set, the automatically generated St r eamer can call directly
the method Td ass:: Wit eBuffer. Bypassing the St reamer improves the performance
when writing/reading the objects in the TCl onesArray. However, the drawback is when a
TC onesArray iswrittenwithspl i t =0 bypassing the St r eaner , the St r eaner | nf o of the
classin the array being optimized, one cannot later usethe TCl onesArray withsplit > 0. For
example, there is a problem with the following scenario: aclass Foo hasaTCl onesAr r ay of Bar
objects the Foo object iswritten with spl i t =0 to Tr ee T1. Inthis case the St r eamner | nf o for
the class Bar is created in optimized mode in such a way that data members of the same type are
written as an array improving the I/O performance. In anew program, T1 isread and anew Tr ee T2
is created with the object Foo insplit > 1.

When the T2 branch is created, the St r eaner | nf o for the class Bar is created with no
optimization (mandatory for the split mode). The optimized Bar St r eaner | nf 0 is going to be
used to read the TCl onesArray in T1. The result will be Bar objects with data member values
not in the right sequence. The solution to this problem is to call BypassSt r eaner (KFALSE)
for the TCl onesAr r ay. In this case, the normal Bar : : St r eaner function will be called. The
Bar:: Streaner function works OK independently if the Bar Streanerinfo had been
generated in optimized mode or not.

Pointers and References in Persistency

An object pointer asadatamember presents achallenge to the streaming software. If the obj ect pointed
toissaved every time, it could create circular dependenciesand consume alarge amount of disk space.
The network of references must be preserved on disk and recreated upon reading the file.

If you use independent 1/0O operations for pointers and their referenced objects you can use the TRef
class. Later in this section is an example that compares disk space, memory usage, and 1/O times of
C++ pointers and TRef s. In general, a TRef isfaster than C++ but the advantage of a C++ pointer
isthat it isalready C++.

Streaming C++ Pointers

When ROOT encounters a pointer data member it calls the St r eamer of the object and labels it
with aunique object identifier. The object identifier is unique for one 1/0 operation. If thereis another
pointer to the object in the same /O operation, the first object is referenced i.e. it is not saved again.
When reading the file, the object is rebuilt and the references recal culated.

233

I nput/Output

Figure 11.7. Streaming object pointers

memory

= °
TObJ_B T’obJ_C " TFile
A *fA, write
2 ﬁea | L0bi_B(obi_AID), ob_C(ID) |
obj_A

In this way, the network of pointers and their objects is rebuilt and ready to use the same way it was
used before it was persistent. If the pointer hold the address of an object which in embedded in another
object (as opposed to being pointed to by a pointer), the object will be duplicate at read time. To avoid
this, make the pointer a transient data member.

Motivation for the TRef Class

If the object is split into several files or into several branches of one or more TTr ees, standard C+
+ pointers cannot be used because each 1/O operation will write the referenced objects, and multiple
copieswill exist. Inaddition, if the pointer isread before the referenced object, it isnull and may cause
arun time system error. To address these limitations, ROOT offersthe TRef class.

TRef alowsreferencing an object in adifferent branch and/or in adifferent file. TRef also supports
the complex situation where a TFi | e is updated multiple times on the same machine or a different
machine. When a TRef isread beforeitsreferenced object, it isnull. As soon asthe referenced object
isread, the TRef pointstoit. In addition, one can specify an action to be taken by TRef in the case
it is read before its reference object (see” Action on Demand” below).

Using TRef

A TRef isalightweight object pointing to any TCbj ect . This object can be used instead of normal
C++ pointersin case:

» Thereferenced object R and the pointer P are not written to the same file
* Pisread beforeR
* Rand P arewritten to different Tree branches

Below isaline from the example in $ROOTSYS/ t est / Event . cxx.

TRef f Last Tr ack; //pointer to |ast track

Track *track = (Track*)fTracks->ConstructedAt (f Nt rack++);
track->Set (random ;

[/l Save reference to last Track in the collection of Tracks
fLast Track = track;

Thetrack and itsreference f Last Tr ack can be written with two separate 1/0 calls in the same
or in different files, in the same or in different branches of a TTr ee. If the TRef is read and the
referenced object has not yet been read, TRef will return a null pointer. As soon as the referenced
object will beread, TRef will point to it.

How Does It Work?

A TRef isitself aTCbj ect withanadditional transient pointer f PI D. WhenaTRef isused to point
toaThj ect *R, for examplein aclasswith

234

I nput/Output

TRef P,

one can do:

P=R //to set the pointer

When the statement P = R is executed, the following happens:

» Thepointer f Pl Disset to the current TPr ocessl D (see bel ow) .

» Thecurrent Obj ect Nunber (see below) isincremented by one.

* R fUni quel Dissetto Obj ect Nunber .

* Inthef Pl Dobject, the element f Obj ect s[Obj ect Nunber] issettoR
e P.fUni quel Disalso set to Obj ect Nunber .

After having set P, one canimmediately return the value of Rusing P. Get Qbj ect () . Thisfunction
returnsthe f Qbj ect s[f Uni quel D] fromthef Pl D object.

Whenthe TRef iswritten, the processid number pi df of f PI Diswrittenin additiontothe TCbj ect
part of the TRef (f Bi t s, f Uni quel D). Whenthe TRef isread, itspointer f Pl Dis set to the value
storedinthe TObj Array of TFi |l e: : f Processl Ds (f Processl| Ds[pi df]).

When a referenced object is written, TCbj ect : : St r eaner writes the pi df in addition to the
standard fBits and f Uni quel D. When TOhj ect : : Streaner reads a reference object,
the pi df is read. At this point, the referenced object is entered into the table of objects of the
TPr ocess| Dcorresponding to pi df .

WARNING: If Myd ass isthe class of the referenced object, The TObj ect part of MyCl ass must
be streamed. One should not call Myl ass: : O ass() - >l gnoreTObj ect Streaner ().

TProccessID and TUUID

A TPr ocess| Duniquely identifiesaROOT job. TheTPr ocess| Dtitleconsistsof aTUUI Dobject,
which provides a globally unique identifier. The TUUI D class implements the UUID (Universally
Unique Identifier), also known as GUID (Globally Unique Identifier). A UUID is 128 bits long, and
if generated according to this algorithm, is either guaranteed to be different from all other UUID
generated until 3400 A.D. or extremely likely to be different.

The TROOT constructor automatically createsa TPr ocessl D. When aTFi | e contains referenced
objects, the TPr ocess| D object is written to the file. If afile has been written in multiple sessions
(same machine or not), a TPr ocessl Dis written for each session. The TPr ocess| D objects are
used by TRef to uniquely identify the referenced TObj ect .

When areferenced object is read from afile (its bit kI sRef er enced is set), this object is entered
into the objects table of the corresponding TPr ocessl D. Each TFi | e hasalist of TPr ocessl Ds
(see TFi | e: : f Processl Ds) also accessible from TProcessl D:: fgPl Ds (for al files).
When this object is deleted, it is removed from the table via the cleanup mechanism invoked by the
TObj ect destructor. Each TPr ocessl Dhasatable (TCbj Array *f Obj ect s) that keeps track
of all referenced objects. If areferenced object hasaf Uni quel D, apointer to this unique object may
be found using f Cbj ect s- >At (f Uni quel D) . In the same way, when a TRef : : Get Obj ect
is called, Get Obj ect usesits own f Uni quel D to find the pointer to the referenced object. See
TProcesslI D: : Get Ohj ect Wt hl Dand Put Gbj ect Wt hil D.

Object Number

When an object is referenced, a unique identifier is computed and stored in both the f Uni quel D
of the referenced and referencing object. This uni quel D is computed by incrementing by

235

I nput/Output

one the static global in TProcessl D: : f gNunber. The f Uni quel D is the serial object
number in the current session. One can retrieve the current f gNunber value by calling the
static function TProcessl| D: : Get Obj ect Count at any time or can set this number by
TPr ocessl D: : Set Ohj ect Count . To avoid a growing table of f Cbj ect s in TProcessl D,
in case, for example, one processes many events in aloop, it might be necessary to reset the object
number at the end of processing of one event. See an example in SROOTSYS/ t est / Event . cxx
(look at function Bui | d). Thevalueof Cbj ect Nunber may be saved at the beginning of one event
and reset to thisoriginal value at the end of the event. These actions may be nested.

saveNunber = TProcessl D: : Get Obj ect Count () ;

TProcessl D: : Set Obj ect Count (savedNumnber) ;

Action on Demand

The normal behavior of a TRef has been described above. In addition, TRef supports "Actions on
Demand". It may happen that the referenced object is not yet in the memory, on a separate file or not
yet computed. In this case, TRef isable to execute automatically an action:

 Call to acompiled function (static function of member function)

 Cadl to aninterpreted function

» Execution of aCINT script

How to Select This Option?

In the definition of the TRef data member in the original class, do:

TRef f Ref; / | EXEC: execNane points to somnething

When the special keyword " EXEC: " isfound in the comment field of the member, the next string is
assumed to bethename of aTExec aobject. When afileisconnected, thedictionary of the classesonthe
fileisread in memory (see TFi | e: : ReadSt r eaner | nf 0) . When the TSt r eaner El enent
object is read, a TExec object is automatically created with the name specified after the keyword
"EXEC: " in case a TExec with a same name does not already exist.

The action to be executed viat hi s TExec can be specified with:

+ A cal tothe TExec constructor, if the constructor is called before

» Opening thefile.

* AcdltoTExec: : Set Acti on at any time.

One can compute a pointer to an existing TExec with a name with:

TExec *myExec = gROOT- >Get Exec(execNane) ;

myExec- >Set Act i on(act i onConmand) ;

The parameter act i onComand isastring containing a CINT instruction. Examples:

nmyExec- >Set Action("LoadHits()");
nmyExec- >Set Action(".x script.C");

236

I nput/Output

When aTRef isde-referenced viaTRef ; : Get Obj ect , itsTExec isautomatically executed. The
TExec function/script can do one or more of the following:

» Load afile containing the referenced object. This function typically looks in the file catal og.

» Computeapointer to the referenced object and communi cate this pointer back to thecalling function
TRef : : Set Obj ect via

TRef : : Set Obj ect (obj ect)

As soon as an object is returned to Get Obj ect, the f Uni quel D of the TRef is set to the
f Uni quel D of the referenced object. At the next cal to Get Obj ect, the pointer stored in
fPi d: f Obj ects[fUniquel D] will bereturned directly. An example of action on demandisin
$ROOTSYS/ t est / Event . h:

TRef f WebHi st ogr am / I EXEC: Get WebHi st ogr am

When calling f WebHi st ogr am Get Qbj ect (), the function Get Cbj ect will automaticaly
invoke the script Get WebHi stogram C via the interpreter. An example of a
Get WebHi st ogr am Cscript is shown below:

voi d Get WebHi st ogram() {
TFile *f=TFile:: Open("http://root.cern.ch/fil es/pippa.root");
f->cd("DM Q") ;
THL *h6 = (TH1*)gDi rectory->Get ("h6");
h6- >Set Di rect ory(0);
delete f;
TRef : : Set Qbj ect (h6) ;
}

In the above example, a call to f WebHi st ogr am Get Obj ect () executes the script with the
function Get WebHi st ogr am This script connects a file with histograms. pi ppa. r oot on the
ROOT Web site and returns the object h6 to TRef : : Get Obj ect .

TRef f WebHi st ogr am [| EXEC: Get WebHi st ogr an()

Note that if the definition of the TRef fWebHi st ogr am had been changed the compiled or
interpreted function Get WebHi st ogr am() would have been caled instead of the CINT script
Get WebHi st ogram C.

Array of TRef

When storing multiple TRef s, it is more efficient to use a TRef Arr ay. The efficiency is due
to having a single pointer f Pl D for al TRef s in the array. It has a dynamic compact table of
f Uni quel Ds. We recommend that you use a TRef Ar r ay rather then a collection of TRef s.

Example:
* SupposeaTOhj Array *mytracks containing alist of Tr ack objects.

e SupposeaTRef Array *pi ons containing pointers to the pion tracks in myt r acks. Thislist
is created with statements like: pi ons- >Add(tr ack) ;

» SupposeaTRef Array *muons containing pointersto the muon tracksin myt r acks.

The3arraysnyt r acks, pi ons and muons may be written separately.

237

I nput/Output

Schema Evolution

Schema evolution is a problem faced by long-lived data. When a schema changes, existing persistent
data can become inaccessible unless the system provides a mechanism to access data created with
previous versions of the schema. In thelifetime of collaboration, the class definitions (i.e. the schema)
are likely to change frequently. Not only can the class itself change, but any of its parent classes or
data member classes can change also. This makes the support for schema evolution necessary.

ROOT fully supports schema evolution. The next figure below illustrates some of the scenarios.

Figure 11.8. The ROOT schema evolution

Shared Lib v1 Shared Lib Shared Libv7 MakeProject
A, Missing A, A,
B, B B,
3 4
Cz \ 1 ~C / C2
L 4 3
2 D : S D,

time

L — .
File 1/ FnJ'e 2\ File‘;

A, A As
B, B B,
C. C, C.

D

The top half represents different versions of the shared library with the class definitions. These are
the in-memory class versions. The bottom half represents data files that contain different versions of
the classes.

£

%)

» Anold version of ashared library and afile with new class definitions - this can be the case when
someone has not updated the library and is reading a new file.

» Reading afile with a shared library that is missing a class definition (i.e. missing class D).

* Reading afile without any class definitions. This can be the case where the class definition islost,
or unavailable.

» The current version of a shared library and an old file with old class versions (backward
compatibility). Thisis often the case when reading old data.

» Reading a file with a shared library built with MakePr oj ect . This is the case when someone
has already read the data without a shared library and has used ROOT MakePr oj ect feature to
reconstruct the class definitions and shared library (MakePr oj ect isexplained in detail later on).

In case of a mismatch between the in-memory version and the persistent version of a class, ROOT
maps the persistent one to the one in memory. This allows you to change the class definition at will,
for example:

» Change the order of data membersin the class.

* Add new data members. By default, the value of the missing member will be O or in case of an
object it will be set to null.

* Remove data members.
* Move adatamember to abase class or vice-versa

» Changethetype of amember if it isasimpletype or apointer to asimpletype. If aloss of precision
occurs, awarning is given.

238

I nput/Output

» Add or remove abase class

Figure 11.9. The schema evolution for objectswritten on disk and in memory

Persistent In-memory
Class Av4: Class B 6~ Class Av6: Class B, Class C
int a 1 2 MyClass *w = null
intb 3 | * inta
float f intu=0
MyClass "e (4 | double d
floatd 577 MyClass *g
MyClass *g

ROOT supports schema evolution by keeping a class description of each version of the class that was
ever written to disk, with the class. When it writes an object to file, it also writes the description of the
current class version along with it. This description isimplemented inthe St r eaner | nf o class.

The TStreamerinfo Class

Each class has a list of St r eaner | nf o objects, one for each version of the class if that version
was written to disk at least once. When reading an object from a file, the system uses the
St r eamer | nf o list to decode an object into the current version. The St r eaner | nf o ismade up
of TSt r eamer El emrent s . Each describes one persistent data member of the class. By default, all
data members of a class are persistent. To exclude a data member (i.e. make it not persistent), add a
“1" after the comment marks. For example the pointer *f Pai nt er of aTHL isnot persistent:

TVirtual Hi st Pai nter* fPainter //!pointer to histogram painter

The TStreamerElement Class

A TSt reaner El enent describes a data member of a simple type, object, array, pointer, or
container. The offset in the TSt r earer El enent is the starting address of the data for that data

member.
BASE TNaned of fset= 0 type=67 The basis for a named obj ect
BASE TAttLine of fset= 28 type= 0 Line attributes

In this example, the TNamed data starts at byte O, and TAt t Li ne starts at byte 28. The offset is
machine and compiler dependent and is computed when the St r eaner | nf o isanalyzed. The types
are defined inthe file TSt r eaner | nf 0. h and listed here:

enum EReadWite {

kBase=0, kChar =1, kShor t =2, kIl nt =3, kLong=4,

kFl oat =5, kCount er =6, kChar St ar =7, kDoubl e=8, kUChar =11,
kUShort =12, kUl nt =13, kULong=14, kBi t s=15, kO f set L=20,
kOf f set P=40, kObj ect =61, kAny=62, kObj ect p=63, kCbj ect P=64,
kTString=65, kTOhject=66, kTNamed=67, kSki p=100, kSki pL=120,

kSki pP=140, kConv=200, kConvL=220, kConvP=240, kSt r eaner =500,
kSt r eanmLoop=501, kM ssi ng=99999
b

Themethod TCl ass: : Get St r eaner | nf o analyzesthe St r eanrer | nf o thesameway it would
be analyzed by referring to the class. While analyzing the St r eaner | nf o, it computes the offsets.
The type field is the type of the TSt r eaner El enent . It is specific to the St reaner | nfo
definition.

239

I nput/Output

Example: TH1 Streamerinfo

In the St reaner | nfo of the TH1 class we see the four base classes. TNaned, TAtt Li ne,
TAttFi |l ,and TAtt Mar ker . Thesearefollowed by alist of the datamembers. Each datamember
isimplemented by a TSt r eaner El enent object.

root[] THL::d ass()->GetStreamer|nfo()->ls()

Streamerlnfo for class: THL, version=3

BASE TNaned offset= 0 type=67 The basis for a naned object

BASE TAttLi ne of fset= 28 type= 0 Line attributes

BASE TAttFill of fset= 40 type= 0 Fill area attributes

BASE TAt t Mar ker of fset= 48 type= 0 Marker attributes

Int _t fNcel I's of fset= 60 type= 3 nunber of bins(1D

TAXi s f Xaxi s of fset= 64 type=61 X axi s descri ptor

TAXi s f Yaxi s of fset =192 type=61 Y axis descri ptor

TAXi s f Zaxi s of f set =320 type=61 Z axi s descri ptor

Short _t fBarOfset of f set =448 type= 2(1000*of fset)for bar charts or |egos
Short t fBarWdth of f set =450 type= 2 (1000*wi dt h)for bar charts or |egos
Stat t fEntries of f set =452 type= 8 Nunber of entries

Stat t fTsunmw of fset =460 type= 8 Total Sum of weights

Stat _t fTsum of f set =468 type= 8 Total Sum of squares of weights
Stat _t fTsumw of fset =476 type= 8 Total Sum of wei ght*X

Stat _t fTsumw?2 of fset =484 type= 8 Total Sum of wei ght*X*X
Doubl e _t f Maxi mum of fset =492 type= 8 Maxi num val ue for plotting
Doubl e t fM ni mum of fset =500 type= 8 M ni num val ue for plotting
Doubl e t fNornfFactor offset=508 type= 8 Nornalization factor

TArrayD f Cont our of fset =516 type=62 Array to di splay contour |evels
TArrayD f Sum2 of f set =528 type=62 Array of sum of squares of weights
TString fOption of f set =540 t ype=65 hi st ogram opti ons

TLi st * f Functi ons of f set =548 type=63 ->Pointer to list of functions
i =0, TNaned type= 67, offset= 0, len=1, nethod=0

i= 1, TAttLine type= 0, offset= 28, |en=1, nethod=142484480

i= 2, TAttFill type= 0, offset= 40, |en=1, nethod=142496992

i= 3, TAttMarker type= 0, offset= 48, |en=1, net hod=142509704

i= 4, fNcells type= 3, offset= 60, |en=1, nethod=0

i=5, fXaxis type= 61, offset= 64, |en=1, nethod=1081287424

i= 6, fYaxis type= 61, offset=192, |en=1, nethod=1081287548

i= 7, fZaxis type= 61, offset=320, |en=1, nethod=1081287676

i=8, fBarOfset type= 22, offset=448, |en=2, nethod=0

i=9, fEntries type= 28, offset=452, |en=8, nethod=0

i =10, f Cont our type= 62, offset=516, |en=1, nethod=1081287804

i =11, fSum2 type= 62, offset=528, |en=1, nethod=1081287924

i =12, fOption type= 65, offset=540, |en=1, nethod=1081288044

i =13, fFunctions type= 63, offset=548, |en=1, nethod=1081288164

Optimized Streamerinfo

The entries starting with "i

optimization.

wNEF O

TNaned
TAtt Li ne
TAttFill
TAt t Mar ker

= 0" isthe optimized format of the St r eaner | nf 0. Consecutive data
members of the same simple type and size are collapsed and read at once into an array for performance

type= 67,
type= O,
type= O,
type= O,

offset= 0, |en=1,
of fset= 28, | en=1,
of fset = 40, | en=1,
of fset= 48, | en=1,

net hod=0

met hod=142484480
nmet hod=142496992
nmet hod=142509704

240

I nput/Output

For example, thefive datamembersbeginning withf Ent i es and the three data members beginning
withf Maxi nrum areputintoan array caledf Entri es (i = 9) with thelength 8.

i=9, fEntries type= 28, offset=452, |en=8, nethod=0

Only simpletype datamembers are combined, object datamembersare not combined. For examplethe
three axis datamembers remain separate. The "method" isahandle to the method that reads the object.

Automatic Schema Evolution

When aclassisdefined in ROOT, it must include the Cl assDef macro asthelast linein the header
fileinside the class definition. The syntax is:

Cl assDef (<d assNanme>, <Ver si onNunber >)

The version number identifies this particular version of the class. When aclass hasversion 0 it is not
stored in aroot file but its base class(es) is(are). The reason can be that this class has no data members
worth saving or al real info is in the base classes. The version number is written to the file in the
St reaner bythecal TBuffer:: Wit eVersion.You, asthedesigner of the class, do not need
to do any manual modification in the St r eaner . ROOT schema evolution mechanism is automatic
and handled by the St r eaner | nf o.

Manual Schema Evolution

If you have written your own St r eamner as described in the section "Streamers with Special
Additions", you will have to manually add code for each version and manage the evolution of your
class. When you add or remove data members, you must modify the St r eaner by hand. ROOT
assumesthat you have increased the class version number inthe Cl assDef statement and introduced
the relevant test in the read part of the Streamer. For example, if a new version of the Event class
above includes a new member: I nt _t f New the Cl assDef statement should be changed to
Cl assDef (Event, 2) and thefollowing lines should be added to the read part of the St r eaner :

if (R_v>1) R _b > fNew
el se fNew = O; // set to sone default val ue

If, in the same new version 2 you remove the member f H, you must add the following code to read
the histogram object into some temporary object and delete it:

if (R_v) <2{
THLF *dumy = O;
R b >> dumy;
del et e dunmy;

}

Our experience with manual schema evolution showsthat it is easy to make and mismatches between
St r eaner writers and readers are frequent and increase as the number of classes increase. We
recommend you use r oot ci nt generated St r eanmer s whenever you can, and profit from the
automatic schema evolution.

Building Class Definitions with the Streamerinfo

A ROOT file'sSt r eaner | nf o list contains the description of al versions of all classesin thefile.
When afileisopened the St r eaner | nf o isread into memory and it provides enough information
to make the file browsable. The TSt r eamer | nf o enables us to recreate a header file for the class

241

I nput/Output

in case the compiled class is not available. Thisis donewiththe TFi | e: : MakePr oj ect method.
It creates a directory with the header filesfor the named classesand anmakef i | e to compile ashared
library with the class definitions.

Example: MakeProject

To explain the details, we use the example of the ATLFast project that is a fast simulation
for the ATLAS experiment. The complete source for ATLFast can be down loaded at ft p://

root.cern.ch/root/atl fast.tar.gz.Oncewecompileandrun ATLFast wegetaROOT
file called at | f ast . r oot, containing the ATLFast objects. When we open the file, we get a
warning that the file contains classes that are not in the CINT dictionary. Thisis correct since we did
not load the class definitions.

root[] TFile f("atlfast.root")
Warning in <Td ass:: TC ass>: no dictionary for class TMCParticle is avail able
Warning in <Td ass:: TC ass>: no dictionary for class ATLFMion avail abl e

We can seethe St r eaner | nf o for the classes:

root[] f.ShowStreamer!| nfo()

Streanerl nfo for class: ATLFMion, version=1

BASE TObj ect of fset= 0 type=66 Basi c ROOT obj ect

BASE TAtt3D offset= 0 type= 0 3D attributes

Int_t m KFcode of fset= 0 type= 3 Mion KF-code

Int_ t mMParticle offset= 0 type= 3 Mion position in MCParticles |ist
Int_t m KFnot her of fset= 0 type= 3 Mion not her KF-code

Int_t m UseFl ag of fset= 0 type= 3 Mion energy usage fl ag

Int_t mlsol ated offset= 0 type= 3 Mion isolation (1 for isolated)
Float t mEta offset= 0 type= 5 Eta coordinate

Fl oat _t m Phi offset= 0 type= 5 Phi coordinate

Float _t mPT offset= 0 type= 5 Transverse energy

Int _t m Trigger offset= 0 type= 3 Result of trigger...

However, when we try to use a specific class we get a warning because the classis not in the CINT
dictionary. We can create a class using gROOT- >CGet Cl ass() which makes afake class from the
St reamer | nf o.

// Build a 'fake' class

root[] gROOT->Cet C ass("ATLFMion")

(const class Td ass*) 0x87e5c08

// The fake class has a Streanerlnfo

root[] gROOT->Cet Cl ass("ATLFMuon") - >Get Streaner | nfo()->l s()
Streanerlinfo for class: ATLFMion, version=1

BASE TOhj ect of fset= 0 type=66 Basi c ROOT obj ect

BASE TAt t 3D offset= 0 type= 0 3D attributes

Int _t m KFcode of fset= 16 type= 3 Mion KF-code

Int _t m MCParticle offset= 20 type= 3 Mion position in MCParticles |ist
Int _t m_KFnot her of fset= 24 type= 3 Mion not her KF-code
Int _t m UseFl ag of fset= 28 type= 3 Mion energy usage flag
Int _t m | sol at ed of fset= 32 type= 3 Mion isol ation

Float t mEta of fset= 36 type= 5 Eta coordinate

Fl oat _t m Phi of fset= 40 type= 5 Phi coordinate

Float t mPT of fset= 44 type= 5 Transverse energy

Int _t m Tri gger of fset= 48 type= 3 Result of trigger

i= 0, TObject type= 66, offset= 0, |en=1, nethod=0

242

I nput/Output

i=1, TAtt3D type= 0, offset= 0, len=1, nmethod=142684688
i = 2, mKFcode type= 23, offset= 16, |en=5, nethod=0
i=3, mEa type= 25, offset= 36, |en=3, nethod=0
i=4, mTrigger type= 3, offset= 48, |en=1, nethod=0

MakePr oj ect hasthree parameters:

MakePr oj ect (const char *di rname, const char *cl asses, Option_t *option)

Thefirst is the directory name in which to place the generated header files. The second parameter is
the name of the classes to include in the project. By default, all classes are included. It recognizes
thewild card character *, for example, "ATLF*" includes all classes beginning with ATLF. Thethird
parameter is an option with the following values:

"new" If the directory does not exigt, it is created.

» "recreate" If the directory does not exist, it is creates asin "new", in addition if the directory
does exigt, al existing files are deleted before creating the new files.

» "updat e" The new classes are added to the existing directory and the existing classes are replaced
with the new definition. If the directory does not exist, it createsit asin "new".

« "+": This option can be used in combination with the other three. It will create the necessary files
to easily build a shared library containing the class definitions.Specificaly it will:

» Generate a script called MAKE that builds the shared library containing the definition of all classes
in the directory.

* Generateali nkDef . h filestousewithr oot ci nt in MAKE.

* Runr oot ci nt togeneratea<di r name>Pr oj ect Di ct . cxx file

» Compilethe <di r name>Pr oj ect Di ct . cxx with the current optionsin conpi | edat a. h.
» Build ashared library <di r nane>. so.

» "++":This option can be used instead of the single "+". It does everything the single "+" does, and
dynamically loads the shared library <di r name>. so.

This example makes a directory called MyPr oj ect that will contain all class definitions from the
at | fast. root file. The necessary makef i | e to build ashared library are aso created, and since
the '++' is appended, the shared library is also loaded.

root[]f. MakeProject("MProject","*", "recreatet++")

MakePr oj ect has generated O cl asses in M/Project

M/Proj ect/ MAKE fil e has been generated

Shared |ib M/Project/M/Project.so has been generat ed

Shared |ib MyProject/M/Project.so has been dynamically |inked

The contents of MyPr oj ect :
root[] .1 I's MyProj ect
ATLFC uster. h ATLFRJet . h ATLFM scMaker . h ATLFTr ack. h T™C

Now you can load the shared library in any consecutive root sessionto usetheat | f ast classes.

243

I nput/Output

root[]gSystem >Load(" M/Proj ect/ MyProj ect")
root [] ATLFMuon nuon

Thisis an example of a generated header file:

LEEETELT i
/1 This cl ass has been generated by TFil e:: MakePr oj ect
/1 (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
/1 fromthe TStreamerinfo in file atlfast.root
LLEEEELT it
#i f ndef ATLFMiuon_h

#def i ne ATLFMiuon_h

#i ncl ude "TOhj ect. h"

#i ncl ude "TAtt3D. h"

cl ass ATLFMuon : public TObject , public TAtt3D {

publi c:
Int _t m _KFcode; /I Muon KF-code
Int _t m MCParti cl e; //Mion position in MCParticles |ist
Int _t m_KFnot her ; /1 Muon not her KF-code
Int _t m UseFl ag; /1 Muon energy usage flag
Int _t m | sol at ed; //Mion isolation (1 for isolated)
Fl oat _t m Et a; // Eta coordinate
Fl oat _t m _Phi ; /1 Phi coordinate
Fl oat _t m _PT; [/ Transver se ener gy
Int _t m Tri gger; /I Result of trigger

ATLFMuon() {;}

virtual ~ATLFMuon() {;}

Cl assDef (ATLFMuon, 1) //
}s

d assl np(ATLFMuon)
#endi f

Migrating to ROOT 3

We will distinguish the following cases:

Case A: You have your own St r eaner method in your class implementation file. This also means
that you have specified MyCl ass intheLi nkDef . h file.

* KeepMyC ass - unchanged.
* Increment your classversionidin Cl assDef by 1, eg. d assDef (Myd ass, 2)

e Change your St r eaner function in the following way: The old write block can be replaced by
the new standard Write. Change the read block to use the new scheme for the new versions and the
old code for the old versions.

void MyC ass:: Streamer (TBuffer &R _bh) {
/1 Stream an obj ect of class M/d ass.
if (R_b.lIsReading()) {
Unt t R _s, R_c;
Versiont R _v = R_bh.ReadVersion(& s, &R c¢);
if (R_v>1) {
M/Cl ass: : C ass()->ReadBuffer(R_hbh, this, R _ v, R s, R c¢);
return;

}

244

I nput/Output

/1 process old versions before automatic schema evol ution
R b >> xxxx;

R b >> .. etc
R _b. CheckByteCount (R_s, R _c¢, M/Cass::IsA()); // end of old versions
} el se

M/Cl ass:: C ass()->WiteBuffer(R_b,this);
}

Case B: You use the automatic St r eaner in the dictionary file.

* Move the old Streamer from the file generated by r oot ci nt to your class implementation file,
then modify the Streamer function asin Case A above.

* Increment your classversionidin Cl assDef by 1,i.e. C assDef (Mydl ass, 2)
e Add option"-" in the pragmaline of Li nkDef .

CaseC: You usetheautomatic St r eaner inthedictionary file and you already use the option "+" in
theLi nkDef file. If the old automatic St r eanmer does not contain any statement using the function
Wit eAr r ay, you have nothing to do, except running r oot ci nt again to regenerate the new form
of the St r eanrer function, otherwise proceed like for case B.

Compression and Performance

ROOT usesacompression algorithm based on thewell-known gzi p algorithm. It supportsninelevels
of compression. The default for ROOT is one. The compression level can be set with the method
TFi | e: : Set Conpr essi onLevel . The experience with this algorithm shows that a compression
level of 1.3 for raw datafiles and around two on most DST files is the optimum. The choice of one
for the default is a compromise between the time it takes to read and write the object vs. the disk
space savings.

To specify no compression, set the level to zero.

Werecommend using compression when thetime spentin1/O issmall compared to thetotal processing
time. If the 1/O operation is increased by afactor of 5 it is still a small percentage of the total time
and it may compress the data by a factor of 10. On the other hand if the time spend on 1/O is large,
compression may have alarge impact on the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of data. A buffer with a
same value array is compressed so that the value is only written once. For example, a track has the
mass of apion that it is always the same, and the charge of the pion that is either positive or negative.
For 1000 pions, the mass will be written only once, and the charge only twice (positive and negative).
When the datais sparse, i.e. when there are many zeros, the compression factor is aso high.

