
VOTCA

USER MANUAL

January 10, 2012
Version: 1.2.2 (a80d968f3054)

Programs version: fbc0d992ac0e

c© VOTCA development team

www.votca.org

http://www.votca.org




Contents

1 Introduction 1

2 Theoretical background 3
2.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Boltzmann inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Separation of bonded and non-bonded degrees of freedom . . . . . . . . . . 5
2.3 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Iterative Boltzmann Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Inverse Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Force Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Input files 9
3.1 Mapping files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Verification of a mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Advanced topology handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Setting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Table formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Preparing coarse-grained runs 15
4.1 Generating a topology file for a coarse-grained run . . . . . . . . . . . . . . . . . . 15
4.2 Post-processing of the potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Boltzmann Inversion 19
5.1 Generating exclusion lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Distribution functions and tabulated potentials . . . . . . . . . . . . . . . . 20
5.2.2 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Force matching 23
6.1 Program input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Program output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Integration and extrapolation of .force files . . . . . . . . . . . . . . . . . . . . . . 24

7 Iterative methods 25
7.1 Iterative workflow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1.1 Preparing the run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 Starting the iterative process . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.3 Restarting and continuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 Iterative Boltzmann Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2.1 Input preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.3 Inverse Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



iv CONTENTS

7.3.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3.2 Additional mapping for statistics . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3.3 Correlation groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.4 Pressure correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1 Simple pressure correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4.2 Advanced pressure correction . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4.3 Runtime optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.5 Thermodynamic force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 ESPResSo interface 35
8.1 Running IBI with ESPResSo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 Advanced topics 37
9.1 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2 Used external packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.2.1 GroMaCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.2 ESPResSo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.3 Gnuplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.4 GNU Octave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.5 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.6 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Reference 39
10.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.1.1 csg_boltzmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.1.2 csg_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.1.3 csg_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.1.4 csg_dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.1.5 csg_fmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.1.6 csg_gmxtopol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.1.7 csg_imcrepack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.1.8 csg_inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.1.9 csg_map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.1.10 csg_part_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.1.11 csg_property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.1.12 csg_resample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1.13 csg_stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1.14multi_g_rdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10.2 Mapping file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.3 Settings file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.3.1 Interaction options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.4 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.4.1 RDF_to_POT.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.2 add_POT.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.3 add_pot_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.4 apply_prefactor.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.5 calc_density_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.6 calc_pressure_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.7 calc_pressure_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.8 calc_rdf_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.9 calc_rdf_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4.10 calc_thermforce.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4.11 configuration_compare.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4.12 convergence_check_default.sh . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS v

10.4.13density_symmetrize.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.14dpot_crop.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.15dpot_shift_bo.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.16dpot_shift_nb.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.17dummy.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.18 functions_common.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.4.19 functions_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.4.20 functions_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.4.21 imc_purify.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.4.22 imc_stat_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.4.23 initialize_step_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.4.24 initialize_step_generic_espresso.sh . . . . . . . . . . . . . . . . . . . . . . 58
10.4.25 initialize_step_generic_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . 58
10.4.26 inverse.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.4.27 linsolve.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.28 linsolve.octave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.29 linsolve.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.30merge_tables.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.31post_add.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.32post_add_single.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.33post_update_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.34post_update_generic_single.sh . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.35postadd_acc_convergence.sh . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.36postadd_convergence.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4.37postadd_copyback.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.38postadd_dummy.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.39postadd_overwrite.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.40postadd_plot.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.41postupd_pressure.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.4.42postupd_scale.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.4.43postupd_smooth.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.4.44postupd_splinesmooth.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.4.45potential_to_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.4.46potential_to_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4.47prepare_generic.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4.48prepare_generic_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4.49prepare_generic_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4.50prepare_generic_single.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4.51prepare_ibm.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4.52prepare_imc.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4.53pressure_cor_simple.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4.54pressure_cor_wjk.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4.55 resample_target.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.4.56 run_espresso.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.4.57 run_gromacs.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.4.58 solve_matlab.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4.59 solve_numpy.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4.60 solve_octave.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4.61 table_compare.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4.62 table_dummy.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4.63 table_extrapolate.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.4.64 table_get_value.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.4.65 table_getsubset.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.4.66 table_integrate.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



vi CONTENTS

10.4.67 table_linearop.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4.68 table_smooth.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4.69 table_smooth_borders.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4.70 table_to_tab.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4.71 table_to_xvg.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.72 tables_jackknife.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.73 tag_file.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.74update_ibi.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.75update_ibi_pot.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.76update_ibi_single.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4.77update_ibm.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4.78update_imc.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4.79update_tf.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4.80update_tf_single.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Chapter 1

Introduction

Versatile Object-oriented Toolkit for Coarse-graining Applications, or votca, is a package which
helps to systematically coarse-grain various systems [1]. This includes deriving the coarse-grained
potentials, assessing their quality, preparing input files required for coarse-grained simulations,
and analyzing the latter.

A typical coarse-graining workflow includes sampling of the system of interest, analysis of the
trajectory using a specific mapping and a coarse-graining method to derive coarse-grained potentials
and, in case of iterative methods, running coarse-grained simulations and iteratively refining the
coarse-grained potentials.

In most cases, coarse-graining requires canonical sampling of a reference (high resolution) sys-
tem. In addition, iterative methods require canonical sampling of the coarse-grained system. The
sampling can be done using either molecular dynamics (MD), stochastic dynamics (SD), or Monte
Carlo (MC) techniques. The latter are implemented in many standard simulation packages. Rather
than implementing its own MD/SD/MC modules, votca allows swift and flexible integration of
existing programs in such a way that sampling is performed by the program of choice. At the
moment, an interface to GROMACS [2] simulation package is provided. The rest of the analysis
needed for systematic coarse-graining is done using the package tools.

A

B

θ

b
A

Figure 1.1: Three-bead

coarse-grained model of

propane.

The workflow can be exemplified on coarse-graining of a propane
liquid. A single molecule of propane contains three carbon and eight
hydrogen atoms. A united atom coarse-grained representation of a
propane molecule has three beads and two bead types, A and B, with
three and two hydrogens combined with the corresponding atom, as
shown in fig. 1.1. This representation defines the mapping operator,
as well as the bonded coarse-grained degrees of freedom, such as the
bond b and the bond angle θ. Apart from the bonded interactions,
ub and uθ, beads belonging to different molecules have non-bonded
interactions, uAA, uAB, uBB. The task of coarse-graining is then to
derive a potential energy surface u which is a function of all coarse-
grained degrees of freedom. Note that, while the atomistic bond and
angle potentials are often chosen to be simple harmonic functions,
the coarse-grained potentials cannot be expressed in terms of simple analytic functions. Instead,
tabulated functions are normally used.

The coarse-graining method defines criteria according to which the potential energy surface is
constructed. For example, for the bond b and the angle θ Boltzmann Inversion can be used. In this
case a coarse-grained potential will be a potential of mean force. For the non-bonded degrees of
freedom, the package provides Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC)
methods. In this case the radial distribution functions of the coarse-grained model will match those
of the atomistic model. Alternatively, Force Matching (FM) (or multiscale coarse-graining) can be
used, in which case the coarse-grained potential will approximate the many-body potential of mean
force. The choice of a particular method is system-specific and requires a thorough consistency
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check. It is important to keep in mind that coarse-graining should be used with understanding
and caution, methods should be crossed-checked with each other as well as with respect to the
reference system.

The package consists of two parts: a C++ kernel and a scripting engine. The kernel is capable
of processing atomistic topologies and trajectories and offers a flexible framework for reading,
manipulating and analyzing topologies and generated by MD/SD/MC sampling trajectories. It
is modular: new file formats can be integrated without changing the existing code. Currently,
an interface for GROMACS [2] topologies and trajectories is provided. The kernel also includes
various coarse-graining tools, for example calculations of probability distributions of bonded and
non-bonded interactions, correlation and autocorrelation functions, and updates for the coarse-
grained pair potential.

The scripting engine is used to steer the iterative procedures. Here the analysis tools of
the package used for sampling (e.g. GROMACS tools) can be integrated into the coarse-graining
workflow, if needed. The coarse-graining workflow itself is controlled by several Extensible Markup
Language (XML) input files, which contain mapping and other options required for the workflow
control. In what follows, these input files are described.

Before using the package, do not forget to initalize the variables in the bash or csh (tcsh)

source <csg-installation>/bin/VOTCARC.bash
source <csg-installation>/bin/VOTCARC.csh

More details as well as several examples can be found in ref. [1]. Please cite this paper if you
are using the package. Tutorials can be found on the votca homepage www.votca.org .

http://www.votca.org


Chapter 2

Theoretical background

2.1 Mapping

The mapping is an operator that establishes a link between the atomistic and coarse-grained
representations of the system. An atomistic system is described by specifying the values of the
Cartesian coordinates and momenta

rn = {r1, . . . , rn}, (2.1)

pn = {p1, . . . ,pn}. (2.2)

of the n atoms in the system.1 On a coarse-grained level, the coordinates and momenta are
specified by the positions and momenta of CG sites

RN = {R1, . . . ,RN}, (2.3)

PN = {P1, . . . ,PN}. (2.4)

Note that capitalized symbols are used for the CG sites while lower case letters are used for the
atomistic system.

The mapping operator cI is defined by a matrix for each bead I and links the two descriptions

RI =

n
∑

i=1

cIiri, (2.5)

PI = MIṘI = MI

n
∑

i=1

cIiṙi = MI

n
∑

i=1

cIi
mi

pi. (2.6)

for all I = 1, . . . , N .
If an atomistic system is translated by a constant vector, the corresponding coarse-grained

system is also translated by the same vector. This implies that, for all I,

n
∑

i=1

cIi = 1. (2.7)

In some cases it is useful to define the CG mapping in such a way that certain atoms belong
to several CG beads at the same time [4]. Following ref. [3], we define two sets of atoms for each
of the N CG beads. For each site I, a set of involved atoms is defined as

II = {i|cIi 6= 0}. (2.8)

1In what follows we adopt notations of ref. [3].

3
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An atom i in the atomistic model is involved in a CG site, I, if and only if this atom provides a
nonzero contribution to the sum in eq. 2.6.

A set of specific atoms is defined as

SI = {i|cIi 6= 0 and cJi = 0 for all J 6= I}. (2.9)

In other words, atom i is specific to site I if and only if this atom is involved in site I and is not
involved in the definition of any other site.

The CG model will generate an equilibrium distribution of momenta that is consistent with
an underlying atomistic model if all the atoms are specific and if the mass of the Ith CG site is
given by [3]

MI =

(

∑

i∈II

c2Ii
mi

)−1

. (2.10)

If all atoms are specific and the center of mass of a bead is used for mapping, then cIi =
mi

MI

, and
the condition 2.10 is automatically satisfied.

2.2 Boltzmann inversion

Boltzmann inversion is mostly used for bonded potentials, such as bonds, angles, and torsions [5].
Boltzmann inversion is structure-based and only requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that in a canonical ensemble independent

degrees of freedom q obey the Boltzmann distribution, i. e.

P (q) = Z−1 exp [−βU(q)] , (2.11)

where Z =
∫

exp [−βU(q)] dq is a partition function, β = 1/kBT . Once P (q) is known, one can
obtain the coarse-grained potential, which in this case is a potential of mean force, by inverting
the probability distribution P (q) of a variable q, which is either a bond length, bond angle, or
torsion angle

U(q) = −kBT lnP (q) . (2.12)

The normalization factor Z is not important since it would only enter the coarse-grained potential
U(q) as an irrelevant additive constant.

Note that the histograms for the bonds Hr(r), angles Hθ(θ), and torsion angles Hϕ(ϕ) have
to be rescaled in order to obtain the volume normalized distribution functions Pr(r), Pθ(θ), and
Pϕ(ϕ), respectively,

Pr(r) =
Hr(r)

4πr2
, Pθ(θ) =

Hθ(θ)

sin θ
, Pϕ(ϕ) = Hϕ(ϕ) , (2.13)

where r is the bond length r, θ is the bond angle, and ϕ is the torsion angle. The bonded
coarse-grained potential can then be written as a sum of distribution functions

U(r, θ, ϕ) = Ur(r) + Uθ(θ) + Uϕ(ϕ) , (2.14)

Uq(q) = −kBT lnPq(q), q = r, θ, ϕ .

On the technical side, the implementation of the Boltzmann inversion method requires smooth-

ing of U(q) to provide a continuous force. Splines can be used for this purpose. Poorly and un-
sampled regions, that is regions with high U(q), shall be extrapolated. Since the contribution of
these regions to the canonical density of states is small, the exact shape of the extrapolation is
less important.

Another crucial issue is the cross-correlation of the coarse-grained degrees of freedom. Indepen-
dence of the coarse-grained degrees of freedom is the main assumption that allows factorization of
the probability distribution and the potential, eq. 2.14. Hence, one has to carefully check whether
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this assumption holds in practice. This can be done by performing coarse-grained simulations and
comparing cross-correlations for all pairs of degrees of freedom in atomistic and coarse-grained
resolution, e. g. using a two-dimensional histogram, analogous to a Ramachandran plot. 2

2.2.1 Separation of bonded and non-bonded degrees of freedom

When coarse-graining polymeric systems, it is convenient to treat bonded and non-bonded interac-
tions separately [5]. In this case, sampling of the atomistic system shall be performed on a special
system where non-bonded interactions are artificially removed, so that the non-bonded interac-
tions in the reference system do not contribute to the bonded interactions of the coarse-grained
model.

This can be done by employing exclusion lists using csg_boltzmann with the option --excl .
This is described in detail in sec. 5.1.

φ
1

φ
2

θ1

excluded

Figure 2.1: Example of excluded interactions.

2Checking the linear correlation coefficient does not guarantee statistical independence of variables, for example
c(x, x2) = 0 if x has a symmetric probability density P (x) = P (−x). This case is often encountered in systems
used for coarse-graining.
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2.3 Iterative methods

initial guess

sampling

calculate po-
tential update

converged?

done

yes

no

Figure 2.2: Block-
scheme of an itera-
tive method.

Iterative workflow control is essential for the IBI and IMC methods. The
general idea of iterative workflow is sketched in fig. 2.2. A run starts with
an initial guess during the global initialization phase. This guess is used
for the first sampling step, followed by an update of the potential. The
update itself often requires additional postprocessing such as smoothing,
interpolation, extrapolation or fitting. Different methods are available to
update the potential, for instance Iterative Boltzmann Inversion (see next
section 2.4) or Inverse Monte Carlo (see section 2.5). The whole procedure
is then iterated until a convergence criterion is satisfied.

2.4 Iterative Boltzmann Inversion

Iterative Boltzmann inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately as possible,
one can also iteratively refine the coarse-grained potentials using some nu-
merical scheme.

