mude - an e-mail client for emacs

version 0.9.9

Dirk-Jan C. Binnema

Copyright (©) 2012 Dirk-Jan C. Binnema

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

Welcome tomude............. L. 1
1 Introduction.................. 2
1.1 Why another e-mail client?.......... 2
1.2 Other mail clients.......... ... i i 2
1.3 What mude doesnot do ... 2
1.4 Becoming a mude USETuutttnutttente e 3

2 Getting started ..., 4
2.1 Requirementsoooiiiiiiii i 4
2.2 Imstallation ... 4
2.2.1 Dependencies for Debian/Ubuntu..................... ..., 4

2.2.2 Dependencies for Fedora............. ..., 5

2.2.3 Building from a release tarball............, 5)

2.2.4 Building from git....... 5)

2.2.5 mude and emacs customization L 6

2.3 Getting mail ... 6
2.4 Indexing yOUr MESSAZES ... euvttetnttte et nii e 6
2.5 Basic configuration.......... ... i i i 7
2.6 Folders. ..o 7
2.7 Retrieval and indexing ... 7
2.8 Sending mail.... ... 8
2.8.1 Dealing with sent messages................coiiiiiiiii.. 8

2.9 Running mudeo e 8

3 Themain view................................. 10
3.1 OVEIVIEW ettt e 10
3.2 Basic aCtionsS.o 10
3.3 Bookmarks 11
3.4 Miscellaneousovuii i 11

4 The headers view.............................. 12
A1 OVEIVIEW ..ttt ettt e e e 12
4.2 Keybindingscoiiiii e 13
4.3 Marking messages.ottt e 14
4.4 Sort order and threading.............. ... it 14
4.5 ACHIONS - .ottt 15

4.6 SPLE VIEW . oo 15

5 The message viewcooiiiiinnn... 16
B.1 0 OVEIVIEW oottt e e 16
5.2 Keybindingsoouiiii i e 17
5.3 Opening and saving attachments.................... 18
5.4 Viewing images inline............. ... i 19
5.5 Displaying rich-text messages......... ... i i 19
B.6 COryptO. oot 20

5.6.1 Decryption.ccouiiiiim 20
5.6.2 Verifying signatureso, 20
D7 ACHionS 20
5.7.1 Message actions..........cooiiuiiiiiiiiii i 20
5.7.2 Attachment actions i 20
The editor view................................ 22
6.1 OVEIVIEW ..ottt e 22
6.2 Useful keybindingscoooiiiiiiii i 22
6.3 Address autocompletion........... ... i 22
6.3.1 Limiting the number of addresses......................... 23
6.4 Compose hooks ... 23
6.5 Signing and encrypting......... ... 24
6.6 Queuing mail 24
6.7 Other settings.o 25
Searching................. o .. 26

T 1 QUETIES ettt e 26
7.2 Bookmarks 27
7.2.1 Setting up bookmarks............ i 27
7.2.2 Editing bookmarks before searching 28
7.3 Maildir searches............ i 28
7.3.1 Setting up maildir shortcuts........... 28
7.4 Other search functionality.............. L. 29
7.4.1 Navigating through search queries........................ 29
7.4.2 Narrowing search results L. 29
Marking i 30
8.1 Selecting messages for marking.............o 30
8.2 What tomark for......... ... 30
8.3 Executing the marks......... i 31
8.4 Leaving the headers buffer 31
8.5 Built-in marking functions il 31
8.6 Custom mark functions i i 31
Dynamic folders 33
9.1 Smart refiling...... ..o 33

9.2 Other dynamic folders...........o i 34

ii

10 AcCtiOonS. ... 35

10.1 Defining actions.o 35
10.2 Adding an action in the headers view......................... 35
10.3 Adding an action in the message view........................ 36
10.4 Adding an attachment action 36
10.5 More example actions........... ..o 36
11 Extending mude.............................. 37
11.1 Extension points............c..uuieiiiiiinniiiiiiiiiiieeen.. 37
11.2 Avwailable functions. 37
11.3 Message functions.oouiiiiiine i, 37
11.4 Utility functions ... 38
Appendix A Interaction with other tools..... 39
A.1 Setting the default emacs mail program....................... 39
A2 Creating org-mode links........... L. 39
A.3 Rich-text messages with org-mode............................ 39
A3 1 S0me CaveatSttt e 40

A.4 Maintaining an address-book with org-contacts................ 40
A5 Getting new mail notifications with Sauron 40
A.6 Speedbar support...... ... 41
A.7 Citations with mu-cite....... ..., 42
A.8 Attaching files with dired............ il 42
Appendix B Example configurations 43
B.1 Minimal configuration i 43
B.2 Longer configuration........... ... i 43
B.3 Gmail configuration o i 45
B.3.1 Setting up offlineimap i 45

B.3.2 Settingscoouiiiii 46

B.4 Some other useful settings, 48

Appendix C FAQ - Frequently Asked Questions

.. 49

C.l General ... 49
C.2 Reading meSSagesouuuttt ettt 50
C.3 Writing messagesoouutt i e 50
C.d KNOWN ISSUES . .\ttt ettt e 51
Appendix D How it works...................... 52
D.1 High-level overview........ ... i 52
D.2 mu servero 52
D.3 Reading from the servero i, 53
D.4 The message S-€XPressionuueeineeniennieeenn. 53

D.4.1 Example: ping-pong.........c.ccouuiiiiiiiiiiiiiiiaa... 54

Appendix E Logging and debugging 56

Appendix F GNU Free Documentation License
.. 57

v

Welcome to mude 1

Welcome to mude

Welcome to mu4e!

mude (mu-for-emacs) is an e-mail client for GNU-Emacs version 23 and later, built on
top of the mu' e-mail search engine. mu4e is optimized for fast handling of large amounts of
e-mail.
Some of its key characteristics include:
e Fully search-based: there are no folders?, only queries
e Fully documented, with example configurations
e User-interface optimized for speed, with quick key strokes for common actions
e Support for non-English languages (so “angstrom” will match “Angstrém”)
e Asynchronous; heavy actions don’t block emacs?
e Support for crypto
e Writing rich-text e-mails using org-mode
e Address auto-completion based on your messages
e Extendable with your own code
In this manual, we go through the installation of mude, do some basic configuration and
explain its daily use. We also show you how you can customize mude for your needs.

At the end of the manual, there are some example configurations, to get up to speed
quickly - Appendix B [Example configurations|, page 43. There’s also a section of
Appendix C [FAQ)], page 49, which should help you with some common questions.

1 http://www.djcbsoftware.nl/code/mu

2 that is, instead of folders, you can use queries that match all messages in a folder

3 currently, the only exception to this is sending mail

http://www.djcbsoftware.nl/code/mu

Chapter 1: Introduction 2

1 Introduction

1.1 Why another e-mail client?
Fair question.

I'm not sure the world needs yet another e-mail client, but perhaps I do! I (the author)
spend a lot of time dealing with e-mail, both professionally and privately. Having an efficient
e-mail client is essential. Since none of the existing ones worked the way I wanted, I created
my own. emacs is an integral part of my workflow, so it made a lot of sense to use it for
e-mail as well. And as I already had written an e-mail search engine (mu), it seemed only
logical to use that as a basis.

1.2 Other malil clients

Under the hood, mude is fully search-based, similar to programs like notmuch!, md® and
sup®. However, mude’s user-interface is quite different. mu4e’s mail handling (deleting,
moving etc.) is inspired by Wanderlust* (another emacs-based e-mail client), mutt® and

dired.

mude tries to keep all the ’state’ in your maildirs, so you can easily switch between
clients, synchronize over IMAP, backup with rsync and so on. If you delete the database,
you won'’t lose any information.

1.3 What mude does not do

There are a number of things that mude does not do:

e mu/mude do not deal with getting your e-mail messages from a mail server. That task
is delegated to other tools, such as offlineimap®, isync” or fetchmail®. As long as
the messages end up in a maildir, mude and mu are happy to deal with them.

e mude also does mot implement sending of messages; instead, it depends on smptmail
(See Info file ‘smtpmail’, node ‘Top’), which is part of emacs. In addition, mude piggy-
backs on Gnus’ message editor; See Info file ‘message’, node ‘Top’.

Thus, many of the things an e-mail client traditionally needs to do, are delegated to
other tools. This leaves mude to concentrate on what it does best: quickly finding the mails
you are looking for, and handle them as efficiently as possible.

http://notmuchmail.org
https://github.com/nicferrier/md
http://sup.rubyforge.org/

B~ W N =

http://www.gohome.org/wl/
http://www.mutt.org/
http://offlineimap.org/
http://isync.sourceforge.net/
http://wuw.fetchmail.info/

o N O O

http://notmuchmail.org
https://github.com/nicferrier/md
http://sup.rubyforge.org/
http://www.gohome.org/wl/
http://www.mutt.org/
http://offlineimap.org/
http://isync.sourceforge.net/
http://www.fetchmail.info/

Chapter 1: Introduction 3

1.4 Becoming a mu4e user

If mude looks like something for you, give it a shot! We’ve been trying hard to make it as
easy as possible to set up and use; and while you can use elisp is various places to augment
mude, programming is by no mean required.

When you take mude into use, it’s a good idea to subscribe to the mu/mu4e-mailing list®.
If you have suggestions for improvements or bug reports, please use the GitHub issues list'°.
In bug reports, please clearly specify the versions of mu/mude and emacs you are using, as
well as any other relevant details. If you are new to all this, the somewhat paternalistic
“How to ask questions the smart way”'' can be a good read.

9 http://groups.google.com/group/mu-discuss
10 https://github.com/djcb/mu/issues
1 http://www.catb.org/esr/faqgs/smart-questions.html

http://groups.google.com/group/mu-discuss
https://github.com/djcb/mu/issues
http://www.catb.org/esr/faqs/smart-questions.html

Chapter 2: Getting started 4

2 Getting started

In this chapter, we go through the installation of mude and its basic setup. After we have
succeeded in Section 2.3 [Getting mail], page 6, and Section 2.4 [Indexing your messages],
page 6, we discuss Section 2.5 [Basic configuration], page 7.

After these steps, mude should be ready to go!

2.1 Requirements

mu/mude are known to work on a wide variety of Unix- and Unix-like systems, including
many Linux distributions, MacOS and FreeBSD. emacs 23 or 24 is required, as well as
Xapian! and GMime?. If you intend to compile yourself, you need to have the typical
development tools, such as C and C++ compilers (both gcc and clang should work) and
make.

2.2 Installation

mude is part of mu - by installing the latter, the former is installed as well. Some Linux
distributions provide packaged versions of mu/mude; if you can use those, there is no need to
compile anything yourself. However, if there are no packages for your distribution, if they
are outdated, or if you want to use the latest development versions, you can follow the steps
below.

First, you need make sure you have the necessary dependencies; the details depend on
your distribution. If you're using another distribution (or another OS), the below at least
be helpful in identifying the packages to install.

We provide some instructions for Debian, Ubuntu and Fedora; if those do not apply to
you, you can follow either [Building from a release tarball], page 5 or [Building from git],
page 5.

2.2.1 Dependencies for Debian/Ubuntu

$ sudo apt-get install libgmime-2.6-dev libxapian-dev
if libgmime-2.6-dev is not available, try libgmime-2.4-dev

get emacs 23 or 24 if you don't have it yet
emacs 24 works better; it may be available as 'emacs-snapshot'
$ sudo apt-get install emacs23

+H+

optional
$ sudo apt-get install guile-2.0-dev html2text xdg-utils

optional: only needed for msg2pdf and mug (toy gtk+ frontend)
$ sudo apt-get install libwebkit-dev

! http://xapian.org/
2 http://spruce.sourceforge.net/gmime/

http://xapian.org/
http://spruce.sourceforge.net/gmime/

Chapter 2: Getting started 5

2.2.2 Dependencies for Fedora

$ sudo yum install gmime-devel xapian-core-devel

get emacs 23 or 24 if you don't have it yet
$ sudo yum install emacs

optional
sudo yum install html2text xdg-utils

“

optional: only needed for msg2pdf and mug (toy gtk+ frontend)
sudo apt-get install webkitgtk-devel

or:
sudo apt-get install webkitgtk3-devel

P H A H

2.2.3 Building from a release tarball

Using a release-tarball (as available from GoogleCode?, installation follows the normal steps:

$ tar xvfz mu-<version>.tar.gz # use the specific version
$ cd mu-<version>

On the BSDs: use gmake instead of make

$./configure && make

$ sudo make install

Xapian, GMime and their dependencies must be installed.