Compression level Bytes Write Time (sec) Read Time (sec.)
0 1,004,998 4,77 0.07
1 438,366 6.67 0.05
5 429,871 7.03 0.06
9 426,899 8.47 0.05

Thetimeto uncompress an object issmall compared to the compression time and isindependent of the
selected compression level. Note that the compression level may be changed at any time, but the new
compression level will only apply to newly written objects. Consequently, a ROOT file may contain
objectswith different compression levels. Thistable showsfour runs of the demo script that creates 15
histograms with different compression parameters. To make the numbers more significant, the macro

245

I nput/Output

was modified to create 1000 histograms. We have included two more examples to show the impact
of compression on Treesin the next chapter.

Remotely Access to ROOT Files via arootd

Reading and writing ROOT files over the net can be done by creating aTNet Fi | e object instead of
aTFi | e object. Since the TNet Fi | e class inherits from the TFi | e class, it has exactly the same
interface and behavior. The only differenceisthat it reads and writesto aremote r oot d daemon.

TNetFile URL

TNet Fi | e file names are in standard URL format with protocol "r oot *. The following are valid
TNet Fi | e URL's.

root://hpsal o/ fil es/ aap. r oot

root:// hpbrun. cern. ch/root/hsinpl e.root
root://pcnad49a: 5151/ ~na49/ dat a/ r un821. r oot
root://pcnad9d. cern. ch: 5050/ /v1/ dat a/ r un810. r oot

The only difference with the well-known http URL 'sisthat the root of the remotefiletreeisthe remote
user's home directory. Therefore an absolute pathname requiresa/ / after the host or port (as shown
in the last example above). Further the expansion of the standard shell characters, like~, $, . . , etc.
is handled as expected. The default port on which the remoter oot d listensis 1094 and TNet Fi | e
(actualy by TUr | that isused by TNet Fi | e) assumes this default port. The port number has been
alocated by the IANA and isreserved for ROOT.

Remote Authentication

Connectingtoar oot d daemon requires aremote user id and password. TNet Fi | e supports several
ways for you to provide your login information:

e Setting it globally viathe static methods TNet Fi | e: : Set User andTNet Fi | e: : Set Passwd
e Viathe~/ . netr c file (sameformat and fileasused by f t p)
e Viacommand line prompt

e Setting the SPR password file via the option —P FI LE, i.e. the next line will start the r oot d
daemon using the files $HOVE/ . sr oot dpass?2. conf and $HOVE/ . sr oot dpass?2 for SPR
authentication: r ootd —P $HOVE/ . sr oot dpass?2

A Simple Session

root[] TFile *f1
root[] TFile *f2
Nanme (pcnad49a:rdm:

Passwor d:

root[] TFile *f3 = TFile::Open("http://root.cern.ch/~rdn hsi npl e.root")
root[] f3.1s()

TWebFi | e** http://root.cern.ch/~rdm hsi npl e. r oot

TWebFi | e* http://root.cern.ch/~rdnf hsi npl e. r oot

KEY: THLF hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Denb ntuple

TFil e:: Open("local /file.root", "update")
TFi |l e: : Open("root ://pcnad9a. cern.ch/data/file.root", " new")

246

I nput/Output

root[] hpx.Draw()

The rootd Daemon

The r oot d daemon works with the TNet Fi | e class. It allows remote access to ROOT database
filesin read or read/write mode. Ther oot d daemon can be found in the directory $ROOTSYS/ bi n.
It can be started either viai net d or by hand from the command line (no need to be super user).
Its performance is comparable with NFS but while NFS requires all kind of system permissions to
setup, r oot d can be started by any user. The simplest way to start r oot d is by starting it from the
command line while being logged in to the remote machine. Once started r oot d goes immediately
in the background (does not need &) and you can log out from the remote node. The only required
argument is the range of ports (specified using—p port 1- port 2).r oot d will listen on the first
available port in this range. You can also specify - p 0- N to search relative to the service port
specifiedin/ et c/ servi ces. If asingle port isspecified (rootd -p 1094) thenno searchis
made. Unlessstartedby i netd (rootd -i),itprintsinformation about the found port, something
like: ROOTD_PORT=5151, ROOTD_PI D=14433 before spawning the daemon. Thisway the user
knowswhat wasused (eval ‘r oot d” will set these asvariablesin Bourne-like shells). Also, r oot d
shows an error message (as well as sending the sys| og message) if there is any problem binding
the port or forking the daemon.

Using TNet Fi | e you can now read and write files on the remote machine.

In the example below, r oot d runs on the remote node under user id i nuser and searches for an
available port into the range 1094-1098. It finds and listensto port 1094. When creatingaTNet Fi | e
object you have to specify the same port number 1094 and use ni nhuser (and corresponding
password) asloginid. Whenr oot d is started in thisway, you can only login with the user id under
which r oot d was started on the remote machine.

hpsal o[] tel net fsgi02.fnal.gov
| ogi n: m nuser

Passwor d:

<f sgi 02> rootd -p 1094-1098

ROOTD_PORT=1094
ROOTD_PI D=14433

<f sgi 02> exit

hpsal o[] r oot

root[] TFile *f = TFile::OQpen("root://fsgi02.fnal.gov: 1094/file.root", "new"
Name (fsgi 02.fnal.gov:rdm: m nuser

Passwor d:

root[] f.ls()

However, you can make many connections since the original r oot d will fork (spawn) anew r oot d
that will servicetherequestsfromtheTNet Fi | e. Theoriginal r oot d keepslistening onthe specified
port for other connections. EachtimeaTNet Fi | e makes a connection; it getsanew privater oot d
that will handleitsrequests. At the end of aROOT, session when all TNet Fi | esare closed only the
original r oot d will stay alive ready to service future TNet Fi | es.

Starting rootd via inetd

If you expect to often connect viaTNet Fi | e toaremotemachine, itismoreefficienttoinstall r oot d
asaservice of thei net d super daemon. In thisway, it is not necessary for each user to run aprivate
r oot d. However, this requires aone-time modification of two system files (and super user privileges
todoso). Addto/ et ¢/ servi ces theline:r oot d 1094/t cp.To/ etc/i netd. conf theline:

rootd streamtcp nowait root /usr/local/root/bin/rootd rootd -i

After these changes force i net d to reread its configuration file with: "ki I | -HUP <pi d
i net d>". It is not necessary to specify a port number in the URL given to TNet Fi | e when the

247

I nput/Output

setup donethisway. TNet Fi | e assumesthe default port to be 1094 as specified aboveinthe/ et ¢/
servi ces file.

Command Line Arguments for rootd

r oot d supports the following arguments:

e -i saysthatrootdisstarted by i netd

-p port#-port# gspecifiestherange of portsto be searched

-p O-N theserviceportsrangein/ et c/ servi ces

-d l evel level of debuginfowrittentosysl ogd

0

no debug (default) 1 = m ni mum

2 = nmediunB = maxi mum

Reading ROOT Files via Apache Web Server

By adding one ROOT specific module to your Apache web server, you can distribute ROOT files
to any ROOT user. There is no longer a need to send your files via FTP and risking (out of date)
histograms or other objects. Y our latest up-to-date results are always accessible to al your colleagues.
To access ROOT files viaaweb server, create a TWebFi | e object instead of a TFi | e object with
astandard URL as file name. For example:

root[] TWebFile f("http://root.cern.ch/~rdn hsi nple.root")
root[] f.ls()

TWebFi | e** http://root.cern.ch/~rdm hsi npl e. r oot

TWebFi | e* http://root.cern.ch/~rdnf hsi npl e. r oot

KEY: THLF hpx;1 This is the px distribution

KEY: TH2F hpxpy; 1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Denp ntuple

root[] hpx.Draw()

Since TWebFi | e inherits from TFi | e all TFi | e operations work as expected. However, due to
the nature of a web server a TWebFi | e isaread-only file. A TWebFi | e isideally suited to read
relatively small objects (like histograms or other data analysis results). Although possible, you don't
want to analyzelarge TTr ee' s viaaTWebFi | e.

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server ROOT aware:

» Go to your Apache source directory and add the file ftp://root.cern.ch/root/
mod root.c or ftp://root.cern.ch/root/nod root133. ¢ when your Apache
server is>1.2 (rename the filenod_r oot . c).

» Addtothe end of the Conf i gur at i on filetheline: Modul e root _nodul e nod_root. o
* RuntheConfi gur e script

e Typemnake

» Copy thenew ht t pd to its expected place

e Gototheconf directory and add at the end of thesr m conf filethelineeAddHandl er r oot -
action root

248

I nput/Output

e Restarttheht t pd server

Using the General Open Function of TFile

To make life simple we provide a general function to open any type of file (except shared memory
filesof class TMapFi | e). Thisfunctionality is provided by the static TFi | e: : Open() function:

TFile *TFil e:: Open(const Text t *nane, Option_t *option="",
const Text t *title="",Int_t conpress,Int_t netopt)

Depending on the nane argument, the function returnsa TFi | e, aTNet Fi | e or a TWebFi | e
object. IncaseaTNet Fi | e URL specifiesalocal file,aTFi | e object will bereturned (and of course
no login information is needed). The arguments of the Open(') function are the same as the ones for
the TFi | e constructor.

Using ReQpen() method it is possibleto reopen afilewith adifferent accessmode, like from READ
to UPDATE or from NEW, CREATE, RECREATE, UPDATE to READ. Thus the mode argument
can be either "READ" or "UPDATE". The method returns:

» 0in case the mode was successfully modified;
» lincasethemodedid not change (it was already asrequested or there werewrong input arguments);

e -lincase of failure. Inthe last case the file cannot be used anymore.

XML Interface

A new module xm as implemented by Sergey Linev (GSI). It is an optional package that can be
used to save acanvasintofi | e. xm file format instead of fi | e. r oot . XML files do not have
any advantages compared to the normal ROOT files, except that the information in these files can be
edited viaanormal editor. The main motivation for this new format is to facilitate the communication
with other non ROOT applications. Currently writing and reading XML files is limited to ROOT
applications. It is our intention to develop a simple reader independent of the ROOT libraries that
could be used as an example for real applications.

The XML format should be used only for small data volumes, typically histogram files, pictures,
geometries, calibrations. The XML file is built in memory before being dumped to disk. Like for
normal ROOT files, XML files use the same I/O mechanism exploiting the ROOT/CINT dictionary.
Any class having adictionary can be saved in XML format. Thisfirst implementation does not support
subdirectories or trees.

The shared library 1ibRXM..so may be loaded dynamically via gSystem
>Load("Ii bRXM.") . Thislibrary is aso automatically loaded by the plug-in manager as soon a
XML fileis created. To create an XTM file, smply specify afilename with an .xml extension when
caling TFi | e: : OQpen. TFil e: : Open will recognize that you are trying to open an XML file
and return a TXMLFi | e object. When a XML file is open in write mode, one can use the normal
TOoj ect:: Wit etowritean object in thefile.

/1 exanpl e of a session saving a histogramto a XML file
TFile *f = TFile:: Open("Exanpl e.xm ", "recreate");

THLF *h = new TH1F("h","test", 1000, - 2, 2)

h->Fi | | Randon(" gaus") ;

h->Wite();

delete f;

/1 exanple of a session saving a histogramto a XML file
TFile *f = TFi |l e:: Open(" Exanpl e. xm ") ;

THLF *h = (THLF*)f->CGet ("h");

249

I nput/Output

h- >Dr aw() ;

The canvas can be saved as a XML file format via File menu / Save or Save As menu entries. One
can do also:

canvas->Print (" Exanpl e. xm ") ;

250

Chapter 12. Trees
Why Should You Use a Tree?

In the “Input/Output” chapter, we saw how objects can be saved in ROQOT files. In case you want to
store large quantities of same-class objects, ROOT has designed the TTr ee and TNt upl e classes
specifically for that purpose. The TTr ee classis optimized to reduce disk space and enhance access
speed. A TNt upl e isaTTr ee that islimited to only hold floating-point numbers; aTTr ee on the
other hand can hold all kind of data, such as objects or arrays in addition to all the simple types.

When using a TTr ee, we fill its branch buffers with leaf data and the buffers are written to disk
when it is full. Branches, buffers, and leafs, are explained a little later in this chapter, but for now,
it isimportant to realize that each object is not written individually, but rather collected and written
abunch at atime.

Thisiswhere the TTr ee takes advantage of compression and will produce a much smaller file than
if the objects were written individually. Since the unit to be compressed is a buffer, and the TTr ee
contains many same-class objects, the header of the objects can be compressed.

The TTr ee reduces the header of each object, but it still contains the class name. Using compression,
the class name of each same-class object has a good chance of being compressed, since the
compression algorithm recognizes the bit pattern representing the class name. Using a TTr ee and
compression the header is reduced to about 4 bytes compared to the original 60 bytes. However, if
compression is turned off, you will not see these large savings.

The TTr ee is aso used to optimize the data access. A tree uses a hierarchy of branches, and each
branch can be read independently from any other branch. Now, assume that Px and Py are data
members of the event, and we would like to compute Px2 + Py2 for every event and histogram
the resullt.

If we had saved the million events without a TTr ee we would have to:

* read each event in its entirety into memory

extract the Px and Py from the event

» compute the sum of the squares

fill ahistogram

We would have to do that a million times! Thisis very time consuming, and we really do not need
to read the entire event, every time. All we need are two little data members (Px and Py). On the
other hand, if we use a tree with one branch containing Px and another branch containing Py, we
can read all values of Px and Py by only reading the Px and Py branches. This makes the use of the
TTr ee very attractive.

A Simple TTree

This script builds a TTr ee from an ASCII file containing statistics about the staff at CERN. This
script, st af f . Canditsinput filest af f. dat arein $ROOTSYS/tutori al s/tree.

{

/1 exanple of macro to read data froman ascii file and
/] create a root file with an histogram and a TTree
gROOT- >Reset () ;

251

Trees

/] the structure to hold the variables for the branch

struct staff _t {
Int_t cat;
Int_t division;
Int_t flag;
Int_t age;
Int _t service;
Int _t children;
Int_t grade;
Int_t step;
Int _t nation;
Int_t hrweek;
Int_t cost;
)
staff t staff;
/] continued...
/1 open the ASCII file
FILE *fp = fopen("staff.dat","r");
char |ine[81];
/] create a new ROOT file
TFile *f = new TFile("staff.root", " RECREATE") ;
[l create a TTree
TTree *tree = new TTree("T","staff data fromascii file");
[l create one branch with all information fromthe stucture
tree->Branch("staff", &taff.cat,"cat/I|:division:flag:age: servi ce:
chi | dren: grade: st ep: nati on: hr week: cost ™) ;
[l fill the tree fromthe values in ASCII file
while (fgets(& ine,80,fp)) {
sscanf (& i ne[0], "%l%d%%l", &st af f . cat, &t af f. di vi si on, &t aff. fl ag, &t aff. age
sscanf (& i ne[13], "%%l%l%" , &st af f . servi ce, &t aff. chil dren, &st af f. gr ade,
&st af f. step);
sscanf (& i ne[24] , "%%l%", &st af f . nati on, &t af f . hr week, &staff.cost);
tree->Fill();
}
[l check what the tree | ooks |ike
tree->Print();

fcl ose(fp);
f->Wite();
}

The script declares a structure caled st af f _t, with several integers representing the relevant
attribute of a staff member. It opensthe ASCI| file, createsa ROQT fileand aTTr ee. Thenit creates
one branch with the TTr ee: : Br anch method. The first parameter of the Br anch method is the
branch name. The second parameter is the address from which the first leaf is to be read. In this
exampleit isthe address of the structure st af f . Once the branch is defined, the script reads the data
from the ASCII fileinto the st af f _t structure and fillsthe t r ee. The ASCII fileis closed, and
the ROOT fileiswritten to disk saving thet r ee. Remember, trees and histograms are created in the
current directory, which isthe filein our example. Henceanf - >W it e() savesthetree.

Show an Entry with TTree::Show

An easy way to access one entry of atreeistheusethe TTr ee: : Showmethod. For example to look
at the 10th entry inthe st af f . r oot tree:

root[] TFile f("staff.root")
root[] T->Show 10)

252

Trees

======> EVENT: 10

Cat egory
Fl ag

Age
Servi ce
Chi | dren
G ade
Step

Hr week
Cost

Di vi si on
Nat i on

361
15
51
29
0

7
13
40
7599
PS
FR

Print the Tree Structure with TTree::Print

A helpful command to see the tree structure meaning the number of entries, the branches and the
leaves, isTTree: : Print.

root[] T->Print()

kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhdhkhkdhkhkkhkhkhkhhkhhkdhkhkdhkhkdhkhkkhkhhkhkhkdhhkdhdhkhdhkhkkhkhkkhkhkhkhhkdkhkdhkhhkhkhkhkhhkhdkhdxx
*Tree i T staff data fromascii file *
Entries :3354 Total = 245417 bytes File Size = 59945

B Tree conpression factor = 2.90 *

E R S S I S I S O S S S I S S S S I O S S S I R S R S S S O S S R I

*Br 0 :staff : Cat egory/ | : Fl ag: Age: Servi ce: Chi | dren: Gr ade: St ep: Hr week: *
[| Cost N
*Entries :3354 : Total Size = 154237 bytes File Size = 32316 *
*Basket s : 3 . Basket Size = 32000 bytes Conpression= 2.97 *

Scan a Variable the Tree with TTree::Scan

TheTTr ee: : Scan method shows all values of the list of leaves separated by a colon.

root[] T->Scan("Cost: Age: Chil dren")

KRR S S S S O O S S S S I R O O

[Row * Cost * Age * Children *
khkhkhkkhkhhkhkhhkhhhhdhhhkhkhkhhhdhddkhkhhkdhhdhdd kdkhhkdxdhd d **k**x*%x
E 0 * 11975 * 58 * 0 *
E 1= 10228 * 63 * 0 *
E 2 * 10730 * 56 * 2 *
[+ 3 * 9311 * 61 * 0 *
[+ 4 * 9966 * 52 * 2 *
[+ 5 * 7599 * 60 * 0 *
[+ 6 * 9868 * 53 * 1=
E 7 * 8012 * 60 * i, =

The Tree Viewer

The tree viewer is a quick and easy way to examine atree. To start the tree viewer, open afile and
object browser. Right click onaTTr ee and select St ar t Vi ewer . You can also start thetree viewer
from the command line. First load the viewer library.

253

Trees

Figure 12.1. Activating the tree viewer

% ROOT Object Browser M=l 3
File ¥iew Options Help

[Quee 5] B Sl

[&1 Folders [Cantents of "Y/ROCT Fi
[Croot b staff

Dmome.l’ghi.fspanacek.l‘root25.froc
(IROQT Files
E|- Dstaff.root

-3

TTree::tree

Fit

Loop
Frint
Frocess
Scan
SetDebug
SethdaxEntryLoop
SethdaxVirtualSize
SetScanField
StartViewer

SetMame
SetTitle

‘l Delete

DrawClass

bzt DrawClane 4

root[] TFile f("staff.root")
root[] T->StartViewer()

If you want to start atree viewer without atree, you need to load the tree player library first:

root[] gSystem >Load("li bTreeVi ewer.so")
root[] new TTreeVi ewer ()

Below iswhat the tree viewer looks like for the example file st af f . r oot . The left panel contains
the list of trees and their branches; in this case there is only one tree. Y ou can add more trees with
the File-Open command to open the file containing the new tree, then use the context menu on the
right panel, select Set Tr eeNane and enter the name of the tree to add. On the right are the leaves
or variablesin the tree. Y ou can double click on any leaf to a histogram it.

The toolbar in the upper part can be used for user commands, changing the drawing option and the
histogram name. The lower part contains three picture buttons that draw a histogram, stop the current
command, and refresh the tree.

254

Trees

Figure 12.2. The TreeViewer

-+ TreeViewer [=][O][x]
Eile Edit Bun Qptions Help
Command I | Option I | Histogram Ihtemp [Hist [T Scan W Rec

~| Current Folder Current Tree : 11

) [__:—ITI’EELiﬂ W:-empty- ECr-emply- EC»-emipty- ﬁpx

i ﬂﬂl T -empty- ECr-emply- ECx-empty- ﬁp!.-'

Z:-empty- ECy-emply- EC-empty- ﬁ pz
D%—empty— E¢ s -empty- B -empty- ﬁ random
ﬁ Scan box EC»-empty- EC»-empty- a ey

ILiStI OListI |F|r3tentr5r:DLastentry:ElElElEl LRIER NN I - RESETl
1

The three check buttons toggle the following:
Hi st - the histogram drawing mode;
Scan- enablesredirecting of TTr ee: : Scan command in an ASCI file;

Rec - enables recording of the last issued command.

Hﬁl
2221 To draw more than one dimension you can drag and drop any leaf to the X, Y, Z boxes". Then
push the Draw button, witch is marked with the purple icon on the bottom left.

[su]

All commands can be interrupted at any time by pressing this button.

“%
il Themethod TTr ee: : Ref r esh iscalled by pressing therefresh buttonin TTr eeVi ewer . It
redrawsthe current exposed expression. Calling TTr ee: : Ref r esh isuseful when atreeisproduced
by awriter process and concurrently analyzed by one or more readers.

"5 #MPY- T4 add a cut/weight to the histogram, enter an expression in the "cut box". The cut box
is the one with the scissor icon.

Below them there are two text widgets for specifying the input and output event lists. A Tree Viewer
session ismade by thelist of user-defined expressions and cuts, applying to a specified tree. A session
can be saved using File / SaveSour ce menu or the SaveSour ce method from the context menu
of the right panel. Thiswill create a macro having as default namet r eevi ewer . Cthat can beran
at any time to reproduce the session.

Besidesthe list of user-defined expressions, a session may contain alist of RECORDS. A record can
be produced in the following way: dragging leaves/expression on X/Y/Z; changing drawing options;
clicking the RED button on the bottom when happy with the histogram

NOTE that just double clicking aleaf will not produce arecord: the histogram must be produced when
clicking the DRAW button on the bottom-left. The records will appear on the list of records in the

255

Trees

bottom right of the tree viewer. Selecting a record will draw the corresponding histogram. Records
can be played using the arrow buttons near to the record button. When saving the session, the list of
recordsis being saved as well.

Records have a default name corresponding to the Z: Y: X selection, but this can be changed using
Set Recor dNarre() method from the right panel context menu. Y ou can create a new expression
by right clicking on any of the E() boxes. The expression can be dragged and dropped into any of
the boxes (X, Y, Z, Cut, or Scan). To scan one or more variables, drop them into the Scan box,
then double click on the box. You can also redirect the result of the scan to a file by checking the
Scan box on top.

|Cnmmand | | Option | | Histogram |htemp [T Hist T Scan ¥ Rec

When the "Rec" box is checked, the Dr aw and Scan commands are recorded in the history file and
echoed on the command line. The "Histogram™ text box contains the name of the resulting histogram.
By default it isht enp. Y ou can type any name, if the histogram does not exist it will create one. The
Option text box containsthelist of Draw options. See“Draw Options’. Y ou can select the optionswith
the Options menu. The Command box lets you enter any command that you could also enter on the
command line. Thevertical slider on thefar left side can be used to select the minimum and maximum
of an event range. The actual start and end index are shown in on the bottom in the status window.

There is an extensive help utility accessible with the Help menu. The | Li st and OLi st are to
speci fy aninput list of entry indices and a name for the output list respectively. Both need to be
of type TLi st and contain integers of entry indices. These lists are described below in the paragraph
"Error! Reference source not found.".

Figure 12.3. A couple of graphs

0 o1 5[]
File Edit View Options Inspect Classe Help | Eile Edit Miew Opfions Inspect Classes Help
staff. cost
1at.age
L) ::rlgaas-t . c
180 e Tes
160 - g 60 _

a0 -

20F

Bl e b b Lo b boaa bea boaa Lo

0 2000 4000 6000 3000 100001200014000160001800020000
stafi.cost

Gnlixﬂ.sgs

Thefirst oneisaplot of the age distribution, the second ascatter plot of the cost vs. age. The second one
was generated by dragging the age leaf into the Y-box and the cost leaf into the X-box, and pressing
the Draw button. By default, this will generate a scatter plot. Select a different option, for example
"l ego" to create a 2D histogram.

Creating and Saving Trees

This picture showsthe TTr ee class:

256

Trees

Figure12.4. The TTreeclass

Tree Data Structure

Collection
ol Trees
fBranches = TObjArray of TBranch
Tree
fScanField g
aseventioon [-— Branch-0—Branch 1—Branch 2|—Branch 3}---
TMaxVirtual Size: .
TEntries ,’f ,“(,’f
. T feaves = TObjArray of Tleafl
fDlmenS|9n , B
TSelectdRows l'——p|Leaf0|—p Leal 1 —p Leatzl ________

. : - g

I . . - N
i . b R
5 i /' [TLen: number of fixed elements ﬂype codes

fBasketSize 0 TLenType: number of liytes of data type : a character string
! 101fzel: relative Lo LealD- fAddress : ann 8 bit siyned integer

fEventOffsatien i THhytes1O: numb T byte: 1 for 1O

4 1ytesl0: number of bytes userd for g § 7 i

: : an 8 bit unsigned integer
TMaxBaskets ! flzMoinler: True if pointer
TEntres N flzRange: True if leaf has a range

: a 1G bit unsigned short inteqer
: & 32 bit signed inleger
: & 32 hit unsigned integer

! TisUnsined: True if unsigned

fAddress of Leafl
*FLeafCouni: poinis to Leaf counter

(o
O
b
’ 8 : a 1G bit siyned short interer
3
|
i
I : a 32 hit floaling poind
D

fName: Branchnamg THame - Leafl name
Title: leaflist) 1Tille - Leaf iype {see Type cudes) : a 64 hit floating poind
: ’ T0004: & class name TYO0X
K
fBaskelrvent
First event of each basket

' ‘ Array of fMaxBaskets Integers

fBaskets = TObjArray of TBaskei

e —Lﬂ’_/_},ﬁaskéfﬁ |—p |Basket 1}—p Basketzl ________

1:N_I1ytes: Size of compressed Daskel .’
10hjLen: Size of uncompressed Daskel fEventOffset
TDatime: DatefTime when wrilten 1o slore & Sel of cvents in fEuller
o L Aray of FEventOfFaciLen Integers
TKeylen: Number of bytes for the key ,,—b e e
1Cycle : Cycle number £
oty ot b b e Butter
eekllir: Moinler irectory on file

1ClazsHame: ‘TDaskel® Jff—' Basket bUﬁ:er
L Y) Array of fBasketSize chars
1Tille: Tree name g i D e

;| EipButfer L

f e
1Hev Buf: Hnmber of evenls in Basket o Baaket compreaacl buffer

.
TLast: pointer ta last used byte in Dasket | i compresoian] Baskets m
0
Stores

To create a TTr ee we use its constructor. Then we design our data layout and add the branches. A
tree can be created by giving aname and title:

TTree t("MTree", "Exanpl e Tree")

Creating a Tree from a Folder Hierarchy

An alternative way to create atree and organizeit isto usefolders (see “ Folders and Tasks’). Y ou can
build afolder structure and create a tree with branches for each of the sub-folders:

TTree fol der _tree(" M/Fol der Tree", "/ MyFol der")

The second argument "/ MyFol der " is the top folder, and the "/" signals the TTr ee constructor
that thisis afolder not just the title. Y ou fill the tree by placing the data into the folder structure and

calingTTree: : Fill.

Tree and TRef Objects

My Tr ee- >Br anchRef () ;

257

Trees

Thiscall requeststhe construction of an optional branch supporting table of references (TRef Tabl e).
This branch (TBr anchRef) will keep all the information needed to find the branches containing
referenced objects at each Tr ee: : Fi | | , the branch numbers containing the referenced objects are
saved in the table of references. When the Tree header issaved (viaTTr ee: : Wi t e for example),
the branch is saved, keeping the information with the pointers to the branches having referenced
objects. Enabling thisoptional table, allow TTr ee: : Dr awto automatically |oad the branches needed
to dereference a TRef (or TRef Ar r ay) object.

Autosave

Aut osave givestheoptionto saveall branch buffersevery n byte. Werecommend using Aut osave
for large acquisitions. If the acquisition fails to complete, you can recover the file and al the
contents since the last Aut osave. To set the number of bytes between Aut osave you can use
theTTr ee: : Set Aut osave() method. Youcanasocall TTr ee: : Aut osave intheacquisition
loop every n entry.

Trees with Circular Buffers

When aTTr ee ismemory resident, you set it up so that it retains retain only the last few entries. For
example, this can be very useful for monitoring purpose.

void TTree:: SetCircul ar(Long64_t maxEntri es)

where maxEnt ri es isthe maximum number of entries to be kept in the buffers. When the number
of entries exceeds this value, the first entries in the Tr ee are deleted and the buffers used again. An
example of ascript using acircular buffer is shown below:

void circular() {

gROOT->cd(); //nmake sure that the Tree is nenory resident
TTree *T = new TTree("T","test circular buffers");
TRandom r;

Fl oat _t px, py, pz;

Doubl e t random

UShort t i;

T->Branch(" px", &x, "px/ F");

T->Branch(" py", &y, "py/ F");

T->Branch("pz", &z, "pz/ F");

T->Branch("randont', & andom "r andom D") ;
T->Branch("i", & ,"i/s");

T->Set Ci rcul ar (20000) ;

for (i = 0; i < 65000; i++) {

r. Rannor (px, py) ;

Pz = px*px + py*py;

random = r. Rndm() ;

T->Fill();
}
T->Print();
}

Size of TTree in the File

When writing a TTree to a file, if the file size reaches the value stored in the
TTree: : Get MaxTr eeSi ze() , thecurrent fileisclosed and anew fileiscreated. If theoriginal file
isnamed"nyfi | e. r oot ", subsequent filesarenamed"nyfil e_1.root","nyfile_2.root",
etc.

Currently, the automatic change of file is restricted to the case where the tree is in the top level
directory. The file should not contain sub-directories. Before switching to a new file, the tree header

258

Trees

is written to the current file, then the current file is closed. To process the multiple files created by
ChangeFi | e(),onemust useaTChai n.

The new file name has a suffix "_N' where N is equal to f Fi | eNunber +1. By default a
Root session starts with f Fi | eNunber =0. One can set f Fi | eNunber to a different value via
TTree: : Set Fi | eNunber (). In case a file named "_N'" already exists, the function will try a
file named "__N', then " N', etc. The maximum tree size can be set via the static function
TTree: : Set MaxTr eeSi ze() . The default value of f gMaxTr eeSi ze is 1.9 GB. If the current

file contains other objects (like THL and TTr ee), these objects are automatically moved to the new
file.

User Info Attached to a TTree Object

Thefunction TTr ee: : Get User | nf o() allowsadding any object defined by auser to the tree that
is not depending on the entry number. For example:

tree->CGet User | nf o() - >Add(nyr uni nf o) ;

Indexing a Tree

Use TTree: : Bui | dl ndex(), to build an index table using expressions depending on the value
in the leaves.

tree->Bui | dl ndex(maj or name, mi nor namne) ;
The index is built in the following way:

» apassonal entriesismadelikein TTr ee: : Draw()
e varl = mmj or nane

e var2 = m nor nanme

* sel 231 x nmmj ornanme + minor namne
» for each entry in the tree the sel expression is evaluated and the results array is sorted into
f1 ndexVal ues

Once the index is computed, using the TTree: : Get Ent r yW t hl ndex(maj or nunber,
nm nor nunber) one entry can beretrieved. Example:

/[l to create an index using | eaves Run and Event

tree. Bui | dl ndex("Run", "Event");

/[l to read entry correspondi ng to Run=1234 and Event =56789
tree. Get EntryWt hl ndex (1234, 56789) ;

Note that nmaj or name and mi nor name may be expressions using original tree variables e.g.:
"run- 90000","event +3*xx".In casean expression is specified, the equivalent expression must
be computed when calling Get Ent r yW t hl ndex() . To build an index with only maj or narne,
specify mi nor name="0" (default).

Note that once the index is built, it can be saved with the TTr ee object with:

tree. Wite(); /1if the file has been open in "update" npde

The most convenient place to create the index is at the end of the filling processjust before saving the
tree header. If aprevious index was computed, it is redefined by this new call.

259

Trees

Note that this function can also be applied to a TChai n. The return value is the number of entries
in the Index (< O indicates failure).

Branches

The organization of branches allowsthe designer to optimize the datafor the anticipated use. The class
for abranchiscalled TBr anch. If two variables areindependent, and the designer knowsthe variables
will not be used together, they should be placed on separate branches. If, however, the variables are
related, such asthe coordinates of apoint, it ismost efficient to create one branch with both coordinates
onit. A variableon aTBr anch iscalled aleaf (yes- TLeaf). Another point to keep in mind when
designing treesisthat branches of the same TTr ee can bewrittento separatefiles. ToaddaTBr anch
toaTTr ee we cal the method TTree: : Branch() . Note that we DO NOT use the TBr anch
constructor.