In IBI the potential update ∆U is given by [6]

U (n+1) = U (n) + λ∆U (n) , (2.15)

∆U (n) = kBT ln
P (n)

Pref
= U ref

PMF − U
(n)
PMF . (2.16)

Here λ ∈ (0, 1] is a numerical factor which helps to stabilize the scheme.
The convergence is reached as soon as the distribution function P (n)

matches the reference distribution function Pref , or, in other words, the potential of mean force,

U
(n)
PMF, converges to the reference potential of mean force.

IBI can be used to refine both bonded and non-bonded potentials. It is primarily used for
simple fluids with the aim to reproduce the radial distribution function of the reference system in
order to obtain non-bonded interactions. On the implementation side, IBI has the same issues as
the inverse Boltzmann method, i. e. smoothing and extrapolation of the potential must be used.

2.5 Inverse Monte Carlo

Inverse Monte Carlo (IMC) is an iterative scheme which additionally includes cross correlations
of distributions. A detailed derivation of the IMC method can be found in ref. [7].

The potential update ∆U of the IMC method is calculated by solving a set of linear equations

〈Sα〉 − Sref
α = Aαγ∆Uγ , (2.17)

where

Aαγ =
∂ 〈Sα〉

∂Uγ

= β (〈Sα〉 〈Sγ〉 − 〈SαSγ〉) ,

and S the histogram of a coarse-grained variable of interest. For example, in case of coarse-graining
of the non-bonded interactions which depend only on the distance rij between particles i and j
and assuming that the interaction potential is short-ranged, i.e. U(rij) = 0 if rij ≥ rcut, the
average value of Sα is related to the radial distribution function g(rα) by

〈Sα〉 =
N(N − 1)

2

4πr2α∆r

V
g(rα) , (2.18)
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where N is the number of atoms in the system ( 12N(N − 1) is then the number of all pairs), ∆r is
the grid spacing, rcut/M , V is the total volume of the system. In other words, in this particular
case the physical meaning of Sα is the number of particle pairs with interparticle distances rij = rα
which correspond to the tabulated value of the potential Uα.

2.6 Force Matching

Force matching (FM) is another approach to evaluate corse-grained potentials [8–10]. In contrast
to the structure-based approaches, its aim is not to reproduce various distribution functions, but
instead to match the multibody potential of mean force as close as possible with a given set of
coarse-grained interactions.

The method works as follows. We first assume that the coarse-grained force-field (and hence
the forces) depends on M parameters g1, ..., gM . These parameters can be prefactors of analytical
functions, tabulated values of the interaction potentials, or coefficients of splines used to describe
these potentials.

In order to determine these parameters, the reference forces on coarse-grained beads are cal-
culated by summing up the forces on the atoms

F ref
I =

∑

j∈SI

dIi
cIi

fj(r
n), (2.19)

where the sum is over all atoms of the CG site I (see. sec. 2.1). The dIj coefficients can, in
principle, be chosen arbitrarily, provided that the condition

∑n
i=1 dIi = 1 is satisfied [3]. If

mapping coefficients for the forces are not provided, it is assumed that dIj = cIj (see also sec. 3).
By calculating the reference forces for L snapshots we can write down N × L equations

F
cg
Il (g1, . . . , gM ) = F ref

il , I = 1, . . . , N, l = 1, . . . , L . (2.20)

Here F ref
Il is the force on the bead I and F

cg
Il is the coarse-grained representation of this force. The

index l enumerates snapshots picked for coarse-graining. By running the simulations long enough
one can always ensure that M < N × L. In this case the set of equations 2.20 is overdetermined
and can be solved in a least-squares manner.

F
cg
il is, in principle, a non-linear function of its parameters {gi}. Therefore, it is useful to

represent the coarse-grained force-field in such a way that equations (2.20) become linear func-
tions of {gi}. This can be done using splines to describe the functional form of the forces [9].
Implementation details are discussed in ref. [1].

Note that an adequate sampling of the system requires a large number of snapshots L. Hence,
the applicability of the method is often constrained by the amount of memory available. To remedy
the situation, one can split the trajectory into blocks, find the coarse-grained potential for each
block and then perform averaging over all blocks.
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Chapter 3

Input files

3.1 Mapping files

Mapping relates atomistic and coarse-grained representations of the system. It is organized as
follows: for each molecule type a mapping file is created. When used as a command option, these
files are combined in a list separated by a semicolon, e. g. --cg "protein.xml;solvent.xml" .

C1 C2 C3

H6

H5

H4

H7

H8

H10

H11

H9

A1 A2B1

Figure 3.1: Atom labeling and mapping
from an all-atom to a united atom rep-
resentation of a propane molecule.

Each mapping file contains a topology of the coarse-
grained molecule and a list of maps. Topology specifies
coarse-grained beads and bonded interactions between
them. Each coarse-grained bead has a name, type, a
list of atoms which belong it, and a link to a map. A
map is a set of weights cIi for an atom i belonging to the
bead I. It is used to calculate the position of a coarse-
grained bead from the positions of atoms which belong
to it. Note that cIi will be automatically re-normalized
if their sum is not equal to 1, i. e. in the case of a center-
of-mass mapping one can simply specify atomic masses.
A complete reference for mapping file definitions can be
found in sec. 10.2.

As an example, we will describe here a mapping file
of a united atom model of a propane molecule, chemical structure of which is shown in fig. 1.1.
In this coarse-grained model two bead types (A,B) and three beads (A1, B1, A2) are defined, as
shown in fig. 3.1. We will use centers of mass of the beads as coarse-grained coordinates.

Extracts from the propane.xml file of the tutorial are shown below. The name tag indicates
the molecule name in the coarse-grained topology. The ident tag must match the name of the
molecule in the atomistic representation. In the topology section all beads are defined by spec-
ifying bead name (A1, B1, A2), type, and atoms belonging to this bead in the form residue
id:residue name:atom name . For each bead a map has to be specified, which is defined
later in maps section. Note that bead type and map can be different, which might be useful in
a situation when chemically different beads (A1, B1) are assigned to the same bead type. After
defining all beads the bonded interactions of the coarse-grained molecule must be specified in the
cg_bonded section. This is done by using the identifiers of the beads in the coarse-grained model.
Finally, in the mapping section, the mapping coefficients are defined. This includes a weighting of
the atoms in the topology section. In particular, the number of weights given should match the
number of beads.

9
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3.2 Verification of a mapping

Note that the ident tag should match the molecule name in the reference system. A common
mistake is that beads have wrong names. In this case, the csg_dump tool can be used in order
to identify the atoms which are read in from a topology file .tpr . This tool displays the atoms in
the format residue id:residue name:atom name . For multicomponent systems, it might
happen that molecules are not identified correctly. The workaround for this case is described
in sec. 3.3.

To compare coarse-grained and atomistic configurations one can use a standard visualization
program, e. g. vmd. When comparing trajectories, one has to be careful, since vmd opens both a
.gro and .trr file. The first frame is then the .gro file and the rest is taken from the .trr file.
The coarse-grained trajectory contains only the frames of the trajectory. Hence, the first frame of
the atomistic run has to be removed using the vmd menu.

3.3 Advanced topology handling

A topology is completely specified by a set of beads, their types, and a list of bonded interactions.
votca is able to read topologies in the GROMACS .tpr format. For example, one can create
a coarse-grained topology based on the mapping file and atomistic GROMACS topology using
csg_gmxtopol.

csg_gmxtopol --top topol.tpr --cg propane.xml --out out.t op

In some cases, however, one might want to use a .pdb file which does not contain all information
about the atomistic topology. In this case, additional information can be supplied in the XML
mapping file.

A typical example is lack of a clear definition of molecules, which can be a problem for simu-
lations with several molecules with multiple types. During coarse-graining, the molecule type is
identified by a name tag as names must be clearly identified. To do this, it is possible to read
a topology and then modify parts of it. The new XML topology can be used with the --tpr
option, as any other topology file.

For example, if information about a molecule is not present at all, one can create one from a
.pdb file as follows

<topology base= "snapshot.pdb">
<molecules>

<clear/>
<define name= "mCP" first= "1" nbeads= "52" nmols= "216"/>

</molecules>
</topology>

where <clear/> clears all information that was present before.
Old versions of GROMACS did not store molecule names. In order to use this feature, a

recent .tpr file containing molecule names should always be provided. For old topologies, rerun
GROMACS grompp to update the old topology file.

If molecule information is already present in the parent topology but molecules are not named
properly (as it is the case with old GROMACS .tpr files), one can rename them using

<topology base= "topol.tpr">
<molecules>

<rename name="PPY3" range= "1:125"/>
<rename name="Cl" range= "126:250"/>

</molecules>
</topology>

Here, the file topol.tpr is loaded first and all molecules are renamed afterwards.
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<cg_molecule>
<name>ppn</name> <!-- molecule name in cg representation -->
<ident> ppn</ident> <!-- molecule name in atomistic topology -->

<topology> <!-- topology of one molecule -->
<cg_beads>

<cg_bead> <!-- definition of a coarse-grained bead -->
<name>A1</name>
<type> A</type>
<mapping> A</mapping> <!-- reference to a map -->
<!-- atoms belonging to this bead -->
<beads> 1:ppn:C1 1:ppn:H4 1:ppn:H5 1:ppn:H6 </beads>

</cg_bead>
<!-- more bead definitions -->

</cg_beads>

<cg_bonded> <!-- bonded interactions -->
<bond>

<name>bond </name>
<beads>

A1 B1
B1 A2

</beads>
</bond>

<angle>
<name>angle </name>
<beads>

A1 B1 A2
</beads>

</angle>
</cg_bonded>

</topology>

<maps>
<map> <!-- mapping A -->

<name>A</name>
<weights> 12 1 1 1 </weights>

</map>
<!-- more mapping definitions -->

</maps>
</cg_molecule> <!-- end of the molecule -->

Figure 3.2: An extract from the mapping file propane.xml of a propane molecule. The complete
file can be found in the propane/single_molecule tutorial.



12 CHAPTER 3. INPUT FILES

3.4 Trajectories

A trajectory is a set of frames containing coordinates (velocities and forces) for the beads defined
in the topology. votca currently supports .trr , .xtc , .pdb and .gro trajectory formats.

Once the mapping file is created, it is easy to convert an atomistic to a coarse-grained trajectory
using csg_map

csg_map --top topol.tpr --trj traj.trr --cg propane.xml -- out cg.gro

The program csg_map also provides the option --no-map . In this case, no mapping is done
and csg_map works as a trajectory converter. In general, mapping can be enabled and disabled
in most analysis tools, e.g. in csg_stat or csg_fmatch.

Note that the topology files can have a different contents as bonded interactions are not pro-
vided in all formats. In this case, mapping files can be used to define and relabel bonds.

Also note that the default setting concerning mapping varies individually between the pro-
grams. Some have a default setting that does mapping (such as csg_map, use --no-map to
disable mapping) and some have mapping disabled by default (e.g. csg_stat, use --cg to enable
mapping).

3.5 Setting files

<cg>
<non-bonded> <!-- non-bonded interactions -->

<name>A-A</name> <!-- name of the interaction -->
<type1> A</type1> <!-- types involved in this interaction -->
<type2> A</type2>
<min> 0</min> <!-- dimension + grid spacing of tables-->
<max>1.36 </max>
<step> 0.01 </step>
<inverse>

... specific commands
</inverse>

... specific section for inverse boltzmann, force matching etc.
</non-bonded>

</cg>

Figure 3.3: Abstract of a settings.xml file. See sec. 7.1.1 for a full version.

A setting file is written in the format .xml . It consists of a general section displayed above,
and a specific section depending on the program used for simulations. The setting displayed above
is later extended in the sections on iterative boltzmann inversion (csg_inverse), force matching
(csg_fmatch) or statistical analysis (csg_stat).

Generally, csg_stat is an analysis tool which can be used for computing radial distribution
functions and analysing them. As an example, the command

csg_stat --top topol.tpr --trj traj.xtc --options setting s.xml

computes the distributions of all interactions specified in settings.xml and writes all tab-
ulated distributions as files “interaction name”.dist.new .
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3.6 Table formats

Distribution functions, potentials and forces are returned as tables and saved in a file. Those
tables generally have the format

x y [error] flag

where x is input quantity (e.g. radius r, angles θ or φ), y is the computed quantity (e.g. a
potential) and [error] is an optional error for y . The token flag can take the values i , o or
u. In the first case, i (in range ) describes a value that lies within the data range, o (out of
range ) symbolises a value out of the data range and u stands for an undefined value.

The token flag will be important when extrapolating the table as described in sec. 4.2.
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Chapter 4

Preparing coarse-grained runs

Preliminary note

The coarse-grained run requires the molecule topology on the one hand and suitable potentials on
the other. In this chapter, the generation of coarse-grained runs is decribed next, followed by a
post-processing of the potential.

If the potential is of such a form that it allows direct fitting of a functional form, the section on
post-processing can be skipped. Instead, a program of choice should be used to fit a functional form
to the potential. Nevertheless, special attention should be paid to units (angles, bondlengths).
The resulting curve can then be specified in the MD package used for simulation. However, most
potentials don’t allow an easy processing of this kind and tabulated potentials have to be used.

4.1 Generating a topology file for a coarse-grained run

WARNING: This section describes experimental features. The exact names and
options of the program might change in the near future. The section is specific to
GROMACS support though a generalization for other MD packages is planned.

The mapping definition is close to a topology needed for a coarse grained run. To avoid redundant
work, csg_gmxtopol can be used to automatically generate a gromacs topology based on an
atomistic reference system and a mapping file.

At the current state, csg_gmxtopol can only generate the topology for the first molecule in
the system. If more molecule types are present, a special tpr file has to be prepared. The program
can be executed by

csg_gmxtopol --top topol.tpr --cg map.xml --out cgtop

which will create a file cgtop.top . This file includes the topology for the first molecule including
definitions for atoms, bonds, angles and dihedrals. It can directly be used as a topology in
GROMACS, however the force field definitions (atom types, bond types, etc.) still have to be
added manually.

4.2 Post-processing of the potential

The votca package provides a collection of scripts to handle potentials. They can be modified,
refined, integrated or inter- and extrapolated. These scripts are the same ones as those used for
iterative methods in chapter 7. Scripts are called by csg_call. A complete list of available scripts
can be found in sec. 10.4.

The post-processing roughly consists of the following steps (see further explanations below):

• (manually) clipping poorly sampled (border) regions

15
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• resampling the potential in order to change the grid to the proper format (csg_resample)

• extrapolation of the potential at the borders (csg_call table extrapolate)

• exporting the table to xvg (csg_call convert_potential gromacs)

Clipping of poorly sampled regions

Regions with an irregular distribution of samples should be deleted first. This is simply done by
editing the .pot file and by deleting those values.

Alternatively, manually check the range where the potential still looks good and is not to noisy
and set the flags in the potential file of the bad parts by hand to o (for out of range ). Those
values will later be extrapolated and overwritten.