2.2.4 Building from git

Alternatively, if you build from the git repository or use a tarball like the ones that github
produces, the instructions are slightly different, and require you to have autotools installed:

get from git (alternatively, use a github tarball)
$ git clone git://github.com/djcb/mu.git

cd mu

autoreconf -i && ./configure && make
On the BSDs: use gmake instead of make
$ sudo make install

H & &H

(Xapian, GMime and their dependencies must be installed).

After this, mu and mu4e should be installed* on your system, and be available from the
command line in emacs.

You may need to restart emacs, so it can find mude in its load-path. If, even after
restarting, emacs cannot find mude, you may need to add to your load-path explicitly;
check where mude is installed, and add something like the following to your configuration
before trying again:

;3 the exact path may differ -- check it
(add-to-list 'load-path "/usr/local/share/emacs/site-lisp/mude")

3 http://code.google.com/p/mu0/downloads/list
4 there’s a hard dependency between versions of mude and mu - you cannot combine different versions

http://code.google.com/p/mu0/downloads/list

Chapter 2: Getting started 6

2.2.5 mu4de and emacs customization

There is some support for using the emacs customization system in mude, but for now, we
recommend setting the values manually. Please refer to Appendix B [Example configura-
tions|, page 43 for a couple of examples of this; here we go through things step-by-step.

2.3 Getting mail

In order for mu (and, by extension, mude) to work, you need to have your e-mail messages
stored in a maildir® - a specific directory structure with one-file-per-message. If you are
already using a maildir, you are lucky. If not, some setup is required:

e Using an external IMAP or POP server - if you are using an IMAP or POP server,
you can use tools like getmail, fetchmail, offlineimap or isync to download your
messages into a maildir (‘~/Maildir’, often). Because it is such a common case, there
is a full example of setting mu4e up with offlineimap and Gmail; see Section B.3
[Gmail configuration], page 45.

e Using a local mail server - if you are using a local mail-server (such as postfix or

gmail), you can teach them to deliver into a maildir as well, maybe in combination
with procmail. A bit of googling should be able to provide you with the details.

2.4 Indexing your messages

After you have succeeded in Section 2.3 [Getting mail|, page 6, we need to inder the
messages. That is - we need to scan the message in the maildir and store the information
about the mails into a special database. We can do that from mu4e — Chapter 3 [Main
view], page 10, but the first time, it is a good idea to run it from the command line, to
make sure everything works correctly.

Assuming that your maildir is at ‘“/Maildir’, we give the following command:

$ mu index --maildir="/Maildir

This should scan your ‘~/Maildir’® and fill the database, and give progress information
while doing so.

The indexing process may take a few minutes the first time you do it (for thousands of
e-mails); afterwards it is much faster, since mu only scans messages that are new or have
changed. Indexing is discussed in full detail in the mu-index man page.

After the indexing process has finished, you can quickly test if everything worked, by
trying some command-line searches, for example

$ mu find hello

which should list all messages that match hello. For more examples of searches, see
Section 7.1 [Queries|, page 26, or check the mu-find and mu-easy man pages.

If all of this worked well, we are well on our way setting up mu; the next step is to do
some basic configuration for mu4e.

® http://en.wikipedia.org/wiki/Maildir; in this manual we use the term 'maildir’ for both the standard
and the hierarchy of maildirs that store your messages

6 In most cases, you do not even need to provide the --maildir="/Maildir since it is the default; see the
mu-index man-page for details

http://en.wikipedia.org/wiki/Maildir

Chapter 2: Getting started 7

2.5 Basic configuration

Before we can start using mude, we need to tell emacs to load it. So, add to your ‘*/.emacs’
(or its moral equivalent, such as ‘*/.emacs.d/init.el’) something like:

(require 'mude)

If emacs complains that it cannot find mude, check your load-path.

2.6 Folders

The next step is to tell mude where it can find your Maildir, and some special folders. So,
for example’:

;; these are actually the defaults

(setq
mude-maildir "~/Maildir" ;5 top-level Maildir
mude-sent-folder "/sent" ;; folder for sent messages
mude-drafts—-folder "/drafts" ;5 unfinished messages
mude-trash-folder "/trash" ;3 trashed messages
mude-refile-folder "/archive") ;3 saved messages

mude-maildir takes an actual filesystem-path, the other folder names are all relative to
mude-maildir.

2.7 Retrieval and indexing

As we have seen, we can do all of the mail retrieval outside of emacs/mude. However, you
can also do it from within mude. For that, set the variable mu4de-get-mail-command to the
program or shell command you want to use for retrieving mail. You can then retrieve your
e-mail from the Chapter 3 [Main view], page 10. You can also set mude-get-mail-command
to "true", in which case mude won’t try to get new mail, but still re-index your messages.

You can also have this command run periodically in the background, by setting the
variable mu4e-update-interval to the number of seconds between these updates. If set to
nil, it won’t update at all. After you make changes to mude-update-interval, mude must
be restarted before the changes take effect.

A simple setup could look something like:

(setq
mude-get-mail-command "offlineimap" ;; or fetchmail, or ...
mu4e-update-interval 300) ;; update every 5 minutes

It is possible to get notifications when the indexing process does any updates - for
example when receiving new mail. See mude-index-updated-hook and some tips on its
usage in the Appendix C [FAQ], page 49.

7 Note that the folders (mude-sent-folder, mude-drafts-folder, mude-trash-folder and
mude-refile-folder) can also be functions that are evaluated at runtime. This allows for dynamically
changing them depending on context. See Chapter 9 [Dynamic folders|, page 33 for details.

Chapter 2: Getting started 8

2.8 Sending mail

mude re-uses Gnu’s message-mode (See Info file ‘message’, node ‘Top’) for writing mail and
inherits the setup for sending mail as well.

For sending mail using SMTP, mu4e uses smtpmail (See Info file ‘smtpmail’, node ‘Top’).
This package supports many different ways to send mail; please refer to its documentation
for the details.

Here, we only provide some simple examples - for more, see Appendix B [Example
configurations|, page 43.

A very minimal setup:

;3 tell message-mode how to send mail

(setq message-send-mail-function 'smtpmail-send-it)

;3 1f our mail server lives at smtp.example.org; if you have a local
;; mail-server, simply use 'localhost' here.

(setq smtpmail-smtp-server "smtp.example.org")

Since mude (re)uses the same message mode and smtpmail that Gnus uses, many settings
for those also apply to mude.

2.8.1 Dealing with sent messages

By default, mude puts a copy of messages you sent in the folder determined by mude-
sent-folder. In some cases, this may not be what you want - for example, when using
Gmail-over-IMAP, this interferes with Gmail’s handling of the sent messages folder, and
you may end up with duplicate messages.

You can use the the variable mude-sent-messages-behavior to customize what happens
with sent messages. The default is the symbol sent which, as mentioned, causes the message
to be copied to your sent-messages folder. Other possible values are the symbols trash (the
sent message is moved to the trash-folder (mu4e-trash-folder), and delete to simply
discard the sent message altogether (so GMail can deal with it).

For Gmail-over-IMAP, you could add the following to your settings:

;; don't save messages to Sent Messages, Gmail/IMAP takes care of this
(setq mude-sent-messages-behavior 'delete)

And that’s it! We should now be ready to go.

2.9 Running mu4e

After following the steps in this chapter, we hopely now have a working mude setup. Great!
In the next chapters, we walk you through the various views in mude.

For your orientation, the diagram below shows how the views relate to each other, and
the default key-bindings to navigate between them.

Chapter 2: Getting started

-
[C] o + [RFCE]
———————— > | editor | <---—-----
/ tommm - + \
/ [RFCE] " \

/ | \
oo + [8jbBl+--——-———- + [RET] +---—----—- +
| main | <---> | headers | <----> | message |
to————— + [q] +-———————- + [gbBjs]+-———--——- +

[sjbB] B
(.1 | [q]
v
+
| raw |
et +

Default bindings

R: Reply s
F: Forward J
C: Compose b:
E: Edit B

: search
j: jump-to-maildir

bookmark-search

: raw view (toggle)
q: quit

: edit bookmark-search

Chapter 3: The main view 10

3 The main view

After you have installed mude (see Chapter 2 [Getting started], page 4), you can start it
with M-x mu4e. mude does some checks to ensure everything is set up correctly, and then
shows you the mude main view. Its major mode is mude-main-mode.

3.1 Overview

The main view looks something like the following;:
-

* mude - mu for emacs version x.x C
Basics

* [jlump to some maildir
* enter a [s]earch query
* [Clompose a new message

Bookmarks

[bu] Unread messages

[bt] Today's messages
[bw] Last 7 days

[bp] Messages with images

* ¥ X X

Misc

[Ulpdate email & database
* toggle [m]ail sending mode (direct)
[f]1ush queued mail

[Albout mude
[Hlelp
[qluit mude

-

If you see a C at the right-hand side of version x.x, your mude has support for decryption
of encrypted messages, and verifying signatures. See [Decryption], page 20 and [Verifying
signatures|, page 20 in the Chapter 5 [Message view], page 16.

Now, let’s go through menu items, assuming the default key bindings.

3.2 Basic actions

First, the Basics:

e [jlump to some maildir: after pressing j (“jump”), mude asks you for a maildir to
visit. These are the maildirs you set in Section 2.5 [Basic configuration|, page 7 and
any of your own. If you choose o (“other”) or /, you can choose from all maildirs under
mude-maildir. After choosing a maildir, the messages in that maildir are listed, in the
Chapter 4 [Headers view|, page 12.

Chapter 3: The main view 11

e enter a [s]earch query: after pressing s, mude asks you for a search query, and after
entering one, shows the results in the Chapter 4 [Headers view]|, page 12.

e [Clompose a new message: after pressing C, you are dropped in the Chapter 6 [Editor
view|, page 22 to write a new message.

)

3.3 Bookmarks

The next item in the Main view is Bookmarks. Bookmarks are predefined queries with a
descriptive name and a shortcut - in the example above, we see the default bookmarks. You
can view the list of messages matching a certain bookmark by pressing b followed by the
bookmark’s shortcut. If you'd like to edit the bookmarked query first before invoking it,
use B.

Bookmarks are stored in the variable mu4e-bookmarks; you can add your own and/or
replace the default ones; See Section 7.2 [Bookmarks|, page 27.

3.4 Miscellaneous

Finally, there are some Misc (miscellaneous) actions:

e [Ulpdate email & database executes the shell-command in the variable mude-get-
mail-command, and afterwards updates the mu database; see Section 2.4 [Indexing your
messages|, page 6 and Section 2.3 [Getting mail], page 6 for details

e toggle [m]ail sending mode (direct) toggles between sending mail directly, and
queuing it first (for example, when you are offline), and [f]1ush queued mail flushes
any queued mail. This item is visible only if you have actually set up mail-queuing.
Section 6.6 [Queuing mail], page 24

e [Albout mude provides general information about the program

e [H]elp shows help information for this view

e Finally, [qluit mu4e quits your mude-session

Chapter 4: The headers view

4 The headers view

12

The headers view shows the results of a query. The topline shows the names of the fields.
Below that, there is a line with those fields, for each matching message, followed by a footer
line. The major-mode for the the headers view is mu4de-headers-mode.

4.1 Overview

An example headers view:

N

-
Date V Flgs From/To Subject
2011-12-16 18:38 S To Edmund Danteés + Re: Extensions?
2011-12-16 21:44 S Abbé Busoni + Re: Extensions?
2011-12-17 03:14 SR Pierre Morrel + Re: Extensions?
2011-12-17 04:04 uN Jacopo + Re: Extensions?
2011-12-17 14:36 uN Mercédés + Re: Extensions?
2011-12-18 06:05 uN Beachamp \ Re: Extensions?
2011-12-16 18:23 Ss Albert de Moncerf + Re: [0] A cool tool
2011-12-17 01:53 Sa Gaspard Caderousse \ Re: [0] A cool tool
2011-12-16 16:31 ulN Baron Danglars | [0] imaxima?

End of search results

Some notes to explain what you see in the example:

The fields shown in the headers view can be influenced by customizing the variable
mude-headers-fields; see mude-header-info for the list of available fields.

wanl

The header field used for sorting is indicated by “V” or , indicating the sort order
(descending or ascending, respectively). You can influence this by a mouse click, or 0.
Not all fields allow sorting.

Instead of showing the From: and To: fields separately, you can use From/To
(:from-or-to in mude-headers-fields as a more compact way to convey the
most important information: it shows From: except when the e-mail was sent by
the user (i.e., you) - in that case it shows To: (prefixed by To?, as in the example
above). To determine whether a message was sent by you, mude uses the variable
mude-user-mail-address-regexp, a regular expression matching all your e-mail
addresses.