The TTr ee: : Br anch method has severa signatures. The branch type differs by what is stored in
it. A branch can hold an entire object, a list of ssimple variables, contents of a folder, contents of a
TLi st , or an array of objects. Let's see some examples. To follow along you will need the shared
library | i bEvent . so. First, check if itisin SROOTSYS/ t est . If itis, copy it to your own area. If
it is not there, you have to build it by typing makein SROOTSYS/ t est .

Adding a Branch to Hold a List of Variables

Al izl

Asinthevery first example (st af f . r oot) thedatawe want to saveisalist of smple
variables, such asintegers or floats. In this case, we use the following TTr ee: : Br anch signature:

tree->Branch("Ev_Branch", &vent, "tenp/ F: ntrack/|:nseg: nvtex:flag/i ");
The first parameter is the branch name.

The second parameter is the address from which the first variable is to be read. In the code above,
“event” is a structure with one float and three integers and one unsigned integer. You should not
assumethat the compiler alignsthe elements of astructure without gaps. To avoid alignment problems,
you need to use structures with same length members. If your structure does not qualify, you need to
create one branch for each element of the structure.

The leaf name is NOT used to pick the variable out of the structure, but is only used as the name for
the leaf. This means that the list of variables needs to be in a structure in the order described in the
third parameter.

This third parameter is a string describing the leaf list. Each leaf has a name and a type separated by
a"/" and it is separated from the next leaf by a": ".

<Vari abl e>/ <t ype>: <Vari abl e>/ <t ype>

The example on the next line has two leafs: afloating-point number called temp and an integer named
nt r ack.

"tenp/ F:ntrack/1:"

The type can be omitted and if no type is given, the same type as the previous variable is assumed.
Thisleaf list hasthree integers called nt r ack, nseg, and nvt ex.

260

Trees

"ntrack/l:nseg: nvt ex"

There is one more rule: when no type is given for the very first leaf, it becomesaf | oat (F). This
leaf list hasthree floats called t enp, nmass, and px.

"tenp: mass: px"

The symbols used for the type are:

» C.acharacter string terminated by the O character
e B: an 8hit signed integer

 b: an 8 hit unsigned integer

S: a 16 bit signed integer

e s:al6 bit unsigned integer

| : a32 bit signed integer

i :a32hit unsigned integer

L: a64 bit signed integer

| : a64 bit unsigned integer

F: a32 bit floating point

D: a64 bit floating point

Thetypeisused for abyte count to decide how much spaceto allocate. The variable written is simply
the block of bytes starting at the starting address given in the second parameter. It may or may not
match the leaf list depending on whether or not the programmer is being careful when choosing the
leaf address, name, and type.

By default, avariable will be copied with the number of bytes specified in the type descriptor symbol.
However, if the type consists of two characters, the number specifies the number of bytes to be used
when copying the variable to the output buffer. The line below describes nt r ack to be written asa
16-bit integer (rather than a 32-bit integer).

“ntrack/|2"

With this Branch method, you can also add a leaf that holds an entire array of variables. To add an
array of floatsusethef [n] notation when describing the |eaf.

Float t f[10];
tree->Branch("fBranch",f,"f[10]/F");

You can also add an array of variable length:

{
TFile *f = new TFile("peter.root", "recreate");
Int_t nPhot;
Fl oat t E[500];
TTr ee* nEntPhot ons = new TTree(" nEncPhot ons", "EMC Phot ons") ;
nEntPhot ons- >Br anch(" nPhot ", & Phot , "nPhot /1 ") ;
nEntPhot ons- >Branch("E", E, "E[nPhot]/ F") ;
}

261

Trees

See “Example 2: A Tree with a C Structure” below ($ROOTSYS/ tutori al s/tree/tree2. Q)
and st af f . Cat the beginning of this chapter.

Adding a TBranch to Hold an Object

Towriteabranch to hold an event object, we need to load the definition of the Event class, whichisin
$ROOTSYS/ test/ i bEvent.so(if it doesn't exist type make i n $ROOTSYS/
test). Anobject canbesavedinatreeif aROOT dictionary for its class has been generated and
loaded.

root[] .L |ibEvent.so
First, we need to open afile and create atree.

root[] TFile *f = new TFile("AFil e.root", " RECREATE")
root[] TTree *tree = new TTree("T","A Root Tree")

We need to create a pointer to an Event object that will be used as a reference in the
TTr ee: : Br anch method. Then we create a branch with the TTr ee: : Br anch method.

root[] Event *event = new Event ()
root|[] tree->Branch("Event Branch", "Event", &vent, 32000, 99)

To add a branch to hold an object we use the signature above. The first parameter is the name of the
branch. The second parameter is the name of the class of the object to be stored. The third parameter
isthe address of a pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the object.

The fourth parameter isthe buffer size and is by default 32000 bytes. It isthe number of bytes of data
for that branch to save to abuffer until it issaved to thefile. Thelast parameter isthe split-level, which
is the topic of the next section. Static class members are not part of an object and thus not written
with the object. Y ou could store them separately by collecting these valuesin a specia "status" object
and write it to the file outside of the tree. If it makes sense to store them for each object, make them
aregular data member.

Setting the Split-level

To split a branch means to create a sub-branch for each data member in the object. The split-level
can be set to 0 to disable splitting or it can be set to a number between 1 and 99 indicating the depth
of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one branch. The TTr ee
will ook like the one on the right, with one branch and one leaf holding the entire event object.

LS

A treethat is split A treethat is not split

When the split-level is 1, an object data member is assigned a branch. If the split-level is 2, the data
member objects will be split also, and a split level of 3 its data members objects, will be split. Asthe

262

Trees

split-level increases so does the splitting depth. The ROOT default for the split-level is99. This means
the object will be split to the maximum.

Memory Considerations when Splitting a Branch

Splitting a branch can quickly generate many branches. Each branch has its own buffer in memory.
In case of many branches (say more than 100), you should adjust the buffer size accordingly. A
recommended buffer size is 32000 bytes if you have less than 50 branches. Around 16000 bytes if
you have less than 100 branches and 4000 bytes if you have more than 500 branches. These numbers
are recommended for computers with memory size ranging from 32MB to 256MB. If you have more
memory, you should specify larger buffer sizes. However, in this case, do not forget that your file
might be used on another machine with a smaller memory configuration.

Performance Considerations when Splitting a Branch

A split branch is faster to read, but slightly slower to write. The reading is quicker because variables
of the same type are stored consecutively and the type does not have to be read each time. It is slower
to write because of the large number of buffers as described above. See “

Performance Benchmarks® for performance impact of split and non-split mode.

Rules for Splitting

When splitting a branch, variables of different types are handled differently. Here are the rules that
apply when splitting a branch.

* If adatamember isabasic type, it becomes one branch of class TBr anchEl enment .
» A datamember can be an array of basic types. Inthis case, onesingle branch iscreated for the array.

» A datamember can beapointer to an array of basic types. Thelength can vary, and must be specified
in the comment field of the data member in the class definition. See “ Input/Output”.

* Pointer datamember are not split, except for pointerstoaTCl onesArray. TheTCl onesArr ay
(pointed to) is split if the split level is greater than two. When the split level is one, the
TC onesArray isnot split.

* If adatamember is a pointer to an object, a special branch is created. The branch will be filled by
calling the class St r eaner function to serialize the object into the branch buffer.

« If adatamember is an object, the data members of this object are split into branches according to
the split-level (i.e. split-level > 2).

» Base classes are split when the object is split.
* Abstract base classes are never split.
» All STL containers are supported.

[l STL vector of vectors of TAXxis*
vect or<vect or<TAxi s *> > fVect Axi s;
/1 STL map of string/vector
map<string, vector<int> > fMapString;
/[l STL deque of pair

deque<pai r<fl oat, fl oat > > f DequePair;

» Asof ROOT 4.01/00, only st d: : vect or of objects can be split. Support for splitting the other
type of STL containers will be introduced in the near future.

263

Trees

 C-structure data members are not supported in split mode.
» An object that is not split may be slow to browse.

e A STL container that is not split will not be accessible in the browser.

Exempt a Data Member from Splitting

If you are creating a branch with an object and in general you want the data members to be split, but
you want to exempt a data member from the split. You can specify this in the comment field of the
data member:

class Event : public TObject {
private:
Event Header f Evt Hdr ; //]] Don't split the header

Adding a Branch to Hold a TClonesArray

ROOT hastwo classesto manage arrays of objects. The TGbj Ar r ay can manage objects of different
classes, and the TCl onesAr r ay that specializes in managing objects of the same class (hence the
name Clones Array). TGl onesAr r ay takes advantage of the constant size of each element when
adding the elements to the array. Instead of allocating memory for each new object as it is added, it
reuses the memory. Hereis an example of thetimeaTCl onesAr r ay cansaveover aTChj Arr ay.
We have 100,000 events, and each has 10,000 tracks, which gives 1,000,000,000 tracks. If we use a
TObj Arr ay for the tracks, we implicitly make a call to new and a corresponding call to delete for
each track. The time it takes to make a pair of new/delete callsis about 7 s (10-6). If we multiply the
number of tracks by 7 s, (1,000,000,000 * 7 * 10-6) we calculate that the time allocating and freeing
memory isabout 2 hours. Thisisthe chunk of time saved whenaTC onesAr r ay isused rather than
aTOoj Array. If you do not want to wait 2 hours for your tracks (or equivalent objects), be sure to
useaTd onesAr r ay for same-class objectsarrays. Brancheswith TCl onesAr r ays usethe same
method (TTr ee: : Br anch) as any other object described above. If splitting is specified the objects
inthe TCl onesAr r ay are split, not the TCl onesAr r ay itself.

I[dentical Branch Names

When atop-level abject (say event), has two data members of the same class the sub branches end
up with identical names. To distinguish the sub branch we must associate them with the master branch
by including a“. ” (a dot) at the end of the master branch name. This will force the name of the
sub branch to be mast er . sub branch instead of ssmply sub branch. For example, a tree has two
branches Tri gger and MuonTr i gger , each containing an object of the same class (Tr i gger).
To identify uniquely the sub branches we add the dot:

tree->Branch("Trigger.","Trigger", &1, 8000, 1);
tree->Branch("MionTri gger.", " Trigger", &2, 8000, 1) ;

If Tri gger hasthree members, T1, T2, T3, the two instructions above will generate sub branches
caled: Tri gger. T1, Tri gger. T2, Tri gger. T3, MuonTri gger. T1, MuonTri gger. T2,
and MuonTri gger. T3.

Adding a Branch with a Folder

Use the syntax below to add a branch from afolder:
tree->Branch("/ aFol der");

This method creates one branch for each element in the folder. The method returns the total number
of branches created.

264

Trees

Adding a Branch with a Collection

This Br anch method creates one branch for each e ement in the collection.

tree->Branch(*aCol | ecti on, 8000, 99);
[l Int_t TTree::Branch(TCollection *list, Int_t bufsize,Int_t splitlevel,
/1 const char *nane)

The method returns the total number of branches created. Each entry in the collection becomes a top
level branch if the corresponding classisnot acollection. If itisacollection, the entry in the collection
becomes in turn top level branches, etc. The split level is decreased by 1 every time a new collection
isfound. For exampleif | i st isaTObj Array*

« Ifsplitlevel = 1,onetoplevel branchiscreated for each element of the TObj Arr ay.

 If splitlevel = 2, onetop level branch is created for each array element. If one of the
array elementsisaTCol | ect i on, onetop level branch will be created for each element of this
collection.

In caseacollection lementisaTCl onesAr r ay, the specia Tree constructor for TCl onesAr r ay
iscalled. The collection itself cannot beaTCl onesAr r ay. If nane isgiven, al branch names will
be prefixed with nanme_.

IMPORTANT NOTEZL: This function should not be caled if splitlevel <1. IMPORTANT
NOTE2: The branches created by this function will have names corresponding to the collection or
object names. It isimportant to give namesto collectionsto avoid misleading branch namesor identical
branch names. By default collections have a name egqual to the corresponding class name, e.g. the
default name of TLi st is“TLi st ”.

Examples for Writing and Reading Trees

The following sections are examples of writing and reading trees increasing in complexity from a
simpletree with afew variablesto atree containing folders and complex Event objects. Each example
has a named script in the SROOTSYS/ t ut ori al s/t ree directory. They are called treel.C to
treed.C. The examples are:

* treel. C atree with several simple (integers and floating point) variables.

* tree2. C atreebuilt from a C structure (st r uct). This example uses the Geant 3 C wrapper
as an example of aFORTRAN common block ported to C with a C structure.

* tree3. C inthis example, we will show how to extend a tree with a branch from another tree
with the Friends feature. These trees have branches with variable length arrays. Each entry has a
variable number of tracks, and each track has several variables.

» treed. C. atreewithaclass (Event). Theclass Event is defined in SROOTSYS/ t est . In this
example we first encounter the impact of splitting a branch.

Each script contains the main function, with the same name as the file (i.e. t r ee1), the function to
write-t r eelw, and thefunctiontoread - t r eelr . If the script is not run in batch mode, it displays
the tree in the browser and tree viewer. To study the example scripts, you can either execute the main
script, or load the script and execute a specific function. For example:

/| execute the function that wites, reads, shows the tree
root|[] X treel.C

/'l use ACLIiC to build shared |ibrary, check syntax, execute
root[] x treel.C++

/1 Load the script and select a function to execute

root|[] L treel.C

root|[] treelw()

265

Trees

root[] treelr()

Example 1: A Tree with Simple Variables

This example shows how to write, view, and read a tree with several simple (integers and floating-
point) variables.

Writing the Tree

Below is the function that writes the tree (t r eelw). First, the variables are defined (px, py,
pz, randomand ev). Then we add a branch for each of the variables to the tree, by calling the
TTr ee: : Branch method for each variable.

void treelw(){

/lcreate a tree file treel.root - create the file, the Tree and a few branches
TFile f("treel.root", "recreate");
TTree t1("t1","a sinple Tree with sinple variabl es");
Float _t px, py, pz;
Doubl e t random
Int_t ev,
t 1. Branch(" px", &ox, "px/ F");
t 1. Branch("py", &y, "py/ F");
t 1. Branch("pz", &pz, "pz/ F"); t1. Branch("ev", &v, "ev/1");

[Ifill the tree
for (Int_t i=0; i<10000; i++) {
gRandom >Rannor (px, py) ;
Pz = px*px + py*py;
random = gRandom >Rndm() ;
ev = i;
t1.Fill();
}
//save the Tree heade; the file will be automatically cl osed
/I when goi ng out of the function scope
tl. Wite();

}
Creating Branches with A single Variable
Thisisthe signature of TTr ee: : Br anch to create a branch with alist of variables:

TBranch* TTree:: Branch(const char* nane, voi d* address, const char* |eaflist,
Int _t bufsize = 32000)

The first parameter is the branch name. The second parameter is the address from which to read the
value. The third parameter is the leaf list with the name and type of each leaf. In this example, each
branch has only one leaf. In the box below, the branch is named px and has one floating point type
leaf also called px.

t1. Branch("px", &x, "px/ F");
Filling the Tree

First we find some random values for the variables. We assign px and py a Gaussian with
mean = 0 and sigma = 1 by calling gRandom >Rannor (px, py), and calculate pz. Then we
cal the TTree: : Fil 1 () method. The cal t 1. Fi | | () fills al branches in the tree because
we have aready organized the tree into branches and told each branch where to get the value
from. After this script is executed we have a ROOT file called t r eel. r oot with atree caled

266

Trees

t 1. There is a possihility to fill branches one by one using the method TBranch: : Fill ().
In this case you do not need to call TTree:: Fill () method. The entries can be set by
TTree: : Set Entri es(Doubl e_t n). Caling this method makes sense only if the number of
existing entriesis null.

Viewing the Tree

Figure 12.5. Thetreel.root fileand itstreein the browser

% ROOT Object Browser [_ (O] x|
File Wiew Options Help
ER] § e

[&Il Folders [Contents of "/ROOT Filesfree1.raott"
Clroot

-

[:Imome.fghiispanacekmsersrv i ; i ;

(CIROOT Files

= [Ctreet root Y P Py pz random
-3 =

D

| 5 Objects. | y

Figure 12.6. A leaf histogram

el =1 B3

File Edit Miew Options |nspect Classes Help
pH Ay

I_I Nert= 10000

| Mean = 00007213

F30 RME =0.5586

20

=

250

20

=

13

=

100

30

1}

AP
e
Fa
=
ra
s
=

In the right panel of the ROOT object browse are the branches: ev, px, py, pz, and r andom Note
that these are shown asleaves because they are "end" brancheswith only oneleaf. To histogram aleaf,
we can simply double click on it in the browser. Thisis how the treet 1 looks in the Tree Viewer.
Here we can add acut and add other operationsfor histogramming theleaves. See“The Tree Viewer”.
For example, we can plot atwo dimensiona histogram.

Figure 12.7. Thetreeviewer

File Edit Bun Options Help
Command | | Option | | Histogram [htemp | [Hist I” Scan W) Rec
- |7 Current Folder Current Tree : {1

C :DTreeList F:-empty- ECr-empty- ECR-empty- %px

- :ﬂm ¥ :-empty- ECr-empty- ECR-empty- %py

Z:-empty- B -emply- B -emply- % pz
c*{\-empty- E¢y-empty- 3 -empty- & randorm
ﬁ Scan box By -empty- B3 -empty- % By

- [el !
ILiStI OListI | First entry : 0 Last entry : 3333 H | 1 | * | 3 | H I VI RESETl
L T

267

Trees

Reading the Tree

Thet r eelr function showshow to read the tree and access each entry and each leaf. Wefirst define
the variables to hold the read values.

Fl oat _t px, py, pz;

Then we tell the tree to populate these variables when reading an entry. We do this with the method
TTree: : Set BranchAddr ess. The first parameter is the branch name, and the second is the
address of the variable where the branch dataisto be placed. In this example, the branch nameis px.
This name was given when the tree was written (seet r ee1w). The second parameter is the address
of the variable px.

t 1- >Set Br anchAddr ess(" px", &px) ;

GetEntry

Once the branches have been given the address, a specific entry can be read into the variables
with the method TTr ee: : Get Entry(n) . It reads all the branches for entry (n) and populates
the given address accordingly. By default, Get Ent r y() reuses the space allocated by the previous
object for each branch. You can force the previous object to be automatically deleted if you call
nmybr anch. Set Aut oDel et e(KTRUE) (defaultiskFALSE).

Consider theexamplein $ROOTSYS/ t est / Event . h. Thetop-level branchinthetree T isdeclared
with:

Event *event = O;
[/ event nust be null or point to a valid object; it nust be initialized
T. Set BranchAddr ess("event ", &vent) ;

When reading the Tree, one can choose one of these 3 options:
Option 1:

for (Int_t i = 0; i<nentries; i++) {
T.GetEntry(i);
//the object event has been filled at this point

}

Thisisthe default and recommended way to create an object of the classEvent . It will be pointed
by event .

At the following entries, event will be overwritten by the new data. All internal members that are
TObj ect * are automatically deleted. It is important that these members be in a valid state when
Get Ent ry iscalled. Pointers must be correctly initialized. However these internal members will not
be deleted if the characters - >" are specified as the first characters in the comment field of the data
member declaration.

The pointer member is read via the poi nt er - >St r eaner (buf) if “- >* is specified. In this
case, it is assumed that the pointer is never null (see pointer TCl onesArray *f Tracks inthe
$ROOTSYS/ t est / Event example). If “- >" is not specified, the pointer member is read via buf
>> poi nt er . In this case the pointer may be null. Note that the option with “- >" is faster to read
or write and it al'so consumes less space in the file.

Option 2 - the option Aut oDel et e is set:

TBranch *branch = T. Get Branch("event");
branch- >Set Addr ess(&event) ;
br anch- >Set Aut oDel et e(KTRUE) ;
for (Int_t i=0; i<nentries; i++) {
T.GetEntry(i); /'l the object event has been filled at this point
}

268

Trees

At any iteration, the Get Ent r y deletes the object event and a new instance of Event is created
and filled.

Option 3 - same as option 1, but you del ete the event yourself:

for (Int_t i=0; i<nentries; i++) {
del ete event;
event = 0; /| EXTREMELY | MPORTANT
T.GetEntry(i);
/1 the objrect event has been filled at this point

}

It is strongly recommended to use the default option 1. It has the additional advantage that functions
like TTr ee: : Draw (internally calling TTr ee: : Get Ent ry) will be functional even when the
classesin thefile are not available. Reading selected branchesis quicker than reading an entire entry.
If you are interested in only one branch, you can use the TBr anch: : Get Ent r y method and only
that branchisread. Hereisthe scriptt r eelr :

voi d treelr()({
//read the Tree generated by treelw and fill two histogranms
/Inote that we use "new' to create the TFile and TTree objects,
//to keep themalive after |eaving this function.
TFile *f = new TFile("treel.root");
TTree *t1 = (TTree*)f->CGet("t1");
Fl oat _t px, py, pz;
Doubl e t random
Int_t ev;
t 1- >Set Br anchAddr ess(" px", &px) ;
t 1- >Set Br anchAddr ess(" py", &py) ;
t 1- >Set Br anchAddr ess(" pz", &pz) ;
t 1- >Set Br anchAddr ess("randont', & andom ;
t 1- >Set BranchAddr ess("ev", &evV) ;
//create two histograns

THLF *hpx = new THLF(" hpx", "px distribution", 100, -3, 3);
TH2F *hpxpy = new TH2F("hpxpy", "py vs px", 30, -3, 3, 30, -3, 3);
/[/read all entries and fill the histograns

Int_ t nentries = (Int_t)t1->CGetEntries();
for (Int_t i=0; i<nentries; i++) {
t1->GetEntry(i);
hpx->Fi | | (px) ;
hpxpy->Fi | | (px, py);
}
//We do not close the file. W want to keep the generated histograns
//we open a browser and the TreeVi ewer
i f (gROOT->IsBatch()) return;
new TBrowser ();
t1->StartViewer();

[/1n the browser, click on "ROOT Files", then on "treel.root"
//You can click on the histogramicons in the right panel to draw
[/themin the TreeViewer, follow the instructions in the Help.

}
Example 2: A Tree with a C Structure

The executable script for this example is $ROOTSYS/ tut ori al s/tree/tree2. C. In this
example we show:

» how to build branches from a C structure

269

Trees

» how to make a branch with afixed length array

» how to make a branch with avariable length array

how to read selective branches

how to fill ahistogram from a branch
* howtouseTTr ee: : Dr awto show a3D plot

A C structure (struct) is used to build a ROOT tree. In general we discourage the use of C
structures, werecommend using aclassinstead. However, we do support them for legacy applications
written in C or FORTRAN. The example st r uct holds simple variables and arrays. It maps to a
Geant3 common block / gct rak/ . Thisisthe definition of the common block/structure:

const Int_t MAXMEC = 30;
/1 PARAMETER (MAXMEC=30)
/1 COVMON/ GCTRAK/ VECT(7) , GETOT, GEKI N, VOUT(7)

/1 + , NVEC, LMEC(MAXVEC)
/1 + , NAVEC(MAXMEC) , NSTEP

/1 + , Pl D, DESTEP, DESTEL, SAFETY, SLENG

/1 + , STEP, SNEXT, SFI ELD, TOFG, GEKRAT, UPWGHT

typedef struct {
Float t vect[7];
Float t getot;
Fl oat _t gekin;
Float t vout[7];

I nt_t nnec;

Int _t | mec[MAXMEC] ;
Int _t namec|[MAXVEC] ;
I nt_t nst ep;

Int _t pi d;

Fl oat _t destep;
Float _t destel;
Float t safety;
Float t sl eng;
Float _t step;
Fl oat t snext;
Float t sfield,;
Float t tofg;
Fl oat _t gekrat;
Fl oat _t upwght;
} Cetrak_t;

When using Geant3, the common block is filled by Geant3 routines at each step and only the
TTree: : Fi | | method needsto be called. In this example we emulate the Geant3 step routine with
thehel i xSt ep function. We also emulate thefilling of the particle values. The callstothe Br anch
methods are the same asif Geant3 were used.

voi d helixStep(Float_t step, Float_t *vect, Float_t *vout)
{
/1 extrapolate track in constant field
Float t field = 20; // field in kilogauss
enum Evect {kX, kY, kzZ, kPX, kPY, kPZ, kPP} ;
vout [KPP] = vect [kPP];

Float t h4 = fiel d*2.99792e- 4;
Float t rho = -h4/vect [kPP] ;
Float t tet = rho*st ep;

270

Trees

Float t tsint = tet*tet/6;
Float t sintt =1 - tsint;
Float t sint = tet*sintt;
Float t coslt = tet/2;
Float t f1 = step*sintt;
Float t f2 = step*coslt;
Float t f3 = step*tsint*vect[kPZ];
Float t f4 = -tet*coslt;
Float t f5 = sint;
Float t f6 = tet*coslt*vect[kPZ];
vout [kX] = vect[kX] + (fl*vect[kPX] - f2*vect[kPY]);
vout [KY] = vect[kY] + (fl*vect[kPY] + f2*vect[kPX]);
vout [kZ] = vect[kZz] + (fl*vect[kPZ] + f3);
vout [KPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
vout [KPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
vout [kPZ] = vect[kPz] + (f4*vect[kPZ] + f6);

}

Writing the Tree
void tree2w() {

/Il wite tree2 exanple
//create a Tree file tree2.root
TFile f("tree2.root", "recreate");

[lcreate the file, the Tree

TTree t2("t2","a Tree with data froma fake Geant3");
/1 declare a variable of the C structure type
Getrak t gstep;

/1 add the branches for a subset of gstep

t 2. Branch("vect", gstep. vect, "vect[7]/F");

t2. Branch("getot", &st ep. getot, "getot/F");

t 2. Branch("geki n", &yst ep. geki n, "geki n/ F") ;

t 2. Branch(" nmec", &gst ep. nnec, "nnec/1");

t2. Branch("Il mec", gstep. | nec, "l mec[nnec]/I1");
t 2. Branch("dest ep", &gst ep. dest ep, "dest ep/ F") ;
t2. Branch("pi d", &step. pid, "pid/1");

/llnitialize particle paraneters at first point
Fl oat _t px, py, pz, p, char ge=0;

Float t vout[7];

Float t mass = 0.137;

Bool t newParticle = kTRUE;

gstep. step = 0.1;
gstep. destep = 0;
gst ep. nnmec = 0;
gst ep. pi d = 0;

//transport particles

for (Int_t i=0; i<10000; i++) {
//generate a new particle if necessary (Geant3 enul ati on)
if (newParticle) {

px = gRandom >Gaus(O0, . 02);
py = gRandom >Gaus(0, . 02);
pz = gRandom >Gaus(O0, . 02);
p = TMath::Sgrt(px*px+py*py+pz*pz);

271

Trees

charge = 1;
i f (gRandom >Rndm() < 0.5) charge = -1;
gstep. pi d += 1;

gst ep. get ot ThWat h: : Sqrt (p*p + mass*nmass);

gstep.vect[0] = O;

gstep.vect[1] = O;

gstep.vect[2] = O;

gstep. vect[3] = px/p;

gstep. vect[4] = py/p;

gstep.vect[5] = pz/p;

gstep.vect[6] = p*charge;

gst ep. gekin = gstep.getot - mass;
newParticl e = KFALSE

}

[l fill the Tree with current step paraneters
t2.Fill();

//transport particle in magnetic field (Geant3 emnul ati on)
hel i xSt ep(gst ep. step, gstep.vect, vout);
/I make one step
[/ apply energy | oss

gst ep. dest ep = gst ep. st ep*gRandom >Gaus(0. 0002, 0. 00001) ;
gst ep. geki n -= gstep. dest ep;
gstep. getot = gstep.gekin + mass;

gst ep. vect [6] = charge* TWat h: : Sqrt (gst ep. get ot *gst ep. getot - maSS*mBSS) ;
gstep.vect[0] = vout[O];

gstep.vect[1] = vout[1];
gstep.vect[2] = vout[2];
gstep.vect[3] = vout[3];
gstep.vect[4] = vout[4];
gstep.vect[5] = vout[5];

gst ep. nnec (I'nt_t)(5*gRandom >Rndm()) ;

for (Int_t |=0; |<gstep.nnmec; |++) gstep.|mec[l]

if (gstep.gekin < 0.001) newParticle = kTRUE;

if (TMath::Abs(gstep.vect[2]) > 30) newParticle
}
//save the Tree header. The file will be automatically
/1 cl osed when goi ng out of the function scope
t2.Wite();

kTRUE;

}
Adding a Branch with a Fixed Length Array

At first, we create atree and create branches for a subset of variablesin the C structure Getrak t.
Then we add several types of branches. The first branch reads seven floating-point values beginning
at theaddressof ' gst ep. vect ' . You do not need to specify &gst ep. vect , becausein Cand C
++ the array variable holds the address of the first element.

t2. Branch("vect", gstep. vect,"vect[7]/F");
t2.Branch("getot", &gstep. getot, "getot/F");
t 2. Branch("geki n", &gst ep. geki n, "geki n/ F") ;

Adding a Branch with a Variable Length Array
The next two branches are dependent on each other. The first holds the length of the variable length

array and the second holdsthe variablelength array. Thel mec branch readsnnmec number of integers
beginning at the address gst ep. | nec.

272

Trees

t 2. Branch(" nmec", &gst ep. nnec, "nmec/1");
t2. Branch("Il mec", gstep. | nec, "l mec[nnec]/1");

The variable nmec isarandom number and is reset for each entry.

gstep.nnec = (Int_t)(5*gRandom >Rndm()) ;

Filling the Tree

In this emulation of Geant3, we generate and transport particles in a magnetic field and store the
particle parameters at each tracking step in a ROOT tree.

Analysis

In this analysis, we do not read the entire entry we only read one branch. First, we set the address
for the branch to the file dst ep, and then we use the TBr anch: : Get Ent r y method. Then we fill
a histogram with the dst ep branch entries, draw it and fit it with a Gaussian. In addition, we draw
the particle's path using the three values in the vector. Here we use the TTr ee: : Dr aw method. It
automatically creates a histogram and plots the 3 expressions (see Treesin Analysis).

void tree2r() {

/1 read the Tree generated by tree2w and fill one histogram
/1 we are only interested by the destep branch

// note that we use "new' to create the TFile and TTree objects because we
/1l want to keep these objects alive when we | eave this function

TFile *f = new TFile("tree2.root");

TTree *t2 = (TTree*)f->Get ("t2");

static Float t destep;

TBranch *b_destep = t2->Get Branch("destep");

b_dest ep- >Set Addr ess(&lest ep) ;

//create one histogram
THLF *hdestep = new THLF("hdest ep", "destep in Mev", 100, le-5, 3e-5);
//read only the destep branch for all entries
Int t nentries = (Int_t)t2->CGetEntries();
for (Int_t i=0;i<nentries;i++) {
b _destep->GetEntry(i);
/1 fill the histogramwth the destep entry
hdest ep->Fi | | (dest ep) ;

}

// we do not close the file; we want to keep the generated histograns;
/1 we fill a 3-d scatter plot with the particle step coordinates

TCanvas *cl = new TCanvas("cl1l","cl1l", 600, 800);

cl->SetFill Col or(42);

cl->Divide(1,2);

cl->cd(1);
hdest ep- >Set Fi | | Col or (45) ;
hdest ep->Fi t (" gaus");

cl->cd(2);

gPad->Set Fi | | Col or (37); /1 continued...
t 2- >Set Mar ker Col or (kRed) ;

t2->Drawm "vect[O0]:vect[1]:vect[2]");

i f (gROOT->IsBatch()) return;

273

Trees

/] invoke the x3d vi ewer
gPad- >Cet Vi ewer 3D(“x3d”) ;

0 c1 =] E3
File Edit ¥iew Options Inspect Classes Help

hdestep

Nent= 10000
Mean = 2.002e-0
RMS = 1.004e-06)

200

00

800

500

400

300

200

00

| IFEI I L 10"
I 0q 0R 0dE 093 02 0@ bed 02 DEF 03 %1 XD Viewer M=
weotD]: vect[1]:veot(2) |

Example 3: Adding Friends to Trees

In this example, we will show how to extend a tree with a branch from another tree with the Friends
feature.

