Top
Back: isHomogenous
Forward: mDegGroebner
FastBack: monomialideal_lib
FastForward: paraplanecurves_lib
Up: multigrading_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.5.12 equalMDeg

Procedure from library multigrading.lib (see multigrading_lib).

Usage:
equalMDeg(exp1, exp2[, V]); intvec exp1, exp2, intmat V

Purpose:
Tests if the exponent vectors of two monomials (given by exp1 and exp2) represent the same multidegree.

Note:
the integer matrix V encodes multidegrees of module components, if module component is present in exp1 and exp2

Example:
 
LIB "multigrading.lib";
ring r = 0,(x,y,z),dp;
intmat g[2][3]=
1,0,1,
0,1,1;
intmat t[2][1]=
-2,
1;
setBaseMultigrading(g,t);
poly a = x10yz;
poly b = x8y2z;
poly c = x4z2;
poly d = y5;
poly e = x2y2;
poly f = z2;
equalMDeg(leadexp(a), leadexp(b));
==> 1
equalMDeg(leadexp(a), leadexp(c));
==> 0
equalMDeg(leadexp(a), leadexp(d));
==> 0
equalMDeg(leadexp(a), leadexp(e));
==> 0
equalMDeg(leadexp(a), leadexp(f));
==> 0
equalMDeg(leadexp(b), leadexp(c));
==> 0
equalMDeg(leadexp(b), leadexp(d));
==> 0
equalMDeg(leadexp(b), leadexp(e));
==> 0
equalMDeg(leadexp(b), leadexp(f));
==> 0
equalMDeg(leadexp(c), leadexp(d));
==> 1
equalMDeg(leadexp(c), leadexp(e));
==> 0
equalMDeg(leadexp(c), leadexp(f));
==> 0
equalMDeg(leadexp(d), leadexp(e));
==> 0
equalMDeg(leadexp(d), leadexp(f));
==> 0
equalMDeg(leadexp(e), leadexp(f));
==> 1


Top Back: isHomogenous Forward: mDegGroebner FastBack: monomialideal_lib FastForward: paraplanecurves_lib Up: multigrading_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-2, Oct 2010, generated by texi2html.