Top
Back: intersectMon
Forward: radicalMon
FastBack: integralbasis_lib
FastForward: multigrading_lib
Up: monomialideal_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.4.7 quotientMon

Procedure from library monomialideal.lib (see monomialideal_lib).

Usage:
quotientMon (I, J); I, J ideals.

Return:
an ideal, the quotient I:J.
(returns -1 if I or J is not monomial)

Assume:
I, J are monomial ideals of the basering.

Note:
the minimal monomial generating set is returned.

Example:
 
LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^3*x*y,w*x*y*z*t,x^2*y^2*z^2,x^2*z^4*t^3,y^3*z;
ideal J = w*x, x^2, y*z*t, y^5*t;
quotientMon (I,J);
==> _[1]=y2z2t
==> _[2]=y3z
==> _[3]=xy2z2
==> _[4]=wy2zt
==> _[5]=wxyzt
==> _[6]=w3xy
==> _[7]=w3y2z
==> _[8]=x2z4t3
==> _[9]=wxz4t3
==> _[10]=w2y2z2


Top Back: intersectMon Forward: radicalMon FastBack: integralbasis_lib FastForward: multigrading_lib Up: monomialideal_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-2, Oct 2010, generated by texi2html.