Adding a Branch to an Existing Tree

Y ou may want to add abranch to an existing tree. For example, if onevariablein thetreewas computed
with a certain agorithm, you may want to try another algorithm and compare the results. One solution
isto add a new branch, fill it, and save the tree. The code below adds a simple branch to an existing
tree. Notethat thekOver wr i t e optioninthe W i t e method overwritesthe existing tree. If it isnot
specified, two copies of the tree headers are saved.

voi d tree3AddBranch() ({

TFile f("tree3.root", "update");

Fl oat _t new. v;

TTree *t3 = (TTree*)f->CGet("t3");

TBranch *newBranch = t3-> Branch("new v", &ew v, "new v/ F");
[/read the nunber of entries in the t3

Int_ t nentries = (Int_t)t3->CGetEntries();

for (Int_t i = 0; i < nentries; i++){

new v= gRandom >Gaus(0, 1);

newBr anch->Fi | | ();

}

t3->Wite("", TObj ect::kOverwite); /1 save only the new version of the tree

}

Adding a branch is often not possible because the tree is in a read-only file and you do not have
permission to save the modified tree with the new branch. Even if you do have the permission, you

274

Trees

risk loosing the original tree with an unsuccessful attempt to save the modification. Since trees are
usualy large, adding a branch could extend it over the 2GB limit. In this case, the attempt to write
the tree fails, and the original data is may also be corrupted. In addition, adding a branch to a tree
enlarges the tree and increases the amount of memory needed to read an entry, and therefore decreases
the performance. For these reasons, ROOT offers the concept of friends for trees (and chains). We
encourageyoutouse TTr ee: : AddFr i end rather than adding a branch manually.

TTree::AddFriend

A treekeepsalist of friends. In the context of atree (or achain), friendship means unrestricted access
tothefriendsdata. Inthisway itismuch like adding another branch to the tree without taking therisk of
damaging it. To add afriend to thelist, you can usethe TTr ee: : AddFri end method. The TTr ee
(t r ee) below hastwofriends(f t 1 andf t 2) and now hasaccesstothevariablesa, b, c,i,j, k, |
andm

tree

ft1 7R\ft2
/ﬁ A\ .
I i
a b C & V‘
k | m

q r

The AddFr i end method has two parameters, thefirst is the tree name and the second is the name of
the ROOT file where the friend tree is saved. AddFr i end automatically opens the friend file. If no
filenameisgiven, thetree called f t 1 isassumed to bein the samefile asthe original tree.

tree. AddFriend("ft1","friendfilel.root");

If the friend tree has the same name as the original tree, you can giveit an aias in the context of the
friendship:

tree. AddFriend("treel = tree","friendfilel.root");

Once the tree has friends, we can use TTr ee: : Dr awasif the friend's variables were in the original
tree. To specify which treeto use in the Dr aw method, use the syntax:

<t r eeNane>. <br anchnane>. <var nane>

If the var i abl enane is enough to identify uniquely the variable, you can leave out the tree and/
or branch name.

For example, these commands generate a 3-d scatter plot of variable"var " inthe TTr ee t r ee versus
variablevl in TTree ft1lversusvariablev2inTTreeft 2.

tree. AddFriend("ft1","friendfilel.root");
tree. AddFriend("ft2","friendfile2.root");
tree.Draw("var:ftl.vl:ft2.v2");

ft1.v1 tree:var ft2.v2

entry 1
entry 2
entry 3

entry n —

L ~ Thepictureillustratesthe access of thetreeand itsfriendswithaDr aw
command.

275

Trees

When AddFr i end iscalled, the ROOT fileisautomatically opened and thefriendtree (f t 1) header
is read into memory. The new friend (f t 1) is added to the list of friends of t r ee. The number of
entries in the friend must be equal or greater to the number of entries of the original tree. If the friend
tree has fewer entries, awarning is given and the missing entries are not included in the histogram.

UseTTree: : Get Li st O Fri ends toretrieve thelist of friends from atree.

When the tree iswritten to file (TTr ee: : Wi t e), thefriends list is saved with it. Moreover, when
the tree is retrieved, the trees on the friends list are also retrieved and the friendship restored. When
atreeis deleted, the elements of the friend list are also deleted. It is possible to declare afriend tree
that has the same internal structure (same branches and leaves) as the original tree, and compare the
same values by specifying the tree.

tree.Draw("var:ftl.var:ft2. var")
The example codeisin $ROOTSYS/ t ut ori al s/ tree/ tree3. C Hereisthe script:

void tree3w() {

/1l Exanple of a Tree where branches are variable | ength arrays
/1l A second Tree is created and filled in parallel.

/! Run this script with .x tree3.C

/1l In the function treer, the first Tree is open.

/1 The second Tree is declared friend of the first tree.
/[l TTree::Draw is called with variables fromboth Trees.
const Int_t kMaxTrack = 500;

Int _t ntrack;

Int _t stat[kMaxTrack];

Int_t sign[kMaxTrack];

Fl oat t px[kMaxTrack] ;

Fl oat t py[kMaxTr ack] ;

Fl oat t pz[kMaxTrack] ;

Fl oat t pt[kMaxTrack];

Fl oat t zv[kMaxTrack] ;

Fl oat t chi 2[kMaxTrack] ;

Doubl e t sunst at ;

/| create the first root file with a tree
TFile f("tree3.root", "recreate");
TTree *t3 = new TTree("t3", "Reconst ntuple");
t 3->Branch("ntrack", &t rack, "ntrack/1");
t3->Branch("stat",stat,"stat[ntrack]/I");
t 3->Branch("sign",sign,"sign[ntrack]/I");
t 3->Branch(" px", px, "px[ntrack]/F");
t 3- >Branch(" py", py, "py[ntrack]/F");
t 3->Branch("pz", pz, "pz[ntrack]/F");
t 3->Branch("zv", zv, "zv[ntrack]/F");
t 3->Branch("chi 2", chi 2,"chi 2[ntrack]/F");

/] create the second root file with a different tree
TFile fr("tree3f.root","recreate");

TTree *t3f = new TTree("t3f","a friend Tree");

t 3f - >Branch("ntrack", &track, "ntrack/[");

t 3f - >Branch("sunst at", &unst at, "sunstat/D") ;
t3f->Branch("pt", pt,"pt[ntrack]/F");

[l Fill the trees
for (Int_t i=0;i<1000;i++) {
Int_t nt = gRandom >Rndm() *(kMaxTr ack-1) ;

276

Trees

ntrack = nt;

sunmstat = 0;

// set the values in each track
for (Int_t n=0;n<nt;n++) {

stat[n] = n%;
sign[n] = i%;
px[n] = gRandom >Gaus(0, 1) ;
py[n] = gRandom >Gaus(0, 2);
pz[n] = gRandom >Gaus(10, 5) ;
zv[n] = gRandom >Gaus(100, 2);
chi 2[n] = gRandom >Gaus(0, . 01);
sunmst at += chi 2[n];
;Jt[n] = TMath:: Sqrt (px[n] *px[n] + py[n]*py[n]);
t3->Fill();
t3f->Fill();
}

[l Wite the two files
t3->Print();
f.cd();
t3->Wite();
fr.cd();
t3f->Wite();
}
[/l Function to read the two files and add the friend
void tree3r() {

TFile *f = new TFile("tree3.root");
TTree *t3 = (TTree*)f->CGet("t3");

/1 Add the second tree to the first tree as a friend
t 3->AddFriend("t3f","tree3f.root");

/[l Draw pz which is in the first tree and use pt

/] in the condition. pt is in the friend tree.
t3->Draw " pz", "pt>3");
}

/[l This is executed when typing .x tree3.C
void tree3() {

tree3w();

tree3r();

}

Example 4: A Tree with an Event Class

This example is a simplified version of $ROOTSYS/ t est / Mai nEvent . cxx and where Event
objects are saved in a tree. The full definition of Event isin $SROOTSYS/ t est /Event . h. To
execute thismacro, you will need thelibrary SROOTSYS/ t est /| i bEvent . so. If it does not exist
you can build the test directory applications by following the instruction in the SROOTSYS/ t est /
READIVE file.

In this example we will show

« thedifference in splitting or not splitting a branch

* how to read selected branches of the tree,

* how to print a selected entry

277

Trees

The Event Class

Event is a descendent of TCbj ect . As such it inherits the data members of TCbj ect and its
methods such as Dunp() and I nspect () and Wi te(). In addition, because it inherits from
TCObj ect it can be a member of a collection. To summarize, the advantages of inheriting from a
TObj ect are:

* InherittheWi t e, | nspect , and Dunp methods

» Enables aclass to be amember of a ROOT collection

* EnablesRTTI

Below is the list of the Event data members. It contains a character array, severa integers, a
floating-point number, and an Event Header object. The Event Header classis described in the
following paragraph. Event also has two pointers, oneto aTCl onesAr r ay of tracksand oneto a
histogram. The string "- >" in the comment field of the members*f Tr acks and * f H instructs the
automatic St r eaner to assumethat theobjects* f Tr acks and * f Hare never null pointers and that

f Tracks- >St r eaner canbeusedinstead of themoretimeconsumingformR__b << f Tr acks.

class Event : public TObject {

private:
char f Type[20] ;
Int _t f Nt rack;
Int _t f Nseg;
Int_t f Nvert ex;
U nt _t f Fl ag;
Fl oat _t f Tenper at ur e;
Event Header f Evt Hdr ;
TCl onesArray *fTracks; []->
TH1F *fH, []->
Int _t f Measur es[10] ;
Fl oat _t fMatrix[4]][4];
Fl oat _t *f Cl osest Di st ance; [1]fNvertex]
static Td onesArray *fgTracks;
static THLF *fgHi st ;
[l ...list of nmethods

Cl assDef (Event, 1) //Event structure
b

The EventHeader Class

The Event Header class (also defined in Event . h) does not inherit from TObj ect . Beginning
with ROOT 3.0, an object can be placed on a branch even though it does not inherit from TObj ect .
In previous releases branches were restricted to objects inheriting from the TObj ect . However, it
has always been possible to write a class not inheriting from TObj ect to atree by encapsulating it
inaTObj ect descending classasisthe casein Event Header and Event .

cl ass Event Header ({

privat e:

Int _t f Evt Num

Int _t f Run;

Int _t f Dat e;

/1 ...list of methods

Cl assDef (Event Header, 1) /I Event Header
b

278

Trees

The Track Class

The Tr ack class descends from TObj ect since tracks are in a TCl onesArray (i.e. a ROOT
collection class) and contains a selection of basic types and an array of vertices. Its TObj ect
inheritance enables Tr ack to bein acollection andin Event isaTC onesArr ay of Tr acks.

class Track : public TObject {

private:
Fl oat _t f Px; /1 X conmponent of the nonentum
Fl oat _t f Py; /1Y conmponent of the nonentum
Fl oat _t fPz; /1 Z conmponent of the nonentum
Fl oat _t f Random /1A random track quantity
Fl oat _t f Mass2; /1 The mass square of this particle
Fl oat _t f BX; [/ X intercept at the vertex
Fl oat _t f By; /1Y intercept at the vertex
Fl oat _t f MeanChar ge; //Mean charge deposition of all hits
Fl oat _t fXfirst; /1 X coordinate of the first point
Fl oat _t f Xl ast ; /1 X coordinate of the |ast point
Fl oat _t fYfirst; /1Y coordinate of the first point
Fl oat _t fYl ast; /1Y coordinate of the |ast point
Fl oat _t fzZfirst; /1Z coordinate of the first point
Fl oat _t f Zl ast ; /1Z coordinate of the |ast point
Fl oat _t f Char ge; /1 Charge of this track
Fl oat _t fVertex[3]; //Track vertex position
I nt_t f Npoi nt ; [/ Nunmber of points for this track
Short _t fValid,; /[/Validity criterion

/1 method definitions ..
Cl assDef (Tr ack, 1) /1A track segnent

b

Writing the Tree

We create a simple tree with two branches both holding Event objects. Oneis split and the other is
not. We also create a pointer to an Event object (event).

void treed4w() {
/1l check to see if the event class is in the dictionary
[/ if it is not load the definition in |ibEvent. so
if (!TA assTable:: GetDict("Event")) {
gSyst em >Load(" $ROOTSYS/test/ | i bEvent. so");
}
/] create a Tree file treed.root
TFile f("treed.root", " RECREATE") ;
/] create a ROOT Tree
TTree t4("t4","A Tree with Events");
/]l create a pointer to an Event object
Event *event = new Event ();
/'l create two branches, split one
t4. Branch("event branch", "Event", &event, 16000, 2);
t4. Branch("event _not _split", "Event", &event, 16000, 0);

/'l a local variable for the event type
char etype[20];

/[l fill the tree

for (Int_t ev = 0; ev <100; ev++) {
Float t sigmat, signas;

gRandom >Rannor (si gmat , si gnas) ;

279

Trees

Int_t ntrack = Int_t(600 + 600 *sigmat/120.);
Fl oat _t random = gRandom >Rndn(1) ;
sprintf(etype, "type%d", evyp);

event - >Set Type(et ype) ;

event - >Set Header (ev, 200, 960312, random;
event - >Set Nseg(I nt _t (10*nt r ack+20*si gnmas)) ;
event - >Set Nvertex(1l nt _t (1+20*gRandom >Rndn())) ;
event - >Set Fl ag(U nt _t (randomt0. 5)) ;

event - >Set Tenper at ur e(r andomt+20.) ;

for(UChar _t m= 0; m< 10; mt+) {

event - >Set Measure(m | nt _t (gRandom >Gaus(m mt1)));

}
/] continued...
[/ fill the matrix

for(UChar _t i0 = 0; i0 < 4; i0++) {
for(UChar t i1 =0; i1 < 4; i1l++) {
event - >Set Matri x(i0,i 1, gRandom >Gaus(i 0*i 1, 1)) ;

}
}
/I create and fill the Track objects
for (Int_t t =0; t < ntrack; t++) event->AddTrack(randonj;
t4.Fill(); /[l Fill the tree
event->Clear(); // Cear before rel oadi ng event
}
f.Wite(); /I Wite the file header
t4.Print(); /1l Print the tree contents
}

Reading the Tree

First, we check if the shared library with the class definitions is loaded. If not we load it. Then we
read two branches, one for the number of tracks and one for the entire event. We check the number of
tracks first, and if it meets our condition, we read the entire event. We show the fist entry that meets
the condition.

void treedr() {
/1 check if the event class is in the dictionary
/[l if it is not load the definition in |ibEvent. so
if (!TA assTable::GetDict("Event")) {
gSyst em >Load(" $ROOTSYS/test/ | i bEvent. so");
}

/] read the tree generated with treedw

// note that we use "new' to create the TFile and TTree objects, because we
/1 want to keep these objects alive when we | eave this function.

TFile *f = new TFile("treed.root");

TTree *t4 = (TTree*)f->Get ("t4");

/! create a pointer to an event object for reading the branch val ues.
Event *event = new Event ();
/1 get two branches and set the branch address
TBranch *bntrack = t4->GetBranch("fNtrack");
TBranch *branch = t4->GetBranch("event split");
br anch- >Set Addr ess(&event) ;

Int t nevent = t4->GetEntries();
Int t nselected = O;
Int t nb = O;

280

Trees

for (Int_t i=0; i<nevent; i++) {
//read branch "fNtrack"only
bntrack->GetEntry(i);

/lreject events with nore than 587 tracks
if (event->CGetNtrack() > 587)continue;

//read conpl ete accepted event in nmenory

nb += t4->CGetEntry(i);

ns

el ect ed++;

[lprint the first accepted event

if (nselected

/lclear tracks array
event - >C ear () ;

i f (gROOT->IsBatch())

new

TBr owser () ;

return;

t4->StartViewer();

}

1) t4->Show();

Now, let's see how the tree looks like in the tree viewer.

Figure 12.8. Thetree viewer with treed4 example

-m TreeViewer [=][l[=]
File Edit Run Options Help
Cammand | | Optian | | Histagram |htemp [~ Hist " Scan | Rec

| Current Folder Current Tree : #4

XK -empty- & THvertes & fTracks fvfirst
¥ -empty- 3 fFlag i TTracks.fvlast
kd Z: -empty- & fTernperature % fTracks fZ2first
""" ﬁTDbiect °9\\-empt5r- &fMea&uresl] & fTracks fZlast
""" Fh Mypel ﬁScan b Iy Matrix[[3 fTracks fCharge
""" & [Eenthiame E¢ » -empty- & fClosest Distance % fTracks fuertes[]
""" Tt itrack E< 3 -empty- ﬁvatHdr b fTracks. fhpoint
""" Py E¢ 3 -empty- 5 TEvtHolr FEvtNum B Mracks fvalid
% Tr:::;rtex 3 -empty- 3 TEvtHolr fRun 3 fTracks.hsp
_____ § Memperature E¢3-empty- 3 TEviHolr fDate 3 racks. fPointualue
_____ % Measures] E¢ 3 -empty- fe'ﬂ'racks % TTracks fTrigger Bits Tl
_____ & fhatris] E¢ 3 -emptly- % fTracks fPx % fTracks fTrigger Bits fh
..... 4 iClosest Distance E¢» -empty- 3 TTracks Py 3§ fTracks frigger Bits £
B fEwtHar E¢»-empty- 3 fracks fP2 3 tHighPt
[]"'ft fTracks E< > -empty- & TTracks fRandom & fhiuons
..... I fHighPt Kevent_split 3 TTracks MMass2 3 fLastTrack
..... s thiuons #4 Tobject 3 Tracks fBx iy MiebHistogram
----- i fLastTrack 3 TTvpel] B fTracks.fBy B
----- b fwieb Histogram 3 fEventMame 3 fTracks fMeanCharge 4 rigger Bits
----- 3 H i fhitrack 3 TTracks fiirst i Mrigger Bits flikits

. [J---r’{ fTrigger Bits 3 Thsen 3 Tracks filast b Trigger Bits fibytes

- & event_not_split (| _’I

gl g | 0%

ILiStI OListI |Hr3tentry:DLa.stentry:99 HI 1 |0| 4 | >|| vI RESETl

L L

Y ou can see the two branches in the tree in the | eft panel: the event branch is split and hence expands
when clicked on. The other branch event not split is not expandable and we can not browse the data
members.

TheTCl onesArr ay of tracksf Tr acks isalso split because we set the split level to 2. The output
on the command line isthe result of t r ee4- >Show() . It shows the first entry with more than 587
tracks:

281

Trees

======> EVENT: 26
event split =
f Uni quel D =0
fBits = 50331648
f Type[20] = 116 121 112 101 49 0 0 00O 0O 0O 0O0OO0O000O0O0O0
f Nt rack = 585
f Nseg = 5834
f Nvert ex = 17
f Fl ag =0
f Tenper at ure = 20. 044315
f Evt Hdr . f Evt Num = 26
f Evt Hdr . f Run = 200
f Evt Hdr . f Dat e = 960312
f Tracks = 585
D

f Tr acks. f Uni quel o, oo 00 0hb O, O, O, O, O, O

Example 5: Import an ASCII File into a TTree

The method TTr ee: : ReadFi | e can be used to automatic define the structure of the TTr ee and
read the data from a formatted ascii file.

Long64 t TTree:: ReadFil e(const char *filenanme, const char *branchDescri ptor)
Creates or simply read branches from the file named whose nameispassedin' fi | enane’ .

{ gROOT->Reset ();

TFile *f = new TFi |l e("basi c2.root", " RECREATE") ;
THLF *hl = new THLF("h1","x distribution", 100, -4, 4);
TTree *T = new TTree("ntuple”,"data fromascii file");

Long64_t nlines = T->ReadFil e("basic.dat", "x:y:z");
printf(" found %1d pointsn”, nlines);
T->Draw("x", "z>2");
T->Wite();
}

If branchDescr i pt or issettoanempty string (thedefault), it isassumed that the Tr ee descriptor
isgiveninthefirst lineof thefilewithasyntax like: A/ D: Tabl e[2] / F: Nt racks/ | : astring/
C.

Otherwise branchDescriptor must be specified with the above syntax.Lines in the input file starting
with "#" are ignored. A TBr anch object is created for each variable in the expression. The total
number of rows read from thefileis returned.

Trees in Analysis

ThemethodsTTr ee: : Draw, TTr ee: : Maked ass andTTr ee: : MakeSel ect or areavailable
for data analysis using trees. The TTr ee: : Dr aw method is a powerful yet simple way to look and
draw thetrees contents. It enablesyouto plot avariable (aleaf) with just oneline of code. However, the
Draw method falls short once you want to look at each entry and design more sophisticated acceptance
criteriafor your analysis. For these cases, you can use TTr ee: : MakeC ass. It creates a class that
loops over the trees entries one by one. Y ou can then expand it to do the logic of your analysis.

TheTTr ee: : MakeSel ect or isthe recommended method for ROOT dataanalysis. Itisespecialy
important for large data set in aparallel processing configuration where the analysisis distributed over
several processors and you can specify which entriesto send to each processor. With Maked ass the
user has control over the event loop, with MakeSel ect or thetreeisin control of the event loop.

282

Trees

Simple Analysis Using TTree::Draw

We will usethetreein st af f. r oot that was made by the macro in SROOTSYS/ t ut ori al s/
tree/staff.C

First, open the file and lists its contents.

root[] TFile f ("staff.root")
root[] f.ls()

TFi | e** staff. root
TFi | e* staff. root
KEY: TTree T; 1 staff data fromascii file

WecanseetheTTr ee "T" inthefile. Wewill useit to experiment withthe TTr ee: : Dr awmethod,
S0 let’s create a pointer to it:

root[] TTree *MyTree = T

CINT allows us to get smply the object by using it. Here we define a pointer to a TTr ee object
and assign it the value of "T", the TTr ee in the file. CINT looks for "T" and returnsit. To show the
different Dr aw options, we create a canvas with four sub-pads. We will use one sub-pad for each
Dr aw command.

root[] TCanvas *nyCanvas = new TCanvas()
root[] nyCanvas->Divide(2, 2)

We activate the first pad with the TCanvas: : cd statement:
root[] nyCanvas->cd(1)

We then draw the variable Cost :

root[] MyTree->Draw("Cost")

As you can see, the last call TTr ee: : Dr aw has only one parameter. It is a string containing the
leaf name. A histogram is automatically created as a result of a TTr ee: : Dr aw. The style of the
histogram is inherited from the TTr ee attributes and the current style (St yI e) is ignored. The
TTr ee getsitsattributesfrom the current TSt y1 e at thetimeit was created. Y ou can call the method
TTree: : UseCurrent Styl e to change to the current style rather than the TTr ee style. (See
gSt yl e; see aso “Graphics and the Graphical User Interface”)

In the next segment, we activate the second pad and draw a scatter plot variables:

root[] nyCanvas->cd(2)
root[] M/Tree->Draw " Cost: Age")

This signature till only has one parameter, but it now has two dimensions separated by a colon
(“x:y"). Theitem to be plotted can be an expression not just a simple variable. In general, this
parameter is a string that contains up to three expressions, one for each dimension, separated by a
colon (“el: e2: e3"). A list of examples follows this introduction.

Using Selection with TTree:Draw

Change the active pad to 3, and add a selection to the list of parameters of the draw command.

root[] nyCanvas->cd(3)
root[] M/Tree->Draw("Cost: Age","Nation == "FR'")

Thiswill draw the Cost vs. Age for the entries where the nation is equal to “FR’. Y ou can use any
C++ operator, and some functions defined in TFor mul a, in the selection parameter. The value of

283

Trees

the selection is used as a weight when filling the histogram. If the expression includes only Boolean
operations as in the example above, the result is 0 or 1. If the result is O, the histogram is not filled.
In general, the expressionis:

Sel ection = "wei ght *(bool ean expression)"

If the Boolean expression evaluates to true, the histogram is filled with aweight. If the weight is not
explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and the square root of z is
less than 3.2.

"x<y && sqrt(z)>3.2"
On the other hand, this selection will add x+y to the histogram if the square root of zislarger than 3.2.
"(x+y)*(sqrt(z)>3.2)"

The Dr aw method has its own parser, and it only looks in the current tree for variables. This means
that any variable used in the selection must be defined in the tree. Y ou cannot use an arbitrary global
variableinthe TTr ee: : Dr aw method.

Using TCut Objects in TTree::Draw

TheTTr ee: : Dr awmethod also accepts TCut Gobjects. A TCut isaspecialized string object used
for TTr ee selections. A TCut object has a name and a title. It does not have any data members
in addition to what it inherits from TNamed. It only adds a set of operators to do logical string
concatenation. For example, assume:

TCut cutl = "x<1"
TCut cut2 = "y>2"
then

cutl && cut?2
[lresult is the string "(x<1)&&(y>2)"

Operators =, +=, +, *, |, & &, || are overloaded, here are some examples:

root[] TCut cl = "x < 1"

root[] TCut c2 ="y < 0"

root[] TCut ¢c3 = cl && c2

root[] My/Tree. Drawm "x", c1)

root|] MyTree. Draw("x", cl || "x>0")

root[] My/Tree. Drawm "x", cl && c2)

root|] MyTree. Draw("x", "(x + y)" * (cl && c2))

Accessing the Histogram in Batch Mode

The TTr ee: : Dr aw method creates a histogram called ht enp and puts it on the active pad. In a
batch program, the histogram ht enp created by default, is reachable from the current pad.

/1 draw t he histogram

nt->Draw("x", "cuts");

/1 get the histogramfromthe current pad

TH1F *htenp = (THLF*) gPad->GetPrinmtive("htemp");
/1 now we have full use of the histogram

ht enp->Get Entri es();

If you pipe the result of the TTr ee: : Dr awinto a histogram, the histogram is also available in the
current directory. Y ou can do:

284

Trees

/1l Draw the histogramand fill hnew with it

nt - >Dr aw(" x>>hnew", "cuts");

/1 get hnew fromthe current directory

TH1F *hnew = (TH1F*)gDi r ect ory->CGet ("hnew') ;

/1 or get hnew fromthe current Pad

TH1F *hnew = (TH1F*)gPad->CGetPrimtive("hnew');

Using Draw Options in TTree::Draw

The next parameter is the draw option for the histogram:

root[] nyCanvas->cd(4)
root[] MyTree->Draw("Cost: Age","Nation == "FR'","surf2");

Figure 12.9. Using draw optionsin trees

28000
18000 |
18000
14000|
12000
10000
8000
6000 |
4000
2000

The draw options are the same as for THL: : Dr aw. See “Draw Options’ where they are listed. In
addition to the draw options defined in TH1, there are three more. The' prof ' and' prof s' draw
aprofile histogram (TPr of i | e) rather than aregular 2D histogram (TH2D) from an expression with
two variables. If the expression has three variables, aTPr of i | e2Dis generated.

The 'prof s' generates a TPr of i | e with error on the spread. The 'pr of ' option generates a
TProf i | e with error on the mean. The "gof f " option suppresses generating the graphics. Y ou can
combinethe draw optionsin alist separated by commas. After typing the lines above, you should now
have a canvas that |ooks this.

Superimposing Two Histograms

When superimposing two 2-D histogramsinside ascript with TTr ee: : Dr awand using the "sane"
option, you will need to update the pad between Dr aw commands.

{ /'l superinpose two 2D scatter plots

// Create a 2D histogramand fill it with random nunbers
TH2 *h2 = new TH2D ("h2", "2D hi st 0", 100, 0, 70, 100, 0, 20000) ;
for (Int_t i = 0; i < 10000; i++)

h2->Fi | | (gRandom >Gaus(40, 10) , gRandom >Gaus(10000, 3000)) ;
/'l set the color to differentiate it visually
h2- >Set Mar ker Col or (kG een) ;

285

Trees

h2->Draw() ;
/1l Open the exanple file and get the tree
TFile f("staff.root");
TTree *myTree = (TTree*)f. Get("T");
/[l the update is needed for the next draw command to work properly
gPad- >Updat e() ;
nyTr ee- >Dr awm " Cost : Age", "","sane");
}

Inthisexample, h2- >Dr awisonly adding the object h2 to the pad'slist of primitives. It doesnot paint
the object on the screen. However, TTr ee: : Dr awwhen called with option "sane" gets the current
pad coordinatesto build an intermediate histogram with theright limits. Since nothing has been painted
in the pad yet, the pad limits have not been computed. Calling pad- >Updat e() forcesthe painting
of the pad and allows TTr ee: : Dr awto compute the right limits for the intermediate histogram.

Setting the Range in TTree::Draw

There are two more optional parameterstothe TTr ee: : Dr aw method: one isthe number of entries
and the second one is the entry to start with. For example, this command draws 1000 entries starting
with entry 100:

nmyTr ee- >Dr awm " Cost : Age", "","", 1000, 100);

TTree::Draw Examples

The examples below use the Event . root file generated by the $ROOTSYS/ t est/ Event
executableandtheEvent , Tr ack, and Event Header classdefinitionsarein $ROOTSYS/ t est /
Event . h. Thecommands have been tested on the split-levels0, 1, and 9. Each command is numbered
and referenced by the explanations immediately following the examples.

/| Data nenbers and net hods

tree->Draw("f Nt rack");

tree->Draw("event. Get Nt rack()");

tree->Draw(" Get Ntrack()");

tree->Draw("fH. f Xaxi s. f Xmax") ;

tree->Draw("fH. f Xaxi s. Get Xmax()");

tree->Draw(" f H Get Xaxi s() . f Xmax");

tree->Dr aw(" Get Hi st ogran(). Get Xaxi s(). Get Xmax()");

/1 Expressions in the selection paranter

8 tree->Draw("f Tracks. f Px", "f Evt Hdr. f Evt Nuntd0 == 0");

9 tree->Draw("fPx","fEvtHdr.fEvt Nun?d0 == 0");

/1l Two di nensional arrays defined as: Float t fMatrix[4][4] in Event class

10 tree->Draw("fMatrix");

11 tree->Drawm("fMatrix[][1");

12 tree->Drawm("fMatrix[2][2]");
100]")
1T 1")

NOoO oA~ WN P

13 tree->Draw("fMatri x|
14 tree->Draw("fMatrix[1
[/l using two arrays...Float t fVertex[3]; in Track class
15 tree->Draw("fMatrix - fVertex");

16 tree->Draw("fMatrix[2][1] - fVertex[5][1]")
17 tree->Draw("fMatrix[J[1] - fVertex[5][1]")
18 tree->Draw("fMatrix[2][] - fVertex[5][1");
19 tree->Drawm("fMatrix[J[2] - fVertex[][1]");
20 tree->Drawm("fMatrix[]1[2] - fVertex]][1");
21 tree->Drawm("fMatrix[][] - fVertex]][1");

/1 variable |length arrays
22 tree->Drawm "f C osest Di stance");
23 tree->Drawm "f Cl osest Di stance[f Nvertex/2]");

286

Trees

/1 mat hemati cal expressions

24 tree->Draw("sqgrt(fPx*fPx + fPy*fPy + fPz*fPz))");

/] external function call

25 tree->Drawm " TiMat h: : Brei t Wgner (fPx, 3,2)");

[l strings

26 tree->Draw "f Evt Hdr. f Evt Nunt', "f Type=="t ypel"” ");

27 tree->Drawm "fEvt Hdr. f Evt Nuni, "strstr(f Type,"1" ");

[l Where fPoints is defined in the track class:

/1 Int _t fNpoint;

/1 Int _t *fPoints; [fNpoint]

28 tree->Draw "f Tracks. f Poi nts");

29 tree->Drawm "fTracks.fPoints — fTracks.fPoints[][fAvgPoints]");
30 tree->Draw "fTracks.fPoints[2][]- fTracks.fPoints[][55]");
31 tree->Drawm "fTracks.fPoints[][] - fTracks.fVertex[][]");
/] selections

32 tree->Drawm"fValid&x1"," (f Nvertex>10) && (fNseg<=6000)");
33 tree->Drawm "fPx","(fBx>.4) || (fBy<=-.4)");

34 tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");
35 tree->Draw "fVertex","fVertex>10");

36 tree->Draw "fPx[600]");

37 tree->Draw("fPx[600]","fNtrack>600");

/1 al phanuneric bin histogram

/1l where Nation is a char* indended to be used as a string

38 tree->Draw "Nation");

/1l where MyByte is a char* intended to be used as a byte

39 tree->Drawm"M/Byte + 0");

/1l where fTriggerBits is a data nenber of TTrack of type TBits
40 tree->Draw("fTracks.fTriggerBits");

/1 using alternate val ues

41 tree->Draw("fMatrix-Al t$(fC osestDi stance, 0)");

/1 using meta informati on about the fornula

42 tree->Draw("fMatrix:lteration$")

43 T->Draw("f Last Track. Get Px() : f Last Tr ack. f Px");

44 T->Scan("((Track*) (fLast Track@ Get Gbject())).GetPx()","","");
45 tree->Draw " Thi s->CGet ReadEntry()");

46 tree->Draw"nybr.nystring");

47 tree->Draw " nyTi meSt anp") ;

Explanations:
1. tree->Drawm"fNtrack");
It fills the histogram with the number of tracks for each entry. f Nt r ack is amember of event.
2. tree->Draw("event. GetNtrack()");

Same as case 1, but use the method of event to get the number of tracks. When using a method, you
can include parameters for the method as long as the parameters are literals.