Resampling

Use the command

csg_resample --in table.pot --out table_resample.pot \
--grid min:step:max

to resample the potential given in file –table.pot from min to max with a grid spacing of step
steps. The result is written to the file specified by out . Additionally, csg_resample allows the
specification of spline interpolation (spfit ), the calculation of derivatives (derivative ) and
comments (comment). Check the help (help ) for further information.

It is important to note that the values min and max don’t correspond to the minimum and
maximum value in the input file, but to the range of values the potential is desired to cover after
extrapolation. Therefore, values in [min,max] that are not covered in the file are automatically
marked by a flag o (for out of range ) for extrapolation in the next step.

The potential don’t have to start at 0, this is done by the export script (to xvg) automatically.

Extrapolation

The following line

csg_call table extrapolate [options] table_resample.pot \
table_extrapolate.pot

calls the extrapolation procedure, which processes the range of values marked by csg_resample.
The input file is table_resample.pot created in the last step.

After resampling, all values in the potential file that should be used as a basis for extrapolation
are marked with an i , while all values that need extrapolation are marked by o. The command
above now extrapolates all o values from the i values in the file. Available options include averaging
over a certain number of points (avgpoints ), changing the functional form (function , default
is quadratic), extrapolating just the left or right region of the file (region ) and setting the
curvature (curvature ).

The output table_extrapolate.pot of the extrapolation step can now be used for the
coarse-grained run. If GROMACS is used as a molecule dynamics package, the potential has to
be converted and exported to a suitable GROMACS format as described in the final step.

Exporting the table

Finally, the table is exported to xvg . The conversion procedure requires a small xml file table.xml
as shown below:
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<cg>
<inverse>

<gromacs>
<pot_max>1e8</pot_max>
<table_end>8.0</table_end>
<table_bins>0.002</table_bins>

</gromacs>
</inverse>

</cg>

where <table_end> is the GROMACS rvdw+table_extension and <pot_max> is just a
number slightly smaller than the upper value of single/ double precision. The value given in
<table_bins> corresponds to the step value of csg_resample -grid min:step:max .

Using the xml file above, call

csg_call --options table.xml --ia-type non-bonded \
convert_potential gromacs table_extrapolate.pot table. xvg

to convert the extrapolated values in table_extrapolate.pot to table.xvg (The file will
contain the GROMACS C12 parts only which are stored in the sixth und seventh column, this can
be changed by adding the -ia-type C6 option (for the fourth and fiveth column) or -ia-type
CB option (for the second and third column) after csg_call. Ensure compatibility with the
GROMACS topology. See the GROMACS manual for further information).

To obtain a bonded table, run

csg_call --ia-type bonded --options table.xml convert_po tential gromacs \
table_extrapolate.pot table.xvg

It is also possible to use angle and dihedral as type as well.
Internally convert_potential gromacs will do the following steps:

• Resampling of the potential from 0 (or -180 for dihedrals) to table_end (or 180 for angles
and dihedrals) with step size table_bins . This is needed for gromacs the table must start
with 0 or -180.

• Extrapolate the left side (to 0 or -180) expontially

• Extrapolate the right side (to table_end or 180) expontially (or constant for non-bonded
interactions)

• Shift it so that the potential is zero at table_end for non-bonded interactions or zero at
the minium for bonded interaction

• Calculate the force (assume periodicity for dihedral potentials)

• Write to the format needed by gromacs

An example on non-bonded interactions

csg_call pot shift_nonbonded table.pot table.pot.refine d
csg_resample --grid 0.3:0.05:2 --in table.pot.refined \

--out table.pot.refined
csg_call table extrapolate --function quadratic --region left \

table.pot.refined table.pot.refined
csg_call table extrapolate --function constant --region r ight \

table.pot.refined table.pot.refined
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4.3 Alternatives

Additionally to the two methods described above, namely (a) providing the MD package directly
with a functional form fitted with a program of choice or (b) using csg_resample , csg_call
table extrapolate and csg_call convert_potential , another method would be suit-
able. This is integrating the force table as follows

-Integrate the table
$csg_call table integrate force.d minus_pot.d
-multiply by -1
$csg_call table linearop minus_pot.d pot.d -1 0



Chapter 5

Boltzmann Inversion

Boltzmann inversion provides a potential of mean force for a given degree of freedom.

Prepare atom-
istic topology

Define map-
ping scheme

csg dump to list atoms

Verify map-
ping scheme

csg map to map
Visualize reference + mapped in e.g.
VMD

Create exclusion list csg boltzmann –excl

Generate refer-
ence trajectory

csg boltzmann to get
distributions/potentials

Figure 5.1: Flowchart demonstrating useful
options of the tool.

It is mostly used for deriving bonded interactions
from canonical sampling of a single molecule in
vacuum, e. g. for polymer coarse-graining, where
it is difficult to separate bonded and non-bonded
degrees of freedom [5]. The non-bonded potentials
can then be obtained by using iterative methods
or force matching.

The main tool which can be used to cal-
culate histograms, cross-correlate coarse-grained
variables, create exclusion lists, as well as pre-
pare tabulated potentials for coarse-grained sim-
ulations is csg_boltzmann. It parses the whole
trajectory and stores all information on bonded
interactions in memory, which is useful for inter-
active analysis. For big systems, however, one can
run out of memory. In this case csg_stat can
be used which, however, has a limited number of
tasks it can perform (see sec. 3.5 for an example
on its usage).

Another useful tool is csg_map. It can
be used to convert an atomistic trajectory to a
coarse-grained one, as it is discussed in sec. 3.4.

To use csg_boltzmann one has to first define a mapping scheme. This is outlined in sec. 3.1.
Once the mapping scheme is specified, it is possible to generate an exclusion list for the proper
sampling of the atomistic resolution system.

5.1 Generating exclusion lists

Exclusion lists are useful when sampling from a special reference system is needed, for example
for polymer coarse-graining with a separation of bonded and non-bonded degrees of freedom.

To generate an exclusion list, an atomistic topology without exclusions and a mapping scheme
have to be prepared first. Once the .tpr topology and .xml mapping files are ready, simply run

csg_boltzmann --top topol.tpr --cg mapping.xml --excl exc lusions.txt

This will create a list of exclusions for all interactions that are not within a bonded interaction
of the coarse-grained sub-bead. As an example, consider coarse-graining of a linear chain of three
beads which are only connected by bonds. In this case, csg_boltzmann will create exclusions
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for all non-bonded interactions of atoms in the first bead with atoms of the 3rd bead as these
would contribute only to the non-bonded interaction potential. Note that csg_boltzmann will
only create the exclusion list for the fist molecule in the topology.

To add the exclusions to the GROMACS topology of the molecule, either include the file
specified by the –excl option into the .top file as follows

[ exclusions ]
#include "exclusions.txt"

or copy and paste the content of that file to the exclusions section of the gromacs topology file.

5.2 Statistical analysis

For statistical analysis csg_boltzmann provides an interactive mode. To enter the interactive
mode, use the -trj option followed by the file name of the reference trajectory

csg_boltzmann --top topol.tpr --trj traj.trr --cg mapping .xml

To get help on a specific command of the interactive mode, type

help <command>

for example

help hist
help hist set periodic

Additionally, use the

list

command for a list of available interactions. Note again that csg_boltzmann loads the whole
trajectory and all information on bonded interactions into the memory. Hence, its main application
should be single molecules. See the introduction of this chapter for the csg_stat command.

If a specific interaction shall be used, it can be referred to by

molecule:interaction-group:index

Here, molecule is the molecule number in the whole topology, interaction-group is the
name specified in the <bond> section of the mapping file, and index is the entry in the list of
interactions. For example, 1:AA-bond:10 refers to the 10th bond named AA-bond in molecule
1. To specify a couple of interactions during analysis, either give the interactions separated by a
space or use wildcards (e.g. * :AA-bond * ).

To exit the interactive mode, use the command q.
If analysis commands are to be read from a file, use the pipe or stdin redirects from the shell.

cat commands | csg_boltzmann topol.top --trj traj.trr --cg mapping.xml

5.2.1 Distribution functions and tabulated potentials

Distribution functions (tabulated potentials) can be created with the hist (tab ) command. For
instance, to write out the distribution function for all interactions of group AA-bond (where
AA-bond is the name specified in the mapping scheme) to the file AA.txt, type

hist AA.txt * :AA-bond: *

The command

hist set
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prints a list of all parameters that can be changed for the histogram: the number n of bins for
the table, bounds min and max for table values, scaling and normalizing, a flag periodic to
ensure periodic values in the table and an auto flag. If auto is set to 1, bounds are calculated
automatically, otherwise they can be specified by min and max. Larger values in the table might
extend those bounds, specified by parameter extend .

To directly write the Boltzmann-inverted potential, the tab command can be used. Its usage
and options are very similar to the hist command. If tabulated potentials are written, special
care should be taken to the parameters T (temperature) and the scale . The scale enables
volume normalization as given in eq. 2.13. Possible values are no (no scaling), bond (normalize
bonds) and angle (normalize angles). To write out the tabulated potential for an angle potential
at a temperature of 300K, for instance, type:

tab set T 300
tab set scale angle
tab angle.pot * :angle: *

The table is then written into the file angle.pot in the format described in sec. 3.6. An optional
correlation analysis is described in the next section. After the file has been created by command
tab , the potential is prepared for the coarse-grained run in chapter 4.

5.2.2 Correlation analysis

The factorization of P in eq. 2.14 assumed uncorrelated quantities. csg_boltzmann offers two
ways to evaluate correlations of interactions. One option is to use the linear correlation coefficient
(command cor ).

However, this is not a good measure since cor calculates the linear correlation only which
might often lead to misleading results [1]. An example for such a case are the two correlated
random variables X ∼ U [−1, 1] with uniform distribution, and Y := X2. A simple calculation
shows cov(X,Y ) = 0 and therefore

cor =
cov(X,Y )

√

var(X)var(Y )
= 0.

A better way is to create 2D histograms. This can be done by specifying all values (e.g. bond
length, angle, dihedral value) using the command vals, e.g.:

vals vals.txt 1:AA-bond:1 1:AAA-angle:A

This will create a file which contains 3 columns, the first being the time, and the second and
third being bond and angle, respectively. Columns 2 and 3 can either be used to generate the 2D
histogram, or a simpler plot of column 3 over 2, whose density of points reflect the probability.

Two examples for 2D histograms are shown below: one for the propane molecule and one for
hexane.

Figure 5.2: propane his-
togram Figure 5.3: hexane histograms: before and after the coarse-

grained run
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The two plots show the correlations between angle and bondlength for both molecules. In
the case of propane, the two quantities are not correlated as shown by the centered distribution,
while correlations exist in the case of hexane. Moreover, it is visible from the hexane plot that the
partition of the correlations has changed slightly during coarse-graining.

The tabulated potentials created in this section can be further modified and prepared for the
coarse-grained run: This includes fitting of a smooth functional form, extrapolation and clipping
of poorly sampled regions. Further processing of the potential is decribed in chapter 4.
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Force matching

The force matching algorithm with cubic spline basis is implemented in the csg_fmatch utility.
A list of available options can be found in the reference section of csg_fmatch (command -h ).

6.1 Program input

csg_fmatch needs an atomistic reference run to perform coarse-graining. Therefore, the trajec-
tory file must contain forces (note that there is a suitable option in the GROMACS .mdp file),
otherwise csg_fmatch will not be able to run.

In addition, a mapping scheme has to be created, which defines the coarse-grained model (see
sec. 3). At last, a control file has to be created, which contains all the information for coarse-
graining the interactions and parameters for the force-matching run. This file is specified by the
tag -options in the XML format. An example might look like the following

<cg>
<!--fmatch section -->
<fmatch>

<!--Number of frames for block averaging -->
<frames_per_block> 6</frames_per_block>
<!--Constrained least squares?-->
<constrainedLS> false </constrainedLS>

</fmatch>
<!-- example for a non-bonded interaction entry -->
<non-bonded>

<!-- name of the interaction -->
<name>CG-CG</name>
<type1> A</type1>
<type2> A</type2>
<!-- fmatch specific stuff -->
<fmatch>

<min> 0.27 </min>
<max>1.2 </max>
<step> 0.02 </step>
<out_step> 0.005 </out_step>

</fmatch>
</non-bonded>

</cg>

Similarly to the case of spline fitting (see sec. 10.1 on csg_resample), the parameters min and
max have to be chosen in such a way as to avoid empty bins within the grid. Determining min and
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Reference simulation Include forces in trajectory

Define map-
ping scheme

csg dump to list atoms

Verify map-
ping scheme

csg map to map
Visualize reference + mapped in e.g.
VMD

Setup force-
matching options

Provide correct intervals for distri-
butions (e.g. by csg boltzmann,
csg stat)

Run force-matching csg fmatch

Integrate forces
to get potential

csg call table integrate

Figure 6.1: Flowchart to perform force matching.

max by using csg_stat is recommended (see sec. 3.5). A full description of all available options
can be found in sec. 10.3.

6.2 Program output

csg_fmatch produces a separate .force file for each interaction, specified in the CG-options file
(option options ). These files have 4 columns containing distance, corresponding force, a table
flag and the force error, which is estimated via a block-averaging procedure. If you are working
with an angle, then the first column will contain the corresponding angle in radians.

To get table-files for GROMACS, integrate the forces in order to get potentials and do extrap-
olation and potentially smoothing afterwards.

Output files are not only produced at the end of the program execution, but also after every
successful processing of each block. The user is free to have a look at the output files and decide
to stop csg_fmatch, provided the force error is small enough.

6.3 Integration and extrapolation of .force files

To convert forces (.force ) to potentials (.pot ), tables have to be integrated. To use the built-in
integration command from the scripting framework, execute

$csg_call table integrate CG-CG.force minus_CG-CG.pot
$csg_call table linearop minus_CG-CG.d CG-CG.d -1 0

This command calls the table_integrate.pl script, which integrates the force and writes the
potential to the .pot file.

In general, each potential contains regions which are not sampled. In this case or in the case
of further post-processing, the potential can be refined by employing resampling or extrapolating
methods. See sec. 4.2 for further details.



Chapter 7

Iterative methods

The following sections deal with the methods of Iterative Boltzmann Inversion (IBI) and Inverse
Monte Carlo (IMC).

In general, IBI and IMC are both implemented within the same framework. Therefore, most
settings and parameters of those methods are similar and thus described in a general section (see
sec. 7.3). Further information on iterative methods follows in the next chapters, in particular on
the IBI and IMC methods.

Generate target
distributions

Either from atomistic simulation or
experiment

Generate coarse-
grained topology

either by hand pr csg gmxtopol
Cenerate all files to run simulation
except for missing potentials

Generate options file
Specify all interactions that should be
iteratively refined

Start iterations csg inverse <options.xml>

Check output
Monitor first couple of iterations.
Many parameters can be tuned on
the fly

Figure 7.1: Flowchart to perform iterative Boltzmann inversion.

