Top
Back: isTorsionFree
Forward: isHomogenous
FastBack: monomialideal_lib
FastForward: paraplanecurves_lib
Up: multigrading_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.5.10 isTorsionElement

Procedure from library multigrading.lib (see multigrading_lib).

Usage:
isTorsionElement(intvec mdeg);

Purpose:
For a integer vector mdeg representing the multidegree of some polynomial or vector this method computes if the multidegree is contained in the torsion group, i.e. if it is zero in the multigrading.

Example:
 
LIB "multigrading.lib";
ring r = 0,(x,y,z),dp;
intmat g[2][3]=
1,0,1,
0,1,1;
intmat t[2][1]=
-2,
1;
setBaseMultigrading(g,t);
poly a = x10yz;
poly b = x8y2z;
poly c = x4z2;
poly d = y5;
poly e = x2y2;
poly f = z2;
intvec v1 = mDeg(a) - mDeg(b);
v1;
==> 2,-1
isTorsionElement(v1);
==> 1
intvec v2 = mDeg(a) - mDeg(c);
v2;
==> 5,0
isTorsionElement(v2);
==> 0
intvec v3 = mDeg(e) - mDeg(f);
v3;
==> 0,0
isTorsionElement(v3);
==> 1
intvec v4 = mDeg(c) - mDeg(d);
v4;
==> 6,-3
isTorsionElement(v4);
==> 1


Top Back: isTorsionFree Forward: isHomogenous FastBack: monomialideal_lib FastForward: paraplanecurves_lib Up: multigrading_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-2, Oct 2010, generated by texi2html.