3. tree->Draw"GetNtrack()");

Same as case 2, the object of the method is not specified. The command uses the first instance of the
Get Nt r ack method found in the objects stored in the tree. We recommend using this shortcut only
if the method name is unique.

4. tree->Draw("fH. fXaxis. fXmax");

Draw the datamember of adatamember. Inthetree, each entry hasahistogram. This command draws
the maximum value of the X-axis for each histogram.

287

Trees

5. tree->Draw "f H. f Xaxi s. Get Xmax()");

Same as case 4, but use the method of a data member.

6.tree->Draw("f H. Get Xaxi s() . f Xnmax");

The same as case 4: adata member of a data member retrieved by a method.

7. tree->Draw("GetH stogranm). Get Xaxi s(). Get Xmax()");
Same as case 4, but using methods.

8.tree->Draw("f Tracks. f Px", "fEvt Hdr. f Evt Num?d0 == 0");

Use data members in the expression and in the selection parameter to plot f Px or all tracksin every
10th entry. Since f Tr acks isa TCl onesArray of Tr acks, there will be d values of f Px for
each entry.

9. tree->Drawm(" fPx","fEvtHdr.f Evt NunPd0 == 0");
Same as case 8, use the name of the data member directly.
10.tree->Draw("fMatrix");

When the index of the array isleft out or when empty bracketsareused [] , al values of the array are
selected. Draw al valuesof f Mat ri x for eachentry inthetree. If f Mat ri x isdefined as: FI oat _t
fMatrix[4]][4],al 16 vauesareused for each entry.

11. tree->Draw("fMatrix[][1");

The same as case 10, al values of f Mat r i x aredrawn for each entry.
12. tree->Draw(" fMatrix[2][2]");
Thesingleelement at f Mat ri x[2] [2] isdrawn for each entry.

13. tree->Draw("fMatrix[][0]");

Four elementsof f Matri x areused: f Mat ri x[1] [O] ,fMatrix[2][0],fMatrix[3][0],
fMatrix[4][0].

14. tree->Draw "fMatrix[1]] 1");

Four elementsof f Matri x areused: f Matri x[1] [O] ,fMatrix[1][2],fMatrix[1][3],
fMatrix[1][4].

15. tree->Draw("fMatrix - fVertex");

With two arrays and unspecified element numbers, the number of selected values is the minimum of
the first dimension times the minimum of the second dimension. In thiscasef Ver t ex isalso atwo
dimensional array since it is a data member of the tracks array. If f Ver t ex is defined in the track
classas: Fl oat _t *fVertex[3],ithasf Nt racks x 3elements. f Mat ri x has4 x 4 elements.
This case, draws 4 (the smaller of f Nt r ack and 4) times 3 (the smaller of 4 and 3), meaning 12
elements per entry. The selected values for each entry are:

fMatrix[0][0] — fVertex[0][0]

fMatrix[0][1] — fVertex[0][1]

fMatri x[0][2]

fVertex[0]][2]

fMatrix[1][0]

fVertex[1][0]

288

Trees

fvatrix[1][1] - fVertex[1][1]

fvatrix[1][2] - fVertex[1][2]

fMatrix[2][0] — fVertex[2][0]

fvatrix[2][1] - fVertex[2][1]

fMatrix[2][2] - fVertex[2]][2]

fMatrix[3][0] — fVertex[3][0]

fvatrix[3][1] - fVertex[3][1]

fMatrix[3][2] - fVertex[3][2]

16. tree->Draw("fMatrix[2][1] - fVertex[5][1]");
This command selects one value per entry.

17. tree->Draw("fMatrix[J[1] - fVertex[5][1]");
Thefirst dimension of the array istaken by thef Mat ri x.
fMatrix[0][1] - fVertex[5][1]

fMmatri x[1] [1]

fVertex[5][1]

fMatri x[2] 1]

fVertex[5][1]
fmatrix[3][1] - fVertex[5][1]
18. tree->Draw("("fMatrix[2][] - fVertex][5][1");

Thefirst dimension minimum is 2, and the second dimension minimum is 3 (from f Ver t ex). Three
values are selected from each entry:

fMatrix[2][0] - fVertex[5][0]

fvatrix[2][1] - fVertex[5][1]

fvatrix[2][2] - fVertex[5][2]

19. tree->Draw("fMatrix[][2] - fVertex][]J[1]")
Thisissimilar to case 18. Four values are selected from each entry:

fMatrix[0][2] - fVertex[O][1]

fMatrix[1][2] - fVertex[1][1]

fMvatri x[2] [2] fVertex[2][1]

fvatrix[3][2] - fVertex[3][1]

20. tree->Draw("fMatrix[J[2] - fVertex]][1")
Thisissimilar to case 19. Twelve values are selected (4x3) from each entry:
fMatrix[0][2] - fVertex[O0][O]

fvatrix[0][2] - fVertex[O][1]

fMatrix[0][2] - fVertex[0][2]

289

Trees

fMatrix[1][2] - fVertex[1][O0]
fMatrix[1][2] - fVertex[1][1]
fMatrix[1][2] - fVertex[1]][2]
fMatrix[2][2] - fVertex[2][0]
fMatrix[2][2] - fVertex][2][1]
fMatrix[2][2] - fVertex[2][2]
fMatrix[3][2] - fVertex[3][0]
fMatrix[3][2] - fVertex[3][1]
fMatrix[3][2] - fVertex[3][2]
21. tree->Draw("fMatrix[][] - fVertex[1[1")

This is the same as case 15. The first dimension minimum is 4 (from f Mat r i x), and the second
dimension minimum is 3 (from f Ver t ex). Twelve values are selected from each entry.

22. tree->Draw("fd osestDi stance")
This event data member f Cl osest Di st ance isavariablelength array:
Float _t *fC osestDistance; //[fNvertex]

This command selects all elements, but the number per entry depends on the number of vertices of
that entry.

23. tree->Draw("fC osestDi stance[f Nvertex/2]")

With this command the element at f Nver t ex/ 2 of thef Cl osest Di st ance array is selected.
Only one per entry is selected.

24, tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the square root of the sum of
the product.

25. tree->Drawm"That h:: Brei t Wgner (fPx, 3,2)")

The formula can contains call to a function that takes numerical arguments and returns a numerical
value. The function needs to be declared to the dictionary and need to be available from the global
namespace. In particular, global functions and public static member functions can be called.

26. tree->Draw("fEvt Hdr.fEvt Num', "f Type=="typel" ")

You can compare strings, using the symbols == and !=, in the first two parameters of the Dr aw
command (TTr eeFor nrul a). Inthis case, the event number for ‘typel’ eventsis plotted.

27. tree->Drawm("fEvt Hdr. f Evt Nunt, "strstr(f Type,"1") ")

To comparestrings, you can alsousest r st r . Inthiscase, eventshavinga'l' inf Type are selected.
28. tree->Draw "f Tracks. f Poi nts")

If f Poi nt s isadatamember of the Tr ack class declared as:

Int_t fNpoint;

290

Trees

Int_t *fPoints; [fNpoint]

The size of the array f Poi nt s varies with each track of each event. This command draws all the
valueinthef Poi nt s arrays.

29. tree->Drawm "fTracks.fPoints - fTracks.fPoints[][fAvgPoints]");
When f AvgPoi nt s isadatamember of the Event class, this example selects:

fTracks[O0].fPoints[0] - fTracks[O].fPoint[fAvgPoi nts]

fTracks[O0].fPoints[1] - fTracks[O].fPoint[fAvgPoi nts]
fTracks[0].fPoints[2] - fTracks[O].fPoint[fAvgPoi nts]
fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoi nts]
fTracks[0].fPoints[4] - fTracks[O0].fPoint[fAvgPoi nts]
f Tracks[0] . f Points[max0] - fTracks[O0].fPoi nt[fAvgPoi nts]
fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoi nts]
fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoi nts]
fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoi nts]
fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoi nts]
fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoi nts]
f Tracks[1] . f Poi nt s[max1] - fTracks[1].fPoint[fAvgPoi nts]

. f Poi
. f Poi

f Tracks[f Nt rack-1]
f Tracks[f Nt rack-1]

nt s[0] -
nt [f AvgPoi nt s]

f Tracks[fNtrack-1]. f Poi
f Tracks[fNtrack-1]. f Poi

nts[1] -
nt [f AvgPoi nt s]

f Tracks[f Nt rack-1]
f Tracks[f Nt rack-1]

. f Poi
. f Poi

nt s[2] -
nt [f AvgPoi nt s]

f Tracks[f Nt rack-1]. f Poi
f Tracks[f Nt rack-1]. f Poi

nt s[3] -
nt [f AvgPoi nt s]

fTracks[f Nt rack-1]
fTracks[f Nt rack-1]

. f Poi
. f Poi

nt s[4] -
nt [f AvgPoi nt s]

f Tracks[fNtrack-1]. f Poi nt s[naxn] -
f Tracks[fNtrack- 1] . f Poi nt [f AvgPoi nt s]

Where maxO0, max1, ... max n,isthesizeof the f Poi nts array for the respective track.

30. tree->Drawm"fTracks.fPoints[2][]— fTracks.fPoints[][55]")

291

Trees

For each event, this expression is selected:
fTracks[2].fPoints[0] - fTracks[O].

f Tracks[2] . f Poi nts[1]

f Tracks[1].

f Tracks[2] . f Poi nt s[2]

f Tracks|[2] .

f Tracks[2] . f Poi nt s[3] f Tracks[3] .

f Poi nt s[55]
f Poi nt s 55]
f Poi nt s[55]

f Poi nt s[55]

f Tracks[2].fPoints[max] - fTracks[max].fPoints[55]

where max isthe minimum of f Nt r ack and f Tr acks[2] . f Npoi nt .

31. tree->Drawm("fTracks.fPoints[][] - fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the difference between f Poi nt s and
of f Ver t ex. The number of elements used for each track is the minimum of f Npoi nt and 3 (the
size of thef Ver t ex array).

f Tracks[0].fPoints[0] - fTracks[O].fVertex[O]

f Tracks[O].fPoints[1] - fTracks[O].fVertex[1]

f Tracks[O].fPoints[2] - fTracks[O].fVertex[2]

/1 with fTracks[1] . fNpoi nt==

fTracks[1].fPoints[0] - fTracks[1].fVertex[O0]

fTracks[1].fPoints[1] - fTracks[1].fVertex[1]

fTracks[1].fPoints[2] - fTracks[1].fVertex[2]

/1 with fTracks[1].fNpoint==
f Tracks[2] . f Poi nt s[0]

- fTracks[1].fVertex[O]

fTracks[2].fPoints[1] - fTracks[1].fVertex[1]
/1 with fTracks[2].fNpoint==2
fTracks[3].fPoints[0] - fTracks[3].fVertex[O0]
/1 with fTracks[3].fNpoint==1
f Tracks[4] . f Poi nt s[0]

- fTracks[4].fVertex[O0]

fTracks[4].fPoints[1] - fTracks[4].fVertex[1]

f Tracks[4].fPoints[2] - fTracks[4].fVertex[2]
/1 with fTracks[4].fNpoint==

32. tree->Draw("fValid&x1"," (fNvertex>10) && (fNseg<=6000)")
Y ou can use hit patterns (&, | , <<) or Boolean operation.

N
tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

33. tree->Draw("fPx", " (fBx>.4) (fBy<=-.4)");

34.

292

Trees

Theselection argument isused asaweight. The expression returnsamultiplier and in case of aBoolean
themultiplier iseither O (for false) or 1 (for true). Thefirst command drawsf Px for the range between
0.4 and —0.4, the second command draws f Px for the same range, but adds a weight using the result
of the second expression.

35. tree->Draw("fVertex","fVertex>10")

When using arrays in the selection and the expression, the selection is applied to each element of the
array.

if (fVertex[0]>10) fVertex[O]

if (fVertex[1]>10) fVertex[1]

if (fVertex[2]>10) fVertex[2]

36. tree->Draw"fPx[600]")

37. tree->Drawm"fPx[600]","fNtrack > 600")

When using a specific element for a variable length array the entries with fewer elements are
ignored. Thus these two commands are equivalent.

38. tree->Draw"Nation")

Nat i on isachar * branch. When drawing achar * it will plot an aphanumeric histogram, of the
different value of the string Nat i on. The axiswill have the Nat i on values. See “Histograms”.

39. tree->Draw "MyChar +0")
If you want to plot achar* variable as a byte rather than a string, you can use the syntax above.
40. tree->Draw("fTracks.fTriggerBits")

f Tri gger Bi t s isadatamember of TTr ack of type TBi t s. Objectsof classTBi t s can bedrawn
directly. This command will create a 1D histogram from O to nbi t s which is filled for each non-
null bit-number.

41. tree->Draw("fMatrix-A t$(fd osest Di stance, 0)")

Alt$(primary, al ternate) returnsthe value of "pri mar y" if it is available for the current
iteration; otherwise return the value of "al t er nat e". Assuming that f Cl osest Di st ance isa
smaller array than f Mat ri x. This example will draw f Matri x[i] +f Cl osest Di st ance[i]

fori lessthanthesizeof f Cl osest Di st ance, andwill draw f Mat ri x[i] +0 for the other value
of i .

42. tree->Draw("fCl osest Di stance: lteration$")

This example draws a 2D plot with, for al entries, f Cl osest Di st ance[i]:i for each value of
i betweenOandthesizeof f Cl osest Di st ance. |t erati ons$ isoneof four specia variables
giving some indications of the state of the loops implied by the formula:

Entry$. return the current entry number (TTr ee: : Get ReadEntry())
Entries$: returnthetota number of entries (TTree: : Get Entri es())
Lengt h$. return the total number of element of this formulafor this entry

I teration$: return the current iteration over this formula for this entry (i.e. varies from 0 to
Lengt h$).

43. T->Draw("fLast Track. Get Px(): f Last Track. f Px");

293

Trees

TRef and TRef Ar r ay are automatically deferenced and this showsthe value of thef Px of thetrack
referenced by f Last Tr ack. To accessthe TRef object itself usethe'@notation (see next example).
This auto dereferencing can be extended (via an implementation of TVi r t ual Ref Pr oxy) to any
reference type.

44, T->Scan("((Track*)(flLastTrack@ Get Cbject())).GetPx()","","");

Will cast the return value of Get Qbj ect () (which happensto be TObj ect * in this case) before
requesting the Get Px() member functions.

45. tree->Draw " Thi s- >Get ReadEntry()");

You can refer to the tree (or chain) containing the data by using the string 'Thi s'. You can aso call
any TTr ee methods. Next example will display the name of thefirst 'user i nf o' object:

t ree- >Dr aw(" Thi s- >Get User | nf o() - >At (0) - >Get Nane() ") ;
46. tree->Draw("nybr.nystring");

TStringandstd::string object are plotted directly. The example 45 draws the same results -
i.e. an histogram whose labels are the string value of 'myst ri ng":

tree->Draw("mybr.mystring.c_str()");
or

tree->Draw("nmybr.mytstring. Data()");
47. tree->Draw("nyTi meSt amp");

Y ou can plot plot objects of any class which has either AsDoubl e or AsSt ri ng (AsDoubl e has
priority). For such aclass (for example TTi meSt anp), the line 46 will plot the same as:

tree->Draw(" nmyTi neSt anp. AsDoubl e") ;

As St ri ng can bereturning either achar *,oraTStri ngoranstd: : string.

Using TTree::Scan
TTr ee: : Scan can be used to print the content of the tree's entries optional passing a selection.
root[] MyTree->Scan();
will print the first 8 variables of the tree.
root[] MyTree->Scan("*");
will print all the variable of the tree.
Specific variables of the tree can be explicit selected by list them in column separated list:
root[] MyTree->Scan("var1l:var2:var3");
will print the values of var 1, var 2 and var 3. A selection can be applied in the second argument:
root[] M/Tree->Scan("var1l:var2:var3", "varl1==0");
will print the values of var 1, var 2 and var 3 for the entries where varl is exactly O.

TTree: : Scan returns the number of entries passing the selection. By default 50 rows are
shown before TTr ee: : Scan pauses and ask you to press the Enter key to see the next 50
rows. You can change the default number of rows to be shown before <CR> via nytree-
>Set Scanfi el d(maxr ows) where maxrowsis 50 by default. If maxrows is set to 0 all rows of

294

Trees

the Tr ee are shown. This option is interesting when dumping the contents of a Tree to an ascii file,
eg from the command line:

root[] tree->Set ScanFi el d(0);
root[] tree->Scan("*"); >tree.log

will create afilet r ee. | og.

Arrays (within an entry) are printed in their linear forms. If several arrays with multiple dimensions
are printed together, they will NOT be synchronized. For example, with atree containing ar r 1[4]
[2] andarr2[2]]3],

root[] MyTree("arrl:arr2");

will resultsin a printing similar to:

EZE R I I S I I S S I S I R S S I R S I R R S L

i Row * Instance * arrl * arr2 *
B X * O * arrl[0][O]* arr2[0][0O]*
B X * 1* arrl[0][1]* arr2[0][1]*
B X * 2 * arrl[1][0]* arr2[0][2]*
B X * 3 * arrl[1][1]* arr2[1][0]*
B X * 4 * arrl[2][0]* arr2[1][1]*
B X * 5 * arrl[2][1]* arr2[1][2]*
B X * 6 * arrl[3][0]* *
B X * 7 * arrl[3][1]* *

However, if thereisaselection criterium which isan array, then all the formulas will be synchronized
with the selection criterium (see TTr ee: : Dr awfor more information).

Thethird parameter of TTr ee: : Scan can be use to specific the layout of the table:

* | enmax=dd - where 'dd" is the maximum number of elements per array that should be printed. If
'dd' is 0, all elements are printed (this is the default).

e col si ze=ss - where 'ss will be used as the default size for all the column. If this optionsis not
specified, the default column sizeis 9.

e precisi on=pp - where'pp' will be used as the default 'precision’ for the printing format.

e col =xxx - where 'xxx" iscolon (:) delimited list of printing format for each column if no format
is specified for a column, the default is used.

For example:

tree->Scan("a: b:c","","col si ze=30 precision=3 col =::20.10");

will print 3 columns, the first 2 columns will be 30 characters long, the third columns will be 20
characterslong. The printf format for the columns (assuming they are numbers) will be respectively:
%30. 3g %30. 3g %20. 10g.

TEventList and TEntryList

TheTTr ee: : Dr aw method can also be used to build alist of the entries. When the first argument
ispreceded by " >>" ROOT knows that this command is not intended to draw anything, but to save
the entries in a list with the name given by the first argument. As a result, a TEvent Li st or a
TEntryLi st object is created in the current directory. For example, to create a TEvent Li st of
all entries with more than 600 tracks, do:

root[] TFile *f = new TFile("Event.root");

295

Trees

root[] T->Draw(">> myList","fNtrack > 600");
TocreateaTEnt ryLi st , usetheoption"ent ryl i st".
root[] T->Draw(">>nyList", "fNtrack>600", "entrylist");

Thislist contains the entry number of all entries with more than 600 tracks. To see the entry numbers
usethePrint("all") command.

root[] nyList->Print("all");

When using the ">>" whatever wasin the list is overwritten. The list can be grown by using the ">>
+" syntax. For example to add the entries, with exactly 600 tracks:

root[] T->Draw(">>+ nyList","fNrack == 600", "entrylist");
If the Dr aw command generates duplicate entries, they are not added to the list.
root[] T->Draw(">>+ nyList"," fNtrack > 610", "entrylist");

This command does not add any new entries to the list because all entries with more than 610 tracks
have already been found by the previous command for entries with more than 600 tracks.

Main Differences between TEventList and TEntryList

The functionality is essentialy the same: both are used to store entry numbers. TEnt ryLi st
however, uses considerably less memory for storage, and is optimized for both very high and very
low selectivity of cuts (see TEnt r yLi st Bl ock classdescription for the details of internal storage).
Unlike the TEvent Li st, TEntryLi st makes a distinction between indices from a TChai n
and from a TTr ee. While a TEnt r yLi st for a TTr ee can be seen as just a list of numbers, a
TEntryLi st foraTChai nisacollectionof TEnt r yLi st (s) for the TTr ee(s) that constitute this
TChai n. Such "sub-lists" can be extracted by calling the function

TEntryLi st:: Get EntryLi st (const char *treename, const char *fil enane)

and then be used to construct anew TEnt r yLi st for anew TChai n, or processed independently
asnormal TEnt r yLi st (s) for TTr ee(s). Thismodularity makes TEnt r yLi st much better suited
for PROOF processing than the TEvent Li st .

Using an Event List

A TEvent Li st oraTEntryLi st can be used to limit the TTr ee to the eventsin the list. The
methods Set Event Li st and Set Ent ryLi st tell the tree to use the list and hence limit all
subsequent callsto Dr aw, Scan, Pr ocess, Query, Pri nci pal and CopyTr ee methods to the
entriesin the list. In general, it affects the Get Ent r yNunber method and all functions using it for
looping over the tree entries. The Get Ent ry and Get Ent ri es methods are not affected. Note,
that in the Set Event Li st method, the TEvent Li st argument is internally transformed into a
TEnt ryLi st ,andthisoperation, in caseof aTChai n, requiresloading of all thetree headers. Inthis
example, we create alist with al entries with more than 600 tracks and then set it so that the tree will
usethislist. Toresetthe TTr ee touseall eventsuse Set Event Li st (0) or Set Ent r yLi st (0) .

1) Let’slook at an example. First, open the file and draw the f Nt r ack.

root[] TFile *f = new TFile("Event.root");
root[] TTree *T = (TTree*)f->Get("T");
root[] T->Draw("fNtrack");

2) Now, put the entries with over 600 tracks into a TEnt r yLi st caled nyLi st . We get the list
from the current directory and assign it to avariable list.

root[] T->Draw(">>nyList","fNtrack > 600", "entrylist");

296

Trees

root[] TEntryList *list=(TEntryList*)gD rectory->CGet("myList");

3) Instruct the tree T to use the new list and draw it again. Note that this is exactly the same Dr aw
command. The list limits the entries.

root[] T->SetEntryList(list);
root[] T->Draw("fNtrack");

Y ou should now see a canvas similar to this one.

el =] E3
Eile Edit ¥Yiew Options |nspect Classes Help
htrack | T
Hent=22
T Maan = 403.7
3 FME = 2.453

s

L

o F
&0n &n2 (10 G0 G0B &1

Operations on TEntryLists

If you have entry lists that were created using different cuts, you can combine the lists to get a new
list, with entries passing at |east one of the cuts. Example:

root[] T->Draw(">>listl1","fNtrack>600","entrylist");

root[] TEntryList *listl = (TEntryList*)gDirectory->Get("listl");
root[] T->Draw(">>list2","fNrack<590","entrylist");

root[] TEntryList *list2 = (TEntryList*)gDirectory->Get("list2");
root[] listl->Add(list?2);

I i st 1 now contains entries with more than 600 or less than 590 tracks. Check this by calling:

root[] T->SetEntryList(listl);
root[] T->Draw("fNtrack");

You can aso subtract TEnt r yLi st from each other, so that the first list contains only the entries,
passing the selection of the first list and not present in the second list.

To add some individual entries, use TEnt ryLi st:: Enter () function. To remove the entries
you don't like, use TEntryList::Renove(). To see if the entry is in the list, use
TEntryLi st:: Cont ai ns() . Remember, that all operationinaTEnt r yLi st foraTChai n are
onthe TTr ee level. Thisisillustrated by the following example:

root[] TEntryList *listl = new TEntryList("listl1","list1l");
root[] listl->SetTree("treel","filel")

root[] listl->Enter(0);

root[] listl->Enter(2);

root[] TEntryList *list2 = new TEntryList("list2", "list2");
root[] list2->SetTree("tree2", "file2");

root[] l|ist2->Enter(0);

root[] list2->Enter(3);

root[] listl->Add(list?2);

root[] listl->Print("all")

297

Trees

treel filel
0
2
tree2 file2
0
3

TheresultisaTEnt ryLi st foraTChai noftreel andt r ee2. If the second list wasfor the same
TTr ee inthe samefile asthefirst list, the result would be as follows:

root[] TEntryList *list2 2 = new TEntryList("list2 2", "list2 2");
root[] list2 2->SetTree("tree2", "file2");

root[] list2 2->Enter(1);

root[] list2 2->Enter(2);

root[] list2->Add(list2 2);

root[] list2->Print("all")

tree2 file2

0

1
2
3

TEntryListFromFile

Thisisaspecia kind of TEnt r yLi st , used only when processing TChai n objects (see the method
TChai n:: Set EntryLi stFil e()).Itisusedin the case, when the entry lists, corresponding to
the trees of this chain, are stored in separate files. It allows to load the entry lists in memory one by
one, keeping only the list for the currently processed tree loaded.

For more details on entry listss see TEntryList, TEntryListBlock and
TEntryLi st FronFil e class descriptions, functions TChai n:: Set EntryList(),
TChain::SetEntryListFile(), and the macro $ROOTSYS/ t est /
stressEntryList. C

Filling a Histogram

TheTTr ee: : Dr awmethod can also be used to fill a specific histogram. The syntax is:

root[] TFile *f = new TFile("Event.root")

root[] T->Draw("fNtrack >> nmyHi sto")

root[] nyHi sto->Print()

TH1. Print Name= nyHi sto, Entries= 100, Total sunm= 100

As we can see, this created a TH1, called myHi st o. If you want to append more entries to the
histogram, you can use this syntax:

root[] T->Draw("fNtrack >>+ nyHi sto")

If you do not create a histogram ahead of time, ROOT will create one at the time of the Draw command
(asisthe case above). If you would like to draw the variable into a specific histogram where you, for
example, set the range and bin number, you can define the histogram ahead of time and use it in the
Draw command. The histogram has to be in the same directory as the tree.

root[] TH1L *hl = new TH1("h1", "h1", 50, 0., 150.);
root[] T->Draw("fNtrack>> h1");

When you project aTTr ee into a histogram, the histogram inheritsthe TTr ee attributes and not the
current style attributes. This allows you to project two Trees with different attributes into the same
picture. You can call the method TTr ee: : UseCurr ent St yl e to change the histogram to use the
current stylegSt yl e. See “Graphics and the Graphical User Interface.

298

Trees

The binning of the newly created histogram can be specified in two ways. Y ou can set adefault in the
. root r ¢ and/or you can add the binning information in the TTr ee: : Dr aw command.

To set number of bins default for the 1-D, 2-D, 3-D histograms can be specified inthe . r oot r ¢ file
viathe environment variables, e.g.:

defaul t binni ngs Hi st. Bi nni ng. 1D. x: 100

Hi st. Bi nni ng. 2D. x: 40
Hi st. Bi nni ng. 2D.y: 40
Hi st. Bi nni ng. 2D. Prof: 100

Hi st. Bi nni ng. 3D. x: 20
Hi st. Bi nni ng. 3D.y: 20
Hi st. Bi nni ng. 3D. z: 20
Hi st. Bi nni ng. 3D. Prof x: 100
Hi st. Bi nni ng. 3D. Profy: 100

To set the number of bins for a specific histogram when using TTr ee: : Dr aw, add up to nine
numbers following the histogram name. The numbers meaning is:

1 binsin x-direction

2 lower limit in x-direction
3upper limit in x-direction
4-6 same for y-direction
7-9 same for z-direction

When a bin number is specified, the value becomes the default. Any of the numbers can be skipped.
For example:

tree. Draw("sqrt (x) >>hsqgrt (500, 10, 20) ";

/1 plot sgrt(x) between 10 and 20 usi ng 500 bins

tree. Draw("sqrt (x):sin(y)>>hsqrt (100, 10,,50,.1,.5)";

/1 plot sgrt(x) against sin(y) 100 bins in x-direction;

[/ lower limt on x-axis is 10; no upper limt

[/ 50 bins in y-direction; lower limt on y-axis is .1, upper limt is .5

When the nameisfollowed by binning information, appending the histogram with a"+", will not reset
hsqrt, but will continueto fill it.

tree. Draw "sqrt (x)>>+hsqgrt", "y>0");
Thisworks for 1-D, 2-D and 3-D histograms.

Projecting a Histogram
If you would like to fill a histogram, but not draw it you can usethe TTr ee: : Pr oj ect () method.
root[] T->Project("quietH sto","fNrack")

Making a Profile Histogram
In case of atwo dimensiona expression, you can generate a TPr of i | e histogram instead of a
two dimensional histogram by specifying the ' prof ' or 'profs' option. The pr of option is

automatically selected when the output isredirected intoaTPr of i | e. For exampley: x>>pf where
pf isanexisting TPr of i | e histogram.

299

Trees

Tree Information

Once we have drawn atree, we can get information about the tree. These are the methods used to get
information from adrawn tree TTr ee:

» Get Sel ect edRows: Returnsthe number of entries accepted by the selection expression. In case
where no selection was specified, it returns the number of entries processed.

* Cet V1: Returns apointer to the float array of the first variable.
» Get V2: Returns a pointer to the float array of second variable
» Get V3: Returns a pointer to the float array of third variable.

» Get W Returns a pointer to the float array of Weights where the weight equals the result of the
selection expression.

To read the drawn values of f Nt r ack into an array, and loop through the entries follow the lines
below. First, open the file and draw thef Nt r ack variable:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack")

Then declare apointer to afloat and use the GetV 1 method to retrieve the first dimension of the tree.
In this example we only drew one dimension (f Nt r ack) if we had drawn two, we could use GetV2
to get the second one.

root[] Float t *a
root[] a = T->CGet V1()

Loop through the first 10 entries and print the values of f Nt r ack:

root[] for (int i = 0; i < 10; i++)
root[] cout << a[i] << " " << endl /1 need an endl to see the val ues
594 597 606 595 604 610 604 602 603 596

By default, TTr ee: : Dr aw creates these arrays with f Est i mat e words where f Est i mat e can
be set via TTr ee: : Set Est i mat e. If you have more entries than f Est i mat e only the first
f Esti mat e selected entries will be stored in the arrays. The arrays are used as buffers. When
f Est i mat e entries have been processed, ROOT scans the buffers to compute the minimum and
maximum of each coordinate and creates the corresponding histograms. Y ou can use these lines to
read all entriesinto these arrays.

root[] Int_t nestimate = (Int_t)T->CGetEntries();
root[] T->SetEstimate(nestimate);

Obviously, thiswill not work if the number of entriesisvery large. Thistechniqueisuseful in several
cases, for example if you want to draw a graph connecting all the x, y(or z) points. Note that
you may have atree (or chain) with 1 billion entries, but only afew may survive the cuts and will fit
without problems in these arrays.

Using TTree::MakeClass

The TTr ee: : Dr aw method is convenient and easy to use; however it falls short if you need to do
some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks, you would need to write
a program that loops over al events, finds all pairs of tracks, and calculates the required quantities.
We have shown how to retrieve the data arrays from the branches of the tree in the previous section,

300

Trees

and you could just write that program from scratch. Since thisisavery common task, ROOT provides
a utility that generates a skeleton class designed to loop over the entries of the tree.

Thisisthe TTr ee: : MakeCd ass method. We will now go through the steps of using MakeCl ass
with a simplified example. The methods used here obviously work for complex event loop
calculations.

These are our assumptions. we would like to do selective plotting and loop through each entry of the
tree and tracks. We chose a simple example: we want to plot f Px of the first 100 tracks of each entry.
We have a ROOT tree with a branch for each data member in the "Event " object. To build thisfile
and tree follow the instructions on how to build the examplesin SROOTSYS/ t est . Execute Event
and instruct it to split the object with this command (from the UNIX command line).

> $ROOTSYS/test/Event 400 1 2 1
Thiscreatesan Event . r oot file with 400 events, compressed, split, and filled.
See $ROOTSYS/ t est / Mai nEvent . cxx for moreinfo.

The person who designed the tree makes a shared library available to you, which defines the classes
needed. In this case, the classes are Event, Event Header , and Track and they are defined in the
shared library | i bEvent . so. The designer also gives you the Event . h file to see the definition
of the classes. You can locate Event . h in $ROOTSYS/ t est, and if you have not yet built
| i bEvent . so, please see the instructions of how to build it (typing make in SROOTSY Stest is
enough). If you have already built it, you can now use it again.