The letters in the ’Flags’ field correspond to the following: D=draft, F=flagged,
N=new, P=passed (i.e.., forwarded), R=replied, S=seen, T=trashed, a=has-
attachment, x=encrypted, s=signed, u=unread. The tooltip for this field also contains
this information.

You can customize the date format with the variable mu4de-headers-date-format

The subject field also indicates the discussion threads?.

Lor you can use little graphical triangles; see variable mude-use-fancy-chars

2
3

You can customize this by changing the variable mu4e-headers-from-or-to-prefix (a cons cell)
using Jamie Zawinski’s mail threading algorithm, http://www. jwz.org/doc/threading.html

http://www.jwz.org/doc/threading.html

Chapter 4: The headers view

4.2 Keybindings

Using the below key bindings, you can do various things with these messages; these actions
are also listed in the Headers menu in the emacs menu bar.

key description

n,p go to next, previous message

y select the message view (if it's visible)
RET open the message at point in the message view
searching

s search

S edit last query

/ narrow the search

b search bookmark

B edit bookmark before search

J jump to maildir

M-left previous query

M-right next query

0 change sort order

P toggle threading

Q toggle full-search

marking

d mark for moving to the trash folder
DEL,D mark for complete deletion

m mark for moving to another maildir folder
r mark for refiling

+,- mark for flagging/unflagging

7, mark message as unread, read

u unmark message at point

U unmark *all* messages

b mark based on a regular expression

T,t mark whole thread, subthread

<insert> mark for 'something' (decide later)

resolve deferred 'something' marks

X execute actions for the marked messages

composition

13

Chapter 4: The headers view 14

R,F,C reply/forward/compose

E edit (only allowed for draft messages)

misc

a execute some custom action on a header

| pipe message through shell command

C-+,C—- increase / decrease the number of headers shown
H get help

q,z leave the headers buffer

4.3 Marking messages

When processing messages, the first step is to mark them for a certain action, such as
deletion or move. Then, after one or more messages are marked, you execute (mude-mark-
execute-all, x) these actions. This two-step mark-execute sequence is similar to what e.g.
dired does. This is how mude tries to be as quick as possible, while avoiding accidents.

The mark/unmark commands support the region (i.e., “selection”) — so, for example, if
you select some messages and press DEL, all messages in the region are marked for deletion.

You can mark all messages that match a certain pattern with %. In addition, you can
mark all messages in the current thread (T) or sub-thread (t).

When you do a new search or refresh the headers buffer while you still have marked
messages, you are asked what to do with those marks — whether to apply them before
leaving, or ignore them. This behavior can be influenced with the variable mu4de-headers-
leave-behavior.

For more information about marking, see Chapter 8 [Marking], page 30.

4.4 Sort order and threading

By default, mude sorts messages by date, in descending order: the most recent messages are
shown at the top. In addition, the messages are threaded, i.e., shown in the context of a
discussion thread; this also affects the sort order.

Uan4

The header field used for sorting is indicated by “V” or
(descending or ascending, respectively).

, indicating the sort order

You can change the sort order by clicking the corresponding field with the mouse, or with
M-x mude-headers-change-sorting (0); note that not all fields can be used for sorting.
You can toggle threading on/off using M-x mu4e-headers-toggle-threading or P. For
both of these functions, unless you provide a prefix argument (C-u), the current search
is updated immediately using the new parameters. You can toggle full-search (Chapter 7
[Searching|, page 26) using M-x mu4e-headers-toggle-full-search or Q.

If you want to change the defaults for these settings, you can use the variables mude-
headers-sortfield and mude-headers-show-threads.

4 or you can use little graphical triangles; see variable mude-use-fancy-chars

Chapter 4: The headers view 15

4.5 Actions

mude-headers-action (a) lets you pick custom actions to perform on the message at point.
You can specify these actions using the variable mude-headers-actions. See Chapter 10
[Actions|, page 35 for the details.

mude defines some default actions. One of those is for capturing a message: a c ’cap-
tures’ the current message. Next, when you’re editing some message, you can include the
previously captured message as an attachment, using mude-compose-attach-captured-
message. See ‘mude-actions.el’ in the mude source distribution for more example actions.

4.6 Split view

Using the Split view, we can see the Chapter 4 [Headers view], page 12 and the Chapter 5
[Message view], page 16 next to each other, with the message selected in the former, visible
in the latter. You can influence the way the splitting is done by customizing the variable
mude-split-view. Possible values are:

e horizontal (this is the default): display the message view below the header view. Use
mude-headers-visible-lines the set the number of lines shown (default: 8).

e vertical: display the message view on the right side of the header view. Use mude-
headers-visible-columns to set the number of visible columns (default: 30).

e anything else: don’t do any splitting
Some useful key bindings in the split view:
e C-+ and C--: interactively change the number of columns or headers shown

e You can change the selected window from the headers-view to the message-view and
vice-versa with mude-select-other-view, bound to y

Chapter 5: The message view 16

5 The message view

After selecting a message in the Chapter 4 [Headers view], page 12, it appears in a message
view window: the message headers, followed by the message body. Its major mode is
mu4e-view-mode.

5.1 Overview

An example message view:

-

From: randy@epiphyte.com

To: julia@eruditorum.org

Subject: Re: some pics

Flags: (seen attach)

Date: Mon 19 Jan 2004 09:39:42 AM EET

Maildir: /inbox

Attachments(2): [1]DSCN4961.JPG(1.3M), [2]DSCN4962.JPG(1.4M)

Hi Julia,
Some pics from our trip to Cerin Amroth. Enjoy!

All the best,
Randy.

On Sun 21 Dec 2003 09:06:34 PM EET, Julia wrote:

[....]

Some notes:
The variable mude-view-fields determines the header fields to be shown.
You can set the date format with the variable mu4e-date-format-long.

By default, only the names of contacts in address fields are visible (see mude-view-
show-addresses to change this). You can view the e-mail addresses by clicking on the
name, or pressing M-RET.

You can compose a message for the contact at point by either clicking [mouse-2] or
pressing C.

The body text can be line-wrapped using longlines-mode. mude defines w to toggle
between the wrapped and unwrapped state. If you want to do this automatically when
viewing a message, invoke longlines-mode in your mu4e-view-mode-hook.

You can hide cited parts in messages (the parts starting with “>”) using mude-view-
hide-cited, bound to h. If you want to do this automatically for every message, invoke
the function in your mude-view-mode-hook.

For search-related operations, see Chapter 7 [Searching], page 26.

Chapter 5: The message view

5.2 Keybindings

You can find most things you can do with this message in the View menu, or by using the

keyboard; the default bindings are:

key description

n,p go to next, previous message

y select the headers view (if it's visible)
RET scroll down

M-RET open URL at point / attachment at point
searching

s search

e edit last query

/ narrow the search

b search bookmark

B edit bookmark before search

J jump to maildir

M-left previous query

M-right next query

marking

d mark for moving to the trash folder
DEL,D mark for complete deletion

m mark for moving to another maildir folder
r mark for refiling

+,- mark for flagging/unflagging

u unmark message at point

U unmark *all* messages

pA mark based on a regular expression

T,t mark whole thread, subthread

<insert> mark for 'something' (decide later)

resolve deferred 'something' marks

X execute actions for the marked messages
composition

R,F,C reply/forward/compose

E edit (only allowed for draft messages)

Chapter 5: The message view 18

actions

g go to (visit) numbered URL (using “browse-url')
(or: <mouse-1> or M-RET with point on url)

e extract (save) attachment (asks for number)

(or: <mouse-2> or S-RET with point on attachment)
C-u e extracts multiple attachments

o) open attachment (asks for number)
(or: <mouse-1> or M-RET with point on attachment)

a execute some custom action on the message

A execute some custom action on an attachment
misc

W toggle line wrapping

h toggle showing cited parts

v show details about the cryptographic signature

. show the raw message view. 'q' takes you back.
C—+,C—- increase / decrease the number of headers shown

H get help
q,z leave the message view

For the marking commands, please refer to Section 4.3 [Marking messages|, page 14.

5.3 Opening and saving attachments

By default, mude uses the xdg-open-program' or (on MacOS) the open program for
opening attachments. If you want to use another program, you do so by setting the
MU_PLAY_PROGRAM environment variable to the program to be used.

The default directory for extracting (saving) attachments is your home directory (‘~/’);
you can change this using the variable mude-attachment-dir, for example:

(setq mude-attachment-dir "~/Downloads")

For more flexibility, mu4e-attachment-dir can also be a user-provided function. This
function receives two parameters: the file-name and the mime-type® of the attachment,
either or both of which can be nil. For example:

(setq mude-attachment-dir
(lambda (fname mtype)
(cond
;; docfiles go to ~/Desktop
((and fname (string-match "\\.doc$" fname)) "~/Desktop")

1 http://portland.freedesktop.org/wiki/
2 sadly, often application/octet-stream is used for the mime-type, even if a better type is available

http://portland.freedesktop.org/wiki/

Chapter 5: The message view 19

;5 ... other cases
(t ""/Downloads")))) ;; everything else

You can extract multiple attachments at once by prefixing the extracting command by
C-u; so C-u e asks you for a range of attachments to extract (for example, 1 3-6 8). The
range "‘a’ is a shortcut for all attachments.

5.4 Viewing images inline

It is possible to show images inline in the message view buffer if you run emacs in GUI-mode.
You can enable this by setting the variable mu4de-view-show-images to t. Since emacs does
not always handle images correctly, this is not enabled by default. If you are using emacs
24 with ImageMagick® support, make sure you call imagemagick-register-types in your
configuration, so it is used for images.

;; enable inline images

(setq mude-view-show-images t)

;5 use imagemagick, if available

(when (fboundp 'imagemagick-register-types)
(imagemagick-register-types))

5.5 Displaying rich-text messages

mude normally prefers the plain-text version for messages that consist of both a plain-text
and html (rich-text) versions of the body-text. You change this by setting mude-view-
prefer-html to t.

If there is only an html-version, or if the plain-text version is too short in comparison
with the html part?, mu4e tries to convert the html into plain-text for display. The default
way to do that is to use the emacs built-in html2text function. However, you can set the
variable mude-html2text-command to use some external program instead. This program
is expected to take html from standard input and write plain text in utf-8 encoding on
standard output.

An example of such a program is the program that is actually called htm12text’. After
installation, you can set it up with something like the following:

(setq mude-html2text-command "html2text -utf8 -width 72")

An alternative to this is the Python python-html2text package; after installing that,
you can tell mude to use it with something like:

(setq mude-html2text-command
"html2markdown | grep -v ' _place_holder;'")

3 http://www.imagemagick.org
4 this is for the case where the text-part only warns that you should use the html-version
5 http://wuw.mbayer.de/html2text/

http://www.imagemagick.org
http://www.mbayer.de/html2text/

Chapter 5: The message view 20

5.6 Crypto

The mude message view supports® decryption of encrypted messages, as well as verification
of signatures. For signing/encrypting messages your outgoing messages, see Section 6.5
[Signing and encrypting], page 24.

Currently, only PGP /MIME is supported; PGP-inline and S/MIME are not.

5.6.1 Decryption

If you receive messages that are encrypted (using PGP/MIME), mude can try to decrypt
them. For this, gnupg-agent must be running; in many mainstream Linux/Unix desktop
environments this should work automatically.

You can influence how mu4e deals with encrypted messages using mude-decryption-
policy. If you set it to t, mude attempts to decrypt messages automatically; this is the
default. If you set it to nil, mude won’t attempt to decrypt anything. Finally, if you set it
to ’ask, it asks you what to do, each time an encrypted message is encountered.

When opening an encrypted message, mu consults gpg-agent to see if it already has
unlocked the key needed to decrypt the message; if not, it prompts you for a password
(typically with a separate top-level window). This is only needed once per session.

5.6.2 Verifying signatures

Some e-mail messages are cryptographically signed, and mude can check the validity of these
signatures. If a message has one or more signatures, the message view shows an extra header
Signature: (assuming it is part of your mude-view-fields), and one or more ’verdicts’ of
the signatures found; either verified, unverified or error. For instance:

Signature: unverified (Details)

You can see the details of the signature verification by activating the Details or pressing
v. This pops up a little window with the details of the signatures found and whether they
could be verified or not.

For more information, see the mu-verify manual page.

5.7 Actions

You can perform custom functions (“actions”) on messages and their attachments. For a
general discussion on how to define your own, see see Chapter 10 [Actions], page 35.

5.7.1 Message actions

mude-view-action (a) lets you pick some custom action to perform on the current message.
You can specify these actions using the variable mude-view-actions; mude defines a number
of example actions.