7.1 Iterative workflow control

Iterative workflow control is essential for the IBI and IMC methods.

The general idea of iterative workflow is sketched in fig. 7.2. During the global initialization the
initial guess for the coarse-grained potential is calculated from the reference function or converted
from a given potential guess into the internal format. The actual iterative step starts with an
iteration initialization. It searches for possible checkpoints and copies and converts files from the
previous step and the base directory. Then, the simulation run is prepared by converting potentials
into the format required by the external sampling program and the actual sampling is performed.

After sampling the phasespace, the potential update is calculated. Often, the update requires
postprocessing, such as smoothing, interpolation, extrapolation or fitting to an analytical form.

Finally, the new potential is determined and postprocessed. If the iterative process continues,
the next iterative step will start to initialize.
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Global initialization
Initialize global variables (paths to
scripts, executables and user-defined
scripts)

Iteration initialization
Convert target distribution functions
into internal format, prepare input
files, copy data of the previous step

Prepare sampling
Prepare input files for the external
sampling program

Sampling
Canonical ensemble sampling with
molecular dynamics, stochastic dy-
namics or Monte Carlo techniques

Calculate updates
Analysis of the run. Evaluation of dis-
tribution functions, potential updates
∆U (n)

Postprocessing
of updates

Smoothing, extrapolation of potential
updates. Ad-hoc pressure correction.

Update potentials U (n+1) = U (n) +∆U (n)

Postprocessing
of potentials

Smoothing, extrapolation of potentials
U (n+1)

Continue?

Evaluation of the convergence crite-
rion either for ∆U (n) or distribution
functions. Check the number of itera-
tions.

Finish

yes

no

Figure 7.2: Block-scheme of the workflow control for the iterative methods. The most time-
consuming parts are marked in red.

How to start:

The first thing to do is generate reference distribution functions. These might come from exper-
iments or from atomistic simulations. To get reasonable results out of the iterative process, the
reference distributions should be of good quality (little noise, etc).

votca can create initial guesses for the coarse-grained potentials by boltzmann inverting the
distribution function. If a custom initial guess for an interaction shall be used instead, the table
can be provided in <interaction>.pot.in. As already mentioned, votca automatically creates
potential tables to run a simulation. However, it does not know how to run a coarse-grained
simulation. Therefore, all files needed to run a coarse-grained simulation, except for the potentials
that are iteratively refined, must be provided and added to the filelist in the settings XML-file. If
an atomistic topology and a mapping definition are present, votca offers tools to assist the setup
of a coarse-grained topology (see chapter 4).

To get an overview of how input files look like, it is suggested to take a look at one of the
tutorials provided on www.votca.org .

In what follows we describe how to set up the iterative coarse-graining, run the main script,
continue the run, and add customized scripts.

7.1.1 Preparing the run

To start the first iteration, one has to prepare the input for the sampling program. This means
that all files for running a coarse-grained simulation must be present and described in a separate

http://www.votca.org
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XML file, in our case settings.xml (see sec. 3.5 for details). An extract from this file is given
below. The only exception are tabulated potentials, which will be created and updated by the
script in the course of the iterative process.

The input files include: target distributions, initial guess (optional) and a list of interactions
to be iteratively refined. As a target distribution, any table file can be given (e.g. GROMACS
output from g_rdf ). The program automatically takes care to resample the table to the correct
grid spacing according to the options provided in settings.xml .

The initial guess is normally taken as a potential of mean force and is generated by Boltzmann-
inversion of the corresponding distribution function. It is written in step_000/<name>.pot.new .
If you want to manually specify the initial guess for a specific interaction, write the potential table
to a file called <name>.pot.in in the folder where you plan to run the iterative procedure.

A list of interactions to be iteratively refined has to be given in the options file. As an
example, the setting.xml file for a propane is shown in listing 7.3. For more details, see the
full description of all options in ref. 10.3.

7.1.2 Starting the iterative process

After all input files have been set up, the run can be started by

csg_inverse --options settings.xml

Each iteration is stored in a separate directory, named step_<iteration> . step_000 is a
special folder which contains the initial setup. For each new iteration, the files required to run the
CG simulation (as specified in the config file) are copied to the current working directory. The
updated potentials are copied from the last step, step_<n-1>/<interaction>.pot.new , and
used as the new working potentials step_<n>/<interaction>.pot.cur .

After the run preparation, all potentials are converted into the format of the sampling program
and the simulation starts. Once the sampling has finished, analysis programs generate new distri-
butions, which are stored in <interaction>.dist.new , and new potential updates, stored in
<interaction>.dpot.new .

Before adding the update to the old potential, it can be processed in the post_update
step. For each script that is specified in the postupdate, <interaction>.dpot.new is re-
named to <interaction>.dpot.old and stored in <interaction>.dpot.<a-number>
before the processing script is called. Each processing script uses the current potential update
<interaction>.dpot.cur and writes the processed update to <interaction>.dpot.new .
As an example, a pressure correction is implemented as a postupdate script within this framework.

After all postupdate scripts have been called, the update is added to the potential and the new
potential <interaction>.pot.new is written. Additional post-processing of the potential can
be performed in the post_add step which is analogous to the post_update step except for a
potential instead of an update.

To summarize, we list all standard output files for each iterative step:

* .dist.new distribution functions of the current step

* .dpot.new the final potential update, created by calc_update

* .dpot.<number> for each postupdate script, the .dpot.new is saved and a new one
is created

* .pot.cur the current potential used for the actual run

* .pot.new the new potential after the add step

* .pot.<number> same as dpot.<number> but for post_add
If a sub-step fails during the iteration, additional information can be found in the log file. The

name of the log file is specified in the steering XML file.

7.1.3 Restarting and continuing

The interrupted or finished iterative process can be restarted either by extending a finished run or
by restarting the interrupted run. When the script csg_inverse is called, it automatically checks
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[width=7cm]

<cg>
<non-bonded> <!-- non-bonded interactions -->

<name>A-A</name> <!-- name of the interaction -->
<type1> A</type1> <!-- types involved in this interaction -->
<type2> A</type2>
<min> 0</min> <!-- dimension + grid spacing of tables-->
<max>1.36 </max>
<step> 0.01 </step>
<inverse>

<target> A-A.dist.tgt </target> <!-- target distribution -->
<do_potential> 1 0 0</do_potential> <!-- update cycles -->
<gromacs>

<table> table_A_A.xvg </table>
</gromacs>

</inverse>
</non-bonded>
<!-- ... more non-bonded interactions -->

<!-- general options for the inverse script -->
<inverse>

<kBT>1.6629 </kBT> <!-- 300 * 0.00831451 gromacs units -->
<program> gromacs </program> <!-- use gromacs to sample -->
<gromacs> <!-- gromacs specific options -->

<equi_time> 10</equi_time> <!-- ignore so many frames -->
<table_bins> 0.002 </table_bins> <!-- grid for table * .xvg -->
<pot_max> 1000000 </pot_max> <!-- cut the potential at value -->
<table_end> 2.0 </table_end> <!-- extend the tables to value -->
<topol> topol.tpr </topol> <!-- topology + trajectory files -->
<traj> traj.xtc </traj>

</gromacs>
<!-- these files are copied for each new run -->
<filelist> grompp.mdp topol.top table.xvg

table_a1.xvg table_b1.xvg index.ndx
</filelist>
<iterations_max> 300</iterations_max> <!-- number of iterations -->
<method> ibi </method> <!-- inverse Boltzmann or inverse MC -->
<log_file> inverse.log </log_file> <!-- log file -->
<restart_file> restart_points.log </restart_file> <!-- restart -->

</inverse>
</cg>

Figure 7.3: settings.xml file specifies interactions to be refined, grid spacings, sampling engine,
and the iterative method. The complete file can be found in the propane/ibm tutorial.
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for a file called done in the current directory. If this file is found, the program assumes that the
run is finished. To extend the run, simply increase inverse.iterations_max in the settings file and
remove the file called done . After that, csg_inverse can be restarted, which will automatically
recognize existing steps and continue after the last one.

If the iteration was interrupted, the script csg_inverse might not be able to restart on its
own. In this case, the easiest solution is to delete the last step and start again. The script will then
repeat the last step and continue. However, this method is not always practical since sampling and
analysis might be time-consuming and the run might have only crashed due to some inadequate
post processing option. To avoid repeating the entire run, the script csg_inverse creates a file
with restart points and labels already completed steps such as simulation, analysis, etc. The file
name is specified in the option inverse.restart_file. If specific actions should be redone, one can
simply remove the corresponding lines from this file. Note that a file done is also created in each
folder for those steps which have been successfully finished.

7.2 Iterative Boltzmann Inversion

7.2.1 Input preparation

This section describes the usage of IBI, implemented within the scripting framework described in
the previous section 7.1. It is suggested to get a basic understanding of this framework before
proceeding.

IBI so far only supports iterative refinement of non-bonded interactions. An outline of the
workflow for performing IBI is given in fig. 7.1.

To specify Iterative Boltzmann Inversion as algorithm in the script, add ibi in the method
section of the XML setting file as shown below.

<cg>
...
<inverse>

<method> ibi </method>
</inverse>

</cg>

7.3 Inverse Monte Carlo

In this section, additional options are described to run IMC coarse graining. The usage of IMC
is similar to the one of IBI and understanding the use of the scripting framework described in
chapter 7.1 is necessary.

WARNING: multicomponent IMC is still experimental!

7.3.1 General considerations

In comparison to IBI, IMC needs significantly more statistics to calculate the potential update[1].
It is advisable to perform smoothing on the potential update. Smoothing can be performed as
described in sec. 7.4.3. In addition, IMC can lead to problems related to finite size: for methanol,
an undersized system proved to lead to a linear shift in the potential[1]. It is therefore always
necessary to check that the system size is sufficiently large and that runlength csg smoothing
iterations are well balanced.

7.3.2 Additional mapping for statistics

The program csg_stat is used for evaluating the IMC matrix. Although the matrix only acts on
the coarse-grained system here, it still needs a mapping file to work. This will improve with one of
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the next releases to simplify the setup. The mapping file needs to be a one to one mapping of the
coarse grained system, e.g. for coarse graining SPC/E water, the mapping file looks as follows:

</cg_molecule>
<name>SOL</name>
<ident> SOL</ident>
<topology>

<cg_beads>
<cg_bead>

<name>CG</name>
<type> CG</type>
<mapping> A</mapping>
<beads>

1:SOL:CG
</beads>

</cg_bead>
</cg_beads>

</topology>
<maps>

<map>
<name>A</name>
<weights> 1</weights>

</map>
</maps>

</cg_molecule>

7.3.3 Correlation groups

Unlike IBI, IMC also takes cross-correlations of interactions into account in order to calculate
the update. However, it might not always be beneficial to evaluate cross-correlations of all pairs
of interactions. By specifying inverse.imc.group, votca allows to define groups of interactions,
amongst which cross-correlations are taken into account, where inverse.imc.group can be any
name.

<non-bonded>
<name>CG-CG</name>
<type1> CG</type1>
<type2> CG</type2>
...
<imc>

<group> solvent </group>
</imc>

</non-bonded>
<non-bonded>

7.4 Pressure correction

The pressure of the coarse-grained system usually does not match the pressure of the full atomistic
system. This is because iterative Boltzmann inversion only targets structural properties but not
thermodynamic properties. In order correct the pressure in such a way that it matches the tar-
get pressure (inverse.p_target)., different strategies have been used based on small modifications
of the potential. The correction can be enable by adding pressure to the list of inverse.post_update

scripts. The type of pressure correction is selected by setting inverse.post_update_options.pressure.type.
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7.4.1 Simple pressure correction

In ref.[6] a simple linear attractive potential was added to the coarse-grained potential

∆V (r) = A

(

1−
r

rcutoff

)

, (7.1)

with prefactor A
A = − sgn(∆P )0.1kBT min(1, |f∆P ) , (7.2)

∆p = Pi − Ptarget, and scaling factor f and Ptarget can be specified in the settings file as
inverse.post_update_options.pressure.simple.scale and inverse.p_target .

As an example for a block doing simple pressure correction, every third interaction is

<post_update> pressure </post_update>
<post_update_options>

<pressure>
<type> simple </type>
<do>0 0 1</do>
<simple>

<scale> 0.0003 </scale>
</simple>

</pressure
</post_update_options>

Here, inverse.post_update_options.pressure.simple.scale is the scaling factor f . In order to get the
correct pressure it can become necessary to tune the scaling factor f during the iterative process.

7.4.2 Advanced pressure correction

In [11] a pressure correction based on the virial expression of the pressure was introduced. The
potential term remains as in the simple form while a different sturcture of the A factor is used:

A =

[

−2πρ2

3rcut

∫ rcut

0

r3gi(r)dr

]

Ai = ∆P. (7.3)

This factor requires the particle density ρ as additional input parameter, which is added as
inverse.particle_dens in the input file.

7.4.3 Runtime optimization

Most time per iteration is spent on running the coarse-grained system and on calculating the
statistics. To get a feeling on how much statistics is needed, it is recommended to plot the
distribution functions and check whether they are sufficiently smooth. Bad statistics lead to
rough potential updates which might cause the iterative refinement to fail. All runs should be
long enough to produce distributions/rdfs of reasonable quality.

Often, runtime can be improved by smoothing the potential updates. Our experience has
shown that it is better to smooth the potential update instead of the rdf or potential itself. If
the potential or rdf is smoothed, sharp features like the first peak in SPC/E water might get
lost. Smoothing on the delta potential works quite well, since the sharp features are already
present from the initial guess. By applying iterations of a simple triangular smoothing (∆Ui =
0.25∆Ui−1 + 0.5∆Ui + 0.25∆Ui+1), a reasonable coarse-grained potential for SPC/E water could
be produced in less than 10 minutes. Smoothing is implemented as a post_update script and can
be enabled by adding

<post_update> smooth </post_update>
<post_update_options>
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<smooth>
<iterations> 2</iterations>

</smooth>
</post_update_options>

to the inverse section of an interaction in the settings XML file.