Creating a Class with MakeClass

First, we load the shared library and open Event . r oot .

root[] .L |ibEvent.so
root[] TFile *f = new TFile("Event.root");
root[] f->Is();

TFi | e** Event . r oot TTree benchmark ROOT file
TFi | e* Event . r oot TTree benchmark ROOT file
KEY: THLF htinme; 1 Real -Tine to wite versus tine

KEY: TTree T; 1 An exanpl e of a ROOT tree

We can seethereisatree “T”, and just to verify that we are working with the correct one, we print
the tree, which will show us the header and branches.

root[] T->Print();

From the output of print we can see that the tree has one branch for each data member of Event ,
Tr ack,and Event Header . NowwecanuseTTr ee: : MakeCd ass onourtree“T”. Maked ass
takes one parameter, a string containing the name of the class to be made. In the command below, the
name of our classwill be“MyCl ass”.

root[] T->Maked ass("M/Cl ass")
Files: Myd ass.h and M/Cl ass. C generated from Tree: T

CINT informs us that it has created two files. MyC ass. h contains the class definition and
MyCl ass. C contains the Myd ass: : Loop() method. MyCl ass has more methods than just
Loop(). The other methods are a constructor, a destructor, Get Entry(), LoadTree(),
Notify(), Cut() and Show() . The implementations of these methods are in the .h file. This
division of methods was done intentionally. The .C file is kept as short as possible, and contains only
codethat isintended for you to customize. The .h file contains all the other methods. It isclear that you
want to be asindependent as possible of the header file (i.e. MyCl ass. h) generated by MakeCl ass.
The solution is to implement a derived class, for example MyReal Cl ass deriving from MyCl ass
such that a change in your Tr ee or regeneration of MyCl ass. h does not force you to change

301

Trees

MyReal O ass. h. Youcanimaginederiving severa classesfromMyd ass. h, eachwithaspecific
algorithm. To understand both files, let’s start with MyCl ass. h and the class declaration:

MyClass.h

class Myd ass {

public :
//pointer to the anal yzed TTree or TChain
TTree *f Chai n;
[/current Tree nunber in a TChain
Int _t fCurrent;
/I Decl aration of |eaves types
U nt t f Uni quel D
U nt t fBits;
Char _t f Type[20] ;
Int _t f Nt rack;
Int _t f Nseg;
Int _t f Nvert ex;
U nt t f Fl ag;
Fl oat t f Tenper at ur e;
Int _t f Evt Hdr _f Evt Num
//List of branches
TBr anch *b_f Uni quel D
TBr anch *b fBits;
TBr anch *b fType;
TBr anch *b fNtrack;
TBr anch *b f Nseg;
TBr anch *b fNvert ex;
TBr anch *b fFl ag;
TBr anch *b f Tenper at ur e;
TBr anch *pb fEvt Hdr _f Evt Num

M/Cl ass(TTree *tree=0);

~WQ ass();

Int t Cut(lnt_t entry);

Int t GCetEntry(Int_t entry);
Int t LoadTree(Int_t entry);
voi d Init(TTree *tree);

voi d Loop();

Bool t Notify();

voi d Show(Int t entry = -1);
IE

We can see data members in the generated class. The first data member isf Chai n. Once this class
isinstantiated, f Chai n will point to the original tree or chain this class was made from. In our case,
thisis“T” in“Event . r oot ". If the classisinstantiated with a tree as a parameter to the constructor,
f Chai n will point to the tree named in the parameter. Next isf Cur r ent , which is also a pointer
to the current tree/chain. Its role is only relevant when we have multiple trees chained together in a
TChai n. The class definition shows us that this tree has one branch and one leaf per data member.
The methods of MyCl ass are:

* MWC ass(TTree *tree=0) - t hisconstructor has an optional tree for a parameter. If you
pass atree, MyCl ass will useit rather than the tree from which it was created.

e void Init(TTree *tree) -—itiscaled by theconstructor to initialize the tree for reading.
It associates each branch with the corresponding leaf data member.

e ~MyCl ass() - thedestructor, nothing special.

302

Trees

e Int t GetEntry(lnt_t entry) - itloadsthe classwith the entry specified. Once you
have executed Get Ent r y, the leaf data membersin MyCl ass are set to the values of the entry.
For example, Get Ent r y(12) loadsthe 13th event into the event datamember of Myl ass (note
that thefirst entry is0). Get Ent r y returnsthe number of bytesread from the file. In case the same
entry isread twice, ROOT does not have to do any I/O. In this case Get Ent r y returns 1. It does
not return 0, because many people assume areturn of 0 means an error has occurred while reading.

e Int_t LoadTree(lnt_t entry) andvoid Notify() -thesetwo methods are related
to chains. LoadTr ee will load the tree containing the specified entry from a chain of trees. Notify
iscalled by LoadTr ee to adjust the branch addresses.

 void Loop() - itisthe skeleton method that loops through each entry of the tree. This is
interesting to us, because we will need to customize it for our analysis.

MyClass.C

MyCl ass: : Loop consists of a for-loop calling Get Ent ry for each entry. In the template, the
numbers of bytes are added up, but it does nothing else. If we were to execute it now, there would
be no output.

voi d Myd ass: : Loop() {
if (fChain == 0) return;

Int t nentries = Int_t(fChain->CGetEntries());
Int t nbytes = 0, nb = 0;

for (Int_t jentry=0; jentry<nentries;jentry++) {
Int t ientry = LoadTree(jentry);

/1 in case of a TChain , ilentry is the entry nunber in the current file
nb = fChai n->CGetEntry(jentry); nbytes += nb;
/[l if (Cut(ientry) < Q) continue;
}
}

At the beginning of the file are instructions about reading selected branches. They are not reprinted
here, but please read them from your own file

Modifying MyClass::Loop

Let us continue with the goal of going through the first 100 tracks of each entry and plot Px. To do
this we change the L oop method.

if (fChain == 0) return;

Int_ t nentries = Int_t(fChain->CGetEntries());

THLF *nyHi sto = new THLF("nyHi sto","fPx", 100, -5,5);
THLF *smal | Hi sto = new THLF("snmal I ", "fPx", 100, -5,5);

In the for-loop, we need to add ancther for-loop to go over all the tracks. In the outer for-loop, we get
the entry and the number of tracks. In theinner for-loop, we fill the large histogram (nyHi st o) with
all tracks and the small histogram (smal | Hi st o) with thetrack if itisin thefirst 100.

for (Int_t jentry=0; jentry<nentries;jentry++) {
GetEntry(jentry);

for (Int_t j =0; j < 100; j++){

nyHi sto->Fil | (f Tracks fPx[j]);

if (j < 100){

303

Trees

smal | Histo->Fi || (fTracks_fPx[j]);
}
}
}

Outside of the for-loop, we draw both histograms on the same canvas.

nyH st o->Draw() ;
smal | Hi st o- >Dr awm " Sanme") ;

Save these changesto My ass. Cand start a fresh root session. We will now load MyCl ass and
experiment with its methods.

Loading MyClass

Thefirst step isto load the library and the class file. Then we can instantiate aMyCl ass object.

root[] .L libEvent.so
root[] .L Mydass.C
root[] MyClass m

Now we can get a specific entry and populate the event leaf. In the code snipped below, we get entry
0, and print the number of tracks (594). Then we get entry 1 and print the number of tracks (597).

root[] m GetEntry(0)
(int)57503

root[] mfNtrack()
(Int_t)594

root[] mGetEntry(1)
(int)48045

root[] mfNtrack()
(Int_t)597

Now we can call the Loop method, which will build and display the two histograms.
root[] m Loop()

Y ou should now see a canvas that looks like this.

i cl =] E3
Eile Edit Miew Options [nspect Classes Help
Px I Tyt

Mant= 235622

Mean = 0.002328
EMS = 03357

000
aoao
FO00
E000
S00o
4000
3000
2000
1000

LN ILILILAL ILRLLLE LA LA LA RLLALLN AL LN L
- | AR R LI AL LLLL LR LU |

304

Trees

To conclude the discussion on MakeCl ass let uslists the steps that got us here.
o Cdl TTree: : Maked ass, which automatically creates a classto loop over the tree.
* Modify theMyC ass: : Loop() method in MyCl ass. Cto fit your task.

* Load and instantiate MyCl ass, andrun Myl ass: : Loop() .

Using TTree::MakeSelector

WithaTTr ee we can make a selector and use it to process alimited set of entries. Thisis especialy
important in a parallel processing configuration where the analysis is distributed over several
processors and we can specify which entries to send to each processor. The TTr ee: : Process
method is used to specify the selector and the entries. Beforewecanuse TTr ee: : Pr ocess weneed
to make a selector. We can call the TTr ee: : MakeSel ect or method. It creates two files similar
to TTr ee: : MakeC ass.

In the resulting files is a class that is a descendent of TSel ect or and implements the following
methods:

» TSel ector:: Begi n() - thismethod is called every time aloop over the tree starts. Thisisa
convenient place to create your histograms.

 TSelector::Notify() - itiscaled at thefirst entry of anew treein achain.

e TSel ector::Process() - itiscaled to process an event. It is the user's responsibility to
read the corresponding entry in memory (may be just a partial read). Once the entry isin memory
one can apply a selection and if the event is selected histograms can be filled. Processing stops
when this function returns K FALSE. It combines the methods TSel ect or ; : ProcessCut ()
and TSel ect or: : ProcessFi |l | () inone, avoiding the necessity to maintain the state in the
classto communicate between these two functions. It reducesthe information that needsto be shared
between them and promotes a more granular data access by reading branches as they are needed.

 TSel ector::Term nate() - itiscalledattheendof alooponaTTr ee. Thisisaconvenient
place to draw and fit your histograms.

» TSel ector:: Version() - thisfunction provides backward compatibility for old versionsand
support for the future upgrades.

e The TSel ect or, unlike the resulting class from MakeC ass, separates the processing into a
ProcessCut () andPr ocessFi | | (), sowecanlimit reading of branchesto the oneswe need.

* When a selector is used with a TChai n in methods Process(), ProcessFill (),
ProcessCut (), you must use the pointer to the current TTree to cal the method
Get Entry(entry) . The parameter ent r y isawaysthelocal entry number in the current tree.
Assuming that f Chai n isthe pointer to the TChai n being processed, use

f Chai n- >Get Tree()->CGet Entry(entry);
To create a selector call:
root[] T->MakeSel ector("M/Sel ector");

Where T isthe TTr ee and MySel ect or isthe name of created class and the name of the . h and
. Cfiles. Theresulting TSel ect or isthe argument to TTr ee: : Pr ocess. The argument can be
the file name or a pointer to the selector object.

root[] T->Process("MSelector.C',"", 1000, 100);

Thiscall will interpret the classdefined in MySel ect or . Cand process 1000 entries beginning with
entry 100. The file name can be appended with a"+" or a"++" to use ACLi C.

305

Trees

root[] T->Process("M/Sel ector.C++","", 1000, 100) ;
When appending a"++", the class will be compiled and dynamically loaded.
root[] T->Process("MSelector.C+","", 1000, 100);

When appending a "+", the class will aso be compiled and dynamically loaded. When it is called
again, it recompiles only if the macro (My Sel ect or . C) has changed since it was compiled last. If
not, it loads the existing library. The next example shows how to create a selector with a pointer:

MySel ector *sel ector = (MySel ector *)TSel ector:: CGet Sel ector (“M/Sel ector. CG+");
T->Process(sel ector);

Using this form you can do things like:
sel ector->public_attributel = init_val ue;
for (int i=0; i<limt; i++) {
T->Process(sel ector);
sel ector->public_attributel = function(sel ector->public_attribute2);

}

TTree: : Process() isaware of PROOF, ROOT paralel processing facility. If PROOF is setup,
it divides the processing amongst the slave CPUs.

Performance Benchmarks

% Results of Root benchmark [_ O]
Eile Edit ¥iew Options Inspect Classes Help

Comparing STL vector with TClonesArray: Root 3.01103
IRIX64 fnpat1 6.5 01221553 IP27
Reference machine pcnotebrun.cern.ch RedHat Linux 6.1
(Pentium lll 650 Mhz 256 Mbytes RAM, IDE disk)
Eend your restLts to rootde\@'oot.cern.cm

legend Time to fill collections
T = b T

ime to read compression 1

The program $ROOTSYS/ t est / bench. cxx compares the 1/0 performance of STL vectors to
the ROOT native TCl onesAr r ays collection class. It creates trees with and without compression
for the following cases: vect or <THi t >, vect or <THi t *>, TCl onesArray(TObj Hi t) not
split TG onesArray(TOoj Hit) split.

The next graphs show the two columms on the right which represent
the split and non-split Td onesArray, aresignificantly lower thanthe vectors. The
most significant differenceisin reading afile without compression.

Thefile size with compression, write times with and without compression and the read times with and
without compression al favor the TCl onesArr ay.

306

Trees

Impact of Compression on I/O

This benchmark illustrates the pros and cons of the compression option. We recommend using
compression when the time spent in 1/0 is small compared to the total processing time. In this case,
if the 1/O operation is increased by afactor of 5 it is still a small percentage of the total time and it
may very well save afactor of 10 on disk space. On the other hand if the time spend on 1/O is large,
compression may slow down the program's performance. The standard test program $ROOTSYS/
t est/ Event was used in various configurations with 400 events. The datafile containsa TTr ee.
The program was invoked with:

Event 400 conp split

» comp = 0 means. no compression at al.

» comp = 1 means. compress everything if split = 0.

» comp = 1 means. compress only the tree branches with integers if split = 1.

e comp = 2 means. compress everything if split=1.

» split=0: thefull event is serialized into one single buffer.

» split=1:theevent is split into branches. One branch for each data member of the Event class. The
list of tracks (aTCl onesAr r ay) hasthe datamembers of the Track classalso split into individual

buffers.

These tests were run on Pentium |11 CPU with 650 MHz.

Event File |Tota Time to|Effective Time|Tota Time to|Totd Time to
Parameters |Size |Write(MB/sec) [to Write (MB/|Read All (MB/|Read Sample
SEC) Sec) (MB/sec)

Comp=0 19.75 |6.84 s.(2.8 MB/|3.56 s.(5.4 MB/|0.79s.(24.2 MB/s)|0.79 s.(24.2 MB/s)
MB s))

Split=1

Comp=1 17.73 |6.44 s(3.0 MB/|4.02 s.(4.8 MB/[0.90 s.(21.3 MB/|0.90s.(21.3 MB/s)
MB S) S) S)

Split=1

Comp=2 13.78 |11.34s.(1.7 MB/|9.51 s(2.0 MB/|2.17 s.(8.8 MB/s) |2.17 s.(8.8 MB/s)
MB 9) 9)

Split=1

The Total Timeisthereal time in seconds to run the program. Effective time is the real time minus
the time spent in non /O operations (essentially the random number generator). The program Event
generates in average 600 tracks per event. Each track has 17 data members. The read benchmark runs
in the interactive version of ROOT. The ‘Total Time to Read All’ is the real time reported by the
execution of the script &ROOTSYS/ t est / event a.

We did not correct this time for the overhead coming from the interpreter itself. The Total time to
read sample is the execution time of the script SROOTSYS/ t est / event b. This script loops on
all events. For each event, the branch containing the number of tracksis read. In case the number of
tracks is less than 585, the full event is read in memory. This test is obviously not possible in non-
split mode. In non-split mode, the full event must be read in memory. The times reported in the table
correspond to complete 1/O operations necessary to deal with machineindependent binary files. On
Linux, this also includes byte-swapping operations. The ROOT file alows for direct access to any
event in thefile and direct access to any part of an event when split=1.

Note al so that the uncompressed file generated with split=0is 48.7 Mbytes and only 47.17 Mbytesfor
the option split=1. The differencein size is due to the object identification mechanism overhead when

307

Trees

the event is written to a single buffer. This overhead does not exist in split mode because the branch
buffers are optimized for homogeneous datatypes. Y ou can run the test programs on your architecture.
The program Event will report the write performance. Y ou can measure the read performance by
executing the scriptsevent a and event b. The performance depends not only of the processor type,
but also of the disk devices (local, NFS, AFS, etc.).

Chains

A TChai n objectisalist of ROOT files containing the same tree. As an example, assume we have
threefilescaledfi |l el.root, file2.root, file3.root.Eachfilecontainsonetreecalled
"T". We can create a chain with the following statements:

TChain chain("T"); /1 nane of the tree is the argunment
chain. Add("filel.root");
chain. Add("file2.root");
chain. Add("file3.root");

The name of the TChai n will be the same asthe name of thetree; in thiscaseit will be" T". Not e
t hat two objectscan havethe same name aslong asthey are not histogramsin the same directory,
because there, the histogram names are used to build a hash table. The class TChai n isderived from
the class TTr ee. For example, to generate a histogram corresponding to the attribute "x" in tree " T"
by processing sequentially the three files of this chain, we can use the TChai n: : Dr aw method.

chai n. Draw(" x");

When using a TChai n, the branch address(es) must be set with:

chai n. Set BranchAdr ess(branchnane,..) // use this for TChain
rather than:

branch- >Set Address(..); [// this will not work

The second form returns the pointer to the branch of the current TTr ee inthe chain, typicaly thefirst
one. Theinformation islost when the next TTr ee isloaded. The following statementsiillustrate how
to set the address of the object to be read and how to loop on al events of all files of the chain.

TChain chain("T"); [// create the chain with tree "T"

chain. Add("filel.root"); // add the files

chain. Add("file2.root");

chain. Add("file3.root");

THLF *hnseg = new THLF("hnseg", "Nunmber of segnents for sel ected tracks",
5000, 0, 5000) ;

/1 create an object before setting the branch address

Event *event = new Event ();

/! Specify the address where to read the event object

chai n. Set BranchAddr ess("event", &event);

/[l Start main |oop on all events In case you want to read only a few
/1 branches, use TChain:: SetBranchStatus to activate a branch.

Int t nevent = chain. GetEntries();

for (Int_t i=0;i<nevent;i++) {

/1 read conplete accepted event in nmenory

chai n. Get Event (i) ;

/1 Fill histogramw th nunber of segnents
hnseg->Fi | | (event - >Get Nseg()) ;
}

/1 Draw t he histogram

308

Trees

hnseg- >Dr aw() ;
}

TChain::AddFriend

A TChai n hasalist of friends similar to atree (see TTr ee: : AddFri end) . You can add afriend
to achain with the TChai n: : AddFri end method. With TChai n: : Get Li st O Fri ends you
can retrieve the list of friends. The next example has four chains each has 20 ROOT trees from 20
ROOT files.

TChain ch("t"); /[l a chain with 20 trees from 20 files
TChain chl("t1");
TChain ch2("t2");
TChain ch3("t3");

Now we can add the friends to the first chain.

ch. AddFriend("t1")
ch. AddFri end("t2")
ch. AddFriend("t3")

The parameter is the name of friend chain (the name of a chain is aways the name of the tree from
which it was created). The origina chain has access to all variables in its friends. We can use the
TChai n: : Dr aw method as if the values in the friends were in the original chain. To specify the
chain to use in the Dr aw method, use:

<chai nnane>. <br anchnane>. <var nane>

If the variable name is enough to identify uniquely the variable, you can leave out the chain and/or
branch name. For example, this generates a 3-d scatter plot of variable "var " inthe TChai n ch
versusvariablevl in TChain t1versusvariablev2inTChain t2.

ch.Draw("var:tl.v1:t2.v2");

WhenaTChai n: : Dr awisexecuted, anautomaticcall to TTr ee: : AddFri end connectsthetrees
in the chain. When achain is deleted, its friend e ements are also deleted.

P Friends o
Chainch Chain ch1 Chain ch2 Chain ch3
entry # 1
entry # 2
entry # 3 - - o
file a file o file x filei
file b file p filey file j
filec file q filez file k
entry #n

The number of entries in the friend must be equal or greater to the number of entries of the original
chain. If the friend has fewer entries awarning is given and the resulting histogram will have missing
entries. For additional information see TTr ee: : AddFri ends() . A full example of a tree and
friendsisin Example#3 ($ROOTSYS/ t ut ori al s/ tree/ tree3. C) inthe Trees section above.

309

Chapter 13. Math Libraries in ROOT

The aim of Math libraries in ROOT isto provide and to support a coherent set of mathematical and
statistical functions. The latest devel opments have been concentrated in providing first versions of the
Mat hCor e and Mat hivbr e libraries, included in ROOT v5.08. Other recent devel opments include
the new version of M NUI T, which has been re-designed and re-implemented in the C++ language.
It isintegrated in ROOT. In addition, an optimized package for describing small matrices and vector
with fixed sizes and their operation has been developed (SMat r i x). The structure is shown in the

following picture.

Figure 13.1. Math libraries and packages

|

Histogmm Iibrar}'
|

Fitting and Minimization

New Fitter RooFit
v
(00)

Linear Algebra
TMatrix SMatrix

MathCore

Functors & intel

TMath

Math functions
3

- | Physics Vectors
Basic algorithms e

TMath

I

- — = =
Statistical Libraries

TMVA

Extra Libraries)
Unuran

MNew Stat Tools
(Significance,

Limit/CL etc..)

Spccium [oo}

—

~

MathMore

-\\.
Random Numbers
Extra algorithms
Extra Math functions

GSL

oy

In the namespace, TMat h a collection of free functionsis provided for the following functionality:

» numerical constants (like pi , e, h, etc.);

» elementary and trigonometric functions;

functionsto find m n and max of arrays;

 satistic functions to find mean and r s of arrays of data;

algorithms for binary search/hashing sorting;

* gspecial mathematical functions like Bessel , Er f , Gamma, etc.;

* statistical functions, like common probability and cumulative (quantile) distributions

For more details, see the reference documentation of TMat hatht t p: // r oot . cern. ch/ r oot/

ht mM doc/ TMat h. ht m .

Random Numbers

In ROOT pseudo-random numbers can be generated using the TRandomclasses. 4 different types
exist: TRandom TRandomil, TRandon®? and TRandonB. All they implement a different type of

310

Math Librariesin ROOT

random generators. TRandomis the base class used by others. It implements methods for generating
random numbers according to pre-defined distributions, such as Gaussian or Poisson.

TRandom

Pseudo-random numbers are generated using alinear congruential random generator. The multipliers
used are the same of the BSD r and() random generator. Its sequenceis:

Ky =lerk, peymodm o4 829103515245, © = 12345 and *7 =231,

This type of generator uses a state of only a 32 bit integer and it has a very short period, 231,about
109, which can be exhausted in just few seconds. The quality of this generator is therefore BAD and
it is strongly recommended to NOT use for any statistical study.

TRandoml1

This random number generator is based on the Ranlux engine, developed by M. Lusher and
implemented in Fortran by F. James. This engine has mathematically proven random proprietiesand a
long period of about 10171. Various luxury levelsare provided (1, 2, 3, 4) and can be specified by
the user in the constructor. Higher the level, better random properties are obtained at a price of longer
CPU time for generating arandom number. The level 3 isthe default, where any theoretical possible
correlation has very small chance of being detected. This generator uses a state of 24 32-bits words.
Its main disadvantage is that is much slower than the others (see timing table). For more information
on the generator see the following article:

e F. James, “RANLUX: A Fortran implementation of the high quality pseudo-random number
generator of Lischer”, Computer Physics Communication, 79 (1994) 111.

TRandom?2

Thisgenerator isbased on the maximally equidistributed combined Tausworthe generator by L'Ecuyer.
It uses only 3 32-bitswordsfor the state and it has a period of about 1026. It isfast and given its small
states, it is recommended for applications, which require avery small random number size. For more
information on the generator see the following article:

* P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators’, Mathematics of
Computation, 65, 213 (1996), 203-213.

TRandom3

This is based on the Mersenne and Twister pseudo-random number generator, developed in 1997 by
Makoto Matsumoto and Takuji Nishimura. The newer implementationisused, referredin theliterature
as MT19937. It is a very fast and very high quality generator with a very long period of 106000.
The disadvantage of this generator is that it uses a state of 624 words. For more information on the
generator see the following article:

M. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator”, ACM Trans. on Modeling and Computer Simulations,
8, 1, (1998), 3-20.

TRandonB isthe recommended random number generator, and it is used by default in ROOT using
the global gRandomobject (see chapter gRandom).

Seeding the Generators

The seeds for the generators can be set in the constructor or by using the Set Seed method. When
no value is given the generator default seed is used, like 4357 for TRandon®B. In this case identical

311

Math Librariesin ROOT

sequence will be generated every time the application is run. When the 0 value is used as seed, then a
unique seedisgenerated usingaTUUI D, for TRandomnil, TRandon® and TRandonB. For TRandom
the seed is generated using only the machine clock, which has a resolution of about 1 sec. Therefore
identical sequenceswill be generated if the elapsed time is |ess than a second.

Examples of Using the Generators

The method Rndn() isused for generating a pseudo-random number distributed between 0 and 1 as
shown in the following example:

/1 use default seed (sanme random nunbers will be generated each tine)
TRandonB r; // generate a nunber in interval]0,1] (0 is excluded)

r.Rndm();

doubl e x[100];

r. RndmArray(100, x) ; /1 generate an array of random numbers in]0, 1]
TRandonB8 rdm(111); /] construct with a user-defined seed

/1 use 0: a unique seed will be automatically generated using TUU D
TRandonil r1(0);
TRandon? r2(0);
TRandonB r 3(0);
/] use a seed generated using machi ne clock (different every second)
TRandom r 0(0) ;

Random Number Distributions

The TRandombase class provides functions, which can be used by al the other derived classes for
generating random variates according to predefined distributions. In the simplest cases, likein the case
of the exponential distribution, the non-uniform random number is obtained by applying appropriate
transformations. In the more complicated cases, random variates are obtained using acceptance-
rejection methods, which require several random numbers.

TRandon8B r;

/! generate a gaussian distributed nunber with nu=0, sigma=1 (default val ues)
double x1 = r. Gaus();

doubl e x2 = r. Gaus(10, 3); // use mu = 10, sigma = 3;

The following table shows the various distributions that can be generated using methods of the
TRandomclasses. More information is available in the reference documentation for TRandom In
addition, random numbers distributed according to a user defined function, in a limited interval, or
to a user defined histogram, can be generated in a very efficient way using TF1: : GetRandom() or
TH1: : GetRandom().

Distributions Description
Doubl e_t Uniform Doubl e _t x1, Doubl e_t |Uniform random numbers between
X2) x1, x2
Doubl e_t Gaus(Doubl e_t mu, Doubl e_t |Gaussian random numbers.
si gma)
Default values: nu=0, si gnma=1
Doubl e_t Exp(Double t tau) Exponentia random numbers with mean
tau.
Doubl e_t Landau(Doubl e_t mean, Doubl e_t |Landau distributed random numbers.
si gma)
Default values: mean=0, si gna=1
Doubl e _t Breit Wgner(Doubl e t nean, Breit-Wigner distributed random
numbers.

312

Math Librariesin ROOT

Doubl e_t ganmm) Default valuesmean=0, gama=1

Int_t Poi sson(Double_t mnean) Poisson random numbers

Doubl e_t Poi ssonD(Doubl e_t nean)

Int _t Bi nom al (I nt _t nt ot, Doubl e_t |Binomia Random numbers
pr ob)
Circl e(Doubl e_t &x, Doubl e_t |Generate arandom 2D point (X, y) in
&y, Double_t r)

acircleof radiusr

Sphere(Doubl e_t &x, Double_t &y, Generate arandom 3D point (x, y, z) in
Doubl e t &z, Double t r) asphere of radiusr
Rannor (Doubl e_t &a, Doubl e_t &b) Generate a pair of Gaussian random

numbers with mu=0 and si gna=1

UNURAN

An interface to a new package, UNU.RAN, (Universal Non Uniform Random number generator for
generating non-uniform pseudo-random numbers) was introduced in ROOT v5.16.

UNU.RAN isan ANSI C library licensed under GPL. It contains universal (also called automatic or
black-box) algorithms that can generate random numbers from large classes of continuous (in one
or multi-dimensions), discrete distributions, empirical distributions (like histograms) and also from
practically al standard distributions. An extensive online documentation isavailable at the UNU.RAN
Web Siteht t p: / / st at mat h. wu-wi en. ac. at/ unur an/

The ROOT class TUnur an is used to interface the UNURAN package. It can be used as following:

» Withthe UNU.RAN native, string API for pre-defined distributions (see UNU.RAN documentation
for the alowed string values at http://statistik.wu-w en. ac. at/unuran/ doc/
unuran. htm):

TUnur an unr;
[linitialize unuran to generate normal random nunbers using a "arou" nethod
unr.Init("normal ()", " et hod=ar ou") ;

/1 sanple distributions N times (generate N random nunbers)
for (int i = 0; i<N, ++i)
doubl e x = unr. Sanpl e();

 For continous 1D distribution object via the class TUnur anCont Di st that can be created for
example from a TF1 function providing the pdf (probability density function) . The user can
optionally provide additional information via TUnur anCont Di st : : Set Donai n(m n, max)
likethedomai n() for generating numbersin arestricted region.

/11D case: create a distribution fromtw TF1 obj ect pointers pdf Func

TUnur anCont Di st di st(pdf Func);

[linitialize unuran passing the distribution and a string defining the nethod
unr. I nit(dist, "method=hinv");

/1 sanple distribution N tinmes (generate N random nunbers)

for (int i =0; i <N ++i)

doubl e x = unr. Sanpl e() ;

» For multi-dimensional distributionviatheclassTUnur anMul t i Cont Di st , whichcanbecreated
from athe multi-dimensiona pdf.

313

Math Librariesin ROOT

/1l Milti- dinmensional case froma TF1 (TF2 or TF3) objects
TUnuranMul ti Cont Di st dist(pdf FuncMulti);

/1 the recommended net hod for nulti-dimensional function is "hitro"
unr. I nit(dist,"nethod=hitro");

/] sanple distribution N times (generate N random nunbers)

doubl e X[NDI M ;

for (int i = 0; i<N ++i)

unr. Sanmpl eMul ti (x);

» For discrete distribution viathe class TUnur anDi scr Di st , which can beinitidlized fromaTF1
or from avector of probabilities.

[/l Create distribution froma vector of probabilities
doubl e pv[NSi ze] = {0.1,0.2,...};

TUnur anDi scr Di st di st (pv, pv+NSi ze) ;

/1 the reconmended net hod for discrete distribution is
unr. I nit(dist, "method=dgt");

/1 sanple N tinmes (generate N random nunbers)

for (int i =0; i <N ++i)

int k = unr. Sanmpl ebi scr();

» For empirical distribution viathe class TUnur anEnpDi st . In this case one can generate random
numbers from a set of un-bin or bin data. In the first case the parent distribution is estimated by
UNU.RAN using a gaussian kernel smoothing algorithm. The TUnur anEnpDi st distribution
class can be created from a vector of data or from TH1 (using the bins or from its buffer for un-
binned data).

/] Create distribution froma set of data

/l vdata is an std::vector containing the data
TUnur anEnpDi st di st (vdat a. begi n(), vdat a. end()) ;
unr. I nit(dist);

/1l sanple N tinmes (generate N random nunbers)
for (int i = 0; i<N ++i)

doubl e x = unr. Sanpl e() ;

* For some predefined distributions, like Poi sson and Bi nomi al , one can use directly afunction
in the TUnur an class. This is more convenient in passing distribution parameters than using
directly the string interface.

TUnur an unr;

[/ Initialize unuran to generate nornal random nunbers from the Poisson
[/ distribution with paraneter nu

unr . | ni t Poi sson(nmu) ;

/1 Sanple distributions N times (generate N random nunbers)
for (int i = 0; i<N ++i)
int k = unr. Sanpl ebi scr();

Functionality is also provided via the C++ classes for using a different random number generator by
passing a TRandom pointer when constructing the TUnur an class (by default the ROOT gRandom
ispassed to UNURAN).

Performances of Random Numbers

Here are the CPU times obtained using the four random classes on an Ixplus machine with an Intel
64 bit architecture and compiled using gcc 3.4:

314

Math Librariesin ROOT

TRandom (ng/|TRandoml (ng|TRandon? (ng/|TRandon8 (ng/
call) call) call) call)

Rndm() - - 6 9

Gaus () 31 161 35 42

Rannor () 116 216 126 130

Poi sson (n¥10) 147 1161 162 239

Poi sson (m=10) |80 294 89 99

UNURAN

MathCore Library

Mat hCor e provides acollection of functions and C++ classes for numerical computing. Thislibrary
includes only the basic mathematical functions and algorithms and not all the functionality required by
the physics community. A more advanced mathematical functionality is provided by the Mat hMor e
library. The current set included classes are;

» Basic gpecial functions like the gamma, beta and error function.

e Mathematical functions used in statistics, such as the probability density functions and the
cumulative distributions functions (lower and upper integral of the pdf's).

* GenVect or : physics and geometry vectors for 3 and 4 dimensions with their transformations
(rotations and boost).

» Generic (ROQT: : Mat h: : | Functi on) and parametric
(ROOT: : Mat h: : | Par anfunct i on) function interfaces for one and multi dimensions.