5.7.2 Attachment actions

Similarly, there is mu4e-view-attachment-action (A) for actions on attachments, which
you can specify with mude-view-attachment-actions.

mude predefines a number of attachment-actions:

6 Crypto-support in mude requires mu to have been build with crypto-support; see the Appendix C [FAQ)],
page 49

Chapter 5: The message view 21

e open-with (w): open the attachment with some arbitrary program. For example,
suppose you have received a message with a picture attachment; then, A w 1 RET gimp
RET opens that attachment in The Gimp

e pipe (|: process the attachment with some Unix shell-pipe and see the results. Suppose
you receive a patch file, and would like to get an overview of the changes, using the
diffstat program. You can use something like: A | 1 RET diffstat -b RET.

e emacs (e): open the attachment in your running emacs. For example, if you receive
some text file you’d like to open in emacs: A e 1 RET.

These actions all work on a temporary copy of the attachment.

Chapter 6: The editor view 22

6 The editor view

Writing e-mail messages takes place in the Editor View. mude’s editor view builds on top
of Gnu’s message-mode. Most of the message-mode functionality is available, as well some
mude-specifics. Its major mode is mude-compose-mode.

6.1 Overview

-
From: Rupert the Monkey <rupert@example.com>
To: Wally the Walrus <wally@example.com>
Subject: Re: Eau-qui d'eau qui?

--text follows this line--

On Mon 16 Jan 2012 10:18:47 AM EET, Wally the Walrus wrote:
Hi Rupert,

>
>
> Dude - how are things?
>
>

Later -- wally.

6.2 Useful keybindings

mude’s editor view derives from Gnu’s message editor and shares most of its keybindings.
Here are some of the more useful ones (you can use the menu to find more):

key description

C-c C-c send message

C-c C-d save to drafts and leave

C-c C-k kill the message

C-c C-a attach a file (pro-tip: drag & drop works as well)

6.3 Address autocompletion

mude supports’ autocompleting addresses when composing e-mail messages. mude uses
the e-mail addresses from the messages you sent or received as the source for this. Ad-
dress auto-completion is enabled by default; if you want to disable it for some reason, set
mude-compose—-complete-addresses to nil.

Emacs 24 also supports cycling through the alternatives. When there are more than
5 matching addresses, they are shown in a *Completions* buffer. Once the number of
matches gets below this number, one is inserted in the address field and you can cycle
through the alternatives using TAB.

! emacs 23.2 or higher is required

Chapter 6: The editor view 23

6.3.1 Limiting the number of addresses

If you have a lot of mail, especially from mailing lists and the like, there can be a lot of
e-mail addresses, many of which may not be very useful when auto-completing. For this
reason, mude attempts to limit the number of e-mail addresses in the completion pool by
filtering out the ones that are not likely to be relevant. The following variables are available
for tuning this:

e mude-compose-complete-only-personal - when set to t, only consider addresses that
were seen in personal messages — that is, messages in which one of my e-mail addresses
was seen in one of the address fields. This is to exclude mailing list posts. You can
define what is considered 'my e-mail address’ using mu4de-my-email-addresses, a list of
e-mail address (defaults to user-mail-address, and when indexing from the command
line, the --my-address parameter for mu index.

e mude-compose-complete-only-after - only consider e-mail addresses last seen after
some date. Parameter is a string, parseable by org-parse-time-string. This excludes
old e-mail addresses. The default is "2010-01-01", i.e., only consider e-mail addresses
seen since the start of 2010.

e mude-compose-complete-ignore-address-regexp - a regular expression to filter out
other ’junk’ e-mail addresses; defaults to “no-7reply”.

6.4 Compose hooks

If you want to change some setting, or execute some custom action before message compo-
sition starts, you can define a hook function. mude offers two hooks:

e mude-compose-pre-hook: this hook is run before composition starts; if you are com-
posing a reply, forward a message, or edit an existing message, the variable mude-
compose-parent-message points to the message being replied to, forwarded or edited,
and you can use mude-message-field to get the value of various properties (and see
Section 11.3 [Message functions|, page 37).

e mude-compose-mode-hook: this hook is run just before composition starts, when the
whole buffer has already been set up. This is a good place for editing-related settings.
mude-compose-parent-message (see above) is also at your disposal.

Let’s look at some examples. First, let’s suppose we want to set the From:-address for a
reply message based on the receiver of the original:

;5 1) messages to me@foo.com should be replied with From:me@foo.com
;5 2) messages to me@bar.com should be replied with From:me@bar.com
;3 3) all other mail should use From:me@cuux.com
(add-hook 'mude-compose-pre-hook
(defun my-set-from-address ()
"Set the From address based on the To address of the original."
(let ((msg mude-compose-parent-message) ;; msg is shorter...
(setq user-mail-address
(cond
((mude-contact-field-matches msg :to "me@foo.com")
"me@foo.com")
((mude-contact-field-matches msg :to "me®@bar.com")

Chapter 6: The editor view 24

"me@bar.com")
(t "me@cuux.com")))))))

Second, as mentioned, mu4de-compose-mode-hook is especially useful for editing-related
settings. For example:

(add-hook 'mude-compose-mode-hook
(defun my-do-compose-stuff ()
"My settings for message composition."
(set-fill-column 72)
(flyspell-mode)))

This hook is also useful for adding headers or changing headers, since the message is fully
formed when this hook runs. For example, to add a Bcc:-header, you could add something
like the following, using message-add-header from message-mode.

(add-hook 'mude-compose-mode-hook
(defun my-add-bcc ()
"Add a Bcc: header."
(message-add-header "Bcc: me@example.com\n")))

For a more general discussion about extending mude, see Chapter 11 [Extending mude],
page 37.

6.5 Signing and encrypting

Signing and encrypting of messages is possible using emacs-mime (See Info file ‘emacs-mime’,
node ‘Composing’), most easily accessed through the Attachments-menu while composing
a message, or with M-x mml-secure-message-encrypt-pgp, M-x mml-secure-message-
sign-pgp.

The support for encryption and signing is independent of the support for their counter-
parts, decrypting and signature verification (as discussed in Section 5.6 [MSGV Crypto],
page 20). Even if your mude does have support for the latter two, you can still sign/encrypt
messages.

Currently, decryption and signature verification only works for PGP /MIME; inline-PGP
and S/MIME are not supported.

6.6 Queuing mail

If you cannot send mail right now, for example because you are currently offline, you can
queue the mail, and send it when you have restored your internet connection. You can
control this from the Chapter 3 [Main view], page 10.

To allow for queuing, you need to tell smtpmail where you want to store the queued
messages. For example:
(setq smtpmail-queue-mail nil ;; start in non-queuing mode
smtpmail-queue-dir "7/Maildir/queue/cur")
For convenience, we put the queue directory somewhere in our normal maildir. If you
want to use queued mail, you should create this directory before starting mude. The mu
mkdir command may be useful here, so for example:

$ mu mkdir ~/Maildir/queue

Chapter 6: The editor view 25

$ touch ~/Maildir/queue/.noindex

The file created by the touch command tells mu to ignore this directory for indexing,
which makes sense since it contains smtpmail meta-data rather than 'normal’ messages; see
the mu-mkdir and mu-index man pages for details.

Warning: when you switch on queued-mode, your messages won’t reach their destination
until you switch it off again; so, be careful not to do this accidentally!

6.7 Other settings
e If you want use mude as emacs’ default program for sending mail, see Section A.1
[Setting the default emacs mail program], page 39.

e Normally, mude buries the message buffer after sending; if you want to kill the buffer
instead, add something like the following to your configuration:

(setq message-kill-buffer-on-exit t)

Chapter 7: Searching 26

7 Searching

mude is fully search-based: even if you ’jump to a folder’, you are executing a query for
messages that happen to have the property of being in a certain folder.

By default, queries return up to mude-search-results-limit (default: 500) results.
That is usually more than enough, and makes things significantly faster. Sometimes, how-
ever, you may want to show all results; you can enable this with M-x mu4e-headers-
toggle-full-search, or by customizing the variable mu4e-headers-full-search. This
applies to all search commands.

You can also influence the sort order and whether threads are shown or not; see
Section 4.4 [Sort order and threading], page 14.

7.1 Queries

mude queries are the same as the ones that mu find understands!. Let’s look at some
examples here, please refer to the mu-find and mu-easy man pages for details and even
more examples.

get all messages regarding bananas:
bananas

get all messages regarding bananas from John with an attachment:
from: john flag:attach bananas

get all messages with subject wombat in June 2009
subject:wombat date:20090601..20090630

get all messages with PDF attachments in the /projects folder
maildir:/projects mime:application/pdf

get all messages about Rupert in the Sent Items folder
maildir:"/Sent Items" rupert
note: terms with spaces need quoting

get all important messages which are signed:
flag:signed prio:high

get all messages from Jim without an attachment:
from:jim AND NOT flag:attach

get all unread messages where the subject mentions Angstrom:
(search is case-insensitive and accent-insensitive)
subject:angstrom flag:unread

get all unread messages between Mar-2002 and Aug-2003 about some bird:
date:20020301..20030831 nightingale flag:unread

I with the caveat that command-line queries are subject to the shell’s interpretation before mu sees them

Chapter 7: Searching 27

get today's messages:
date:today. .now

get all messages we got in the last two weeks regarding emacs:
date:2w..now emacs

get mails with a subject soccer, Socrates, society...:
subject:soc*
note: the '*' wildcard can only appear as the term's rightmost character

get all mails with attachment with filenames starting with 'pic':
file:pic*
note: the '*' wildcard can only appear as the term's rightmost character

get all messages with PDF attachments:
mime:application/pdf

get all messages with image attachments:
mime:image/*
note: the '*' wildcard can only appear as the term's rightmost character

7.2 Bookmarks

If you have queries that you use often, you may want to store them as bookmarks. Book-
mark searches are available in the main view Chapter 3 [Main view|, page 10, header
view See Chapter 4 [Headers view|, page 12, and message view See Chapter 5 [Message
view|, page 16, using (by default) the key b (M-x mu4e-search-bookmark), or B (M-x mude-
search-bookmark-edit) which lets you edit the bookmark first.

7.2.1 Setting up bookmarks
mude provides a number of default bookmarks. Their definition is instructive:

(defvar mude-bookmarks

"(("flag:unread AND NOT flag:trashed" "Unread messages" 7u)
("date:today..now" "Today's messages" 7t)
("date:7d. .now" "Last 7 days" ?7w)
("mime:image/*" "Messages with images" 7p))

"A list of pre-defined queries; these show up in the main
screen. Each of the list elements is a three-element list of the
form (QUERY DESCRIPTION KEY), where QUERY is a string with a mu
query, DESCRIPTION is a short description of the query (this
shows up in the UI), and KEY is a shortcut key for the query.")

You can replace these or add your own items, by putting in your configuration
(‘~/ .emacs’) something like

(add-to-list 'mu4de-bookmarks
'("size:5M..500M" "Big messages" 7b))

Chapter 7: Searching 28

This prepends your bookmark to the list, and assigns the key b to it. If you want to
append your bookmark, you can use t as the third argument to add-to-list.

In the various mude views, pressing b lists all the bookmarks defined in the echo area,
with the shortcut key highlighted. So, to invoke the bookmark we just defined (to get the
list of "Big Messages"), all you need to type is bb.

7.2.2 Editing bookmarks before searching

There is also M-x mu4e-headers-search-bookmark-edit (key B), which lets you edit
the bookmarked query before invoking it. This can be useful if you have many similar
queries, but need to change some parameter. For example, you could have a bookmark
‘"date:today..now AND "’2 which limits any result to today’s messages.

7.3 Maildir searches

Maildir searches are quite similar to bookmark searches (see Section 7.2 [Bookmarks],
page 27), with the difference being that the target is always a maildir — maildir queries pro-
vide a ’traditional’ folder-like interface to a search-based e-mail client. By default, maildir
searches are available in the Chapter 3 [Main view|, page 10, Chapter 4 [Headers view],
page 12, and Chapter 5 [Message view|, page 16, with the key j (mude-jump-to-maildir).

7.3.1 Setting up maildir shortcuts

You can search for maildirs like can for any other messsage property (e.g. with a query like
maildir:/myfolder), but since it is so common, mude offers a shortcut for this.