7.5 Thermodynamic force

The thermodynamic force method is an iterative procedure to determine an external field that
can correct for density variations. This has been prooven to be usefull for multi-scale simulations
where all-atom and coarse-grained representations are simulated concurrently in one simulation.
The AdresS simulation scheme provides a protocol for such simulations.
The thermodynamic force is updated from the density profile in each simulation step as:

f
i+1
th (r) = f

i
th(r)−

1

ρ20κ
at
T

∇ρi(r) (7.4)

where ρi(r) can be either a density along one of the box axis or a radial density, this is specified
by the adress paramater adress_type in the gromacs mdp file. In order to use the thermodynamic
force iteration, VOTCA must be used together with the ’adress’ branch of gromacs. To check
whether your gromacs version support this type

mdrun -h

and look for the -tabletf option. A tutorial simulation set can be found in the tutorials (spce/tf)
which performs the thermodynamic force iteration for spc/e water coupled to a coarse-grained
spc/e water.
The method is selected by specifying

<method> tf </method>

in the inverse section. For each interaction type additional options have to be specified in the
settings.xml file. To specify in which region the thermodynamic force should be nonzero, the min
and max properties are used. A smoothing function proportional to cos2(r) is used to make the
force go smoothly to zero at the region specified by min and max. Additonally a ’tf’ section is
needed for each interaction type

<non-bonded>
<name>SOL</name>
<min> 1.4 </min>
<max>3.1 </max>

<step> 0.01 </step>
<tf>

<spline_start> 0.9 </spline_start>
<spline_end> 3.6 </spline_end>
<spline_step> 0.4 </spline_step>
<molname>SOL</molname>
<prefactor> 0.01382 </prefactor>

</tf>
<inverse>

<target> dens.SOL.xvg </target>
(...)

</inverse>
</non-bonded>
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Usually the density profile fluctuates too much to obtain a force directly from the gradient. Thus
spline interpolation is used to smooth the force. To specify the spline interpolation range the
spline_start and spline_end parameters are used. These can define a larger region than between
min and max as it is sometimes usefull to extend the spline fit for numerical stability. The pa-
rameter spline_step sepcifies the bin width of the fit grid (see csg_resample for more). The
field ’molname’ specifies the molecule (as defined in the gromacs topology) used for calculating
the density. The prefactor 1

ρ2

0
κat

T

appearing in eq 7.4 is specified in the ’prefactor’ field. A target

density file has to be specified for each interaction type, in most cases this will containt a flat
density profile at the equilibrium density ρ0.
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Chapter 8

ESPResSo interface

WARNING: The ESPResSo interface only supports the Iterative Boltzmann Inver-
sion scheme. It does not support Inverse Monte Carlo or Force Matching.

8.1 Running IBI with ESPResSo

While ESPResSo [12] is not capable of simulating atomistic systems, it is possible to coarse-grain
molecules from existing radial distribution functions. In addition to the target RDFs, the user
needs to provide two files:

• Blockfile

• XML settings file

The blockfile1 contains all the initial ESPResSo parameters to start the first simulation step:
time step, box size, temperature, friction coefficient of the thermostat, verlet skin, etc. It also
includes the initial positions, velocities, particle types, masses, molecule IDs of all the particles.
Including velocities is important to start at the correct temperature. Topology can be specified
by including the bond descriptions between particles. Interactions need also to be present, as
well as the thermostat itself. In this respect, the blockfile contains all the necessary information
required to directly start the simulation: from ESPResSo variable to initial structure to topology
to interactions. An example blockfile can easily be created by the following commands

set out [open "| gzip -c - > conf.esp.gz" w]
blockfile $out write variable all
blockfile $out write particles [list id type molecule mass p os v]
blockfile $out write interactions
blockfile $out write thermostat
blockfile $out write tclvariable [list list1]
close $out

where the first line opens the file for output (to a gzipped file), and the blockfile is generated by
appending information blocks. The next to last line contains a special TCL variable that contains
the list of particles to be taken into account during the RDF calculation. The blockfile itself can
be ordered in any way and can contain as much information as the user needs. The script above
represents the minimal amount of information that has to be supplied to votca. For examples
on generated blockfiles and on scripts to generate such blockfiles, see the Tutorials package:

tutorials/methanol/ibm_espresso/conf.esp.gz
tutorials/methanol/ibm_espresso/generate_esp_from_g ro/

1For more information on ESPResSo blockfiles, see the ESPResSo user guide.
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tutorials/propane/ibm_espresso/conf.esp.gz
tutorials/propane/ibm_espresso/generate_esp_from_gr o/

The XML settings file contains several pieces of information specific to ESPResSo (entries that
are common with GROMACS are not described here):

<cg><non-bonded><inverse><espresso><index1> provides the name of the TCL vari-
able containing the list of type1 particle IDs involved in the type1-type2 RDF calculation

<cg><non-bonded><inverse><espresso><index2> same as previously for the list of
type2 particle IDs.

<cg><inverse><program> should be “espresso”.

<cg><inverse><espresso> :

<bin> the name or path of the executable (e.g. Espresso_bin)

<equi_snapshots> trash so many snapshots before analyzing the data

<table_bins> bin size for table

<table_end> distance cutoff

<blockfile> input blockfile containing all simulation parameters (gzipped format)

<n_steps> number of MD steps to integrate between each snapshot

<n_snapshots> number of snaphsots before RDF calculation

See the Tutorials package for XML settings file examples:

tutorials/methanol/ibm_espresso/settings.xml
tutorials/propane/ibm_espresso/settings.xml
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Advanced topics

9.1 Customization

Each sub-step of an iteration and all direct calls can be adjusted to the user needs. The internal
part of the iterative framework is organized as follows: all scripts are called using two keywords

csg_call key1 key2

For example, csg_call update imc calls the update script for the inverse Monte Carlo pro-
cedure. The corresponding keywords are listed in sec. 10.4 or can be output directly by calling

csg_call --list

It is advised not to change already implemented scripts. To customize a script or add a new
one, copy the script to your own directory (set by inverse.scriptdir) and redirect its call by creating
your own csg_table file in this directory which looks like this

key1 key2 script1 options
key3 key4 script2

If the local keys are already in use, the existing call will be overloaded.
As an example, we will illustrate how to overload the script which calls the sampling package.

The csg_inverse script runs mdrun from the GROMACS package only on one cpu. Our task
will be to change the script so that GROMACS uses 8 cpus, which is basically the same as adding
mpirun options in inverse.gromacs.mdrun.command .

First we find out which script calls mdrun :

csg_call --list | grep gromacs

The output should look as follows

init gromacs initalize_gromacs.sh
prepare gromacs prepare_gromacs.sh
run gromacs run_gromacs.sh
pressure gromacs calc_pressure_gromacs.sh
rdf gromacs calc_rdf_gromacs.sh
imc_stat gromacs imc_stat_generic.sh
convert_potential gromacs potential_to_gromacs.sh

the third line indicates the script we need. If the output of csg_call is not clear, one can try to
find the right script in sec. 10.4. Alternatively, check the folder

<csg-installation>/share/scripts/inverse
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for all available scripts.
Analyzing the output of

csg_call --cat run gromacs

we can conclude that this is indeed the script we need as the content (in shorted form is):

critical mdrun

Now we can create our own SCRIPTDIR, add a new script there, make it executable and overload
the call of the script:

mkdir -p SCRIPTDIR
cp ‘csg_call --quiet --show run gromacs‘ SCRIPTDIR/my_run _gromacs.sh
chmod 755 SCRIPTDIR/my_run_gromacs.sh
echo "run gromacs my_run_gromacs.sh" >> SCRIPTDIR/csg_ta ble

Please note that my_run_gromacs.sh is the name of the script and SCRIPTDIR is the cus-
tom script directory, which can be a global or a local path. Now we change the last line of
my_run_gromacs.sh to:

critical mpirun -np 8 mdrun

This completes the customization. Do not forget to add SCRIPTDIR to inverse.scriptdir in the
setting XML file (see sec. 10.3).

You can check the new script by running:

csg_call --scriptdir SCRIPTDIR --list
csg_call --scriptdir SCRIPTDIR --run run gromacs

Finally, do not forget to remove the license infomation and change the version number of the
script.

9.2 Used external packages

9.2.1 GroMaCS

Get it from www.gromacs.org

• mdrun

• grompp

9.2.2 ESPResSo

Get it from www.espressomd.org

9.2.3 Gnuplot

Get it from www.gnuplot.info

9.2.4 GNU Octave

Get it from www.gnu.org

9.2.5 Matlab

Get it from www.mathworks.com

9.2.6 NumPy

Get it from http://numpy.scipy.org

http://www.gromacs.org
http://www.espressomd.org
http://www.gnuplot.info
http://www.gnu.org/software/octave/
http://www.mathworks.com/products/matlab/
http://numpy.scipy.org
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Reference

10.1 Programs

10.1.1 csg_boltzmann

Performs tasks that are needed for simple boltzmann inversion in an interactive environment.
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
Mapping options:
--cg arg coarse graining mapping definitions (xml-file)
--map-ignore arg list of molecules to ignore separated by ;
--no-map disable mapping and act on original trajectory
Special options:
--excl arg write exclusion list to file

Trajectory options:
--trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time
--first-frame arg (=0) start with this frame
--nframes arg process the given number of frames

10.1.2 csg_call

This script calls scripts for the iterative framework
Usage: csg_call [OPTIONS] key1 key2
Allowed options:

-l, --list Show list of all script
--cat Show the content of the script
--show Show the path to the script
--show-share Shows the used CSGSHARE dir and exits
--scriptdir DIR Set the user script dir (Used if no optins xml file is given) Default:
empty
--simprog PROG Set the simprog (Used if no options xml file is given) Default: empty
--options FILE Specify the options xml file to use
--log FILE Specify the log file to use Default: stdout
--ia-type type Specify the interaction type to use
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--ia-name name Specify the interaction name to use
--nocolor Disable colors
--debug Enable debug mode with a lot of information
-h, --help Show this help

Examples:
csg_call table smooth [ARGUMENTS]
csg_call --show run gromacs

10.1.3 csg_density

Calculates the mass density distribution along a box axis or radial density profile from reference
point
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
Mapping options:
--cg arg [OPTIONAL] coarse graining mapping definitions (xml-file). If no file is given,
program acts on original trajectory

Specific options::
--axis arg (=r) [x|y|z|r] density axis (r=spherical)
--bins arg (=50) bins
--out arg Output file
--rmax arg rmax (default for [r] =min of all box vectors/2, else l )
--scale arg (=1) scale factor for the density
--molname arg (= * ) molname
--filter arg (= * ) filter bead names
--ref arg reference zero point

Trajectory options:
--trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time
--first-frame arg (=0) start with this frame
--nframes arg process the given number of frames

10.1.4 csg_dump

Print atoms that are read from topology file to help debugging atom naming.
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
Mapping options:
--cg arg [OPTIONAL] coarse graining mapping definitions (xml-file). If no file is given,
program acts on original trajectory

Specific options:
--excl display exclusion list instead of molecule list

10.1.5 csg_fmatch

Perform force matching (also called multiscale coarse-graining)



10.1. PROGRAMS 41

Allowed options:
-h [ --help ] produce this help message
--top arg atomistic topology file
--options arg options file for coarse graining
--trj-force arg coarse-grained trajectory containing forces of already known interac-
tions
Mapping options:
--cg arg coarse graining mapping definitions (xml-file)
--map-ignore arg list of molecules to ignore separated by ;
--no-map disable mapping and act on original trajectory

Trajectory options:
--trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time
--first-frame arg (=0) start with this frame
--nframes arg process the given number of frames

10.1.6 csg_gmxtopol

Create skeleton for gromacs topology based on atomistic topology and a mapping file. File still
needs to be modified by the user.
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
--out arg output topology (will create .top and in future also .itp)
Mapping options:
--cg arg coarse graining mapping definitions (xml-file)
--map-ignore arg list of molecules to ignore separated by ;
--no-map disable mapping and act on original trajectory

10.1.7 csg_imcrepack

This program is internally called by inversion scripts to kick out zero entries in matrix for inverse
Monte Carlo. It also extracts the single potential updates out of the full solution.
Allowed options:

--in arg files to read
--out arg files to write
--unpack arg extract all tables from this file
--help display help message

10.1.8 csg_inverse

Start the script to run ibi, imc, etc. or clean out current dir
Usage: csg_inverse [OPTIONS] --options settings.xml [clean]
Allowed options:

-h, --help show this help
-N, --do-iterations N only do N iterations
--wall-time SEK Set wall clock time
--options FILE Specify the options xml file to use
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--debug enable debug mode with a lot of information
--nocolor disable colors

Examples:
csg_inverse --options cg.xml
csg_inverse -6 --options cg.xml

10.1.9 csg_map

Map a reference trajectory to a coarse-grained trajectory. This program can be used to map a
whole trajectory or to create an initial configuration for a coarse-grained run only.
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
--out arg output file for coarse-grained trajectory
Mapping options:
--cg arg coarse graining mapping definitions (xml-file)
--map-ignore arg list of molecules to ignore separated by ;
--no-map disable mapping and act on original trajectory

Trajectory options:
--trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time
--first-frame arg (=0) start with this frame
--nframes arg process the given number of frames

10.1.10 csg_part_dist

This program reads a topology and (set of) trajectory(ies). For every binned value of a chosen
coordinate, it outputs the time-averaged number of particles, listed by particle types.
Allowed options:

--top arg topology file
--trj arg trajectory file
--grid arg output grid spacing (min:step:max)
--out arg output particle distribution table
--ptypes arg particle types to include in the analysis arg: file - particle types separated
by space default: all particle types
--first_frame arg first frame considered for analysis
--last_frame arg last frame considered for analysis
--coord arg coordinate analyzed (’x’, ’y’, or ’z’ (default))
--shift_com shift center of mass to zero
--comment arg store a comment in the output table
--help produce this help message

10.1.11 csg_property

Helper program called by inverse scripts to parse xml file.
Allowed options:

--help produce this help message
--path arg list option values that match given criteria
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--filter arg list option values that match given criteria
--print arg (=. ) list option values that match given criteria
--file arg xml file to parse
--short short version of output
--with-path include path of node in output

10.1.12 csg_resample

Change grid and interval of any sort of table files. Mainly called internally by inverse script, can
also be used to manually prepare input files for coarse-grained simulations.
Allowed options:

--help produce this help message
--in arg table to read
--out arg table to write
--derivative arg table to write
--grid arg new grid spacing (min:step:max). If ’grid’ is specified only, interpolation is
performed.
--type arg (=akima) [cubic|akima|linear]. If option is not specified, the default type
’akima’ is assumed.
--fitgrid arg specify fit grid (min:step:max). If ’grid’ and ’fitgrid’ are specified, a fit is
performed.
--nocut Option for fitgrid: Normally, values out of fitgrid boundaries are cut off. If they
shouldn’t, choose --nocut.
--comment arg store a comment in the output table
--boundaries arg (natural|periodic|derivativezero) sets boundary conditions

10.1.13 csg_stat

Calculate all distributions (bonded and non-bonded) specified in options file. Optionally calculates
update matrix for invere Monte Carlo. This program is called inside the inverse scripts. Unlike
csg_boltzmann, big systems can be treated as well as non-bonded interactions can be evaluated.
Allowed options:

-h [ --help ] produce this help message
--top arg atomistic topology file
Mapping options:
--cg arg [OPTIONAL] coarse graining mapping definitions (xml-file). If no file is given,
program acts on original trajectory