A detailed description for all Mat hCor e classes is available in the onli ne reference
docunent at i on. The Mat hCor e library presented in the ROOT distribution contains the CINT
dictionary for I/O and interactive usage. For the templ ate classes, the dictionary isprovided for some of
the possibletypes, such asthose based on double and Double32_t. For the /O or interactive use of other
types, the dictionary must be first generated. An example on how to generate the required dictionary
is provided in the tutorial mat hcor eVect or Fl oat | O C(in $ROOTSYS/ t ut ori al s/ mat h).
Mat hCor e can also be built as an independent package using conf i gur e/ nmake. In this case the
library will not contain the dictionary information and cannot be used interactively in ROOT.

Generic Vectors for 2, 3 and 4 Dimensions
(GenVector)

GenVect or isapackageintended to represent vectors and their operations and transformations, such
as rotations and Lorentz transformations, in 3 and 4 dimensions. The 3D space is used to describe
the geometry vectors and points, while the 4D space-time is used for physics vectors representing
relativistic particles. These 3D and 4D vectors are different from vectors of the linear algebra package,
which describe generic N-dimensiona vectors. Similar functionality is currently provided by the
CLHEP Vect or and Geormet ry packages and the ROOT Physics vector classes (See “Physics
Vectors”). It aso re-uses concepts and ideasfromthe CMS Conmon Vect or package. In contrast
to CLHEP or the ROOT physics libraries, GenVect or provides class templates for modeling the
vectors. The user can control how the vector is internally represented. Thisis expressed by a choice
of coordinate system, which is supplied as a template parameter when the vector is constructed.
Furthermore, each coordinate system isitself a template, so that the user can specify the underlying
scalar type.

The GenVect or classes do not inherit from TObj ect , therefore cannot be used as in the case of
the physics vector classesin ROOT collections.

315

Math Librariesin ROOT

In addition, to optimize performances, no virtual destructorsare provided. Inthefollowing paragraphs,
the main characteristics of GenVect or are described. A more detailed description of all the
GenVect or classes is available also at http://seal . cern. ch/ docunent s/ mat hli b/
GenVect or . pdf

Main Characteristics

Optimal Runtime Performances

Points

We try to minimize any overhead in the run-time performance. We have deliberately avoided the use
of any virtual function and even virtual destructors in the classes. In addition, as much as possible
functionsare defined asinline. For thisreason, we have chosen to use templ ate classesto implement the
GenVect or conceptsinstead of abstract or base classesand virtual functions. It isthen recommended
toavoid using the GenVect or classes polymorphically and devel oping classesinheriting from them.

and Vector Concept

Mathematically vectors and points are two distinct concepts. They have different transformations, as
vectors only rotate while points rotate and transate. Y ou can add two vectors but not two points and
the difference between two pointsisavector. We then distinguish for the 3 dimensional case, between
points and vectors, modeling them with different classes:

e ROOT: : Mat h: : Di spl acenent Vect or 2D and
ROOT: : Mat h: : Di spl acenent Vect or 3D template classes describing 2 and 3 component
direction and magnitude vectors, not rooted at any particular point;

» ROOT: : Mat h: : Posi ti onVect or 2D and ROOT: : Mat h: : Posi ti onVect or 3D template
classes modeling the pointsin 2 and 3 dimensions.

For the 4D spacetime vectors, we use the same class to modd them,
ROOT: : Mat h: : Lor ent zVect or, since we have recognized a limited need for modeling the
functionality of a4D point.

Generic Coordinate System

The vector classes are based on ageneric type of coordinate system, expressed as atempl ate parameter
of the class. Various classes exist to describe the various coordinates systems:

2D coordinate system classes:

* ROOT: : Mat h: : Cart esi an2D, based on (X, y);

e ROOT: : Mat h: : Pol ar 2D, based on (r , phi);

3D coordinate system classes:

e ROOT: : Mat h: : Cart esi an3D, basedon (x, y, 2);

» ROOT: : Mat h: : Pol ar 3D, basedon (r, t het a, phi);

e ROOT: : Mat h: : Cylindri cal 3D, based on (r ho, z, phi)

« ROOT: : Mat h: : Cyl i ndri cal Et a3D, based on (r ho, et a, phi), where et a is the pseudo-
rapidity;
4D coordinate system classes:

» ROOT: : Mat h: : PxPyPzE4D, based on based on (px, py, pz, E);

e ROOT: : Mat h: : PxPyPzMD, based on based on (px, py, pz, M;

316

Math Librariesin ROOT

e ROOT: : Mat h: : Pt Et aPhi E4D, based on based on (pt , et a, phi , E);
» ROOT: : Mat h: : Pt Et aPhi MAD, based on based on (pt , et a, phi , M);

Users can define the vectors according to the coordinate type, which isthe most efficient for their use.
Transformations between the various coordinate systems are available through copy constructors or
the assignment (=) operator. For maximum flexibility and minimize memory allocation, the coordinate
system classes are templated on the scalar type. To avoid exposing templated parameter to the users,
typedefs are defined for all types of vectors based on doubles. See in the examplesfor all the possible
types of vector classes, which can be constructed by users with the available coordinate system types.

Coordinate System Tag

The 2D and 3D points and vector classes can be associated to a tag defining the coordinate
system. This can be used to distinguish between vectors of different coordinate systems
like globa or local vectors. The coordinate system tag is a template parameter of the
ROOT: : Mat h: : Di spl acenent Vect or 3D and ROOT: : Mat h: : Posi ti onVect or 3D (and
aso for 2D classes). A default tag exists for users who do not need this functionality,
ROOT: : Mat h: : Def aul t Coor di nat eSyst enirag.

Transformations

The transformations are modeled using simple (non-template) classes, using double as the scalar type
to avoid too large numerical errors. The transformations are grouped in rotations (in 3 dimensions),
Lorentz transformations and Poincare transformations, which are translation/ rotation combinations.
Each group has several members which may model physically equivalent transformations but with
different internal representations. Transformation classes can operate on all type of vectors by using
the operator () or the operator * and the transformations can be combined via the operator *. The
available transformations are:

3D rotation classes

* rotation described by a 3x3 matrix (ROOT: : Mat h: : Rot at i on3D)

* rotation described by Euler angles (ROOT: : Mat h: : Eul er Angl es)

* rotation described by a direction axis and an angle (ROOT: : Mat h: : Axi sAngl e)
* rotation described by a quaternion (ROOT: : Mat h: : Quat er ni on)

* optimized rotation around x (ROOT: : Mat h: : Rot at i onX),y (ROOT: : Mat h: : Rot ati onY)
and z (ROOT: : Mat h: : Rot at i onZ) and described by just one angle.

3D transformation: we describe the transformations defined as a composition between a rotation
and a trandation using the class ROOT: : Mat h: : Tr ansf or nBD. It is important to note that
transformations act differently on vectors and points. The vectors only rotate, therefore when applying
atransformation (rotation + translation) on a vector, only the rotation operates while the transation
has no effect. The Tr ansf or 8D class interface is similar to the one used in the CLHEP Geometry
package (classHepGeom : Tr ansf or nBD).

Lorentz rotation:

 generic Lorentz rotation described by a 4x4 matrix containing a 3D rotation part and a boost part
(classROOT: : Mat h: : Lor ent zRot ati on)

» apureboost in an arbitrary direction and described by a 4x4 symmetric matrix or 10 numbers (class
ROOT: : Mat h: : Boost)

* boost along the axis: x (ROOT: : Mat h: : Boost X), y (ROOT: : Mat h: : Boost Y) and z
(ROQT: : Mat h: : Boost 2).

317

Math Librariesin ROOT

Minimal Vector Classes Interface
We have tried to keep the interface to aminimal level by:

» Avoiding methods that provide the same functionality but use different names (like get X() and

x())-

* Minimizing the number of setter methods, avoiding methods, which can be ambiguous and can set
the vector classesin an inconsistent state. We provide only methods which set all the coordinates at
the same time or set only the coordinates on which the vector is based, for example Set X() for a
Cartesian vector. We then enforce the use of transformations as rotations or trand ations (additions)
for modifying the vector contents.

» The majority of the functionality, which is present in the CLHEP package, involving operations on
two vectors, ismoved in separated helper functions (see ROOT: : Mat h: : Vect or Uti |). Thishas
the advantage that the basic interface will remain more stable with time while additional functions
can be added easily.

Naming Convention

As part of ROQOT, the GenVect or package adheres to the prescribed ROOT naming convention,
with some (approved) exceptions, as described here:

» Bvery classand function isin the ROOT: : Mat h namespace.

» Member function names start with upper-case letter, apart some exceptions (see the next section
about CLHEP compatibility).

Compatibility with CLHEP Vector Classes

 For backward compatibility with CLHEP the vector classes can be constructed from a CLHEP
HepVect or or HepLor ent zVect or, by using atemplate constructor, which requires only that
the classes implement the accessors x(),y(),andz() (andt () for the4D).

* We provide vector member function with the same naming convention as CLHEP for the most used
functionslikex() ,y() andz() .

Connection to Linear Algebra Package

In some use cases, likein track reconstruction, it is needed to use the content of the vector and rotation
classes in conjunction with linear algebra operations. We prefer to avoid any direct dependency to
any linear algebra package. However, we provide some hooks to convert to and from linear algebra
classes. The vector and the transformation classes have methods which allow to get and set their data
members (like Set Coor di nat es and Get Coor di nat es) passing either a generic iterator or a
pointer to acontiguous set of data, likeaC array. Thisallowsan easy connection with thelinear algebra
package, whichin turn, allows creation of matricesusing C arrays (likethe ROOT TVat r i X classes)
or iterators (SMat ri x classes). Multiplication between linear algebra matrices and GenVect or

vectors is possible by using the template free functions ROOT: : Mat h: : Vector Util:: Ml t.
Thisfunction worksfor any linear algebramatrix, which implementsthe operator (i , j) and withfirst
matrix element at i =j =0.

Example: 3D Vector Classes

To avoid exposing template parameter to the users, typedef's are defined for all types of vectors
based on double's and float's. To use them, one must include the header file Mat h/ Vect or 3D. h.
The following typedef's, defined in the header file Mat h/ Vect or 3Df wd. h, are available for the
different instantiations of the template class ROOT: : Mat h: : Di spl acemnent Vect or 3D:

e ROOT: : Mat h: : XYZVect or vector basedonx, y, z coordinates (Cartesian) in double precision

318

Math Librariesin ROOT

e ROOT: : Mat h: : XYZVect or F vector based on x, y, z coordinates (Cartesian) in float precision

* ROOT: : Mat h: : Pol ar 3DVect or vector based on r, t het a, phi coordinates (polar) in
double precision

» ROOT: : Mat h: : Pol ar 3DVect or Fvector basedonr , t het a, phi coordinates(polar) infloat
precision

« ROOT: : Mat h: : RhoZPhi Vect or vector based on r ho, z, phi coordinates (cylindrical) in
double precision

» ROOT: : Mat h: : RhoZPhi Vect or F vector based on r ho, z, phi coordinates (cylindrical) in
float precision

e ROOT: : Mat h: : RhoEt aPhi Vect or vector basedonr ho, et a, phi coordinates (cylindrical
using et a instead of z) in double precision

* ROOT: : Mat h: : RhoEt aPhi Vector F vector based on rho, eta, phi coordinates
(cylindrical using et a instead of z) in float precision

Constructors and Assignment

The following declarations are available;

XYZVect or vi; /[lan empty vector (x=0, y=0, z=0)
XYZVect or v2(1,2,3); [/vector with x=1, y=2, z=3;

Pol ar 3DVect or v3(1,PI/2,Pl); [/vector with r=1, theta=Pl/2, phi=PI
RhoEt aPHi Vector v4(1,2, Pl); [/vector with rho=1, eta=2, phi=PI

Note that each vector type is constructed by passing its coordinate representation, so a
XYZVect or (1, 2, 3) is different from a Pol ar 3DVect or (1, 2, 3) . In addition, the vector
classes can be constructed by any vector, which implements the accessors x(), y() and z() . This
can be another 3D vector based on a different coordinate system type. It can be even any vector of a
different package, like the CLHEP HepThr eeVect or that implements the required signature.

XYZVect or v1i(1, 2, 3);

RhoEt aPhi Vect or r2(vl);
CLHEP: : HepThreeVector q(1, 2, 3);
XYZVect or v3(Q);

Coordinate Accessors

All coordinate accessors are available through the class
ROOT: : Mat h: : Di spl acenent Vect or 3D:

//returns cartesian conmponents for the cartesian vector vl
vi. X(); vi.Y(); vi.Z();

[/returns cylindrical conponents for the cartesian vector vl
vl.Rnho(); vi.Eta(); vl1.Phi();

[/returns cartesian conmponents for the cylindrical vector r2
r2.X(); r2.Y(); r2.2()

In addition, all the 3 coordinates of the vector can be retrieved with the Get Coor di nat es method:

doubl e d[3];
v1. Get Coor di nat es(d); /[/fill d array with (x,y,z) conponents of vl
r 2. Get Coor di nat es(d); [/fill d array with (r,eta, phi) conponents of r2

319

Math Librariesin ROOT

std::vector vc(3);
[/fill std::vector with (x,y,z) conponents of vl
v1. Get Coor di nat es(vc. begi n(), vc.end());

See the reference documentation of ROOT: : Mat h: : Di spl acement Vect or 3D for more details
on all the coordinate accessors.

Setter Methods

One can set only al the three coordinates via:

v1. Set Coordi nates(cl,c2,c3); [//sets the (x,y,z) for a XYZVector
r2. Set Coordi nates(cl1,c2,c3); //sets r,theta, phi for a Pol ar 3DVect or
r2. Set Xyz(x,y, z); //sets the 3 cartesian conponents for Pol ar 3DVect

Single coordinate setter methods are available for the basic vector coordinates, like Set X() for a
XYZVect or or Set R() for apolar vector. Attempting to do a Set X() on apolar vector will not
compile.

XYZVect or vi; vl. Set X(1); /1K setting x for a Cartesian vector

Pol ar 3DVector v2; v2.SetX(1); /I ERROR. cannot set X for a Polar vector.
/I Method will not compile

v2.SetR(1); /I K setting r for a Pol ar vector

In addition, there are setter methods from C arrays or iterator

double d[3] = {1.,2.,3.};
XYZVect or v;
v. Set Coor di nat es(d) ; /lset (x,y,z) conponents of v using values from

or, for example, froman st d: : vect or using the iterator

std::vector W 3);
/1 set (Xx,y,z) components of v using values fromw
v. Set Coor di nat es(w. begi n(), w. end());

Arithmetic Operations

The following operations are possible between vector classes, even of different coordinate system
types. (v1, v2 areany typeof ROOT: : Mat h: : Di spl acenment Vect or 3Dclasses, v3 isthesame
typeof v1; a isascaar value)

vl += v2;

vl -= v2;

vl = - v2;
vl *= a;

vl /= a;

v2 = a * vi;
v2 = vl / a;
v2 = vl * a;
v3 = vl + v2;
v3 = vl - v2;

Comparison

For v1 and v2 of the same type (same coordinate system and same scalar type):

320

Math Librariesin ROOT

vl == v2;
vl = v2;

Dot and Cross Product

We support the dot and cross products, through the Dot () and Cr oss() method, with any vector
(q) implementing x() , y() andz() .

XYZVector v1(Xx,Y,2z);
double s = v1. Dot (q);
XYZVector v2 = vl1.Cross(q);

Note that the multiplication between two vectors using the operator * is not supported because it is
ambiguous.

Other Methods

XYZVector u = v1.Unit(); [/return unit vector parallel to vl

Example: 3D Point Classes

To use al possible types of 3D points one must include the header file Mat h/ Poi nt 3D. h. The
following typedef’s defined in the header file Mat h/ Poi nt 3Df wd. h, are available for different
instantiations of the template class ROOT: : Mat h: : Posi ti onVect or 3D:

e ROOT: : Mat h: : XYZPoi nt point based on X, y, z coordinates (Cartesian) in double precision
» ROOT: : Mat h: : XYZPoi nt F point based on x, y, z coordinates (Cartesian) in float precision

» ROOT: : Mat h: : Pol ar 3DPoi nt point basedonr , t het a, phi coordinates (polar) in double
precision

» ROOT: : Mat h: : Pol ar 3DPoi nt F point based onr , t het a, phi coordinates (polar) in float
precision

» ROOT: : Mat h: : RhoZPhi Poi nt point based onr ho, z, phi coordinates (cylindrical using z)
in double precision

e ROOT: : Mat h: : RhoZPhi Poi nt F point based on r ho, z, phi coordinates (cylindrical using
z) infloat precision

» ROOT: : Mat h: : RhoEt aPhi Poi nt point based on r ho, et a, phi coordinates (cylindrical
using etainstead of z) in double precision

» ROOT: : Mat h: : RhoEt aPhi Poi nt F point based on r ho, et a, phi coordinates (cylindrical
using etainstead of z) in float precision

Constructors and Assignment

The following declarations are available;

XYZPoi nt pl; /lan enpty vector (x=0, y=0, z=0)
XYZPoi nt p2(1, 2, 3); //vector with x=1, y=2, z=3;

Pol ar 3DPoi nt p3(1,PI/2,Pl); [/vector with r=1, theta=Pl/2, phi=PI
RhoEt aPHi Poi nt p4(1,2,Pl); //vector with rho=1, eta=2, phi=PI

321

Math Librariesin ROOT

Note that each point type is constructed by passing its coordinate representation, so a
XYZPoi nt (1, 2, 3) isdifferent from a Pol ar 3DPoi nt (1, 2, 3) . In addition the point classes
can be constructed by any vector, which implements the accessors x(), y() and z() . This can be
another 3D point based on adifferent coordinate system type or even any vector of adifferent package,
likethe CLHEP HepThr eePoi nt that implements the required signatures.

XYZPoi nt pl(1, 2, 3);
RhoEt aPHi Poi nt r2(vl);
CLHEP: : HepThr eePoi nt q(1, 2, 3);
XYZPoi nt p3(q);

Coordinate Accessors and Setter Methods

For the points classes we have the same getter and setter methods as for the vector classes. See
“Example: 3D Vector Classes’.

Point-Vector Operations

The following operations are possible between points and vector classes: (p1, p2 and p3 are
instantiations of the ROOT: : Mat h: : Posi ti onVect or 3D objects with p1 and p3 of the same
type; vl andv2 are ROOT: : Mat h: : Di spl acenent Vect or 3D objects).

pl += vi;

pl -= vi,

p3 = pl + vi; /1 pl and p3 are the same type

p3 = vl + pil; /1 p3 is based on the sanme coordi nate systemas vl

p3 = pl - vi;

p3 = vl - pil;

v2 = pl - p2; //difference between points returns a vector v2 based on the

[/ sane coordinate system as pl

Note that the addition between two pointsis NOT possible and the difference between points returns
avector.

Other Operations
Exactly asfor the 3D Vectors, the following operations are allowed:
e comparison of points
» scaling and division of pointswith a scalar

* dot and cross product with any type of vector

Example: LorentzVector Classes

As in the 3D case, typedef’s are defined for user convenience. and can be used by including
the header file Mat h/ Vect or4D. h. The following typedef's, defined in the header file
Mat h/ Vect or 4Df wd. h, are available for the different instantiations of the template class
ROOT: : Mat h: : Lorent zVect or:

« ROOT: : Mat h: : XYZTVect or vector based on X, y, z, t coordinates (Cartesian) in double
precision

e ROOT: : Mat h: : XYZTVect or F vector based on x, y, z, t coordinates (Cartesian) in float
precision

322

Math Librariesin ROOT

e ROOT: : Mat h: : Pt Et aPhi EVect or vector based on pt(rho), eta, phi and E(t)
coordinates in double precision

e ROOT: : Mat h: : Pt Et aPhi MWect or vector based on pt(rho), eta, phi and Mt)
coordinates in double precision

e ROOT: : Mat h: : PxPyPzMect or vector based on px, py, pz and M mass) coordinates in
double precision

The metric used for al the LorentzVectoris(-, -, -, +) .

Constructors and Assignment

The following declarations are available;

XYZTVect or vi; /lcreate an enpty vector (x=0, y=0, z=0, t=0)
XYZTVect or v2(1,2,3,4); //vector with x=1, y=2, z=3, t=4
Pt Et aPhi EVector v3(1,2,Pl,5); //vector with pt=1, eta=2, phi=Pl, E=5

Note that each type of vector is constructed by passing its coordinate representation, so a
XYZTVector (1, 2, 3, 4) isdifferent from a Pt Et aPhi EVect or (1, 2, 3, 4) . In addition, the
Vector classes can be constructed by any vector, which implements the accessors x (), y(), z()
andt ().

This can be another ROOT: : Mat h: : Lor ent zVect or based on a different coordinate system
or any vector of a different package, like the CLHEP HepLor ent zVect or that implements the

required signature.

XYZTVect or v1(1,2,3,4);
Pt Et aPhi EVect or v2(vl);
CLHEP: : HepLorent zVector q(1, 2, 3, 4);
XYZTVect or v3(a);

Coordinate Accessors

All the same coordinate accessors are available through the interface of
ROOT: : Mat h: : Lor ent zVect or . For example:

//returns cartesian conmponents for the cartesian vector vl
vl. X(); v1.X(); v1.Z(); vi.T();

[lreturns cartesian conmponents for the cylindrical vector v2
v2.Px(); v2.Py(); v2.Pz(); v2.E();

[/returns other conponents for the cartesian vector vl
vl.Pt(); vl.Eta(); vi.Phi(); vli.M)

In addition, all 4 vector coordinates can be retrieved with the Get Coor di nat es method:

doubl e d[4];

v1. Get Coor di nat es(d); [/fill d array with (x,y,z,t) conponents of vl

v2. Get Coor di nat es(d); [/fill d array with (pt,eta, phi,e) conponents of v.
std::vector W 4);

v1. Get Coordi nat es(w. begin(),w. end()); //fill std::vector with (x,y,z,t)

[/ components of vi1

To get information on al the coordinate accessors see the ROOT: : Mat h: : Lor ent zVect or
reference documentation.

323

Math Librariesin ROOT

Setter Methods

One can set only all the three coordinates via:

v1. Set Coordi nates(cl,c2,c3,c4); //sets the (x,y,z,t) for a XYZTVect or
v2. Set Coor di nates(cl,c2,c3,c4); //sets pt,eta,phi,e for a PtEtaPhi EVector
v2. Set XYZ(x,Y,z,t); [/ sets cartesian conponents for PtEtaPhi EVect ol

Single coordinate setter methods are available for the basic vector coordinates, like Set X() for a
XYZTVect or or Set Pt () for a Pt Et aPhi EVect or . Attempting to do a Set X() on a non-
Cartesian vector will not compile.

XYZTVect or vl; v1.SetX(1); //OK setting x for a cartesian vector

Pt Et aPhi EVector v2; v2.SetX(1l); //ERROR cannot set X for a non-cartesian
[/vector. Method will not conpile.

v2. Set R(1) /I OK setting Pt for a PtEtaPhi EVector vector

In addition, there are setter methods from C arrays or iterators.

double d[4] = {1.,2.,3.,4.};
XYZTVect or v;
v. Set Coor di nat es(d) ; /lset (x,y,z,t) conponents of v using values from

or for examplefroman st d: : vect or using theiterators

std::vector w4);
[lset (x,y,z,t) conponents of v using values fromw
v. Set Coor di nat es(w. begi n(), w. end());

Arithmetic Operations

The following operations are possible between Lorentz vectors classes, even of different coordinate
system types: (v and w are two Lorentz vector of the same type, q is a generic Lorentz vector
implementing x(),y(),z() andt (), and aisageneric scalar type: double, float, int, etc.) .

v += q;
vV -= (;
v = -Q;
vV *= a;
v /= a;
W=V + Q
W=V - qQ;
W=V * a;
w=a * v,
w=v/ a;

Comparison

vV == W,
v I=w

Other Methods

324

Math Librariesin ROOT

a= v.Dot(q); //dot product in metric(+, +, +,-) of 2 LorentzVectol
XYZVector s = v. Vect () [/return the spatial conmponents (Xx,Y, z)

v.Beta(); [/return beta and gamua val ue (vector nust

v. Gamma() [/l be tine-like otherwi se result is neaningless)

XYZVector b = v.Boost ToCM); //return boost vector which will bring the Vector
[linits mas frane (P=0)

Example: Vector Transformations

Transformation classes are grouped in rotations (in three dimensions), Lorentz transformations and
Poincarre transformations, which are translation/ rotation combinations. Each group has several
members which may model physically equivalent transformations but with different internal
representations. All the classes are non-template and use double precision as the scalar type. The
following types of transformation classes are defined:

3D rotations:
e ROOT: : Mat h: : Rot at i on3D, rotation described by a 3x3 matrix of doubles

e ROOT: : Mat h: : Eul er Angl es rotation described by the three Euler angles (phi , t het a and
psi) followingthe Gol dSt ei n defi nition.

« ROOT: : Mat h: : Rot at i onZYXrotation described by three angles defining arotation first along
the Z axis, then along the rotated Y' axis and then along the rotated X' ' axis.

» ROOT: : Mat h: : AXi sAngl e, rotation described by a vector (axis) and an angle
» ROOT: : Mat h: : Quat er ni on, rotation described by a quaternion (4 numbers)
* ROOT: : Mat h: : Rot at i onX, specialized rotation along the X axis

« ROOT: : Mat h: : Rot at i onY, specialized rotation along the Y axis

* ROOT: : Mat h: : Rot at i onZ, specialized rotation along the Z axis

3D transformations (rotations + trand ations)

e ROOT: : Mat h: : Tr ansf or nBD, (rotations and then translation) described by a 3x4 matrix (12
double numbers)

e ROOT: : Mat h: : Transl ati on3D (only trandation) described by a 3D Vector
L orentz rotations and boosts

* ROOT: : Mat h: : Lor ent zRot at i on, 4D rotation (3D rotation plus aboost) described by a4x4
matrix

* ROOT: : Mat h: : Boost, a Lorentz boost in an arbitrary direction and described by a 4x4
symmetrix matrix (10 numbers)

 ROOT: : Mat h: : Boost X, aboost in the X axis direction
 ROOT: : Mat h: : Boost Y, aboost inthe Y axisdirection

« ROOT: : Mat h: : Boost Z, aboost in the Z axis direction
Constructors
All rotations and transformations are default constructible (giving the identity transformation). All

rotations are constructible taking a number of scalar arguments matching the number (and order of
components).

325

Math Librariesin ROOT

Rotati on3D rl; //a summy rotation (ldentity matrix)
RotationX rX(Pl); //a RotationX with an angle PI

Eul er Angl es rE(phi,theta,psi); //an Euler rotation with phi,theta, psi angles
XYZVect or u(ux, uy, uz);

Axi sAngl e rA(u, del ta); //a rotation based on direction u, angle delta

In addition, all rotations and transformations (other than the axial rotations) and transformations are
constructible from (begi n,end) iterators or from pointers behave like iterators.

doubl e dat a[9] ;

Rot ati on3D r(dat a, dat a+9) ; //create a rotation froma rotation matrix
std::vector wW12);

TransfornB8D t (w. begin(),w.end()); //create TransfornBD from std::vector content

All rotations, except the axial rotations, are constructible and assigned from any other type of rotation
(including the axial):

[lcreate a rotation 3D froma rotation along X axis of angle Pl
Rot ati on3D r (ROOT: : Mat h: : Rotati onX(Pl));

//construct an Euler rotation from A Rotation3D
Eul er Angl es r2(r);

//assign an Axis rotation froman Eul er Rotation
Axi sAngl e r3; r3 =r2,

Tr ansf or mBD (rotation + trandation) can be constructed from arotation and a translation vector:

Rotati on3D r;
XYZVect or '

Transform8D t1(r, Vv); //construct fromrotati on and then translation

Transform8D t2(v,r); //construct inverse fromfirst translation then rotation

TransfornmBD t 3(r); //construct fromonly a rotation (zero translation)

TransfornmBD t4(v); [/ construct fromonly translation (identity rotation)
Operations

All transformations can be applied to vector and points using the operator * or using the operator()

XYZVector vi1(...);

Rotati on3D r(...);

XYZVector v2 = r*vi; //rotate vector v1 using r
v2 = r(vl); /] equi val ent

Transformations can be combined using the operator * . Rotation, trandation and Tr ansf or n8D
classes can be al combined with the operator *. The result of a combination of a rotation and a
translation will be a Tr ansf or nBD class. Note that the rotations are not commutative, the order is
then important.

Rotati on3D r1(...);
Rotati on3D r2(...);
Rotation3D r3 = r2*rli; //a conbine rotation r3 by applying first rl then |

326

Math Librariesin ROOT

We can combine rotations of different types, like Rot at i on3Dwith any other type of rotations. The
product of two different axial rotationsreturnsaRot at i on3D:

Rotati onX rx(1.);

RotationY ry(2.);

Rotation3D r =ry * rx; /[/rotation along X and then Y axis
It isalso possibleto invert al the transformation or return their inverse:

Rotati on3D r1(...);

ri.Invert(); [linvert the rotation nodifying its content

Rotation3D r2 =rl.Inverse(); //return the inverse in a new rotation class

We have used rotation as examples, but al these operations can be applied to al the transformation
classes.

Set/GetComponents Methods

Common methodsto all transformationsare Get and Set Conponent s. They canbeusedtoretrieve
all the scalar values on which the transformation is based.

Rot ati onX rXx;

r x. Set Conponents(1.); //set agle of the X rotation
double d[9] ={........ }i

Rot ati on3D r;

r. Set Conponent s(d, d+9) ; //set 9 conmponents of 3D rotation

doubl e d[16];

Lorent zRot ation Ir;

| r. Get Component s(d, d+16) ; //get 16 conponents of a LorentzRotation
TMatri xD(3,4) m

TransfornBD t;

t. Get Conmponens(m ; [/fill 3x4 matrix with conponents of t

The Get Conponent s and Set Conponent s methods can be used with asignature based iterators
or by using any foreign matrix which implements the oper at or (i, j) or adifferent signatures
depending onthetransformation type. For more detailson all methods seethe reference documentation
of any specific transformation class.

Example with External Packages

Connection to Linear Algebra Classes

It ispossibleto usethe vector and rotation classestogether with the linear algebra classes and to set and
get the contents of any 3D or 4D vector from alinear algebravector classwhich implementsan iterator
or something which behaves like an iterator. For example a pointer to a C array (double*) behaves
like an iterator. It is then assumed that the coordinates, like (x, y, z) will be stored contiguously.

TVectorD r2(N); // ROOT Linear Al gebra Vector containing nmany vector:
XYZVector Vv2;

[/ construct vector from x=r[INDEX], y=r[|NDEX+1], z=r[| NDEX+2]

v2. Set Coor di nat es(& 2[| NDEX] , & 2[i ndex] +3) ;

To fill alinear algebra vector from a 3D or 4D vector, with Get Coor di nat es() one can get the
internal coordinate data.

327

Math Librariesin ROOT

HepVect or c(3); [/ CLHEP Li near al gebra vector
[/fill HepVector ¢ with c[0]=x, c[1l]=y, c[2]=z
v2. Get Coor di nat es(&c[0] , &c[i ndex] +3)

or using TVect or D:

doubl e *dat a[3] ;
v2. Get Coor di nat es(dat a, dat a+3) ;
TVectorD r1(3,data); //create a new Linear Al gebra vector copying the da

In the case of transformations, constructor and method to set/ get components exist with linear algebra
matrices. Therequisite isthat the matrix data are stored, for example in the case of a Lorentz rotation,
from (0, 0) thru (3, 3)

TMatri xD(4, 4) m
Lorent zRotation r(nj; //create Lorentz rotation frommatrix m
r. Get Conponent s(m ; [/fill matrix mw th LorentzRotation conponents

Connection to Other Vector Classes

The 3D and 4D vectors of the GenVect or package can be constructed and assigned from any vector
which satisfies the following requisites:

« for 3D vectorsimplementing thex(),y() and z() methods

» for Lorentz vectorsimplementing thex () ,y(),z() andt () methods.

CLHEP: : Hep3Vect or hv;

XYZVect or vi(hv); //create 3D vector from CLHEP 3D Vect or
HepGeom : Poi nt 3D hp;

XYZPoi nt pl(hp); //create a 3D point from CLHEP geom Poi nt
CLHEP: : HepLor ent zVect or hq;

XYZTVect or g(hq); /[lcreate a Lorentz vector from CLHEP L. V.

MathMore Library

The Mat hMor e library provides an advanced collection of functions and C++ classes for numerical
computing. Thisis an extension of the functionality provided by the Mat hCor e library. The current
set includes:

Special functions (see Special Functionsin MathMore)

Mathematical functions used in satistics such as probability density functions, cumulative
distributions functions and their inverse.