For this to work, you need to set the variable mude-maildir-shortcuts to the list of
maildirs you want to have quick access to, for example:

(setq mude-maildir-shortcuts

"(("/inbox" D)
("/archive" . 7a)
("/lists" . 71)
("/work" . 7w)
("/sent" . 78))

This sets i as a shortcut for the /inbox folder — effectively a query maildir:/inbox.
There is a special shortcut o or / for other (so don’t use those for your own shortcuts!), which
allows you to choose from all maildirs that you have. There is support for autocompletion;
note that the list of maildirs is determined when mude starts; if there are changes in the
maildirs while mude is running, you need to restart mude.

Each of the folder names is relative to your top-level maildir directory; so if you keep your
mail in ‘“/Maildir’, ‘/inbox’ would refer to ‘“/Maildir/inbox’. With these shortcuts, you
can jump around your maildirs (folders) very quickly - for example, getting to the /lists
folder only requires you to type j1, then change to /work with jw.

The very same shortcuts are used by M-x mude-mark-for-move (default shortcut m); so,
for example, if you want to move a message the /archive folder, you can do so by typing
ma.

2 Not a valid search query by itself

Chapter 7: Searching 29

7.4 Other search functionality

7.4.1 Navigating through search queries

You can navigate through previous/next queries using mude-headers-query-prev and
mude-headers-query-next, which are bound to M-left and M-right, similar to what
some web browsers do.

mude tries to be smart and not record duplicate queries. Also, the number of queries
remembered has a fixed limit, so mude won’t use too much memory, even if used for a long
time. However, if you want to forget previous/next queries, you can use M-x mu4e-headers-
forget—queries.

7.4.2 Narrowing search results

It can be useful to narrow existing search results, that is, to add some clauses to the current
query to match fewer messages.

For example, suppose you're looking at the some mailing list, perhaps by jumping to a
maildir (M-x mu4e-headers-jump-to-maildir, j) or because you followed some bookmark
(M-x mu4e-headers-search-bookmark, b). Now, you want to narrow things down to only
those messages that have attachments.

This is when M-x mu4e-headers-search-narrow (/) comes in handy. It asks for an
additional search pattern, which is appended to the current search query, in effect getting
you the subset of the currently shown headers that also match this extra search pattern.
\ takes you back to the previous query, so, effectively 'widens’ the search. Technically,
narrowing the results of query x with expression y implies doing a search (x) AND y.

Note, messages that were not in your in your original search results because of mude-
search-results-1limit, may show up in the narrowed query.

Chapter 8: Marking

8 Marking

In mude, the common way to do things with messages is a two-step process - first you mark

30

them for a certain action, then you ezecute (x) those marks. This is similar to the way
dired operates. Marking can happen in both the Chapter 4 [Headers view], page 12 and

the Chapter 5 [Message view|, page 16.

8.1 Selecting messages for marking

There are multiple ways to mark messages:

e message at point: you can put a mark on the message-at-point in either the Chapter 4
[Headers view], page 12 or Chapter 5 [Message view], page 16

e region: you can put a mark on all messages in the current region (selection) in the
Chapter 4 [Headers view|, page 12

e pattern: you can put a mark on all messages in the Chapter 4 [Headers view|, page 12
matching a certain pattern with M-x mu4e-headers-mark-pattern (%)

e thread/subthread: You can put a mark on all the messages in the thread/subthread at
point with M-x mu4e-headers-mark-thread and M-x mu4e-headers-mark-subthread,

respectively

8.2 What to mark for

mude supports a number of different marks - i.e., different actions to apply to messages:

(N
mark for/as | keybinding | description
______________ O
'something' | <insert> | mark now, decide later
delete | D, <delete> | delete
flag | + | mark as 'flagged'
move | m | move to some maildir
read | ! | mark as read
refile | | mark for refiling
trash | d | move to the trash folder
unflag | - | remove 'flagged' mark
unmark | u | remove mark at point
unmark all | U | remove all marks
unread | 7 | marks as unread
-)

After marking a message for something, the left-most columns in the headers view show
some information to indicate what it is marked. This is informative, but if you mark many
(thousands) messages, this slows things down significantly'. For this reason, you can disable
this by setting mu4e-headers-show-target to nil.

! this uses an emacs feature called overlays, which are slow when used a lot in a buffer

Chapter 8: Marking 31

something is a special kind of mark; you can use it to mark messages for ’something’,
and then decide later what the 'something’ should be? , using M-x mu4e-mark-resolve-
deferred-marks (#). Alternatively, mude will ask you when you execute the marks (x).

8.3 Executing the marks

After you have marked some messages, you can execute them with x (M-x mu4e-mark-
execute-all).

8.4 Leaving the headers buffer

When you quit or update a headers buffer that has marked messages (for example, by doing
a new search), mude asks you what to do with them, depending on the value of the variable
mude-headers-leave-behavior — see its documentation.

8.5 Built-in marking functions

Some examples of mude’s built-in marking functions.

o Mark the message at point for trashing: press d

Mark all messages in the buffer as unread: press C-x h o

Delete the messages in the current thread: press T D

o Mark messages with a subject matching “hello” for flagging: press 7 s hello RET.

8.6 Custom mark functions

Sometimes, the built-in functions to mark messages may not be sufficient for your needs.
For this, mude offers an easy way to define your own custom mark functions. You can choose
one of the custom marker functions by pressing & in the Chapter 4 [Headers view|, page 12
and Chapter 5 [Message view|, page 16.

Custom mark functions are to be appended to the list mude-headers-custom-markers.
Each of the elements of this list (‘'markers’) is a list with two or three elements:

1. The name of the marker - a short string describing this marker. The first character
of this string determines its shortcut, so these should be unique. If necessary, simply
prefix the name with a unique character.

2. a predicate function, taking two arguments msg and param. msg is the message plist
(see Section 11.3 [Message functions|, page 37 and param is a parameter provided by
the third of the marker elements (see the next item). The predicate function should
return non-nil if the message matches.

3. (optionally) a function that is evaluated once, and the result is passed as a parameter
to the predicate function. This is useful when user-input is needed.

Let’s look at an example: suppose we want to match all messages that have more than
n recipients — we could do this with the following recipe:

2 This kind of ’deferred marking’ is similar to the facility in midnight commander (http: //www .
midnight-commander.org/) and the like, and uses the same key binding (insert).

http://www.midnight-commander.org/
http://www.midnight-commander.org/

Chapter 8: Marking 32

(add-to-list 'mude-headers-custom-markers
'("More than n recipients"
(lambda (msg n)
(> (+ (length (mude-message-field msg :to))
(length (mude-message-field msg :cc))) n))
(lambda (O
(read-number "Match messages with more recipients than: "))) t)

After evaluating this expression, you can use it by pressing & in the headers buffer to
select a custom marker function, and then M to choose this particular one (M because it is
the first character of the description).

As you can see, it’s not very hard to define simple functions to match messages. There are
more examples in the defaults for mude-headers-custom-markers; see ‘mude-headers.el’
and see Chapter 11 [Extending mude|, page 37 for general information about writing your
own functions.

Chapter 9: Dynamic folders 33

9 Dynamic folders

In Section 2.6 [Folders|, page 7, we explained how you can set up mude’s special folders:

(setq
mud4e-sent-folder "/sent" ;; sent messages
mude-drafts-folder "/drafts" ;; unfinished messages
mude-trash-folder "/trash" ;; trashed messages
mude-refile-folder "/archive") ;; saved messages

In some cases, having such static folders may not suffice - perhaps you want to change
the folders depending on the context. For example, the folder for refiling could vary, based
on the sender of the message.

To make this possible, instead of setting the standard folders to a string, you can set
them to be a function that takes a message as its parameter, and returns the desired folder
name. This chapter shows you how to do that. For a more general discussion of how to
extend mude and writing your own functions, see Chapter 11 [Extending mude], page 37.

9.1 Smart refiling

When refiling messages, perhaps to archive them, it can be useful to have different target
folders for different messages, based on some property of those message — smart refiling.

To accomplish this, we can set the refiling folder (mude-refile-folder) to a function
that returns the actual refiling folder for the particular message. An example should clarify
this:

(setq mude-refile-folder
(lambda (msg)
(cond

;; messages to the mu mailing list go to the /mu folder

((mu4e-message-contact-field-matches msg :to
"mu-discuss@googlegroups.com")

ll/mull)

;; messages sent directly to me go to /archive

;; also "mude-user-mail-address-regexp' can be used

((mude-message-contact-field-matches msg :to "me@example.com")
"/private")

;; messages with football or soccer in the subject go to /football

((string-match "football\\|soccer"
(or (mude-message-field msg :subject) "")
"/football")

;; everything else goes to /archive

;; important to have a catch-all at the end!

(t "/archive"))))

This can be very powerful; you can select some messages in the headers view, then press r,
and have them all marked for refiling to their particular folders.

Some notes:

Chapter 9: Dynamic folders 34

e We set mude-refile-folder to an anonymous (lambda) function. This function takes
one argument, a message plist!. The plist corresponds to the message at point. See
Section 11.3 [Message functions], page 37 for a discussion on how to deal with them.

e In our function, we use a cond control structure; the function returns the first of the
clauses that matches. It’s important to make the last clause a catch-all, so we always
return some folder.

e We use the convenience function mu4e-message-contact-field-matches, which eval-
uates to t if any of the names or e-mail addresses in a contact field (in this case, the
To:-field) matches the regular expression.

9.2 Other dynamic folders

Using the same mechanism, you can create dynamic sent-, trash-, and drafts-folders. The
message-parameter you receive for the sent and drafts folder is the original message, that
is, the message you reply to, or forward, or edit. If there is no such message (for example
when composing a brand new message) the message parameter is nil.

Let’s look at an example. Suppose you want a different trash folder for work-email. You
can achieve this with something like:

(setq mude-trash-folder
(lambda (msg)
;; the 'and msg' is to handle the case where msg is nil
(if (and msg
(mude-message-contact-field-matches msg :to "me@work.com"))
"/trash-work"
"/trash")))

Good to remember:

e The msg parameter you receive in the function refers to the original message, that is,
the message being replied to or forwarded. When re-editing a message, it refers to the
message being edited. When you compose a totally new message, the msg parameter
is nil.

e When re-editing messages, the value of mude-drafts-folder is ignored.

L a property list describing a message

Chapter 10: Actions 35

10 Actions

mude lets you define custom actions for messages in the Chapter 4 [Headers view|, page 12
and for both messages and attachments in the Chapter 5 [Message view], page 16. Custom
actions allow you to easily extend mude for specific needs — for example, marking messages
as spam in a spam filter or applying an attachment with a source code patch.

You can invoke the actions with key a for actions on messages, and key A for actions on
attachments.

For general information extending mu4e and writing your own functions, see Chapter 11
[Extending mu4e], page 37.

10.1 Defining actions

Defining a new custom action comes down to writing an elisp-function to do the work.
Functions that operate on messages receive a msg parameter, which corresponds to the
message at point. Something like:

(defun my-action-func (msg)
"Describe my message function."
;3 do stuff

)

Messages that operate on attachments receive a msg parameter, which corresponds to the
message at point, and an attachment-num, which is the number of the attachment as seen
in the message view. An attachment function looks like:

(defun my-attachment-action-func (msg attachment-num)
"Describe my attachment function."

;; do stuff

)

After you have defined your function, you can add it to the list of actions!, either mude-
headers-actions, mude-view-actions or mude-view-attachment-actions. The format?
of each action is a cons-cell, (DESCRIPTION . VALUE); see below for some examples. If your
shortcut is not also the first character of the description, simply prefix the description with
that character.

Let’s look at some examples.

10.2 Adding an action in the headers view

Suppose we want to inspect the number of recipients for a message in the Chapter 4 [Headers
view|, page 12. We add the following to our configuration:

(defun show-number-of-recipients (msg)
"Display the number of recipients for the message at point."
(message "Number of recipients: %d"

! Tnstead of defining the functions separately, you can obviously also add a lambda-function directly to the
list; however, separate functions are easier to change

2 Note, the format of the actions has changed since version 0.9.8.4, and you must change your configuration
to use the new format; mude warns you when you are using the old format.

Chapter 10: Actions 36

(+ (length (mu4e-message-field msg :to))
(length (mude-message-field msg :cc)))))

;; define 'N' (the first letter of the description) as the shortcut
;; the 't' argument to add-to-list puts it at the end of the list
(add-to-list 'mude-headers-actions

' ("Number of recipients" . show-number-of-recipients) t)

After evaluating this, a N in the headers view shows the number of recipients for the
message at point.