Specific options:
--options arg options file for coarse graining
--do-imc write out Inverse Monte Carlo data
--write-every arg write after every block of this length, if --blocking is set, the averages
are cleared after every output
--do-blocks write output for blocking analysis

Threading options:
--nt arg (=1) number of threads

Trajectory options:
--trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time
--first-frame arg (=0) start with this frame
--nframes arg process the given number of frames
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10.1.14 multi_g_rdf

This is a multiplexed version of g_rdf
Usage: multi_g_rdf [OPTIONS] -- [g_rdf_options]
Allowed options:

-N, --NN Number of tasks Default: 8
-b TIME Begin time Default: 0
-e TIME End time
-n FILE Name of the index file Default: index.ndx
-o FILE.xvg Name of the total output file Default: rdf.xvg
--soutput FILE.xvg Name of the single output files Default: rdf_NP.xvg (used trunc
of name given by -o) (where NP is replaced later by the number of the process)
--log FILE Name of logfile Default: rdf_NP.log" (used trunc of name given by -o) (where
NP is replaced later by the number of the process)
--cmd CMD Change the gromacs command to run Default: g_rdf
--single Run only one task at the time
--debug Enable debug output
-q, --quiet Be a little bit quiet
-h, --help Show this help

Examples:
multi_g_rdf -e 1
multi_g_rdf -e 1 -- -bin 0.05

10.2 Mapping file

The root node always has to be cg_molecule. It can contain the following keywords:
ident Molecule name in reference topology.
maps Section containing definitions of mapping schemes.

map Section for a mapping for 1 bead.
name Name of the mapping.
weights Weights of the mapping matrix. Entries are normalized to 1, number of
entries must match the number of reference beads in a coarse-grained bead.

name Name of molecule in coarse-grained representation.
topology Section containing definition of coarse grained topology of molecule.

cg_beads Section defining coarse grained beads of molecule.
cg_bead Definition of a coarse grained bead.

beads The beads section lists all atoms of the reference system that are mapped
to this particular coarse grained bead. The syntax is RESID:RESNAME:ATOMNAME,
the beads are separated by spaces.
mapping Mapping scheme to be used for this bead (specified in section map-
ping) to map from reference system.
name Name of coarse grained bead.
type Type of coarse grained bead.

cg_bonded The cg_bonded section contains all bonded interaction of the molecule.
Those can be bond, angle or dihedral. An entry for each group of bonded interac-
tion can be specified, e.g. several groups (types) of bonds can be specified. A specific
bonded interaction can be later on addressed by MOLECULE:NAME:NUMBER, where
MOLECULE is the molecule ID in the whole topology, NAME the name of the inter-
action group and NUMBER addresses the interaction in the group.
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angle Definition of a group of angles.
beads List of triples of beads that define a bond. Names specified in cg_beads,
separated by commas.
name Name of the group.

bond Definition of a group of bonds.
beads List of pair of beads that define a bond. Names specified in cg_beads,
separated by commas.
name Name of the group.

dihedral Definition of a group of dihedrals. Since the exact functional form does
not matter, this combines proper as well as improper dihedrals.

beads List of quadruples of beads that define a bond. Names specified in
cg_beads, separated by commas.
name Name of the group.

10.3 Settings file

All options for the iterative script are stored in an xml file.

cg Head option, which contains all coarse-graining options
bonded Section for a bonded interaction. Most of the items in here are identical to
items in cg.bonded, so they will be described in the same section.
fmatch Force matching options

constrainedLS boolean variable: false - simple least squares, true - constrained
least squares. For details see the VOTCA paper. Practically, both algorithms give
the same results, but simple least squares is faster. If you are a mathematician and
you think that a spline can only then be called a spline if it has continuous first
and second derivatives, use constrained least squares.
frames_per_block number of frames, being used for block averaging. Atomistic
trajectory, specified with --trj option, is divided into blocks and the force matching
equations are solved separately for each block. Coarse-grained force-field, which
one gets on the output is averaged over those blocks.

inverse general options for inverse script
$sim_prog generic simulation program (e.g. GROMACS) options

equi_time begin analysis after this time
first_frame trash the given number of frames at the beginning of trajectory

cleanlist these files are removed after each new run
convergence_check type of convergence check to do
convergence_check_options options for the convergence check

limit lower limit to stop
name_glob files to check for number (default *.conv)

espresso
blockfile Name of the original blockfile read by Espresso (default conf.esp.gz)
blockfile_out Name of the original outcome blockfile written by Espresso
(default confout.esp.gz)
command Command to run espresso (name or absolute path or mpirun espresso..)
debug debug Espresso (yes/no)
exclusions Espresso stuff to exclude
first_frame rash the given number of frames at the beginning of trajectory
meta_cmd Espresso metadynamics command to call [experimental]
meta_min_sampling Espresso metadynamics minimal number of sampling
[experimental]
n_snapshots number of snapshots. Total time = n_steps Makefile Make-
file.XMLS Makefile.incl cginteraction.xml.t2t cginteraction.xml.tex cgoptions.xml.t2t
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config.t2t mapping.xml.t2t mapping.xml.tex xml2t2t.sh n_snapshots
n_steps number of steps to integrate before a snapshot
pressure_command Espresso command to run when calculating the pressure
(name or absolute path or mpirun espresso..)
rdf_command Espresso command to run when calculating the rdf (name or
absolute path or mpirun espresso..)
scriptdir overwrite ESPRESSO_SCRIPTS from environment with this dir
success File to create if Espresso simulation was successfull
table_bins grid for tabulated potentials
table_end Espresso end of table
traj Name of the output Espresso trajectory file

filelist these files are copied for each new run
gromacs gromacs specific options

conf Name of the coordinate file read by grompp (default conf.gro)
conf_out Name of the original outcome coordinate written by mdrun (default
confout.gro)
cutoff_check check interaction cutoffs against rvdw in mdp file: yes/no (de-
fault yes)
equi_time begin analysis after this time when using gromacs
first_frame trash the given number of frames at the beginning of trajectory
g_energy
g_energy.bin Name (or absolute path) of the g_energy binary
g_energy.opts Additional options to Gromacs g_rdf (e.g. -P 1)
g_energy.topol Gromacs g_rdf topol file to use, default topol.tpr
g_rdf
g_rdf.bin Name (or absolute path) of the g_rdf binary
g_rdf.index Gromacs g_rdf index file to use, default index.ndx
g_rdf.opts Additional options for Gromacs g_rdf (e.g. -nopbc)
g_rdf.topol Gromacs g_rdf topol file to use, default topol.tpr
gmxrc GMXRC to source at the startup
grompp
grompp.bin Name (or absolute path) of the grompp binary
grompp.index Gromacs grompp index file to use, default index.ndx
grompp.opts Additional options to Gromacs grompp (e.g. -maxwarn 1)
grompp.topol Text Gromacs toplogy file to use, default topol.top
mdp Gromacs mdp fie to use, default grompp.mdp
mdrun
mdrun.checkpoint Name of the checkpint to use in case of restarted simula-
tion (default state.cpt)
mdrun.command Command to run mdrun (name or absolute path or mpirun
mdrun..)
mdrun.opts Additional options to Gromacs mdrun (e.g. -nosum)
pot_max cut the potential at this value (gromacs bug)
rdf
rdf.topol Gromacs topol file to be used for csg_stat default topol.tpr
table_bins grid for table*.xvg !
table_end extend the tables to this value
temp_check check temperture against t_ref in mdp file: yes/no (default yes)
topol binary Gromacs topology file to use, default topol.tpr
traj_type Gromacs trajectory type (xtc/trr) file to use, default xtc

imc general imc specific options
matlab
matlab.bin Name (or absolute path) of the matlab binary
numpy



10.3. SETTINGS FILE 47

numpy.bin Name (or absolute path) of the python binary used by the numpy
solver
octave
octave.bin Name (or absolute path) of the octave binary
solver solver for solving a linear equation system, can be octave or matlab

initial_configuration what initial configuration to use in every step: maindir/last-
step (default laststep)
iterations_max do the given number of iterations (0=inf)
kBT kBT (300*0.00831451 gromacs units)
log_file write log to this file
method ibi: inverse boltzmann imc: inverse monte carlo
program simulation package to be used
restart_file Name of the restart file in case a step has to be resumed
scriptdir directory for user scripts (e.g. $PWD)
simulation simulation options

background tell csg_inverse that simulation was send to the backgroud (de-
fault no)
tasks number of tasks (0/auto = automatic detect on linux)

nbsearch Grid search algorithm, simple (N square search) or grid (default is grid)
non-bonded Section for a non-bonded interaction. Most of the items in here are
identical to items in cg.bonded, so they will be described in the same section.

10.3.1 Interaction options

This section contains all interaction option, which could be contained in the non-bonded or bonded

section in sec. 10.3.
bondtype Internal alias for non-bonded and bonded, set automatically
fmatch Force matching options

max Maximum value of interval for distribution sampled in atomistic MD simulation.
One can get this number by looking at the distribution function for this interaction.
For non-bonded interactions it’s the cut-off of the interaction.
min Minimum value of interval for distribution sampled in atomistic MD simulation.
One can get this number by looking at the distribution function for this interaction.
For non-bonded interactions it’s the distance to the rdf start. For CG bonds and angles
the variable has the similar meaning ( note, that for angles it is specified in radians ).
out_step Grid spacing for the output grid. Normally, one wants to have this parameter
smaller than fmatch.step, to have a smooth curve, without additional spline interpola-
tion. As a rule of thumb we normally use fmatch.out_step which is approximately 5
times smaller than fmatch.step.
step grid spacing for the spline, which represents the interaction. This parameter
should not be too big, otherwise you might lose some features of the interaction poten-
tial, and not too small either, otherwise you will have unsampled bins which result in
an ill-defined equation system and NaNs in the output.

inverse Contains all information relevant to iterative process
do_potential Update cycle for the potential update. 1 means update, 0 don’t update.
1 1 0 means update 2 iterations, then don’t update, then repeat.
espresso This section contains espresso specific options in case espresso is used as
simulation program.

index1 Index list of type1 -- Name of the Tcl variable containing all index1 particles
that is contained in the espresso blockfile.
index2 Index list of type2 -- Name of the Tcl variable containing all index2 particles
that is contained in the espresso blockfile.
table Name of file for tabulated potential of this interaction. This file will be
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created from the internal tabulated potential format for every run. Note, though,
that the original espresso blockfile needs to contain the name of that table as the
tabulated interaction (see tutorial methanol ibi_espresso for details).

gromacs This section contains gromacs specific options in case gromacs is used as
simulation program.

grp1 Name of energy group of bead type1 using in the g_rdf index file.
grp2 Name of energy group of bead type2 using in the g_rdf index file.
table Name of file for tabulated potential of this interaction. This fill will be
created from the internal tabulated potential format for every run.

imc Section containing inverse monte carlo specific options.
group Group of interaction. Cross-correlations of all members of a group are
taken into account for calculating the update. If no cross correlations should be
calculated, interactions have to be put into different groups.

p_target partial pressure of this species
particle_dens particle density of this species (for wjk pressure correction)
post_add Additional post processing of U after dU added to potential. This is a list
of scripts separated by spaces which are called. See section on iterative framework for
details.
post_add_options Contains all options of post add scripts This section contains all
options for post add scripts.

convergence
weight weight factors for the convergence of the interaction, should be a list
of same length as inverse.post_add_options.convergence.what (default 1)
what list for what to calc the convergence: dist pot, .. (default dist)

copyback
filelist list of files to copy to the main dir

overwrite Contains all options of the overwrite postadd scripts
do pattern for overwrite postadd script (1 do, 0 do not).

plot
fd file descriptor to use (default 8), make it unique if you want to plot multiple
things
gnuplot_bin gnuplot binary to use (default gnuplot)
gnuplot_opts extra options to give to gnuplot_bin (e.g. -persist, if one uses
kill)
kill kill all processes with that name before ploting (e.g. gnuplot_x11), this is
more reliable than using multiplot
script plot script to give to gnuplot

post_update Additional post-processing of dU before added to potential. This is a
list of scripts separated by spaces which are called. See section on iterative framework
for details.
post_update_options Contains all options of post update scripts

pressure Contains all options of the pressure correction scripts
do pattern for pressure correction (1 do, 0 do not). To do pressure correction
every third step specify "0 0 1", similar to inverse.do_update
simple Contains all options of the simple pressure correction script
simple.scale slope of the simple pressure correction
type Pressure correction algoritm, can be simple or wjk
wjk Contains all options of the wjk pressure correction script
wjk.scale extra scaling factor of pressure correction

scale scale factor for the update
smooth Contains all options of the smooth script

iterations number of iterations for triangular smooth
splinesmooth Contains all options of the spline smooth script

step grid spacing for spline fit when doing spline smoothing
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target target distribution (e.g. rdf) which is tried to match during iterations to match
max upper bound of interval for potential table in which calculations are performed. Should
be set based on reference distributions.
min lower bound of interval for potential table in which calculations are performed. Should
be set based on reference distributions.
name Name of the interaction. The name can be arbitrary but should be unique. For
bonded interactions, this should match the name specified in the mapping file.
step step size of interval for potential table in which calculations are performed. If step
site is too small, lots of statistics is needed ( long runs ). If it’s too big, features in the
distribtuion/potentials might get lost.
tf Contains all information relevant to thermoforce iteration

cg_prefactor Second Prefactor for the thermoforce will be linear interpolated with
tf.prefactor
molname Molecule name of this gropu used in gromacs topology
prefactor Prefactor for the thermoforce (f=-prefactor Makefile Makefile.XMLS Make-
file.incl cginteraction.xml.t2t cgoptions.xml.t2t config.t2t xml2t2t.sh grad density)
spline_end End of the spline used to smooth the density
spline_start Start of the spline used to smooth the density
spline_step Grid of the spline used to smooth the density

type1 Only for non-bonded. Bead type 1 of non-bonded interaction.
type2 Only for non-bonded. Bead type 2 of non-bonded interaction.
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10.4 Scripts

Scripts are used by csg_call and csg_inverse. The script table commonly used (compare
csg_call -list ):