Numerical algorithmsfor one dimensional functions based on implementation of the GNU Scientific
Library (GSL):

* Numerical integration using the class ROOT: : Mat h: : | nt egr at or which is based on the
Adaptive integration algorithms of QUADPACK

* Numerical differentiation viaROOT: : Mat h: : Deri vat or

Root finder viaROOT: : Mat h: : Root Fi nder which uses different solver algorithms from GSL

e Minimization viaROOT: : Mat h: : M ni mi zer 1D

328

Math Librariesin ROOT

* Interpolation via ROOT: : Mat h: : I nt er pol ati on. All the GSL interpolation types are
supported

* Function approximation based on Chebyshev polynomials via the class
ROOT: : Mat h: : Chebyshev

» Random number generators and distributions
 Polynomial evaluation and root solvers

The mathematical functions are implemented as a set of free functions in the namespace
ROOT: : Mat h. The naming used for the special functionsis the same proposed for the C++ standard
(see C++ standard extension pr oposal docunent).The Mat hCor e library is implemented
wrapping in C++ the GNU Scientific Library (GSL). Building Mat hMbr e requires aversion of GSL
larger or equal 1.8. The source code of Mat hMor e is distributed under the GNU General Public
License.

Mat hMor e (and its ROOT CINT dictionary) can be built within ROOT whenever a GSL library is
found in the system. The GSL library and header filelocation can be specified in the ROOT configure
script, by doing: . / configure --with-gsl-incdir=... --with-gsl-libdir=...

Mat hMobr e can be built also a stand-alone library (without requiring ROOT) downloding the tar file
from the Web at this link. In this case the library will not contain the dictionary information and
therefore cannot be used interactively

More information on the classes and functions present in Mat hVbr e is available in the onl i ne
ref erence docunentati on.

Mathematical Functions

The mathematical functions are present in both Mat hCore and Mat hMore libraries. All
mathematical functions are implemented as free functions in the namespace ROOT: : Mat h. The
most used functions are in the Mat hCor e library while the others are in the Mat hMor e library.
The functionsin Mat hbr e are all using the implementation of the GNU Scientific Library (GSL).
The naming of the special functions is the same defined in the C++ Techni cal Report on
Standard Library extensions. The specia functions are defined in the header file Mat h/
SpecFunc. h.

Special Functions in MathCore

e ROOT: : Mat h: : bet a(doubl e X, doubl e y) - evaluates the beta function:
CixiCiv)
B -t
) Tix+ ¥}

* double ROOT:: Math::erf(double x) - evaluates the error function encountered in

ﬂ:f'(x)- i-.[e"':rﬂ
integrating the normal distribution: Vi
e doubl e ROOT:: Mat h::erfc(doubl e x) — evaluates the complementary error function:

erfilrdm] - erf{z) = %}e-"m

» doubl e ROOT: : Mat h: : t gamma(doubl e Xx) - caculates the gamma function:

T{x) -j'!"'e"d.f

329

Math Librariesin ROOT

Special Functions in MathMore

doubl e ROOT:: Mat h: : assoc_| egendre(unsi gned |, unsigned mdouble
X) - computes the associated Legendre polynomias (with n#0, |#m and | x|

: a4
<1) :1';}'“{11-'[l—Jf']""2 E-FHI}

doubl e ROOT:: Math::conp_ellint_1(double k) - caculatesthe complete liptic
Tz

x:n-m,mz}-_[

o
Vl-k7gin’ 8
doubl e ROOT:: Mat h::conp_el lint_2(doubl e k) - caculates the complete dliptic

a2
E(f) = E(k. i3} = _{Jl-tfsin*‘-ads

integral of thefirst kind (with O#k2#1) :

integral of the second kind (with 0#k2#1):

doubl e ROOT: : Mat h: : conmp_el l'int _3(doubl e n, doubl e k) -
calculates the complete elliptic integra of the third kind (with O#k2#1):
T2
Hfﬂ,k,um-_!' - i
{1 ngin® B 1— k7 sin’ @

doubl e ROOT: : Mat h: : conf _hyperg(doubl e a, doubl e b, doubl e z) - calculates
IR NN
e & OF + ml

(Filahz) -
the confluent hyper-geometric functions of the first kind:

doubl e ROOT: : Mat h: : conf _hypergU(doubl e a, double b,double z) -

cal cul ates the confluent hyper-geonetric functions of the second

ki nd, known al so as Kummer function of the second type. It isrelated

to the confluent hyper-geonetric function of the first kind:

Utapsre T [,F,l[u:b,z} _:"“,F,(a—b+1:2—b:z}]
singb| a-b+ 1) i)

doubl e ROOT:: Math::cyl bessel i (double nu,double x) - calculates the
modified Bessel function of thefirst kind, also called regular modified (cylindrical) Bessel function:

. { 1 I}I'+1i’
f =TT () -
xh=im (k) ETiv+&+1)

doubl e ROOT:: Math::cyl bessel j(double nu,double x) - calculates the
(cylindrical) Bessel function of the first kind, also called regular (cylindrical) Bessel function:

. {_-”j I:- 1 I}'H-H:
Sy —2—
RIT(w 4k +17

doubl e ROOT: : Mat h: : cyl _bessel k(doubl e nu, doubl e X)
- cdculates the modified Bessel function of the second kind, aso
caled irregular modified (cylindrica) Bessel function for x>0, v>0:

& L,{x}-Lis)

KT{I}-Ei-.||:_rl_fi;]+|'ﬁfi:]]- JE SifLwr

foor nom - integraly

I, (51 f,{5)

tor intemral v
S o gra

330

Math Librariesin ROOT

doubl e ROOT: : Mat h: : cyl _neumann(doubl e nu, double x) - caculates the
(cylindrical) Bessel function of the second kind, also called irregular (cylindrical) Bessel function or

Jomm v — S (x)

SinwT
A= ¥l S, eos g —J_ (1)
lim g —w

tot non - inlepgtal v

N for imegtal v
(cylindrical) Neumann function: &N pT

doubl e ROOT::Math::ellint_1(double k, double phi) - caculatesincomplete
o

L)
F{L-:jﬁ}-_[—
dliptic integral of the first kind (with 0#k 2#1): Yl-ksin" 8
doubl e ROOT: : Mat h::ellint_2(doubl e k,double phi) - caculatesthe complete
1
Efh)= ffl - &7 sin® BdB
eliptic integral of the second kind (with O#k 2#1):

doubl e ROOT: : Mat h: : el l'i nt _3(doubl e n, doubl e k, doubl e phi)
- calculates the complete elliptic integral of the third kind (with O#k2#1):

.
Tn.g)= 49
f1—msin® 81— & sin’ 8

doubl e ROOT:: Mat h: : expi nt (doubl e x) - caculates the exponential integral:

EFif{x) m— J'*'Td:

doubl e ROOT: : Mat h: : hyper g(doubl e a, doubl e b, doubl e
c, doubl e X) - calculates Gauss hyper-geometric function:

et e Ia+wI0E + 1) .::_"

SRl bieia)=
Tar)T 1) 4 Tic+m Al

doubl e ROOT: : Mat h: : | egendr e(unsi gned |, doubl e x) - calculatesthe Legendre

]. -I!.ﬂlll 1 I
Flirlw——— -1
i) L) }

!
polynomiasfor | #0, | x| #1 in the Rodrigues representation:

doubl e ROOT:: Math::riemann_zeta(double x) - calculates the Riemann zeta
*_I.it" =1

Clahmyg .
'r sm{imjr{l—.t]gﬂ—x} =l

function:

doubl e ROOT: : Mat h: : sph_bessel (unsi gned n, double x) - caculates the
spherical Bessel functions of the first kind (also called regular spherical Bessel functions):

Fo) m EJ"._.;{ITI

doubl e ROOT: : Mat h: : sph_neumann(unsi gned n, double x) - calculates the
spherical Bessal functions of the second kind (also called irregular spherical Bessel functions or

w
A ()= y (x)m 1|||—Nu+,,1{.1']|
spherical Neumann functions): 2x

331

Math Librariesin ROOT

Probability Density Functions (PDF)

Probability density functions of various distributions. All the functions, apart from the discrete ones,
have the extralocation parameter x 0, which by default is zero. For example, in the case of agaussian
pdf , x0 isthe mean, nu, of the distribution. All the probability density functions are defined in the
header file Mat h/ Di st Func. h and are part of the Mat hCor e libraries. The definition of these
functionsis documented inther ef er ence doc for statistical functions:

doubl e ROOT: : Mat h: : bet a_pdf (doubl e x, doubl e a, doubl e b);

doubl e ROOT: : Mat h: : bi nomi al _pdf (unsi gned int k, doubl e p,unsigned int n);
doubl e ROOT: : Mat h: : brei t wi gner _pdf (doubl e x, doubl e gamma, doubl e x0=0);

doubl e ROOT: : Mat h: : cauchy_pdf (doubl e x, doubl e b=1, doubl e x0=0) ;

doubl e ROOT: : Mat h: : chi squar ed_pdf (doubl e x, doubl e r, doubl e x0=0);

doubl e ROOT: : Mat h: : exponenti al _pdf (doubl e x, doubl e | anbda, doubl e x0=0) ;
doubl e ROOT: : Mat h: : fdi stri bution_pdf (doubl e x, doubl e n, doubl e m doubl e x0=0);
doubl e ROOT: : Mat h: : ganma_pdf (doubl e X, doubl e al pha, doubl e t het a, doubl e x0=0);
doubl e ROOT: : Mat h: : gaussi an_pdf (doubl e x, doubl e si gna, doubl e x0=0) ;

doubl e ROOT: : Mat h: : | andau_pdf (doubl e x, doubl e s, doubl e x0=0);

doubl e ROOT: : Mat h: : | ognor mal _pdf (doubl e x, doubl e m doubl e s, doubl e x0=0);
doubl e ROOT: : Mat h: : nor mal _pdf (doubl e x, doubl e si gna, doubl e x0=0);

doubl e ROOT: : Mat h: : poi sson_pdf (unsi gned i nt n, double m);

doubl e ROOT: : Mat h: : tdi stribution_pdf (doubl e x, doubl e r, doubl e x0=0);

doubl e ROOT: : Mat h: : uni f or m pdf (doubl e x, doubl e a, doubl e b, doubl e x0=0);

Cumulative Distribution Functions (CDF)

For all the probability density functions, we have the corresponding cumulative distribution functions
and their complements. The functions with extension _cdf calculate the lower tail integral of the
probability density function:

Ty -j'p{:'m:'

while those with the cdf _c extension cal culate the upper tail of the probability density function, so-
called in statistics the survival function. For example, the function:

doubl e ROOT: : Mat h: : gaussi an_cdf (doubl e x, doubl e si gna, doubl e x0=0) ;

evaluates the lower tail of the Gaussian distribution:

ol 1 ida :flr_l'l

Lo
D{ﬂ-:[izmz

while the function:

doubl e ROOT: : Mat h: : gaussi an_cdf c(doubl e x, doubl e signa, double x0=0);

evaluates the upper tail of the Gaussian distribution:

=17 Kot lil'l

+x .l
O G

332

Math Librariesin ROOT

The cumulative distributions functions are defined in the header file Mat h/ ProbFunc. h.
The majority of the CDF's are present in the Mat hCore, apart from the chi squar ed,
fdistribution,gammaandtdi stri buti on,whichareintheMat hMor e library.

Inverse of the Cumulative Distribution Functions(Quantiles)

For amost all the cumulative distribution functions (_cdf) and their complements(_cdf _c) present
in the library, we provide the inverse functions. The inverse of the cumulative distribution function
is caled in statistics quantile function. The functions with the extension _quanti | e calculate
the inverse of the cumulative distribution function (lower tail integral of the probability density
function), whilethosewiththequant i | e_c extension calculatetheinverse of the complement of the
cumulative distribution (upper tail integral). All the inverse distributions are in the MathMore library
and are defined in the header file Mat h/ Pr obFuncl nv. h.

The following picture illustrates the available statistical functions (PDF, CDF and quantiles) in the
case of the normal distribution.

Figure 13.2. PDF, CDF and quantilesin the case of the normal distribution

o

11 = —— normal_quantile
[normal_quantile_c
0.8
= normal_cdf
0.6 normal_cdf_c

0.4

0.2F

& RN L o o N W

S I R

Linear Algebra: SMatrix Package

The ROOT Linear algebra package is documented in a separate chapter (see “Linear Algebra in
ROOT"). SMat r i x isa C++ package, for high performance vector and matrix computations. It has
been introduced in ROOT v5.08. It is optimized for describing small matrices and vectors and It can
be used only in problems when the size of the matricesis known at compile time, like in the tracking
reconstruction of physics experiments. It is based on a C++ technique, called expression templates, to
achieve an high level optimization. The C++ templates can be used to implement vector and matrix
expressions such that these expressions can be transformed at compiletimeto codewhichisequivalent
to hand optimized codein alow-level language like FORTRAN or C (seefor example T. Veldhuizen,
Expression Templates, C++ Report, 1995).

The SMat ri x has been developed initially by T. Glebe in Max-Planck-Institut, Heidelberg, as part
of the Her aB analysis framework. A subset of the origina package has been now incorporated in
the ROOT distribution, with the aim to provide a stand-alone and high performance matrix package.
The API of the current package differs from the origina one, in order to be compliant to the ROOT
coding conventions.

SMat ri x containsthe generic ROOT: : Mat h: : SMat ri x and ROOT: : Mat h: : SVect or classes
for describing matrices and vectors of arbitrary dimensions and of arbitrary type. The classes are
templated on the scalar type and on the size, like number of rows and columnsfor amatrix . Therefore,
the matrix/vector dimension has to be known at compile time. An advantage of using the dimension
as template parameters is that the correctness of dimension in the matrix/vector operations can be
checked at compile time.

SMatri x supports, since ROOT v5.10, symmetric matrices using a storage class
(ROOT: : Mat h: : Mat RepSym) which contains only the N* (N+1) / 2 independent element of a

333

Math Librariesin ROOT

Nx N symmetric matrix. It is not in the mandate of this package to provide complete linear algebra
functionality. It provides basic matrix and vector functions such as matrix-matrix, matrix-vector,
vector-vector operations, plus some extra functionality for square matrices, like inversion and
determinant calculation. Theinversion is based on the optimized Cramer method for squared matrices
of sizeup to 6x6.

The SMat r i x package contains only header files. Normally one does not need to build any library. In
the ROOT distribution alibrary, | i bSmat r i x is produced with the C++ dictionary information for
squared and symmetric matrices and vectors up to dimension 7 and based on Doubl e_t , Fl oat _t
and Doubl e32_t . The following paragraphs describe the main characteristics of the matrix and
vector classes. More detailed information about the SMat r i x classesAPI isavailableintheonl i ne
reference docunentation.

Example: Vector Class (SVector)

The template class ROOT: : Mat h: : SVect or represents n-dimensional vectors for objects of
arbitrary type. This class has 2 template parameters, which define at compile time, its properties: 1)
type of the contained elements (for example float or double); 2) size of the vector. The use of this
dictionary is mandatory if one want to use Smat ri x in CINT and with I/O.

Creating a Vector

The following constructors are available to create a vector:
 Default constructor for a zero vector (all elements equal to zero).

» Constructor (and assignment) from a vector expression, like v=p* g+w. Due to the expression
template technique, no temporary objects are created in this operation.

» Constructor by passing directly the elements. Thisis possible only for vectors up to size 10.

 Constructor from an iterator copying the data referred by the iterator. It is possible to specify the
begin and end of the iterator or the begin and the size. Note that for the Vector the iterator is not
generic and must be of type T* , where T is the type of the contained elements.

In the following example we assume that we are using the namespace ROOT: : Mat h

SVect or <doubl e, 3> v; /[l create an enpty vector of size 3 (v[0]=v[1]=v[2]=
double d[3] = {1, 2, 3};
SVect or <doubl e, 3> v(d, 3); //create a vector froma C array

Accessing and Setting Methods

The single vector elements can be set or retrieved using theoper at or[i],operator (i) orthe
iterator interface. Notice that the index starts from zero and not from one as in FORTRAN. Also
no check is performed on the passed index. The full vector elements can be set also by using the
SetElements function passing a generic iterator.

double x = m(i); /1 return the i-th el ement
X = *(mbegin()+i); /1 return the i-th el ement
v[0] = 1; /1 set the first el ement
v(1l) = 2; /1 set the second el enent
*(v. begin()+3) = 3; /1 set the third el ement

std: : vect or <doubl e> W 3);

[/l set vector elenments froma std::vector<doubl e>::iterator
v. Set El emrent s(w. begi n(), w. end());

334

Math Librariesin ROOT

In addition there are methods to place a sub-vector in a vector. If the size of the sub-vector is larger
than the vector size a static assert (a compilation error) is produced.

SVect or >doubl e, N> v;

SVect or >doubl e, M> w;

/[l M<= N otherwi se a conpilation error is obtained |ater

Il place a vector of size Mstarting fromelenment ioff, v[ioff+i]=wi]
v.Place_at(w,ioff);

[/ return a sub-vector of size Mstarting fromv[ioff]: wi]=v[ioff+i]
w = v. Sub < SVect or>doubl e, M\> > (i off);

For the vector functions see later in the Matrix and V ector Operators and Functions paragraph.

Example: Matrix Class (SMatrix)

The template class ROOT: : Mat h: : SMat ri x represents a matrix of arbitrary type with nr ows x
ncol dimension. The class has 4 template parameters, which define at compile time, its properties:

* type of the contained elements, T, for example float or double;
* number of rows;
* number of columns;

* representation type. Thisisa class describing the underlined storage model of the Matrix. Presently
exists only two types of this class:

» ROOT: : Mat h: : Mat RepSt d for a general nrows x ncol s matrix. This class is itself a
template on the contained type T, the number of rows and the number of columns. Its data member
isan array T[nr ows* ncol s] containing the matrix data. The data are stored in the row-major
C convention. For example, for a matrix M of size 3x3, the data{ a0, al, .., a8} are stored in
the following order:

Mala, o,

T

e ROOT: : Mat h: : Mat RepSymfor asymmetric matrix of size NXN. Thisclassis atemplate on the
contained type and on the symmetric matrix size N. It has as data member an array of type T of
size N* (N+1) / 2, containing the lower diagonal block of the matrix. The order follows the lower
diagonal block, still in arow-major convention. For example for asymmetric 3x3 matrix the order
of the 6 independent elements{ a0, al, .., ab} is

TR T
A oo, w oy
I'.'l_,‘ I'.'ld -ﬂ'i
Creating a Matrix
The following constructors are available to create a matrix:
 Default constructor for a zero matrix (all elements equal to zero).
» Constructor of an identity matrix.

» Copy constructor (and assignment) for a matrix with the same representation, or from a different
one when possible, for example from a symmetric to a general matrix.

335

Math Librariesin ROOT

e Constructor (and assignment) from a matrix expression, like D=A* B+C. Due to the expression
template technique, no temporary objects are created in this operation. In the case of an operation
like A=A* B+C, atemporary object isneeded and it is created automatically to storetheintermediary
result in order to preserve the validity of this operation.

 Constructor from ageneric STL-like iterator copying the datareferred by the iterator, following its
order. It is both possible to specify the begin and end of the iterator or the begin and the size. In
case of asymmetric matrix, it isrequired only the triangular block and the user can specify whether
giving a block representing the lower (default case) or the upper diagonal part.

Here are some examples on how to create a matrix. We use typedef's in the following examples to
avoid thefull C++ namesfor the matrix classes. Notice that for ageneral matrix the representation has
the default value, ROOT: : Mat h: : Mat RepSt d, and it is not needed to be specified. Furthermore,
for ageneral square matrix, the number of column may be as well omitted.

[/l typedef definitions used in the follow ng decl arati ons
t ypedef ROOT:: Mat h:: SMatri x<doubl e, 3> Shat ri x33;

t ypedef ROOT:: Mat h:: SMatri x<doubl e, 2> SMat ri x22;

t ypedef ROOT:: Mat h:: SMvat ri x<doubl e, 3, 3,

ROOT: : Mat h: : Mat RepSynxdoubl e, 3>> SMat ri xSyn8;

t ypedef ROOT: : Mat h: : SVect or >doubl e, 2> SVect or 2;

t ypedef ROOT: : Mat h: : SVect or >doubl e, 3> SVect or 3;

t ypedef ROOT: : Mat h: : SVect or >doubl e, 6> SVect or 6;

SMat ri x33 no; /] create a zero 3x3 matrix

[/l create an 3x3 identity matrix

Shat ri x33 i = ROOT:: Math::SMwatrixldentity();

doubl e a[9] =1{1,2,3,4,5,6,7,8, 9}; /[l input matri x data

[/l create a matri x using the a[] data

Shat ri x33 m a, 9); /1l this will produce the 3x3 nmatrix

/1l (1 2 3)
/1l (4 5 6)
/1l (7 8 9)

Example to fill a symmetric matrix fromanst d: : vect or:

st d: : vect or <doubl e> v(6);
for (int i = 0; i<6; ++i) v[i] = double(i+1);
SMatri xSynB s(v. begin(),v.end()) /1l this will produce the symetric matrix
/1 (1 2 4)

/1 (2 3 5)

/1 (4 5 6)
//create a general matrix froma symetric matrix (the opposite will not conpil
SMat ri x33 n2 = s;

Accessing and Setting Methods

The matrix elements can be set usingtheoper at or () (i row, i col), wherei rowandi col are
the row and column indexes or by using the iterator interface. Notice that the indexes start from zero
and not from one asin FORTRAN. Furthermore, al the matrix elements can be set also by using the
SetElements function passing ageneric iterator. The elements can be accessed by the same methods as
well asby using thefunction ROOT: : Mat h: : SMatri x: : appl y. Theappl y(i) hasexactly the
same behavior for general and symmetric matrices; in contrast to the iterator access methods which
behave differently (it follows the data order).

SMat ri x33 m
n(0,0) = 1; /'l set the element in first row and first col um

336

Math Librariesin ROOT

*(m begi n() +1) = 2; /1 set the second el enent (O, 1)

doubl e d[9]={1, 2, 3,4,5,6, 7,8, 9};

m Set El ement s(d, d+9) ; /] set the d[] values in m

double x = m(2,1); [/l return the element in 3rd row and 1st col umm
x = mapply(7); /[l return the 8-th element (row=2, col =1)

X = *(m begi n()+7); /[l return the 8-th element (row=2, col =1)

[/ symretric matrices

/[l (note the difference in behavior between apply and the iterators)

X = *(m begi n() +4) /1 return the el ement (row=2,col =1)

x = mapply(7); [/l returns again the (row=2, col =1) el enent

There are methods to place and/or retrieve ROOT: : Mat h: : SVect or objects as rows or columns
in (from) a matrix. In addition one can put (get) a sub-matrix as another ROOT: : Mat h: : SMat ri x
object in amatrix. If the size of the sub-vector or sub-matrix islarger than the matrix size a static assert
(acompilation error) is produced. The non-const methods are:

SMat ri x33 m

SVector2 v2(1,2);

/1 place a vector in the first row fromelenent (0,1) : m(0,1)=v2[0]
m Pl ace_in_row(v2,0,1);

/1 place the vector in the second colum from (0,1) : m0,1) = v2[O0]
m Pl ace in_col (v2,0,1);

SMat ri x22 n®;

/1l place n2 in mstarting fromthe elenent (1,1) : m(1,1) = n2(0,0)
m Pl ace_at (n2, 1, 1);

SVector3 v3(1, 2, 3);

[/l set v3 as the diagonal elenents of m : m(i,i) = v3[i] for i=0,1,2
m Set Di agonal (v3)

The const methods retrieving contents (getting slices of a matrix) are:

a=1{1223,45,6,7,8,9};

SMat ri x33 m a, a+9) ;

SVector3 irow = m Row(0) ; [/l return as vector the first row
SVector 3 j col m Col (1) ; /1 return as vector the second col um

[l return a slice of the first rowfrom(0,1): r2[0]= m(0,1); r2[1] =m0, 2)

SVector2 r2 = m SubRowSVect or2> (0, 1);
[/ return a slice of the second colum from (0,1): c2[0] = m(0,1); c2[1] = n(1,.
SVector2 c2 = m SubCol <SVect or2> (1, 0);

[/ return a sub-matrix 2x2 with the upper left corner at(1,1)
SMat ri x22 subM = m Sub<SMatri x22> (1,1);

[l return the diagonal element in a SVector
SVector3 diag = m Diagonal ();

/1 return the upper(lower) block of the matrix m
SVector6 vub m Upper Bl ock() ; /1 vub
SVector6 vlb m Lower Bl ock() ; [l vlb

= =[1, 2 3 5 6 9]
= =[1, 4, 5 7, 8 9]
Linear Algebra Matrix Functions (Inversion, Determinant)

Only limited linear algebrafunctionality isavailablefor SMat r i x. Itispossible for squared matrices
Nx N, to find the inverse or to calculate the determinant. Different inversion algorithms are used if the
matrix is smaller than 6x6 or if it is symmetric. In the case of asmall matrix, afaster direct inversion
isused. For alarge (N>6) symmetric matrix the Bunch-Kaufman diagonal pivoting method is used

337

Math Librariesin ROOT

while for alarge (N>6) general matrix an LU factorization is performed using the same algorithm
asin the CERNLIB routinedi nv.

/1 Invert a NxN matri x.
/1l The inverted matrix replaces the existing one if the result is successful

bool ret = mlnvert(); /! return the inverse matrix of m
/1l 1f the inversion fails ifail is different than zero ?7??

int ifail = 0;

ifail = mlnverse(ifail);

// determ nant of a square matrix - calculate the determ nant nodyfing the
/!l matrix content and returns it if the cal cul ati on was successf ul

doubl e det;

bool ret = m Det (det);

/1 calculate determ nant by using a tenporary matrix; preserves nmatrix content
bool ret = n.Det2(det);

Example: Matrix and Vector Functions and Operators

Matrix and Vector Operators

The ROOT: : Mat h: : SVect or and ROOT: : Mat h: : SMat ri x classes define the following
operators described below. The nil, n2, nB are vectors or matrices of the same type (and size) and
aisascdar vaue

== [/ returns whet her
I=nR2 //returns whet her
< nR [/ returns whet her
> nR [/ returns whet her

is equal to n2 (el enent by el enent comnpari son)
is NOT equal to n2 (el ement by el enent conpari so
is less than n2 (el ement W se conpari son)

is greater than n2 (el ement wi se comnpari son)

RRRR
RRRR

~

/

n the followng mL and n8 can be general and nR2 symmetric, but not vice-vers

mL += nR // add n2 to ml

m -= nR // subtract n2 to nmil
m = m + nR // addition

mL. - nR // subtraction

[/ Multiplication and division via a scalar value a

nB = a*ml; nB = nil*a; nB8 = ni/a;

Vector-Vector multiplication: The operator * defines an element by element multiplication between
vectors. For the standard vector-vector algebraic multiplication returning ascalar, vTv (dot product),
one must use the ROOT: : Mat h: : Dot function. In addition, the Cross (only for vector sizes of 3),
ROOT: : Mat h: : Cr oss, and the Tensor product, ROOT: : Mat h: : Tensor Pr od, are defined.

Matrix - Vector multiplication: The operator * defines the matrix-vector multiplication:
Fo= E M .k, .)
! . The operation compiles only if the matrix and the vectors have the right sizes.

// Mis a NIxN2 matrix, X is a N2 size vector, y is a Nl size vector
y = M* X

338

Math Librariesin ROOT

Matrix - Matrix multiplication: The operator * defines the matrix-matrix multiplication:

C.im 3 Al ;

[/ Ais a NIxN2 matrix, Bis a N2xN3 matrix and Cis a NIxN3 matri x
C=A*B

The operation compiles only if the matrices have the right size. In the case that A and B are symmetric
matrices, Cisageneral one, since their product is not guaranteed to be symmetric.

Matrix and Vector Functions

The most used matrix functions are:
* ROOT: : Mat h: : Transpose(M returnsthe transpose matrix Mr

e ROOT:: Math::Simlarity(v, M returnsthe scalar value resulting from the matrix-vector
product v TM/

* ROOT:: Math::Simlarity(U M returnsthe matrix resulting from the product: U M UT. If
Mis symmetric, the returned resulting matrix is also symmetric

e ROOT::Math::SimlarityT(U, M returnsthe matrix resulting from the product: UT M U.
If Mis symmetric, the returned resulting matrix is also symmetric

The major vector functions are:
» ROOT: : Mat h: : Dot (v1, v2) returnsthe scalar value resulting from the vector dot product

e ROOT: : Mat h: : Cross(v1, v2) returnsthevector cross product for two vectors of size 3. Note
that the Cr oss product is not defined for other vector sizes

e ROOT: : Mat h: : Uni t (Vv) returnsunit vector. One canusealsothev. Uni t () method.

e ROOT: : Mat h: : Tensor Prod(v1, v2) returns a general matrix M of size N1xN2 resulting
from the tensor product between the vector v1 of size N1 and v2 of size N2:

For a list of al the available matrix and vector functions see the SMVat ri x online reference
documentation.

Matrix and Vector I/O

One can print (or write in an output stream) Vectors and Matrices) using the Pri nt method or the
<< operator:

// mis a SMatrix or a SVector object
m Print(std::cout);
std::cout << m << std::endl;

In the ROQT distribution, the CINT dictionary is generated for SiVat ri x and SVect or for for
Doubl e_t, Fl oat _t and Doubl e32_t up to dimension 7. This allows the possibility to store
them in aROOT file.

Minuit2 Package

M nui t 2 is a new object-oriented implementation, written in C++, of the popular M NUI T
minimization package. Compared with the TM nui t class, which is a direct conversion from

339

Math Librariesin ROOT

FORTRAN to C++, M nui t 2 isacompleteredesign and re-implementation of the package. Thisnew
version provides all the functionality present in the old FORTRAN version, with aimost equivalent
numerical accuracy and computational performances. Furthermore, it contains new functionality, like
the possihility to set single side parameter limitsor the FUMI LI algorithm (see“ FUMILI Minimization
Package’ in “Fitting Histograms® chapter), which is an optimized method for least square and log
likelihood minimizations. Minuit2 has been originally developed by M. Winkler and F. Jamesin the
SEAL project. More information can be found onthe M NUI T Web Si t e and in particular at the
following documentation pageat ht t p: / / www. cern. ch/ m nui t/ doc/ doc. ht i .

The APl has been then changed in this new version to follow the ROOT coding convention
(function names starting with capital letters) and the classes have been moved inside the namespace
ROOT: : M nui t 2. Inaddition, the ROOT distribution contains classesneeded to integrateM nui t 2
in the ROOT framework, like TFitterM nuit and TFitterFumi | i .M nui t 2 canbeusedin
ROOT as another fitter plug-in. For example for using it in histogram fitting, one only needs to do:

TVirtual Fitter:: SetDefaultFitter("Mnuit2"); //or Fumili2 for the FUMLI al gori

For minimization problem, providing an FCN function to minimize, one can do:

TVirtual Fitter:: SetDefaultFitter ("M nuit2");
TVirtual Fitter * minuit2 = TVirtual Fitter::Fitter(O0, 2);

Then set the parameters, the FCN and minimize using the TVirtual Fitter methods:
Set Par anet er , Set FCNand Execut eComrand. The FCN function can also be given to Minuit2
as an instance of a classimplementing the ROOT: : M nui t 2: : FCNBase interface. In this case one
must use directly the TFi tt er M nui t classviathe method Set M nui t FCN.

Examples on how to use the M nuit2 and Fum |i 2 plug-ins are provided in the tutorials
directory $ROOTSYS/t utori al s/fit: m nuit2Fit Bench. C, m nuit2Fi t Bench2D. C
and m nuit2GausFit.C. More information on the classes and functions present in
M nuit?2 is available a online reference docunmentation. In addition, the C+
+ MINUIT User Guide provides al the information needed for using directly the package
without TVi rtual Fitter interface (see http://seal . cern. ch/docunents/ m nuit/
mmuser sgui de. pdf). Useful information on MINUIT and minimization in general is provided in
the following documents:

F. James, Minuit Tutorial on Function Minimization (http://seal . cern. ch/ docunents/
m nuit/ mtutorial.pdf); F. James, The Interpretation of Errors in Minuit (http://
seal . cern. ch/ docunent s/ m nui t/ merror. pdf);

ROOQOT Statistics Classes

Classes for Computing Limits and Confidence Levels

TFel dmanCousi ns class calculates the CL upper/lower limit for a Poisson process using the
Feldman-Cousins method (as described in PRD V57 #7, p3873-3889). No treatment is provided in
this method for the uncertaintiesin the signal or the background.

TRol ke computes confidenceintervalsfor the rate of aPoisson processin the presence of background
and efficiency, using the profile likelihood technique for treating the uncertainties in the efficiency
and background estimate. The signal is always assumed to be Poisson; background may be Poisson,
Gaussian, or user-supplied