10.3 Adding an action in the message view

As another example, suppose we would like to search for messages by the sender of the
message at point:

(defun search-for-sender (msg)
"Search for messages sent by the sender of the message at point."
(mu4e-headers-search
(concat "from:" (cdar (mude-message-field msg :from)))))

;; define 'x' as the shortcut
(add-to-list 'mude-view-actions
'("xsearch for sender" . search-for-sender) t)
If you wonder why we use cdar, remember that the From:-field is a list of (NAME .
EMAIL) cells; thus, cdar gets us the e-mail address of the first in the list. From:-fields rarely
contain multiple cells.

10.4 Adding an attachment action

Finally, let’s define an attachment action. As mentioned, attachment-action functions re-
ceive 2 arguments, the message and the attachment number to use.

The following example action counts the number of lines in an attachment, and defines
n as its shortcut key (the n is prefixed to the description).

(defun count-lines-in-attachment (msg attachnum)
"Count the number of lines in an attachment."
(mude-view-pipe-attachment msg attachnum "wc -1"))

;; defining 'n' as the shortcut
(add-to-list 'mude-view-attachment-actions
'"("ncount lines" . count-lines-in-attachment) t)

10.5 More example actions

mu4e includes a number of example actions in the file ‘mude-actions.el’ in the source dis-
tribution (see C-h f mude-action-TAB). For example, for viewing messages in an external
web browser, or listening to a message’s body-text using text-to-speech.

Chapter 11: Extending mude 37

11 Extending mu4e

mude is designed to be easily extendible - that is, write your own emacs-lisp to make mude
behave exactly as you want. Here, we provide some guidelines for doing so.

11.1 Extension points

There are a number of places where mu4e lets you plug in your own functions:

e Using message-specific folders for drafts, trash, sent messages and refiling, based on a
function - see Chapter 9 [Dynamic folders], page 33

e Using an attachment-specific download-directory - see the variable mude-attachment-
dir.

e Apply a function to a message in the headers view - see Section 10.2 [Adding an action
in the headers view], page 35

e Apply a function to a message in the message view - see Section 10.3 [Adding an action
in the message view], page 36

e Apply a function to to an attachment - see Section 10.4 [Adding an attachment action],
page 36

e Custom function to mark certain messages - see Section 8.6 [Custom mark functions]
page 31

)

e Using various mode-hooks, mude-compose-pre-hook (see Section 6.4 [Compose hooks]
page 23), mude-index-updated-hook (see Appendix C [FAQ)], page 49)

9

You can also write your own functions without using the above. If you want to do so,
key useful functions are mude-message-at-point (see below), mud4e-headers-for-each
(to iterate over all headers, see its docstring) and mude-view-for-each-part (to iterate
over all parts/attachments, see its docstring).

11.2 Available functions

The whole of mude consists of hundreds of elisp functions. However, the majority of those
are for internal use only; you can recognize them easily, because they all start with mude™.
These function make all kinds of assumptions, and they are subject to change, and should
therefore not be used. The same is true for variables that start with mude™; don’t touch
them. Let me repeat that:

Do not use mude”... functions or variables!

In addition, you should use functions in the right context; functions that start with
mude-view- are only applicable to the message view, while functions starting with
mude-headers- are only applicable to the headers view. Functions without such prefixes
are applicable everywhere.

11.3 Message functions

Many functions in mude deal with message plist (property lists). They contain information
about messages, such as sender and recipient, subject, date and so on. To deal with these
plists, there are a number of mude-message- functions (in ‘mude-message.el’), such as
mude-message-field and mude-message-at-point

Chapter 11: Extending mude 38

For example, to get the subject of the message at point, in either the headers view or
the message view, you could write:

(mu4e-message-field (mude-message-at-point) :subject)
Note that:

e The contact fields (To, From, Cc, Bee) are lists of cons-pairs (name . email); name
may be nil. So, for example:

(mude-message-field some-msg :to)
;5 => (("Jack" . "jack@example.com") (nil . "foo@example.com"))

If you are only looking for a match in this list (e.g., “Is Jack one of the recipients of the
message?”), there is a convenience function mude-message-contact-field-matches
to make this easy.

e The message body is only available in the message view, not in the headers view.

11.4 Utility functions
‘mude-utils’ contains a number of utility functions; we list a few here; see their docstrings
for the details:

e mude-read-option: read one option from a list. For example:

(mude-read-option "Choose an animal: "
' (("Monkey" . monkey) ("Gnu" . gnu) ("xMoose" . moose)))

The user is presented with:
Choose an animal: [M]onkey, [Glnu, [x]Moose

e mude-ask-maildir: ask for a maildir; try one of the shortcuts (mude-maildir-
shortcuts), or the full set of available maildirs.

e mude-running-p: return t if the mude process is running, nil otherwise.
e mude-log logs to the mude debugging log if it is enabled; see mude-toggle-logging.

e mude-message, mude-warning, mude-error are the mude equivalents of the normal
elisp message, user-error! and error functions.

I user-error only appears in emacs 24.2 and later; in older versions it falls back to error

Appendix A: Interaction with other tools 39

Appendix A Interaction with other tools

In this chapter we discuss some ways in ways in which mu4e can cooperate with other tools.

A.1 Setting the default emacs mail program

emacs allows you to select an e-mail program as the default program it uses when you press
C-x m (compose-mail), call report-emacs-bug and so on. If you want to use mude for this,
you do so by adding the following to your configuration:

(setq mail-user-agent 'mude-user—agent)
q g g

At the present time, support is experimental.

A.2 Creating org-mode links

It can be useful to include links to e-mail messages or even search queries in your org-mode
files. mude supports this with the org-mude module; you can set it up by adding it to your
configuration:

(require 'org-mude)

After this, you can use the normal org-mode mechanisms to store links: M-x org-store-
link stores a link to a particular message when you’re in Chapter 5 [Message view|, page 16,
and a link to a query when you are in Chapter 4 [Headers view|, page 12.

You can insert this link later with M-x org-insert-1ink. From org-mode, you can go to
the query or message the link points to with either M-x org-agenda-open-1ink in agenda
buffers, or M-x org-open-at-point elsewhere - both typically bound to C-c C-o.

A.3 Rich-text messages with org-mode

org-mode has some nice facilities for editing texts — creating lists, tables, mathematical
formulae etc. In addition, it can convert them to HTML.

An ezperimental mude feature lets you edit your messages with org-mode, and (op-
tionally) convert them on the fly (when sending them) to messages with an HTML-part
containing the rich-text version of your messages.

To enable this, make sure you have
(require 'org-mude)

somewhere in your setup, and also make sure that the dvipng program is available in
your path.

Then, when composing a message, you can use M-x org-mu4e-compose-org-mode to
enable this mode.

org-mude-compose-org-mode behaves more or less like a minor-mode. When it is active,
editing the message body takes place in org-mode, while editing the headers uses the normal
message editing mode, mude-compose-mode.

If you want to automatically convert the org-mode markup to rich-text when sending
messages, you need to set the variable org-mu4e-convert-to-html to non-nil:

Appendix A: Interaction with other tools 40

(setq org-mude-convert-to-html t)

To send the message or execute other mude-compose-mode/message-mode commands on
the message, first press M-m. Thus, for example, to send the message, you’d press M-m C-c.

The code for doing the conversion is based on Eric Schultze’s org-mime!, but has been
customized for use with mude. In particular, the mode-switching between org-mode and
mude-compose-mode is mude-specific.

A.3.1 Some caveats

It is better mnot to put org-mude-compose-org-mode in a mode-hook for
mude-compose-mode, since that makes it impossible to shut it off again for the
particular message?.

In addition, currently the rich-text code does not work well with the MIME-functionality,
such as adding attachments or signing/encrypting messages. If you need any of that, it’s
better to use plain-text messages.

A.4 Maintaining an address-book with org-contacts

Note, mude supports built-in address autocompletion; Section 6.3 [Address autocompletion],
page 22, and that is the recommended way to do this. However, it is also possible to manage
your addresses with org-mode, using org-contacts?.

mude-actions defines a useful action (Chapter 10 [Actions|, page 35) for adding a con-

tact based on the From:-address in the message at point. To enable this, add to your
configuration something like:

(setq mude-org-contacts-file <full-path-to-your-org-contacts-file>)
(add-to-list 'mude-headers-actions

'("org-contact-add" . mude-action-add-org-contact) t)
(add-to-list 'mude-view-actions
'("org-contact-add" . mude-action-add-org-contact) t)

After this, you should be able to add contacts using a o in the headers view and the message
view, using the org-capture mechanism. Note, the shortcut character o is due to the first
character of org-contact-add.

A.5 Getting new mail notifications with Sauron

The emacs-package sauron® (by the same author) can be used to get notifications about
new mails. If you put something like the below script in your crontab (or have some other
way of having it execute every n minutes) you receive notifications in the sauron-buffer
when new messages arrive.

#!/bin/sh
put the path to your Inbox folder here

1
2

http://orgmode.org/worg/org-contrib/org-mime . php

This is because mu4e-compose-mode in invoked again internally when switching, which re-triggers the
hook-function.

3 http://julien.danjou.info/software/org-contacts.el

Sauron can be found at https://github.com/djcb/sauron, or in the Marmalade package-repository at
http://http://marmalade-repo.org/

http://orgmode.org/worg/org-contrib/org-mime.php
http://julien.danjou.info/software/org-contacts.el
https://github.com/djcb/sauron
http://http://marmalade-repo.org/

Appendix A: Interaction with other tools 41

CHECKDIR="/home/$LOGNAME/Maildir/Inbox"
sauron-msg () {
DBUS_COOKIE="/home/$LOGNAME/ . sauron-dbus"
if test "x$DBUS_SESSION_BUS_ADDRESS" = "x"; then
if test —-e $DBUS_COOKIE; then
export DBUS_SESSION_BUS_ADDRESS=""cat $DBUS_COOKIE™"
fi
fi
if test -n "x$DBUS_SESSION_BUS_ADDRESS"; then
dbus-send --session
--dest="org.gnu.Emacs"
--type=method_call
"/org/gnu/Emacs/Sauron"
"org.gnu.Emacs.Sauron.AddMsgEvent"
string:shell uint32:3 string:"$1"

s

fi

#
-mmin -5: consider only messages that were created / changed in the
the last 5 minutes

#

for £ in “find $CHECKDIR -mmin -5 -a -type f°; do
subject="$MU view $f | grep '~“Subject:' | sed 's/"Subject://'"
sauron-msg "mail: $subject"

done

You might want to put:
(setq sauron-dbus-cookie t)

in your setup, to allow the script to find the D-Bus session bus, even when running outside
its session.

A.6 Speedbar support

speedbar is an emacs-extension that shows navigational information for an emacs buffer
in a separate frame. Using mude-speedbar, mude lists your bookmarks and maildir folders
and allows for one-click access to them.

mude loads mude-speedbar automatically; all you need to do to activate it is M-x
speedbar. Then, when then switching to the Chapter 3 [Main view|, page 10, the speedbar-
frame is updated with your bookmarks and maildirs. For speed reasons, the list of maildirs
is determined when mude starts; if the list of maildirs changes while mude is running, you
need to restart mude to have those changes reflected in the speedbar and in other places
that use this list, such as auto-completion when jumping to a maildir.

mude-speedbar was contributed by Antono Vasiljev.

Appendix A: Interaction with other tools 42

A.7 Citations with mu-cite

mu-cite® is a package to control the way message citations look like (i.e., the message you
responded to when you reply to them or forward them), with its latest version available at
http://www.jpl.org/elips/mu/.

After installing mu-cite, you can use something like the following to make it work with
muée:
(require 'mu-cite)
(setq message-cite-function 'mu-cite-original)
(setq mu-cite-top-format
"("On " date ", " from " wrote:\n\n"))
(setq mu-cite-prefix-format '(" > ")))

A.8 Attaching files with dired

It is possible to attach files to mude messages using dired (See Info file ‘emacs’, node
‘Dired’), using the following steps (based on a post on the mu-discuss mailing list by
Stephen Eglen).

To prepare for this, you need a special version of the gnus-dired-mail-buffers function
so it understands mude buffers as well; so put in your configuration:
(require 'gnus-dired)
;; make the “gnus-dired-mail-buffers' function also work on
;; message-mode derived modes, such as mud4e-compose-mode
(defun gnus-dired-mail-buffers ()
"Return a list of active message buffers."
(let (buffers)
(save-current-buffer
(dolist (buffer (buffer-list t))
(set-buffer buffer)
(when (and (derived-mode-p 'message-mode)
(null message-sent-message-via))
(push (buffer-name buffer) buffers))))
(nreverse buffers)))

(setq gnus-dired-mail-mode 'mude-user-agent)
(add-hook 'dired-mode-hook 'turn-on-gnus-dired-mode)

Then, mark the file(s) in dired you would like to attach and press C-c RET C-a, and
you’ll be asked whether to attach them to an existing message, or create a new one.