Key1 Key2 Scriptname
tag file tag_file.sh
dummy dummy dummy.sh
function common functions_common.sh
csg master inverse.sh
prepare ibi prepare_generic.sh
prepare imc prepare_imc.sh
prepare generic prepare_generic.sh
prepare tf prepare_generic.sh
prepare_single ibi prepare_generic_single.sh
prepare_single imc prepare_generic_single.sh
prepare_single tf prepare_generic_single.sh
initstep ibi initialize_step_generic.sh
initstep imc initialize_step_generic.sh
initstep tf initialize_step_generic.sh
prepare ibm prepare_ibm.sh
update ibm update_ibm.sh
update ibi update_ibi.sh
update imc update_imc.sh
add_pot ibi add_pot_generic.sh
add_pot imc add_pot_generic.sh
add_pot tf add_pot_generic.sh
rdf pot RDF_to_POT.pl
post_update ibi post_update_generic.sh
post_update imc post_update_generic.sh
post_update tf dummy.sh
post_update_single ibi post_update_generic_single.sh
post_update_single imc post_update_generic_single.sh
postupd scale postupd_scale.sh
postupd pressure postupd_pressure.sh
postupd splinesmooth postupd_splinesmooth.sh
postupd smooth postupd_smooth.sh
postupd shift dpot_shift_nb.pl
postupd dummy postadd_dummy.sh
postupd tag tag_file.sh
post add post_add.sh
post add_single post_add_single.sh
postadd tag tag_file.sh
postadd dummy postadd_dummy.sh
postadd copyback postadd_copyback.sh
postadd convergence postadd_convergence.sh
postadd acc_convergence postadd_acc_convergence.sh
postadd shift dpot_shift_nb.pl
postadd overwrite postadd_overwrite.sh
postadd plot postadd_plot.sh
convergence_check default convergence_check_default.sh
dpot shift_nonbonded dpot_shift_nb.pl
pot shift_nonbonded dpot_shift_nb.pl
pot shift_bonded dpot_shift_bo.pl
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resample target resample_target.sh
dpot crop dpot_crop.pl
update ibi_single update_ibi_single.sh
update ibi_pot update_ibi_pot.pl
imcsolver matlab solve_matlab.sh
solve matlab linsolve.m
imcsolver octave solve_octave.sh
solve octave linsolve.octave
imcsolver numpy solve_numpy.sh
solve numpy linsolve.py
imc purify imc_purify.sh
update tf update_tf.sh
update tf_single update_tf_single.sh
calc thermforce calc_thermforce.sh
tf apply_prefactor apply_prefactor.pl
pressure_cor simple pressure_cor_simple.pl
pressure_cor wjk pressure_cor_wjk.pl
density symmetrize density_symmetrize.py
table add add_POT.pl
table integrate table_integrate.pl
table extrapolate table_extrapolate.pl
table merge merge_tables.pl
table smooth table_smooth.pl
table linearop table_linearop.pl
table dummy table_dummy.sh
table get_value table_get_value.pl
table getsubset table_getsubset.py
table smooth_borders table_smooth_borders.py
table compare table_compare.pl
configuration compare configuration_compare.py
tables jackknife tables_jackknife.pl
run gromacs run_gromacs.sh
pressure gromacs calc_pressure_gromacs.sh
rdf gromacs calc_rdf_generic.sh
imc_stat gromacs imc_stat_generic.sh
density gromacs calc_density_gromacs.sh
prepare_generic gromacs prepare_generic_gromacs.sh
initstep_generic gromacs initialize_step_generic_gromacs.sh
prepare_generic espresso prepare_generic_espresso.sh
initstep_generic espresso initialize_step_generic_espresso.sh
convert_potential gromacs potential_to_gromacs.sh
convert_potential xvg table_to_xvg.pl
functions gromacs functions_gromacs.sh
run espresso run_espresso.sh
pressure espresso calc_pressure_espresso.sh
rdf espresso calc_rdf_espresso.sh
convert_potential espresso potential_to_espresso.sh
convert_potential tab table_to_tab.pl
functions espresso functions_espresso.sh

Script calls can be overwritten by adding a line with the 3rd column changed to csg_table in
inverse.scriptdir directory.
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10.4.1 RDF_to_POT.pl

This script converts rdf to pot of mean force (F (r) = −k_BT ln g(r))
In addtion, it does some magic tricks:

do not crash when calc log(0)
extrapolate the beginning of pot
the maximum to interpolate is pot_max (see xml)
bigger value will be set to that max
shift the potential, so that it is zero at the cutoff
set all values to zero after the cutoff

Usage: RDF_to_POT.pl infile outfile
Used xml options:

cg.inverse.kBT
max

10.4.2 add_POT.pl

This script adds up two potentials In addition, it does some magic tricks:
order of infiles MATTERS !!!!
if infile2 contains an undefined value, it uses the value from infile1
if value for infile1 and infile2 are both invalid, the result is also invalid

Usage: add_POT.pl infile1 infile2 outfile

10.4.3 add_pot_generic.sh

This script adds up the tables
Usage: add_pot_generic.sh
Used xml options:

name

10.4.4 apply_prefactor.pl

This script calculates the integral of a table
Usage: apply_prefactor.pl [OPTIONS] <in > <out >
Allowed options:

-h, --help Show this help message

10.4.5 calc_density_gromacs.sh

This script calcs the density for gromacs for the AdResS therm force
Usage: calc_density_gromacs.sh
Used xml options:

cg.inverse.$sim_prog.equi_time (default: 0)
cg.inverse.$sim_prog.first_frame (default: 0)
cg.inverse.gromacs.topol (default: topol.tpr)
cg.inverse.gromacs.traj_type (default: xtc)
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cg.inverse.program
name
step
tf.molname (default: *)
tf.spline_end

10.4.6 calc_pressure_espresso.sh

This script calcs the pressure for espresso and writes it to outfile

Usage: calc_pressure_espresso.sh outfile
Used external packages: espresso

Used xml options:

cg.inverse.espresso.blockfile (default: conf.esp.gz)
cg.inverse.espresso.pressure_command (default: Espresso_bin)

10.4.7 calc_pressure_gromacs.sh

This script calcs the pressure for gromacs and writes it to outfile

Usage: calc_pressure_gromacs.sh outfile
Used external packages: gromacs

Used xml options:

cg.inverse.gromacs.g_energy.bin (default: g_energy)
cg.inverse.gromacs.g_energy.opts (default: empty)
cg.inverse.gromacs.g_energy.topol (default: topol.tpr)

10.4.8 calc_rdf_espresso.sh

This script calcs the rdf for espresso

Usage: calc_rdf_espresso.sh
Used external packages: espresso

Used xml options:

cg.inverse.espresso.blockfile (default: conf.esp.gz)
cg.inverse.espresso.first_frame (default: 0)
cg.inverse.espresso.rdf_command (default: Espresso_bin)
cg.inverse.espresso.traj (default: top_traj.esp)
inverse.espresso.index1
inverse.espresso.index2
max
min
name
step
type1
type2
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10.4.9 calc_rdf_generic.sh

This script implemtents statistical analysis for the iterative Boltzmann inversion using generic csg
tools (csg_stat)

Usage: calc_rdf_generic.sh
Used xml options:

cg.inverse.$sim_prog.equi_time (default: 0)
cg.inverse.$sim_prog.first_frame (default: 0)
cg.inverse.gromacs.rdf.topol (default: topol.tpr)
cg.inverse.gromacs.traj_type (default: xtc)
cg.inverse.program

10.4.10 calc_thermforce.sh

This script calcs the thermoforce out of gromacs density for the AdResS therm force

Usage: calc_thermforce.sh infile outfile
Used xml options:

cg.inverse.gromacs.mdp (default: grompp.mdp)
max
min
name
step
tf.cg_prefactor (default: empty)
tf.prefactor
tf.spline_end
tf.spline_start
tf.spline_step

10.4.11 configuration_compare.py

Usage: configuration_compare.py [options] conf1 conf2
Options:

-h, --help show this help message and exit
--eps=EPS tolerance for mismatch

10.4.12 convergence_check_default.sh

Calculated the sum of all convergence files and create a file ’stop’ if the sum is bigger than a given
limit

Usage: convergence_check_default.sh
Used xml options:

cg.inverse.convergence_check_options.limit
cg.inverse.convergence_check_options.name_glob (default: *.conv)
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10.4.13 density_symmetrize.py

This script symmetrizes the density around --adressc for thermodynamic force iteration
Usage: density_symmetrize.py
Allowed options:

--adressc X.X center of the adress zone (x-value)
--infile FILE input file
--outfile FILE output file

10.4.14 dpot_crop.pl

crop the potential update at poorly sampled ends
Usage: dpot_crop.pl [OPTIONS] <file > <a> <b>
Allowed options:

-h, --help Show this help message
Examples:

dpot_crop.pl tmp.dpot.cur tmp.dpot.new

10.4.15 dpot_shift_bo.pl

This script shifts the whole potential to minimum, like it is normally done for bonded potentials.
Usage: dpot_shift_bo.pl infile outfile

10.4.16 dpot_shift_nb.pl

This script shifts the whole potential to the last value, like it is normally done for non-bonded
potentials.
Usage: dpot_shift_nb.pl infile outfile

10.4.17 dummy.sh

dummy script (does nothing), useful to overwrite default by nothing
Usage: dummy.sh

10.4.18 functions_common.sh

This file defines some commonly used functions:
msg -- echos a msg on the screen and send it to the logfile if logging is enabled
die -- make the iterative frame work stopp
cat_external -- takes a two tags and shows content of the according script
do_external -- takes two tags, find the according script and excute it
critical -- executes arguments as command and calls die if not succesful
check_for_duplicated_interactions -- checks for duplicated interactions
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csg_get_interaction_property -- gets an interaction property from the xml file,
should only be called from inside a for_all loop
csg_get_property -- get an property from the xml file
trim_all -- strips white space from beginning and the end of all args
mark_done -- mark a task (1st argument) as done in the restart file
is_done -- checks if something is already do in the restart file
int_check -- checks if 1st argument is a integer or calls die with error message (2nd
argument)
num_check -- checks if 1st argument is a number or calls die with error message (2nd
argument)
get_stepname -- get the dir name of a certain step number (1st argument)
get_current_step_dir -- print the directory of the current step
get_last_step_dir -- print the directory of the last step
get_main_dir -- print the main directory
get_current_step_nr -- print the main directory
get_step_nr -- print the number of a certain step directory (1st argument)
cp_from_main_dir -- copy something from the main directory
cp_from_last_step -- copy something from the last step
get_number_tasks -- get the number of possible tasks from the xml file or determine it
automatically under linux
get_table_comment -- get comment lines from a table and add common information,
which include the hgid and other information
csg_inverse_clean -- clean out the main directory
add_to_csgshare -- added an directory to the csg internal search directories
globalize_dir -- convert a local directory to a global one
globalize_file -- convert a local file name to a global one
source_function -- source an extra function file
csg_banner -- print a big banner
csg_calc -- simple calculator, a + b, ...
show_csg_tables -- show all concatinated csg tables
get_command_from_csg_tables -- print the name of script belonging to certain tags
(1st, 2nd argument)
source_wrapper -- print the full name of a script belonging to two tags (1st, 2nd argu-
ment)
find_in_csgshare -- find a script in csg script search path
enable_logging -- enables the logging to a certain file (1st argument) or the logfile taken
from the xml file
get_restart_file -- print the name of the restart file to use
check_for_obsolete_xml_options -- check xml file for obsolete options
command_not_found_handle -- print and error message if a command or a function was
not found

Used xml options:
cg.inverse.log_file (default: inverse.log)
cg.inverse.restart_file (default: restart_points.log)
cg.inverse.simulation.tasks (default: auto)
cg.non-bonded.name
name

10.4.19 functions_espresso.sh

Useful functions for espresso:
simulation_finish -- checks if simulation is finished
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checkpoint_exist -- check if a checkpoint exists
get_simulation_setting -- check if a checkpoint exists

Used external packages: espresso

Used xml options:

cg.inverse.espresso.blockfile_out (default: confout.esp.gz)
cg.inverse.espresso.scriptdir (default: empty)
cg.inverse.espresso.success (default: success.esp)
cg.inverse.espresso.traj (default: top_traj.esp)

10.4.20 functions_gromacs.sh

Useful functions for gromacs:

get_simulation_setting -- gets a parameter (1st argument) from gromacs mdp file
(2nd parameter)
check_cutoff -- compared current interactions cutoff vs rvdw,
check_temp -- compares k_B T in xml with temp in mpd file
simulation_finish -- checks if simulation is finished
checkpoint_exist -- check if a checkpoint exists
calc_begin_time -- return the max of dt*frames and eqtime
calc_end_time -- return dt * nsteps

Used external packages: gromacs

Used xml options:

cg.inverse.gromacs.conf_out (default: confout.gro)
cg.inverse.gromacs.cutoff_check (default: yes)
cg.inverse.gromacs.equi_time (default: 0)
cg.inverse.gromacs.first_frame (default: 0)
cg.inverse.gromacs.gmxrc (default: empty)
cg.inverse.gromacs.mdp (default: grompp.mdp)
cg.inverse.gromacs.mdrun.checkpoint (default: state.cpt)
cg.inverse.gromacs.temp_check (default: yes)
cg.inverse.gromacs.traj_type (default: xtc)
cg.inverse.kBT
max

10.4.21 imc_purify.sh

This scripts cleans up the dpot tables for each interaction when using IMC

Usage: imc_purify.sh

Used xml options:

cg.inverse.kBT
inverse.do_potential (default: 1)
max
min
name
step
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10.4.22 imc_stat_generic.sh

This script implemtents statistical analysis for the Inverse Monte Carlo Method using generic csg
tools (csg_stat)
Usage: imc_stat_generic.sh
Used xml options:

cg.inverse.$sim_prog.equi_time (default: 0)
cg.inverse.$sim_prog.first_frame (default: 0)
cg.inverse.gromacs.topol (default: topol.tpr)
cg.inverse.gromacs.traj_type (default: xtc)
cg.inverse.program

10.4.23 initialize_step_generic.sh

This script implements the initialization for every step in a generic way
Usage: initialize_step_generic.sh
Used xml options:

cg.inverse.method
cg.inverse.program
name

10.4.24 initialize_step_generic_espresso.sh

This script initializes an espresso simulation
Usage: initialize_step_generic_espresso.sh
Used xml options:

cg.inverse.espresso.blockfile (default: conf.esp.gz)
cg.inverse.espresso.blockfile_out (default: confout.esp.gz)
cg.inverse.initial_configuration (default: laststep)

10.4.25 initialize_step_generic_gromacs.sh

This script implemtents the function initialize
Usage: initialize_step_generic_gromacs.sh
Used external packages: gromacs
Used xml options:

cg.inverse.gromacs.conf (default: conf.gro)
cg.inverse.gromacs.conf_out (default: confout.gro)
cg.inverse.initial_configuration (default: laststep)
cg.inverse.method

10.4.26 inverse.sh

Start the script to run ibi, imc, etc. or clean out current dir
Usage: inverse.sh [OPTIONS] --options settings.xml [clean]
Allowed options:
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-h, --help show this help
-N, --do-iterations N only do N iterations
--wall-time SEK Set wall clock time
--options FILE Specify the options xml file to use
--debug enable debug mode with a lot of information
--nocolor disable colors

Examples:

inverse.sh --options cg.xml
inverse.sh -6 --options cg.xml

Used xml options:

cg.inverse.cleanlist (default: empty)
cg.inverse.convergence_check (default: none)
cg.inverse.filelist (default: empty)
cg.inverse.iterations_max
cg.inverse.method
cg.inverse.program
cg.inverse.scriptdir (default: empty)
cg.inverse.simulation.background (default: no)

