Top
Back: embR
Forward: surfacesignature_lib
FastBack: resbin_lib
FastForward: surfacesignature_lib
Up: resjung_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.9.4 jungnormal

Procedure from library resjung.lib (see resjung_lib).

Usage:
jungnormal(ideal J, int i);
J = ideal
i = int

Assume:
J = two dimensional ideal

Return:
a list l of rings
l[k] is a ring containing two Ideals: QIdeal and BMap. BMap defines a birational morphism from V(QIdeal)-->V(J), such that V(QIdeal) has only singularities of Hizebuch-Jung type. If i!=0 then it's assumed that J is in noether position with respect to the last two variables.
If i=0 the algorithm computes a coordinate change such that J is in noether position.

Example:
 
LIB "resjung.lib";
ring R=0,(x,y,z),dp;
ideal J=x2+y3z3;
list li=jungnormal(J,1);
==> // ** killing the basering for level 0
li;
==> [1]:
==>    //   characteristic : 0
==> //   number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    T(1)
==> //        block   2 : ordering dp
==> //                  : names    x x(2) y(1)
==> //        block   3 : ordering C
==> [2]:
==>    //   characteristic : 0
==> //   number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    T(1)
==> //        block   2 : ordering dp
==> //                  : names    x x(1) y(0)
==> //        block   3 : ordering C
def S=li[1];
setring S;
QIdeal;
==> QIdeal[1]=T(1)*x(2)^3*y(1)+x
==> QIdeal[2]=-T(1)*x+x(2)^3*y(1)^2
==> QIdeal[3]=T(1)^2+y(1)
==> QIdeal[4]=x(2)^6*y(1)^3+x^2
BMap;
==> BMap[1]=x
==> BMap[2]=x(2)*y(1)
==> BMap[3]=x(2)

Top Back: embR Forward: surfacesignature_lib FastBack: resbin_lib FastForward: surfacesignature_lib Up: resjung_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-2, Oct 2010, generated by texi2html.