5 Note, despite its name, mu-cite is a project unconnected to mu/mude

http://www.jpl.org/elips/mu/

Appendix B: Example configurations 43

Appendix B Example configurations

In this chapter, we show some example configurations. While it is very useful to see some
working settings, we’d like to warn against blindly copying such things.

B.1 Minimal configuration

An (almost) minimal configuration for mu4e might look like this - as you see most is
commented-out.

;; example configuration for mude

;; make sure mu4e is in your load-path
(require 'mude)

;3 Only needed if your maildir is _not_ ~/Maildir
; ; (setq mude-maildir "/home/user/Maildir")

;; these must start with a "/", and must exist

;; (i.e.. /home/user/Maildir/sent must exist)

;3 you use e.g. 'mu mkdir' to make the Maildirs if they don't
;3 already exist

;; below are the defaults; if they do not exist yet, mude offers to
;3 create them. they can also functions; see their docstrings.

;; (setq mude-sent-folder "/sent")

;; (setq mude-drafts-folder "/drafts")

;; (setq mude-trash-folder "/trash")

;; smtp mail setting; these are the same that “gnus' uses.

(setq
message-send-mail-function 'smtpmail-send-it
smtpmail-default-smtp-server "smtp.example.com"
smtpmail-smtp-server "smtp.example.com"
smtpmail-local-domain "example.com")

B.2 Longer configuration

A somewhat longer configuration, showing some more things that you can customize.

;; example configuration for mude
(require 'mude)

;3 path to our Maildir directory
(setq mude-maildir "/home/user/Maildir")

;; the next are relative to “mude-maildir'
;; instead of strings, they can be functions too, see
;3 their docstring or the chapter 'Dynamic folders'

Appendix B: Example configurations 44

(setq mude-sent-folder "/sent"
mude-drafts-folder "/drafts"
mude-trash-folder "/trash")

;; the maildirs you use frequently; access them with 'j' ('jump')
(setq mude-maildir-shortcuts

'"'(("/archive" . 7a)
("/inbox" . 71)
("/work" . W)
("/sent" . 78)))

;; a regular expression that matches all email addresses used by

;3 the user; this allows us to correctly determine if user

;3 is the sender / direct recipient of some message

(setq mude-user-mail-address-regexp
"foo@bar\.com\\|cuux@example\.com")

;; when you want to use some external command for text->html
;; conversion, e.g. the 'html2text' program
;3 (setq mude-html2text-command "html2text")

;; the headers to show in the headers list -- a pair of a field
;; and its width, with "nil' meaning 'unlimited'

;; (better only use that for the last field.

;; These are the defaults:

(setq mude-headers-fields

'((:date . 25)
(:flags . 6)
(:from . 22)
(:subject . nil)))

;3 program to get mail; alternatives are 'fetchmail', 'getmail'
;3 isync or your own shellscript. called when 'U' is pressed in
;3 main view.

;5 If you get your mail without an explicit command,
;; use "true" for the command (this is the default)
(setq mude-get-mail-command "offlineimap")

;; general emacs mail settings; used when composing e-mail
;; the non-mude-* stuff is inherited from emacs/message-mode
(setq mude-reply-to-address "foo@bar.com"

user-mail-address "foo@bar.com"

user-full-name "Foo X. Bar")
;3 include in message with C-c C-w
(setq message-signature

"Foo X. Bar\nhttp://www.example.com\n")

Appendix B: Example configurations 45

;; smtp mail setting

(setq
message-send-mail-function 'smtpmail-send-it
smtpmail-default-smtp-server "smtp.example.com"
smtpmail-smtp-server ""smtp.example.com"
smtpmail-local-domain "example.com"

;3 1f you need offline mode, set these -- and create the queue dir
;3 with 'mu mkdir', i.e.. mu mkdir /home/user/Maildir/queue
smtpmail-queue-mail mnil

smtpmail-queue-dir "/home/user/Maildir/queue/cur")

;; don't keep message buffers around
(setq message-kill-buffer-on-exit t)

B.3 Gmail configuration

Gmail is a popular e-mail provider; let’s see how we can make it work with mude. Since we
are using IMAP, you must enable that in the Gmail web interface (in the settings, under
the “Forwarding and POP/IMAP”-tab).

B.3.1 Setting up offlineimap

First of all, we need a program to get the e-mail from Gmail to our local machine; for this
we use offlineimap; on Debian (and derivatives like Ubuntu), this is as easy as:

$ sudo apt-get install offlineimap
while on Fedora (and similar) you need:
$ sudo yum install offlineimap
Then, we can configure offlineimap by editing ‘*/.offlineimaprc’

[generall]
accounts = Gmail
maxsyncaccounts = 3

[Account Gmail]
localrepository = Local
remoterepository = Remote

[Repository Locall
type = Maildir
localfolders = ~/Maildir

[Repository Remote]

type = IMAP

remotehost = imap.gmail.com
remoteuser = USERNAMEQgmail.com
remotepass = PASSWORD

Appendix B: Example configurations 46

ssl = yes
maxconnections = 1
realdelete = no

Obviously, you need to replace USERNAME and PASSWORD with your actual Gmail username
and password. After this, you should be able to download your mail:

$ offlineimap
0fflineIMAP 6.3.4
Copyright 2002-2011 John Goerzen & contributors.
Licensed under the GNU GPL v2+ (v2 or any later version).

Account sync Gmail:
*¥**x*x Processing account Gmail
Copying folder structure from IMAP to Maildir
Establishing connection to imap.gmail.com:993.
Folder sync [Gmail]:
Syncing INBOX: IMAP -> Maildir
Syncing [Gmail]l/All Mail: IMAP -> Maildir
Syncing [Gmail]/Drafts: IMAP -> Maildir
Syncing [Gmaill/Sent Mail: IMAP -> Maildir
Syncing [Gmail]/Spam: IMAP -> Maildir
Syncing [Gmail]/Starred: IMAP -> Maildir
Syncing [Gmaill/Trash: IMAP -> Maildir
Account sync Gmail:
*xxxx Finished processing account Gmail

We can now run mu to make sure things work:

$ mu index

mu: indexing messages under /home/foo/Maildir [/home/foo/.mu/xapian]
| processing mail; processed: 520; updated/new: 520, cleaned-up: O
mu: elapsed: 3 second(s), ~ 173 msg/s

mu: cleaning up messages [/home/foo/.mu/xapian]

/ processing mail; processed: 520; updated/new: 0, cleaned-up: O

mu: elapsed: O second(s)

We can run both the offlineimap and the mu index from within mude, but running it
from the command line makes it a bit easier to troubleshoot as we are setting things up.

B.3.2 Settings

Next step: let’s make a mude configuration for this:

(require 'mude)

;3 default
;; (setq mude-maildir ("~/Maildir")

(setq mude-drafts-folder "/[Gmail] .Drafts")
(setq mude-sent-folder "/[Gmail].Sent Mail")
(setq mude-trash-folder "/[Gmail].Trash")

Appendix B: Example configurations 47

;; don't save message to Sent Messages, Gmail/IMAP takes care of this
(setq mude-sent-messages-behavior 'delete)

;; setup some handy shortcuts

;3 you can quickly switch to your Inbox -- press ~~ji''

;; then, when you want archive some messages, move them to
;5 the 'All Mail' folder by pressing ~"ma''.

(setq mude-maildir-shortcuts

*(("/INBOX" . 7i)
("/[Gmail] .Sent Mail" . ?8)
("/[Gmail] .Trash" . 7t)
("/[Gmail] .A11 Mail" . 7a)))

;; allow for updating mail using 'U' in the main view:
(setq mude-get-mail-command "offlineimap")

;; something about ourselves
(setq
user-mail-address "USERNAMEG@gmail.com"
user—-full-name "Foo X. Bar"
message-signature
(concat
"Foo X. Bar\n"
"http://www.example.com\n"))

;3 sending mail -- replace USERNAME with your gmail username
;; also, make sure the gnutls command line utils are installed
;; package 'gnutls-bin' in Debian/Ubuntu

(require 'smtpmail)

(setq message-send-mail-function 'smtpmail-send-it
starttls-use-gnutls t
smtpmail-starttls-credentials '(("smtp.gmail.com" 587 nil nil))
smtpmail-auth-credentials

"(("smtp.gmail.com" 587 "USERNAMEG@gmail.com" nil))

smtpmail-default-smtp-server "smtp.gmail.com"
smtpmail-smtp-server "smtp.gmail.com"
smtpmail-smtp-service 587)

;3 alternatively, for emacs-24 you can use:

; ; (setq message-send-mail-function 'smtpmail-send-it
M smtpmail-stream-type 'starttls

M smtpmail-default-smtp-server "smtp.gmail.com"
MK smtpmail-smtp-server "smtp.gmail.com"

M smtpmail-smtp-service 587)

Appendix B: Example configurations 48

;; don't keep message buffers around
(setq message-kill-buffer-on-exit t)

And that’s it — put the above in your ‘~/.emacs’, change USERNAME etc. to your own,
and restart emacs, and run M-x mu4e.

B.4 Some other useful settings

Finally, here are some more settings that are useful, but not enabled by default for various
reasons.

;; use 'fancy' non-ascii characters in various places in mu4e
(setq mude-use-fancy-chars t)

;; save attachment to my desktop (this can also be a function)
(setq mude-attachment-dir "~/Desktop")

;; attempt to show images when viewing messages
(setq
mud4e-view-show-images t
mude-view-image-max-width 800)

Appendix C: FAQ - Frequently Asked Questions 49

Appendix C FAQ - Frequently Asked Questions
In this chapter we list a number of actual and anticipated questions and their answers.

C.1 General

1. How can I quickly delete/move/trash a lot of messages? You can select (‘mark’ in
emacs-speak) the messages like you would select text in a buffer; the actions you then
take (e.g., DEL for delete, m for move and t for trash) apply to all selected messages.
You can also use functions like mu4e-headers-mark-thread (T), mude-headers-mark-
subthread (t) to mark whole threads at the same time, and mu4e-headers-mark-
pattern (%) to mark all messages matching a certain regular expression.

2. mude seems to return a subset of all matches - how can I get all? For speed reasons,
mu4e returns only up to the value of the variable mdue-search-result-limit (default:
500) matches. To show all, use M-x mude-headers-toggle-full-search, or customize
the variable mu4de-headers-full-search. This applies to all search commands.

3. How can I get notifications when receiving mail? There is mude-index-updated-hook,
which gets triggered when the indexing process triggered sees an update (not just
new mail though). To use this hook, put something like the following in your setup
(assuming you have aplay and some soundfile, change as needed):

(add-hook 'mude-index-updated-hook
(defun new-mail-sound ()
(shell-command "aplay ~/Sounds/boing.wav&")))

4. I don’t use offlineimap, fetchmail etc., I get my mail through my own mailserver.
What should I use for mude-get-mail-command? Use "true" (or don’t do anything,
it’s the default). This makes getting mail a no-op, but the messages are still re-indexed.

5. When I try to run mu index while mude is running I get errors like:

mu: mu_store_new_writable: xapian error
'Unable to get write lock on ~/.mu/xapian: already locked

What to do about this? You get this error because the underlying Xapian database is
locked by some other process; it can be opened only once in read-write mode. There
is not much mude can do about this, but if is another mu instance that is holding the
lock, you can ask it to (gracefully) terminate:

pkill -2 -u $UID mu # send SIGINT
sleep 1
mu index

mude automatically restarts mu when it needs it. In practice, this seems to work quite
well.

6. Can I automatically apply the marks on messages when leaving the headers buffer? Yes
you can — see the documentation for the variable mu4e-headers-leave-behavior.

7. Is there context-sensitive help available? Yes - pressing H should take you to the right
place in this manual.

8. How can I set mude as the default e-mail client in emacs? See Section A.1 [Setting the
default emacs mail program|, page 39.

Appendix C: FAQ - Frequently Asked Questions 50

9.

Can mude use some fancy Unicode characters instead of these boring plain-ASCII ones?
Glad you asked! Yes, if you set mude-use-fancy-chars to t, mude uses such fancy
characters in a number of places.

C.2 Reading messages

1.

How can I show attached images in my message view buffers? See Section 5.4 [Viewing
images inline|, page 19.

How can I word-wrap long lines in when viewing a message? You can toggle between
wrapped and non-wrapped states using w. If you want to do this automatically, invoke
longlines-mode in your mu4e-view-mode-hook.

What about hiding cited parts? Toggle between hiding and showing of cited parts with
h. If you want to hide parts automatically, call mude-view-toggle-hide-cited in
your mu4e-view-mode-—hook.