10.4.27 linsolve.m

This script has no help

10.4.28 linsolve.octave

This script has no help

10.4.29 linsolve.py

This script has no help

10.4.30 merge_tables.pl

Merge two tables

Usage: merge_tables.pl [OPTIONS] <source > <dest > <out >
Allowed options:

-v, --version Print version
-h, --help Show this help message
--withflag only change entries with specific flag in src
--noflags don’t copy flags
--novalues don’t copy values

Examples:

merge_tables.pl intable intable2 outtable
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10.4.31 post_add.sh

This script makes all the post update
Usage: post_add.sh

10.4.32 post_add_single.sh

This script makes all the post update with backup for single pairs
Usage: post_add_single.sh
Used xml options:

inverse.post_add (default: empty)
name

10.4.33 post_update_generic.sh

This script makes all the post update
Usage: post_update_generic.sh
Used xml options:

cg.inverse.method

10.4.34 post_update_generic_single.sh

This script makes all the post update with backup for single pairs incl. backups
Usage: post_update_generic_single.sh
Used xml options:

inverse.post_update (default: empty)
name

10.4.35 postadd_acc_convergence.sh

postadd accumulate convergence script: accumulate ${name}.conv of all steps
Usage: postadd_acc_convergence.sh infile outfile
Used xml options:

name

10.4.36 postadd_convergence.sh

postadd convergence script, calcs int of (${name}.DIST.tgt-${name}.DIST.new)**2 and saves it
to ${name}.conv. DIST is dist, but changed by onvergence.what option
usage: postadd_convergence.sh infile outfile
Used xml options:

inverse.post_add_options.convergence.weight (default: 1)
inverse.post_add_options.convergence.what (default: dist)
max
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min
name
step

10.4.37 postadd_copyback.sh

postadd copyback script, copies files back to the maindir, use ${name} in filename as replacement
for the interaction name

Usage: postadd_copyback.sh infile outfile

Used xml options:

inverse.post_add_options.copyback.filelist (default: empty)
name

10.4.38 postadd_dummy.sh

postadd dummy script (does nothing), useful to overwrite default by nothing

Usage: postadd_dummy.sh infile outfile

10.4.39 postadd_overwrite.sh

postadd overwrite script, overwrites potential of all other interactions with this one

Usage: postadd_overwrite.sh infile outfile

Used xml options:

inverse.post_add
inverse.post_add_options.overwrite.do (default: 1)
cg.non-bonded.name
name

10.4.40 postadd_plot.sh

postadd plot script, send a certain plot script to gnuplot

Usage: postadd_plot.sh infile outfile

Used external packages: gnuplot

Used xml options:

inverse.post_add_options.plot.fd (default: 8)
inverse.post_add_options.plot.gnuplot_bin (default: gnuplot)
inverse.post_add_options.plot.gnuplot_opts (default: empty)
inverse.post_add_options.plot.kill (default: empty)
inverse.post_add_options.plot.script
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10.4.41 postupd_pressure.sh

This script implements the pressure update
Usage: postupd_pressure.sh infile outfile
Used xml options:

cg.inverse.program
inverse.post_update_options.pressure.do (default: 1)
inverse.post_update_options.pressure.type (default: simple)
max
min
name
step

10.4.42 postupd_scale.sh

This script implements scaling of the potential update (.dpot)
Usage: postupd_scale.sh infile outfile
Used xml options:

inverse.post_update_options.scale (default: 1.0)
name

10.4.43 postupd_smooth.sh

This script implements smoothing of the potential update (.dpot)
Usage: postupd_smooth.sh infile outfile
Used xml options:

inverse.post_update_options.smooth.iterations (default: 1)
name

10.4.44 postupd_splinesmooth.sh

This script implements smoothing of the potential update (.dpot)
Usage: postupd_splinesmooth.sh infile outfile
Used xml options:

inverse.post_update_options.splinesmooth.step
max
min
name
step

10.4.45 potential_to_espresso.sh

This script is a wrapper to convert a potential to espresso
Usage: potential_to_espresso.sh
Used xml options:

cg.inverse.espresso.table_bins
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inverse.espresso.table
max
name

10.4.46 potential_to_gromacs.sh

This script is a wrapper to convert a potential to gromacs

Usage: potential_to_gromacs.sh [input] [output]
Used xml options:

cg.inverse.gromacs.mdp (default: grompp.mdp)
cg.inverse.gromacs.pot_max (default: empty)
cg.inverse.gromacs.table_bins
cg.inverse.gromacs.table_end
cg.inverse.gromacs.table_end (default: empty)
cg.inverse.method (default: empty)
bondtype
inverse.gromacs.table
name

10.4.47 prepare_generic.sh

This script prepares potentials in a generic way

Usage: prepare_generic.sh
Used xml options:

cg.inverse.method
cg.inverse.program

10.4.48 prepare_generic_espresso.sh

This script implements the prepare step for espresso

Usage: prepare_generic_espresso.sh
Used xml options:

cg.inverse.espresso.blockfile (default: conf.esp.gz)
cg.inverse.espresso.blockfile_out (default: confout.esp.gz)

10.4.49 prepare_generic_gromacs.sh

This script does the prepare step for gromacs

Usage: prepare_generic_gromacs.sh
Used xml options:

cg.inverse.gromacs.conf (default: conf.gro)
cg.inverse.gromacs.conf_out (default: confout.gro)
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10.4.50 prepare_generic_single.sh

This script implements the prepares the potential in step 0, using pot.in or by resampling the
target distribution
Usage: prepare_generic_single.sh
Used xml options:

cg.inverse.method
bondtype
inverse.target
max
min
name
step

10.4.51 prepare_ibm.sh

Informs users that ibm was renamed to ibi.
Usage: prepare_ibm.sh

10.4.52 prepare_imc.sh

This script initializes potentials for imc
Usage: prepare_imc.sh

10.4.53 pressure_cor_simple.pl

This script calls the pressure corrections dU = A ∗ (1 − r/r_c), where A = −0.1k_BT ∗
max(1, |p_cur − p_target| ∗ scale) ∗ sgn(p_cur − p_target)
Usage: pressure_cor_simple.pl p_cur outfile
Used xml options:

cg.inverse.kBT
inverse.p_target
inverse.post_update_options.pressure.simple.scale
max
min
step

10.4.54 pressure_cor_wjk.pl

This script calls the pressure corrections like in Wan, Junghans & Kremer, Euro. Phys. J. E
28, 221 (2009) Basically dU=A*(1-r/r_c) with A= -max(0.1k_B T, Int ) * sign(p_cur-p_target)
and Int is the integral from Eq. 7 in the paper.
Usage: pressure_cor_wjk.pl p_cur outfile
Used xml options:

cg.inverse.kBT
inverse.p_target
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inverse.particle_dens
inverse.post_update_options.pressure.wjk.scale (default: 1.0)
max
min
name
step

10.4.55 resample_target.sh

This script resamples target distribution to grid spacing of the setting xml file
Usage: resample_target.sh
Used xml options:

bondtype
inverse.target
max
min
name
step

10.4.56 run_espresso.sh

This script runs espresso for the Inverse Boltzmann Method
Usage: run_espresso.sh
Used external packages: espresso
Used xml options:

cg.inverse.espresso.blockfile (default: conf.esp.gz)
cg.inverse.espresso.blockfile_out (default: confout.esp.gz)
cg.inverse.espresso.command (default: Espresso_bin)
cg.inverse.espresso.debug (default: no)
cg.inverse.espresso.exclusions (default: 0)
cg.inverse.espresso.n_snapshots
cg.inverse.espresso.n_steps
cg.inverse.espresso.success (default: success.esp)
cg.inverse.espresso.traj (default: top_traj.esp)
cg.inverse.method
cg.non-bonded.inverse.espresso.index1
cg.non-bonded.inverse.espresso.index2

10.4.57 run_gromacs.sh

This script runs a gromacs simulation
Usage: run_gromacs.sh
Used external packages: gromacs
Used xml options:

cg.inverse.gromacs.conf (default: conf.gro)
cg.inverse.gromacs.conf_out (default: confout.gro)
cg.inverse.gromacs.grompp.bin (default: grompp)
cg.inverse.gromacs.grompp.index (default: index.ndx)
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cg.inverse.gromacs.grompp.opts (default: empty)
cg.inverse.gromacs.grompp.topol (default: topol.top)
cg.inverse.gromacs.mdp (default: grompp.mdp)
cg.inverse.gromacs.mdrun.checkpoint (default: state.cpt)
cg.inverse.gromacs.mdrun.command (default: mdrun)
cg.inverse.gromacs.mdrun.opts (default: empty)
cg.inverse.gromacs.topol (default: topol.tpr)
cg.inverse.gromacs.traj_type (default: xtc)

10.4.58 solve_matlab.sh

This script solves a linear equation system from imc using matlab
Usage: solve_matlab.sh <group > <outfile >
Used external packages: matlab
Used xml options:

cg.inverse.imc.matlab.bin (default: matlab)

10.4.59 solve_numpy.sh

This script solves a linear equation system from imc using numpy
Usage: solve_numpy.sh <group > <outfile >
Used external packages: numpy
Used xml options:

cg.inverse.imc.numpy.bin (default: python)

10.4.60 solve_octave.sh

This script solves a linear equation system from imc using octave
Usage: solve_octave.sh <group > <outfile >
Used external packages: octave
Used xml options:

cg.inverse.imc.octave.bin (default: octave)

10.4.61 table_compare.pl

This script compares two tables
Usage: table_compare.pl infile1 infile2

10.4.62 table_dummy.sh

This script creates a dummy table with grid min:step:max
Usage: table_dummy.sh min:step:max outfile
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10.4.63 table_extrapolate.pl

This script extrapolates a table
Usage: table_extrapolate.pl [OPTIONS] <in > <out >
Allowed options:

--avgpoints A average over the given number of points to extrapolate: default is 3
--function constant, linear, quadratic or exponential, sasha: default is quadratic
--no-flagupdate do not update the flag of the extrapolated values
--region left, right, or leftright: default is leftright
--curvature C curvature of the quadratic function: default is 10000, makes sense only
for quadratic extrapolation, ignored for other cases
-h, --help Show this help message

Extrapolation methods: always m = dy/dx = (y[i+A]− y[i])/(x[i+A]− x[i])
constant: y = y0
linear: y = ax+ b b = −m ∗ x_0 + y_0; ; a = m
sasha: y = a ∗ (x− b)2 b = (x0− 2y_0/m) a = m2/(4 ∗ y_0)
exponential: y = a ∗ exp(b ∗ x) a = y0 ∗ exp(−m ∗ x0/y0) b = m/y_0
quadratic: y = C ∗ (x+ a)2 + b a = m/(2 ∗ C)− x0 b = y_0−m2/(4 ∗ C)

10.4.64 table_get_value.pl

This script print the y value of x, which is closest to X.
Usage: table_get_value.pl [OPTIONS] X infile
Allowed options:

-h, --help Show this help message

10.4.65 table_getsubset.py

This script get the a subset of a table
Usage: table_getsubset.py
Allowed options:

--xstart X.X x value where the subset starts
--xstop X.X x value where the subset stops
--infile FILE input file
--outfile FILE output file

10.4.66 table_integrate.pl

This script calculates the integral of a table. Please note the force is the NEGATIVE integral of
the potential (use ’table linearop’ and multiply the table with -1)
Usage: table_integrate.pl [OPTIONS] <in > <out >
Allowed options:

--with-errors calculate error
--with-S Add entropic contribution to force 2k_BT/r
--kbT NUMBER use NUMBER as k_B ∗ T for the entropic part
-h, --help Show this help message

Examples:
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table_integrate.pl --with-S --kbT 2.49435 tmp.force tmp. dpot

10.4.67 table_linearop.pl

This script performs a linear operation on the y values: y_new = a ∗ y_old+ b

Usage: table_linearop.pl [OPTIONS] <in > <out > <a> <b>

Allowed options:

-h, --help Show this help message
--withflag only change entries with specific flag in src
--with-errors also read and calculate errors

Examples:

table_linearop.pl tmp.dpot.cur tmp.dpot.new 1.0 0.0

10.4.68 table_smooth.pl

This script smoothes a table

Usage: table_smooth.pl infile outfile

10.4.69 table_smooth_borders.py

This script smooths the border for thermodynamic force iteration

Usage: table_smooth_borders.py

Allowed options:

--xstart X.X where the smoothing starts
--xstop X.X where the smoothing stops
--infile FILE input file
--outfile FILE output file

10.4.70 table_to_tab.pl

This script converts csg potential files to the tab format (as read by espresso). Potential is copied
in the C12 column.

In addition, it does some magic tricks:

shift the potential, so that it is zero at the cutoff
set all values to zero after the cutoff

Usage: table_to_tab.pl in_pot in_deriv_pot outfile

Used xml options:

cg.inverse.espresso.table_bins
cg.inverse.espresso.table_end
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10.4.71 table_to_xvg.pl

This script converts csg potential files to the xvg format.
Allowed options:

-v, --version print version
-h, --help show this help message
--type XXX change the type of xvg table Default: non-bonded
--max MAX Replace all pot value bigger MAX by MAX

Possible types: non-bonded (=C12), bond, thermforce, C12, C6
Examples:

table_to_xvg.pl --type bond table.in table_b0.xvg

10.4.72 tables_jackknife.pl

This script has no help

10.4.73 tag_file.sh

Add table_comment to the head of a file
Usage: tag_file.sh input output

10.4.74 update_ibi.sh

This script implements the function update for the Inverse Boltzmann Method
Usage: update_ibi.sh
Used xml options:

cg.inverse.program

10.4.75 update_ibi_pot.pl

This script calcs dU out of two rdfs with the rules of inverse boltzmann
In addition, it does some magic tricks:

do not update if one of the two rdf is undefined
Usage: update_ibi_pot.pl new_rdf target_rdf cur_pot outfile
Used xml options:

cg.inverse.kBT

10.4.76 update_ibi_single.sh

This script implemtents the function update for a single pair for the Inverse Boltzmann Method
Usage: update_ibi_single.sh
Used xml options:

inverse.do_potential (default: 1)
max
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min
name
step

10.4.77 update_ibm.sh

Informs users that ibm was renamed to ibi.
Usage: update_ibm.sh

10.4.78 update_imc.sh

This script implements the function update for the Inverse Monte Carlo Method
Usage: update_imc.sh
Used xml options:

cg.inverse.imc.solver
cg.inverse.program
cg.non-bonded.inverse.imc.group

10.4.79 update_tf.sh

This script implements the function update for the thermodynamic force interation
Usage: update_tf.sh

10.4.80 update_tf_single.sh

This script implemtents the function update of a single interaction for the thermodynamics force
iteration
Usage: update_tf_single.sh
Used xml options:

cg.inverse.program
inverse.do_potential (default: 1)
max
min
name
step
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