Section: Visualization Toolkit Filtering Classes
\verbatim
top 7--14--6 | | 15 13 | | 4--12--5
middle 19--23--18 | | 20 21 | | 16--22--17
bottom 3--10--2 | | 11 9 | | 0-- 8--1 \endverbatim
To create an instance of class vtkBiQuadraticQuadraticHexahedron, simply invoke its constructor as follows
obj = vtkBiQuadraticQuadraticHexahedron
obj
is an instance of the vtkBiQuadraticQuadraticHexahedron class.
string = obj.GetClassName ()
int = obj.IsA (string name)
vtkBiQuadraticQuadraticHexahedron = obj.NewInstance ()
vtkBiQuadraticQuadraticHexahedron = obj.SafeDownCast (vtkObject o)
int = obj.GetCellType ()
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
int = obj.GetCellDimension ()
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
int = obj.GetNumberOfEdges ()
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
int = obj.GetNumberOfFaces ()
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
vtkCell = obj.GetEdge (int )
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
vtkCell = obj.GetFace (int )
- Implement the vtkCell API. See the vtkCell API for descriptions
of these methods.
int = obj.CellBoundary (int subId, double pcoords[3], vtkIdList pts)
obj.Contour (double value, vtkDataArray cellScalars, vtkIncrementalPointLocator locator, vtkCellArray verts, vtkCellArray lines, vtkCellArray polys, vtkPointData inPd, vtkPointData outPd, vtkCellData inCd, vtkIdType cellId, vtkCellData outCd)
int = obj.Triangulate (int index, vtkIdList ptIds, vtkPoints pts)
obj.Derivatives (int subId, double pcoords[3], double values, int dim, double derivs)
obj.Clip (double value, vtkDataArray cellScalars, vtkIncrementalPointLocator locator, vtkCellArray tetras, vtkPointData inPd, vtkPointData outPd, vtkCellData inCd, vtkIdType cellId, vtkCellData outCd, int insideOut)
- Clip this biquadratic hexahedron using scalar value provided. Like
contouring, except that it cuts the hex to produce linear
tetrahedron.
obj.InterpolateFunctions (double pcoords[3], double weights[24])
- Compute the interpolation functions/derivatives
(aka shape functions/derivatives)
obj.InterpolateDerivs (double pcoords[3], double derivs[72])
- Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
Ids are related to the cell, not to the dataset.