How can I perform custom actions on messages and attachments? See Chapter 10
[Actions], page 35.

Does mude support crypto (i.e., decrypting messages and verifying signatures)? Yes — if
mu was built with GMime 2.6 or later, it is possible to do both (note, only PGP/MIME
is supported). In the Chapter 3 [Main view], page 10 the support is indicated by a
big letter C on the right hand side of the mu4e version. See [Decryption], page 20
and [Verifying signatures|, page 20. For encryption and signing messages, see the
Section C.3 [Writing messages|, page 50.

C.3 Writing messages

1.

How can I automatically set the From: -address for a reply-message, based on some field
in the original? See Section 6.4 [Compose hooks|, page 23.

And what about customizable folders for draft messages, sent messages, trashed mes-
sages, based on e.g. the From: header? See Chapter 9 [Dynamic folders], page 33.
How can I automatically add some header to an outgoing message? Once more, see
Section 6.4 [Compose hooks]|, page 23.

How can I influence the way the original message looks when replying or forwarding?
Since mude-compose-mode derives from message-mode, you can re-use many of the
latter’s facilities. See Info file ‘message’, node ‘Insertion Variables’.

How can I easily include attachments in the messages I write? You can drag-and-drop
from your desktop; alternatively, you can use dired — see Section A.8 [Attaching files
with dired], page 42.

mude seems to remove myself from the Cc:-list; how can I prevent that? Set mude-
compose-keep-self-cc to t in your configuration.

How can I sign or encrypt messages? You can do so using emacs’ MIME-support —
check the Attachments-menu while composing a message. Also see Section 6.5 [Signing
and encrypting], page 24.

Can I use BBDB with mude? It should be possible, but there is no built-in support.
Instead, we recommend using mude’s Section 6.3 [Address autocompletion], page 22.

After sending some messages, it seems the buffer for these messages stay around. How
can I get rid of those?

Appendix C: FAQ - Frequently Asked Questions 51

(setq message-kill-buffer-on-exit t)

C.4 Known issues

Although they are not really questions, we end this chapter with a list of known issue and/or
missing features in mude. Thus, users won’t have to search in vain for things that are not
there (yet), and the author can use it as a todo-list.

o muje does not work well if the emacs language environment is not utf-8; so, if you
problems with encodings, be sure to have (set-language-environment "UTF-8") in
your ‘~/.emacs’.

e Thread handling is incomplete. While threads are calculated and are visible in the
headers buffer, you can not collapse/open them.

o The key-bindings are somewhat hard-coded. That is, the main menu assumes the default
key-bindings, as do the clicks-on-bookmarks.

Appendix D: How it works 52

Appendix D How it works

While perhaps not interesting for all users of mude, some curious souls may want to know
how mude does its job.

D.1 High-level overview

At a high level, we can summarize the structure of the mude system using some ascii-art:

-

- +
| emacs |
| o +
+----| mude | --> send mail (smtpmail)
SR —— +
| A
V | ---/ search, view, move mail
tomm + \
| mu I
T +
| A
' |
fomm +
| Maildir | <--- receive mail (fetchmail,
tommmm + offlineimap, ...)

In words:

e Your e-mail messages are stored in a Maildir-directory (typically, ‘“/Maildir’ and its
subdirectories), and new mail comes in using tools like fetchmail, offlineimap, or
through a local mail server.

e mu indexes these messages periodically, so you can quickly search for them. mu can run
in a special server-mode, where it provides services to client software.

e mude, which runs inside emacs is such a client; it communicates with mu (in its server-
mode to search for messages, and manipulate them.

e mude uses the facilities offered by emacs (the Gnus message editor and smtpmail) to
send messages.

D.2 mu server

mu4e is based on the mu e-mail searching/indexer. The latter is a C-program; there are
different ways to communicate with a client that is emacs-based.

One way to implement this, would be to call the mu command-line tool with some
parameters and then parse the output. In fact, that was the first approach — mude would
invoke e.g., mu find and process the output in emacs.

However, with this approach, we need to load the entire e-mail Xapian database (in
which the message is stored) for each invocation. Wouldn’t it be nicer to keep a running
mu instance around? Indeed, it would - and thus, the mu server sub-command was born.

Appendix D: How it works 53

Running mu server starts a simple shell, in which you can give commands to mu, which
then spits out the results/errors. mu server is not meant for humans, but it can be used
manually, which is great for debugging.

D.3 Reading from the server

In the design, the next question was what format mu should use for its output for mude
(emacs) to process. Some other programs use JSON here, but it seemed easier (and possibly,
more efficient) just to talk to emacs in its native language: s-expressions, and interpret those
using the emacs-function read-from-string. See Section D.4 [The message s-expression],
page 53 for details on the format.

So, now let’s look how we process the data from mu server in emacs. We'll leave out a
lot of detail, mude-specifics, and look at a bit more generic approach.

The first thing to do is to create a process (for example, with start-process), and then
register a filter function for it, which is invoked whenever the process has some data for us.
Something like:

(let ((proc (start-process <arguments>)))
(set-process-filter proc 'my-process-filter)
(set-process-sentinel proc 'my-process-sentinel))

Note, the process sentinel is invoked when the process is terminated — so there you can
clean things up. The function my-process-filter is a user-defined function that takes the
process and the chunk of output as arguments; in mude it looks something like (pseudo-lisp):

(defun my-process-filter (proc str)
;; mude-buf: a global string variable to which data gets appended
;; as we receive it
(setq mude-buf (concat mude-buf str))
(when <we-have-received-a-full-expression>
<eat-expression-from mude-buf>
<evaluate-expression>))

<evaluate-expression> de-multiplexes the s-expression we got. For example, if the
s-expression looks like an e-mail message header, it is processed by the header-handling
function, which appends it to the header list. If the s-expression looks like an error message,
it is reported to the user. And so on.

The language between frontend and backend is documented in the mu-server man-page.
mude can log these communications; you can use M-x mude-toggle-logging to turn logging
on and off, and you can view the log using M-x mu4e-show-1log ($).

D.4 The message s-expression

A typical message s-expression looks something like the following:
(:docid 32461

:from (("Nikola Tesla" . "niko@example.com"))
:to (("Thomas Edison" . "tom@example.com"))
:cc (("Rupert The Monkey" . "rupert@example.com"))

:subject "RE: what about the 50K7"
:date (20369 17624 0)

Appendix D: How it works 54

:size 4337
:message-id "C8233AB82DS81EE81AF0114E4E740123213.mail.example.com"
:path "/home/tom/Maildir/INBOX/cur/133443243973_1.10027.atlas:2,S"
:maildir "/INBOX"
:priority normal
:flags (seen)
:parts ((:index 1 :mime-type "text/plain" :size 12345 :attachment nil)
(:index 2 :name "photo.jpg" :mime-type "image/jpeg"
:size 147331 :attachment t)
(:index 3 :name "book.pdf" :mime-type "application/pdf"
:size 192220 :attachment t))
:references ("C8384574032D81EE81AF0114E4E740123213.mail.example.com"
"38203498230942D81EE81AF0114E4E740123213 . mail . example.com")
:in-reply-to "38203498230942D81EE81AF0114E4E740123213.mail.example.com"
:body-txt "Hi Tom,

"))

This s-expression forms a property list (plist), and we can get values from it using
plist-get; for example (plist-get msg :subject) would get you the message subject.
However, it’s better to use the function mude-message-field to shield you from some
of the implementation details that are subject to change; and see the other convenience
functions in ‘mude-message.el’.

Some notes on the format:

e The address fields are lists of pairs (name . email), where name can be nil.

e The date is in format emacs uses (for example in current-time).!

e Attachments are a list of elements with fields : index (the number of the MIME-part),
:name (the file name, if any), :mime-type (the MIME-type, if any) and :size (the size
in bytes, if any).

e Messages in the Chapter 4 [Headers view|, page 12 come from the database and do

not have :attachments. :body-txt or :body-html fields. Message in the Chapter 5
[Message view|, page 16 use the actual message file, and do include these fields.

D.4.1 Example: ping-pong
As an example of the communication between mude and mu, let’s look at the ping-pong-
sequence. When mude starts, it sends a command ping to the the mu server backend, to

learn about its version. mu server then responds with a pong s-expression to provide this
information (this is implemented in ‘mu-cmd-server.c’).

We start this sequence when mude is invoked (when the program is started). It calls
mu4e-proc-ping, and registers a (lambda) function for mu4e-proc-pong-func, to handle
the response.

-> ping
<- (pong "mu" :version "x.x.x" :doccount 10000)

1 Emacs 32-bit integers have only 29 bits available for the actual number; the other bits are use by emacs
for internal purposes. Therefore, we need to split time_t in two numbers.

Appendix D: How it works 55

When we receive such a pong (in ‘mude-proc.el’), the lambda function we registered
is called, and it compares the version we got from the pong with the version we expected,
and raises an error, if they differ.

Appendix E: Logging and debugging 56

Appendix E Logging and debugging

As explained in Appendix D [How it works], page 52, mude communicates with its backend
(mu server) by sending commands and receiving responses (s-expressions).

For debugging purposes, it can be very useful to see this data. For this reason, mude
can log all these messages. Note that the ’protocol’ is documented to some extent in the
mu-server manpage.

You can enable (and disable) logging with M-x mu4e-toggle-logging. The log-buffer is
called *mude-log*, and in the Chapter 3 [Main view|, page 10, Chapter 4 [Headers view],
page 12 and Chapter 5 [Message view|, page 16, there’s a keybinding $ that takes you there.
You can quit it by pressing g.

Logging can be a bit resource-intensive, so you may not want to leave it on all the time.
By default, the log only maintains the most recent 1200 lines. mu itself keeps a log as well,
you can find this it in <MUHOME>/log/mu.log, typically ~/.mu/log/mu.log.

Appendix F: GNU Free Documentation License 57

Appendix F GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix F: GNU Free Documentation License 58

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix F: GNU Free Documentation License 59

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix F: GNU Free Documentation License 60

o

N.

0.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix F: GNU Free Documentation License 61

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix F: GNU Free Documentation License 62

10.

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix F: GNU Free Documentation License 63

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~~GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Welcome to mu4e
	Introduction
	Why another e-mail client?
	Other mail clients
	What mu4e does not do
	Becoming a mu4e user

	Getting started
	Requirements
	Installation
	Dependencies for Debian/Ubuntu
	Dependencies for Fedora
	Building from a release tarball
	Building from git
	mu4e and emacs customization

	Getting mail
	Indexing your messages
	Basic configuration
	Folders
	Retrieval and indexing
	Sending mail
	Dealing with sent messages

	Running mu4e

	The main view
	Overview
	Basic actions
	Bookmarks
	Miscellaneous

	The headers view
	Overview
	Keybindings
	Marking messages
	Sort order and threading
	Actions
	Split view

	The message view
	Overview
	Keybindings
	Opening and saving attachments
	Viewing images inline
	Displaying rich-text messages
	Crypto
	Decryption
	Verifying signatures

	Actions
	Message actions
	Attachment actions

	The editor view
	Overview
	Useful keybindings
	Address autocompletion
	Limiting the number of addresses

	Compose hooks
	Signing and encrypting
	Queuing mail
	Other settings

	Searching
	Queries
	Bookmarks
	Setting up bookmarks
	Editing bookmarks before searching

	Maildir searches
	Setting up maildir shortcuts

	Other search functionality
	Navigating through search queries
	Narrowing search results

	Marking
	Selecting messages for marking
	What to mark for
	Executing the marks
	Leaving the headers buffer
	Built-in marking functions
	Custom mark functions

	Dynamic folders
	Smart refiling
	Other dynamic folders

	Actions
	Defining actions
	Adding an action in the headers view
	Adding an action in the message view
	Adding an attachment action
	More example actions

	Extending mu4e
	Extension points
	Available functions
	Message functions
	Utility functions

	Interaction with other tools
	Setting the default emacs mail program
	Creating org-mode links
	Rich-text messages with org-mode
	Some caveats

	Maintaining an address-book with org-contacts
	Getting new mail notifications with Sauron
	Speedbar support
	Citations with mu-cite
	Attaching files with dired

	Example configurations
	Minimal configuration
	Longer configuration
	Gmail configuration
	Setting up offlineimap
	Settings

	Some other useful settings

	FAQ - Frequently Asked Questions
	General
	Reading messages
	Writing messages
	Known issues

	How it works
	High-level overview
	mu server
	Reading from the server
	The message s-expression
	Example: ping-pong

	Logging and debugging
	GNU Free Documentation License

